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Modelling class B G-protein-coupled receptors (GPCRs) using class A GPCR

structural templates is difficult due to lack of homology. The plant GPCR,

GCR1, has homology to both class A and class B GPCRs. We have used

this to generate a class A–class B alignment, and by incorporating maximum

lagged correlation of entropy and hydrophobicity into a consensus score, we

have been able to align receptor transmembrane regions. We have applied this

analysis to generate active and inactive homology models of the class B

calcitonin gene-related peptide (CGRP) receptor, and have supported it

with site-directed mutagenesis data using 122 CGRP receptor residues and

144 published mutagenesis results on other class B GPCRs. The variation of

sequence variability with structure, the analysis of polarity violations, the

alignment of group-conserved residues and the mutagenesis results at

27 key positions were particularly informative in distinguishing between the

proposed and plausible alternative alignments. Furthermore, we have been

able to associate the key molecular features of the class B GPCR signalling

machinery with their class A counterparts for the first time. These include

the [K/R]KLH motif in intracellular loop 1, [I/L]xxxL and KxxK at the intra-

cellular end of TM5 and TM6, the NPXXY/VAVLY motif on TM7 and small

group-conserved residues in TM1, TM2, TM3 and TM7. The equivalent of

the class A DRY motif is proposed to involve Arg2.39, His2.43 and Glu3.46,

which makes a polar lock with T6.37. These alignments and models provide

useful tools for understanding class B GPCR function.
1. Introduction
Homology modelling of class A (family A) G-protein-coupled receptors

(GPCRs) is greatly facilitated by recent GPCR X-ray crystal structures [1],

enabling a wealth of functional studies to be interpreted in the light of structure.

For the class B GPCRs [2], including medically important targets such as

secretin, glucagon-like peptide 1 (GLP-1) and calcitonin gene-related peptide

(CGRP) receptors [2], modelling has been a difficult option because class A

and class B GPCRs are remote homologues. Indeed, it is widely believed that

class B GPCRs share virtually none of the class A conserved motifs [2–4].

Nevertheless, a number of alignments and molecular models have been

developed [5–13], some based on sequence alignment [7,8,10–12] and some

based on energetic criteria (in the broadest sense) [5,13,14]. Most noteworthy
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in this area was Frimurer & Bywater’s [7] cold spot alignment

of the helical regions, which was developed on the hypothesis

that although the identity and properties of the residues are not

conserved between the two GPCR classes, the positions of the

functionally important residues are conserved.

We have developed a new approach to the difficult

class A–class B alignment based on the observation that

GCR1, the only well-characterized plant GPCR [15,16], has

sequence similarity to both class A and class B GPCRs; its

class E homologues have been proposed as the ancestral

sequences for class A and class B GPCRs [17]. Thus, although

standard alignment techniques fail to present a convincing

alignment between class A and class B GPCRs, we can use

the class A-GCR1 and the GCR1-class B alignments to

define the class A–class B alignment. To support the align-

ment, we have further developed the principles introduced

by Frimurer & Bywater [7] in their alignment and by Baldwin

et al. [18] in the meticulous development of the once widely

used rhodopsin Ca-template structure; this involved novel

uses of conservation and hydrophobicity data.

In order to test the alignment against experiment, we have

used data from 122 mutated residues in the transmembrane

domain and loops of the calcitonin receptor-like receptor

(CLR); 61 of these mutations are new. CLR is a class B

GPCR that interacts with receptor activity-modifying protein

1 (RAMP1) to form the CGRP receptor: it can also interact

with RAMPs 2 and 3 to give receptors for the related peptide

adrenomedullin. RAMPs regulate the transport and ligand

specificity of the CLR [19]. Uniquely, these mutations have

been interpreted in the light of four CLR homology models

generated using the same alignment but different modelling

methods, namely two alternative inactive models, an active

model and an active CLR–G-protein complex. The crystal

structure of the active b2-adrenergic receptor (b2-AR)–G-

protein complex, pdb code 3SN6, has played a key role in gen-

erating these active structures [20] and hence in interpreting

the mutagenesis.

Our aim therefore was to use the novel class A–class B

alignment to generate homology models of CLR so that we

could interpret the wealth of experimental data on both

CLR and class B GPCRs in general. The resulting active and

inactive models have helped to clarify the molecular simi-

larities between class A and class B GPCRs, and hence to

increase our understanding of their activation mechanisms;

this is significant because these two GPCR families are con-

sidered distinct. Moreover, while class A GPCRs are highly

druggable, the development of drugs against class B GPCRs

has proved difficult [21]. The availability of these alignments

and structures will provide a new framework for understand-

ing the function of class B GPCRs. Moreover, the techniques

we describe of using a plant sequence and the consensus scor-

ing to link between two distantly related membrane protein

homologues may be of more widespread utility.
2. Material and methods
2.1. Profile alignment of transmembrane regions
For each helix, ungapped profile alignments between class A and

class B multiple sequence alignments were scored using the

Blosum 62 matrix over a sliding window of length equal to the

class A transmembrane region starting eight residues before the

start of the class B predicted transmembrane region and likewise
continuing for eight residues after the start of the class B predicted

transmembrane region. (For the purpose of the analysis, we have

defined the ‘transmembrane region’ as having a-helical confor-

mation over a range of class A X-ray structures [22], but for

most of these structures, whether class A or class B, the helical

region is inevitably longer by varying amounts and may contain

secondary structural elements that are not canonical a-helical in

varying regions.) For each of the 17 lags, the mean of the forward

and reverse alignment score was taken and the score scaled over

the range 0–1. The procedure was repeated for the class

A-GCR1 and class B-GCR1 alignments. The highest alignment

score gives an indication of the best alignment.

2.2. Maximum lagged correlation
This approach builds on the work of Frimurer & Bywater [7] for

generating alignments that maximize the correlation of class A

and class B properties, namely entropy [23] and hydrophobicity

[24]. From a mathematical point of view, it is preferable to use all
of the conservation data (as here) rather than just the data from

the most conserved positions [7]. Consequently, we used maxi-

mum lagged correlation over the transmembrane region of the

class A receptors (see the electronic supplementary material,

chart S1 and text for more details). For each helix, the class A

conservation data (entropy) were correlated against the corre-

sponding class B data over a similar sliding window. For each

of the lags, the mean of the forward and reverse correlation coef-

ficients was taken and scaled over the range 0–1. The procedure

was repeated for the class A-GCR1 and class B-GCR1 align-

ments. The highest correlation coefficient gives an indication of

the best alignment.

In general, conserved residues are expected to face inwards

[18] (though there will be exceptions due to GPCR oligomeriza-

tion [23] and RAMP association [25]) while hydrophobic residues

and residues with low conservation are expected to face out-

wards. Here the only condition implied by maximum lagged

correlation is that the residues with similar properties tend to

adopt similar positions in class A and class B receptors, and, in

this respect, it is important to note that the patterns of conserva-

tion on the external lipid-facing part of the transmembrane

helical bundle are similar in both class A and class B GPCRs [23].

2.3. Consensus scoring
For a given lag in each helix, the alignment scores, entropy corre-

lation coefficients and hydrophobicity correlation coefficients for

the class A–class B, class A-GCR1 and class B-GCR1 alignments

were multiplied together to generate a consensus score. The

effect of the scaling and consensus scoring was to down-weight

alignments supported by just one component and to reinforce

alignments that were supported by multiple components. Possible

class A–class B alignments can be inferred directly or from the

class A-GCR1 and class B-GCR1 alignments; peaks within

70 per cent of the maximum peak were taken as indicative of a

possible alignment. For ease of reporting, the preferred alignment

is reported as alignment 0 (i.e. the alignment with zero lag).

2.4. Variability
Variability was used by Baldwin et al. [18] to assist in the identi-

fication of lipid-facing regions of class A receptors. Here, we have

assessed whether the patterns in transmembrane helix variability

for plausible alignments are consistent with the class A structural

templates over the transmembrane region.

2.5. Alignment probability
The probability that a given alignment could have arisen by

chance was assessed by comparing the number of aligned class

http://rsif.royalsocietypublishing.org/
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A group-conserved residues and class B group-conserved resi-

dues with the corresponding number in which an equivalent

number of class A or class B group-conserved residues [26]

were generated randomly, as described in the electronic sup-

plementary material.

2.6. Numbering scheme
In the alignment determination, a negative alignment displaces

the class B sequences by the stated amount to the left. This is

illustrated in electronic supplementary material, chart S3, along

with a description of the universal residue numbering scheme.

2.7. Calcitonin receptor-like receptor homology models
Four distinct homology models of human CLR were constructed

using the CALRL_HUMAN sequence from UNIPROT (www.uni-

prot.org), in line with methods published elsewhere [22,27] (the

level of conservation in the CLR family range down to about

55 per cent, e.g. between human and pufferfish). These included

inactive models constructed using both an implicit membrane

[28] and an explicit membrane, an explicit membrane active

model and a model of the CLR–G-protein complex. Implicit

membrane methods have been shown to generate GPCR struc-

tures of similar quality to those generated using explicit lipid/

water methods [22]. The use of different models provides an

approach to understanding the uncertainty in modelling the

environment of a given residue, which is most relevant in the

vicinity of the loops. In addition, the use of active rather than

inactive models provides a more valid reference structure for

the cAMP assay experiments. Further details are given in the

electronic supplementary material.

2.8. Calcitonin receptor-like receptor gene expression
constructs and mutagenesis

The human CLR with an N-terminal haemagglutinin (HA) epi-

tope tag (YPYDVPDYA), and human RAMP1 were provided

by Dr S. M. Foord (GlaxoWellcome, Stevenage, UK) and were

sub-cloned into pcDNA3.1- (Invitrogen, Renfrew, UK) prior to

mutagenesis. Mutagenesis was carried out using the Quik-

Change site-directed mutagenesis kit (Stratagene, Cambridge,

UK), as described previously [6].

2.9. Assay of calcitonin receptor-like receptor activation
by cAMP production

CLR and RAMP1 were transiently transfected into Cos 7 cells to

produce CGRP receptors as described previously. cAMP was

measured by radio-receptor assay after stimulation by CGRP as

previously described [6]. This measure of receptor function was

chosen because of the need to test the alignment by probing as

many positions as possible throughout the transmembrane

region, and this measure was considered to be the most relevant

to activation.

2.10. Radioligand binding
For a small number of mutants, the ability of human aCGRP to

displace [125I]-iodohistidyl8-human aCGRP was investigated.

The assays were carried out as previously described on cell mem-

branes by microcentrifugation [6].

2.11. Data analysis
Curve fitting was done with GRAPHPAD PRISM 4 (GraphPad Soft-

ware Inc., San Diego, USA). Both this and statistical analysis

were as described previously [6].
Other aspects of the methodology are given in the electronic

supplementary material.
3. Results
Each helix has its own characteristic degree of conservation

and number of group-conserved residues [26], and its own dis-

tribution of polar and hydrophobic residues in accordance

with its role in conferring stability, ligand binding, activation

and G-protein coupling. Thus, for each helix, the various

measures, taken in isolation, contribute differently to the

identification of the preferred alignment, which can be inferred

directly or preferably indirectly via GCR1. Here, our primary

measure is the consensus score (figure 1j–l). For TM1, TM5,

TM6 and TM7, the consensus score also indicates plausible

alternative alignments (table 1). For this reason, additional

measures have been used to distinguish between the preferred

alignment and the plausible alignments, including the muta-

genesis results for CLR (electronic supplementary material,

table S1) and for other class B GPCRs (electronic supplemen-

tary material, table S2). Where new mutants have been

made, these were initially chosen to probe the role of con-

served amino acids across the TM domains. Additional

mutants have been made to investigate particular regions or

motifs in more detail. This approach has resulted in a good

distribution of mutants across each helix.

In some alternative alignments, the variability pattern or

the position of charged residues is incompatible with the

receptor topology and this is indicated in table 1. The align-

ment of class A group-conserved positions with class B

group-conserved positions (electronic supplementary

material, table S3—this resembles the cold spot method)

has been assessed by comparison with random distributions

of an equivalent number of residues, and found to be statisti-

cally superior to random with a p-value of 0.04 or less for all

transmembrane helices (electronic supplementary material,

table S4, with a summary in table 1), except for TM4 where

there are few group-conserved residues; the p-values are

also generally superior to those for our plausible alternative

alignments (table 1) and to those for alternative alignments

in the literature. The mutagenesis data collected over 266 resi-

dues have been interpreted using the four CLR homology

models. Our prime focus in analysing the mutagenesis data

for a given residue has been to assess whether it is consistent

with the alignment; seeking to understand, the function of

the residue has been a secondary focus. In reporting the align-

ment, our focus has been on the motifs shared between class

A and class B GPCRs, and so much of the other information

is reported in the electronic supplementary material. For the

majority of this mutagenesis data, it is not possible to dis-

tinguish between correct and incorrect alignments, either

because the mutation had no effect, because the residue

would move to an equivalent position in the plausible

alternative alignment or occasionally because the homology

models do not yield a consensus on the residue environment

(e.g. internal versus external, helical versus loop). However,

for 27 residue positions, the mutation data have been instru-

mental in confirming the alignment since the result is difficult

to explain except in the preferred alignment; none of the

mutation data are contrary to the preferred alignment. The

measures in table 1 that help to define the alignment by

indicating against the alternatives are shaded in grey.
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3.1. TM3
The alignment for TM3 is discussed first because it is extre-

mely clear, as shown by the consensus results in figure 1,

being defined by the conserved Cys3.26 that forms a disul-

phide bond with EL2. It is also characterized by a clear

positive peak in figure 1a–c for each of the three Blosum

62-based profile alignments, indicating that alignment 0

(figure 2) is the preferred alignment according to both the

direct class A–class B alignment and according to the indirect

method involving alignments with GCR1, as summarized in

table 1, rows 2–4. Based on the entropy correlations,

figure 1d– f, the class A–class B alignment gives a clear

preference for alignment 0 (row 5). While not every measure

supports alignment 0, when the three criteria (Blossum 62

profile alignment, entropy and hydrophobicity) are

multiplied together, the weaker peaks in figure 1a– i are

down-weighted, resulting in a strong prediction for the 0 align-

ment (figure 1j– l and table 1, rows 11–14). Since there are no

other peaks, there are no plausible alternative alignments.

There are a number of highly conserved residues in TM3

(electronic supplementary material, table S3), most strikingly

E3.46 and YLH3.51. The latter forms the class B positional

equivalent of the class A DRY3.51 motif [7,29]. However, the
YLH motif does not appear to have the same function as

the class A DRY motif as the mutation effects are less

marked [29]. The evidence from our data is that mutation

has an effect on cell surface expression [30], and there are pre-

cedents for this with Y3.51 of the DRY motif. The YLH motif

seems to be part of an extended hydrophobic network also

involving the proximal part of IL2 that helps maintain the

inactive receptor in a closed state, although IL2, but not

Y3.51, also contacts Gs. E3.46 can interact with R1732.39 and

H1772.43 in TM2 in our alignment; together they may form

the functional equivalent of the DRY motif, as will be

discussed below.

For the remaining helices, we will focus largely on the

consensus results (rows 11–14) of table 1.
3.2. TM1
For TM1, the individual measures, profile alignment, entropy

and hydrophobicity, suggest several alternatives, but 0 is the

main alignment indicated by the consensus, with –3 arising

as an additional lower scoring possibility from the direct

class A–class B alignment (table 1; electronic supplementary

material, figure S1; for TM2–TM7, see electronic

http://rsif.royalsocietypublishing.org/
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Figure 2. The class A – class B-GCR1 alignments (selected sequences). (a) TM1, (b) TM2, (c) TM3, (d ) TM4, (e) TM5, ( f ) TM6 and (g) TM7. The most conserved
positions in class A are marked by a vertical bar and correspond to position 50 in each helix, e.g. N1.50. The amino acids are coded according to their properties as
follows: blue, positive; red, negative or small polar; purple, polar; cyan, polar aromatic; green, large hydrophobic; yellow, small hydrophobic. This corresponds to the
‘Taylor’ scheme, as implemented in Jalview.
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supplementary material, figures S2–S7). However, the –3

alignment can be eliminated by many of the remaining

measures (table 1). The mutagenesis data on CLR and on

other class B GPCRs (figure 3) are especially relevant as

they both support the 0 alignment and suggest how TM1

and IL1 can support G-protein interactions and receptor stab-

ility. Residues K1.61 and L1.63 are part of the KKLH1.64 motif

that is shared between class A and class B (table 2; electronic

supplementary material, tables S3 and S5); the first four resi-

dues in CLR are K1671.61SLS. Our models and class A X-ray

structures show that L1.63 interacts with V3918.50, which in

turn holds Y3267.53 in the inactive conformation (cf. the

class A NPXXY motif ) in its inactive conformation (electronic

supplementary material, figure S8). K1.61 also interacts with

Gb in our model of the CLR–G-protein complex—but could

also interact with E8.49. Similar stabilizing interactions

between IL1 and H8 are seen in most inactive GPCR X-ray

crystal structures (e.g. rhodopsin pdb code 1U19, but not

the CXCR4, pdb code 3OE6, as it unusually has a positive

residue at position 8.49). None of these interactions are poss-

ible in the 23 alignment and these interactions probably

underlie the loss of function on mutation of K1.61 and L1.63.
With some exceptions, e.g. for splice variants, IL1 is highly

invariant in length, and so the alignment for TM1 essentially

defines the alignment for TM2 and hence the KKLH motif

can be considered as a continuation of TM1 and/or TM2.
3.3. TM2
For TM2, the consensus score strongly favours the 0 align-

ment (table 1; electronic supplementary material, figure S2).

There are essentially no alternatives, as the next highest scor-

ing alignment (23) is well below the 70 per cent threshold.

Strong support for the 0 alignment also comes from the align-

ment of group-conserved residues, the variability (electronic

supplementary material, figure S9), the alignment of the

KKLH1.64 motif and from the seven distinguishing mutations.

Small group-conserved residues [26], which allow closer heli-

cal packing, align in TM2 and TM3 in the preferred alignment

but not in the alternative alignment; in TM1 and TM7 small

group-conserved residues also align in the alternative

alignments. In addition, our alignment is consistent with a

recent Cys-scan of the glucagon receptor which suggests

that TM2 remains helical up to Q2022.68 [31].

http://rsif.royalsocietypublishing.org/
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Figure 3. Class B GPCR mutation data (singles or doubles). (a) CLR mutation data. Green, orange and red shading denote a less than 10-fold, 10 – 100-fold and greater than
100-fold decrease, respectively, in potency for cAMP production; blue indicates no significant change. Positions that increase CGRP potency are in purple. Residues with red
letters showed no change in cAMP but had decreased expression. Blue with a yellow letter indicates no information on cAMP but a change in CGRP binding. Cyan with a red
letter indicates reduced expression but no change in cAMP potency. For I7.40 (green with yellow letter), there was a small increase in Kd but no change in cAMP. Further details
are given in electronic supplementary material, table S1. (b) Mutation data on other class B GPCRs taken from the literature. Positions that show a mutation effect in CLR and in
some other class B are shown in red, positions that show a mutation effect in other class B GPCRs but not in CLR are shown in yellow, positions that show an effect in other
receptors but for which there is no information for CLR are shown in green and positions that show no effect are shown in orange (CLR and other receptors) or purple (other
receptor; no information about CLR). Further details are given in electronic supplementary material, table S2. (c) Support for the alignment from the mutagenesis data. Mutation
data at red residue positions help to confirm the alignment, blue residues are consistent with the alignment and grey residues are neutral. The details are as follows. Red with
white lettering: functional, goes to an inappropriate position in alternative, e.g. internal/buried goes external in alternative or external residue involved in dimerization goes
internal in alternative alignment. Red with yellow lettering: a G-protein contact; does not contact G-protein in alternative. Red with green lettering: key proposed interactions
lost in alternative alignment. Red with cyan lettering: more prominent in binding site than in alternative. Blue with white lettering: functional goes to a similar environment in
alternative. Blue with yellow lettering: not functional, e.g. because of external or buried position, goes to a similar environment in alternative. Blue with green lettering: not
functional and internal goes to a similar environment in alternative. Grey with black lettering: non-functional goes to a more significant position in alternative, e.g. external goes
internal or residue G-protein non-contact binds G-protein in alternative. Grey with white lettering: non-functional goes to a less significant position, e.g. internal/buried residue
goes to external or G-protein contact loses contacts in alternative. Grey with yellow: inconclusive, e.g. external loop region goes to internal helical in alternative so explanations
as are complicated, residues that go to different environments in different models and prolines of unknown function.

rsif.royalsocietypublishing.org
JR

SocInterface
10:20120846

8

 on January 10, 2013rsif.royalsocietypublishing.orgDownloaded from 

http://rsif.royalsocietypublishing.org/


Table 2. Class A motifs and their class B counterparts.

region class motif function

IL1 A K1.61KLHxxxN structure

B R1.61KLHxxxN

TM2,3 A DRY3.51 activation

B R2.39H2.43; E3.46

TM3 A C3.25 structure

B C3.25

TM4 A W4.50 structure

B W4.50

TM5 A IxxL5.65 G-protein

interactionB LXXL5.65

TM6 A CWxP6.50 activation

B P . . . TY6.48

TM6 A KxxK6.35 G-protein

interactionB KxxK6.35

TM7 A NPXXY7.53 activation

B VAVLY7.53

H8 A EFxxxL8.54 structure/

restraintB EVxxxL8.54

TM2,3;

TM7

A R3.50 – E6.30 ionic/

polar lockB R2.39 – T6.37

L3.50

Y3.49

H3.51

F7.53

T6.37

E3.46 R2.43

H2.47

Figure 4. The explicit membrane inactive CLR models showing four key
activation motifs in spacefill. The YLH3.51 motif is shown with green carbon
atoms; the class B DRY equivalent, R2.39, H2.43 and E3.46 is shown with grey
carbon atoms. F7.53 corresponding to Y7.53 of the class A NPXXY motif and
T6.37, which contributes to the polar lock, are shown with cyan carbon atoms.
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3.4. TM4
For TM4, the consensus score strongly favours the 0 align-

ment, and indeed W4.50 aligns in all published class A–

class B alignments. There are essentially no alternatives, as

the next highest scoring alignment is well below the 70 per

cent threshold (table 1; electronic supplementary material,

figure S4).

3.5. TM5
For TM5, the indirect approach via GCR1 clearly favours the

preferred 0 alignment. The alternative 22 and þ2 alignments

arise from the consensus for the direct class A–class B align-

ment (table 1; electronic supplementary material, figure S5).

The most significant factor in determining the alignment

arises out of the common interaction with the G-protein

through the shared hydrophobic [I/L]xxL5.65 motif at the

intracellular end of TM5 (table 2). Residues 5.61 and 5.65 con-

tact the transducin C-terminal peptide in the opsin structures

[32], but a larger range of residues contact the G-protein in

the b2-AR 3SN6 structure. Mutations, particularly to polar

amino acids, at position 5.61 and 5.65 in class A [33–36]

and class B [37–39] GPCRs inhibit G-protein coupling. It is

important to consider the G-protein interaction when seeking

to understand the mutagenesis results for residues at the

intracellular end of TM5 Here, the 3SN6 b2-AR–G-protein

complex is a reasonable model since both CLR and the

b2-AR couple to Gs.

In all, the mutation data for positions 5.43, 5.50, 5.57, 5.61,

5.63 and 5.64 (from CLR, CRF, GLP-1, PTH1 and secretin

receptors) are consistent with the 0 alignment and not the
+2 alternatives (which arose from the direct alignment).

The indirect alignment approach via GCR1, which does not

yield any alternatives, is probably more successful than the

direct class A–class B approach because of the greater

divergence between class A and class B in TM5 (and in TM6).

3.6. TM6
For TM6, 0 is the preferred alignment, with þ3 as the alterna-

tive, but while all published class A–class B alignments align

the conserved aromatic at position 6.48, the alignment is not

as trivial as this match may imply. The class A CWLP6.50

motif has been much discussed as a possible activation micro-

switch, but since this residue does not change conformation

as predicted in class A active GPCRs [20,22], its role in

class B GPCRs may be equally less dramatic. Most of the

mutational evidence against the þ3 alignment is discussed

in the electronic supplementary material, but the highly con-

served T6.37 (electronic supplementary material, table S3)

appears to be a key motif shared between class B and some

class A GPCRs. This residue contacts R1732.39 in the inactive

models but not in the active models (figure 4). Mutation of

T3386.37 gives rise to constitutive activation in many class B

GPCRs [40–43]. R1732.39 is part of the proposed class B

DRY equivalent [7] and like T6.37 is highly conserved (elec-

tronic supplementary material, table S3). For these reasons,

it is possible that the R1732.39–T3386.37 interaction contributes

towards a class B equivalent of the class A R3.50–E6.30 ionic

lock [44] (see figure 4 and discussion for further consideration

of this residue). This polar lock does not form in the alterna-

tive alignments.

The TM6 alignment is partly complicated because the

conserved prolines do not align. The conserved proline in

class B GPCRs is at position 6.42 and like its class A counter-

part at position 6.50 is likely to introduce a key bend in TM6,

which is important during activation [6,45]; it also helps to

define the alignment since in the 0 alignment it has the

same orientation as P6.50 but any attempt to move the orien-

tation of this proline in CLR results in a loss of function [6].

The KxxK6.35 motif may interact with the C-terminus of

Gas, aided by flexing of TM6 around P6.42 (class B) or P6.50

(class A). This interaction is born out by MD simulations,

but the analogous residues in the b2-AR–Gs complex (PDB
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code 3SN6) are poorly resolved and so the interpretation

should be used with care, despite the observations from

mutagenesis experiments that implicate K6.32 and K6.35 in

G-protein coupling in both class A [36,46–48] and class B

[39,49–52] GPCRs. For this reason, it is important to note

that the alignment is based on mutagenesis results through-

out the transmembrane region and not in just one region,

such as the G-protein coupling region.

3.7. TM7
For TM7, the consensus strongly favours the 0 alignment.

Two motifs are apparent: the class B equivalent of the

NPXXY7.53 motif is VAVLY7.53, of which the Y7.53 appears to

be the most significant (F7.53 in CLR) and the NxE[F/

V]xxxL8.54 motif on helix 8. N7.57 lies at the interface between

TM7 and helix 8; it is conserved in most class B GPCRs (elec-

tronic supplementary material, table S3) and many class A

GPCRs, but is a gap in the b2-AR. The models illustrate a

possible stabilizing role as the highly conserved N3887.57 con-

tacts R1732.39 of the class B DRY equivalent in both the active

and inactive models, but would be unable to do so in the þ4

alignment. The E394A8.49 mutant in the VPAC1 receptor

decreases cAMP production; simulations show that this resi-

due may interact with K1.61 in the inactive receptor (a similar

interaction is seen between these positions in approximately

70 per cent of class A GPCR X-ray crystal structures), but it

would not be possible in the alternative þ4 alignment.
4. Discussion
The consensus for the indirect approach (via GCR1) favours

alignment 0 more strongly than does the direct approach;

the direct approach gives alignments that are inconsistent

with experiment for TM5 and TM6, illustrating why this

alignment has hitherto been difficult and highlighting the

advantages of using GCR1/class E alignments. Our class

A–class B alignment is not only consistent with the pharma-

cological phenotype of over 120 mutations in CLR and in

excess of 140 additional reported class B GPCR mutations

but is also superior to the plausible alternative alignments.

No single parameter can be an ideal indicator of receptor

topology. For some of the mutants we have analysed (elec-

tronic supplementary material, table S1), we have only been

able to measure the effect on cAMP production, rather than

receptor expression or ligand binding. This limitation only

applies to eight of the 27 key mutants and furthermore, the

interpretation of these results does not generally rely on the

precise mechanism of the mutation. For some residues, the

environment in the preferred and/or alternative alignments,

as shown by the four models is ambiguous; this is primarily

because of uncertainties in loop modelling [53]. Previous

experience has shown that the general overall picture to

emerge from a homology model is likely to be correct but

the details of individual residues might not be precise [13].

Although the mutagenesis has been interpreted using active

state models, such models are certainly not sufficiently

reliable to distinguish between different active states, e.g.

those arising from partial agonists, promiscuous G-protein

interactions or G-protein independent signalling. It is pre-

cisely for these reasons that we have based our analysis on

multiple measures, including a sufficiently large number of

mutations so that each helix has a reasonable number of
distinguishing mutations, including some in the G-protein-

binding region and some elsewhere.

4.1. Comparison with published alignments
Published class B GPCR models are split into two groups—

those that use an alignment [7,10,11,54] and those that do

not [5,13,14], but sometimes an alignment is not given [6,8].

Differences with Frimurer & Bywater’s [7] influential cold

spot method occur when there are no conserved aromatic resi-

dues to prove a strong steer, as in TM1 (alignment 24), TM2

(24) and TM5 (þ4). The cold spot method bears some simi-

larity to our alignment of group-conserved residues, but a

probability analysis is not usually carried out (cf. electronic

supplementary material, table S4). Thus, although TM6 is dif-

ficult to align, there are no reported discrepancies between our

alignments and the other reported TM6 alignments [7,8,10,11].

Differences with Bissantz et al.’s [12] clustal-based method

occur in TM5, where two alternatives are given, namely (þ4)

[12] and (þ3) [11] while Chugunov et al.’s hybrid method

differs in TM5 (þ5). Sheikh et al.’s method bears some resem-

blance to our maximum lagged correlation, which uses all of

the data and hence overcomes some of the pitfalls of the

cold spot method, but their alignment was only reported for

TM3 and TM6. The discrepancies probably arise because in

the absence of careful scaling, the score between different

plausible alignments is likely to be small, and only Chugunov

et al. have considered other plausible alternatives. None of the

above, including Chugonov et al.’s [54] alternatives, concur

with our TM5 alignment, thus making it novel.

4.2. Class B motifs
The mutations analysed in this study have been interpreted

through CLR models, and in this respect the active model

and models of the interaction with the G-protein have been

particularly helpful. The CLR models have highlighted a

number of possible molecular similarities between class A

and class B GPCRs that are primarily associated with the

class A DRY and NPXXY activation motifs and hence ulti-

mately with the G-protein interaction; these motifs are

summarized in table 2 and discussed below; the conservation

data are given in electronic supplementary material, table S5.

We are not aware of any similar comprehensive comparison

of class A and class B motifs.

4.3. The interaction of calcitonin receptor-like
receptor with Gs

Our alignment and modelling suggest a plausible mechanism

by which CLR may interact with Gs upon activation. In family

A GPCRs, movements of TMs 3 and 6 are crucial, in particular

the breaking of the ionic lock between the bases of the two

helices. Frimurer & Bywater [7] suggested that the class B func-

tional equivalent of the DRY motif is R2.39, E3.46 and Y3.49; we

concur on the role of R2.39 and E3.46. We have shown that

R1732.39 is important for G-protein coupling [30]. Mutation

of this residue in the GLP-1 receptor results in a reduction of

cAMP production and mutation in the secretin receptor

reduces intracellular Ca2þ. Position 2.39 contacts the G-protein

in our model complex and in the structure of the b2-AR–Gs

complex, 3SN6. We propose that H2.43 is a likely partner to

R2.39 in the activation motif because mutation of H2.43 (elec-

tronic supplementary material, table S2), like D3.49, either
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disrupts signalling or results in constitutive activation [50,55–

57] and because H2.43 can hold R2.39 in place when E3.46 is

mutated to alanine (simulation results not shown). The role

of E3.46 in holding R1732.39 and H1772.43 in the inactive confor-

mation is evident in the models. The relatively small (10-fold)

effect of mutation on E2332.46 may arise because the reduced

interaction between E2333.46 and R1732.39 and H1772.43 results

in a receptor that has more active state character and so agonist

binding is not inhibited. When the R1732.39–H1772.43–E2333.46

motif is considered with other key residues, the activation

motif forms a more contiguous cluster than in class A

GPCRs. The major changes in the active structure motifs

from the configuration shown in figure 4 is that R2.43 drops

down, the interaction with T6.37 is lost, while F7.53 moves in

from its interaction with the KKLH1.64/EFxxxL8.54 cluster to

help stabilize the active form of the receptor. In class B

GPCRs and many class A GPCRs, there are no obvious equiv-

alent ionic interactions between the intracellular end of TM6

and the intracellular end of TM2 or TM3 to form a canonical

ionic lock. In the inactive receptor, R2.39 contacts T6.37 to

form a polar lock which may hold TM3 and TM6 together.

Fanelli has presented evidence that Thr (at various positions

around 6.37) may also assume this role in class A GPCRs

that lack a glutamate at position 6.30 [58] and indeed such

an interaction is present in the inactive m-opioid crystal struc-

ture [59]. TM5 and TM6 are the most difficult helices to align,

despite the conserved aromatic in TM6, but both contain

motifs, namely LxxL5.65 and KxxK6.35 that can engage the

G-protein following movement of TM6, aided by the con-

served prolines at positions 6.50 and 6.42. Group-conserved

small residues that facilitate helix packing align on TM1,

TM2, TM3 and TM7.

A further switch has been identified in the VPAC1 recep-

tor between Q7.45, N3.39 and R2.53. R2.53 has been proposed to

have a double role as a counterion for an Asp in the agonist,

thus providing a switch mechanism [43]. In CLR, position

2.53 is an Asn and mutagenesis studies only indicate a role

for Q7.45. However, our alignment indicates that this can

interact with N3.39. It is likely that the role of this switch is

receptor dependent. We are aware of other examples where

mutations appear to have different effects in different

GPCRs, e.g. at H2.43, which has a clear role in signalling in

the PTH, GLP-1, secretin and VPAC1 receptors, but not in

the calcitonin receptor, and R4.64, which affects potency in

secretin, but not in PTH1 and at K6.32 which affects potency

in VPAC2 and CRF1, but not in VPAC1 and GLP-1 (electronic

supplementary material, table S2). Some of these effects

depend on the residue that, e.g. K6.32 is mutated too. It is

hardly surprising that there are differences between individ-

ual class B GPCRs, as these clearly exist among family A

GPCRs as evidenced by, for example, the form and signifi-

cance of the ionic lock in the structures of inactive

receptors, illustrating that the key functional motifs are not
immune from such effects. Work is needed to understand

how GPCRs adapt similar molecular mechanisms to show

distinctiveness. In this regard, the ideas generated through

the alignments and models provide a framework for develop-

ing focused mechanistic hypotheses that can be tested

through well-designed experiments.
4.4. Towards a model of the calcitonin gene-related
peptide receptor; the N-terminus and RAMP1

A number of speculative low-resolution class B GPCR models

have been developed that include the N-terminal domain

[14,60], but there is currently insufficient evidence to allow

detailed modelling. Despite this, it is possible to make a

few observations about the possible orientation of the

N-terminus. The presence of the RAMP in CLR-based com-

plexes introduces useful additional constraints to drive the

modelling. There are only five residues missing between the

N-terminus of our model and the C-terminus of the CGRP

extracellular domain X-ray structure [61]. In addition, the

length of the loop connecting the RAMP of this X-ray struc-

ture to the TM helix (residues approx. 104–117) is probably

too short to accommodate a model in which the CGRP pep-

tide enters the helical bundle as shown in some low-

resolution models [14,60], suggesting that the bound peptide

may need to approach less vertically so as to bring the RAMP

closer to the membrane. Studies by Miller indicate that this

happens within a single protomer [62]. The extracellular

loops play a key role in binding the peptide, and these are dif-

ficult to model [53] in the absence of experimental data, as

shown by the unusual b-sheet region in EL2 of neurotensin

receptor X-ray structure [63].
5. Conclusions
Overall, we present a plausible alignment for class B GPCRs

that accommodates data from around 250 mutants from 10

class B GPCRs. While there are inevitably limitations in any

molecular model, those presented here are consistent with

experimental data. Residues implicated in ligand binding

either face inwards or are at TM/loop boundaries and are

concentrated in the upper third of the transmembrane

bundle. It is possible to assign functions to highly conserved

motifs and conserved residues. Using the results from this

work as a basis for further experiment, it should now be poss-

ible to understand how these motifs work at the molecular

level in different receptors such as the VPAC1 receptor and

also how ligand binding triggers receptor activation.
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