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1 Introduction

Measurement of total factor productivity (TFP) growth has been the subject of investigations in many empirical studies.

Various approaches have been used for this in the TFP growth literature. These approaches are classified by Diewert

(1981) into parametric estimation of production/cost/distance functions, nonparametric indices, exact index numbers,

and nonparametric methods using linear programming.1 In the nonparametric approach, the Divisia index has been

widely used as a convenient measure of TFP growth because it can be computed directly from the data without estimating

anything. An important assumption of the Divisia index of TFP growth is that the underlying technology is homogeneous

of degree one so that TFP growth coincides with technical change (TC). In the case of non-constant returns to scale

technology, TFP growth can be decomposed into TC and scale effects for which estimation of the underlying production

technology is necessary.

In parametric models using production/cost/distance functions, a flexible functional form (mostly translog) is chosen

first. Algebraic formulae for TC and scale components are then derived from it. Estimates of these components are then

obtained using the estimated parameter values and data. To model TC a time trend (TT) variable is usually used as

a regressor in the production/cost/distance function. This is called the TT model which makes TC a linear function of

time and input variables (input prices and output) if a translog production (cost) function formulation is used. Stevenson

(1980) considered third order terms in the translog model to make TC in the TT model more flexible. Baltagi and Griffin

(1988) have shown that in a translog model TC can be modeled in a much more flexible manner by replacing the time

trend variable with an index which is a linear function of time dummies. Different generalizations of TT models of TC

have been developed and their performance and sensitivity using different data sets have been evaluated (see Kumbhakar

et al, 1999; Kumbhakar, 2000; Oh et al, 2009, among others).

Similarly, given a parametric production/cost/distance function one can easily derive the scale component. Assuming

that the markets are competitive and producers are efficient, one can get an estimate of TFP growth simply by adding

the TC and scale components.2 If TFP growth is computed from data, the observed (Divisia) TFP growth is likely to

deviate from the estimated TFP growth, especially if the estimated TFP growth is not linked to the observed TFP growth

in the econometric model (Kumbhakar and Lozano-Vivas, 2005). This residual component can be large if the functional

form used to represent the underlying technology is wrong. However, this residual component can only be obtained if one

can compute TFP growth directly from data. This is possible if price information is available. If price information is not

available, the econometric techniques come handy because one can simply add the estimated TFP growth components to

get the estimated TFP growth. The only drawback is that one cannot be sure whether estimated TFP growth obtained

this way comes close to the Divisia TFP growth. Since the estimated TFP growth depends on the choice of functional

form of the underlying technology, it is important to specify the technology in a flexible manner (Baltagi and Griffin,

1988).

In estimating TFP growth and its components, our objective, in this paper, is to specify the technology as flexible as

possible. Parametric model like translog can sometimes satisfy this objective. However, many researchers are attracted by

more flexible specifications, such as kernel-based nonparametric or semiparametric models, which can capture heterogene-

1 For references up to the mid 1990s, see Jorgenson’s (1995) volumes on productivity. Some of the recent references are: Chun and Nadiri
(2008), Key et al (2008), Brümmer et al (2002), Karagiannis et al (2004), among others.

2 If producers are inefficient additional components associated with inefficiency can be obtained (Kumbhakar and Lovell, 2000).
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ity in the underlying technology much better. This is because kernel functions generate observation-specific conditional

mean estimates (Li and Racine, 2006). A purely nonparametric model is attractive when there are not too many contin-

uous regressors or when there are many observations to fit the relationship. One popular semiparametric specification is

a partially linear model proposed by Robinson (1988), where the intercept is allowed to be an unknown smooth function

of some variables, which are different from the other regressors in the model. Li et al (2002) generalized this model by

making the slope coefficients also unknown smooth functions of the same variables, so that researchers can obtain both

heterogeneous intercept and slope coefficients. This model is coined as semiparametric smooth coefficient model (SPSCM).

The SPSCM allows more flexibility than a parametric model and the sample size required to obtain a reliable estimation

is not as large as required for estimating a purely nonparametric model, while bandwidth can be selected via least-squares

cross-validation (LSCV) method (Li and Racine, 2010). When it comes to panel data modeling, the standard practice

is to make parameters heterogeneous by adding fixed or random effect or making all the coefficients random. However,

these models do not capture heterogeneity as well as a SPSCM does in the sense that the SPSCM captures heterogeneity

in intercept and slopes through some covariates.

In this paper we consider estimating the TFP growth model based on a nonparametric production technology rep-

resented by an input distance function (IDF). The growth formulation of the model fits naturally into a SPSCM. That

is, we do not start from a SPSCM, it is the outcome from a growth representation of the model. The variables in the

functional coefficients (outputs, inputs and time) of the SPSCM comes naturally from the distance function formulation

of the technology. The growth formulation automatically controls for fixed individual effects which are usually ignored

in the TFP growth literature. Furthermore, the functional coefficients are uniquely related to TC and scale components.

Thus, both TC and scale components become nonparametric functions of time, inputs and outputs. Therefore, these

components are completely flexible. Since TC is estimated in a fully flexible manner, we can also measure bias in TC

following Stevenson (1980) in a fully flexible manner. That is, no additional assumptions are to be made in estimating

input biases in TC.

Empirically, we examine TFP growth of the U.S. electricity generating plants during the period 1986− 1998. For this

we use a growth formulation of IDF which was earlier proposed by Kumbhakar et al (2008). However, they assumed the

coefficients to be linear parametric functions of all other variables in the model. The contribution of this paper is to relax

the functional form assumption on these coefficients which in our model are completely nonparametric.3

An additional feature of our application is that we have price information, which enables us to compute the observed

(the Divisia) TFP growth. The Divisia TFP growth is then used as the benchmark against which estimated TFP growth

from SPSCM and parametric models are compared. We find that estimated TFP growth from the SPSCM comes very

close to the Divisia index, thereby confirming the conventional wisdom that the residual component (the unexplained

part of TFP growth) will be smaller if a flexible functional form is used. The other lesson we draw from the application is

that if the objective is to estimate TFP growth from the estimated components, it is better to use a growth formulation

because it ties up TFP growth with its components thereby reducing the unexplained component which is captured by

a zero mean noise term in the regression. This is true whether one uses a parametric or semiparametric function.

3 In the parametric model these coefficients are functions of the parameters of the underlying technology (production/distance/cost
functions) and data. For example, Kumbhakar et al (2008) used an input distance function to estimate the growth model in which the
parameters are linear function of data and parameters of the input distance function.
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The rest of the paper is organized as follows. Section 2 discusses TFP growth and its decomposition in both nonpara-

metric and parametric IDF framework and shows how to measure bias in TC. Data and results are discussed in section

3 and 4, respectively. Section 5 concludes the paper.

2 TFP growth formulation

In a multiple output case TFP growth is defined as ˙TFP =
∑Q

q=1 RqẎq −
∑K

k=1 SkẊk, where Y is a vector of Q outputs,

X is a vector of K inputs, Sk = WkXk/
∑

k WkXk is the share of input k in the total cost, Wk being the price of input Xk.

The share of output q in the total revenue is Rq = PqYq/
∑

q PqYq, Pq being the price of output Yq, and a dot over a variable

indicates its annual rate of change. Using the above definition, the TFP growth can be computed from the observed data

without any estimation. The resulting measure is called the Divisia index of TFP growth. It gives us information about

output growth that is not explained by the growth of inputs used (often called the Solow residual). The Divisia index is

nonparametric in the sense that it can be directly computed from data without any econometric estimation. However, it

cannot provide any information on the factors affecting productivity growth. Furthermore, without price information the

Divisia index of TFP growth cannot even be computed. The main advantage of the econometric approach is that we can

both estimate and decompose TFP growth. It does not require information on prices, if the econometric approach is based

on production/distance functions. Furthermore, it allows for non-constant returns to scale so that we can estimate the

contribution of scale economies/diseconomies in the overall TFP growth. We show that the non/semiparametric models

can do all these in a much more flexible manner compared to the flexible (translog) parametric models.

2.1 TFP growth as a semiparametric smooth coefficient model

Instead of starting from the typical route of specifying the technology in terms of a production/cost function, we start

from the transformation function. The advantage of doing so is that all the primal formulations can be derived from it by

using different normalizing (identifying) restrictions. We write the transformation function as, A·T (X, Y, t) = 1 where X is

a vector of inputs, Y is a vector of outputs, t is the time trend variable, and T (·) is the transformation function. One needs

some identifying restrictions to estimate the transformation function A ·T (·) = 1 parametrically or nonparametrically. For

example, if one assumes T (·) to be separable in Y and Y is a scalar, then we can write it as Y = B · f(X, t) which is the

production function. On the other hand, if one of the input (say X1) is separable (identifying restrictions) from others,

we can express the transformation function as X1 = C · g(X−1, Y, t) which is an input requirement function (Diewert,

1974). In the above formulation X−1 is the X vector excluding X1. Finally, if the identifying restrictions are such that

T (·) is homogeneous of degree one in X, then we can rewrite it as X−1
1 = Λ ·H(X̃, Y, t) where X1 is the numeraire input

and X̃ is a vector of input ratios, with X̃k = Xk/X1, ∀k = 2, . . . , K. The transformation function written in this form is

nothing but the IDF which was introduced by Shephard (1953) and is extensively used for modeling inefficiency. Note

that A, B, C, and Λ are the efficiency parameters/functions in various representations of the technology.

In this paper we use the IDF representation of the transformation function. This formulation is economically appro-

priate because for electricity generating plants (which are the units of observation in our data) inputs are endogenous

and output (electricity generated) is exogenous (Nerlove, 1965). In other words, the plants minimize cost to produce
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the exogenously given (determined by demand) output. It can be shown that under cost minimization input ratios are

exogenous (Das and Kumbhakar, 2010). Furthermore, IDF is dual to the cost function (Färe and Primont, 1995) and

therefore, IDF is ideal to use when either input prices are not available or prices do not vary much. Since we focus on

TFP growth and its components, first we derive an algebraic expression for TFP growth starting from the IDF.

To simplify notations and ease derivation of the growth formulation of the IDF, we rewrite it as:

− lnX1 = lnΛ + m(lnY, ln X̃, t) (1)

where m(lnY, ln X̃, t) = lnH(X̃, Y, t). Differentiating (1) with respect to t gives,

−d lnX1

dt
=

∂ lnΛ

∂t
+

Q∑

q=1

∂m(lnY, ln X̃, t)

∂ lnYq
· ∂ lnYq

∂t
+

K∑

k=2

∂m(lnY, ln X̃, t)

∂ ln X̃k

· ∂ ln X̃k

∂t
+

∂m(lnY, ln X̃, t)

∂t
(2)

For estimation purposes, we define:
d lnX1

dt
= Ẋ1 =

X1,t −X1,t−1

0.5(X1,t + X1,t−1)

∂ ln X̃k

∂t
= ˙̃Xk =

X̃k,t − X̃k,t−1

0.5(X̃k,t + X̃k,t−1)
, ∀k = 2, . . . , K

∂ lnYq

∂t
= Ẏq =

Yq,t − Yq,t−1

0.5(Yq,t + Yq,t−1)
, ∀q = 1, . . . , Q

Furthermore, we let

βk(lnY, ln X̃, t) = −∂ lnX1

∂ ln X̃k

=
∂m(lnY, ln X̃, t)

∂ ln X̃k

, ∀k = 2, . . . , K (3)

γq(lnY, ln X̃, t) = −∂ lnX1

∂ lnYq
=

∂m(lnY, ln X̃, t)

∂ lnYq
, ∀q = 1, . . . , Q (4)

β0(lnY, ln X̃, t) = −∂ lnX1

∂t
=

∂m(lnY, ln X̃, t)

∂t
(5)

Using the above definitions, (2) can be simplified as:

−Ẋ1 = β0(lnY, ln X̃, t) +
K∑

k=2

βk(lnY, ln X̃, t) ˙̃Xk +
Q∑

q=1

γq(lnY, ln X̃, t)Ẏq + u (6)

where u = ∂ lnΛ/∂t is the rate of change in the efficiency parameter Λ. It also captures the effect of unobserved variables

that are time-varying. We treat it as the residual (noise) component, which is assumed to be a zero mean random variable.

Economic theory tells us that: (i) β0 should be positive (i.e., ∂ ln X1
∂t < 0) so that producers do not require more inputs

going forward from say period t to t+1, holding output and other input quantities constant; (ii) βk, ∀k = 2, . . . , K should

be positive (i.e., ∂ ln X1

∂ ln X̃k
< 0), thereby meaning that when an input is increased producers do not need more of any of

the other inputs to produce the same amount of outputs; (iii) γ should be negative (i.e., ∂ ln X1
∂ ln Y > 0) so that producers

cannot produce more outputs by decreasing the amount of inputs, ceteris paribus. If m(·) in (1) is an unknown smooth

function of lnY , ln X̃, and t, then its gradients, i.e., β0, βk, ∀k = 2, . . . , K, and γq, ∀q = 1, . . . , Q, are also unknown

smooth functions of these variables.
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Under these circumstances, (6) can be viewed as the SPSCM of Li et al (2002) where the model is linear in the

˙̃Xk, ∀k = 2, . . . , K, and Ẏq, ∀q = 1, . . . , Q, variables. Note that the covariates in the functional coefficients are lnY, ln X̃

and t and we do not have to introduce them in an ad hoc fashion. They come naturally from the model.

Next we rewrite (6) (after adding the subscript i for observation) as

Yi = X ′iΨ(Zi) + ui (7)

where Yi = −Ẋ1i; X ′i = [1, ˙̃X2i, . . . ,
˙̃XKi, Ẏ1i, . . . , ẎQi]; Z ′i = [ln X̃2i, . . . , ln X̃Ki, lnY1i, . . . , lnYQi, ti];

Ψ ′(·) = [β0(·), β2(·), . . . , βK(·), γ1(·), . . . , γQ(·)]. Following Li et al (2002) and Li and Racine (2006), the local-constant least

squares estimator for Ψ(z) is expressed as (see Li and Racine, 2006, Chap. 9, pg. 302):

Ψ̂(z) =

[ n∑

i=1

XiX ′iK(
Zi − z

h
)

]−1 n∑

i=1

XiYiK(
Zi − z

h
) (8)

where n denotes sample size, h is a (K + Q) vector with each element a selected bandwidth for each z variable and K(·)
is the product Gaussian kernel function. The basic idea behind local-constant estimator is that Ψ̂(z) is a simple local

average of data.4 It differs from simple ordinary least squares (OLS) estimator only in the additional kernel function:

elimination of the kernel function in (8) reduces the estimator from a smooth coefficient to its OLS counterpart. Note

that the SPSCM nests the partially linear model proposed by Robinson (1988) as a special case, which makes only the

intercept as an unknown smooth function of Z variables and keeps all the slopes constant.

Following Li and Racine (2010), we employ the most commonly used least-squares cross-validation (LSCV) method,

which is a fully automatic data-driven approach, to select the bandwidth vector h, i.e.,

CVlc(h) = min
h

n−1
n∑

i=1

[Yi −X ′i Ψ̂−i(Zi)]
2M(Zi) (9)

where CVlc(h) determines the cross-validation bandwidth vector h for local constant estimator,

X ′i Ψ̂−i(Zi) = X ′i
[ ∑n

j 6=i XjX ′jK(
Zj−zi

h )
]−1 ∑n

j 6=i XjYjK(
Zj−zi

h ) is the leave-one-out local-constant kernel conditional mean,

and 0 ≤ M(·) ≤ 1 is a weight function that serves to avoid difficulties caused by dividing by zero. The bandwidth for the

Z variables and the smooth coefficients can be estimated by the np package (Hayfield and Racine, 2008) in R.

4 Consistency requires that the size of local sample, nh, must increase with the overall sample size, n, while at the same time the
bandwidth, h, must shrink to zero in the limit (Li and Racine, 2006).



6 Subal C. Kumbhakar, Kai Sun

2.2 TFP growth components

Adding ˙TFP =
∑Q

q=1 RqẎq −
∑K

k=1 SkẊk to both sides of (6) and moving Ẋ1 to the right-hand-side gives:

˙TFP =
K∑

k=2

βk(·) ˙̃Xk +
Q∑

q=1

γq(·)Ẏq + β0(·) + Ẋ1 +
Q∑

q=1

RqẎq −
K∑

k=1

SkẊk + u

= β0(·) +
Q∑

q=1

Ẏq(Rq + γq(·)) + Ẋ1 +
K∑

k=2

βk(·) ˙̃Xk −
K∑

k=1

Sk( ˙̃Xk + Ẋ1) + u

= β0(·) +
Q∑

q=1

Ẏq(Rq + γq(·)) + Ẋ1 +
K∑

k=2

βk(·) ˙̃Xk − (
K∑

k=2

Sk
˙̃Xk + Ẋ1

K∑

k=1

Sk) + u

= β0(·) +
Q∑

q=1

Ẏq(Rq + γq(·)) +
K∑

k=2

(βk(·)− Sk) ˙̃Xk + u

(10)

using the fact that
∑K

k=1 Sk = 1 (i.e., the sum of the cost shares is unity).

Thus, the TFP growth has four components: the first component is TC given by β0(·); the second component is the

scale component given by (
∑Q

q=1 Ẏq(Rq + γq(·))) because returns to scale (RTS) is −1/
∑Q

q=1 γq(·). The third component

is often labeled as the allocative component and is non-zero if producers fail to minimize cost or maximize profit. In other

words, if producers allocate their inputs without any mistakes this allocative component will be zero.5 With allocative

errors predicted TFP growth is the sum of TC, scale, and allocative components. Finally, the last component is the

residual (unexplained) which is not explained by the model. Note that the allocative component can be computed if price

information is available (i.e., data on cost shares are available). This means that one can compute ˙TFP and therefore

predict the last (residual) component. Thus, prediction of the last two components require information on cost shares.

2.3 TFP growth components in a parametric model

We can also impose a particular parametric functional form on m(lnY, ln X̃, t), for example, a flexible translog specification.

Then (1) can be rewritten as:

− lnX1 =α0 +
K∑

k=2

θk ln X̃k +
1

2

K∑

k=2

K∑

m=2

θkm ln X̃k ln X̃m +
Q∑

q=1

αq lnYq +
1

2

Q∑

q=1

Q∑

o=1

αqo lnYq lnYo

+
Q∑

q=1

K∑

k=2

δqk lnYq ln X̃k + αt t +
1

2
αtt t2 +

Q∑

q=1

λqt lnYq t +
K∑

k=2

δkt ln X̃k t

(11)

where θkm = θmk, ∀k, m = 2, . . . , K and αqo = αoq, ∀q, o = 1, . . . , Q. We call this the parametric log IDF model. From this

specification, we can derive the expressions for the coefficients in (6):

−∂ lnX1

∂ ln X̃k

= βk(·) = θk +
K∑

m=2

θkm ln X̃m +
Q∑

q=1

δqk lnYq + δktt, ∀k = 2, . . . , K (12)

5 See appendix A for a proof of this.
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−∂ lnX1

∂ lnYq
= γq(·) = αq +

Q∑

o=1

αqo lnYo +
K∑

k=2

δqk ln X̃k + λqt t, ∀q = 1, . . . , Q (13)

−∂ lnX1

∂t
= β0(·) = αt + αttt +

Q∑

q=1

λqt lnYq +
K∑

k=2

δkt ln X̃k (14)

Plugging these parametric functional coefficients into (6) gives us the equation to be estimated for the parametric model.6

We rewrite it here for convenience:

−Ẋ1 =αt + αtt t +
Q∑

q=1

λqt(lnYq + Ẏq t) +
K∑

k=2

δkt(ln X̃k + ˙̃Xk t) +
K∑

k=2

θk
˙̃Xk +

K∑

k=2

K∑

m=2

θkm ln X̃m
˙̃Xk

+
K∑

k=2

Q∑

q=1

δqk(lnYq
˙̃Xk + ln X̃k Ẏq) +

Q∑

q=1

αq Ẏq +
Q∑

q=1

Q∑

o=1

αqo lnYo Ẏq + u

(15)

We call this the parametric growth IDF model. The idea is to estimate (15) and use the estimated parameters to compute

βs and γ defined in (12), (13), and (14). Finally, these are used in (10) to obtain the TFP growth components. Note that

although we are using the same equation to decompose TFP growth, the estimates of the βs and γ from the parametric

model are different from those in the SPSCM. Since no functional forms are used for the β and γ functions, the estimated

TFP growth components in the SPSCM are more flexible.7

2.4 Biases in technical change

Technical change can be neutral and/or biased towards some inputs. Following Stevenson (1980) we measure bias in

TC for input k as IBk = ∂Sk/∂t = ∂βk/∂t. If IBk > 0, TC is relatively kth input-using. On the other hand, it is kth

input-saving if IBk < 0 and neutral to input k if IBk = 0. Similar to input bias, one can also measure scale bias in TC

from SBq = −∂γq/∂t. A positive (negative) value of SBq indicates decreasing (increasing) minimum efficient scale over

time (Stevenson, 1980). TC is neutral if it is neither input nor scale biased, i.e., IBk = 0, ∀k and SBq = 0, ∀q. This means

that β0 is a function of only t.

In the parametric model (translog) the neutral component of TC is αt + αtt t, and therefore its change over time is

constant. Input and scale biases are constant for all producers and for every year. This is, however, not the case in the

SPSCM. Thus, one advantage of the SPSCM is flexibility in measuring biases in TC. This does not involve anything new

other than computing derivatives of the nonparametric functions.8

6 The usual practice in the literature, going back to Denny et al (1981), is to estimate the cost/distance function and use the estimated
parameters to compute TC and scale components. This procedure often leads to substantial differences between the estimated and actual
TFP growth rates (Kumbhakar and Lozano-Vivas, 2005). Here we avoid this problem by estimating the model in rates of change in (6).
Furthermore, the growth model in (6) fits nicely into the SPSC formulation. As shown in (15) the growth model in (6) can be used for
parametric models as well.

7 It is worth noting that TFP growth components in the parametric model can also be computed by estimating (11). We discuss this
later in the result section.

8 See Appendix B for a detailed derivation. R codes for estimating partial derivatives of the smooth coefficients are available from the
authors upon request.
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3 Data

We used an unbalanced panel data on 82 U.S. major investor-owned utilities (IOUs) observed for the time period of

1986−1998. The production technology is represented by one output (Y ), measured by net steam electric power generation

in megawatt-hours, and three inputs, viz., the aggregate of labor and maintenance (X1), fuel (X2), and capital (X3).

The data set is obtained from Journal of Applied Econometrics data archive (http://www.econ.queensu.ca/jae/) and is

described in Rungsuriyawiboon and Stefanou (2007) and Kumbhakar and Tsionas (2010). For the electricity industry, the

output (electric power generated) is usually exogenously given (demand determined). Therefore, it would be inappropriate

to estimate the production function which assumes output to be endogenous. If output is exogenously given, one can

either use the cost function or the IDF where the choice (endogenous) variables are inputs. Here we use the IDF because

it does not require price information which are often not directly available. If the prices are computed from some other

information it is likely that they will be contaminated by measurement errors. That is the ‘observed’ prices might not be

the same as the ‘true’ prices. In such a case cost function estimation might not be appropriate, although the unobserved

true prices are exogenous.

4 Results

In estimating the growth IDF in (6) and (15) and log IDF in (11) we used labor (X1) as the numeraire input. It is worth

noting that the results (estimated ˙TFP and its components) are invariant to the choice of the numeraire input. In this

section we report results related to functional coefficients; TFP growth and its components; and biases in TC.

4.1 Functional coefficients in parametric and semiparametric models

The SPSCM that we estimated is given in (6). To make it comparable the parametric model that we estimated is (15),

which is based on (6) but used (12), (13) and (14) for βk(·), γq(·) and β0(·), respectively. That is, the IDF in (11) should

not be directly estimated.9 According to microeconomic theory, TC, under normal circumstances, should be non-negative

(technical progress) so that β̂0 ≥ 0. This means that requirement of inputs to produce a given level of output should not

increase over time. Similarly, β̂2, β̂3 should be positive so that holding output constant, requirement of an input (here

X1) will be lower when other inputs are increased (i.e., input ratios X2/X1 and X3/X1 are increased). Similarly γ̂ should

be negative since −γ̂ shows the percentage by which all inputs (and therefore cost) are to be increased when output is

increased by one percent. That is, −γ̂ has a cost elasticity of output interpretation. Thus violations occur when either

β̂0 < 0 or β̂2 < 0 or β̂3 < 0 or γ̂ > 0 (see section 2.1 for the detailed explanation of these coefficients). For the parametric

model, we can calculate values of these functional coefficients in (12), (13) and (14) using the estimated parameters in

(15) which are summarized in Table 1. We also checked the percentage of violations in the functional coefficients. It can

be seen from Table 2 that for the SPSCM there are some violations for all the coefficients. For example, 4.48% of the

producers experienced technical regress. For the other three smooth coefficients, the percentage of violations are less than

9 Since the TFP growth decomposition in the empirical literature is based on estimated cost/distance functions (see the references cited
in Kumbhakar et al (2008)), we have also estimated the IDF in (11). TFP components from the estimated log IDF will be reported alongside
the results from the growth formulation in (15).
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1%. The bandwidth summary in Table 2 indicates that the smooth coefficients are nonlinear functions of the Z variables

because the bandwidths are small enough (less than two times the standard deviations of the corresponding Z variables

as a rule of thumb). For the parametric model, however, the percentage of violations are not that bad compared to the

SPSCM. Although there are more violations in terms of TC in the parametric model, no violation is observed in the

estimated input elasticities. Table 3 reports the quartile values (Q1, Q2 and Q3) for the functional coefficients derived

from both the semiparametric and parametric models. All the functional coefficients in both SPSCM and parametric

model have the expected signs across the quartiles.

Figure 1 plots kernel density functions of the functional coefficients in semiparametric and parametric growth models.

From these plots, one can get a good idea about closeness of the distributions of various functional coefficients from the

two competing models. For example, it can be seen that there are fewer violations in the semiparametric model for β̂0

(upper left panel) because of its thinner tail in the negative region. The rest of the three panels show that the distributions

of β̂2, β̂3, and γ̂ from the semiparametric model are all skewed while those from the parametric model are symmetric.

Furthermore, the spread of these distributions from the semiparametric model are wider than those from its parametric

counterpart. These may stem from the fact that restrictive functional form assumption on the coefficients in the parametric

models makes the distributions tighter. Once the functional form assumption is relaxed in the semiparametric model,

the spread of the distributions gets bigger. A nonparametric test for equality of distributions (Li et al, 2009) rejects the

equality of distributions of the functional coefficients across the semiparametric and parametric models at the 1% level.

Figure 2 shows scatter plots of each functional coefficient. Coefficients from the semiparametric model are measured

on the x-axis and those in parametric model are measured on the y-axis. These plots give a visual picture of how closely

each functional coefficient in the two models are related. A 45 degree line is drawn to compare their closeness visually. It

can be seen that none of the functional coefficient is highly correlated between the two models. This is because most of

the points do not cluster along the 45 degree line. The correlation coefficients for the four functional coefficients, β̂0, β̂2,

β̂3, and γ̂, between the two competing models are: 0.1924, 0.2654, 0.5043, and 0.3274, respectively. These results indicate

that SPSCM results are different from their parametric counterparts. For this particular dataset, SPSCM is preferred

since a consistent model specification test (Hsiao et al, 2007) rejects the parametric specification at the 1% level.

Because the coefficients in our model are observation-specific, the standard errors for these coefficients are also

observation-specific. We used wild bootstrap (Härdle and Mammen, 1993) to calculate these standard errors for both

models. Figures 3 and 4 show a convenient way of reporting the observation-specific estimates along with their 95%

confidence intervals. To understand these plots consider the plot for any functional coefficient, say β̂0 in Figure 3. First,

we plot β̂0 against β̂0 so that all the β̂0 observations lie along the 45 degree line. Then we plot both the upper and lower

confidence bounds for each β̂0 observation. All the points above the 45 degree line are upper bounds and those below it

are lower bounds. Thus, for every point estimate of β̂0 placed on the 45 degree line, we can also see an observation-specific

confidence interval. If the horizontal line at zero passes inside of the confidence bounds for any given observation, then β̂0

for this observation is statistically insignificant. Conversely, if the horizontal line at zero passes outside of the confidence

bounds, then β̂0 for this observation is statistically significant. Furthermore, if the lower (upper) bound lies above (below)

zero, then this observation is significantly positive (negative). If we define percentage of violations reported in Table 2

in terms of interval rather than point estimates, i.e., violations occur when the estimates are significantly positive or
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negative, then such violations in the semiparametric (parametric) model will be 0.61% (2.03%), 0.1% (0%), 0.1% (0%),

and 0% (0%) for β̂0, β̂2, β̂3, and γ̂, respectively.

We can see from Figure 4 that for β̂0 in the SPSCM, the confidence interval becomes wider near the tails when the

estimates are either too small or too large. However, for β̂2, the confidence interval is wider at the upper tail when the

estimates are too large, whereas for β̂3 and γ̂, the confidence interval is wider at the lower tail when the estimates are too

small. These correspond to what are shown in the kernel density plots in Figure 1: the distribution of β̂2 in the SPSCM

is skewed to the right, meaning that there are not many observations in the right tail (when the estimates are large),

whereas the distributions of β̂3 and γ̂ are skewed to the left, meaning that there are not many observations in their left

tails (when the estimates are small). Figure 3 suggests that the distribution of each coefficient in the parametric model

is less skewed relative to their semiparametric counterpart so that the confidence interval gradually becomes wider from

the center of the 45 degree line to the two ends of the line. This is also evidenced by the kernel density plots of Figure 1.

4.2 TFP growth/index and its components

So far our focus was on functional coefficients. We now use their estimates in computing TFP growth and its components

for both the SPSC and parametric models. Instead of reporting the observation-specific values we computed weighted

average of TFP growth over time where the weights are the ratio of output for plant i at time t to the total industry output

at time t (Baltagi and Griffin, 1988). Thus a plant with lower output will have smaller influence on TFP growth. Three

types of TFP growth are calculated. These are the Divisia, semiparametric, and parametric (based on the growth IDF

as well as the log IDF model). These TFP growth rates are used to define TFP indices from TFPt = TFPt−1(1 + ˙TFP ),

when TFP1986 = 100. By doing this we focus on the temporal behavior of TFP from the four different models. The results

are reported in Figure 5. All four measures of TFP index suggest a pattern of appreciable productivity growth from the

year 1986 to 1990 and from 1993 to 1996, although the Divisia index shows more uneven trend than the rest of the

three econometric models. From 1987 to 1991 the parametric growth model keeps underestimating TFP index relative to

SPSCM and the Divisia. In the parametric literature estimates of TFP growth and its components are mostly calculated

from estimated IDF (Brümmer et al, 2002; Karagiannis et al, 2004), whereas in the present model we estimated an IDF in

a growth formulation. Thus it is appropriate to look at the TFP growth components from the log IDF as well.10 It can be

seen from Figure 5 that the TFP index based on the log IDF underestimates the Divisia TFP index for most of the years.

Using the TFP observed (Divisia) growth/index as the benchmark, we can say that the SPSC model traces the observed

TFP growth/index much more closely than any other models (as shown in the top two panels of Figure 5). A closer look

at the top left panel of Figure 5 shows that TFP growth from the parametric growth IDF model performs better than the

parametric log IDF model. The reason for this is that the growth models (both parametric and semiparametric) tie up

TFP growth with its components econometrically (see (6) and (15)). On the other hand if one uses a log IDF, the TFP

growth components come from the econometric model and these components are not tied up with the TFP growth that

comes from data. That is, there is no link between observed and estimated TFP growth empirically, and consequently

the residual component (represented by the u term in either (6) or (15)) might not have zero mean, while the zero mean

assumption is empirically used in the growth formulation.

10 Results from the log IDF are also reported in Table 3.
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Similar to TFP index we can also compute TC and Scale indices from the SPSC and parametric models. Since we

cannot get the TC and Scale components directly from the Divisia index, there is no benchmark to compare for these

components. Nonetheless it is interesting to see whether these indices differ across competing models. The results are

also plotted in Figure 5 (lower two panels). It can be seen that the TC index based on SPSCM differs markedly from

its parametric counterparts, especially after 1990. Both the parametric models overestimates TC index compared to its

semiparametric counterpart. The overestimation is somewhat less for the log IDF model. When it comes to the Scale

index, we find that SPSC and parametric growth models give almost identical estimates. The parametric log IDF model

underestimates Scale index for all the years.

We can see from (10) that the decomposition of TFP growth from any econometric model naturally carries an

unexplained component, which comes from the error term u in (6). This error term, by assumption, is centered around

zero with some spread. The growth models (parametric and semiparametric) based on (6) use this information explicitly.

This is, however, not the case with the IDF model in (11). That is, the error term implicitly used in estimating this

function is not related to u (in either (6) or (15)) in a formal way. To examine the implication of this, we plotted weighted

average of residuals (using varying output weights) from the three econometric models over time in Figure 6. The residual

component from the SPSCM is much closer to zero compared to the other two parametric models. The residual component

from the log IDF model in (11) shows large departure from zero. This is because of the fact that this model does not

include the residual component the same way as the other two models do. In other words, the SPSCM fits the data

better and therefore lower residual component. The R2 (i.e. squared correlation coefficient between actual and predicted

dependent variable) for the parametric and semiparametric growth models are 0.9027 and 0.9606, respectively.11

4.3 Biases in technical change in parametric and semiparametric models

One advantage of the SPSCM is that the bias in TC measures are observation-specific because these are based on the

nonparametric functions of smooth coefficients. The derivative of the smooth coefficients with respect to time is a function

of kernel function (see Appendix B), which yields observation-specific estimates. In contrast, parametric model can only

yield one estimate for bias in TC for all the observations because the functional coefficients in (12), (13), and (14) are

linear parametric functions of time. The derivative of each coefficient with respect to time is a single number. These results

are reported in Table 4. It can be seen that sign on scale bias measure is not the same across all observations in SPSCM.

The Q1 −Q3 values are −.0366,−.0102 and .0031, respectively, and are statistically significant. The corresponding value

from the parametric model (−λ1t) is −.0025 and is statistically insignificant (showing no scale bias). Thus, although the

SPSCM shows that scale bias is negative for 70% of the plants, the parametric models show negative (but insignificant)

bias for all plants. In other words, the nonparametric model is predicting that about 70% of the plants are operating

below their efficient scale and about 30% are operating above their efficient scale. On the other hand, the parametric

model is predicting that plants are operating at their efficient level.

TC is found to be fuel-saving (relative to labor) for all firms in the parametric model (the coefficient (δ2t) is negative

and significant). On the contrary, the SPSCM shows that TC is fuel-using for about 35% and fuel-saving for 65% of

11 Note that the parametric log IDF model has a different dependent variable and therefore R2 from this model cannot be compared with
R2 from the growth models.
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the observations. Finally, TC is found to be capital-using (relative to labor) in the parametric model whereas in the

SPSCM, TC is found to be capital-using for 73% (and capital-saving for 27%) of the observations. In addition to bias

we can also examine whether the neutral component of TC, β0, is time-varying or not. It is time-invariant if the time

derivative of β0 is constant for all observations (which is the case for the parametric model). The SPSCM shows that

the neutral component of TC is time-varying in the sense that the Q1, Q2, Q3 values of ∂β̂0/∂t are −.0015,−.0002 and

.0009, respectively, and are statistically significant. Thus, given everything else the neutral component of TC increased

(over time) for 43% of the observations. The value of the parameter (αtt) from the parametric model is −.0004 and is

statistically insignificant (thereby showing that neutral component of TC is invariant with respect to time). Thus, we

find some differences in the results between the parametric and SPSCM so far as biases in TC are concerned.

Figure 7 plots observation-specific estimates of bias measures along with their 95% confidence intervals (following

the same plotting technique as before). This plot is more informative than Table 4 in that it reports bias for every

observation, instead of a particular quartile from the whole distribution, and tests whether it is statistically significant.

While the parametric model predicts that neutral component of TC is invariant with respect to time for all observations,

the SPSCM shows (in the upper left panel) it to be significantly increasing over time for 4.48% of the observations,

i.e., those whose lower bounds are above zero; and significantly decreasing over time for 10.27% of the observations, i.e.,

those whose upper bounds are below zero. However, most of the observations do have a neutral TC (i.e. TC is invariant

with respect to time), which is what the parametric model predicts. While the parametric model predicts that TC is

significantly fuel-saving for all the observations, the SPSCM (upper right panel) finds that most observations (66.94%) do

not have statistically significant bias towards fuel (TC is fuel-neutral), although TC is significantly fuel-using (fuel-saving)

for 10.58% (22.48%) of the observations (i.e., observations with their lower(upper) bounds above (below) zero). TC is

significantly capital-using in the parametric model for all the observations. This is true for those observations whose lower

bounds are above zero in the SPSCM (lower left panel), although we do find that TC is significantly capital-saving for

11.80% of the observations whose upper bounds are below zero and that 59.51% have no significant bias towards capital

(TC is capital-neutral). There is no significant scale bias in the parametric model, whereas in the SPSCM (lower right

panel) there are 7.63% (22.38%) observations that have significantly positive (negative) scale bias (i.e., observations with

their lower (upper) bounds above (below) zero). Most of the observations (69.99%) in the SPSCM do not have significant

scale bias, which is what the parametric model predicts.

5 Conclusion

This paper used both the parametric and semiparametric smooth coefficient modeling approaches to estimate TFP

growth and its components. The semiparametric TFP growth model is derived from a nonparametric input distance

function representation of the underlying technology. The functional coefficients of the semiparametric smooth coefficient

model came naturally from the model and are nonparametric functions of inputs, outputs and time. Since TFP growth

components are functions of these functional coefficients, these are fully flexible. Another advantage of this approach is

that one can obtain measures of bias (input and scale) in technical change which are observation-specific. This came as

a by-product of making the functional coefficients of the estimated model fully nonparametric. We use firm-level data on

U.S. electricity generation plants as an application of this methodology. Since output for the generation plants is assumed
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to be exogenous we used an input distance function instead of a production function. The method can, however, be

used for production, cost and profit functions. The estimated model is expressed in growth (rates of change) form which

automatically removes individual (plant-specific) effects (which are often ignored in empirical applications). To check

superiority of the semiparametric model we compare results from a fully parametric flexible (translog) input distance

function. Furthermore the parametric model is estimated with and without growth formulation. We find that TFP growth

results from the semiparametric model is better than their parametric counterparts in the sense that it traces the observed

TFP growth better. The differences are, however, smaller when the models based on growth formulation are compared.
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Appendix A: Proof of Sk = βk, k = 2, . . . , K

This appendix proves that the allocative component in equation (10) is equal to zero when firms minimize cost subject to input distance

function. The constrained optimization problem can be written as:

min
X

W ′X subject to − ln X1 = m(ln X̃, ln Y, t) (16)

where W is a vector K input price vector; X is the vector of K inputs and X̃ = [X̃2, . . . , X̃K ]. The Lagrangian of the above problem can

be written as:

L = W ′X + λ[ln X1 + m(ln X̃, ln Y, t)] (17)

where λ is the Lagrange multiplier. The first-order conditions are:

∂L

∂X1
= W1 + λ(

1

X1
+

K∑

k=2

∂m

∂ ln X̃k

· ∂ ln X̃k

∂ ln X1
· ∂ ln X1

∂X1
) = 0 (18)

and
∂L

∂Xk
= Wk + λ(

∂m

∂ ln X̃k

· ∂ ln X̃k

∂ ln Xk
· ∂ ln Xk

∂Xk
) = 0 ∀k = 2, . . . , K (19)

The above first-order conditions can be simplified as:

W1X1 + λ(1−
K∑

k=2

βk) = 0 (20)

and

WkXk + λβk = 0 ∀k = 2, . . . , K (21)

respectively. Furthermore, we can simplify them as

WkXk

W1X1
=

Sk

S1
=

βk

1−∑K
k=2 βk

∀k = 2, . . . , K (22)

If we add these K−1 equations first and then add 1 to both sides, we get S1 = 1−∑K
k=2 βk, since

∑K
k=1 Sk = 1. Thus, Sk = βk, k = 2, . . . , K.
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Appendix B: Derivation of partial derivatives of smooth coefficients

The appendix derives the partial derivative of the smooth coefficient vector Ψ̂(z) with respect to the l-th continuous variable Zl.

∂Ψ̂(z)

∂Zl
=

n∑

i=1

∂Ai(z)

∂Zl
Yi (23)

where Ai(z) = A−1XiK(Zi−z
h

) = (K−1(Zi−z
h

)A)−1Xi, and A =
∑n

i=1 XiX ′i K(Zi−z
h

).

From what follows, we let K(·) to represent K(Zi−z
h

), in order to simplify notation. K(·) is a product (scalar) kernel function:

K(·) =

q∏

s=1

K(
Zsi − zs

hs
) (24)

For the lth continuous variable Zl,

K(
Zli − zl

hl
) =

1√
2π

exp(−1

2
(
Zli − zl

hl
)2) (25)

∂Ai(z)

∂Zl
= −(K−1(·)A)−1 ∂K−1(·)A

∂Zl
(K−1(·)A)−1Xi

= −K(·)A−1
(∂K−1(·)

∂Zl
A +

∂A

∂Zl
K−1(·))K(·)A−1Xi

(26)

where
∂A

∂Zl
=

n∑

i=1

XiX ′i
∂K(·)
∂Zl

=

n∑

i=1

XiX ′i (
Zli − zl

h2
l

)K(·) (27)

and
∂K−1(·)

∂Zl
=

∂K−1(·)
∂K(·) · ∂K(·)

∂Zl
= −(

Zli − zl

h2
l

)K−1(·) (28)
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Table 1 Parameter estimates (parametric model)

αt -0.0987∗∗∗ δ2t -0.0114∗∗∗ θ2 -0.4167∗∗ θ33 -0.0571∗∗∗

(0.0286) (0.0026) (0.1867) (0.0220)

αtt -0.0004 δ3t 0.0197∗∗∗ θ22 0.0136 λ1t 0.0025

(0.0005) (0.0030) (0.0209) (0.0016)

α1 0.6173∗∗∗ δ12 0.0222∗∗ θ3 1.5369∗∗∗ R2 0.9027

(0.2201) (0.0107) (0.2140)

α11 -0.0358∗∗∗ δ13 -0.0513∗∗∗ θ32 0.0447∗∗

(0.0137) (0.0115) (0.0183)

1. The parameters are estimated from (15).
2. The numbers in the parentheses are the asymptotic standard errors.
3. ∗,∗∗,and ∗ ∗ ∗ means significance at 10%, 5%, and 1% level, respectively.
4. δ2t and δ3t measures input bias; −λ1t measures scale bias; αtt measures
technical neutrality.

Table 2 Bandwidth and percentage of violations

Z Variable t ln X̃2 ln X̃3 ln Y

Bandwidth 1.419598 0.4221742 0.3770268 0.5959304

X Variable Intercept ˙̃X2
˙̃X3 Ẏ

Coefficient β̂0 β̂2 β̂3 γ̂

Percentage of violations: Semiparametric 4.48% 0.92% 0.31% 0.61%

Percentage of violations: Parametric 11.39% 0% 0% 0%
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Table 3 Summary statistics of functional coefficients

β̂0 (TC) β̂2 β̂3 γ̂

Semiparametric

Q1 0.0044 0.0765 0.6602 -0.2329

(0.0002) (0.0017) (0.0085) (0.0091)

Q2 0.0065 0.1214 0.7946 -0.1188

(0.0002) (0.0036) (0.0059) (0.0060)

Q3 0.0097 0.2110 0.8613 -0.0747

(0.0003) (0.0079) (0.0038) (0.0017)

Parametric (Growth IDF) from (15)

Q1 0.0040 0.1301 0.6357 -0.1827

(0.0003) (0.0019) (0.0045) (0.0012)

Q2 0.0091 0.1651 0.6949 -0.1568

(0.0003) (0.0019) (0.0042) (0.0023)

Q3 0.0130 0.1964 0.7573 -0.1202

(0.0004) (0.0020) (0.0043) (0.0017)

Parametric (Log IDF) from (11)

Q1 0.0077 0.2624 0.4759 -0.4625

(0.0001) (0.0039) (0.0025) (0.0038)

Q2 0.0093 0.3378 0.5207 -0.3947

(0.0001) (0.0039) (0.0030) (0.0033)

Q3 0.0108 0.3890 0.6033 -0.2940

(0.0001) (0.0038) (0.0069) (0.0041)

The numbers in the parentheses are the bootstrapped standard errors.

Table 4 Biases in technical change

Neutrality Input bias Scale bias

∂β̂0/∂t ∂β̂2/∂t ∂β̂3/∂t −∂γ̂/∂t

Semiparametric

Q1 -0.0015 -0.0360 -0.0055 -0.0366

(0.0001) (0.0021) (0.0029) (0.0023)

Q2 -0.0002 -0.0076 0.0178 -0.0102

(0.0001) (0.0009) (0.0011) (0.0008)

Q3 0.0009 0.0066 0.0521 0.0031

(0.0001) (0.0013) (0.0025) (0.0010)

Parametric

-0.0004 -0.0114 0.0197 -0.0025

(0.0005) (0.0026) (0.0030) (0.0016)

The numbers in the parentheses are the standard errors.
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Fig. 1 Kernel density plots of functional coefficients
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Fig. 2 Scatter plots of functional coefficients
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Fig. 3 Functional coefficients in parametric model

−0.01 0.00 0.01 0.02 0.03 0.04

−
0.

01
0.

01
0.

03

β̂0

β̂ 0
 a

nd
 it

s 
95

%
 c

on
fid

en
ce

 in
te

rv
al

0.00 0.10 0.20 0.30

0.
0

0.
1

0.
2

0.
3

0.
4

β̂2

β̂ 2
 a

nd
 it

s 
95

%
 c

on
fid

en
ce

 in
te

rv
al

0.5 0.6 0.7 0.8 0.9

0.
3

0.
5

0.
7

0.
9

β̂3

β̂ 3
 a

nd
 it

s 
95

%
 c

on
fid

en
ce

 in
te

rv
al

−0.25 −0.20 −0.15 −0.10 −0.05

−
0.

4
−

0.
2

0.
0

0.
1

γ̂

γ̂ 
an

d 
its

 9
5%

 c
on

fid
en

ce
 in

te
rv

al



22 Subal C. Kumbhakar, Kai Sun

Fig. 4 Functional coefficients in semiparametric model
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Fig. 5 TFP growth/indices over time
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Fig. 6 Residual (unexplained) component of TFP growth
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Fig. 7 Biases in technical change
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