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I. Introduction

Developed countries is moving toward high value )Jadded and high technologies based manufacturing as it is a very
important sector that contributed to employment and economic development. With the advance in technology and
increasing competitiveness from some low labour cost countries, manufacturing sector in developed countries face
its toughest challenge. Increasingly, these challenges depend critically on reducing production cost, increase
equipment utilization and innovative products development so as to maximise its competitiveness.

Therefore, there is an urgent need to develop and provide solution that can improve manufacturing system and
equipment utilization. With user friendly development environment in the embedded system, solution can be small,
intelligent and could be generated by domain experts. The embedded solution for manufacturing prognostics will
enable companies to achieve near zero downtime, higher productivity to keep developed countries on the
competitive edge in this ever-changing economy. Hence, the research aim is to understand the needs, trends, gaps
of manufacturing prognostics and defines the research potential related to rapid embedded system framework for
prognostic.

I1. Industrial problems

Manufacturing environment needs to be highly responsive to customer demand changes and it becomes vital for
manufacturing plant to have a shorter marketing window with the competitive price and quality. Shop floor system
and equipment needs to be fully utilized and optimized to zero downtime, zero setup.

Traditionally, the manufacturing plant performed the fail and fix maintenance procedures. Early detection of failures
and prognostics in systems is very crucial for maintenance operations. With increasing trend towards automation in
different manufacturing industries, it has become necessary that the downtime of any equipment system be
reduced to minimum. Machine breakdowns are not only expensive in terms of production losses but also important
in meeting production schedules. In addition, due to the fast growth of equipment size and complexity, there are an
increasing number of system elements that need to be monitored at the sensors source. Intelligent devices are
deployed so that problems can be identified at source.

On the other hand, the manufacturing landscape in developed countries has changed. In the past, a lot of companies
are resellers and distributors who will buy and sell products imported for other countries. In recent year, a lot of
companies started original equipment manufacturing (OEM) which manufactures key components on behalf of other
companies. Some companies will move toward original design and manufacturing (ODM) which design and
manufacture their own products. Some companies started to develop their own branding product or original brand
manufacturing (OBM).

With shorter product life cycle, companies need to have rapid products introduction and innovation. A lot of the
prognostics related products will need to be embedded so that it will be smaller, more compact. Factories and
equipment need to run twenty-four hours a day and seven days a week (24X7). Remote maintenance, diagnostics
and prognostics services to achieve zero downtime become more important. With reduction in production space,
prognostics solutions need to be smaller and compact with more intelligent.

I11. Background
Early detection of failures in systems is very crucial for maintenance operations. With increasing trend towards
automation in different manufacturing industries, it has become necessary that the downtime of any equipment



system be reduced to minimum. Machine breakdowns are not only expensive in terms of production losses but also
important in meeting production schedules. In addition, due to the fast growth of equipment size and complexity,
there are an increasing number of system elements that need to be monitored. Most of the equipment are
complicated integrated electro-mechanical and required some embedded devices, sensors to provide prognostics
features.

A. Definitions of Manufacturing Prognostics

Manufacturing prognostics (or Prognostics for manufacturing and engineering) has been interpreted by various
researchers. Reference [12] defines prognostics as the ability to "predict and prevent" possible fault or system
degradation before failures occur. If we can effectively predict the condition of machines and systems, maintenance
actions can be taken ahead of time. As a result, minimum downtime can be achieved. Prognosis has been defined by
[13] as "prediction of when a failure may occur" i.e. a means to calculate remaining useful life of an asset. In order to
make a good and reliable prognosis it must have good and reliable diagnosis. Manufacturing prognostics is explained
as tackling problem by predicting the occurrence of an event through analyzing the trend of the data, preceding this
particular event. Manufacturing prognostics improve the overall operations of manufacturing maintenance and
provide for competitive advantages. Various connotations of manufacturing prognostics given by other researchers
are illustrated in Table 1 below. It is clear that manufacturing prognostics has significant role to play and needs
critical attention.

Table 1: Definitions of manufacturing prognostics

Author's Connotations

Brotherton [3] Ability to access the current health of a part for a fixed time horizon or predict the time
to failure.

Engel [7] Capability to provide early detection of the precursor and/or incipient fault condition

(very "small" fault) of a component, and to have the technology and means to manage
and predict the progression of this fault condition to component failure.

Katipamul [11] Address the use of automated methods to detect and diagnose degradation of physical
system performance, anticipate future failures, and project the remaining life of physical
systems in acceptable operating state before faults or unacceptable degradations of
performance occur.

Lee [12] Ability to "predict and prevent" possible fault or system degradation before failures
occur.

Lewis [13] Prediction of when a failure may occur. To calculate remaining useful life of an asset.

Smith [20] The capability to provide early detection and isolation of precursor and/or incipient fault

condition to a component or sub-element failure condition, and to have the technology
and means to manage and predict the progression of this fault condition to component
failure.

Su [22] The identification of incipient faults, is usually considered and treated as a
component/part problem rather than a system problem.

B. Prognosis Representation

The notation of prognosis has been addressed widely in the literatures by various authors. Prognosis research is
done in areas such as, mechanical systems (e.g., rail transport, automotive, and aircraft), power systems (e.g., fossil-
fuelled power plants), and continuous-time production processes (e.g. chemical and petrochemical plants, and pulp
and paper mills) where structural durability and operational reliability are critical, also prognosis work found to be
high in Department of Defence (DOD), including Navy, Air Force, Army and DARPA, is approaching development of
prognosis architectures and technologies in different ways [17]. Prognosis results are used for proactive decisions
about preventive and/or evasive actions (e.g. CBM, mission reconfiguration) with the economic goal of maximizing
the service life of replaceable and serviceable components while minimizing operational risk [15], as main concept of
prognosis is to measure the remaining useful life of a component. There are several factors that are critical to
perform a prognosis [18], including




e Current health state

e Historical health state

e Past maintenance history

e Expected usage of the equipment

Prognosis makes use of not only the historical data and available knowledge, but also profiles of future usage and
external factors. The early research on prognostics has dealt largely with specific applications or case studies. This is
expectedly so, since prognostics as an engineering problem arose from a need to promote condition based
maintenance (CBM) practices for reducing costs incurred during inefficient schedule-based preventive maintenance.
Currently, there are many prognostics techniques and methods. The prognostics methods can be classified as the
following two approaches [14].

e Data-driven: derived pattern recognition theory based on statistical and learning from routinely monitored
system operating data.

e Model-based: derived mathematical model based on statistical and outcomes of consistency checks
between the sensed measurements of a real system and the outputs of a mathematical model.

Prognostics are receiving most attention for systems consisting of mechanical and structural components, where
there is an opportunity to change current maintenance practices from scheduled-preventive to condition-based
maintenance [15]. A large number of recent industrial research and development efforts in prognostics has been
spurred by the military seeking to change its maintenance practices; to a lesser extent, the need for prognostics has
also been recognized by other industries. The ability to predict the onset of failure is key to the reduction in
maintenance costs, downtime, and health hazards in industrial environments [1].

C. Prognostics

Techniques Intelligent techniques, such as expert system, neural network, fuzzy logic and genetic algorithm, have
been employed to assist the diagnostic task to correctly interpret the fault data. Neural network technique has
gained popularity over other techniques as it is efficient in discovering similarities among large bodies of data.

1) Artijficial Neural Networks (ANN): ANN is data processing systems consisting of a number of interconnected
processing elements called neurons. The neurons organized in layers which include an input layer, a set of
intermediate layers, and an output layer. ANN has found increasing favour in manufacturing systems research
because of their ability to perform robustly in noisy environment [2]. ANN-based algorithms are suitable for multiple
sensors information as they can represent the non- linear characteristics of machining process, learning, noisy
suppression and parallel computation abilities. They are a type of massively parallel computer architectures based
on brain-like information encoding and processing models with learning, association, categorization, generalization,
feature extraction and optimization. ANN is like a black box model which accepts inputs, processes them and
produces outputs according to some non-linear transfer function [25]. ANN learn solutions from supplied data
without specification of rules of a knowledge-based system. Most of the literature concerning fault diagnosis and
neural networks has focused on fault detection based with steady state data. Reference [23] applied neural
networks for detection and diagnosis of faults in steady state conditions. ANN is massively parallel, extremely fast
and intrinsically fault tolerant and can be taught to perform complex tasks without programming. They are able to
learn from experience, generalize from examples, and extract essential characteristics from noisy data [9]. It can be
implemented in hardware, software or hybrid of both.

2) Fuzzy Logic (FL): FL is a problem-solving control system methodology that lends itself to implementation in
systems ranging from simple, small, embedded micro- controllers to large, networked, multi-channel PC or
workstation-based data acquisition and control systems. FL provides a simple way to arrive at a definite conclusion
based upon vague, ambiguous, imprecise, noisy, or missing input information. FL's approaches problems by mimics
how human make decisions, only much faster. Reference [10] explained that FL offers several unique features that
make it a particularly good choice for many prognostics related control problems.



Reference [24] presents work describing an automatic diagnosis system for fault classification in rolling bearings
based on fuzzy logic analysis. Where fuzzy logic is considered to be a flexible tool which allows the modelling of
uncertain and ambiguous data frequently found in real situation, and it also makes possible manipulating different
method of signal processing in an intergraded context. Reference [5] presents an on-line fuzzy expert system, called
alarm filtering and diagnostic system (AFDS), for the purpose of dynamic alarm filtering, overall plant-wide diagnosis,
and alarm prognosis. The main objective of the system is to aid the operator by providing clean alarm pictures and
compact information about plant abnormalities.

3) Expert Systems: Expert systems or knowledge based systems are suitable for solving problems usually solved by
human specialists. Expert systems have been used since mid 1960s. It was believed that expert performance could
by produced by combining the power of computers with the laws of reasoning. The process of building expert
systems involves knowledge acquisition, knowledge representation and the verification and validation of prototypes.

An expert system based framework for an Incipient Failure Detection and Predictive Maintenance (FDPM) is
presented [4]. The FDPM system is comprised of several expert system related components and databases for use by
the mathematical and neural network models which predict deterioration of distribution equipment.

Rule-based expert systems are useful in encapsulating explicit knowledge from experts. Usually, rules are expressed
in form; IF condition, THEN consequence. The condition portion of the rule is usually some type of fact while the
consequence portion can be outcomes that affect the outside world, test another condition or rule, or even add a
new fact to the knowledge base. These rules can be specific domain rules or heuristic rules (rules of thumb) and can
be chained together using logical operators [8]. Applications of expert systems can be summarized as follows:

e Diagnosing, interpreting, and monitoring problems

e Choosing among analysis and modelling tools.

e Selecting facilities configurations.

e Planning for predictive maintenance and refurbishment
e Capturing, duplicating, and transferring expertise.

IV. Research execution
This section identified relevant literature, and then classifying literature in different schemes. The classification of
manufacturing prognostics is explained by distribution in journals, origin of research and research focus respectively.

A. Distribution of papers in journals

Numerous articles dealing with the theory and practice of manufacturing prognostics have been published in various
journals. A total of 175 papers have been reviewed. The top two journals that have more focus on manufacturing
prognostics are Journal of quality in maintenance engineering (12%) and International society for optical engineering
(8%). Two conferences that have more focus in the area are Aerospace conference (16%) and Automatic testing
conference (7.4%).

B. Approach and methodology

In this part, all papers are classified by origin of research: approach and methodology. The approach is categorized
into content and process aspects as shown in table 2. Content-related literature addresses issues of manufacturing
prognostics context. The content of manufacturing prognostics refers to the choices and actions. Process- related
literature addresses issues on how to form manufacturing prognostics; therefore process aspects include models,
framework and architectures. Basically, the focus of the literature is on either on content or on process of
manufacturing prognostics. The classification of the literature on manufacturing prognostics is in Appendix 1 which
shows the details of each literature; researchers, year, approach, and contributions to research.



Table 2: Approach of research

Focus # %
on 133 | 76
Content | 42 24
Process | 175 | 100
Total

The research methodologies used are divided into five categories which are conceptual, descriptive, empirical,
exploratory cross-sectional and exploratory longitudinal. Explanation of the above categories is as follows [6].

e Conceptual: Basic and fundamental concepts of manufacturing prognostics.

e Descriptive: Explanation or description of manufacturing prognostics content or process.

e Empirical: Data for study has been taken from existing database, review, case study, taxonomy or typological
approach.

e Exploratory cross-sectional: Objective of study is to become more familiar through survey, in which
information is collected at one point in time.

e Exploratory longitudinal: Survey methodology where data collection is done at two or more points over time
in the same organization.

Table 3 shows the distribution of various methodologies used by researchers. Among the methodologies,
empirical methodology seems to be the most interested methodology.

Table 3: Distribution of various methodologies

Methodology # %
Descriptive 78 45
Empirical 70 40
Exploratory Cross-sectional | 18 10
Conceptual 07 04
Exploratory longitudinal 02 01
Total 175 100

3) Industrial adaptation: In table 4, all articles classified by industrial adaptation based on the various
manufacturing methods followed by the industries such as Artificial Neural Networks, Expert systems,
Algorithms, Architectures, Embedded systems, Knowledge Base Systems.

Table 4: Classification by industrial adaptation

Industries M1 M3 M2 M4 | M5 M6 M7 M8 T %
Mechanical systems 23 13 8 6 11 6 2 3 72 41
Electrical Systems 15 9 8 5 4 5 0 0 46 26
Industrial Enterprises 12 4 5 1 2 3 2 2 31 18
Construction 2 0 1 2 0 2 0 0 7 4
Logistics 5 2 1 2 2 3 1 0 16 9
Medical 2 1 0 0 0 0 0 0 3 2
Total (T) 59 29 23 16 19 19 5 5 175 | 100
Percentage (%) 34 17 13 9 11 11 3 3 100

Note: MI- Neural Networks, M2- Fuzzy Systems, M3-Expert systems, M4-Embedded systems, M5- Algorithm, M6- Knowledge base systems,
M7- Software program, M8- Architecture.



The industrial applications include

e Mechanical Systems: It includes maintenance activities in Automotive sectors, (e.g. truck maintenance),
Avionics, (e.g.: aircraft applications), Rotating Equipments (e.g. Bearings)

e Electrical Systems: Describes maintenance activities in power plants and electric systems in manufacturing
industries.

e Industrial enterprises: Maintenance process in various industries such as semiconductor, chemical,
continuous-time production process.

e Logistics: It includes details about maintenance activities in shipboard Machinery, and about the navy
logistics maintenance.

e Construction: It includes details about the maintenance activities carried out in the construction industries.

e Medical: Includes the application of prognostics in medical field.

C. SWOT Analysis
SWOT (Strengths, Weakness, Opportunities, and Threats) analysis helps to understand factors that have greatest
actual and potential importance for the research works. Table 5 shows the summary of the analysis.

Strengths: From the classification of journals, the strength of previous research can be observed. Firstly, the previous
work focused on content related literature (76%) rather than process related literature (24%). Hence, the previous
research tends to have strengths on manufacturing prognostics context over planning, developing and implementing
the prognostics methods. Secondly, the most popular methodology in the manufacturing prognostic research is
descriptive (45%) and empirical (40%) methodology. Many researchers explored various intelligent methods to
convert raw data from into useful information. Some researchers have applied their research to various industrial
applications together with other domain experts. Manufacturing maintenance approaches and implementation of
prognostics technique attracted multi- discipline expertise team in the arena. Hence, the research in manufacturing
prognostics is considered to be stronger in the algorithms development rather than in framework and architecture in
the aspect of prognostics method research.

Weaknesses: Much of the existing literature treats the key industrial application independently and lacking of
holistic approach to problems. A lot of researchers used PC based research tools like simulation, Labview, Matlab
and PC based prototyping solutions. The research algorithms assume unlimited resources and processing power
which might be unrealistic for space constraint environment like manufacturing. Most of the research results are in
the form of algorithms and will have a long learning curve and long implementation time for real industrial solution.
Most of previous research focused on the content based rather than process based therefore practitioners find
difficult to implement the concepts. Moreover, there is lacking research in rapid development environment, real
time prognostics and collaborative prognostics which handling of multiple failures. Much research needs to validate
more in term of real practice. Some approaches could be difficult to implement for all the technologies such as
condition based maintenance and fuzzy approaches.

Although a wide spread expectation of manufacturing prognostics research, rapid development and real time
prognostic at sensor was not yet developed completely. In case of remote diagnostics, adaptive diagnostic analysis
toolset is not there to assist real time diagnostic process. Further, the guidance to sustain the development of a
standard solution to the prognostics has not been pointed out clearly.

Opportunities: The weakness of the research creates opportunities in future work. The opportunities are mainly in
considering holistic framework for modelling, rapid development methodologies and real time prognostics at
sensors source is important for manufacturing prognostics. Considering prognostics in aspects of hardware systems,
processing sensors data at source with adaptive embedded device or system on chip is important techniques can
help to sent alert at sensors source. There are needs for process- based research in order to guide the manufacturers



and practitioners to model, plan, develop and implement the concepts or frameworks in real world manufacturing
environment.

The integration of the predictive maintenance strategy with the other business strategies opens new business
opportunities to achieve the sustainable competitive space. Prognostics services could be remote services through
the internet and is a useful feature for many other systems. Research areas such as remote condition based
maintenance (CBM), remote health and usage monitoring (HUM), and real time partitioning of algorithms for
embedded prognostic device can be studied in detail.

Threats: The holistic view in manufacturing prognostics takes time and need several aspects to consider. Generally,
each and every method in manufacturing prognostics has its own focus industrial domains. In order to achieve the
real overall pictures of prognostics, the conflicts interests in each method must be concerned carefully. The study in
extracting generic principles and parameters that applied to most prognostics is difficult. Multiple expertises are
required in order to have successful outcome.

Additionally, the increased complexity of manufacturing prognostics demands with more sophisticated algorithms,
hardware and software. In order to deploy manufacturing prognostics in variety of real industrial environment,
researchers need support from many sources like domain experts, cross disciple researchers, manufacturers. Some
of the existing system may be a closed system or legacy system with limited information to add more sensors or
enhance it with prognostics features. These will make it difficult for the solution to test or implement. Some research
on prognostics might still stay in algorithms development, PC based solution and simulation are often made less
overall impact and so their competitiveness can be significantly eroded.

The dynamic of the failure occurrence in the manufacturing prognostics make difficult for researchers to capture all
scenarios in their research and so it is very difficult for them to make a standard solution for multiple failure
occurrences. The competitive space in manufacturing prognostics is also dynamic. It will continue to change as more
cross discipline expertises join the research arena. The validity and usability of the techniques or tools must be
proved carefully.

Table 5: SWOT analysis

Strengths Weaknesses
e Various intelligent methods explored e No holistic approach to problems
e Wide range of industrial applications e Product specific development studied environment
e |ncreased research and industrial interest e Simulation, LabView, Matlab, centralised PC-based solution
e Multi-discip line expertise team e Lack of real time device level solution
e Long learning curve and implementation time

Opportunities Threats
o Holistic modelling and methodologies e Support from manufacturers, domain experts and end users
e Rapid software embedded system development environment for required

shorter products life cycle and fast changing requirements e Research moving away from the industries and users
e New maintenance service opportunities o Closed system and legacy system

V. Conclusion and future research

Findings from the survey of 175 research papers related to manufacturing prognostics have suggested that there are a lot of interests and
potential industrial applications in this area of research. Many researchers focus on specific solution for some domains using PC based
simulation, Labview and Matlab. Manufacturing prognostics can be a new maintenance service opportunities which can reduce cost of
production, increase equipment utilization and provide innovative prognostics enhancement products in order to compete with countries with
low labour cost and production cost. Holistic approach, common methodology, real-time prognostics devices, real time partitioning of
algorithms, and rapid implementation environment are potential future research.
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