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Abstract

Structural analysis in handwritten mathematical expressions focuses on interpret-

ing the recognized symbols using geometrical information such as relative sizes and

positions of the symbols. Most existing approaches rely on hand-crafted grammar

rules to identify semantic relationships among the recognized mathematical sym-

bols. They could easily fail when writing errors occurred. Moreover, they assume

the availability of the whole mathematical expression before being able to analyze

the semantic information of the expression. To tackle these problems, we propose a

Progressive Structural Analysis (PSA) approach for dynamic recognition of hand-

written mathematical expressions. The proposed PSA approach is able to provide

analysis result immediately after each written input symbol. This has an advantage

that users are able to detect any recognition errors immediately and correct only the

mis-recognized symbols rather than the whole expression. Experiments conducted
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on 57 most commonly used mathematical expressions have shown that the PSA

approach is able to achieve very good performance results.

Key words: Progressive structural analysis, Structural analysis, mathematical

expressions recognition, Mathematical expression tree, Grouping determination

1 Introduction

Mathematical expression recognition (Chan and Yeung, 2000a) consists of two

major processes: symbol recognition and structural analysis. Symbol recogni-

tion involves the recognition of individual handwritten symbols, whereas struc-

tural analysis interprets the sequence of the recognized symbols using geomet-

rical information such as the positions and relative sizes of the symbols. Sym-

bol recognition is a very common problem in most recognition systems which

has been tackled for the last few decades. Structural analysis of mathematical

expressions has also been studied for years. The symbols written in mathemat-

ical expressions are usually arranged in a complex two-dimensional structure,

possibly of different sizes and in recursive manner. This makes structural anal-

ysis a challenging problem even when all symbols are recognized correctly. In

addition, for online mathematical expression recognition, the processing speed

is also an important issue for consideration.

Many techniques have been investigated for structural analysis for handwrit-

ten mathematical expression recognition. These include grammar-based ap-
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proaches (Chou, 1989; Fateman et al., 1996; Chan and Yeung, 2000a; Toyota

et al., 2006), tree transformation (Zanibbi et al., 2002), Hidden Markov Mod-

els (HMMs) (Kosmala and Rigoll, 1998) and Minimum Spanning Tree (Tapia

and Rojas, 2003, 2005). Some of the techniques such as the grammar-based

approaches are slow, while others are sensitive to users’ writing errors. Apart

from their underlying processing methods, all these techniques share one com-

mon characteristic. They require the entire mathematical expression with all

the recognized symbols gathered as one input for structural analysis. As such,

structural analysis can only start processing after the user finishes writing

his expression, and the corresponding recognition result can then be known.

This will cause delay and frustration to users when recognition errors occurred

especially for long expressions.

In this paper, we propose the Progressive Structural Analysis (PSA) approach

for dynamic recognition of handwritten mathematical expressions. The PSA

approach recognizes a user’s handwritten mathematical expression dynami-

cally while he is writing that expression. This approach has an advantage that

it helps a user to identify any recognition errors after he finishes writing a sym-

bol, and enable him to correct the error immediately. As such, users do not

need to wait until they finish writing the whole expression before knowing any

recognition errors. Compared with traditional structural analysis approaches,

the proposed PSA approach is much more efficient and user-friendly.

The rest of this paper is organized as follows. First, Section 2 reviews the

related work on structural analysis of mathematical expressions. Next, the

layout structure of expressions and the definitions on mathematical expres-

sion trees are given in Section 3. Then, the proposed Progressive Structural

Analysis (PSA) approach is discussed in Section 4. In Section 5, the system
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architecture of WebMath which incorporates the PSA approach is briefly dis-

cussed. Experimental results are then presented in Section 6. Finally, Section 7

concludes the paper.

2 Related Work

Earlier approaches to structural analysis of mathematical expressions relied

on a two-dimensional stochastic context-free grammar (Chou, 1989) to parse

mathematical formula with a generalized Cocke-Younger-Kasami (CKY) al-

gorithm. However, when applied to two-dimensional grammars, the CKY al-

gorithm is extremely slow. Faster methods were later proposed to work on

two-dimensional grammars such as left-to-right recursive descent (Fateman

et al., 1996) and more recently tree transformation (Zanibbi et al., 2002). In

(Fateman et al., 1996), lexical analysis is first performed to group adjacent

digits or names to form numbers and symbols such as sin, cos, log, exp, etc.

Then, the two-dimensional symbols are ordered as linear structures and a

recursive descent-based parsing is performed such that each parse of a sub-

expression is confined to a region of the surface. Zanibbi et al. (Zanibbi et al.,

2002) proposed Tree Transformation for both online and offline recognition.

The key idea is to first construct a Baseline Structure Tree (BST) describ-

ing two-dimensional arrangement of input symbols. Then, this initial BST is

transformed to the so-called Lexed BST by grouping tokens comprised of mul-

tiple input symbols which include decimal numbers, function names, fractions,

accents, etc. Finally, the Lexed BST is translated into an Operator Tree which

describes the order and scope of operations in the input expression. A survey

of earlier methods can be found in (Chan and Yeung, 2000b).
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Instead of using two-dimensional grammars, Chan and Yeung (Chan and Ye-

ung, 2000a) first transformed a mathematical expression into a one-dimensional

representation and then parsed recursively using the so-called define clause

grammar (DCG) to analyze the structure of the expression. More recently,

Toyota et al. (Toyota et al., 2006) converted a tree representation of a math-

ematical structure into a one-dimensional representation and then parsed by

a formula description grammar.

A more complicated grammar-based approach, graph grammar rewriting tech-

nique (Grbavec and Blostein, 1995; Lavirotte and Pottier, 1997; Raja et al.,

2006), was proposed by first creating an initial graph using compass point

directions from each symbol. Then, hand-crafted grammar rules are used to

specify a graph fragment for matching and a non-terminal graph fragment for

replacing it with. This essentially generalizes string rewriting from standard

string parsing to a graph parsing model. This approach was used on optical

character recognition (OCR) formula rather than handwritten mathematical

expressions.

In (Kosmala and Rigoll, 1998), it proposed using Hidden Markov Model (HMM)

for simultaneous recognition and segmentation of mathematical expressions.

The results from the Viterbi decoder are the sequence of recognized symbols

as well as the start- and end-frames of each symbol which allow the extraction

of geometrical features such as the center of the recognized symbol and the

size and position of its bounding box. This effectively facilitates the interpre-

tation of geometrical structure or structural analysis without the introduction

of a two-dimensional grammar. The proposed approach achieved 97.7% sym-

bol recognition rate. However, no performance evaluation results on structural

analysis was reported.
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Tapia and Rojas (Tapia and Rojas, 2003, 2005) proposed a method for struc-

tural analysis based on a minimum spanning tree construction and symbol

dominance. In (Tapia and Rojas, 2003, 2005), symbols are considered as nodes

of a weighted graph. The weight of an edge joining two symbols is the mini-

mum distance between attractor points (located in the boundary of the symbol

bounding box) of symbols if they satisfy some mathematical relationship, or

the distance between the center of each symbol bounding box if no mathemat-

ical relationship is satisfied. A Minimum Spanning Tree (MST) for the graph

can then be constructed. The proposed method can also handle some layout

irregularities.

3 Mathematical Expression Tree

In mathematical expressions, input symbols are related. The relationships

could be superscript like a2, subscript like b3, and above and under like
b∑
a
, etc.

And one symbol can form different relationships with other different symbols.

There could also be different ways of interpreting a relationship between two

specific symbols. Therefore, we need to identify the most possible relationship

between input symbols. In addition, mathematical expressions are organized

in a recursive structure. One expression may contain symbols and in turn each

symbol may contain other expressions as its superscript, subscript, prescript,

etc.

In the proposed Progressive Structural Analysis approach, we focus on deter-

mining the relationships between two symbols and the grouping of related sym-

bols. In this section, we define Mathematical Expression Tree (MET), which

will be used in the PSA approach to represent mathematical expressions. In
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the PSA approach, whenever a new symbol from the input mathematical ex-

pression is processed, the relationship and grouping properties of that symbol

will be identified. These properties are then updated into the MET of the

corresponding expression.

Definition 1 A symbol is the parent symbol of an expression if it contains that

expression as its argument. Inversely, the expression is called child expression

of that symbol.

For example, in the expression “am+n − b”, ‘a’ is the parent symbol of the

expression “m + n” and “m + n” is the child expression of ‘a’.

Definition 2 Two symbols in an expression have row relationship if they are

horizontally aligned to each other.

For example, in the expression “am+n − b”, the symbol pairs (a,−), (−, b),

(m, +) and (+, n) have the row relationship.

Row relationship has the following properties:

• Commutability. For symbols a, b; if a is row-related to b, then b is row-related

to a.

• Transitivity. For symbols a, b, c; if (a, b) and (b, c) have row relationship,

then (a, c) also has row relationship.

As illustrated from these properties, every mathematical expression can be

divided into groups of symbols where all symbols in one group have row re-

lationships. For example, in the expression “am+n − b”, there are two such

groups which are (a,−, b) and (m, +, n).

Definition 3 A baseline of an expression is a virtual line such that all symbols
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on this line have row relationship.

One expression can have more than one baseline. For example, there are two

baselines in the expression “am+n − b”. They correspond to the two groups

given in the previous example.

Definition 4 The dominant baseline of an expression contains all symbols

which do not belong to any child expression.

For example, the dominant baseline of the expression “am+n − b” is the one

which contains (a,−, b) since ‘a’, ‘−’ and ‘b’ do not belong to any child ex-

pression. We also realize that one expression has only one dominant baseline.

Definition 5 A symbol on the dominant baseline of an expression is called

child symbol of that expression. Inversely, the expression is called parent ex-

pression of that symbol.

Using the concepts of parent symbol, child expression, dominant baseline and

relationship between symbols and expression, a mathematical expression can

be represented by a hierarchical tree structure called Mathematical Expression

Tree. MET consists of two types of nodes: expression node and symbol node.

Definition 6 Expression node of a Mathematical Expression Tree represents

an expression. The MET root is an expression node. Every other expression

node in MET has a parent node which represents a symbol in which the ex-

pression is an argument.

Definition 7 Symbol node of a Mathematical Expression Tree represents a

symbol. A symbol node always has a parent expression node which represents

the expression that contains the symbol.
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To illustrate the structure of MET, Figure 1 shows the MET representation

of the expression “ai2+2i+1− b2
1”. The shaded nodes are expression nodes. The

root node of a MET is always an expression node. All other expression nodes

represent sub-expressions in that expression. Every expression node except

the root has a symbol node as its parent. The unshaded nodes are symbol

nodes. Every symbol node has an expression node as its parent. All symbols

represented by sibling symbol nodes have row relationship. These symbols are

on the dominant baseline of their parent expression.

root


-
a
 b


superscript
 superscript


i
 +
 2
 i
 +
 1


superscript


2


subscript


1


2


Fig. 1. Expression Tree of ai2+2i+1 − b2
1.

4 Progressive Structural Analysis

Progressive recognition is quite different from other handwritten mathematical

expression recognition approaches. For example, in Figure 2, it shows a written

mathematical expression “a2 + b2 = c2”. The progressive recognition process

performs progressively symbol recognition and structural analysis repeatedly

for each symbol entered by the user as follows:

(1) Progressive Symbol Recognition: It gathers the latest written stroke and
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recognizes the latest written symbol in real-time. A modified elastic match-

ing method based on original Elastic Structural Matching (Chan and Ye-

ung, 1998) is implemented for mathematical symbol recognition. To rec-

ognize multi-stroke symbols, a list of historical written strokes for possible

groupings is maintained.

(2) Progressive Structural Analysis: It accepts the latest recognized symbol,

updates the symbol in the corresponding MET and displays it on the

screen. The user is able to make corrections if the symbol is not recog-

nized correctly. At the end of user input, the MET is then converted into

an appropriate representative format such as MathML (W3C, 2007a) or

Latex (Lamport, 1985).

Fig. 2. Progressively recognizing the mathematical expression “a2 + b2”.

The PSA approach comprises three sub-processes, namely Related Symbol

Identification, MET Update and Representative Format Conversion. Related

Symbol Identification identifies the related symbol of the latest input symbol

from the current MET. MET Update updates the latest input symbol into

the corresponding position of the MET. It also groups meaningful consecutive

symbols in MET into mathematical units such as trigonometric functions sin,

cos and tan. MET To Representative Format Conversion converts the MET

into a representative format such as MathML or Latex. Figure 3 gives the the

overall Progressive Structural Analysis (PSA) algorithm.
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Algorithm Progressive Structural Analysis (T, S)

Input: T – the current Mathematical Expression Tree

S – the latest written symbol

Output:Exp – the graphical presentation of the expression which contains S

Process:

1. R ← Related Symbol Identification(S)

2. if R is null then

3. add S as the first child of T

4. else if R is special then

5. Special Symbol Update(T )

6. else

7. append S to T

8. end if

9. Grouping Symbols(T )

10. Exp ← MET To Representative Format Conversion(T )

11. return Exp

Fig. 3. The Progressive Structural Analysis Algorithm.
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4.1 Related Symbol Identification

Before discussing this process in details, we first define previous neighbor and

related symbol as follows.

Definition 8 The previous neighbor of a symbol is the symbol which was writ-

ten just before it chronologically.

For example, assuming the expression “a − b” is written from left to right,

the previous neighbor of ‘-’ is ‘a’, and the previous neighbor of ‘b’ is ‘-’. Ev-

ery symbol in the expression has only one previous neighbor except the first

written symbol which has none.

Definition 9 A symbol R is the related symbol of another symbol S if S is

written after R chronologically; and at least one of the following two conditions

is satisfied:

(1) S and R are two adjacent symbols on the baseline of an expression; or

(2) In MET, S is represented by the first child symbol node of an expression

node of R.

Here, S and R are not necessary to be consecutively written and the related

symbol relationship is not commutable.

For example, in Figure 1, ‘a’ is the related symbol of ‘-’ and ‘-’ is the related

symbol of ‘b’ according to condition (1). Also in this figure, ‘b’ in “b2
1” is the

related symbol of ‘1’ according to condition (2).

The Related Symbol Identification process has made the two assumptions on

user writing habits. First, users always finish writing the sub-expressions at
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lower levels in any mathematical expressions before continuing the higher level

sub-expression. Second, users do not make any correction on previously written

sub-expressions. Once the sub-expression is written, it is already at its final

stage. From these assumptions, it can be inferred that the related symbol of a

symbol S must reside at the path from the tree root to S ’s previous neighbor.

For example, in the expression “ai2+2i+1”, we assume that the latest input

symbol is ‘1’. Its previous neighbor is ‘+’. According to the above assumptions,

the related symbol of ‘1’ must be either ’+’ or ’a’. In fact, it is ’a’ as will be

shown later.

For any symbol S, the Related Symbol Identification process builds its candi-

date related symbol list by searching the previous neighbor N of S. If no such

a neighbor can be found, it means that S is the first input symbol. Otherwise,

a list L of all the symbols along the path from the root to N (including N)

can then be built. Then for each candidate symbol in the list L, its relative

relationship with S is identified and a confidence value for this relationship is

computed. The symbol with the highest confidence value is considered as the

related symbol of S. Details of these steps are discussed in Section 4.1.1 and

Section 4.1.2.

4.1.1 Symbol Relationship Determination

This step aims to determine the possible relationship between two symbols.

Since mathematical expressions are arranged in a two-dimensional structure,

we adopt a geometrical approach which is based on the concept of bounding

boxes. The bounding box of one symbol can be defined as the smallest rect-

angle enclosing it. One typical relationship is row relationship. Other types of
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relationships are superscript, subscript, inside/outside, prescript, above and

under. Figure 4 illustrates the geometrical layouts of these symbol relation-

ships.

Fig. 4. Different types of symbol relationships.

The following rules are used to determine the relationships between two sym-

bols:

• Row Relationship: Two symbols have row relationship if the difference be-

tween the y-coordinates of the two typographic centers of the corresponding

bounding boxes do not exceed a threshold. In our approach, this threshold

is taken as one third of the maximum height of two bounding boxes.

• Above/Under: If the x-projection of one box is mostly contained in that of

the other, then the relationship is considered as above or under, based on

the relative positions of y-coordinates of the two typographic centers.

• Inside/Outside: If the x-projection and y-projection of one box is mostly

contained in that of the other, then the relationship is considered as in-

side/outside.

• Superscript/Subscript/Prescript: If the angle between the horizontal line

and the line connects two bounding boxes’ typographic centers is close to

π/4, then the relationship is superscript, subscript or prescript, based on
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the relative positions of x and y-coordinates of these two centers.

4.1.2 Confidence Determination

This step assigns a confidence value for each relationship identified from the

previous step. First, a set of rules are used to determine whether a confidence

value of zero should be assigned to a relationship:

• Symbol Property: Based on the symbol properties, some symbols can not

have certain relationships. For example, some operators like ‘+’ or ‘→’ will

not have arguments as superscript, subscript or prescript. Also, they will

not be superscript or subscript of other symbols. If superscript or subscript

relationship is found between the symbol ‘+’ or ‘→’ and some other symbol,

then the confidence value of such a relationship is set to zero.

• Adjacency: In order to detect adjacency, a virtual line which connects two

bounding boxes’ centers of the two symbols is drawn. If this line intersects

with any other symbols then these two symbols are considered as not ad-

jacent and any relationship found between them has a confidence value of

zero. For example, in the expression “a − b = c”, ‘a’ and ‘b’ are separated

by ‘−‘. Thus, the row relationship found between them has zero confidence

value.

• Existing Argument: If a symbol already has an argument of relationship

type of superscript, subscript, prescript, above, under or inside, then it will

not have the same relationship with other symbols and the confidence value

of such a relationship is set to zero.

If a confidence value of zero is not assigned to a relationship and the relation-

ship is determined as row, superscript, subscript, prescript, inside or outside,
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then the confidence value is calculated as confidence= 1/
∣∣∣C − h1

h2

∣∣∣ where C is a

constant and its value depends on the relationship determined by the bound-

ing box algorithm, h1 and h2 are the smaller and the larger height respectively

of the two bounding boxes of two symbols. Here, we use the height of a sym-

bol’s bounding box to represent its size. This idea comes from the observation

that symbols with row relationship often have the same height, while symbols

with superscript, subscript, above, under or prescript relationship often have

smaller height in comparison with the parent symbol.

If the relationship is above/under, then the confidence value is calculated in a

similar way as confidence= 1/
∣∣∣C − w1

w2

∣∣∣ where C equals to 0.8 and w1, w2 are

the width of the smaller bounding box and larger bounding box respectively.

4.2 MET Update

The MET Update process aims to update the latest input symbol into its

corresponding position in the MET. It first checks for its related symbol which

is obtained from the Related Symbol Identification process. If there is no related

symbol, it means that the latest input symbol is the first symbol written by

the user and it is then appended as the first child node of the tree root of the

MET. If a related symbol is found, the latest input symbol is added into the

MET as follows:

• If the input symbol has row relationship with the related symbol, then it is

added into the MET as the next sibling of the related symbol;

• Otherwise, a new expression node is created and appended to the related

symbol according to the relationship between the latest input symbol and
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the related symbol (superscript, subscript, above, under or inside/outsidde).

The input symbol is then appended as the first child of this newly created

expression node.

4.2.1 Special Symbol Update

Special treatment is required for special symbols during MET Update as they

may cause the positions of other symbols change in the MET. In our approach,

we handle two types of special symbols, the fraction sign and square root sign.

We observe that all the affected symbols always lie on some spatial regions

relative to these special symbols. We call these regions affected region. For

example, the affected regions of a fraction sign are areas under or above it.

For square root sign, there is only one region which is the area inside it.

Furthermore, the previous neighbor of a special symbol is an affected symbol

if and only if it lies on the special symbol’s affected regions. To determine all

affected symbols in the tree with respect to a special symbol, we follow the

two steps below:

(1) If the special symbol’s previous neighbor lies on its affected regions, add

this neighbor into the affected symbol list. Otherwise no affected symbols

exist.

(2) If affected symbols exist, find the largest tree branch which contains the

previous neighbor and all symbols in this branch lie on the same affected

region as this neighbor. Nodes in this branch are all affected symbols.

Therefore, when the latest written symbol is a special symbol, we need to

update the positions of the affected symbols in the tree. If the related symbol

exists, it is added to the expression tree following the steps below:
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(1) Detach all affected symbols and their child expressions from the tree.

(2) Add the latest written symbol to the tree as non-special symbols.

(3) Create a new expression node, append this node to the latest written

symbol according to the affected region which contains all affected sym-

bols.

(4) Append all detached symbols and expressions to the new expression node.

The relative positions among these symbols and expressions are kept

unchanged.

4.2.2 Grouping Symbols

The last step in MET Update is grouping symbol nodes into one unit if they

can form either a single numeric number or some mathematical operators

such as sin, cos, tan, cotan, lim, etc. Since our approach is progressive, we

only consider the grouping possibility with the latest written symbol. To do

this, we create combinations of the latest written symbol together with its

previous sibling nodes such that no node has a child expression.

4.3 MET To Representative Format Conversion

The final process is to convert the MET into a representative format MathML

in order to render the expression graphically for viewing. A recursive algorithm

was implemented for the conversion. One should note that the MET has an

interleaving layer structure of expression nodes and symbol nodes. Nodes at

odd levels are expression nodes and nodes at even levels are symbol nodes 1 .

We start the conversion by creating a MathML root corresponding to the

1 Root is at level zero.
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tree root and analyzing the tree root’s children. For each child C which is an

expression node, we create a corresponding MathML tag with arguments on

C’s children and append this tag to the MathML root. Each of C’s children

is then treated as the root of another sub-tree and this sub-tree is analyzed

in the same manner as the containing tree. The process ends when all nodes

have been processed.

5 System Architecture

A Web-based handwriting mathematics system, called WebMath, has been de-

veloped. Figure 5 shows the overall architecture of the WebMath system which

consists of the following components: Handwriting Mathematical Expression

Editor, Mathematical Computation, AJAX-Based Communicator. These com-

ponents are organized in a client-server architecture according to its function-

alities.

Fig. 5. System architecture of WebMath.

• Handwriting Mathematical Expression Editor. This is the major component

of the WebMath system which provides a writing pad interface for client

users. It first collects data from the clients in the form of point sequences

which are then processed and sent over to the server for recognition. The
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elastic matching algorithm is used for symbol recognition and the PSA al-

gorithm is used for structural analysis. A symbol database which stores the

sample symbol dataset is also maintained at the server for symbol recogni-

tion purpose. Both inputs and outputs are displayed in graphical representa-

tions in clients using SVG (W3C, 2007b). Figure 6 shows the user interface

of the Handwriting Mathematical Expression Editor.

Fig. 6. Handwritten mathematical expression editor.

• Computation Engine. This enables the computation of results of mathe-

matical expressions through the computation functions provided by Maple

(Maplesoft, 2007). Many mathematical functions such as algebraic simplifi-

cation and factorization, and differentiation and integration in calculus are

supported. The computation results are displayed on Web browser through

the MathML mathematical representation.

• AJAX-Based Communicator. AJAX (White, 2006; Garrett, 2005; Pascarello

and James, 2006) is used for the implementation of the communication

mechanism between client and server. It helps to maintain continuous data

flow between client and server without the need of refreshing the web page.
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6 Performance Evaluation

To evaluate the effectiveness of our proposed approach, we have conducted

experiments using a number of different expressions extracted from the “CRC

standard Math tables and formulae” (Zwillinger, 2003). These expressions

are grouped into six domains, namely Elementary Algebra, Number The-

ory, Trigonometric Functions, Geometry, Differential Calculus and Integra-

tion. Each domain contains ten expressions of different types except Number

Theory which contains only three expressions. There are totally 53 expressions

which are listed in Appendix A.

6.1 Experimental Setup

Ten users were involved in the experiments. Each user was first given a short

introduction of the WebMath system. Then, they spent ten minutes to get

familiar with the functions provided by the WebMath’s Handwriting Mathe-

matical Expression Editor and experimented it with a few simple expressions

of different types which are different from those used for testing. After that,

each user was asked to write all the expressions from the test data set of

expressions, with each expression written only once. Since we aimed to mea-

sure the performance of the PSA algorithm only, we assumed that symbols

were recognized correctly in the Symbol Recognition phase. To ensure this,

after writing each stroke, the user was required to correct manually any mis-

recognized symbols with the correct ones. These mis-recognized symbols were

not counted towards the evaluation of the performance of the PSA approach.

Since our proposed PSA approach consists of three processes, we measured
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errors in each process as well as the overall error caused by the approach.

6.2 Experimental Results

The experimental results are given in Tables 1, 2, 3 and ??. We can observe

that the overall error rate of the PSA approach is the same as the error rate

in the MET Update process. This indicates that the accuracy of the other two

processes, Related Symbol Identification and MET To Representative Format

Conversion, are all 100%.

In the MET Update process, it has a step on Symbol Relationship Identifi-

cation. The PSA approach has sometimes made a wrong relationship deter-

mination (e.g., row relationship was mistaken as superscript) due to writing

ambiguity. The more complicated the expression is, the higher chance the

errors will occur. The average related symbol relationship identification rate

over all the users is 94.53% as shown in Table 1.

Table 2 shows the recognition rates based on mathematical domains. Among

the six mathematical domains used in our experiment, Trigonometric Func-

tions and Differential Calculus gave the highest recognition rates of 97% while

Number Theory gave the lowest recognition rate of 90%. On average, the

recognition rates for all domains are above 90%. We also observed that ex-

pressions in domains with lower recognition rates are more complex in terms

of the number of symbols and baselines.

Table 3 shows the recognition rates based on the complexity of expressions in

terms of the number of symbols contained. It is observed that the recognition

accuracy reduces as the number of symbols increases. For those expressions
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Table 1

Experimental results based on different users.

Accuracy(%)

RSI MU RFC Overall

User 1 100 98.11 100 98.11

User 2 100 90.57 100 90.57

User 3 100 92.45 100 92.45

User 4 100 96.23 100 96.23

User 5 100 96.23 100 96.23

User 6 100 94.34 100 94.34

User 7 100 96.23 100 96.23

User 8 100 94.34 100 94.34

User 9 100 92.45 100 92.45

User 10 100 94.34 100 94.34

All Users 100 94.53 100 94.53

with less than 10 symbols, the recognition rate is 100%. However, for expres-

sions with more than 30 symbols, this rate is only 80%. This result reflects

the fact that longer expressions are more difficult to recognize as it is more

difficult to align all the written symbols properly.
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Table 2

Experimental results based on different mathematical domains.

Accuracy(%)

RSI MU RFC Overall

Elementary Algebra 100 94 100 94

Number Theory 100 90 100 90

Trigonometric Functions 100 97 100 97

Geometry 100 93 100 93

Differential Calculus 100 97 100 97

Integration 100 96 100 96

All Domains 100 94.53 100 94.53

6.3 Common Error Cases

There are some typical cases in which the WebMath system may fail in ana-

lyzing the written mathematical expressions. These include:

• Row Alignment Error: It is easy for a user to write two consecutive row-

related symbols but one looks like the superscript or subscript of the other.

This type of errors can easily be detected and corrected by human, but it

is hard for our system as it does not support contextual analysis. Among

all the symbols, the fraction sign has the highest probability of having this

type of errors.

• Prescript Alignment Error: Another type of errors may occur when we write

prescript with the square root sign (e.g., y
√

a). If the prescript is written
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Table 3

Experimental results based on different numbers of symbols in expressions.

#Symbols
Accuracy(%)

RSI MU RFC Overall

1-10 100 100 100 100

11-20 100 97.93 100 97.93

20-30 100 91.43 100 91.43

30-40 100 80.0 100 80.0

40-50 100 80.0 100 80.0

All Categories 100 94.53 100 94.53

too close to the square root sign, our system may mistake it as an inside

relationship.

7 Conclusions

In this paper, we have proposed the Progressive Structural Analysis approach

for dynamic recognition of on-line handwritten mathematical expressions. The

proposed approach makes use of the properties of expressions and user’s writ-

ing habits to provide immediate recognition feedback in order to achieve dy-

namic and interactive recognition. Experimental results show that the pro-

posed approach has achieved good performance results. Currently, the pro-

posed PSA approach is being extended to support other special symbols in-

cluding matrices, piecewise defined functions and vectors, in addition to the
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fraction and square root signs.
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Appendix A Expressions for the Experiments

(1) Elementary Algebra

(a) a2 − b2 = (a− b) (a + b)

(b) (a± b)2 = a2 ± 2ab + b2

(c) (ab)x = axbx

(d) x

√
a
b

=
x√a
x√

b

(e) b2c2−4b3d−4ac3+18abcd−27a2d2

a4

(f) (a± b)4 = a4 ± 4a3b + 6a2b2 ± 4ab3 + b4

(g) a4 + b4 =
(
a2 +

√
2ab + b2

) (
a2 −√2ab + b2

)

(h) a
x
y = y

√
ax = ( y

√
a)

x

(i) x

√
y
√

a = xy
√

a

(j) 2x
x2−1

= 1
x−1

+ 1
x+1

(2) Number Theory

(a)
(

a
n

)
=

k∏
i=1

(
a
pi

)bi

(b) xk + yk

√
d =

(
x + y

√
d
)k

(c) x
1−x2 + 1

1−x4 + x2

1−x4 = 1
1−x

(3) Trigonometric Functions

(a) sin (−α) = − sin (α)

(b) tan (α + nπ) = tan α
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(c) sin2 z + cos2 z = 1

(d) sin α = tan α cos α

(e) tan α = sin α
cos α

(f) sin (α± β) = sin α cos β ± cos α sin β

(g) sin 2α = 2 sin α cos α = 2 tan α
1+tan2 α

(h) cos α
2

= ±
√

1+cos α
2

(i) cot α± cot β = sin β±α
sin α sin β

(j) cot2 α = 1+cos 2α
1−cos 2α

(4) Geometry

(a) pq = ac + bd

(b) ax + by + c = 0

(c) y−y1

x−x1
= y0−y1

x0−x1

(d)
(

kx1+(100−k)x0

100
, ky1+(100−k)x0

100

)

(e) 1
4

√
4p2q2 − (b2 + d2 − a2 − c2)2

(f) s = 1
2
(a + b + c + d)

(g) area =
√

(s− a) (s− b) (s− c) (s− d)

(h) p =
√

(ac+bd)(ab+cd)
(ad+bc)

(i) r = 1
2
a cot 180o

k

(j) x2

a2 − y2

b2
= 1

(5) Differential Calculus

(a) lim
x→∞

(
1 + t

x

)x
= et

(b) lim
x→0

ax−1
x

= log a

(c) lim
x→0

sin ax
x

= a

(d) lim
x→0

log(1+x)
x

= 1
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(e) d
dx

(a) = 0

(f) d
dx

(u + v) = du
dx

+ dv
dx

(g) d
dx

(un) = nun−1 du
dx

(h) d
dx

(
1
u

)
= − 1

u2
du
dx

(i) lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

(j) d2

dx2 (f (u)) = df
du

(u) · d2u
dx2 + d2f

du2 (u) ·
(

du
dx

)2

(6) Integration

(a)
∫

adx = ax

(b)
∫ 1

x
dx = log x

(c)
∫

eaxdx = eax

a

(d)
∫ 1

a2+x2 dx = 1
a
tan−1 x

a

(e)
∫ 1√

x2±a2 dx = log
(
x +

√
x2 ± a2

)

(f)
∞∫
1

1
xm dx = 1

m−1

(g)
∞∫
0

xp−1

1+x
dx = π

sin pπ

(h)
a∫
a

f (x) dx = 0

(i)
b∫
a

f (x) dx +
c∫
b

f (x) dx =
c∫
a

f (x) dx

(j)
∞∫
0

dx
(1+x)

√
x

= π
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