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ABSTRACT: Transitions between metastable conformations of a dipeptide are
investigated using classical molecular dynamics simulation with explicit water molecules.
The distribution of the surrounding water at different moments before the transitions
and the dynamical correlations of water with the peptide’s configurational motions
indicate that the water molecules represent an integral part of the molecular system
during the conformational changes, in contrast with the metastable periods when water
and peptide dynamics are essentially decoupled.

SECTION: Liquids; Chemical and Dynamical Processes in Solution

Recent investigations of protein dynamics indicate that
water plays the major role in protein motion. Indeed,

there is a large body of experimental and simulation
evidence1−9 showing a close connection between the water
dynamics and the protein conformations. Frauenfelder and
colleagues have experimentally shown that protein-dominant
conformational motions are slaved by the hydration shell and
the bulk solvent,10 whereas the protein molecule itself provides
an “active matrix” necessary for guiding the water’s dynamics
toward biologically relevant conformational changes. The
change in water dynamics at the shell of up to almost a
dozen water molecule diameters around proteins is found in ref
11. Very recently, a neutron scattering study demonstrated that
the interfacial (hydration) water is the main “driving force” of
protein dynamics governing both local and large scale motions
in proteins.12 Finally, the critical role of solvating water has
been demonstrated for an important applied field of protein−
ligand binding.13

Despite extensive research on protein dynamics, the
investigations of elementary conformational motions are rare.
The knowledge of specific molecular mechanisms, including the
role of water molecules that drive the conformational moves, is
highly demanded because these elementary conformational
changes ultimately define all rearrangements of proteins as a
whole.
In this work, we analyze molecular dynamics (MD)

simulated peptide focusing on the moments of elementary
conformational changes including explicit water molecules. We
show that water indeed drives the changes and we elucidate the
specific mechanisms of this phenomenon.
We study a zwitterion L-alanyl-L-alanine, Figure 1. This is a

very convenient model because (i) the conformation of the
molecule is completely defined by the two dihedral angles ψ
and ϕ; (ii) in water the conformation ψ ≈ 2.5, ϕ ≈ −2.2
radians is prevalent, however, very rare transitions to two other
metastable conformations (ψ ≈ −1, ϕ ≈ −2.2 and ψ ≈ 2.5, ϕ ≈
1) take place, and (iii) the transitions only happen in water

because in vacuum the negatively charged COO− group
strongly interacts with the positively charged NH3

+ group,
excluding all conformations except the one with the groups at
the minimal distance from each other.
Two different MD models of the system (see the Supporting

Information) have been studied. One is the united atom
forcefield GROMOS,14 the other is OPLS (Optimized
Potentials for Liquid Simulations).15 These are among the
most popular MD models for peptides and proteins. They both
show the same results in our investigations despite significantly
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Figure 1. Top: L-alanyl-L-alanine zwitterion (GROMOS forcefield, see
the Supporting Information); left: normalized probabilities of
conformations (Ramachandran plot) formed by a 2 μs trajectory;
right: same probabilities emphasizing the presence of two minor
conformations and the partitioning for symbolization. (Similar graphs
for the OPLS forcefield are in the Supporting Information.)
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different representation of atoms and their interactions for the
peptide and water molecules.
An important conceptual point is how to define the

conformational states and the moments of transitions between
them. Because we are interested in the dynamical properties, we
define the states as dynamically metastable states, that is, the
conformations in which the molecule spends significantly more
time compared with the time it spends for transitions between
the conformations. This is reflected in the probabilities of the
molecule’s conformations calculated as the probability of
finding an MD trajectory point with specific values of ψ and
ϕ for the whole MD simulation time. There are three well-
separated metastable states, clearly visible in the space of
conformation probabilities, Figure 1. These allow one to
introduce a simple natural discretization of the conformations,
which we designate as ‘A’, ‘B’, or ‘C’.
The main goal of this work is to investigate the probability

distributions of water atoms corresponding to these conforma-
tional states of the peptide. The time evolution of the water
distributions during the conformational transitions between the
states reflects the role of water in conformational rearrange-
ments.
Having the conformational states A, B, and C defined, it is

possible to identify the moments of transitions between them.
The described discretization defines boundaries of the states.
Thus, naively, one could define the moments of transitions
between the states when the trajectory crosses the boundaries.
However, the boundaries delineate the probabilities of
conformations averaged over the whole trajectory. Individual
pieces of the trajectory do not go directly from one state to
another; instead, they wind in a complicated manner, often
crossing the boundaries many times before settling in a new
conformation. This results in “flickering” states when they form
sequences of very short-lived alternating states, such as
“...ABABAB...”, which clearly do not satisfy the desired property
of metastability. Sometimes after several such crossings, it
returns to the original state without settling in the new state for
long enough time. (This produces a well-known “recrossing”
problem in chemical kinetics.16−18)
The problem can be solved by increasing the time step

between state observations such that the step becomes larger
than the time required for the transition to complete. Thus, by
discretizing time with a step Δt the continuous MD trajectory is
converted into a string of symbols {si}, i = 0...N, where si equals
‘A’, ‘B’, or ‘C’ depending on where the trajectory point falls at
the time moment ti and N is the number of such steps in the
simulation. This sequence of symbols can be analyzed using a
statistical model that, in addition to the static probabilities of
the conformations, takes into account their dynamics. Such a
model that has become very popular recently is the Markov
State Model (MSM).19 The model specifies the probabilities of
each of the discrete states as well as the probabilities of the
transitions between them. The MSM transition matrix can be
calculated from the MD trajectory by counting the state
changes. For the studied molecule (the GROMOS forcefield)
and the time step Δt = 6 ps it is

A B C
A
B
C

0.996 0.003 0.001
0.261 0.737 0.002
0.097 0.002 0.901

where the value at row i and column j gives the probability of
going to state j being currently at state i. The probabilities of
the states themselves are P(A) = 0.9847, P(B) = 0.0074, and
P(C) = 0.0079. MSM provides many useful quantities
describing the system.19 In particular, it tells that the transition
A → B happens once in 3.1 ns and A → C once in 9.1 ns on
average.
The moments of the A → B transitions within the MSM

framework are the values of ti at which si is equal to B while
being equal to A at the previous time moment ti−1. The time
precision of identifying the transitions is Δt. The MSM model
is valid only for relatively large time steps, which follows from
the requirement for the transitions to be history-independent
(Markovian, that is, statistically uncorrelated). This require-
ment ensures that “flickering” is hidden from the analysis but at
the same time it excludes the information about the actual
process of transition. For the studied peptide, the minimal valid
time step is ∼6 ps. This value is of the same order as the period
of fluctuations within each conformational state and, most
importantly, this is approximately the duration of the process of
the trajectory passing from state to state. Therefore, the MSM
has to be augmented to be able to describe the dynamics at
significantly shorter time steps.
For this purpose, we build a variant of the hidden Markov

model using the same conformational states of the peptide.
Specifically, we use the “ε-machine” by Crutchfield et al.20,21

(See ref 22 for recent developments in the field.) Instead of the
conformational states si themselves we consider the l-long
sequences of states si⃖ ≡ {si−l+1...si−2si−1si}. The advantage of such a
description is that for a small time step even if the original
states are correlated over several steps, for long enough
sequences si⃖ these new states (the sequences) are uncorrelated.
We, therefore, can build a Markov model on these new states.
The resulting hidden Markov states can be classified

according to their “lifetime”. For example, a piece of symbolic
trajectory “...AAAAAAABBBBBBB...” would produce a long
repetition of the two-symbol state si⃖ ≡ {AA}, i designating the
time moments ti, followed by one state si⃖ ≡ {AB}, and then a
long repetition of the state si⃖ ≡{BB}. {AA} and {BB} are two
hidden Markov states that describe metastable conformations,
whereas {AB} is a short-lived state characterizing the details of
the transition. More complex scenarios and the details of the
method are given in the Supporting Information.
Using our hidden Markov model the time step can be

reduced to 0.3 ps, providing a tool to investigate what happens
at different moments before the transition including the details
of the process of transition. For this, we collect the time frames
at specific times before the transitions, Figure 2.
We calculate the distribution of oxygen (hydrogen) atoms in

space by averaging over the selected time frames. The
calculated field f(x, t) gives the probability of finding an
oxygen (hydrogen) atom in a small volume around the location
x at time t in advance of the transition. This probability equals
the number of atoms in the small volume divided by the total
number of atoms in the system. If the atoms were distributed
evenly, then this number would be equal to the density of
oxygen (hydrogen) divided by the atomic mass. The advantage
of such probabilistic representation is that the focus is shifted
away from the physical density. The calculated quantity is not
density, as the latter is obtained by dividing the number of
atoms (times their mass) by the volume. The structure of water
is defined by the hydrogen bonds network, which implies
approximately the same distance between water molecules

The Journal of Physical Chemistry Letters Letter

dx.doi.org/10.1021/jz400051p | J. Phys. Chem. Lett. 2013, 4, 815−819816



everywhere (and, hence, the same local density), Figure 2,
middle left. The probabilities, however, can be significantly
different at different locations, indicating the preferred positions
of the atoms, Figure 2, middle right. (A correct definition of
local density obtained from atomistic representation of matter
should be done through a function ρq(q;x,t) = Σi = 1

N mδ(qi(t) −
x), where q ≡ {q1,...,qN} is the set of atomistic coordinates, N is
the number of atoms, m is the atom mass, x is the physical 3D
space coordinate, t is time, and δ is the delta function. ρq is a
function of the atom coordinates q that parametrically depends
on x and t. The local density at time t is obtained by averaging
over a macroscopically large volume Δx: ρ(x,t) = ⟨ρq(q;x,t)⟩Δx.
Δx defines the spatial scale. The temporal scale can also be
defined by additional averaging over a time period Δt.)
The transition from conformation A to conformation B

corresponds to a ∼180° flip of the NH3 group (the right-hand
side of the molecule in Figure 2, middle), while during the A→
C transition, the COO group rotates in similar way. Both ends
of the molecule possess charges, negative on the COO and
positive on the NH3 sites, which lead to relatively strong
attachment of water molecules at the ends. Hydrogen-bonded
water molecules to the oxygens and to the hydrogens form the
areas of high probabilities of water atoms (Figure 2, middle),
indicating that, on average, it is more probable to find water
atoms at those locations.
This is an intuitively clear result. More interesting is the

moment just before (1−10 ps) the transitions. Water
rearranges around the peptide at these times, however, we
would like to stress that the rearrangement has a collective,

relatively slow (compared with the motion of individual atoms)
character. Water does not “give way” for the peptide atoms,
rather the whole structure of surrounding water changes
concurrently with the change of the average peptide
conformation. There is no “dense” water around the peptide.
The high probability areas show that water tends to stay at
specific locations around the peptide, not that the local density
(the number of atoms per unit volume) is higher. These areas
indicate the peaks of probability. The broader the peaks the
more even the distribution and vice versa; narrow peaks signify
the preference of specific locations.
For quantifying this effect, an analogy with 1D and 2D

distributions is useful (Figure 2, bottom). For the 1D
distribution, the width of the peak at different levels of
probability gives the measure of the tendency of atoms to be at
the high probability locations. For the 2D case, the width
becomes the areas of 2D regions for which the value of
probability is above the chosen level, Figure 2, bottom. Finally,
the 3D distribution, as in our case with molecules, can be
characterized by the volumes enclosed by the isosurfaces
corresponding to different levels of probability.
We have found that these volumes are significantly reduced

before the transition at all levels of probability high enough to
distinguish the peaks of probability around the peptide, Figure
3, left. The results for the two studied models and two
transitions A → B and A → C are shown in Figure 3, right.
During the time period when the rotation of the NH3 (COO)
group is most significant, from ∼10 to ∼1 ps, the size of the
high probability areas of water is significantly reduced. This
indicates that during these periods water tends to stay at more
specific locations around the peptide. In other words, the flow

Figure 2. Top: collecting the time frames for the “time before
transition” statistics; the dots on the “time” axes are the transition
moments; middle, left: snapshot of the molecular system showing
approximately two to three layers of water molecules hydrogen
bonded with each other and the peptide; middle, right: distribution of
oxygen (red, solid) and hydrogen (blue, mesh) atoms averages over
the whole simulation (the isosurfaces at the probability value 0.047
(the value in the assumption of completely even distribution is 0.031)
for the GROMOS model are shown); bottom: 1D and 2D probability
distributions illustrating the narrowing of the peak for high probability
of atoms; the red, narrower distribution describes the situation when
the atoms have more specific locations rather than being more evenly
distributed, as characterized by the blue distribution (see text).

Figure 3. Left: “time before transition” dependence of the volume of
the high probability areas normalized to the average values, Δv = ((v −
⟨v⟩)/⟨v⟩), where v is the absolute volume (see text) and ⟨v⟩ is the
volume average over the whole simulation; the isosurface areas at the
probability levels of (from top to bottom) 0.013, 0.041, 0.046, 0.051,
and 0.059 are shown; right: the same for oxygen (red) and hydrogen
(blue) for the transition from state A to state B, GROMOS model
(top), A → C transition, GROMOS model (middle), and A → C
transition, OPLS model (bottom); the isosurface areas at the
probability level 0.055 are shown.
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of the MD trajectories is concentrated in more narrow
“channels” during the transitions.
The most informative time interval before the transition, 1−

10 ps, is of the same order as the smallest possible time step for
the conventional MSM (6 ps). Thus, the use of our hidden
Markov model is critically important for the analysis of the
details of the transitions. Figure 3, right, shows that the effect is
very similar for the two studied conformational transitions and
both MD models.
The overall changes of the water structure proceed

concurrently with the change of the dihedral angle, reflecting
the conformational transition. We can quantify the degree of
the dependence between the high-probability water areas and
the dihedral angles of the peptide by calculating the dynamical
correlations between them. This is done using the linear
stochastic estimation (LSE) technique that has a variety of use
in fluid dynamics from the visualization of coherent structures
in turbulent flows23 to the identification of noise sources in
turbulent jets.24

In the framework of LSE, the probability field f(x,t) is
decomposed into a linear combination of two parts: correlated
and uncorrelated with the peptide’s dihedral angles. To extract
the correlated field, we first converted the f(x,t) variable to time
fluctuations by subtracting the time average: f ′(x,t) = f(x,t) −
⟨f(x,t)⟩t. Then, by considering these water fluctuations as a
stochastic signal of time, a linear stochastic fit fc′(x,t) = α(x)ϕ(t)
+ β(x)ψ(t) to f ′(x,t) was computed, where ϕ(t), ψ(t) are the
mean angles at time t (that is, stochastic variables) and α and β
are constants. The stochastic fit is found by minimizing the
statistical error ⟨f ′ − fc′⟩t.25 (See the Supporting Information for
details.) fc′(x,t) represents the water fluctuations correlated with
the peptide angles, and α and β are the coefficients of the
correlations.
To find the coefficients, we solved a system of linear

equations for α and β for each point of the water volume. These
linear equations, which are obtained from ⟨f ′(x,t)ϕ(t)⟩ =
⟨{αϕ(t) + βψ(t)}ϕ(t)⟩ (and similarly for ψ(t)), are

α ϕ ϕ β ψ ϕ ϕ⟨ ⟩ + ⟨ ⟩ = ⟨ ′ ⟩t t t t f t tx( ) ( ) ( ) ( ) ( , ) ( )

α ϕ ψ β ψ ψ ψ⟨ ⟩ + ⟨ ⟩ = ⟨ ′ ⟩t t t t f t tx( ) ( ) ( ) ( ) ( , ) ( )

The derivations are given in the Supporting Information.
The probability fluctuations field f ′(x,t) and its part

correlated with the peptide’s conformation fc′(x,t) are shown
in Figure 4 for several representative time moments for the
GROMOS model.
The water fluctuations (right column) are significantly

stronger just before the transition (0.8 ps) compared with the
stable period (∼200 ps). Very surprisingly, the conditionally
averaged water fluctuations (left column) are virtually
uncorrelated with the peptide at all times except for the short
period immediately before the transition. (Some correlations
are also noticeable as early as ∼5 ps before the transition, which
agrees with the onset of the probability decrease in Figure 3.)
Interestingly, at 0 ps, when the transition process is complete,
the water probability becomes uncorrelated with the peptide,
similar to the stable periods. However, the fluctuations of it
remain strong, only slightly weaker than at 0.8 ps. We explain
this effect by the large inertia of the water shell that needs
relatively long time for the fluctuations to settle down. The fact
that these post-transition water fluctuations are decoupled from
the peptide emphasizes the discovered phenomenon of strong

water−peptide interactions precisely during the transition
process.
We have found that for the OPLS model these results are

very similar for the A → C transition. The A → B transition is
poorly resolved for this model; therefore, the direct comparison
with the GROMOS model is impossible.
In summary, we have found that (i) from 10 to 1 ps before

the transition, when the dihedral angles change the most, the
water molecules tend to be located at more specific positions
around the peptide compared with more uniform distribution
at other times; (ii) during the transition, the dynamics of water
distribution becomes highly correlated with the dynamics of the
dihedral angles; and (iii) these correlations are completely
absent during the stable conformation periods.
We conclude that water and the peptide behave as an integral

dynamical system. During the conformational transition the
peptide and the surrounding water undergo transitions
together. This is in contrast with the metastable periods

Figure 4. xy cross-section (the value of the z coordinate is chosen such
that the section plane passes through the peptides’s center of mass) of
the probability fluctuation field f ′(x,t) (right) and its part correlated
with the peptide’s conformation fc′(x,t) (left) for oxygen. The time
before transition is, from top to bottom, 200, 0.8, and 0 ps. The scale is
restricted to the −0.009 to 0.009 interval for clarity; the maxima of the
peaks reach the values of 0.045 and −0.041. (The results for the
GROMOS model are shown; similar results for the OPLS model are
given in the Supporting Information.)
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when their dynamics is essentially decoupled. The transition is
characterized by a more specifically defined hydrogen bonds
network of water reflected in more definite positions of water
atoms around the peptide.
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