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Abstract

This paper proposes a semiparametric smooth-coefficient stochastic production frontier model where
all the coefficients are expressed as some unknown functions of environmental factors. The inefficiency
term is multiplicatively decomposed into a scaling function of the environmental factors and a standard
truncated normal random variable. A testing procedure is suggested for the relevance of the environ-
mental factors. Monte Carlo study shows plausible finite sample behavior of our proposed estimation
and inference procedure. An empirical example is given, where both the semiparametric and standard
parametric models are estimated and results are compared.
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1 Introduction

Following the seminal work of Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977),

there was an abundant literature on the estimation of technical inefficiency in stochastic frontier framework

(see Kumbhakar and Lovell (2000) for references). More recently, attention was paid to the modeling of

environmental factors (hereafter, Z variables) affecting inefficiency. They are the exogenous factors, such

as time, R&D, etc., in addition to traditional input(s) and output(s) in frontier models. For example,

Kumbhakar (1990) proposed a multiplicative decomposition of technical inefficiency into a time-varying

part and a noise term (see also Battese and Coelli (1992)). Alvarez, Amsler, Orea and Schmidt (2006)

named this decomposition the scaling property of technical inefficiency. The idea of this property was

proposed earlier by Reifschneider and Stevenson (1991), Simar, Lovell and van den Eeckaut (1994) and

Caudill, Ford and Gropper (1995), and further studied by Wang and Schmidt (2002), where they assumed

that the technical inefficiency is distributed as truncated normal (from the left at zero) with mean zero and

variance as a function of the Z variables. This is equivalent to that the technical inefficiency is distributed

as a standard truncated normal (with mean zero and unit variance) scaled by a function of Z. Alvarez et al.

(2006) interpreted the standard truncated normal random variable as “the firms’ base efficiency level which

captures things like the manager’s natural skills”, but “how well these natural skills are exploited to manage

the firm efficiently depends on . . .measures of the environment in which the firm operates.” Alternatively,

Kumbhakar, Ghosh and McGuckin (1991) and Battese and Coelli (1995) proposed an additive decomposition
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of technical inefficiency into a function of Z and a noise term (see also Huang and Liu (1994) and Simar and

Wilson (2007)).

The novelty of this paper lies in the fact that we not only consider the impact of Z variables on the

technical inefficiency part, but we also introduce the Z variables into the frontier part in a semiparametric

fashion, following Zhang, Sun, Delgado and Kumbhakar (2012), who ignored the inefficiency part. Specif-

ically, in a production framework, we express the intercept and slope coefficients as unknown functions

of the Z variables. This allows the environmental factors to shift the frontier non-neutrally. In contrast,

Saal, Parker and Weyman-Jones (2007) treated these factors as traditional inputs which can only affect the

frontier neutrally. More formally, we propose the estimation of a stochastic frontier model such as

output = β0(R&D) + β1(R&D)labor + β2(R&D)capital + v − u(R&D) (1)

where β’s are the coefficients, v is noise term, and u is technical inefficiency. This model works for either cross-

sectional or panel data, and is able to yield individual-specific estimates. For example, different technologies

can be estimated for different firms during different time periods depending on the levels of R&D. Figure 1

gives a simple graphical illustration of the proposed semiparametric stochastic frontier model with one

input and one output. The black dashed line is the standard frontier that all firms share. It, however,

does not capture the heterogeneity of firm’s technology. The semiparametric model is able to estimate a

particular frontier for a particular firm. For example, firm 1 (represented by the green line) can have a

different intercept and slope from that of firm 2 (represented by the red line), depending on the level of a

Z variable such as R&D. Meanwhile, Z can also affect technical inefficiency. This allows one to compare

the technologies, including technical inefficiencies, for different firms which are linked by the Z variable, say,

R&D. In this regard, our proposed model has several advantages over Battese, Prasada Rao and O’Donnell

(2004) and O’Donnell, Prasada Rao and Battese (2008) (hereafter, B&O) who suggested a metafrontier

framework for the comparison of firms under different technologies: (1) B&O’s model is more liable to sample

misclassification due to potentially different grouping criteria whereas grouping is not required in our model;

(2) B&O’s model only yields group-specific estimates while ours is individual-specific; (3) our model yields

comparable estimates linked by the Z variables and there is no need to estimate a common metafrontier.

To give more credibility of the inclusion of the Z variables into the model, a residual-based wild bootstrap

testing procedure, borrowed from Li and Racine (2010), for the relevance of the environmental factors is

proposed. We show that the model under the null of irrelevance of Z is the same as a standard parametric

stochastic frontier model without environmental factors. We then apply our proposed methodology in the

Norwegian forestry, with a cross-section of 3249 active forest owners. Both standard and semiparametric
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Figure 1: A Simple Illustration of the Semiparametric Stochastic Frontier Model

frontier models are estimated and results are compared.

The rest of the paper is organized as follows. Section 2 presents the estimation procedure of a semipara-

metric stochastic production frontier model with environmental factors. Section 3 proposes a test for the

relevance of the environmental factors. Section 4 performs a Monte Carlo study to show the finite sample

behavior of our proposed estimator. Section 5 applies the method to the Norwegian forestry. Section 6

concludes.

2 Estimation of Technical Inefficiency

Consider a stochastic production frontier model with the following specification:

yi = α(Zi) + X ′
iβ(Zi) + vi − ui, (2)

where yi is the log of output, X ′
i = [x1i, . . . , xki] is a vector of the log of k-inputs,1 Zi is a p-vector of

environmental factors (e.g., time, R&D, among others), α(·) is the intercept and β(·) is a k × 1 parameter

vector. Both of them are expressed as unknown functions of Zi. vi ∼ iidN(0, σ2
v) is the noise term, and ui =

u(Zi; δ) is the positive technical inefficiency term as some function of the same set of environmental factors,

δ′ = [δ0, δ′1] is a parameter vector where δ0 is a scalar and δ1 is a p-vector. Following Simar et al. (1994) and

Caudill et al. (1995), this functional disturbance can be identified through heteroscedasticity by assuming

ui = σu(Zi)ηi, where σu(Zi) = exp(δ0 + δ′1Zi), and ηi ∼ iidN+(0, 1); or equivalently, ui ∼ iidN+(0, σ2
u(Zi)),

1For the translog specification (Christensen, Jorgenson and Lau 1971), Xi will include higher-order terms and interactions.
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where σ2
u(Zi) = exp[2(δ0 + δ′1Zi)]. The functional form and distributional assumptions are required to

guarantee the positivity of ui. These assumptions indicate E(ui) =
√

2/πσu(Zi) =
√

2/π exp(δ0 + δ′1Zi).

The production frontier in (2) is not the conditional expectation of yi, because the composite error term

vi − ui does not have a zero mean. To solve for this problem, we can rewrite (2) as:

yi = α(Zi) + X ′
iβ(Zi) + vi − (ui − E(ui))− E(ui), (3)

or equivalently,

yi = θ(Zi) + X ′
iβ(Zi) + εi, (4)

where θ(Zi) = α(Zi)−E(ui), and εi = vi−(ui−E(ui)). (4) can be consistently estimated as a semiparametric

smooth coefficient model (Li, Huang, Li and Fu 2002). Define ρ̂(Zi) = [θ̂(Zi), β̂′(Zi)], and W ′
i = [1, X ′

i],

the smooth coefficient estimator can be written as:

ρ̂(Zi) =




n∑

j=1

WjW
′
jK

(
Zj − Zi

h

)

−1

n∑

j=1

WjyjK

(
Zj − Zi

h

)
, (5)

where n is sample size, K(·) is product kernel function (Li and Racine 2007), and h is a p-vector of bandwidth,

which can be selected via least-squares cross-validation method (Li and Racine 2010).

Residuals can be obtained from the estimated equation, viz., ε̂i = yi − θ̂(Zi) − X ′
iβ̂(Zi). This is the

first step of the estimation. Recall that we previously defined εi = vi − ui + E(ui), where ui = σu(Zi)ηi,

E(ui) =
√

2/πσu(Zi), and therefore, the estimating equation for the second step of the estimation is:

Ri =
√

2/πσu(Zi) + vi − σu(Zi)ηi

=
√

2/π exp(δ0 + δ′1Zi) + vi − exp(δ0 + δ′1Zi)ηi

(6)

where Ri = ε̂i. A parametric stochastic frontier estimation technique can be applied in this step, using

maximum likelihood estimation method. Define ε∗i = vi − exp(δ0 + δ′1Zi)ηi, the log-likelihood function can

be written as:

lnL = Constant− 1
2

∑

i

ln
[
σ2

u(Zi) + σ2
v

]
+

∑

i

lnΦ
(
−ε∗i λi

σi

)
− 1

2

∑

i

ε∗2i

σ2
i

, (7)

where σ2
u(Zi) = exp[2(δ0 + δ′1Zi)], σ2

i = σ2
v + σ2

u(Zi) = σ2
v + exp[2(δ0 + δ′1Zi)], and λi = σu(Zi)/σv =

exp(δ0 + δ′1Zi)/σv. δ and σ2
v can be first estimated by maximizing the log-likelihood function. λi and σ2

u(Zi)

can then be estimated. E(ui) is estimated as the scaled σu(Zi), which is used to identify the intercept in
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(2) as α(Zi) = θ(Zi) + E(ui).

3 Testing for the Relevance of Environmental Factors

The environmental factors, Zi, shift the production frontier (both intercept and slopes) as well as technical

inefficiency. One naturally wants to test if Zi matters, that is, to test if (2) can be estimated as a standard

stochastic frontier model:

yi = α + X ′
iβ + νi − µi, (8)

where νi is the normal noise term, and µi is the half-normal technical inefficiency term. In this model, neither

the coefficients nor the technical inefficiency vary with Zi. This is the same as testing if the parameters in

(4) are constants, viz.,

yi = θ + X ′
iβ + εi = W ′

iρ + εi, (9)

where ρ′ = [θ, β′], and εi = νi − (µi − E(µi)). The null hypothesis can be stated as H0 : ρ(Zi) = ρ.2

Following Li and Racine (2010), the consistent model specification test statistic is constructed as:

În =
1
n2

n∑

i=1

n∑

j 6=i

W ′
iWj ε̂iε̂jK

(
Zi − Zj

h

)
(10)

where K(·) is the product kernel function, ε̂i = yi− θ̂−X ′
iβ̂ is obtained from the parametric model (9). We

follow Li and Racine’s (2010) residual-based wild bootstrap method to determine whether to reject the null

hypothesis or not:

Step 1: Estimate (9), obtain ρ̂ and ε̂i, and generate wild bootstrap disturbance ε?
i ;

Step 2: From ε?
i , generate y?

i = W ′
i ρ̂ + ε?

i ;

Step 3: Use {y?
i ,Wi}n

i=1 to estimate the parametric model (9), and obtain ρ̂?, and ε̂?
i = y?

i −W ′
i ρ̂

?;

Step 4: The bootstrap statistic Î?
n is obtained from (10), replacing ε̂iε̂j by ε̂?

i ε̂
?
j .

Step 5: Repeat Steps 1-4 a large number of times, say B = 399 times, and calculate the p-value:

p = 1
B

∑B
b=1 I(I∗n > In), where I(·) is the indicator function with a value of 1 if the statement in the

parenthesis is true.

Note that y?
i is generated under the null hypothesis, and therefore, the p-value is the size of the test.

The null hypothesis can be rejected if the p-value is less than the level of significance, say 0.05.
2Constant ρ implies constant θ and β, and constant θ implies constant α and E(µi). The log-likelihood function under this

scenario is:

ln L = Constant− 1

2

∑
i

ln(σ2
µ + σ2

ν) +
∑

i

lnΦ

(
− ε∗i λ

σ

)
− 1

2

∑
i

ε∗2i

σ2
,

where ε∗i = νi − µi, λ = σµ/σν , and σ2 = σ2
µ + σ2

ν .
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4 Monte Carlo Study

4.1 Estimation Procedure

To study the finite-sample behavior of the proposed semiparametric smooth-coefficient stochastic frontier

estimation method, we conduct some Monte Carlo experiments using the following data generating process

(DGP):

yi = α(Zi) + β(Zi)Xi + vi − ui,

where Zi is generated on a equally-spaced grid between -2 and 2, α(Zi) = exp(Zi), β(Zi) = cos(Zi),

Xi ∼ N(0, 1), vi ∼ N(0, σ2
v), ui = exp(δ0 + δ1Zi)ηi, where ηi ∼ N+(0, 1).

We draw M = 1000 Monte Carlo replications from this DGP, and consider sample size of n = 100, 200, 400,and

800. Table 1 reports the bias, variance, and mean squared error (MSE) for each of the parameters in (7).

It can be seen that both variance and MSE decreases as the sample size increases. Since other parameters

of interest are functions of Zi - σ2
u(Zi) = exp[2(δ0 + δ1Zi)], σ2

i = σ2
v + σ2

u(Zi), and λi = σu(Zi)/σv, Figure 2-

5 reports the trajectory of the true and estimated functional parameters along with their 95% confidence

bands. It can be seen that the confidence bands of a particular parameter shrink as the sample size increases.

Therefore, the Monte Carlo study shows evidence of the consistency of our proposed estimator.

Table 1: Performance of constant parameters
δ0 = 1 δ1 = 1 σ2

v = 1
n Bias Var MSE Bias Var MSE Bias Var MSE

100 0.0118 0.0715 0.0717 -0.0857 0.0387 0.0460 -0.0753 0.1218 0.1275
200 0.0197 0.0262 0.0265 -0.0544 0.0185 0.0214 -0.0459 0.0506 0.0527
400 0.0166 0.0128 0.0130 -0.0364 0.0089 0.0102 -0.0285 0.0272 0.0280
800 0.0149 0.0068 0.0070 -0.0244 0.0050 0.0056 -0.0200 0.0135 0.0139

4.2 Testing Procedure

We now report simulations to examine the finite-sample performance of the bootstrapped-based test for the

statistic În. The model under the null hypothesis is a standard parametric stochastic frontier model of the

form:

yi = 1 + 0.5Xi + νi − µi,

where Xi ∼ N(0, 1), νi ∼ N(0, σ2
ν), and µi ∼ N+(0, σ2

µ). For what follows, we let σ2
ν = 1 and σ2

µ = 1.

The model under the alternative is generated from

yi = exp(Zi) + cos(Zi)Xi + vi − exp(δ0 + δ1Zi)ηi,
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where Zi is generated on a equally-spaced grid between -2 and 2, Xi ∼ N(0, 1), vi ∼ N(0, σ2
v), ηi ∼ N+(0, 1).

For what follows, we let δ0 = 1, δ1 = 1, and σ2
v = 1.

The empirical size of the test statistic can be assessed by simulating data under the null, and empirical

power can be assessed under the alternative. We choose to use two different bandwidth selection criteria:

(1) the normal reference bandwidth which is given by Zsdn
−1/5, where Zsd is the standard deviation of Zi,

i = 1, . . . , n, and (2) the data-driven least-squares cross-validation bandwidth (Li and Racine 2010). We

draw M = 1000 Monte Carlo replications. For each replication, we compute În using the bandwidth for

that particular replication, and conduct B = 399 bootstrap replications and compute the empirical p-value.

The empirical rejection frequencies for α = 0.01, 0.05, and 0.1 are reported in Tables 2 and 3. Table 2

shows that the test is better sized under the normal-reference bandwidth. This is because the least-squares

cross-validated bandwidth can automatically detect and remove irrelevant variables before estimating the

model. Since Zi is irrelevant under the null, this can potentially increase the size of the test. Table 3 shows

that the power of the test increases with n, and converges to 1.

Table 2: Empirical size for the proposed test
Normal-reference bandwidth LSCV bandwidth

n α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1
100 0.011 0.056 0.106 0.017 0.086 0.149
200 0.014 0.060 0.105 0.023 0.094 0.167
400 0.007 0.048 0.100 0.014 0.086 0.158
800 0.006 0.048 0.101 0.022 0.081 0.153

Table 3: Empirical power for the proposed test
Normal-reference bandwidth LSCV bandwidth

n α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1
100 0.643 0.883 0.941 0.703 0.923 0.968
200 0.954 0.995 0.999 0.967 0.998 1.000
400 1.000 1.000 1.000 0.999 1.000 1.000
800 1.000 1.000 1.000 1.000 1.000 1.000

5 An Empirical Application

In this section, we consider estimation of stochastic production frontier in Norwegian forestry. The data,

compiled by Statistics Norway, were drawn from a cross-section of 3249 active forest owners. All data are for

the year 2003. The output variable consists of annual timber sales from the forest, measured in cubic meters.

The labor input variable is the sum of hours worked by contractors and hours worked by the owner, his

family or hired labor in 2003. The material input variable measures forest area cut in hectares, which is the
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area of various types of final fellings in 2003. The capital input variable is the value of the increment from

the forest. The forest owner can choose to cut the increment for either current or future period. Our choices

of the environmental factors are: (1) income from outfield-related productions (i.e., recreational services),

(2) income from agriculture, (3) wage income, (4) a binary variable with a value of 1 indicating there is a

management plan, and 0 otherwise, (5) a binary variable with a value of 1 indicating the forest owner has

an education level of Bachelor or higher, and 0 otherwise, (6) a binary variable with a value of 1 indicating

its properties are located in central municipalities, and 0 otherwise. Lien, Størdal and Baardsen (2007) used

this data to assess technical inefficiency of these Norwegian forests. Table 4 presents summary statistics in

the sample. Further details on the source of the data and definitions of the variables were provided in their

study.

Table 4: Summary Statistics of the Variables

Symbol Variable Name Mean Sd. Min. Max. Bandwidth1

y Log of output (Harvesting level) 5.6680 1.665462 0.6931 10.74 -

x1 Log of labor (Working hours) 2.882 1.637169 -2.072 7.876 -

x2 Log of material (Forest area cut ) 0.6692 1.522922 -4.4240 5.434 -

x3 Log of capital (Value of increment) 11.780 1.184578 7.297 16.6 -

Z1 Income from outfield related productions (1000NOK) 70.98 467.0222 0.00 11810 27.94376593

Z2 Income from agricullture (1000NOK) 54.21 125.9468 0.00 2488 9.94951468

Z3 Wage income (1000NOK) 240.3 269.1531 0.00 2183 122.03785955

Z4 Management plan (0/1) 0.6898 0.4626668 0.00 1.00 0.21638380

Z5 Education, Bachelor or higher (0/1) 0.2416 0.4281267 0.00 1.00 0.45613206

Z6 Centrality (0/1) 0.3764 0.4845628 0.00 1.00 0.01324032

1. The bandwidths are selected via least-squares cross-validation.

We consider two specifications for the stochastic production frontier: (1) the semiparametric smooth-

coefficient stochastic frontier model as described in (2) (i.e., with environmental factors which enter the

coefficients and inefficiency nonparametrically), and (2) the standard parametric stochastic production fron-

tier model as described in (8) (i.e., without environmental factors). Technical inefficiencies are calculated

from both models using the JLMS method (Jondrow, Lovell, Materov and Schmidt 1982), after estimating

all essential parameters and information. Specifically, for the first model (i.e., semiparametric), technical

efficiency (TE) is calculated as TEi = exp (−M(ui|ε∗i )), where M(ui|ε∗i ) = −ε∗i σ
2
u(Zi)/σ2

i if ε∗i ≤ 0, and 0

otherwise; TE can be estimated in a similar fashion for the second model (i.e., parametric).

The average estimated technical efficiency is 0.97 for the semiparametric model and 0.89 for the standard

parametric model. These results are comparable to Lien et al. (2007) who found the average technical
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efficiency to be 0.90 using a different model. The semiparametric (parametric) model shows that almost

4% (7%) of the forest owners have an efficiency estimate of less than 0.75. To get an overall picture, the

kernel distributions of the estimated technical efficiencies and the composite error term for the two models

are reported in Figure 6 and 7, respectively, and those of the estimated functional parameters are reported

in Figure 8. Figure 6 shows that, most of the forests are fully technically efficient under the semiparametric

model, with the mode of technical efficiency around one; however, under the standard parametric model, the

distribution is bi-modal (with the modes occurring at 0.9 and 1.0), and much fewer forests are estimated to be

fully efficient. This may have some indication of the impact of model specification on the estimated technical

efficiency. This indication is further revealed by Figure 7, which shows that the estimated composite error

term (i.e., noise minus inefficiency) centers around zero under the semiparametric model, suggesting that

inefficiency barely exists, while that under the standard parametric model has a mode that is less than zero,

suggesting that inefficiency is more likely to exist.

Although the semiparametric model yields less variation in terms of TE, it generates more variation in the

parameters. The distributions of the functional parameters in Figure 8 show that the semiparametric model

better captures parameter heterogeneity while its standard parametric counterpart only yields estimates

that are degenerate. More specifically, the labor, material, and capital productivity (represented by β̂1(Zi),

β̂2(Zi), and β̂3(Zi), respectively) estimates under the standard parametric model only approximate the

means of those estimates under the semiparametric model. With a micro-level data set, it is generally more

interesting and informative to investigate each forest owner as opposed to an average forest owner. The

density of σ̂2(Zi) under the semiparametric model in Figure 8 resembles that of a chi-squared distribution,

and it obviously deviates from the degenerate σ̂2 estimate under the standard parametric model.

With all these differences in results between the semiparametric and its parametric counterpart, one

would naturally perform specification test of one model against the other. We test the two models by

testing the relevance of the environmental factors using the testing procedure described in section 3, since

the semiparametric model without the environmental factors becomes the standard parametric model. The

zero bootstrapped p-value suggests that these factors are relevant; and therefore the semiparametric model

is preferred. This testing result is not very surprising based on the estimation results.

6 Conclusion

This paper proposes a semiparametric smooth-coefficient stochastic production frontier model, where all the

coefficients, including intercept and slopes, along with the inefficiency term, are expressed as functions of

a set of environmental factors. Thus, these factors affect the production frontier non-neutrally, as opposed
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to traditional inputs which only affect the frontier neutrally. Using micro-level data, this model can yield

a particular set of production frontier estimates for a particular, say, firm. Therefore, the potential hetero-

geneity of technology can be captured by this model. Since the environmental factors enter most parameters

in the model nonparametrically and the elimination of these factors reduces the semiparametric model to its

parametric counterpart, a testing procedure for the relevance of these factors is proposed. Monte Carlo study

shows plausible finite sample behavior of our proposed estimation and inference procedure. An empirical

example using real data is made and the advantages of the semiparametric approach over standard para-

metric approach are further revealed. A possible extension of this paper could be to relax the exponential

functional form of the variance of the inefficiency term. This means, however, more work should be done to

impose positivity constraint on the variance estimates.
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Figure 2: Performance of functional parameters: n=100
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Figure 3: Performance of functional parameters: n=200
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Figure 4: Performance of functional parameters: n=400
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Figure 5: Performance of functional parameters: n=800
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Figure 6: Technical Efficiency
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Figure 7: Estimated Composite Error (noise minus inefficiency)
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Figure 8: Summary results
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