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Summary 

Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs) are used by Severn Trent Water 

as a low-cost tertiary wastewater treatment for rural locations.  Experience has shown that 

clogging is a major operational problem that reduces HSSF TW lifetime.  Clogging is caused 

by an accumulation of secondary wastewater solids from upstream processes and 

decomposing leaf litter.   Clogging occurs as a sludge layer where wastewater is loaded on 

the surface of the bed at the inlet.  Severn Trent systems receive relatively high hydraulic 

loading rates, which causes overland flow and reduces the ability to mineralise surface 

sludge accumulations.  A novel apparatus and method, the Aston Permeameter, was created 

to measure hydraulic conductivity in situ.  Accuracy is ±30 %, which was considered 

adequate given that conductivity in clogged systems varies by several orders of magnitude.  

The Aston Permeameter was used to perform 20 separate tests on 13 different HSSF TWs in 

the UK and the US.  The minimum conductivity measured was 0.03 m/d at Fenny Compton 

(compared with 5,000 m/d clean conductivity), which was caused by an accumulation of 

construction fines in one part of the bed.  Most systems displayed a 2 to 3 order of 

magnitude variation in conductivity in each dimension.  Statistically significant transverse 

variations in conductivity were found in 70% of the systems.  Clogging at the inlet and outlet 

was generally highest where flow enters the influent distribution and exits the effluent 

collection system, respectively.  Surface conductivity was lower in systems with dense 

vegetation because plant canopies reduce surface evapotranspiration and decelerate sludge 

mineralisation.  An equation was derived to describe how the water table profile is 

influenced by overland flow, spatial variations in conductivity and clogging.  The equation is 

calibrated using a single parameter, the Clog Factor (CF), which represents the equivalent 

loss of porosity that would reproduce measured conductivity according to the Kozeny-

Carman Equation.  The CF varies from 0 for ideal conditions to 1 for completely clogged 

conditions.  Minimum CF was 0.54 for a system that had recently been refurbished, which 

represents the deviation from ideal conditions due to characteristics of non-ideal media such 

as particle size distribution and morphology.  Maximum CF was 0.90 for a 15 year old system 

that exhibited sludge accumulation and overland flow across the majority of the bed.  A 

Finite Element Model of a 15 m long HSSF TW was used to indicate how hydraulics and 

hydrodynamics vary as CF increases.  It was found that as CF increases from 0.55 to 0.65 the 

subsurface wetted area increases, which causes mean hydraulic residence time to increase 

from 0.16 days to 0.18 days.  As CF increases from 0.65 to 0.90, the extent of overland flow 

increases from 1.8 m to 13.1 m, which reduces hydraulic efficiency from 37 % to 12 % and 

reduces mean residence time to 0.08 days.  

 

Keywords: clogging, wastewater treatment, horizontal subsurface flow treatment wetland, 

operations and maintenance, finite element analysis  
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treatment process. 

35 

Figure 1-4 The typical design of Horizontal Subsurface Flow Treatment 

Wetlands as used by Severn Trent Water for the tertiary 

treatment of municipal wastewater in the UK.  The figure 

illustrates both normal and clogged hydraulic operation, where 

the grey matter indicates the zone where clogging typically 

occurs.  Figure reproduced from Knowles et al. (2011). 

38 

Figure 1-5 Two tertiary HSSF TW cells at Severn Trent, Snitterfield 

wastewater treatment plant.  The cells are 12.5 m long by 28 m 

wide and are showing a full growth of Phragmites australis. 

39 

Figure 1-6 The surface of a refurbished, 1 year old tertiary treatment HSSF 

TW operated by Severn Trent at Fenny Compton wastewater 

treatment plant.  The photograph shows rock berms, gravel 

media and early Phragmites australis establishment.  

Wastewater is flowing 10 cm below the surface of the gravel. 

42 

Figure 1-7 The surface of a clogged, 7 year old tertiary treatment HSSF TW 

operated by Severn Trent at Gaydon wastewater treatment 

plant.  The photograph shows a ‘v-notch trough’ style influent 

distributor which spans the width of the system at the inlet, and 

a significant surface sludge accumulation which has obscured 

the gravel surface and rock berms and results in overland flow of 

the wastewater.   The difference in Phragmites australis health 

between Figure 1-6 and Figure 1-7 is related to winter die-off 

rather than the impact of clogging. 

43 
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Figure 1-8 Distribution of system age at the time of refurbishment for 166 

tertiary HSSF TW systems.  Records kindly provided by 

C.Murphy. 

44 

Figure 2-1 Treatment Wetland classification system showing the numerous 

design variants that have evolved over the last three decades.  

Reproduced from Fonder and Headley (2011). 

54 

Figure 2-2 Early classification system for Treatment Wetland technology 

that is based on the role of the plants.  Reproduced from 

Vymazal (2003). 

55 

Figure 2-3 Clogging processes that occur at the surface and in the 

subsurface of Horizontal Subsurface Flow Treatment Wetlands.  

The diagram may not be applicable to other varieties of 

Subsurface Flow Treatment Wetland.  The inset gives detail of 

clogging processes at the pore level.  Adapted from Kadlec and 

Knight (1996). 

60 

Figure 2-4 Particle removal processes in a porous medium, such as gravel in 

HSSF TWs.  Based on information from Hubbe et al. (2009), 

Thullner (2009) and Zamani and Maini (2009).  The numbered 

removal mechanisms illustrated above are described in 

Table 2-2. 

63 

Figure 2-5 The secondary clarifier that directly follows a rotating biological 

contactor and precedes a HSSF TW.  Large biomass flocs can be 

seen that have not settled.  Photograph taken at Severn Trent, 

Moreton Morrell wastewater treatment plant, August 2008. 

75 

Figure 2-6 Surface influent distributors in Severn Trent HSSF TWs, all 

showing the effects of accumulated clog matter: (A) vertical riser 

pipe blocked with solids (Photo taken at Moreton Morrell 

wastewater treatment plant, March 2009), (B) horizontal pipe 

partially submersed in clog matter (Photo by J. Nivala at Fenny 

Compton wastewater treatment plant, March 2009), (C) V-notch 

trough showing accumulation of solids (Photo by C. Murphy at 

Gaydon wastewater treatment plant, March 2009). 

77 

Figure 2-7 A horizontal gradient of solids accumulation is observed in 

surface-loaded HSSF treatment wetlands. These cores were 

extracted from an eight-year-old Severn Trent HSSF TW at 

longitudinal points (a) 2 m and (b) 8 m from the inlet.  Photo 

taken at Rowington wastewater treatment plant, July 2009. 

78 

Figure 2-8 The relationship between cumulative solids loading and sludge 

layer thickness at the inlet, derived from data for 21 Severn 

Trent HSSF TWs as surveyed by Wilson (2007). 

78 

Figure 2-9 A core taken from the top layers of an eight-year-old HSSF TW. 

Three distinct layers are visible: (Top) A layer of clog matter that 

has accumulated above the surface of the gravel, (Middle) a top 

layer of gravel that is held together by clog matter, (Bottom) the 

transition between upper layers of clogged cohesive gravel and 

79 
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unclogged non-cohesive gravel at lower depth.  Photo taken at 

Severn Trent, Rowington wastewater treatment plant, July 2009. 

Figure 2-10 Box-and-Whisker plots showing the age at refurbishment for 

Severn Trent HSSF TWs versus: a) the upstream secondary 

treatment process (RBC = rotating biological contactor and TF = 

Trickling Filter); and b) influent distribution system.  Brackets 

indicate the number of records for each case. 

80 

Figure 2-11 Cumulative distribution plots showing the distribution of width-

to-length ratios (W:L) for 270 beds that have not been 

refurbished, and 213 that either have been refurbished or are 

pending refurbishment. 

82 

Figure 2-12 Cumulative distribution plots showing the distribution of specific 

footprints (m2/PE) for 206 beds that have not been refurbished, 

and 184 that either have been refurbished or are pending 

refurbishment. 

83 

 

Figure 2-13 Clogging profile for a typical HSSF wetland with subsurface 

influent distribution. Design details are adapted from Vymazal et 

al. (1998) and IWA (2000); clogging profile is adapted from 

Kadlec and Wallace (2010).  Figure reproduced from Knowles et 

al. (2011). 

85 

Figure 2-14 Clogging profile for a typical VF treatment wetland with sand 

media. Design details are adapted from ÖNORM-B-2505 (1997); 

clogging profile is based on information given in Langergraber et 

al. (2003).  Figure reproduced from (Knowles et al., 2011). 

87 

 

Figure 2-15 Clogging profile for a typical VF (French-type) treatment wetland 

with gravel media. These systems are generally designed with 

several beds in series; the first bed in the series (shown) is 

constructed with larger gravel and retains most of the solids. 

Design details are adapted from Lienard et al. (1998); clogging 

profile is based on information from Molle et al. (2005).  Figure 

reproduced from (Knowles et al., 2011). 

89 

 

Figure 2-16 Box-and-whisker plots showing the distributions of average HLR 

and TSS loadings over the Period-of-Operational-Record (POR) 

for different systems.  System data is obtained from four 

national treatment wetland databases: UK (CWA, 2006); US 

(WERF, 2006); Germany (data adapted from Winter and Goetz 

(2003)); France (data adapted from Boutin et al. (1997)).   

92 

Figure 3-1 A schematic of a Severn Trent Water Horizontal Subsurface Flow 

Treatment Wetland with a corresponding exploded view that 

details major hydrological components. 

98 

Figure 3-2 A 2D simplification of the hydrology shown in Figure 3-1, with 

nomenclature for boundary conditions and subdomain hydraulic 

properties.  Adapted from Kadlec and Knight (1996). 

100 

Figure 3-3 The relationship between porous media Reynolds number and 

drag force as described by the Ergun Equation.  The relationship 

103 
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is compared to a large number of experimental results 

summarised in Ergun (1952).  Graphic adapted from Shamy and 

Zeghal (2007). 

Figure 3-4 A conceptualisation of the relationship between flow-rate Qin, 

hydraulic conductivity k and resulting water depth h.  The 

diagram depicts a column of gravel with hydraulic conductivity 

that increases from surface to base, and black lines that 

represent the equilibrium water table profiles corresponding to 

multiples of Qin and the hydraulic conductivity of the wetted 

column. 

108 

Figure 3-5 A depiction of the dual hydrological regime that can be 

attributed to infiltrating overland flow through the low hydraulic 

conductivity surface layer, providing distributed variable 

recharge to the phreatic subsurface water table. 

109 

Figure 3-6 Theoretical Residence Time Distribution around the theoretical 

residence time (τT) of a packet of solute introduced into a Plug 

Flow Reactor (PFR) and a Continually Stirred Tank Reactor 

(CSTR). 

116 

Figure 3-7 The Residence Time Distribution (RTD) for a lithium tracer 

experiment performed on a HSSF TW at Sieci, Italy.  The HRT at 

peak concentration P, mean HRT  and theoretical HRT T are 

given.  If the HSSF TW behaved as an ideal Plug Flow Reactor 

then the RTD would be a single pulse at T, which corresponds to 

the total amount of tracer injected (2.8 g).  Data adapted from 

information presented in Marsili-Libelli and Checchi (2005). 

118 

Figure 3-8 Frequency Distribution of the Volumetric Efficiency measured in 

37 HSSF TWs, by comparison of observed and design Hydraulic 

Residence Times. Adapted from (Kadlec and Wallace, 2010). 

121 

Figure 3-9 The water table profiles produced by the aforementioned 

equations for Darcy’s Law, Dual Zone Darcy’s Law, and the 

Dupuit-Forchheimer assumption, when k.H/Qin = 360, hout = 

0.2 m and L = 15 m. 

124 

Figure 3-10 The variation of system response, for gamma probability 

distribution function of a unit impulse over dimensionless time, 

as the number of tanks-in-series varies from 1 (CSTR) to infinity 

(PF). 

129 

Figure 3-11 The relationship between hydraulic conductivity and cumulative 

applied load for five Subsurface Flow treatment wetlands with 

different media.  Data from (a) Hyánková et al. (2006); (b) 

Langergraber et al. (2003) analysed according to Blazejewski and 

Murat-Blazejewska (1997) (c) Blazejewski and Murat-

Blazejewska (1997) with data from Bavor and Schulz (1993); (d) 

Platzer and Mauch (1997). 

130 

Figure 3-12 A schematic of the FEA model of a Severn Trent HSSF TW, 

detailing the boundary and subdomain conditions of the 

142 
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hydraulic modules. 

Figure 4-1 Experimental set-up for in situ measurement of the vertical 

hydraulic conductivity profile across media with high hydraulic 

conductivity.  Figure is not to scale and is reproduced from 

Knowles and Davies (2009).  

159 

Figure 4-2 An electrical analogy of the Aston Permeameter, represented by 

the voltage V drop across a wire of constant dimensions but 

varying electrical conductivity, split into n lengths of equal 

section. 

161 

 

Figure 4-3 

Photograph of the experimental set-up at a Constructed 

Wetland in South Warwickshire, UK, depicting the Mariotte 

Siphon activated reservoir standing above the permeameter cell, 

which has been submersed into the gravel.  Three digital 

manometers are in a blue toolbox at the forefront of the shot.  

The orange manometer lines are inserted into the white 

manometer take off tubes.  The reservoir is empty in this shot. 

162 

Figure 4-4 Photograph of the full inventory of apparatus used in the 

experiment (labels as per Figure 4-1). The method is designed to 

be highly portable so that it can be performed by one user, in-

situ. 

163 

Figure 4-5 The maximum practical flow velocity that can be sustained in the 

permeameter cell at maximum discharge by the Aston 

Permeameter used in this study. 

165 

Figure 4-6 Measurements that are taken during the experiment, depicted 

for one take-off tube. Corresponding readings will need to be 

taken in each individual take-off tube. For clarity, the reservoir 

device which maintains the constant head has been omitted 

from graphic B): “After applying constant head”. 

166 

Figure 4-7 Head loss across homogeneous silica sand cores, tested using 

both BS-ISO-17313 (2004) and the proposed method. Good 

linearity was achieved with both methods. 

168 

Figure 4-8 The head loss across a gravel core in a HSSF TW at Fenny 

Compton.  The test was repeated five times (Runs A-E) to 

determine that the experimental repeatability was good; 

returning standard deviations of 1-4% of total normalised head 

loss. 

169 

Figure 4-9 The locations of 16 sampling points installed to perform a 

homogeneity experiment at Moreton Morrell, to assess the 

possible errors introduced by inserting the permeameter cell 

into the gravel (not to scale: points marked X were set at a 

longitudinal and transverse pitch of 4 m.  Points marked ● were 

arranged around the X points at a radius of 0.2m). 

170 

Figure 4-10 The errors associated with the results of Run A of the Fenny 

Compton repeatability experiment, both with (top) and without 

(bottom) inclusion of the error introduced by instantaneous 

172 
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reading of the manometer when reinserting the probe between 

readings 

Figure 5-1 Plan view of Northend HSSF TW showing major architectural 

features and locations of sampling points for the February 2007 

test.  The influent distributor comprises 6 horizontal ports 

equally distributed along the length of the inlet pipe between 

Transects A and C.  The hatched border around the white central 

region represents the rock berms.  The grey shaded area 

indicates the occurrence of overland flow. 

179 

Figure 5-2 Northend 2D hydraulic conductivity profile at February 2007.  

The coloured contours represent the bulk vertical hydraulic 

conductivity profile in the top 0.4 m of media, which is based on 

a linear interpolation between the results obtained from each 

sampling point. 

179 

Figure 5-3 Plan view of Gaydon HSSF TW showing major architectural 

features and locations of sampling points for the February 2007 

test.  The influent distributor comprises a forward facing trough 

with v-notches at numerous points along the bed width. 

181 

Figure 5-4 The 2D vertical hydraulic conductivity profile measured at 

Gaydon. 

181 

Figure 5-5 Plan view of Knightcote HSSF TW showing major architectural 

features and locations of sampling points.  The influent 

distributor comprises six vertical risers evenly distributed along 

the inlet pipe.  The grey shaded area indicates the occurrence of 

overland flow. 

183 

Figure 5-6 (Left) Sludge accumulation on the surface of Knightcote just five 

months after refurbishment, which has resulted in surface flow.  

This picture is taken looking down Transect A from inlet to 

outlet.  A vertical riser can be seen in the forefront.  The poor 

reed growth is a symptom of planting just prior to winter. (Right) 

Sludge accumulations within the upper layer of the gravel media 

at Point A2. 

183 

Figure 5-7 The 2D vertical hydraulic conductivity profile at Knightcote 184 

Figure 5-8 The largely mineralised surface sludge layer at Knighcote just 

four weeks after the site was surveyed.  The picture is taken 

behind Point C4 looking towards Point A1. 

184 

Figure 5-9 Plan view of Fenny Compton HSSF TW showing major 

architectural features and locations of sampling points for the 

February 2007 test.  The influent distributor comprises 6 

horizontal ports equally distributed along the length of the inlet 

pipe between Transects A and C. 

185 

Figure 5-10 The 2D vertical hydraulic conductivity profile at Fenny Compton 186 

Figure 5-11 Uneven clog matter development, due to uneven influent 

distribution, in front of the horizontal ports at Fenny Compton,  

186 

Figure 5-12 The locations of sampling points for the February 2008 test at 187 
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Fenny Compton. 

Figure 5-13 The 2D vertical hydraulic conductivity profile for Fenny Compton 

at February 2008. 

187 

Figure 5-14 The 3D hydraulic conductivity profile of Fenny Compton at 

February 2008.  The longitudinal versus vertical hydraulic 

profiles are shown for the four transverse cross-sections that 

correspond to sampling Transects A to D.  Sampling was 

performed to a 0.4 m depth below the surface of the bed and 

results are linearly interpolated between sampling points.  

Colour contours indicate orders of magnitude of media hydraulic 

conductivity. 

188 

Figure 5-15 (Left) Sporadic reed establishment at Fenny Compton after one 

year of growth.  The picture is taken looking along Transect D 

from outlet to inlet.  The region in the forefront with sparse reed 

population corresponds to sampling points D3 and D4, whereas 

the comparatively lush growth at points D1 and D2 can be seen 

in the background.  (Right) Surface clogging development in 

front of the influent distributor port closest to Transect D. 

189 

Figure 5-16 The locations of sampling points for the February 2009 test at 

Fenny Compton 

190 

Figure 5-17 The 2D vertical hydraulic conductivity profile for Fenny Compton 

at February 2009 

190 

Figure 5-18 The 3D hydraulic conductivity profile of Fenny Compton at 

February 2009.  The longitudinal versus vertical hydraulic 

profiles are shown for the four transverse cross-sections that 

correspond to sampling Transects A to D. 

191 

Figure 5-19 (Left) Continued evidence of poor reed establishment in the 

downstream half of Transects C and D, at Fenny Compton two 

years after planting.  The photo is taken from sampling point D4 

looking towards sampling point A1, such that the poorly 

vegetated foreground roughly encompasses points D4 and C3.  

(Right) Surface clog matter accumulations after two years 

operation, mainly comprising plant detritus and bio-solids 

washout from upstream processes.  A small amount of surface 

ponding is evident. 

192 

Figure 5-20 The locations of sampling points for the March 2010 test at 

Fenny Compton 

193 

Figure 5-21 The 2D vertical hydraulic conductivity profile for Fenny Compton 

at March 2010 

193 

Figure 5-22 The 3D hydraulic conductivity profile of Fenny Compton at 

March 2010.  The longitudinal versus vertical hydraulic profiles 

are shown for the five transverse cross-sections that correspond 

to sampling Transects A to E. 

194 

Figure 5-23 Plan view of Moreton Morrell HSSF TW showing major 

architectural features and locations of sampling points for the 

197 
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June 2008 test.  The influent distributor comprises 4 vertical 

risers equally distributed along the length of the inlet pipe 

between Transects A and D. 

Figure 5-24 The 2D vertical hydraulic conductivity profile of Moreton Morrell 

at July 2008. 

197 

Figure 5-25 The 3D hydraulic conductivity profile of Moreton Morrell at June 

2008.  The longitudinal versus vertical hydraulic profiles are 

shown for the four transverse cross-sections that correspond to 

sampling Transects A to D.  Sampling was performed to a 0.4 m 

depth below the surface of the bed and results are interpolated 

between sampling points.  Colour contours indicate order of 

magnitude divisions in hydraulic conductivity. 

198 

Figure 5-26 Plan view of Moreton Morrell HSSF TW showing major 

architectural features and locations of sampling points for the 

February 2009 test.  The region of overland flow has extended 

compared to the situation in July 2008. 

199 

Figure 5-27 The 2D vertical hydraulic conductivity profile of Moreton Morrell 

at February 2009. 

199 

Figure 5-28 The 3D hydraulic conductivity profile of Moreton Morrell at 

February 2009.  The longitudinal versus vertical profiles are 

shown for the four transverse cross-sections that correspond to 

sampling Transects A to D. 

200 

Figure 5-29 (Left) Flowing inlet riser at Transect A.  The extent of surface 

ponding and washout of sanitary storm solids is identifiable.  

(Right) An inlet riser at Transect D which is clogged by bio-solids. 

201 

Figure 5-30 The 2D vertical hydraulic conductivity profile for Moreton 

Morrell at September 2009. 

202 

Figure 5-31 The 3D hydraulic conductivity profile of Moreton Morrell at 

September 2009.  The longitudinal versus vertical profiles are 

shown for the four transverse cross-sections that correspond to 

sampling Transects A to D. 

203 

Figure 5-32 Plan view of the HSSF TW at Moreton Morrell which was a ‘zero-

flow’ control case, showing major architectural features and 

locations of sampling points. 

205 

 

Figure 5-33 The 2D vertical hydraulic conductivity profile for the control case 

at Moreton Morrell. 

205 

Figure 5-34 The 3D hydraulic conductivity profile of the Moreton Morrell 

control case.  The longitudinal versus vertical hydraulic profiles 

are shown for the four transverse cross-sections that correspond 

to sampling Transects A to C. 

206 

Figure 5-35 Plan view of the HSSF TW at Weston Under Wetherley, showing 

the major architectural features and the locations of sampling 

points for the hydraulic conductivity survey.  The influent 

distributor is of the ‘v-notch trough’ variety. 

207 

Figure 5-36 The 2D vertical hydraulic conductivity profile at Weston Under 207 
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Wetherley. 

Figure 5-37 The 3D hydraulic conductivity profile of Weston Under 

Wetherley.  The longitudinal versus vertical hydraulic profiles are 

shown for the four transverse cross sections that correspond to 

sampling Transects A to E.  Sampling was performed to a 0.4 m 

depth below the surface of the bed and results are interpolated 

between sampling points.  Colour contours indicate order of 

magnitude divisions in hydraulic conductivity. 

209 

Figure 5-38 (Left) The constant head permeameter equipment in-situ at 

Weston Under Wetherley.  This photograph was taken at point 

D3 looking towards point E2.  As evident the reed growth in this 

region is non-existent.  Evidence of the mineralised surface layer 

can be seen in the mid-ground between the exposed gravel and 

reeds. (Middle) Relatively clean gravel below the surface deposit 

at point A4.  (Right) Holes through the surface deposit created 

by macro-invertebrates and wind induced reed rocking. 

210 

Figure 5-39 Plan view of Ashorne HSSF TW showing major architectural 

features and the layout of experimental sampling points.  The 

influent distributor is of the reverse facing ‘v-notch trough’ 

variety. 

212 

Figure 5-40 The 2D vertical hydraulic conductivity profile for Ashorne. 212 

Figure 5-41 The 3D hydraulic conductivity profile of Ashorne.  The 

longitudinal versus vertical hydraulic profiles are shown for the 

four transverse cross sections that correspond to sampling 

Transects A to D. 

213 

Figure 5-42 Plan view of Leek Wooton HSSF TW showing major architectural 

features and the distribution of sampling locations.  The influent 

distribution system comprises five horizontal ports equally 

distributed along the inlet pipe between Transects A and E. 

215 

Figure 5-43 The 2D vertical hydraulic conductivity profile for Leek Wooton. 215 

Figure 5-44 The 3D hydraulic conductivity profile of Leek Wooton.  The 

longitudinal versus vertical hydraulic profiles are shown for the 

four transverse cross sections that correspond to sampling 

Transects A to E.  Sampling was performed to a 0.4 m depth 

below the surface of the bed and results are interpolated 

between sampling points.  Colour contours indicate order of 

magnitude divisions in hydraulic conductivity. 

216 

Figure 5-45 Plan view of Northend HSSF TW showing the major architectural 

features and locations of sampling points for the June 2009 test.  

The influent distributor comprises 6 vertical risers distributed 

either side of a central influent entry point.  The shaded region 

represents overland flow. 

218 

Figure 5-46 The 2D vertical hydraulic conductivity profile obtained at 

Northend during the June 2009 test. 

218 

Figure 5-47 The 3D hydraulic conductivity profile of Northend as measured 219 
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in June 2009.  The longitudinal versus vertical hydraulic profiles 

are shown for the four transverse cross sections that correspond 

to sampling Transects A to E.  Sampling was performed to a 

0.4 m depth below the surface of the bed and results are 

interpolated between sampling points.  Colour contours indicate 

order of magnitude divisions of hydraulic conductivity. 

 

Figure 5-48 Plan view of Rowington HSSF TW showing the major 

architectural features and locations of sampling points.  The 

influent distribution is via 6 horizontal ports distributed either 

side of the central influent entry point.  The shaded region 

represents overland flow. 

221 

Figure 5-49 The 2D vertical conductivity profile for Rowington HSSF TW. 221 

Figure 5-50 The 3D hydraulic conductivity profile of Rowington.  The 

longitudinal versus vertical hydraulic profiles are shown for the 

four transverse cross sections that correspond to sampling 

Transects A to E.  Sampling was performed to a 0.4 m depth 

below the surface of the bed and results are interpolated 

between sampling points.  Colour contours indicate order of 

magnitude divisions in hydraulic conductivity. 

222 

Figure 5-51 Plan view of Snitterfield HSSF TW showing the major 

architectural features and locations of sampling points.  The 

influent distribution is via 6 vertical risers distributed either side 

of the central influent entry point.  The shaded region represents 

overland flow. 

224 

Figure 5-52 The 2D hydraulic conductivity profile obtained at Snitterfield 

HSSF TW. 

224 

Figure 5-53 The 3D hydraulic conductivity profile of Snitterfield.  The 

longitudinal versus vertical hydraulic profiles are shown for the 

five transverse cross sections that correspond to sampling 

Transects A to E.  Sampling was performed to a 0.4 m depth 

below the surface of the bed and results are interpolated 

between sampling points.  Colour contours indicate order of 

magnitude divisions of hydraulic conductivity. 

225 

Figure 5-54 Plan view of the HSSF TW at Delwood, detailing major 

architectural features and the location of sampling points.  The 

influent distribution comprises a subsurface perforated pipe. 

227 

Figure 5-55 The 2D vertical hydraulic conductivity profile at Delwood. 227 

Figure 5-56 The 3D hydraulic conductivity profile of Delwood.  The 

longitudinal versus vertical hydraulic profiles are shown for the 

four transverse cross sections that correspond to sampling 

Transects A to D.  Sampling was performed to a 0.4 m depth 

below the surface of the gravel and results are interpolated 

between sampling points.  Colour contours indicate order of 

magnitude divisions of hydraulic conductivity. 

228 

Figure 5-57 Plan view of the HSSF TW at Tamarack, detailing major 230 
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architectural features and the location of sampling points.  The 

influent distributor is a subsurface perforated pipe.  In this figure 

the grey shaded region represents the area that received 

hydrogen peroxide treatment to reverse clogging. 

Figure 5-58 The 2D vertical hydraulic conductivity profile at Tamarack. 230 

Figure 5-59 The 3D hydraulic conductivity profile of Tamarack.  The 

longitudinal versus vertical hydraulic profiles are shown for the 

three transverse cross sections that correspond to sampling 

Transects A to C.  Sampling was performed to a 0.4 m depth 

below the surface of the gravel and results are interpolated 

between sampling points.  Colour contours indicate order of 

magnitude divisions in hydraulic conductivity. 

231 

Figure 5-60 Plan view of the HSSF TW at Jackson Meadow, detailing major 

architectural features and the location of sampling points.  The 

influent distributor is a subsurface infiltration chamber.  The 

location of the old influent distributor is indicated by the grey 

shaded region, and was upgraded to the current configuration in 

2004. 

233 

Figure 5-61 The 2D vertical hydraulic conductivity profile at Jackson 

Meadow. 

233 

Figure 5-62 The 3D hydraulic conductivity profile of Jackson Meadow.  The 

longitudinal versus vertical hydraulic profiles are shown for the 

four transverse cross sections that correspond to sampling 

Transects A to D.  Sampling was performed to a 0.4 m depth 

below the surface of the gravel and results are interpolated 

between sampling points.  Colour contours indicate order of 

magnitude divisions of hydraulic conductivity.  For this system an 

extra contour has been introduced in comparison to the 

previously reported systems (grey shading) to reflect high 

conductivities between 10,000 and 100,000 m/d. 

234 

Figure 6-1 The relationship between longitudinal distance and longitudinal 

component of Clog Factor (CFX) for various values of bulk system 

Clog Factor (CFT) 

252 

Figure 6-2 The relationship between vertical depth and vertical component 

of Clog Factor (CFZ) for various values of bulk system Clog Factor 

(CFT) 

252 

Figure 6-3 The agreement between measured and modelled Clog Factor 

values for 208 data sets obtained over the sampling period.  The 

empirical model is based on statistical analysis of the data, 

whereby transverse variance is removed, and shows good 

agreement with data. 

254 

Figure 6-4 Comparisons between the measured (a) and modelled (b) Clog 

Factor profiles for the February 2009 survey of Fenny Compton. 

254 

Figure 6-5 The water table profiles that were fitted to the experimental 

water table survey, according to the different methods discussed 

258 
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in this report: Darcy’s Law, Dual Zone Darcy’s Law, 

Dupuit-Forchheimer Assumption, Finite Element Analysis and 

the proposed analytical solution. 

Figure 6-6 Model of the hydraulic conductivity profile of Transect A at 

Moreton Morrell A, based on the hydraulic conductivity survey 

of February 2009.  The logarithmic shading bar represents order 

of magnitude variations where dark areas are more clogged. 

259 

Figure 6-7 The flow field that corresponds to the modelling parameters 

specified in Table 6-12 and the hydraulic conductivity profile 

illustrated in Figure 6-6.  The vertical contours in the upper sub-

domain represent vertical infiltration through the surface layer 

and the shaded profile represents the variation of hydraulic 

head in the horizontal water table. 

260 

Figure 6-8 The variable surface infiltration rate across the overland flow 

region at Moreton Morrell, as modelled using FEA.  This recharge 

profile creates an ‘S-shaped’ water table profile, similar to that 

illustrated in Figure 6-7. 

260 

Figure 6-9 Dimensionless Clog Factor profiles corresponding to Equation 

6-1, Equation 6-2 and Equation 6-3 using values of CFT between 

0.55 and 0.90, in increments of 0.05.  The progression of profiles 

from 0.55 to 0.90 corresponds to the perceived progression of 

clogging in Severn Trent HSSF TWs, as derived from hydraulic 

conductivity surveys on field scale systems. 

262 

Figure 6-10 Longitudinal water-table profile for different values of bulk 

system Clog Factor CFT as obtained using the COMSOL FEA 

model of HSSF TW hydrology. 

263 

Figure 6-11 The relationship between parameter value aup and system Clog 

Factor CFT based on the data-fit to the results of the FEA 

modelling. 

264 

Figure 6-12 The relationship between parameter value bup and system Clog 

Factor CFT based on the data-fit to the results of the FEA 

modelling. 

264 

Figure 6-13 The relationship between parameter value adown and system Clog 

Factor CFT based on the data-fit to the results of the FEA 

modelling. 

264 

Figure 6-14 The relationship between parameter value bdown and system Clog 

Factor CFT based on the data-fit to the results of the FEA 

modelling. 

265 
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depth plane within the TW subsurface.  The darker regions 
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through the FEA model developed in COMSOL.  The shading 
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List of Symbols 

Symbol Unit Description 

 
A 

- A geometrical factor related to turbulent energy dissipation in porous 
media 

a   A factor to represent the magnitude reduction from clean hydraulic 
conductivity at the inlet due to clogging 

ACELL m2 Cross-sectional area of the permeameter cell (circular) 

Aw m2 wetted cross section of the system 

B   Empirical coefficient that describes the relationship between 
accumulation of specific deposit and clogged hydraulic conductivity 

b   An empirical coefficient that governs the impact of clogging 
downstream of the inlet 

C   Empirical coefficient that describes the relationship between 
accumulation of specific deposit and clogged hydraulic conductivity 

CF   Clog Factor 

CFX  Longitudinal component of Clog Factor at a point 

CFT   Bulk system Clog Factor 

CFZ  Vertical component of Clog Factor at a point 

cin mg/L Solute concentration in the influent 

cout mg/L Solute concentration in the effluent 

cS mg/L Concentration of solids in the wastewater 

Cu - The coefficient of uniformity for a porous media, equal to the quotient 
of d60 over d10 

D m Fluid elevation in reference to a vertical datum 

D   Empirical coefficient that describes the relationship between 
accumulation of specific deposit and clogged hydraulic conductivity 

D m2/s Dispersion Coefficient for solute mixing in a flow system 

d  mm Media particle diameter 

d10 mm The diameter of sieve-spacing that allows only 10% by mass of a 
sample of gravel to pass through 

d50 mm The diameter of sieve-spacing that allows only 50% by mass of a 
sample of gravel to pass through 

d60 mm The diameter of sieve-spacing that allows only 60% by mass of a 
sample of gravel to pass through 

dφ m Clogged media diameter 

E   An empirical coefficient that describes the suspended solid removal 
efficiency of the bulk reactor 

eM   Mixing efficiency of the reactor 

ET m/d Evapotranspiration from the system 

eV   Volumetric efficiency of the reactor 

f m The length that overland flow extends along the length of the bed 
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g m/s2 Gravitational acceleration equal to 9.81  

h m The depth of water in the system 

H m System height (including surface layer) at the influent 

hf m Water table depth at f 

hin m Hydraulic head at the influent of the system 

hn   Head loss across the nth section of the gravel core measured by the 
Aston Permeameter 

hout m Hydraulic head at the outlet of the system 

hT   Head loss across the entire gravel core measured by the Aston 
Permeameter 

J   A bulk parameter describing the influence of accumulated solids on 
system hydraulic conductivity 

k m/d The hydraulic conductivity of the media 

ki m2 Intrinsic permeability of the gravel media 

kn   Hydraulic conductivity of the nth section of the gravel core measured by 
the Aston Permeameter 

kT   Hydraulic conductivity of the entire gravel core measured by the Aston 
Permeameter 

kv m/d variably saturated hydraulic conductivity 

kφ m/d Clogged media hydraulic conductivity 

L m The length of the system 

LCELL m Length of the permeameter cell 

Min kg Mass of solute added to system as a unit impulse 

n  Number of tanks in series 

n  Total number of equally spaced take-off points along the permeameter 
cell in the Aston Permeameter experiment 

P m/d Precipitation into the system 

PM J/m3 pressure associated with matrix potential 

Q  Discharge through Aston Permeameter 

Qin m2/d Width-averaged influent flow-rate 

Qout m2/d Width-averaged effluent flow-rate 

Re - The porous media Reynolds number 

s  The operator in the Laplace Transform Function 

s kg/m2 Cumulative applied solids load since system startup per meter squared 
of wetland footprint 

 ̇ kg/d Wastewater solids loading rate 

t d Time given in days or seconds 

tc d Time to clogging 

u m/d Longitudinal component of velocity 

Ū m/s Multi-dimensional velocity vector 

 ̅ m/s Depth averaged longitudinal velocity 

v m/d Transverse component of velocity 

w m/d Vertical component of velocity 

W m System width 
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wr m/d Vertical recharge rate 

x m Longitudinal ordinate in the system space 

 ̅  Dimensionless longitudinal length 

y m Transverse ordinate in the system space 

z m Vertical ordinate in the system space 

 ̅  Dimensionless vertical depth 

β 1/m Filter coefficient describing the ability of a porous media to physically 
remove suspended particles from flow 

βc 1/m Clean filter coefficient 

Γ  The gamma distribution function 

ε - Media porosity 

εφ - Clogged media porosity 

θ - Media saturation 

λ  Hydraulic efficiency of the reactor 

μ kg/m.s2 Dynamic viscosity of the porous media-flow system 

ϖ - An empirical coefficient that governs the relationship between specific 
deposit and filter coefficient 

ρ kg/m3 The density of wastewater 

ρB kg/m3 Density of biofilm accumulation 

ρs kg/m3 Density of wastewater solids 

σ2 d2 Variance of the residence time distribution 

σL m Longitudinal dispersivity 

σT m Transverse dispersivity 

σθ
2 - Dimensionless variance of the residence time distribution 

τ d Mean residence time of solute in the reactor 

τP d The residence time at which solute peak concentration is detected at 
the effluent 

τT d Design residence time of solute in the reactor 

φ - Specific volume of clog matter deposit 

φB  Specific volume of the biological component of the clog matter deposit 

φC  Specific volume of the chemical component of the clog matter deposit 

φP  Specific volume of the physical component of the clog matter deposit 

ψ m Pressure-head 
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List of Acronyms and Abbreviations 

Acronym Definition 

BOD Biological Oxygen Demand – a water quality parameter 

CF Clog Factor 

COD Chemical Oxygen Demand  - a water quality parameter 

CSTR Continually Stirred Tank Reactor – a type of ideal hydrodynamic reactor 

HLR Hydraulic Loading Rate – of flow into the TW 

HRT Hydraulic Retentional Time – of flow in the TW 

HSSF Horizontal Subsurface Flow – a type of TW 

IWA  International Water Association 

NH3 Ammonia-Nitrogen – a water quality parater 

PE Population Equivalent – a unit of flow-rate  

PF Plug Flow – a type of ideal hydrodynamic reactor 

POR Period-of-Record – of sampling at a system 

RBC Rotating Biological Contactor – a secondary treatment technology 

RTD Residence Time Distribution  - of flow within the TW 

TIS Tanks in Series – a hydrodynamic performance parameter 

TSS Total Suspended Solids – a water quality parameter 

TW Treatment Wetland  

UK United Kingdom 

US United States of America 

VF Vertical Flow – a type of TW 

W:L Width-to-length ratio – of a HSSF TW footprint 
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1. Introduction 

PREMISE FOR RESEARCH 

Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs) are the preferred technology 

choice of Severn Trent Water Ltd. (Severn Trent), a United Kingdom (UK) water utility, for 

providing tertiary municipal wastewater treatment to decentralised communities with 

populations up-to 2,000 (Green and Upton, 1995).  These natural systems typically employ 

common reeds (Phragmites australis) planted in basins of 3-12 mm gravels, which provide 

suitable biological, physical and chemical conditions for final purification (Kadlec and 

Wallace, 2010).  Severn Trent has over two decades of experience operating HSSF TWs, in 

which time it has become apparent that clogging is a major operational and maintenance 

issue (Cooper et al., 2005, Cooper et al., 2008).  Experience with clogging has seen estimates 

of lifetime reduced from 20 years (Cooper et al., 1996) to 8 years (Griffin et al., 2008), which 

compromises the economic advantage offered by using HSSF TWs over conventional tertiary 

wastewater treatment technologies.  The need to understand clogging and improve asset 

longevity resulted in this Doctoral Research collaboration between Severn Trent Water and 

Aston University.   

The main aim of this study can be concisely stated: 

“To help designers and operators make informed decisions that result in improved asset 

longevity, by improving the knowledge and understanding of clogging in Severn Trent HSSF 

TWs” 

The remainder of this chapter gives the essential information required to appreciate the 

nature of the study – namely: the reasons why HSSF TWs are increasingly being used for 

decentralised communities; the way that Severn Trent implements the technology including 

details of the standard design approach; and the magnitude of the HSSF TW clogging 

problem facing Severn Trent.  Subsequently, the research approach and report structure will 

be explained.   
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 Horizontal Subsurface Flow Treatment Wetlands: an overview 1.1.

Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs) have been used to treat many 

types of urban, industrial and agricultural wastewaters around the world (Kadlec, 2009).  

Many thousands of HSSF TWs have been constructed over the last two decades (Vymazal 

and Kropfelova, 2008) and the technology has become an established technology In the UK, 

particularly for the tertiary treatment (polishing) of municipal wastewaters for small, 

decentralised communities.  Cooper (2007) reported that by 2006 the UK Constructed 

Wetland Association database contained records for 736 HSSF TW systems.  

The growing popularity of HSSF TWs can be attributed to a list of technical and fiscal 

advantages for operators, and ecological benefits that have led to a positive public 

perception.  These reasons are elaborated in Table 1-1, which is mainly adapted from 

opinions presented in the International Water Association (IWA) Specialist Group Technical 

Report on Constructed Wetlands for Pollution Control (IWA, 2000).  

 

Table 1-1 Some of the major technological and ancillary benefits offered by treating 

wastewater using HSSF TWs.  Adapted from IWA (2000) with additional 

references where indicated. 

Technological Benefits Wider Benefits 

TWs can be less expensive to build than other 
treatment options 

They are an environmentally sensitive approach 
that is viewed with favour by the general public 

Operation and maintenance expenses (energy 
and chemicals) are low 

They provide habitat conservation and 
biodiversity for plant, bird, animal, insect and 
aquatic life (Worrall et al., 1997) 

Operation and maintenance requires little 
expertise and periodic, rather than continuous, 
on-site labour 

They can be built to fit harmoniously into the 
landscape  

TWs are able to tolerate fluctuations in flow and 
pollutant loading 

Value added crop cultivation, such as ornamental 
plants (Zurita et al., 2008) or manufacturing 
materials for e.g. roofing, fencing, insulation 
(Löffler, 1990) 

TWs are able to treat wastewater with low 
organic load (too low for conventional activated 
sludge methods) 

Plant biomass can be harvested for use as an 
energy crop (Ciria et al., 2005) 

They facilitate water reuse and recycling 
(Rousseau et al., 2008) 

Aesthetic enhancement of open spaces (Burka 
and Lawrence, 1990) 

They can treat a wide range of pollutants, often 
simultaneously 

Social benefits such as education and recreation 
(nature watching, exercise, hunting) (Knight et 
al., 2000) 
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Water purification by HSSF TWs is achieved through a combination of physical, biological 

and chemical mechanisms, that occur due to interactions between the wastewater, the 

porous media, the atmosphere, and microbial entities that assimilate wastewater 

constituents for survival (Vymazal et al., 1998).  The mechanisms by which HSSF TWs remove 

the major constituents of wastewater are detailed in Table 1-2 (Wallace and Knight, 2006). 

Table 1-2 Removal mechanisms in HSSF TWs - significant processes are italicised.  

Table reproduced from Wallace and Knight (2006). 

Water Quality Parameter Physical Chemical Biological 

Suspended solids Filtration  
Microbial 
degradation 

Biological oxygen demand (BOD) Filtration  
Microbial 
degradation 

Chemical oxygen demand (COD) Filtration  
Microbial 
degradation 

Metals (Ag, As, Cd, Cr, Cu, Hg, Ni, 
Pb, Se, Zn) 

Filtration 
Precipitation; 
adsorption; ion 
exchange 

Microbial uptake; 
plant uptake 

Petroleum hydrocarbons (fuel, oil 
and grease, alcohols, BTEX, TPH) 

Volatilisation Adsorption 
Microbial 
degradation; plant 
uptake 

Synthetic hydrocarbons (PAHs, 
chlorinated and non-chlorinated 
solvents, pesticides, herbicides, 
insecticides) 

Filtration; 
volatilisation 

Adsorption; 
volatilisation 
(ammonia) 

Microbial 
degradation; plant 
uptake 

Nitrogenous compounds (organic 
N, NH3, NH4

+
, NO3

-,
 NO2

-
) 

Filtration 
Precipitation; 
adsorption 

Microbial uptake 
and 
transformation; 
plant uptake 

Inorganic and organic P Filtration  
Microbial uptake; 
plant uptake 

Pathogens (bacteria, viruses, 
protozoa, helminths) 

Filtration  
Die-off; microbial 
predation 

 

 

 Severn Trent Water and the use of HSSF TWs 1.2.

The privatisation of the UK water industry in 1989 led to the formation of Severn Trent 

Water, serving 8 million users across the Midlands (Green and Upton, 1995).  Figure 1-1 is a 

map illustrating the Severn Trent service area.  At the time Severn Trent had 1,048 

wastewater treatment plants with 70% of these serving populations of less than 2,000 

people (Griffin and Pamplin, 1998): those defined as ‘small works’ under the European 

Commission Urban Wastewater Treatment Directive (Commission, 1999).  Small works were 



33 
  

highlighted as those most susceptible to failing permit compliance, as they often discharge 

straight into rivers and are generally subject to more stringent consents by the UK 

Environment Agency (i.e. allowable levels of pollutants in the discharge) than other works 

(Green et al., 1998).  In 1985, Severn Trent commissioned a rolling programme to upgrade 

small works in order to ensure compliance; however, this required minimal cost as these 700 

works only constitute 3% of the utility’s customer base (Green and Upton, 1994). 

 

Figure 1-1 Map illustrating the Severn Trent Water service area for water and sewer 

services.  Map provided by Severn Trent Water South Staffs. division.  Image 

kindly provided by P. Griffin. 

 
The concept of using HSSF TWs to provide municipal wastewater treatment was introduced 

to the UK in 1985 after the UK Water Research Council visited a German researcher named 

Kickuth, who was an early proponent of the technology (Boon, 1985, Kickuth, 1977).  The UK 

Water Services Association (of which Severn Trent is a member) and the Water Research 

Council founded the Reed Bed Treatment Systems Coordinating Group, which pooled the 

results of initial technology trials performed by water utilities with the aim of accelerating 

progress (Cooper and Green, 1998, Murphy and Cooper, 2010).   
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Using two pilot systems, Severn Trent proved the ability of HSSF TWs to provide secondary 

treatment for populations of less than 50 people (Little Stretton, Leics.) and tertiary 

treatment for populations of less than 2,000 people (Leek Wooton, Warks.) (Green and 

Upton, 1993).  In 1990 Severn Trent began the use of HSSF TWs for treatment of storm 

water overflow (Green and Martin, 1996).  Installation of HSSF TWs became part of the Small 

Works maintenance programme, and between 1987 and 2009 systems were installed at 419 

sites across the Severn Trent jurisdiction (Griffin and Pamplin, 1998, Griffin et al., 2008) 

(Figure 1-2).  Figure 1-3 illustrates the various ways that Severn Trent integrate HSSF TWs 

into process flow sheets for rural treatment works (Griffin and Pamplin, 1998).  According to 

Figure 1-2, the greatest application is for tertiary municipal wastewater treatment 

(approximately 75 %). 

 

 
 

Figure 1-2 History of HSSF TW system installation at decentralised wastewater 

treatment plants operated by Severn Trent, between 1987 and 2007.  

Applications are A) Secondary Treatment, B) Tertiary Treatment C) Separate 

tertiary and stormwater treatment, D) Combined tertiary and stormwater 

treatment.  Records for 582 HSSF TWs kindly provided by C.Murphy. 

 

Systems that provide secondary treatment and separate tertiary and storm-water treatment 

have since been dropped from the Severn Trent selection matrix.  This is because experience 

has shown that HSSF TWs are inefficient for provision of secondary treatment, and 

combined tertiary and storm-water TWs can achieve similar treatment performance as 

systems that use separate components, but with reduced cost and land requirements 

(Griffin et al., 2008). 
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Figure 1-3 The manner in which HSSF TWs are typically incorporated into process flow 

sheets by Severn Trent, for various treatment requirements, including 

bypasses for storm-water above six-times dry weather flow (DWF).  

Information adapted from Griffin and Pamplin (1998) and Griffin (2003).  

Rotating Biological Contactor may be replaced by an equivalent secondary 

treatment process. 

 

The ability of HSSF TWs to successfully achieve tertiary treatment of municipal wastewater is 

demonstrated in Table 1-3, which shows Periods or Record (PORs) for 17 systems operated 

by Severn Trent, based on the removal performance of three common water quality 

indicators: Biological Oxygen Demand (BOD), Total Suspended Solids (TSS) and Ammonia-

Nitrogen (NH3).  As evident in Table 1-3, these systems can further purify secondary treated 

wastewaters which already have relatively low contaminant concentrations, achieving an 

average removal performance of 69% BOD, 73% TSS and 60% NH3, for the cases illustrated.     
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Table 1-3 Treatment performance of 15 HSSF TWs operated by Severn Trent, based on average influent and effluent concentrations across the Period 

of Record for each system, for Biological Oxygen Demand (BOD), Total Suspended Solids (TSS) and Ammonia (NH3).  A total of 2,323 data 

records are considered altogether.  Data summarised from the Constructed Wetland Association performance database (CWA, 2006). 

 
System Name 

 

Number 
of 

Records 

Area 
(m

2
) 

Flow 
(m

3
/d) 

BOD in 
(mg/L) 

BOD out 
(mg/L) 

BOD % 
Removal 

TSS in 
(mg/L) 

TSS out 
(mg/L) 

TSS % 
Removal 

NH3 in 
(mg/L) 

NH3 out 
(mg/L) 

NH3 % 
Removal 

Ashby Folville 149 825 164 9.82 1.87 81% 24.50 4.21 83% 3.78 2.02 47% 

Claverley 70 292 115 13.24 4.86 63% 20.16 5.07 75% 5.28 1.66 69% 

Earlswood 134 1,196 618 9.01 2.33 74% 19.07 4.91 74% 0.83 0.37 55% 

Forton 10 165 22 78.33 36.86 53% 49.67 19.14 61% 17.27 7.06 59% 

Gailey 19 23 25 3.00 1.83 39% 22.00 6.00 73% 1.53 0.61 60% 

Hognaston 153 936 132 3.03 1.95 36% 8.59 2.58 70% 1.45 0.57 61% 

Knowbury 62 330 43 8.21 1.63 80% 22.25 3.76 83% 0.87 0.24 73% 

Leek Wootton 269 825 206 12.61 2.34 81% 20.31 5.24 74% 6.83 2.65 61% 

Lighthorne Heath 150 321 300 5.04 1.43 72% 8.93 3.87 57% 3.33 1.28 61% 

Little Wenlock 95 53 80 18.17 7.34 60% 24.35 8.92 63% 7.42 4.36 41% 

Lydbury North (Old) 45 334 55 10.96 1.11 90% 20.67 1.95 91% 7.32 3.97 46% 

Middleton (Shropshire) 57 168 10 322.11 28.83 91% 113.61 19.74 83% 65.11 34.31 47% 

Middleton (Warwickshire) 635 450 70 8.97 2.24 75% 22.32 7.94 64% 2.70 0.64 76% 

Naseby 415 1,003 90 6.62 1.31 80% 17.87 6.62 63% 1.89 0.44 77% 

Norton Lindsey 60 257 110 5.78 1.91 67% 20.64 3.64 82% 1.78 0.71 60% 

AVERAGE  479 136 34 7 69% 28 7 73% 8 4 60% 
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 Typical Design of Severn Trent HSSF TWs for tertiary treatment 1.3.

The main visual feature of HSSF TWs in the UK is aquatic macrophytes, such as Phragmites 

australis (common wetland reed), planted in a porous gravel bed; thus TWs are colloquially 

referred to as ‘reed beds’.  Under normal operation wastewater flows under the surface of 

the gravel where the correct conditions are encountered for final purification (Cooper et al., 

1996).  The HSSF TWs employed by Severn Trent are built according to the European Design 

and Operation Guidelines for Reed Bed Treatment Systems (EC/EWPCA, 1990), and a typical 

design is shown in Figure 1-4, which details a transverse cross-section. 

In Figure 1-4 the wastewater flows from left to right through gravel with recommended 

media size distributions of 3-6 mm or 6-12 mm.  The gravel is filled to a 0.6 m depth to 

accommodate the typical root penetration of Phragmites australis (Nuttall et al., 1997) and 

the gravel surface is levelled.  The basin is lined with a 1 mm thick high density polyethylene 

plastic liner to prevent any infiltration of wastewater to the ground and is built with a 

bottom slope of about 1% to facilitate complete drainage of the bed if required.  The depth 

of water in the bed is established using an outlet level control device such as a swivelling 

elbow or sluice gate.  The wastewater is continuously fed through surface-based inlet 

distributors which span the width of the bed.  Distributor designs vary and include pipes with 

multiple risers and troughs with numerous distribution weirs.  The coarse rock berm around 

the perimeter of the bed incorporates media with sizes 50-200 mm and improves flow 

distribution at the inlet and outlet regions.  The berms are constructed with a freeboard of 

50-100 cm to accommodate bed expansion from root growth, and leaf litter accumulation 

(IWA, 2000).  A photograph of a HSSF TW at a Severn Trent wastewater treatment plant is 

given in Figure 1-5. 
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Figure 1-4 The typical design of Horizontal Subsurface Flow Treatment Wetlands as used by Severn Trent Water for the tertiary treatment of municipal 

wastewater in the UK.  The figure illustrates both normal and clogged hydraulic operation, where the grey matter indicates the zone where 

clogging typically occurs.  Figure reproduced from Knowles et al. (2011). 
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Figure 1-5 Two tertiary HSSF TW cells at Severn Trent, Snitterfield wastewater 

treatment plant.  The cells are 12.5 m long by 28 m wide and are showing a 

full growth of Phragmites australis.   

 

Severn Trent have determined that the footprint of HSSF TW required to provide tertiary 

treatment is 0.7 m2 per population equivalent (PE), where one PE is the typical quantity and 

quality of domestic wastewater produced by one individual (Green and Upton, 1995).  The 

average system has a footprint of 318 m2 with a length-to-width aspect ratio of 0.83-to-1 

(Murphy and Cooper, 2010), although there is a large variation in reported system 

dimensions.  Similarly, the cost of systems can be highly variable.  Green and Upton (1995) 

report that economies of scale reduce capital costs for Severn Trent systems from £180/PE 

to £75/PE (inflated to 2009 price index) as the population requirement increases from 100 to 

1,000.  As such, at 2009 prices a 300 m2 system would cost in the region of £75,000 to 

construct (Murphy and Cooper, 2010).  These prices are specific to the UK and do not 

include land costs as the systems are installed on existing Severn Trent sites. 
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 Clogging in Severn Trent Water HSSF TWs 1.4.

Generally speaking HSSF tertiary TWs have proven very successful for Severn Trent and have 

been met with considerable enthusiasm from operators, who appreciate the security to 

compliance and low maintenance requirements (Griffin and Pamplin, 1998).  However, 

problems with clogging prevent these systems from being ‘fit-and-forget’ solutions. 

Clogging is commonly qualified by undesirable ponding of wastewater on the surface of the 

system.  This occurs because clog matter with low hydraulic conductivity accumulates both 

within the pore space of the gravel and on the surface of the bed, and disrupts the intended 

subsurface flow operation (Cooper et al., 2005).  Clogging occurs first at the inlet, within the 

upper layers of the gravel and on the surface of the bed.  In their survey of 255 HSSF TWs in 

the UK, Cooper et al. (2005, 2008) frequently encountered systems with surface sludge 

accumulations in excess of 150 mm at the inlet and 40 mm at the outlet (Table 1-4).  

Rousseau et al. (2005b) made similar observations in their survey of 12 UK based HSSF 

stormwater treatment wetlands, reporting that the vast majority of them had experienced 

sludge build-up over the entire surface of the bed.  These authors also speculated that 

symptoms such as poor reed growth and weed infestation may be connected to clogging 

(Rousseau et al., 2005b, Cooper et al., 2005, Cooper et al., 2008). 

 

Table 1-4 Frequency of operational problems encountered from a survey of 255 HSSF 

TWs operated by Severn Trent.  Data reproduced from Cooper et al. (2008). 

Operational Problem Frequency % of 255 

Sludge depth greater than 150 mm at inlet 111 44 

Sludge depth greater than 40 mm at outlet  48 19 

Bed flooded at inlet on 1st visit 132 52 

Bed flooded at outlet on 1st visit 76 30 

Inlet distributor problems 34 13 

Outlet collector problems 21 8 

Weed infestation (greater than 25% cover) 130 51 

Poor growth of reeds 34 13 
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In ponded systems, overland flow will extend across the surface layer until the cumulative 

infiltration through the surface layer can adequately transmit the applied wastewater load.  

In 30% of the 255 systems surveyed by Cooper et al. (2008), overland flow was present over 

the majority of the HSSF TW surface.  The contrast between initial and clogged conditions 

can be seen by comparing Figure 1-6, which shows the surfaces of a 1 year old unclogged 

system, and Figure 1-7, which shows the surface of a 7 year old clogged system.   

In excessively clogged systems the subsurface may be unable to convey the intended 

hydraulic load, in which case the influent wastewater will pool on top of the bed to the point 

that virtually untreated wastewater bypasses the system through the overflow pipe (as 

illustrated in Figure 1-4).  As a pre-emptive measure clogged systems are usually refurbished 

before they reach this stage.  Refurbishment has historically involved replacing the fouled 

gravel with clean media.  As reported by Murphy and Cooper (2010), the refurbishment of a 

300 m2 system in 2009 incurred an approximate cost of £50,000, 50% of which was 

associated with disposal of the fouled media to landfill (£64/tonne).  The cost of £50,000 is 

substantial given that a new system of the same size may cost £75,000 (Murphy and Cooper, 

2010). 

When the first systems were installed it was expected that HSSF TWs would last 15-20 years 

between refurbishments.  In fact refurbishments have been required much more frequently.  

Only 24 % of systems have operated longer than 15 years without requiring refurbishment, 

with the oldest two systems currently running for 18 years.   
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Figure 1-6 The surface of a refurbished, 1 year old tertiary treatment HSSF TW operated by Severn Trent at Fenny Compton wastewater treatment 

plant.  The photograph shows rock berms, gravel media and early Phragmites australis establishment.  Wastewater is flowing 10 cm below 

the surface of the gravel.   



  

 
  

4
3

 

 

Figure 1-7 The surface of a clogged, 7 year old tertiary treatment HSSF TW operated by Severn Trent at Gaydon wastewater treatment plant.  The 

photograph shows a ‘v-notch trough’ style influent distributor which spans the width of the system at the inlet, and a significant surface 

sludge accumulation which has obscured the gravel surface and rock berms and results in overland flow of the wastewater.   The difference 

in Phragmites australis health between Figure 1-6 and Figure 1-7 is related to winter die-off rather than the impact of clogging. 
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Refurbishment of HSSF TWs has become a common practice for Severn Trent, with an 

average of 17 beds per year refurbished since 1998.  Overall, Severn Trent has refurbished 

175 out of 491 tertiary systems (some of these multiple times).  Figure 1-8 illustrates the 

distribution of system ages at the time of refurbishment.  The minimum and maximum ages 

at refurbishment are 1 and 19 years, with a median age of 11 years.  These findings have 

recently caused Severn Trent to redefine asset longevity to 8 years (Griffin et al., 2008), 

which practically doubles HSSF TW capital replacement costs for Severn Trent.  If the HSSF 

TW inventory is to be maintained against a depreciation age of 8 years, then the number of 

refurbishments per year could be as high as 61.  Based on an average system size of 318 m2 

and a unit refurbishment cost of 167 £/m2, refurbishing 61 systems per year would cost 

Severn Trent approximately £ 3.2 million per year – all for 3 % of the service population.   

 

 

Figure 1-8  Distribution of system age at the time of refurbishment for 166 tertiary HSSF 

TW systems.  Records kindly provided by C.Murphy. 

 

The substantially higher than expected refurbishment costs threaten to make HSSF TW 

technology an unviable tertiary treatment option for Severn Trent, unless the clogging issue 

can be addressed.  Despite these economics concerns and the numerous accounts of 

clogging in Severn Trent HSSF TWs, the factors responsible for clogging are still not well 

understood (Kadlec and Wallace, 2010).  Systems are still considered as black boxes 

(Rousseau et al., 2004) with little insight into the symbiotic relationship between hydraulics, 

treatment and clogging, and how this relationship changes as clogging develops.  Limited 

knowledge exists about the magnitude and distribution of hydraulic conductivity in clogged 



  

45 
 

HSSF TWs.  This lack of understanding means that clogging is not properly addressed and 

prevented, and the development of a robust treatment performance prediction tool for 

HSSF TWs is not possible (Langergraber, 2003).  If this information were available then HSSF 

TWs could be designed for better reliability and control, and to achieve more ambitious 

treatment objectives.   

 

 Aims and Thesis Structure 1.5.

A series of research obstacles have been identified that must be overcome to achieve the 

major study aim: improving the knowledge and understanding of clogging in Severn Trent 

HSSF TWs.  Corresponding objectives are stipulated that address these obstacles and thus 

provide the basis for the overall research approach adopted by this study. 

 

Problem The factors that cause clogging are not well understood. 

Obstacle Numerous sources exist proffering various observations, hypotheses and 

conclusions regarding clogging; however, a comparative review of the literature 

which identifies trends and salient factors does not exist. 

Objective Summarise the relevant literature on HSSF TW clogging. 

Output Determination of current best practice design guidelines for mitigation of 

clogging, and identification of where more research is required.   

 

 

Problem Little is known about the relationship between clogging, hydraulics and 

treatment and how this develops over time. 

Obstacle Current design tools for HSSF TW hydrology are too simple to be 

representative, and computational models are too complicated to be useful.  

Not enough information exists to allow better tools to be derived. 

Objective Derive design tools that are representative and practical to apply, and 

validate them through experimentation and dynamic modelling. 

Output Design tools that relate the changing hydrology of HSSF TWs to changes in 

clogging, calibrated using experimentally derived data. 
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Problem Not enough information is available on the magnitude and distribution of 

hydraulic conductivity to make conclusions about design or allow models to 

be developed. 

Obstacle Many conventional methods for in situ measurement of hydraulic conductivity 

are not suitable for HSSF TWs, and as such no simple method exists to obtain 

data. 

Objective Design an in situ method to obtain this information. 

Output Hydraulic conductivity profiles for several tertiary HSSF TWs of various ages 

that can then be used to calibrate hydraulic models.  This will also allow the 

influence of design and operational parameters on clogging to be studied. 

 

The above objectives will be achieved through several stages that are reflected by the 

structure of this thesis.  It should be pointed out that the thesis structure does not represent 

the chronological manner in which the study was executed, as interrelation between the 

study objectives means that understanding, theory and methodology were developed 

simultaneously.  Rather, the thesis structure represents the most logical way to convey the 

outcomes of this research to the reader.  The thesis chapters are structured as follows: 

Chapter 2 A review of the relevant literature on HSSF TW clogging will be presented to 

inform the remainder of the thesis.  This will draw on international 

experience and consider other varieties of subsurface flow treatment 

wetland technology.  The review will discuss the salient factors associated 

with clogging and current best practices to prevent and manage clogging. 

Chapter 3 The hydrological theory underlying HSSF TWs will be presented and used to 

illustrate the inadequacy of current simplified design tools.  A novel one-

dimensional analytical expression is derived that better represents the 

hydrology of HSSF TWs.  The expression relates the state of clogging in a 

system to the wetted volume by considering practicalities of operation, such 

as overland flow and varying hydraulic conductivity profiles.  A new metric, 

the Clog Factor, will be presented, which allows different systems to be 

objectively compared with regard to the severity of clogging.  The Clog 

Factor will be used as a parameter that describes the severity of clogging in 

the analytical expression; thus creating the opportunity for calibration via 

experimentation and dynamic simulation.  A dynamic simulation tool based 
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on Finite Element Analysis (FEA) will be used to explore the relationship 

between Clog Factor, hydraulics and hydrodynamics.   

Chapter 4 Existing methods for measuring hydraulic parameters in porous media flow 

systems are reviewed with regard to their appropriateness for HSSF TWs.  A 

novel in situ method is developed that measures the spatial hydraulic 

conductivity profile in HSSF TWs.  The method uses custom made apparatus 

called The Aston Permeameter.  Validation and quantification of error are 

provided for the method.   

Chapter 5 The experimental results obtained by the method of Chapter 4 are reported 

for numerous HSSF TWs operated by Severn Trent.  During the course of this 

study, the chance was taken to perform the method of Chapter 4 on three 

HSSF TWs operated by EcoCheck LLC in the vicinity of Stillwater, Minnesota, 

USA.  This provided a point of comparison for how clogging can develop 

differently in HSSF TWs depending on local variations in design and 

operation. 

Chapter 6 The results of Chapter 5 for Severn Trent HSSF TWs are analysed in more 

detail, to show how design and operational variables affect the development 

of clogging, the spatial development of clogging over time, and how clogging 

influences flow.  The theory of Chapter 3 is applied to these results to yield 

Clog Factors for each system.  The Clog Factor is used to derive expressions 

that link the spatial variation of clogging in the system to the overall severity 

of clogging.  These expressions allow the analytical relationship between 

clogging and system hydrology to be calibrated for Severn Trent tertiary 

HSSF TWs.  The FEA tool is validated using experimentally obtained 

hydrodynamic and hydraulic data from a real HSSF TW.  Subsequently, an 

empirical expression is deduced that indicates how hydrodynamics respond 

to clogging in Severn Trent tertiary HSSF TWs.  This relationship could then 

be used by wetland practitioners to calculate how treatment performance 

would vary as the system clogs.   

Chapter 7 The salient conclusions from the study are presented, along with priorities 

and possibilities for future research.   
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 Scope of Research 1.6.

This study was funded through a CASE studentship awarded to Aston University (an 

academic higher education and research institution located within the Severn Trent Water 

service area) by the UK Engineering and Physical Science Research Council and Severn Trent 

Water.  The funds were awarded with the specific intention of investigating clogging in 

Severn Trent HSSF TWs.  As such, the scope of research will be limited to investigation of 

HSSF TWs owned and operated by Severn Trent, with the exception of the three HSSF TWs 

operated by EcoCheck in Minnesota.  The investigations performed on the three HSSF TWs 

operated by EcoCheck provide a point of comparison regarding international experiences 

with clogging in HSSF TWs; however the EcoCheck systems are not subject to the same rigor 

of analysis as the Severn Trent systems.  Other varieties of subsurface flow Treatment 

Wetlands are not investigated. The approach described by this thesis can be used as a 

framework to investigate clogging in other varieties of subsurface flow Treatment Wetland; 

however, the theory, analysis and results presented by this thesis are specific to Severn 

Trent HSSF TWs. 

The scope of research is limited to investigations into the hydrology of HSSF TWs, which 

encompasses the relationship between hydraulics, hydrodynamics and clogging.  The 

influence of hydrology on treatment performance is not explored; however the results 

provided can be used as a basis for others to investigate the impact of clogging on treatment 

performance.  

 

 Conclusions 1.7.

Severn Trent has commissioned this doctoral research study to better understand clogging in 

their Horizontal Subsurface Flow Treatment Wetland systems so that methods to increase 

asset longevity can be identified.  Experience with these systems has shown that clogging is 

a major operational problem that limits asset longevity to almost half of the anticipated 

longevity.   

The major advantage of HSSF TWs over conventional treatment technologies is low upfront 

capital cost and low operating requirements.  This advantage has encouraged Severn Trent 

to install 419 HSSF TW systems throughout their service area since the introduction of the 

technology to the UK in 1985.  The typical cost to install a HSSF TW to provide tertiary 
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wastewater treatment for communities of up to 2,000 PE is £250/m2 of HSSF TW footprint, 

or £175/PE served.  

Over time, the cumulative biological, physical and chemical treatment processes that occur 

between HSSF TWs and the wastewater stream may cause clogging of the filter media.  This 

occurs because clog matter with low hydraulic conductivity accumulates both within the 

media pore spaces and on the surface of the bed.  Severn Trent periodically replace the filter 

media in systems where excessive clogging causes a decrease in treatment performance or 

undesirable hydraulic malfunctions, such as ponding of wastewater on the surface of the 

system and bypass of untreated wastewater.   

Between 1998 and 2009 Severn Trent refurbished 166 clogged HSSF TWs.  A typical cost to 

refurbish a HSSF TW is £166/m2 of HSSF TW footprint, which is two-thirds of the cost to 

construct a new system.  It was originally anticipated that typical asset lifetime would be on 

the order of 15 years; however, experience has shown that the median age for 

refurbishment of clogged systems is 11 years.  Severn Trent have recently redefined the 

longevity of HSSF TWs to 8 years, which would imply refurbishing an average of 61 systems 

per year (based on a current inventory of 419 systems) at an associated annual cost of £ 3.2 

million per year (based on an average system size of 318 m2).   

The major research objective of this study is: “To help designers and operators make 

informed decisions that result in improved asset longevity, by improving the knowledge and 

understanding of clogging in Severn Trent Water HSSF TWs”. 

It is proposed to achieve the major objective by completing three aims that correspond to 

gaps in the current breadth of knowledge on HSSF TWs: 

1. Summarise the relevant literature on HSSF TW clogging 

2. Derive practical design tools that adequately represent the relationship between 

clogging, hydraulics and hydrodynamics, and validate the tools through 

experimentation and dynamic modelling 

3. Design an in situ method to measure the magnitude and distribution of clogging in 

HSSF TWs 

The remainder of this thesis will document the execution of the above three tasks and 

discuss how the work performed achieves the major study objective.  
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2. Background 

This Chapter will review background material regarding clogging in Horizontal Subsurface 

Flow Treatment Wetlands (HSSF TWs).  Sections 2.2, 2.3 and 2.5 of this chapter were written 

in collaboration with Dr. Gabriela Dotro, Ms. Jaime Nivala and Prof. Joan Garcia, and have 

been published as a manuscript (Knowles et al., 2011), entitled “Clogging in subsurface-flow 

treatment wetlands: Occurrence and contributing factors” in Ecological Engineering, volume 

37 (2), pages 99-112.   

Section 2.1 of this chapter will identify those characteristics that distinguish the HSSF TWs 

used by Severn Trent from similarly named technology variants around the world.  The 

history behind the beginnings and international adoption of HSSF TW technology will be 

presented to elucidate how these regional variations in HSSF TW design have evolved.  This 

introduction will allow the reader to appreciate the subsequent literature review on how 

clogging develops in different varieties of Subsurface Flow TWs.  This demarcation has not 

previously been made in the literature and is required to identify information relevant to 

clogging in Severn Trent HSSF TWs.  

Section 2.2 summarises the factors that are responsible for clogging and Section 2.3 

explores the influence of different design and operational variables on clogging.  Making 

reference to these factors, Section 2.4 explains the typical development of clogging in 

Severn Trent HSSF TWs specifically and analyses the longevity of the Severn Trent system 

stock with regard to typical design and operational parameters.  Section 2.5 considers the 

typical development of clogging in variants of subsurface flow treatment wetland, and 

explores why some systems are more prone to clogging than others.  Based on international 

and Severn Trent experience, conclusions are drawn regarding which design and operations 

strategies will result in robust performance for Severn Trent HSSF TWs. 

 

2.1. Treatment Wetland Technology 

Several terms combine to provide the name Horizontal Subsurface Flow Treatment 

Wetlands.   Firstly, HSSF TWs are constructed replications of natural wetland environments.  

They are colloquially referred to in the UK as ‘reed beds’ and are one example of HSSF TW 

design that exists around the world.  HSSF TWs are a subgroup of Subsurface Flow TWs, 
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which are a further subgroup of Treatment Wetland technology.  The classification system 

for HSSF TWs will be explained in stages and the standard nomenclature used within the 

remainder of this document will be defined. 

      

2.1.1. Major characteristics of Wetland Environments 

Natural wetlands are often known through colloquialisms such as fens, bogs, swamps, 

marshes and ditches (Vymazal et al., 1998) and occur in coastal regions or topographical 

depressions where the water-table is close to the land surface (Kadlec, 2009).  Vymazal and 

Kropfelova (2008) explain that natural wetlands are often temporary ecosystems that will 

eventually become fully aquatic or terrestrial depending on water-table fluctuations caused 

by season, drought, flood or sea-level rise.  According to Mitsch and Gosselink (2007) the 

typical characteristics of wetlands that differentiate them from completely terrestrial or 

aquatic natural wastewater treatment systems are: 

1 Saturated hydrology – standing water, either above the soil surface or within the 

rootzone, which supports a habitat of aquatic flora and fauna, and biota responsible 

for biological treatment.  

2 Hydric soils – soils with variable oxidation states such that a variety of anaerobic, 

anoxic and aerobic reduction-oxidation reactions can be achieved. 

3 Hydrophytic plants – plants that can root in saturated conditions, and have high 

productivity in comparison to terrestrial plants.  Plant growth can be emergent or 

submergent. 

 

These three properties makes wetlands ideally suited for wastewater treatment in 

comparison to other natural treatment technologies.  The saturated conditions and large 

surface area provided by plants and soil promote a high rate of biological activity (Wallace 

and Knight, 2006), and the gradient of redox conditions facilitates numerous contaminant 

removal mechanisms.  Wetlands have popularly been dubbed ‘the kidneys of the earth’ due 

to their proficiency for natural water purification (Brix, 1994b, Mitsch and Gosselink, 2007).   

Wastewater has been discharged to natural wetlands for as long as it has been collected, 

albeit more through convenience than intentional means of treatment (Kadlec and Wallace, 

2010).  The potential for wetlands to provide wastewater treatment, as well as other 

significant social and ecological benefits, was not realised by researchers until the 1950s 
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(Mitsch and Gosselink, 2007).  Prior to this many countries (particularly low lying regions of 

Europe) historically drained wetland regions to enable use for other purposes like 

urbanisation or agriculture.  These countries are now restoring wetland areas as the crucial 

role of wetlands for providing inland nutrient retention and buffering of flood waters has 

become apparent (Gopal, 1999, Kjellin et al., 2007).  Other benefits, as summarised by 

Vymazal and Kropfelova (2008), include: 

 Providing a unique habitat for numerous species of wildlife, birdlife, aquatic life, 

flora and fauna. 

 Producing high-growth-rate plant biomass with numerous applications such as 

biofuels, paper production, staple foods (rice), fertilisers, fodder, matting and 

roofing materials. 

 Water supply for irrigation, groundwater recharge and drinking water, and water 

treatment. 

 Amenity and recreation (e.g. boating, fishing). 

 

2.1.2. Treatment Wetland Classification Systems 

The use of wetland systems for water treatment is now widely established, resulting in the 

terminology “Treatment Wetland” (TW).  Treatment Wetlands lay on the gradient between 

land-based and aquatic-based wastewater treatment systems, which include slow-rate land 

application, rapid infiltration systems, overland flow systems, Treatment Wetlands and 

waste stabilisation ponds or lagoons (Crites and Tchobanoglous, 1998; IWA, 2000).  Using a 

hydrological generalisation, the ratio of hydraulic loading rate to soil hydraulic conductivity 

increases along this gradient, such that subsurface flow is predominant in land based 

systems and surface flow is prevalent in aquatic systems.   

The major difference between natural and conventional wastewater treatment technologies 

is the trade-off between land and operational costs.  In natural systems, processes occur at 

natural rates and often require more land and/or time to achieve a given treatment 

requirement.  Conventional technologies typically incorporate augmentations such as 

mechanical agitation and forced aeration, such that treatment can be achieved in a smaller 

footprint but with higher energy consumption and operational costs (Crites and 

Tchobanoglous, 1998, IWA, 2000, Reed et al., 1995).   
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Natural wetland environments are often replicated to optimise treatment capability and the 

resulting manmade systems are referred to as Constructed Wetlands.  The HSSF systems of 

Severn Trent are examples of Constructed Treatment Wetland systems.  The two major 

subdivisions of TW technology are defined according to hydrology as Surface Flow and 

Subsurface Flow systems.  Within each of these subdivisions exist further technology 

variations, as indicated in the classification system of Fonder and Headley (2011), (Figure 

2-1).  According to the classification system of Fonder and Headley (2011), the systems of 

Severn Trent are TW Type 4: horizontal subsurface flow systems with emergent non-woody 

vegetation. 

Surface Flow Systems 

Surface Flow TWs do not suffer operational problems related to clogging to the same extent 

as subsurface flow TWs, and this discussion will be limited to a brief description of Surface 

Flow TWs for the purpose of distinction.  Surface Flow wetlands are also referred to as Free 

Water Surface Wetlands.  This is because the water surface is above the level of the soil and 

the vast majority of the flow is overland, such that the water surface is always visible.  

Wetland surface waters are often shallow in comparison to lagoons or ponds, and this 

promotes soil-water interaction (IWA, 2000).  High biological productivity produces large 

communities of macrophytes, which distinguish surface flow TWs from lagoon and pond 

systems (IWA, 2000, Vymazal and Kropfelova, 2008).   

Subsurface Flow Systems 

Subsurface Flow Treatment Wetlands differ from surface flow systems because water flows 

through a porous medium, such as sand or gravel, through which the wastewater is passed 

for purification (Cooper et al., 1996).  Typically the water level is kept below the surface of 

the porous media so that the free water surface is not visible.  The system can be designed 

so flow can occur either in the vertical (VF) or horizontal direction (HSSF).  In VF systems the 

wastewater is usually dosed so that the subsurface goes through cycles of saturation and 

desaturation (Cooper et al., 1996), whereas generally, HSSF TWs are operated with constant 

saturation (Brix, 1987).   The use of porous media makes subsurface flow systems similar to 

other filter-bed technologies, but they differ from trickling filters and sand filters due to the 

presence of macrophytes (Nuttall et al., 1997).   
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Figure 2-1 Treatment Wetland classification system showing the numerous design 

variants that have evolved over the last three decades.  Reproduced from 

Fonder and Headley (2011). 
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Subsurface Flow systems can only accommodate emergent macrophytes, and in early 

wetland classification systems they were often listed as a subset of emergent systems 

(Figure 2-2) (Brix, 1993, Vymazal et al., 1998, Vymazal, 2003, Vymazal, 2001).  The 

organisational structure of Figure 2-2 is based around the significant role of plants in 

enabling treatment processes within Surface Flow TWs.  However, the role of plants in 

Subsurface Flow TWs is mainly structural, i.e. supporting biomass (Wallace and Knight, 2006) 

and providing insulation in cold climates through accumulation of plant litter (Mander and 

Jenssen, 2003).  Any treatment provided by plants is confined to the immediacy of the 

rhizosphere (Bezbaruah and Zhang, 2004, Brix, 1997) and is negligible in comparison to the 

treatment processes supported by the porous medium (Brix, 1994a).  The necessity for 

subsurface flow TWs to include plants has been questioned, however, Wallace and Knight 

(2006) reason that public acceptance of wetland technologies is partly attributed to the 

aesthetic enhancement and biodiversity provided by plants. 

 

Figure 2-2 Early classification system for Treatment Wetland technology that is based 

on the role of the plants.  Reproduced from Vymazal (2003). 

 

Subsurface systems offer greater scope for engineering, and the last decade has witnessed 

numerous adaptations for achieving advanced treatment performance, smaller system 

footprints or application for specialist wastewaters.  Examples include HSSF systems 

augmented with forced-bed aeration (Wallace, 2001), and fill-and-drain VF systems which 

operate with successive upward and downward flow regime to achieve a series of redox 

potentials over a loading cycle (Behrends et al., 2001, Cooper and Cooper, 2005).  It should 
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be noted that these intensifications require an increase in energy consumption and 

operational costs in comparison to natural systems 

The subsurface technology boom, and realisation that hydrology is more significant to 

treatment than planting, is reflected in the revised TW classification tree presented in Figure 

2-1 (Fonder and Headley, 2011), which elucidates the variety of Subsurface Flow systems 

that have evolved. 

 

2.1.3. Historical Development of Subsurface Flow Treatment Wetlands 

All variants of Subsurface Flow TW are prone to clogging problems if operated incorrectly.  

However, numerous regional variations of Subsurface Flow TW have evolved and the 

manner in which they clog is directly related to the typical design and operation of the 

system.  This design evolution will be introduced to allow the subsequent discussion on 

clogging in different systems to be better appreciated.  

A German botanist named Kathe Seidel pioneered research on early VF and HSSF TW 

concepts during the 1950s.  Seidel’s research focus was the phytoremediation of 

wastewaters using aquatic plants for the removal of organic and inorganic pollutants from 

wastewater (Brix, 1994b).  To appear more akin to conventional filter-type treatment 

technologies, planting was done in trays and ditches of high-hydraulic conductivity sand and 

gravels (Vymazal and Kropfelova, 2008).  The initial concept had horizontal flow and was 

used as a secondary treatment stage for decentralised septic tank wastewater treatment 

systems (Börner et al., 1998).  Seidel later realised that a modification of the technology 

which used vertical flow could achieve solids filtration and maintain aerobic conditions, thus 

providing a superior alternative to the septic tank.  The vertical flow and horizontal flow 

stages were referred to as ‘filtration’ and ‘elimination’ stages respectively and Seidel 

arranged multiple cells in cascading networks to promote oxygenation between stages (Brix, 

1994b).    

Uptake of this technique, which became known as the Max Planck Institute Process or 

Krefeld System, was not immediate.  According to Vymazal and Kropfelova (2008) early 

publications which focussed on nutrient removal (Seidel, 1966) were met with criticism that 

may have hindered adoption of Seidel’s ideas.  International dissemination of the concept 

was delayed until publication in English (Rousseau, 2005) in 1976 (Seidel, 1976). 
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Seidel collaborated with a German soil scientist called Roland Kickuth, in the hope that 

comparative tests against conventional soil based treatment systems would encourage 

acceptance of the technology.  However, disagreement between the scientists led to the 

formation of two rival schools of thought, which further hampered the overall adoption of 

the technology by sewage engineers and authorities (Börner et al., 1998).  Kickuth believed a 

single HSSF TW stage could replace the Krefeld System if a soil or clay medium was used as 

opposed to sand or gravel.  The idea was that the high sorption capacity of the soil and root-

zone aeration provided by the plants would provide sufficient treatment, and the plants 

would additionally maintain hydraulic conductivity through the soil via root network 

expansion (Kickuth and Konemann, 1988).  The practicality of a single system rather than a 

network, and the publication of a simple design equation (Kickuth, 1977) made the Root 

Zone Method popular with engineers, local authorities and utility providers. 

During the 1980s and 1990s the two techniques began to spread through Europe.  Whether 

a country aligned with the Krefeld System or Root Zone Method depended on exposure, and 

has resulted in numerous regional technology variations and design guidelines (ATV, 1998, 

Brix and Arias, 2005, EC/EWPCA, 1990, García and Corzo, 2008, Iwema et al., 2005, ÖNORM-

B-2505, 1997). 

Examples of Krefeld Systems exist in the UK (Burka and Lawrence, 1990), Austria (Brix, 

1994b) and North America (Lakshman, 1979, Wolverton, 1982) and the potential of hybrid 

systems for achieving treatment beyond the capabilities of the single stage Root Zone 

Method has caused a resurgence of the Krefeld System, especially in France (Lienard et al., 

1990, Lienard et al., 1998, Molle et al., 2005) where it is the TW methodology advised by 

national guidelines (Iwema et al., 2005).  A VF system analogous to the 1st stage of the 

Krefeld System has become the preferred choice for decentralised secondary wastewater 

treatment in European countries such as Denmark (Brix and Arias, 2005), Austria (ÖNORM-B-

2505, 1997) and Germany (ATV, 1998).   

Early experience with the Root Zone Method in Germany, Denmark, Austria and the UK 

indicated that initial methodological claims did not translate well to field experience (Brix, 

1994b) and the following conclusions were drawn: 

 The role of plants for aeration is secondary and HSSF environments are 

predominantly anoxic or anaerobic (Brix and Schierup, 1990). 
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 The hydraulic conductivity of the soil filter did not improve due to root network 

expansion, and numerous reports of clogging and overland flow were reported (Brix 

and Schierup, 1989, Coombes, 1990, Haberl and Perfler, 1990, Netter and 

Bischofsberger, 1990, Pauly, 1990). 

 

European design guidelines were published in 1990 (EC/EWPCA, 1990) to reflect these 

findings and encourage designs that reduced the occurrence of overland flow.  The two 

major changes were: a) modifications to the aspect ratio suggested by the Root Zone 

Method, which transformed the typical design from having greater length than width to 

having greater width than length (Brix and Schierup, 1989); and b) the use of coarse media 

such as sand or gravel, which are less prone to clogging than soil (Cooper et al., 1996).  These 

guidelines made the technology more akin to the original systems of Seidel and the term 

Root Zone Method was superseded by the colloquialism ‘reed beds’.  However, the Kickuth 

equation is still widely used for sizing the beds and the dissemination of HSSF TW technology 

is often attributed to Kickuth. 

A similar HSSF TW concept was developed in the US during the early 1970s (Fetter et al., 

1976, Spangler et al., 1976) and 1980s (Gersberg et al., 1983, Gersberg et al., 1984), 

although pilot systems incorporated much larger media sizes than the systems of Seidel and 

Kickuth, and flow occurred simultaneously over the surface and through the subsurface 

(Wallace and Knight, 2006).  Development of these systems, which were colloquially referred 

to as ‘rock-reed-filters’ or ‘vegetated submerged beds’, culminated in the publication of 

design guidelines by the US Environmental Protection Agency (USEPA, 1993), which differed 

to those outlined by European specifications (Wallace and Knight, 2006).   

In an attempt to standardise reporting in the literature, it has been suggested that the 

terminologies Horizontal Subsurface Flow Treatment Wetland and Vertical Flow Treatment 

Wetland fully replace all colloquialisms such as ‘reed beds’ or ‘Krefeld filtration stage’ 

(Fonder and Headley, 2011).  However, standardised nomenclature conceals the specific 

variations in design and operation that result in different clogging modes in different 

systems. 
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2.2. Factors Attributing to Clogging 

This section addresses the various physical, chemical and biological factors that are 

responsible for clogging.  Clogging occurs due to the accumulation of materials associated 

with treatment (e.g., intentional or external loads) and other operational factors (e.g., 

incidental or internal loads) that reduce the free volume available for flow through porous 

media.  The quantity and composition of accumulated material, often referred to as biosolids 

(Kadlec and Wallace, 2010) but hereafter referred to as clog matter (because it does not 

have to contain biological constituents), will vary depending on internal and external loads.  

Clog matter typically consists of highly hydrated gels and sludge (often more than 70 % 

water by volume) that are formed of inorganic and organic solids (IWA, 2000).  Clog matter 

often has a lower density than its constituents such that it can effectively reduce pore space 

in the granular medium (Baveye et al., 1998).  The typical components of clog matter are 

categorised in Table 2-1, which includes biofilm, plant detritus, chemical precipitates, and 

wastewater solids. 

 

Table 2-1  Non-hydrous components of clog matter categorised into intentional 

accumulations (part of the wastewater treatment process), or incidental 

accumulations (a result of the wastewater treatment process).  Incidental 

accumulations include accidental operations, which are italicised.  

Reproduced from Knowles et al. (2011). 

Component Intentional accumulation 

(external loads) 

Incidental accumulation  

(internal loads) 

Organic solids  Wastewater solids  Biomass growth 

 Plant roots 

 Biofilm and plant detritus 

 Solids introduced during 

construction 

Inorganic solids  Wastewater solids 

 Chemical 

precipitates 

 Solids from chemical erosion of 

gravel 

 Solids introduced during 

construction 

 

Figure 2-3 depicts some of the clog matter components listed in Table 2-1 and how they 

accumulate within the TW at the macroscopic system-scale and at the microscopic 

pore-scale.  The net accumulation rate of clog matter is a balance between intentional 

(application of wastewater) and incidental accumulations (such as biofilm and plant matter), 

and loss due to export and decomposition (Tanner et al., 1998).  At the pore scale clog 



  

60 
 

matter will accumulate in pore spaces with varying morphology, such as coatings on the 

surface of the media or dendrite formations.  Clog matter accumulations may be formed of a 

single phase (i.e. biofilm on media surfaces) or a complex of phases, such as biofilm forming 

around entrapped wastewater solids.  Accumulations that occur within pore spaces reduce 

subsurface hydraulic conductivity and accumulations that occur on the bed surface reduce 

surface infiltration rates.  The combination of surface and subsurface clogging will determine 

whether or not hydraulic issues occur at the macroscopic scale.       

 

 

Figure 2-3 Clogging processes that occur at the surface and in the subsurface of 

Horizontal Subsurface Flow Treatment Wetlands.  The diagram may not be 

applicable to other varieties of Subsurface Flow Treatment Wetland.  The 

inset gives detail of clogging processes at the pore level.  Adapted from 

Kadlec and Knight (1996). 

 

The subsequent parts of this section discuss the factors that are responsible for clogging in 

greater detail.  The discussion will consider filtration of particulate matter and additional 

solids contributions from microorganisms (biofilms), vegetal growth and chemical 

precipitation.  The composition and biodegradability of typical clog matter accumulations is 

also discussed. 
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2.2.1. Solids Entrapment 

Suspended solids are filtered and retained by subsurface flow treatment wetlands via the 

mechanisms of transport and attachment (Yao et al., 1971).  These mechanisms are the 

same as those responsible for flocculation, whereby transport mechanisms create collisions 

between particles, and attachment mechanisms cause these particles to adhere upon 

impact (Swift and Friedlander, 1964).   

Wastewater contains solids with a variety of sizes and compositions.  A variety of physico-

chemical mechanisms are responsible for TSS reduction, depending on the size of the 

particle, as explained in Table 2-2 and depicted in Figure 2-4.  The balance of the forces 

listed in Table 2-2 leads to a range of removal efficiencies for different particle sizes.  Kadlec 

and Wallace (2010) explain that sedimentation of large particles is the major mechanism of 

solids removal in HSSF TWs, which predominantly takes place in the first few meters of the 

wetland.  It has frequently been observed that the nadir in removal efficiency occurs for 

particles that are approximately 1 – 2 m in diameter, because they are too small to be 

removed by inertial and other physical effects, but too large to be affected by electrostatic 

and Brownian forces (Yao et al., 1971, Logan et al., 1995, Zamani and Maini, 2009).  A large 

number of wastewater particles fall into this size range (Levine et al., 1991, Tchobanoglous, 

1993) and Puigagut et al. (2008) observed that particles in the 0.7 – 2 m range were the 

most abundant in the influent and effluent of a HSSF TW in Spain.   

As particles accumulate within the media, the efficacy of subsequent removal is often 

enhanced due to the reduction in pore space.  For example, particles that are 

electrostatically attracted to each other are capable of stacking and form dendrites that 

protrude into the pore space and increase the likelihood of particle interception (Hubbe et 

al., 2009). 

Particle retention on media surfaces is due to the electro-chemical effect of adsorption 

(summation of electrical double-layer interactions and the dipole interactions known as van 

der Waals’ forces).  The strength of attachment depends on the relative charge of particles, 

media surfaces and bulk fluid (Hermansson, 1999).   Detachment of particles can occur for 

several reasons.  A change in the ionic strength of the wastewater may neutralise or 

overcome the attractive force between particles and surfaces, such that they are released 

back into solution (an effect known as peptisation).  Hydrodynamic shear forces can lead to 

sloughing of particles, especially if interstitial velocities increase as a consequence of pore 
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constriction (Zamani and Maini, 2009).  However, this effect is generally confined to closed 

pressurised reactors, and in gravitational flow systems such as Subsurface TWs flow will find 

an alternative path (such as overland) once faced with hydraulic resistance (Maloszewski et 

al., 2006). 

 
Table 2-2  The physico-chemical mechanisms responsible for solids removal in 

Subsurface Flow TWs.  The emboldened numbers in brackets refer to the 

removal mechanisms illustrated in Figure 2-4.  Reproduced from Knowles et 

al. (2011). 

Large Particle Filtration Mechanisms 

Sedimentation and 

bouyancy 

According to Stoke’s Law, particles with a different density to 

wastewater will move vertically across the flow-field under the effect 

of gravity, until they impact a surface (2). 

Hydrodynamic effects  Non-uniform hydrodynamic forces across the body of a particle will 

cause it to drift across the flow-field (1). 

Inertial divergence Particles with significant inertia may deviate from streamlines and 

impact a surface as flow diverges around obstacles (3). 

Interception If the streamline conveying a particle is closer than the radius of the 

particle interception of the media surface will occur (4).  The chance 

of interception increases as pore diameters are reduced by prior 

accumulation (13). 

Straining and trapping Particles that are larger than pore spaces will be strained (7).  

Particles may be trapped by media morphological irregularities (9).  

Filamentous/fibrous particles are particularly susceptible to these 

modes of removal (8).  Filamentous biofim growth enhances the 

likelihood of straining by reducing the diameter of flowpaths (12).   
 

Small Particle Filtration Mechanisms 

Brownian motion Colloidal particles are influenced by the thermal forces responsible 

for Brownian motion, which induce random trajectory through the 

flow field (5). 

Electrostatic forces Repulsive or attractive forces between particles in suspension, and 

other particles or media surfaces will influence particle trajectory and 

cause particles to adhere to media surfaces (6).  Monolayer 

accumulations will occur (14) if attraction to media surfaces is greater 

than repulsion between particles.  Dendrite accumulations can occur 

if particles are attracted to other particles and media surfaces (11).  

Bridging Small particles can be removed within relatively large pores if 

numerous particles arrive simultaneously and block the pore by 

bridging (10). 

Coagulation The coagulation of smaller colloids into larger particles promotes 

their removal through the previously outlined mechanisms (15). 
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Figure 2-4 Particle removal processes in a porous medium, such as gravel in HSSF TWs.  

Based on information from Hubbe et al. (2009), Thullner (2009) and Zamani 

and Maini (2009).  The numbered removal mechanisms illustrated above are 

described in Table 2-2. 

 

2.2.2. Biofilm Clogging 

Transport and attachment of microbes through porous media can be described using the 

same set of principles as outlined for solids (Hermansson, 1999, Tufenkji, 2007).  Once 

microbes have colonised media surfaces, further biomass can proliferate.  Resultantly, in 

Subsurface Flow TWs most biomass forms as biofilms on the surfaces of the medium, with 

very little matter suspended in the wastewater (Khatiwada and Polprasert, 1999).  Several 

studies conclude that greater biofilm development occurs at the inlet region where the 

concentration of organic matter in the wastewater is greatest (Ragusa et al., 2004, Tietz et 
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al., 2007).  García et al. (2007) performed dynamic simulations of an experimental HSSF TW 

and predicted that the concentration of Heterotrophs would be 45% greater at the inlet than 

at the outlet.  Caselles-Osorio and García (2006) observed that the inlet hydraulic 

conductivity in an experimental HSSF TW fed with soluble carbon was reduced  to 64 % of 

outlet hydraulic conductivity; an effect they attributed to biofilm establishment at the inlet.    

Biomass morphology, density and hydraulic conductivity will vary between accumulations 

depending on composition and microbial community.  (Thullner, 2010).  The majority of 

biofilms secrete extracellular polymeric slime (mainly for enzymatic and structural purposes) 

(Madigan et al., 2006) that are highly hydrated (typically 99% water) (Rittmann and McCarty, 

1980, Tanner and Sukias, 1995).  deBeer and Stoodley (1995) expound that these slimes are 

analogous to gel networks with pore diameters on the nanometric scale, thus making them 

relatively impermeable (Taylor et al., 1990, Vandevivere and Baveye, 1992c) and proficient 

at forming associations with other inorganic and organic materials (Baveye et al., 1998, 

Thullner, 2010).  Some biofilms develop as filamentous colonies or aggregates (Vandevivere 

and Baveye, 1992a, Vandevivere and Baveye, 1992b, Vandevivere and Baveye, 1992c, Dupin 

and McCarty, 1999, Dupin et al., 2001) that form webs across pore spaces and trap 

particulate matter more proficiently than uniform biofilm coatings (Mays and Hunt, 2005).  If 

biofilms on separate gravel particles bridge, then pore plugging will occur and the hydraulic 

conductivity of the bulk porous media will tend towards the hydraulic conductivity of the 

biofilm (Wallace and Knight, 2006). 

 

2.2.3. Vegetal Contributions 

The role of plants in Subsurface Flow TW clogging is an evolving debate.  One of the original 

assumptions of the Root Zone Method was that root growth would counteract media 

clogging (Kickuth and Konemann, 1988), and the tubular structure of the roots would 

provide a macro-porous network for flow.  However, there is very little data in the literature 

to support this claim.  Fisher (1990) observed that root expansion in an Australian field-scale 

HSSF TW increased the depth of the reactor at the inlet zone by 60 mm over three years, 

which would serve to counteract clogging.  However, early experience with soil-based HSSF 

TWs in Northern Europe proved that root growth did not prevent hydraulic malfunctions 

such as overland flow (Netter and Bischofsberger, 1990, Pauly, 1990, Brix, 1994b).  

According to IWA (2000),  subsurface roots and rhizomes below a dense macrophyte stand 
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will have a dry weight of 500 – 5,000 g per m2 of footprint.  This root mass provides 

additional surface area for accumulation and occludes one quarter to one third of pore 

volume in the root-zone.  The root mat of Phragmites australis has been reported to have 

hydraulic conductivity on the order of 1 – 20 m/d (Baird et al., 2004), which is approximately 

two orders of magnitude smaller than the hydraulic conductivity of clean gravels typically 

used in Subsurface Flow TWs (USEPA, 2000). 

Plant detritus (dead matter) decomposition and accumulation rates will vary geographically 

and will provide a net contribution to clog matter over time if the accumulation rate of 

detritus exceeds decomposition rates (Kirschner et al., 2001, Asaeda et al., 2002, Rybczyk et 

al., 2002, Chimney and Pietro, 2006).  Kadlec and Wallace (2010) state that typically 5 – 15% 

of plant detritus is recalcitrant.  Root detritus contributes to subsurface clogging and leaf 

litter-fall contributes to surface clogging.  Kadlec and Watson (1993) measured an average 

leaf-litter accumulation of 2,410 g of dry matter per m2 of footprint after three years of 

operation in a HSSF TW in Kentucky (US).  Above ground, up to half of the standing plant 

biomass (stems) may be dead, but remain relatively stable due to esters in the plant tissue 

that resist degradation (Tanner et al., 1998). 

Tanner et al. (1998) illustrated the potential for clogging by plant detritus whilst studying 

dairy wastewater treatment HSSF TWs in New Zealand.  Organic matter accumulation rates 

of 1,300 to 3,000 g /m2·yr were recorded but only 400 to 1,600 g /m2·yr could be directly 

attributed to wastewater loading, and only 4% of pore blockage was due to live root 

penetration (Tanner, 1994).  Moreover, during the same study Tanner and Sukias (1995) 

compared organic matter accumulation rates in equivalent planted and unplanted beds and 

found that accumulation rates were 1,200 – 2,000 g /m2·yr higher in the planted systems.  

Accumulations of humic substances were two to eight times higher in the top 100 mm of 

gravel than they were at lower gravel depths, and only 50% greater in the inlet region than 

at the outlet.  Therefore, the authors concluded that the humic contributions from plants, 

rather than accumulation of wastewater organic matter, controlled clogging.   

In addition to Tanner and Sukias (1995), several other authors have reported that more plant 

matter accumulates near the surface of the TW than towards the base of the TW (USEPA, 

1993, Reed et al., 1993).  For example, Parr (1990) surveyed 12 gravel bed HSSF TWs in the 

UK and found that 70 – 100% of root growth occurred in the top 20 cm of the media.  It is 

believed that the higher hydraulic resistance in the vegetated upper gravel layer causes flow 

to short-circuit along the less resistive bottom layer and numerous researchers have 
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performed internal hydrodynamic visualizations using water tracers that report similar 

observations of preferential flow along the bottom of the bed (Spangler et al., 1976, 

Gersberg et al., 1984, Bowmer, 1987, Fisher, 1990, Waters et al., 1993, Breen and Chick, 

1995, García et al., 2003, Knowles et al., 2010).   

Several authors have reported that certain plant functions can mitigate the effects of 

clogging.  For example, when studying planted and unplanted HSSF TW mesocosms in 

Canada, Chazarenc et al. (2007) found that planted systems had consistently longer 

hydraulic residence times than unplanted systems.  The authors suggested that water 

retention in the leaf litter layer and plant evapotranspiration counteracted any discernible 

loss of hydraulic residence time associated with clogging.  Other authors suggest that, by 

creating macro-pores through clog matter accumulations on the surface of the bed, the 

wind-induced sway of emergent shoots and stems maintains infiltration rates through to the 

subsurface (Brix, 1994a, Molle et al., 2006). 

 

2.2.4. Chemical Effects 

Chemical treatment processes, such as adsorption and precipitation, can also contribute to 

clogging.  Physico-chemical adsorption is associated with the removal of metals, petroleum, 

and synthetic hydrocarbons, ammonia-nitrogen, and phosphorous (Wallace and Knight, 

2006).  For instance, it is common practice for HSSF TWs in Norway to incorporate 

lightweight expanded clay aggregates with high sorption capacity, for the purposes of 

phosphorous removal (Zhu et al., 1997).  However, adsorbate films do not generally become 

thick enough to create clogging problems because adsorption is limited by the sorption 

capacity of the media. 

Chemical precipitation of metal hydroxides and sulphides (Sheoran and Sheoran, 2006), 

calcium carbonate (Fleming et al., 1999) and elemental sulphur (Kadlec and Wallace, 2010) 

are more likely to cause clogging problems as these precipitants accumulate as film-like 

coatings on media surfaces.  Kadlec and Wallace (2010) summarise that precipitation of 

these compounds is encouraged through biological interactions, and systems that treat 

industrial wastewaters may clog rapidly if both the rate of biological activity and 

concentration of these compounds is high.  Such a phenomenon was described by Nivala et 

al. (2007), who observed severe iron fouling of the gravel in an aerated HSSF TW for the 

treatment of landfill leachate.  Nivala et al. (2007) attributed this to ferric hydroxide 
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precipitation under highly oxidizing conditions, which adsorbed to media surfaces and 

became associated with interstitial biological matter such that porosity was heavily reduced 

and media particles became welded together. 

 

2.2.5. Clog Matter Composition 

The biodegradability of accumulated clog matter dictates its impact on clogging.  Initially it 

was assumed that organic matter would decompose sufficiently such that only inorganic 

solids would contribute to Subsurface Flow TW clogging.  Based on an influent inorganic 

solids loading of 8 kg/m3 over 18 months, USEPA (1993) predicted that only 1% of interstitial 

volume would be lost from a HSSF TW.  Similar calculations based on the assumption of 

clogging solely by inorganic matter were responsible for early over-estimations regarding 

system longevity (Conley et al., 1991, Bavor and Schulz, 1993, Blazejewski and Murat-

Blazejewska, 1997).  However, the literature confirms that clogging is caused by 

accumulation of both organic and inorganic matter. 

Regarding predominantly organic clog matter; Tanner et al. (1998) state that 80% of 

accumulations in a dairy wastewater HSSF TW were volatile, although subsequent 

investigation found that 63 – 96% of these organic matter fractions were relatively 

refractory (Nguyen, 2000, Nguyen, 2001).  Accumulations were predominantly composed of 

refractory humic, humin and fulvic acids, derived from lignocellulosic and humic compounds 

in the dairy wastewater and plant detritus.  Nguyen (2000) discussed that variable 

decomposition rates leads to a mixture of macro-morphological plant residues and 

morphologically unstructured humic compounds with a range of molecular weights and 

packing densities.  Furthermore, humic compounds are highly colloidal and amorphous with 

great hydrophilic potential and physical binding properties (Christensen et al., 1998, Nguyen, 

2000).  For example, Tanner and Sukias (1995) point out that clog matter accumulations in 

this HSSF TW were approximately 80 % water by volume.  These properties give humic 

organic matter great potential to block pores. 

Regarding predominantly inorganic clog matter accumulations; Platzer and Mauch (1997) 

reported that less than 3% of the deposits in a soil-based VF TW in Merzdorf, Germany were 

organic.  Kadlec and Watson (1993) described that over 80 % of the clog matter accumulated 

in a HSSF TW that polishes lagoon effluent was inorganic in composition, explaining that 

biological matter was being satisfactorily degraded.  Similarly, Caselles-Osorio et al. (2007), 
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Llorens et al. (2009) and Pedescoll et al. (2009) also reported clog matter accumulations with 

inorganic content greater than 75 % in six secondary treatment HSSF TWs in Catalonia, 

Spain.  From the information presented in Llorens et al. (2009) and Kadlec and Watson 

(1993) it is possible to calculate that the porosity loss attributable to accumulation of 

inorganic solids in each of these studies is very small, and in agreement with earlier 

calculations mentioned above (1 % – 3 % pore occlusion based on an inorganic solids density 

of 2,650 kg/m3).  However, association with small quantities of present biological material 

can form low-density gelatinous sludge with very high water retention capacity (Kadlec and 

Watson, 1993, Tanner et al., 1998, IWA, 2000).  The composite clog matter in the studies of 

Llorens et al. (2009) and Kadlec and Watson (1993) had resulting densities between 

33 kg/m3 and 371 kg/m3 which increased effective pore occlusion to between 27 % and 

77 %.  In the case of Kadlec and Watson (1993) the authors postulate that this occurred due 

to silica algae combining with calcium and aluminium at low redox values.  In the case of 

Llorens et al. (2009), the sludge density in the inlet region was on average four times lower 

than that at the outlet region (60 kg/m3 versus 240 kg/m3) but was doubly effective at 

reducing porosity (66 % occlusion versus 28 %).  This corresponded to lower values of 

hydraulic conductivity at the front end of the bed in comparison to the back end of the bed 

(20 m/d versus 45 m/d) (Pedescoll et al., 2009). 

 

2.3. Design and Operational Influences 

The distribution of clogging through the system and the speed with which it develops 

depends on numerous design and operational factors, such as the wastewater loading rate 

and pollutant characteristics, the physical properties of the porous media, inlet arrangement 

and system dimensions, and whether the system is operated with periods of resting.  This 

section elaborates on the influence of these parameters. 

 

2.3.1. Wastewater characteristics 

Knowledge of wastewater characteristics, such as flow rates, solids content and pollutant 

characteristics, are vital for understanding clogging processes in Subsurface Flow TWs.  

Regarding the influence of hydraulic loading rate; hydraulic overloading may lead to periods 

of overland flow in both HSSF TWs and VF TWs.  Overland flow reduces the transfer of 
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atmospheric oxygen to microorganisms responsible for degrading accumulated organic 

matter, and increases the likelihood that surface layer accumulation rates will exceed 

mineralization rates (Platzer and Mauch, 1997, Langergraber et al., 2003, Zhao et al., 2004).  

For example, Molle et al. (2006) established that French VF treatment wetlands will work 

reliably as long as they are not consistently hydraulically overloaded. Systems that had been 

consistently overloaded were found to have poorly mineralised surface sludge deposits with 

infiltration rates as low as 2.5 m/d, thus providing a bottleneck to flow.   

Regarding pollutant characteristics; both the physical form and biodegradability of 

wastewater constituents will effect clogging.  Low TSS does not necessarily preclude 

clogging, as demonstrated by Caselles-Osorio and García (2006) who performed side-by-side 

tests on experimental HSSF TWs system fed with different forms of organic matter (glucose 

vs. starch).  Their results suggest that the system fed with dissolved glucose had lower inlet 

hydraulic conductivities than a system fed with particulate starch, leading them to conclude 

that glucose stimulated greater biofilm clogging due to its readily-biodegradable nature. 

Generally speaking, most authors report a positive correlation between system clogging and 

both TSS and COD (Chemical Oxygen Demand) loading rates (Tanner and Sukias, 1995).  

Winter and Goetz (2003) found that loading rates of TSS and COD correlated positively with 

severity of clogging in a survey of 21 VF TWs in Germany.  Clogging problems were not 

apparent in systems that received less than 20 g/m2∙d COD and 5 g/m2∙d TSS.  Caselles-

Osorio et al. (2007) compared the COD loading rate versus solids accumulation rates for six 

HSSF TWs in Catalonia, Spain (Caselles-Osorio et al., 2007), versus a VF TW in France 

(Chazarenc and Merlin, 2005).  Over two years, the secondary HSSF TW systems in Catalonia 

received average influent COD loading rates of 12 g/m2∙d respectively with a resulting 

average solids accumulation rate of 11 kg/m2∙yr.  The primary VF TW of Chazarenc and 

Merlin (2005) received a larger COD loading rate (67 g/m2∙d on average) which resulted in a 

higher solids accumulation rate (51 kg/m2∙yr on average).  Despite this, the French systems 

reportedly operated without clogging whereas evidence of surface ponding existed in 

several of the Catalonian HSSF TWs.  This is attributed to a lower hydraulic loading rate in 

the French VF TW than in the Catalonian HSSF TW (see Section 2.5). 
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2.3.2. Intermittent Operation 

Intermittent operation involves discharging of wastewater in a manner such that subsurface 

aeration will occur, which restores aerobic conditions and accelerates clog matter 

mineralization.  This principle is fundamental to the operation of VF TWs.  The periodicity of 

loading to resting will determine the ability of the system to operate without clogging 

(Cooper, 2004).  The required recovery period for a particular cell will depend on climatic 

conditions.  Systems in cold and wet climates will require a longer recovery period than 

those in hot and arid climates.  Resting periods on the order of days to weeks are suggested 

for VF TWs in Northern Europe (Platzer and Mauch, 1997, Langergraber et al., 2003, Green 

et al., 2006), with different cells rested in rotation so that plant operation will not be 

interrupted. 

Variants of VF TWs such as fill-and-drain wetlands (Zoeller and Byers, 1999, Lahav et al., 

2001), tidal flow wetlands (Zhao et al., 2004, Austin, 2005) and reciprocating wetlands 

(Behrends et al., 2001) incorporate operating strategies that promote increased subsurface 

oxygen availability, such as water level fluctuation, intermittent dosing, and alternate 

operation.  Additionally, these systems operate without the typical application of 

wastewater over the surface of the bed, which in principle reduces the tendency of the 

system to clog on the surface.  Zhao et al. (2004) showed that clogging of a tidal flow 

wetland could be mitigated by arranging gravel fractions with increasing diameter from top 

to bottom, so that accumulated solids were better distributed throughout the reactor depth. 

However, studies indicate that these systems may still clog in the upper surface despite their 

operation mode (Cooper and Cooper, 2005, Sun et al., 2007). 

Studies also suggest that intermittent operation may be beneficial for reversing clogging in 

HSSF TWs (Nguyen, 2000, Corzo et al., 2008).  Batchelor and Loots (1997) rested a field-scale 

HSSF TW to allow for surface sludge layer mineralization, and successfully restored 

infiltration to the subsurface. 

 

2.3.3. Media Characteristics 

To maintain subsurface flow through porous media it is advisable to utilise media with high 

hydraulic conductivity (Cooper et al., 1996).  Large diameter media has a higher hydraulic 

conductivity than small diameter media, as explained in Section 3.2.  Despite this, smaller 
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media, such as soil and sands, were originally used (Brix and Schierup, 1989, Coombes, 1990, 

Haberl and Perfler, 1990, Netter and Bischofsberger, 1990) as they were believed to offer 

superior treatment performance to larger media.  Indeed, the smaller the particle size, the 

higher specific surface area available for biofilm establishment, and surface chemistry; and 

the greater the likelihood of suspended solids interception due to narrower pore diameters. 

However, this makes fine media prone to rapid clogging by filtration and the bridging of 

biofilm on adjacent media particles (Blazejewski and Murat-Blazejewska, 1997, Platzer and 

Mauch, 1997, Langergraber et al., 2003, Wallace and Knight, 2006). 

Subsequent work by Griffin et al. (2008) on the performance of 25 Severn Trent HSSF TWs 

showed that larger media with median diameters between 6 mm and 11 mm did not impair 

the ability of the system to achieve treatment requirements.  All medium sizes achieved 

effluent BOD levels below 5 mg/L and the 11 mm medium theoretically has a clean hydraulic 

conductivity over three times greater than the 6 mm medium.  Resultantly, the desire to 

maximise asset longevity has led to a gradual increase in the media sizes employed in HSSF 

TWs, towards coarser media such as gravels (Cooper et al., 1996, USEPA, 2000, Iwema et al., 

2005, ÖNORM-B-2505, 1997, García and Corzo, 2008).  This evolution is reflected in Table 

2-3 which summarises recommended media specifications from different countries that 

have been published since 1988. 

 
Table 2-3 Examples of media size distributions recommended by various national and 

international design guidelines and publications.  Based on information 

presented  in Wallace and Knight (2006) and Kadlec and Wallace (2010). 

Country Gravel size distribution Source 

Austria 0-4 mm (gray water) 

1-4 mm (tertiary treatment) 

4-8 mm (primary treatment) 

ÖNORM-B-2505 (1997) 

Czech Republic d < 20 mm Vymazal (1996) 

Germany 0.2-1.0 mm (sand) ATV (1998) 

United Kingdom 10-12 mm Griffin et al. (2008) 

United States 1-8 mm 

3-6 mm 

12-25 mm 

2-28 mm 

20-30 mm 

d >4 mm 

USEPA (1988) 

TVA (1993) 

USEPA (1993) 

Reed et al. (1995) 

USEPA (2000) 

Wallace and Knight (2006) 

European Design Guidelines 3-6 mm 

6-12 mm 

EC/EWPCA (1990) 

International Water Association 8-16 mm IWA (2000) 
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Particle size distribution and particle shape also influence media hydraulic conductivity.  An 

extreme example of this is when the medium contains a large quantity of fines.  Excessive 

fines will reduce pore space and promote clogging (USEPA, 1993, Tanner and Sukias, 1995).  

Media that is relatively non-spherical or angular will exacerbate clogging as it reduces 

porosity and increases the specific surface area available for biofilm growth (Kadlec and 

Knight, 1996, Hyánková et al., 2006). 

The significant benefit to asset lifetime offered by controlling media specification was 

emphasised by Griffin et al. (2008), who announced that Severn Trent HSSF TWs built after 

2008 would only incorporate washed round gravels with particle diameters between 

10 mm and 12 mm. 

 

2.3.4. Upstream Treatment Processes 

Accidental spill-over of solids and sludge from upstream treatment processes, such as septic 

tanks and rotating biological contactors, creates shock loads of solids to downstream 

Subsurface Flow TWs (Cooper et al., 2005, Caselles-Osorio et al., 2007).  Good design and 

maintenance of upstream processes can mitigate the likelihood of this occurrence; however, 

it is recommended that effluent filters or clarifiers are used between the upstream process 

and the Subsurface Flow TW to reduce solids carry-over (Tchobanoglous, 2003). 

Alternative pre-treatment technologies are under investigation for use in conjunction with 

Subsurface Flow TWs, with the aim of maximizing system lifetime by minimizing solids 

loading.  Caselles-Osorio and García (2007) estimate that when compared with primary-

settled effluent (e.g., septic tank effluent), physicochemical pre-treatment could extend the 

life of a HSSF TW by approximately ten years.  They note, however, that the operations and 

maintenance cost of coagulant, energy usage and sludge handling will prevent this option 

from being suitable in every situation.  Other possible pre-treatments include Up-flow 

Anaerobic Sludge Blanket reactors, (Green et al., 2006, Barros et al., 2008, Dornelas et al., 

2009) Hydrolytic Up-flow Sludge Bed reactors (Álvarez et al., 2008, Corzo et al., 2008) and 

Surface Flow TWs with planted rafts (Gray, 2008).  All of the aforementioned technologies 

are reported to produce a primary effluent relatively low in COD and TSS in comparison to 

septic tank effluent; however, technologies such as UASB are best suited to warm climates.   
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Gray (2008) performed pilot experiments to establish the effective operating cost associated 

with refurbishing a clogged HSSF TWs when compared to sludge extraction as routine 

maintenance for Surface Flow TWs with planted rafts.  The author found that refurbishing a 

clogged HSSF TWs imposed an expense equivalent to 0.06 £/m3 of treated wastewater; 

whereas extracting sludge from Surface Flow TWs with planted rafts imposed an expense of 

less than 0.0001 £/m3 of treated wastewater.   Gray (2008) concluded that Surface Flow TWs 

with planted rafts could be a cost-effective means of pre-treatment for existing Severn Trent 

HSSF TWs. 

 

2.3.5. System Aspect Ratio and Inlet Distribution 

As explained in Section 2.2, the factors responsible for clogging lead to preferential clogging 

at the inlet where the wastewater is most concentrated.  The extent of preferential clogging 

can be mitigated by uniformly loading wastewater over the greatest possible area and is, 

therefore, controlled by the system dimensions and the influent distribution arrangement.  

Early HSSF TW designs had aspect ratios with greater lengths than widths, which resulted in 

good width distribution but high cross-sectional wastewater loading rates at the inlet 

(Watson et al., 1990).  Resulting experience of extensive clogging and overland flow in the 

inlet region of these systems (Netter and Bischofsberger, 1990) prompted the Danish to 

modify the aspect ratio, so that the width exceeded the length (Brix and Schierup, 1989).  

Wider systems reportedly suffered less overland flow issues and became recommended by 

most HSSF TW design guidelines (EC/EWPCA, 1990).  

Regarding influent distributor design; the operation of typical VF TWs necessitates 

distributors that are located on or near the surface of the bed so that vertical percolation 

through the media will occur.  Uniform loading over the bed surface is achieved using a 

network of perforated pipes that cover the majority of the surface, or by using concrete 

splash pads (ATV, 1998, Brix and Arias, 2005, Molle et al., 2005, ÖNORM-B-2505, 1997). 

In HSSF TWs, whether clogging initially develops on the surface or within the subsurface 

corresponds to whether a surface or subsurface-based influent distributor is used.  

Experience in the UK has shown that poorly designed, incorrectly installed or ill-maintained 

inlet distributors will encourage uneven flow distribution (Rousseau et al., 2005b, Griffin et 

al., 2008) and uneven clogging of the bed media (Knowles et al., 2010).  Early inlet 

distributor designs in Severn Trent HSSF TWs exacerbated this situation, as they were 
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generally comprised of discrete point sources distributed at multiple points along the width 

of the bed, such that flow was not loaded uniformly across the width of the bed (Murphy 

and Cooper, 2010).  Cooper et al. (2008) found inlet distribution problems that required 

intervention at 34 from a survey of 255 HSSF TWs operated by Severn Trent.  The design of 

surface based distributors for these TWs has evolved to achieve better width distribution, 

for instance by using troughs that span the width of the bed (Murphy and Cooper, 2010).  

Troughs are still susceptible to solids accumulation but are preferred by operators because 

of their ease of maintenance (Griffin et al., 2008).   

Some early US HSSF TWs also utilised surface distributors with multiple adjustable outlet 

ports (Steiner and Freeman Jr., 1989, Watson and Hobson, 1989), however, the design of 

these systems eventually shifted towards the use of subsurface manifolds (TVA, 1993).  

Initial subsurface distributors for HSSF TWs comprised a pipe distributor located a few 

centimetres below the gravel surface.  Designs of this type are still prevalent in mainland 

Europe (Vymazal et al., 1998, Vymazal and Kropfelova, 2008), but they have been 

superseded in the US by subsurface infiltration chambers perpendicular to the flow direction 

(Campbell and Ogden, 1999, Wallace and Knight, 2006), due to the opinion that simple pipe 

distributors resulted in clogging in the vicinity of the pipe. The use of subsurface infiltration 

chambers is intended to maximise the cross-sectional area over which wastewater solids are 

loaded.  To further minimise cross-sectional loading rates, some US authors have utilised 

extended influent distributors that load wastewater along the width of the bed, but also 

include distribution manifolds that protrude longitudinally into the bed (Muñoz et al., 2006, 

Wallace and Knight, 2006). 

Another method for achieving uniform width distribution has been to incorporate an open 

trench at the inlet that precedes subsurface flow. This also serves as a pre-treatment for 

solids settling, thus reducing accumulation within the subsurface (USEPA, 1993, King et al., 

1997, Murphy and Cooper, 2010). 

 

2.4. Clogging in Severn Trent Water HSSF TWs 

Using the previous discussion it is possible to put into context the development of clogging 

in Severn Trent HSSF TWs.  The typical design of these systems was outlined in Section 1.3.  

As described in Section 1.4, clogging in these systems is characterised by accumulation of 

clog matter on the surface of the bed and a corresponding region of overland flow.  This 
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section will describe how typical design and operational parameters influence the 

development of the surface layer.  Subsequently, the longevities of 465 Severn Trent HSSF 

TWs are statistically analysed in relation to design and operational parameters with the aim 

of identifying trends in asset longevity.   

 

2.4.1. The influence of design and operational parameters 

The nature and distribution of surface layer formation in Severn Trent HSSF TWs can be 

largely attributed to design and operational factors, such as upstream processes, influent 

distributor designs, and wastewater solids loading.  This will be explained with supporting 

photographic evidence.   

Upstream processes for Severn Trent HSSF TWs are typically rotating biological contactors or 

trickling filters (Griffin and Pamplin, 1998).  Figure 2-5 shows large biomass flocs in a 

post-secondary treatment clarification tank, which have been sloughed from an upstream 

rotating biological contactors.  The HSSF TW is directly downstream from the clarification 

tank and receives any solids carryover from the secondary clarifier. 

 

 

Figure 2-5 The secondary clarifier that directly follows a rotating biological contactor 

and precedes a HSSF TW.  Large biomass flocs can be seen that have not 

settled.  Photograph taken at Severn Trent, Moreton Morrell wastewater 

treatment plant, August 2008.  
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The wastewater is continuously fed through surface-based inlet distributors that span the 

width of the bed.  Distributor designs vary and include pipes with multiple risers and troughs 

with numerous distribution weirs.  These are highly prone to clogging with solids from 

upstream processes, as shown in Figure 2-6.   

The nature of wastewater loading onto these systems results in preferential clogging at the 

inlet, within the upper layers of gravel and on the surface.  The photographic example in 

Figure 2-7 illustrates the typical horizontal gradient of sludge layer thickness observed on 

the surface of the beds, where the depth of accumulation at the inlet is greater than at the 

outlet.  Transverse gradients in surface layer accumulations are also common at the inlet 

region due to uneven width distribution.  Such phenomenon was reported by Horton (2003) 

in a survey of several Severn Trent HSSF TWs.  Overland flow results across the surface layer 

unto the point where the cumulative infiltration through the surface layer equals the 

hydraulic loading rate. 

Analysis of data collected by Wilson (2007) from 21 Severn Trent HSSF TWs indicates that 

the relationship between sludge layer thickness at the inlet and cumulative solids load to the 

bed is approximately linear (Figure 2-8).  By this relationship (R2 fit of 0.78), for every 

kilogram of solids loaded per m2 of system footprint, the sludge layer at the inlet increases 

by 16 mm.  However, without knowing the solids density and sludge porosity it is not 

possible to estimate the mineralisation rate of the sludge layer.  Figure 2-9 is a photograph 

of a core of clog matter that was extracted from the top layers of an eight-year-old HSSF TW.  

Three distinct layers are visible: a) a layer of clog matter that has accumulated above the 

surface of the gravel and is a composite of wastewater solids and patchy masses of leaf litter 

in various stages of decomposition; b) the top layer of gravel particles that are held together 

by clog matter; and c) a transition layer between the upper layers of clogged cohesive gravel 

and unclogged non-cohesive gravel at lower depths.  Overland flow has prevented the clog 

matter from adequately mineralizing.  The nature of clog matter formation illustrated by 

Figure 2-9 is similar to that described by Tanner et al. (1998) whom identified that clog 

matter in a dairy wastewater HSSF TWs formed as a 50 mm-deep sludge layer on the surface 

of the bed and clogging in the top 100 mm of media.   
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Figure 2-6 Surface influent distributors in Severn Trent HSSF TWs, all showing the effects of accumulated clog matter: (A) vertical riser pipe blocked 

with solids (Photo taken at Moreton Morrell wastewater treatment plant, March 2009), (B) horizontal pipe partially submersed in clog 

matter (Photo by J. Nivala at Fenny Compton wastewater treatment plant, March 2009), (C) V-notch trough showing accumulation of solids 

(Photo by C. Murphy at Gaydon wastewater treatment plant, March 2009).   
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Figure 2-7 A horizontal gradient of solids accumulation is observed in surface-loaded 

HSSF treatment wetlands. These cores were extracted from an eight-year-

old Severn Trent HSSF TW at longitudinal points (a) 2 m and (b) 8 m from the 

inlet.  Photo taken at Rowington wastewater treatment plant, July 2009. 

 

 

Figure 2-8 The relationship between cumulative solids loading and sludge layer 

thickness at the inlet, derived from data for 21 Severn Trent HSSF TWs as 

surveyed by Wilson (2007). 
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Figure 2-9 A core taken from the top layers of an eight-year-old HSSF TW. Three 

distinct layers are visible: (Top) A layer of clog matter that has accumulated 

above the surface of the gravel, (Middle) a top layer of gravel that is held 

together by clog matter, (Bottom) the transition between upper layers of 

clogged cohesive gravel and unclogged non-cohesive gravel at lower depth.  

Photo taken at Severn Trent, Rowington wastewater treatment plant, July 

2009. 

 

2.4.2. The relationship between design, operation and longevity 

The influence of various design and operational parameters on the longevity of Severn Trent 

HSSF TWs will be statistically analysed.  The analysis will consider upstream processes, 

influent distributor design, aspect ratio, specific surface area per unit population, and 

hydraulic loading rate.  The data used for the statistical analysis is kindly provided by ARM 

Ltd., Rugeley, UK, and it has been agreed not to publish the dataset as part of this thesis.  

From a total of 491 Severn Trent tertiary HSSF TWs, there have been 226 refurbishments on 
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showing penetration of 
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175 systems (i.e. some systems have been refurbished multiple times).  The analysis will be 

used to identify characteristics of design and operation that maximise longevity. 

Figure 2-10 uses box-and-whisker plots to demonstrate the distribution of asset lifetime at 

refurbishment versus: a) upstream processes (data available for 85 % of refurbishments); 

and b) influent distributor type (data available for 94 % of refurbishments).  For each box-

and-whisker plot the five horizontal lines proceeding from top to bottom represent the 

sample maximum value, upper quartile, median, lower quartile and minimum value. 

Of those systems for which data was available, the vast majority of refurbishments (88 %) 

were performed on beds that have rotating biological contactors or trickling filters 

upstream.  Respectively, 37% and 48% of systems with rotating biological contactors and 

trickling filters have been refurbished at least once, suggesting that systems with trickling 

filters are more prone to clogging.  Figure 2-10 illustrates that the median longevity of 

refurbished systems is 4 years longer when rotating biological contactors are upstream 

compared with trickling filters (12 years versus 8 years). 

 

 

Figure 2-10 Box-and-Whisker plots showing the age at refurbishment for Severn Trent 

HSSF TWs versus: a) the upstream secondary treatment process (RBC = 

rotating biological contactor and TF = Trickling Filter); and b) influent 

distribution system.  Brackets indicate the number of records for each case.  

For each box-and-whisker plot the five horizontal lines proceeding from top 

to bottom represent the sample maximum value, upper quartile, median, 

lower quartile and minimum value.  

 



  

81 
 

Regarding influent distribution; 70% of all systems with horizontal ports have been 

refurbished, followed by 44% of systems with vertical risers and 29% of systems with 

troughs.  However, according to Figure 2-10 the median asset age at refurbishment is 

highest for systems with risers (13 years) and lowest for systems with troughs (7 years).  This 

apparent paradox regarding the influence of troughs is explained by bias introduced into the 

data by design evolution.  Early designs were mainly fitted with risers, although experience 

with clogging caused an evolution towards use of ports and trough based distributors.  

Newer designs predominantly incorporate troughs, which has coincided with an increased 

awareness over the last decade regarding the need to refurbish.   

The period 1992-1997 witnessed the commission of almost 50% of the current Severn Trent 

tertiary HSSF TW systems, and a period of overlap regarding inclusion of different distributor 

designs.  Using this data as a fairer ground for comparison, 37% of 126 systems with risers, 

65% of 51 systems with ports, and 40% of 53 systems with troughs, have been refurbished.  

This suggests that ports may be the least reliable distributor and troughs are the most robust 

distributor.   

It is speculated that verticals risers are more robust because they are vertically aligned which 

encourages larger solids to settle inside the distributor, thus preventing them from being 

loaded onto the surface of the bed.  During maintenance the accumulated solids in the risers 

are pumped out by sludge tanker.  Troughs may also act like settlement vessels but, rather 

than being removed from the system, the accumulated solids are drained back on to the bed 

during maintenance.  Severn Trent operators prefer troughs over risers because troughs are 

easier to maintain.  Photographic evidence (Figure 2-6) suggests that ports are not effective 

at intercepting solids, perhaps due to their horizontal alignment, which results in more solids 

being discharged onto the gravel media. 

Figure 2-11 illustrates two cumulative distribution plots representing the distribution of 

width-to-length (W:L) ratios for 270 beds that have not been refurbished and 213 beds that 

either have been refurbished or are pending refurbishment.  The W:L ratios for these 483 

systems range from 0.3 : 1 to 5.6 : 1, with the majority of W:L ratios being relatively equally 

distributed between 0.3 : 1 and 3.2 : 1.  The profiles of the two cumulative distribution plots 

are similar suggesting that the ratio of refurbished to non-refurbished beds is relatively 

equal across the spectrum of W:L ratios.  The distribution of beds that have been 

refurbished is slightly more inclined towards lower W:L ratios than beds that have not been 
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refurbished, however, the difference is not considered significant enough to suggest that 

beds with larger W:L ratios are less likely to have been refurbished.    

 

 

Figure 2-11   Cumulative distribution plots showing the distribution of width-to-length 

ratios (W:L) for 270 beds that have not been refurbished, and 213 that 

either have been refurbished or are pending refurbishment. 

 

Figure 2-12 illustrates two cumulative distribution plots representing the distribution of 

specific system footprint (m2/PE) for 206 beds which have not been refurbished and 184 

beds which either have been refurbished or are pending refurbishment.  The specific 

footprints for these 390 systems range from 0.02 m2/PE to 6.2 m2/PE, with the majority of 

footprints being relatively equally distributed between 0.4 m2/PE and 2.2 m2/PE.  The 

profiles of the two cumulative distribution plots are similar suggesting that the ratio of 

refurbished to non-refurbished beds is relatively equal across the spectrum of specific 

footprints.  The distribution of beds that have been refurbished is slightly more inclined 

towards lower specific footprints than beds that have not been refurbished, however, the 

difference is not considered significant enough to suggest that beds with larger specific 

footprints are less likely to have been refurbished.     
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Figure 2-12 Cumulative distribution plots showing the distribution of specific footprints 

(m2/PE) for 206 beds that have not been refurbished, and 184 that either 

have been refurbished or are pending refurbishment. 

 

2.5. Clogging in other common variants of Subsurface Flow Treatment Wetlands 

The previous example demonstrated how the consolidated literature could be used to 

explain the development of clogging in Severn Trent HSSF TWs.  The same principle can be 

applied to explain the system specific development of clogging in three other common 

variants of Subsurface Flow TW.  In this section, a distinction is made between HSSF TWs 

with subsurface influent distribution (Section 2.5.1), VF TWs with sand media (Section 2.5.2) 

and VF TWs with gravel media (Section 2.5.3).  The development of clogging in each type of 

system is discussed with regard to flow configuration, design features, and operational 

parameters; however, data sets for system longevity were not available for statistical 

analysis (as was the case for Severn Trent systems).  Section 2.5.4 discusses the reason why 

some Subsurface Flow TWs appear more susceptible to clogging related problems than 

others.  This is done by comparing data-sets representing the typical wastewater loading 

rates of these systems, as obtained from countries where they are commonplace.  
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2.5.1. Horizontal subsurface flow with subsurface loading 

Systems of this nature are popular in the US, Australia and parts of continental Europe, 

where they are predominantly used for the secondary treatment of domestic wastewater. 

The wastewater is continuously fed directly into the subsurface through slotted pipes that 

are located a few centimetres below the gravel surface (Figure 2-13) (Knowles et al., 2011). 

Design guidelines in Europe recommend gravel sizes of 3-16 mm whilst those in the US have 

suggested inclusion of media as large as 30 mm. Design guidelines relevant to these systems 

can be found in IWA (2000), USEPA (2000), and Wallace and Knight (2006). 

The subsurface loading results in a preferential accumulation of solids in the proximity of the 

influent distributor. The primary-treated wastewaters received at the inlet often create 

anaerobic conditions, as typified by the development of black biological coatings on the 

gravel surface (Bowmer, 1987, Kadlec and Watson, 1993, Suliman et al., 2006a, Wallace and 

Knight, 2006, Vymazal and Kropfelova, 2008). 

In advanced stages of clogging, the loss of conductivity at the inlet forces the flow to surface 

and take an overland flow path until is it is able to sufficiently infiltrate through the surface 

layer and back into the subsurface.  Reports describing clogging of this nature have 

originated from the US (Watson et al., 1990, Kadlec and Watson, 1993, USEPA, 1993, 

Zachritz and Fuller, 1993), Australia (Fisher, 1990), Canada (Chazarenc et al., 2007), Czech 

Republic (Vymazal, 1996) and Poland (Maloszewski et al., 2006). Once flow has surfaced, 

clogging dynamics similar to those described for surface loaded HSSF TWs may develop. 
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Figure 2-13  Clogging profile for a typical HSSF wetland with subsurface influent distribution. Design details are adapted from Vymazal et al. (1998) and 

IWA (2000); clogging profile is adapted from Kadlec and Wallace (2010).  Figure reproduced from Knowles et al. (2011). 
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2.5.2. Vertical flow with sand media 

The original vertical flow systems of Seidel (1976) incorporated sand or soil media, after 

which these systems became popular in countries such as Germany, Austria, and Denmark 

where they are commonly used for the secondary treatment of domestic wastewater. A 

schematic of a typical VF TW with a sand medium is shown in Figure 2-14 (Knowles et al., 

2011).  The most common influent distribution system consists of perforated piping, equally 

distributed to cover the surface area of the bed.  The first layer of media generally consists 

of 8–16 mm gravel to enhance flow percolation throughout the bed. The main treatment 

media is a mixture of sand and fine gravel with an average grain size smaller than 4 mm.  

Below the main treatment layer, a transition layer and a drainage layer of increasingly 

coarser gravels is used to facilitate final effluent collection.  Wastewater dosing is typically 

intermittent as this allows greater oxygen transfer within the wetland bed and promotes 

aerobic degradation processes.  Further details regarding the specification of these systems 

are given in ATV (1998), Brix and Johansen (1999) and ÖNORM-B-2505 (1997). 

The use of sand and soil as opposed to gravel means that these VF TW systems are highly 

prone to clogging if they are operated incorrectly (Cooper and Green, 1995).  For example, 

Winter and Goetz (2003) reported that six from a survey of 21 VF filters in Germany had 

clogged and found that this was mainly linked to overloading of wastewater.  Clogging 

preferentially develops in the top part of the main layer, where the greatest biological 

growth occurs due to contact between the fine medium and organic matter in the influent 

wastewater.  Indeed, Tietz et al. (2007) found, through an average of four different methods, 

that 85% of biofilm mass by dry matter was present in the top 10% of a VF TW filter.  The 

microbial population was mainly heterotrophic due to the aerobic operating conditions of 

the system.  

Clogging can be extremely rapid if the period between doses does not allow sufficient time 

for wastewater percolation (Langergraber et al., 2003), because sealing of the surface by 

wastewater reduces organic matter mineralisation rates (Platzer and Mauch, 1997).  Kayser 

and Kunst (2005) observed that the oxygen content of air in a “healthy” filter consistently 

returned to the atmospheric level of 21% between doses. However, the oxygen content of 

air in a clogged filter was below 5% and was relatively unaffected by dosing cycles. 
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Figure 2-14 Clogging profile for a typical VF treatment wetland with sand media. Design details are adapted from ÖNORM-B-2505 (1997); clogging 

profile is based on information given in Langergraber et al. (2003).  Figure reproduced from Knowles et al. (2011). 
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2.5.3. Vertical flow with gravel media 

The gravel media VF TWs commonly employed in France are used to treat raw, screened 

primary municipal wastewaters, and form the first stage of a multiple cell wetland network. 

A schematic of the French VF treatment wetland system is shown in Figure 2-15 (Knowles et 

al., 2011).  Wastewater is loaded at numerous points over the surface of the bed onto 

concrete splash pads that aid surface distribution. The main filter layer is small gravel with a 

size distribution of 2-8 mm.  This layer is followed by a transition layer and a drainage layer 

with respective gravel sizes of 3-20 mm and 20-40 mm. Further details regarding the design 

of these systems can be found in Iwema et al. (2005). 

The French-type of VF treatment wetlands are designed to accumulate a solids layer on the 

surface of the bed, through which the applied wastewater must percolate (Iwema et al., 

2005, Molle et al., 2005); i.e. they are designed to clog (Kadlec and Wallace, 2010).  

However, the French wetlands are operated in a manner such that the surface layer is 

beneficial to treatment performance without becoming detrimental to hydraulic 

performance (Chazarenc and Merlin, 2005). The wastewater is dosed intermittently, which 

provides time for the surface layer to dewater and mineralise so that hydraulic conductivity 

is maintained. 

It is believed this mode of operation effectively prevents significant ponding, with Chazarenc 

and Merlin (2005) citing this as the reason that several gravel-based VF systems in France of 

ages varying up to eight years showed no signs of clogging. Molle et al. (2005) further 

support the effectiveness of the French design by reporting that only one out of 71 VF 

systems reviewed had ever required intervention due to clogging. Generally, mineralisation 

ratios of 60% have prevented this phenomenon from occurring in other systems (Boutin et 

al., 1997). 
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Figure 2-15 Clogging profile for a typical VF (French-type) treatment wetland with gravel media. These systems are generally designed with several beds 

in series; the first bed in the series (shown) is constructed with larger gravel and retains most of the solids. Design details are adapted from 

Lienard et al. (1998); clogging profile is based on information from Molle et al. (2005).  Figure reproduced from Knowles et al. (2011). 
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2.5.4. Why clogging impacts some systems more than others 

From the literature reviewed thus far it appears that some Subsurface Flow TW variants are 

more prone to problematic clogging than others.  For example, more reports of clogging 

have originated regarding tertiary Severn Trent HSSF TWs than from the primary VF TWs of 

France, although this seems counterintuitive.  This section will compare the typical 

wastewater loading characteristics of the four Subsurface Flow TW variants previously 

discussed, to elucidate why some systems appear more prone to clogging than others.  Prior 

to this, however, discussion will be given to regional differences in the qualification of 

clogging problems and how this may influence how clogging is reported. 

The extent of ponding that qualifies as “undesirable” varies regionally and depends on 

operator expectations and regulatory requirements.  In the US, clogging usually presents 

hydraulic rather than treatment performance issues in HSSF TWs.  This is because US 

regulatory agencies generally prohibit the surface exposure of wastewater to protect public 

health (USEPA, 2002) and therefore HSSF TWs exhibiting even a small degree of surface flow 

will necessitate restorative action (Kadlec and Wallace, 2010).  A much greater degree of 

ponding is often tolerated in Severn Trent (UK) HSSF TWs before the problem is addressed 

(Cooper et al., 2005), as these systems are typically confined from public access.  

Furthermore, it has generally been observed that even those Severn Trent HSSF TWs that 

exhibit advanced symptoms of clogging consistently achieve treatment requirements 

(Rousseau et al., 2005b, Wilson, 2007).  Resultantly, the motivation to intervene in Severn 

Trent HSSF TWs is to prevent surface flow (induced by clogging) from eventually ponding to 

the depth where untreated wastewater can bypass the system through the overflow pipe.   

In German secondary VF TWs the infiltration time for each dose will increase as clogging 

develops, until the wastewater no longer completely infiltrates between doses.  However, it 

is the associated reduction in aerobic treatment conditions, rather than the hydraulic issues, 

which necessitate intervention (Kayser and Kunst, 2005, Langergraber et al., 2003).  French 

primary VF TWs are designed to operate with some degree of ponding between doses, 

which may explain why clogging problems are reported less frequently for these systems. 

Irrespective of the degree to which clogging is tolerated, the typical operation of the 

previously discussed systems will control the speed at which clogging develops, and whether 

clogging becomes a problem that requires intervention.  Figure 2-16 compares datasets of 

influent wastewater characteristics typically applied to the four Subsurface Flow TW 

variants, to highlight the differences in their operation.  The datasets representing each of 
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the four system types are: 1) the Constructed Wetland Association Wetland Database (CWA, 

2006) from which operational records were taken for 71 Severn Trent HSSF Tertiary TWs 

with surface influent distribution; 2) the Water Environment Research Federation Wetland 

Database (WERF, 2006), from which operational records were taken for 24 different US HSSF 

Secondary TWs with subsurface influent distribution; 3) data adapted from Winter and 

Goetz (2003), from which records were taken for 21 different German VF TWs with sand 

media; and 4) data adapted from Boutin et al. (1997), from which operational records were 

taken for 53 different French VF TWs with gravel media.  Over the Period of Operational 

Record (POR) for each system, the average Hydraulic Loading Rate (HLR) in m/d (normalised 

based on system footprint) and average Total Suspended Solids (TSS) loadings in g/m2∙d, 

were taken.  Figure 2-16 compares the distributions of average HLR and TSS values for the 

PORs in each dataset using box-and-whisker plots.   

What is evident from Figure 2-16 is that Severn Trent HSSF TWs receive a combination of 

relatively high HLR and TSS loadings (median HLR = 0.12 m/d and median TSS = 7 g/m2.d) in 

comparison to the other data sets, where either one or both measures are relatively low in 

comparison to the Severn Trent systems.  The US HSSF TWs receive the lowest TSS and HLR 

(median HLR = 0.02 m/d and median TSS = 2 g/m2.d).  The German VF TWs receive a high 

HLR (median = 0.3 m/d) but a relatively low TSS load (median = 3 g/m2.d).  Statistically, the 

French VF TWs receive the highest TSS load (17 g/m2.d) but a comparatively low HLR (0.06 

m/d). 

As discussed in Section 2.3.1, the extent of undesirable surface ponding does not always 

correspond to the extent of accumulation in a system. French primary VF TWs accumulate 

clog matter almost five times faster than secondary HSSF TWs in Spain; however, the low 

HLRs for French systems prevent this from presenting a problem.  In contrast, Severn Trent 

tertiary systems receive a smaller TSS load than French systems but the HLR in Severn Trent 

systems is higher, which makes Severn Trent systems more prone to long-term ponding.  

Tertiary Severn Trent HSSF TWs are sized to be seven times smaller than secondary Severn 

Trent HSSF TWs (0.7 m2/PE versus 5 m2/PE, respectively) (Green and Upton, 1995) but they 

receive the same wastewater flow-rate.  This means that the HLR to the tertiary systems is 

seven times greater than the HLR to the secondary systems.  The combination of hydraulic 

overloading and relatively high solids loading (contributed by failing upstream processes and 

storm solids conveyed by combined sewers) results in ponding in many Severn Trent tertiary 

HSSF TWs. 
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Figure 2-16 Box-and-whisker plots showing the distributions of average HLR and TSS 

loadings over the Period-of-Operational-Record (POR) for different systems.  

System data is obtained from four national treatment wetland databases: 

UK (CWA, 2006); US (WERF, 2006); Germany (data adapted from Winter and 

Goetz (2003)); France (data adapted from Boutin et al. (1997)).  Figure 

reproduced from Knowles et al. (2011). 

 

A similar discussion can be used to explain why clogging problems have been reported from 

Germany more frequently than from France.  The German secondary VF TWs operate at 

lower TSS loads but higher HLR than the French systems.  This increases the likelihood that 

clog matter accumulation in German systems will eventually cause hydraulic problems, 

whereas in French systems the low HLR means that organic solids are able to mineralise well 

enough to preclude clogging in most cases.  This comparison serves as testament to the 

claims of clog-free operation in French VF TWs (Molle et al., 2005) and emphasises the need 

to prescribe design and operational limits for both HLR and wastewater pollutant loading 

rates, to produce Subsurface Flow TWs that are less prone to clogging problems.  
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2.6. Conclusions 

There have been four major findings from this literature review that will be used to inform 

the remainder of this study: 

1. Clog matter is a combination of inorganic and organic solids from wastewater 

treatment processes, and biomass and vegetation contribution from internal wetland 

functions.  The components of clog matter combine as highly-hydrated, low-density 

gelatinous sludge that can occlude pore space and reduce hydraulic conductivity more 

effectively than the individual constituents of the clog matter.  Resultantly, the dry 

mass of clog matter will not necessarily correlate closely with changes in hydraulic 

conductivity.  In the case of Severn Trent HSSF TWs, clog matter is usually a composite 

of wastewater solids and patchy masses of leaf litter in various stages of decomposition 

that forms on the surface of the bed and in the upper gravel layers. 

2. Severn Trent tertiary HSSF TWs clog in a specific manner that can be attributed to the 

way that they are designed and operated.  Secondary HSSF TWs for Severn Trent are 

designed using a guideline footprint of 5 m2/PE whereas tertiary systems have a 

footprint of 0.7 m2/PE on the premise that pollutant loading to tertiary systems will be 

lower than secondary systems.  However, Severn Trent use tertiary HSSF TWs to 

intercept solids carryover from upstream processes that occur during storm events in 

combined (storm water and municipal wastewater) sewer systems.  The combined 

sewers subject Severn Trent HSSF TWs to a combination of high hydraulic loading rate 

and high solids loading rate.  The solids combine with plant detritus to form a surface 

sludge layer, and the high storm flow results in overland flow which covers the surface 

sludge layer and prevents the sludge from mineralising.  The result is that the sludge 

layer thickens in direct proportion to cumulative solids loading at a rate of 

approximately 16 mm for every kilogram of solids loaded per square metre of system.  

There is discussion about incorporating Surface Flow Treatment Wetlands with planted 

rafts as an additional stage between secondary treatment stages and tertiary HSSF 

TWs, as these would intercept sloughed solids before they reach the bed.  Work by 

Gray (2008) showed that this could be a cost-effective strategy where space is 

available.   

3. The typical operation of Severn Trent HSSF TWs was compared with other variants of 

Subsurface Flow TW used internationally, to elucidate the reason why some systems 

appear more prone to clogging than others, and highlight best practices.  It is apparent 
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that the manner in which clogging develops can be attributed to the specific design and 

operation of the system.  Primary and secondary Subsurface Flow TW systems 

elsewhere in the world (France, Germany and the US) typically operate with lower 

hydraulic loading rates and/or solids loading rates than Severn Trent tertiary 

Subsurface Flow TWs.  Lower loading rates provide the conditions for adequate clog 

matter mineralisation such that clogging is less frequently reported from international 

experience.  For example, French primary VF TWs are operated with low HLR such that 

high solids accumulation rates do not cause operational issues, and adequate 

mineralization of surface clog matter can occur between loadings.  Consequently, it 

appears that separate limits must be considered for solids and hydraulic loading rates, 

rather than their combined quotient of wastewater solids concentration, when 

designing Subsurface Flow TWs for robust operation. 

4. By statistically analysing the Severn Trent tertiary HSSF TW system-stock it was possible 

to identify several best practice and operational design guidelines to achieve good 

longevity.  Trough and riser style influent distribution systems appear to be similarly 

robust (37-40 % refurbishment rate); however, the ease of maintenance and superiorly 

uniform width distribution offered by troughs justifies their increased use by Severn 

Trent.  Systems downstream from trickling filters are more likely to have been 

refurbished than those downstream from rotating biological contactors.  Statistical 

evidence suggests that the width-to-length aspect ratio and per capita footprint of a 

system has little influence on whether or not it is likely to have been refurbished. 

Until now design guidelines for Severn Trent HSSF TWs have been unable to produce robust 

operating systems.  Using the knowledge gained from the literature review, this study will 

proceed to address two objectives required to inform new and more robust design 

guidelines.   

 A more refined theory of clogging in HSSF TWs is required to provide a foundation 

upon which to base new design guidelines (Chapter 3). 

 New experimental techniques are required to measure empirical information about 

the form and magnitude of clogging in HSSF TWs so that the theory can be validated 

and calibrated (Chapter 4).   
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3. Theory and models 

This chapter develops upon existing theory underlying the relationship between hydraulics, 

hydrodynamics and clogging in Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs), 

as operated by Severn Trent Water (Severn Trent).  The refined theory will be used to 

improve on the representativeness of existing simple ‘rule-of-thumb’ models that have 

previously been used to inform HSSF TW design, but without requiring the complexity of 

computational models.   

Wetlands are dynamic flow systems with a symbiotic relationship between treatment, 

hydrodynamics, hydraulics and clogging.  This relationship varies depending on system 

conditions and changes over time as the system clogs.  However, comprehension of this 

symbiosis is hindered because theoretical modelling and empirical validation of hydraulics 

and clogging have been relatively neglected.  Existing theoretical descriptions of HSSF TW 

clogging have tended to over-simplify system hydraulics by assuming, for example, that 

clogged hydraulics can be represented by a homogeneous ‘equilibrium’ hydraulic 

conductivity.  These simple design approaches have not been successful at producing 

systems that operated without clogging problems.   

Previous wetland modelling efforts have mainly been focussed upon simulating treatment 

kinetics by relating measurements of treatment performance to measurements of system 

hydrodynamics.  Many authors have been able to calibrate their models to describe the 

performance that they measure; however, a calibrated model that can predict subsequent 

performances still eludes wetland science.  This may be because existing hydrodynamic 

models do not account for the fact that hydrodynamics will change as the system clogs.   

It has become apparent that the most accurate treatment performance models depend on a 

good description of system hydrology (Langergraber, 2008).  The term ‘hydrology’ is used 

here and throughout this chapter to encompass the real hydraulic, hydrodynamic and 

clogging behaviour of the system.  Resultantly, there is motivation to model better the 

hydrological relationship between hydrodynamics, hydraulics and clogging, so that the 

robustness of treatment models and design guidelines can be improved.   

Firstly in this chapter, the fundamental and applied theory of HSSF TW hydrology is explored 

by giving individual consideration to wetland hydraulics, hydrodynamics and clogging.   
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Secondly, the previous work which has been performed to model these aspects is reviewed.  

Subsequently, a novel mathematical derivation is presented that better represents the 

influence of clogging on system hydraulics, and shows how this can be related to system 

hydrodynamics.  The proposed mathematical relationship is calibrated using a simple, novel 

metric, The Clog Factor, which is also defined in this chapter.  The combined theories will 

provide wetland practitioners with simple tools that can be used to predict how hydraulic 

and hydrodynamic conditions in HSSF TWs will vary over time as the system clogs.  The 

theory is derived specifically for Severn Trent HSSF TWs but the approach is applicable for all 

HSSF TWs. 

 

3.1. An Introduction to HSSF TW Hydrology 

Severn Trent HSSF TWs are three-dimensional porous media flow systems that operate at 

atmospheric pressure and flow with an unconfined free-water surface under the influence of 

gravity.  The overall system can be discretised into several hydrological components that are 

detailed in the exploded view presented in Figure 3-1.  These components are: 

 An influent distributor that distributes the wastewater above-surface, across the width 

of the bed at the inlet.  The nature and uniformity of loading depends on the influent 

distributor design (e.g. trough or vertical riser), and differences in levelling, clogging and 

internal pressure losses of the plumbing components. 

 A region of overland flow which infiltrates into the subsurface.  The overland flow will 

extend from the inlet unto the point whereby the cumulative infiltration rate through 

the surface equals the influent flow rate.  In unclogged systems the length of this 

overland flow front may be negligible.  

 An accumulation of clog matter which forms a sludge layer on the surface of the bed.  

The overland flow must infiltrate through any surface layer to reach the subsurface. 

 The subsurface flow wetland basin that constitutes a porous gravel medium, through 

which the wastewater flows for purification. 

 Accumulation of clog matter in the subsurface that reduces the porosity of the gravel. 

 A macrophyte root network that tends to be most dense in the upper region of the 

gravel.  
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 A horizontally flowing subsurface water table that is recharged by vertical infiltration 

through the surface layer, evapotranspiration from the plants (negative recharge) and 

precipitation. 

 An effluent collector that in Severn Trent HSSF TWs is most typically a 6 inch diameter 

PVC slotted agricultural drainage pipe that is laid across the width on the base of the bed 

at the outlet.  The uniformity of collection depends on clogging and internal pressure 

losses within the collector pipe.  The effluent collector terminates at a swivelling elbow, 

which is a set at a height that controls the level of water in the bed at the outlet.  

 

Figure 3-1 also shows how facets such as overland flow, subsurface water table geometry, 

surface clogging and subsurface clogging vary three-dimensionally.  The way these spatial 

relationships develop depends on the interrelationship among hydraulics, hydrodynamics 

and treatment in the system.  The spatial relationship will develop temporally according to 

changes in climatic conditions, hydraulic loading rate (HLR), treatment conditions and in 

response to the development of clogging. 

A simple generalization is that: hydraulics describes the equilibrium volume of water in the 

system that corresponds to boundary and subdomain conditions; hydrodynamics represents 

the dynamic response of flow through the equilibrium volume; and clogging is the link that 

causes hydraulics to alter in response to hydrodynamics, and hydrodynamics to alter in 

response to hydraulics.  For example, treatment leads to clogging in a specific part of the 

system.  The hydraulic conductivity of the clogged gravel is now lower than the hydraulic 

conductivity of adjacent unclogged gravel, and the hydrodynamics of the system change to 

follows the path of least resistance through the unclogged gravel.  Treatment begins to 

occur within the unclogged gravel, which resultantly begins to clog.  This inter-relationship 

between hydraulics, hydrodynamics and clogging can result in the following problems.   

 Excessive short-circuiting leads to insufficient residence time for adequate 

treatment of wastewater in the system. 

 Excessive reduction in hydraulic conductivity can inhibit the ability to convey the 

influent flow rate and will result in hydraulic malfunctions such as system overspill.   

The theory describing hydraulics, clogging and hydrodynamics in HSSF TWs will be 

introduced in the next three subsections, so that the inter-relationship can be elaborated. 



  

98 
 

 

  

Figure 3-1 A schematic of a Severn Trent Water Horizontal Subsurface Flow Treatment 

Wetland with a corresponding exploded view that details major hydrological 

components. 
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3.2. Hydraulics 

Hydraulically, HSSF TWs can be likened to unconfined aquifers with a phreatic water surface 

that is exposed to atmosphere.  The flow of viscous fluid through resistive porous media 

dissipates energy, resulting in a pressure loss in the direction of flow.  In unconfined systems 

this pressure loss is physically balanced by a variation in water depth, referred to as head-

loss, i.e. an equilibrium between kinetic and potential energy (Bear, 1979).   

The exact profile of the water table is governed by the intrinsic relationship between the 

three-dimensional physical properties of the porous media flow system (subdomain 

conditions), and the distribution of flow to the system (boundary conditions).  This idea is 

illustrated in Figure 3-2, which uses a 2D simplification of the HSSF TW in the longitudinal-

vertical x-z plane.  It should be reiterated that variations will also occur in the transverse y 

plane.  For the purposes of derivation, all parameters that are a function of width will be 

interpreted as being width averaged (e.g. m3 becomes m2). 

The major fluxes of water into the system are the influent wastewater flow rate Qin (m2/d) 

and precipitation P (m/d), and the major fluxes out of the system are evapotranspiration ET 

(m/d) and effluent discharge Qout (m2/d).  Generally speaking, P will be a uniform spatial 

load; however, ET may vary depending on spatial variations in plant establishment.  Qin is a 

distributed surface flux that represents overland flow, and that varies over the surface of the 

bed depending on the infiltration rate through the surface layer.  The overland flow will 

extend to a length f (m) from the inlet which depends on the combination of boundary and 

subdomain conditions.  Unlike in some wetland systems, there is zero flux between Severn 

Trent HSSF TWs and the surrounding land because an impermeable plastic lines the inside 

walls of the reactor (Kadlec, 1989).   

The wastewater will have a dynamic viscosity µ (kg/m.s) and a velocity with components u, v 

and w (m/s) in the longitudinal, transverse and vertical directions respectively.  The gravel 

media in the system has intensive physical properties, such as porosity ε (-) and saturation 

θ (-).  The bulk ε and θ of the reactor is the average of varying intensive media properties 

within the reactor.  Generally speaking, the saturation of the wetted reactor volume can be 

taken as 1 whereas un-wetted reactor volume has a saturation of 0.  The porosity of natural 

porous media is typically in the region of 0.35, and media porosity will tend to 0 as clogging 

occurs.  The media will also consist of particles with a distribution of geometrical properties 

such as size and shape.  The tenth-percentile diameter d10 (m) of the medium represents the 
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diameter of sieve-spacing that allows only 10% of the particles to pass through on a mass 

basis.  Similar measures exist for the fiftieth-percentile diameter d50 (m) and 

sixtieth-percentile diameter d60 (m).  The uniformity coefficient Cu (-) is the quotient of d60 

over d10 and is often used to characterise the spread of particle size distributions in a bulk 

sample of gravel. 

 

 

 

Figure 3-2 A 2D simplification of the hydrology shown in Figure 3-1, with nomenclature 

for boundary conditions and subdomain hydraulic properties.  Adapted from 

Kadlec and Knight (1996) and Knowles and Davies (2011). 

 

The resistance against flow imposed by porous media is quantified using a physical property 

that is neither intensive nor extensive, the hydraulic conductivity k (m/d), which depends on 

particle dimensions, ε, and θ.  The varying physical properties of the medium result in a 

heterogeneous hydraulic conductivity profile throughout the reactor.  Dissipation of kinetic 
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energy due to viscous flow through the porous media equates to lateral and longitudinal 

variations in water depth throughout the system h (m).  The minimum water depth in the 

system hout (m) is controlled by the height of the outlet level control device.  The water 

depth at the inlet hin (m) depends on the combination of boundary and subdomain 

conditions.  Integrating h over the length of the bed yields the wetted section, Aw (m2).  

Multiplying AW by the bulk reactor porosity provides the quantity of water in the system.    

 

3.2.1. The relationship between longitudinal flow velocity and water depth 

The relationship between the dissipation of fluid kinetic energy that results from viscous 

flow through porous media and head-loss is described using Equation 3-1, and is based upon 

the following assumptions:  

 Simplification of the Navier-Stokes equations under the assumptions of steady-state, 

incompressible flow with zero pressure head (atmospheric pressure). 

 Applying Bernoulli’s Principle with conditions of constant elevation. 

 The fluid is Newtonian and the relationship between head-loss and the ratio of 

viscous to inertial forces can be described using Reynolds number (Re).  

 Using multiplication factors (as performed by Reynolds) to account for the combined 

resistance to flow created by internal fluid effects and the physical geometry of the 

porous media flow system.   

 The porous media is fully saturated by the fluid. 

 

  

 
    

 

    
 ̅  

 

 
 ̅  Equation 3-1 

 

In Equation 3-1, ki (m2) is the intrinsic permeability of the media under laminar flow 

conditions, A is a geometrical factor related to turbulent energy dissipation, μ (kg/m.s) is the 

dynamic viscosity of the fluid, ρ (kg/m3) is the density of the fluid, g (m/s2) is gravitational 

acceleration and Ū (m/s) is the two dimensional velocity vector.  Reynolds number for an 

ideal homogeneous media composed of spheres with identical diameter d (m) and 

face-centred cubic lattice packing is stated in Equation 3-2: 
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 Equation 3-2 

 

The empirical relationship between ki , A and the geometry of an ideal porous media 

composed of homogeneous spheres has been derived through the combined formulations 

of Kozeny (1927), Blake (1922), Carman (1937), Burke and Plummer (1928) and Ergun (1952): 
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Equation 3-4 

 

 

 
Combining Equation 3-1 with the empirical formulations given in Equation 3-3 and Equation 

3-4 yields the Ergun Equation (Ergun, 1952), which relates the laminar and turbulent 

components of head loss to the size and porosity of the medium and the viscosity of the 

fluid: 
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Equation 3-5 

 

It should be noted that the theoretical derivation of the Ergun Equation relies on the 

assumption that the hydraulic conductivity of an ideal medium is isotropic.  Real media may 

be anisotropic, such that the hydraulic conductivity varies in different flow directions and a 

three-dimensional hydraulic conductivity tensor is required to relate head-loss to flow 

velocity (Ingebritsen et al., 2006).  The relationship described by Equation 3-5 is illustrated 

by Figure 3-3.   The Ergun Equation is a combination of the Kozeny-Carman Equation, which 

assumes that turbulent inertial forces (second term on the right-hand side of Equation 3-5) 

can be neglected when Re is less than 10, and the Burke-Plummer Equation, which assumes 

that laminar viscous forces (first term on the right-hand side of Equation 3-5) can be 

neglected when Re is more than 1,000.   Figure 3-3 illustrates that the Ergun Equation 

provides a good empirical fit to a large range of experimental data that describes the 

relationship between Re and drag force, as Re transitions from laminar to turbulent 

conditions. 
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Figure 3-3 The relationship between porous media Reynolds number and drag force as 

described by the Ergun Equation.  The relationship is compared to a large 

number of experimental results summarised in Ergun (1952).  Graphic 

adapted from Shamy and Zeghal (2007). 

 

Table 3-1 includes 21 operational records detailing the flow-rate and system dimensions for 

various HSSF TWs around the world, as summarised by Knowles et al. (2011).  Based on 

these records, the Re number for each system was calculated and the range of Re is 

between 0.01 and 3.94.  Kadlec and Wallace (2010) explain that the turbulent inertial 

component of head-loss (second term on the right-hand side) can be ignored with minimal 

error when Reynolds numbers in HSSF TWs is below 10.  Under laminar flow conditions 

Equation 3-5 reduces to the Kozeny-Carman equation (Equation 3-6), which states that 

head-loss has first-order linear proportionality to flow velocity.    
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Table 3-1 Length (L), width (W), height (H), flow-rate (Qin), gravel size (d) and computed range of Reynolds Number (Re) for 21 field-scale 

HSSF TWs.  Adapted from Knowles et al. (2011). 

Reference System Name Qin (m3/d) 
L:W:H 

(m) 
d (mm) Re 

Caselles-Osorio et al. (2007) 

Verdú 1 177 30:31:0.5 6 – 12 0.81 - 1.63 

Verdú 2 177 27:16:0.4 6 – 12 1.97 - 3.94 

Alfés 60 32:38:0.5 6 – 12 0.22 - 0.45 

Corbins 218 35:35:0.5 6 – 12 0.89 - 1.77 

Almatret N 25 23:20:0.5 6 – 12 0.18 - 0.36 

Almatret S 27 28:18:0.5 6 – 12 0.21 - 0.43 

Kadlec and Watson (1993) Benton Cell 3 254 333:44:0.8 14 – 23 1.20 - 1.97 

Watson and Choate (2001) 

Jones 0.40 13:3.1:0.5 3 – 6 0.01 - 0.02 

Gray 0.70 12:3:0.5 3 – 6 0.02 - 0.03 

Terrell 0.10 2.7:1.8:0.3 3 – 6 0.01 - 0.01 

Snelling 0.60 4.3:2.4:0.3 3 – 6 0.03 - 0.06 

Fisher (1990) 
Scirpus 20 100:4:0.5 3 – 10 0.36 - 1.19 

Typha 19 100:4:0.5 3 – 10 0.34 - 1.13 

Control 15 100:4:0.5 3 – 10 0.27 - 0.89 

Sanford et al. (1995a) Bed 4 1.40 33:3:0.6 5 0.05 - 0.05 

Drury and Mainzhausen (2000) Cell 1 45 33:33:0.7 6 – 20 0.14 - 0.46 

Cell 2 45 16:28:1.2 6 – 20 0.09 - 0.32 

Pedescoll et al. (2009) Verdú 1 72 30:31:0.6 6 – 12 0.27 - 0.55 

Corbins 72 35:35:0.5 6 – 12 0.29 - 0.59 
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The constants in Equation 3-6 can be combined into a single constant k that represents the 

saturated hydraulic conductivity of the porous media-flow system (Equation 3-8).  This 

enables Equation 3-6 to be rewritten as Darcy’s Law (Darcy, 1856), as shown in Equation 

3-8: 
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 Equation 3-7 

 

     
 

 
 ̅ Equation 3-8 

 

Darcy’s Law governs the relationship between fluid velocity and head-loss over a distance, 

dependent on the specific physical properties of the porous media and the fluid.  The 

negative sign in front of  h indicates that head is lost in the direction of flow.  In HSSF TWs, 

where flow is along the longitudinal ordinate x with velocity u, Darcy’s Law results in a 

decrease of water depth h between the inlet and the outlet.  If the water depth diminishes 

downstream then the flow velocity must increase if continuity is to be observed.  The 

Dupuit-Forchheimer Assumption applies boundary conditions to Darcy’s Law to describe the 

longitudinal profile of water depth in an ideal unconfined porous media flow-system that 

results from the relationship between continuity and head-loss (Equation 3-9);   
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  Equation 3-9 

 

,where hout (m) is the outlet water depth controlled by the outlet level control device.  

Integrating Equation 3-9 with respect to x over the length of the HSSF TW gives the wetted 

section AW (m2) of the HSSF TW (Equation 3-10). 
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3.2.2. Spatial Variations in Hydraulic Conductivity 

The previously presented theory is valid for a HSSF TW containing ideal media with 

homogeneous hydraulic conductivity, however, the typical operation of HSSF TWs results in 

variations in hydraulic conductivity in all three dimensions.  Preferential development of 

clogging near the inlet results in a longitudinal gradient of hydraulic conductivity from inlet 

to outlet.  Uneven influent distribution and effluent collection result in transverse variations 

in clogging.  The preferential accumulation of clog matter on the surface of the bed, and the 

establishment of the root-zone in the upper layers of gravel leads to vertical variations in 

clogging.  Variations in hydraulic conductivity throughout the system will reduce the 

accuracy of Equation 3-9 and Equation 3-10, which are based on the assumption of a 

singular value for hydraulic conductivity.     

The records included in Table 3-1 are for systems that were the subject of previous research 

into longitudinal variations in hydraulic conductivity.  Table 3-2 provides the measured 

values of inlet and outlet hydraulic conductivities for these 21 studies, as obtained using the 

methods described in Chapter 4.  As evident from Table 3-2, measured values of hydraulic 

conductivity in HSSF TWs vary considerably depending on media size and longitudinal 

position.  The lowest value of hydraulic conductivity included in Table 3-2 is 1 m/d and was 

recorded after 36 months of operation at the inlet of a Spanish secondary treatment HSSF 

TW with 6-12 mm gravel.  The highest value of hydraulic conductivity included in Table 3-2 is 

27,500 m/d and was recorded after 41 months of operation at a US secondary treatment 

HSSF TW with 14-23 mm gravel.  The results presented in Table 3-2 generally suggest that 

systems with larger gravel sizes have higher hydraulic conductivities than systems with 

smaller gravel sizes, and values at the inlet are an order of magnitude lower than values at 

the outlet.   

The results provided in Table 3-2 emphasise that the assumption of homogeneous hydraulic 

conductivity in the longitudinal direction is invalid, however, the results are depth 

aggregated and do not illustrate vertical variations in hydraulic conductivity (no method 

exists to measure vertical variations of hydraulic conductivity within HSSF TWs - see Chapter 

4).  Vertical variations in hydraulic conductivity will influence the longitudinal profile of 

water depth at different flow-rates.  Figure 3-4 illustrates this principle using a vertical 

column of gravel media with decreasing hydraulic conductivity from base to surface.  

Different equilibrium water depths exist that depend on the flow-rate and the hydraulic 

conductivity of the corresponding wetted column depth.   
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Table 3-2 Reported values for media hydraulic conductivities in the inlet and outlet regions of 21 field-scale HSSF TWs. Information is also 

included regarding the age of the system at the time of study and the method used to measure hydraulic conductivity.  Adapted 

from Knowles et al. (2011). 

Reference System Name Treatment Type 

Age at time of 

study 

(months) 

Inlet 

Conductivity 

(m/d)* 

Outlet 

Conductivity 

(m/d)* 

Method of 

measurement 

Caselles-Osorio et al. (2007) 

Verdú 1 Secondary 48 2 12 Falling head 

Verdú 2 Tertiary 48 25 61 Falling head 

Alfés Secondary 48 7 2 Falling head 

Corbins Primary 48 2 200 Falling head 

Almatret N Secondary 36 1 87 Falling head 

Almatret S Secondary 36 1 82 Falling head 

Kadlec and Watson (1993) Benton Cell 3 Secondary 41 2,500 27,500 Survey 

Watson and Choate (2001) 

Jones Secondary 72 1,000 5,400 Survey 

Gray Secondary 72 10,200 8,100 Survey 

Terrell Secondary 72 4,900 4,700 Survey 

Snelling Secondary 72 85 325 Survey 

Fisher (1990) 

Scirpus Secondary 33 1,800 25,000 Survey 

Typha Secondary 33 2,500 25,000 Survey 

Control Secondary 33 2,500 25,000 Survey 

Sanford et al. (1995a) Bed 4 Landfill leachate 26 4,150 3,370 Survey 

Drury and Mainzhausen (2000) 
Cell 1 Acid drainage 30 6 3,500 Survey 

Cell 2 Acid drainage 30 6 3,500 Survey 

Pedescoll et al. (2009) 
Verdú 1 Secondary 177 20 45 Falling head 

Corbins Secondary 218 3 55 Falling head 

* Denotes average value across the width of the bed
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Figure 3-4 A conceptualisation of the relationship between flow-rate Qin, hydraulic 

conductivity k and resulting water depth h.  The diagram depicts a column of 

gravel with hydraulic conductivity that increases from surface to base, and 

black lines that represent the equilibrium water table profiles corresponding 

to multiples of Qin and the hydraulic conductivity of the wetted column. 

 

Figure 3-4 indicates that an increase in flow-rate will cause the water level in the column to 

increase, but the upper strata offers more resistance to flow than the lower layers, such that 

the effective hydraulic conductivity of the column in the longitudinal direction decreases and 

the head-loss across the column increases.  The change in head-loss is not directly 

proportional to the increase in flow and instead the resulting water table profile is a function 

of flow-rate and the effective hydraulic conductivity of the wetted gravel depth. 

 

3.2.3. The Influence of the Surface Layer 

In clogged HSSF TWs a dual hydrological regime exists, whereby overland flow must first 

vertically infiltrate through any clog matter positioned above the water table before it can 

become part of the horizontal water table (Figure 3-5) (Knowles et al., 2010).  Clog matter is 

generally similar to soils with regard to structure and particle size.  It has much lower 

hydraulic conductivity k than gravels and often creates a ‘bottle-neck’ for flow through HSSF 

TWs.  The overland flow extends a distance f across the surface of the bed until it is able to 

completely percolate through to the subsurface.  The infiltration rates are slower near the 

inlet, where surface layer depth and hydraulic resistance to infiltration are greatest, and 
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increase with distance downstream.  The relationship between vertical infiltration through 

the surface layer and longitudinal distance influences the water table profile shown in Figure 

3-5, and the fraction of flow that longitudinally short-circuits downstream of the inlet. 

   

 

Figure 3-5 A depiction of the dual hydrological regime that can be attributed to 

infiltrating overland flow through the low hydraulic conductivity surface 

layer, providing distributed variable recharge to the phreatic subsurface 

water table.   

 

The description of head-loss through the surface layer varies from the description of head-

loss through the gravel because the assumption that pressure-head ψ (m) is zero is not valid 

for porous materials with small pore diameters.  The influence of liquid surface tension on 

matrix potential is inversely proportional to pore-diameter (Ingebritsen et al., 2006).  Matrix 

potential provides an additional resistance to flow through porous media, alongside the 

dynamic viscous and inertial effects discussed previously.  Macro-porous structures such as 

gravels have negligible matrix potential; however, matrix potential can have a notable 

influence on flow through small-diameter porous media such as the surface layer.   

Darcy’s Law (Equation 3-8) can be rewritten in a form that describes the head-loss through 

the surface layer and accounts for the influence of pressure head on flow (Ingebritsen et al., 

2006) (Equation 3-13). 
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 Equation 3-11 

 

      Equation 3-12 

 

  
 

   
( 
  
   

  )  
 

 
   Equation 3-13 

 

, where z is the vertical ordinate, D (m) is the fluid elevation in reference to a vertical datum, 

wr (m/d) is the vertical infiltration rate, and PM (J/m3) is the pressure associated with matrix 

potential.   Other components of water potential that contribute to pressure head include 

solute potential, mechanically applied pressure (pumping), and potential derived from 

humidity effects.  However, consideration of pressure head by this study will be limited to 

matrix potential in clog matter.  

If flow is free to extend longitudinally until it has completely infiltrated through the surface 

layer, then it can be assumed that the ponded water depth is small in comparison to the 

depth of the surface layer.  It is assumed that once the surface layer is well saturated and 

infiltration rates through the surface layer reach steady state, that the entire surface layer 

depth is wetted and that the height of the capillary fringe at the end of the wetted front is 

negligible.  According to the Green-Ampt equation for infiltration, under these conditions 

the vertical infiltration rate through the surface layer becomes the hydraulic conductivity of 

the surface layer (Bouwer, 2002) (Equation 3-14).  

 

     Equation 3-14 

 

Media saturation also influences hydraulic conductivity through clog matter.  Pores that are 

variably saturated provide less pore space for flow and the variably saturated hydraulic 

conductivity of the media is some fraction of the saturated hydraulic conductivity k. The 

hydraulic conductivity of the media will tend to k as the media saturates, however, the 

ability of the media to saturate is inversely proportional to pore diameter (Brooks and Corey, 
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1964).  Micro-porous media such as clog matter will saturate less easily than macro-porous 

media such as gravel.  However, as stated above, it is assumed for modelling purposes that 

the hydrology of the system has reached steady-state and is saturated.  No further 

consideration is given to variably saturated hydraulic conductivity by this study. 

 

3.3. Clogging 

Clogging in HSSF TWs occurs when the porosity of the clean gravel media ε is reduced by 

clog matter with a specific volume φ.  The porosity of the clogged gravel media εφ is 

calculated from Equation 3-15. 

 

       Equation 3-15 

  

Chapter 2 explains that clog matter is composed of organic and inorganic solids that 

accumulate through physical, chemical and biological mechanisms:     

1. Physical filtration and retention of solids suspended in the flow 

2. Biological assimilation of wastewater constituents into biofilms and plant roots 

3. Chemical accumulation through precipitation and sorption of constituents 

 

As such, the specific deposit can be considered to be formed of three constituent parts: 

physical φS, biological φB and chemical φC (Equation 3-16). 

 

           Equation 3-16 

 

It is assumed that the majority of clogging in Severn Trent HSSF TWs is caused by physical 

clogging and biological clogging, and the influence of clogging by chemical absorption and 

precipitation can be neglected.   
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3.3.1. Physical Deposition 

The ability of filter media to accumulate a specific deposit by filtering suspended solids from 

flow can be described using the filter coefficient β (1/m).  The filter coefficient lends itself to 

macroscopic or phenomenological derivations i.e. when variations in clogging at the pore 

scale can be neglected and the specific deposit per unit collector is sufficient to describe the 

clogging process. 

Iwasaki (1937) suggested that the change in specific deposit over time can be related to the 

flux of solids through the media and the filter coefficient according to Equation 3-17, 

Equation 3-18 and Equation 3-19. 

 

   
  

      
  
  

 Equation 3-17 

   
  

   
  

  

   
  

 Equation 3-18 

 

  

   
  

    Equation 3-19 

 

, where u (m/s) is the effective velocity through the media, cs (mg/L) is the concentration of 

solids in the wastewater,    is the clogged porosity and    is the density of the wastewater 

solids (kg/m3).  Parameter values for β specifically apply to the properties of the system 

under which they were derived.  As the filter clogs the geometrical and ionic properties of 

the system will change such that the filter coefficient is a function of the deposit.  Numerous 

functions have been published for the evolution of the filter coefficient based on the specific 

relationship between wastewater and media geometrical and ionic properties.  It is assumed 

that clogging accelerates as the deposit accumulates in HSSF TWs, and a formulation 

presented by Cui et al. (2008) will be used to describe the maturation of the filter coefficient 

(Equation 3-20), where βc (1/m) represents the initial filter coefficient and ϖ is an empirical 

parameter that describes the significance of the specific deposit on the filter coefficient.    

 

        ( 
 

  
) Equation 3-20 
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3.3.2. Biological Deposition 

Accumulation by biological matter is a balance between rates of attachment, growth and 

detachment.  Attachment can be described using similar principles as those that describe 

accumulation of suspended solids.  Detachment may occur due to cell lysis or as a function 

of shear stress and transport.  Descriptions of attachment and detachment will not be 

considered by this study and it is assumed that all biomass deposition is due to growth   ̇  

(mg/L.d).  Growth will occur due to substrate utilization, which depends on the 

concentration of substrate in the wastewater according to Monod type kinetics 

(Langergraber et al., 2009, Llorens et al., 2011a) (Equation 3-21);  

 

  ̇      (
 

    
)  Equation 3-21 

 

, where X (mg/L) is the biomass concentration, S (mg/L) is the substrate concentration, KS 

(mg/L) is the half saturation constant, and μMAX (1/d) is the growth rate coefficient.  The 

substrate consumption rate  ̇ (mg/L.d) can be related to   ̇ by the biomass yield coefficient 

Y (-) (Equation 3-22). 

 

  ̇      ̇ Equation 3-22 

 

The change in substrate concentration over the length of the bed can be related to the 

spatial concentrations of biomass and substrate though the following non-linear partial 

differential equation (Llorens et al., 2011b) (Equation 3-23): 

 

  

  
 
  ̇
    

  Equation 3-23 

 

, where the values of X, S and u vary along the length of the bed.  The biological deposit 

volume    can be calculated from Equation 3-24 if the density of the biomass    (kg/m3) 

and clogged porosity of the media    are known. 

 

   
   

  
 Equation 3-24 
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3.3.3. Influence of Clog Matter Deposition on Hydraulic Conductivity 

The clean hydraulic conductivity k (m/d) of bulk gravel will decrease as clog matter 

accumulates in the pores spaces between gravel particles.  The clogged hydraulic 

conductivity kφ is a function of the clogged porosity   .  If the clog matter accumulations are 

simplified to mono-disperse emulsion layers on the surface of the gravel particles then the 

reduction in porosity leads to an increase in effective particle diameter dφ (m).  If the bed 

volume stays the same and the gravel is composed of ideal media then it can be shown that 

(Equation 3-25): 

 

    (
(    )

   
)

 
 

 Equation 3-25 

 

With ideal media it is possible to rewrite Equation 3-25 using a ratio of Kozeny-Carmen 

equations (Equation 3-7) based on clean media with diameter d and clogged media with 

diameter dφ (Equation 3-26): 

 

  

 
 (

 

  
)

 

 
  (    )

 

  
 (   ) 

 Equation 3-26 

 

Substituting Equation 3-25 and Equation 3-15 into Equation 3-26 and rearranging allows an 

expression for clogged hydraulic conductivity to be written in terms of clean media 

properties and the specific deposit φ (Zamani and Maini, 2009). 

 

    (  
 

   
)

 
 
(  

 

 
)
  

 Equation 3-27 

 

 

It should be emphasised that the above expressions are based on geometrical relationships 

for one spherical collector particle.  A more precise solution would require correction factors 
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for gravel inhomogeneity, clog matter that forms as aggregates and dendrites with random 

structure, and the convergence of films at contact points between particles for different 

lattice packing arrangements (Cooke and Rowe, 1999).  However, analytical expressions to 

accurately describe these realities are generally intractable and resultantly there have been 

numerous semi-empirical relationships published similar to Equation 3-27 (Zamani and 

Maini, 2009, Thullner, 2010, Ives and Pienvichitr, 1965), which take the general form 

presented in Equation 3-28. 

 

    (  
   

   
)
 

(  
 

 
)
 

 Equation 3-28 

 

, where B, C and D are empirical parameters to be derived.   

As the pore becomes fully occluded with clog matter the value of kφ tends towards the 

hydraulic conductivity of the clog matter. Clog matter has a highly hydrated micro-porous 

structure with small effective particle diameters and hydrophilic matric potential induced by 

the biological organisms.  Resultantly the hydraulic conductivity of the clog matter is typically 

orders of magnitude smaller than the value of k.  It can therefore be approximated that the 

hydraulic conductivity of the gravel tends towards 0 as clog matter accumulates.   

 

3.4. Hydrodynamics 

The amount of time that wastewater is theoretically resident in the reactor τT (d) is given by 

Equation 3-29, which accounts for the fraction of the wetted section available for flow. 

 

 

   
  
   

   Equation 3-29 

 
 
For a HSSF TW that hydrodynamically behaves as an ideal Plug Flow Reactor (PFR), zero 

mixing occurs and all flow will remain in the reactor for τT.  However, deviations from PFR 

conditions occur due to mixing within the HSSF TW.  An infinite amount of mixing 

(instantaneous distribution of the solute throughout the reactor volume) is represented by 
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the theoretical hydrodynamic behaviour of a Continually Stirred Tank Reactor (CSTR).    The 

result of mixing is a distribution of residence times (RTD) about τT, for any parcel of water 

introduced at the inlet (Kadlec and Knight, 1996).  In both situations the mean hydraulic 

residence time τ (d) (defined as the time elapsed between injection and passage of 50% of 

the injected flow out of the reactor) is equal to τT.   The RTD associated with ideal PFR and 

CSTR conditions is illustrated in Figure 3-7. 

 

   

Figure 3-6 Theoretical Residence Time Distribution around the theoretical residence 

time (τT) of a packet of solute introduced into a Plug Flow Reactor (PFR) and 

a Continually Stirred Tank Reactor (CSTR). 

 

Mixing inside a HSSF TW is between the hydrodynamic extremes of the PFR and CSTR.  The 

Dispersion Coefficient D (m2/s) represents the magnitude of solute mixing about a point, 

caused by the combined effects of molecular diffusion, turbulent diffusion, and shear 

dispersion.  Table 3-3 summarises the relative magnitude of each of these components in a 

fluid-flow system, and emphasises that differential advection has an impact on mixing four 

orders of magnitude larger than turbulent diffusion and 12 orders of magnitude larger than 

molecular diffusion.  In a flowing fluid, the influence of mixing due to molecular diffusion can 

be neglected.  
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Table 3-3 The magnitude of various solute dispersion processes in fluid flow systems 

Process Cause 
Magnitude of Dispersion 

Coefficient (m2/s) 

Molecular Diffusion 
Random Brownian motion at 

the molecular scale 
   (     ) 

Turbulent Diffusion 

Increased mixing between 

streamlines caused by 

turbulent flow 

   (    ) 

Shear Dispersion 

The effect of differential 

advection imposed on a 

flowing fluid by the system 

   (   ) 

 

Short-circuiting reduces the fraction of the porous volume that is involved in flow and causes 

the mean hydraulic residence time τ to occur before τT.  The volumetric efficiency ev (-) 

defines the fraction of the reactor volume that is actively involved in flow (Equation 3-30).   

   
 

  
 Equation 3-30 

 
It should be noted that τ will not necessarily correspond to the hydraulic residence time at 

which peak packet concentration is detected in the effluent τp.  Short-circuiting occurs in the 

longitudinal flow direction because of transverse or vertical variations in the following 

factors: 

 Uneven influent distribution 

 Downward flow induced by the usual position of the outlet pipe along the bottom of 

the bed  

 Overland flow across the surface of the bed 

 Short-circuiting along areas of low hydraulic resistance, such as macro-pores created 

by gravel separation and tubular plant roots 

 Short-circuiting around areas of high hydraulic resistance created by clogging, and 

plant establishment in the upper regions of the gravel bed 

 Vertical density gradients between wastewater and rainwater that infiltrates 

through the surface of the system. 
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Table 3-4 summarises the work of authors who have monitored the propagation of tracer at 

internal points inside the system and observed vertical short-circuiting of tracer. The 

summary indicates the factor that was believed to be causing vertical short-circuiting and 

the measured volumetric efficiency, as derived from the tracer RTD.  Volumetric efficiencies 

ranged between 22 % and 94 % for the ten systems studied, which emphasises the impact 

that vertical short-circuiting can have on hydrodynamic performance. 

The real hydraulic behaviour of HSSF TWs exhibits aspects of mixing and short-circuiting.  

Figure 3-7 illustrates a typical hydraulic residence time distribution (RTD) for a packet of flow 

emerging from a HSSF TW in Italy.  This was obtained by adding a pulse of lithium tracer at 

the inlet and monitoring its emergence at the outlet.  There are several features of the real 

RTD that stand out: 

 Dye is detected at the outlet long before T 

 The peak concentration precedes T 

 The τ for the RTD is premature in comparison to T 

 Multiple peaks exist on the dye breakthrough curve 

 Dye is detected exiting the system long after T  

 The dye concentration eventually decays exponentially to zero (referred to as the 

tail of the RTD). 

 

 

Figure 3-7 The Residence Time Distribution (RTD) for a lithium tracer experiment 

performed on a HSSF TW at Sieci, Italy.  The HRT at peak concentration P, 

mean HRT  and theoretical HRT T are given.  If the HSSF TW behaved as an 

ideal Plug Flow Reactor then the RTD would be a single pulse at T, which 

corresponds to the total amount of tracer injected (2.8 g).  Data adapted 

from information presented in Marsili-Libelli and Checchi (2005). 
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Table 3-4 Results from 9 tracer studies into the effects of clogging in various HSSF TWs. Details include the system design, hydraulic 

operation, tracer selection and observed volumetric efficiency ev.  Authors observed vertical short circuiting which they attributed 

to the various factors; including vegetation (V), system design (S), precipitation effects (P) and tracer density differences (D).  

Reproduced from Nivala et al. (2012). 

Reference System Name Treatment 
Type 

Hydraulic 
Loading 

Rate 
(mm/d) 

Dimensions 
L:W:H 

(m) 

Age at 
time of 
study 

(months) 

Tracer V S P D ev 

Batchelor and 
Loots (1997) 

Pilot Scale Secondary 360 9.3:4.2:1.1 120 Sodium Chloride  X   77 % 

Pilgrim et al. 
(1992), Waters et 

al. (1993) 
Unit 2 Tertiary 96 25:25:0.5 18 Rhodamine WT X   X 75 % 

Sanford et al. 
(1995b) 

Bed 4 
Landfill 

leachate 
14 33:3:0.6 26 Fresh water  X X  22 – 49 % 

Fisher (1990) Scirpus Secondary 50 100:4:0.5 33 Fluorescein X    89 % 

Rash and Liehr 
(1999) 

SSF vegetated 
Landfill 

leachate 
25 14.8:4.0:0.61 24 Lithium Chloride X  X X 28 – 43 % 

Breen and Chick 
(1995) 

HSSF Tertiary 43 50:2:0.5 24 
Erichrome 
acid red 

X     

Bowmer (1987) Planted Tertiary 112 50:2:0.5 3 
Erichrome 

acid red, Bromide 
X    87 % 

García et al. (2003) 

Pilot C1 
(coarse media) 

Secondary 37 10.5:5.2:0.55 17 
Potassium 
Bromide 

   X 89 % 

Pilot C2 
(fine media) 

Secondary 37 10.5:5.2:0.55 17 
Potassium 
Bromide 

   X 94 % 

Grismer et al. 
(2001) 

Old tank 
Secondary 

Winery 
34 6.1:2.4:0.95 36 

Potassium 
Bromide 

 X   70 % 
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3.4.1. Physical description of mixing and short-circuiting 

The transport of wastewater constituents in the flow of wastewater is fundamentally 

described using the advection-dispersion equation (ADE) (Equation 3-31).  

 

  

  
  ̅         Equation 3-31 

 

, where D (m2/s) is the isotropic Dispersion Coefficient that assumes dispersion along the 

directions orthogonal and perpendicular to flow are similar, c (mg/L) represents the 

concentration of constituents in solution at a point in the system and  ̅ (m/s) is the two-

dimensional (2D) velocity vector.  The ADE has no analytical solution, which prevents it from 

being directly used to simulate the hydrodynamics of HSSF TWs and recreate realistic RTDs 

for the system.  This is because the specific boundary and subdomain conditions that 

produce the hydraulic behaviour typical to HSSF TWs cannot be represented using the ADE.  

 
Persson et al. (1999) proposed a parameter, the Hydraulic Efficiency λ (-), which is based on 

the properties of the RTD, to account for the combined effects of mixing and short-circuiting.  

The Hydraulic Efficiency is defined according to Equation 3-32. 

 
       Equation 3-32 

 

, where ev is the volumetric efficiency of the system and eM is the mixing efficiency.  The two 

parameters ev and eM can be derived from the RTD using Equation 3-30 and Equation 3-33, 

respectively. 

   (    
 ) Equation 3-33 

 
, where σθ

2 is the dimensionless variance of the RTD about the mean HRT, τ, and can be 

derived from the real variance of the RTD σ2 accordingly (Kadlec and Wallace, 2010). 

 

  
  

  

  
 Equation 3-34 
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Typical values for HSSF TW volumetric efficiency are summarised in Figure 3-8, which shows 

that from a survey of tracer tests performed on 37 HSSF TWs, 29 underperformed with an 

average volumetric efficiency of 91% (Kadlec and Wallace, 2010).  Evidently, non-ideal flow 

is a common facet of HSSF TW hydraulic performance. 

 

 

Figure 3-8 Frequency Distribution of the Volumetric Efficiency measured in 37 HSSF 

TWs, by comparison of observed and design Hydraulic Residence Times. 

Based on data provided in Kadlec and Wallace (2010).  Reproduced from 

Knowles et al. (2010) 

 

3.5. Modelling the hydrology of HSSF TWs 

Generally speaking, good models are relatively simple to apply without neglecting important 

physical factors.  The previously introduced nomenclature and fundamental theory will be 

used to analyse models of HSSF TW hydrology and their ability to simulate the true 

behaviour of the system.  Firstly, the relationship among spatial variations in hydraulic 

conductivity that arise from clogging, flow-rate, the wetted volume of the reactor and 

resulting hydrodynamics will be discussed.  This will then lead into a review of currently 

available models to describe hydraulics, hydrodynamics and clogging in these systems.  The 

review will identify areas where current models cannot accurately represent the true 

hydrological performance of HSSF TWs and help to identify where simple but robust models 

are needed. 
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3.5.1. Models of HSSF TW Hydraulics 

In pursuit of simple and widely adoptable design guidelines, the hydraulic behaviour of HSSF 

TWs has often been modelled using a single hydraulic conductivity value that represents the 

bulk response of the heterogeneous hydraulic conductivity profile.  This approach is similar 

to common practice in hydrology where the bulk hydraulic response of a heterogeneous 

hydraulic conductivity profile is approximated using the geometrical mean of the dataset 

(Binley et al., 1989).  In the case of HSSF TWs, these guidelines are based on the assumption 

that clogged hydraulic conductivity would eventually reach an equilibrium value determined 

by the balance between plant growth and clog matter accumulation (Cooper et al., 1996).   

Several current design manuals (IWA, 2000, Wallace and Knight, 2006, EC/EWPCA, 1990) 

advocate the use of the equilibrium hydraulic conductivity in a 1D closed-form solution to 

Darcy’s Law, to describe how the water level varies between inlet and outlet as a function of 

flow rate Qin (m2/d) (Equation 3-35). 

 

 ( )       
   
   

(   ) Equation 3-35 

 

, where hout (m) is the outlet water depth, H (m) is the reactor depth in the axial flow 

direction, L (m) is the bed length, and h (m) is the water depth at a distance x (m) 

downstream of the inlet.  In other words, the water level gradient between inlet and outlet 

would be a straight line with gradient        .  In this case the wetted section, Aw (m2) 

would be (Equation 3-36): 

 

             
   
   

   Equation 3-36 

 

To reflect the generally accepted observation that clogging is most severe towards the inlet, 

USEPA (2000) design guidelines propose a ‘dual-zone’ Darcy model that assumes hydraulic 

conductivity in the front third of the bed is an order of magnitude lower than in the back 

two-thirds of the bed.  The resulting water table profile can be described using two 
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equations (Equation 3-37 and Equation 3-38), where k would be the hydraulic conductivity 

of the downstream region: 

 

   
       

 ( )       
   
   

(   ) 
Equation 3-37 

   
        

 ( )            
   
   

(      ) Equation 3-38 

 

The wetted section would therefore become (Equation 3-39): 

 

             
   
   

   Equation 3-39 

 

This is slightly more representative of the situation reported by several authors, whereby the 

hydraulic gradient in the front end of the bed is more pronounced than in the back end 

(Watson and Choate, 2001, Sanford et al., 1995a).  However, Equation 3-36 and Equation 

3-39 are limited because in their formulation they neglect the relationship between 

continuity and the groundwater energy balance described by the Dupuit-Forchheimer 

assumption (Equation 3-9).  If the water depth diminishes downstream then the flow 

velocity must increase if continuity is to be observed.  Figure 3-9 illustrates the water table 

profiles predicted by the Equation 3-36 (Darcy), Equation 3-39 (Dual Zone) and Equation 3-9 

(Dupuit) for a system with hout equal to 0.2 m, L equal to 15 m, and         equal to 360.  

As emphasised by Figure 3-9, Equation 3-36 and Equation 3-39 underestimate AW in 

comparison to Equation 3-9. 

Guideline design values for equivalent hydraulic have been derived from field scale studies; 

by measuring the difference in water depths between inlet and outlet and inferring an 

effective hydraulic conductivity using Equation 3-35.  Table 3-5 lists published guidelines for 

equilibrium hydraulic conductivity values in HSSF TWs.  According to Table 3-5, the 

applicable range of hydraulic conductivities for gravel with a median size of 5 mm could 

range from 86 m/d to 2600 m/d, depending on which guidelines are applied.   
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Figure 3-9 The water table profiles produced by the aforementioned equations for 

Darcy’s Law, Dual Zone Darcy’s Law, and the Dupuit-Forchheimer 

assumption, when k.H/Qin = 360, hout = 0.2 m and L = 15 m. 

 

Table 3-5 Suggested design guidelines applicable to 5-6 mm gravel media, for 

equilibrium hydraulic conductivity at the inlet zone.  Reproduced from 

Knowles et al. (2010).  

Source 
Range of applicable 

media (mm) 

Predicted Hydraulic 

Conductivity (m/d) 

EC/EWPCA (1990) 5-10 86 

TVA (1993) 3-6 2,600 

ÖNORM B 2505(1997) 4-8 518 

IWA (2000) 3 – 16 1,000 

 

The problem with the guideline k values published in Table 3-5 is that they represent a 

generalisation of hydraulic factors that are unique to the system from which they were 

derived, such as three-dimensionally varying hydraulic conductivity profile, overland flow, 

and variations in media size distribution and morphology.  Differences in hydraulic factors 

among these systems mean that a single value representing the bulk hydraulic response of 

one system cannot be accurately applied to describe the bulk hydraulic response of another 

system.  Additionally, the measurements reported in Table 3-2 for 21 field-scale HSSF TWs 

indicate that hydraulic conductivity can increase by several orders of magnitude between 

the inlet and the outlet of the system.  Consequently, it is difficult to derive representative 
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average values of bulk system hydraulic conductivity that can be used to model the 

theoretical hydraulic behaviour of the system.  A single value approximation of a property 

such as hydraulic conductivity, that is neither intensive nor extensive, is not appropriate 

when the value varies by several orders of magnitude over  a small scale (Binley et al., 1989).   

 

3.5.2. Models of HSSF TW Hydrodynamics 

The hydrodynamic behaviour of HSSF TWs is said to be somewhere between that of a Plug 

Flow Reactor (PFR) (whereby dispersion is zero and all flow is resident in the system for the 

design hydraulic residence time) and a Continually Stirred Tank Reactor (CSTR) (whereby 

dispersion is infinite and flow is instantaneously mixed throughout the reactor volume upon 

entering the system).  Numerous hydrodynamic models have been used with varying success 

to try and simulate the true hydrodynamic performance of HSSF TWs.  Many of these are 

summarised in Table 3-6 which includes model variations such as closed form 

approximations to the advection-dispersion equation (ADE), coupling of the ADE with solute 

retardation and storage equations, multiple ADE flow-path models, Finite Element Analysis 

(FEA) solutions to the ADE, empirical data-fits and Tanks-In-Series (TIS) models.   

The TIS model will be used in this study to allow data-fitting to RTDs.  The TIS approach is 

considered state of the art due to the closeness of fit that it reportedly achieves (Kadlec and 

Wallace, 2010).  Several authors have used parallel TIS models with two or more branches to 

improve the accuracy of fit to RTDs and emulate preferential flow-paths in the system 

(Marsili-Libelli and Checchi, 2005, Wang and Jawitz, 2006).  Others have included pure plug-

flow phases in series with TIS modules to recreate the delay often seen between injection 

and detection (Marsili-Libelli and Checchi, 2005, Chazarenc et al., 2003).  A semi-infinite 

stage TW model that simulated dead zone storage was produced by Werner and Kadlec 

(2000).  The model of Werner and Kadlec (2000) is based on Levenspiel’s Model   

(Levenspiel, 1999) and models the TW as 100 TIS, with each element able to exchange solute 

with an independent side-stream CSTRs. 
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Table 3-6 A summary of the various models which have been used to describe the hydrodynamic performance of Subsurface Flow TWs.  The 

table indicates which models are Plug Flow (PF), Plug Flow with Dispersion (PFD), Tanks-in-Series (TIS), Advanced Plug Flow with 

Dispersion (PFD+) and Advanced Tanks-in-Series (TIS+), and also gives a brief description.  Table continued overleaf.  

 

Reference PF PFD TIS PFD+ TIS+ Notes 

King et al. (1997)    X  One PFR followed by three PFDs in parallel 

Chen et al. (1999)  X X   
Determines a number of TIS depending on length, flow-rate and dispersion 
obtained from tracer tests.  Provides a semi-physical ascription for n TIS, and a 
semi-analytical solution to the ADE 

Werner and Kadlec (2000)     X 100 TIS model with coupled equation for solute exchange/storage 

Wynn and Liehr (2001)   X   
 *CSTR, Darcy’s Law and P-ET considerations to calculate water budget.  No RTD 
support 

Grismer et al. (2001) X X X   Compared data-fits for a tracer RTD using all three models 

Mashauri and Kayombo 
(2002) 

X     
Assume plug flow for the purposes of treatment model evaluation – not based on 
an actual RTD.  Extra term for sedimentation 

Martinez and Wise (2003)    X  PFD model with one and two storage zones 

Chazarenc et al. (2003)  X X  X 
Compared data fits for classical PFD and TIS models, and then a modified TIS 
model with parameters for P-ET and a time lag 

García et al. (2004)  XX X   
Two PFD models, open-open and closed-closed boundary conditions  
One TIS model with a delay 

McGechan et al. (2005)  X    
Assume PFD in a simple finite difference model, for purposes of treatment model 
evaluation – not based on an actual RTD.  Plug flow hydraulics. 6 path model 

Mayo and Bigambo (2005) X     
Assume plug flow for the purposes of treatment model evaluation – not based on 
an actual RTD 
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Table 3-6 A summary of the various models which have been used to describe the hydrodynamic performance of Subsurface Flow TWs.  The 

table indicates which models are Plug Flow (PF), Plug Flow with Dispersion (PFD), Tanks-in-Series (TIS), Advanced Plug Flow with 

Dispersion (PFD+) and Advanced Tanks-in-Series (TIS+), and also gives a brief description.  

 

Reference PF PFD TIS PFD+ TIS+ Notes 

Marsili-Libelli and 
Checchi (2005) 

    X One model with 3TIS + a PF phase 
One model with 3*TIS + 1 stage with 2 CSTRs in parallel + PF phase 

Rousseau et al. 
(2005a) 

  X    *CSTR, Darcy’s Law, P-ET and overland flow via Manning’s Equation (where flow backs up, it 
does not infiltrate). No RTD support 

Maloszewski et al. 
(2006) 

 X  X  One model with single PFD plus storage 
One model with three to four PFDs in parallel 

Suliman et al. 
(2006b) 

 X    PFD equations with retardation factor used to fit RTD from lab-scale HSSF TW 

Wang and Jawitz 
(2006) 

 X X X X Compared four modelling techniques, PFD, PFD with storage, one and two path TIS 

García et al. (2007)   X   CSTR network with four stages in series, each stage has two CSTR in parallel, with flow splitter 
and combiner for each stage.     

Freire et al. (2009)     X 3 * CSTR, one of variable volume to simulate flooding, and one as a side storage exchange  
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The TIS model uses principles derived from Chemical Engineering to model the TW as a 

series of CSTRs by using Fourier Transforms.  The RTD from a CSTR can be mathematically 

represented by introducing a differential operator into the conservation of mass equation 

for a reactor, and rearranging the equation into a Transfer Function (Equation 3-40).   

 

    ( )  
   ( )

     
 Equation 3-40 

 

, where cin  (mg/L) is the solute concentration at the inlet, cout (mg/L) is the solute 

concentration at the outlet, τ (d) is the mean Hydraulic Residence Time (HRT) in the reactor, 

and s is operator in the Laplace Transform Function.  By modelling the input concentration 

as a unit impulse of mass Min (kg) with Laplace Transform of 1, Equation 3-40 can be 

rearranged to give Equation 3-41. 

 

    ( )  
   
 
(

 

 
 
   

) Equation 3-41 

 

The inverse Laplace Transform of the Transfer Function yields the theoretical RTD 

formulation for a CSTR, which is an exponential function of time t (d) (Equation 3-42). 

 

    ( )  
   
 
   

  

 
 Equation 3-42 

 

In the same manner, the RTD response of several CSTRs in series can be shown to be 

(Equation 3-43): 

 

    ( )  
    

     

   ( )
   (

    

 
) Equation 3-43 

 

where n is the number of CSTRs in series and  is the gamma distribution of n.  Figure 3-10 

illustrates the shape of the gamma distribution as n tends from 1 to infinity, from which it 

can be deduced that the RTD of a PFR is equivalent to an infinite number of CSTRs in series.  

The value of n that best fits the obtained RTD indicates whether the HSSF TW performance 
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tends more towards a PFR or a CSTR.  According to data from Kadlec and Wallace (2010), 

HSSF TW RTDs can typically be modelled using 10 to 12 TIS.    

 

Figure 3-10 The variation of system response, for gamma probability distribution 

function of a unit impulse over dimensionless time, as the number of tanks-

in-series varies from 1 (CSTR) to infinity (PF). 

 

3.5.3. Models of HSSF TW Clogging 

An early attempt to model clogging in Vertical Flow (VF) TWs assumed that porosity was 

diminished cumulatively by the volume of influent suspended solids loaded into the system 

over time, such that system longevity corresponded to zero porosity (Blazejewski and Murat-

Blazejewska, 1997).  Langergraber et al. (2003) and Zhao et al. (2004) extended the theory 

making it applicable to solids fractions with a biodegradable component.  Hydraulic 

conductivity in the system was calculated according to the Kozeny-Carmen equation.  Kadlec 

and Wallace (2010) summarise that the time to clogging tc (d) calculable using this 

relationship is given by Equation 3-39, where AW (m
2) is the reactor wetted section,  ̇ (kg/d) 

is the influent suspended solids loading rate, ρs (kg/m2) is the density of the wastewater 

solids, ε is the clean porosity of the reactor, and E (-) is an empirical coefficient that 

represents the suspended solids removal efficiency for the system.  

 

          
  
 ̇

 Equation 3-44 
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An alternative approach has been to model the clogging phenomenon using an exponential 

relationship between loss in hydraulic conductivity and the cumulative applied solids load 

(Platzer and Mauch, 1997, Hyánková et al., 2006).  Figure 3-11 illustrates the relationships 

between the hydraulic conductivity kΦ of the wetland and the cumulative applied load since 

system start-up s (kg/m2), for the five aforementioned models of clogging. The relationships 

can be described using the Equation 3-45:  

 

         (    ) Equation 3-45 

 

, where k (m/d) is the initial hydraulic conductivity of the wetland media and J is a parameter 

describing the influence of s on kΦ. The values of k and J reported for each of these studies 

are provided in Table 3-7.  The value of J has a strong dependency on the diameter of the 

media particles.   

 

 

Figure 3-11 The relationship between hydraulic conductivity and cumulative applied 

load for five Subsurface Flow treatment wetlands with different media.  

Data from (a) Hyánková et al. (2006); (b) Langergraber et al. (2003) analysed 

according to Blazejewski and Murat-Blazejewska (1997) (c) Blazejewski and 

Murat-Blazejewska (1997) with data from Bavor and Schulz (1993); (d) 

Platzer and Mauch (1997).  Reproduced from Nivala et al. (2012). 
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Table 3-7 The relationship between hydraulic conductivity k and cumulative applied 

load s for five Subsurface Flow treatment wetlands.  All relationships are 

based on Total Suspended Solids (TSS) loading rate, apart from Platzer and 

Mauch (1997) which is based on Chemical Oxygen Demand (COD).  

Reproduced from Nivala et al. (2012). 

Study Media d10 

(mm) 

Loading 

parameter 

Loading 

rate 

(g/m2.d) 

k 

(m/d) 

J 

 Hyánková et al., (2006) Crushed gravel 4 TSS  25,000 0.0013 

Sand 2 TSS  6,500 0.0056 

 Platzer and Mauch, 

(1997) 

Sand/bentonite 

mixture 

0.1 COD 6-15 1.3 0.0055 

Blazejewski and Murat-

Blazejewska (1997) 

with data from Bavor 

and Schulz (1993) 

Sand 0.3 TSS 70 20.4 0.0071 

Langergraber et 

al.(2003) analysed 

according to 

Blazejewski and Murat-

Blazejewska (1997) 

Sand and 

gravel 

0.13 TSS 45 3.2 0.0012 

 

It must be emphasised that the relationships in Figure 3-11 represent the hydrology of the 

entire system and do not consider spatial variations within the subsurface or clogging due to 

biological or chemical factors.  Consequently the extent of clogging was under-predicted 

when one of these models was applied to a pilot-scale VF TW in Austria (Langergraber et al., 

2003).      

García et al. (2007) adapted a dynamic HSSF TW process dynamics model (Rousseau, 2005) 

so that rules were included for particle transport, and biomass growth was linked to 

substrate utilisation. The model was used to explore the extent to which clogging could be 

mitigated by various physico-chemical pre-treatment options within two pilot-scale HSSF 

TWs, but was not used for comparison with the actual clogging present in those systems. 

Giraldi et al. (2010) developed a 1D FEA model of a VF TW named FITROVERT, which coupled 

analytical expressions for flow, mass-transport of particulate and dissolved matter, and 

clogging by biofilm and particulate matter accumulation.  The coupling between clogging 

and hydraulics was achieved using a modification of Equation 3-27 by O'Melia and Ali 

(1978), which relates the accumulation of clog matter to loss of media porosity.  
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3.5.4. Coupled Models of HSSF TW Hydraulics, Hydrodynamics and Clogging 

Advanced coupled models of HSSF TW hydrology have been used to represent the 

interrelationships between hydraulics, clogging and hydrodynamics.  These models often use 

Finite Element Analysis (FEA) software to represent the non-linear realities of physical 

systems; realities that ordinarily prevent analytical solutions to specific problems from being 

ascertained.  Briefly, FEA involves discretising a system into elemental subdomains and, 

according to the application of stimuli along the boundaries of the system, solving the mass 

and momentum balances over the network of elements.  Through FEA, highly representative 

and flexible models can be achieved, although a certain degree of operator expertise is 

required to achieve meaningful results.  

In terms of HSSF TWs, Grismer et al. (2001), Fan et al. (2008), Ojeda et al. (2008), Toscano et 

al. (2009), Wanko et al. (2009), Knowles and Davies (2011) and Llorens et al. (2011a) have all 

presented FEA models that incorporate spatial descriptions of hydrology.  Langergraber and 

Ŝimůnek (2005) and Giraldi et al. (2010) have presented FEA models of VF TWs hydrology.  

Table 3-8 summarises the nature of these FEA models and indicates whether they 

incorporated descriptions of Darcy’s Law, the Richards Equation, clogging, and solute 

transport; and in how many dimensions the model is applicable.  Most authors solve in 2 

dimensions and incorporate a solute transport module coupled to Darcy’s Law or perhaps a 

closed-form solution to the Richards Equation (Langergraber and Ŝimůnek,    5, van 

Genuchten, 1980).  Richards Equation is a modification of Darcy’s Law that uses a 

transient-state general partial differential equation to describe flow in unsaturated 

non-swelling soils (Bear, 1979). 

Good fit to experimental measurements is generally reported for FEA models; however, 

these models require expertise that extends beyond a good working knowledge of HSSF TWs 

and, therefore, do not lend themselves to the creation of widely useful design guidelines. 
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Table 3-8 A summary of subsurface flow wetland models that have used Finite Element Analysis.  The table details which studies incorporated 

descriptions of Darcy’s Law (DAR), Richards Equation (RIC), Solute Transport via the Advection Dispersion Equation (SOL), Clogging 

(CLO); and in how many dimensions the model was developed.  

Reference DAR RIC SOL CLO DIM Notes 

Grismer et al. (2001) X    2 

Used Hydrus 2D to determine the flow field through the TW.  

Assumed constant hydraulic conductivity and ET surface flux.  

Point source and sink in the top right and bottom left corners 

Langergraber (2003), 

Langergraber and Ŝimůnek (2005) 
 X X  2 

Uses Hydrus 2D for VF TWs.  Considers constant can Genucthen 

parameters in the Richard’s Equation 

Fan et al. (2008) X  X  2 Used Fluent 

Wanko et al. (2009)  X X  2 
Solves for heterogeneous flow fields using mixed hybrid finite 

element methods 

Toscano et al. (2009)  X X  2 Uses Hydrus 2D with HSSF TWs. 

Ojeda et al. (2008) X  X  2 

Based on the flow and heat code CodeBright.  Requires 

definition of initial water and gas pressure for each node, the 

wetland hydraulic conductivity, and water depths at inlet and 

outlet 

Giraldi et al. (2010)  X X X 2 

A VF TW model that considers clogging via the 

phenomenological model of Ives and Pienvichitr (1965) and 

Iwasaki (1937) 

Llorens et al. (2011a), Llorens et 

al. (2011b) 
X  X  2 

A combination of a hydraulic and solute transport model called 

RetrasoCodeBright.  The model also couples HSSF TW process 

dynamics using the terminology set-forth by Constructed 

Wetlands Model 1 (Langergraber et al., 2009) 
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3.6. Novel tools to represent the hydrology of HSSF TWs 

The previous review of existing theory and models suggests that a new design tool is needed 

that more accurately captures the real hydraulic behaviour of HSSF TWs.  The specification 

for the model is as such: 

 It must not rely on complex FEA computational tools to achieve good accuracy. 

 It must be more representative than simpler calculation methods that are available. 

 It must be able to describe how the relationship between clogging and hydraulics 

varies over time. 

With regard to this specification, it is proposed that the model be an algorithm with a closed 

form solution so that it can be solved using only basic calculation tools.  The algorithm will 

incorporate a spatially varying description of hydraulic conductivity and overland flow, and 

relate this to how the water table varies longitudinally.  The relationship will use parameters 

based on the overall state of clogging in the system.  This will allow the water-table 

produced by the relationship to change in response to clogging.  The derivation of this 

relationship is given in Section 3.6.1. 

If the parameters in the relationship are to be based on the overall state of clogging in the 

system, then a single parameter value is required that adequately quantifies the state of 

clogging in the system.  As discussed, a single value approximation of a property that is 

neither intensive nor extensive, such as hydraulic conductivity, is not appropriate when the 

value varies by several orders of magnitude over a relatively small scale.  A single value 

parameter is derived in Section 3.6.2 that is based on an extensive property - the bulk 

porosity lost to clog matter.  The parameter is called The Clog Factor CFT and values will be 

derived from measurements in field-scale HSSF TWs.  Statistical analyses will be used to 

deduce a trend between values of CFT and the hydraulic conductivity profiles from which 

they are derived.  The trend will allow statistically representative two-dimensional hydraulic 

conductivity profiles to be recreated for Severn Trent HSSF TWs at particular values of CFT 

(i.e. at different stages of clogging).  The model will be developed in the two-dimensional 

vertical-longitudinal plane and neglect transverse variations on the premise that 

well-functioning HSSF TWs would not develop transverse variations in flow or clogging.   

To complete calibration of the parameters in the algorithm, an FEA model of a Severn Trent 

HSSF TW will be developed in Section 3.6.3.  The FEA model describes the relationship 

between the 2D hydraulic conductivity profiles produced by the CFT values, the flow-rate Qin, 
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the length of overland flow f, and the water table-profile h(x).  Based on the results, 

algorithms will be produced that describe how the water table profile varies depending on 

the value of CFT.  The model will be coupled to a solute transport module to monitor how 

the hydrodynamic behaviour of the system varies in response to clogging.  The obtained 

RTDs will be fitted to a Tanks-In-Series hydrodynamic model and CFT will be correlated to the 

number of tanks, n.  The overall deliverable will be an algorithm specifically calibrated to 

Severn Trent HSSF TWs that can model how the water table profile in the system changes as 

the Clog Factor varies.   

 

3.6.1. An improved model of HSSF TW hydraulics 

A novel model is now proposed with improved representation of HSSF TW hydraulics.  Some 

simplifications are required to achieve an analytical solution, and therefore the expression 

will be derived for the one dimensional longitudinal plane, similar to models described in 

Section 3.5.  Note that the effects of evapotranspiration and precipitation are neglected, but 

could be incorporated if desired.   

To begin with, it is proposed that the relationship between longitudinal distance and bulk 

media hydraulic conductivity in HSSF TWs can be described using an exponential 

relationship.  This is based on the fact that media clogging in Severn Trent HSSF TWs is 

primarily due to solids filtration, and solids filtration efficacy in linear filters can be described 

using an exponential relationship, according to the phenomenological formulations of Ives 

and Pienvichitr (1965), Einstein (1968) and Iwasaki (1937) (Equation 3-46). 

 

  ( )       
   Equation 3-46 

 

, where k is the clean hydraulic conductivity of the gravel and kΦ(x) is the longitudinally 

varying clogged media hydraulic conductivity.  Physically, a (-) represents the reduction from 

clean media hydraulic conductivity at the inlet of the bed, and b (-) describes the influence of 

clogging downstream of the inlet.   The parameter values a and b will be calibrated to 

reproduce water table profiles observed in practice.   
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Secondly, the bed is divided into two theoretical subzones: an upstream and downstream 

region.  Overland flow applies over the upstream region and extends from the inlet by 

distance f, whereas no distributed fluxes influence the water table in the downstream 

region.  The flow-rate into the upstream region can be described accordingly: 

 

    ∫      
 

 

 Equation 3-47 

 

where wr is the vertical recharge into the water table at some distance from the inlet x.  It is 

assumed that a dual hydrological regime is present, as discussed earlier, such that there are 

two water levels in the system: the overland flow; and a subsurface water table with 

horizontal flow.  According to the Green-Ampt Equation (Equation 3-14) the vertical 

recharge rate through the surface layer is equivalent to the hydraulic conductivity such that: 

 

    ∫           
 

 

 Equation 3-48 

 

and therefore the extent of overland flow would be: 

 

  
 

 
  (

     

    
  ) Equation 3-49 

 

The downstream water table profile is deduced first and is described using a formulation 

similar to the derivation of the Dupuit assumption, such that continuity and energy balance 

are observed, but modified to account for the longitudinal variation in hydraulic 

conductivity.   Neglecting fluxes via precipitation and evapotranspiration, if mass is to be 

conserved then the cross-sectional flow rate at a longitudinal point in the system x must be 

equal to Qin: 
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     ̅( ) ( ) Equation 3-50 

 

, where  ̅ is the depth averaged longitudinal velocity and h is the water depth in the 

subsurface.  Following the derivation of Dupuit, by substituting Darcy’s Law (Equation 3-8) 

into Equation 3-50, but rewriting k using Equation 3-46; and substituting Equation 3-49 into 

Equation 3-50 by rearranging in terms of Qin; it is possible to write the following expression 

(Equation 3-51): 

 

 

 
[       (   )]  

 (  )

  
 Equation 3-51 

 

Integrating Equation 3-51 with respect to x yields the following expression that describes 

the variation of the subsurface water table depth downstream of the overland flow region: 

 

   
   

  ( )   
 

  
[       (   )         (   )]      

  Equation 3-52 

 

The water depth at the subzone transition, hf can be calculated as: 

 

  
  

 

  
[              (   )]      

  Equation 3-53 

 

Next considering the upstream region: by applying the limitless version of Equation 3-48 and 

performing a similar mathematical procedure as for the downstream region it can be shown 

that the flow rate up to a point x can be related to the hydraulic gradient according to: 

 

 

 
[      ]  

 (  )

  
 Equation 3-54 
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, such that the following expression can be derived to describe how the water table profile 

varies up to point f: 

 

   
   

  ( )   
 

  
[           (   )]    

  Equation 3-55 

 

Therefore, an analytical solution for water height at the inlet can be published when a value 

for f is substituted into Equation 3-56, by using Equation 3-49 and parameter values for Qin, 

k, a and b.  The resulting water table profile corresponds to the variable hydraulic 

conductivity field and overland flow region common to Severn Trent HSSF TWs. 

 

    √
 

  
[         ]    

  Equation 3-56 

 

Further integration and addition of Equation 3-52 and Equation 3-55 with respect to x yields 

a closed form solution for AW.  The resulting expression is unwieldy, however, and it is 

advisable to plot the water table profile at numerous x values using spread-sheet tools, and 

thus obtain the integral numerically. 

 

3.6.2. A novel single metric to quantify clogging in HSSF TWs 

A novel metric, the Clog Factor CF, is proposed as a single value parameter that adequately 

represents the hydraulic behaviour of clogged HSSF TWs.  The CF is a novel metric that 

converts hydraulic conductivity, a property that is neither intensive nor extensive, into an 

intensive bulk property that can be representatively averaged for subsequent analysis.  It 

can be used to describe the state of clogging in any porous media flow system but has been 

derived intentionally to explore clogging dynamics in HSSF TWs.  The CF is based on the 

Kozeny-Carman equation:  
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      (   ) 
 Equation 3-57 

 

The Kozeny-Carman equation is applicable to porous media composed of spheres with 

homogeneous diameter.  However, as discussed in Section 2.3.3, gravel particles used in 

HSSF TWs will generally be non-spherical and have a distribution of diameters around the 

sample mean particle diameter d50.  According to Kadlec and Knight (1996), Idelchik and 

Fried (1986) found that the hydraulic conductivity of crushed angular media is one third of 

the hydraulic conductivity of spherical media with equivalent size.  Work by Masch and 

Denny (1966) found that media with a particle size variance of 50 % around d50 has half of 

the hydraulic conductivity of media with homogeneous particle diameter d50.  Kadlec and 

Knight (1996) provide a modification to Equation 3-57 that accounts for the effects of media 

non-ideality, based on media with porosity 0.35 and particle size distribution variance of 

50 % around d50: 

 

  
     

     

      (   )
 Equation 3-58 

 

The clean media hydraulic conductivity predicted by Equation 3-58 is 82 % lower than the 

clean media hydraulic conductivity predicted by Equation 3-57.  The same result can be 

achieved by assuming that porosity in Equation 3-57 is reduced from 0.35 to 0.225.  In other 

words, based on the calculation of Equation 3-57, the effect of particle size distribution and 

particle angularity is to reduce hydraulic conductivity of the ideal sample with known d50 and 

ε to a hydraulic conductivity that corresponds to an effective porosity εΦ of 0.225.  This 

principle is used to derive the Clog Factor CF, which is defined as one less the ratio of 

clogged porosity to initial porosity ε (Equation 3-59), whereby a value of zero (0) indicates 

no clogging and a value of one (1) indicates complete clogging. 

   

     
  
 

 Equation 3-59 

 

Due to non-ideal media characteristics it is not realistic to achieve Clog Factors close to 0.  

Based on Equation 3-59, if non-ideal media has εΦ of 0.225 but actual ε of 0.35 (as in the 
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example above), the sample has a CF of 0.36.  The interpretation of this result is that the 

practical hydraulic conductivity of the media corresponds to a reduction of 36 % of available 

pore volume, as calculated using Equation 3-57.  Any additional increase in the value of CF 

above 0.36 will be due to clogging.  Using this theory, experimentally measured values of 

hydraulic conductivity and the median particle diameter of the clean gravel can be used to 

calculate effective clogged porosities εΦ in Equation 3-57.   

It is important to emphasise that CF is a relative measure of clogging based on the idea that 

d50 is a constant but ε decreases as the media clogs, and the Kozeny-Carman equation can be 

used to indicate how the hydraulic conductivity of the media changes as the porosity is 

reduced.  The limitation of this assumption is that the Kozeny-Carman equation is derived 

for clean media and Equation 3-57 may not be appropriate for describing the relationship 

between hydraulic conductivity and media properties in clogged media.  Practically, clogging 

will change the effective d50 of the media due to biofilm growth on the surface of media 

particles.  However, it has been assumed that the majority of clogging in Severn Trent HSSF 

TWs is due to solids filtration and retention in pore spaces, and therefore, the generalisation 

that clogging can be represented by a change in ε is considered acceptable.  Finally, the CF 

may not represent the practical clogged porosity, as it has been shown that reductions in 

hydraulic conductivity often do not correspond to reductions in porosity, and rather it is the 

form and nature of clogging that are important (Tanner et al., 1998, Caselles-Osorio et al., 

2007, Platzer and Mauch, 1997).  The CF should be considered a relative indication of the 

reduction of free-volume available for flow, as opposed to an accurate measure of porosity 

reduction.   

By measuring CF values at numerous equally spaced points in the system, and taking the 

arithmetic mean, it is possible to approximate a bulk system Clog Factor value CFT that 

indicates the total reduction of reactor volume effectively lost to clogging and media non-

ideality (Equation 3-60).  CFT can be used as a benchmarking tool to compare relative states 

of clogging in different systems. 

 

    
 

 
∑  

 

   

 Equation 3-60 

 

To summarise, the advantages of CF are: 
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 Intensive bulk property that can be applied to any scale of porous media flow 

system 

 Non-dimensionalises data so that comparisons can be performed between systems 

with different dimensions and media sizes 

 Highlights deviations from theoretical clean conductivity due to both clogging and 

media non-ideality 

 Allows reasonable statistical comparisons where orders of magnitude changes in 

hydraulic conductivity would skew a data set 

 Allows single-parameter values to be published to indicate the health of bed at a 

point in time 

 

Conversion of hydraulic conductivity data to Clog Factors and subsequent analysis via 

Analysis of Variance (ANOVA) will allow a more robust insight into the hydraulics of HSSF 

TWs.  The ANOVA test compares means and distributions of data sets to see whether a 

significant difference (at the 95% confidence level) exists between data sets. Furthermore, 

the ANOVA test disaggregates the variance in a dataset into the relative contributions from 

different factor, such that the influence of each factor on the data can be delineated.  The 

factors to be investigated include CFT, transverse position, longitudinal position and vertical 

position.  This will allow longitudinal and vertical variations in CF to be related to bulk system 

CFT, such that the relationship can be used to recreate statistically representative 

two-dimensional hydraulic conductivity profiles of HSSF TWs that correspond to a particular 

value of CFT (i.e. at a particular stage of clogging). 

 

3.6.3. A Finite Element Analysis Model of HSSF TW Hydrology 

Modelling is achieved using COMSOL Multiphysics 3.5 FEA software (COMSOL A.B., Sweden) 

by coupling several different physical sub-models.  The hydraulic model is represented in 

Figure 3-12 and depicts two subdomains and eight boundaries numbered according to the 

bold font.  A full list of the boundary conditions is given in Table 3-9 and the sources of 

modelling parameters are disclosed in Table 3-10.  The upper subdomain represents vertical 

saturated flow through the surface layer up to a distance f from the inlet and is governed by 

Darcy’s Law.  It is assumed that the surface layer accumulates to a depth of  .  m above the 

0.6 m depth of gravel in the system.  It is assumed that the upper subdomain is unsaturated 

between f and the outlet.  The lower subdomain represents the horizontal saturated flow 
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through the subsurface and is governed by Darcy’s Law.  It is assumed that the lower 

subdomain is unsaturated above the water table height.    

The minimum depth of water in the system corresponds to the outlet height hout and flux is 

only permitted through boundary 7.  Wastewater is applied on boundary 3 over a region 

that extends from the inlet to a distance representative of the ponding length f.  The 

infiltration rate through the upper sub-domain is dependent on the hydraulic conductivity of 

the upper sub-domain, as described by the Green-Ampt Equation (Equation 3-14).  It is 

assumed that the longitudinal profile of outward flux from boundary 4 is identical to the 

longitudinal profile of inward flux into boundary 5.  The pressure head is specified as 0 along 

boundary 4 and boundary 5.  This creates vertical flow between boundary 3 and 4, through 

the region bounded by f, and allows the shape of boundary 3, 4 and 5 to change in order to 

find an equilibrium geometry that satisfies boundary conditions and subdomain conditions.  

This is achieved using an additional ‘moving-mesh’ model available in COMSOL  .5, which 

allows mesh movement depending on certain physical criteria.   Conditions exist to allow the 

height of boundary 5 to exceed the height of boundary 4, at which point the two hydraulic 

subdomains become one horizontally flowing subsurface water table.  The height of 

boundary 5 can only exceed the height of boundary 3 when f is equal to L.  An iterative 

solver is used to find the length of f that produces the flow-rate Qin through the system.   

 

Figure 3-12 A schematic of the FEA model of a Severn Trent HSSF TW, detailing the 

boundary and subdomain conditions of the hydraulic modules.  Adapted 

from Knowles and Davies (2011). 
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The hydrodynamic response to the hydraulic model is found using a reactive transport 

model that links the volumetric concentration of wastewater constituents with velocity using 

the advection-dispersion equation.  The reactive transport model applies over both sub-

domains.  The boundary conditions for the reactive transport model specify the volumetric 

concentration of solids in the influent wastewater cin across the ponding length f, and 

assume an advective flux condition exists at boundary 3 and boundary 7.  It is assumed that 

the longitudinal inward flux profile to boundary 5 is identical to the longitudinal outward flux 

profile from boundary 4.  All other boundaries have a zero-flux condition.   

 
Table 3-9 A full list of boundary conditions prescribed in the model.  The boundary 

numbers are consistent with labelling in Figure 3-12. 

Darcy’s Law Boundary Conditions – Lower Subdomain 

Boundary Condition Description 

2,8   [  ( )]    Neumann – zero flux 

5   [  ( )]     (   )
 Neumann – inward flux 

7  ( )       Dirichlet – outlet height 

1,3,4,6  Does not apply 

Darcy’s Law Boundary Conditions – Upper Subdomain 

Boundary Condition Description 

1,6   [  ( )]    Neumann – zero flux 

3  (     )      

 (   )   (   ) 

Dirichlet – overland flow 

4  
(        (   )    )

     

 
(       (   )     )

   (   ) 

Dirichlet – capillary fringe 

2,7,5,8  Does not apply 

Advection Dispersion Equation Boundary Conditions 

Boundary  Condition Description 

1,2,6,8    [       ̅ ]    Neumann – zero flux 

3  (         )      Dirichlet – influent solids concentration 

4, 7    [     ]   
 

Neumann –advective flux only 

5    [       ̅ ]   ̅ (   ) Neumann –inward flux 

Deformed Mesh Boundary Conditions 

Boundary  Condition Description 

1,2,6      Horizontally constrained 

3,7,8      

     

Fully constrained 

4       
 

Vertical displacement until ψ = 0 

5   (     )      Vertical displacement until ψ = 0 up to a 

maximum of 0.7 m 
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Table 3-10 A list of the parameters included in the model, along with the references 

from which the parameters were obtained and justifications for use.  

Adapted from Knowles and Davies (2011). 

Description Symbol Units Value Reference and notes 

Width-average flow-rate Qin m2/d 11.5 

Knowles et al. (2010) – based on 

conditions in a typical HSSF TW 

with mature hydrology  

Outlet Height hout m 0.4 

Ponding Height H m 0.7 

Gravel surface  m 0.6 

Molecular diffusion 

coefficient 
D m2/s 1e-9 

Langergraber (2003)– based on 

sandy gravel media with d10 of 

0.13 mm 

Longitudinal dispersivity 

in upper subdomain 
σL m 0.0125 

Transverse dispersivity in 

upper subdomain 
σT m 0.01 

Longitudinal dispersivity 

in lower subdomain 
σL m 0.1 

Cooke and Rowe (2008) – based 

on gravel diameter of 6 mm Transverse dispersivity in 

lower subdomain 
σT m 0.1 

 

3.7. Conclusions 

The aim of this Chapter was to enhance the theory that exists to describe the relationship 

between hydraulics, hydrodynamics and clogging.  Through a review of existing theory and 

models it was identified that an algorithm was required that better describes the true 

hydraulic behaviour of HSSF TWs, including overland flow, spatial variations in hydraulic 

conductivity and changes in hydraulic properties over time due to clogging.  The model 

should also be simple enough to be solved using simple calculation methods.  Incorporation 

of this hydraulic model into wetland treatment models would improve the ability to predict 

how wetland treatment performance will change over time. 

The derivation of the model required three separate components: 

1. A 1D algorithm, as described in Section 3.6.1, with two parameters to be calibrated 

that describe how the water table profile varies in the longitudinal direction.  The 

algorithm incorporates: a) an exponential relationship to describe the longitudinal 

hydraulic conductivity profile; and b) the influence of overland flow. 
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2. A single value parameter to describe the extent of clogging in the system, the Clog 

Factor CFT as introduced in Section 3.6.2, which is an intensive bulk property 

representing the effective porosity lost to clogging.  The Clog Factor avoids 

problems that have previously been encountered trying to derive equilibrium 

hydraulic conductivity values to represent the bulk effect of spatially varying 

hydraulic conductivity profiles.  The parameter calibration will be deduced from 

experimental measurements of Severn Trent HSSF TWs and will be specific to the 

performance of these systems. 

3. A 2D FEA model, as introduced in Section 3.6.3, which describes the interaction 

between HSSF TW hydraulics and hydrodynamic behaviour.  The model will be used 

to find the relationship between parameter values a and b and values of CFT, so that 

these relationships can be used in the 1D algorithm of Section 3.6.1.   

 

The approach to be taken can be summarised as follows: 

1. Perform experimental surveys to measure the spatial variations of hydraulic 

conductivity in field-scale HSSF TWs. 

2. Convert all hydraulic conductivity measurements to CF values and derive 

bulk CFT values for each reactor. 

3. Statistically analyse the obtained values of CF to find the relationship 

between CFT and the longitudinal and vertical variation of CF.  

4. Use the statistical relationship to recreate hydraulic conductivity profiles 

that correspond to values of CFT.  These profiles will be overlain onto the 

FEA model subdomain. 

5. Apply boundary conditions on the FEA model for flow and solute 

concentration to determine the values of f, hin, n and τ that correspond to 

the modelled hydraulic conductivity profiles. 

6. Use Equation 3-49 and Equation 3-56 to calibrate parameter values for a 

and b that closely recreate the modelled water table profile for 

corresponding values of CFT, Qin, hout and k. 

 

A method is now required that enables the spatial variation of hydraulic conductivity in a 

field-scale HSSF TWs to be determined, and will hence allow Clog Factors to be derived. 
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4. Experimental method 

The information reviewed unto now has emphasised the need to appreciate better the 

magnitude and distribution of clogging in Horizontal Subsurface Flow Treatment Wetlands 

(HSSF TWs).  However, progress has been hampered because a simple technique to obtain 

this information has been unavailable.  From the information detailed in Chapter 2 it is 

possible to identify constraints that an appropriately designed method would take into 

account.  Chapter 3 emphasised the need for a method that can delineate horizontal and 

vertical variations in hydraulic conductivity.  Table 4-1 provides the desired specification for 

an experimental method that measures clogging in HSSF TWs, based on the technical 

requirements for the method and the project specific requirements of Severn Trent. 

 

Table 4-1 Technical and project specific requirements for a field method to measure 

distribution of clogging in HSSF TWs 

Technical Requirements 

Tests will need to be performed in situ because the non-cohesive nature of gravel precludes tests 

that would disturb the sample during extraction and risk rendering the sample unrepresentative.   

The method should be suitable for a large range of hydraulic conductivities.  Table 3-2 indicated 

that the range of hydraulic conductivities within a system may span several orders of magnitude 

(between 1 m/d and 25,700 m/d) and will vary between system depending on age, design and 

operation.   

The tests must measure hydrological variations in all three dimensions as preferential clogging 

profiles develop longitudinally, transversely and vertically. 

Project Requirements 

Tests must not take more than 1 week and be low cost so that numerous beds can be profiled 

during the study period and with the available budget. 

Tests must be portable and simple enough such that the test is performable by one operator 

under a range of site conditions. 

The test must not interfere with normal system operation and must be executable in a safe 

fashion in accordance with Severn Trent policy. 
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The field of hydrology has provided numerous experimental techniques to assess clogging in 

natural porous media flow systems, such as groundwater aquifers.  Three major groups of 

established experimental techniques are hydraulic conductivity tests, clogged media 

characterisation and hydrodynamic visualisation.  Section 4.1 will review the existing 

techniques within these categories, some of which have previously been applied to HSSF 

TWs, and will explain why they do not satisfy the entire specification stipulated in Table 4-1. 

Section 4.2 will describe the development, principle of operation and experimental accuracy 

of The Aston Permeameter; a purpose made device that allows the three dimensional 

hydraulic conductivity profiles of HSSF TWs to be measured in situ.   

 

4.1. Existing Techniques for Assessment of clogging in Subsurface Flow TWs 

In general, there are three ways to measure the extent and impact of clogging in porous 

media and each approach provides information that the others cannot.  All three 

approaches may be required to fully understand the behaviour of a clogged HSSF TW: 

1. Measuring the hydraulic conductivity of the clogged media indicates the severity of 

clogging 

2. Characterising the physical properties of the media and clog matter indicates what is 

causing clogging 

3. Visualising flow hydrodynamics reveals the effect of clogging on flow.   

 

4.1.1. Hydraulic Conductivity Measurements 

Hydraulic conductivity methods include laboratory methods such as axial and anisotropic 

permeameters, and in situ methods such as water level surveys, pump tests, borehole tests, 

infiltration tests and slug tests. 

Laboratory permeameters are either flexible or rigid wall and constant or falling head.  

Generally, rigid wall constant head permeameters are best suited for high hydraulic 

conductivity media like gravel (Daniel, 1994, BS-ISO-17313, 2004).  These methods are only 

able to determine hydraulic conductivity in the axial direction of flow.  However, recent 

laboratory methods have been developed to allow anisotropic hydraulic conductivity to be 

evaluated in extracted soil samples (Renard et al., 2001).  One such method called the 
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Modified Cube Method has been applied to measure anisotropy in natural wetland peat 

samples (Beckwith et al., 2003, Kruse et al., 2008, Rosa and Larocque, 2008). 

The non-cohesive nature of gravel makes it difficult to remove undisturbed samples from 

the field for representative laboratory testing (Ranieri, 2003).  A few researchers have 

attempted to extract intact cores by freezing the media with liquid nitrogen (Kadlec and 

Watson, 1993), or by injecting temporary jellification agents that can subsequently be 

chemically or thermally liquefied.  However, application of potentially polluting chemicals to 

final stage wastewater treatment reactors is prohibited by Severn Trent Water policy.  Most 

wetland researchers have relied on in situ methods that were developed for cohesive 

unsaturated geological material, such as soils, with hydraulic conductivities far below those 

usually measured in gravel beds (ASTM-D5126, 2004).  This may explain why direct 

measurements of HSSF TW gravel hydraulic conductivity are lacking.     

Regarding in-situ methods, the hydraulic conductivity profile of HSSF TWs has predominantly 

been estimated from Darcy’s Law, by measuring the corresponding water table height at 

different points in the bed.  Often referred to as water table surveys, these methods were 

first suggested by Childs (1952) for evaluation of aquifer hydraulic conductivity under steady 

state conditions.  Sanford et al. (1995b) question the accuracy of using hydraulic gradient 

measurements, stating that small variations in measured hydraulic levels can cause large 

discrepancies in reported results. Indeed, Kadlec and Watson (1993) only suggest accuracy 

of surveying techniques to 10 mm. Watson and Choate (2001) employed a dumpy level to 

try and improve accuracy, quoting an associated measuring error of ±1.52 mm. However, 

when surveying four field scale HSSF TWs, changes in the water table height as low as 1 mm 

per 1 m longitudinal interval were measured, thus calling into question the limiting accuracy 

of this method.   

The theory introduced in Chapter 3 explains that Darcy’s Law cannot account for the varying 

thickness of the water table resulting from the groundwater energy balance (Bear, 1979, 

Oosterbaan et al., 1996).  Therefore, calculations of hydraulic conductivity made using this 

form of Darcy’s Law and data from water table surveys will never be accurate.  Furthermore, 

hydraulic conductivity values derived from water table surveys can only provide an 

approximation of bulk hydraulic conductivity in the flow direction.  It is not possible to 

resolve hydraulic conductivity variations in all three planes, thus shrouding potentially 

important vertical variation of hydraulic conductivity (Dittrich, 2006).   
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Well pumping tests are often used to assess the bulk hydraulic conductivity of large-scale 

aquifer materials (Theis, 1935).  These tests typically contain simplifications that render 

them incapable of resolving hydraulic conductivity variations in all three planes.  According 

to the solution of Theis (1935) it is convenient to simplify the flow field to 2D and neglect 

variations in the vertical direction: the aquifer depth usually being shallow in comparison to 

the radial influence of the well test (Bear, 1979).  As discussed for water table surveys, such 

an assumption is unsuitable when considering HSSF TW hydrology.  Furthermore, the high 

conductivity of gravel means that a large pumping rate is required to produce enough head-

loss so that differences in water depth between sampling points can be measured to 

reasonable accuracy.  This was achieved in three HSSF TWs by Sanford et al. (1995a), who 

dropped the water level control device so the bed rapidly emptied, and monitored the cone 

of depression inside the system over time.  Values from the experiment compared well with 

a second method, the ‘cumulative discharge technique’, which calculates hydraulic 

conductivity from the varying discharge of the system over time (Sanford et al., 1995a).  

Both methods require interruption to normal operation as the bed must be emptied for data 

analysis, which makes the methods unsuitable for use on Severn Trent sites. 

Borehole tests were the first in situ methods for localised measurement of hydraulic 

conductivity, and involve making an auger hole into the porous material, adding water above 

the water table and monitoring the discharge rate through the borehole walls (Diserens, 

1934).  This test requires that the media be cohesive so a borehole structure is maintained 

during saturation, which is not possible with clean gravels.  Luthin and Kirkham (1949) 

explain that the measured hydraulic conductivity is the composite of the entire soil depth 

and significant vertical variation of hydraulic conductivity may be shrouded by the 

homogenised result.  Ranieri (2003) used a soil borehole testing apparatus called the Guelph 

Permeameter (Reynolds and Elrick, 1986) to survey a gravel bed HSSF TW in Italy.  Hydraulic 

conductivity values measured with the Guelph Permeameter ranged from 190 m/d to 610 

m/d, which are relatively low hydraulic conductivity values for gravel and would typically be 

indicative of clogging.  However, the measured values are above the practical measurement 

range of the device (1 m/d to 90 m/d), which calls into question whether the measured 

values actually represent the limitations of the Guelph Permeameter rather than the true 

hydraulic conductivity of the media.  Langergraber et al. (2003) used the Guelph 

Permeameter to measure the hydraulic conductivity of a sand-gravel media in a Vertical 

Flow Treatment Wetland.  The sand-gravel media had clean hydraulic conductivity that was 

within the suitable range for measurement by the Guelph Permeameter.   
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Disc permeameters used in infiltration tests are generally unsuitable for HSSF TWs as they 

only measure vertical infiltration rates through the media surface (ASTM-D3385, 2003).  

Perhaps in Severn Trent HSSF TWs that are susceptible to surface clogging and overland 

flow, double ring infiltrometry could be used to determine the ability of the surface to 

absorb surface flow.  However, these tests will reveal nothing about the subsurface 

hydrology and are mainly for determining the ability of surface flow to infiltrate through 

unsaturated porous materials (Benson and Gribb, 1997). 

Slug tests involve driving a piezometer tube into the media down to the depth where 

measurement is desired (Luthin and Kirkham, 1949).  A ‘slug’ of water is then added through 

the piezometer to create either a falling or constant head of water above the water table 

(Bouwer and Rice, 1976).  The discharge through the end of the tube into the media is 

monitored, and the hydraulic conductivity calculated according to piezometer shape factors 

(Hvorslev, 1951).  As the test indicates hydraulic conductivity in the immediate vicinity of the 

tube, it is possible to detect hydraulic conductivity variations in all three planes by repeating 

the test at several depths across numerous locations (Surridge et al., 2005).  However, the 

apertures on the piezometer need to be large in comparison to media diameter.  For gravel, 

the required aperture size would necessitate an impractically large pipe.   

By using an adaptation of the method proposed in the Naval Facilities Soil Mechanics Design 

Manual (NAVFAC, 1986) it has been possible to directly determine gravel conductivity in 

HSSF TWs in Catalonia (Caselles-Osorio and García, 2007, Caselles-Osorio et al., 2007, 

Pedescoll et al., 2009).  An open ended tube is used such that the piezometer encases the 

sample to be tested.  It is not possible to easily delineate variations in vertical conductivity 

because the method measures the vertical conductivity of the entire gravel core.  However, 

the method introduced by Caselles-Osorio and García (2007) is the only existing successful 

method to directly measure the hydraulic conductivity of media used in HSSF TWs. 

From the above review it is apparent that no in situ methods are available that allow the 

hydraulic conductivity profile of high conductivity non-cohesive media, such as gravel, to be 

measured in three dimensions.  
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4.1.2. Clog Matter Characterisation  

Techniques that measure the properties of clog matter include assays of accumulated solids, 

direct porosity measurements, Time Domain Reflectometry, Capacitance Probes and Ground 

Penetrating Radar. 

Several authors have directly measured the solids that have accumulated in the void spaces 

of the porous medium as a way of quantifying clogging (Tanner et al., 1998, Caselles-Osorio 

et al., 2007).  This is achieved by measuring the dried mass of clog matter that can be 

washed from samples taken from the wetland.  If desired, ignition tests above 550°C can 

then be used to calculate the volatile fraction of the sample (BS-EN-872, 2005).  However, 

previous studies report that the relationship between mass of clog matter and media 

hydraulic conductivity is poorly correlated (Tanner et al., 1998, Caselles-Osorio et al., 2007).  

This may be because form, density and water retention properties will determine the 

hydrological influence of clog matter, as discussed in Chapter 2. 

Certain studies have measured the specific yield (also known as drainage porosity) of media 

to reflect the hydraulic influence of water retention in clog matter.  The specific yield is less 

than or equal to the medium porosity, depending on the saturation of the medium and the 

retention of water in interstitial matter.   The specific yield is the ratio of the volume of 

water drained from the sample versus the total volume of the sample.  When studying the 

inlet region of a secondary treatment HSSF system in the US, Kadlec and Watson (1993) 

found that the accumulation of highly hydrated gelatinous slime reduced void volume by 

50%, compared with a void volume reduction of 10 – 20% in downstream media.  Suliman et 

al. (2006a) measured a change in drainable porosity from 30% to 10.5% in their laboratory 

shell sand HSSF wetlands, before and after biological growth.   

Capacitance probes (Langergraber et al., 2003) and Time Domain Reflectometry (Platzer and 

Mauch, 1997) have been used in situ to measure the ability of media in VF TWs to 

desaturate between loading cycles.  These technologies rely on the fact that the dielectric 

constant of water is proportional to saturation, making them highly suitable for application 

in VF TWs.  Based on broadly similar principles, it was proposed to use Ground Penetrating 

Radar to assess clog matter accumulations in Severn Trent HSSF TWs (Cooper et al., 2008, 

Fogg, 2007).  The concept was that porosity occlusion by clog matter would lower the 

dielectric constant of the porous media in comparison to unclogged interstices.  However, it 

was not possible to calibrate the obtained radiograms against corresponding clog matter 
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assays, such that the method could not be used for accurate determination of subsurface 

clog matter accumulation (Fogg, 2007).  Application of Ground Penetrating Radar, Time 

Domain Reflectometry and Capacitance Probes for determining clog matter accumulation in 

saturated HSSF TW media would be difficult because clog matter is usually over 90% water 

by volume.  This means resolution between clogged and unclogged regions would be very 

poor (Pedescoll, 2009).  Ground Penetrating Radar has been used to delineate subsurface 

features along natural wetlands (Lapen et al., 1996), although these tended to be major 

geological transitions such as bedrock versus soil, or saturated versus unsaturated regions, 

rather than small differences in organic matter accumulation.     

 

4.1.3. Hydrodynamic Visualisations 

Information regarding the effect of clogging on flow dynamics can be gained using tracer 

tests. The passage of the tracer can either be monitored at the system outlet or at points 

within the subsurface.  The choice of monitoring point provides different information about 

the wetland hydrology (Kadlec and Wallace, 2010). 

Studying the outlet will indicate the aggregated affect that short-circuiting will have on flow 

through the wetland.  The tracer Residence Time Distribution (RTD) for the system indicates 

hydraulic performance parameters such as hydraulic retention time (HRT), axial dispersion 

coefficients, equivalent number of Tanks In Series n, emergence delay and volumetric and 

hydraulic efficiency (Headley and Kadlec, 2007, Kadlec and Wallace, 2010, Persson et al., 

1999, Werner and Kadlec, 2000).  The existence of multiple preferential paths through the 

wetland has been attributed to multiple-peak RTDs observed in some HSSF tracer 

breakthrough curves (Batchelor and Loots, 1997).  Maloszewski et al. (2006) used Bromide 

tracer breakthrough curves to identify that a primary flow path accounted for over 

two-thirds of the flow they observed through three experimental gravel bed HSSF TWs in 

Poland.  Successful data fits were achieved by assuming that three flow-paths existed that 

separately conveyed 70 %, 21 % and 9 % of the influent.   

Internal tracer studies can be used to identify the location of preferential flow paths through 

the wetland (Nivala, 2005) and to study how flow is influenced by features such as uneven 

inlet distribution (Shilton and Prasad, 1996), short-circuiting below the root-zone (Bowmer, 

1987, Fisher, 1990, Breen and Chick, 1995), and surface clogging (Christian, 1990, Batchelor 

and Loots, 1997).  Table 3-4 gave an overview of several studies that have used internal 
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tracer tests to identify vertical short circuiting in HSSF TWs, along with the major factors that 

were thought to be responsible for these observations: preferential establishment of 

vegetation in the top of the bed; the design of the influent distribution and effluent 

collection systems; density differences between precipitation and wastewater; and density 

differences between tracer and wastewater.  Measurement of internal flow-rates would be 

needed if internal RTDs are to be used to indicate the flow-rates along different preferential 

flow-paths (Kadlec, 2000).  This idea is often explained using the ‘mixing cup’ versus ‘through 

the wall’ analogy common to chemical engineering (Levenspiel, 1999). 

It should be emphasised that a single tracer test on a subsurface flow TW may only be 

showing one, from a possible range of hydraulic behaviours (Kadlec and Wallace, 2010). The 

specific hydraulic performance of HSSF wetlands is probabilistic (Waters et al., 1993) and will 

depend on flow and seasonal effects such as evapotranspiration and freezing (He and 

Mankin, 2001, Hedges et al., 2008). For example, Waters et al. (1993) and Fonder and 

Xanthoulis (2008) found that the short-term repeatability of internal tracer studies on HSSF 

TWs was good at some locations and poor at others, obtaining fluctuations of the observed 

breakthrough curves under similar control conditions.  HSSF TW flow profiles change over 

time according to changes in the subsurface hydrology, as indicated by the findings of 

Bowmer (1987). Erichrome Red tracer studies, performed two years apart in an Australian 

gravel bed HSSF system, indicated that an area that had once represented a substantial 

preferential flow path had changed into a large dead-zone.  

The phenomenon of short-circuiting means that Hydraulic Retention Time should not be 

used to calculate system hydraulic conductivity because this does not represent the Darcy 

hydraulic conductivity of the media.  For example, whilst investigating two soil-based HSSF 

TWs in Germany, Pauly (1990) found that Darcy hydraulic conductivity derived from 

measured hydraulic gradients returned values an order of magnitude lower than Tissou 

hydraulic conductivity derived from measured HRT.  Hydraulic conductivity studies and 

tracer tests should be used complementarily to elucidate the complex hydrology of HSSF 

TWs (Knowles et al., 2010). 

 

4.1.4. Other Measures of Clogging 

Alternative clogging indicators often measure parameters that are not a property of the 

gravel medium.  For example, Molle et al. (2006) and Sun et al. (2007) measured the depth 
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of ponding on the surface of VF TWs during dosing.  The authors found that as the system 

clogged the residual depth of water and the percolation time through the system both 

increased.  As discussed in Chapter 2, Cooper et al. (2005) and Rousseau et al. (2005b) 

measured the depth of sludge that had accumulated on the surface of Severn Trent HSSF 

TWs as an indication of the state of clogging.  A novel clogging indicator was suggested by 

Nguyen (2000), who found that microbial biomass and microbial respiration correlated well 

with the stability and quantity of organic matter in a dairy wastewater treatment HSSF TW in 

New Zealand. 

 

4.1.5. Discussion on the suitability of methods for this study 

Table 4-2 rates the fourteen previously discussed methods according to their ability to meet 

the six requirements specified in Table 4-1: 

1) Application is in situ  

2) Operable by a single-user. 

3) Rapid and inexpensive enough to allow multiple site surveys. 

4) Applicable while the system is operating. 

5) Suitable for media with high hydraulic conductivity.  

6) Provides the ability to resolve variations in hydraulic conductivity in three dimensions. 

 

Certain requirements are not applicable to all methods and scoring is adjusted accordingly.  

The scoring method used in Table 4-2 implies that the slug test introduced by Caselles-

Osorio and García (2007) is the most suitable for measuring the hydraulic conductivity of 

HSSF TW media; achieving 5 from 6 requirements.  However, this method is unable to 

resolve hydraulic conductivity in 3D, which is critical to this study.  The requirements that 

are most difficult to achieve with existing methods are: applicability across a wide range of 

media conductivities (only achievable by 4 methods); and the ability to measure variations in 

hydraulic conductivity in all three planes (only achievable by 8 methods).   

The previous review has highlighted that no single method is available that completely 

meets the specification outlined in Table 4-1.    
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Table 4-2 Tests that are available to assess: media hydraulic conductivity (yellow); clog matter properties (green); and hydrodynamic 

behaviour (blue); and their ability to meet the following six requirements: 1) In situ; 2) Quick and inexpensive; 3) Portable and 

single-user-friendly; 4) Non-interruptive; 5) Appropriate for media with high hydraulic conductivity; 6) 3D resolution possible.  N/A 

indicates that the requirement is not applicable to that method and scoring is adjusted accordingly.  Table continued overleaf. 

 Test Description 1 2 3 4 5 6 √ 
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Slug Test 

A piezometer tube (devoid of media) is inserted into the media and either a falling or 

constant head of water is applied above the water table.  The discharge through the 

end of the tube into the media is monitored, and the hydraulic conductivity 

calculated according to shape factors.  

√ √ √ √ X √ 5/6 

Pumping Test 

Water is pumped at a constant rate into or out of a well, and the resulting cone of 

depression in the aquifer material is monitored over time according to the solution 

of Theis (1935). 

√ √ X X X X 2/6 

Water Level Survey 
Flow through the aquifer material results in a hydraulic gradient.  Differences in the 

height of the water table are observed in different wells. 
√ √ √ √ X X 4/6 

Borehole Test 
A borehole is made into the media and water is either added of removed.  The 

recharge rate or flow rate into the media is monitored. 
√ √ √ √ X X 4/6 

Infiltration Tests  
A ring is impressed into the surface of the media and water is added to measure the 

infiltration rate through the surface. 
√ √ √ √ X X 4/6 

Laboratory 

Permeameter 

A sample of the media is placed into a laboratory permeameter cell which may be 

rigid or flexible wall.  A constant or variable head of water is then applied across the 

media. Manometer take off points allow the variation in resistivity across the sample 

to be determined.  

X √ NA √ √ X 3/5 

Modified Cube 

Method 

A cubic sample of the media is sealed in wax.  By sequentially removing single sets of 

opposing faces, and passing flow through the media, the hydraulic conductivity in 

different planes (anisotropy) can be determined. 

X √ NA √ √ √ 4/5 

 



  

 
 

1
5

6
 

Table 4-2 Tests that are available to assess: media hydraulic conductivity (yellow); clog matter properties (green); and hydrodynamic 

behaviour (blue); and their ability to meet the following six requirements: 1) In situ; 2) Quick and inexpensive; 3) Portable and 

single-user-friendly; 4) Non-interruptive; 5) Appropriate for media with high hydraulic conductivity; 6) 3D resolution possible.  N/A 

indicates that the requirement is not applicable to that method and scoring is adjusted accordingly.   

 Test Description 1 2 3 4 5 6 √ 

C
lo

g 
m

at
te

r 
p

ro
p

er
ti

es
 

Direct porosity 

measurements 

Either saturated or drainable porosity of the extracted sample.  This gives a good 

indication of free versus associated interstitial water 
X √ NA √ NA √ 3/4 

Time Doman 

Reflectometry (TDR) 

A family of methods that rely on the dielectric constant of water being proportional 

to saturation.  Therefore the electrical capacitance of media depends on the water 

content.  Each method measures this property in a different way.  TDR and 

Capacitance Probes can be inserted at different points in the media and give 

readings in the immediate locality.  GPR devices are swept over the surface of the 

system and provide an image of the subsurface.  

√ √ √ √ X √ 5/6 

Capacitance Probe √ √ √ √  X √ 5/6 

Ground Penetrating 

Radar (GPR) 
√ X √ √ X √ 4/6 

Solids Assays 
Total solids and volatile solids content of the interstitial clog matter are measured.  

The interstitial water may also be analysed for suspended fractions 
X √ NA √ NA √ 3/4 

Tr
ac

e
r 

te
st

s 

Breakthrough Curve 
The breakthrough of a pulse of tracer added to the inlet of the system is monitored 

at the outlet of the system. 
√ √ √ √ NA X 4/5 

Internal Tracing 
The dynamics of the tracer within the system are monitored by measuring the 

tracer concentration at different points within the system. 
√ X √ √ NA √ 4/5 
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The majority of previous in situ hydraulic conductivity testing in HSSF TWs has been based 

on water table surveys that do not directly measure the media conductivity.  It is 

questionable whether hydraulic conductivity values derived from water table surveys are 

representative because of the limiting accuracy of surveying techniques and inaccuracies 

caused by neglecting the groundwater energy balance during calculations.  The method of 

Caselles-Osorio and García (2007) is the only successful method to directly measure media 

hydraulic conductivity in HSSF TWs; however, this method cannot measure vertical 

variations in hydraulic conductivity. 

Although tracer tests have proven that vertical short-circuiting is common in HSSF TWs, this 

has never been supported with corresponding vertical hydraulic conductivity profiles.  

Variations in vertical hydraulic conductivity are neglected by HSSF TW design documents, 

which assume that hydraulic conductivity only varies longitudinally.  A method is required 

that allows media hydraulic conductivity to be resolved in three dimensions.  This is 

particularly significant for this study due to evidence that Severn Trent HSSF TWs are prone 

to excessive surface clogging in comparison to other HSSF TW variants.   

Tracer tests will be employed to monitor outlet RTDs and validate the hydrodynamic 

performance of the FEA model proposed in Chapter 3.  Lastly, previous attempts to explain 

hydraulic conductivity results by comparison with physical measures of clog matter (mass, 

density etc.) have been inconclusive and will not be employed during this research.   

 

4.2. The Aston Permeameter 

This section details the development of The Aston Permeameter: a novel in situ method and 

apparatus that can be used to measure three dimensional variations in the hydraulic 

conductivity of coarse media, such as gravels in HSSF TWs.  After a brief introduction to the 

rationale behind the method, discussion is given to the principles of operation, materials 

used to make the apparatus, experimental procedure, accuracy, repeatability and sources of 

potential experimental error. 

The hydraulic conductivity of media in HSSF TWs varies by several orders of magnitude 

according to media size and state of clogging (Table 3-2).  For clean gravels of 10 mm 

diameter, hydraulic conductivities on the order of 10,000 m/d are typical (Wallace and 

Knight, 2006).  A good way of achieving practical flow-rates through high conductivity media 
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is to use a Mariotte Siphon, which controls a small, constant head above the water table.  

The same principle underlies the design of the Guelph Permeameter method (Reynolds and 

Elrick, 1986), the Amoozemeter Permeameter (Amoozegar, 1989) and the Philip-Dunne 

Permeameter (Muñoz-Carpena et al., 2002).  These borehole methods are not wholly 

appropriate for this study because measurements cannot be taken at specific depths.   

However, the principle of using a Mariotte Siphon to control the flow-rate through clean 

gravel is useful. 

Enlarging typical Slug Test apparatus for use in large granular media such as gravel would 

make piezometer insertion impractical.  The NAVFAC (1986) adaptation brings the media 

inside the piezometer tube and passes water through it (as opposed to water flowing 

through an empty tube and out of perforations in the tube wall to the surrounding media).  

Kadlec and Knight (1996) indicate that a tube diameter approximately 10 times larger than 

the media diameter is required to ensure that tube side-wall effects are minimised and the 

measured hydraulic conductivity is representative of the encased sample.     

An obscure method for in situ infiltration measurements was developed by Schiff and 

Johnson (1958) whereby a disc permeameter was buried 1 ft. into aquifer material and a 

constant head applied to create a flow rate.  The loss in hydraulic head through the aquifer 

material was monitored using manometer take off points at various depths.  In this way it 

was possible to apply the theory underlying the laboratory constant head permeameter 

method to determine infiltration rates in the field. 

 The Aston Permeameter incorporates the above three principles to achieve 3D in situ 

determination of low and high hydraulic conductivity media in HSSF TWs: 

1) A Mariotte Siphon to control a small, constant head. 

2) A permeameter cell that encases the sample to be tested. 

3) Subsurface manometric take-off points to recreate the laboratory constant head 

hydraulic conductivity test in situ. 

 

4.2.1. Principle of Operation 

The principles behind the operation of the Aston Permeameter are provided below.  From 

this point on, all letters in square brackets refer to those labels indicated on Figure 4-1.  As 

shown in Figure 4-1, a PVC tube with diameter at least equal to ten times the largest gravel 
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particle diameter is driven vertically into the bed.  This constitutes the permeameter cell [h], 

entrapping a gravel core [p,r] with length LCELL (m) and cross-sectional area ACELL (m
2). 

 

 

Figure 4-1 Experimental set-up for in situ measurement of the vertical hydraulic 

conductivity profile across media with high hydraulic conductivity.  Figure is 

not to scale and is reproduced from Knowles and Davies (2009).  

 

During the test, the water level inside the tube is raised to above the gravel surface and kept 

constant by using the Mariotte Siphon technique.  This is achieved by using a reservoir 

device [g], similar to the Guelph Permeameter (Reynolds and Elrick, 1986), but enlarged to 

make it suitable for applications in higher conductivity media such as gravel as well as the 

lower conductivity media for which the Guelph Permeameter is intended. 

Four manometer take-off tubes [s], ranging from 200 to 500 mm length in 100 mm 

increments, are inserted into the gravel core prior to the experiment commencing.  This 

provides a number (in this case 4) of evenly distributed take-off points n at 100, 200, 300 

and 400 mm depths into the gravel core.  Using a digital differential manometer [m] with a 

500 mm graduated depth gauge [l] it is possible to determine the static [q] and dynamic [n] 

water levels in each take-off tube, thus allowing the vertical head loss across each 100 mm 

section hn (m) to be measured.  By monitoring the discharge of water Q (m3/d) from the 

reservoir [e,f], in keeping the permeameter head hT (m) constant, it is possible to calculate 
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the hydraulic conductivity of the gravel core kT (m/d) using Darcy’s Law (Equation 4-1).  

Subsequently the hydraulic conductivity of each 100 mm section kn (m/d) can be found 

(Equation 4-2).  The test provides vertical conductivity profiles, although by interpolating 

between sample points it is possible to predict a horizontal conductivity profile.  This is 

based on the assumption that media at the sampling point is isotropic and the vertical and 

horizontal hydraulic conductivities are analogous.  If the water table is below the surface of 

the bed, the head is applied across a layer of media that is previously unsaturated.  It is 

assumed that upon commencing the experiment the unsaturated layer becomes suitably 

saturated so that Darcy’s Law, rather than Richard’s Law, is the governing equation for flow.  

If only the hydraulic conductivity of the wetted gravel is of interest, the unsaturated layer 

should be removed from the permeameter cell before commencing the experiment, and the 

subsequent analysis modified to reflect the new test conditions.   

 

   
       
        

 Equation 4-1 

   
 

  (
  
    

)
 Equation 4-2 

 

 

Figure 4-2 uses an electrical analogy to describe how Darcy’s Law is applied to the Aston 

Permeameter.  The analogy used is based on an electrically conducting wire of constant 

dimensions but varying electrical resistivity.  The electrical resistance of the wire can be 

represented by n sections in series that have equal length but different resistances.  Figure 

4-2 illustrates how the hydraulic conductivity of the media can be related to the electrical 

conductivity (reciprocal of electrical resistivity) of the wire.  Figure 4-2 also illustrates how 

the dynamic water levels in each take-off tube are expected to vary because of head loss 

across the length of the permeameter cell.   
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Figure 4-2 An electrical analogy of the Aston Permeameter, represented by the voltage 

V drop across a wire of constant dimensions but varying electrical 

conductivity, split into n lengths of equal section.  Reproduced from Knowles 

and Davies (2009).   

 

4.2.2. Apparatus 

Figure 4-3 depicts the apparatus during an experiment at a Severn Trent HSSF TW, and 

Figure 4-4 shows the apparatus laid-out so that the individual components can be identified.  

The corresponding list of components used to assemble the Mariotte Siphon activated 

reservoir, and other apparatus used in the experiment, is provided in Table 4-3 with costs 

and supplier information.  Total cost for all equipment was £1055 in 2008 and almost 90% of 

this was apportioned to the purchase of the four digital manometers used in the 

experiment. 
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Figure 4-3 Photograph of the experimental set-up at a Constructed Wetland in South 

Warwickshire, UK, depicting the Mariotte Siphon activated reservoir 

standing above the permeameter cell, which has been submersed into the 

gravel.  Three digital manometers are in a blue toolbox at the forefront of 

the shot.  The orange manometer lines are inserted into the white 

manometer take off tubes.  The reservoir is empty in this shot. 
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Figure 4-4 Photograph of the full inventory of apparatus used in the experiment (labels 

as per Figure 4-1). The method is designed to be highly portable so that it 

can be performed by one user, in-situ.  Reproduced from Knowles and 

Davies (2009). 

 

The maximum practical flow rate that can be sustained by the Aston Permeameter depends 

on the dimensions of the permeameter cell [h], reservoir cell [g] and down pipe [j].  Figure 

4-5 illustrates the maximum flow velocity that can be maintained in the permeameter cell at 

maximum discharge by the version of the Aston Permeameter designed and fabricated for 

this study.  The profile shown in Figure 4-5 is based on the application of Bernoulli’s 

Equation across the reservoir device and the following assumptions: 

 A reservoir with a diameter of 0.2 m and length of 0.5 m. 

 A down pipe with a diameter of 0.075 m and length of 0.5 m. 

 A permeameter cell with a diameter of 0.168 m.   

 The volume of water exiting the down-pipe is equal to the volume of air that travels 

up the down-pipe and enables displacement to occur.  Therefore, it is assumed that 

that only half of the cross-sectional area of the down-pipe is available for flow.   

 Minor losses in the reservoir can be attributed to the sudden contraction between 

the reservoir cell and the down pipe, and the exit losses from the down pipe. 

 A clean media porosity of 0.35.  

h 
v 

s 

w 

m 

j 

c 

k 

b 

d 

a 

g 

u 

l 

a. Air inlet pipe 
b. Filling port 
c. End cap 
d. Air port 
g. Reservoir 
h. 5 cm long permeameter cell 
j. Down pipe 
k. Tripod 
l. Manometer lines 
m. Digital di eren al manometer 
s. Manometer take-o  tubes 
u. Stop cap 
v. T-Bar accessory 
w. Metal stakes 
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Table 4-3 A list of the major components used to make the apparatus for the 

experiment.  Costs are rounded to the nearest pound sterling and reflect 

2008 UK prices.  Only the components which are considered specialist or 

difficult to identify are listed.  Reproduced from Knowles and Davies (2009). 

Label Part Product Supplier 
Cost 

(£) 

a,s 

Air inlet pipe, 

Manometer take-

off tubes 

15 mm diameter speedfit 

barrier pipe 

John Guest, 

Middlesex, UK 

 

2 

b,d,i 
Filling port, Air 

port, Drain port 

15 mm speedfit tank 

connector 

John Guest, 

Middlesex, UK 
4 

c End caps Aluminium Plate 

N/A 

Manufactured in 

house 

25 

f 
Graduated 

measuring tube 
25ml acrylic burette tube 

Scilabware, 

Staffs., UK 
22 

g Reservoir chamber 
L0.5m D0.2m, wall 0.003m 

Polycarbonate tube 

Wake Plastics, 

Middlesex, UK 
50 

h Permeameter cell 
L0.5m D0.168m wall 

0.004m PVC ducting 

N/A modified in 

house 
4 

j Down tube 

2” PVC tank connector with 

3” PVC plain socket adaptor 

and 3” PVC pipe 

George Fischer, 

Coventry, UK  
20 

k Tripod legs 3* floor tom drum legs N/A 20 

l 
Graduated depth 

probe 

6 mm OD 1.5 mm wall 

acrylic tube 

N/A modified in 

house 
5 

m Digital Manometers 1 * Digitron 2080P Sifam, Devon, UK 300 

m Digital Manometers 3 * Kane 3100-1 

Kane 

International, 

Herts., UK 

600 

u Stop cap Rubber plunger head N/A 1 

v T-Bar  . 5” PVC pipe N/A 1 

w Metal stakes 10 mm OD CSS steel tube 

N/A 

Manufactured in 

house 

1 

TOTAL COST £1055 
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Figure 4-5 The maximum practical flow velocity that can be sustained in the 

permeameter cell at maximum discharge by the Aston Permeameter used in 

this study. 

 

As shown in Figure 4-5, at maximum discharge the reservoir device takes 3.2 seconds to 

empty.  The sudden peak shown in Figure 4-5 represents the time at which the reservoir 

chamber is completely evacuated and only the down-pipe contains water.  The maximum 

flow velocity that can be maintained in the permeameter cell during the period that the 

reservoir chamber contains water varies between 77,000 m/d and 54,000 m/d.  According to 

Equation 3-2, the maximum flow-velocity that maintains porous media Re below 10 varies 

from 842 m/d for media with a 1 mm diameter, to 56 m/d for media with a 15 mm diameter.  

Therefore, the Aston Permeameter is appropriately sized to ensure that laminar flow 

hydraulic conductivity tests can be performed across a wide range of hydraulic conductivities 

in field-scale HSSF TWs.  The Mariotte Siphon feature on the Aston Permeameter will be 

used to adjust the constant head across the sample for a wide range of media hydraulic 

conductivities and achieve a flow velocity that is below the maximum laminar flow velocity.   

Kadlec and Knight (1996) propose that a cell with diameter at least ten times greater than 

the mean particle diameter is required to obtain a hydraulic conductivity measurement that 

is representative of the sample.  A permeameter cell with diameter 0.168 m was deemed 

appropriate as this is 14 times larger than a 12 mm diameter gravel particle, which is the 

largest gravel typically employed in Severn Trent HSSF TWs.  A larger diameter permeameter 

cell would further reduced side-wall effects, however, it was found that a 0.168 m diameter 

cell was the largest cell size that could be manually inserted into the gravel by a single 

operator.     
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4.2.3. Experimental Procedure 

The instructions followed when performing the experiment are listed below, where the 

labels in square brackets refer to the components illustrated in Figure 4-1 and Figure 4-4.  To 

aid clarity, Figure 4-6 illustrates how the measurements described in the subsequent 

procedure are obtained. 

 

 

Figure 4-6 Measurements that are taken during the experiment, depicted for one take-

off tube. Corresponding readings will need to be taken in each individual 

take-off tube. For clarity, the reservoir device which maintains the constant 

head has been omitted from graphic B): “After applying constant head”.  

Reproduced from Knowles and Davies (2009). 

 

1. Drive the permeameter cell [h] into the gravel until the top 100 mm is emergent from 

the gravel surface, thus creating a 400 mm gravel plug.  Serrations were cut into the 

penetrating end of the permeameter cell to aid its insertion into the gravel, and there 

are two holes at the top of the tube to allow a T-Bar accessory [v] to be utilised 

during insertion.  To minimise disturbance to the gravel core, a circular jigsaw cutting 

action should be used to submerge the tube into the gravel. 

2. Insert the four manometer take-off tubes [s] to the required depths, so that the top 

of them is in line with the top of the permeameter cell.  To aid insertion of the take-

off tubes four metal stakes [w] with lengths just greater than, and ODs just smaller 
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than, the respective dimensions of the take-off tubes, can first be driven into the 

ground.  The take-off tube is then sheathed over the top of the stake and driven into 

the gravel until the stake re-emerges from the top of the take-off tube.  Once the 

stake has been removed, the inside of the take-off tube is left free from gravel 

blockages.  This ensures the water level inside the take-off tube is free to fluctuate 

only according to the hydraulic conditions in the permeameter cell; this otherwise 

being a possible source of error in measurements. 

3. Attach a graduated depth probe [l] to each manometer [m] and insert one probe into 

each take-off tube to locate the static water level.  The distance the probe is 

immersed into the water should be small, to minimise errors caused by displacement.  

Record the digital manometer readings after they have stabilised, and the distance 

the probes have been inserted into the take-off tube.  This may not be possible in all 

the tubes depending on the water level in the bed, but as a check, any readings 

obtained should be roughly equal.  Any disparity between the readings will be caused 

by minor differences between the vertical alignments of the top of the take-off tubes, 

and therefore, recording the different static water level readings will allow these 

discrepancies to be accounted for. 

4. Assemble the Mariotte Siphon activated reservoir by combining the parts as 

illustrated in Figure 4-4.  Adjust the tripod legs [k] so that the down pipe [j] rests just 

above the surface of the gravel.  Lower the air pipe [a] so that it is in line with the end 

of the down pipe and so the stop cap [u] inside the reservoir covers the down pipe 

inlet.   

5. Open the filling [b] and air ports [d] on the reservoir and fill the reservoir with water.  

This was done using a bucket and long stem funnel although any method is 

applicable.  Close the air and filling ports. 

6. Pre fill the permeameter cell [h] with water until the water level rises to just above 

the gravel surface.  This will maximise the amount of water inside the reservoir that 

can be used for steady measurements. 

7. Raise the air pipe [a] so that the water level in the cell settles at a height above the 

gravel surface, but below the lip of the cell.  The Mariotte Siphon will engage and the 

reservoir will begin to empty to maintain the constant head inside the cell.  Measure 

the water level indicated by the graduated measuring tube [f] and begin timing.  The 

emergent 100 mm of each take-off tubes is marked with a scale so that the distance 

between the top of the take-off tubes and the water level inside the permeameter 
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cell can be accurately recorded.  This allows the total applied head across the 

permeameter cell, and corresponding head loss measured in each take-off tube, to 

be accurately calculated. 

8. The value indicated by the manometers will change to reflect the dynamic water level 

inside the take-off tubes.  Record the digital manometer readings after they have 

stabilised.  This stage must be completed before the reservoir empties.  

9. Record the water level in the graduated measuring tube against time. 

 

4.2.4. Agreement of the Aston Permeameter with Standard Experimental Methods 

Experimental accuracy was tested by comparing results from the Aston Permeameter with 

those measured using a laboratory standard constant head permeameter (ELE, 

Bedfordshire) according to BS-ISO-17313 (2004).  When applied to samples from the same 

fine silica sand, the Aston Permeameter gave hydraulic conductivity values of 27.9 m/d and 

the laboratory constant head permeameter gave hydraulic conductivity values of 27.1 m/d.  

In addition to being in good agreement (within 3%), these values are within the range 

quoted in the literature for the hydraulic conductivity of silica sand: 8.6 m/d to 86 m/d 

(Barnes, 2000, Craig, 2004, Smith and Smith, 1990).  Figure 4-7 shows the head loss over the 

sand plug used in each experiment, as obtained from manometer take-off points.  Silica sand 

is very homogeneous and the hydraulic gradient should be linear; which was achieved with 

both the standard and proposed methods, yielding R2 fits of 0.990 and 0.989 respectively.   

 

 

Figure 4-7 Head loss across homogeneous silica sand cores, tested using both BS-ISO-

17313 (2004) and the proposed method. Good linearity was achieved with 

both methods.  Reproduced from Knowles and Davies (2009). 
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4.2.5. Repeatability 

An experiment was performed in-situ at a Severn Trent HSSF TW at Fenny Compton.  The 

gravel media had a size distribution between 6 mm and 12 mm diameter.  The permeameter 

cell was immersed at a point near the TW inlet and the experiment repeated five times at 

the same point to ensure the repeatability of the method.  This is seen to be good in Figure 

4-8, with standard deviations ranging from 1% to 4% of total normalised head loss, between 

100 mm and 400 mm depth respectively.  As evident from Figure 4-8 the small residual head 

loss that remains at a 400 mm depth indicates that exit losses from gravel cores to the TW 

macrocosm are negligible in comparison to total head-loss within the permeameter cell. 

 

Figure 4-8 The head loss across a gravel core in a HSSF TW at Fenny Compton.  The test 

was repeated five times (Runs A-E) to determine that the experimental 

repeatability was good; returning standard deviations of 1-4% of total 

normalised head loss.  Reproduced from Knowles and Davies (2009) 

 

A second experiment was performed to investigate the repeatability of results at different 

test points in close proximity.  The assumption is that the hydraulic conductivities of samples 

in close proximity would be relatively similar and large disparities between readings would 

indicate that inserting the permeameter cell disturbs the sample to the degree that 

measurements are not representative.  Small differences in hydraulic conductivity will 

naturally arise between proximal cores because of heterogeneity of particle size 

distributions and varying root growth (Bavor and Schulz, 1993), but it is expected that results 

will be within an order of magnitude.  Figure 4-9 shows the location of the sampling points 

for the homogeneity experiment that was performed at a HSSF TW at Moreton Morrell.  

Four points were chosen (A1, B2, C3 and D4) and matrices of three additional sampling 

points were closely installed around each of these points.  The ranges of sample hydraulic 
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conductivity results for the four groups of holes, along with averages and standard 

deviations, are reported in Table 4-4.  Hydraulic conductivity is 3 orders of magnitude lower 

at the inlet (k   (     )) than at the outlet (   (         )), and generally increases 

with distance from the inlet.   

 

 

Figure 4-9 The locations of 16 sampling points installed to perform a homogeneity 

experiment at Moreton Morrell, to assess the possible errors introduced by 

inserting the permeameter cell into the gravel (not to scale: points marked X 

were set at a longitudinal and transverse pitch of 4 m.  Points marked ● 

were arranged around the X points at a radius of 0.2m).  Reproduced from 

Knowles and Davies (2009) 

 

Regarding variance in each group of holes, standard deviation is always within the order of 

magnitude of the average hydraulic conductivity.  Additionally, apart from near the inlet 

region where differences between results appear relatively large in comparison to the 

magnitude of the average hydraulic conductivity, the standard deviation was always within 

30% of the average.  It can therefore be stated that, when applied in situ, the method gives 

results representative of the order of magnitude of the hydraulic conductivity of the media 

in that area, and the practical reading recorded has a ±30 % associated degree of uncertainty 

associated with a combination of natural variations of media characteristics and sample 

disturbance during insertion of the permeameter cell.  However, the uncertainty is small in 

comparison to the three order of magnitude variation in measured k values. 
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Table 4-4 The range of hydraulic conductivity values, averages and standard deviations 

recorded for each group of holes during the homogeneity experiment at 

Moreton Morrell.  Reproduced from Knowles and Davies (2009). 

 Hydraulic Conductivity m/d 

  Max. Min. Avg. St. Dev. 

A1 9 1 3 2 

B2 344 181 261 72 

C3 302 235 286 34 

D4 1,231 399 802 295 

 

 

4.2.6. Sources of Error 

The potential errors when performing the experiment, and methods for minimising them, 

are detailed in Table 4-5.  Figure 4-10 shows the results from Run A of the Fenny Compton 

repeatability experiment, with associated maximum and minimum error bars.  Figure 4-10 

(top) includes the +20% of manometer readout error associated with the displacement 

caused by depth probe insertion, whereas Figure 4-10 (bottom) omits this error.  It can be 

seen that taking the instantaneous reading off the manometer and reinserting the probe 

between static and dynamic readings increases the associated error, for example with the 

400 mm depth measurement, from ±9 % to ± 40% of the total normalised head.  Therefore, 

it should be ensured that the initial static reading is allowed to stabilise before being 

recorded, and that a different manometer is used within each take-off tube to negate the 

requirement to reinsert the probe between static and dynamic level readings.  

 

Table 4-5 Sources of error associated with the method and ways to minimise them.  

Reproduced from Knowles and Davies (2009). 

 Error Magnitude Minimisation 

Use of digital manometer ±0.15% reading 

±0.15% fixed error 

±0.2% display resolution 

Unavoidable 

Insertion of depth probe 

causing displacement 

+20% of actual reading 

±1 mm 

Allow time for reading to 

stabilise 

Misreading reservoir level ±1 mm Use graduated scale 

Stop watch error ±0.5s Use large reservoir volume 
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Figure 4-10 The errors associated with the results of Run A of the Fenny Compton 

repeatability experiment, both with (top) and without (bottom) inclusion of 

the error introduced by instantaneous reading of the manometer when 

reinserting the probe between readings.  Reproduced from Knowles and 

Davies (2009).  

 

A major source of error that does not appear in Table 4-5, because it is difficult to 

approximate, is the effect of inserting the permeameter cell into the media.  Forcing the 

permeameter cell into the gravel requires mechanical agitation of the sample and may cause 

compaction, destroy bonds between interstitial solids and will consequently have an adverse 

effect on the representativeness of results.  Regarding compaction, it should be ensured that 

after insertion of the permeameter cell the sample level on the inside of the tube is at a 

similar level to the media on the outside of the tube.  Any discrepancy between these two 

levels suggests that sample compaction has occurred and the experiment would be better 

conducted at a new point close by.   
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4.3. Conclusions 

A specification was developed for a method that would enable the three-dimensional spatial 

variation of hydraulic conductivity in a HSSF TW to be measured in situ and by a single 

operator.  Several existing experimental methods were assessed on their ability to meet the 

specification, including: slug tests, pumping tests, water level surveying, borehole tests, 

infiltration tests, the laboratory permeameter, the modified cube method, direct porosity 

measurements, time domain reflectometry, capacitance probes, solids assays, tracer 

breakthrough curves and internal tracing.  None of the existing methods were able to 

achieve the specification, which resulted in the development of a novel apparatus: the Aston 

Permeameter.  The Aston Permeameter makes it possible, for the first time, to delineate 

vertical variations in hydraulic conductivity in HSSF TWs.  The apparatus for the 

permeameter will enable measurements across a wide range of media hydraulic 

conductivities and can therefore be effectively utilised in both clean and clogged gravels.  

The apparatus is low cost, portable and robust, can be operated by one person with 10 litres 

of water or less, and most importantly complies with Severn Trent site safety policy. 

The accuracy, repeatability and potential sources of error for the method were investigated, 

and it was concluded that measured hydraulic conductivity values are accurate to within 

±30 %.  This is because it is difficult to minimise or approximate the uncertainty associated 

with forcing the permeameter cell into the gravel and impacting the structural integrity of 

the sample.  However, given the fact that hydraulic conductivity varies by several orders of 

magnitude in clogged systems, and most in situ hydraulic conductivity tests are invasive, it 

was deemed that The Aston Permeameter technique is adequate for the purpose of this 

study. 

The apparatus will now be used to survey numerous HSSF TWs in the Severn Trent Water 

service area and three HSSF TWs operated by EcoCheck LLC in Minnesota, US. 
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5. Experimental Results 

This Chapter provides the results obtained from experimental investigations into Horizontal 

Subsurface Flow Treatment Wetlands (HSSF TWs) using The Aston Permeameter (as 

introduced in Chapter 4).  The test explores spatial variations in media hydraulic conductivity 

in all three dimensions.  By applying the test at numerous different sites it is hoped to 

improve understanding regarding how design and operational factors affect clogging, and 

provide data to calibrate the model derived in Chapter 3. 

The test was applied at numerous HSSF TWs operated by Severn Trent, some several times 

to monitor how clogging develops over time.  The test was also applied at three HSSF TWs in 

Minnesota, USA.  An inventory of the systems surveyed is given in Table 5-1 which provides 

the details for each system.   

In early tests, vertical variations in hydraulic conductivity were not measured; only 2D 

clogging profiles were obtained.  For these 2D experiments, the obtained results represent 

bulk hydraulic conductivity of the media in the vertical direction.  Subsequent evolution of 

the Aston Permeameter allowed vertical variations in clogging to be identified, and 3D 

clogging profiles to be measured. 

For each site visit a narrative and general observations are provided to help explain the 

results.  Photographs are provided to relate the obtained results to the specific findings at a 

particular site.  Each set of results includes: 

a) A plan view figure that shows the location of experimental sampling points and 

major architectural features of the system.  In these figures the hatched border 

around the white central region represents the rock berms.  Grey shaded area 

indicates the presence of overland flow. 

b) A plan view figure that includes a contour plot to show how the bulk hydraulic 

conductivity in the vertical direction varies over the surface of the bed. 

c) Where 3D hydraulic conductivity profiling was performed, a figure that includes 

four or five contour plots (depending on how many longitudinal transects were 

measured).  The contour plots detail the longitudinal and vertical variations of 

hydraulic conductivity for each transect. 
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Table 5-1 Inventory of the systems surveyed during this study, including salient features: system age at the test date; latitude (Lat.); longitude 

(Long.); length (L); width (W); upstream process (Upst. Proc.); influent distributor type (Infl. Dist); the d50 of the media; Hydraulic 

Loading Rate (HLR); and whether a 2D or 3D survey was performed.  Table continued overleaf. 

 Name UK

US 

Test 

Date 

Lat. Long Age 

yrs 

L, 

m 

W, 

m 

Upst. 

Proc. 

Influent 

Distributor 

d50, 

mm 

HLR, 

m3/d 

2D

3D 

Notes 

1 Ashorne UK Jun 

09 

52.215 -1.553 16 15 18 RBC Backwards 

trough 

5 96 3D Poor reed growth, some 

surface flow 

2 Fenny 

Compton 

UK Mar 

07 

52.175 -1.386 0 12 40 RBC Ports * 7 7 208 2D 

 

Top 0.2 m has partial 

refurb.  Equal influent dist.  

3 Fenny 

Compton 

UK Feb 

08 

52.175 -1.386 1 12 40 RBC Ports * 7 7 208 3D No reed take up by year 1 

4 Fenny 

Compton 

UK Feb 

09 

52.175 -1.386 2 12 40 RBC Ports * 7 7 208 3D Sporadic reed take up by 

year 2 

5 Fenny 

Compton 

UK Mar 

10 

52.175 -1.386 2 12 40 RBC Ports * 7 7 208 3D Better reed establishment, 

some surface flow at inlet 

6 Gaydon UK Apr 

07 

52.177 -1.464 5 15 30 RBC Trough 5 208 2D 

 

Overland flow over 60 % of 

bed 

7 Greens of 

Dellwood 

US Jul 

09 

45.106 -92.981 12 20 15 Septic 

Tank 

Subsurface 

Ports 

10 9.5 3D Some flooding, 6" clay 

mulch layer, small gravel 

8 Jackson 

Meadows 

US Aug 

09 

45.193 -92.785 12 20 30 Septic 

Tank 

Infiltration 

Chamber 

12 20 3D Aerated, dosing at inlet 

and outlet, geomembrane, 

reoriented header 

9 Knightcote UK Mar 

07 

52.187 -1.411 0.5 12 20 RBC Risers * 6 10 67 2D Combined system, surface 

sludge formation 

10 Leek 

Wooton 

UK Jun 

09 

52.315 -1.569 3 16 28 Filter Risers * 5 6 180 3D Good system 
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Table 5-1 Inventory of the systems surveyed during this study, including salient features: system age at the test date; latitude (Lat.); longitude 

(Long.); length (L); width (W); upstream process (Upst. Proc.); influent distributor type (Infl. Dist); the d50 of the media; Hydraulic 

Loading Rate (HLR); and whether a 2D or 3D survey was performed.   

 Name UK

US 

Test 

Date 

Lat. Long Age 

yrs 

L, 

m 

W, 

m 

Upst. 

Proc. 

Influent 

Distributor 

d50, 

mm 

HLR, 

m3/d 

2D

3D 

Notes 

11 Moreton 

Morrell A 

UK Jun 

08 

52.204 -1.556 16 15 15 RBC Risers * 4 5 185 3D Some surface flow 

12 Moreton 

Morrell A 

UK Feb 

09 

52.204 -1.556 16.5 15 15 RBC Risers * 4 5 185 3D Lots of surface flow 

13 Moreton 

Morrell A 

UK Sep 

09 

52.204 -1.556 17 15 15 RBC Risers * 4 5 185 3D Lots of surface flow 

14 Moreton 

Morrell B 

UK Oct 

09 

52.204 -1.556 17 15 15 RBC Risers * 4 5 0 3D Receiving NO flow 

15 Northend UK Jun 

09 

52.174 -1.431 17 14 40 RBC Risers * 8 5 190 3D Reeds trimmed and 

removed, 10% surface flow 

16 Northend UK Apr 

07 

52.174 -1.431 15 14 40 RBC Risers * 8 5 196 2D 

 

20% surface flow, bad 

regrowth 

17 Rowington UK Jul 

09 

52.325 -1.726 8 13 53 Filter Ports * 6 6 280 3D 40% surface flow, good 

growth 

18 Snitterfield UK Aug 

09 

52.241 -1.677 15 16 30 RBC Risers * 6 5 275 3D 80% surface flow, good 

growth 

19 Tamarack 

Farms 

US Jul 

09 

45.018 -92.865 8 33 18 Septic 

Tank 

Subsurface 

Ports 

10 10 3D Hydrogen peroxide, been 

running at low level 

20 Weston 

Under 

Wetherley 

UK May 

09 

52.315 -1.457 6 16 46 Filter Trough 6 154 3D Poor reed growth, 

operating with flooded 

surface, surface clog layer 
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The contour plots are produced using COMSOL Multiphysics 3.5 FEA software (COMSOL A.B., 

Sweden), which automatically performs linear extrapolations between measured values at 

each sampling point to produce surface plots.  The contour levels represent order of 

magnitude changes in hydraulic conductivity.  Each one of these plots uses the same colour 

palette for contours, which are expressed logarithmically: 

 Black: -2 to -1 (0.01 m/d to 0.1 m/d) 

 Brown: -1 to 0 (0.1 m/d to 1 m/d) 

 Red: 0 to 1 (1 m/d to 10 m/d) 

 Orange: 1 to 2 (10 m/d to 100 m/d) 

 Yellow: 2 to 3 (100 m/d to 1,000 m/d) 

 White: 3 to 4 (1,000 m/d to 10,000 m/d) 

 

For tests in the UK, the surface clogging layer was not removed and therefore the vertical 

hydraulic conductivity profile also includes the hydraulic conductivity of the surface layer.  

This is done because in Severn Trent HSSF TWs the flow must infiltrate through the surface 

layer and therefore the hydraulic conductivity of the surface is an important hydrological 

component.  Regarding UK beds, a 1 m clearance from where the gravel meets the rock 

berm was generally used to define the perimeter of the sampling net.  In Minnesota, 

wastewater is loaded directly into the subsurface, and therefore the 0.3 m thick insulating 

mulch layer on the surface of the gravel plays no hydrological role in the system.  The 

surface layer was removed at sampling locations in US systems so that the test was only 

performed on the subsurface gravel media.     

Generally speaking sampling matrices consisted of 12-20 points, arranged in 3X4, 4X4 or 5X4 

patterns depending on the geometry of the bed, and were distributed to evenly cover as 

much of the bed surface as possible.  Hydraulic conductivities were measured down to a 

0.4 m depth, which provided a 0.2 m safety clearance between the serrated end of the 

permeameter cell and the plastic liner.  In 3D tests, four vertical measurements at 0.1 m 

intervals from the surface of the bed were recorded at each sampling point, to provide 

measurements down to a 0.4 m depth.  

Results are reported according to the chronology of the tests, although sites where multiple 

investigations were performed over time have their results grouped together.  Copies of the 

measurements taken during each test are included in Appendix A. 
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5.1. Northend (February 2007) 

By April 2007 the HSSF TW at Northend had been providing tertiary support to a pair of RBCs 

for 15 years.  Just prior to the survey the reeds had been harvested to allow GPR based 

clogging detection to be trialled.  As such, the only visible aboveground vegetation was the 

cut stems of the reeds, although their relatively high density suggested a well-developed 

root mat.  Northend is a 14 m long by 40 m wide system with influent distribution via six 

vertical risers that are width distributed along the inlet width (Figure 5-1).  The influent entry 

point is situated in the centre of the influent distributor and the effluent exit point is located 

at one end of the effluent collector.  Figure 5-1 also details the 4X3 matrix of sampling points 

used in the experiment, which covered the central 20 m of the gravel media and most of the 

length.  In subsequent tests the matrix was assigned to cover a larger fraction of the bed 

volume.  At the time of the test a small region of overland flow was identified at the inlet in 

the vicinity of Transect A, as indicated by the grey shaded area in Figure 5-1.   

The 2D vertical hydraulic conductivity profile obtained from the results is portrayed in Figure 

5-2.   For the region of the system that was surveyed, the vertical hydraulic conductivities of 

the different cores varied by three orders of magnitude.  The lowest conductivity of 8 m/d 

was detected at Point A1 in the vicinity of the overland flow, which was the only value below 

10 m/d.  The vast majority of the bed had hydraulic conductivity between 10 and 100 m/d, 

although the three points adjacent to the outlet pipe displayed hydraulic conductivities 

above 100 m/d.  The highest conductivity recorded was 590 m/d at Point B4.  
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Figure 5-1  Plan view of Northend HSSF TW showing major architectural features and 

locations of sampling points for the February 2007 test.  The influent 

distributor comprises 6 horizontal ports equally distributed along the length 

of the inlet pipe between Transects A and C.  The hatched border around the 

white central region represents the rock berms.  The grey shaded area 

indicates the occurrence of overland flow. 

 

 

Figure 5-2 Northend 2D hydraulic conductivity profile at February 2007.  The coloured 

contours represent the bulk vertical hydraulic conductivity profile in the top 

0.4 m of media, which is based on a linear interpolation between the results 

obtained from each sampling point.   
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5.2. Gaydon (March 2007) 

The wastewater treatment plant at Gaydon uses a 15 m long by 30 m wide HSSF TW to 

provide tertiary treatment for a combined humus tank/RBC.  By March 2007 this wetland 

was 5 years old and showing good plant growth, with reeds generally greater than 2 m in 

height.  Figure 5-3 illustrates the system and the distribution of sampling points.  The inlet 

distributor is a forward facing ‘v-notch trough’, which receives load from the secondary 

stage at an entry point located roughly halfway between Transect A and B.  Conversely, the 

effluent exit point is located on the end of the effluent collector closest to Transect C.  At the 

time of the test, large areas of the surface at Gaydon were affected by overland flow, as 

illustrated by the grey shaded area in Figure 5-3.   

The 2D vertical hydraulic conductivity profile is shown in Figure 5-4.  Up to 5.5 m from the 

inlet the entire width of the bed has hydraulic conductivity below 10 m/d.  For Transect A 

and B this phenomenon extends up to 9.5 m from the inlet, although the corresponding 

location for Transect C was comparatively less clogged with a hydraulic conductivity value 

two orders of magnitude higher than Points A3 and B3.  Hydraulic conductivities for those 

cores adjacent to the effluent collector were typically two orders of magnitude higher than 

elsewhere in the bed, with values between 67 and 109 m/d.  The lowest hydraulic 

conductivity measured in the system was 0.34 m/d at Point C1, whilst the highest value was 

109 m/d measured at Point B4. 
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Figure 5-3 Plan view of Gaydon HSSF TW showing major architectural features and 

locations of sampling points for the February 2007 test.  The influent 

distributor comprises a forward facing trough with v-notches at numerous 

points along the bed width.   

 

 

 

 

Figure 5-4 The 2D vertical hydraulic conductivity profile measured at Gaydon. 
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5.3. Knightcote (March 2007) 

Knightcote is the only combined tertiary and storm wastewater treatment HSSF TW to be 

considered during this study, all the rest being tertiary only.  Knightcote is 12 m long by 20 m 

wide, and the inlet comprises six vertical risers equally distributed along the width at the 

inlet.  This information, along with the sample point layout is summarised in Figure 5-5.  The 

influent entry point and effluent exit point are both located on the same side of the bed, 

adjacent to Transect A.  The wetland was surveyed five months after it was fully refurbished 

and was already displaying symptoms of clogging caused by stormwater solids and uneven 

influent distribution.  The vast majority of the flow was emanating from the two vertical 

risers closest to the influent entry point, near Transect A.  This had resulted in a region of 

overland flow that stretched from inlet to outlet along Transect A and across most of the 

inlet region (Figure 5-6). 

Figure 5-7 illustrates the 2D vertical hydraulic conductivity profile for Knightcote.  The lowest 

hydraulic conductivity in the bed is 0.7 m/d and was measured for Point A2.  Generally 

speaking, hydraulically conductivity down Transect A was below 100 m/d, which coincided 

with the occurrence of overland flow.  In contrast, large areas of Transects B and C 

downstream from the inlet had hydraulic conductivity above 1,000 m/d.  The highest 

hydraulic conductivity is 1,928 m/d and was measured at point B2.  Adjacent to the inlet, 

conductivity values were on the order of 10 to 100 m/d. 

A revisit to the system a few weeks after the survey showed that the surface sludge layer 

had largely mineralised (Figure 5-8), reducing in volume and resulting in the disappearance 

of overland flow.  This occurred because the weather had been predominantly sunny and 

the bed surface was able to adequately mineralise in the absence of plant shading.  The site 

was not resurveyed but the hydraulic benefit is clear by comparing Figure 5-6 with Figure 

5-8. 
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Figure 5-5 Plan view of Knightcote HSSF TW showing major architectural features and 

locations of sampling points.  The influent distributor comprises six vertical 

risers evenly distributed along the inlet pipe.  The grey shaded area indicates 

the occurrence of overland flow. 

 

 

    

Figure 5-6 (Left) Sludge accumulation on the surface of Knightcote just five months 

after refurbishment, which has resulted in surface flow.  This picture is taken 

looking down Transect A from inlet to outlet.  A vertical riser can be seen in 

the forefront.  The poor reed growth is a symptom of planting just prior to 

winter. (Right) Sludge accumulations within the upper layer of the gravel 

media at Point A2. 
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Figure 5-7 The 2D vertical hydraulic conductivity profile at Knightcote 

 

 

 

Figure 5-8 The largely mineralised surface sludge layer at Knighcote just four weeks 

after the site was surveyed.  The picture is taken behind Point C4 looking 

towards Point A1. 
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5.4. Fenny Compton (February 2007) 

Fenny Compton is a 12 m long by 4 m wide system that provides tertiary support for an RBC.  

The major system features and layout of sampling locations are given in Figure 5-9.   At the 

time of the test Fenny Compton had just undergone a partial refurbishment, whereby the 

top 200 mm of clogged gravel media had been removed and replaced with clean gravel.  It 

was considered that the bottom 400 mm of gravel was not clogged enough to require 

replacement, and had been left intact.  The spec of the original gravel was 3-6 mm and the 

new upper gravel layer was 6-12 mm.  Despite the partial refurbishment it was assumed that 

Fenny Compton represented a good benchmark upon which to base the hydraulic 

conductivity of a new system.  The influent distribution system at Fenny Compton comprises 

6 horizontal ports connected to the inlet pipe.  As evident in Figure 5-9 the effluent 

discharge is located on the opposite corner of the bed to where the influent enters the inlet 

pipe.   A 4X3 sampling matrix was used as indicated in Figure 5-9.  The results of the 2D 

hydraulic conductivity survey are shown in Figure 5-10.   

 

Figure 5-9 Plan view of Fenny Compton HSSF TW showing major architectural features 

and locations of sampling points for the February 2007 test.  The influent 

distributor comprises 6 horizontal ports equally distributed along the length 

of the inlet pipe between Transects A and C.   

 

Generally speaking, the gravel hydraulic conductivity at Fenny Compton was high, with 

values varying between 57 m/d at point C1 and 6,035 m/d at point C3.  However, sampling 

point C2 had as uncharacteristically low hydraulic conductivity of approximately 0.01 m/d.  

Excavations at this point showed that the gravel material contained a large quantity of 

inorganic fines typical of unwashed gravel.  This may have been introduced during 

construction.  There was also a general increase in conductivity from inlet to outlet 

demonstrated by values along sampling plane 4 being between 1,907 m/d and 4,572 m/d. 



  

186 
 

 

Over the test period it was observed that the majority of the influent was distributed 

through the two ports closest to Transect A, and the ports nearer Transects B and C received 

less flow.  Early signs of uneven clog matter formation in front of the different ports are 

demonstrated in Figure 5-11, after only a few weeks of operation. 

 

Figure 5-10 The 2D vertical hydraulic conductivity profile at Fenny Compton 

 

 

Figure 5-11 Uneven clog matter development, due to uneven influent distribution, in 

front of the horizontal ports at Fenny Compton, a few weeks after 

refurbishment. 
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5.5. Fenny Compton (February 2008) 

The same system at Fenny Compton was revisited a year after the February 2007 test to 

observe the development of clogging over the first year of operation. Hydraulic conductivity 

measurements were performed on a 4X5 sampling matrix (Figure 5-12) using the then newly 

developed 3D surveying method.  The 2D vertical hydraulic conductivity profile is shown in 

Figure 5-13, and the 3D hydraulic conductivity results comprising the longitudinal-vertical 

hydraulic conductivity profiles of Transects A to D, are shown in Figure 5-14. 

 

 

Figure 5-12 The locations of sampling points for the February 2008 test at Fenny 

Compton. 

 

 

 

Figure 5-13 The 2D vertical hydraulic conductivity profile for Fenny Compton at February 

2008. 
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Figure 5-14 The 3D hydraulic conductivity profile of Fenny 

Compton at February 2008.  The longitudinal versus 

vertical hydraulic profiles are shown for the four 

transverse cross-sections that correspond to sampling 

Transects A to D.  Sampling was performed to a 0.4 m 

depth below the surface of the bed and results are 

linearly interpolated between sampling points.  

Colour contours indicate orders of magnitude of 

media hydraulic conductivity. 

 

No results were obtained for Points B4 and D1 and data used for these points are inearly 

interpolated from the results obtained for surrounding points.  The 2D profile illustrated in 

Figure 5-13 is similar to that obtained in 2007 (Figure 5-10), and show a general increase 

from 100-1,000 m/d at the inlet to 1,000-10,000 m/d at the outlet.  The 3D results shown in 

Figure 5-14 support the observation of localised clogging at sampling point D2, finding 

hydraulic conductivity values as low as 0.03 m/d at a depth 0.3 m below the gravel surface.  
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This agrees with the findings of the 2007 test at Fenny Compton, which indicated localised 

clogging at point D2 as a result of construction fines occupying the pore spaces in between 

the gravel particles.  Apart from Transect D, the other Transect profiles suggest that 

hydraulic conductivity increases by one to two orders of magnitude from inlet to outlet.  

Furthermore clogging generally appears to be most apparent at depths of 0.1 to 0.3 m below 

the gravel surface, which corresponds to the transition between the 6 - 12 mm gravel in the 

upper layer and the 3 - 6 mm gravel in the lower layer.  The conductivity values between 

these depths were often being 1 to 2 orders of magnitude lower than those measured in the 

rest of the vertical cores.  Apart from point D2, the lowest hydraulic conductivity value found 

on the bed was 1.05 m/d which corresponded to the top 0.1 m of gravel at point D1.  The 

highest hydraulic conductivity of 83,000 m/d was recorded through the top 0.1 m of gravel 

at point C5. 

It was noted that reed growth during the first year had been poor and establishment across 

the bed was isolated to sporadic patches.  For example, the region downstream of the low 

hydraulic conductivity region at point D2 was practically bare of reeds, whereas the zone 

upstream of point D2 exhibited far better establishment (Figure 5-15).  Visual survey 

revealed the establishment of surface clogging near the influent distributor ports, which is 

illustrated in Figure 5-15 for the port closest to Transect D. 

 

     

Figure 5-15 (Left) Sporadic reed establishment at Fenny Compton after one year of 

growth.  The picture is taken looking along Transect D from outlet to inlet.  

The region in the forefront with sparse reed population corresponds to 

sampling points D3 and D4, whereas the comparatively lush growth at 

points D1 and D2 can be seen in the background.  (Right) Surface clogging 

development in front of the influent distributor port closest to Transect D. 
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5.6. Fenny Compton (February 2009) 

A 4X4 sampling matrix was utilised for the 2009 sampling test, as described in Figure 5-16.  

Prior to the test, the weather had been snowy and the treatment plant was receiving a large 

volume of snow-melt.  The vertical 2D and 3D interpolated hydraulic conductivity profiles 

are given in Figure 5-17 and Figure 5-18 respectively.  Compared with the 2D profiles for the 

previous two years, the 2009 results show a general decline in hydraulic conductivity over 

the entire bed, with no results exceeding 1000 m/d.  Hydraulic conductivity in the inlet 

regions of Transects A and D had decreased to 0.64 m/d and 0.18 m/d respectively.  

Furthermore, the low hydraulic conductivity values associated with point D2 were now also 

apparent at point C2, where the core conductivity was 0.06 m/d.  A general increase of 2-3 

orders of magnitude hydraulic conductivity is evident from inlet to outlet. 

 

 

Figure 5-16 The locations of sampling points for the February 2009 test at Fenny 

Compton 

 

 

Figure 5-17 The 2D vertical hydraulic conductivity profile for Fenny Compton at February 

2009 
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Figure 5-18 The 3D hydraulic conductivity profile of Fenny 

Compton at February 2009.  The longitudinal versus 

vertical hydraulic profiles are shown for the four 

transverse cross-sections that correspond to sampling 

Transects A to D.   

 

 

The 3D results show a significant change from the year before.  The vertical distribution of 

hydraulic conductivity at the inlets of Transect A and B is relatively uniform.  The vertical 

profile at C2 confirms that a zone of very low hydraulic conductivity has developed across 

the entire reactor depth, which is most significant in the top 0.1 m of gravel where the 
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hydraulic conductivity had dropped to 0.03 m/d.  The profile for the downstream half of 

Transect D indicates that a small increase in clogging has occurred above 0.1 m and below 

0.4 m depth, with negligible deviation from clean media values between these bounds.  

Clogging may have developed in this way because the inlet region adjacent to point D1 

receives a disproportionately large fraction of the influent flow.  Once in the subsurface, this 

flow takes the path of least resistance around the clogged media at the 0.3 m depth of point 

D2, and preferential flow-paths occur through point C2.  This has caused the hydraulic 

conductivity at point C2 to decrease by two orders of magnitude between 2008 and 2009. 

The general decrease in media hydraulic conductivity in the top 0.1 m of the bed can be 

attributed to plant detritus that has accumulated on the surface of the bed after winter 

plant die-off.  This is confirmed by Figure 5-19 (right), which also shows that reed growth in 

the downstream areas of Transect C and D is still poor (left).  Second year reed growth 

generally exceeded first year growth, with reed crop height exceeding 1.5 m in places.   

 

    

Figure 5-19 (Left) Continued evidence of poor reed establishment in the downstream 

half of Transects C and D, at Fenny Compton two years after planting.  The 

photo is taken from sampling point D4 looking towards sampling point A1, 

such that the poorly vegetated foreground roughly encompasses points D4 

and C3.  (Right) Surface clog matter accumulations after two years 

operation, mainly comprising plant detritus and bio-solids washout from 

upstream processes.  A small amount of surface ponding is evident.  
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5.7. Fenny Compton (March 2010) 

A 5X4 sampling matrix was utilised for the 2010 test at Fenny Compton, as described in 

Figure 5-20.  The vertical 2D and 3D interpolated hydraulic conductivity profiles are given in 

Figure 5-21 and Figure 5-22 respectively.  Prior to the test the weather had been relatively 

dry and sunny.  Compared with the 2D profiles for the February 2009 test, the 2010 results 

show a general increase in hydraulic conductivity over the entire bed, with no results below 

1 m/d.  A general increase of 3 orders of magnitude hydraulic conductivity is evident from 

inlet to outlet and the majority of the bed has vertical hydraulic conductivity between 

10 m/d and 1000 m/d.  The hydraulic conductivity at the inlet adjacent to Transect A, C and 

E was between 1 m/d and 10 m/d.  The hydraulic conductivity in the vicinity of point E2 has 

increased by three orders of magnitude to 75 m/d. 

   

 

Figure 5-20 The locations of sampling points for the March 2010 test at Fenny Compton 

 

 

Figure 5-21 The 2D vertical hydraulic conductivity profile for Fenny Compton at March 

2010 
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Figure 5-22 The 3D hydraulic conductivity profile of Fenny Compton at March 2010.  The 

longitudinal versus vertical hydraulic profiles are shown for the five 

transverse cross-sections that correspond to sampling Transects A to E.   
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No measurements were made of hydraulic conductivity below 1 m/d during the 2010 3D 

profiling of Fenny Compton.  The 3D hydraulic conductivity profiles illustrated in Figure 5-22 

confirm that even the low hydraulic conductivity that was previously measured at a 0.3 m 

depth at point E2 had increased to 44 m/d.  Reeds were well established at point E2 by 2010 

and investigation confirmed that roots had penetrated to a depth of 0.3 m below the 

surface, which would serve to disrupt the fines accumulated in the gravel pore spaces and 

increase hydraulic conductivity through the media. 

Also notable by comparing Figure 5-18 with Figure 5-22 is that hydraulic conductivity in the 

top 0.1 m of gravel has returned to between 100 and 10,000 m/d across the majority of the 

bed.  In 2010 there was less evidence of plant detritus on the surface of the system and the 

surface layer appeared well mineralised, which can be attributed to the period of relatively 

dry sunny weather that preceded the test.  The hydraulic conductivity at a 0.4 m depth in 

the vicinity of the effluent collector had decreased to below 1,000 m/d for the first time.  

This suggests that clogging is increasing in the vicinity of the effluent collector, perhaps 

because the effluent collector is the focal point for all flow leaving the bed. 
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5.8. Moreton Morrell (June 2008) 

Tertiary treatment support is provided to two RBC units at Moreton Morrell, using four 

identical, square HSSF TWs with sides of 15 m.  The influent distributors consist of four 

vertical risers evenly spaced along the width of the inlet pipe.  A flow splitter is used to 

distribute the influent between the four beds.  One bed in particular showed symptoms of 

advanced stage clogging, including thick surface sludge accumulation, extensive overland 

flow and blocked influent distributors, and was therefore selected for investigation.  Figure 

5-23 details the major architectural features of the Moreton Morrell system, and the 

arrangement of the 4X4 sampling matrix used for the survey.  As evident in Figure 5-23 the 

effluent discharge is transversely located on the same side of the bed to where the influent 

enters the inlet pipe.  The 2D and 3D hydraulic conductivity profiles are given in Figure 5-24 

and Figure 5-25 respectively. 

The 2D vertical hydraulic profile presented indicates that clogging generally increases by 

three to four orders of magnitude from inlet to outlet.  Values at the inlet are between 0.1 

m/d and 10 m/d.  The 3D hydraulic conductivity results support that hydraulic conductivity is 

two to three orders of magnitude lower at the inlet than elsewhere in the bed, with values 

between 0.01 m/d and 10 m/d, and is distributed relatively uniformly across the vertical 

depth.  Downstream hydraulic conductivity values vary between 100 m/d and 10,000 m/d, 

and on average the upper gravel layers appear more clogged than lower depths.  Below 

0.3 m, the hydraulic conductivity along Transect A is an order of magnitude lower than 

elsewhere in the bed.  The hydraulic conductivity across the length of Transect D is generally 

an order of magnitude greater than the hydraulic conductivity across the other three 

transects.   

The reed establishment at Moreton Morrell was relatively uniform with reed height 

exceeding 2.5 m near the inlet.  The locations of the four vertical risers closely corresponded 

to the locations of the four Transects.  It was noted that those risers at Transects C and D 

were completely blocked with bio-solids.  The majority of the flow was emanating from the 

riser at Transect A, with a small fraction emanating from the riser at Transect B.     
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Figure 5-23 Plan view of Moreton Morrell HSSF TW showing major architectural features 

and locations of sampling points for the June 2008 test.  The influent 

distributor comprises 4 vertical risers equally distributed along the length of 

the inlet pipe between Transects A and D.   

 

 

 

Figure 5-24  The 2D vertical hydraulic conductivity profile of Moreton Morrell at July 

2008.   
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Figure 5-25 The 3D hydraulic conductivity profile of Moreton 

Morrell at June 2008.  The longitudinal versus vertical 

hydraulic profiles are shown for the four transverse 

cross-sections that correspond to sampling Transects A 

to D.  Sampling was performed to a 0.4 m depth below 

the surface of the bed and results are interpolated 

between sampling points.  Colour contours indicate 

order of magnitude divisions in hydraulic conductivity. 
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5.9. Moreton Morrell (February 2009) 

The same system at Moreton Morrell was revisited in February 2009 and resurveyed.  High 

winter flow-rates had increased the extent of overland flow on the bed, as indicated in 

Figure 5-26, which also illustrates the sampling matrix used (identical to the sampling matrix 

used in June 2008).  The results of the 2D and 3D hydraulic conductivity surveys are given in 

Figure 5-27 and Figure 5-28, respectively. 

 

Figure 5-26 Plan view of Moreton Morrell HSSF TW showing major architectural features 

and locations of sampling points for the February 2009 test.  The region of 

overland flow has extended compared to the situation in July 2008.   

 

Figure 5-27 The 2D vertical hydraulic conductivity profile of Moreton Morrell at February 

2009.   
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Figure 5-28 The 3D hydraulic conductivity profile of Moreton 

Morrell at February 2009.  The longitudinal versus 

vertical profiles are shown for the four transverse 

cross-sections that correspond to sampling Transects 

A to D. 

 

 

 

According to the 2D hydraulic conductivity profile (Figure 5-27) clogging in the system has 

worsened between the period June 2008 and February 2009.  Previously, hydraulic 

conductivity below 10 m/d was only detected in the vicinity of the inlet; however, 9 out of 

the 16 sampling locations tested in 2009 exhibited hydraulic conductivity below 10 m/d.  The 

majority of Transect A was covered by overland flow and hydraulic conductivity only 
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increased by two orders of magnitude from 0.1 m/d to 100 m/d.  Comparisons between 

transects shows that hydraulic conductivity increases by two orders of magnitude in the 

transverse direction between Transect A and Transect D.  This effect was not apparent for 

the June 2008 experiment. 

Comparison between the June 2008 (Figure 5-25) and February 2009 (Figure 5-28) transect 

profiles indicates that along Transects C and D  the increase in clogging has mainly been in 

the upper surface, where hydraulic conductivity values have dropped from between 100 and 

1,000 m/d to between 1 and 100 m/d.  Clogging has spread both vertically and horizontally 

along Transects A and B, which is particularly apparent along the 6-9 m mid-section, where 

values have decreased by 2 to 3 orders of magnitude between sampling periods. The upper 

gravel media tends to be more clogged than the lower gravel media in Transects A and B.  

Visual survey confirmed that influent distribution risers still suffer variable degrees of 

clogging, with the two risers at Transects A and B receiving all of the flow (Figure 5-29).   

 

 

 

Figure 5-29 (Left) Flowing inlet riser at Transect A.  The extent of surface ponding and 

washout of sanitary storm solids is identifiable.  (Right) An inlet riser at 

Transect D which is clogged by bio-solids. 
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5.10. Moreton Morrell (September 2009) 

Moreton Morrell was revisited at the end of September 2009 and resurveyed using the same 

sampling matrix as the previous two tests.  The profile of overland flow was very similar to 

that reported in June 2008 in Figure 5-23.  The 2D vertical and 3D hydraulic conductivity 

profiles are presented in Figure 5-30 and Figure 5-31, respectively. 

Comparison between Figure 5-30 and Figure 5-27 indicates that clogging at Moreton Morrell 

has again worsened over the period February to September 2009.  No vertical core hydraulic 

conductivity values above 100 m/d were found and over three quarters of the samples now 

exhibit values below 10 m/d.  Similar to February, highest values were found at point D4, 

and hydraulic conductivity generally deceased by two orders of magnitude in the 

longitudinal and transverse direction. 

The 3D hydraulic conductivity results presented in Figure 5-31 confirm that clogging across 

all transects is more severe in October than in February.  For Transects A and B, the upper 

0.3 m of media in the first half of the bed generally has hydraulic conductivity below 1 m/d.  

Hydraulic conductivity above 10 m/d was only detected at 0.4 m depths at points 

downstream of the inlet.  Conductivity of the upper media has continued to decrease for all 

points along Transects C and D.  Along Transect C the vast majority of the bed now has 

hydraulic conductivity below 100 m/d. 

 

 

Figure 5-30 The 2D vertical hydraulic conductivity profile for Moreton Morrell at 

September 2009. 
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Figure 5-31  The 3D hydraulic conductivity profile of Moreton Morrell 

at September 2009.  The longitudinal versus vertical 

profiles are shown for the four transverse cross-sections 

that correspond to sampling Transects A to D. 
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5.11. Moreton Morrell Control Case (October 2009) 

When Moreton Morrell wastewater treatment plant was first visited in June 2008, all four 

HSSF TW cells were receiving flow and exhibiting symptoms of clogging.  Between June 2008 

and October 2009, flow was stopped to the cell adjacent to that profiled in the three studies 

previously described.  The control cell was surveyed in October 2009 after 15 months of 

resting.  The hypothesis is that at October 2009 clogging in the control cell would be less 

than clogging in the operational cell because the control case had not been treating 

wastewater, and perhaps clogging in the control case at October 2009 would be less than 

clogging in the operational cell at June 2008 because resting the bed would enable clog 

matter to mineralise and reverse clogging in the system.  Despite the lack of flow, the system 

had maintained a relatively good reed cover that was approximately 1 m tall.  The 

dimensions of the cell are akin to those of the other Moreton Morrell cell, and a 4X3 

sampling matrix was used, as illustrated in Figure 5-32.  The only difference between the 

systems is the side of the bed along which flow is loaded and discharged.  The 2D vertical 

and 3D hydraulic conductivity profiles are shown in Figure 5-33 and Figure 5-34, 

respectively. 

As evident in Figure 5-33, 11 out of the 12 sampling points had hydraulic conductivity values 

between 100 and 1,000 m/d.  The 3D results indicate that hydraulic conductivity only varies 

across two orders of magnitude, between the minimum of 24 m/d measured at a 0.2 m 

depth at point A1, and a maximum of 9,150 m/d measured at a 0.4 m depth at points A4.  

Generally speaking, the lowest hydraulic conductivity values occur between the 0.1 m and 

0.3 m depth at points close to the inlet.  The highest hydraulic conductivity values occur 

between 0.3 m and 0.4 m depth at points close to the outlet.  The clogging in the control 

case is far less severe than that measured in the other Moreton Morrell cell, despite the fact 

that the cells were commissioned at the same time.  
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Figure 5-32 Plan view of the HSSF TW at Moreton Morrell which was a ‘zero-flow’ 

control case, showing major architectural features and locations of sampling 

points.  

 

 

Figure 5-33 The 2D vertical hydraulic conductivity profile for the control case at Moreton 

Morrell. 
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Figure 5-34 The 3D hydraulic conductivity profile of the Moreton Morrell control case.  

The longitudinal versus vertical hydraulic profiles are shown for the four 

transverse cross-sections that correspond to sampling Transects A to C.  
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5.12. Weston Under Wetherley (May 2009) 

The HSSF TW at Weston Under Wetherley provides tertiary treatment after two trickling 

filters.  The system is 16 m long by 46 m wide, and is fed by an influent distribution trough 

with numerous v-notch weirs cut along its length. At the time of the test, the system was 

approximately 5 years old and had been operating with a flooded water level.  The water 

level was dropped to below the gravel surface to allow the system to be surveyed using a 

4X5 sampling matrix, as indicated in Figure 5-35.  The 2D vertical and 3D hydraulic 

conductivity profiles are shown in Figure 5-36 and Figure 5-37, respectively. 

 

 

Figure 5-35 Plan view of the HSSF TW at Weston Under Wetherley, showing the major 

architectural features and the locations of sampling points for the hydraulic 

conductivity survey.  The influent distributor is of the ‘v-notch trough’ 

variety. 

 

 

Figure 5-36 The 2D vertical hydraulic conductivity profile at Weston Under Wetherley. 
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As evident in Figure 5-36, the points that flow enters the influent distributor exist the 

effluent collector are located on a similar transverse plane; roughly between Transects B and 

C.  According to Figure 5-36, the vertical hydraulic conductivity measured at different 

sampling locations varies by five orders of magnitude overall.  At the inlet region across 

Transects A, B and C the measured hydraulic conductivity was below 1 m/d.  Generally 

speaking values increase by four orders of magnitude from inlet to outlet, although the 

media at points D3 and D4 had hydraulic conductivities above 1000 m/d.   

It can be seen in Figure 5-37 that Transects B and C are those worst affected by clogging, 

with hydraulic conductivity below 0.1 m/d at the surface close to the inlet region.  Clogging 

across Transects D and E is comparatively less severe than elsewhere in the bed, with 

hydraulic conductivity being consistently above 1000 m/d at lower depths downstream of 

6 m.  The contours illustrate that the most severe clogging detected across each measuring 

point was often near the gravel surface, with hydraulic conductivity values at lower depths 

often being one to two orders of magnitude greater.  The minimum hydraulic conductivity of 

0.04 m/d corresponded to a 0.2 m depth at point C1. 

Notable features from the visual survey of Weston Under Wetherley are given in Figure 

5-38.  It was found that reed establishment was sporadic, with little vegetation in the region 

bounded by points C2 to E3.  Furthermore, invasive trees had colonised certain parts of the 

bed.  The long term flooded operation had led to the deposition of a fine surface sludge 

layer over most of the bed.  Figure 5-38 provides evidence of holes created in the sludge 

layer by macro-invertebrates and wind-rocking of reed stems, which would improve surface 

infiltration rates.  In downstream regions where the surface deposit was relatively thin the 

gravel underneath appeared relatively clean.  The thinnest parts of the surface layer 

mineralise rapidly after the bed was drained. 
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Figure 5-37 The 3D hydraulic conductivity profile of Weston Under Wetherley.  The 

longitudinal versus vertical hydraulic profiles are shown for the four 

transverse cross sections that correspond to sampling Transects A to E.  

Sampling was performed to a 0.4 m depth below the surface of the bed and 

results are interpolated between sampling points.  Colour contours indicate 

order of magnitude divisions in hydraulic conductivity. 
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Figure 5-38 (Left) The constant head permeameter equipment in-situ at Weston Under Wetherley.  This photograph was taken at point D3 looking 

towards point E2.  As evident the reed growth in this region is non-existent.  Evidence of the mineralised surface layer can be seen in the 

mid-ground between the exposed gravel and reeds. (Middle) Relatively clean gravel below the surface deposit at point A4.  (Right) Holes 

through the surface deposit created by macro-invertebrates and wind induced reed rocking. 
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5.13. Ashorne (June 2009) 

By June 2009 the HSSF TW as Ashorne was 16 years old and provided tertiary treatment 

after one upstream RBC.  The system is 15 m long by 18 m wide and is equipped with a 

reverse facing ‘v-notch trough’ style influent distributor.  Details of the system layout and 

4X4 sampling matrix used for the test are given in Figure 5-39.  Results from the 2D and 3D 

hydraulic conductivity survey are given in Figure 5-40 and Figure 5-41, respectively. 

As evident in Figure 5-39, Ashorne was exhibiting a small degree of overland flow in the 

corner closest to the wastewater entry point.  The discharge point is situated on the 

opposite side of the system to the entry point.  Reed growth at Ashorne was generally poor 

with low stem density and few reeds exceeding 1 m in height.  The lack of plant shade had 

dried out the surface of the bed wherever overland flow was absent.   

The 2D vertical hydraulic conductivity profile presented in Figure 5-40 illustrates a four order 

of magnitude variation in values, moving in the direction from wastewater entry point to exit 

point.  Media adjacent to the inlet and the region corresponding to overland flow have 

hydraulic conductivity below 1 m/d.  Adjacent to the outlet and in the corner by the exit 

point, hydraulic conductivity is between 100 and 1,000 m/d.  At points B1 and D2, vertical 

core hydraulic conductivities lower that 0.1 m/d were detected. 

An interesting effect can be observed In the 3D hydraulic conductivity results illustrated in 

Figure 5-41.  All transects demonstrate that the lowest hydraulic conductivity (below 

0.1 m/d) in the vicinity of the inlet occurs in the top 0.2 m gravel.  However, downstream of 

the inlet Transects A and B indicate that the lowest conductivities are to be found at mid-

depth between 0.1 and 0.3 m, whereas the surface layer and the region at 0.4 m depth had 

generally higher conductivities.  This effect is not as apparent in Transect C and D where, for 

the first 9 m length of bed, the lowest hydraulic conductivities occur near the surface.  At 

points near the outlet of Transect C and Transect D the upper layers of gravel are more 

conductive than the lower layers of gravel. 
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Figure 5-39 Plan view of Ashorne HSSF TW showing major architectural features and the 

layout of experimental sampling points.  The influent distributor is of the 

reverse facing ‘v-notch trough’ variety.   

 

 

Figure 5-40 The 2D vertical hydraulic conductivity profile for Ashorne.   
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Figure 5-41 The 3D hydraulic conductivity profile of Ashorne.  The 

longitudinal versus vertical hydraulic profiles are shown 

for the four transverse cross sections that correspond to 

sampling Transects A to D.   
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5.14. Leek Wooton (June 2009) 

Leek Wooton HSSF TW was fully refurbished in 2006 and therefore the filter media was 

3 years old when tested.  The TW cell is 16 m long by 28 m wide and provides tertiary 

treatment after a trickling filter.  The influent distribution system consists of five horizontal 

ports, and the wastewater enters the influent distributor and exits the effluent collector at 

opposite corners.  In June 2009 the reed establishment was excellent, with high stem density 

throughout the filter and much of the growth exceeding 2.5 m in height.  There was little 

evidence of overland flow or surface sludge accumulation.  The system layout and 

experimental sampling matrix is detailed in Figure 5-42.  The 2D and 3D hydraulic 

conductivity survey results are given in Figure 5-43 and Figure 5-44, respectively.   

Consideration of Figure 5-44 reveals that clogging along all transects is mainly confined to 

the surface region.  On Transects A, B and C, the top 0.1 m of most sampling locations 

returned hydraulic conductivities between 10 and 100 m/d.  Particularly in Transects C and 

D, depths below 0.3 m had hydraulic conductivities above 1000 m/d.  For Transects A and B 

the most clogged region appears to be adjacent to the inlet.  Interestingly, all Transects 

suggest that conductivities sampled close to the outlet, at a 14 m length, where lower than 

those found at a 10 m length.  For Transects C and E in particular, the lowest hydraulic 

conductivities found within the Transect corresponded to the region close to the outlet. 

According to Figure 5-43, the vertical hydraulic conductivity of the media at Leek Wooton is 

relatively homogeneous with hydraulic conductivity predominantly between 100 and 

1000 m/d.  The corner that is closest to the influent entry point and one extra isolated 

measurement at point B4 returned hydraulic conductivities between 10 and 100 m/d. 
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Figure 5-42 Plan view of Leek Wooton HSSF TW showing major architectural features 

and the distribution of sampling locations.  The influent distribution system 

comprises five horizontal ports equally distributed along the inlet pipe 

between Transects A and E. 

 

 

 

Figure 5-43 The 2D vertical hydraulic conductivity profile for Leek Wooton. 

 



  

216 
 

 

 

Figure 5-44 The 3D hydraulic conductivity profile of Leek Wooton.  The longitudinal 

versus vertical hydraulic profiles are shown for the four transverse cross 

sections that correspond to sampling Transects A to E.  Sampling was 

performed to a 0.4 m depth below the surface of the bed and results are 

interpolated between sampling points.  Colour contours indicate order of 

magnitude divisions in hydraulic conductivity. 



  

217 
 

 

5.15. Northend (June 2009) 

Northend was revisited more than two years after a 2D survey had been completed in 

April 2007, in order to perform a 3D survey.  To reiterate on some details provided in 

Section 5.1, the influent distributor consists of 6 vertical risers that are width distributed 

either side of a centrally located influent entry point.  The risers are buried by surface 

accumulation and can no longer be seen from the surface.  There is no distribution of 

wastewater directly in front of the entry point.  The effluent exit point is located at a corner 

point on the outlet side of the bed.  Since the previous test the reed stock had partially re-

established itself, although the quality of growth varied substantially across the bed.  

According to the sampling matrix outlined in Figure 5-45, the region roughly encompassed 

by Transects B and C showed dense growth with reed height above 2 m.  The region parallel 

to Transect A and the corner closest to the effluent exit point showed patchy growth with 

reeds generally below 1.5 m height.  Overland flow was evident over the length of the bed at 

Transects B and C but was not apparent elsewhere.  It is assumed that the preferential flow 

at Transects B and C occurs as a result of plugging in the risers that feed the other transects.  

The 2D vertical and 3D results of the hydraulic conductivity survey are illustrated in Figure 

5-46 and Figure 5-47, respectively. 

According to Figure 5-46, two low hydraulic conductivity areas have developed within the 

media at Northend, roughly corresponding to Transects B and D, which predominantly 

returned hydraulic conductivity values below 1 m/d.  In particular, Points B2 and B3 which 

correspond to the overland flow region with high vegetation density were found to have 

vertical core hydraulic conductivities below 0.1 m/d.  Transects A and E, and points along 

Transect C had hydraulic conductivities above 1 m/d, although nowhere on the bed did the 

core hydraulic conductivity exceed 100 m/d.   

Considering the 3D version of the hydraulic conductivity results which are portrayed in 

Figure 5-47, it can be seen that most of upper 0.2 m of media along Transect B has hydraulic 

conductivity below 0.1 m/d, which closely corresponds to the overland flow.  Elsewhere, 

hydraulic conductivity below 0.1m/d is confined to the surface at the inlet region of Transect 

D.  Generally speaking, it can be observed that the hydraulic conductivity of the upper media 

is lower than the hydraulic conductivity of the lower media.  All sampling points 

demonstrate a one or two order of magnitude increase of hydraulic conductivity from 

surface to a 0.4 m depth, which is attributed to dense vegetation establishment in the upper 

layers of gravel.  Only Transect A had media with hydraulic conductivity predominantly 



  

218 
 

 

greater than 1 m/d.  The highest conductivities recorded for each transect where at a 0.4 m 

depth towards the outlet pipe.  Certain 0.3 and 0.4 m depths at the outlet of Transects A, C, 

D and E had media conductivities above 100 m/d.   

 

 

Figure 5-45 Plan view of Northend HSSF TW showing the major architectural features 

and locations of sampling points for the June 2009 test.  The influent 

distributor comprises 6 vertical risers distributed either side of a central 

influent entry point.  The shaded region represents overland flow. 

 

 

Figure 5-46 The 2D vertical hydraulic conductivity profile obtained at Northend during 

the June 2009 test. 
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Figure 5-47 The 3D hydraulic conductivity profile of Northend as measured in June 2009.  

The longitudinal versus vertical hydraulic profiles are shown for the four 

transverse cross sections that correspond to sampling Transects A to E.  

Sampling was performed to a 0.4 m depth below the surface of the bed and 

results are interpolated between sampling points.  Colour contours indicate 

order of magnitude divisions of hydraulic conductivity. 
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5.16.  Rowington (July 2009) 

The HSSF TW at Rowington comprises one bed of 25 m length and 54 m width that is divided 

down the mid-length by a berm that houses an effluent collector pipe, and thus creates two 

cells.  A flow splitter spreads the influent along both sides of the bed.  These cells provide 

tertiary treatment after a trickling filter and were 8 years old at the time of testing.  Figure 

5.45 represents the cell that was chosen for surveying and the utilised sampling matrix.  The 

influent is distributed via six horizontal ports that are equally spaced along the width of the 

inlet pipe, either side of the influent entry point that is located at mid-width.  The effluent 

exit point is located at one end of the outlet pipe.  When the test was conducted reed 

growth was good with moderate to high stem density over the entire surface and reed 

height generally exceeding 2 m.  A large region of the bed surface was covered by overland 

flow, as indicated by the shaded region on Figure 5-48.  The 2D vertical and 3D versions of 

the hydraulic conductivity results are depicted in Figure 5-49 and Figure 5-50, respectively. 

The prevalence of clogging at Rowington is emphasised in Figure 5-49, which depicts vertical 

hydraulic conductivities below 0.1 m/d over much of the bed.  Point D1 was the only inlet 

location where hydraulic conductivity fell in the 0.1 to 1 m/d range.  Generally speaking 

values from inlet to outlet increase by four orders of magnitude, to between 10 and 100 m/d 

at Points C4, D4 and E4.  The media in the outlet region located on the opposite side of the 

bed from the effluent exit point had the highest conductivity, with Points A3, A4 and B4 

returning values in the 100 to 1000 m/d range. 

As illustrated in Figure 5-50, the media has hydraulic conductivity below 0.1 m/d at all 

depths from the inlet to the mid-length of Transect C.  Elsewhere along the inlet region the 

gravel layer between 0.1 and 0.2 m depth has lower hydraulic conductivity than the media at 

the surface.  Across the depths of Transects C and D, hydraulic conductivity increases by 

three orders of magnitude between the region affected by overland flow and the outlet.  

Along Transect A and B, the increase from minimum values measured at the inlet to 

maximum values measured at the outlet is four orders of magnitude.  In Transect A, the 

downstream half of the bed, especially, has hydraulic conductivities between 100 and 

1000 m/d.   

In the downstream half of Transects B, C and D the hydraulic conductivity generally increases 

by one order of magnitude between the surface and a depth of 0.4 m.  Along Transect E the 

lowest hydraulic conductivities are found at mid-depth in the inlet region, with values of the 

surface layer consistently being between 1 and 10 m/d.  For each transect the highest 
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hydraulic conductivities were consistently found at a 0.3 to 0.4 m depth in the vicinity of the 

outlet pipe, with values generally lying between 100 and 1000 m/d.  The highest value of 

hydraulic conductivity found in the system was 1900 m/d at a 0.3 m depth at Point E4. 

 

 

Figure 5-48 Plan view of Rowington HSSF TW showing the major architectural features 

and locations of sampling points.  The influent distribution is via 6 horizontal 

ports distributed either side of the central influent entry point.  The shaded 

region represents overland flow. 

 

 

Figure 5-49 The 2D vertical conductivity profile 

for Rowington HSSF TW. 
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Figure 5-50 The 3D hydraulic conductivity profile of Rowington.  The longitudinal versus 

vertical hydraulic profiles are shown for the four transverse cross sections 

that correspond to sampling Transects A to E.  Sampling was performed to a 

0.4 m depth below the surface of the bed and results are interpolated 

between sampling points.  Colour contours indicate order of magnitude 

divisions in hydraulic conductivity. 
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5.17. Snitterfield (August 2009) 

As of August 2009 Snitterfield HSSF TW had been providing tertiary treatment after RBCs for 

a period of 15 years.  The bed is 16 m long by 30 m wide and is depicted in Figure 5-51, along 

with the location of sampling points.  Influent distribution is achieved by 6 vertical risers 

equally spaced along the inlet pipe.  The entry point to the inlet pipe and exit point from the 

effluent pipe are similarly located at the bed mid-width.  At the time of the test the reed 

growth at Snitterfield was healthy, with good stem density and plant height above 2.5 m.  

Overland flow was severe and occupied approximately 80 % of the bed surface, reaching 

from inlet to outlet between Transects B and D.  The 2D vertical and 3D interpretations of 

the system hydraulic conductivity profile are given in Figure 5-52 and Figure 5-53, 

respectively. 

As presented in Figure 5-52, the most severe clogging at Snittefrield occurs along Transect C 

where vertical core conductivities were consistently below 1 m/d.  Across the inlet region 

hydraulic conductivity was generally on the order of 0.01 to 0.1 m/d, although for Transects 

A, C, D and E this increased by two orders of magnitude in the downstream half of the bed. 

The 3D hydraulic conductivity profiles presented in Figure 5-53 suggest that inlet clogging at 

Transects C and D is fairly uniform over the tested depth of media, with values consistently 

below 0.1 m/d.  Transects A, B and D show a three order of magnitude increase in hydraulic 

conductivity between the upper gravel layers at the inlet and the lower gravel layers at the 

outlet.  Transect C is the most clogged and only shows a two order of magnitude increase in 

hydraulic conductivity between the inlet and the 0.3 to 0.4 m depth at the outlet.  

In the downstream region of all five transects there is a one to two order of magnitude 

increase in hydraulic conductivity from the surface to a depth of 0.4 m.  Transect E is the 

least clogged with surface values downstream of the inlet consistently remaining between 1 

and 10 m/d, and the maximum hydraulic conductivity of 170 m/d being recorded at the 

0.3 m depth at Point E3. 
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Figure 5-51 Plan view of Snitterfield HSSF TW showing the major architectural features 

and locations of sampling points.  The influent distribution is via 6 vertical 

risers distributed either side of the central influent entry point.  The shaded 

region represents overland flow. 

 

 

Figure 5-52 The 2D hydraulic conductivity profile obtained at Snitterfield HSSF TW. 
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Figure 5-53 The 3D hydraulic conductivity profile of Snitterfield.  The longitudinal versus 

vertical hydraulic profiles are shown for the five transverse cross sections 

that correspond to sampling Transects A to E.  Sampling was performed to a 

0.4 m depth below the surface of the bed and results are interpolated 

between sampling points.  Colour contours indicate order of magnitude 

divisions of hydraulic conductivity. 
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5.18. Greens of Delwood, Minnesota, US (July 2009) 

At the time of testing Greens of Delwood (Delwood) had been providing secondary domestic 

wastewater treatment to a small conurbation for 12 years.  In the months before July 2009 

Delwood had reportedly suffered flow surfacing that required corrective action to be taken.  

To reiterate, the Minnesotan systems have subsurface influent distribution and a 30 cm 

mulch layer atop the gravel layer, such that flow surfacing is indicative of severe gravel 

clogging.  The site was therefore selected as representing a ‘clogged’ system by US 

standards.  Delwood is a 20 m long by 15 m wide HSSF TW that is depicted in Figure 5-54 

along with the 4X4 sampling matrix that was used in the survey.  The influent distribution 

system comprises a perforated inlet pipe buried just below the gravel surface that spans the 

width of the bed, and is fed from a header tank that introduces wastewater to the pipe at an 

entry point between Transect A and B.  The effluent exit point is located at the end of the 

outlet pipe adjacent to Transect D.  The survey was performed by removing the mulch layer 

at sampling points so that only the hydraulic conductivity of the gravel media was measured.  

The 2D vertical and 3D interpretations of the hydraulic conductivity data are provided in 

Figure 5-55 and Figure 5-56. 

As evident from Figure 5-55 the lowest core conductivity measured for the system was at 

Point D4, closest to the effluent exit point, which corresponded to a value of 0.09 m/d.  

Hydraulic conductivity at the inlet of Transects A, B and D lay between 1 and 10 m/d, and 

apart from Transect D values across the outlet where between 10 and 100 m/d.  In between 

the inlet and outlet the vast majority of the 2D results were on the order of 100 to 

1000 m/d. 

As discernible from Figure 5-56, the hydraulic conductivity of the top 0.1 m of gravel in the 

inlet region is between 1 and 10 m/d across all transects.  Generally speaking the hydraulic 

conductivity across the depth at the inlet region does not exceed 100 m/d.  The top 0.1 m of 

gravel at points A2 and B2 and certain depths at the outlet of Transects A, B and C also 

exhibit hydraulic conductivity between 10 and 100 m/d.  The central portion of the bed has 

fairly high conductivity above 100 m/d and, below the top 0.1 m of gravel, all transects had 

hydraulic conductivities greater than 1,000 m/d for at least one depth.  The highest hydraulic 

conductivity of 12,500 m/d was measured at Point B2 between depths of 0.1 and 0.2 m. 
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Figure 5-54 Plan view of the HSSF TW at Delwood, detailing major architectural features 

and the location of sampling points.  The influent distribution comprises a 

subsurface perforated pipe. 

 

 

Figure 5-55 The 2D vertical hydraulic conductivity profile at Delwood. 
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Figure 5-56 The 3D hydraulic conductivity profile of Delwood.  The 

longitudinal versus vertical hydraulic profiles are 

shown for the four transverse cross sections that 

correspond to sampling Transects A to D.  Sampling 

was performed to a 0.4 m depth below the surface of 

the gravel and results are interpolated between 

sampling points.  Colour contours indicate order of 

magnitude divisions of hydraulic conductivity. 
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5.19. Tamarack Farms Estate, Minnesota, US (July 2009) 

The HSSF TW at Tamarack Farms Estate (Tamarack) was selected for survey as it had 

previously been the subject of a novel clogging remediation strategy, whereby hydrogen 

peroxide was injected directly into the clogged porous media to mineralise the organic clog 

matter.  By July 2009 Tamarack had been providing secondary domestic wastewater 

treatment for 8 years and the chemical oxidant application had occurred in 2007 (Nivala and 

Rousseau, 2009).  The system is 33 m long by 18 m wide and the influent distributor is a 

subsurface perforated pipe that runs the width of the bed.  This information is illustrated in 

Figure 5-57 along with the distribution of the 3X5 sampling matrix.  As evident from Figure 

5-57, the influent entry point is located close to Transect C whereas the effluent exit point is 

closest to Transect A.  Figure 5-58 and Figure 5-59 reveal the 2D vertical and 3D 

interpolations of the hydraulic conductivity results. 

The results conveyed in Figure 5-58 suggest that the vast majority of the bed has hydraulic 

conductivity between 10 and 100 m/d.  Measurements at points A1, A2, A3, B2 and C1 

produced slightly higher conductivities between 100 and 1000 m/d, which roughly coincided 

with the locations of hydrogen peroxide application.  The lowest hydraulic conductivity value 

measured was 9/md and occurred at point B1, where the surface ponding had previously 

been most severe.  

The 3D interpretation provided in Figure 5-59 indicates that clogging at the inlet is mainly 

confined to Transect B, especially in the upper gravel layers that are close to the inlet pipe, 

where hydraulic conductivity was between 1 and 10 m/d.  The upper layers at Point C1 also 

exhibit signs of mild clogging where hydraulic conductivity was found to be 71 m/d.  

However, elsewhere at the inlet the media generally displayed conductivity readings above 

100 m/d, suggesting that subsurface influent distribution may be uneven between Transects 

B and the other two transects. 

An interesting effect can be observed downstream of the inlet within Transects B and C.  A 

region with lower hydraulic conductivity values (between 10 and 100 m/d) has developed 

across the gravel depth, between the 9 m and 21 m length.  The low hydraulic conductivity 

region extends to the upper layers of gravel towards the outlet, but appears disjointed from 

any clogging associated with the inlet region in these transects.  It is hypothesised that the 

vigorous oxidation caused by the hydrogen peroxide application disturbed clog matter 

accumulations in the inlet region and caused them to migrate further downstream; in this 

case settling out in the central region of the bed. 
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Figure 5-57 Plan view of the HSSF TW at Tamarack, detailing major architectural features 

and the location of sampling points.  The influent distributor is a subsurface 

perforated pipe.  In this figure the grey shaded region represents the area 

that received hydrogen peroxide treatment to reverse clogging. 

 

 

Figure 5-58 The 2D vertical hydraulic conductivity profile at Tamarack. 
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Figure 5-59 The 3D hydraulic conductivity profile of Tamarack.  The longitudinal versus 

vertical hydraulic profiles are shown for the three transverse cross sections 

that correspond to sampling Transects A to C.  Sampling was performed to a 

0.4 m depth below the surface of the gravel and results are interpolated 

between sampling points.  Colour contours indicate order of magnitude 

divisions in hydraulic conductivity. 

 

For Transect A, the vast majority of the media was fairly permeable and only the upper 

gravel region downstream of 15 m had hydraulic conductivity values below 100 m/d.  The 

highest hydraulic conductivity value of approximately 2000 m/d was measured at the 0.4 m 

depth at Point A3, in the vicinity of the effluent exit point. 
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5.20. Jackson Meadow South, Minnesota, US (August 2009) 

The gravel media in the HSSF TW at Jackson Meadow has been receiving septic tank treated 

domestic wastewater for 12 years.  In 2004 the system was retrofitted with forced aeration 

and the flow direction reoriented within the cell, so that in Figure 5-60 where flow moves 

from top to bottom in the diagram, it previously moved from left to right.  The position of 

the old influent header is illustrated by grey shading, approximately coinciding with Transect 

A.  The media was not replaced as part of the system upgrade.  

The resultant layout is 20 m long by 30 m wide and the influent distributor comprises an 

infiltration chamber which introduces wastewater over the entire depth at the inlet.  The 

influent entry point is located close to Transect A whereas the effluent exit point is adjacent 

to Transect D.  A 4X4 sampling matrix was used for the hydraulic conductivity experiment, 

and the 2D vertical and 3D results are illustrated in Figure 5-61 and Figure 5-62, respectively. 

As illustrated in Figure 5-61, clogging in the system was most significant in the vicinity of the 

influent entry point, where points A1 and B1 displayed core conductivities of 65 m/d and 

5 m/d, respectively.  The vertical conductivities across the new inlet region did not exceed 

150 m/d and values representative of the old inlet region, along Transect A where always 

below 1000 m/d.  This is in contrast to the other three transects which generally returned 

hydraulic conductivities between 1000 and 3000 m/d for regions downstream of the inlet.  

However, a second area of clogging appears to be developing adjacent to the effluent exit 

point because Points C3, C4 and D4 all registered hydraulic conductivity between 200 and 

400 m/d. 

Figure 5-62 elucidates that inlet clogging is generally detected across the gravel depth, and 

only the 0.2 m depth at Point D1 had a hydraulic conductivity above 1000 m/d.  Downstream 

of the inlet, clogging in each transect tends to only occur in the top 0.1 m of gravel media, 

where the majority of values recorded are below 1000 m/d (usually 1 to 2 orders of 

magnitude below the rest of the core).  This is particularly evident in Transects B, C and D 

where gravel at lower depths has many occurrences of media conductivity between 10,000 

and 20,000 m/d.  The highest recorded value of 62,500 m/d occurred at a 0.4 m depth within 

Point D2, and the lowest reported hydraulic conductivity was 1.5 m/d in the top 0.1 m of 

media at point B1.   
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Figure 5-60 Plan view of the HSSF TW at Jackson Meadow, detailing major architectural 

features and the location of sampling points.  The influent distributor is a 

subsurface infiltration chamber.  The location of the old influent distributor 

is indicated by the grey shaded region, and was upgraded to the current 

configuration in 2004. 

 

 

 

Figure 5-61 The 2D vertical hydraulic conductivity profile at Jackson Meadow. 
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Figure 5-62 The 3D hydraulic conductivity profile of Jackson 

Meadow.  The longitudinal versus vertical hydraulic 

profiles are shown for the four transverse cross 

sections that correspond to sampling Transects A to 

D.  Sampling was performed to a 0.4 m depth below 

the surface of the gravel and results are interpolated 

between sampling points.  Colour contours indicate 

order of magnitude divisions of hydraulic 

conductivity.  For this system an extra contour has 

been introduced in comparison to the previously 

reported systems (grey shading) to reflect high 

conductivities between 10,000 and 100,000 m/d. 
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5.21. Conclusions 

Spatial hydraulic conductivity profiles have been measured for 20 separate tests on 13 

different HSSF TWs in the UK and the US.  Systems varied in geometry and age and 

incorporated varying media, influent distributors and upstream processes.  The 

development of reeds varied between filters, as did the degree of visible surface clog matter 

accumulation and overland flow.  Systems that exhibited surface clogging and overland flow 

over a large fraction of the bed surface, such as Moreton Morrell A, Snitterfield and 

Rowington, generally exhibited good reed cover and growth.  Systems that did not exhibit 

extensive surface clogging and overland flow, such as Fenny Compton, Weston-Under-

Wetherley, Ashorne and Northend, had patchy reed cover.  It is deduced that overland flow 

encourages healthy reed establishment by maintaining root-zone saturation and distributing 

influent nutrients across the surface of the bed. 

Most systems displayed at least a 2 to 3 order of magnitude variation in hydraulic 

conductivity, across all planes.  The minimum value measured during the study was 0.03 m/d 

at Fenny Compton in February 2008, which was attributed to a concentration of 

construction fines clogging the gravel void spaces.  The maximum value measured was 

62,500 m/d at Jackson Meadows South in 2009, although it was not possible to maintain 

laminar flow velocities through the permeameter cell for this measurement, which means 

that the accuracy of the calculated hydraulic conductivity is limited (see Section 4.2.2).  It 

should be noted that the US systems had hydraulic loading rates that are approximately an 

order of magnitude lower than hydraulic loading rates for the UK systems.  As discussed in 

Section 2.5.4, high hydraulic loading rates encourage bed clogging by providing less 

opportunity for aerobic mineralisation of accumulated organic clog matter. 

It became apparent during this research that clogging in HSSF TWs is a complex process and 

the specific design and operational parameters of the system must be taken into account to 

explain the development of clogging.  Factors such as season, vegetation quality and influent 

distributor and effluent collector architecture appear to greatly influence the profiles that 

develop.  The obtained results will now be used to make general observations about 

clogging in HSSF TWs, and to derive Clog Factor relationships for Severn Trent systems. 
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6. Discussion and Analysis 

Chapter 5 reported findings from investigations into the spatial variation of hydraulic 

conductivity within Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs), as obtained 

using the Aston Permeameter method developed in Chapter 4.  Altogether 1,053 results 

were obtained during 20 field tests, representing three-dimensionally resolved hydraulic 

conductivity values in 13 different systems that varied by age, design and location.  Through 

discussion and analysis of the obtained data, this chapter aims to improve the following 

areas of understanding regarding hydrological behaviour in Severn Trent HSSF TWs: 

1) An improved understanding of how design and operational factors, such as wastewater 

treatment, plant growth, influent distribution and effluent collection, influence clogging. 

2) A general relationship to describe the manner in which clogging develops in Severn 

Trent HSSF TWs. 

3) A generalised understanding of how the development of clogging influences hydraulic 

operation in Severn Trent HSSF TWs. 

4) A generalised understanding of how the development of clogging influences 

hydrodynamic performance over time. 

This Chapter will achieve the above objectives by using the novel theory introduced in 

Chapter 3.  Only data from the 3D hydraulic conductivity investigations will be used because 

of the intention to identify vertical variations of hydraulic conductivity.  Additionally, due to 

fundamental differences in design that may influence the ability to deduce trends, the data 

from the Minnesotan HSSF TWs will not form part of this analysis.  In Section 6.1, hydraulic 

conductivity results will be converted to Clog Factor CF values using the theory presented in 

Section 3.6.2.   

The CF values will be used in Section 6.2 to make inferences regarding the influence of 

wastewater treatment and plant growth on clogging.  A 3-way statistical Analysis of Variance 

(ANOVA) test will be performed using StatGraphics Centurion XVI (StatPoint Technologies, 

Warrington, Virginia).  The analysis will be used to infer whether the influent and effluent 

arrangement exacerbate uneven clogging in the transverse direction.  

 In Section 6.3, a non-dimensionalised 3-Way ANOVA test will be used to identify trends in 

CF in the longitudinal and vertical direction, depending on the bulk system Clog Factor CFT.  
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The extracted trends will be used to create a general equation that will allow hydraulic 

conductivity profiles to be recreated for any Severn Trent HSSF TWs using only a single 

value; CFT.   

Hydraulic conductivity profiles that correspond to the general equation are modelled in 

Section 6.4 and imported into the FEA model derived in Chapter 3.  This makes it possible to 

gauge the influence that Clog Factor has on hydraulics.  The water table profiles produced by 

the model are calibrated against parameters in the novel 1D analytical equation derived in 

Chapter 3.  The accuracy of the FEA model is evaluated by comparing to experimental 

measurements of the water table profile in a HSSF TW where the hydraulic conductivity 

profile is known. 

The FEA model is then used to explore the influence of CFT on hydrodynamics in Section 6.5.  

The solute transport module of the FEA model is used to produce RTDs that correspond to 

the clogging and hydraulic profiles derived from CFT values.  The RTDs are fit using Tanks-in-

Series models such that the number of tanks n for different stages of clogging can be 

deduced.  This allows CFT to be correlated against number of tanks.  The solute transport 

module of the FEA model is validated against RTD measurements obtained from a field scale 

HSSF TW where the hydraulic conductivity profile and water table profile are known. 

The outputs from these analyses will provide wetland designers with several simple tools 

that help elucidate how the hydrological performance of HSSF TWs varies over time.   

 

6.1. Derivation of Clog Factor results 

From the 1,053 hydraulic conductivity measurements taken, the results for 816 are 

summarised in Table 6-1, Table 6-2, Table 6-3 and Table 6-4.  These tables only give a matrix 

of 4X4X4 sampling points for the Severn Trent systems, such that the results can be 

conveniently visualised.  The calculated Clog Factor values for each system are given in 

Appendix C.  Each table shows values for four transects (A-D) and the first four longitudinal 

sampling points from the inlet (1-4).  Table 6-1 represents hydraulic conductivity between 

the bed surface and a 0.1 m depth, Table 6-2 represents hydraulic conductivity between 0.1 

m and 0.2 m depth, Table 6-3 represents hydraulic conductivity between 0.2 m and 0.3 m 

depth, and Table 6-4 represents hydraulic conductivity between 0.3 m and 0.4 m depth. 
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The corresponding Clog Factors for the measurements shown in Table 6-1, Table 6-2, Table 

6-3 and Table 6-4 are respectively shown in Table 6-5, Table 6-6, Table 6-7 and Table 6-8.  

The Clog Factors were calculated from hydraulic conductivity results using the d50 values for 

the gravel indicated in Table 5-1, and a value of 0.35 for clean media porosity ε throughout 

the entire bed in Equation 3-57 and Equation 3-59.  

Table 6-9 provides a summary of the data shown in Table 6-1 to Table 6-8, and shows the 

range of hydraulic conductivities measured in different systems, the arithmetic mean of the 

hydraulic conductivity, the standard deviation of hydraulic conductivity results and the 

arithmetic mean of the Clog Factor results.  As evident in Table 6-9, the standard deviation 

of hydraulic conductivity values is generally greater than the arithmetic mean, which 

confirms that averages of datasets should not be used to represent physical properties that 

vary by several orders of magnitude about the mean and are neither intensive nor extensive 

properties of a physical system.  In contrast, the Clog Factor is an intensive property and can 

be representatively averaged.  The arithmetic mean of Clog Factor results therefore 

represents the Clog Factor for the bulk system (CFT) and can be used as a useful 

benchmarking tool to compare the state of clogging in different systems (Equation 3-60).   

The values of CFT shown in Table 6-9 vary between 0.54 for the 2008 study on Fenny 

Compton and 0.92 for the Snitterfield survey.  For an ideal medium the CF value will vary 

from 0 to 1 as the system clogs, based on the deviation from ideal theoretical hydraulic 

performance.  As discussed in Chapter 3, the clean CF of a non-ideal medium will be greater 

than 0 because of deviation from ideal theoretical hydraulic performance caused by particle 

size distribution around d50 and non-spherical particle geometries.  Chapter 3 explains that 

minimum CF values of 0.35 are realistic for real samples of gravel, and this value can be used 

to quantify the reduction on design hydraulic performance associated with the quality of the 

procured media before any clogging occurs.  Fenny Compton had been partially refurbished 

in 2008 and the top 0.2 m of 3-6 mm media had been replaced with 6-12 mm media.  The 

large particle size distribution around the effective d50 of the combined media, and the age 

of the bottom 0.4 m of media, may explain why the CFT is not lower despite the 

refurbishment.  Regarding the high CFT value at Snitterfield, this corresponds well to the 

large degree of ponding observed in this system. 
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Table 6-1 Hydraulic conductivity results obtained from thirteen surveys of Severn Trent HSSF TWs.  The results represent the hydraulic 

conductivity of the media in m/d between the bed surface and a depth of 0.1 m depth below the surface.  

 Transect A Transect B Transect C Transect D 

 Longitudinal Sampling Point Longitudinal Sampling Point Longitudinal Sampling Point Longitudinal Sampling Point 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Ashorne  
- Jun 09 

6.42 
E-02 

1.80 
E+00 

6.42 
E+02 

9.56 
E+02 

1.44 
E-01 

8.19 
E+01 

2.37 
E+02 

4.80 
E+03 

1.12 
E-01 

8.11 
E-02 

1.52 
E+01 

5.34 
E+03 

4.45 
E-01 

7.36 
E-02 

2.84 
E-01 

2.21 
E+02 

Fenny Compton - 
Feb 08 

1.05 
E+00 

3.46 
E-01 

3.28 
E+03 

7.57 
E+03 

6.32 
E+03 

1.67 
E+03 

9.77 
E+01 

4.98 
E+01 

1.82 
E+03 

1.03 
E+03 

9.18 
E+03 

2.88 
E+03 

2.74 
E+02 

4.99 
E+01 

2.27 
E+02 

2.01 
E+03 

Fenny Compton - 
Feb 09 

5.09 
E-01 

2.82 
E-02 

2.72 
E+01 

8.96 
E+01 

1.10 
E+01 

1.98 
E-02 

3.30 
E-02 

1.94 
E+02 

3.34 
E+02 

7.77 
E+01 

3.08 
E-02 

8.70 
E+01 

1.73 
E+02 

1.21 
E+02 

1.06 
E+02 

6.04 
E+01 

Fenny Compton - 
Feb 10 

1.09 
E+02 

2.62 
E+02 

1.06 
E+04 

5.25 
E+03 

2.57 
E+02 

6.76 
E+03 

1.40 
E+03 

6.91 
E+03 

2.52 
E+02 

4.65 
E+02 

6.10 
E+02 

4.17 
E+03 

4.53 
E+03 

2.96 
E+03 

5.54 
E+01 

4.22 
E+03 

Leek Wooton - 
Jun 09 

1.92 
E+01 

8.75 
E+01 

1.04 
E+02 

6.87 
E+01 

1.52 
E+01 

2.51 
E+01 

1.56 
E+02 

1.42 
E+01 

1.93 
E+02 

8.80 
E+01 

7.64 
E+01 

5.49 
E+01 

5.48 
E+01 

2.01 
E+02 

1.22 
E+02 

1.45 
E+02 

Moreton Morrell 
- Feb 09 

6.59 
E-02 

2.09 
E-01 

6.41 
E-01 

1.31 
E+00 

6.57 
E-01 

7.19 
E-01 

7.61 
E-01 

1.62 
E+01 

3.25 
E-02 

2.24 
E+00 

1.71 
E+00 

5.86 
E+00 

2.87 
E-01 

4.55 
E+01 

8.86 
E+01 

4.71 
E+01 

Moreton Morrell 
- Jun 08 

3.80 
E+00 

3.58 
E+02 

1.57 
E+03 

7.01 
E+02 

4.16 
E-01 

1.86 
E+02 

5.12 
E+02 

6.09 
E+02 

4.90 
E-01 

5.54 
E+02 

7.34 
E+02 

3.73 
E+02 

3.35 
E-01 

1.46 
E+02 

2.94 
E+02 

5.05 
E+02 

Moreton Morrell 
- Sep 09 

4.70 
E-01 

6.65 
E-01 

1.26 
E+00 

1.40 
E+00 

4.70 
E-01 

2.30 
E-01 

3.58 
E-01 

6.21 
E+01 

1.06 
E-01 

8.53 
E-01 

4.31 
E-01 

7.10 
E+00 

4.66 
E-02 

1.92 
E+00 

7.55 
E+00 

6.58 
E+00 

Moreton Morrell 
- Oct 09 

3.03 
E+02 

4.99 
E+02 

2.06 
E+02 

1.19 
E+03 

5.41 
E+02 

3.73 
E+02 

5.04 
E+02 

7.75 
E+02 

3.28 
E+02 

2.01 
E+03 

5.33 
E+02 

3.06 
E+02     

Northend 
 Jun 09 

8.82 
E-01 

5.42 
E+00 

6.45 
E+00 

1.40 
E+00 

4.31 
E-01 

5.65 
E-02 

2.19 
E-02 

6.11 
E-02 

4.31 
E-01 

1.96 
E+00 

2.93 
E-01 

3.23 
E+00 

6.77 
E-02 

1.26 
E-01 

9.62 
E-02 

2.02 
E+00 

Rowington 
 - Jul 09 

7.29 
E+00 

6.69 
E-02 

1.65 
E+02 

3.99 
E+01 

1.50 
E-01 

2.54 
E-01 

1.08 
E+00 

9.12 
E+01 

3.12 
E-03 

9.12 
E-03 

1.75 
E-01 

1.21 
E+01 

3.25 
E-01 

9.98 
E-02 

5.31 
E-01 

4.36 
E+01 

Snitterfield  
- Aug 09 

5.51 
E-02 

5.88 
E+00 

1.76 
E+00 

1.41 
E+00 

3.07 
E-02 

3.21 
E-01 

6.69 
E-01 

1.10 
E+00 

5.13 
E-02 

1.39 
E+00 

1.43 
E-01 

4.55 
E-01 

2.76 
E-02 

4.48 
E-01 

3.93 
E+00 

6.25 
E-01 

Weston u. W. 
 - May 09 

4.62 
E-01 

2.23 
E+00 

9.00 
E+01 

2.25 
E+02 

2.52 
E+00 

1.48 
E+01 

2.65 
E+02 

5.67 
E+01 

1.04 
E-01 

4.80 
E+00 

3.65 
E+02 

5.43 
E+01 

8.92 
E-01 

9.00 
E+01 

9.58 
E+02 

5.79 
E+02 
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Table 6-2 Hydraulic conductivity results obtained from thirteen surveys of Severn Trent HSSF TWs.  The results represent the hydraulic 

conductivity of the media in m/d between the depths of 0.1 m and 0.2 m below the bed surface. 

 Transect A Transect B Transect C Transect D 

 Longitudinal Sampling Point Longitudinal Sampling Point Longitudinal Sampling Point Longitudinal Sampling Point 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Ashorne  
- Jun 09 

7.78 
E-02 

1.06 
E-01 

7.27 
E+01 

5.50 
E+01 

2.60 
E-02 

3.24 
E+00 

1.06 
E+01 

1.39 
E+02 

5.14 
E-02 

8.83 
E-02 

5.86 
E+00 

2.37 
E+02 

7.26 
E-02 

4.06 
E-02 

2.66 
E+00 

6.96 
E+01 

Fenny Compton - 
Feb 08 

8.64 
E-01 

2.66 
E-01 

6.56 
E+03 

3.59 
E+03 

1.84 
E+01 

1.01 
E+01 

2.44 
E+01 

9.77 
E+02 

1.43 
E+02 

8.63 
E+02 

2.73 
E+02 

5.00 
E+02 

1.73 
E+02 

2.61 
E+01 

3.39 
E+01 

5.98 
E+02 

Fenny Compton - 
Feb 09 

1.05 
E+00 

2.66 
E-01 

3.18 
E+02 

6.68 
E+03 

1.89 
E+01 

6.65 
E-02 

1.34 
E-01 

2.39 
E+02 

1.25 
E+03 

4.55 
E+03 

1.00 
E-01 

3.99 
E+01 

4.92 
E+01 

2.58 
E+03 

4.67 
E+03 

4.28 
E+01 

Fenny Compton - 
Feb 10 

2.17 
E+00 

7.27 
E+00 

2.65 
E+03 

2.06 
E+02 

1.20 
E+01 

3.07 
E+02 

1.75 
E+02 

3.00 
E+02 

2.12 
E+00 

3.58 
E+01 

2.44 
E+02 

4.17 
E+03 

5.33 
E+01 

1.97 
E+02 

9.70 
E+01 

7.39 
E+03 

Leek Wooton - 
Jun 09 

3.02 
E+01 

8.61 
E+01 

1.78 
E+02 

1.04 
E+02 

6.00 
E+01 

4.80 
E+01 

4.93 
E+02 

8.09 
E+01 

2.80 
E+02 

1.88 
E+02 

1.10 
E+02 

1.39 
E+02 

2.50 
E+02 

5.42 
E+02 

2.04 
E+02 

1.80 
E+02 

Moreton Morrell 
- Feb 09 

9.89 
E-02 

4.98 
E-01 

1.86 
E+00 

8.49 
E+00 

2.93 
E-02 

8.27 
E+00 

4.69 
E+00 

1.01 
E+02 

4.51 
E-02 

9.42 
E+01 

2.87 
E+01 

1.49 
E+02 

3.80 
E-01 

5.74 
E+01 

1.32 
E+02 

7.83 
E+01 

Moreton Morrell 
- Jun 08 

7.73 
E+00 

2.59 
E+02 

8.38 
E+02 

7.94 
E+02 

4.18 
E-02 

3.20 
E+02 

1.35 
E+02 

6.74 
E+02 

1.83 
E+00 

4.41 
E+02 

5.86 
E+02 

5.94 
E+02 

6.95 
E-02 

1.29 
E+03 

1.22 
E+03 

5.70 
E+02 

Moreton Morrell 
- Sep 09 

3.31 
E-02 

1.95 
E-01 

6.38 
E-01 

2.27 
E+00 

3.31 
E-02 

2.22 
E-01 

2.28 
E-01 

5.97 
E-01 

1.43 
E+00 

1.77 
E+00 

3.33 
E-01 

8.52 
E+01 

5.97 
E-02 

1.59 
E+02 

3.62 
E+02 

2.60 
E+02 

Moreton Morrell 
- Oct 09 

2.48 
E+01 

1.91 
E+02 

3.40 
E+02 

4.04 
E+02 

7.05 
E+01 

7.82 
E+01 

3.02 
E+02 

6.43 
E+02 

2.21 
E+02 

7.72 
E+01 

1.80 
E+02 

2.68 
E+02 

    

Northend 
 Jun 09 

3.04 
E+00 

1.48 
E+01 

1.16 
E+01 

4.97 
E+00 

6.92 
E-02 

1.73 
E-02 

4.04 
E-02 

1.54 
E-01 

6.92 
E-02 

5.06 
E+00 

4.67 
E-01 

5.88 
E+00 

9.42 
E-02 

3.55 
E-02 

2.74 
E-01 

1.07 
E+01 

Rowington 
 - Jul 09 

4.89 
E-02 

1.03 
E-01 

8.58 
E+02 

7.19 
E+01 

6.59 
E-02 

9.64 
E-02 

1.61 
E+00 

2.53 
E+02 

9.85 
E-03 

1.32 
E-03 

1.78 
E-01 

1.32 
E+01 

1.06 
E-01 

3.44 
E-03 

2.52 
E-01 

6.48 
E+01 

Snitterfield  
- Aug 09 

4.56 
E-02 

3.45 
E+00 

2.19 
E+00 

3.69 
E+00 

1.24 
E-02 

1.88 
E-01 

1.42 
E+00 

7.96 
E+00 

2.60 
E-02 

2.29 
E-01 

2.04 
E-01 

2.78 
E-01 

1.38 
E-02 

1.51 
E+00 

4.45 
E+00 

1.35 
E+00 

Weston u. W. 
 - May 09 

3.78 
E-01 

4.15 
E+00 

5.01 
E+01 

2.63 
E+02 

5.73 
E-02 

1.21 
E+01 

2.25 
E+03 

4.18 
E+01 

3.87 
E-02 

5.99 
E+00 

3.56 
E+02 

9.31 
E+01 

5.29 
E-01 

1.09 
E+02 

1.14 
E+03 

5.48 
E+02 



  

 
 

2
4

1
 

Table 6-3 Hydraulic conductivity results obtained from thirteen surveys of Severn Trent HSSF TWs.  The results represent the hydraulic 

conductivity of the media in m/d between the depths of 0.2 m and 0.3 m below the bed surface. 

 Transect A Transect B Transect C Transect D 

 Longitudinal Sampling Point Longitudinal Sampling Point Longitudinal Sampling Point Longitudinal Sampling Point 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Ashorne  
- Jun 09 

1.22 
E-01 

4.86 
E-01 

4.28 
E+01 

1.04 
E+02 

3.46 
E+00 

9.63 
E+00 

2.25 
E+01 

1.78 
E+02 

4.15 
E-01 

7.94 
E+00 

2.54 
E+01 

1.55 
E+02 

8.25 
E-02 

1.77 
E-01 

1.14 
E+00 

1.95 
E+02 

Fenny Compton - 
Feb 08 

8.64 
E-01 

2.06 
E-02 

4.97 
E+01 

2.99 
E+03 

7.45 
E+01 

1.33 
E+02 

6.04 
E+01 

1.13 
E+02 

4.69 
E+01 

1.70 
E+03 

5.12 
E+02 

3.62 
E+02 

4.85 
E+02 

3.77 
E+01 

2.73 
E+01 

5.74 
E+02 

Fenny Compton - 
Feb 09 

3.32 
E-01 

2.06 
E-02 

1.09 
E+02 

1.80 
E+03 

8.93 
E+02 

1.36 
E-02 

1.22 
E-02 

3.06 
E+03 

2.25 
E+02 

1.26 
E+02 

2.16 
E-02 

2.60 
E+02 

6.52 
E+01 

5.12 
E+02 

3.28 
E+02 

7.87 
E+01 

Fenny Compton - 
Feb 10 

1.09 
E+02 

2.78 
E+00 

8.15 
E+02 

2.50 
E+02 

5.59 
E+00 

4.23 
E+02 

2.34 
E+01 

7.35 
E+01 

2.10 
E+01 

4.43 
E+00 

2.93 
E+01 

1.15 
E+03 

2.27 
E+02 

2.10 
E+01 

1.94 
E+02 

4.48 
E+02 

Leek Wooton - 
Jun 09 

1.20 
E+02 

1.14 
E+02 

2.31 
E+03 

6.25 
E+03 

1.57 
E+02 

2.74 
E+02 

1.34 
E+03 

1.02 
E+02 

9.15 
E+02 

1.58 
E+03 

8.70 
E+03 

5.00 
E+03 

3.78 
E+03 

4.57 
E+03 

1.50 
E+03 

4.43 
E+02 

Moreton Morrell 
- Feb 09 

1.03 
E-01 

9.61 
E-02 

1.62 
E+00 

7.25 
E+00 

1.15 
E-01 

1.59 
E+00 

3.92 
E+00 

4.07 
E+02 

8.61 
E-02 

5.81 
E+01 

2.07 
E+03 

1.16 
E+02 

4.01 
E-01 

1.94 
E+02 

3.60 
E+02 

4.36 
E+03 

Moreton Morrell 
- Jun 08 

5.46 
E+00 

1.49 
E+03 

1.72 
E+03 

7.33 
E+02 

9.07 
E-02 

5.11 
E+02 

1.24 
E+03 

9.03 
E+02 

1.63 
E+00 

4.36 
E+02 

2.17 
E+02 

7.70 
E+02 

3.74 
E-01 

1.95 
E+01 

3.61 
E+02 

1.27 
E+03 

Moreton Morrell 
- Sep 09 

5.22 
E-01 

9.07 
E-02 

1.08 
E+00 

7.26 
E+01 

5.22 
E-01 

3.28 
E+00 

1.02 
E+00 

6.21 
E+01 

4.45 
E-01 

4.43 
E+01 

5.82 
E+00 

3.41 
E+02 

3.17 
E+00 

7.97 
E+01 

3.62 
E+02 

2.60 
E+02 

Moreton Morrell 
- Oct 09 

8.53 
E+01 

9.98 
E+02 

7.11 
E+02 

1.02 
E+03 

4.84 
E+01 

6.67 
E+01 

1.95 
E+02 

1.37 
E+03 

7.03 
E+01 

1.08 
E+02 

1.51 
E+02 

6.53 
E+03     

Northend 
 Jun 09 

3.19 
E+01 

6.43 
E+01 

6.76 
E+02 

3.60 
E+01 

3.43 
E-01 

1.74 
E-01 

1.36 
E+00 

7.39 
E+00 

3.43 
E-01 

5.54 
E+00 

4.05 
E+01 

1.06 
E+02 

5.54 
E-01 

2.77 
E+00 

1.21 
E+01 

2.59 
E+02 

Rowington 
 - Jul 09 

4.68 
E-02 

1.37 
E-01 

7.11 
E+02 

5.04 
E+02 

2.35 
E-02 

6.90 
E-02 

2.52 
E+00 

1.66 
E+02 

1.99 
E-03 

2.41 
E-03 

2.21 
E-01 

2.76 
E+01 

7.47 
E+00 

1.93 
E-03 

4.21 
E-01 

9.05 
E+01 

Snitterfield  
- Aug 09 

8.40 
E-02 

4.01 
E+00 

1.74 
E+02 

7.56 
E+01 

4.39 
E-02 

2.02 
E-01 

2.74 
E+01 

5.79 
E+00 

1.73 
E-02 

2.04 
E-01 

1.32 
E+00 

1.05 
E+00 

4.62 
E-01 

4.52 
E+01 

6.68 
E+01 

6.98 
E+00 

Weston u. W. 
 - May 09 

4.60 
E-01 

2.53 
E+00 

4.50 
E+01 

2.03 
E+04 

1.19 
E-01 

1.94 
E+01 

7.38 
E+01 

3.34 
E+03 

1.10 
E-01 

1.52 
E+01 

8.21 
E+02 

6.45 
E+02 

1.29 
E+00 

9.85 
E+02 

9.39 
E+03 

3.84 
E+03 
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Table 6-4 Hydraulic conductivity results obtained from thirteen surveys of Severn Trent HSSF TWs.  The results represent the hydraulic 

conductivity of the media in m/d between the depths of 0.3 m and 0.4 m below the bed surface. 

 Transect A Transect B Transect C Transect D 

 Longitudinal Sampling Point Longitudinal Sampling Point Longitudinal Sampling Point Longitudinal Sampling Point 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Ashorne  
- Jun 09 

1.56 
E+00 

1.04 
E+02 

4.82 
E+02 

6.83 
E+02 

1.15 
E+00 

1.06 
E+01 

7.88 
E+01 

9.59 
E+03 

7.26 
E-01 

3.97 
E+00 

2.54 
E+01 

3.24 
E+02 

6.68 
E-01 

1.18 
E+00 

2.96 
E+00 

1.27 
E+03 

Fenny Compton - 
Feb 08 

8.64 
E-01 

2.99 
E+03 

1.15 
E+02 

6.38 
E+03 

2.98 
E+03 

2.44 
E+04 

8.26 
E+03 

2.05 
E+03 

2.22 
E+02 

1.67 
E+03 

6.46 
E+03 

2.29 
E+04 

3.44 
E+02 

1.24 
E+03 

3.12 
E+03 

1.08 
E+04 

Fenny Compton - 
Feb 09 

1.93 
E+01 

1.80 
E+03 

1.33 
E+02 

5.26 
E+01 

1.52 
E+02 

1.90 
E-01 

8.36 
E-02 

7.00 
E+02 

1.17 
E+03 

1.63 
E+02 

2.89 
E-01 

1.90 
E+02 

1.14 
E+03 

1.15 
E+02 

1.97 
E+02 

8.17 
E+02 

Fenny Compton - 
Feb 10 

7.24 
E+01 

2.50 
E+02 

3.93 
E+02 

6.56 
E+02 

3.96 
E+01 

8.35 
E+01 

3.12 
E+02 

4.93 
E+02 

1.94 
E+01 

2.58 
E+01 

1.22 
E+03 

4.17 
E+03 

4.53 
E+03 

1.48 
E+03 

2.19 
E+00 

1.23 
E+03 

Leek Wooton - 
Jun 09 

5.56 
E+02 

6.25 
E+03 

8.88 
E+02 

2.08 
E+03 

2.05 
E+03 

3.91 
E+02 

3.28 
E+02 

2.04 
E+02 

2.17 
E+03 

1.85 
E+03 

2.18 
E+03 

3.85 
E+02 

7.56 
E+03 

2.08 
E+03 

1.50 
E+03 

1.62 
E+03 

Moreton Morrell 
- Feb 09 

5.93 
E-01 

7.25 
E+00 

4.05 
E+00 

1.48 
E+01 

6.31 
E-01 

1.41 
E+00 

5.50 
E+00 

1.34 
E+02 

9.61 
E-01 

1.19 
E+02 

1.01 
E+01 

8.44 
E+01 

3.42 
E+00 

2.75 
E+03 

1.14 
E+03 

1.31 
E+04 

Moreton Morrell 
- Jun 08 

3.60 
E+01 

7.33 
E+02 

7.26 
E+03 

1.00 
E+03 

3.90 
E+00 

3.74 
E+02 

1.02 
E+03 

3.38 
E+03 

5.08 
E+00 

5.43 
E+02 

3.09 
E+02 

3.94 
E+04 

3.79 
E-01 

2.76 
E+01 

2.55 
E+02 

2.41 
E+03 

Moreton Morrell 
- Sep 09 

7.83 
E-01 

7.26 
E+01 

9.73 
E+00 

7.26 
E+01 

7.83 
E-01 

6.56 
E+00 

1.32 
E+00 

6.21 
E+01 

3.22 
E+00 

4.43 
E+01 

1.16 
E+01 

6.81 
E+01 

3.17 
E+00 

1.59 
E+02 

3.62 
E+02 

2.60 
E+02 

Moreton Morrell 
- Oct 09 

1.14 
E+02 

1.02 
E+03 

3.40 
E+02 

9.15 
E+03 

6.49 
E+02 

4.22 
E+02 

2.37 
E+02 

1.16 
E+03 

2.12 
E+02 

4.22 
E+02 

1.60 
E+03 

3.27 
E+03     

Northend 
 Jun 09 

1.06 
E+01 

3.60 
E+01 

3.38 
E+02 

6.00 
E+01 

8.35 
E-01 

9.98 
E-01 

2.71 
E+00 

7.39 
E+00 

8.35 
E-01 

5.98 
E+01 

4.05 
E+01 

2.12 
E+02 

4.16 
E+00 

2.77 
E+00 

6.05 
E+00 

2.35 
E+01 

Rowington 
 - Jul 09 

1.82 
E-01 

5.04 
E+02 

3.99 
E+02 

5.04 
E+02 

6.59 
E-02 

9.73 
E-02 

6.94 
E+01 

1.98 
E+02 

5.86 
E-03 

2.56 
E-03 

6.48 
E+00 

1.41 
E+02 

2.67 
E-01 

1.31 
E-02 

1.29 
E+01 

2.27 
E+02 

Snitterfield  
- Aug 09 

1.37 
E-01 

7.56 
E+01 

8.68 
E+01 

5.04 
E+01 

1.38 
E-01 

3.12 
E-01 

2.74 
E+01 

2.12 
E+01 

2.23 
E-02 

2.75 
E-01 

1.73 
E+00 

3.90 
E+00 

6.16 
E-01 

4.52 
E+01 

3.82 
E+01 

2.46 
E+00 

Weston u. W. 
 - May 09 

1.42 
E+01 

2.03 
E+04 

1.98 
E+03 

2.03 
E+04 

7.75 
E+01 

1.22 
E+03 

1.07 
E+02 

3.34 
E+03 

7.26 
E-01 

5.03 
E+02 

2.96 
E+04 

7.10 
E+03 

6.60 
E+01 

1.77 
E+03 

7.82 
E+03 

1.02 
E+04 
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Table 6-5 Clog Factor (CF) results that correspond to the hydraulic conductivity results shown in Table 6.1.  A CF value of 0 represents no 

clogging and a CF value of 1 represents complete clogging.  The results represent the CF of the media between the bed surface and 

a depth of 0.1 m depth below the surface. 

 Transect A Transect B Transect C Transect D 

 Longitudinal Sampling Point Longitudinal Sampling Point Longitudinal Sampling Point Longitudinal Sampling Point 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Ashorne - Jun 09 1.00 0.93 0.53 0.47 0.98 0.75 0.65 0.18 0.98 1.00 0.85 0.15 0.96 1.00 0.96 0.66 

Fenny Compton - Feb 08 0.94 0.96 0.26 0.07 0.12 0.38 0.74 0.79 0.37 0.46 0.03 0.28 0.64 0.79 0.66 0.35 

Fenny Compton - Feb 09 0.95 1.00 0.82 0.74 0.87 1.00 1.00 0.67 0.61 0.75 1.00 0.75 1.00 0.72 0.73 0.77 

Fenny Compton - Feb 10 0.79 0.73 0.19 0.33 0.73 0.28 0.54 0.28 0.73 0.67 0.64 0.37 0.36 0.43 0.83 0.37 

Leek Wooton - Jun 09 0.88 0.81 0.79 0.82 0.89 0.87 0.77 0.89 0.75 0.81 0.81 0.83 0.83 0.75 0.78 0.77 

Moreton Morrell - Feb 09 1.00 0.97 0.95 0.94 0.95 0.95 0.94 0.85 0.98 0.92 0.93 0.89 0.96 0.79 0.74 0.79 

Moreton Morrell - Jun 08 0.91 0.62 0.42 0.54 0.96 0.69 0.58 0.56 0.96 0.57 0.53 0.62 0.96 0.71 0.65 0.58 

Moreton Morrell - Sep 09 0.96 0.95 0.93 0.93 0.95 0.97 0.96 0.77 0.98 0.94 0.95 0.89 1.00 0.93 0.88 0.89 

Moreton Morrell - Oct 09 0.63 0.57 0.67 0.44 0.55 0.60 0.56 0.50 0.62 0.35 0.56 0.62     

Northend  Jun 09 0.94 0.89 0.89 0.93 0.95 1.00 1.00 1.00 0.95 0.92 0.96 0.91 1.00 0.98 0.97 0.92 

Rowington  - Jul 09 0.88 1.00 0.69 0.80 0.97 0.96 0.94 0.74 1.00 1.00 0.96 0.86 0.96 0.99 0.95 0.80 

Snitterfield - Aug 09 1.00 0.89 0.93 0.93 1.00 0.96 0.95 0.94 1.00 0.93 0.96 0.95 1.00 0.95 0.91 0.95 

Weston u. W.  - May 09 0.95 0.92 0.74 0.66 0.92 0.85 0.64 0.78 0.98 0.90 0.60 0.78 0.94 0.74 0.47 0.55 
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Table 6-6 Clog Factor (CF) results that correspond to the hydraulic conductivity results shown in Table 6.2.  A CF value of 0 represents no 

clogging and a CF value of 1 represents complete clogging.  The results represent the CF of the media between the depths of 0.1 m 

and 0.2 m below the bed surface. 

 Transect A Transect B Transect C Transect D 

 Longitudinal Sampling Point Longitudinal Sampling Point Longitudinal Sampling Point Longitudinal Sampling Point 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Ashorne - Jun 09 1.00 0.97 0.76 0.78 1.00 0.91 0.87 0.71 1.00 0.99 0.89 0.65 1.00 0.98 0.92 0.76 

Fenny Compton - Feb 08 0.94 0.96 0.11 0.24 0.84 0.87 0.83 0.47 0.70 0.49 0.64 0.56 0.68 0.83 0.81 0.54 

Fenny Compton - Feb 09 0.94 0.96 0.62 0.10 1.00 1.00 0.97 0.65 0.43 0.19 0.98 0.80 1.00 1.00 0.18 0.80 

Fenny Compton - Feb 10 0.94 0.91 0.45 0.75 0.90 0.71 0.76 0.71 0.94 0.85 0.73 0.37 0.83 0.75 0.80 0.27 

Leek Wooton - Jun 09 0.86 0.81 0.76 0.79 0.83 0.84 0.67 0.81 0.72 0.75 0.79 0.77 0.73 0.66 0.75 0.76 

Moreton Morrell - Feb 09 0.98 0.95 0.93 0.88 1.00 0.88 0.90 0.73 1.00 0.74 0.82 0.70 0.95 0.78 0.71 0.75 

Moreton Morrell - Jun 08 0.89 0.66 0.51 0.52 1.00 0.64 0.72 0.55 0.93 0.60 0.56 0.56 1.00 0.45 0.46 0.57 

Moreton Morrell - Sep 09 1.00 0.97 0.95 0.92 1.00 0.96 0.97 0.95 0.93 0.93 0.96 0.75 1.00 0.69 0.60 0.64 

Moreton Morrell - Oct 09 0.83 0.68 0.61 0.59 0.76 0.75 0.63 0.53 0.66 0.75 0.68 0.64     

Northend  Jun 09 0.91 0.85 0.87 0.90 1.00 1.00 1.00 0.96 1.00 0.90 0.95 0.89 0.98 1.00 0.96 0.87 

Rowington  - Jul 09 1.00 0.98 0.49 0.76 1.00 0.98 0.93 0.65 1.00 1.00 0.96 0.86 0.98 1.00 0.96 0.77 

Snitterfield - Aug 09 1.00 0.91 0.92 0.91 1.00 0.96 0.93 0.88 1.00 0.96 0.96 0.96 1.00 0.93 0.90 0.93 

Weston u. W.  - May 09 0.95 0.90 0.79 0.64 1.00 0.86 0.33 0.80 1.00 0.89 0.61 0.74 0.95 0.73 0.45 0.55 
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Table 6-7 Clog Factor (CF) results that correspond to the hydraulic conductivity results shown in Table 6.3.  A CF value of 0 represents no 

clogging and a CF value of 1 represents complete clogging.  The results represent the CF of the media between the depths of 0.2 m 

and 0.3 m below the bed surface. 

 Transect A Transect B Transect C Transect D 

 Longitudinal Sampling Point Longitudinal Sampling Point Longitudinal Sampling Point Longitudinal Sampling Point 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Ashorne - Jun 09 0.98 0.95 0.80 0.73 0.91 0.87 0.83 0.68 0.95 0.88 0.83 0.70 1.00 0.97 0.94 0.67 

Fenny Compton - Feb 08 0.94 1.00 0.79 0.27 0.76 0.71 0.77 0.72 0.79 0.38 0.56 0.61 0.57 0.80 0.82 0.55 

Fenny Compton - Feb 09 0.96 0.99 0.73 0.37 0.48 1.00 1.00 0.27 0.66 0.71 1.00 0.64 0.77 0.59 0.62 0.75 

Fenny Compton - Feb 10 0.73 0.92 0.50 0.65 0.89 0.59 0.83 0.76 0.84 0.90 0.82 0.44 0.66 0.84 0.67 0.58 

Leek Wooton - Jun 09 0.79 0.79 0.47 0.30 0.77 0.72 0.55 0.80 0.60 0.53 0.23 0.34 0.39 0.36 0.53 0.68 

Moreton Morrell - Feb 09 0.98 0.99 0.93 0.89 0.98 0.93 0.91 0.59 1.00 0.78 0.34 0.72 0.96 0.67 0.61 0.20 

Moreton Morrell - Jun 08 0.90 0.43 0.40 0.53 0.97 0.58 0.46 0.50 0.93 0.60 0.68 0.53 0.96 0.85 0.62 0.45 

Moreton Morrell - Sep 09 0.95 0.99 0.94 0.76 0.95 0.91 0.94 0.77 0.95 0.79 0.89 0.61 0.91 0.75 0.60 0.64 

Moreton Morrell - Oct 09 0.75 0.47 0.52 0.46 0.79 0.77 0.67 0.42 0.76 0.73 0.70 0.11     

Northend  Jun 09 0.81 0.77 0.52 0.81 0.96 0.97 0.93 0.88 0.96 0.89 0.80 0.73 0.95 0.92 0.86 0.64 

Rowington  - Jul 09 1.00 0.97 0.52 0.56 1.00 1.00 0.92 0.69 0.98 1.00 0.96 0.82 0.88 0.98 0.96 0.74 

Snitterfield - Aug 09 1.00 0.91 0.68 0.76 1.00 0.97 0.82 0.89 0.98 0.97 0.94 0.94 0.95 0.79 0.77 0.89 

Weston u. W.  - May 09 0.95 0.92 0.79 0.00 0.98 0.84 0.76 0.25 0.98 0.85 0.50 0.53 0.94 0.47 0.02 0.22 
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Table 6-8 Clog Factor (CF) results that correspond to the hydraulic conductivity results shown in Table 6.4.  A CF value of 0 represents no 

clogging and a CF value of 1 represents complete clogging.  The results represent the CF of the media between the depths of 0.3 m 

and 0.4 m below the bed surface. 

  

 Transect A Transect B Transect C Transect D 

 Longitudinal Sampling Point Longitudinal Sampling Point Longitudinal Sampling Point Longitudinal Sampling Point 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Ashorne - Jun 09 0.93 0.73 0.57 0.52 0.94 0.87 0.75 0.02 0.95 0.91 0.83 0.62 0.95 0.94 0.91 0.43 

Fenny Compton - Feb 08 0.94 0.27 0.72 0.11 0.28 0.00 0.05 0.35 0.66 0.38 0.11 0.00 0.61 0.43 0.27 0.00 

Fenny Compton - Feb 09 0.84 0.37 0.71 0.78 0.70 0.97 1.00 0.52 0.44 0.69 0.96 0.68 0.45 0.72 0.67 0.50 

Fenny Compton - Feb 10 0.76 0.65 0.60 0.53 0.80 0.75 0.62 0.57 0.84 0.83 0.44 0.21 0.19 0.40 0.92 0.43 

Leek Wooton - Jun 09 0.65 0.30 0.60 0.49 0.49 0.69 0.71 0.75 0.48 0.50 0.48 0.69 0.26 0.49 0.53 0.52 

Moreton Morrell - Feb 09 0.95 0.89 0.91 0.86 0.95 0.93 0.90 0.71 0.94 0.72 0.87 0.75 0.91 0.29 0.45 0.00 

Moreton Morrell - Jun 08 0.82 0.53 0.12 0.49 0.91 0.62 0.49 0.28 0.90 0.57 0.64 0.00 0.96 0.83 0.66 0.34 

Moreton Morrell - Sep 09 0.94 0.76 0.87 0.76 0.94 0.89 0.93 0.77 0.91 0.79 0.87 0.76 0.91 0.69 0.60 0.64 

Moreton Morrell - Oct 09 0.72 0.46 0.61 0.03 0.53 0.59 0.65 0.44 0.66 0.59 0.39 0.26     

Northend  Jun 09 0.87 0.81 0.61 0.77 0.94 0.94 0.92 0.88 0.94 0.77 0.80 0.66 0.90 0.92 0.89 0.83 

Rowington  - Jul 09 0.97 0.56 0.59 0.56 1.00 0.97 0.76 0.67 0.98 1.00 0.89 0.70 0.96 0.98 0.86 0.66 

Snitterfield - Aug 09 0.98 0.76 0.75 0.79 0.97 0.96 0.82 0.84 0.98 0.96 0.93 0.91 0.95 0.79 0.80 0.92 

Weston u. W.  - May 09 0.86 0.00 0.35 0.00 0.75 0.43 0.73 0.25 0.95 0.56 0.00 0.09 0.77 0.37 0.07 0.00 
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Table 6-9 A summary of results from hydraulic surveys on 13 field scale Severn Trent 

HSSF TWs.  Moreton Morrell B was a bed that had been rested for 13 

months.  All other systems were operational.  Areal Overland Flow and Plant 

Cover indices are approximate and qualitative.  Data includes: the media size 

range; the measured range of range hydraulic conductivity; arithmetic mean 

and standard deviation of hydraulic conductivity datasets; and the system 

Clog Factor (CFT) value.   

  

Test  

Date 

System  

Name 

Age Media 

Size 

Range 

Hyd. Cond. 

Range 

Hyd. 

Cond. 

mean 

Hyd. 

Cond. 

Std. 

Dev. 

CFT Areal 

Over 

Land  

Flow 

Areal 

Plant 

Cover 

   (yrs) (mm) (m/d) (m/d) (m/d) (-) (%) (%) 

Feb ‘ 8 Fenny 

Compton 

1 3-12 0.02 – 

83,000 

4,000 10,265 0.54 <5 5 

Feb ‘ 9 Fenny 

Compton 

2 3-12 0.01 – 

6,700 

560 1,240 0.74 <5 50 

Mar ‘   Fenny 

Compton 

3 3-12 1.2 – 

10,600 

1,396 2,355 0.63 <5 85 

Jun ‘ 9 Leek Wooton 3 6-9 14 – 

8,700 

1,077 1,817 0.67 <5 100 

May 

‘ 9 

Weston Under 

Wetherley 

5 3-6 0.04 – 

30,000 

2,560 5,568 0.60 10 50 

Jul ‘ 9 Rowington 8 3-6 0.001 – 

1,900 

90 262 0.88 40 100 

Aug ‘ 9 Snitterfield 15 3-6 0.01 – 

170 

11 26 0.92 80 100 

Jun ‘ 8 Moreton 

Morrell A 

16 3-6 0.04 - 

40,000 

1,260 4,950 0.64 15 100 

Feb ‘ 9 Moreton 

Morrell A 

16.5 3-6 0.03 - 

13,000 

403 1,752 0.82 20 100 

Sep ‘ 9 Moreton 

Morrell A 

17 3-6 0.03 - 

360 

52 100 0.87 25 100 

Oct ‘ 9 Moreton 

Morrell B 

17 3-6 24 - 

9,100 

840 1,613 0.58 <5 80 

Jun ‘ 9 Ashorne 16 3-6 0.03 – 

9,500 

409 1,473 0.81 15 70 

Jun ‘ 9 Northend 17 3-6 0.02 – 

680 

35 96 0.89 20 70 
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6.2. The influence of design and operation parameters on clogging 

The CF results can be used to deduce information regarding the impacts of wastewater 

treatment and vegetation on clogging, and the influence of inlet and outlet architecture.  

Some of these discussions only require consideration of CFT values, whereas others require 

statistical analysis of spatial trends in discrete CF values. 

 

6.2.1.  The influence of wastewater treatment 

Two identical HSSF TWs operated in parallel at Moreton Morrell A (operational) Moreton 

Morrell B (rested) were used to test the influence of normal operation on hydraulic 

conductivity.  Both beds appeared to be in similar states of clogging in July 2008 (although 

only Moreton Morrell A was surveyed).  Moreton Morrell B was taken off-line for 14 months 

and in September 2009 surveys were conducted on both Moreton Morrell A and B.  Visually, 

Moreton Morrell A appeared more clogged than Moreton Morrell B, with Moreton Morrell B 

showing a smaller degree of surface accumulation and stunted plant growth in comparison 

to Moreton Morrell A.  This is supported by the CFT results that show a value of 0.58 for 

Moreton Morrell B, a value of 0.87 for Moreton Morrell A at October 2009, and a value of 

0.64 for Moreton Morrell A at June 2008.  This result supports the idea that bed resting 

allows organic clog matter accumulations to mineralise and restores hydraulic conductivity. 

 

6.2.2. The influence of vegetation 

The CF results for each system were analysed using a 3-Way ANOVA test; the three factorials 

being the vertical, longitudinal and transverse location of the sampling point.  This enabled 

the relative component of CF variability in each direction to be factorialised, such that it was 

possible to study the influence of vegetation on vertical trends in CF results.  Only tests 

performed during the relatively warm and dry 6 month period May-September 2009 were 

considered.  Although vegetation health was not quantified through biomass assay or stem 

density counts, a qualitative relationship was noticed between the vegetation cover over the 

surface of the bed, and the vertical CF relationships in each system.  Those systems that 

were sparsely vegetated exhibited lower vertical CF values in the top 0.1 m of media than in 

media between depths of 0.1 to 0.2 m.  Those systems that had dense vegetation cover 

exhibited the highest vertical CF values in the top 0.1 m of measured media.  This effect 

occurs because plants contributes an additional solids load through leaf-litter fall, and shade 
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the bed surface from being dried-out by the elements, such that aerobic mineralization is 

decelerated.  This information is summarised in Table 6-10.    

Further evidence of the importance of vegetation is indicated by the repeat tests performed 

on Fenny Compton and Moreton Morrel A.  The tests of February 2009 were performed in 

very cold weather and measured CFT values were 0.74 and 0.82 respectively.  Fenny 

Compton partially recovered over the following year (March 2010 CFT value of 0.63), 

whereas the situation at Moreton Morrell became compounded (September 2009 CFT value 

of 0.87).  This evidence suggests that sparse vegetation cover at Fenny Compton enabled 

adequate mineralization during summer, and dense cover at Moreton Morrell prevented 

mineralization and CFT for the system continued to increase. 

 

Table 6-10 Least Square Means for the vertical component of Clog Factor variability at 

the 95% Confidence Level, for those systems surveyed between May 2009 

and September 2009.  The summer of 2009 was relatively warm and dry.  

The percentage Areal Plant Cover (APC) is given to compare the influence of 

incomplete vegetation cover on vertical CF relationships. 

 Depth below surface (m)  

 0.0 : 0.1 0.1 : 0.2 0.2 : 0.3 0.3 : 0.4 APC* (%) 

Ashorne 0.75 0.89 0.86 0.74 60 

Leek Wooton 0.81 0.76 0.57 0.54 100 

Moreton Morrell A 0.93 0.89 0.84 0.82 100 

Moreton Morrell B 0.56 0.68 0.59 0.5 75 

Rowington 0.91 0.9 0.86 0.84 100 

Northend 0.93 0.94 0.83 0.83 75 

Snitterfield 0.95 0.95 0.9 0.88 100 

Weston Under W* 0.77 0.72 0.59 0.34 60 

*  The system at Weston Under Wetherley had been operating with a flooded surface 

prior to the test 

 

6.2.3. The influence of inlet and outlet architecture 

The ANOVA analysis was also used to explore the influence of inlet and outlet architecture 

on transverse variations in Clog Factor.  An ideal HSSF TW that behaves as a plug-flow 

reactor would not experience any preferential flow induced by transverse variations in CF.  

To avoid transverse variations of preferential flow, the system would have to employ an 

influent distributor that achieves uniform width distribution and have an effluent collector 
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that does not induce preferential flow.  It is assumed that if these conditions are met, 

vegetation density across the width of the bed would be uniform, and therefore transverse 

variations of hydraulic conductivity due to varying vegetation establishment would be 

negligible.  If the HSSF TW is operating as designed, the CF results between different 

transects should not exhibit statistically significant differences, and the results from all 

transects should be in one homogeneous group.  Homogeneity in the transverse direction 

does not require homogeneity in the vertical or longitudinal direction.  The hypothesis was 

tested on each system by comparing the Least Significant Difference between transects at 

the 95% confidence level.  Table 6-11 summarises the number of homogeneous groups 

found for each study. 

As evident in Table 6-11, for most systems the statistical differences between CF results 

along each transect can be grouped into 2 or more homogeneous groups.  The only systems 

that do not exhibit variance between transects are Fenny Compton, which had recently 

undergone partial refurbishment, and Moreton Morrell B, which was not in operation.  As 

discussed during Chapter 5, clogging towards the inlet was generally highest within those 

transects that are closest to the point at which flow enters the influent distribution system.  

Clogging towards the outlet is generally highest within those transects that are closest to the 

point at which flow exits the effluent collection system.  These findings support the notion 

that pressure losses in inlet and outlet plumbing arrangements cause flow to short-circuit 

along the shortest path between the point at which flow enters and exits the system (Speer 

et al., 2004, Suliman et al., 2006b, García et al., 2003).     

Table 6-11 The number of statistically different homogeneous groupings (HG) of the 

results from each system, based on the Least Significant Difference between 

Clog Factor results for each transect, at the 95% confidence level. 

Date System HG Date System HG 

Feb ‘08 Fenny Compton 1 Jul ‘08 Moreton Morrell A 2 

Feb ‘09 Fenny Compton 1 Feb ‘09 Moreton Morrell A 3 

Mar ‘10 Fenny Compton 1 Sep ‘09 Moreton Morrell A 3 

Jun ‘09 Leek Wooton 2 Oct ‘09 Moreton Morrell B 1 

May ‘09 Weston Under W. 2 Jun ‘09 Ashorne 3 

Jul ‘09 Rowington 2 Jun ‘09 Northend 4 

Aug ‘09 Snitterfield 4    
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6.3.  The development of clogging 

The obtained CF data can also be used to explore the typical development of clogging in 

HSSF TWs in the longitudinal-vertical plane.  To achieve this, the entire CF data-set is 

statistically analysed to ascertain whether a relationship exists between the bulk system clog 

factor CFT and the variations in the vertical and horizontal values of CF.  Vertical and 

longitudinal coordinates associated with each value of CF were non-dimensionalised relative 

to the overall dimensions of the system (longitudinal position was non-dimensionalised 

relative to system length L and vertical position was non-dimensionalised relative to the 

total testing depth of 0.4 m).  It is recognised that there is some limitation to this approach 

because the surveyed systems had values of L that varied between 12 m and 20 m, and it is 

therefore assumed that the influence of L on CF is constant between this range.  However, it 

is deemed necessary to non-dimensionalise the dataset to allow a general equation to be 

developed that can reproduce longitudinal clogging profiles irrespective of system length. 

The CF data-sets for each system were subjected to 3-Way ANOVA tests with the three 

factorials set as CFT, dimensionless longitudinal sampling location ( ̅) and dimensionless 

vertical sampling location ( ̅) (sampling locations were non-dimensionalised against the 

relative system dimensions).  Dimensionless transverse sampling location was not included 

as a factor because formulations are desired which describe clogging in the longitudinal-

vertical plane.  As discussed in the previous section, well-functioning HSSF TWs should not 

develop transverse variations in clogging as part of a normal clogging mechanism.  Including 

all 13 sets of CF data in the analysis damped the influence of intra-system variability and 

allowed the general relationships between CF and CFT,   ̅ and  ̅ to be derived.   

A Type III Sums of Squares Analysis was used to perform a multifactor analysis of variance 

test for CF.   The test calculates the Least Square Means for CF to determine which factors 

have a statistically significant effect on CF at the 95% confidence interval.  Given the 2D 

nature of the dataset, the interaction between  ̅ and  ̅ can be separated into vertical and 

horizontal components.  This allows the interaction between  ̅  and the components of CF in 

the longitudinal direction (CFX), and the interaction between  ̅ and the components of CF in 

the vertical direction (CFZ), to be derived for different values of CFT (Figure 6-1 and Figure 

6-2).  Statistical analyses were performed using StatGraphics Centurion XVI (StatPoint 

Technologies, Warrington, Virginia).  The outputs produced by StatGraphics Centurion XVI 

for each data-set are included in Appendix C.  
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Figure 6-1 The relationship between longitudinal distance and longitudinal component 

of Clog Factor (CFX) for various values of bulk system Clog Factor (CFT)  

 

 
Figure 6-2 The relationship between vertical depth and vertical component of Clog 

Factor (CFZ) for various values of bulk system Clog Factor (CFT)  

 

A surface fit equation to Figure 6-1 was derived that describes how the value of CFX changes 

for different values of  ̅ and CFT (Equation 6-1) and a surface fit equation to Figure 6-2 was 

derived that describes how the value of CFZ changes for different values of  ̅ and CFT 

(Equation 6-2).  The analysis used to derive the coefficients that govern Equation 6-1 and 

Equation 6-2 is given in Appendix B.  The coefficients given in Equation 6-1 and Equation 6-2 

are quoted to five significant figures, which improves the accuracy of calculated values for 

CFX and CFZ by approximately 3 %.  
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       (        ̅
         ̅        )

 (       ̅         ̅        ) 
Equation 6-1 

 

       (       ̅
         ̅        )

 (        ̅         ̅        ) 
Equation 6-2 

 

 

According to the theory underlying the ANOVA test, the relationship between CF, CFX, CFZ 

and CFT for a dataset is given by Equation 6-3: 

 

   
       
   

 Equation 6-3 

 

By substituting Equation 6-1 and Equation 6-2 into Equation 6-3 it is possible to derive a 

surface equation for CF purely in terms of CFT,  ̅  and   ̅ ; i.e. it would be possible to calculate 

a value of CF at any point in the system and at any stage of clogging, which represents the 

relationships illustrated in Figure 6-1 and Figure 6-2.  It should be emphasised that this 

relationship is specific to Severn Trent HSSF TWs and is considered valid for values of CFT 

between 0.5 and 0.95. 

The goodness of fit produced when Equation 6-1, Equation 6-2 and Equation 6-3 are 

combined to describe CF profiles of Severn Trent HSSF TWs can be tested by trying to 

reproduce the experimental measurements from which the expressions where derived.  

Values for 208 width normalised combinations of CFT ,  ̅  and   ̅ , which correspond to 

measurements made during the 13 field surveys, were substituted into the above 

expressions.  The closeness of fit between the 208 modelled CF values and the 

corresponding experimental results are shown on a scatterplot in Figure 6-3.  As evident 

from Figure 6-3, the derived surface plot closely represents the experimental dataset, as the 

average linear trend is almost 1:1.  The clogging in these systems will develop differently 

subject to natural variations.  The ANOVA test has enabled the statistically significant 

general trend to be separated from the naturally occurring scatter in the data-set.  The 

obtained general trend has a goodness of fit corresponding to an R2 value of 0.64. 
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Figure 6-3 The agreement between measured and modelled Clog Factor values for 208 

data sets obtained over the sampling period.  The empirical model is based 

on statistical analysis of the data, whereby transverse variance is removed, 

and shows good agreement with data. 

 

Figure 6-4 illustrates the ability of Equation 6-1, Equation 6-2 and Equation 6-3 to reproduce 

representative 2D CF profiles by comparing against CF data that was derived from one of the 

Severn Trent HSSF TW surveys.  At February 2009 the HSSF TW at Fenny Compton had an 

experimentally derived CFT of 0.74, with a corresponding 2D CF profile (with transverse 

variance statistically removed) as illustrated in Figure 6-4a.  Figure 6-4b provides the 

corresponding 2D CF profile derived for this system using a CFT value of 0.74 in Equation 6-1, 

Equation 6-2 and Equation 6-3.   Figure 6-4b represents a good fit to Figure 6-4a, but with 

system specific anomalies removed, as per the influence of the ANOVA test.  

 

 

Figure 6-4 Comparisons between the measured (a) and modelled (b) Clog Factor 

profiles for the February 2009 survey of Fenny Compton.   
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The CF profiles produced by Equation 6-1, Equation 6-2 and Equation 6-3 can be used to 

recreate hydraulic conductivity profiles for HSSF TWs at different stages of clogging.  This 

procedure involves using Equation 3-59 to reproduce porosity profiles for the system, and 

then using the Kozeny-Carman equation (Equation 3-57) with a value for d50 to reproduce 

hydraulic conductivity profiles for different values of CFT that are similar to those measured 

during the field surveys.  The profile must be dimensionalised according to the geometry of 

the system.  In this way engineers can recreate hydraulic conductivity profiles from a simple 

set of variables.  The same simple variables will now be used to help calibrate the novel 1D 

analytical solution that describes the hydraulic response of the system at different stages of 

clogging (Equation 3-52 and Equation 3-55).   

 

6.4.  A Clog Factor Based Expression for water table profile 

Chapter 3 introduced three parameter based expressions to describe how the water table 

profile varies in the longitudinal direction, due to spatial and temporal variations in hydraulic 

conductivity, overland flow and flow-rate.  Equation 3-49, Equation 3-52 and Equation 3-55 

are restated here for convenience. 

 

  
 

 
  (

     

    
  ) Equation 3-49 

 

   
   

  ( )   
 

  
[       (   )         (   )]      

  Equation 3-52 

 

   
   

  ( )   
 

  
[           (   )]    

  Equation 3-55 

 

h Water depth at a point x (m) 

hout Water depth at the outlet (m) 

hf Water depth at f (m) 

qin Hydraulic loading rate (m3/d) 

k Clean gravel hydraulic conductivity (m/d) 

L System length (m) 

f Length of overland flow from inlet (m) 
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where a and b are parameters to be found.  Parameters a and b can be calibrated to 

functions of system Clog Factor (CFT) so that the above expressions can be simply used to 

describe how the hydraulic response of the system varies as CFT varies between 0.55 and 

0.9.  The FEA model derived in Chapter 3 will be used to achieve this calibration.  Firstly, a 

test case will be presented for the FEA model and the 1D analytical equation, to assess their 

ability to simulate hydraulic performance of field-scale HSSF TWs.  Secondly, theoretical 

hydraulic conductivity profiles will be modelled for different values of CFT by using the 

surface fit equations derived in the last section.  The FEA model will produce water table 

profiles that correspond to the hydraulic conductivity profile.  Values of a and b that 

produce best fit solutions to the water table profile produced by FEA will be derived for 

Equation 3-49, Equation 3-52 and Equation 3-55.  Lastly, a relationship will be derived to 

describe how values of a and b change with CFT. 

 

6.4.1. Hydraulic model validation using a real-life test case 

The proposed 1D analytical solution for water table profile, and FEA model were 

benchmarked against existing hydraulic tools for HSSF TWs, namely Darcy’s Law (EC/EWPCA, 

1990), Dual-Zone Darcy’s Law (USEPA, 2000), and the Dupuit-Forchheimer Assumption 

(Kadlec and Watson, 1993).  The models were compared on their ability to fit water table 

measurements along Transect A at Moreton Morrell A, which were obtained during the 

February 2009 test.  Six spot measurements of water table depth were made at regular 

intervals between the inlet and outlet.  During the survey overland flow was visible along the 

measuring transect to a distance of approximately 5 m from the inlet.   

To implement the FEA model a mesh consisting of 4,416 triangular elements, with a 10 times 

scaling factor in the longitudinal direction was used to represent the system.  A linear 

interpolation between hydraulic conductivity values measured along Transect A of Moreton 

Morrell A during the February 2009 test was used to create a spatially varying hydraulic 

conductivity profile on the model subdomain.  The boundary conditions that correspond to 

values measured during the Moreton Morrell A February 2009 test are stipulated in Table 

6-12.  The boundary conditions given in Table 6-12 were used as variables in Equation 3-49, 

Equation 3-52 and Equation 3-55 to create a water table-profile.  The SOLVER function 

embedded in Microsoft Excel™ was used as a data-fitting tool to find values of a and b that 

best fit the analytical model to the measured water table profile.   
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Table 6-12 Experimental data and modelling parameters as measured during the 

Moreton Morrell A, February 2009 sampling test. 

Parameter Symbol Value Unit 

Experimentally measured inlet water depth hin 0.68 m 

Experimentally measured outlet water depth hout 0.542 m 

System Length L 15 m 

System Width W 15 m 

Gravel Depth H 0.6 m 

Estimated wetted cross-section AW 8.86 m² 

Gravel Cross Sectional Area along flow axis L*H 9 m² 

Hydraulic Loading Rate qin 175 m³/d 

Clean media hydraulic conductivity  k 5,000 m/d 

 
 
Using each method, a water table profile was fitted that reproduced the inlet and outlet 

depths as closely as possible, as this is how equivalent values of hydraulic conductivity are 

often experimentally derived.  

The proposed analytical formulation was able to closely reproduce the downstream portion 

of the water table, although no solution could be found that mimicked the broad upstream 

water profile whilst achieving the observed inlet water height.  Parameter values for a and b 

were found to be 0.025 and 0.198, respectively.  It was found that assuming different values 

of a and b upstream and downstream of f enabled the water table profile to be closely 

fitted.  The requirement to use two sets of values for a and b physically represents the 

distinct difference between the hydraulic properties of the region upstream of f, where flow 

must vertically infiltrate through a surface layer of clog matter, and the region downstream 

of f, where flow moves horizontally though the gravel subsurface.  For the remainder of this 

study it is assumed that a and b can assume different values upstream and downstream of f.  

The parameter names aup and bup will be used upstream of f and adown and bdown will be used 

downstream of f.  The following parameter values were found to closely replicate the water 

table profile:  aup = 0.00025, bup = 200, adown = 0.015, bdown = 0.45.  In this case, aup and bdown 

are used to calculate f. 

The water table profiles obtained by each method are illustrated in Figure 6-5 and the 

corresponding wetted volume and closeness of fit to the measured water table profile are 
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given in Table 6-13.  The Dupuit-Forchheimer and Darcy’s Law approaches overestimate the 

water table profile, whereas the Dual-Zone Darcy approach underestimates the water table 

profile.  The FEA model closely describes all portions of the water table profile with a Root 

Mean Square Error (RMSE) of 0.008 m.  Using two sets of fitting parameters (Anaytical 2 in 

Figure 6-5) instead of one set of fitting parameters (Anaytical 1 in Figure 6-5) improved the 

RMSE of the Analytical solution from 0.010 m to 0.006 m.   

 

 

Figure 6-5 The water table profiles that were fitted to the experimental water table 

survey, according to the different methods discussed in this report: Darcy’s 

Law, Dual Zone Darcy’s Law, Dupuit-Forchheimer Assumption, Finite 

Element Analysis and the proposed analytical solution.  

 

 

Table 6-13 Simulation results for reproduction of the water table measured at Moreton 

Morrell A, according to three existing hydraulic design tools, the FEA model, 

and the proposed analytical formulation. 

Method Darcy Dual Darcy Dupuit FEA Analytical 1 Analytical 2 

Root Mean Square Error (m) 0.027 0.020 0.030 0.009 0.013 0.006 

Wetted cross-section (m²) 9.28 8.67 9.23 8.79 8.81 8.83 

 

Figure 6-6 illustrates the interpolated hydraulic conductivity profile of the FEA model, with 

values varying across 6 orders of magnitude in concordance with field observations.  The 

most clogged region corresponds to the surface layer at the inlet with values on the order of 
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0.01 m/d, whilst lower depths towards the outlet of the bed have a hydraulic conductivity on 

the order of clean gravel (1000 m/d). 

The computed flow regime that corresponds to this hydraulic conductivity profile at a flow-

rate of 2 L/s is shown in Figure 6-7.  The length of the ponding region f required to achieve a 

flow-rate of 175 m3/day was found to be 7.72 m, and two different resulting zones of flow 

are clear: a vertical infiltration region below the ponding length indicated by the presence of 

vertical head-loss contours (upper sub-domain); and a horizontally flowing water-table with 

a profile governed by recharge from the upper sub-domain, as indicated by the greyscale 

shading from left to right (lower sub-domain).  The area of the upper sub-domain with no 

contours confirms zero flow through this part of the system.  These characteristics concur 

with the hydraulic theory of HSSF TWs described in Chapter 3.   

The model indicates that surface infiltration increases with distance downstream according 

to increasing hydraulic conductivity. Infiltration rates at the termination of the ponding 

region are 72 m/d whilst rates at the inlet are approximately an order of magnitude lower 

(Figure 6-8).  The high flux towards the middle of the bed results in the ‘S-shaped’ water 

table profile illustrated in Figure 6-5, which corresponds closely to that measured by the 

field survey. 

 

 

Figure 6-6 Model of the hydraulic conductivity profile of Transect A at Moreton Morrell 

A, based on the hydraulic conductivity survey of February 2009.  The 

logarithmic shading bar represents order of magnitude variations where 

dark areas are more clogged.  Reproduced from Knowles and Davies (2011).   
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Figure 6-7 The flow field that corresponds to the modelling parameters specified in 

Table 6-12 and the hydraulic conductivity profile illustrated in Figure 6-6.  

The vertical contours in the upper sub-domain represent vertical infiltration 

through the surface layer and the shaded profile represents the variation of 

hydraulic head in the horizontal water table.  Reproduced from Knowles and 

Davies (2011).   

 

 

 

Figure 6-8 The variable surface infiltration rate across the overland flow region at 

Moreton Morrell, as modelled using FEA.  This recharge profile creates an ‘S-

shaped’ water table profile, similar to that illustrated in Figure 6-7.  

Reproduced from Knowles and Davies (2011).     
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6.4.2. Calibration of analytical equation using FEA model 

According to Table 6-9, the values of CFT measured in field scale HSSF TWs by this study 

varied between 0.54 and 0.92.  Based on this, eight (8) CF profiles were generated using 

Equation 6-1, Equation 6-2 and Equation 6-3, corresponding to CFT values ranging from 0.55 

to 0.90, in increments of 0.05.  The resulting CF profiles are illustrated in Figure 6-9  on 

dimensionless transects. 

Each CF profile was converted into a non-dimensional hydraulic conductivity profile via the 

Kozeny Carmen Equation using a value of 5 mm for d50 and a value of 0.35 for ε.  Each 

hydraulic conductivity profile was dimensionalised to create a spatially interpolated 

hydraulic conductivity profile for the FEA model.  The FEA model is based on a hypothetical 

2D HSSF TW that has a gravel filled cell with length L of 15 m, height H of 0.6 m and a 

maximum height of 0.1 m for surface sludge accumulation.  The outlet water depth hout was 

set to 0.4 m.  For each CF profile, the length of the ponding region f (inlet boundary 

condition) required to achieve Qin of 2 L/s across the outlet boundary was found using an 

iterative solver included in COMSOL.  The water-table profile that corresponds to each CF 

Profile is shown in Figure 6-10.  

The same boundary conditions were used for parameter values Qin, L, hout and f  in Equation 

3-49, Equation 3-52 and Equation 3-55.  The SOLVER function embedded in Microsoft 

Excel™ was used as a data-fitting tool to find values of aup, bup, adown and bdown that best fit the 

analytical model to the modelled water table profile.  The corresponding parameter values 

for each fit, and the salient results for values of hin , f, AW are tabulated in Table 6-14.  Post-

processing visualisations from COMSOL that correspond to the FEA model created for each 

value of CFT are provided in Appendix D, and illustrate: the FEA modelling mesh; the 

hydraulic conductivity profile produced from Equation 6-1, Equation 6-2, Equation 6-3 and 

Equation 3-7; and the water table profile produced by the FEA model.  
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Figure 6-9 Dimensionless Clog Factor profiles corresponding to Equation 6-1, Equation 

6-2 and Equation 6-3 using values of CFT between 0.55 and 0.90, in 

increments of 0.05.  The progression of profiles from 0.55 to 0.90 

corresponds to the perceived progression of clogging in Severn Trent HSSF 

TWs, as derived from hydraulic conductivity surveys on field scale systems.   
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Figure 6-10 Longitudinal water-table profile for different values of bulk system Clog 

Factor CFT as obtained using the COMSOL FEA model of HSSF TW hydrology. 

 

Table 6-14 Values of f that satisfiy the boundary conditions of the FEA model and 

corresponding values for Aw and hf and hin.  Parameter values are given for a 

and b in Equation 3-49, Equation 3-32 and Equation 3-55 that produce a 

close fit to the water-table profiles produced by each FEA model.  

CFT f 
(m) 

hin 

(m) 
hf 

(m) 
Aw 

(m2) 
aup 

- 
bup 

- 
adown 

- 
bdown 

- 

0.55 1.83 0.42 0.42 4.13 1.08E-03 3,387 1.00 1.70E-01 

0.60 2.05 0.43 0.43 4.20 1.01E-03 1,632 1.00 1.04E-01 

0.65 2.41 0.46 0.45 4.29 9.20E-04 954 1.00 3.59E-02 

0.70 3.90 0.47 0.47 4.56 5.94E-04 600 0.85 1.00E-03 

0.75 6.90 0.53 0.51 5.01 4.50E-04 350 0.60 1.00E-04 

0.80 7.76 0.57 0.54 5.62 2.98E-04 400 0.30 1.00E-05 

0.85 9.00 0.66 0.59 5.93 2.57E-04 200 0.18 1.00E-03 

0.90 13.10 0.69 0.64 6.54 1.99E-04 321 0.07 1.00E-02 

 

 

6.4.3. The relationship between analytical equation and system Clog Factor 

The relationships between system clog factor CFT and parameter values for aup, bup, adown 

and bdown are respectively shown in Figure 6-11, Figure 6-12, Figure 6-13 and Figure 6-14.  

The perceived relationships of best-fit for each parameter are illustrated on each figure, and 

are provided in Equation 6-4, Equation 6-5, Equation 6-6 and Equation 6-7.  Substituting 

these relationships into Equation 3-49, Equation 3-52 and Equation 3-55 allows an 

expression for water table profile to be derived that is based on the input variables for CFT, 

k, hout and Qin. 

CFT 

0.55 

0.60 
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0.80 
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Figure 6-11 The relationship between parameter value aup and system Clog Factor CFT 

based on the data-fit to the results of the FEA modelling. 

 

Figure 6-12 The relationship between parameter value bup and system Clog Factor CFT 

based on the data-fit to the results of the FEA modelling. 

 

Figure 6-13 The relationship between parameter value adown and system Clog Factor CFT 

based on the data-fit to the results of the FEA modelling. 
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Figure 6-14 The relationship between parameter value bdown and system Clog Factor CFT 

based on the data-fit to the results of the FEA modelling. 
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               Equation 6-7 

 

 

The results of the parameter-fitting exercise, and the resulting water table profiles produced 

by substituting Equation 6-4, Equation 6-5, Equation 6-6 and Equation 6-7 into Equation 

3-49, Equation 3-52 and Equation 3-55, are shown in Figure 6-15.  As evident from Figure 

6-15, the resulting expression is able to well describe the geometry of the water-table for 

values of CFT between 0.55 and 0.9, and therefore can simulate the changing hydrology of a 

Severn Trent HSSF TWs as they undergo clogging.  The water table profile results produced 

by the FEA model and the analytical equation are provided in Appendix F. 
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Figure 6-15 Results of the data-fitting exercise, to fit the analytical equation to the water 

table profile produced for each CF profile by the COMSOL FEA model. 
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6.5. The relationship between Clog Factor and hydrodynamics  

The relationship between hydrodynamics and CFT will be explored in a similar manner to 

how the relationship between hydraulics and CFT has been explored.  Firstly the 

hydrodynamic module of the FEA model will be validated against tracer tests performed on a 

field scale HSSF TW.  Pending validation, the FEA model will be used to produce RTDs for 

different CF profiles, such that relationships can be deduced between the values of CFT and: 

a) Number of Tanks-In-Series n that fit the RTD; and b) overall hydraulic efficiency λ.   

 

6.5.1. Hydrodynamic model validation using a real-life test case 

The validity of the FEA hydrodynamic module will be verified against tracer tests performed 

at Moreton Morrell during the February 2009 test.  Internal tracer monitoring was 

performed at multiple points corresponding to the sampling locations for hydraulic 

conductivity measurements (as illustrated in Figure 5-26).   All sampling was made at a 0.5 m 

depth below the bed surface to investigate the occurrence of vertical short-circuiting in 

these systems.  Additionally, the breakthrough curve from the outlet was monitored to 

elucidate the influence that system hydrology has on bulk hydrodynamics.  A 5 ml single-

shot impulse of concentrated Rhodamine WT solution was added to the inlet manifold, 

upstream of the wetland cell.  In response to there being no affordable proprietary 

fluorimeter for synchronous measurement from a matrix of sampling points, a novel multi-

in-line-channel, data-logging fluorimeter was created.  Details of the design, calibration, 

sensitivity and manufacture of this device are included in Appendix E.  Figure 6-13 is a 

photograph of the interior of the multichannel fluorimeter at a TW in South Warwickshire.  

The Rhodamine breakthrough curve was measured at the outlet using a Cyclops 7 

submersible fluorimeter (Turner Designs, USA).  Tracer recovery was 71 % with the loss 

mainly attributed to adsorption by clog matter.  An instrument error meant no information 

was collected for point D2.   
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Figure 6-16 Photographs of the developed multichannel, flow-through, data-logging 

fluorimeter for multipoint dye tracing experiments, installed at Fenny 

Compton.  Reproduced from Knowles et al. (2010). 

 
Figure 6-17 compares the total dye detected at each point with the average detected over 

the 500 mm vertical plane.  This indicates the relative location of preferential flow-paths and 

dead-zones as values greater and less than one respectively.  The biggest preferential flow-

path is detected at point A3 (5.4 times the average flow) which roughly coincides with the 

point at which overland flow ceases in this system.  Contrastingly, upstream points A1 and 

A2 have very little involvement in the flow field, confirming observations that the majority of 

the flow short-circuits over the surface sludge until it can infiltrate into the subsurface and 

follow the path of least resistance below the root zone.  In accordance with the hydraulic 

conductivity results obtained for this system (Section 5.8), flow follows the path of least 

resistance downstream from point A3, by steering towards points A3, B4, C4 and D4; 

perhaps avoiding a clogged outlet collector at point A4 (Cooper et al., 2008).  Calculation of 

the hydraulic efficiency factor λ (Muñoz et al., 2006, Persson et al., 1999) emphasises the 

inefficiency created by this flow regime.  Point A2, B2, A3 and B3 have λ values of 0.16 to 

0.39 (Table 6-15) reflecting the premature passage of the RTD peak associated with where 

the overland flow secedes, in comparison to the centroid of the flow.  Some upstream points 

have λ values greater than 1 due to low subsurface flow-rates at the inlet.     
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Figure 6-17 The variation of Relative Flow Fraction measured at the 500 mm depth plane 

within the TW subsurface.  The darker regions represent those that receive 

more flow.  Reproduced from Knowles et al. (2010).  

 

Table 6-15 Parameters derived from the breakthrough (BT) curves of each sampling 

point, studied using the multi-point fluorimeter.   

 Peak 
Time 
(d) 

Centroid 
Time  
(d) 

16% 
BT (d) 

50% 
BT (d) 

84% 
BT (d) 

Short-
Circuiting 

Factor 

Hydraulic 
Efficiency 

Factor 

Relative 
Flow 

Fraction 

A1 0.22 0.07 0.06 0.14 0.2 0.45 3.09 0.57 

A2 0.06 0.14 0.08 0.33 0.58 0.23 0.39 0.01 

A3 0.07 0.22 0.14 0.31 0.51 0.44 0.32 5.4 

A4 0.19 0.29 0.15 0.22 0.39 0.71 0.65 0.3 

B1 0.02 0.07 0.03 0.26 0.49 0.13 0.29 0.24 

B2 0.06 0.14 0.13 0.33 0.5 0.38 0.39 0.71 

B3 0.03 0.22 0.03 0.07 0.17 0.4 0.16 0.67 

B4 0.06 0.29 0.17 0.37 0.55 0.47 0.19 1.2 

C1 0.21 0.07 0.11 0.17 0.21 0.64 2.89 0.46 

C2 0.13 0.14 0.13 0.31 0.49 0.43 0.92 0.74 

C3 0.09 0.22 0.08 0.19 0.26 0.43 0.42 0 

C4 0.39 0.29 0.19 0.33 0.44 0.57 1.35 2.22 

D1 0.04 0.07 0.03 0.07 0.15 0.5 0.58 0 

D2 NR NR NR NR NR NR NR NR 

D3 0.66 0.22 0.61 0.65 0.69 0.94 3.06 1.23 

D4 0.25 0.29 0.18 0.32 0.49 0.57 0.87 1.25 
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The outlet RTD very clearly indicates the existence of two major flow-paths through the 

HSSF TW (Figure 6-18) which have been partitioned according to the parameters reported in 

Table 6-16.  The first path to arrive at the outlet corresponds to the overland flow that short-

circuits to point A3, carrying 79% of the flow and arriving after only 5.3 hrs.  The second 

represents the highly retarded flow-path from upstream infiltration into the subsurface, 

which arrives 41 hrs later than the overland flow path.   

 

 
Figure 6-18 The obtained Rhodamine WT Residence Time Distribution Curve (dashed 

line) and a dual-path Tanks-In-Series model fitted to the obtained results.  

 

Table 6-16 Hydraulic parameters for the various flow paths derived from the outlet 

residence time distribution.  The Hydraulic Loading Rate is 175,000 m3, the 

theoretical hydraulic residence time is 0.27 days and the total volume of 

tracer injected is 3 ml. 

   SINGLE PATH OVERLAND 

PATH 

SUBSURFACE 

PATH 

Peak Time d 0.22 0.22 1.93 

16% Tracer Recovery Time d 0.33 0.27 1.96 

50% Tracer Recovery Time d 1.23 0.9 2.26 

84% Tracer Recovery Time d 3.23 3.22 4.46 

Total Tracer Recovered ml 2.13 1.74 0.45 

Flow-Split  1 0.82 0.21 

Volumetric Efficiency  5.22 4.47 9.82 

Number of TIS (N)  5.44 5.44 -0.16 

Hydraulic Efficiency (λ)  0.18 0.24 0.85 

Short Circuiting (S)  0.26 0.3 0.87 
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Three snap-shots from the tracer impulse simulation modelled using COMSOL are shown in 

Figure 6-19, Figure 6-20 and Figure 6-21 for times 20, 40 and 140 minutes respectively.  The 

shading shows the spatial concentration profile of the tracer plume normalised against the 

inlet tracer concentration, where darker shades indicate greater concentration.  Note that 

the shading bar is rescaled for each different time frame so that the concentration gradient 

is still discernible as the plume becomes more dispersed with time.   

In Figure 6-19 the variable infiltration below the ponding region can be seen.  Plume 

advancement near the inlet is fairly stagnant whereas faster infiltration rates downstream 

have led to rapid vertical spreading of the plume.  This effect is emphasised in Figure 6-20 

where the vast majority of the injected tracer is engaging the water-table at about 8 m 

downstream and has quickly spread towards the bottom of the bed.   

Figure 6-21 shows that the plume migrates horizontally once it is within the water-table, 

although low hydraulic conductivity through the root-zone causes the majority of the plume 

to vertically short-circuit through the relatively clean media along the bottom of the bed.  

The fraction of the tracer that infiltrates through the surface layer near the inlet moves at 

contrastingly lower horizontal speeds, such that an interesting effect happens that may help 

to explain the results obtained in the tracer tests at Moreton Morrell.  The plume breaks into 

two visible phases: the first to reach the outlet represents the majority of the flow which 

rapidly propagates along the overland flow-path and then short-circuits below the root-

zone; whilst the second phase represents flow through the clogged upstream media and 

consequently reaches the outlet much later. 

 

 

Figure 6-19 The passage of tracer through Moreton Morrell as simulated through the 

FEA model developed in COMSOL.  The shading represents the spatial 

concentration of the tracer plume relative to the influent concentration at 

20 minutes.  Reproduced from Knowles and Davies (2011).    
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Figure 6-20 The passage of tracer through Moreton Morrell as simulated through the 

FEA model developed in COMSOL.  The shading represents the spatial 

concentration of the tracer plume relative to the influent concentration at 

40 minutes.  Reproduced from Knowles and Davies (2011).    

 

 

Figure 6-21 The passage of tracer through Moreton Morrell as simulated through the 

FEA model developed in COMSOL.  The shading represents the spatial 

concentration of the tracer plume relative to the influent concentration at 

60 minutes.  Reproduced from Knowles and Davies (2011).    

 

6.5.2. Calibration of RTDs using the TIS model 

The COMSOL FEA static hydraulic models produced in Section 6.4 are used to perform 

dynamic solute transport modelling, and generate RTDs that correspond to the hydraulic 

scenario for each value of CFT in the model HSSF TW.  The influent pulse used in the model 

was based on an influent concentration cin of 1 mg/L applied across the boundary covered by 

length f for a period of 60 seconds.  The RTDs produced for each CFT are shown in Figure 

6-22. 
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Figure 6-22 Residence Time Distributions (RTDs) produced by the COMSOL FEA models of a Severn Trent HSSF TW for multiple 

values of system Clog Factor (CFT). 
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Equation 3-43 was used to fit a Tanks-In-Series (TIS) model to each RTD, according to 

parameter values for number of TIS n and mean hydraulic residence time τ.  The TIS fit for 

each RTD is shown in  Figure 6-23.  The RTD results produced by the FEA and TIS models are 

provided in Appendix G.  Each TIS fit is used to calculate the volumetric efficiency eV, mixing 

efficiency eM and hydraulic efficiency λ for each RTD.  To take into account the reactor 

volume lost to clogging, the CFT value is used to adjust the results for Aw, eV and λ.  The 

results for each modelled value of CFT are summarised in Table 6-17. 

 

 

Table 6-17 Salient results from the COMSOL FEA hydrodynamic modelling and TIS 

model fitting exercise, that describe how system hydrodynamics change 

according to CFT (as the system clogs). 

CFT  0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

qin (m2/d) 11.52 11.52 11.52 11.52 11.52 11.52 11.52 11.52 

Aw (m2) 4.13 4.20 4.29 4.56 5.01 5.62 5.93 6.54 

Aw(CFT) (m2) 1.86 1.68 1.50 1.37 1.25 1.12 0.89 0.65 

τT (d) 0.36 0.36 0.37 0.40 0.44 0.49 0.51 0.57 

τT(CFT) (d) 0.16 0.15 0.13 0.12 0.11 0.10 0.08 0.06 

n (-) 4.3 4.7 5.0 5.5 5.9 6.6 6.9 8.4 

τ (d) 0.16 0.17 0.17 0.14 0.13 0.09 0.09 0.08 

eM (-) 77% 79% 80% 82% 83% 85% 86% 88% 

eV (-) 44% 46% 47% 37% 31% 19% 17% 13% 

eV(CFT) (-) 97% 115% 133% 122% 122% 95% 112% 133% 

λ (-) 33% 36% 37% 30% 25% 16% 14% 12% 

λ(  T) (-) 74% 91% 106% 100% 101% 80% 96% 117% 
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 Figure 6-23 Tanks-In-Series fits to the RTD produced for each CFT scenario (continued overleaf) 
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 Figure 6-23 Tanks-In-Series fits to the RTD produced for each CFT scenario
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6.6. The relationship between HSSF TW hydrology and Clog Factor 

It should be emphasised that the exact relationship and variable values discussed in this 

section are specific to the constant values of k, hout, Qin and L used in the modelled scenario.  

The general relationships between CFT and the modelled system are discussed but numerical 

relationships are not derived.  

Figure 6-24 illustrates the relationship between system Clog Factor CFT and overland flow 

front f in the modelled system.  As CFT increases from 0.55 to 0.9 the value of f increases 

from 1.8 m to 13.1 m.  The general relationship illustrated by Figure 6-24 indicates that the 

rate of increase of f with respect to CFT increases as CFT increases.  The extent of overland 

flow in Severn Trent HSSF TWs becomes a compounding problem as reactor porosity is lost.   

 

 

Figure 6-24 The relationship between CFT and f for the modelled system. 

 

Figure 6-25 illustrates the relationship between system Clog Factor CFT and the depth of the 

subsurface water table at the inlet hin in the modelled system.  As CFT increases from 0.55 to 

0.9 the value of hin increases from 0.42 m to 0.69 m.  The general relationship illustrated by 

Figure 6-25 indicates that the rate of increase of hin with respect to CFT increases as CFT 

increases.  In the modelled system the maximum water depth at which point ponding occurs 

is 0.7 m.  The possibility that ponding will occur in Severn Trent HSSF TWs becomes 

increasingly likely as reactor porosity is lost.   
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Figure 6-25 The relationship between CFT and hin for the modelled system. 

 

Figure 6-26 illustrates the relationship between system Clog Factor CFT and the wetted 

reactor area AW in the modelled system.  AW is expressed both in terms of theoretical clean 

media porosity and adjusted using CFT to account for the loss of porosity due to clogging.  

The general relationship illustrated by Figure 6-26 indicates that the rate of change of AW 

with respect to CFT increases as CFT increases.  As CFT increases from 0.55 to 0.9 the value of 

AW increases from 4.1 m2 to 6.4 m2.  However, once adjusted for loss in porosity, it can be 

seen from Figure 6-26 that the wetted cross-sectional area available for flow actually 

decreases from 1.9 m2 to 0.7 m2.  This important results confirms that the increase in wetted 

volume in response to clogging does not compensate for the loss of porosity due to clogging, 

and the reactor volume available for flow does decrease as the system clogs.  The general 

relationship illustrated by Figure 6-26 indicates that when adjusted for clogging the rate of 

decrease of AW with respect to CFT gradually increases as CFT increases. 

 

 

Figure 6-26 The relationship between CFT and AW for the modelled system, based on the 

theoretical clean media porosity and CF adjusted to account for the loss of 

porosity due to clogging.  
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Figure 6-27 illustrates the relationship between system Clog Factor CFT and theoretical mean 

residence time τT in the modelled system.  τT is expressed both in terms of theoretical clean 

media porosity and adjusted using CFT to account for the loss of porosity due to clogging.  

The change of τT is directly proportional to the change of AW.  As CFT increases from 0.55 to 

0.9 the value of τT increases from 0.36 days to 0.57 days.  Similar to AW, once adjusted for 

loss in porosity, it can be seen from Figure 6-27 that the value of τT  should be anticipated to 

decrease from 0.16 days to 0.06 days.  The increase in wetted volume in response to 

clogging does not compensate for the loss of porosity due to clogging and the theoretical 

residence time will decrease in proportion to the reactor volume available for flow.   

 

 

Figure 6-27 The relationship between CFT and τT for the modelled system, based on the 

theoretical clean media porosity and CF adjusted to account for the loss of 

porosity due to clogging. 

 

Figure 6-28 illustrates the relationship between system Clog Factor CFT and number of 

Tanks-In-Series n.   As CFT increases from 0.55 to 0.9 the value of n increases from 4.3 to 8.4.  

The general relationship illustrated by Figure 6-25 indicates that the rate of increase of n 

with respect to CFT increases as CFT increases.  The relationship suggests an increasing shift 

towards plug-flow hydrodynamics as the system clogs.  The more flow that short-circuits 

overland, the less time the flow spends in the subsurface where tortuosity and hydraulic 

resistance would increase dispersion.  As such, the mixing efficiency eM of the HSSF TW 

increases from 77 % to 88 % as the system clogs.   
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Figure 6-28 The relationship between CFT and n produced by the FEA hydrodynamic 

model.  

 

 

Figure 6-29 illustrates the relationship between system Clog Factor CFT and the mean 

residence time τ produced by the FEA hydrodynamic model.  The value of τ increases from 

0.16 days when CFT is 0.55 and peaks at 0.18 days when CFT is 0.65, after which τ decreases 

to a value of 0.08 days when CFT is 0.90.  The general trend illustrated in Figure 6-29 suggests 

that a small degree of clogging causes mean hydraulic residence time to increase, probably 

because of the increase in subsurface wetted volume that is involved in dispersion.  

However, as clogging increases and the extent of overland flow increases the fraction of 

subsurface volume bypassed by the flow also increases.  As the system clogs, the decrease in 

dispersion, indicated by the increasing value of n, combined with the reduction in AW results 

in a decrease in mean hydraulic residence time. 

 

 

Figure 6-29 The relationship between CFT and τ produced by the FEA hydrodynamic 

model.  
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According to Figure 6-30, the volumetric efficiency (eV) of the HSSF TW increases from 44 % 

to 47 % as CFT increases from 0.55 to 0.65, and then eV decreases from 47 % to 13 % as the 

CFT  increases from 0.65 to 0.90.  However, the CFT adjusted values of ev are between 95 % 

and 133 %.  This phenomenon suggests that adjusting the value of volumetric efficiency 

using CFT well accounts for the impact of clogging on volumetric efficiency (i.e. no results 

that are significantly lower than 100 %).  Evapotranspiration may be responsible for 

counteracting the effects of clogging by up to 33 % in some systems, although a flow balance 

between the inlet and outlet would need to be performed to confirm this suggestion.   

 

 

Figure 6-30 The relationship between CFT and eV produced by the FEA hydrodynamic 

model. 

 

The relationship between CFT and hydraulic efficiency λ is similar to the relationship 

between CFT and eV. The value of λ decreases from a maximum of 37 % to a minimum of 

12 % as the system clogs.   The CFT adjusted values of λ vary between 74 % and 117 %. 

 

6.7. Conclusions 

This Chapter has demonstrated the usefulness and flexibility of the Clog Factor to describe 

the hydraulics of HSSF TWs.  Clog Factor values were derived for Severn Trent HSSF TWs 

using the hydraulic conductivity results obtained in Chapter 5.  The arithmetic mean of these 

results produced a bulk system Clog Factor CFT that was used to benchmark the state of 

clogging in each system.  The value of CFT is referenced against the theoretical hydraulic 

conductivity for a homogeneous media with particle diameter equivalent to the mean 



  

282 
 

particle diameter of the clean media, and porosity equivalent to the porosity of the clean 

media.  The system is clean and ideal when CFT is 0, non-ideal with a particle size distribution 

when the system is clean and CFT is greater than 0, and completely clogged when CFT is 1.  

It was found that CFT varied between 0.54 for a system that had recently been refurbished 

(clean and non-ideal), and 0.90 for a 15 year old system that exhibited overland flow across 

the majority of the bed surface (heavily clogged).  The value of 0.54 for the clean system 

suggests that the actual hydraulic performance of the system is less than half of the design 

hydraulic performance because of the tendency for small media particles to occupy the pore 

spaces between large media particles in media with a particle size distribution. 

Based on additional statistical analysis of CF data-sets, the following observations were 

made regarding the influence of system design and operation on clogging: 

 Statistically significant transverse variations in hydraulic conductivity were found in 

70% of the systems surveyed.  Clogging towards the inlet was generally highest 

within those transects that are closest to the point at which flow enters the influent 

distribution system.  Clogging towards the outlet was generally highest within those 

transects that are closest to the point at which flow exits the effluent collection 

system.  Pressure losses in inlet and outlet plumbing encourage preferential flow 

along a path of least resistance between the point at which flow enters and exits the 

system. 

 Those systems that were sparsely vegetated exhibited reduced vertical CF values in 

the top 0.1 m of measured media, in comparison to the 0.1 to 0.2 m depth of media.  

Those systems that had dense vegetation cover exhibited the highest vertical CF 

values in the top 0.1 m of measured media.  Sparse cover enables accelerated clog 

matter mineralisation via surface evaporation, whereas dense cover prevents this 

occurrence and exacerbates the onset of clogging. 

 Resting strategies can be used to restore hydraulic conductivity and reduce CFT.  A 

side-by-side test indicated that a system that had been rested for 14 months had a 

CFT value that was 29% lower than a system that had been operating continuously.   

Transverse variations in clogging were removed from the dataset to allow a dimensionless 

2D surface expression to be derived that describes the variation of CF within the subsurface 

for various values of CFT.  This equation relates the spatial development of clogging within 

the system to temporal changes of overall clogging within the system.  The agreement 
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between measured and modelled values of CF was found to be good and allowed the 

statistically significant trend in clogging to be separated from scatter in the data that arises 

from natural randomistic variations in the way that systems clog.    

An experimentally validated hydrological FEA model was used to investigate how a Severn 

Trent HSSF TW hydraulically and hydrodynamically responds to various values of CFT.  The 2D 

surface expression was used to generate hydraulic conductivity profiles for values of CFT 

between 0.55 and 0.90.  For each hydraulic conductivity profile and specific values of flow-

rate, outlet water depth, clean media hydraulic conductivity and system length, the FEA 

model was used to find: the length of overland flow; the water table profile; and the 

residence time distribution within the reactor.  It was possible to closely replicate the water 

table profile corresponding to each value of CFT by using different values of a and b in 

Equation 3-49, Equation 3-52 and Equation 3-55, for the regions upstream and downstream 

of f.  The RTDs were closely replicated using a Tanks-in-Series model with a gamma 

distribution.   

The results of the modelling exercise were used to further analyse the relationship between 

CFT and system hydrology.  It was found that the length of overland flow, the inlet water 

depth, the wetted reactor area, and the number of Tanks-in-Series all increased as CFT 

increased from 0.55 to 0.90.  This combination of results confirms that as the system clogs 

an increasing fraction of the reactor subsurface is bypassed by flow that short-circuits as 

overland flow.  The elevation of water table profile that results from increased hydraulic 

resistance in the subsurface cannot compensate for the loss of subsurface porosity and the 

reactor volumetric efficiency and mean hydraulic residence time in the reactor both 

decrease.  Hydrodynamics shifts towards plug-flow because the flow spends less time in the 

subsurface where dispersive effects are greater.  However, the increase in mixing efficiency 

cannot compensate for the loss of volumetric efficiency and the overall hydraulic efficiency 

of the reactor decreases from 37 % to 12 % as the system clogs.  Adjusting the wetted 

reactor area to account for the reduction of porosity confirms that even though the wetted 

reactor area increases the area available for flow decreases as the system clogs.    

It should be emphasised that these general findings are only valid for Severn Trent HSSF TWs 

for tertiary treatment of municipal wastewater and due to the deviations from ideal media 

mentioned above only provide representative answers for values of CFT  greater than 0.5.    
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7. Conclusions 

The research described within this thesis entails four years of study, the majority of which 

was undertaken on operational, field-scale Horizontal Subsurface Flow Treatment Wetlands 

(HSSF TWs).  Together, the preceding chapters describe a systematic approach to 

understanding the way that clogging develops in HSSF TWs operated by Severn Trent, and 

the impact that this has on system hydrodynamics and hydraulics. 

This final chapter draws overall conclusions based on the detailed findings of the study.  

Discussion is given to the ability of the outcomes to satisfy the report objectives and the 

overall aim.  Finally, recommendations for using the study output are made along with 

suggestions for further work. 

 

7.1. General Conclusions 

The major findings from each Chapter will be considered in an overall discussion of the 

general conclusions that can be made from the research. 

The review of Chapter 2 found that the development of clogging in Subsurface Flow 

Treatment Wetlands depends on the design and operation of the system.  There are several 

factors that cause the systems of Severn Trent to clog in the manner that they do. 

 The systems are sized on the principle of 0.7 m2/PE, in contrast to secondary 

treatment HSSF TWs that are sized for 5 m2/PE. Therefore, the hydraulic loading rate 

of tertiary HSSF TWs is over five times greater than secondary HSSF TWs.   

 One of the major roles of the beds is to intercept biomass solids that are sloughed 

from upstream secondary stages. The solids are often filamentous flocs with 

diameter that are greater than the media pore diameters, such that they are quickly 

strained from the flow. Furthermore, these microbial strains are often slime 

producing. 

 It was found that tertiary HSSF TWs have a combination of relatively high hydraulic 

loading rate and solids loading rates when compared to variants of Subsurface Flow 

Treatment Wetlands employed elsewhere in the world (e.g.: Severn Trent HSSF TWs 

for tertiary treatment - median HLR = 0.12 m/d and median TSS = 7 g/m2.day; US 
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HSSF TWs for secondary treatment - median HLR = 0.02 m/d and median TSS = 2 

g/m2.day). 

 The systems ordinarily incorporate influent distrubtors that are located above the 

gravel surface and load the wastewater across the width of the bed, onto a rock 

berm that is intended to improve uniform distribution. Common distributors 

incorporate a horizontal pipe with several outward facing tees located at regular 

intervals along the pipe length, or a trough with v-notch weir incisions at regular 

intervals. 

The above combination of high hydraulic loading rate and surface loading rate of 

filamentous biomass solids results in the formation of a low permeability surface sludge 

layer on the surface of the bed, accompanied by overland flow.  This is particularly so once 

the upper layers of gravel have become extensively clogged, such that infiltration rates into 

the subsurface are limited. The overland flow covers the sludge layer and prevents aerobic 

mineralisation such that sludge layer development becomes progressive.  Sludge layer 

accumulation is exacerbated by patchy masses of leaf litter in various stages of 

decomposition.  Analysis of data presented by (Wilson, 2007) showed that surface sludge 

layer depth at the inlet increases by approximately 16 mm for every kilogram of solids 

loaded per square meter of system footprint.  A median Severn Trent system will therefore 

accumulate approximately 40 mm/year of surface sludge at the inlet region. 

Chapter 3 presented a novel mathematical derivation that describes the hydraulic response 

of HSSF TWs as they clog.  The model was derived in response to the need for an 

intermediate approach between over-simplified unrepresentative methods that have been 

applied historically in wetland design and sophisticated methods that are either time 

consuming or require computational expertise that extends beyond a good working 

knowledge of HSSF TWs.  The derived formulation is considered to be an intermediate 

approach that is relatively simple to apply without neglecting features that significantly 

influence clogging in HSSF TWs, i.e. variable hydraulic conductivity and overland flow. 

The expression is based on the assumption that media hydraulic conductivity varies from 

inlet to outlet according to an exponential relationship, the parameters of which vary as the 

system clogged.  A condition is included to describe the interaction between overland flow 

and the hydraulic conductivity profile.  In Chapter 6 the formulation was benchmarked 

against existing hydraulic tools for HSSF TWs, namely Darcy’s Law (EC/EWPCA, 1990), Dual-

Zone Darcy’s Law (USEPA, 2000), the Dupuit-Forchheimer Assumption (Kadlec and Watson, 
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1993) and the FEA model of (Knowles and Davies, 2011).  The models were compared on 

their ability to fit the data obtained in a water table survey of a HSSF TW at Moreton 

Morrell.  The equivalent hydraulic conductivity parameter values, corresponding wetted 

volume and closeness of fit to the measured water table profile were deduced for each 

method and the the proposed method presented an error reduction in the calculation of VW 

compared to all other methods, including the FEA model.  The novel derivation succeeded in 

achieving an intermediate accuracy between simple rules and complex computation models.  

It therefore provides a useful design guideline for wetland practitioners. 

Chapter 3 also introduced the Clog Factor CF: a novel metric that converts hydraulic 

conductivity, a physical property that is neither intensive nor extensive, into an intensive 

bulk property that can be representatively averaged for subsequent analysis.  CF is based on 

the Kozeny-Carman equation and can be applied over any scale, thus allowing internal 

variations of CF and aggregate values for system Clog Factor CFT to be derived from 

experimental hydraulic conductivity measurements.  The Clog Factor has the following 

advantages: 

 Intensive bulk property that can be applied to any scale porous media flow system 

 Non-dimensionalises data so that comparisons can be performed between systems 

with different dimensions and media sizes 

 Highlights deviations from theoretical clean conductivity due to both clogging and 

media non-ideality 

 Allows reasonable statistical comparisons where orders of magnitude changes in 

hydraulic conductivity would skew a data set 

 Allows single-parameter values to be published to indicate health of bed at a point 

in time 

In Chapter 4, a novel method was devised to allow the three dimensional hydraulic 

conductivity of HSSF TWs to be determined in situ.  The method recreates the laboratory 

constant head permeameter test in situ by using a submersible permeameter cell that 

encapsulates a test specimen of media, and a Mariotte Siphon actuated recharge reservoir 

to maintain constant head conditions in the cell.  The apparatus is designed for use by one 

person in remote locations, weighing approximately 10 kg and utilizing 10 L of water for one 

test, and is sized to be appropriate for the range of media hydraulic conductivities typically 

encountered in mature HSSF TWs (from 0 to 10,000 m/d).  Manometer take off tubes are 

immersed to different depths within the permeameter cell so that the vertical variation of 
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hydraulic conductivity can be elucidated.  By repeating the test at different locations over 

the surface of the bed and interpolating between results it is possible to generate a three-

dimensional hydraulic conductivity profile for the HSSF TW.   

Chapter 5 reported  results   for   spatial   variations   in   hydraulic   conductivity for   20  

separate   tests  on  13  different  HSSF  TWs,  in  the  UK  and  the  US.    Systems varied  by 

geometry  and   age   and   incorporated   varying   media,   influent   distributors   and   

upstream   processes.  The Aston Permeamter measured 1,053 sample hydraulic 

conductivities that ranged across 6 orders of magnitude.  Hydraulic conductivity was 

typically lowest on the surface of the bed at the inlet, where hydraulic conductivity values 

below 1 m/d often corresponded to a surface sludge layers covered by overland flow.  

Hydraulic conductivity was typically highest at the base of the bed near the outlet and was 

generally always above 100 m/d, even in extensively clogged systems.  Most systems 

displayed at least a 2 to 3 order of magnitude variation in hydraulic conductivity, across all 

planes.  The minimum value measured during the test was 0.03 m/d at Fenny Compton in 

February 2008, which was attributed to a concentration of construction fines clogging the 

gravel void space.  The maximum value measured was 62,500 m/d at Jackson Meadows 

South in 2009, although hydraulic conductivity of this magnitude is close to the practical 

measuring limit of The Aston Permeameter.   

In Chapter 6, the hydraulic conductivity results were converted to Clog Factors and 

subjected to an ANOVA test to explore the development of clogging and how this is 

influenced by various design parameters.  It was found that CFT values are typically between 

0.5 and 0.9, even for relatively clean beds (representing hydraulic performance that is 

equivalent to 50-90% of porosity reduction in the Kozeny Carman equation).  This is due to 

the influence of media non-ideality, such as particle size distribution, that reduces the 

hydraulic performance of the media below theoretical ideal design values. 

A 2D surface fit equation (transverse variance removed) was calibrated based on the 

relationship between CFT and internal variations of CF.  Effectively, this equation relates the 

spatial development of clogging within the system to temporal changes of overall clogging 

within the system.  It should be emphasised that the empirical surface fit is only valid for 

Severn Trent HSSF TWs for tertiary treatment of municipal wastewater and, due to the 

deviations from ideal media mentioned above, only provides representative answers for 

values of CFT greater than 0.5.  The agreement between measured and modelled values of 

CF was found to be good and allowed the statistically significant trend in clogging to be 
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separated from scatter in the data that arises from natural randomistic variations in the way 

that systems clog.  The equations will allow wetland modellers to conveniently reproduce 2D 

hydraulic conductivity profiles for Severn Trent HSSF TWs at any stage of clogging 

development. 

Based on additional statistical analyses of CF data-sets, the following conclusions were 

drawn: 

 Statistically significant transverse variations in hydraulic conductivity were found in 

70% of the systems surveyed.  Clogging towards the inlet was generally highest 

within those transects that are closest to the point at which flow enters the influent 

distribution system.  Clogging towards the outlet was generally highest within those 

transects that are closest to the point at which flow exits the effluent collection 

system.  Pressure losses in inlet and outlet plumbing encourage preferential flow 

along a path of least resistance between the point at which flow enters and exits the 

system. 

 Those systems that were sparsely vegetated exhibited reduced vertical CF values in 

the top 0.1 m of measured media, in comparison to the 0.1 to 0.2 m depth of media.  

Those systems that had dense vegetation cover exhibited the highest vertical CF 

values in the top 0.1 m of measured media.  Sparse cover enables accelerated clog 

matter mineralisation via surface evaporation, whereas dense cover prevents this 

occurrence and exacerbates the onset of clogging. 

 Resting strategies can be used to restore hydraulic conductivity and reduce CFT.  A 

side-by-side test indicated that a system that had been rested for 14 months had a 

CFT value that was 29% lower than a system that had been operating continuously.   

The effect that clogging has on hydraulics was explored using a custom FEA model of a 2D 

HSSF TW that was validated via experimentation.  The results of the model confirmed that 

low hydraulic conductivity in the subsurface does not govern the occurrence of overland 

flow in Severn Trent HSSF TWs.  Rather, overland flow is controlled by slow vertical 

infiltration rates through the surface sludge layer into the subsurface.  This effect creates a 

dual hydrological regime in Severn Trent HSSF TWs, whereby the overland flow provides 

variable recharge to the subsurface water table and extends over the surface of the bed 

until the infiltration rate matches the influent flow-rate.  The FEA model proved that 

infiltration rates are slower near the inlet, where surface clogging and hydraulic resistance 

are greatest, and increase with distance downstream.  The higher infiltration rates towards 
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the end of the overland flow region create an ‘S-shaped’ water table profile within Severn 

Trent HSSF TWs.  In advanced stages of clogging, the subsurface water table and surface 

layer infiltration region connect as a singular hydrology. 

Tracer tests were used to illustrate the effect that clogging has on hydrodynamics.  Results 

showed that negligible tracer was detected at lower depths neat the inlet because most flow 

bypassed this region as overland flow.  Downstream of the overland flow region, large 

concentrations of tracer were detected at lower depths, suggesting that flow short-circuits 

below the root-zone once within the subsurface.  This behaviour was supported by an FEA 

model.  A dye-tracing test on a field-scale HSSF TW confirmed that transverse 

short-circuiting occurs due to non-uniform width distribution and a resultant variation of 

clogging along the bed width. 

 

7.2. Ability to meet research objectives 

The salient findings of the report are discussed with regard to the major objectives outlined 

in Chapter 1: 

Problem The factors that cause clogging are not well understood. 

Obstacle Numerous sources exist proffering various observations, hypotheses 

and conclusions regarding clogging; however, a comparative review of 

the literature which identifies trends and salient factors does not exist. 

Objective Summarise the relevant literature on HSSF TW clogging. 

Output Determination of current best practice design guidelines for mitigation 

of clogging, and identification of where more research is required.   

 

For the first time, an objective literature review was performed into the underlying causes 

and effects of clogging in Subsurface Flow TWs.  Through comparison with other variants of 

Subsurface Flow TW, and analysis of the Severn Trent Water Wetland database provided by 

ARM Ltd., it was possible to conclude the following about the longevity of Severn Trent HSSF 

TWs: 

1. Strong enough evidence did not exist to suggest that systems with lower hydraulic 

loading rates per unit area of system footprint are less likely to have been 

refurbished. 
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2. Strong enough evidence did not exist to suggest that systems with larger width-to-

length ratios are less likely to have been refurbished. 

3. Systems that incorporate troughs have greater longevity than those with ports.  

4. Severn Trent tertiary HSSF TWs receive high solids loading rates and hydraulic 

loading rates in comparison to international variants of secondary and primary 

Subsurface Flow TWs. 

5. A solids loading rate of 1 kg/m2.yr results in a surface sludge accumulation rate of 

16 mm/year at the inlet. 

6. Systems that support rotating biological contactors are less likely to clog than 

systems that support trickling filters.  Compared with rotating biological contactors, 

it is proposed that trickling filters are more susceptible to solids washout during wet 

weather flows and are less able to remove small solids. 

7. The ability of clog matter to fill pore space is not proportional to the dry mass of 

solids.  Associations between highly hydrated biological matter and inorganic 

constituents create low-density viscous sols that fill pores spaces and provide high 

resistance to flow. 

It was concluded that measurements of the magnitude and distribution of clogging in HSSF 

TWs are lacking in the literature, and are required to understand better the relationship 

between clogging and hydraulics and how clogging limits system longevity.  

 

Problem Little is known about the relationship between clogging, hydraulics 

and treatment and how this develops over time. 

Obstacle Current design tools for HSSF TW hydrology are too simple to be 

representative, and computational models are too complicated to be 

useful.  Not enough information exists to allow better tools to be 

derived. 

Objective Derive design tools that are representative and practical to apply, and 

validate them through experimentation and dynamic modelling. 

Output Design tools that relate the changing hydrology of HSSF TWs to changes 

in clogging, calibrated using experimentally derived data. 
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This objective has been achieved in several stages: 

1. The Clog Factor CF was derived as a way of ranking the deviation of hydraulic 

performance from ideal conditions and relating this to effective loss of porosity. 

2. The Clog Factor is an intensive parameter that can be applied over any scale.  As such, it 

was possible to calibrate a surface fit equation that relates the bulk system Clog Factor 

CFT to the spatial distribution of CF values throughout the system.  The surface fit 

equation well reproduced the experimental values of CF obtained from Severn Trent 

HSSF TWs. 

3. A 1D analytical solution was derived that relates hydraulics to clogging by describing 

how the water table profile varies along the length of the system, and how this changes 

as the system clogs.  To be representative, the analytical solution includes features that 

significantly influence hydrology, such as overland flow and spatially varying hydraulic 

conductivity profile. 

4. The analytical solution is parameter based and was calibrated to Severn Trent HSSF TWs 

by using different values of CFT in the CF surface fit expression and superimposing the 

obtained CF profiles onto the subdomain of an FEA model of a HSSF TW.  The FEA model 

computed the water table profile that corresponded to different CFT profiles.  The model 

was validated using an experimental test case.  To complete the calibration, the 

relationship between CFT and the parameter values in the analytical equation were 

deduced, so that the analytical equation could be expressed solely as a function of CFT. 

5. To provide the relationship between clogging and hydrodynamics, the FEA model was 

used to determine the hydrodynamic response of the system to different CFT profiles.  

The hydraulic efficiency and number of TIS were calculated for the RTD produced by 

each hydrodynamic simulation, and these parameters were correlated against CFT. 

The derived expressions are specific to Severn Trent Water HSSF TWs, but the approach can 

be applied to model the interrelationship between clogging, hydrodynamics and hydraulics 

for any system. 
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Problem Not enough information is available on the magnitude and 

distribution of hydraulic conductivity to make conclusions about 

design or allow models to be developed. 

Obstacle Many conventional methods for in situ measurement of hydraulic 

conductivity are not suitable for HSSF TWs, and as such no simple 

method exists to obtain data. 

Objective Design an in situ method to obtain this information. 

Output Hydraulic conductivity profiles for several tertiary HSSF TWs of various 

ages that can then be used to calibrate hydraulic models.  This will also 

allow the influence of design and operational parameters on clogging 

to be studied. 

 

The CF analyses described above were made possible due to the data obtained via the novel 

method and apparatus used in this thesis: the Aston Permeameter.  By this method, for the 

first time, it was possible to measure the three-dimensional variation of media hydraulic 

conductivity throughout systems in different stages of clogging.  The apparatus could be 

operated by an individual, was applicable over a wide range of hydraulic conductivity, and 

was relatively low cost.  The Aston Permeameter has now been transferred to Severn Trent 

Water and treatment plant operators are being trained in its use. 

 

7.3. Ability to meet overall research aim 

The first page of this thesis stated the overall aim of this doctoral study: 

“To help designers and operators make informed decisions that result in improved asset 

longevity, by improving the knowledge and understanding of clogging in Severn Trent HSSF 

TWs” 

This thesis has achieved this aim through three main, original contributions to wetland 

science: 

1. The development of the Aston Permeameter to measure three-dimensional hydraulic 

conductivity profiles. 
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2. The Clog Factor analysis to interpret hydraulic conductivity profiles, and infer the overall 

state of clogging in a system, for the  purpose of comparison and ranking. 

3. Several design tools that describe the relationships between clogging, hydraulics and 

hydrodynamics in Severn Trent HSSF TWs.  These design tools can be applied without 

the need for computational modelling and consider significant influences on mature 

hydrology, such as variable hydraulic conductivity and overland flow. 

It is hoped that these contributions have provided a framework for wetland scientists to 

study clogging within other subsurface flow wetland treatment systems.  With this improved 

understanding of clogging and access to better design tools, wetland practitioners should be 

able to design more robust wetlands that achieve greater longevity and assured financial 

feasibility. 

 

7.4. Recommendations and future work 

There are several major outcomes from this study that can be used to make 

recommendations to Severn Trent and provide grounds for further work. 

1. Outcome: Clogging is greatest at the inlet at the surface.  Clogging is compounded when 

overland flow covers the surface layer. 

 

Recommendation: It is suggested that future Severn Trent HSSF TWs are designed with 

inlet headers and effluent collectors at both ends.  This will allow the flow direction to 

be changed between years.  Clog matter which has accumulated at the inlet over the 

year will then have a whole year to mineralise before flow is reintroduced to this area.  It 

is thought that this action would be very affordable if implemented at the time of 

system construction and would greatly extend the useful life of the system.  This is 

similar to the equivalent of zonal bed resting.  The base of the wetland could still have a 

slope in one direction to facilitate complete draining when desired. 

 

2. Outcome: Lush foliage shades the surface and prevents the surface layer from 

mineralising during summer months.  Surface clogging is exacerbated by accumulation of 

patchy masses of leaf litter in various stages of decomposition. 

Recommendation: The leaf litter layer only provides insulation benefit in cold climates.  

In the UK it would be possible to harvest the reed stock during late summer without 
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threatening winter operation.  This would provide the surface with some time to 

mineralise and would prevent accumulation of leaf litter on the surface.  Several Severn 

Trent Water systems in the East Region jurisdiction currently operate with reed 

harvesting.  An internal review should be performed into the cost benefit analysis of 

annual harvesting, versus potential improvement in asset longevity. 

3. Outcome: The Aston Permeameter and Clog Factor analysis have been provided as a way 

of studying the development of clogging in wetland systems.  A bed with aeration was 

the least clogged system of all the systems studied. 

Further work: The method performed in this study should be repeated for other wetland 

variants to identify differences in the development and magnitude of clogging.  One such 

study would be into engineered wetland systems that employ subsurface aeration to 

enhance treatment, and additionally purport to control clogging.  Clog Factor results 

from Jackson Meadow indicated that this system, fitted with aeration, was the least 

clogged of all systems, which may validate this claim.  Further system studies would 

need to be performed to confirm this hypothesis. 

4. Outcome: A simple design equation has been provided that has been validated using 

experimental data from one system and a representative computational model. 

Further work: The accuracy and usefulness of this equation should be further validated 

through water level surveys of additional systems.  This would be an easy research 

exercise for an MSc or MEng student. 

5. Outcome: A relationship has been found which describes how hydrodynamic 

performance of a system changes in response to clogging.  This has been validated using 

experimental data from one system and a representative computational model. 

Further work:  The accuracy and usefulness of this relationship should be further 

validated through tracer tests on additional systems.  This would be an easy research 

exercise for an MSc or MEng student.  The relationship that describes the temporal 

change in system hydrodynamic performance as the system clogs should be 

incorporated into a Treatment Wetland treatment performance model, such as 

Constructed Wetlands Model 1 (Langergraber et al., 2009), to infer how treatment 

performance changes as the system clogs.     
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6. Outcome: If it can be easily measured, the bulk Clog Factor is a useful metric to assess 

the overall hydraulic health of a system.  It can be used by operators to help decision 

making. 

Further work: During this research, a spin-off research project evolved in collaboration 

with the Physical Science department at Nottingham Trent University.  This project 

involved the development of a new tool to measure clogging in porous media flow 

systems and utilised in situ Nuclear spin Magnetic Resonance Imaging Technology 

(Morris et al., 2011).  A prototype device dubbed ‘The Clogging Probe’ was developed by 

a Nottingham Trent University incubator spin-out company called ‘Mr Eye’ and is ready 

for field testing.  It is recommended that a trial study be performed whereby this 

instrument is left in situ to monitor clogging in a new wetland over 3 years.  If the probe 

can be calibrated to return Clog Factor values this would provide useful information to 

operators.  For example, if a model is developed to link Clog Factor and treatment 

performance then this information and the probe would provide wetland operators with 

a useful indicator of when a system should be refurbished/rested in order to avoid 

substandard treatment performance.  Furthermore, in engineered wetlands, the 

Clogging Probe could inform operators when to add nutrients to the system to increase 

biomass establishment, or when to increase aeration to maintain system hydraulic 

health. 
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Appendix A.1 Field Results – Northend (February 2007).  See Section 5.1 

Position hT t D(rsvr) Q kT 

 cm s cm cm3/s m/d 

A1 14.1 1,459 2.6 0.62 7.52 

A2 10 1,383 2.2 0.55 9.47 

A3 12.6 569 2.8 1.70 23.25 

A4 10.4 200 9.5 16.45 271.91 

B1 10.2 1,110 15.8 4.93 83.08 

B2 11.9 1,515 14.8 3.38 48.87 

B3 10 844 9.2 3.78 64.90 

B4 7.5 159 12 26.14 599.09 

C1 10 3,473 7.5 0.75 12.86 

C2 9 2,977 6 0.70 13.33 

C3 9.2 297 2.8 3.27 61.01 

C4 9.8 261 10.8 14.33 251.38 

 

 

Appendix A.2 Field Results – Gaydon (March 2007).  See Section 5.2 

 Position hT t D(rsvr) Q kT 

 cm s cm cm^3/s m/d 

A1 6 4080 3 0.28 8.026 

A2 7.6 3,600 0.3 0.03 0.653 

A3 24.8 2,980 2.1 0.24 1.692 

A4 25.3 263 7.5 9.88 67.1 

B1 7.8 2,712 0.5 0.06 1.4 

B2 24.2 2,239 0.5 0.08 0.5 

B3 25.3 2,323 1.1 0.16 1.1 

B4 26.3 257 12.4 16.71 109.2 

C1 10 1757 0.1 0.02 0.34 

C2 25.7 2,534 1.5 0.21 1.4 

C3 26.2 266 15.5 20.18 132.4 

C4 25.8 365 13.4 12.72 84.7 
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Appendix A.3 Field Results – Knightcote (March 2007).  See Section 5.3 

Position hT t D(rsvr) Q kT 

 cm s cm cm^3/s m/d 

A1 6.8 3,180 10.7 1.17 18.5 

A2 12.2 1,220 0.1 0.03 0.5 

A3 13.2 2,955 3.8 0.45 7.1 

A4 13.8 445 16 12.45 198.2 

B1 11.8 2,185 12.3 1.95 31.0 

B2 12.5 100 54.6 140.23 2231.9 

B3 14 149 54.6 93.96 1495.5 

B4 14.1 215 54.6 65.23 1038.2 

C1 10.8 1,260 10.4 2.86 45.5 

C2 12.8 120 54.6 116.38 1852.2 

C3 13.1 88 11 43.30 689.1 

C4 13.4 97 54.6 143.37 2281.8 

 

 

Appendix A.4 Field Results – Fenny Compton (February 2007).  See Section 5.4 

Position hT t D(rsvr) Q kT 

 cm s cm cm^3/s m/d 

A1 70 1,860 21.8 4.1 58.56 

A2 138 3,600 0.1 0.010 0.09 

A3 75 36 54.6 393.0 6,035.93 

A4 57 73 54.6 192.4 4,572.58 

B1 101 96 54.6 146.5 1,845.48 

B2 88 473 54.6 29.6 442.27 

B3 129 268 54.6 52.2 466.36 

B4 91 50 54.6 280.5 4,249.32 

C1 46 1,080 23.6 7.6 195.85 

C2 91 1,440 18.8 4.5 67.26 

C3 112 230 54.6 63.5 621.52 

C4 73 105 54.6 133.4 1,907.83 
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Appendix A.5 Field Results – Fenny Compton (February 2008).  See Section 5.5 

FENNY COMPTON - FEB 08 Point A1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 200 

D2(rsvr) cm 5.0 2 mm 62 58 57 53 

t s 63 3 mm 82 92 132 153 

D(rsvr) cm 5.0 4 mm 50 50 50 50 

Q m3/d 140 hT(probe) mm 88 92 94 97 

hT(ave) mm 93 hn mm 20 35 75 101 

kT m/d 73.91 hn mm 14 40 26 101 

   
kn m/d 343.8 484.7 172.8 273.7 

         
FENNY COMPTON - FEB 08 Point A2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 200 

D2(rsvr) cm 4.0 2 mm 22 18 22 18 

t s 234 3 mm 23 58 119 146 

D(rsvr) cm 4.0 4 mm 50 50 50 50 

Q m3/d 112 hT(probe) mm 129 132 129 132 

hT(ave) mm 130 hn mm 1 41 98 128 

kT m/d 11.38 hn mm 40 57 30 128 

   
kn m/d 1,242.76 37.73 26.13 49.86 

         
FENNY COMPTON - FEB 08 Point A3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 300 300 300 200 

D2(rsvr) cm 3.0 2 mm 100 115 110 5 

t s 131 3 mm 100 188 242 146 

D(rsvr) cm 3.0 4 mm 58 58 58 58 

Q m3/d 84 hT(probe) mm 158 143 148 153 

hT(ave) mm 151 hn mm 1 73 132 141 

kT m/d 13.48 hn mm 72 59 9 141 

   
kn m/d 3,110 27 34 227 

         
FENNY COMPTON - FEB 08 Point A4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 200 

D2(rsvr) cm 12.0 2 mm 27 32 22 25 

t s 42 3 mm 25 74 106 121 

D(rsvr) cm 12.0 4 mm 20 20 20 20 

Q m3/d 337 hT(probe) mm 93 88 98 95 

hT(ave) mm 93 hn mm 2 41 83 96 

kT m/d 266.69 hn mm 39 42 12 96 

   
kn m/d 10,823 574 598 2,010 
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FENNY COMPTON - FEB 08 Point A5 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 200 

D2(rsvr) cm 11.0 2 mm 58 40 44 45 

t s 32 3 mm 57 113 121 125 

D(rsvr) cm 11.0 4 mm 20 20 20 20 

Q m3/d 309 hT(probe) mm 63 80 76 76 

hT(ave) mm 73 hn mm 1 73 77 81 

kT m/d 395.31 hn mm 72 5 3 81 

   
kn m/d 14,599 418 6,623 9,232 

         
FENNY COMPTON - FEB 08 Point B1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 200 

D2(rsvr) cm 2.0 2 mm 50 45 41 45 

t s 60 3 mm 63 120 137 142 

D(rsvr) cm 2.0 4 mm 31 31 31 31 

Q m3/d 56 hT(probe) mm 81 86 90 86 

hT(ave) mm 86 hn mm 13 75 95 97 

kT m/d 33.29 hn mm 62 20 2 97 

   
kn m/d 221.99 46.90 143.25 1,817.54 

         
FENNY COMPTON - FEB 08 Point B2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 200 

D2(rsvr) cm 7.0 2 mm 40 43 43 38 

t s 20 3 mm 59 79 115 140 

D(rsvr) cm 7.0 4 mm 27 27 27 27 

Q m3/d 197 hT(probe) mm 87 84 84 89 

hT(ave) mm 86 hn mm 18 36 72 101 

kT m/d 356.58 hn mm 18 35 30 101 

   
kn m/d 1,668.56 1,696.37 862.56 1,028.11 

         
FENNY COMPTON - FEB 08 Point B3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 200 

D2(rsvr) cm 7.0 2 mm 43 42 33 36 

t s 35 3 mm 46 79 134 139 

D(rsvr) cm 7.0 4 mm 24 24 24 24 

Q m3/d 197 hT(probe) mm 81 82 91 88 

hT(ave) mm 86 hn mm 3 37 101 103 

kT m/d 200.25 hn mm 34 64 2 103 

   
kn m/d 6,462 512 273 9,183 
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FENNY COMPTON - FEB 08 Point B4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm - - - - 

D2(rsvr) cm 0.0 2 mm - - - - 

t s 0 3 mm - - - - 

D(rsvr) cm 0.0 4 mm - - - - 

Q m3/d 0 hT(probe) mm - - - - 

hT(ave) mm 0 hn mm - - - - 

kT m/d 0.00 hn mm - - - - 

   
kn m/d - - - - 

         
FENNY COMPTON - FEB 08 Point B5 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 250 250 250 200 

D2(rsvr) cm 8.0 2 mm 47 48 49 6 

t s 61 3 mm 48 94 170 166 

D(rsvr) cm 8.0 4 mm 56 56 56 56 

Q m3/d 225 hT(probe) mm 159 158 157 150 

hT(ave) mm 156 hn mm 1 47 121 160 

kT m/d 73.80 hn mm 46 74 39 160 

   
kn m/d 22,883 249 154 294 

 

FENNY COMPTON - FEB 08 Point C1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 200 

D2(rsvr) cm 6.0 2 mm 13 17 15 16 

t s 60 3 mm 16 83 85 84 

D(rsvr) cm 6.0 4 mm 35 35 35 35 

Q m3/d 169 hT(probe) mm 122 118 120 119 

hT(ave) mm 120 hn mm 3 120 127 129 

kT m/d 73.38 hn mm 117 7 1 129 

   
kn m/d 2,978 74 1,193 6,322 

         
FENNY COMPTON - FEB 08 Point C2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 200 

D2(rsvr) cm 2.8 2 mm 19 21 17 18 

t s 125 3 mm 19 35 138 140 

D(rsvr) cm 2.8 4 mm 35 35 35 35 

Q m3/d 79 hT(probe) mm 116 115 118 117 

hT(ave) mm 117 hn mm 0 15 121 122 

kT m/d 16.76 hn mm 15 106 1 122 

   
kn m/d 1,243 38 26 50 
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FENNY COMPTON - FEB 08 Point C3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 250 250 250 200 

D2(rsvr) cm 4.0 2 mm 39 38 34 - 

t s 279 3 mm 38 58 178 157 

D(rsvr) cm 4.0 4 mm 53 53 53 53 

Q m3/d 112 hT(probe) mm 164 165 169 153 

hT(ave) mm 163 hn mm 1 20 144 157 

kT m/d 7.71 hn mm 19 124 13 157 

   
kn m/d 8,259.84 27.26 33.86 226.52 

         
FENNY COMPTON - FEB 08 Point C4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 200 

D2(rsvr) cm 12.0 2 mm 5 5 5 5 

t s 42 3 mm 6 26 118 164 

D(rsvr) cm 12.0 4 mm 50 50 50 50 

Q m3/d 337 hT(probe) mm 145 145 145 145 

hT(ave) mm 145 hn mm 1 21 113 159 

kT m/d 266.69 hn mm 20 92 45 159 

   
kn m/d 2,051 574 598 2,010 

         
FENNY COMPTON - FEB 08 Point C5 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 200 

D2(rsvr) cm 11.0 2 mm 15 9 14 17 

t s 32 3 mm 31 44 126 130 

D(rsvr) cm 11.0 4 mm 15 15 15 15 

Q m3/d 309 hT(probe) mm 100 106 102 99 

hT(ave) mm 102 hn mm 16 36 113 114 

kT m/d 395.31 hn mm 19 77 1 114 

   
kn m/d 4,609 418 6,623 9,232 

         
FENNY COMPTON - FEB 08 Point D1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm - - - - 

D2(rsvr) cm 0.0 2 mm - - - - 

t s 0 3 mm - - - - 

D(rsvr) cm 0.0 4 mm - - - - 

Q m3/d 0 hT(probe) mm - - - - 

hT(ave) mm 0 hn mm - - - - 

kT m/d 0.00 hn mm - - - - 

   
kn m/d - - - - 
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FENNY COMPTON - FEB 08 Point D2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 200 

D2(rsvr) cm 0.0 2 mm 50 50 50 50 

t s 600 3 mm 177 185 186 182 

D(rsvr) cm 0.0 4 mm 50 50 50 50 

Q m3/d 9 hT(probe) mm 180 180 180 180 

hT(ave) mm 180 hn mm 127 135 136 132 

kT m/d 0.25 hn mm 177 8 1 - 

   
kn m/d 0 6 45 0 

         
FENNY COMPTON - FEB 08 Point D3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 200 

D2(rsvr) cm 8.5 2 mm 50 50 50 50 

t s 113 3 mm 57 189 190 192 

D(rsvr) cm 8.5 4 mm 50 50 50 50 

Q m3/d 239 hT(probe) mm 180 180 180 180 

hT(ave) mm 180 hn mm 7 139 140 142 

kT m/d 36.46 hn mm 57 132 1 2 

   
kn m/d 115 50 6,562 3,281 

         
FENNY COMPTON - FEB 08 Point D4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 200 

D2(rsvr) cm 0.0 2 mm 60 48 48 49 

t s 29 3 mm 51 82 119 138 

D(rsvr) cm 0.0 4 mm 50 50 50 50 

Q m3/d 1210 hT(probe) mm 90 102 102 101 

hT(ave) mm 99 hn mm 1 35 71 89 

kT m/d 1293.87 hn mm 34 37 17 89 

   
kn m/d 6,382 2,989 3,591 7,575 

         
FENNY COMPTON - FEB 08 Point D5 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 200 

D2(rsvr) cm 6.5 2 mm 75 57 28 30 

t s 16 3 mm 77 64 132 138 

D(rsvr) cm 6.5 4 mm 35 35 35 35 

Q m3/d 183 hT(probe) mm 61 78 107 105 

hT(ave) mm 88 hn mm 2 7 105 108 

kT m/d 368.44 hn mm 5 97 3 108 

   
kn m/d 16,983 7,133 366 10,490 
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Appendix A.6 Field Results – Fenny Compton (February 2009).  See Section 5.6 

FENNY COMPTON - FEB 2009 Point A1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.5 1 mm 200 200 200 100 

D2(rsvr) cm 9.0 2 mm 52 49 48 
 

t s 136 3 mm 52 49 102 71 

D(rsvr) cm 3.5 4 mm 9 9 9 9 

Q m3/d 98 hT(probe) mm 139 143 143 
 

hT(ave) mm 141 hn mm 139 142 89 20 

kT m/d 96.82 hn mm 3 53 70 20 

   
kn m/d 1,141 65 49 173 

         
FENNY COMPTON - FEB 2009 Point A2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 15.0 1 mm 200 200 200 150 

D2(rsvr) cm 20.0 2 mm 36 29 42 
 

t s 89 3 mm 42 107 124 74 

D(rsvr) cm 5.0 4 mm 14 14 11 14 

Q m3/d 140 hT(probe) mm 150 157 147 
 

hT(ave) mm 151 hn mm 145 79 65 62 

kT m/d 197.66 hn mm 65 15 3 62 

   
kn m/d 115 512 2,576 121 

         
FENNY COMPTON - FEB 2009 Point A3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.0 1 mm 200 200 200 150 

D2(rsvr) cm 12.0 2 mm 59 67 59 
 

t s 89 3 mm 61 99 124 74 

D(rsvr) cm 5.0 4 mm 6 6 4 6 

Q m3/d 140 hT(probe) mm 135 127 137 
 

hT(ave) mm 133 hn mm 133 95 72 71 

kT m/d 224.93 hn mm 38 23 2 71 

   
kn m/d 197 328 4,670 106 

         
FENNY COMPTON - FEB 2009 Point A4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.0 1 mm 200 200 200 150 

D2(rsvr) cm 10.0 2 mm 3 4 14 
 

t s 222 3 mm 3 7 53 87 

D(rsvr) cm 6.0 4 mm 4 4 4 4 

Q m3/d 169 hT(probe) mm 193 192 182 
 

hT(ave) mm 189 hn mm 194 189 143 60 

kT m/d 76.04 hn mm 4 46 84 60 

   
kn m/d 817 79 43 60 
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FENNY COMPTON - FEB 2009 Point B1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.5 1 mm 200 200 200 150 

D2(rsvr) cm 18.0 2 mm 67 77 65 
 

t s 126 3 mm 71 87 127 86 

D(rsvr) cm 10.5 4 mm 28 22 31 31 

Q m3/d 295 hT(probe) mm 105 101 104 
 

hT(ave) mm 103 hn mm 101 91 42 33 

kT m/d 428.73 hn mm 10 49 9 33 

   
kn m/d 1,167 225 1,245 334 

         
FENNY COMPTON - FEB 2009 Point B2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.6 1 mm 200 200 200 150 

D2(rsvr) cm 16.0 2 mm 62 71 51 
 

t s 275 3 mm 57 85 123 73 

D(rsvr) cm 9.4 4 mm 15 25 19 13 

Q m3/d 264 hT(probe) mm 118 109 131 
 

hT(ave) mm 119 hn mm 124 96 60 59 

kT m/d 152.45 hn mm 28 36 1 59 

   
kn m/d 163 126 4,546 78 

         
FENNY COMPTON - FEB 2009 Point B3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 150 

D2(rsvr) cm 0.1 2 mm 50 55 69 
 

t s 10000 3 mm 57 62 126 87 

D(rsvr) cm 0.1 4 mm 20 20 18 20 

Q m3/d 3 hT(probe) mm 130 125 113 
 

hT(ave) mm 122 hn mm 123 118 57 43 

kT m/d 0.04 hn mm 5 62 13 43 

   
kn m/d 0.29 0.02 0.10 0.03 

         
FENNY COMPTON - FEB 2009 Point B4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.4 1 mm 200 200 200 150 

D2(rsvr) cm 9.0 2 mm 53 56 60 
 

t s 240 3 mm 55 57 84 98 

D(rsvr) cm 4.6 4 mm 29 40 23 23 

Q m3/d 129 hT(probe) mm 118 104 117 
 

hT(ave) mm 113 hn mm 116 103 93 29 

kT m/d 90.31 hn mm 13 10 64 29 

   
kn m/d 190 260 40 87 
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FENNY COMPTON - FEB 2009 Point C1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.4 1 mm 200 200 200 150 

D2(rsvr) cm 7.7 2 mm 73 89 82 
 

t s 242 3 mm 74 82 86 74 

D(rsvr) cm 1.3 4 mm 18 15 11 11 

Q m3/d 37 hT(probe) mm 109 96 108 
 

hT(ave) mm 104 hn mm 108 103 103 65 

kT m/d 27.42 hn mm 5 1 38 65 

   
kn m/d 152 893 19 11 

         
FENNY COMPTON - FEB 2009 Point C2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 10.7 1 mm 250 250 250 150 

D2(rsvr) cm 10.8 2 mm 56 62 59 
 

t s 10000 3 mm 61 57 144 74 

D(rsvr) cm 0.1 4 mm 11 8 19 9 

Q m3/d 3 hT(probe) mm 183 180 173 
 

hT(ave) mm 179 hn mm 178 185 87 67 

kT m/d 0.03 hn mm 7 98 20 67 

   
kn m/d 0.19 0.01 0.07 0.02 

         
FENNY COMPTON - FEB 2009 Point C3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 0.0 1 mm 200 200 200 150 

D2(rsvr) cm 0.1 2 mm 30 30 41 
 

t s 10000 3 mm 51 32 143 84 

D(rsvr) cm 0.1 4 mm 26 29 27 26 

Q m3/d 3 hT(probe) mm 145 141 132 
 

hT(ave) mm 139 hn mm 123 139 30 40 

kT m/d 0.04 hn mm 16 109 10 40 

   
kn m/d 0.08 0.01 0.13 0.03 

         
FENNY COMPTON - FEB 2009 Point C4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 17.2 1 mm 200 200 200 150 

D2(rsvr) cm 20.5 2 mm 58 65 58 
 

t s 41 3 mm 59 78 81 74 

D(rsvr) cm 3.3 4 mm 22 19 19 21 

Q m3/d 93 hT(probe) mm 120 117 123 
 

hT(ave) mm 120 hn mm 119 103 100 55 

kT m/d 357.00 hn mm 15 4 45 55 

   
kn m/d 700 3,058 239 194 
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FENNY COMPTON - FEB 2009 Point D1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.8 1 mm 200 200 250 150 

D2(rsvr) cm 4.9 2 mm 9 13 35 
 

t s 460 3 mm 11 13 141 62 

D(rsvr) cm 0.1 4 mm 16 16 25 31 

Q m3/d 3 hT(probe) mm 175 171 190 
 

hT(ave) mm 178 hn mm 173 172 84 57 

kT m/d 0.65 hn mm 2 87 28 57 

   
kn m/d 19.3 0.3 1.0 0.5 

         
FENNY COMPTON - FEB 2009 Point D2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 8.9 1 mm 200 200 200 150 

D2(rsvr) cm 9.0 2 mm 13 11 11 
 

t s 10000 3 mm 16 54 122 81 

D(rsvr) cm 0.1 4 mm 18 29 26 22 

Q m3/d 3 hT(probe) mm 169 160 163 
 

hT(ave) mm 164 hn mm 166 117 52 47 

kT m/d 0.03 hn mm 49 65 5 47 

   
kn m/d 0.03 0.02 0.27 0.03 

         
FENNY COMPTON - FEB 2009 Point D3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 15.0 1 mm 200 200 200 150 

D2(rsvr) cm 17.5 2 mm 36 37 27 
 

t s 143 3 mm 43 71 92 51 

D(rsvr) cm 2.5 4 mm 25 15 15 14 

Q m3/d 70 hT(probe) mm 139 148 158 
 

hT(ave) mm 149 hn mm 132 114 93 86 

kT m/d 62.58 hn mm 18 21 7 86 

   
kn m/d 133 109 318 27 

         
FENNY COMPTON - FEB 2009 Point D4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 10.0 1 mm 200 200 200 150 

D2(rsvr) cm 17.0 2 mm 43 16 13 
 

t s 199 3 mm 38 125 124 78 

D(rsvr) cm 7.0 4 mm 23 25 23 20 

Q m3/d 197 hT(probe) mm 134 159 164 
 

hT(ave) mm 152 hn mm 139 50 53 52 

kT m/d 122.76 hn mm 89 3 1 52 

   
kn m/d 53 1,799 6,683 90 
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Appendix A.7 Field Results – Fenny Compton (March 2010).  See Section 5.7 

FENNY COMPTON - MAR 2010 Point A1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 12.3 1 mm 190 190 190 70 

D2(rsvr) cm 13.9 2 mm 18 24 23 
 

t s 979 3 mm 15 23 23 3 

D(rsvr) cm 1.6 4 mm 68 63 65 65 

Q m3/d 45 hT(probe) mm 104 103 
  

hT(ave) mm 104 hn mm 107 104 102 2 

kT m/d 8.40 hn mm 3 2 100 2 

   
kn m/d 72 109 2 109 

         
FENNY COMPTON - MAR 2010 Point A2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.2 1 mm 200 200 200 50 

D2(rsvr) cm 7.3 2 mm 17 21 17 
 

t s 559 3 mm 19 22 117 4 

D(rsvr) cm 1.1 4 mm 48 47 46 45 

Q m3/d 31 hT(probe) mm 135 132 137 
 

hT(ave) mm 135 hn mm 133 131 37 1 

kT m/d 7.77 hn mm 2 94 36 1 

   
kn m/d 131 3 7 262 

         
FENNY COMPTON - MAR 2010 Point A3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 8.0 1 mm 180 180 180 90 

D2(rsvr) cm 23.3 2 mm 20 16 14 
 

t s 96 3 mm 28 78 102 16 

D(rsvr) cm 15.3 4 mm 62 66 68 72 

Q m3/d 430 hT(probe) mm 98 98 98 
 

hT(ave) mm 98 hn mm 90 36 10 2 

kT m/d 865.12 hn mm 54 26 8 2 

   
kn m/d 393 815 2,649 10,598 

         
FENNY COMPTON - MAR 2010 Point A4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 10.0 1 mm 170 170 170 50 

D2(rsvr) cm 22.0 2 mm 20 23 18 
 

t s 152 3 mm 19 29 76 5 

D(rsvr) cm 12.0 4 mm 40 46 41 43 

Q m3/d 337 hT(probe) mm 110 101 111 
 

hT(ave) mm 107 hn mm 111 95 53 2 

kT m/d 391.28 hn mm 16 3 51 2 

   
kn m/d 656 250 206 5,250 
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FENNY COMPTON - MAR 2010 Point B1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 21.1 1 mm 210 210 210 50 

D2(rsvr) cm 26.2 2 mm 13 20 15 
 

t s 1318 3 mm 16 25 122 5 

D(rsvr) cm 5.1 4 mm 44 48 43 43 

Q m3/d 143 hT(probe) mm 153 142 152 
 

hT(ave) mm 149 hn mm 150 137 45 2 

kT m/d 13.81 hn mm 13 92 43 2 

   
kn m/d 40 6 12 257 

         
FENNY COMPTON - MAR 2010 Point B2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 8.0 1 mm 200 200 200 65 

D2(rsvr) cm 14.0 2 mm 20 23 23 
 

t s 118 3 mm 23 104 120 4 

D(rsvr) cm 6.0 4 mm 57 57 57 60 

Q m3/d 169 hT(probe) mm 123 120 120 
 

hT(ave) mm 121 hn mm 120 39 23 1 

kT m/d 223.55 hn mm 7 16 22 1 

   
kn m/d 83 423 307 6,762 

         
FENNY COMPTON - MAR 2010 Point B3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 19.5 1 mm 210 210 210 50 

D2(rsvr) cm 23.0 2 mm 24 26 22 
 

t s 166 3 mm 21 32 148 4 

D(rsvr) cm 3.5 4 mm 42 40 44 44 

Q m3/d 98 hT(probe) mm 144 144 144 
 

hT(ave) mm 144 hn mm 147 138 18 2 

kT m/d 77.89 hn mm 16 120 10 2 

   
kn m/d 312 23 175 1,402 

         
FENNY COMPTON - MAR 2010 Point B4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 8.0 1 mm 200 200 200 70 

D2(rsvr) cm 16.0 2 mm 12 14 15 
 

t s 154 3 mm 9 27 121 16 

D(rsvr) cm 8.0 4 mm 59 55 55 53 

Q m3/d 225 hT(probe) mm 129 131 130 
 

hT(ave) mm 130 hn mm 132 118 24 1 

kT m/d 212.57 hn mm 14 94 23 1 

   
kn m/d 493 73 300 6,909 
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FENNY COMPTON - MAR 2010 Point C1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.0 1 mm 200 200 200 60 

D2(rsvr) cm 6.2 2 mm 20 12 3 
 

t s 1159 3 mm 10 20 28 3 

D(rsvr) cm 2.2 4 mm 45 48 52 56 

Q m3/d 62 hT(probe) mm 135 140 145 
 

hT(ave) mm 140 hn mm 145 132 120 1 

kT m/d 7.21 hn mm 13 12 119 1 

   
kn m/d 19 21 2 252 

         
FENNY COMPTON - MAR 2010 Point C2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 10.0 1 mm 210 200 200 50 

D2(rsvr) cm 14.4 2 mm 25 17 14 
 

t s 1259 3 mm 24 37 142 6 

D(rsvr) cm 4.4 4 mm 49 44 44 43 

Q m3/d 124 hT(probe) mm 136 139 
  

hT(ave) mm 138 hn mm 137 119 14 1 

kT m/d 13.52 hn mm 18 105 13 1 

   
kn m/d 26 4 36 465 

         
FENNY COMPTON - MAR 2010 Point C3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.9 1 mm 200 200 200 50 

D2(rsvr) cm 15.5 2 mm 14 13 13 
 

t s 276 3 mm 12 18 142 6 

D(rsvr) cm 7.6 4 mm 39 36 37 38 

Q m3/d 214 hT(probe) mm 147 151 
  

hT(ave) mm 149 hn mm 149 146 21 6 

kT m/d 98.31 hn mm 3 125 15 6 

   
kn m/d 1,221 29 244 610 

         
FENNY COMPTON - MAR 2010 Point C4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 14.0 1 mm 150 150 150 60 

D2(rsvr) cm 25.0 2 mm 19 11 7 
 

t s 27 3 mm 22 35 82 5 

D(rsvr) cm 11.0 4 mm 42 42 42 42 

Q m3/d 309 hT(probe) mm 89 97 101 
 

hT(ave) mm 96 hn mm 86 73 26 13 

kT m/d 2265.43 hn mm 13 47 13 13 

   
kn m/d 4,168 1,153 4,168 4,168 
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FENNY COMPTON - MAR 2010 Point D1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 20.0 1 mm 200 200 200 60 

D2(rsvr) cm 24.5 2 mm 40 38 37 
 

t s 132 3 mm 42 39 61 5 

D(rsvr) cm 4.5 4 mm 51 55 53 54 

Q m3/d 126 hT(probe) mm 109 107 110 
 

hT(ave) mm 109 hn mm 107 106 86 1 

kT m/d 166.89 hn mm 3 20 85 1 

   
kn m/d 4,534 227 53 4,534 

         
FENNY COMPTON - MAR 2010 Point D2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.5 1 mm 230 230 230 50 

D2(rsvr) cm 12.5 2 mm 25 20 17 
 

t s 270 3 mm 30 32 168 8 

D(rsvr) cm 6.0 4 mm 41 41 46 41 

Q m3/d 169 hT(probe) mm 164 169 167 
 

hT(ave) mm 167 hn mm 159 157 16 1 

kT m/d 70.93 hn mm 2 141 15 1 

   
kn m/d 1,478 21 197 2,955 

         
FENNY COMPTON - MAR 2010 Point D3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.8 1 mm 250 250 250 175 

D2(rsvr) cm 11.1 2 mm 27 21 24 
 

t s 1422 3 mm 22 199 195 136 

D(rsvr) cm 5.3 4 mm 38 38 44 32 

Q m3/d 117 hT(probe) mm 185 191 182 
 

hT(ave) mm 186 hn mm 190 13 11 7 

kT m/d 8.35 hn mm 177 2 4 7 

   
kn m/d 2 194 97 55 

         
FENNY COMPTON - MAR 2010 Point D4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 14.0 1 mm 200 200 200 175 

D2(rsvr) cm 20.0 2 mm 28 28 28 
 

t s 27 3 mm 30 57 119 98 

D(rsvr) cm 6.0 4 mm 69 66 70 70 

Q m3/d 169 hT(probe) mm 103 106 
  

hT(ave) mm 105 hn mm 101 77 11 7 

kT m/d 1131.24 hn mm 24 66 4 7 

   
kn m/d 1,231 448 7,388 4,222 
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FENNY COMPTON - MAR 2010 Point E1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 19.9 1 mm 210 210 210 70 

D2(rsvr) cm 20.2 2 mm 13 14 15 
 

t s 894 3 mm 12 115 154 9 

D(rsvr) cm 0.3 4 mm 54 55 51 59 

Q m3/d 8 hT(probe) mm 143 141 144 
 

hT(ave) mm 143 hn mm 144 40 5 2 

kT m/d 1.25 hn mm 3 35 3 2 

   
kn m/d 0.43 1.28 14.88 22.31 

         
FENNY COMPTON - MAR 2010 Point E2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.0 1 mm 230 230 230 55 

D2(rsvr) cm 11.5 2 mm 33 25 15 
 

t s 273 3 mm 36 94 158 13 

D(rsvr) cm 6.5 4 mm 34 35 42 39 

Q m3/d 183 hT(probe) mm 163 170 173 
 

hT(ave) mm 169 hn mm 160 101 30 3 

kT m/d 75.09 hn mm 59 71 27 3 

   
kn m/d 54 45 117 1,055 

         
FENNY COMPTON - MAR 2010 Point E3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 9.1 1 mm 210 210 210 175 

D2(rsvr) cm 16.0 2 mm 18 19 16 
 

t s 23 3 mm 35 82 132 104 

D(rsvr) cm 6.9 4 mm 63 62 62 62 

Q m3/d 194 hT(probe) mm 129 129 132 
 

hT(ave) mm 130 hn mm 112 66 16 9 

kT m/d 1227.61 hn mm 46 50 7 9 

   
kn m/d 867 798 5,700 4,433 

         
FENNY COMPTON - MAR 2010 Point E4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 9.0 1 mm 220 220 220 175 

D2(rsvr) cm 18.0 2 mm 34 35 27 
 

t s 39 3 mm 35 61 142 117 

D(rsvr) cm 9.0 4 mm 61 58 62 55 

Q m3/d 253 hT(probe) mm 125 127 
  

hT(ave) mm 126 hn mm 124 101 16 3 

kT m/d 974.29 hn mm 23 85 13 3 

   
kn m/d 1,334 361 2,361 10,230 
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Appendix A.8 Field Results – Moreton Morrell (July 2008).  See Section 5.8 

MORETON MORRELL - July 2008 Point A1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 19.8 1 mm 250 250 250 100 

D2(rsvr) cm 19.9 2 mm 35 74 61 - 

t s 1586 3 mm 40 77 94 60 

D(rsvr) cm 0.1 4 mm 20 5 10 15 

Q m3/d 3 hT(probe) mm 195 172 179 
 

hT(ave) mm 182 hn mm 190 168 146 25 

kT m/d 0.18 hn mm 22 22 121 25 

   
kn m/d 0.38 0.37 0.07 0.34 

         
MORETON MORRELL - July 2008 Point A2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 9.2 1 mm 350 350 250 150 

D2(rsvr) cm 13.7 2 mm 9 16 
  

t s 193 3 mm 10 122 186 89 

D(rsvr) cm 4.5 4 mm 45 45 40 40 

Q m3/d 126 hT(probe) mm 296 289 
  

hT(ave) mm 293 hn mm 295 183 24 21 

kT m/d 42.39 hn mm 112 159 2 21 

   
kn m/d 28 19 1,292 146 

         
MORETON MORRELL - July 2008 Point A3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.0 1 mm 350 350 250 150 

D2(rsvr) cm 15.0 2 mm 85 31 
  

t s 52 3 mm 82 162 124 40 

D(rsvr) cm 8.0 4 mm 45 45 40 40 

Q m3/d 225 hT(probe) mm 220 274 
  

hT(ave) mm 247 hn mm 224 143 87 70 

kT m/d 331.78 hn mm 80 57 17 70 

   
kn m/d 255 361 1,220 294 

         
MORETON MORRELL - July 2008 Point A4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 9.0 1 mm 250 250 250 150 

D2(rsvr) cm 17.0 2 mm 10 7 3 
 

t s 28 3 mm 15 31 66 34 

D(rsvr) cm 8.0 4 mm 45 45 40 40 

Q m3/d 225 hT(probe) mm 195 198 
  

hT(ave) mm 196 hn mm 190 174 144 76 

kT m/d 785.45 hn mm 16 30 68 76 

   
kn m/d 2,409 1,272 570 505 
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MORETON MORRELL - July 2008 Point B1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 8.2 1 mm 200 200 200 150 

D2(rsvr) cm 8.3 2 mm 45 44 46 
 

t s 340 3 mm 32 45 64 35 

D(rsvr) cm 0.1 4 mm 35 30 35 35 

Q m3/d 3 hT(probe) mm 120 126 119 
 

hT(ave) mm 122 hn mm 133 125 101 80 

kT m/d 1.29 hn mm 8 24 21 80 

   
kn m/d 5.1 1.6 1.8 0.5 

         
MORETON MORRELL - July 2008 Point B2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 15.0 1 mm 300 300 250 150 

D2(rsvr) cm 20.0 2 mm 20 9 
  

t s 21 3 mm 18 71 93 64 

D(rsvr) cm 5.0 4 mm 25 30 30 30 

Q m3/d 140 hT(probe) mm 255 261 
  

hT(ave) mm 258 hn mm 257 199 127 56 

kT m/d 485.35 hn mm 58 72 71 56 

   
kn m/d 543 436 441 554 

         
MORETON MORRELL - July 2008 Point B3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.5 1 mm 300 300 250 150 

D2(rsvr) cm 17.0 2 mm 34 26 
  

t s 76 3 mm 30 95 138 78 

D(rsvr) cm 11.5 4 mm 50 50 50 45 

Q m3/d 323 hT(probe) mm 216 224 
  

hT(ave) mm 220 hn mm 220 155 62 27 

kT m/d 365.59 hn mm 65 93 34 27 

   
kn m/d 309 217 586 734 

         
MORETON MORRELL - July 2008 Point B4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 10.0 1 mm 250 300 250 150 

D2(rsvr) cm 21.0 2 mm 19 47 11 
 

t s 37 3 mm 21 62 68 35 

D(rsvr) cm 11.0 4 mm 5 15 10 10 

Q m3/d 309 hT(probe) mm 226 238 229 
 

hT(ave) mm 231 hn mm 224 223 172 105 

kT m/d 681.11 hn mm 1 51 66 105 

   
kn m/d 39,357 770 594 373 
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MORETON MORRELL - July 2008 Point C1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 9.6 1 mm 350 350 250 150 

D2(rsvr) cm 9.7 2 mm 44 - - - 

t s 1600 3 mm 17 15 1 100 

D(rsvr) cm 0.1 4 mm 20 25 30 30 

Q m3/d 3 hT(probe) mm 286 
   

hT(ave) mm 286 hn mm 313 310 219 20 

kT m/d 0.12 hn mm 2 92 199 20 

   
kn m/d 3.90 0.09 0.04 0.42 

         
MORETON MORRELL - July 2008 Point C2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.0 1 mm 300 300 250 150 

D2(rsvr) cm 12.0 2 mm 5 34 
  

t s 41 3 mm 5 57 25 0 

D(rsvr) cm 6.0 4 mm 40 40 60 45 

Q m3/d 169 hT(probe) mm 255 226 
  

hT(ave) mm 240 hn mm 255 203 165 105 

kT m/d 323.88 hn mm 52 38 61 105 

   
kn m/d 374 511 320 186 

         
MORETON MORRELL - July 2008 Point C3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.0 1 mm 300 300 270 150 

D2(rsvr) cm 16.0 2 mm 2 9 
  

t s 69 3 mm 4 30 7 44 

D(rsvr) cm 11.0 4 mm 60 55 65 65 

Q m3/d 309 hT(probe) mm 238 236 
  

hT(ave) mm 237 hn mm 236 215 198 41 

kT m/d 356.74 hn mm 21 17 157 41 

   
kn m/d 1,022 1,236 135 512 

         
MORETON MORRELL - July 2008 Point C4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.5 1 mm 300 300 250 150 

D2(rsvr) cm 16.0 2 mm 33 34 
  

t s 25 3 mm 34 47 41 12 

D(rsvr) cm 8.5 4 mm 65 65 70 65 

Q m3/d 239 hT(probe) mm 202 201 
  

hT(ave) mm 201 hn mm 202 188 139 73 

kT m/d 884.33 hn mm 13 49 66 73 

   
kn m/d 3,377 903 674 609 
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MORETON MORRELL - July 2008 Point D1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 3.7 1 mm 300 300 250 150 

D2(rsvr) cm 5.3 2 mm 9 14 
  

t s 468 3 mm 6 18 52 0 

D(rsvr) cm 1.6 4 mm 20 20 20 30 

Q m3/d 45 hT(probe) mm 271 266 
  

hT(ave) mm 268 hn mm 274 262 178 120 

kT m/d 6.77 hn mm 13 83 59 120 

   
kn m/d 36 5 8 4 

         
MORETON MORRELL - July 2008 Point D2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.5 1 mm 250 300 275 150 

D2(rsvr) cm 18.0 2 mm 1 37 12 
 

t s 56 3 mm 0 47 39 10 

D(rsvr) cm 10.5 4 mm 60 70 70 70 

Q m3/d 295 hT(probe) mm 189 193 193 
 

hT(ave) mm 191 hn mm 190 183 166 70 

kT m/d 520.86 hn mm 7 17 96 70 

   
kn m/d 3,454 1,486 259 358 

         
MORETON MORRELL - July 2008 Point D3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 9.0 1 mm 250 250 250 150 

D2(rsvr) cm 23.0 2 mm 2 2 9 
 

t s 33 3 mm 6 14 47 14 

D(rsvr) cm 14.0 4 mm 100 100 100 100 

Q m3/d 393 hT(probe) mm 148 148 141 
 

hT(ave) mm 146 hn mm 144 136 103 36 

kT m/d 1549.76 hn mm 8 33 67 36 

   
kn m/d 7,261 1,715 838 1,567 

         
MORETON MORRELL - July 2008 Point D4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.0 1 mm 300 300 250 150 

D2(rsvr) cm 22.0 2 mm 6 4 
  

t s 41 3 mm 5 23 39 11 

D(rsvr) cm 15.0 4 mm 50 80 80 70 

Q m3/d 421 hT(probe) mm 244 216 
  

hT(ave) mm 230 hn mm 246 197 131 69 

kT m/d 847.08 hn mm 48 66 61 69 

   
kn m/d 1,005 733 794 701 
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Appendix A.9 Field Results – Moreton Morrell (February 2009).  See Section 5.9 

MORETON MORRELL - FEB 2009 Point A1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 9.7 1 mm 250 250 250 150 

D2(rsvr) cm 9.8 2 mm 48 49 
  

t s 1345 3 mm 
    

D(rsvr) cm 0.1 4 mm 
    

Q m3/d 3 hT(probe) mm 202 201 250 
 

hT(ave) mm 218 hn mm 250 250 250 150 

kT m/d 0.18 hn mm - - 100 150 

   
kn m/d 0.59 0.10 0.10 0.07 

         
MORETON MORRELL - FEB 2009 Point A2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 13.8 1 mm 250 250 200 150 

D2(rsvr) cm 13.9 2 mm 17 15 
  

t s 958 3 mm 2 15 110 88 

D(rsvr) cm 0.1 4 mm - - - - 

Q m3/d 3 hT(probe) mm 233 235 200 
 

hT(ave) mm 222 hn mm 248 235 90 63 

kT m/d 0.25 hn mm 13 144 28 63 

   
kn m/d 1.04 0.10 0.50 0.22 

         
MORETON MORRELL - FEB 2009 Point A3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.6 1 mm 200 200 200 150 

D2(rsvr) cm 7.6 2 mm 38 24 26 
 

t s 2105 3 mm 5 21 60 44 

D(rsvr) cm 1.0 4 mm 8 8 8 8 

Q m3/d 28 hT(probe) mm 154 168 166 
 

hT(ave) mm 163 hn mm 187 171 132 99 

kT m/d 1.55 hn mm 16 39 34 99 

   
kn m/d 4.05 1.62 1.86 0.64 

         
MORETON MORRELL - FEB 2009 Point A4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.5 1 mm 200 250 200 150 

D2(rsvr) cm 5.0 2 mm 54 94 63 
 

t s 445 3 mm 33 93 64 31 

D(rsvr) cm 0.5 4 mm 5 5 5 5 

Q m3/d 14 hT(probe) mm 142 151 133 
 

hT(ave) mm 142 hn mm 162 152 132 114 

kT m/d 4.22 hn mm 10 21 18 114 

   
kn m/d 14.8 7.3 8.5 1.3 
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MORETON MORRELL - FEB 2009 Point B1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.5 1 mm 250 250 250 150 

D2(rsvr) cm 4.6 2 mm 25 22 23 
 

t s 2850 3 mm 14 21 62 121 

D(rsvr) cm 0.1 4 mm 22 22 22 22 

Q m3/d 3 hT(probe) mm 203 206 206 
 

hT(ave) mm 205 hn mm 214 207 166 7 

kT m/d 0.09 hn mm 7 41 159 7 

   
kn m/d 0.63 0.11 0.03 0.66 

         
MORETON MORRELL - FEB 2009 Point B2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 15.0 1 mm 300 200 200 150 

D2(rsvr) cm 16.6 2 mm 3 2 31 
 

t s 2140 3 mm 31 1 40 2 

D(rsvr) cm 1.6 4 mm 10 10 10 10 

Q m3/d 45 hT(probe) mm 287 188 159 
 

hT(ave) mm 211 hn mm 259 189 150 138 

kT m/d 1.88 hn mm 70 38 12 138 

   
kn m/d 1.41 2.59 8.27 0.72 

         
MORETON MORRELL - FEB 2009 Point B3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 12.1 1 mm 250 200 200 150 

D2(rsvr) cm 12.5 2 mm 33 20 16 
 

t s 534 3 mm 44 13 38 9 

D(rsvr) cm 0.4 4 mm 10 10 10 10 

Q m3/d 11 hT(probe) mm 207 171 174 
 

hT(ave) mm 184 hn mm 196 178 152 131 

kT m/d 2.17 hn mm 18 25 21 131 

   
kn m/d 5.50 3.92 4.69 0.76 

         
MORETON MORRELL - FEB 2009 Point B4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 3.5 1 mm 150 150 150 150 

D2(rsvr) cm 8.5 2 mm 26 15 15 
 

t s 400 3 mm 2 14 18 35 

D(rsvr) cm 5.0 4 mm 13 13 13 13 

Q m3/d 140 hT(probe) mm 111 123 122 
 

hT(ave) mm 118 hn mm 135 123 119 102 

kT m/d 56.13 hn mm 12 4 17 102 

   
kn m/d 134 407 101 16 
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MORETON MORRELL - FEB 2009 Point C1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 16.3 1 mm 350 350 250 150 

D2(rsvr) cm 16.4 2 mm 56 47 
  

t s 2975 3 mm 47 52 4 3 

D(rsvr) cm 0.1 4 mm 10 10 10 10 

Q m3/d 3 hT(probe) mm 285 294 241 
 

hT(ave) mm 273 hn mm 293 288 237 137 

kT m/d 0.07 hn mm 5 52 99 137 

   
kn m/d 0.96 0.09 0.05 0.03 

         
MORETON MORRELL - FEB 2009 Point C2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 10.4 1 mm 150 150 150 150 

D2(rsvr) cm 11.6 2 mm 15 14 16 
 

t s 584 3 mm 9 12 16 19 

D(rsvr) cm 1.2 4 mm 9 9 9 9 

Q m3/d 34 hT(probe) mm 127 127 126 
 

hT(ave) mm 127 hn mm 132 130 125 122 

kT m/d 8.63 hn mm 2 5 3 122 

   
kn m/d 118.8 58.1 94.2 2.2 

         
MORETON MORRELL - FEB 2009 Point C3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 2.6 1 mm 250 200 150 150 

D2(rsvr) cm 4.2 2 mm 9 67 12 
 

t s 1028 3 mm 41 12 15 22 

D(rsvr) cm 1.6 4 mm 8 8 8 8 

Q m3/d 45 hT(probe) mm 234 126 130 
 

hT(ave) mm 163 hn mm 201 181 128 121 

kT m/d 5.07 hn mm 21 0.10 7 121 

   
kn m/d 10 2,070 29 2 

         
MORETON MORRELL - FEB 2009 Point C4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 3.3 1 mm 200 200 200 150 

D2(rsvr) cm 12.0 2 mm 73 66 71 
 

t s 1693 3 mm 56 64 70 25 

D(rsvr) cm 8.7 4 mm 9 9 9 9 

Q m3/d 244 hT(probe) mm 118 126 121 
 

hT(ave) mm 121 hn mm 135 127 121 117 

kT m/d 22.51 hn mm 8 6 5 117 

   
kn m/d 84.4 115.8 148.6 5.9 
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MORETON MORRELL - FEB 2009 Point D1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.9 1 mm 350 350 250 150 

D2(rsvr) cm 5.5 2 mm 15 5 0 
 

t s 2099 3 mm 6 15 
  

D(rsvr) cm 0.6 4 mm 18 18 18 18 

Q m3/d 17 hT(probe) mm 317 328 232 
 

hT(ave) mm 292 hn mm 328 317 233 133 

kT m/d 0.52 hn mm 11 85 100 133 

   
kn m/d 3.42 0.45 0.38 0.29 

         
MORETON MORRELL - FEB 2009 Point D2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.0 1 mm 350 350 250 150 

D2(rsvr) cm 10.0 2 mm 66 57 1 
 

t s 132 3 mm 67 70 1 6 

D(rsvr) cm 6.0 4 mm 11 11 11 11 

Q m3/d 169 hT(probe) mm 273 282 238 
 

hT(ave) mm 264 hn mm 272 270 238 133 

kT m/d 91.43 hn mm 2 31 105 133 

   
kn m/d 2,748 194 57 45 

         
MORETON MORRELL - FEB 2009 Point D3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 16.5 1 mm 300 300 250 150 

D2(rsvr) cm 21.0 2 mm 21 14 
  

t s 47 3 mm 7 18 4 0 

D(rsvr) cm 4.5 4 mm 6 6 6 6 

Q m3/d 126 hT(probe) mm 273 280 244 
 

hT(ave) mm 266 hn mm 287 276 240 144 

kT m/d 191.71 hn mm 11 35 97 144 

   
kn m/d 1,137 360 132 89 

         
MORETON MORRELL - FEB 2009 Point D4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 14.3 1 mm 200 200 200 150 

D2(rsvr) cm 21.0 2 mm 48 51 44 
 

t s 227 3 mm 53 53 54 54 

D(rsvr) cm 6.7 4 mm 13 13 13 13 

Q m3/d 188 hT(probe) mm 140 136 144 
 

hT(ave) mm 140 hn mm 135 134 133 83 

kT m/d 112.12 hn mm 0 1 50 83 

   
kn m/d 13,084 4,361 78 47 
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Appendix A.10: Field Results – Moreton Morrell (September 2009). See Section 5.10 

MORETON MORRELL - SEPT 2009 Point A1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 11.3 1 mm 220 220 220 175 

D2(rsvr) cm 11.4 2 mm 12 18 11 
 

t s 1415 3 mm 13 25 26 123 

D(rsvr) cm 0.0 4 mm 40 34 42 42 

Q m3/d 1 hT(probe) mm 168 168 167 
 

hT(ave) mm 168 hn mm 167 161 152 10 

kT m/d 0.11 hn mm 6 9 142 10 

   
kn m/d 0.78 0.52 0.03 0.47 

         
MORETON MORRELL – SEPT 2009 Point A2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 16.9 1 mm 210 210 210 150 

D2(rsvr) cm 17.0 2 mm 12 9 23 30 

t s 1666 3 mm 14 13 102 86 

D(rsvr) cm 0.1 4 mm 54 56 55 52 

Q m3/d 3 hT(probe) mm 144 145 132 68 

hT(ave) mm 122 hn mm 142 141 53 12 

kT m/d 0.26 hn mm 1 88 41 12 

   
kn m/d 7.98 0.09 0.19 0.67 

         
MORETON MORRELL - SEPT 2009 Point A3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.8 1 mm 200 200 200 175 

D2(rsvr) cm 8.4 2 mm 13 8 9 
 

t s 2050 3 mm 14 17 52 82 

D(rsvr) cm 0.6 4 mm 54 55 56 62 

Q m3/d 17 hT(probe) mm 133 137 135 
 

hT(ave) mm 135 hn mm 132 128 92 31 

kT m/d 1.15 hn mm 4 36 61 31 

   
kn m/d 9.7 1.1 0.6 1.3 

         
MORETON MORRELL - SEPT 2009 Point A4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 12.1 1 mm 200 190 190 175 

D2(rsvr) cm 13.3 2 mm 29 20 24 21 

t s 2106 3 mm 29 21 25 44 

D(rsvr) cm 1.2 4 mm 85 84 81 79 

Q m3/d 32 hT(probe) mm 86 86 85 75 

hT(ave) mm 83 hn mm 86 85 84 52 

kT m/d 3.50 hn mm 1 1 32 52 

   
kn m/d 72.6 72.6 2.3 1.4 
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MORETON MORRELL - SEPT 2009 Point B1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 11.3 1 mm 220 220 220 175 

D2(rsvr) cm 11.4 2 mm 12 18 11 
 

t s 1415 3 mm 13 25 26 123 

D(rsvr) cm 0.0 4 mm 40 34 42 42 

Q m3/d 1 hT(probe) mm 168 168 167 
 

hT(ave) mm 168 hn mm 167 161 152 10 

kT m/d 0.11 hn mm 6 9 142 10 

   
kn m/d 0.78 0.52 0.03 0.47 

         
MORETON MORRELL - SEPT 2009 Point B2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.3 1 mm 220 220 220 175 

D2(rsvr) cm 5.6 2 mm 13 14 15 
 

t s 2533 3 mm 18 19 26 44 

D(rsvr) cm 0.3 4 mm 80 81 78 74 

Q m3/d 7 hT(probe) mm 127 125 127 
 

hT(ave) mm 126 hn mm 122 120 116 57 

kT m/d 0.42 hn mm 2 4 59 57 

   
kn m/d 6.56 3.28 0.22 0.23 

         
MORETON MORRELL - SEPT 2009 Point B3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 20.9 1 mm 200 190 190 175 

D2(rsvr) cm 21.0 2 mm 27 26 15 
 

t s 1506 3 mm 21 16 26 63 

D(rsvr) cm 0.1 4 mm 61 66 69 75 

Q m3/d 4 hT(probe) mm 112 98 106 
 

hT(ave) mm 105 hn mm 118 108 95 37 

kT m/d 0.50 hn mm 10 13 58 37 

   
kn m/d 1.32 1.02 0.23 0.36 

         
MORETON MORRELL - SEPT 2009 Point B4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 17.4 1 mm 200 200 200 175 

D2(rsvr) cm 18.4 2 mm 16 14 7 
 

t s 2249 3 mm 19 14 13 89 

D(rsvr) cm 1.1 4 mm 74 80 82 85 

Q m3/d 29 hT(probe) mm 110 106 111 
 

hT(ave) mm 109 hn mm 107 106 105 1 

kT m/d 2.28 hn mm 1 1 104 1 

   
kn m/d 62 62 1 62 
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MORETON MORRELL - SEPT 2009 Point C1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 17.4 1 mm 210 210 210 175 

D2(rsvr) cm 17.6 2 mm 13 16 
  

t s 2062 3 mm 1 8 38 27 

D(rsvr) cm 0.2 4 mm 45 42 41 26 

Q m3/d 6 hT(probe) mm 152 152 
  

hT(ave) mm 152 hn mm 164 160 131 122 

kT m/d 0.34 hn mm 4 29 9 122 

   
kn m/d 3.22 0.44 1.43 0.11 

         
MORETON MORRELL - SEPT 2009 Point C2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 11.1 1 mm 165 160 160 160 

D2(rsvr) cm 11.7 2 mm 10 6 7 14 

t s 1800 3 mm 5 3 4 35 

D(rsvr) cm 0.6 4 mm 81 79 79 73 

Q m3/d 17 hT(probe) mm 74 75 74 73 

hT(ave) mm 74 hn mm 79 78 77 52 

kT m/d 2.40 hn mm 1 1 25 52 

   
kn m/d 44 44 2 1 

         
MORETON MORRELL - SEPT 2009 Point C3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.1 1 mm 145 145 145 160 

D2(rsvr) cm 6.3 2 mm 20 15 24 21 

t s 1713 3 mm 14 11 17 63 

D(rsvr) cm 0.2 4 mm 66 70 66 70 

Q m3/d 4 hT(probe) mm 59 60 55 69 

hT(ave) mm 61 hn mm 65 64 62 27 

kT m/d 0.77 hn mm 1 2 35 27 

   
kn m/d 11.6 5.8 0.3 0.4 

         
MORETON MORRELL - SEPT 2009 Point C4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 9.2 1 mm 140 140 140 140 

D2(rsvr) cm 10.8 2 mm 25 22 21 21 

t s 605 3 mm 27 26 31 36 

D(rsvr) cm 1.6 4 mm 55 61 57 56 

Q m3/d 44 hT(probe) mm 60 57 62 63 

hT(ave) mm 61 hn mm 58 53 52 48 

kT m/d 22.53 hn mm 5 1 4 48 

   
kn m/d 68.1 340.7 85.2 7.1 
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MORETON MORRELL - SEPT 2009 Point D1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 12.0 1 mm 180 180 190 175 

D2(rsvr) cm 12.1 2 mm 6 6 10 
 

t s 2100 3 mm 7 8 14 52 

D(rsvr) cm 0.1 4 mm 50 50 55 55 

Q m3/d 1 hT(probe) mm 124 124 125 
 

hT(ave) mm 124 hn mm 123 122 121 68 

kT m/d 0.10 hn mm 1 1 53 68 

   
kn m/d 3.17 3.17 0.06 0.05 

         
MORETON MORRELL - SEPT 2009 Point D2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.5 1 mm 160 160 160 160 

D2(rsvr) cm 9.3 2 mm 15 13 11 14 

t s 2377 3 mm 14 13 11 13 

D(rsvr) cm 2.9 4 mm 59 61 65 64 

Q m3/d 80 hT(probe) mm 86 86 84 82 

hT(ave) mm 85 hn mm 87 86 84 83 

kT m/d 7.55 hn mm 1 2 1 83 

   
kn m/d 159 80 159 2 

         
MORETON MORRELL - SEPT 2009 Point D3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 18.8 1 mm 115 120 120 120 

D2(rsvr) cm 20.4 2 mm 13 7 5 6 

t s 587 3 mm 14 10 6 6 

D(rsvr) cm 1.6 4 mm 50 60 65 66 

Q m3/d 45 hT(probe) mm 52 
   

hT(ave) mm 52 hn mm 51 50 49 48 

kT m/d 27.88 hn mm 1 1 1 48 

   
kn m/d 362 362 362 8 

         
MORETON MORRELL - SEPT 2009 Point D4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 15.2 1 mm 160 160 160 160 

D2(rsvr) cm 17.6 2 mm 16 16 15 18 

t s 614 3 mm 20 20 18 21 

D(rsvr) cm 2.4 4 mm 55 57 61 60 

Q m3/d 67 hT(probe) mm 89 87 84 82 

hT(ave) mm 86 hn mm 85 83 81 79 

kT m/d 24.32 hn mm 2 2 2 79 

   
kn m/d 260 260 260 7 
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Appendix A.11: Field Results – Moreton Morrell (October 2009). See Section 5.11 

MORETON MORRELL - OCT 2009 Point A1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.0 1 mm 220 220 220 175 

D2(rsvr) cm 9.0 2 mm 2 11 22 
 

t s 195 3 mm 3 33 71 136 

D(rsvr) cm 4.0 4 mm 42 36 30 30 

Q m3/d 112 hT(probe) mm 176 173 168 
 

hT(ave) mm 172 hn mm 175 151 119 9 

kT m/d 63.32 hn mm 24 32 110 9 

   
kn m/d 114 85 25 303 

         
MORETON MORRELL - OCT 2009 Point A2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.0 1 mm 200 200 200 175 

D2(rsvr) cm 16.0 2 mm 25 30 25 3 

t s 123 3 mm 25 38 44 85 

D(rsvr) cm 12.0 4 mm 57 55 62 64 

Q m3/d 337 hT(probe) mm 118 115 113 
 

hT(ave) mm 115 hn mm 118 107 94 26 

kT m/d 449.99 hn mm 11 13 68 26 

   
kn m/d 1,180 998 191 499 

         
MORETON MORRELL - OCT 2009 Point A3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.0 1 mm 150 150 150 150 

D2(rsvr) cm 13.0 2 mm 9 17 16 16 

t s 136 3 mm 9 42 49 70 

D(rsvr) cm 8.0 4 mm 46 36 40 42 

Q m3/d 225 hT(probe) mm 95 97 94 
 

hT(ave) mm 95 hn mm 95 72 61 38 

kT m/d 328.24 hn mm 23 11 23 38 

   
kn m/d 340 711 340 206 

         
MORETON MORRELL - OCT 2009 Point A4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.0 1 mm 220 220 220 175 

D2(rsvr) cm 18.0 2 mm 23 17 30 
 

t s 63 3 mm 72 70 74 74 

D(rsvr) cm 13.0 4 mm 27 32 55 78 

Q m3/d 365 hT(probe) mm 170 171 135 
 

hT(ave) mm 159 hn mm 121 118 91 23 

kT m/d 691.83 hn mm 3 27 68 23 

   
kn m/d 9,148 1,016 404 1,193 
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MORETON MORRELL - OCT 2009 Point B1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.0 1 mm 300 300 270 175 

D2(rsvr) cm 12.0 2 mm 3 5 
  

t s 123 3 mm 1 17 123 127 

D(rsvr) cm 6.0 4 mm 51 45 43 36 

Q m3/d 169 hT(probe) mm 246 250 
  

hT(ave) mm 248 hn mm 248 238 104 12 

kT m/d 104.63 hn mm 10 134 92 12 

   
kn m/d 649 48 71 541 

         
MORETON MORRELL - OCT 2009 Point B2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.0 1 mm 260 250 260 175 

D2(rsvr) cm 11.0 2 mm 8 5 11 
 

t s 147 3 mm 10 18 119 121 

D(rsvr) cm 7.0 4 mm 42 39 43 37 

Q m3/d 197 hT(probe) mm 210 206 206 
 

hT(ave) mm 207 hn mm 208 193 98 17 

kT m/d 122.18 hn mm 15 95 81 17 

   
kn m/d 422 67 78 373 

         
MORETON MORRELL - OCT 2009 Point B3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.0 1 mm 240 240 240 175 

D2(rsvr) cm 16.0 2 mm 15 21 25 
 

t s 121 3 mm 19 72 135 112 

D(rsvr) cm 11.0 4 mm 44 42 41 39 

Q m3/d 309 hT(probe) mm 181 177 174 
 

hT(ave) mm 177 hn mm 177 126 64 24 

kT m/d 272.71 hn mm 51 62 40 24 

   
kn m/d 237 195 302 504 

         
MORETON MORRELL - OCT 2009 Point B4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.5 1 mm 220 220 220 175 

D2(rsvr) cm 20.0 2 mm 14 24 29 
 

t s 55 3 mm 22 55 80 85 

D(rsvr) cm 12.5 4 mm 64 57 54 51 

Q m3/d 351 hT(probe) mm 142 139 137 
 

hT(ave) mm 139 hn mm 134 108 86 39 

kT m/d 867.71 hn mm 26 22 47 39 

   
kn m/d 1,163 1,374 643 775 
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MORETON MORRELL - OCT 2009 Point C1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 8.5 1 mm 350 350 270 175 

D2(rsvr) cm 19.0 2 mm 4 15 
  

t s 129 3 mm 6 62 135 88 

D(rsvr) cm 10.5 4 mm 57 52 53 54 

Q m3/d 295 hT(probe) mm 289 283 
  

hT(ave) mm 286 hn mm 287 236 82 33 

kT m/d 151.40 hn mm 51 154 49 33 

   
kn m/d 212 70 221 328 

         
MORETON MORRELL - OCT 2009 Point C2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 3.5 1 mm 260 260 260 175 

D2(rsvr) cm 10.5 2 mm 5 6 9 
 

t s 116 3 mm 6 28 100 119 

D(rsvr) cm 7.0 4 mm 53 50 52 52 

Q m3/d 197 hT(probe) mm 202 204 199 
 

hT(ave) mm 202 hn mm 201 182 108 4 

kT m/d 159.18 hn mm 19 74 104 4 

   
kn m/d 422 108 77 2,006 

         
MORETON MORRELL - OCT 2009 Point C3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.0 1 mm 240 240 240 175 

D2(rsvr) cm 15.0 2 mm 11 16 20 
 

t s 107 3 mm 14 26 103 109 

D(rsvr) cm 9.0 4 mm 62 57 54 45 

Q m3/d 253 hT(probe) mm 167 167 166 
 

hT(ave) mm 167 hn mm 164 157 83 21 

kT m/d 268.47 hn mm 7 74 62 21 

   
kn m/d 1,598 151 180 533 

         
MORETON MORRELL - OCT 2009 Point C4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.0 1 mm 230 230 230 175 

D2(rsvr) cm 19.0 2 mm 16 18 19 
 

t s 95 3 mm 20 28 37 52 

D(rsvr) cm 14.0 4 mm 64 62 56 59 

Q m3/d 393 hT(probe) mm 150 150 155 
 

hT(ave) mm 152 hn mm 146 140 137 64 

kT m/d 516.89 hn mm 6 3 73 64 

   
kn m/d 3,266 6,533 268 306 
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Appendix A.12: Field Results – Weston-U-Wetherley (May 2009). See Section 5.12 

WESTON-U-WETHERLEY - MAY 2009 Point A1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.6 1 mm 400 380 270 180 

D2(rsvr) cm 8.2 2 mm 26 7 
  

t s 1876 3 mm 35 18 0 83 

D(rsvr) cm 0.6 4 mm 65 65 65 5 

Q m3/d 17 hT(probe) mm 309 308 
  

hT(ave) mm 309 hn mm 300 297 205 92 

kT m/d 0.55 hn mm 3 92 113 92 

   
kn m/d 14.2 0.5 0.4 0.5 

         
WESTON-U-WETHERLEY - MAY 2009 Point A2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.4 1 mm 350 350 250 180 

D2(rsvr) cm 7.2 2 mm 6 7 
  

t s 902 3 mm 7 11 17 17 

D(rsvr) cm 1.8 4 mm 47 51 50 44 

Q m3/d 51 hT(probe) mm 297 292 
  

hT(ave) mm 295 hn mm 296 288 183 119 

kT m/d 3.60 hn mm 8 105 64 119 

   
kn m/d 33 3 4 2 

         
WESTON-U-WETHERLEY - MAY 2009 Point A3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.0 1 mm 300 300 250 150 

D2(rsvr) cm 13.8 2 mm 25 16 
  

t s 262 3 mm 24 18 57 50 

D(rsvr) cm 7.8 4 mm 63 71 70 56 

Q m3/d 219 hT(probe) mm 212 213 
  

hT(ave) mm 213 hn mm 213 211 123 44 

kT m/d 74.53 hn mm 2 88 79 44 

   
kn m/d 1,980 45 50 90 

         
WESTON-U-WETHERLEY - MAY 2009 Point A4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.5 1 mm 250 250 250 150 

D2(rsvr) cm 19.5 2 mm 35 32 15 
 

t s 85 3 mm 35 36 22 4 

D(rsvr) cm 13.0 4 mm 45 45 60 55 

Q m3/d 365 hT(probe) mm 170 173 175 
 

hT(ave) mm 173 hn mm 170 169 168 91 

kT m/d 471.19 hn mm 1 1 77 91 

   
kn m/d 20,340 20,340 263 225 
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WESTON-U-WETHERLEY - MAY 2009 Point B1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.9 1 mm 350 350 250 175 

D2(rsvr) cm 6.0 2 mm 44 - - - 

t s 1320 3 mm 17 15 1 75 

D(rsvr) cm 0.1 4 mm 68 71 69 96 

Q m3/d 3 hT(probe) mm 238 
   

hT(ave) mm 238 hn mm 265 264 180 4 

kT m/d 0.17 hn mm 0 85 176 4 

   
kn m/d 77.5 0.1 0.1 2.5 

         
WESTON-U-WETHERLEY - MAY 2009 Point B2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.0 1 mm 350 350 250 150 

D2(rsvr) cm 12.0 2 mm 47 38 
  

t s 760 3 mm 54 42 1 - 

D(rsvr) cm 7.0 4 mm 48 61 65 67 

Q m3/d 197 hT(probe) mm 255 251 
  

hT(ave) mm 253 hn mm 248 247 184 83 

kT m/d 19.37 hn mm 1 63 101 83 

   
kn m/d 1,225 19 12 15 

         
WESTON-U-WETHERLEY - MAY 2009 Point B3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.6 1 mm 350 350 150 150 

D2(rsvr) cm 21.0 2 mm 35 41 
  

t s 198 3 mm 48 130 48 45 

D(rsvr) cm 13.4 4 mm 58 60 64 71 

Q m3/d 376 hT(probe) mm 257 249 
  

hT(ave) mm 253 hn mm 244 160 38 34 

kT m/d 142.30 hn mm 84 122 4 34 

   
kn m/d 107 74 2,250 265 

         
WESTON-U-WETHERLEY - MAY 2009 Point B4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.2 1 mm 250 250 250 150 

D2(rsvr) cm 9.7 2 mm 31 31 29 
 

t s 179 3 mm 43 45 30 17 

D(rsvr) cm 4.5 4 mm 66 65 81 74 

Q m3/d 126 hT(probe) mm 153 154 
  

hT(ave) mm 154 hn mm 141 140 139 59 

kT m/d 87.12 hn mm 1 1 80 59 

   
kn m/d 3,343 3,343 42 57 
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WESTON-U-WETHERLEY - MAY 2009 Point C1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 10.1 1 mm 350 350 270 180 

D2(rsvr) cm 10.2 2 mm 15 6 
  

t s 2289 3 mm 8 6 3 58 

D(rsvr) cm 0.1 4 mm 75 85 61 66 

Q m3/d 3 hT(probe) mm 260 259 
  

hT(ave) mm 260 hn mm 267 259 206 56 

kT m/d 0.09 hn mm 8 53 150 56 

   
kn m/d 0.73 0.11 0.04 0.10 

         
WESTON-U-WETHERLEY - MAY 2009 Point C2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.4 1 mm 350 350 270 180 

D2(rsvr) cm 9.2 2 mm 47 44 
  

t s 1004 3 mm 48 47 0 0 

D(rsvr) cm 3.8 4 mm 79 81 81 75 

Q m3/d 107 hT(probe) mm 224 225 
  

hT(ave) mm 225 hn mm 223 222 189 105 

kT m/d 8.97 hn mm 1 33 84 105 

   
kn m/d 503 15 6 5 

         
WESTON-U-WETHERLEY - MAY 2009 Point C3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.0 1 mm 300 300 270 180 

D2(rsvr) cm 19.0 2 mm 33 11 0 
 

t s 54 3 mm 34 19 22 13 

D(rsvr) cm 12.0 4 mm 65 81 84 86 

Q m3/d 337 hT(probe) mm 202 208 186 
 

hT(ave) mm 199 hn mm 201 200 164 81 

kT m/d 595.24 hn mm 1 36 83 81 

   
kn m/d 29,554 821 356 365 

         
WESTON-U-WETHERLEY - MAY 2009 Point C4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 3.5 1 mm 300 300 270 180 

D2(rsvr) cm 13.0 2 mm 33 26 2 
 

t s 178 3 mm 31 24 11 0 

D(rsvr) cm 9.5 4 mm 50 58 52 49 

Q m3/d 267 hT(probe) mm 217 216 216 
 

hT(ave) mm 216 hn mm 219 218 207 131 

kT m/d 131.24 hn mm 1 11 76 131 

   
kn m/d 7,098 645 93 54 
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WESTON-U-WETHERLEY - MAY 2009 Point D1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 3.6 1 mm 350 350 270 180 

D2(rsvr) cm 4.3 2 mm 11 17 
  

t s 1410 3 mm 29 24 0 35 

D(rsvr) cm 0.7 4 mm 70 76 71 71 

Q m3/d 20 hT(probe) mm 269 257 
  

hT(ave) mm 263 hn mm 251 250 199 74 

kT m/d 1.00 hn mm 1 51 125 74 

   
kn m/d 66.0 1.3 0.5 0.9 

         
WESTON-U-WETHERLEY - MAY 2009 Point D2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 9.5 1 mm 300 300 270 180 

D2(rsvr) cm 18.5 2 mm 38 25 
  

t s 135 3 mm 41 31 4 1 

D(rsvr) cm 9.0 4 mm 65 80 86 81 

Q m3/d 253 hT(probe) mm 197 195 
  

hT(ave) mm 196 hn mm 194 189 180 99 

kT m/d 180.94 hn mm 5 9 82 99 

   
kn m/d 1,773 985 109 90 

         
WESTON-U-WETHERLEY - MAY 2009 Point D3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.0 1 mm 250 250 250 150 

D2(rsvr) cm 17.0 2 mm 65 57 57 
 

t s 34 3 mm 69 65 70 11 

D(rsvr) cm 12.0 4 mm 80 90 90 90 

Q m3/d 337 hT(probe) mm 105 103 
  

hT(ave) mm 104 hn mm 101 95 90 49 

kT m/d 1805.31 hn mm 6 5 41 49 

   
kn m/d 7,823 9,388 1,145 958 

         
WESTON-U-WETHERLEY - MAY 2009 Point D4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.0 1 mm 250 250 250 150 

D2(rsvr) cm 22.0 2 mm 68 68 68 
 

t s 65 3 mm 70 74 81 27 

D(rsvr) cm 15.0 4 mm 60 59 60 70 

Q m3/d 421 hT(probe) mm 122 123 
  

hT(ave) mm 123 hn mm 120 117 109 53 

kT m/d 1002.13 hn mm 3 8 56 53 

   
kn m/d 10,230 3,836 548 579 
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WESTON-U-WETHERLEY - MAY 2009 Point E1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.6 1 mm 350 350 270 180 

D2(rsvr) cm 6.7 2 mm 9 9 
  

t s 1642 3 mm 13 14 0 7 

D(rsvr) cm 1.1 4 mm 68 68 57 55 

Q m3/d 31 hT(probe) mm 273 273 213 
 

hT(ave) mm 253 hn mm 269 268 213 118 

kT m/d 1.41 hn mm 1 55 95 118 

   
kn m/d 89.1 1.6 0.9 0.8 

         
WESTON-U-WETHERLEY - MAY 2009 Point E2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 12.5 1 mm 300 300 270 180 

D2(rsvr) cm 19.0 2 mm 30 23 
  

t s 71 3 mm 60 75 90 0 

D(rsvr) cm 6.5 4 mm 87 95 81 84 

Q m3/d 183 hT(probe) mm 183 182 
  

hT(ave) mm 183 hn mm 153 130 99 96 

kT m/d 266.85 hn mm 23 31 3 96 

   
kn m/d 529 393 3,927 127 

         
WESTON-U-WETHERLEY - MAY 2009 Point E3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.0 1 mm 250 250 250 180 

D2(rsvr) cm 20.0 2 mm 12 12 19 
 

t s 57 3 mm 13 14 25 1 

D(rsvr) cm 13.0 4 mm 68 70 70 95 

Q m3/d 365 hT(probe) mm 170 168 
  

hT(ave) mm 169 hn mm 169 166 155 84 

kT m/d 717.90 hn mm 3 11 71 84 

   
kn m/d 10,110 2,757 427 361 

         
WESTON-U-WETHERLEY - MAY 2009 Point E4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.0 1 mm 250 250 250 180 

D2(rsvr) cm 18.5 2 mm 55 57 59 
 

t s 66 3 mm 58 59 60 6 

D(rsvr) cm 13.5 4 mm 78 79 81 85 

Q m3/d 379 hT(probe) mm 117 114 
  

hT(ave) mm 116 hn mm 114 112 109 89 

kT m/d 942.08 hn mm 2 3 20 89 

   
kn m/d 13,601 9,068 1,360 306 
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Appendix A.13: Field Results – Ashorne (June 2009). See Section 5.13 

ASHORNE - JUNE 2009 Point A1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.5 1 mm 300 300 270 180 

D2(rsvr) cm 7.6 2 mm 14 13 20 
 

t s 2136 3 mm 10 11 42 22 

D(rsvr) cm 0.1 4 mm 58 61 51 61 

Q m3/d 3 hT(probe) mm 228 226 199 
 

hT(ave) mm 218 hn mm 232 228 177 97 

kT m/d 0.11 hn mm 4 51 80 97 

   
kn m/d 1.56 0.12 0.08 0.06 

         
ASHORNE - JUNE 2009 Point A2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 2.3 1 mm 230 230 230 100 

D2(rsvr) cm 2.5 2 mm 14 14 38 
 

t s 2106 3 mm 17 10 55 26 

D(rsvr) cm 0.2 4 mm 58 68 49 67 

Q m3/d 6 hT(probe) mm 158 148 143 
 

hT(ave) mm 150 hn mm 155 152 126 7 

kT m/d 0.34 hn mm 3 26 119 7 

   
kn m/d 4.21 0.49 0.11 1.80 

         
ASHORNE - JUNE 2009 Point A3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.5 1 mm 240 240 240 150 

D2(rsvr) cm 9.5 2 mm 8 22 28 
 

t s 138 3 mm 13 23 117 81 

D(rsvr) cm 4.0 4 mm 70 68 64 63 

Q m3/d 112 hT(probe) mm 162 150 148 
 

hT(ave) mm 153 hn mm 157 149 59 6 

kT m/d 100.56 hn mm 8 90 53 6 

   
kn m/d 482 43 73 642 

         
ASHORNE - JUNE 2009 Point A4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.0 1 mm 240 240 240 100 

D2(rsvr) cm 9.5 2 mm 10 17 11 
 

t s 153 3 mm 11 25 63 14 

D(rsvr) cm 5.5 4 mm 84 77 85 81 

Q m3/d 155 hT(probe) mm 146 146 144 
 

hT(ave) mm 145 hn mm 145 138 92 5 

kT m/d 131.58 hn mm 7 46 87 5 

   
kn m/d 683 104 55 956 
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ASHORNE - JUNE 2009 Point B1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 3.9 1 mm 240 240 240 100 

D2(rsvr) cm 4.0 2 mm 7 15 18 
 

t s 1920 3 mm 9 23 19 15 

D(rsvr) cm 0.1 4 mm 70 59 64 61 

Q m3/d 1 hT(probe) mm 163 166 158 
 

hT(ave) mm 162 hn mm 161 158 157 24 

kT m/d 0.09 hn mm 3 1 133 24 

   
kn m/d 1.15 3.46 0.03 0.14 

         
ASHORNE - JUNE 2009 Point B2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.5 1 mm 250 250 250 80 

D2(rsvr) cm 9.0 2 mm 6 22 13 
 

t s 609 3 mm 8 36 73 6 

D(rsvr) cm 1.5 4 mm 72 75 72 70 

Q m3/d 42 hT(probe) mm 172 153 165 
 

hT(ave) mm 163 hn mm 170 139 105 4 

kT m/d 8.02 hn mm 31 34 101 4 

   
kn m/d 11 10 3 82 

         
ASHORNE - JUNE 2009 Point B3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 3.4 1 mm 230 230 230 100 

D2(rsvr) cm 5.2 2 mm 15 21 25 
 

t s 253 3 mm 9 20 73 25 

D(rsvr) cm 1.8 4 mm 74 75 64 71 

Q m3/d 51 hT(probe) mm 141 134 141 
 

hT(ave) mm 139 hn mm 147 135 93 4 

kT m/d 27.29 hn mm 12 42 89 4 

   
kn m/d 79 23 11 237 

         
ASHORNE - JUNE 2009 Point B4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 8.0 1 mm 230 230 230 100 

D2(rsvr) cm 15.5 2 mm 38 33 30 
 

t s 104 3 mm 39 40 89 33 

D(rsvr) cm 7.5 4 mm 65 65 70 65 

Q m3/d 211 hT(probe) mm 127 132 130 
 

hT(ave) mm 130 hn mm 126 125 71 2 

kT m/d 295.86 hn mm 1 54 69 2 

   
kn m/d 9,591 178 139 4,795 
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ASHORNE - JUNE 2009 Point C1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 10.1 1 mm 270 270 270 150 

D2(rsvr) cm 10.2 2 mm 20 26 36 
 

t s 2289 3 mm 23 28 43 44 

D(rsvr) cm 0.1 4 mm 60 63 62 54 

Q m3/d 3 hT(probe) mm 190 181 172 
 

hT(ave) mm 181 hn mm 187 179 165 52 

kT m/d 0.13 hn mm 8 14 113 52 

   
kn m/d 0.73 0.42 0.05 0.11 

         
ASHORNE - JUNE 2009 Point C2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.9 1 mm 250 250 250 180 

D2(rsvr) cm 5.0 2 mm 32 29 25 
 

t s 1674 3 mm 22 21 20 42 

D(rsvr) cm 0.1 4 mm 37 40 42 40 

Q m3/d 3 hT(probe) mm 181 181 
  

hT(ave) mm 181 hn mm 191 189 188 98 

kT m/d 0.18 hn mm 2 1 90 98 

   
kn m/d 3.97 7.94 0.09 0.08 

         
ASHORNE - JUNE 2009 Point C3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.4 1 mm 210 200 200 100 

D2(rsvr) cm 11.2 2 mm 13 17 8 
 

t s 1675 3 mm 15 22 39 9 

D(rsvr) cm 4.8 4 mm 75 73 71 66 

Q m3/d 135 hT(probe) mm 122 110 
  

hT(ave) mm 116 hn mm 120 105 90 25 

kT m/d 13.14 hn mm 15 15 65 25 

   
kn m/d 25 25 6 15 

         
ASHORNE - JUNE 2009 Point C4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.0 1 mm 220 220 220 100 

D2(rsvr) cm 17.0 2 mm 19 21 15 
 

t s 137 3 mm 23 52 120 52 

D(rsvr) cm 11.0 4 mm 48 52 53 46 

Q m3/d 309 hT(probe) mm 153 147 152 
 

hT(ave) mm 151 hn mm 149 116 47 2 

kT m/d 283.49 hn mm 33 69 45 2 

   
kn m/d 324 155 237 5,339 
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ASHORNE - JUNE 2009 Point D1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 10.3 1 mm 270 270 270 100 

D2(rsvr) cm 10.4 2 mm 10 12 
  

t s 1991 3 mm 13 23 96 31 

D(rsvr) cm 0.1 4 mm 59 59 67 54 

Q m3/d 3 hT(probe) mm 201 199 203 
 

hT(ave) mm 201 hn mm 198 188 107 15 

kT m/d 0.13 hn mm 10 81 92 15 

   
kn m/d 0.67 0.08 0.07 0.45 

         
ASHORNE - JUNE 2009 Point D2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 8.0 1 mm 250 250 260 150 

D2(rsvr) cm 8.0 2 mm 2 13 25 
 

t s 1882 3 mm 5 14 43 19 

D(rsvr) cm 0.0 4 mm 87 81 82 83 

Q m3/d 1 hT(probe) mm 161 156 153 
 

hT(ave) mm 157 hn mm 158 155 135 48 

kT m/d 0.09 hn mm 3 20 87 48 

   
kn m/d 1.18 0.18 0.04 0.07 

         
ASHORNE - JUNE 2009 Point D3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.9 1 mm 240 240 240 180 

D2(rsvr) cm 6.3 2 mm 22 24 15 
 

t s 1800 3 mm 13 19 44 0 

D(rsvr) cm 0.4 4 mm 76 80 81 76 

Q m3/d 11 hT(probe) mm 142 136 144 
 

hT(ave) mm 141 hn mm 151 141 115 104 

kT m/d 0.84 hn mm 10 26 11 104 

   
kn m/d 2.96 1.14 2.66 0.28 

         
ASHORNE - JUNE 2009 Point D4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.0 1 mm 220 220 220 180 

D2(rsvr) cm 13.0 2 mm 21 27 21 
 

t s 157 3 mm 24 32 60 92 

D(rsvr) cm 6.0 4 mm 70 66 64 65 

Q m3/d 169 hT(probe) mm 129 127 
  

hT(ave) mm 128 hn mm 126 122 96 23 

kT m/d 158.83 hn mm 4 26 73 23 

   
kn m/d 1,271 195 70 221 
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Appendix A.14: Field Results – Leek Wooton (June 2009). See Section 5.14 

LEEK WOOTON - JUNE 2009 Point A1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 15.5 1 mm 300 300 270 180 

D2(rsvr) cm 21.0 2 mm 2 6 
  

t s 263 3 mm 4 9 0 0 

D(rsvr) cm 5.5 4 mm 31 31 33 35 

Q m3/d 155 hT(probe) mm 267 263 
  

hT(ave) mm 265 hn mm 265 260 237 145 

kT m/d 41.98 hn mm 5 23 92 145 

   
kn m/d 556 120 30 19 

         
LEEK WOOTON - JUNE 2009 Point A2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.0 1 mm 270 270 270 150 

D2(rsvr) cm 9.9 2 mm 14 2 5 
 

t s 138 3 mm 14 29 82 26 

D(rsvr) cm 5.9 4 mm 46 60 57 59 

Q m3/d 166 hT(probe) mm 210 208 208 
 

hT(ave) mm 209 hn mm 210 181 131 65 

kT m/d 108.99 hn mm 29 50 66 65 

   
kn m/d 196 114 86 87 

         
LEEK WOOTON - JUNE 2009 Point A3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 3.5 1 mm 250 250 250 180 

D2(rsvr) cm 16.0 2 mm 10 15 6 
 

t s 144 3 mm 10 25 28 18 

D(rsvr) cm 12.5 4 mm 46 44 46 51 

Q m3/d 351 hT(probe) mm 194 191 198 
 

hT(ave) mm 194 hn mm 194 181 176 111 

kT m/d 237.62 hn mm 13 5 65 111 

   
kn m/d 888 2,309 178 104 

         
LEEK WOOTON - JUNE 2009 Point A4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 9.0 1 mm 230 220 220 150 

D2(rsvr) cm 18.5 2 mm 22 12 5 
 

t s 202 3 mm 23 13 14 9 

D(rsvr) cm 9.5 4 mm 52 55 55 50 

Q m3/d 267 hT(probe) mm 156 153 160 
 

hT(ave) mm 156 hn mm 155 152 151 91 

kT m/d 160.03 hn mm 3 1 60 91 

   
kn m/d 2,085 6,255 104 69 
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LEEK WOOTON - JUNE 2009 Point B1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 12.0 1 mm 250 250 250 180 

D2(rsvr) cm 16.0 2 mm 15 16 4 100 

t s 260 3 mm 23 24 35 0 

D(rsvr) cm 4.0 4 mm 44 44 46 45 

Q m3/d 112 hT(probe) mm 191 190 200 
 

hT(ave) mm 194 hn mm 183 182 169 135 

kT m/d 42.26 hn mm 1 13 34 135 

   
kn m/d 2,046 157 60 15 

         
LEEK WOOTON - JUNE 2009 Point B2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.0 1 mm 270 280 270 180 

D2(rsvr) cm 8.5 2 mm 16 7 7 
 

t s 170 3 mm 15 29 32 1 

D(rsvr) cm 3.5 4 mm 72 75 72 70 

Q m3/d 98 hT(probe) mm 182 198 191 
 

hT(ave) mm 190 hn mm 183 176 166 109 

kT m/d 57.54 hn mm 7 10 57 109 

   
kn m/d 391 274 48 25 

         
LEEK WOOTON - JUNE 2009 Point B3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.0 1 mm 270 270 270 180 

D2(rsvr) cm 17.0 2 mm 15 16 19 
 

t s 99 3 mm 16 68 79 14 

D(rsvr) cm 11.0 4 mm 73 66 66 71 

Q m3/d 309 hT(probe) mm 182 188 185 
 

hT(ave) mm 185 hn mm 181 136 125 95 

kT m/d 319.50 hn mm 45 11 30 95 

   
kn m/d 328 1,343 493 156 

         
LEEK WOOTON - JUNE 2009 Point B4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 9.0 1 mm 230 230 230 180 

D2(rsvr) cm 12.5 2 mm 5 6 21 
 

t s 285 3 mm 6 14 25 0 

D(rsvr) cm 3.5 4 mm 65 65 70 65 

Q m3/d 98 hT(probe) mm 160 159 139 
 

hT(ave) mm 153 hn mm 159 151 135 115 

kT m/d 42.79 hn mm 8 16 20 115 

   
kn m/d 204 102 81 14 
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LEEK WOOTON - JUNE 2009 Point C1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.0 1 mm 250 250 250 180 

D2(rsvr) cm 17.5 2 mm 2 6 8 
 

t s 88 3 mm 6 18 39 18 

D(rsvr) cm 11.5 4 mm 65 61 59 72 

Q m3/d 323 hT(probe) mm 183 183 183 
 

hT(ave) mm 183 hn mm 179 171 152 90 

kT m/d 379.88 hn mm 8 19 62 90 

   
kn m/d 2,172 915 280 193 

         
LEEK WOOTON - JUNE 2009 Point C2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.0 1 mm 270 270 270 180 

D2(rsvr) cm 15.0 2 mm 13 17 16 
 

t s 96 3 mm 15 22 27 2 

D(rsvr) cm 8.0 4 mm 57 56 58 52 

Q m3/d 225 hT(probe) mm 200 197 
  

hT(ave) mm 199 hn mm 198 192 185 126 

kT m/d 223.33 hn mm 6 7 59 126 

   
kn m/d 1,847 1,583 188 88 

         
LEEK WOOTON - JUNE 2009 Point C3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.0 1 mm 270 270 270 170 

D2(rsvr) cm 14.0 2 mm 6 14 11 
 

t s 107 3 mm 10 19 20 0 

D(rsvr) cm 7.0 4 mm 62 57 57 56 

Q m3/d 197 hT(probe) mm 202 199 
  

hT(ave) mm 201 hn mm 198 194 193 114 

kT m/d 173.57 hn mm 4 1 79 114 

   
kn m/d 2,175 8,700 110 76 

         
LEEK WOOTON - JUNE 2009 Point C4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.0 1 mm 220 220 220 175 

D2(rsvr) cm 16.0 2 mm 16 12 17 
 

t s 266 3 mm 16 23 26 14 

D(rsvr) cm 10.0 4 mm 63 69 67 70 

Q m3/d 281 hT(probe) mm 141 139 136 
 

hT(ave) mm 139 hn mm 141 128 127 91 

kT m/d 144.22 hn mm 13 1 36 91 

   
kn m/d 385 5,000 139 55 

  



  

357 
 

LEEK WOOTON - JUNE 2009 Point D1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.0 1 mm 250 220 220 180 

D2(rsvr) cm 16.0 2 mm 14 12 13 
 

t s 176 3 mm 17 16 23 0 

D(rsvr) cm 10.0 4 mm 62 34 29 42 

Q m3/d 281 hT(probe) mm 174 174 178 
 

hT(ave) mm 175 hn mm 171 170 168 138 

kT m/d 172.39 hn mm 1 2 30 138 

   
kn m/d 7,556 3,778 250 55 

         
LEEK WOOTON - JUNE 2009 Point D2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 9.0 1 mm 250 250 250 180 

D2(rsvr) cm 20.0 2 mm 9 17 7 
 

t s 64 3 mm 15 28 27 0 

D(rsvr) cm 11.0 4 mm 63 61 67 66 

Q m3/d 309 hT(probe) mm 178 172 176 
 

hT(ave) mm 175 hn mm 172 161 156 114 

kT m/d 521.47 hn mm 11 5 42 114 

   
kn m/d 2,078 4,572 542 201 

         
LEEK WOOTON - JUNE 2009 Point D3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 10.0 1 mm 260 260 260 180 

D2(rsvr) cm 18.0 2 mm 3 8 4 
 

t s 79 3 mm 9 16 19 9 

D(rsvr) cm 8.0 4 mm 57 59 65 61 

Q m3/d 225 hT(probe) mm 200 193 191 
 

hT(ave) mm 195 hn mm 194 185 176 110 

kT m/d 276.73 hn mm 9 9 66 110 

   
kn m/d 1,496 1,496 204 122 

         
LEEK WOOTON - JUNE 2009 Point D4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.5 1 mm 230 230 230 150 

D2(rsvr) cm 18.0 2 mm 34 32 38 
 

t s 157 3 mm 36 40 68 39 

D(rsvr) cm 11.5 4 mm 45 47 41 44 

Q m3/d 323 hT(probe) mm 151 151 
  

hT(ave) mm 151 hn mm 149 143 121 67 

kT m/d 258.05 hn mm 6 22 54 67 

   
kn m/d 1,624 443 180 145 
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LEEK WOOTON - JUNE 2009 Point E1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 8.0 1 mm 250 250 250 180 

D2(rsvr) cm 18.0 2 mm 14 13 27 
 

t s 106 3 mm 15 19 37 0 

D(rsvr) cm 10.0 4 mm 75 75 67 64 

Q m3/d 281 hT(probe) mm 161 162 156 
 

hT(ave) mm 160 hn mm 160 156 146 116 

kT m/d 314.31 hn mm 4 10 30 116 

   
kn m/d 3,137 1,255 414 108 

         
LEEK WOOTON - JUNE 2009 Point E2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 10.0 1 mm 270 270 260 180 

D2(rsvr) cm 20.0 2 mm 8 5 12 
 

t s 79 3 mm 10 13 46 0 

D(rsvr) cm 10.0 4 mm 71 71 67 63 

Q m3/d 281 hT(probe) mm 191 194 181 
 

hT(ave) mm 189 hn mm 189 186 147 117 

kT m/d 356.91 hn mm 3 39 30 117 

   
kn m/d 5,611 432 559 144 

         
LEEK WOOTON - JUNE 2009 Point E3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.0 1 mm 240 240 240 180 

D2(rsvr) cm 18.0 2 mm 12 18 16 
 

t s 148 3 mm 13 25 33 30 

D(rsvr) cm 12.0 4 mm 56 56 61 64 

Q m3/d 337 hT(probe) mm 172 166 163 
 

hT(ave) mm 167 hn mm 171 159 146 86 

kT m/d 258.28 hn mm 12 13 60 86 

   
kn m/d 899 829 180 125 

         
LEEK WOOTON - JUNE 2009 Point E4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.0 1 mm 200 200 200 150 

D2(rsvr) cm 20.0 2 mm 10 5 22 
 

t s 233 3 mm 15 46 69 55 

D(rsvr) cm 14.0 4 mm 57 59 56 57 

Q m3/d 393 hT(probe) mm 133 136 
  

hT(ave) mm 135 hn mm 128 95 75 38 

kT m/d 237.65 hn mm 33 20 37 38 

   
kn m/d 242 400 216 210 
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Appendix A.15: Field Results – Northend (June 2009). See Section 5.15 

NORTHEND - JUNE 2009 Point A1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 3.7 1 mm 250 250 250 180 

D2(rsvr) cm 5.2 2 mm 15 30 21 
 

t s 1561 3 mm 16 28 30 0 

D(rsvr) cm 1.5 4 mm 31 31 33 35 

Q m3/d 42 hT(probe) mm 204 189 196 
 

hT(ave) mm 196 hn mm 203 191 187 145 

kT m/d 2.60 hn mm 12 4 42 145 

   
kn m/d 10.6 31.9 3.0 0.9 

         
NORTHEND - JUNE 2009 Point A2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.6 1 mm 270 270 270 180 

D2(rsvr) cm 11.8 2 mm 15 21 15 
 

t s 869 3 mm 22 31 45 1 

D(rsvr) cm 4.2 4 mm 65 67 63 61 

Q m3/d 118 hT(probe) mm 190 182 192 
 

hT(ave) mm 188 hn mm 183 172 162 119 

kT m/d 13.68 hn mm 11 10 44 119 

   
kn m/d 58 64 15 5 

         
NORTHEND - JUNE 2009 Point A3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 20.5 1 mm 250 250 250 180 

D2(rsvr) cm 22.0 2 mm 10 15 8 
 

t s 295 3 mm 13 16 12 0 

D(rsvr) cm 1.5 4 mm 71 70 75 75 

Q m3/d 42 hT(probe) mm 169 165 167 
 

hT(ave) mm 167 hn mm 166 164 163 105 

kT m/d 16.20 hn mm 2 1 58 105 

   
kn m/d 338 676 12 6 

         
NORTHEND - JUNE 2009 Point A4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 2.2 1 mm 240 240 240 180 

D2(rsvr) cm 4.3 2 mm 17 12 9 
 

t s 1551 3 mm 13 14 23 0 

D(rsvr) cm 2.1 4 mm 54 56 52 51 

Q m3/d 59 hT(probe) mm 169 172 179 
 

hT(ave) mm 173 hn mm 173 170 165 129 

kT m/d 4.16 hn mm 3 5 36 129 

   
kn m/d 60 36 5 1 
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NORTHEND - JUNE 2009 Point B1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 10.8 1 mm 320 320 270 100 

D2(rsvr) cm 11.0 2 mm 7 18 
  

t s 1991 3 mm 8 27 17 41 

D(rsvr) cm 0.2 4 mm 33 30 29 28 

Q m3/d 6 hT(probe) mm 280 272 
  

hT(ave) mm 276 hn mm 279 263 224 31 

kT m/d 0.19 hn mm 16 39 193 31 

   
kn m/d 0.83 0.34 0.07 0.43 

         
NORTHEND - JUNE 2009 Point B2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 3.2 1 mm 300 300 270 120 

D2(rsvr) cm 3.2 2 mm 14 8 
  

t s 2220 3 mm 15 9 0 21 

D(rsvr) cm 0.1 4 mm 39 48 44 46 

Q m3/d 1 hT(probe) mm 247 244 226 
 

hT(ave) mm 239 hn mm 246 243 226 53 

kT m/d 0.05 hn mm 3 17 173 53 

   
kn m/d 1.00 0.17 0.02 0.06 

         
NORTHEND - JUNE 2009 Point B3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.0 1 mm 270 270 270 180 

D2(rsvr) cm 4.1 2 mm 21 18 17 
 

t s 2450 3 mm 20 16 19 0 

D(rsvr) cm 0.0 4 mm 56 61 60 56 

Q m3/d 1 hT(probe) mm 193 191 193 
 

hT(ave) mm 192 hn mm 194 193 191 124 

kT m/d 0.06 hn mm 1 2 67 124 

   
kn m/d 2.71 1.36 0.04 0.02 

         
NORTHEND - JUNE 2009 Point B4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.7 1 mm 240 240 240 180 

D2(rsvr) cm 7.8 2 mm 17 18 
  

t s 1800 3 mm 18 19 9 2 

D(rsvr) cm 0.1 4 mm 51 51 62 57 

Q m3/d 3 hT(probe) mm 172 171 178 
 

hT(ave) mm 174 hn mm 171 170 169 121 

kT m/d 0.17 hn mm 1 1 48 121 

   
kn m/d 7.39 7.39 0.15 0.06 
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NORTHEND - JUNE 2009 Point C1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 10.8 1 mm 320 320 270 100 

D2(rsvr) cm 11.0 2 mm 7 18 
  

t s 1991 3 mm 8 27 17 41 

D(rsvr) cm 0.2 4 mm 33 30 29 28 

Q m3/d 6 hT(probe) mm 280 272 
  

hT(ave) mm 276 hn mm 279 263 224 31 

kT m/d 0.19 hn mm 16 39 193 31 

   
kn m/d 0.83 0.34 0.07 0.43 

         
NORTHEND - JUNE 2009 Point C2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 8.5 1 mm 300 300 270 180 

D2(rsvr) cm 9.9 2 mm 10 1 16 
 

t s 600 3 mm 9 5 26 0 

D(rsvr) cm 1.4 4 mm 20 29 32 27 

Q m3/d 38 hT(probe) mm 270 270 
  

hT(ave) mm 270 hn mm 271 266 212 153 

kT m/d 4.43 hn mm 5 54 59 153 

   
kn m/d 60 6 5 2 

         
NORTHEND - JUNE 2009 Point C3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 18.7 1 mm 280 280 270 180 

D2(rsvr) cm 19.2 2 mm 21 12 4 
 

t s 1641 3 mm 22 15 7 1 

D(rsvr) cm 0.5 4 mm 31 39 38 41 

Q m3/d 14 hT(probe) mm 228 229 
  

hT(ave) mm 229 hn mm 227 226 225 138 

kT m/d 0.71 hn mm 1 1 87 138 

   
kn m/d 40.5 40.5 0.5 0.3 

         
NORTHEND - JUNE 2009 Point C4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 12.4 1 mm 250 250 250 180 

D2(rsvr) cm 15.6 2 mm 10 11 15 
 

t s 1006 3 mm 15 14 14 15 

D(rsvr) cm 3.2 4 mm 26 29 33 34 

Q m3/d 90 hT(probe) mm 214 210 202 
 

hT(ave) mm 209 hn mm 209 207 203 131 

kT m/d 8.11 hn mm 2 4 72 131 

   
kn m/d 212 106 6 3 
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NORTHEND - JUNE 2009 Point D1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.1 1 mm 250 250 250 150 

D2(rsvr) cm 4.3 2 mm (3) (2) 15 
 

t s 2400 3 mm 4 8 18 0 

D(rsvr) cm 0.2 4 mm 18 16 21 27 

Q m3/d 4 hT(probe) mm 235 236 214 
 

hT(ave) mm 228 hn mm 228 226 211 123 

kT m/d 0.15 hn mm 2 15 88 123 

   
kn m/d 4.16 0.55 0.09 0.07 

         
NORTHEND - JUNE 2009 Point D2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.8 1 mm 280 280 260 100 

D2(rsvr) cm 6.9 2 mm 18 9 8 
 

t s 3600 3 mm 28 27 7 3 

D(rsvr) cm 0.2 4 mm 48 51 53 53 

Q m3/d 4 hT(probe) mm 214 220 199 
 

hT(ave) mm 211 hn mm 204 202 200 44 

kT m/d 0.11 hn mm 2 2 156 44 

   
kn m/d 2.77 2.77 0.04 0.13 

         
NORTHEND - JUNE 2009 Point D3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 9.4 1 mm 250 250 250 180 

D2(rsvr) cm 9.6 2 mm 21 19 22 
 

t s 2197 3 mm 26 27 28 0 

D(rsvr) cm 0.2 4 mm 51 52 52 54 

Q m3/d 6 hT(probe) mm 178 179 176 
 

hT(ave) mm 178 hn mm 173 171 170 126 

kT m/d 0.27 hn mm 2 1 44 126 

   
kn m/d 6.05 12.11 0.27 0.10 

         
NORTHEND - JUNE 2009 Point D4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 11.9 1 mm 220 220 230 180 

D2(rsvr) cm 13.3 2 mm 1 6 10 
 

t s 720 3 mm 2 8 19 0 

D(rsvr) cm 1.4 4 mm 54 59 59 52 

Q m3/d 39 hT(probe) mm 165 155 
  

hT(ave) mm 160 hn mm 164 153 152 128 

kT m/d 6.46 hn mm 11 1 24 128 

   
kn m/d 24 259 11 2 

  



  

363 
 

NORTHEND - JUNE 2009 Point E1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.9 1 mm 270 270 270 180 

D2(rsvr) cm 9.3 2 mm 22 13 8 
 

t s 1881 3 mm 24 17 44 0 

D(rsvr) cm 2.4 4 mm 53 62 62 52 

Q m3/d 67 hT(probe) mm 195 195 200 
 

hT(ave) mm 197 hn mm 193 191 164 128 

kT m/d 3.45 hn mm 2 27 36 128 

   
kn m/d 85 6 5 1 

         
NORTHEND - JUNE 2009 Point E2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 3.3 1 mm 260 240 240 180 

D2(rsvr) cm 3.7 2 mm 20 4 6 
 

t s 2100 3 mm 21 6 30 0 

D(rsvr) cm 0.4 4 mm 57 60 65 71 

Q m3/d 11 hT(probe) mm 183 176 169 
 

hT(ave) mm 176 hn mm 182 174 145 109 

kT m/d 0.58 hn mm 8 29 36 109 

   
kn m/d 3.2 0.9 0.7 0.2 

         
NORTHEND - JUNE 2009 Point E3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 11.8 1 mm 240 240 240 180 

D2(rsvr) cm 14.5 2 mm 14 11 11 
 

t s 1187 3 mm 9 7 13 0 

D(rsvr) cm 2.7 4 mm 58 63 58 72 

Q m3/d 76 hT(probe) mm 168 166 171 
 

hT(ave) mm 168 hn mm 173 170 169 108 

kT m/d 7.19 hn mm 3 1 61 108 

   
kn m/d 101 303 5 3 

         
NORTHEND - JUNE 2009 Point E4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.6 1 mm 220 200 200 150 

D2(rsvr) cm 9.6 2 mm 25 13 16 
 

t s 652 3 mm 16 24 41 36 

D(rsvr) cm 5.0 4 mm 66 64 58 72 

Q m3/d 140 hT(probe) mm 129 123 
  

hT(ave) mm 126 hn mm 138 112 101 42 

kT m/d 32.38 hn mm 26 11 59 42 

   
kn m/d 39 93 17 24 
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Appendix A.16: Field Results – Rowington (July 2009). See Section 5.16 

ROWINGTON - JULY 2009 Point A1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.9 1 mm 410 370 270 100 

D2(rsvr) cm 5.0 2 mm 3 
   

t s 2736 3 mm 0 0 61 40 

D(rsvr) cm 0.2 4 mm 64 64 59 59 

Q m3/d 4 hT(probe) mm 343 
   

hT(ave) mm 343 hn mm 346 306 150 1 

kT m/d 0.09 hn mm 40 156 149 1 

   
kn m/d 0.18 0.05 0.05 7.29 

         
ROWINGTON - JULY 2009 Point A2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 8.8 1 mm 370 370 270 180 

D2(rsvr) cm 8.9 2 mm 6 7 
  

t s 2100 3 mm 28 34 0 0 

D(rsvr) cm 0.2 4 mm 36 33 36 38 

Q m3/d 4 hT(probe) mm 328 330 
  

hT(ave) mm 329 hn mm 306 303 234 142 

kT m/d 0.12 hn mm 3 69 92 142 

   
kn m/d 3.17 0.14 0.10 0.07 

         
ROWINGTON - JULY 2009 Point A3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 11.0 1 mm 340 340 270 180 

D2(rsvr) cm 17.5 2 mm 20 15 
  

t s 38 3 mm 47 92 63 1 

D(rsvr) cm 6.5 4 mm 40 52 43 42 

Q m3/d 183 hT(probe) mm 280 273 
  

hT(ave) mm 277 hn mm 253 196 164 138 

kT m/d 329.09 hn mm 57 32 27 138 

   
kn m/d 399 711 858 165 

         
ROWINGTON - JULY 2009 Point A4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 10.0 1 mm 300 280 270 180 

D2(rsvr) cm 18.0 2 mm 9 5 9 
 

t s 192 3 mm 10 11 14 0 

D(rsvr) cm 8.0 4 mm 52 42 40 41 

Q m3/d 225 hT(probe) mm 239 233 221 
 

hT(ave) mm 231 hn mm 238 227 216 139 

kT m/d 95.95 hn mm 11 11 77 139 

   
kn m/d 504 504 72 40 
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ROWINGTON - JULY 2009 Point B1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 3.6 1 mm 290 270 270 100 

D2(rsvr) cm 3.6 2 mm 16 
   

t s 2460 3 mm 8 33 155 20 

D(rsvr) cm 0.1 4 mm 67 63 56 62 

Q m3/d 1 hT(probe) mm 207 
   

hT(ave) mm 207 hn mm 215 174 59 18 

kT m/d 0.05 hn mm 41 115 41 18 

   
kn m/d 0.07 0.02 0.07 0.15 

         
ROWINGTON - JULY 2009 Point B2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.2 1 mm 490 370 270 130 

D2(rsvr) cm 7.4 2 mm 17 
   

t s 2554 3 mm 17 7 65 27 

D(rsvr) cm 0.2 4 mm 66 63 56 62 

Q m3/d 6 hT(probe) mm 407 
   

hT(ave) mm 407 hn mm 407 300 149 41 

kT m/d 0.10 hn mm 107 151 108 41 

   
kn m/d 0.10 0.07 0.10 0.25 

         
ROWINGTON - JULY 2009 Point B3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 12.7 1 mm 350 350 270 180 

D2(rsvr) cm 14.7 2 mm 31 31 
  

t s 1965 3 mm 24 26 0 0 

D(rsvr) cm 2.1 4 mm 55 55 56 52 

Q m3/d 58 hT(probe) mm 264 264 214 
 

hT(ave) mm 247 hn mm 271 269 214 128 

kT m/d 2.24 hn mm 2 55 86 128 

   
kn m/d 69 3 2 1 

         
ROWINGTON - JULY 2009 Point B4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.0 1 mm 330 330 270 180 

D2(rsvr) cm 16.0 2 mm 31 32 
  

t s 175 3 mm 32 79 78 25 

D(rsvr) cm 12.0 4 mm 61 60 56 55 

Q m3/d 337 hT(probe) mm 238 238 214 
 

hT(ave) mm 230 hn mm 237 191 136 100 

kT m/d 158.60 hn mm 46 55 36 100 

   
kn m/d 198 166 253 91 
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ROWINGTON - JULY 2009 Point C1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 9.2 1 mm 320 320 270 120 

D2(rsvr) cm 9.2 2 mm 15 
   

t s 2700 3 mm 15 56 127 17 

D(rsvr) cm 0.0 4 mm 35 36 39 24 

Q m3/d 0 hT(probe) mm 270 
   

hT(ave) mm 270 hn mm 270 228 104 79 

kT m/d 0.004 hn mm 42 124 25 79 

   
kn m/d 0.006 0.002 0.010 0.003 

         
ROWINGTON - JULY 2009 Point C2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 14.1 1 mm 480 370 270 150 

D2(rsvr) cm 14.1 2 mm 11 
   

t s 2700 3 mm 13 0 0 70 

D(rsvr) cm 0.0 4 mm 56 55 57 53 

Q m3/d 0 hT(probe) mm 413 315 
  

hT(ave) mm 364 hn mm 411 315 213 27 

kT m/d 0.003 hn mm 96 102 186 27 

   
kn m/d 0.003 0.002 0.001 0.009 

         
ROWINGTON - JULY 2009 Point C3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 20.2 1 mm 390 370 270 180 

D2(rsvr) cm 20.4 2 mm 12 
   

t s 1325 3 mm 13 0 0 19 

D(rsvr) cm 0.2 4 mm 55 51 42 46 

Q m3/d 6 hT(probe) mm 323 319 
  

hT(ave) mm 321 hn mm 322 319 228 115 

kT m/d 0.25 hn mm 3 91 113 115 

   
kn m/d 6.48 0.22 0.18 0.17 

         
ROWINGTON - JULY 2009 Point C4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 3.8 1 mm 340 340 270 180 

D2(rsvr) cm 10.0 2 mm 35 30 
  

t s 654 3 mm 23 31 0 0 

D(rsvr) cm 6.3 4 mm 61 62 69 75 

Q m3/d 176 hT(probe) mm 244 248 
  

hT(ave) mm 246 hn mm 256 247 201 105 

kT m/d 20.67 hn mm 9 46 96 105 

   
kn m/d 141 28 13 12 
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ROWINGTON - JULY 2009 Point D1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 12.1 1 mm 310 260 260 130 

D2(rsvr) cm 12.3 2 mm 14 
   

t s 1781 3 mm 11 18 20 28 

D(rsvr) cm 0.2 4 mm 54 53 53 56 

Q m3/d 6 hT(probe) mm 242 
   

hT(ave) mm 242 hn mm 245 189 187 46 

kT m/d 0.25 hn mm 56 2 141 46 

   
kn m/d 0.27 7.47 0.11 0.32 

         
ROWINGTON - JULY 2009 Point D2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.3 1 mm 350 330 180 100 

D2(rsvr) cm 7.3 2 mm 3 
   

t s 2220 3 mm 0 5 17 22 

D(rsvr) cm 0.0 4 mm 82 80 73 75 

Q m3/d 0 hT(probe) mm 265 
   

hT(ave) mm 265 hn mm 268 245 90 3 

kT m/d 0.005 hn mm 23 155 87 3 

   
kn m/d 0.013 0.002 0.003 0.100 

         
ROWINGTON - JULY 2009 Point D3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 3.4 1 mm 370 370 270 150 

D2(rsvr) cm 4.1 2 mm 6 
   

t s 2400 3 mm 6 0 0 35 

D(rsvr) cm 0.7 4 mm 42 51 43 42 

Q m3/d 20 hT(probe) mm 322 
   

hT(ave) mm 322 hn mm 322 319 227 73 

kT m/d 0.48 hn mm 3 92 154 73 

   
kn m/d 13 0 0 1 

         
ROWINGTON - JULY 2009 Point D4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 14.5 1 mm 370 370 270 180 

D2(rsvr) cm 19.0 2 mm 13 8 
  

t s 110 3 mm 14 38 0 0 

D(rsvr) cm 4.5 4 mm 63 63 61 55 

Q m3/d 126 hT(probe) mm 294 299 
  

hT(ave) mm 297 hn mm 293 269 209 125 

kT m/d 73.40 hn mm 24 60 84 125 

   
kn m/d 227 91 65 44 
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ROWINGTON - JULY 2009 Point E1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 18.2 1 mm 270 220 60 40 

D2(rsvr) cm 18.3 2 mm 14 
   

t s 2700 3 mm 13 9 19 8 

D(rsvr) cm 0.1 4 mm 35 35 37 31 

Q m3/d 1 hT(probe) mm 221 
   

hT(ave) mm 221 hn mm 222 176 4 1 

kT m/d 0.04 hn mm 46 172 3 1 

   
kn m/d 0.05 0.01 0.82 2.46 

         
ROWINGTON - JULY 2009 Point E2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 5.8 1 mm 250 240 170 80 

D2(rsvr) cm 6.4 2 mm 6 
   

t s 1680 3 mm 8 19 7 17 

D(rsvr) cm 0.6 4 mm 45 51 52 52 

Q m3/d 17 hT(probe) mm 199 
   

hT(ave) mm 199 hn mm 197 170 111 11 

kT m/d 0.95 hn mm 27 59 100 11 

   
kn m/d 1.8 0.8 0.5 4.3 

         
ROWINGTON - JULY 2009 Point E3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 8.3 1 mm 390 300 250 150 

D2(rsvr) cm 9.1 2 mm 14 
   

t s 1094 3 mm 22 6 6 10 

D(rsvr) cm 0.9 4 mm 61 64 60 69 

Q m3/d 24 hT(probe) mm 315 
   

hT(ave) mm 315 hn mm 307 230 184 71 

kT m/d 1.31 hn mm 77 46 113 71 

   
kn m/d 1.3 2.2 0.9 1.5 

         
ROWINGTON - JULY 2009 Point E4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 11.7 1 mm 360 270 270 180 

D2(rsvr) cm 19.0 2 mm 15 
   

t s 508 3 mm 19 7 10 0 

D(rsvr) cm 7.3 4 mm 47 53 51 55 

Q m3/d 205 hT(probe) mm 298 217 
  

hT(ave) mm 258 hn mm 294 210 209 125 

kT m/d 29.69 hn mm 84 1 84 125 

   
kn m/d 23 1,911 23 15 
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Appendix A.17: Field Results – Snitterfield (August 2009). See Section 5.17 

SNITTERFIELD - AUGUST 2009 Point A1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 9.6 1 mm 240 240 260 175 

D2(rsvr) cm 9.7 2 mm 25 26 14 
 

t s 3300 3 mm 30 37 93 102 

D(rsvr) cm 0.1 4 mm 66 61 58 55 

Q m3/d 3 hT(probe) mm 149 153 188 
 

hT(ave) mm 163 hn mm 144 142 109 18 

kT m/d 0.10 hn mm 2 33 91 18 

   
kn m/d 2.02 0.12 0.04 0.22 

         
SNITTERFIELD - AUGUST 2009 Point A2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 10.4 1 mm 220 220 220 175 

D2(rsvr) cm 10.7 2 mm 25 28 24 
 

t s 2265 3 mm 30 32 51 54 

D(rsvr) cm 0.3 4 mm 71 71 73 65 

Q m3/d 8 hT(probe) mm 124 121 123 
 

hT(ave) mm 123 hn mm 119 117 96 56 

kT m/d 0.57 hn mm 2 21 40 56 

   
kn m/d 8.81 0.84 0.44 0.31 

         
SNITTERFIELD - AUGUST 2009 Point A3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 15.4 1 mm 230 230 230 175 

D2(rsvr) cm 15.8 2 mm 30 24 
  

t s 1200 3 mm 29 31 70 47 

D(rsvr) cm 0.5 4 mm 50 50 53 45 

Q m3/d 13 hT(probe) mm 150 156 
  

hT(ave) mm 153 hn mm 151 149 107 83 

kT m/d 1.30 hn mm 2 42 24 83 

   
kn m/d 24.9 1.2 2.1 0.6 

         
SNITTERFIELD - AUGUST 2009 Point A4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 21.1 1 mm 140 150 150 150 

D2(rsvr) cm 21.2 2 mm 20 20 16 18 

t s 1200 3 mm 25 23 23 51 

D(rsvr) cm 0.1 4 mm 50 63 67 76 

Q m3/d 3 hT(probe) mm 70 67 67 56 

hT(ave) mm 65 hn mm 65 64 60 23 

kT m/d 0.68 hn mm 1 4 37 23 

   
kn m/d 11.08 2.77 0.30 0.48 
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SNITTERFIELD - AUGUST 2009 Point B1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 2.5 1 mm 270 270 270 175 

D2(rsvr) cm 2.5 2 mm 13 17 
  

t s 3600 3 mm 19 25 32 72 

D(rsvr) cm 0.0 4 mm 43 40 37 36 

Q m3/d 1 hT(probe) mm 214 
   

hT(ave) mm 214 hn mm 208 205 201 67 

kT m/d 0.03 hn mm 3 4 134 67 

   
kn m/d 0.62 0.46 0.01 0.03 

         
SNITTERFIELD - AUGUST 2009 Point B2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 7.9 1 mm 220 220 220 175 

D2(rsvr) cm 8.4 2 mm 11 6 8 
 

t s 1618 3 mm 14 14 17 2 

D(rsvr) cm 0.6 4 mm 73 74 72 72 

Q m3/d 15 hT(probe) mm 136 140 140 
 

hT(ave) mm 139 hn mm 133 132 131 101 

kT m/d 1.30 hn mm 1 1 30 101 

   
kn m/d 45.2 45.2 1.5 0.4 

         
SNITTERFIELD - AUGUST 2009 Point B3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 11.7 1 mm 220 220 220 175 

D2(rsvr) cm 14.2 2 mm 5 8 8 
 

t s 1244 3 mm 6 17 18 34 

D(rsvr) cm 2.5 4 mm 75 71 74 73 

Q m3/d 70 hT(probe) mm 140 141 138 
 

hT(ave) mm 140 hn mm 139 132 128 68 

kT m/d 7.65 hn mm 7 4 60 68 

   
kn m/d 38.2 66.8 4.5 3.9 

         
SNITTERFIELD - AUGUST 2009 Point B4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 21.1 1 mm 190 200 200 175 

D2(rsvr) cm 21.5 2 mm 24 24 20 9 

t s 1270 3 mm 25 47 49 59 

D(rsvr) cm 0.4 4 mm 44 49 53 49 

Q m3/d 11 hT(probe) mm 122 127 
  

hT(ave) mm 125 hn mm 121 104 98 67 

kT m/d 1.35 hn mm 17 6 31 67 

   
kn m/d 2.5 7.0 1.4 0.6 
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SNITTERFIELD - AUGUST 2009 Point C1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 14.2 1 mm 360 350 270 175 

D2(rsvr) cm 14.2 2 mm 8 
   

t s 3600 3 mm 14 85 104 84 

D(rsvr) cm 0.0 4 mm 49 51 59 55 

Q m3/d 1 hT(probe) mm 303 
   

hT(ave) mm 303 hn mm 297 214 107 36 

kT m/d 0.02 hn mm 83 107 71 36 

   
kn m/d 0.02 0.02 0.03 0.05 

         
SNITTERFIELD - AUGUST 2009 Point C2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 19.1 1 mm 310 320 270 175 

D2(rsvr) cm 19.5 2 mm 8 
   

t s 2936 3 mm 15 88 124 100 

D(rsvr) cm 0.4 4 mm 48 51 54 62 

Q m3/d 11 hT(probe) mm 254 269 
  

hT(ave) mm 262 hn mm 247 181 92 13 

kT m/d 0.28 hn mm 66 89 79 13 

   
kn m/d 0.27 0.20 0.23 1.39 

         
SNITTERFIELD - AUGUST 2009 Point C3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 8.6 1 mm 310 300 270 175 

D2(rsvr) cm 8.8 2 mm 12 11 
  

t s 1537 3 mm 14 15 0 0 

D(rsvr) cm 0.2 4 mm 67 66 64 54 

Q m3/d 6 hT(probe) mm 231 223 
  

hT(ave) mm 227 hn mm 229 219 206 121 

kT m/d 0.30 hn mm 10 13 85 121 

   
kn m/d 1.73 1.32 0.20 0.14 

         
SNITTERFIELD - AUGUST 2009 Point C4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 2.1 1 mm 260 260 260 175 

D2(rsvr) cm 2.4 2 mm 9 8 5 
 

t s 1463 3 mm 11 16 40 53 

D(rsvr) cm 0.3 4 mm 58 60 62 62 

Q m3/d 8 hT(probe) mm 193 192 
  

hT(ave) mm 193 hn mm 191 184 158 60 

kT m/d 0.57 hn mm 7 26 98 60 

   
kn m/d 3.90 1.05 0.28 0.45 
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SNITTERFIELD - AUGUST 2009 Point D1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 24.0 1 mm 330 340 270 175 

D2(rsvr) cm 24.1 2 mm 3 16 
  

t s 3438 3 mm 6 27 0 61 

D(rsvr) cm 0.1 4 mm 47 50 51 51 

Q m3/d 1 hT(probe) mm 280 
   

hT(ave) mm 280 hn mm 277 263 219 63 

kT m/d 0.03 hn mm 14 44 156 63 

   
kn m/d 0.14 0.04 0.01 0.03 

         
SNITTERFIELD - AUGUST 2009 Point D2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 6.2 1 mm 260 260 260 175 

D2(rsvr) cm 6.3 2 mm 13 20 
  

t s 1219 3 mm 13 51 112 79 

D(rsvr) cm 0.1 4 mm 66 63 56 62 

Q m3/d 3 hT(probe) mm 181 
   

hT(ave) mm 181 hn mm 181 146 92 34 

kT m/d 0.24 hn mm 35 54 58 34 

   
kn m/d 0.31 0.20 0.19 0.32 

         
SNITTERFIELD - AUGUST 2009 Point D3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 16.7 1 mm 250 240 250 175 

D2(rsvr) cm 17.7 2 mm 8 4 9 
 

t s 1617 3 mm 14 13 21 0 

D(rsvr) cm 1.0 4 mm 49 43 48 52 

Q m3/d 28 hT(probe) mm 193 193 193 
 

hT(ave) mm 193 hn mm 187 184 181 123 

kT m/d 1.70 hn mm 3 3 58 123 

   
kn m/d 27.4 27.4 1.4 0.7 

         
SNITTERFIELD - AUGUST 2009 Point D4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 12.4 1 mm 230 230 230 175 

D2(rsvr) cm 13.8 2 mm 11 10 7 
 

t s 1461 3 mm 13 20 43 5 

D(rsvr) cm 1.4 4 mm 57 56 55 54 

Q m3/d 39 hT(probe) mm 162 164 168 
 

hT(ave) mm 165 hn mm 160 154 132 116 

kT m/d 3.10 hn mm 6 22 16 116 

   
kn m/d 21.2 5.8 8.0 1.1 
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SNITTERFIELD - AUGUST 2009 Point E1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 9.0 1 mm 280 270 250 175 

D2(rsvr) cm 9.0 2 mm 16 25 27 
 

t s 1800 3 mm 17 32 54 57 

D(rsvr) cm 0.1 4 mm 44 46 48 51 

Q m3/d 1 hT(probe) mm 220 199 175 
 

hT(ave) mm 198 hn mm 219 192 148 67 

kT m/d 0.07 hn mm 27 44 81 67 

   
kn m/d 0.14 0.08 0.05 0.06 

         
SNITTERFIELD - AUGUST 2009 Point E2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 19.2 1 mm 270 260 270 175 

D2(rsvr) cm 21.7 2 mm 9 3 18 
 

t s 1203 3 mm 17 14 90 75 

D(rsvr) cm 2.5 4 mm 51 50 53 53 

Q m3/d 70 hT(probe) mm 210 207 199 
 

hT(ave) mm 205 hn mm 202 196 127 47 

kT m/d 5.38 hn mm 6 69 80 47 

   
kn m/d 46 4 3 6 

         
SNITTERFIELD - AUGUST 2009 Point E3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 16.6 1 mm 260 250 260 175 

D2(rsvr) cm 18.1 2 mm 12 6 7 
 

t s 1149 3 mm 17 11 12 0 

D(rsvr) cm 1.5 4 mm 62 60 70 76 

Q m3/d 42 hT(probe) mm 186 184 183 
 

hT(ave) mm 184 hn mm 181 179 178 99 

kT m/d 3.77 hn mm 2 1 79 99 

   
kn m/d 87 174 2 2 

         
SNITTERFIELD - AUGUST 2009 Point E4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 100 

D1(rsvr) cm 4.2 1 mm 220 210 210 175 

D2(rsvr) cm 6.2 2 mm 14 7 5 
 

t s 1716 3 mm 17 12 9 26 

D(rsvr) cm 2.0 4 mm 50 48 53 42 

Q m3/d 55 hT(probe) mm 156 155 152 
 

hT(ave) mm 154 hn mm 153 150 148 107 

kT m/d 3.92 hn mm 3 2 41 107 

   
kn m/d 50 76 4 1 
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Appendix A.18: Field Results – Greens of Delwood (July 2009). See Section 5.18 

Greens of Delwood - July 2009 Point A1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 2.7 1 mm 110 110 110 

D2(rsvr) cm 3.6 2 mm 18 14 20 

t s 3965 3 mm 9 7 20 

D(rsvr) cm 0.9 4 mm 73 78 77 

Q m3/d 25 hT(probe) mm 19 18 13 

hT(ave) mm 17 hn mm 28 25 13 

kT m/d 6.29 hn mm 3 12 13 

   
kn m/d 10.1 2.5 3.4 

        
Greens of Delwood - July 2009 Point A2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 9.4 1 mm 220 220 220 

D2(rsvr) cm 24.7 2 mm 9 13 8 

t s 1425 3 mm 14 12 27 

D(rsvr) cm 15.3 4 mm 105 110 100 

Q m3/d 430 hT(probe) mm 106 97 112 

hT(ave) mm 105 hn mm 101 98 93 

kT m/d 47.26 hn mm 3 5 93 

   
kn m/d 476 286 23 

        
Greens of Delwood - July 2009 Point A3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 7.5 1 mm 260 260 260 

D2(rsvr) cm 20.0 2 mm 3 7 14 

t s 120 3 mm 9 42 49 

D(rsvr) cm 12.5 4 mm 88 99 97 

Q m3/d 351 hT(probe) mm 169 154 149 

hT(ave) mm 157 hn mm 163 119 114 

kT m/d 306.01 hn mm 44 5 114 

   
kn m/d 315 2,771 179 

        
Greens of Delwood - July 2009 Point A4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 11.4 1 mm 200 200 200 

D2(rsvr) cm 14.2 2 mm 26 20 20 

t s 292 3 mm 32 43 53 

D(rsvr) cm 2.8 4 mm 88 99 97 

Q m3/d 79 hT(probe) mm 86 81 83 

hT(ave) mm 83 hn mm 80 58 50 

kT m/d 53.18 hn mm 22 8 50 

   
kn m/d 58 159 38 
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Greens of Delwood - July 2009 Point B1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 5.6 1 mm 110 110 120 

D2(rsvr) cm 5.9 2 mm 10 16 15 

t s 2100 3 mm 10 19 35 

D(rsvr) cm 0.3 4 mm 86 78 77 

Q m3/d 8 hT(probe) mm 14 16 28 

hT(ave) mm 19 hn mm 14 13 8 

kT m/d 3.42 hn mm 1 5 8 

   
kn m/d 19.0 3.8 3.5 

        
Greens of Delwood - July 2009 Point B2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 13.5 1 mm 260 260 260 

D2(rsvr) cm 20.0 2 mm 6 16 28 

t s 69 3 mm 18 47 54 

D(rsvr) cm 6.5 4 mm 64 54 48 

Q m3/d 183 hT(probe) mm 190 190 184 

hT(ave) mm 188 hn mm 178 159 158 

kT m/d 240.06 hn mm 19 1 158 

   
kn m/d 659 12,528 127 

        
Greens of Delwood - July 2009 Point B3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 9.0 1 mm 200 200 200 

D2(rsvr) cm 17.0 2 mm 17 16 18 

t s 68 3 mm 32 36 55 

D(rsvr) cm 8.0 4 mm 43 56 45 

Q m3/d 225 hT(probe) mm 140 128 137 

hT(ave) mm 135 hn mm 125 108 100 

kT m/d 402.79 hn mm 17 8 100 

   
kn m/d 920 1,956 231 

        
Greens of Delwood - July 2009 Point B4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 11.6 1 mm 70 70 70 

D2(rsvr) cm 14.5 2 mm 18 25 22 

t s 1722 3 mm 12 22 38 

D(rsvr) cm 2.9 4 mm 36 30 31 

Q m3/d 81 hT(probe) mm 16 15 17 

hT(ave) mm 16 hn mm 22 18 1 

kT m/d 50.43 hn mm 4 17 1 

   
kn m/d 56 13 359 
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Greens of Delwood - July 2009 Point C1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 16.1 1 mm 100 100 100 

D2(rsvr) cm 21.0 2 mm 1 1 1 

t s 3055 3 mm 0 2 5 

D(rsvr) cm 4.9 4 mm 43 44 48 

Q m3/d 138 hT(probe) mm 56 55 51 

hT(ave) mm 54 hn mm 57 54 47 

kT m/d 13.73 hn mm 3 7 47 

   
kn m/d 74 30 7 

        
Greens of Delwood - July 2009 Point C2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 13.5 1 mm 200 200 200 

D2(rsvr) cm 21.5 2 mm 16 17 13 

t s 61 3 mm 26 42 85 

D(rsvr) cm 8.0 4 mm 39 44 43 

Q m3/d 225 hT(probe) mm 145 139 144 

hT(ave) mm 143 hn mm 135 114 72 

kT m/d 424.88 hn mm 21 42 72 

   
kn m/d 831 415 357 

        
Greens of Delwood - July 2009 Point C3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 9.0 1 mm 180 180 180 

D2(rsvr) cm 20.0 2 mm 17 24 14 

t s 123 3 mm 48 52 63 

D(rsvr) cm 11.0 4 mm 32 43 37 

Q m3/d 309 hT(probe) mm 131 113 129 

hT(ave) mm 124 hn mm 100 85 80 

kT m/d 338.53 hn mm 15 5 80 

   
kn m/d 793 2,379 229 

        
Greens of Delwood - July 2009 Point C4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 6.7 1 mm 130 130 130 

D2(rsvr) cm 10.8 2 mm 15 16 7 

t s 406 3 mm 2 7 8 

D(rsvr) cm 4.1 4 mm 55 51 56 

Q m3/d 115 hT(probe) mm 60 63 67 

hT(ave) mm 63 hn mm 73 72 66 

kT m/d 75.04 hn mm 1 6 66 

   
kn m/d 1,343 224 31 
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Greens of Delwood - July 2009 Point D1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 9.1 1 mm 95 90 80 

D2(rsvr) cm 9.8 2 mm 2 1 1 

t s 3600 3 mm 24 20 19 

D(rsvr) cm 0.7 4 mm 36 40 32 

Q m3/d 20 hT(probe) mm 57 49 47 

hT(ave) mm 51 hn mm 35 30 29 

kT m/d 1.73 hn mm 5 1 29 

   
kn m/d 5.2 25.9 1.3 

        
Greens of Delwood - July 2009 Point D2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 10.0 1 mm 180 180 180 

D2(rsvr) cm 14.0 2 mm 5 7 8 

t s 201 3 mm 12 14 18 

D(rsvr) cm 4.0 4 mm 28 32 38 

Q m3/d 112 hT(probe) mm 147 141 134 

hT(ave) mm 141 hn mm 140 134 124 

kT m/d 67.78 hn mm 6 10 124 

   
kn m/d 441 265 34 

        
Greens of Delwood - July 2009 Point D3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 9.0 1 mm 150 150 150 

D2(rsvr) cm 19.0 2 mm 8 13 22 

t s 161 3 mm 15 14 27 

D(rsvr) cm 10.0 4 mm 53 58 57 

Q m3/d 281 hT(probe) mm 89 79 71 

hT(ave) mm 80 hn mm 82 78 66 

kT m/d 360.35 hn mm 4 12 66 

   
kn m/d 2,065 688 185 

        
Greens of Delwood - July 2009 Point D4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 2.9 1 mm 70 70 70 

D2(rsvr) cm 2.9 2 mm 9 24 5 

t s 2147 3 mm 4 5 33 

D(rsvr) cm 0.0 4 mm 33 35 30 

Q m3/d 0 hT(probe) mm 28 11 35 

hT(ave) mm 25 hn mm 33 30 7 

kT m/d 0.09 hn mm 3 23 7 

   
kn m/d 0.21 0.03 0.14 
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Appendix A.19: Field Results – Tamarack Farms Estate (July 2009). See Section 5.19 

Tamarack Farms - July 2009 Point A1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 3.0 1 mm 420 365 265 

D2(rsvr) cm 17.3 2 mm 14 
  

t s 117 3 mm 45 12 10 

D(rsvr) cm 14.3 4 mm 76 77 74 

Q m3/d 402 hT(probe) mm 330 
  

hT(ave) mm 330 hn mm 299 276 181 

kT m/d 162.23 hn mm 23 95 181 

   
kn m/d 707 171 116 

        
Tamarack Farms - July 2009 Point A2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 4.8 1 mm 445 330 250 

D2(rsvr) cm 19.0 2 mm 14 
  

t s 30 3 mm 43 57 48 

D(rsvr) cm 14.2 4 mm 99 93 92 

Q m3/d 399 hT(probe) mm 332 
  

hT(ave) mm 332 hn mm 303 180 110 

kT m/d 624.49 hn mm 123 70 110 

   
kn m/d 512 899 740 

        
Tamarack Farms - July 2009 Point A3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 5.0 1 mm 400 360 260 

D2(rsvr) cm 21.0 2 mm 13 
  

t s 209 3 mm 13 2 
 

D(rsvr) cm 16.0 4 mm 81 74 75 

Q m3/d 449 hT(probe) mm 306 286 
 

hT(ave) mm 296 hn mm 306 284 185 

kT m/d 113.29 hn mm 22 99 185 

   
kn m/d 463 103 71 

        
Tamarack Farms - July 2009 Point A4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 4.0 1 mm 380 365 270 

D2(rsvr) cm 17.0 2 mm 5 
  

t s 437 3 mm 14 7 1 

D(rsvr) cm 13.0 4 mm 69 63 63 

Q m3/d 365 hT(probe) mm 306 302 
 

hT(ave) mm 304 hn mm 297 295 206 

kT m/d 44.52 hn mm 2 89 206 

   
kn m/d 1,978 45 27 
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Tamarack Farms - July 2009 Point A5 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 6.0 1 mm 418 360 267 

D2(rsvr) cm 19.0 2 mm 10 
  

t s 306 3 mm 21 
  

D(rsvr) cm 13.0 4 mm 63 51 53 

Q m3/d 365 hT(probe) mm 345 309 
 

hT(ave) mm 327 hn mm 334 309 214 

kT m/d 56.91 hn mm 25 95 214 

   
kn m/d 226 59 34 

 

Tamarack Farms - July 2009 Point B1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 10.1 1 mm 420 365 265 

D2(rsvr) cm 12.6 2 mm 12 
  

t s 373 3 mm 14 1 1 

D(rsvr) cm 2.6 4 mm 81 77 71 

Q m3/d 72 hT(probe) mm 327 
  

hT(ave) mm 327 hn mm 325 287 194 

kT m/d 9.16 hn mm 38 94 194 

   
kn m/d 24 10 6 

        
Tamarack Farms - July 2009 Point B2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 2.0 1 mm 455 365 260 

D2(rsvr) cm 11.0 2 mm 3 
  

t s 85 3 mm 13 1 1 

D(rsvr) cm 9.0 4 mm 82 83 85 

Q m3/d 253 hT(probe) mm 370 
  

hT(ave) mm 370 hn mm 360 281 175 

kT m/d 125.35 hn mm 79 107 175 

   
kn m/d 178 132 104 

        
Tamarack Farms - July 2009 Point B3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 5.9 1 mm 530 360 260 

D2(rsvr) cm 13.5 2 mm 8 
  

t s 171 3 mm 13 
  

D(rsvr) cm 7.6 4 mm 72 71 65 

Q m3/d 214 hT(probe) mm 450 
  

hT(ave) mm 450 hn mm 445 289 195 

kT m/d 43.26 hn mm 156 94 195 

   
kn m/d 38 63 39 
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Tamarack Farms - July 2009 Point B4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 5.0 1 mm 483 365 270 

D2(rsvr) cm 14.9 2 mm 5 
  

t s 288 3 mm 9 18 18 

D(rsvr) cm 9.9 4 mm 68 67 68 

Q m3/d 278 hT(probe) mm 410 298 
 

hT(ave) mm 354 hn mm 406 280 184 

kT m/d 42.53 hn mm 126 96 184 

   
kn m/d 36 48 32 

        
Tamarack Farms - July 2009 Point B5 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 2.0 1 mm 350 340 270 

D2(rsvr) cm 11.0 2 mm 3 5 
 

t s 140 3 mm 9 12 0 

D(rsvr) cm 9.0 4 mm 78 79 82 

Q m3/d 253 hT(probe) mm 269 256 
 

hT(ave) mm 263 hn mm 263 249 188 

kT m/d 107.27 hn mm 14 61 188 

   
kn m/d 611 139 59 

 

Tamarack Farms - July 2009 Point C1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 5.5 1 mm 360 360 270 

D2(rsvr) cm 17.0 2 mm 10 12 
 

t s 171 3 mm 37 49 32 

D(rsvr) cm 11.5 4 mm 79 83 76 

Q m3/d 323 hT(probe) mm 271 265 
 

hT(ave) mm 268 hn mm 244 228 162 

kT m/d 109.92 hn mm 16 66 162 

   
kn m/d 559 136 71 

        
Tamarack Farms - July 2009 Point C2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 5.0 1 mm 525 350 260 

D2(rsvr) cm 15.0 2 mm 10 
  

t s 157 3 mm 20 0 1 

D(rsvr) cm 10.0 4 mm 100 100 96 

Q m3/d 281 hT(probe) mm 415 
  

hT(ave) mm 415 hn mm 405 250 164 

kT m/d 64.63 hn mm 155 86 164 

   
kn m/d 55 98 60 
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Tamarack Farms - July 2009 Point C3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 5.7 1 mm 430 360 260 

D2(rsvr) cm 15.2 2 mm 10 
  

t s 286 3 mm 17 
  

D(rsvr) cm 9.5 4 mm 75 74 75 

Q m3/d 267 hT(probe) mm 345 
  

hT(ave) mm 345 hn mm 338 286 185 

kT m/d 42.17 hn mm 52 101 185 

   
kn m/d 85 44 31 

        
Tamarack Farms - July 2009 Point C4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 4.7 1 mm 393 325 265 

D2(rsvr) cm 16.2 2 mm 11 
  

t s 257 3 mm 12 3 
 

D(rsvr) cm 11.5 4 mm 76 75 73 

Q m3/d 323 hT(probe) mm 306 250 
 

hT(ave) mm 278 hn mm 305 247 192 

kT m/d 70.50 hn mm 58 55 192 

   
kn m/d 103 108 40 

        
Tamarack Farms - July 2009 Point C5 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 4.0 1 mm 445 360 275 

D2(rsvr) cm 16.0 2 mm 3 
  

t s 174 3 mm 10 44 44 

D(rsvr) cm 12.0 4 mm 60 59 59 

Q m3/d 337 hT(probe) mm 382 301 
 

hT(ave) mm 342 hn mm 375 257 172 

kT m/d 88.46 hn mm 118 85 172 

   
kn m/d 78 108 69 
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Appendix A.20: Field Results – Jackson Meadow S. (August 2009). See Section 5.20 

Jackson Meadow S. - August 2009 Point A1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 0.5 1 mm 450 220 220 

D2(rsvr) cm 7.5 2 mm 
 

31 36 

t s 367 3 mm 
 

54 73 

D(rsvr) cm 7.0 4 mm 79 64 63 

Q m3/d 197 hT(probe) mm 
 

125 121 

hT(ave) mm 123 hn mm 371 102 84 

kT m/d 65.30 hn mm 269 18 84 

   
kn m/d 9 141 35 

        
Jackson Meadow S. - August 2009 Point A2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 5.0 1 mm 240 230 220 

D2(rsvr) cm 16.0 2 mm 8 18 8 

t s 42 3 mm 27 31 27 

D(rsvr) cm 11.0 4 mm 82 70 67 

Q m3/d 309 hT(probe) mm 150 142 145 

hT(ave) mm 146 hn mm 131 129 126 

kT m/d 787.55 hn mm 2 3 126 

   
kn m/d 17,415 11,610 358 

        
Jackson Meadow S. - August 2009 Point A3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 5.5 1 mm 260 250 250 

D2(rsvr) cm 16.0 2 mm 21 13 12 

t s 52 3 mm 25 24 35 

D(rsvr) cm 10.5 4 mm 91 88 88 

Q m3/d 295 hT(probe) mm 148 149 150 

hT(ave) mm 149 hn mm 144 138 127 

kT m/d 593.60 hn mm 6 11 127 

   
kn m/d 4,476 2,441 274 

        
Jackson Meadow S. - August 2009 Point A4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 4.0 1 mm 260 260 260 

D2(rsvr) cm 11.0 2 mm 15 15 12 

t s 145 3 mm 17 17 15 

D(rsvr) cm 7.0 4 mm 69 70 73 

Q m3/d 197 hT(probe) mm 176 175 175 

hT(ave) mm 175 hn mm 174 173 172 

kT m/d 125.26 hn mm 1 1 172 

   
kn m/d 6,420 6,420 53 
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Jackson Meadow S. - August 2009 Point B1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 10.1 1 mm 110 100 90 

D2(rsvr) cm 11.0 2 mm 10 9 7 

t s 2975 3 mm 6 1 0 

D(rsvr) cm 0.9 4 mm 71 66 60 

Q m3/d 27 hT(probe) mm 29 25 23 

hT(ave) mm 26 hn mm 33 33 30 

kT m/d 5.03 hn mm 0 3 30 

   
kn m/d 142 14 1 

        
Jackson Meadow S. - August 2009 Point B2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 4.0 1 mm 170 170 170 

D2(rsvr) cm 16.0 2 mm 15 18 21 

t s 55 3 mm 18 22 28 

D(rsvr) cm 12.0 4 mm 82 79 83 

Q m3/d 337 hT(probe) mm 73 73 66 

hT(ave) mm 71 hn mm 70 69 59 

kT m/d 1352.37 hn mm 1 10 59 

   
kn m/d 29,016 2,902 636 

        
Jackson Meadow S. - August 2009 Point B3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 11.0 1 mm 200 200 200 

D2(rsvr) cm 19.0 2 mm 7 4 4 

t s 21 3 mm 12 18 27 

D(rsvr) cm 8.0 4 mm 68 70 65 

Q m3/d 225 hT(probe) mm 125 126 131 

hT(ave) mm 127 hn mm 120 112 108 

kT m/d 1310.45 hn mm 8 4 108 

   
kn m/d 6,333 12,666 607 

        
Jackson Meadow S. - August 2009 Point B4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 9.0 1 mm 260 260 260 

D2(rsvr) cm 20.0 2 mm 13 10 6 

t s 15 3 mm 19 30 43 

D(rsvr) cm 11.0 4 mm 85 80 80 

Q m3/d 309 hT(probe) mm 162 170 174 

hT(ave) mm 169 hn mm 156 150 137 

kT m/d 1904.43 hn mm 6 13 137 

   
kn m/d 16,254 7,502 921 
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Jackson Meadow S. - August 2009 Point C1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 6.5 1 mm 150 140 130 

D2(rsvr) cm 11.0 2 mm 11 4 3 

t s 207 3 mm 28 13 19 

D(rsvr) cm 4.5 4 mm 62 72 81 

Q m3/d 126 hT(probe) mm 77 64 46 

hT(ave) mm 62 hn mm 60 55 30 

kT m/d 152.76 hn mm 5 25 30 

   
kn m/d 578 116 125 

        
Jackson Meadow S. - August 2009 Point C2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 7.0 1 mm 210 210 210 

D2(rsvr) cm 17.0 2 mm 20 16 9 

t s 16 3 mm 25 28 34 

D(rsvr) cm 10.0 4 mm 87 91 91 

Q m3/d 281 hT(probe) mm 103 103 110 

hT(ave) mm 105 hn mm 98 91 85 

kT m/d 2699.26 hn mm 7 6 85 

   
kn m/d 11,874 13,853 1,389 

        
Jackson Meadow S. - August 2009 Point C3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 3.0 1 mm 250 250 250 

D2(rsvr) cm 12.0 2 mm 17 14 14 

t s 98 3 mm 21 17 19 

D(rsvr) cm 9.0 4 mm 85 90 89 

Q m3/d 253 hT(probe) mm 148 146 147 

hT(ave) mm 147 hn mm 144 143 142 

kT m/d 273.65 hn mm 1 1 142 

   
kn m/d 12,213 12,213 111 

        
Jackson Meadow S. - August 2009 Point C4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 9.0 1 mm 250 250 250 

D2(rsvr) cm 18.0 2 mm 7 14 19 

t s 73 3 mm 9 17 23 

D(rsvr) cm 9.0 4 mm 76 72 68 

Q m3/d 253 hT(probe) mm 167 164 163 

hT(ave) mm 165 hn mm 165 161 159 

kT m/d 340.60 hn mm 4 2 159 

   
kn m/d 4,099 8,198 146 
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Jackson Meadow S. - August 2009 Point D1 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 5.2 1 mm 70 60 50 

D2(rsvr) cm 11.4 2 mm 7 4 1 

t s 526 3 mm 7 6 6 

D(rsvr) cm 6.2 4 mm 29 23 14 

Q m3/d 174 hT(probe) mm 34 33 35 

hT(ave) mm 34 hn mm 34 31 30 

kT m/d 142.48 hn mm 3 1 30 

   
kn m/d 523 1,568 57 

        
Jackson Meadow S. - August 2009 Point D2 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 8.0 1 mm 210 200 200 

D2(rsvr) cm 16.0 2 mm 15 20 13 

t s 17 3 mm 45 43 46 

D(rsvr) cm 8.0 4 mm 77 70 79 

Q m3/d 225 hT(probe) mm 118 110 108 

hT(ave) mm 112 hn mm 88 87 75 

kT m/d 1875.91 hn mm 1 12 75 

   
kn m/d 62,584 5,215 1,132 

        
Jackson Meadow S. - August 2009 Point D3 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 8.0 1 mm 200 200 200 

D2(rsvr) cm 18.0 2 mm 9 16 12 

t s 19 3 mm 19 31 39 

D(rsvr) cm 10.0 4 mm 87 79 76 

Q m3/d 281 hT(probe) mm 104 105 112 

hT(ave) mm 107 hn mm 94 90 85 

kT m/d 2237.66 hn mm 4 5 85 

   
kn m/d 17,499 13,999 1,170 

        
Jackson Meadow S. - August 2009 Point D4 Measuring Depth (mm) 

Measurements (see Chapter 4) (See Fig 4-6) 400 300 200 

D1(rsvr) cm 2.0 1 mm 220 220 220 

D2(rsvr) cm 10.0 2 mm 7 14 6 

t s 74 3 mm 20 19 13 

D(rsvr) cm 8.0 4 mm 80 82 89 

Q m3/d 225 hT(probe) mm 133 124 125 

hT(ave) mm 127 hn mm 120 119 118 

kT m/d 379.06 hn mm 1 1 118 

   
kn m/d 14,377 14,377 165 
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Appendix B: Clog Factor Derivations 

Table App.B.1 Average longitudinal factors CFX and vertical factors CFZ of Clog Factor CF, at 

different sampling locations for various values of CFT as determined from the 

ANOVA test. 

 Longitudinal Sampling Position Vertical Sampling Position 

 1 2 3 4 1 2 3 4 

CFT CFx Longitudinal Factor of CFT CFz Vertical Factor of CF 

0.54 0.67 0.61 0.51 0.37 0.52 0.66 0.69 0.32 

0.58 0.69 0.61 0.60 0.42 0.59 0.68 0.59 0.50 

0.6 0.88 0.67 0.47 0.40 0.81 0.72 0.59 0.34 

0.63 0.76 0.71 0.60 0.47 0.55 0.71 0.72 0.59 

0.64 0.94 0.62 0.53 0.48 0.72 0.66 0.65 0.57 

0.67 0.68 0.65 0.65 0.70 0.86 0.76 0.57 0.54 

0.74 0.76 0.79 0.81 0.61 0.89 0.73 0.72 0.69 

0.81 0.97 0.92 0.81 0.55 0.80 0.89 0.86 0.74 

0.82 0.97 0.82 0.80 0.70 0.97 0.86 0.78 0.75 

0.87 0.96 0.87 0.87 0.78 0.99 0.89 0.84 0.82 

0.88 0.93 0.91 0.86 0.84 1.00 0.93 0.83 0.83 

0.88 0.97 0.95 0.85 0.73 0.96 0.90 0.86 0.84 

0.92 0.98 0.92 0.88 0.90 1.01 0.95 0.90 0.88 

 

 

 

Figure App.B.1 Average linear trend of CFX versus CFT for different longitudinal sampling 

points, based on the data in Table App.B.1. 
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Figure App.B.2 Average linear trend of CFz versus CFT for different vertical sampling points, 

based on the data in Table App.B.1. 

 

Table App.B.2 Gradient and intercept of the linear relationships illustrated in Figure 

App.B.2, for CFX versus CFT for different normalised longitudinal distance 

from inlet and CFZ versus CFT for different normalised vertical distance above 

base. 

CFx vs CFT relationship CFT vs CFz  relationship 

 ̅ m c  ̅ m c 

0.2 0.4921 0.5109 0.25 0.7677 0.3135 

0.4 1.006 0.0169 0.5 0.834 0.1705 

0.6 1.2338 -0.2162 0.75 0.9797 -0.0152 

0.8 1.2376 -0.2839 1 1.4331 -0.4227 
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Figure App.B.3 Relationship between normalised longitudinal distance and the gradient and 

intercept of the linear trends illustrated in Figure App.B.1.  

 

 

 

Figure App.B.4 Relationship between normalised vertical distance and the gradient and 

intercept of the linear trends illustrated in Figure App.B.2.  

  

 ̅ 



  

389 
 

Appendix C: ANOVA Results 

Summary ANOVA - CF 
This ANOVA test performs a multifactor analysis of variance for CF.  It constructs various 

tests and graphs to determine which factors have a statistically significant effect on CF.  It 

also tests for significant interactions amongst the factors, given sufficient data. The F-tests in 

the ANOVA table will allow you to identify the significant factors.  For each significant factor, 

the Multiple Range Tests will tell you which means are significantly different from which 

others.  The Means Plot and Interaction Plot will help you interpret the significant effects.  

The Residual Plots will help you judge whether the assumptions underlying the analysis of 

variance are violated by the data. 

 
Analysis of Variance Table 
The ANOVA table decomposes the variability of CF into contributions due to various factors.  

Since Type III sums of squares (the default) have been chosen, the contribution of each 

factor is measured having removed the effects of all other factors.  The P-values test the 

statistical significance of each of the factors.  Since 4 P-values are less than 0.05, these 

factors have a statistically significant effect on CF at the 95.0% confidence level.   

 
Table of Least Squares Means 
This table shows the mean CF for each level of the factors.  It also shows the standard error 

of each mean, which is a measure of its sampling variability.  The rightmost two columns 

show 95.0% confidence intervals for each of the means.  You can display these means and 

intervals by selecting Means Plot from the list of Graphical Options. 

 
Multiple Range Tests 
This table applies a multiple comparison procedure to determine which means are 

significantly different from which others.  The bottom half of the output shows the 

estimated difference between each pair of means.  An asterisk has been placed next to 5 

pairs, indicating that these pairs show statistically significant differences at the 95.0% 

confidence level.  At the top of the page, 3 homogenous groups are identified using columns 

of X's.  Within each column, the levels containing X's form a group of means within which 

there are no statistically significant differences.  The method currently being used to 

discriminate among the means is Fisher's least significant difference (LSD) procedure.  With 

this method, there is a 5.0% risk of calling each pair of means significantly different when the 

actual difference equals 0. 
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Inter-system comparison, transverse variance removed - CF 
 
Dependent variable: Clog Factor, Factors: Vert (Normalized vertical bed location), Bed Code 
(Referenced to bulk system Clog Factor CFT), Long (Normalized longitudinal bed location).  
Transverse bed location is not included as a factor 
Number of complete cases: 912 
 
Bed Codes: 

1 Ashorne 

2 Fenny Compton (08) 

3 Fenny Compton (09) 

4 Fenny Compton (10) 

5 Leek Wooton 

6 Moreton Morrell (F9) 

7 Moreton Morrell (J8) 

8 Moreton Morrell (S9) 

9 Moreton Morrell B 

10 Northend 

11 Rowington 

12 Snitterfield 

13 Weston  

 
 
Analysis of Variance for Clog Factor - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:Vert                      2.82944      3       0.943147      42.45     0.0000 
 B:Bed Code                  14.7369     12        1.22808      55.28     0.0000 
 C:Long                      7.23109      3        2.41036     108.50     0.0000 
 
INTERACTIONS 
 AB                          3.77201     36       0.104778       4.72     0.0000 
 AC                         0.343483      9      0.0381648       1.72     0.0810 
 BC                          4.01073     36       0.111409       5.01     0.0000 
 
RESIDUAL                     18.0391    812      0.0222157 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)            50.9734    911 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
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Table of Least Squares Means for Clog Factor with 95.0 Percent Confidence Intervals 
-------------------------------------------------------------------------------- 
                                         Stnd.        Lower        Upper 
Level               Count   Mean         Error        Limit        Limit 
-------------------------------------------------------------------------------- 
GRAND MEAN          912     0.737833 
Vert 
1                   228     0.772631     0.00998427   0.753062     0.792199      
2                   228     0.793616     0.00998427   0.774047     0.813185      
3                   228     0.738755     0.00998427   0.719187     0.758324      
4                   228     0.64633      0.00998427   0.626761     0.665899      
Bed Code 
1                   64      0.809459     0.0186312    0.772943     0.845976      
2                   64      0.540531     0.0186312    0.504015     0.577048      
3                   64      0.743004     0.0186312    0.706487     0.77952       
4                   80      0.632497     0.0166642    0.599836     0.665159      
5                   80      0.668897     0.0166642    0.636235     0.701558      
6                   64      0.823993     0.0186312    0.787476     0.860509      
7                   64      0.64152      0.0186312    0.605003     0.678036      
8                   64      0.867772     0.0186312    0.831255     0.904288      
9                   48      0.580474     0.0215134    0.538309     0.62264       
10                  80      0.884697     0.0166642    0.852035     0.917358      
11                  80      0.875823     0.0166642    0.843162     0.908485      
12                  80      0.919668     0.0166642    0.887007     0.952329      
13                  80      0.603495     0.0166642    0.570834     0.636156      
Long 
1                   228     0.85702      0.00998427   0.837451     0.876589      
2                   228     0.773342     0.00998427   0.753773     0.792911      
3                   228     0.710563     0.00998427   0.690994     0.730132      
4                   228     0.610408     0.00998427   0.590839     0.629977      
Vert by Bed Code 
1          1          16       0.753593     0.0372623   0.68056     0.826626     
1          2          16       0.489096     0.0372623   0.416063    0.562129     
1          3          16       0.837085     0.0372623   0.764052    0.910118     
1          4          20       0.515128     0.0333284   0.449805    0.58045      
1          5          20       0.807274     0.0333284   0.741951    0.872597     
1          6          16       0.909767     0.0372623   0.836735    0.9828       
1          7          16       0.67936      0.0372623   0.606327    0.752393     
1          8          16       0.930002     0.0372623   0.856969    1.00303      
1          9          12       0.55598      0.0430268   0.471648    0.640311     
1          10         20       0.943331     0.0333284   0.878009    1.00865      
1          11         20       0.905139     0.0333284   0.839816    0.970461     
1          12         20       0.952787     0.0333284   0.887465    1.01811      
1          13         20       0.765654     0.0333284   0.700331    0.830976     
2          1          16       0.886998     0.0372623   0.813965    0.960031     
2          2          16       0.657709     0.0372623   0.584676    0.730742     
2          3          16       0.726403     0.0372623   0.65337     0.799436     
2          4          20       0.707017     0.0333284   0.641695    0.77234      
2          5          20       0.756145     0.0333284   0.690823    0.821468     
2          6          16       0.856645     0.0372623   0.783612    0.929678     
2          7          16       0.663666     0.0372623   0.590633    0.736699     
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2          8          16       0.888933     0.0372623   0.8159      0.961966     
2          9          12       0.676334     0.0430268   0.592003    0.760665     
2          10         20       0.93124      0.0333284   0.865917    0.996562     
2          11         20       0.898899     0.0333284   0.833577    0.964222     
2          12         20       0.949483     0.0333284   0.884161    1.01481      
2          13         20       0.717535     0.0333284   0.652212    0.782857     
3          1          16       0.855985     0.0372623   0.782952    0.929018     
3          2          16       0.690642     0.0372623   0.617609    0.763675     
3          3          16       0.720957     0.0372623   0.647924    0.79399      
3          4          20       0.722329     0.0333284   0.657006    0.787651     
3          5          20       0.568223     0.0333284   0.5029      0.633545     
3          6          16       0.77883      0.0372623   0.705797    0.851863     
3          7          16       0.65021      0.0372623   0.577177    0.723243     
3          8          16       0.835938     0.0372623   0.762906    0.908971     
3          9          12       0.594504     0.0430268   0.510173    0.678835     
3          10         20       0.831334     0.0333284   0.766012    0.896657     
3          11         20       0.860996     0.0333284   0.795673    0.926319     
3          12         20       0.900971     0.0333284   0.835648    0.966293     
3          13         20       0.592902     0.0333284   0.52758     0.658225     
4          1          16       0.741262     0.0372623   0.668229    0.814295     
4          2          16       0.324678     0.0372623   0.251645    0.397711     
4          3          16       0.687569     0.0372623   0.614536    0.760602     
4          4          20       0.585516     0.0333284   0.520193    0.650838     
4          5          20       0.543944     0.0333284   0.478622    0.609267     
4          6          16       0.750728     0.0372623   0.677695    0.823761     
4          7          16       0.572842     0.0372623   0.499809    0.645875     
4          8          16       0.816214     0.0372623   0.743181    0.889246     
4          9          12       0.495079     0.0430268   0.410748    0.57941      
4          10         20       0.832881     0.0333284   0.767558    0.898204     
4          11         20       0.83826      0.0333284   0.772937    0.903583     
4          12         20       0.87543      0.0333284   0.810108    0.940753     
4          13         20       0.33789      0.0333284   0.272567    0.403212     
Vert by Long 
1          1          57       0.863767     0.0198415   0.824878    0.902655     
1          2          57       0.805132     0.0198415   0.766244    0.844021     
1          3          57       0.748524     0.0198415   0.709635    0.787412     
1          4          57       0.673099     0.0198415   0.634211    0.711988     
2          1          57       0.914788     0.0198415   0.8759      0.953677     
2          2          57       0.822523     0.0198415   0.783635    0.861412     
2          3          57       0.746605     0.0198415   0.707716    0.785494     
2          4          57       0.690547     0.0198415   0.651658    0.729436     
3          1          57       0.87198      0.0198415   0.833091    0.910868     
3          2          57       0.800618     0.0198415   0.761729    0.839507     
3          3          57       0.70392      0.0198415   0.665031    0.742808     
3          4          57       0.578504     0.0198415   0.539616    0.617393     
4          1          57       0.777544     0.0198415   0.738655    0.816433     
4          2          57       0.665093     0.0198415   0.626205    0.703982     
4          3          57       0.643203     0.0198415   0.604315    0.682092     
4          4          57       0.49948      0.0198415   0.460592    0.538369     
Bed Code by Long 
1          1          16       0.969789     0.0372623   0.896756    1.04282      
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1          2          16       0.91576      0.0372623   0.842727    0.988793     
1          3          16       0.80639      0.0372623   0.733357    0.879423     
1          4          16       0.545899     0.0372623   0.472866    0.618932     
2          1          16       0.674301     0.0372623   0.601268    0.747334     
2          2          16       0.607753     0.0372623   0.53472     0.680785     
2          3          16       0.510177     0.0372623   0.437144    0.58321      
2          4          16       0.369895     0.0372623   0.296862    0.442928     
3          1          16       0.756393     0.0372623   0.68336     0.829426     
3          2          16       0.791078     0.0372623   0.718045    0.864111     
3          3          16       0.812153     0.0372623   0.73912     0.885186     
3          4          16       0.61239      0.0372623   0.539358    0.685423     
4          1          20       0.755989     0.0333284   0.690666    0.821312     
4          2          20       0.707502     0.0333284   0.64218     0.772825     
4          3          20       0.600778     0.0333284   0.535455    0.6661       
4          4          20       0.465721     0.0333284   0.400398    0.531043     
5          1          20       0.677355     0.0333284   0.612032    0.742677     
5          2          20       0.653976     0.0333284   0.588654    0.719299     
5          3          20       0.64858      0.0333284   0.583257    0.713903     
5          4          20       0.695675     0.0333284   0.630353    0.760998     
6          1          16       0.96862      0.0372623   0.895587    1.04165      
6          2          16       0.823272     0.0372623   0.750239    0.896305     
6          3          16       0.801573     0.0372623   0.72854     0.874606     
6          4          16       0.702506     0.0372623   0.629473    0.775539     
7          1          16       0.935362     0.0372623   0.862329    1.00839      
7          2          16       0.622539     0.0372623   0.549507    0.695572     
7          3          16       0.531456     0.0372623   0.458424    0.604489     
7          4          16       0.476721     0.0372623   0.403688    0.549754     
8          1          16       0.956848     0.0372623   0.883815    1.02988      
8          2          16       0.869581     0.0372623   0.796548    0.942614     
8          3          16       0.866        0.0372623   0.792967    0.939033     
8          4          16       0.778658     0.0372623   0.705625    0.851691     
9          1          12       0.688537     0.0430268   0.604206    0.772868     
9          2          12       0.608198     0.0430268   0.523867    0.692529     
9          3          12       0.604252     0.0430268   0.519921    0.688583     
9          4          12       0.420909     0.0430268   0.336578    0.50524      
10         1          20       0.927071     0.0333284   0.861748    0.992394     
10         2          20       0.914875     0.0333284   0.849552    0.980197     
10         3          20       0.85552      0.0333284   0.790198    0.920843     
10         4          20       0.84132      0.0333284   0.775997    0.906643     
11         1          20       0.968636     0.0333284   0.903313    1.03396      
11         2          20       0.954828     0.0333284   0.889506    1.02015      
11         3          20       0.853388     0.0333284   0.788065    0.918711     
11         4          20       0.726442     0.0333284   0.661119    0.791764     
12         1          20       0.978434     0.0333284   0.913111    1.04376      
12         2          20       0.916857     0.0333284   0.851534    0.982179     
12         3          20       0.880306     0.0333284   0.814983    0.945628     
12         4          20       0.903075     0.0333284   0.837752    0.968398     
13         1          20       0.883923     0.0333284   0.818601    0.949246     
13         2          20       0.667224     0.0333284   0.601901    0.732547     
13         3          20       0.466744     0.0333284   0.401422    0.532067     
13         4          20       0.396089     0.0333284   0.330766    0.461411     
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Multiple Range Tests for Clog Factor by Long 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
Long           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              228       0.610408      0.00998427    X    
3              228       0.710563      0.00998427     X   
2              228       0.773342      0.00998427      X  
1              228       0.85702       0.00998427       X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                   *0.083678             0.0276745          
1 - 3                                   *0.146457             0.0276745          
1 - 4                                   *0.246612             0.0276745          
2 - 3                                   *0.0627788            0.0276745          
2 - 4                                   *0.162934             0.0276745          
3 - 4                                   *0.100155             0.0276745          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for Clog Factor by Vert 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
Vert           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              228       0.64633       0.00998427    X   
3              228       0.738755      0.00998427     X  
1              228       0.772631      0.00998427      X 
2              228       0.793616      0.00998427      X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    -0.0209854           0.0276745          
1 - 3                                   *0.0338751            0.0276745          
1 - 4                                   *0.1263               0.0276745          
2 - 3                                   *0.0548605            0.0276745          
2 - 4                                   *0.147286             0.0276745          
3 - 4                                   *0.0924252            0.0276745          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for Clog Factor by Bed Code 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
Bed Code       Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
2              64        0.540531      0.0186312     X         
9              48        0.580474      0.0215134     XX        
13             80        0.603495      0.0166642      XX       
4              80        0.632497      0.0166642      XXX      
7              64        0.64152       0.0186312       XX      
5              80        0.668897      0.0166642        X      
3              64        0.743004      0.0186312         X     
1              64        0.809459      0.0186312          X    
6              64        0.823993      0.0186312          XX   
8              64        0.867772      0.0186312           XX  
11             80        0.875823      0.0166642            XX 
10             80        0.884697      0.0166642            XX 
12             80        0.919668      0.0166642             X 
 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                   *0.268928             0.0516421          
1 - 3                                   *0.0664559            0.0516421          
1 - 4                                   *0.176962             0.048992           
1 - 5                                   *0.140563             0.048992           
1 - 6                                    -0.0145332           0.0516421          
1 - 7                                   *0.16794              0.0516421          
1 - 8                                   *-0.0583124           0.0516421          
1 - 9                                   *0.228985             0.0557798          
1 - 10                                  *-0.0752372           0.048992           
1 - 11                                  *-0.0663641           0.048992           
1 - 12                                  *-0.110208            0.048992           
1 - 13                                  *0.205964             0.048992           
2 - 3                                   *-0.202472            0.0516421          
2 - 4                                   *-0.091966            0.048992           
2 - 5                                   *-0.128365            0.048992           
2 - 6                                   *-0.283461            0.0516421          
2 - 7                                   *-0.100988            0.0516421          
2 - 8                                   *-0.32724             0.0516421          
2 - 9                                    -0.0399427           0.0557798          
2 - 10                                  *-0.344165            0.048992           
2 - 11                                  *-0.335292            0.048992           
2 - 12                                  *-0.379136            0.048992           
2 - 13                                  *-0.0629636           0.048992           
3 - 4                                   *0.110506             0.048992           
3 - 5                                   *0.0741069            0.048992           
3 - 6                                   *-0.080989            0.0516421          
3 - 7                                   *0.101484             0.0516421          
3 - 8                                   *-0.124768            0.0516421          
3 - 9                                   *0.162529             0.0557798          
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3 - 10                                  *-0.141693            0.048992           
3 - 11                                  *-0.13282             0.048992           
3 - 12                                  *-0.176664            0.048992           
3 - 13                                  *0.139508             0.048992           
4 - 5                                    -0.0363992           0.0461901          
4 - 6                                   *-0.191495            0.048992           
4 - 7                                    -0.00902215          0.048992           
4 - 8                                   *-0.235274            0.048992           
4 - 9                                    0.0520233            0.0533357          
4 - 10                                  *-0.252199            0.0461901          
4 - 11                                  *-0.243326            0.0461901          
4 - 12                                  *-0.28717             0.0461901          
4 - 13                                   0.0290024            0.0461901          
5 - 6                                   *-0.155096            0.048992           
5 - 7                                    0.027377             0.048992           
5 - 8                                   *-0.198875            0.048992           
5 - 9                                   *0.0884225            0.0533357          
5 - 10                                  *-0.2158              0.0461901          
5 - 11                                  *-0.206927            0.0461901          
5 - 12                                  *-0.250771            0.0461901          
5 - 13                                  *0.0654016            0.0461901          
6 - 7                                   *0.182473             0.0516421          
6 - 8                                    -0.0437792           0.0516421          
6 - 9                                   *0.243518             0.0557798          
6 - 10                                  *-0.060704            0.048992           
6 - 11                                  *-0.0518309           0.048992           
6 - 12                                  *-0.0956753           0.048992           
6 - 13                                  *0.220498             0.048992           
7 - 8                                   *-0.226252            0.0516421          
7 - 9                                   *0.0610455            0.0557798          
7 - 10                                  *-0.243177            0.048992           
7 - 11                                  *-0.234304            0.048992           
7 - 12                                  *-0.278148            0.048992           
7 - 13                                   0.0380245            0.048992           
8 - 9                                   *0.287298             0.0557798          
8 - 10                                   -0.0169249           0.048992           
8 - 11                                   -0.00805175          0.048992           
8 - 12                                  *-0.0518961           0.048992           
8 - 13                                  *0.264277             0.048992           
9 - 10                                  *-0.304222            0.0533357          
9 - 11                                  *-0.295349            0.0533357          
9 - 12                                  *-0.339194            0.0533357          
9 - 13                                   -0.0230209           0.0533357          
10 - 11                                  0.0088731            0.0461901          
10 - 12                                  -0.0349712           0.0461901          
10 - 13                                 *0.281202             0.0461901          
11 - 12                                  -0.0438443           0.0461901          
11 - 13                                 *0.272328             0.0461901          
12 - 13                                 *0.316173             0.0461901          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 



  

398 
 

 

 
 
 
 
 

 

Means and 95.0 Percent LSD Intervals

Bed Code

C
lo

g
 F

a
c
to

r

1 2 3 4 5 6 7 8 9 10 11 12 13

0.51

0.61

0.71

0.81

0.91

1.01

Interaction Plot

Long

C
lo

g
 F

a
c
to

r

Vert

1

2

3

4

0.49

0.59

0.69

0.79

0.89

0.99

1 2 3 4



  

399 
 

Appendix C.1: Ashorne Multifactor ANOVA - CF 

Analysis Summary: Dependent variable: CF, Factors: trans, vert, long 
Number of complete cases: 64 
 
Analysis of Variance for CF - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:trans                    0.151333      3      0.0504444       5.32     0.0052 
 B:vert                      0.25518      3      0.0850601       8.98     0.0003 
 C:long                      1.70366      3       0.567888      59.94     0.0000 
 
INTERACTIONS 
 AB                        0.0932374      9      0.0103597       1.09     0.3996 
 AC                         0.187338      9      0.0208153       2.20     0.0551 
 BC                         0.246288      9      0.0273653       2.89     0.0158 
 
RESIDUAL                    0.255784     27     0.00947349 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)            2.89282     63 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
 
 
Table of Least Squares Means for CF with 95.0 Percent Confidence Intervals 
-------------------------------------------------------------------------------- 
                                         Stnd.        Lower        Upper 
Level               Count   Mean         Error        Limit        Limit 
-------------------------------------------------------------------------------- 
GRAND MEAN          64      0.809459 
trans 
1                   16      0.790749     0.024333     0.740822     0.840676      
2                   16      0.744899     0.024333     0.694972     0.794826      
3                   16      0.823954     0.024333     0.774027     0.873882      
4                   16      0.878235     0.024333     0.828308     0.928162      
vert 
1                   16      0.753593     0.024333     0.703666     0.80352       
2                   16      0.886998     0.024333     0.837071     0.936925      
3                   16      0.855985     0.024333     0.806057     0.905912      
4                   16      0.741262     0.024333     0.691335     0.791189      
long 
1                   16      0.969789     0.024333     0.919862     1.01972       
2                   16      0.91576      0.024333     0.865833     0.965687      
3                   16      0.80639      0.024333     0.756463     0.856317      
4                   16      0.545899     0.024333     0.495972     0.595826      
trans by vert 
1          1          4        0.73301      0.0486659   0.633156    0.832865     
1          2          4        0.877356     0.0486659   0.777501    0.97721      



  

400 
 

1          3          4        0.86397      0.0486659   0.764116    0.963825     
1          4          4        0.688659     0.0486659   0.588804    0.788513     
2          1          4        0.638946     0.0486659   0.539091    0.7388       
2          2          4        0.871788     0.0486659   0.771933    0.971642     
2          3          4        0.82459      0.0486659   0.724736    0.924444     
2          4          4        0.644273     0.0486659   0.544418    0.744127     
3          1          4        0.747335     0.0486659   0.64748     0.847189     
3          2          4        0.88425      0.0486659   0.784395    0.984104     
3          3          4        0.839518     0.0486659   0.739664    0.939373     
3          4          4        0.824715     0.0486659   0.724861    0.92457      
4          1          4        0.895081     0.0486659   0.795227    0.994935     
4          2          4        0.914599     0.0486659   0.814744    1.01445      
4          3          4        0.895861     0.0486659   0.796006    0.995715     
4          4          4        0.807401     0.0486659   0.707546    0.907255     
trans by long 
1          1          4        0.977118     0.0486659   0.877264    1.07697      
1          2          4        0.89494      0.0486659   0.795086    0.994795     
1          3          4        0.664184     0.0486659   0.564329    0.764038     
1          4          4        0.626753     0.0486659   0.526898    0.726607     
2          1          4        0.955107     0.0486659   0.855253    1.05496      
2          2          4        0.851347     0.0486659   0.751493    0.951202     
2          3          4        0.777381     0.0486659   0.677526    0.877235     
2          4          4        0.395762     0.0486659   0.295907    0.495616     
3          1          4        0.970648     0.0486659   0.870793    1.0705       
3          2          4        0.944789     0.0486659   0.844934    1.04464      
3          3          4        0.850352     0.0486659   0.750498    0.950207     
3          4          4        0.530029     0.0486659   0.430175    0.629884     
4          1          4        0.976282     0.0486659   0.876428    1.07614      
4          2          4        0.971963     0.0486659   0.872109    1.07182      
4          3          4        0.933644     0.0486659   0.833789    1.0335       
4          4          4        0.631052     0.0486659   0.531197    0.730906     
vert by long 
1          1          4        0.978344     0.0486659   0.87849     1.0782       
1          2          4        0.919195     0.0486659   0.81934     1.01905      
1          3          4        0.750542     0.0486659   0.650688    0.850397     
1          4          4        0.366291     0.0486659   0.266436    0.466145     
2          1          4        1.0          0.0486659   0.900146    1.09985      
2          2          4        0.963159     0.0486659   0.863305    1.06301      
2          3          4        0.859869     0.0486659   0.760014    0.959723     
2          4          4        0.724964     0.0486659   0.625109    0.824818     
3          1          4        0.95998      0.0486659   0.860126    1.05983      
3          2          4        0.919797     0.0486659   0.819942    1.01965      
3          3          4        0.848939     0.0486659   0.749084    0.948793     
3          4          4        0.695223     0.0486659   0.595369    0.795078     
4          1          4        0.940831     0.0486659   0.840977    1.04069      
4          2          4        0.860889     0.0486659   0.761034    0.960743     
4          3          4        0.766211     0.0486659   0.666356    0.866065     
4          4          4        0.397117     0.0486659   0.297263    0.496972     
-------------------------------------------------------------------------------- 
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Multiple Range Tests for CF by long 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
long           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              16        0.545899      0.024333      X   
3              16        0.80639       0.024333       X  
2              16        0.91576       0.024333        X 
1              16        0.969789      0.024333        X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.0540292            0.0706078          
1 - 3                                   *0.163399             0.0706078          
1 - 4                                   *0.42389              0.0706078          
2 - 3                                   *0.10937              0.0706078          
2 - 4                                   *0.369861             0.0706078          
3 - 4                                   *0.260491             0.0706078          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
 
 

 
 
Multiple Range Tests for CF by vert 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
vert           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              16        0.741262      0.024333      X  
1              16        0.753593      0.024333      X  
3              16        0.855985      0.024333       X 
2              16        0.886998      0.024333       X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                   *-0.133405            0.0706078          
1 - 3                                   *-0.102392            0.0706078          

Means and 95.0 Percent LSD Intervals

long

C
F

1 2 3 4

0.51

0.61

0.71

0.81

0.91

1.01

1.11
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1 - 4                                    0.0123311            0.0706078          
2 - 3                                    0.0310132            0.0706078          
2 - 4                                   *0.145736             0.0706078          
3 - 4                                   *0.114723             0.0706078          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
 
 

 
 
Multiple Range Tests for CF by trans 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
trans          Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
2              16        0.744899      0.024333      X   
1              16        0.790749      0.024333      XX  
3              16        0.823954      0.024333       XX 
4              16        0.878235      0.024333        X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.0458496            0.0706078          
1 - 3                                    -0.0332057           0.0706078          
1 - 4                                   *-0.0874865           0.0706078          
2 - 3                                   *-0.0790553           0.0706078          
2 - 4                                   *-0.133336            0.0706078          
3 - 4                                    -0.0542807           0.0706078          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
 
 

Means and 95.0 Percent LSD Intervals
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Appendix C.2: Fenny 08 Multifactor ANOVA - CF 

Analysis Summary: Dependent variable: CF, Factors: long, trans, vert 
Number of complete cases: 80 
 
Analysis of Variance for CF - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:long                      1.69868      4       0.424671       8.57     0.0001 
 B:trans                   0.0444461      3      0.0148154       0.30     0.8258 
 C:vert                      1.85241      3       0.617469      12.47     0.0000 
 
INTERACTIONS 
 AB                          1.58696     12       0.132246       2.67     0.0113 
 AC                         0.409805     12      0.0341504       0.69     0.7503 
 BC                         0.264548      9      0.0293942       0.59     0.7936 
 
RESIDUAL                     1.78289     36      0.0495248 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)            7.63974     79 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
 
Table of Least Squares Means for CF 
with 95.0 Percent Confidence Intervals 
-------------------------------------------------------------------------------- 
                                         Stnd.        Lower        Upper 
Level               Count   Mean         Error        Limit        Limit 
-------------------------------------------------------------------------------- 
GRAND MEAN          80      0.488706 
long 
1                   16      0.674301     0.0556354    0.561467     0.787135      
2                   16      0.607753     0.0556354    0.494918     0.720587      
3                   16      0.510177     0.0556354    0.397343     0.623011      
4                   16      0.369895     0.0556354    0.257061     0.482729      
5                   16      0.281406     0.0556354    0.168572     0.394241      
trans 
1                   20      0.511704     0.0497618    0.410782     0.612626      
2                   20      0.489407     0.0497618    0.388485     0.590329      
3                   20      0.450285     0.0497618    0.349364     0.551207      
4                   20      0.503429     0.0497618    0.402507     0.604351      
vert 
1                   20      0.42411      0.0497618    0.323188     0.525032      
2                   20      0.63156      0.0497618    0.530638     0.732481      
3                   20      0.629826     0.0497618    0.528904     0.730748      
4                   20      0.26933      0.0497618    0.168408     0.370252      
long by trans 
1          1          4        0.943055     0.111271    0.717387    1.16872      
1          2          4        0.498423     0.111271    0.272755    0.724091     
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1          3          4        0.630132     0.111271    0.404464    0.8558       
1          4          4        0.625593     0.111271    0.399925    0.851262     
2          1          4        0.798858     0.111271    0.57319     1.02453      
2          2          4        0.491108     0.111271    0.26544     0.716776     
2          3          4        0.42877      0.111271    0.203102    0.654438     
2          4          4        0.712274     0.111271    0.486606    0.937942     
3          1          4        0.468151     0.111271    0.242483    0.693819     
3          2          4        0.598113     0.111271    0.372445    0.823782     
3          3          4        0.334858     0.111271    0.109189    0.560526     
3          4          4        0.639586     0.111271    0.413918    0.865255     
4          1          4        0.175389     0.111271    -0.0502791  0.401057     
4          2          4        0.581635     0.111271    0.355967    0.807303     
4          3          4        0.363018     0.111271    0.13735     0.588686     
4          4          4        0.359539     0.111271    0.133871    0.585207     
5          1          4        0.173067     0.111271    -0.0526008  0.398735     
5          2          4        0.277755     0.111271    0.0520871   0.503423     
5          3          4        0.49465      0.111271    0.268982    0.720318     
5          4          4        0.180153     0.111271    -0.0455148  0.405821     
long by vert 
1          1          4        0.515329     0.111271    0.289661    0.740997     
1          2          4        0.793967     0.111271    0.568299    1.01963      
1          3          4        0.765231     0.111271    0.539563    0.990899     
1          4          4        0.622676     0.111271    0.397008    0.848344     
2          1          4        0.648203     0.111271    0.422535    0.873871     
2          2          4        0.786689     0.111271    0.561021    1.01236      
2          3          4        0.723484     0.111271    0.497815    0.949152     
2          4          4        0.272634     0.111271    0.0469658   0.498302     
3          1          4        0.41965      0.111271    0.193982    0.645318     
3          2          4        0.596437     0.111271    0.370769    0.822105     
3          3          4        0.736283     0.111271    0.510615    0.961951     
3          4          4        0.288338     0.111271    0.0626702   0.514006     
4          1          4        0.373202     0.111271    0.147534    0.59887      
4          2          4        0.453744     0.111271    0.228076    0.679412     
4          3          4        0.53757      0.111271    0.311902    0.763238     
4          4          4        0.115064     0.111271    -0.110604   0.340733     
5          1          4        0.164167     0.111271    -0.0615015  0.389835     
5          2          4        0.526961     0.111271    0.301293    0.752629     
5          3          4        0.386561     0.111271    0.160893    0.612229     
5          4          4        0.0479373    0.111271    -0.177731   0.273605     
trans by vert 
1          1          5        0.446382     0.0995236   0.244538    0.648225     
1          2          5        0.570612     0.0995236   0.368768    0.772455     
1          3          5        0.618811     0.0995236   0.416968    0.820655     
1          4          5        0.411011     0.0995236   0.209167    0.612855     
2          1          5        0.404253     0.0995236   0.20241     0.606097     
2          2          5        0.743849     0.0995236   0.542005    0.945692     
2          3          5        0.637148     0.0995236   0.435304    0.838991     
2          4          5        0.172378     0.0995236   -0.0294653  0.374222     
3          1          5        0.354109     0.0995236   0.152265    0.555953     
3          2          5        0.618042     0.0995236   0.416198    0.819886     
3          3          5        0.597057     0.0995236   0.395213    0.798901     
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3          4          5        0.231934     0.0995236   0.0300902   0.433778     
4          1          5        0.491697     0.0995236   0.289854    0.693541     
4          2          5        0.593736     0.0995236   0.391893    0.79558      
4          3          5        0.666287     0.0995236   0.464443    0.868131     
4          4          5        0.261997     0.0995236   0.0601529   0.46384      
-------------------------------------------------------------------------------- 
 
Multiple Range Tests for CF by long 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
long           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
5              16        0.281406      0.0556354     X    
4              16        0.369895      0.0556354     XX   
3              16        0.510177      0.0556354      XX  
2              16        0.607753      0.0556354       XX 
1              16        0.674301      0.0556354        X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.0665483            0.159571           
1 - 3                                   *0.164124             0.159571           
1 - 4                                   *0.304406             0.159571           
1 - 5                                   *0.392894             0.159571           
2 - 3                                    0.0975754            0.159571           
2 - 4                                   *0.237857             0.159571           
2 - 5                                   *0.326346             0.159571           
3 - 4                                    0.140282             0.159571           
3 - 5                                   *0.228771             0.159571           
4 - 5                                    0.0884887            0.159571           
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for CF by trans 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
trans          Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
3              20        0.450285      0.0497618     X 
2              20        0.489407      0.0497618     X 
4              20        0.503429      0.0497618     X 
1              20        0.511704      0.0497618     X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.022297             0.142725           
1 - 3                                    0.0614184            0.142725           
1 - 4                                    0.00827465           0.142725           
2 - 3                                    0.0391215            0.142725           
2 - 4                                    -0.0140223           0.142725           
3 - 4                                    -0.0531438           0.142725           
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
 

 
 
 
 
Multiple Range Tests for CF by vert 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
vert           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              20        0.26933       0.0497618     X   
1              20        0.42411       0.0497618      X  
3              20        0.629826      0.0497618       X 
2              20        0.63156       0.0497618       X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                   *-0.207449            0.142725           

Means and 95.0 Percent LSD Intervals

trans

C
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1 - 3                                   *-0.205715            0.142725           
1 - 4                                   *0.15478              0.142725           
2 - 3                                    0.00173395           0.142725           
2 - 4                                   *0.36223              0.142725           
3 - 4                                   *0.360496             0.142725           
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Appendix C.3: Fenny 09 Multifactor ANOVA - CF 

Analysis Summary: Dependent variable: CF, Factors: long, trans, vert 
Number of complete cases: 64 
 
 
Analysis of Variance for CF - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:long                     0.389309      3        0.12977       3.37     0.0330 
 B:trans                    0.138012      3      0.0460039       1.19     0.3305 
 C:vert                     0.202976      3      0.0676586       1.76     0.1791 
 
INTERACTIONS 
 AB                          1.22943      9       0.136603       3.55     0.0051 
 AC                         0.226141      9      0.0251268       0.65     0.7429 
 BC                         0.220491      9       0.024499       0.64     0.7563 
 
RESIDUAL                      1.0397     27      0.0385072 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)            3.44605     63 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
 
Table of Least Squares Means for CF 
with 95.0 Percent Confidence Intervals 
-------------------------------------------------------------------------------- 
                                         Stnd.        Lower        Upper 
Level               Count   Mean         Error        Limit        Limit 
-------------------------------------------------------------------------------- 
GRAND MEAN          64      0.743004 
long 
1                   16      0.756393     0.0490582    0.655734     0.857052      
2                   16      0.791078     0.0490582    0.690419     0.891737      
3                   16      0.812153     0.0490582    0.711494     0.912812      
4                   16      0.61239      0.0490582    0.511731     0.71305       
trans 
1                   16      0.742686     0.0490582    0.642027     0.843345      
2                   16      0.818923     0.0490582    0.718264     0.919582      
3                   16      0.706623     0.0490582    0.605964     0.807282      
4                   16      0.703782     0.0490582    0.603123     0.804441      
vert 
1                   16      0.837085     0.0490582    0.736426     0.937744      
2                   16      0.726403     0.0490582    0.625744     0.827062      
3                   16      0.720957     0.0490582    0.620298     0.821616      
4                   16      0.687569     0.0490582    0.58691      0.788228      
long by trans 
1          1          4        0.922946     0.0981163   0.721627    1.12426      
1          2          4        0.762245     0.0981163   0.560926    0.963563     
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1          3          4        0.536979     0.0981163   0.335661    0.738298     
1          4          4        0.803401     0.0981163   0.602083    1.00472      
2          1          4        0.828158     0.0981163   0.626839    1.02948      
2          2          4        0.992745     0.0981163   0.791427    1.19406      
2          3          4        0.5869       0.0981163   0.385581    0.788218     
2          4          4        0.756509     0.0981163   0.555191    0.957828     
3          1          4        0.719917     0.0981163   0.518598    0.921235     
3          2          4        0.991896     0.0981163   0.790578    1.19321      
3          3          4        0.98653      0.0981163   0.785212    1.18785      
3          4          4        0.550269     0.0981163   0.34895     0.751587     
4          1          4        0.499724     0.0981163   0.298406    0.701043     
4          2          4        0.528806     0.0981163   0.327488    0.730125     
4          3          4        0.716083     0.0981163   0.514764    0.917401     
4          4          4        0.704949     0.0981163   0.503631    0.906267     
long by vert 
1          1          4        0.858475     0.0981163   0.657157    1.05979      
1          2          4        0.842479     0.0981163   0.64116     1.0438       
1          3          4        0.717562     0.0981163   0.516243    0.91888      
1          4          4        0.607055     0.0981163   0.405737    0.808374     
2          1          4        0.868033     0.0981163   0.666715    1.06935      
2          2          4        0.786564     0.0981163   0.585246    0.987883     
2          3          4        0.821357     0.0981163   0.620039    1.02268      
2          4          4        0.688357     0.0981163   0.487039    0.889676     
3          1          4        0.888204     0.0981163   0.686886    1.08952      
3          2          4        0.688439     0.0981163   0.487121    0.889757     
3          3          4        0.835838     0.0981163   0.634519    1.03716      
3          4          4        0.83613      0.0981163   0.634812    1.03745      
4          1          4        0.733628     0.0981163   0.53231     0.934947     
4          2          4        0.588129     0.0981163   0.386811    0.789448     
4          3          4        0.509072     0.0981163   0.307753    0.71039      
4          4          4        0.618733     0.0981163   0.417414    0.820051     
trans by vert 
1          1          4        0.879491     0.0981163   0.678173    1.08081      
1          2          4        0.654686     0.0981163   0.453368    0.856005     
1          3          4        0.760557     0.0981163   0.559239    0.961876     
1          4          4        0.676009     0.0981163   0.474691    0.877328     
2          1          4        0.885286     0.0981163   0.683967    1.0866       
2          2          4        0.90487      0.0981163   0.703551    1.10619      
2          3          4        0.688635     0.0981163   0.487317    0.889954     
2          4          4        0.796901     0.0981163   0.595583    0.99822      
3          1          4        0.778561     0.0981163   0.577243    0.97988      
3          2          4        0.601223     0.0981163   0.399904    0.802541     
3          3          4        0.753835     0.0981163   0.552516    0.955153     
3          4          4        0.692873     0.0981163   0.491555    0.894192     
4          1          4        0.805003     0.0981163   0.603684    1.00632      
4          2          4        0.744833     0.0981163   0.543514    0.946151     
4          3          4        0.680801     0.0981163   0.479482    0.882119     
4          4          4        0.584492     0.0981163   0.383173    0.78581      
-------------------------------------------------------------------------------- 
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Multiple Range Tests for CF by long 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
long           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              16        0.61239       0.0490582     X  
1              16        0.756393      0.0490582      X 
2              16        0.791078      0.0490582      X 
3              16        0.812153      0.0490582      X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    -0.0346852           0.142354           
1 - 3                                    -0.0557601           0.142354           
1 - 4                                   *0.144002             0.142354           
2 - 3                                    -0.0210749           0.142354           
2 - 4                                   *0.178687             0.142354           
3 - 4                                   *0.199762             0.142354           
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
 

 
 
Multiple Range Tests for CF by trans 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
trans          Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              16        0.703782      0.0490582     X 
3              16        0.706623      0.0490582     X 
1              16        0.742686      0.0490582     X 
2              16        0.818923      0.0490582     X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    -0.076237            0.142354           
1 - 3                                    0.036063             0.142354           
1 - 4                                    0.038904             0.142354           
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2 - 3                                    0.1123               0.142354           
2 - 4                                    0.115141             0.142354           
3 - 4                                    0.00284095           0.142354           
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
 

 
 
Multiple Range Tests for CF by vert 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
vert           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              16        0.687569      0.0490582     X  
3              16        0.720957      0.0490582     XX 
2              16        0.726403      0.0490582     XX 
1              16        0.837085      0.0490582      X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.110682             0.142354           
1 - 3                                    0.116128             0.142354           
1 - 4                                   *0.149516             0.142354           
2 - 3                                    0.00544588           0.142354           
2 - 4                                    0.038834             0.142354           
3 - 4                                    0.0333881            0.142354           
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Appendix C.4: Fenny 10 Multifactor ANOVA - CF 

Analysis Summary: Dependent variable: CF, Factors: long, trans, vert 
Number of complete cases: 80 
 
 
Analysis of Variance for CF - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:long                      0.99393      3        0.33131      18.89     0.0000 
 B:trans                     0.10726      4       0.026815       1.53     0.2145 
 C:vert                     0.592116      3       0.197372      11.25     0.0000 
 
INTERACTIONS 
 AB                          1.00936     12      0.0841134       4.80     0.0001 
 AC                         0.180089      9      0.0200098       1.14     0.3609 
 BC                         0.124204     12      0.0103503       0.59     0.8355 
 
RESIDUAL                    0.631389     36      0.0175386 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)            3.63835     79 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
 
 
Table of Least Squares Means for CF 
with 95.0 Percent Confidence Intervals 
-------------------------------------------------------------------------------- 
                                         Stnd.        Lower        Upper 
Level               Count   Mean         Error        Limit        Limit 
-------------------------------------------------------------------------------- 
GRAND MEAN          80      0.632497 
long 
1                   20      0.755989     0.029613     0.695931     0.816047      
2                   20      0.707502     0.029613     0.647444     0.76756       
3                   20      0.600778     0.029613     0.54072      0.660836      
4                   20      0.465721     0.029613     0.405663     0.525779      
trans 
1                   16      0.650565     0.0331083    0.583418     0.717712      
2                   16      0.67028      0.0331083    0.603133     0.737427      
3                   16      0.66464      0.0331083    0.597493     0.731787      
4                   16      0.583746     0.0331083    0.516599     0.650893      
5                   16      0.593256     0.0331083    0.526109     0.660403      
vert 
1                   20      0.515128     0.029613     0.45507      0.575186      
2                   20      0.707017     0.029613     0.646959     0.767075      
3                   20      0.722329     0.029613     0.662271     0.782387      
4                   20      0.585516     0.029613     0.525458     0.645574      
long by trans 
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1          1          4        0.805029     0.0662167   0.670735    0.939323     
1          2          4        0.830171     0.0662167   0.695877    0.964465     
1          3          4        0.83759      0.0662167   0.703296    0.971884     
1          4          4        0.509874     0.0662167   0.37558     0.644168     
1          5          4        0.797281     0.0662167   0.662988    0.931575     
2          1          4        0.800394     0.0662167   0.6661      0.934688     
2          2          4        0.582551     0.0662167   0.448257    0.716845     
2          3          4        0.813689     0.0662167   0.679395    0.947983     
2          4          4        0.605566     0.0662167   0.471272    0.73986      
2          5          4        0.735311     0.0662167   0.601017    0.869605     
3          1          4        0.433603     0.0662167   0.299309    0.567897     
3          2          4        0.688815     0.0662167   0.554522    0.823109     
3          3          4        0.657515     0.0662167   0.523221    0.791809     
3          4          4        0.806828     0.0662167   0.672534    0.941122     
3          5          4        0.417127     0.0662167   0.282833    0.551421     
4          1          4        0.563234     0.0662167   0.42894     0.697528     
4          2          4        0.579584     0.0662167   0.44529     0.713878     
4          3          4        0.349767     0.0662167   0.215473    0.484061     
4          4          4        0.412714     0.0662167   0.27842     0.547008     
4          5          4        0.423305     0.0662167   0.289011    0.557599     
long by vert 
1          1          5        0.696114     0.059226    0.575998    0.81623      
1          2          5        0.901209     0.059226    0.781092    1.02132      
1          3          5        0.810521     0.059226    0.690405    0.930637     
1          4          5        0.616113     0.059226    0.495997    0.736229     
2          1          5        0.538583     0.059226    0.418467    0.658699     
2          2          5        0.802794     0.059226    0.682678    0.92291      
2          3          5        0.807161     0.059226    0.687045    0.927277     
2          4          5        0.681471     0.059226    0.561354    0.801587     
3          1          5        0.514597     0.059226    0.394481    0.634713     
3          2          5        0.610846     0.059226    0.49073     0.730963     
3          3          5        0.66469      0.059226    0.544574    0.784806     
3          4          5        0.612978     0.059226    0.492862    0.733094     
4          1          5        0.311217     0.059226    0.191101    0.431333     
4          2          5        0.51322      0.059226    0.393104    0.633336     
4          3          5        0.606943     0.059226    0.486827    0.727059     
4          4          5        0.431502     0.059226    0.311386    0.551618     
trans by vert 
1          1          4        0.510318     0.0662167   0.376024    0.644612     
1          2          4        0.762375     0.0662167   0.628082    0.896669     
1          3          4        0.696912     0.0662167   0.562618    0.831206     
1          4          4        0.632654     0.0662167   0.49836     0.766948     
2          1          4        0.458259     0.0662167   0.323965    0.592553     
2          2          4        0.77013      0.0662167   0.635836    0.904424     
2          3          4        0.767879     0.0662167   0.633585    0.902173     
2          4          4        0.684854     0.0662167   0.55056     0.819148     
3          1          4        0.604511     0.0662167   0.470217    0.738805     
3          2          4        0.725343     0.0662167   0.591049    0.859637     
3          3          4        0.750947     0.0662167   0.616653    0.885241     
3          4          4        0.57776      0.0662167   0.443466    0.712054     
4          1          4        0.498416     0.0662167   0.364122    0.63271      
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4          2          4        0.662068     0.0662167   0.527774    0.796362     
4          3          4        0.686956     0.0662167   0.552662    0.82125      
4          4          4        0.487543     0.0662167   0.353249    0.621837     
5          1          4        0.504135     0.0662167   0.369841    0.638429     
5          2          4        0.61517      0.0662167   0.480876    0.749464     
5          3          4        0.708951     0.0662167   0.574657    0.843245     
5          4          4        0.544768     0.0662167   0.410474    0.679062     
-------------------------------------------------------------------------------- 
 
 
Multiple Range Tests for CF by long 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
long           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              20        0.465721      0.029613      X   
3              20        0.600778      0.029613       X  
2              20        0.707502      0.029613        X 
1              20        0.755989      0.029613        X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.0484869            0.0849349          
1 - 3                                   *0.155211             0.0849349          
1 - 4                                   *0.290268             0.0849349          
2 - 3                                   *0.106724             0.0849349          
2 - 4                                   *0.241781             0.0849349          
3 - 4                                   *0.135057             0.0849349          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for CF by trans 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
trans          Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              16        0.583746      0.0331083     X 
5              16        0.593256      0.0331083     X 
1              16        0.650565      0.0331083     X 
3              16        0.66464       0.0331083     X 
2              16        0.67028       0.0331083     X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    -0.0197155           0.0949601          
1 - 3                                    -0.0140752           0.0949601          
1 - 4                                    0.0668193            0.0949601          
1 - 5                                    0.0573088            0.0949601          
2 - 3                                    0.00564036           0.0949601          
2 - 4                                    0.0865349            0.0949601          
2 - 5                                    0.0770243            0.0949601          
3 - 4                                    0.0808945            0.0949601          
3 - 5                                    0.0713839            0.0949601          
4 - 5                                    -0.00951056          0.0949601          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for CF by vert 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
vert           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
1              20        0.515128      0.029613      X  
4              20        0.585516      0.029613      X  
2              20        0.707017      0.029613       X 
3              20        0.722329      0.029613       X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                   *-0.19189             0.0849349          
1 - 3                                   *-0.207201            0.0849349          
1 - 4                                    -0.070388            0.0849349          
2 - 3                                    -0.0153115           0.0849349          
2 - 4                                   *0.121502             0.0849349          
3 - 4                                   *0.136813             0.0849349          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Appendix C.5: Leek Multifactor ANOVA - CF 

 
Analysis Summary: Dependent variable: CF, Factors: long, trans, vert 
Number of complete cases: 80 
 
Analysis of Variance for CF - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:long                    0.0284804      3     0.00949347       0.94     0.4303 
 B:trans                    0.187268      4       0.046817       4.65     0.0040 
 C:vert                      1.05018      3        0.35006      34.75     0.0000 
 
INTERACTIONS 
 AB                         0.190213     12      0.0158511       1.57     0.1438 
 AC                         0.140549      9      0.0156166       1.55     0.1681 
 BC                         0.152754     12      0.0127295       1.26     0.2813 
 
RESIDUAL                    0.362624     36      0.0100729 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)            2.11207     79 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
 
 
Table of Least Squares Means for CF 
with 95.0 Percent Confidence Intervals 
-------------------------------------------------------------------------------- 
                                         Stnd.        Lower        Upper 
Level               Count   Mean         Error        Limit        Limit 
-------------------------------------------------------------------------------- 
GRAND MEAN          80      0.668897 
long 
1                   20      0.677355     0.022442     0.63184      0.722869      
2                   20      0.653976     0.022442     0.608462     0.699491      
3                   20      0.64858      0.022442     0.603065     0.694095      
4                   20      0.695675     0.022442     0.650161     0.74119       
trans 
1                   16      0.681472     0.0250909    0.630585     0.732359      
2                   16      0.751419     0.0250909    0.700532     0.802306      
3                   16      0.630744     0.0250909    0.579857     0.681631      
4                   16      0.611622     0.0250909    0.560735     0.662508      
5                   16      0.669227     0.0250909    0.61834      0.720113      
vert 
1                   20      0.807274     0.022442     0.761759     0.852789      
2                   20      0.756145     0.022442     0.710631     0.80166       
3                   20      0.568223     0.022442     0.522708     0.613737      
4                   20      0.543944     0.022442     0.49843      0.589459      
long by trans 
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1          1          4        0.795279     0.0501819   0.693505    0.897053     
1          2          4        0.742979     0.0501819   0.641205    0.844753     
1          3          4        0.636812     0.0501819   0.535038    0.738586     
1          4          4        0.553606     0.0501819   0.451832    0.655379     
1          5          4        0.658097     0.0501819   0.556323    0.759871     
2          1          4        0.674954     0.0501819   0.57318     0.776728     
2          2          4        0.779988     0.0501819   0.678215    0.881762     
2          3          4        0.646926     0.0501819   0.545152    0.7487       
2          4          4        0.561887     0.0501819   0.460113    0.66366      
2          5          4        0.606127     0.0501819   0.504353    0.7079       
3          1          4        0.655766     0.0501819   0.553992    0.75754      
3          2          4        0.671725     0.0501819   0.569951    0.773499     
3          3          4        0.579479     0.0501819   0.477705    0.681252     
3          4          4        0.649308     0.0501819   0.547535    0.751082     
3          5          4        0.686623     0.0501819   0.584849    0.788396     
4          1          4        0.599888     0.0501819   0.498115    0.701662     
4          2          4        0.810984     0.0501819   0.70921     0.912758     
4          3          4        0.659759     0.0501819   0.557986    0.761533     
4          4          4        0.681686     0.0501819   0.579912    0.783459     
4          5          4        0.72606      0.0501819   0.624286    0.827834     
long by vert 
1          1          5        0.828958     0.044884    0.737929    0.919987     
1          2          5        0.764369     0.044884    0.67334     0.855399     
1          3          5        0.619299     0.044884    0.52827     0.710329     
1          4          5        0.496791     0.044884    0.405762    0.587821     
2          1          5        0.800051     0.044884    0.709021    0.89108      
2          2          5        0.741613     0.044884    0.650584    0.832642     
2          3          5        0.614595     0.044884    0.523566    0.705624     
2          4          5        0.459647     0.044884    0.368618    0.550676     
3          1          5        0.788209     0.044884    0.697179    0.879238     
3          2          5        0.743207     0.044884    0.652178    0.834236     
3          3          5        0.479036     0.044884    0.388007    0.570065     
3          4          5        0.583868     0.044884    0.492839    0.674898     
4          1          5        0.811879     0.044884    0.72085     0.902909     
4          2          5        0.775393     0.044884    0.684363    0.866422     
4          3          5        0.559959     0.044884    0.46893     0.650989     
4          4          5        0.635471     0.044884    0.544441    0.7265       
trans by vert 
1          1          4        0.8252       0.0501819   0.723426    0.926974     
1          2          4        0.804892     0.0501819   0.703119    0.906666     
1          3          4        0.58589      0.0501819   0.484116    0.687663     
1          4          4        0.509906     0.0501819   0.408132    0.61168      
2          1          4        0.854406     0.0501819   0.752633    0.95618      
2          2          4        0.785952     0.0501819   0.684178    0.887726     
2          3          4        0.707934     0.0501819   0.60616     0.809708     
2          4          4        0.657384     0.0501819   0.55561     0.759158     
3          1          4        0.800468     0.0501819   0.698694    0.902242     
3          2          4        0.759502     0.0501819   0.657728    0.861275     
3          3          4        0.424381     0.0501819   0.322607    0.526155     
3          4          4        0.538625     0.0501819   0.436851    0.640399     
4          1          4        0.783803     0.0501819   0.682029    0.885577     
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4          2          4        0.72186      0.0501819   0.620086    0.823634     
4          3          4        0.489649     0.0501819   0.387875    0.591422     
4          4          4        0.451175     0.0501819   0.349401    0.552949     
5          1          4        0.772494     0.0501819   0.67072     0.874267     
5          2          4        0.708522     0.0501819   0.606748    0.810296     
5          3          4        0.633259     0.0501819   0.531485    0.735033     
5          4          4        0.562632     0.0501819   0.460858    0.664406     
-------------------------------------------------------------------------------- 
 
Multiple Range Tests for CF by long 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
long           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
3              20        0.64858       0.022442      X 
2              20        0.653976      0.022442      X 
1              20        0.677355      0.022442      X 
4              20        0.695675      0.022442      X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.0233782            0.0643674          
1 - 3                                    0.0287745            0.0643674          
1 - 4                                    -0.0183209           0.0643674          
2 - 3                                    0.00539626           0.0643674          
2 - 4                                    -0.0416991           0.0643674          
3 - 4                                    -0.0470954           0.0643674          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for CF by trans 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
trans          Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              16        0.611622      0.0250909     X  
3              16        0.630744      0.0250909     X  
5              16        0.669227      0.0250909     X  
1              16        0.681472      0.0250909     XX 
2              16        0.751419      0.0250909      X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    -0.0699472           0.0719649          
1 - 3                                    0.0507279            0.0719649          
1 - 4                                    0.0698503            0.0719649          
1 - 5                                    0.0122453            0.0719649          
2 - 3                                   *0.120675             0.0719649          
2 - 4                                   *0.139797             0.0719649          
2 - 5                                   *0.0821924            0.0719649          
3 - 4                                    0.0191224            0.0719649          
3 - 5                                    -0.0384826           0.0719649          
4 - 5                                    -0.057605            0.0719649          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for CF by vert 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
vert           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              20        0.543944      0.022442      X  
3              20        0.568223      0.022442      X  
2              20        0.756145      0.022442       X 
1              20        0.807274      0.022442       X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.0511286            0.0643674          
1 - 3                                   *0.239052             0.0643674          
1 - 4                                   *0.26333              0.0643674          
2 - 3                                   *0.187923             0.0643674          
2 - 4                                   *0.212201             0.0643674          
3 - 4                                    0.0242782            0.0643674          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Appendix C.6: Moreton Feb 09 Multifactor ANOVA - CF 

 
Analysis Summary: Dependent variable: CF, Factors: long, trans, vert 
Number of complete cases: 64 
 
Analysis of Variance for CF - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:long                     0.578866      3       0.192955      17.16     0.0000 
 B:trans                    0.679894      3       0.226631      20.16     0.0000 
 C:vert                     0.253293      3       0.084431       7.51     0.0008 
 
INTERACTIONS 
 AB                         0.263299      9      0.0292554       2.60     0.0263 
 AC                         0.149973      9      0.0166637       1.48     0.2046 
 BC                         0.303066      9       0.033674       3.00     0.0131 
 
RESIDUAL                    0.303542     27      0.0112423 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)            2.53193     63 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
 
 
Table of Least Squares Means for CF 
with 95.0 Percent Confidence Intervals 
-------------------------------------------------------------------------------- 
                                         Stnd.        Lower        Upper 
Level               Count   Mean         Error        Limit        Limit 
-------------------------------------------------------------------------------- 
GRAND MEAN          64      0.823993 
long 
1                   16      0.96862      0.0265074    0.914231     1.02301       
2                   16      0.823272     0.0265074    0.768883     0.877661      
3                   16      0.801573     0.0265074    0.747184     0.855961      
4                   16      0.702506     0.0265074    0.648117     0.756895      
trans 
1                   16      0.935667     0.0265074    0.881279     0.990056      
2                   16      0.880815     0.0265074    0.826426     0.935204      
3                   16      0.819109     0.0265074    0.764721     0.873498      
4                   16      0.660379     0.0265074    0.60599      0.714768      
vert 
1                   16      0.909767     0.0265074    0.855379     0.964156      
2                   16      0.856645     0.0265074    0.802256     0.911034      
3                   16      0.77883      0.0265074    0.724441     0.833219      
4                   16      0.750728     0.0265074    0.69634      0.805117      
long by trans 



  

425 
 

1          1          4        0.978644     0.0530148   0.869866    1.08742      
1          2          4        0.968595     0.0530148   0.859817    1.07737      
1          3          4        0.981162     0.0530148   0.872384    1.08994      
1          4          4        0.946078     0.0530148   0.837301    1.05486      
2          1          4        0.948129     0.0530148   0.839351    1.05691      
2          2          4        0.922705     0.0530148   0.813928    1.03148      
2          3          4        0.78881      0.0530148   0.680033    0.897588     
2          4          4        0.633443     0.0530148   0.524665    0.74222      
3          1          4        0.927285     0.0530148   0.818508    1.03606      
3          2          4        0.911089     0.0530148   0.802311    1.01987      
3          3          4        0.741214     0.0530148   0.632436    0.849992     
3          4          4        0.626702     0.0530148   0.517924    0.73548      
4          1          4        0.888611     0.0530148   0.779834    0.997389     
4          2          4        0.72087      0.0530148   0.612092    0.829648     
4          3          4        0.765251     0.0530148   0.656474    0.874029     
4          4          4        0.435292     0.0530148   0.326514    0.54407      
long by vert 
1          1          4        0.973375     0.0530148   0.864598    1.08215      
1          2          4        0.984139     0.0530148   0.875361    1.09292      
1          3          4        0.979077     0.0530148   0.870299    1.08785      
1          4          4        0.937888     0.0530148   0.82911     1.04667      
2          1          4        0.907475     0.0530148   0.798698    1.01625      
2          2          4        0.836959     0.0530148   0.728181    0.945737     
2          3          4        0.841259     0.0530148   0.732481    0.950037     
2          4          4        0.707394     0.0530148   0.598616    0.816172     
3          1          4        0.891126     0.0530148   0.782348    0.999904     
3          2          4        0.839184     0.0530148   0.730407    0.947962     
3          3          4        0.696188     0.0530148   0.587411    0.804966     
3          4          4        0.779792     0.0530148   0.671014    0.88857      
4          1          4        0.867093     0.0530148   0.758316    0.975871     
4          2          4        0.766297     0.0530148   0.657519    0.875075     
4          3          4        0.598795     0.0530148   0.490017    0.707573     
4          4          4        0.577839     0.0530148   0.469062    0.686617     
trans by vert 
1          1          4        0.963434     0.0530148   0.854657    1.07221      
1          2          4        0.935102     0.0530148   0.826324    1.04388      
1          3          4        0.945059     0.0530148   0.836281    1.05384      
1          4          4        0.899074     0.0530148   0.790297    1.00785      
2          1          4        0.921815     0.0530148   0.813038    1.03059      
2          2          4        0.878173     0.0530148   0.769395    0.98695      
2          3          4        0.851579     0.0530148   0.742801    0.960356     
2          4          4        0.871692     0.0530148   0.762915    0.98047      
3          1          4        0.931223     0.0530148   0.822446    1.04         
3          2          4        0.814622     0.0530148   0.705844    0.923399     
3          3          4        0.710424     0.0530148   0.601647    0.819202     
3          4          4        0.820168     0.0530148   0.71139     0.928946     
4          1          4        0.822597     0.0530148   0.713819    0.931375     
4          2          4        0.798682     0.0530148   0.689905    0.90746      
4          3          4        0.608257     0.0530148   0.499479    0.717034     
4          4          4        0.411979     0.0530148   0.303201    0.520756     
-------------------------------------------------------------------------------- 
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Multiple Range Tests for CF by long 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
long           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              16        0.702506      0.0265074     X   
3              16        0.801573      0.0265074      X  
2              16        0.823272      0.0265074      X  
1              16        0.96862       0.0265074       X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                   *0.145348             0.0769174          
1 - 3                                   *0.167047             0.0769174          
1 - 4                                   *0.266114             0.0769174          
2 - 3                                    0.0216991            0.0769174          
2 - 4                                   *0.120766             0.0769174          
3 - 4                                   *0.0990665            0.0769174          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
 

 
 
 
  

Means and 95.0 Percent LSD Intervals
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Multiple Range Tests for CF by trans 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
trans          Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              16        0.660379      0.0265074     X   
3              16        0.819109      0.0265074      X  
2              16        0.880815      0.0265074      XX 
1              16        0.935667      0.0265074       X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.0548526            0.0769174          
1 - 3                                   *0.116558             0.0769174          
1 - 4                                   *0.275289             0.0769174          
2 - 3                                    0.0617055            0.0769174          
2 - 4                                   *0.220436             0.0769174          
3 - 4                                   *0.158731             0.0769174          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for CF by vert 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
vert           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              16        0.750728      0.0265074     X  
3              16        0.77883       0.0265074     X  
2              16        0.856645      0.0265074      X 
1              16        0.909767      0.0265074      X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.0531227            0.0769174          
1 - 3                                   *0.130938             0.0769174          
1 - 4                                   *0.159039             0.0769174          
2 - 3                                   *0.077815             0.0769174          
2 - 4                                   *0.105916             0.0769174          
3 - 4                                    0.0281014            0.0769174          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Appendix C.7: Moreton Morrell 08 Multifactor ANOVA - CF 

Analysis Summary: Dependent variable: CF, Factors: long, trans, vert 
Number of complete cases: 64 
 
Analysis of Variance for CF - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:trans                    0.101853      3      0.0339512       3.02     0.0472 
 B:long                      2.01562      3       0.671872      59.71     0.0000 
 C:vert                     0.107431      3      0.0358105       3.18     0.0398 
 
INTERACTIONS 
 AB                         0.142888      9      0.0158765       1.41     0.2324 
 AC                         0.100105      9      0.0111227       0.99     0.4718 
 BC                         0.148235      9      0.0164705       1.46     0.2115 
 
RESIDUAL                    0.303805     27       0.011252 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)            2.91993     63 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
 
 
Table of Least Squares Means for CF 
with 95.0 Percent Confidence Intervals 
-------------------------------------------------------------------------------- 
                                         Stnd.        Lower        Upper 
Level               Count   Mean         Error        Limit        Limit 
-------------------------------------------------------------------------------- 
GRAND MEAN          64      0.64152 
trans 
1                   16      0.581305     0.0265189    0.526892     0.635717      
2                   16      0.656473     0.0265189    0.602061     0.710886      
3                   16      0.636836     0.0265189    0.582424     0.691249      
4                   16      0.691464     0.0265189    0.637052     0.745876      
long 
1                   16      0.935362     0.0265189    0.880949     0.989774      
2                   16      0.622539     0.0265189    0.568127     0.676952      
3                   16      0.531456     0.0265189    0.477044     0.585869      
4                   16      0.476721     0.0265189    0.422308     0.531133      
vert 
1                   16      0.67936      0.0265189    0.624948     0.733773      
2                   16      0.663666     0.0265189    0.609253     0.718078      
3                   16      0.65021      0.0265189    0.595798     0.704622      
4                   16      0.572842     0.0265189    0.51843      0.627255      
trans by long 
1          1          4        0.879011     0.0530378   0.770186    0.987836     
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1          2          4        0.561004     0.0530378   0.45218     0.669829     
1          3          4        0.363949     0.0530378   0.255125    0.472774     
1          4          4        0.521254     0.0530378   0.412429    0.630079     
2          1          4        0.960528     0.0530378   0.851704    1.06935      
2          2          4        0.632002     0.0530378   0.523177    0.740827     
2          3          4        0.561306     0.0530378   0.452481    0.670131     
2          4          4        0.472057     0.0530378   0.363232    0.580882     
3          1          4        0.93069      0.0530378   0.821865    1.03952      
3          2          4        0.58608      0.0530378   0.477255    0.694904     
3          3          4        0.603617     0.0530378   0.494792    0.712442     
3          4          4        0.426958     0.0530378   0.318133    0.535783     
4          1          4        0.971217     0.0530378   0.862392    1.08004      
4          2          4        0.711072     0.0530378   0.602247    0.819896     
4          3          4        0.596954     0.0530378   0.488129    0.705779     
4          4          4        0.486614     0.0530378   0.377789    0.595439     
trans by vert 
1          1          4        0.623473     0.0530378   0.514648    0.732298     
1          2          4        0.646214     0.0530378   0.537389    0.755039     
1          3          4        0.566323     0.0530378   0.457498    0.675148     
1          4          4        0.489208     0.0530378   0.380383    0.598033     
2          1          4        0.697691     0.0530378   0.588867    0.806516     
2          2          4        0.725661     0.0530378   0.616836    0.834486     
2          3          4        0.628609     0.0530378   0.519784    0.737434     
2          4          4        0.573932     0.0530378   0.465107    0.682757     
3          1          4        0.669997     0.0530378   0.561172    0.778822     
3          2          4        0.663697     0.0530378   0.554873    0.772522     
3          3          4        0.684565     0.0530378   0.57574     0.79339      
3          4          4        0.529085     0.0530378   0.420261    0.63791      
4          1          4        0.72628      0.0530378   0.617455    0.835105     
4          2          4        0.619091     0.0530378   0.510266    0.727915     
4          3          4        0.721343     0.0530378   0.612518    0.830168     
4          4          4        0.699143     0.0530378   0.590318    0.807968     
long by vert 
1          1          4        0.947628     0.0530378   0.838803    1.05645      
1          2          4        0.95448      0.0530378   0.845655    1.06331      
1          3          4        0.941715     0.0530378   0.832891    1.05054      
1          4          4        0.897623     0.0530378   0.788798    1.00645      
2          1          4        0.650133     0.0530378   0.541308    0.758957     
2          2          4        0.586151     0.0530378   0.477326    0.694975     
2          3          4        0.614617     0.0530378   0.505792    0.723441     
2          4          4        0.639258     0.0530378   0.530433    0.748083     
3          1          4        0.544664     0.0530378   0.435839    0.653488     
3          2          4        0.564751     0.0530378   0.455926    0.673575     
3          3          4        0.540112     0.0530378   0.431287    0.648937     
3          4          4        0.4763       0.0530378   0.367475    0.585125     
4          1          4        0.575017     0.0530378   0.466192    0.683842     
4          2          4        0.549281     0.0530378   0.440456    0.658106     
4          3          4        0.504396     0.0530378   0.395571    0.613221     
4          4          4        0.278189     0.0530378   0.169364    0.387013     
-------------------------------------------------------------------------------- 
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Multiple Range Tests for CF by long 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
long           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              16        0.476721      0.0265189     X   
3              16        0.531456      0.0265189     X   
2              16        0.622539      0.0265189      X  
1              16        0.935362      0.0265189       X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                   *0.312822             0.0769508          
1 - 3                                   *0.403905             0.0769508          
1 - 4                                   *0.458641             0.0769508          
2 - 3                                   *0.091083             0.0769508          
2 - 4                                   *0.145819             0.0769508          
3 - 4                                    0.0547358            0.0769508          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
 
 

 
 
 
  

Means and 95.0 Percent LSD Intervals

long

C
F

1 2 3 4

0.43

0.53

0.63

0.73

0.83

0.93

1.03



  

432 
 

Multiple Range Tests for CF by trans 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
trans          Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
1              16        0.581305      0.0265189     X  
3              16        0.636836      0.0265189     XX 
2              16        0.656473      0.0265189     XX 
4              16        0.691464      0.0265189      X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    -0.0751687           0.0769508          
1 - 3                                    -0.0555315           0.0769508          
1 - 4                                   *-0.110159            0.0769508          
2 - 3                                    0.0196372            0.0769508          
2 - 4                                    -0.0349907           0.0769508          
3 - 4                                    -0.0546279           0.0769508          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for CF by vert 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
vert           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              16        0.572842      0.0265189     X  
3              16        0.65021       0.0265189      X 
2              16        0.663666      0.0265189      X 
1              16        0.67936       0.0265189      X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.0156946            0.0769508          
1 - 3                                    0.0291502            0.0769508          
1 - 4                                   *0.106518             0.0769508          
2 - 3                                    0.0134556            0.0769508          
2 - 4                                   *0.0908234            0.0769508          
3 - 4                                   *0.0773678            0.0769508          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Appendix C.8: Moreton Sep 09 Multifactor ANOVA - CF 

 
Analysis Summary: Dependent variable: CF, Factors: long, trans, vert 
Number of complete cases: 64 
 
Analysis of Variance for CF - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:long                     0.254115      3       0.084705      37.58     0.0000 
 B:trans                    0.203867      3      0.0679557      30.15     0.0000 
 C:vert                     0.127872      3      0.0426241      18.91     0.0000 
 
INTERACTIONS 
 AB                         0.109771      9      0.0121968       5.41     0.0003 
 AC                        0.0357109      9     0.00396788       1.76     0.1233 
 BC                        0.0867717      9      0.0096413       4.28     0.0016 
 
RESIDUAL                   0.0608533     27     0.00225383 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)           0.878961     63 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
 
 
Table of Least Squares Means for CF 
with 95.0 Percent Confidence Intervals 
-------------------------------------------------------------------------------- 
                                         Stnd.        Lower        Upper 
Level               Count   Mean         Error        Limit        Limit 
-------------------------------------------------------------------------------- 
GRAND MEAN          64      0.867772 
long 
1                   16      0.956848     0.0118686    0.932495     0.9812        
2                   16      0.869581     0.0118686    0.845228     0.893933      
3                   16      0.866        0.0118686    0.841648     0.890352      
4                   16      0.778658     0.0118686    0.754306     0.803011      
trans 
1                   16      0.911307     0.0118686    0.886954     0.935659      
2                   16      0.91511      0.0118686    0.890758     0.939463      
3                   16      0.869645     0.0118686    0.845293     0.893997      
4                   16      0.775025     0.0118686    0.750673     0.799377      
vert 
1                   16      0.930002     0.0118686    0.90565      0.954354      
2                   16      0.888933     0.0118686    0.864581     0.913285      
3                   16      0.835938     0.0118686    0.811586     0.860291      
4                   16      0.816214     0.0118686    0.791861     0.840566      
long by trans 
1          1          4        0.96342      0.0237372   0.914715    1.01213      
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1          2          4        0.963182     0.0237372   0.914477    1.01189      
1          3          4        0.944864     0.0237372   0.896159    0.993569     
1          4          4        0.955926     0.0237372   0.907221    1.00463      
2          1          4        0.915589     0.0237372   0.866884    0.964293     
2          2          4        0.932802     0.0237372   0.884097    0.981507     
2          3          4        0.864374     0.0237372   0.815669    0.913078     
2          4          4        0.765559     0.0237372   0.716854    0.814264     
3          1          4        0.923237     0.0237372   0.874532    0.971942     
3          2          4        0.94912      0.0237372   0.900415    0.997825     
3          3          4        0.917164     0.0237372   0.868459    0.965869     
3          4          4        0.674479     0.0237372   0.625774    0.723184     
4          1          4        0.842981     0.0237372   0.794276    0.891686     
4          2          4        0.815338     0.0237372   0.766633    0.864043     
4          3          4        0.752178     0.0237372   0.703473    0.800883     
4          4          4        0.704136     0.0237372   0.655431    0.752841     
long by vert 
1          1          4        0.973366     0.0237372   0.924661    1.02207      
1          2          4        0.982964     0.0237372   0.934259    1.03167      
1          3          4        0.943264     0.0237372   0.894559    0.991969     
1          4          4        0.927798     0.0237372   0.879093    0.976502     
2          1          4        0.945556     0.0237372   0.896851    0.994261     
2          2          4        0.888655     0.0237372   0.83995     0.93736      
2          3          4        0.860591     0.0237372   0.811886    0.909296     
2          4          4        0.783521     0.0237372   0.734816    0.832226     
3          1          4        0.931907     0.0237372   0.883202    0.980612     
3          2          4        0.869305     0.0237372   0.820601    0.91801      
3          3          4        0.843555     0.0237372   0.79485     0.89226      
3          4          4        0.819233     0.0237372   0.770528    0.867938     
4          1          4        0.869179     0.0237372   0.820474    0.917884     
4          2          4        0.814807     0.0237372   0.766102    0.863512     
4          3          4        0.696345     0.0237372   0.64764     0.74505      
4          4          4        0.734303     0.0237372   0.685598    0.783008     
trans by vert 
1          1          4        0.942437     0.0237372   0.893732    0.991142     
1          2          4        0.959757     0.0237372   0.911052    1.00846      
1          3          4        0.909084     0.0237372   0.860379    0.957789     
1          4          4        0.833949     0.0237372   0.785244    0.882654     
2          1          4        0.912458     0.0237372   0.863753    0.961163     
2          2          4        0.970155     0.0237372   0.92145     1.01886      
2          3          4        0.893673     0.0237372   0.844968    0.942378     
2          4          4        0.884156     0.0237372   0.835451    0.93286      
3          1          4        0.941084     0.0237372   0.892379    0.989789     
3          2          4        0.890746     0.0237372   0.842041    0.939451     
3          3          4        0.813036     0.0237372   0.764331    0.861741     
3          4          4        0.833714     0.0237372   0.785009    0.882419     
4          1          4        0.924029     0.0237372   0.875325    0.972734     
4          2          4        0.735074     0.0237372   0.686369    0.783778     
4          3          4        0.727961     0.0237372   0.679256    0.776666     
4          4          4        0.713036     0.0237372   0.664331    0.761741     
-------------------------------------------------------------------------------- 
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Multiple Range Tests for CF by long 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
long           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              16        0.778658      0.0118686     X   
3              16        0.866         0.0118686      X  
2              16        0.869581      0.0118686      X  
1              16        0.956848      0.0118686       X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                   *0.0872672            0.0344396          
1 - 3                                   *0.0908479            0.0344396          
1 - 4                                   *0.17819              0.0344396          
2 - 3                                    0.00358075           0.0344396          
2 - 4                                   *0.0909225            0.0344396          
3 - 4                                   *0.0873418            0.0344396          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for CF by trans 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
trans          Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              16        0.775025      0.0118686     X   
3              16        0.869645      0.0118686      X  
1              16        0.911307      0.0118686       X 
2              16        0.91511       0.0118686       X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    -0.0038036           0.0344396          
1 - 3                                   *0.0416618            0.0344396          
1 - 4                                   *0.136282             0.0344396          
2 - 3                                   *0.0454654            0.0344396          
2 - 4                                   *0.140085             0.0344396          
3 - 4                                   *0.0946199            0.0344396          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for CF by vert 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
vert           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              16        0.816214      0.0118686     X   
3              16        0.835938      0.0118686     X   
2              16        0.888933      0.0118686      X  
1              16        0.930002      0.0118686       X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                   *0.0410691            0.0344396          
1 - 3                                   *0.0940636            0.0344396          
1 - 4                                   *0.113789             0.0344396          
2 - 3                                   *0.0529945            0.0344396          
2 - 4                                   *0.0727194            0.0344396          
3 - 4                                    0.0197249            0.0344396          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Appendix C.9: Moreton dry Multifactor ANOVA - CF 

 
Analysis Summary: Dependent variable: CF, Factors: long, trans, vert 
Number of complete cases: 48 
 
 
Analysis of Variance for CF - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:long                     0.461671      3        0.15389       9.45     0.0006 
 B:trans                   0.0204713      2      0.0102356       0.63     0.5448 
 C:vert                     0.207339      3      0.0691131       4.24     0.0197 
 
INTERACTIONS 
 AB                        0.0497492      6     0.00829153       0.51     0.7937 
 AC                         0.193483      9      0.0214981       1.32     0.2937 
 BC                        0.0311899      6     0.00519831       0.32     0.9185 
 
RESIDUAL                    0.293243     18      0.0162913 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)            1.25715     47 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
 
Table of Least Squares Means for CF 
with 95.0 Percent Confidence Intervals 
-------------------------------------------------------------------------------- 
                                         Stnd.        Lower        Upper 
Level               Count   Mean         Error        Limit        Limit 
-------------------------------------------------------------------------------- 
GRAND MEAN          48      0.580474 
long 
1                   12      0.688537     0.0368457    0.611127     0.765947      
2                   12      0.608198     0.0368457    0.530788     0.685608      
3                   12      0.604252     0.0368457    0.526842     0.681662      
4                   12      0.420909     0.0368457    0.343499     0.498319      
trans 
1                   16      0.564477     0.0319093    0.497438     0.631517      
2                   16      0.609634     0.0319093    0.542595     0.676673      
3                   16      0.567311     0.0319093    0.500272     0.63435       
vert 
1                   12      0.55598      0.0368457    0.478569     0.63339       
2                   12      0.676334     0.0368457    0.598924     0.753744      
3                   12      0.594504     0.0368457    0.517094     0.671914      
4                   12      0.495079     0.0368457    0.417669     0.572489      
long by trans 
1          1          4        0.731163     0.0638187   0.597084    0.865241     
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1          2          4        0.65871      0.0638187   0.524631    0.792788     
1          3          4        0.675739     0.0638187   0.541661    0.809817     
2          1          4        0.543001     0.0638187   0.408923    0.67708      
2          2          4        0.676937     0.0638187   0.542859    0.811016     
2          3          4        0.604655     0.0638187   0.470577    0.738734     
3          1          4        0.602429     0.0638187   0.46835     0.736507     
3          2          4        0.628958     0.0638187   0.49488     0.763037     
3          3          4        0.581369     0.0638187   0.447291    0.715448     
4          1          4        0.381317     0.0638187   0.247239    0.515395     
4          2          4        0.47393      0.0638187   0.339852    0.608009     
4          3          4        0.40748      0.0638187   0.273402    0.541558     
long by vert 
1          1          3        0.599118     0.0736914   0.444297    0.753938     
1          2          3        0.750175     0.0736914   0.595355    0.904995     
1          3          3        0.765656     0.0736914   0.610836    0.920476     
1          4          3        0.6392       0.0736914   0.48438     0.79402      
2          1          3        0.505791     0.0736914   0.350971    0.660611     
2          2          3        0.727843     0.0736914   0.573022    0.882663     
2          3          3        0.653393     0.0736914   0.498572    0.808213     
2          4          3        0.545766     0.0736914   0.390946    0.700586     
3          1          3        0.596103     0.0736914   0.441283    0.750923     
3          2          3        0.639733     0.0736914   0.484913    0.794554     
3          3          3        0.629261     0.0736914   0.474441    0.784082     
3          4          3        0.55191      0.0736914   0.39709     0.706731     
4          1          3        0.522907     0.0736914   0.368087    0.677727     
4          2          3        0.587585     0.0736914   0.432764    0.742405     
4          3          3        0.329706     0.0736914   0.174886    0.484526     
4          4          3        0.243439     0.0736914   0.0886188   0.398259     
trans by vert 
1          1          4        0.574402     0.0638187   0.440324    0.70848      
1          2          4        0.67711      0.0638187   0.543032    0.811189     
1          3          4        0.548961     0.0638187   0.414883    0.683039     
1          4          4        0.457436     0.0638187   0.323358    0.591515     
2          1          4        0.556421     0.0638187   0.422343    0.6905       
2          2          4        0.668205     0.0638187   0.534127    0.802283     
2          3          4        0.660738     0.0638187   0.52666     0.794816     
2          4          4        0.553171     0.0638187   0.419093    0.68725      
3          1          4        0.537115     0.0638187   0.403037    0.671194     
3          2          4        0.683687     0.0638187   0.549608    0.817765     
3          3          4        0.573813     0.0638187   0.439734    0.707891     
3          4          4        0.474629     0.0638187   0.340551    0.608707     
-------------------------------------------------------------------------------- 
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Multiple Range Tests for CF by long 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
long           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              12        0.420909      0.0368457     X  
3              12        0.604252      0.0368457      X 
2              12        0.608198      0.0368457      X 
1              12        0.688537      0.0368457      X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.0803391            0.109474           
1 - 3                                    0.0842851            0.109474           
1 - 4                                   *0.267628             0.109474           
2 - 3                                    0.00394599           0.109474           
2 - 4                                   *0.187289             0.109474           
3 - 4                                   *0.183343             0.109474           
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for CF by trans 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
trans          Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
1              16        0.564477      0.0319093     X 
3              16        0.567311      0.0319093     X 
2              16        0.609634      0.0319093     X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    -0.0451564           0.0948077          
1 - 3                                    -0.00283345          0.0948077          
2 - 3                                    0.042323             0.0948077          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for CF by vert 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
vert           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              12        0.495079      0.0368457     X  
1              12        0.55598       0.0368457     X  
3              12        0.594504      0.0368457     XX 
2              12        0.676334      0.0368457      X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                   *-0.120354            0.109474           
1 - 3                                    -0.0385243           0.109474           
1 - 4                                    0.0609007            0.109474           
2 - 3                                    0.0818301            0.109474           
2 - 4                                   *0.181255             0.109474           
3 - 4                                    0.099425             0.109474           
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Appendix C.10: Northend Multifactor ANOVA - CF 

 
Analysis Summary: Dependent variable: CF, Factors: long, trans, vert 
Number of complete cases: 80 
 
 
Analysis of Variance for CF - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:long                     0.108782      3      0.0362606      16.77     0.0000 
 B:trans                    0.182244      4      0.0455609      21.07     0.0000 
 C:vert                     0.222734      3      0.0742446      34.33     0.0000 
 
INTERACTIONS 
 AB                         0.115332     12     0.00961103       4.44     0.0002 
 AC                        0.0578568      9     0.00642853       2.97     0.0095 
 BC                        0.0312222     12     0.00260185       1.20     0.3183 
 
RESIDUAL                   0.0778569     36     0.00216269 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)           0.796028     79 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
 
 
Table of Least Squares Means for CF 
with 95.0 Percent Confidence Intervals 
-------------------------------------------------------------------------------- 
                                         Stnd.        Lower        Upper 
Level               Count   Mean         Error        Limit        Limit 
-------------------------------------------------------------------------------- 
GRAND MEAN          80      0.884697 
long 
1                   20      0.927071     0.0103988    0.905981     0.948161      
2                   20      0.914875     0.0103988    0.893785     0.935964      
3                   20      0.85552      0.0103988    0.834431     0.87661       
4                   20      0.84132      0.0103988    0.82023      0.86241       
trans 
1                   16      0.822899     0.0116262    0.79932      0.846478      
2                   16      0.959442     0.0116262    0.935862     0.983021      
3                   16      0.878269     0.0116262    0.85469      0.901848      
4                   16      0.912436     0.0116262    0.888857     0.936015      
5                   16      0.850438     0.0116262    0.826859     0.874017      
vert 
1                   20      0.943331     0.0103988    0.922242     0.964421      
2                   20      0.93124      0.0103988    0.91015      0.95233       
3                   20      0.831334     0.0103988    0.810244     0.852424      
4                   20      0.832881     0.0103988    0.811791     0.853971      
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long by trans 
1          1          4        0.884552     0.0232524   0.837394    0.93171      
1          2          4        0.964386     0.0232524   0.917228    1.01154      
1          3          4        0.964332     0.0232524   0.917174    1.01149      
1          4          4        0.958183     0.0232524   0.911025    1.00534      
1          5          4        0.863903     0.0232524   0.816745    0.911061     
2          1          4        0.831328     0.0232524   0.784169    0.878486     
2          2          4        0.977774     0.0232524   0.930616    1.02493      
2          3          4        0.872329     0.0232524   0.825171    0.919487     
2          4          4        0.952928     0.0232524   0.90577     1.00009      
2          5          4        0.940015     0.0232524   0.892857    0.987173     
3          1          4        0.722998     0.0232524   0.675839    0.770156     
3          2          4        0.962821     0.0232524   0.915663    1.00998      
3          3          4        0.876909     0.0232524   0.829751    0.924067     
3          4          4        0.921862     0.0232524   0.874704    0.96902      
3          5          4        0.793012     0.0232524   0.745854    0.84017      
4          1          4        0.852717     0.0232524   0.805559    0.899875     
4          2          4        0.932785     0.0232524   0.885626    0.979943     
4          3          4        0.799507     0.0232524   0.752349    0.846665     
4          4          4        0.816771     0.0232524   0.769613    0.863929     
4          5          4        0.804821     0.0232524   0.757663    0.85198      
long by vert 
1          1          5        0.955398     0.0207976   0.913219    0.997578     
1          2          5        0.958047     0.0207976   0.915867    1.00023      
1          3          5        0.9156       0.0207976   0.873421    0.95778      
1          4          5        0.87924      0.0207976   0.83706     0.921419     
2          1          5        0.951437     0.0207976   0.909257    0.993616     
2          2          5        0.938781     0.0207976   0.896601    0.98096      
2          3          5        0.899003     0.0207976   0.856823    0.941182     
2          4          5        0.870279     0.0207976   0.828099    0.912458     
3          1          5        0.947094     0.0207976   0.904914    0.989273     
3          2          5        0.934377     0.0207976   0.892197    0.976556     
3          3          5        0.749808     0.0207976   0.707629    0.791988     
3          4          5        0.790803     0.0207976   0.748623    0.832982     
4          1          5        0.919396     0.0207976   0.877217    0.961576     
4          2          5        0.893755     0.0207976   0.851576    0.935935     
4          3          5        0.760925     0.0207976   0.718746    0.803105     
4          4          5        0.791203     0.0207976   0.749024    0.833383     
trans by vert 
1          1          4        0.914158     0.0232524   0.867       0.961316     
1          2          4        0.882943     0.0232524   0.835785    0.930101     
1          3          4        0.728599     0.0232524   0.681441    0.775758     
1          4          4        0.765894     0.0232524   0.718736    0.813052     
2          1          4        0.988001     0.0232524   0.940843    1.03516      
2          2          4        0.989875     0.0232524   0.942717    1.03703      
2          3          4        0.938236     0.0232524   0.891078    0.985394     
2          4          4        0.921654     0.0232524   0.874496    0.968812     
3          1          4        0.936223     0.0232524   0.889065    0.983381     
3          2          4        0.9351       0.0232524   0.887942    0.982258     
3          3          4        0.846075     0.0232524   0.798916    0.893233     
3          4          4        0.795679     0.0232524   0.748521    0.842838     
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4          1          4        0.969243     0.0232524   0.922085    1.0164       
4          2          4        0.950817     0.0232524   0.903659    0.997975     
4          3          4        0.843813     0.0232524   0.796655    0.890971     
4          4          4        0.88587      0.0232524   0.838712    0.933028     
5          1          4        0.909032     0.0232524   0.861873    0.95619      
5          2          4        0.897464     0.0232524   0.850306    0.944622     
5          3          4        0.799948     0.0232524   0.75279     0.847106     
5          4          4        0.795308     0.0232524   0.74815     0.842466     
-------------------------------------------------------------------------------- 
 
 
Multiple Range Tests for CF by long 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
long           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              20        0.84132       0.0103988     X  
3              20        0.85552       0.0103988     X  
2              20        0.914875      0.0103988      X 
1              20        0.927071      0.0103988      X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.0121964            0.0298254          
1 - 3                                   *0.0715507            0.0298254          
1 - 4                                   *0.085751             0.0298254          
2 - 3                                   *0.0593543            0.0298254          
2 - 4                                   *0.0735546            0.0298254          
3 - 4                                    0.0142003            0.0298254          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for CF by trans 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
trans          Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
1              16        0.822899      0.0116262     X    
5              16        0.850438      0.0116262     XX   
3              16        0.878269      0.0116262      X   
4              16        0.912436      0.0116262       X  
2              16        0.959442      0.0116262        X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                   *-0.136543            0.0333458          
1 - 3                                   *-0.0553706           0.0333458          
1 - 4                                   *-0.0895372           0.0333458          
1 - 5                                    -0.0275393           0.0333458          
2 - 3                                   *0.0811723            0.0333458          
2 - 4                                   *0.0470057            0.0333458          
2 - 5                                   *0.109004             0.0333458          
3 - 4                                   *-0.0341666           0.0333458          
3 - 5                                    0.0278313            0.0333458          
4 - 5                                   *0.0619979            0.0333458          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for CF by vert 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
vert           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
3              20        0.831334      0.0103988     X  
4              20        0.832881      0.0103988     X  
2              20        0.93124       0.0103988      X 
1              20        0.943331      0.0103988      X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.0120915            0.0298254          
1 - 3                                   *0.111997             0.0298254          
1 - 4                                   *0.11045              0.0298254          
2 - 3                                   *0.0999056            0.0298254          
2 - 4                                   *0.0983587            0.0298254          
3 - 4                                    -0.00154695          0.0298254          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Appendix C.11: Rowington Multifactor ANOVA - CF 

 
Analysis Summary: Dependent variable: CF, Factors: long, trans, vert 
Number of complete cases:  
 
Analysis of Variance for CF - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:long                     0.753483      3       0.251161      35.87     0.0000 
 B:trans                    0.243887      4      0.0609717       8.71     0.0001 
 C:vert                     0.060455      3      0.0201517       2.88     0.0493 
 
INTERACTIONS 
 AB                         0.253845     12      0.0211537       3.02     0.0051 
 AC                        0.0885744      9      0.0098416       1.41     0.2222 
 BC                        0.0628715     12      0.0052393       0.75     0.6962 
 
RESIDUAL                    0.252037     36     0.00700102 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)            1.71515     79 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
 
 
Table of Least Squares Means for CF 
with 95.0 Percent Confidence Intervals 
-------------------------------------------------------------------------------- 
                                         Stnd.        Lower        Upper 
Level               Count   Mean         Error        Limit        Limit 
-------------------------------------------------------------------------------- 
GRAND MEAN          80      0.875823 
long 
1                   20      0.968636     0.0187097    0.930691     1.00658       
2                   20      0.954828     0.0187097    0.916883     0.992773      
3                   20      0.853388     0.0187097    0.815443     0.891333      
4                   20      0.726442     0.0187097    0.688497     0.764387      
trans 
1                   16      0.772169     0.020918     0.729745     0.814593      
2                   16      0.88636      0.020918     0.843936     0.928783      
3                   16      0.936781     0.020918     0.894357     0.979205      
4                   16      0.9007       0.020918     0.858276     0.943124      
5                   16      0.883108     0.020918     0.840684     0.925532      
vert 
1                   20      0.905139     0.0187097    0.867194     0.943084      
2                   20      0.898899     0.0187097    0.860954     0.936844      
3                   20      0.860996     0.0187097    0.823051     0.898941      
4                   20      0.83826      0.0187097    0.800315     0.876205      
long by trans 
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1          1          4        0.964063     0.0418361   0.879215    1.04891      
1          2          4        0.993684     0.0418361   0.908836    1.07853      
1          3          4        0.991284     0.0418361   0.906436    1.07613      
1          4          4        0.945293     0.0418361   0.860445    1.03014      
1          5          4        0.948856     0.0418361   0.864008    1.0337       
2          1          4        0.879876     0.0418361   0.795029    0.964724     
2          2          4        0.978019     0.0418361   0.893171    1.06287      
2          3          4        0.999219     0.0418361   0.914372    1.08407      
2          4          4        0.985371     0.0418361   0.900524    1.07022      
2          5          4        0.931656     0.0418361   0.846808    1.0165       
3          1          4        0.572432     0.0418361   0.487584    0.657279     
3          2          4        0.886956     0.0418361   0.802109    0.971804     
3          3          4        0.944006     0.0418361   0.859159    1.02885      
3          4          4        0.931453     0.0418361   0.846605    1.0163       
3          5          4        0.932094     0.0418361   0.847246    1.01694      
4          1          4        0.672306     0.0418361   0.587458    0.757154     
4          2          4        0.686779     0.0418361   0.601931    0.771627     
4          3          4        0.812614     0.0418361   0.727766    0.897461     
4          4          4        0.740684     0.0418361   0.655837    0.825532     
4          5          4        0.719826     0.0418361   0.634979    0.804674     
long by vert 
1          1          5        0.94672      0.0374193   0.870829    1.02261      
1          2          5        0.983697     0.0374193   0.907807    1.05959      
1          3          5        0.972929     0.0374193   0.897039    1.04882      
1          4          5        0.971199     0.0374193   0.895309    1.04709      
2          1          5        0.969246     0.0374193   0.893356    1.04514      
2          2          5        0.982539     0.0374193   0.906649    1.05843      
2          3          5        0.980081     0.0374193   0.904191    1.05597      
2          4          5        0.887447     0.0374193   0.811557    0.963337     
3          1          5        0.89368      0.0374193   0.81779     0.96957      
3          2          5        0.855971     0.0374193   0.780081    0.931861     
3          3          5        0.855558     0.0374193   0.779668    0.931448     
3          4          5        0.808343     0.0374193   0.732453    0.884233     
4          1          5        0.81091      0.0374193   0.73502     0.8868       
4          2          5        0.773391     0.0374193   0.697501    0.849281     
4          3          5        0.635416     0.0374193   0.559526    0.711306     
4          4          5        0.68605      0.0374193   0.61016     0.76194      
trans by vert 
1          1          4        0.843555     0.0418361   0.758708    0.928403     
1          2          4        0.807865     0.0418361   0.723017    0.892712     
1          3          4        0.76389      0.0418361   0.679042    0.848738     
1          4          4        0.673367     0.0418361   0.588519    0.758214     
2          1          4        0.902751     0.0418361   0.817903    0.987599     
2          2          4        0.889798     0.0418361   0.80495     0.974645     
2          3          4        0.901873     0.0418361   0.817026    0.986721     
2          4          4        0.851016     0.0418361   0.766168    0.935864     
3          1          4        0.956485     0.0418361   0.871637    1.04133      
3          2          4        0.954712     0.0418361   0.869864    1.03956      
3          3          4        0.941494     0.0418361   0.856646    1.02634      
3          4          4        0.894432     0.0418361   0.809585    0.97928      
4          1          4        0.921386     0.0418361   0.836538    1.00623      
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4          2          4        0.925741     0.0418361   0.840893    1.01059      
4          3          4        0.89099      0.0418361   0.806143    0.975838     
4          4          4        0.864684     0.0418361   0.779836    0.949532     
5          1          4        0.901516     0.0418361   0.816669    0.986364     
5          2          4        0.916381     0.0418361   0.831534    1.00123      
5          3          4        0.806733     0.0418361   0.721885    0.89158      
5          4          4        0.907801     0.0418361   0.822953    0.992648     
-------------------------------------------------------------------------------- 
 
 
Multiple Range Tests for CF by long 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
long           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              20        0.726442      0.0187097     X   
3              20        0.853388      0.0187097      X  
2              20        0.954828      0.0187097       X 
1              20        0.968636      0.0187097       X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.0138076            0.0536623          
1 - 3                                   *0.115248             0.0536623          
1 - 4                                   *0.242194             0.0536623          
2 - 3                                   *0.10144              0.0536623          
2 - 4                                   *0.228387             0.0536623          
3 - 4                                   *0.126946             0.0536623          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for CF by trans 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
trans          Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
1              16        0.772169      0.020918      X  
5              16        0.883108      0.020918       X 
2              16        0.88636       0.020918       X 
4              16        0.9007        0.020918       X 
3              16        0.936781      0.020918       X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                   *-0.11419             0.0599963          
1 - 3                                   *-0.164612            0.0599963          
1 - 4                                   *-0.128531            0.0599963          
1 - 5                                   *-0.110939            0.0599963          
2 - 3                                    -0.0504212           0.0599963          
2 - 4                                    -0.0143408           0.0599963          
2 - 5                                    0.00325175           0.0599963          
3 - 4                                    0.0360805            0.0599963          
3 - 5                                    0.053673             0.0599963          
4 - 5                                    0.0175925            0.0599963          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for CF by vert 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
vert           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              20        0.83826       0.0187097     X  
3              20        0.860996      0.0187097     XX 
2              20        0.898899      0.0187097      X 
1              20        0.905139      0.0187097      X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.00623937           0.0536623          
1 - 3                                    0.0441427            0.0536623          
1 - 4                                   *0.0668788            0.0536623          
2 - 3                                    0.0379033            0.0536623          
2 - 4                                   *0.0606394            0.0536623          
3 - 4                                    0.0227361            0.0536623          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Appendix C.12: Snitterfield Multifactor ANOVA - CF 

 
Analysis Summary: Dependent variable: CF, Factors: long, trans, vert 
Number of complete cases: 80 
 
Analysis of Variance for CF - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:long                     0.105721      3      0.0352404      28.28     0.0000 
 B:trans                   0.0550869      4      0.0137717      11.05     0.0000 
 C:vert                    0.0858482      3      0.0286161      22.97     0.0000 
 
INTERACTIONS 
 AB                        0.0528952     12     0.00440793       3.54     0.0016 
 AC                        0.0182414      9     0.00202682       1.63     0.1446 
 BC                        0.0361293     12     0.00301078       2.42     0.0204 
 
RESIDUAL                   0.0448551     36     0.00124597 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)           0.398777     79 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
 
 
Table of Least Squares Means for CF with 95.0 Percent Confidence Intervals 
-------------------------------------------------------------------------------- 
                                         Stnd.        Lower        Upper 
Level               Count   Mean         Error        Limit        Limit 
-------------------------------------------------------------------------------- 
GRAND MEAN          80      0.919668 
long 
1                   20      0.978434     0.00789295   0.962426     0.994442      
2                   20      0.916857     0.00789295   0.900849     0.932865      
3                   20      0.880306     0.00789295   0.864298     0.896313      
4                   20      0.903075     0.00789295   0.887067     0.919083      
trans 
1                   16      0.881328     0.00882459   0.863431     0.899225      
2                   16      0.930617     0.00882459   0.91272      0.948514      
3                   16      0.958327     0.00882459   0.94043      0.976224      
4                   16      0.901887     0.00882459   0.88399      0.919784      
5                   16      0.92618      0.00882459   0.908283     0.944077      
vert 
1                   20      0.952787     0.00789295   0.93678      0.968795      
2                   20      0.949483     0.00789295   0.933476     0.965491      
3                   20      0.900971     0.00789295   0.884963     0.916978      
4                   20      0.87543      0.00789295   0.859423     0.891438      
long by trans 
1          1          4        0.994223     0.0176492   0.958428    1.03002      
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1          2          4        0.992402     0.0176492   0.956607    1.0282       
1          3          4        0.991284     0.0176492   0.95549     1.02708      
1          4          4        0.975223     0.0176492   0.939429    1.01102      
1          5          4        0.939038     0.0176492   0.903243    0.974832     
2          1          4        0.865999     0.0176492   0.830204    0.901793     
2          2          4        0.962179     0.0176492   0.926384    0.997973     
2          3          4        0.956533     0.0176492   0.920739    0.992328     
2          4          4        0.867059     0.0176492   0.831265    0.902854     
2          5          4        0.932514     0.0176492   0.89672     0.968309     
3          1          4        0.819531     0.0176492   0.783737    0.855325     
3          2          4        0.880958     0.0176492   0.845164    0.916753     
3          3          4        0.94683      0.0176492   0.911036    0.982624     
3          4          4        0.844071     0.0176492   0.808277    0.879865     
3          5          4        0.910138     0.0176492   0.874344    0.945932     
4          1          4        0.845561     0.0176492   0.809767    0.881355     
4          2          4        0.886929     0.0176492   0.851134    0.922723     
4          3          4        0.938662     0.0176492   0.902868    0.974456     
4          4          4        0.921194     0.0176492   0.885399    0.956988     
4          5          4        0.923029     0.0176492   0.887235    0.958823     
long by vert 
1          1          5        0.991906     0.0157859   0.95989     1.02392      
1          2          5        1.0          0.0157859   0.967985    1.03202      
1          3          5        0.980009     0.0157859   0.947993    1.01202      
1          4          5        0.941821     0.0157859   0.909806    0.973837     
2          1          5        0.937604     0.0157859   0.905589    0.96962      
2          2          5        0.942832     0.0157859   0.910817    0.974848     
2          3          5        0.916261     0.0157859   0.884245    0.948276     
2          4          5        0.87073      0.0157859   0.838715    0.902746     
3          1          5        0.938351     0.0157859   0.906335    0.970366     
3          2          5        0.9278       0.0157859   0.895785    0.959815     
3          3          5        0.82916      0.0157859   0.797144    0.861175     
3          4          5        0.825913     0.0157859   0.793897    0.857928     
4          1          5        0.943288     0.0157859   0.911273    0.975304     
4          2          5        0.927301     0.0157859   0.895285    0.959316     
4          3          5        0.878454     0.0157859   0.846438    0.910469     
4          4          5        0.863257     0.0157859   0.831242    0.895272     
trans by vert 
1          1          4        0.937675     0.0176492   0.901881    0.97347      
1          2          4        0.935015     0.0176492   0.899221    0.97081      
1          3          4        0.836534     0.0176492   0.80074     0.872329     
1          4          4        0.816088     0.0176492   0.780294    0.851882     
2          1          4        0.959289     0.0176492   0.923494    0.995083     
2          2          4        0.943507     0.0176492   0.907712    0.979301     
2          3          4        0.921424     0.0176492   0.88563     0.957218     
2          4          4        0.898248     0.0176492   0.862454    0.934043     
3          1          4        0.961751     0.0176492   0.925956    0.997545     
3          2          4        0.969498     0.0176492   0.933704    1.00529      
3          3          4        0.956232     0.0176492   0.920438    0.992026     
3          4          4        0.945829     0.0176492   0.910034    0.981623     
4          1          4        0.950853     0.0176492   0.915058    0.986647     
4          2          4        0.941384     0.0176492   0.905589    0.977178     
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4          3          4        0.849056     0.0176492   0.813262    0.884851     
4          4          4        0.866255     0.0176492   0.830461    0.902049     
5          1          4        0.954369     0.0176492   0.918575    0.990164     
5          2          4        0.958012     0.0176492   0.922218    0.993806     
5          3          4        0.941606     0.0176492   0.905812    0.977401     
5          4          4        0.850731     0.0176492   0.814937    0.886526     
-------------------------------------------------------------------------------- 
 
 
Multiple Range Tests for CF by long 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
long           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
3              20        0.880306      0.00789295    X   
4              20        0.903075      0.00789295     X  
2              20        0.916857      0.00789295     X  
1              20        0.978434      0.00789295      X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                   *0.0615771            0.0226383          
1 - 3                                   *0.0981282            0.0226383          
1 - 4                                   *0.075359             0.0226383          
2 - 3                                   *0.0365512            0.0226383          
2 - 4                                    0.0137819            0.0226383          
3 - 4                                   *-0.0227692           0.0226383          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Multiple Range Tests for CF by trans 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
trans          Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
1              16        0.881328      0.00882459    X    
4              16        0.901887      0.00882459    XX   
5              16        0.92618       0.00882459     XX  
2              16        0.930617      0.00882459      X  
3              16        0.958327      0.00882459       X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                   *-0.0492886           0.0253104          
1 - 3                                   *-0.0769991           0.0253104          
1 - 4                                    -0.0205586           0.0253104          
1 - 5                                   *-0.0448516           0.0253104          
2 - 3                                   *-0.0277105           0.0253104          
2 - 4                                   *0.02873              0.0253104          
2 - 5                                    0.00443709           0.0253104          
3 - 4                                   *0.0564405            0.0253104          
3 - 5                                   *0.0321475            0.0253104          
4 - 5                                    -0.0242929           0.0253104          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
 

 
 
 
  

Means and 95.0 Percent LSD Intervals

trans

C
F

1 2 3 4 5

0.86

0.88

0.9

0.92

0.94

0.96

0.98



  

458 
 

Multiple Range Tests for CF by vert 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
vert           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              20        0.87543       0.00789295    X   
3              20        0.900971      0.00789295     X  
2              20        0.949483      0.00789295      X 
1              20        0.952787      0.00789295      X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.00330413           0.0226383          
1 - 3                                   *0.0518167            0.0226383          
1 - 4                                   *0.0773571            0.0226383          
2 - 3                                   *0.0485126            0.0226383          
2 - 4                                   *0.074053             0.0226383          
3 - 4                                   *0.0255404            0.0226383          
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Appendix C.13: Weston Multifactor ANOVA - CF 

 
Analysis Summary: Dependent variable: CF, Factors: long, trans, vert 
Number of complete cases: 80 
 
Analysis of Variance for CF - Type III Sums of Squares 
-------------------------------------------------------------------------------- 
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value 
-------------------------------------------------------------------------------- 
MAIN EFFECTS 
 A:long                      2.88839      3       0.962798      26.95     0.0000 
 B:trans                    0.716472      4       0.179118       5.01     0.0026 
 C:vert                      2.19918      3       0.733059      20.52     0.0000 
 
INTERACTIONS 
 AB                         0.393703     12      0.0328086       0.92     0.5391 
 AC                         0.481397      9      0.0534885       1.50     0.1864 
 BC                         0.243576     12       0.020298       0.57     0.8527 
 
RESIDUAL                     1.28608     36      0.0357244 
-------------------------------------------------------------------------------- 
TOTAL (CORRECTED)             8.2088     79 
-------------------------------------------------------------------------------- 
All F-ratios are based on the residual mean square error. 
 
 
Table of Least Squares Means for CF 
with 95.0 Percent Confidence Intervals 
-------------------------------------------------------------------------------- 
                                         Stnd.        Lower        Upper 
Level               Count   Mean         Error        Limit        Limit 
-------------------------------------------------------------------------------- 
GRAND MEAN          80      0.603495 
long 
1                   20      0.883923     0.0422637    0.798208     0.969638      
2                   20      0.667224     0.0422637    0.581509     0.752939      
3                   20      0.466744     0.0422637    0.381029     0.552459      
4                   20      0.396089     0.0422637    0.310374     0.481804      
trans 
1                   16      0.652038     0.0472523    0.556206     0.74787       
2                   16      0.699072     0.0472523    0.603239     0.794904      
3                   16      0.685056     0.0472523    0.589224     0.780889      
4                   16      0.51484      0.0472523    0.419008     0.610672      
5                   16      0.466469     0.0472523    0.370636     0.562301      
vert 
1                   20      0.765654     0.0422637    0.679939     0.851369      
2                   20      0.717535     0.0422637    0.63182      0.80325       
3                   20      0.592902     0.0422637    0.507187     0.678617      
4                   20      0.33789      0.0422637    0.252175     0.423605      
long by trans 
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1          1          4        0.92864      0.0945045   0.736976    1.1203       
1          2          4        0.913201     0.0945045   0.721537    1.10487      
1          3          4        0.975888     0.0945045   0.784224    1.16755      
1          4          4        0.897753     0.0945045   0.706088    1.08942      
1          5          4        0.704135     0.0945045   0.51247     0.895799     
2          1          4        0.685893     0.0945045   0.494229    0.877558     
2          2          4        0.748795     0.0945045   0.557131    0.94046      
2          3          4        0.802165     0.0945045   0.610501    0.99383      
2          4          4        0.577757     0.0945045   0.386092    0.769421     
2          5          4        0.521509     0.0945045   0.329845    0.713174     
3          1          4        0.668594     0.0945045   0.47693     0.860259     
3          2          4        0.614113     0.0945045   0.422448    0.805777     
3          3          4        0.426972     0.0945045   0.235307    0.618636     
3          4          4        0.252399     0.0945045   0.0607344   0.444063     
3          5          4        0.371644     0.0945045   0.179979    0.563308     
4          1          4        0.325025     0.0945045   0.13336     0.516689     
4          2          4        0.520178     0.0945045   0.328513    0.711842     
4          3          4        0.5352       0.0945045   0.343535    0.726864     
4          4          4        0.331453     0.0945045   0.139788    0.523117     
4          5          4        0.268588     0.0945045   0.0769231   0.460252     
long by vert 
1          1          5        0.945664     0.0845274   0.774234    1.11709      
1          2          5        0.968386     0.0845274   0.796956    1.13982      
1          3          5        0.955517     0.0845274   0.784087    1.12695      
1          4          5        0.666126     0.0845274   0.494696    0.837556     
2          1          5        0.826257     0.0845274   0.654827    0.997687     
2          2          5        0.721124     0.0845274   0.549694    0.892554     
2          3          5        0.735704     0.0845274   0.564274    0.907134     
2          4          5        0.38581      0.0845274   0.21438     0.55724      
3          1          5        0.613303     0.0845274   0.441873    0.784733     
3          2          5        0.550612     0.0845274   0.379182    0.722042     
3          3          5        0.4724       0.0845274   0.30097     0.64383      
3          4          5        0.230662     0.0845274   0.059232    0.402092     
4          1          5        0.67739      0.0845274   0.50596     0.84882      
4          2          5        0.630016     0.0845274   0.458586    0.801446     
4          3          5        0.207988     0.0845274   0.036558    0.379418     
4          4          5        0.06896      0.0845274   -0.10247    0.24039      
trans by vert 
1          1          4        0.818357     0.0945045   0.626692    1.01002      
1          2          4        0.82132      0.0945045   0.629656    1.01298      
1          3          4        0.66603      0.0945045   0.474365    0.857694     
1          4          4        0.302446     0.0945045   0.110782    0.494111     
2          1          4        0.797924     0.0945045   0.60626     0.989589     
2          2          4        0.747727     0.0945045   0.556062    0.939391     
2          3          4        0.708133     0.0945045   0.516468    0.899797     
2          4          4        0.542503     0.0945045   0.350838    0.734167     
3          1          4        0.814846     0.0945045   0.623181    1.00651      
3          2          4        0.809587     0.0945045   0.617923    1.00125      
3          3          4        0.715473     0.0945045   0.523809    0.907138     
3          4          4        0.400319     0.0945045   0.208655    0.591984     
4          1          4        0.675475     0.0945045   0.483811    0.86714      
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4          2          4        0.6686       0.0945045   0.476936    0.860264     
4          3          4        0.413221     0.0945045   0.221556    0.604885     
4          4          4        0.302065     0.0945045   0.1104      0.493729     
5          1          4        0.721666     0.0945045   0.530001    0.91333      
5          2          4        0.540439     0.0945045   0.348774    0.732103     
5          3          4        0.461655     0.0945045   0.269991    0.65332      
5          4          4        0.142115     0.0945045   -0.0495494  0.33378      
-------------------------------------------------------------------------------- 
 
 
Multiple Range Tests for CF by long 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
long           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              20        0.396089      0.0422637     X   
3              20        0.466744      0.0422637     X   
2              20        0.667224      0.0422637      X  
1              20        0.883923      0.0422637       X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                   *0.216699             0.121219           
1 - 3                                   *0.417179             0.121219           
1 - 4                                   *0.487835             0.121219           
2 - 3                                   *0.20048              0.121219           
2 - 4                                   *0.271135             0.121219           
3 - 4                                    0.0706556            0.121219           
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
 

 
 
 
 
  

Means and 95.0 Percent LSD Intervals

long

C
F

1 2 3 4

0.33

0.53

0.73

0.93

1.13
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Multiple Range Tests for CF by trans 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
trans          Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
5              16        0.466469      0.0472523     X  
4              16        0.51484       0.0472523     X  
1              16        0.652038      0.0472523      X 
3              16        0.685056      0.0472523      X 
2              16        0.699072      0.0472523      X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    -0.0470335           0.135527           
1 - 3                                    -0.0330181           0.135527           
1 - 4                                   *0.137198             0.135527           
1 - 5                                   *0.18557              0.135527           
2 - 3                                    0.0140154            0.135527           
2 - 4                                   *0.184232             0.135527           
2 - 5                                   *0.232603             0.135527           
3 - 4                                   *0.170216             0.135527           
3 - 5                                   *0.218588             0.135527           
4 - 5                                    0.0483715            0.135527           
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
 

 
 
  

Means and 95.0 Percent LSD Intervals

trans

C
F
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0.79



  

463 
 

Multiple Range Tests for CF by vert 
 
-------------------------------------------------------------------------------- 
Method: 95.0 percent LSD 
vert           Count     LS Mean       LS Sigma      Homogeneous Groups 
-------------------------------------------------------------------------------- 
4              20        0.33789       0.0422637     X   
3              20        0.592902      0.0422637      X  
2              20        0.717535      0.0422637       X 
1              20        0.765654      0.0422637       X 
-------------------------------------------------------------------------------- 
Contrast                                 Difference           +/-  Limits 
-------------------------------------------------------------------------------- 
1 - 2                                    0.048119             0.121219           
1 - 3                                   *0.172751             0.121219           
1 - 4                                   *0.427764             0.121219           
2 - 3                                   *0.124632             0.121219           
2 - 4                                   *0.379645             0.121219           
3 - 4                                   *0.255013             0.121219           
-------------------------------------------------------------------------------- 
* denotes a statistically significant difference. 
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Appendix D.1: FEA Modelling Results – CFT = 0.55, Hydraulic Conductivity Profile  
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Appendix D.1: FEA Modelling Results – CFT = 0.55, Adaptive Mesh 
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Appendix D.1: FEA Modelling Results – CFT = 0.55, Hydraulic Head  
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Appendix D.2: FEA Modelling Results – CFT = 0.60, Hydraulic Conductivity Profile  
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Appendix D.2: FEA Modelling Results – CFT = 0.60, Adaptive Mesh 

 

 

 

 

D
ep

th
 a

b
o

ve
 b

o
tt

o
m

 o
f 

ce
ll 

(m
) 

Longitudinal distance from inlet (m) 

Logarithm of 

hydraulic 

conductivity k 

log10(m/s) 



  

 
 

4
6

9
 

Appendix D.2: FEA Modelling Results – CFT = 0.60, Hydraulic Head  
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Appendix D.3: FEA Modelling Results – CFT = 0.65, Hydraulic Conductivity Profile  
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Appendix D.3: FEA Modelling Results – CFT = 0.65, Adaptive Mesh 
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Appendix D.3: FEA Modelling Results – CFT = 0.65, Hydraulic Head  
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Appendix D.4: FEA Modelling Results – CFT = 0.70, Hydraulic Conductivity Profile  
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Appendix D.4: FEA Modelling Results – CFT = 0.70, Adaptive Mesh 
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Appendix D.4: FEA Modelling Results – CFT = 0.70, Hydraulic Head 

 

 

  

D
ep

th
 a

b
o

ve
 b

o
tt

o
m

 o
f 

ce
ll 

(m
) 

Longitudinal distance from inlet (m) 

Hydraulic 

Head h 

above bed 

surface (m) 



  

 
 

4
7

6
 

Appendix D.5: FEA Modelling Results – CFT = 0.75, Hydraulic Conductivity Profile  
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Appendix D.5: FEA Modelling Results – CFT = 0.75, Adaptive Mesh 
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Appendix D.5: FEA Modelling Results – CFT = 0.75, Hydraulic Head  

 

 

  

D
ep

th
 a

b
o

ve
 b

o
tt

o
m

 o
f 

ce
ll 

(m
) 

Longitudinal distance from inlet (m) 

Hydraulic 

Head h 

above bed 

surface (m) 



  

 
 

4
7

9
 

Appendix D.6: FEA Modelling Results – CFT = 0.80, Hydraulic Conductivity Profile  
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Appendix D.6: FEA Modelling Results – CFT = 0.80, Adaptive Mesh 
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Appendix D.6: FEA Modelling Results – CFT = 0.80, Hydraulic Head  
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Appendix D.7: FEA Modelling Results – CFT = 0.85, Hydraulic Conductivity Profile  
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Appendix D.7: FEA Modelling Results – CFT = 0.85, Adaptive Mesh 
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Appendix D.7: FEA Modelling Results – CFT = 0.85, Hydraulic Head  
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Appendix D.8: FEA Modelling Results – CFT = 0.90, Hydraulic Conductivity Profile  
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Appendix D.8: FEA Modelling Results – CFT = 0.90, Adaptive Mesh 
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Appendix D.8: FEA Modelling Results – CFT = 0.90, Hydraulic Head  
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Appendix E: Design and fabrication of a multi-channel fluorimeter 

It was decided to perform tracer studies to explore the hydrodynamic response of HSSF TWs 

to clogging, and monitor tracer both at the outlet and at numerous points inside the bed to 

develop a full picture of hydrodynamic behaviour.  To accurately characterise the internal 

behaviour of the bed it was desired to have numerous tracer concentration detectors at 

different locations, sampling the flow automatically and at regular intervals.  This minimises 

the errors introduced through manual collection of samples and will increase the number of 

samples obtainable.  In response to there being no affordable proprietary tracer detector for 

synchronous measurement from a matrix of sampling points, a novel multi-channel tracer 

detector was created.   

The type of tracer detector used depends on the type of water tracer used.  The available 

families of water tracer are summarised in Table App.F.1.  The two tracer materials that 

have been used predominantly in previous wetland studies are bromide salts and 

Rhodamine Water Tracer (RWT), although each noted to have certain limitations (Flury and 

Wai, 2003). It was decided that RWT would be the most suitable candidate as it is easily 

measured in-situ with relatively inexpensive equipment, and is highly specific so background 

interference is usually minimal.  This has made it the choice for many previous TW hydraulics 

studies (Bhattarai and Griffin Jr, 1999, Holland et al., 2004, Shilton and Prasad, 1996, Simi 

and Mitchell, 1999).  However, concerns regarding the conservatism of RWT have been 

raised, as it can be biologically and photochemically degraded and may also be adsorbed by 

sediments (Kadlec and Wallace, 2010).  Such effects are said to be negligible if the TW is 

small, shallow (less than 0.6m) and with a HRT of less that one week (Lin et al., 2003).  An 

experiment was conducted to assess the conservative nature of RWT and it was noted that 

the biggest source of losses is through biological degradation, although it took 10 days for 

the effect to become notable.  The design guidelines that were applied during the 

construction of the majority of Severn Trent HSSF TWs suggest a HRT of approximately one 

day (Green and Upton, 1995), and as such RWT was approved for pilot experiments.  

Additionally, RWT has obvious advantages over more conservative tracers, such as 

radioactive or biologically based alternatives, in that it has low eco-toxicity and will 

eventually photochemically destabilise, making it a good choice for ecological applications.   
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Table App.F.1 Types of tracer used in fluid dynamics studies with notes regarding their 

appropriateness to this study- need to quote this happy 

Tracer family Notes 

Biological tracers 

(bacteriophages, spores, 

pollution sediments) 

Not permitted by regulators as requirements for a 

conservative tracer and polished final effluent are 

conflicting 

Radioactive tracers Require a great level of user expertise and expensive 

measuring equipment 

Inorganic salts (bromide, 

chloride, lithium ion) 

Large quantities required depending on background 

concentrations.  Susceptible to gravitational forces 

because of buoyancy differences with water – Sanford 

etc. 

Fluorescent dyes (Rhodamine 

WT, Fluorescene) 

Less conservative than inorganic salts: suffer 

photochemical, biological degradation and sorptive 

losses. 

 

Measurement of RWT concentration is done using Fluorimeters, which utilise the optical 

characteristics of fluorescing dyes (such as RWT) to produce a measureable analogue 

voltage.  Fluorimeters produce light close to the excitation wavelength of the dye, and 

detect light close to the emission wavelength.  The intensity of emitted light is linearly 

proportional to the concentration of RWT in solution up to about 1000 parts per billion (ppb) 

of RWT in water (hereafter assumed), after which self-quenching effects influence the 

optical output of the sample.  The RWT breakthrough curve was measured at the outlet 

using a Cyclops 7 submersible fluorimeter (Turner Designs, USA), which has a detection 

resolution of 0.01 ppb across the range 0-500 ppb (Figure App.F.1).  

The multi-flurotimeter was designed to respond to the excitation and emission wavelenghs 

of the RWT used in this study (Tolbest, Warrington UK), which has excitation and emission 

wavelengths at 556 and 580 nm respectively.  An optical arrangement was therefore 

proposed, using a Schott OG 570nm high pass filter (UQG Optics, Cambridge UK) and a 

VTB8440BH photodiode with peak sensitivity at 580 nm (PerkinElmer, Canada).  Three 

candidate Light Emitting Diodes (LEDs) with relatively high intensity at 556 nm but low 

intensity above 570 nm (so interference at the detection wavelength is minimised) were 

compared using a USB2000+ light spectrophotometer (OceanOptics, Florida): HLMP-K640 

(Hewlett Packard, USA); AGI-5N3-CUPG-A (Agilight, China); and L-7113VGC-H (Kingbright, 
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China).  Across the bandwidth of interest, the Kingbright LED was superior to the other two 

LEDs (Figure App.F.2), having higher excitation intensity and lower intensities near the 

detection range.  Relative to the intensity at the peak wavelength of 525 nm, the intensity at 

the wavelengths of 556  nm, 570 nm and 580 nm are 7 %, 0.5 % and 0 % respectively (at the 

operating voltage of 3.7 V).  However, the Kingbright has as intensity of 18000 mCd (very 

bright in comparison to most commercial LEDs) which is why it is able to outperform the 

alternative LEDs despite seemingly low relative intensities at the design wavelengths. 

The spectral output of the Kingbright LED and Turner Cyclops 7 light source were compared.  

At equivalent intensity the Kingbright LED produces more light in the excitation range than 

the Cyclops, but more interference in the detection range (Figure App.F.3).   

 

  

Figure App.F.1 Cyclops 7 submersible portable fluorimeter (Turner Instruments, California 

USA) used for measuring the concentration of Rhodamine Water Tracer at 

the outlet of the HSSF TWs 
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Figure App.F.2 Comparison of three commercially available LEDs across the 550 – 580nm 

spectrum using USB2000+ light spectrophotometer (OceanOptics, Florida).  

HLMP-K640 (Hewlett Packard, USA), AGI-5N3-CUPG-A (Agilight, China) and 

L-7113VGC-H (Kingbright, China). 

 

 

 

Figure App.F.3 Comparison of the light output from a L-7113VGC-H LED (Kingbright, China) 

and the light source inside the Cyclops 7 (Turner Instruments, California), 

across the 550 – 580 nm spectrum using the USB2000+ light 

spectrophotometer (OceanOptics, Florida). 
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It was not possible to find an LED that matched or exceeded the performance of the Cyclops 

for both excitation and detection; however, this was compensated for through the design of 

the opto-electronics arrangement.  Firstly, the light source and detector are arranged 

around the sample cuvette at right angles, which means that more diffuse than incident light 

is detected.  Most of the diffuse light will consist of the higher wavelength emissions from 

the fluorescing dye, so that the detected stray light from the LED will be minimal.  Secondly, 

background detection readings can be adjusted for via the electronics module.  The inverting 

amplifier stage is fitted with two 100k potentiometers, one of which is connected between 

the negative -5 V supply and op-amp PIN 1 and will allow the background detection to be 

reduced to 0 V.  The second potentiometer controls the magnitude of the negative feedback 

loop, attenuating the sensitivity of the machine and allowing the range of detectable 

concentrations to be altered.  Photodiode amplifier circuits are susceptible to a large 

amount of noise, such as electronic interference and mains hum.  The capacitor input filter 

module compensates for this by smoothing the signal over time so that the effects of noise 

on the recorded reading are minimised.  The arrangements of components used to make the 

four sub-circuits that comprise the opto-electronic module are shown in Figure App.F.4.  

The linearity of the optoelectronic circuit was analysed over a range of Rhodamine WT 

concentrations and it was found linearity decreases as the sensitivity of the circuit is 

increased.  The practical resolution of the machine would allow a useful detection range of 

0-100ppb across 4.5V, compared to the Turner Cyclops minimum detection range of 0-

10ppb across 4.5V (Figure App.F.5).  The circuit was replicated 20 times and fitted around a 

custom built cuvette tray, which allows the monitoring of flow through samples.  The sample 

fluid is drawn from different points within the TW aquatic environment using a 20 channel 

peristaltic pump (Watson-Marlow, Falmouth); each channel connected to a different opto-

electronic module.  The channel voltages are logged every 10 minutes using a CR800 

Datalogger and AM16/32A Relay Analogue Multiplexer (Campbell Scientific, Utah). 

All of the aforementioned components are mounted in a modified IP66 rated, weatherproof 

enclosure (Sarel, Italy) that can be wheeled onto the site of interest and supplied by either 

110 or 240 V onsite mains electricity.  Lengths of 20 m silicon tubing with an ID of 3 mm 

(Fisher Scientific, UK) are attached between different sampling points (in all three planes) 

and the fluorimeter channels.     
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Figure App.F.4 The four electronic submodules that form the fluorimeter circuit used in the 

multi-channel fluorimeter.  

  

 

 

To 

inverting 

amplifier 
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Figure App.F.5 RWT Concentration (ppb) versus analogue voltage output (mV) for the 

Cyclops 7 (Turner Designs, California) (grey shading) and bespoke 

Fluorimeter device (black shading).  Linearity is shown for three sensitivity 

settings on each device; high (circles), medium (triangles) and low (squares).  

Good linearity is achieved in all cases, although the Cyclops is a superior 

instrument to the developed device, with approximately 25 times superior 

resolution at high sensitivity 

 

RWT was typically does to the system as a 5-10 ml single-shot impulse of neat solution that 

was added to the inlet manifold, upstream of the wetland cell.  The experiment was left to 

run for 3-4 days to ensure dye that remained in the system longer than the average HRT was 

accounted for.  The peristaltic pump rotation was set to 50 rpm (about 55 % of maximum 

drive), which corresponds to a flowrate of 0.2 ml/s through each channel.  This was 

considered a compromise between minimising sample transfer time from bed to fluorimeter 

(about 12 minutes) and preventing the machine from malfunctioning mid-experiment 

because of excessive ware on peristaltic pump parts at high drive-rates.  The analysed 

sample is discharged directly onto the centre of the bed surface as it is considered the total 

discharge (0.003 l/s) is significantly small compared with average flow though these systems 

(2 l/s), to have negligible impact on downstream fluorescence measurements.  A schematic 

representation of the operation of one channel is given in Figure App.F.6 and Figure App.F.7 

shows a photograph of the interior of the multichannel fluorimeter at a TW in South 

Warwickshire.   
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Figure App.F.6 Schematic representation of one channel from the portable, multichannel 

fluorimeter, showing the major opto-electronic and hydraulic modules 

involved in the design.  Reproduced from Knowles et al. (2010). 

  

   

 

Figure App.F.7 The multi-channel, in-situ fluorimeter installed at a HSSF TW in the UK 

showing the arrangement of components in the weather-proof enclosure.  

Reproduced from Knowles et al. (2010). 
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Appendix F: Results of FEA tracer test and fit using analytical equation 

 CFT = 0.55 CFT = 0.60 

x 

(m) 

FEA Solution 

(m) 

Analytical Fit 

(m) 

Square 

Error 

FEA Solution 

(m) 

Analytical Fit 

(m) 

Square 

Error 

0.0 0.423 0.423 4.0E-08 0.435 0.435 3.1E-22 

0.5 0.423 0.422 2.4E-07 0.435 0.434 3.5E-07 

1.0 0.423 0.422 5.4E-07 0.435 0.434 1.4E-06 

1.5 0.422 0.422 4.2E-07 0.434 0.433 1.7E-06 

2.0 0.421 0.421 3.8E-08 0.432 0.432 6.5E-08 

2.5 0.419 0.419 3.1E-10 0.430 0.430 3.6E-07 

3.0 0.418 0.418 2.5E-08 0.427 0.428 1.1E-06 

3.5 0.416 0.416 1.5E-07 0.425 0.426 1.9E-06 

4.0 0.415 0.414 3.9E-07 0.423 0.424 2.4E-06 

4.5 0.414 0.413 6.8E-07 0.421 0.423 2.5E-06 

5.0 0.413 0.412 1.1E-06 0.419 0.421 2.5E-06 

5.5 0.412 0.411 1.5E-06 0.418 0.420 2.4E-06 

6.0 0.411 0.410 1.9E-06 0.416 0.418 2.0E-06 

6.5 0.410 0.409 2.3E-06 0.415 0.416 1.6E-06 

7.0 0.409 0.408 2.7E-06 0.414 0.415 1.3E-06 

7.5 0.409 0.407 3.0E-06 0.413 0.414 8.6E-07 

8.0 0.408 0.406 3.2E-06 0.412 0.412 5.4E-07 

8.5 0.407 0.405 3.4E-06 0.411 0.411 3.2E-07 

9.0 0.407 0.405 3.4E-06 0.410 0.410 1.3E-07 

9.5 0.406 0.404 3.4E-06 0.409 0.409 3.5E-08 

10.0 0.405 0.404 3.3E-06 0.408 0.408 3.5E-09 

10.5 0.405 0.403 3.0E-06 0.407 0.407 3.8E-09 

11.0 0.404 0.403 2.7E-06 0.406 0.406 2.0E-08 

11.5 0.404 0.402 2.2E-06 0.405 0.405 4.3E-08 

12.0 0.403 0.402 1.8E-06 0.405 0.404 6.2E-08 

12.5 0.403 0.401 1.4E-06 0.404 0.404 6.9E-08 

13.0 0.402 0.401 9.4E-07 0.403 0.403 6.6E-08 

13.5 0.402 0.401 5.6E-07 0.402 0.402 5.2E-08 

14.0 0.401 0.401 2.9E-07 0.402 0.401 3.5E-08 

14.5 0.401 0.400 7.9E-08 0.401 0.401 1.2E-08 

15.0 0.400 0.400 0.0E+00 0.400 0.400 0.0E+00 
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 CFT = 0.65 CFT = 0.70 

x 

(m) 

FEA Solution 

(m) 

Analytical Fit 

(m) 

Square 

Error 

FEA Solution 

(m) 

Analytical Fit 

(m) 

Square 

Error 

0.0 0.456 0.456 2.0E-18 0.474 0.483 8.5E-05 

0.5 0.456 0.455 9.6E-07 0.474 0.481 5.9E-05 

1.0 0.456 0.454 3.8E-06 0.474 0.479 3.4E-05 

1.5 0.455 0.453 5.8E-06 0.474 0.478 1.9E-05 

2.0 0.453 0.452 2.7E-06 0.474 0.476 6.2E-06 

2.5 0.449 0.450 8.8E-07 0.474 0.474 4.5E-07 

3.0 0.445 0.448 7.6E-06 0.473 0.473 5.8E-07 

3.5 0.441 0.446 2.0E-05 0.472 0.471 1.5E-06 

4.0 0.438 0.443 3.3E-05 0.468 0.465 5.3E-06 

4.5 0.435 0.441 4.3E-05 0.463 0.463 1.0E-07 

5.0 0.432 0.439 5.3E-05 0.458 0.460 4.2E-06 

5.5 0.429 0.437 5.9E-05 0.453 0.457 1.6E-05 

6.0 0.427 0.435 6.3E-05 0.448 0.454 4.0E-05 

6.5 0.424 0.432 6.4E-05 0.443 0.451 7.4E-05 

7.0 0.423 0.430 6.3E-05 0.438 0.449 1.1E-04 

7.5 0.421 0.428 6.0E-05 0.435 0.445 1.1E-04 

8.0 0.419 0.426 5.5E-05 0.432 0.442 1.1E-04 

8.5 0.417 0.424 5.0E-05 0.430 0.440 1.0E-04 

9.0 0.415 0.422 4.4E-05 0.427 0.437 9.5E-05 

9.5 0.414 0.420 3.8E-05 0.424 0.433 8.9E-05 

10.0 0.413 0.418 3.2E-05 0.422 0.431 8.4E-05 

10.5 0.411 0.416 2.6E-05 0.419 0.428 7.8E-05 

11.0 0.410 0.415 2.2E-05 0.416 0.425 7.3E-05 

11.5 0.408 0.413 1.7E-05 0.414 0.422 6.7E-05 

12.0 0.407 0.411 1.2E-05 0.411 0.419 5.0E-05 

12.5 0.406 0.409 8.8E-06 0.410 0.416 3.6E-05 

13.0 0.405 0.407 5.6E-06 0.408 0.413 2.3E-05 

13.5 0.403 0.405 3.0E-06 0.406 0.409 1.3E-05 

14.0 0.402 0.404 1.5E-06 0.404 0.407 6.4E-06 

14.5 0.401 0.402 3.5E-07 0.402 0.403 1.6E-06 

15.0 0.400 0.400 0.0E+00 0.400 0.400 0.0E+00 
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 CFT = 0.75 CFT = 0.80 

x 

(m) 

FEA Solution 

(m) 

Analytical Fit 

(m) 

Square 

Error 

FEA Solution 

(m) 

Analytical Fit 

(m) 

Square 

Error 

0.0 0.527 0.530 8.3E-06 0.570 0.580 1.0E-04 

0.5 0.527 0.528 1.4E-06 0.570 0.578 6.7E-05 

1.0 0.527 0.526 6.4E-07 0.570 0.576 3.5E-05 

1.5 0.527 0.524 6.2E-06 0.570 0.574 1.7E-05 

2.0 0.527 0.522 2.0E-05 0.570 0.572 3.7E-06 

2.5 0.527 0.520 4.1E-05 0.570 0.569 3.3E-08 

3.0 0.526 0.518 6.4E-05 0.569 0.567 3.8E-06 

3.5 0.525 0.516 8.2E-05 0.569 0.565 1.5E-05 

4.0 0.522 0.514 6.6E-05 0.568 0.563 2.7E-05 

4.5 0.518 0.513 3.2E-05 0.566 0.561 3.3E-05 

5.0 0.511 0.510 6.2E-07 0.564 0.558 3.3E-05 

5.5 0.504 0.504 3.6E-08 0.561 0.556 2.7E-05 

6.0 0.493 0.496 8.9E-06 0.558 0.554 1.6E-05 

6.5 0.482 0.489 4.7E-05 0.554 0.552 4.4E-06 

7.0 0.472 0.482 1.1E-04 0.549 0.549 8.8E-08 

7.5 0.466 0.475 9.0E-05 0.543 0.532 1.2E-04 

8.0 0.460 0.469 6.9E-05 0.532 0.524 6.3E-05 

8.5 0.456 0.463 5.5E-05 0.521 0.517 1.6E-05 

9.0 0.450 0.457 4.4E-05 0.508 0.508 2.8E-07 

9.5 0.445 0.451 3.7E-05 0.495 0.500 2.3E-05 

10.0 0.440 0.446 3.4E-05 0.484 0.492 6.8E-05 

10.5 0.434 0.440 3.2E-05 0.472 0.484 1.4E-04 

11.0 0.430 0.435 3.3E-05 0.461 0.476 2.3E-04 

11.5 0.424 0.430 3.5E-05 0.448 0.467 3.4E-04 

12.0 0.421 0.425 2.2E-05 0.441 0.457 2.7E-04 

12.5 0.417 0.421 1.3E-05 0.435 0.449 2.1E-04 

13.0 0.414 0.416 6.2E-06 0.428 0.440 1.4E-04 

13.5 0.410 0.412 2.5E-06 0.420 0.430 8.5E-05 

14.0 0.407 0.408 9.3E-07 0.414 0.421 4.4E-05 

14.5 0.404 0.404 1.6E-07 0.407 0.411 1.2E-05 

15.0 0.400 0.400 0.0E+00 0.400 0.400 0.0E+00 
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 CFT = 0.85 CFT = 0.90 

x 

(m) 

FEA Solution 

(m) 

Analytical Fit 

(m) 

Square 

Error 

FEA Solution 

(m) 

Analytical Fit 

(m) 

Square 

Error 

0.0 0.658 0.652 4.0E-05 0.689 0.689 2.3E-17 

0.5 0.658 0.649 7.3E-05 0.689 0.687 4.0E-06 

1.0 0.658 0.647 1.2E-04 0.689 0.685 1.9E-05 

1.5 0.657 0.644 1.6E-04 0.689 0.683 3.9E-05 

2.0 0.656 0.642 2.2E-04 0.689 0.680 7.1E-05 

2.5 0.655 0.639 2.7E-04 0.688 0.678 1.1E-04 

3.0 0.654 0.637 3.1E-04 0.688 0.676 1.5E-04 

3.5 0.652 0.634 3.5E-04 0.687 0.673 1.9E-04 

4.0 0.650 0.631 3.6E-04 0.686 0.671 2.4E-04 

4.5 0.648 0.629 3.6E-04 0.686 0.669 2.8E-04 

5.0 0.644 0.626 3.5E-04 0.684 0.666 3.3E-04 

5.5 0.641 0.623 3.1E-04 0.683 0.664 3.7E-04 

6.0 0.636 0.621 2.5E-04 0.682 0.662 4.1E-04 

6.5 0.630 0.618 1.5E-04 0.680 0.659 4.4E-04 

7.0 0.623 0.615 5.7E-05 0.678 0.657 4.6E-04 

7.5 0.612 0.612 4.2E-08 0.676 0.654 4.6E-04 

8.0 0.598 0.582 2.8E-04 0.673 0.652 4.4E-04 

8.5 0.584 0.572 1.5E-04 0.670 0.650 4.0E-04 

9.0 0.563 0.560 1.2E-05 0.666 0.647 3.3E-04 

9.5 0.542 0.548 3.4E-05 0.660 0.645 2.4E-04 

10.0 0.525 0.537 1.5E-04 0.655 0.643 1.6E-04 

10.5 0.507 0.524 3.0E-04 0.647 0.640 4.6E-05 

11.0 0.493 0.513 4.0E-04 0.637 0.638 1.2E-07 

11.5 0.478 0.500 4.8E-04 0.623 0.615 7.1E-05 

12.0 0.464 0.486 4.9E-04 0.603 0.587 2.6E-04 

12.5 0.453 0.474 4.5E-04 0.581 0.563 3.4E-04 

13.0 0.441 0.460 3.6E-04 0.548 0.533 2.3E-04 

13.5 0.430 0.445 2.4E-04 0.510 0.502 6.3E-05 

14.0 0.421 0.432 1.3E-04 0.476 0.473 8.8E-06 

14.5 0.410 0.416 3.6E-05 0.438 0.438 2.4E-08 

15.0 0.400 0.400 0.0E+00 0.400 0.400 0.0E+00 
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Appendix G: Results of FEA tracer test and fit using analytical equation 

 mg/L of tracer by CFT 

 
0.55 0.60 0.65 

t (d) n-TIS FEA n-TIS FEA n-TIS FEA 

0.00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.38E-21 

0.05 5.54E-08 9.30E-09 6.95E-08 9.90E-09 1.08E-07 4.32E-08 

0.10 2.29E-07 2.39E-07 2.47E-07 2.46E-07 2.97E-07 2.90E-07 

0.15 3.03E-07 3.10E-07 3.03E-07 3.11E-07 3.17E-07 3.17E-07 

0.20 2.31E-07 1.91E-07 2.17E-07 1.90E-07 2.04E-07 1.68E-07 

0.25 1.42E-07 1.14E-07 1.30E-07 1.12E-07 1.14E-07 8.01E-08 

0.30 7.55E-08 6.05E-08 6.77E-08 6.12E-08 5.69E-08 4.22E-08 

0.35 2.98E-08 2.52E-08 2.63E-08 2.48E-08 2.11E-08 2.25E-08 

0.40 1.30E-08 1.80E-08 1.14E-08 1.87E-08 8.92E-09 1.49E-08 

0.45 5.41E-09 1.24E-08 4.71E-09 1.27E-08 3.60E-09 7.61E-09 

0.50 1.69E-09 6.12E-09 1.47E-09 6.48E-09 1.10E-09 5.62E-09 

0.55 6.42E-10 4.87E-09 5.60E-10 5.18E-09 4.13E-10 4.02E-09 

0.60 2.37E-10 3.63E-09 2.07E-10 3.88E-09 1.51E-10 2.75E-09 

0.65 6.58E-11 2.44E-09 5.79E-11 2.74E-09 4.19E-11 2.15E-09 

0.70 2.31E-11 2.02E-09 2.04E-11 2.32E-09 1.47E-11 1.67E-09 

0.75 7.96E-12 1.61E-09 7.10E-12 1.90E-09 5.09E-12 1.32E-09 

0.80 2.06E-12 1.24E-09 1.85E-12 1.54E-09 1.33E-12 1.03E-09 

0.85 6.87E-13 1.05E-09 6.25E-13 1.33E-09 4.47E-13 8.03E-10 

0.90 2.27E-13 8.51E-10 2.08E-13 1.12E-09 1.49E-13 6.64E-10 

0.95 5.58E-14 6.87E-10 5.19E-14 9.48E-10 3.74E-14 5.19E-10 

1.00 1.80E-14 5.79E-10 1.69E-14 8.21E-10 1.22E-14 4.06E-10 

1.05 5.75E-15 4.70E-10 5.48E-15 6.97E-10 3.97E-15 3.45E-10 

1.10 1.37E-15 3.64E-10 1.32E-15 5.96E-10 9.66E-16 2.68E-10 

1.15 4.30E-16 2.93E-10 4.22E-16 5.16E-10 3.10E-16 2.15E-10 

1.20 1.34E-16 2.34E-10 1.34E-16 4.38E-10 9.87E-17 1.81E-10 

1.25 3.11E-17 1.73E-10 3.15E-17 3.58E-10 2.35E-17 1.40E-10 

1.30 9.59E-18 1.35E-10 9.85E-18 3.02E-10 7.40E-18 1.13E-10 
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 mg/L of tracer by CFT 

 0.70 0.75 0.80 

t (d) n-TIS FEA n-TIS FEA n-TIS FEA 

0.00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

0.05 9.59E-08 1.57E-08 1.00E-07 9.31E-09 2.41E-07 2.14E-07 

0.10 3.62E-07 3.55E-07 3.90E-07 4.12E-07 4.30E-07 4.19E-07 

0.15 3.38E-07 3.17E-07 4.16E-07 3.63E-07 1.54E-07 1.52E-07 

0.20 1.44E-07 1.21E-07 2.21E-07 1.76E-07 1.75E-08 5.59E-08 

0.25 5.23E-08 4.76E-08 9.84E-08 8.70E-08 2.10E-09 3.41E-08 

0.30 1.59E-08 2.14E-08 3.71E-08 4.09E-08 2.06E-10 2.62E-08 

0.35 3.03E-09 8.83E-09 9.34E-09 2.52E-08 9.25E-12 2.18E-08 

0.40 7.27E-10 4.50E-09 2.82E-09 1.28E-08 6.87E-13 1.86E-08 

0.45 1.63E-10 2.97E-09 8.01E-10 8.37E-09 4.73E-14 1.65E-08 

0.50 2.33E-11 1.06E-09 1.55E-10 5.14E-09 1.53E-15 1.39E-08 

0.55 4.70E-12 9.01E-10 3.97E-11 2.69E-09 9.27E-17 1.20E-08 

0.60 9.12E-13 8.55E-10 9.87E-12 2.18E-09 5.40E-18 1.06E-08 

0.65 1.13E-13 7.71E-10 1.67E-12 1.53E-09 1.47E-19 8.70E-09 

0.70 2.06E-14 5.76E-10 3.91E-13 1.11E-09 8.00E-21 7.55E-09 

0.75 3.68E-15 3.80E-10 9.00E-14 8.86E-10 4.23E-22 6.54E-09 

0.80 4.17E-16 2.14E-10 1.40E-14 6.09E-10 1.04E-23 5.26E-09 

0.85 7.17E-17 2.02E-10 3.10E-15 4.69E-10 5.27E-25 4.43E-09 

0.90 1.21E-17 1.90E-10 6.78E-16 3.91E-10 2.62E-26 3.69E-09 

0.95 1.29E-18 1.62E-10 9.97E-17 2.94E-10 6.03E-28 2.90E-09 

1.00 2.13E-19 1.32E-10 2.13E-17 2.50E-10 2.90E-29 2.36E-09 

1.05 3.47E-20 1.01E-10 4.49E-18 2.14E-10 1.38E-30 1.91E-09 

1.10 3.55E-21 8.47E-11 6.34E-19 1.70E-10 3.02E-32 1.45E-09 

1.15 5.66E-22 7.75E-11 1.31E-19 1.52E-10 1.40E-33 1.15E-09 

1.20 8.97E-23 7.03E-11 2.70E-20 1.33E-10 6.47E-35 9.08E-10 

1.25 8.87E-24 6.17E-11 3.70E-21 1.12E-10 1.36E-36 6.69E-10 

1.30 1.38E-24 5.49E-11 7.51E-22 1.02E-10 6.16E-38 5.15E-10 
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 mg/L of tracer by CFT 

 0.85 0.90 

t (d) n-TIS FEA n-TIS FEA 

0.00 0.00E+00 -2.80E-28 0.00E+00 0.00E+00 

0.05 2.97E-07 2.37E-07 5.44E-07 2.70E-07 

0.10 4.48E-07 4.36E-07 5.21E-07 3.25E-07 

0.15 1.24E-07 1.41E-07 6.02E-08 1.03E-07 

0.20 9.70E-09 5.06E-08 1.26E-09 5.12E-08 

0.25 8.51E-10 3.01E-08 3.50E-11 3.20E-08 

0.30 6.01E-11 2.31E-08 7.40E-13 2.16E-08 

0.35 1.77E-12 1.95E-08 4.59E-15 1.54E-08 

0.40 9.34E-14 1.67E-08 6.76E-17 1.05E-08 

0.45 4.54E-15 1.48E-08 8.98E-19 8.73E-09 

0.50 9.47E-17 1.25E-08 3.62E-21 6.52E-09 

0.55 4.04E-18 1.08E-08 4.08E-23 5.02E-09 

0.60 1.65E-19 9.48E-09 4.36E-25 4.28E-09 

0.65 2.88E-21 7.89E-09 1.41E-27 3.35E-09 

0.70 1.09E-22 6.77E-09 1.37E-29 2.79E-09 

0.75 4.02E-24 5.91E-09 1.29E-31 2.41E-09 

0.80 6.31E-26 4.83E-09 3.65E-34 1.94E-09 

0.85 2.22E-27 4.16E-09 3.24E-36 1.69E-09 

0.90 7.66E-29 3.60E-09 2.81E-38 1.48E-09 

0.95 1.12E-30 2.90E-09 7.26E-41 1.22E-09 

1.00 3.73E-32 2.53E-09 6.04E-43 1.10E-09 

1.05 1.23E-33 2.17E-09 4.95E-45 9.77E-10 

1.10 1.70E-35 1.75E-09 1.20E-47 8.35E-10 

1.15 5.47E-37 1.53E-09 9.50E-50 7.58E-10 

1.20 1.74E-38 1.31E-09 7.46E-52 6.82E-10 

1.25 2.32E-40 1.07E-09 1.72E-54 5.99E-10 

1.30 7.25E-42 9.35E-10 1.32E-56 5.49E-10 

 

 

  


