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Abstract

This paper proposes a novel framework of incorporat-
ing protein-protein interactions (PPI) ontology knowledge
into PPI extraction from biomedical literature in order to
address the emerging challenges of deep natural language
understanding. It is built upon the existing work on relation
extraction using the Hidden Vector State (HVS) model. The
HVS model belongs to the category of statistical learning
methods. It can be trained directly from un-annotated data
in a constrained way whilst at the same time being able to
capture the underlying named entity relationships. How-
ever, it is difficult to incorporate background knowledge or
non-local information into the HVS model. This paper pro-
poses to represent the HVS model as a conditionally trained
undirected graphical model in which non-local features de-
rived from PPI ontology through inference would be eas-
ily incorporated. The seamless fusion of ontology inference
with statistical learning produces a new paradigm to infor-
mation extraction.

1 Introduction

Biomedical literature contains rich information pertain-
ing to genes, proteins, and their role in biological processes.
In the past few years, there has been a surge of interest
in utilizing text mining techniques to provide in-depth bio-
related information services, ranging from identifying gene
and protein names within sentences and articles, to trying to
establish and predict regulatory networks. Most efforts con-
cerning biomedical literature mining to date focus on auto-
mated information extraction which uses natural language
processing to search for co-occurrences of names or iden-
tifiers of entities along with activation/dependency terms in
text. Existing information extraction systems [4, 10, 28]
mainly rely on either manually-defined context-free gram-
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mars or hand-crafted semantic patterns for the extraction of
bio-related information based on strong assumptions about
the use of natural language, such as terms typically used
to indicate relationships, the ways the named entities are
used within sentences, and the typical sentence structures
etc. They are not able to extract the inferred relations. As
an illustration, consider the following sentence:

In the absence of GCN4, BAS1, and BAS2, the RAP1
protein binds to the HIS4 promoter in vivo but cannot
efficiently stimulate HIS4 transcription.

In this sentence, there might be a relationship between
GCN4, BAS1, BAS2, RAP1 and the HIS4 promoter.
Some additional knowledge is required to reveal the implied
relationships.

In biomedical related research, various computational
approaches have been proposed to infer protein-protein in-
teractions (PPIs), including those based on genomic infor-
mation [27], three-dimensional structural information [1]
or primary structure of proteins [21], integration of mul-
tiple genomic datasets [15], based on evolutionary rela-
tionship [22], previously identified domain-domain interac-
tions [16], and protein complex [19], etc. However, infer-
ring PPIs from literature mining is still a less explored area.

The paper explores efficient ways to combine multiple
knowledge sources to build a PPI ontology and incorpo-
rate the ontology knowledge into relation extraction. A
framework of incorporating ontology inference into statis-
tical learning of the Hidden Vector State (HVS) [12] model
is comprehensively investigated particularly in response to
the following issues:

o Firstly, existing relation extraction approaches mostly
focus on the relation itself without concerning about
the context where such a relation occurs. For example,
relations between biological entities, such as proteins,
genes, are conditional and may change when the same
entities are considered in a different functional con-
text. As a consequence, every relation between entities



should be linked with the functional context in which
the relation was observed. It is crucial to investigate
context-dependent relation extraction approaches.

e Secondly, it is important to explore effective ways to
incorporate multiple knowledge sources into the pro-
cess of relation extraction. Some work has been done
to combine the ontologies or lexicons etc. with rela-
tion extraction. However, it is still a less explored area
in integrating multiple knowledge sources into relation
extraction.

e Thirdly, since the existing methods depend on the co-
occurrence of terms, within a sentence, a phrase, or
an abstract, they can only reveal relationships that are
already reported in the literature and do not attempt to
detect new relations. For example, if there is a report
relating protein A to B, and another report relating B
to C, it may suggest a possible relation between A and
C.

The above issues describe a number of challenging top-
ics of research, leading to an ontology-based relation ex-
traction framework significantly superior to the existing re-
lation extraction approaches; the relation extraction frame-
work would be able to perform inference on hypothesizing
new relationships and also be able to present more accurate
information. The rest of the paper is organized as follows.
Section 2 discusses the related work. Section 3 presents the
proposed framework. An example illustrating the feasibil-
ity of the proposed approach is given in Section 4. Finally,
Section 5 concludes the paper.

2 Related Work

This section presents the existing work in three areas,
PPI ontology construction, ontology guided PPI extraction,
and incorporating non-local information into relation ex-
traction.

2.1 PPI Ontology Construction

Gene ontology (GO) [2, 17] is the most commonly used
biological ontology. It defines a hierarchical vocabulary
to describe gene and gene products in any organism. The
structure of the ontology consists of biological processes,
molecular functions, and cellular components. However,
protein-protein interaction domain is not covered by GO.

In recent years, there have been efforts in constructing
PPI ontologies. Drabkin et. al [6] did not construct a PPI
ontology directly, but they proposed a methodology for in-
tegrating and visualizing protein-protein interactions. They
constructed protein interaction networks for mouse pro-
teins by utilizing information encoded in the GO annota-
tion. Specifically, they searched for annotations for “protein

binding” (GO:0005515) since it is defined as “interacting
selectively with any protein or protein complex”. These an-
notations represent an experimentally tested interaction of
two proteins. Thus, by searching for GO annotations with
“protein binding”, a network of protein interactions can be
constructed.

He [11] proposed a hybrid approach to build a PPI ontol-
ogy called PPIWordNet. Key concepts are extracted from
source texts and added into the ontology based on two fac-
tors on measuring how discriminating a term is for the PPI
domain compared to other knowledge domain and how im-
portant a term is to the biological evaluation of PPIs. Re-
lationships among concepts are determined manually by
knowledge engineers and domain experts. The constructed
PPI ontology is then merged into GO.

More recently, Newman et al. [20] built a BioMANTA
OWL ontology! by integrating multiple data sources within
a single RDF triple store through a common PPI model. The
BioMANTA ontology focused on integrated concepts from
PSI-MI?, BioPAX level 2 [29], Cell Type[3], Gene Ontol-
ogy [2] and NCBI Taxonomy>. The key concepts consist
of are different types of observation including experimen-
tal, predicted, and inferred; and provenance information in-
cluding data source, the type of experiment, the cell type,
inferencing method, sub-cellular location and observation
reference (a BioPAX publication cross reference). A num-
ber of protein databases such as UniProt [30], DIP [25], In-
tAct [13] and MPact [8] were integrated to form a uniform
RDF representation.

2.2 Ontology Guided PPI Extraction
from Text

The only system that we are aware of incorporating
ontology into protein-protein interactions extraction is the
PPIEs (Protein-Protein Interaction Information Extraction
System) [5]. An ontology in OWL (Ontology Web Lan-
guage) for protein-protein interactions (PPIs), called PPIO,
has been defined which includes interaction and interac-
tor types, biological role of a host in the experiments, cell
type on which the experiment was carried out or applied,
detection of interaction and identification of the interactor
methods in addition to the four essential concepts about the
minimum interaction information for PPI, publications, ex-
periments, interactions, and interactors. The PPIO contains
19 concepts and 21 relations. The information extraction
system first converts a raw text into a list of words. Then,
the words are stemmed and used by ontology entity recog-
nizers which are simply dictionary searches from the Open

'http://biomanta.sourceforge.net/2007/07/
biomanta_extension_02.owl

2http://psidev.sourceforge.net/mi/rel2/doc/

3http://www.ncbi.nlm.nih.gov/Taxonomy/



Biomedical Ontologies*. Those ontology entities to be rec-
ognized are defined in forms of concepts and relations of
a PPI ontology. The Pellet reasoner® has been used to re-
cover, from PPIO, the general descriptions of the concepts
and their relations and the lexical information which will
be used to generate complex instances describing protein-
protein interactions. It is however unclear how the lexical
information is gathered in their approach.

2.3 Incorporating Non-Local Information
into Relation Extraction

Implied relations do not have direct contextual evidence
and thus they require some background knowledge or non-
local information in order to be detected. How to incorpo-
rate non-local information into information extraction poses
a big challenge in the area of natural langauge processing.
Traditional approaches that train a probabilistic model use
only local features or the constraints imposed by the domain
itself. Examples include HMM and its variations, condi-
tional random fields [14] etc. These models can only cap-
ture sequential constraints. More recently, rather than be-
ing restricted to sequential data, Roth and Yih proposed a
linear programming formulation framework [23, 24] to ac-
count for constraints supplied by classifiers learned in other
contexts and incorporated as background knowledge. In-
ference could then be modelled as an optimization problem
and solved using existing numerical packages. Finkel et al.
[7] proposed to incorporate non-local structures in a con-
ditional random field based information extraction system
with Gibbs sampling, a simple Monte Carlo method used to
perform approximate inference.

The aforementioned methods only account for non-local
information within a particular textual corpus. It is not ap-
parent how external knowledge can be incorporated into the
inference procedure. We propose an ontology-based in-
formation extraction framework that incorporate ontology
knowledge into the relation extraction process in an itera-
tive manner. Details of the framework are presented in the
following section.

3 Proposed Framework

The overall process of the proposed framework is shown
in Figure 1 which takes the form of four main processes.
First, context-dependent information extraction aims to ex-
tract enriched PPI information which include PPI attributes,
functional context, experimental environment, etc., in addi-
tional to the PPIs. The extracted information will be com-
bined with the external knowledge sources such as gene on-
tology to form a knowledge base. A PPI ontology will then

“http://www.obofoundry.org/
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be built and a probability could be calculated to and attached
to each protein-protein interaction pair. Automated reason-
ing can be performed to reveal the implied PPIs. Evidences
of PPIs can be fed back to the statistical relation extraction
model to extract more accurate information.

3.1 Context-Dependent Information Ex-
traction

Relations between biological entities, such as proteins
and genes, are conditional and may change when the same
entities are considered in a different functional context. As
a consequence, every relation between entities should be
linked with the functional context in which the relation was
observed. Moreover, without considering the observed con-
text, it is meaningless and impossible to make general state-
ments whether a relation detected by literature mining is a
“yes” or a “no” relation. Obviously, to overcome this obsta-
cle, in-depth analysis on sentence or phrase level is requi-
site.

Existing approaches merely focus on the extraction of
the PPIs without retrieving other contextual information
such as whether the PPIs were experimentally proved, what
are the experimental methods used, and whether the interac-
tion is direct or indirect, etc. Such information is important
to the population of the curated PPI databases which is of-
ten the ultimate goal of PPI extraction from text. Although
there have been some attempts to extract those enriched PPI
information [9], none of them gave radical solutions. In
fact, a common limitation of existing approaches is that ad-
ditional information is extracted separately after the PPI re-
lation extraction. It would be useful to incorporate the ex-
traction of such contextual information into the process of
relation extraction.

Furthermore, the knowledge extracted from the literature
may contradict itself under different environment, condi-
tions, or because of author’s errors, experimental errors or
other issues. Although the contradictory knowledge may
occupy minor part of the whole interaction network, it is
worth more attention. To handle this challenge, one way
is to capture the contradictory knowledge in a probabilistic
reasoning network so that a confidence value could be de-
fined for each PPI extracted and the decision can be made
based on these confidence values. The solution can also be
applied to handling different parts of an article, such as ab-
stract, introduction, references and so on, which might be
assigned different weights.

3.2 Combining
Sources

Multiple Knowledge

It is possible to perform automatic validation on the rela-
tion extraction results from literature using external knowl-
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Figure 1. Ontology-based relation extraction for protein-protein interactions.

edge. A novel framework has been proposed in which
PPI extraction results are automatically validated using the
knowledge mined from gene expression profiles [32]. A
probability model has been proposed to score the confi-
dence of protein-protein interactions based on both the PPI
extraction results and the gene expression profiles. It is pos-
sible to extend the existing work to explore other effective
ways to combine multiple knowledge sources.

For example, efforts could be required to focus on link-
ing the knowledge in the databases with text sources avail-
able. It is possible to exploit efficiently indirect relation-
ships derived from bibliographic analysis of entities con-
tained in biological databases.

Another possible direction is to make use of the infor-
mation from ontologies or terminologies. Ontologies are
structured lists of terms and are often used by natural lan-
guage processing (NLP) technologies to establish the se-
mantic function of a word in a document. Gene Ontology
(GO) [2, 17] is a popular ontology in biomedicine. It is pos-
sible to semantically annotate biomedical text and actively
link it to ontologies. Also, protein interactions occur when
two proteins are located in the same cellular component, ei-
ther a permanent cellular location or a transient complex.
Thus, knowledge from GO can be used to verify the ex-
tracted PPIs that two interacted proteins should be in the
same GO cellular components.

3.3 PPI Ontology Construction and Rea-
soning

In order to support automatic inference from extracted
relations, firstly, there need to be a unified knowledge rep-
resentation of text on hierarchical semantic relations. Sec-
ondly, a learning mechanism should be able to induce such
a knowledge representation from raw text. Thirdly, an in-
ference mechanism should be used to infer the implied re-
lations from the representations. Traditionally, knowledge
representation and reasoning is often based on the first-

order logic (FOL) framework. However, simply resorting to
FOL requires the conversion from the semantic representa-
tion into FOL languages which is normally too complicated.
In recent years, the Semantic Web technologies, OWL and
RDF, attracted much interests in representing semantic re-
lations.

For the text based biomedical literature, the entities of in-
terest include genes, proteins, enzymes, diseases, etc. These
entities together with the relationships among them will be
captured in a PPI ontology.

Knowledge gathered from Section 3.1 and 3.2 such as
protein attributes, functional context, experimental environ-
ment, etc., will be encoded into the ontology and the de-
pendencies between interactions will be captured. Each in-
teraction between two proteins will be associated with cer-
tain confidence value that is obtained from statistical learn-
ing of PPIs. Indirect relations would become apparent from
the relation path encoded in the ontology. “Interesting” and
“emerging” relation patterns could be revealed from the in-
ference performed on the ontology.

An example of the structure of the PPI ontology is given
in Figure 2. Terms in rectangles represent classes whilst
quoted terms represent respective instances under each of
the classes.

| Protein-Protein Interaction |

Protein

Activate Inactivate | -+ Attach

“elevate” “increase” “impair” “decrease”“add” “bind” “experimental” “inferred”

Relationship

Figure 2. An example of the PPl ontology
structure.

“predicted”
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Figure 3. Example of a parse tree and its vector state equivalent.

3.4 Ontology-Based Relation Extraction

We are particularly interested in exploring incorporating
PPI ontology knowledge into PPI extraction from biomed-
ical literature based on the Hidden Vector State (HVS)
model. The HVS model was originally proposed in [12]
and has been successfully applied in biomedical domain for
PPI extraction [33].

Given a word sequence W, concept vector sequence C

and a sequence of stack pop operations N, the joint proba-
bility of P(W, C, N) can be decomposed as

T
P(W,C,N) =[] P(nelei—1) Pec[1]]ee[2- - - De])
t=1

P(wt|ct) (1)

where c;, the vector state at word position ¢, is a vec-
tor of D, semantic concept labels (tags), i.e. ¢ =
[ee[1], ei[2], ..ce[Dy]] where ¢,[1] is the preterminal concept
label and c;[D;] is the root concept label (SS in Fig. 3), n; is
the vector stack shift operation at word position ¢ and take
values in the range 0, ..., D;_1 and ¢;[1] = ¢, is the new
preterminal semantic tag assigned to word w; at word posi-
tion ¢.

An example parse tree is illustrated in Fig. 3 which
shows the sequence of HVS stack states corresponding to
the given parse tree. State transitions are factored into sep-
arate stack pop and push operations constrained to give a
tractable search space. The result is a model which is com-
plex enough to capture hierarchical structure but which can
be trained automatically from only lightly annotated data.

The HVS model computes a hierarchical parse tree for
each word string W, and then extracts semantic concepts C
from this tree. Each semantic concept consists of a name-
value pair where the name is a dotted list of primitive se-
mantic concept labels. For example, the top part of Fig. 3

shows a typical semantic parse tree and the semantic con-

cepts extracted from this parse would be in equation 2.
PROTEIN=Spc97
PROTEIN.ACTIVATE=interacts
PROTEIN.ACTIVATE.PROTEIN=Spc98
PROTEIN.ACTIVATE.PROTEIN=Tub4

(@)

The original HVS model takes a form of a generative
model which makes it difficult to incorporate background
knowledge or non-local features. We propose to represent
the model as a conditionally trained graphical model simi-
lar to the conditional random fields [14]. The HVS model
can be viewed as a graphical model as shown in Figure 5.
Assuming the vector state stack depth is limited to be 4,
that is, there are at most 4 semantic tags (states) relating to
each word position. c; is the vector state corresponding to
the word W;. S; is the stack shift operation which consists
of popping n; semantic tags from the previous vector state
c¢—1 and pushing one pre-terminal semantic tag to the stack
and thus producing c;.

Given a word sequence W, concept vector sequence C
and a sequence of stack pop operations N, the conditional
HVS model takes the form

T
1

Po(C,N|W) = *eXP(ZZ)\kfk(Ct—Lnt,W, t)
w t=1 k

Z
T
+ZZMk9k (ce[1], ce[2-
1 k

t=
+ )0 vihi(ce, Wit)) 3)
k

t=1

- Dy], Wit)

where © = (A1, Ag, ...; pi1, l2, ...; V1, Va, ...) is the parame-
ter vector of the conditional HVS model. fx, gx, hy are arbi-
trary feature functions over their respective arguments, and
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Figure 5. Graphical model representation of
the HVS model.

Ak, g, Vg are the corresponding learned weights for each
feature function.

Inference for the conditional HVS models can be per-
formed efficiently with dynamic programming similar to
that described in [14]. Parameter estimation can be per-
formed with standard optimization procedures such as itera-
tive scaling, conjugate gradient descent, or limited memory
quasi-Newton method (L-BFGS) [26].

We propose to incorporate the PPI ontology constructed
in Section 3.3 into the HVS-based relation extraction pro-
cess in an iterative manner. Probabilities associated with
PPIs which are learned by accounting for multiple knowl-
edge sources in the ontology could be used as constraints to
the training of the HVS model which in turn could iden-
tify likely false-positive (and false-negative) interactions
and eventually improve the extraction performance. On the
other hand, PPIs extracted using the HVS model could be
used to expand the PPI ontology knowledge source while at
the same time minimize low-confidence inferences.

4 Example Illustration

Our system is still under development, we however give
an example shown in Figure 4 to illustrate the feasibility of
the proposed approach. Firstly, interacted protein pairs are
extracted from the sentence shown in Figure 4(A). One of
the extracted protein pairs, Sentrin and UbcH®6, is not valid
if checking the extraction result manually. Such an error
may be ascribed to the relation extraction model’s inability
of processing negative sentences.

Identification of the false positive PPIs can be done by
employing the knowledge from Gene Ontology (GO) based
on the following two observations [31, 18]:

e Interacting proteins often function in the same biolog-
ical process;

e Physical interactions occur when two proteins are lo-
cated in the same cellular component, either a perma-
nent cellular location or a transient complex.

Thus, the information about the two proteins is extracted
from GO as given in Figure 4(B). Based on the directed
acyclic graph (DAG) for cellular component of each protein
as shown in Figure 4(C)%, the strength of the relationship
between two proteins can be measured based on the simi-
larity between the paths of them which are constructed from
the GO term (for example, cytosol) up to the topmost level
of the DAG. The similarity is defined based on the number
of common terms between two paths. It can be found that
Sentrin and UbcH6 are quite dissimilar. Therefore, it can
be inferred that it is unlikely that these two proteins interact
with each other. Thus, the false positive result generated by
the relation extraction model can be eliminated.

5 Conclusions

The framework proposed in this paper provides an alter-
native technique in which the extracted information is not
limited to the pre-defined semantic units. The surrounding
context and the PPI ontology knowledge will also be ana-
lyzed to validate the extracted relations. We believe it will
advance our technology significantly by addressing the need
for exploring semantic aspects for text mining. The exten-
sions to the existing technology would produce immediate
improvements to the more constrained task of information
extraction.
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The interaction between sentrin and Ubc9 required the ubiquitin domain and the C-terminal Gly-Gly residues of sentrin. This interaction appears to be specific
because sentrin could only interact weakly with UbcH5B, but could not interact with HHR6B, UbcH6 nor E2-EPF.
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Figure 4. An example of ontology-based PPI extraction.




