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In studies of complex heterogeneous networks, particularly of the Internet, significant attention was
paid to analyzing network failures caused by hardware faults or overload, where the network reaction
was modeled as rerouting of traffic away from failed or congested elements. Here we model another
type of the network reaction to congestion – a sharp reduction of the input traffic rate through
congested routes which occurs on much shorter time scales. We consider the onset of congestion in
the Internet where local mismatch between demand and capacity results in traffic losses and show
that it can be described as a phase transition characterized by strong non-Gaussian loss fluctuations
at a mesoscopic time scale. The fluctuations, caused by noise in input traffic, are exacerbated by
the heterogeneous nature of the network manifested in a scale-free load distribution. They result
in the network strongly overreacting to the first signs of congestion by significantly reducing input
traffic along the communication paths where congestion is utterly negligible.

PACS numbers: 89.75.Da, 89.20.Hh, 89.75.Hc, 64.60.Ht

All Internet users are familiar with the feeling of frus-
tration when their network connection slows down or
halts. Barring cascading failures [1–7] which can shut
down parts of the network, such a slowdown is a sign of
network congestion which happens when the traffic load
on some network elements exceeds their capacity [2–4, 6].
For the Internet congestion can be quantified as a rela-
tive difference between the rates of sent and delivered
data packets [2, 8], with excess packets being eventually
dropped. The first network reaction to a lost packet is a
significant reduction of a transmission rate at the source
followed by a slow recovery to the normal rate. When sev-
eral loss events occur in quick succession, a multiplicative
reduction drastically suppresses the transmission rate,
which feels as congestion for the end user. If congestion
persists for longer, the network eventually reroutes traf-
fic away from congested links which may overload other
links triggering a cascade of failures [4].

A surprising result of the considerations presented here
is that transmission rates might be significantly reduced
when the relative number of lost packets is utterly negligi-
ble. Such a reduction results from the existence of strong
fluctuations of data losses along a typical communication
path at the very onset of congestion. The loss fluctua-
tions arise at each link at the threshold of its capacity due
to noise in input traffic. Although such fluctuations exist
only on shorter, mesoscopic time scales and will die out
in time, we show that they might trigger an overreaction
of a typical transport protocol to the first signs of losses.
Normally the protocol aggressively reduces traffic rates
along the routes perceived as congested due to multiple
loss events. The overreaction results from the probability
of such events on the mesoscopic scale being much higher
than the product of the single-event probabilities.

The fluctuations are greatly magnified in heterogenous

networks characterized by a power law (PL) distribution
of the link load since congestion on links with high load
affects a disproportionately large number of communi-
cation paths, as illustrated in Fig. 1. The link load in
a network with a homogeneous traffic input distribution
is proportional to the link betweenness Bi (roughly, the
number of shortest paths through link i) [9]. Many het-
erogeneous networks, including the Internet, fall into the
category of scale-free (SF) networks characterized by the
PL distribution of node degree [10–14]. Load distribution
in SF networks also follows a (truncated) PL [14–16],

PL(ℓ) ∝ ℓ−2−δ , (1)

with an almost universal exponent, 2+δ ∼ 2.0÷2.3. The
load distribution of the real Internet was found [14, 17,
18] to be in agreement with the above.
We focus on a critical regime at the onset of conges-

tion with a small imbalance, ηi ≡ 1 − τiri, between the
average packet arrival rate (load), 1/τi, and departure
rate (capacity), ri, at link i. The nodes in the Internet
core are routers and the links are output memory buffers

FIG. 1. The importance of links with high betweenness (load):
one congested link (3% of all the links here) affects 27% of
all the shortest paths. A light-shaded sector on each node
indicates the fraction of congested paths originated on it.
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(with attached transmission lines). For ηi > 0 a mem-
ory buffer eventually becomes full and a newly arrived
packet is dropped. On average, ηi=〈Φi(T )〉 where Φi(T )
is the fraction of packets dropped during an observation
time window T . Shifting this window in time causes Φ
to fluctuate due to inevitable flow fluctuations [19]. We
show the loss fluctuations to be crucial for network trans-
port at certain mesoscopic time scale; for large enough
T they die out and Φi equals ηi. Positive ηi plays the
role of a local congestion parameter: their sum defines
the network congestion parameter [2, 8].
Relative loss, Φ, along a typical communication path is

governed by losses in the comprising links and fluctuates
due to both the noise in each link and a random choice of
links in the path. The probability of a randomly picked
link to be in the path is proportional to its betweenness.
Hence, in a network with average link betweenness B̄, a
small loss along a path with a links is given by

Φ =
a

∑

i=1

ℓiΦi , ℓi ≡ Bi/B̄ , (2)

The quenched distribution of the relative load ℓi is given
by the truncated PL (1), cut from below by ℓ∼ 1. The
upper cutoff is irrelevant for δ > 0.
To describe noise in packet arrivals at link i we as-

sume, without loss of generality, that the inter-arrival
time is random, with average τi, while packets have a
fixed length l0. Arriving packets join the queue in the
memory buffer. The queue length, xi(t) (measured in
l0), performs a random walk bounded by a buffer size ci.
The probability density, wi, of diffusion from x′ to x over
time t obeys the Fokker-Planck equation with diffusion
and advection coefficients Di ≡ 1/τi and Vi ≡ ηi/τi and
the probability-conservation boundary conditions:

∂twi(x, x
′; t) =

[

−Vi∂x +Di∂
2
x

]

wi(x, x
′; t) . (3)

In the critical regime the queue hovers at the boundary.
A newly arriving packet is dropped every time when the
queue length xi(t) overflows reaching the boundary layer,
ci− 1 6 xi(t) 6 ci. Thus the fraction of packets lost over
an observation time T≫τi is

Φi(T ) =
1

T

∫ T

0

dt θ [xi(t)− ci + 1] =
1

Ki

Ki
∑

k=1

δk , (4)

where Ki ≡ [T/τi] ≫ 1 is the number of packets arrived
over time T , and δk equals 1 if xi(t) reached the boundary
layer at the kth step, or 0 otherwise.
To find the probability density function (PDF) of

Φi, we begin with the characteristic function, χT (qi) =
〈eiqiΛi〉 , of the distribution of a cumulative loss, Λi =
(T/τi)Φi(T ). Using Eqs. (3) and (4) we represent χT as
the sum of time-ordered integrals

χT (qi) =

∞
∑

n=0

(iqi)
n

∫

dntRi(tn−tn−1) . . .Ri(t2−t1)pi ,

running over the regions 0 < t1 < · · · < tn < T . Here
pi ≡ wi(ci, x

′; t → ∞) = ηi (1− e−ηici)
−1

is the station-
ary probability density for the queue to be in the bound-
ary layer andRi(t) = w(ci, ci; t) is the return probability.
We rewrite the expression for χT as the integral equation

χT (qi)−1 = iqi

{

piT +

∫ T

0

dtRi(T−t) [χt(qi)− 1]

}

. (5)

The inverse Fourier transform from qi to Λi shows the
PDF of Λi to be the sum FT (Λi) +Aiδ(Λi), with F de-
scribing losses (Λi > 0) andAi the probability of no losses
over the time T , with 1 = Ai +

∫

∞

0 dΛ FT (Λ). Solving
Eq. (5) by the Laplace transform with respect to T gives

Fε(Λi) =
pie

−
Λi

R ε

τiε2 R2
ε

, R ε =

√

η2i + 4τiε+ ηi
2τiε

. (6)

For a perfectly designed network with fully utilized re-
sources for homogeneous input traffic, ci and τ−1

i are
proportional to the relative link load [15], ci ≡ cℓi and
τ−1
i ≡ ℓiτ

−1, while the imbalance ηi is ℓi-independent.
Then the congestion threshold ηi = 0 is reached si-
multaneously by all links. Naturally, such a complete
utilization is impossible: design imperfections and local
variations of demand cause the congestion thresholds to
spread [6]. We model such a spread (quenched on the
relevant time scales) as a sharply peaked symmetric dis-
tribution of ηi with criticality width γ ≪ 1. Realistic
regimes are bounded by a ≪ γ−1 . c, as for γ−1 & c con-
gestion thresholds are still reached simultaneously, while
a network with aγ & 1 would be permanently congested.
The PDF of Φi has the same form as that of Λi, namely

Aiδ(Φi) + PT (Φi; ℓi), where its lossy part, PT (Φi; ℓi), is
found for fixed ℓi and ηi by rescaling FT , the inverse
Laplace transform of Eq. (6), as (ℓi/ϕ

2
0)FT

(

ℓiΦi/ϕ
2
0

)

.
The averaging over η is straightforward and preserves
very different shapes of PT on the mesoscopic time scale,
ℓiγ

2 ≪ τ/T ≡ ϕ2
0 ≪ γ, and macroscopic one, ϕ2

0 ≪ γ. In
the former case, the congestion spread is so narrow that
to average over it one replaces ηi by γ which gives the
averaged PDF ∼ ℓiγ/ϕ

2
0 for 0 < Φi . ϕ0/

√
ℓi followed

by a decay ∼ e−Φ2

i
ℓi/ϕ

2

0 for bigger Φi. The probability of
loosing a packet, 1 − Ai ∼ γ

√
ℓi/ϕ0 ≪ 1, is small. For

macroscopic times, the Laplace transform in Eq. (6) is ex-
ponential, corresponding to the averaged PDF given by
δ(Φi − ηi) for ηi > 0 [20]: on this scale PT (Φi; ℓi) repeats
the shape of the criticality spread for positive ηi, while
free-flow (lossless) links with negative ηi give Ai =

1
2 .

The PDF of losses along path (2) is a convolution of
PDFs of statistically independent ℓiΦi, averaged over
the load distribution (1). It still has the structure
Aδ(Φ) + PT (Φ) with A =

∏a
i=1 〈Ai〉ℓ. For ϕ0 ≪ γ losses

in each link in (2) are on the macroscopic time scale,
light-shaded (green online) in Fig. 2. Then A = 2−a ≪ 1
for a ≫ 1 and, by the law of large numbers, PT (Φ) is a
normal distribution with average 〈Φ〉c ∼ aγ ≪ 1 (where
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c

a

0

√

T

τc/a c√
c1

FIG. 2. Different loss modes depending on the operation time
T and criticality width γ. The dark-shaded (red online) area

above the upper bold line, γ−1 = a
√

T/τ , represents the
fluctuation-driven mesoscopic mode; the light-shaded (green

online) area below the lower bold line, γ−1 =
√

T/τ , the self-
averaging macroscopic mode (microscopic times on the left of
the parabola, γ−1 = T/τ , are not considered). The crossover
sector between the bold lines is narrow as c ≫ a ≫ 1 (a is
the number of links in path (2), c is the memory buffer size
for link with ℓi = 1). The hatched area shows the region of
network feedback operations at the congestion onset.

〈. . . 〉c stands for the averaging over all the three sources
of randomness) and width ∼ 〈Φ〉c /

√
a (inset in Fig. 3).

The communication path is in a nontrivial fluctuation-
driven mode only if all the comprising links are in that
mode, obeying ℓi ≪ ϕ2

0/γ
2. For δ > 0 in Eq. (1) and

aγ≪ϕ0 ≪
√
γ, which defines the mesoscopic time scale

for the path shown as the dark-shaded area (red online)
in Fig. 2, one has A = (1− γ/ϕ0)

a ≈ 1 − aγ/ϕ0. The
PDF has a peak at Φ=0, describing the close-to-1 prob-
ability A of not loosing a packet, while the lossy part,
PT (Φ), is dominated by (any) one link along the path:
PT (Φ) ∼= a

〈

ℓ−1PT (Φ/ℓ; ℓ)
〉

ℓ
. The plateau in this rescaled

PDF is stretched up to ϕ0ℓ
1/2 with height aγ/ϕ2

0. For
Φ . ϕ0 averaging over the distribution (1) leaves the
plateau intact. For Φ & ϕ0 the plateau exists only for
links with load ℓ & (Φ/ϕ0)

2 which becomes the lower
limit in the averaging over load. When the lower limit is
much smaller than the upper, (ϕ0/γ)

2, the averaging is
contributed only by the former resulting in the PL tail

PT (Φ) ∼
aγ

ϕ2
0

(

Φ

ϕ0

)

−2(1+δ)

, ϕ0 . Φ ≪ ϕ2
0

γ
, (7)

followed by an exponentially small decay.
The entire PDF is shown in Fig. 3. The probability

of losses is small but when losses do occur – the condi-
tional probability of higher-than-average losses (governed
by the long plateau and even longer heavy tail) is high:
the losses are intermittent. The tail (7) is proportional
to a since it is dominated by losses in any one link along

· · ·

PT (Φ)

Φ

ϕ0〈Φ〉
c

ϕ2

0
γ−1 1

aγ

ϕ2

0

PT (Φ)

Φ

〈Φ〉
c

ϕ0

〈Φ〉
c√

a

FIG. 3. Probability distribution function, PT (Φ), of relative
losses in the critical regime at the onset of congestion. The
average, 〈Φ〉

c
∼ aγ ≪ 1, is time-independent. The main

figure shows (not to scale) PT (Φ) when the observation time T

is on the mesoscopic scale. With increasing T , as ϕ0≡
√

τ/T
is moving towards 〈Φ〉

c
, the plateau becomes narrower and

higher, the tail squeezes, and the area of the peak at Φ = 0
shrinks. After passing through the intermediate time scale,
〈ϕ0〉 becomes larger than 〈Φ〉

c
on the macroscopic time scale,

where the PDF becomes Gaussian as shown in the inset.

the path. On the other hand, this link is shared by a
large number of paths as illustrated in Fig. 1.

The tail (7) is irrelevant for 〈Φ〉c if δ > 0 but dominates
higher moments of intermittent losses if δ < 1

2 . Remark-
ably, in the SF models of the Internet as well as in direct
measurements of its link load [15–18] the exponent 2+δ in
Eq. (1) lies between 2.0 and 2.3, i.e. obeying 0 < δ < 1

2 .
The relative values of all higher moments in this mode
are large: e.g.,

√

〈Φ2〉c/〈Φ〉c ∼ a1/2−δ(ϕ0/aγ)
1−δ ≫ 1.

This relatively high magnitude of higher moments
means that losses occur in groups (intermittency). In-
deed, the fraction of dropped pairs can be represented
using Eq. (4) as 2

K(K−1)

∑

k<j δkδj . It is approximately

equal to Φ2
i (T ) if a typical number of lost packets, ηiKi,

is large. Similarly, the fraction of n-tuples of dropped
packets is equal to Φn

i (T ) (for n ≪ ηiKi). Then the small

probability of loosing, e.g., three packets scale,
〈

Φ3
〉

c
, is

much bigger on the mesoscopic time than the probability
of three independent loss events, 〈Φ〉3c .
The intermittency is the reason of a strong adverse

effect of the fluctuations on network feedback. We il-
lustrate this for the feedback mechanism provided by
an idealized transmission control protocol (TCP) which
handles most of data transfer. It works in cycles, each
consisting of sending a group of W packets from the
source and receiving acknowledgments of their delivery at
the destination [21]. The transmission rate equals W/t0
where the cycle duration t0 is normally the round trip
time. On establishing a connection, W linearly increases
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in time until it reaches a steady-state value determined,
in the absence of losses, by the end-user resources. If a
loss is detected during the cycle, the protocol halves W .
If losses occur in a few nearby cycles, W is multiplica-
tively reduced. As it can increase only additively, such a
multiple-loss event results in delays noticeable to the end
user. Indeed, at the onset of congestion a typical round
trip time is governed by a queue in a single full buffer
[21] and is of order t0 = 0.25s. As in free-flow regime
W & 100, the time of resuming normal rate of service
could be tens of seconds.

Hence, it is crucial to know whether the protocol oper-
ation time scale at the onset of congestion, ϕ2

0(t0)≡τ/t0,
falls into the mesoscopic mode where the relative proba-
bility of multiple losses is high. To this end note that the
memory buffer size ci of any link is related to its capac-
ity (maximal sending rate) ri by the engineering ‘rule of
thumb’ [21], ci = t0ri, ensuring any full buffer to empty
during the same time t0. As τiri . 1 at the congestion
threshold, we find ϕ2

0(t0) & 1/c. We show this region of
protocol operations as the hatched area in Fig. 2 which
spreads by many orders in magnitude over γ−1.

The criticality width γ is not directly measurable but
is bounded. The upper bound in Fig. 2, γ−1 . c, is
approaching the perfect design (full utilization), as ex-
plained after Eq. (6). The lower bound, γ−1 ≫ aW , is
determined by the condition 〈Φ〉c ∼ aγ ≪ 1/W : if it
were not fulfilled, at least one packet per cycle would be
lost resulting in a sharp reduction of the transmission
rate after a few cycles, i.e. strong congestion. Assuming
c ∼ 106 for the typical buffer size (in packets) [21], and
a ∼ 10 for the average number of links in an end-to-end
path across the Internet, [2, 13] we see that aW is close
to

√
c, so that almost the entire hatched area corresponds

to the mesoscopic mode of intermittent losses.

On the macroscopic time scale (at the bottom of the
hatched area) the probability

〈

Φ2
〉

c
of detecting two loss

indicators in two consecutive cycles is simply equal to
〈Φ〉2c . However, for larger γ−1 the ratio 〈Φ2〉c/〈Φ〉2c in-
creases reaching c1−δ/a at the top, where γ ∼ c−1. There
it varies from 102 for δ = 1

2 to 105 for δ → 0. Such a
ratio for detecting three loss indicators in three consec-
utive cycles is even more striking, varying from 106 to
109. Conversely, the same multiple-loss indicators may
correspond to very different average losses aγ. And it
is the time-independent average loss which matters since
the intermittent fluctuations would die out with time as
operations move from the dangerous dark-shaded (red
online) area to the safe light-shaded (green online) one,
see Fig. 2. Hence, it is of great importance to design pro-
tocols capable of avoiding the overestimation of nascent
losses by identifying in which loss mode the network op-
erates and adjusting accordingly. To this end one needs
to distinguish between single and multiple packet loss
events within one cycle – the information which is not
collected in normal TCP operations.

The key features of our model might be characteristic
of complex networks other than the Internet. First, if
link (or node) operations in a network can be described
by a finite-capacity model, it will suffer from local con-
gestion fluctuations at the threshold of capacity due to
inevitable input noise. Secondly, if such a network is het-
erogeneous, with a PL load distribution, the fluctuations
would be greatly enhanced on highly-loaded network el-
ements. Finally, the fluctuations become really danger-
ous when they are misinterpreted by a network feedback
mechanism – the transmission control protocol in the case
of the Internet. This mechanism is specific for different
types of network and whether it may trigger fluctuation-
induced congestion requires ad hoc considerations.
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