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Abstract: Digital back-propagation (DBP) has recently been proposed for
the comprehensive compensation of channel nonlinearities in optical
communication systems. While DBP is attractive for its flexibility and
performance, it poses significant challenges in terms of computational
complexity. Alternatively, phase conjugation or spectral inversion has
previously been employed to mitigate nonlinear fibre impairments. Though
spectral inversion is relatively straightforward to implement in optical or
electrical domain, it requires precise positioning and symmetrised link
power profile in order to avail the full benefit. In this paper, we directly
compare ideal and low-precision single-channel DBP with single-channel
spectral-inversion both with and without symmetry correction via dispersive
chirping. We demonstrate that for all the dispersion maps studied, spectral
inversion approaches the performance of ideal DBP with 40 steps per span
and exceeds the performance of electronic dispersion compensation by ~3.5
dB in Q-factor, enabling up to 96% reduction in complexity in terms of
required DBP stages, relative to low precision one step per span based DBP.
For maps where quasi-phase matching is a significant issue, spectral
inversion significantly outperforms ideal DBP by ~3 dB.
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1. Introduction

Recent trends in optical communication are focusing on high bit-rates as well as spectrally
efficient transmission systems in order to cope with the demands of capacity growth [1].
Higher bit-rates per channel require the deployment of high-order modulation formats [2-5]
with increased required optical signal-to-noise ratio (OSNR) and hence higher power per
channel. Higher spectral efficiency also demands tightly spaced wavelength-division
multiplexed (WDM) channels to maximize the utilization of the optical amplifier bandwidth.
The ability to deploy a dynamic and configurable optical layer is a direct consequence of such
developments. This is particularly true for shorter links across the network, where the
improved optical signal-to-noise ratio (OSNR) would allow the use of a high capacity
channel. While such dynamic multi-rate networks enable flexible capacity allocation, these
systems present complex trade-offs. One such challenge is associated with the nonlinear
transmission impairments [6], which strongly connect the achievable channel reach to a given
modulation format and symbol-rate [5-8]. Historically, various methods of compensating
fibre transmission impairments have been proposed, both in optical and electronic domain.
Dispersion management was initially proposed to suppress the impact of fibre nonlinearity
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[9]. Although this technique is beneficial, it enforces severe limitations on link design.
Compensation of fibre impairments based on phase conjugation or spectral inversion (SI) was
also proposed [10,11], however, although SI has large bandwidth capabilities, it necessitates
precise positioning and symmetric link design (e.g., distributed Raman amplification, etc.).
Whilst optical ST of WDM signals based on periodically poled lithium niobate waveguides has
been demonstrated with negligible noise penalty and high conversion efficiency [12],
electronic phase conjugation of a single channel has also been recently demonstrated based on
intradyne detection [13]. Recently a modified SI approach has been proposed which exploits
nonlinear temporal inversion by applying pre-compensation before the SI stage [14]. To
mitigate some of the aforementioned drawbacks, electronic mitigation of nonlinear
impairments using digital back-propagation (DBP) with time inversion has been applied to the
compensation of channel nonlinearities [15,16]. However, despite its flexibility, the
complexity of DBP is currently exorbitant due to ultra-wide bandwidth requirements (multi-
channel DBP), significantly high number of required steps per link, and the requirement of
prior knowledge of fibre span configuration, and therefore it still needs a considerable effort
to make this method practically viable [17-19]. Recent efforts to simplify DBP [18] for PM-
4QAM signals show up to 1.5 dB Q factor improvements in WDM transmission, although the
benefit appears to reduce as the order of the modulation format is increased [20] and so for
higher order modulation formats, we anticipate that a higher number of required steps per link
will be required.

In this paper, we compare two single-channel nonlinearity compensation techniques:
Digital back-propagation (ideal: high-precision and low-precision), and spectral inversion
(non-symmetrised and symmetrised), for both dispersion compensating fibre (DCF) free and
dispersion managed transmission links [21]. We report that spectral inversion approaches the
performance of ideal DBP, and significantly outperforms linear compensation along with low-
precision DBP. Furthermore, we demonstrate that for a dispersion map facilitating the
suppression of fibre nonlinearity, SI outperforms even ideal high-precision DBP. To our
knowledge, this is the first comparative report on the transmission performance of multi-
precision digital back-propagation, and conventional and pre-chirped optical phase
conjugation, employing multi-rate 28 Gbaud WDM transmissions with advanced modulation
formats.

2. Principle of operation

In this section, we review the operating principle of the two forms of spectral inversion used
in this paper: Standard SI (SSI) and pre-compensated SI (PSI). The SSI technique consists of
the insertion of the SI device exactly at the midpoint of the link [11-13]. The PSI
configuration described here is obtained starting from a SSI setup, and inserting a DCF before
SI (pre-compensation) [14], as shown in Fig. 1. SI operation with WDM signals allows
compensation of cross phase modulation (XPM) [22], however this adds to the networking
constraints, and so in this paper we consider the use of single-channel SI only on those
channels where self phase modulation (SPM) compensation is required.

PSI enables the use of SI in circumstances where the effective length (L) is less than the
amplifier spacing (L,y,) and the dispersion length is sufficiently small, thereby adding
dispersion asymmetry. The effect of the added DCF is that of modifying the value of
accumulated dispersion exhibited by the pulses during propagation along the nonlinear
regions downstream of the SI. Note that an additional DCF must be inserted at the end of the
link, or electronic compensation of additional dispersion can be applied [23]. We can see from
Fig. 1 that for a conventional uncompensated map, the regions of high nonlinearity correspond
to different accumulated dispersion on either side of SI, when SSI is employed. Whilst, the
addition of a small piece of DCF applying compensation for (L,,,,-L.y) ensures that nonlinear
effects occur for similar ranges of accumulated dispersion.
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Fig. 1. Graphical representation for an uncompensated map showing, (a) Optical power profile,
(b) Accumulated dispersion with SSI, and (c) Accumulated dispersion with PSI, as a function
of number of spans. Solid circles represent regions of high nonlinearity.

3. Simulation setup
3.1 Transmitter

Figure 2 illustrates the simulation setup. The transmission system comprised nine 28 Gbaud
WDM channels, employing PM-mQAM formats with a channel spacing of 50 GHz. A multi-
rate system was employed with a 336 Gb/s central test-channel as PM-64QAM, and
neighbouring 112 Gb/s channels as PM-4QAM channels. For all the carriers, both the
polarization states were modulated independently using de-correlated 2'° and 2'° pseudo-
random bit sequences (PRBS) with different random number seeds, for x- and y-polarization
states, respectively. Each PRBS was de-multiplexed separately into two multi-level output
symbol streams which were used to modulate an in-phase and a quadrature phase carrier. The
optical transmitters consisted of continuous wave laser sources (5 kHz line-width), followed
by two nested Mach-Zehnder Modulator structures for x- and y-polarization states, and the
two polarization states were combined using an ideal polarization beam combiner. The
simulation conditions ensured 16 samples per symbol with 2'° symbols per polarization
(98,304 bits in total).
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Fig. 2. Simulation setup for 28 Gbaud PM-mQAM (m = 4, 64) transmission system. Link:
Dispersion profile as a function of number of spans for 0% and 90% inline dispersion
compensation. Also, spectral inversion and pre-compensated spectral inversion architectures
are shown.
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3.2 Transmission link

The signals were multiplexed, and propagated over six 80 km spans for three fibre
configurations with lumped erbium doped fibre amplification (EDFA), as shown in Fig. 2.
Table 1 lists the relevant fibre parameters. We employed two transmission links with no inline
dispersion compensation with either standard single-mode fibre (SSMF) or non-zero
dispersion shifted fibre (NZDSF), and one short period dispersion managed link, specifically
designed to suppress channel nonlinearities [21]. In the dispersion managed link 42 km of
NZDSF was followed by 38 km of inverse NZDSF resulting in 18 ps/nm residual dispersion
per span with near flat distribution of nonlinear regions. Single-stage EDFAs were used,
where each amplifier stage was modelled with a 4.5 dB noise figure, and the total
amplification gain was set to be equal to the total loss in each span.

Table 1. Fibre Types and Parameters

Dummanacep Dwanacep
Fibre Type/Parameters SSMF NZDSF NZDSF(42km)-NZDSF(38km)
Dispersion
(ps/nm/km) 20 4.5 0.22
Loss
(dB/km) 0.2 0.2 0.2
Nonlinearity
(1/W.km) I3 I3 I3
Dispersion Length, Ly (km) ~51 ~245 ~5000

3.3 Spectral inversion

In the middle of the link, the WDM signal is passed through a wavelength selective switch
and the central 64QAM channel is spectrally inverted (see Fig. 2). In order to study the
performance limits of the scheme, ideal SI is implemented by reversing the sign of the
imaginary part of the signal. Note that optical [12] and electrical [13] implementations with
sufficiently low penalties have already been reported. For PSI, a length of DCF equivalent to a
dispersion of Lg,-Ley of SSMF or NZDSF is applied (1160 ps/nm and —-261 ps/nm,
respectively). The signal is then re-multiplexed with its unprocessed 4QAM neighbours. Note
that PSI is not applied to the dispersion managed map since for this link L,>>L,,, ensuring
that sufficient nonlinear symmetry is already present.

3.4 Receiver and digital back-propagation

At the coherent receiver the central PM-64QAM channel was de-multiplexed, pre-amplified,
coherently-detected using four balanced detectors to give the baseband electrical signal and
sampled at 2 samples per symbol. If SI was omitted, transmission impairments were digitally
compensated via single-channel DBP (SC-DBP), which was numerically implemented by up-
sampling the received signal to 16 samples/symbol and reconstructing the optical field from
the in-phase and quadrature samples, followed by split-step Fourier method based solution of
the nonlinear Schrodinger equation. Note that we considered a high number of samples per
symbol to enable high DBP precision; however it has been shown previously that similar
performance may be achieved with only 2 samples/symbol [24]. We employed multi-
precision DBP where step-size was varied from 1 step per span to 40 steps per span (ideal).
The performance with 2 steps per span here is close to that observed for the modified method
of [17,18] with 1 step per span and is treated as a lower bound to low complexity. In context
of recently proposed DBP simplification algorithms evaluated using a 4QAM baed system,
the higher-order formats used here are more prone to fibre nonlinearity (high peak-to-
average), necessitating higher numbers of required DBP steps to enable optimum performance
[20]. Also, for comparison, electronic dispersion compensation (EDC) was employed using
finite impulse response (FIR) filters (adapted using least mean square algorithm). In all cases,
polarization de-multiplexing and residual dispersion compensation was performed using 13
tap FIR filters, followed by carrier phase recovery. Finally, the symbol decisions were made,
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and the performance assessed by direct error counting (converted into an effective Q-factor
(Q¢p)- All the fibre propagations were carried out using VPItransmissionMaker®v8.5, and the
digital signal processing was performed in MATLAB®7.10.
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Fig. 3. Q.4 of central PM-64QAM channel as a function of launch power for various nonlinear
compensation techniques. (a) SSMF with no inline dispersion compensation, (b) NZDSF with
no inline dispersion compensation, (c) NZDSF with 90% inline dispersion compensation
(hybrid transmission)., showing EDC (squares), SSI (circles), PSI (stars), DBP (1 step, down-
triangle), DBP (2 steps, left-triangle), DBP (40 steps, up-triangle). (d) Q. as a function of
number of back-propagation steps per span for SSMF (red) and NZDSF (blue) showing DBP
(circles with solid fit), SSI (dotted line,) and PSI (thick solid line).

4. Results and discussions

Typical results of our simulations are shown in Fig. 3 as a function of signal launch power
(Py) for the central PM-64QAM channel. The launch power of all the neighbours was fixed at
—1 dBm [5]. This is a practical approach for next-generation multi-rate networks, since OSNR
requirements for low bit-rate channels are low; and hence lower launch power. This approach
leads to reduced inter-channel nonlinearities, as demonstrated in [5], however the performance
improvements enabled by single channel nonlinear compensation may vary depending on
either homogenous [6] or heterogeneous [5] traffic is deployed. Figure 3 depicts the
performance after EDC, SSI, PSI and DBP. At lower launch powers, the system is noise-
limited and Q.4 of all approaches overlap. As we increase the launch power, nonlinear effects
become significant and the different approaches demonstrate different optimum launch power,
reflecting their dissimilar nonlinear compensation effects. Figure 4 qualitatively depicts the
difference in performance between SI (top) and EDC (bottom) at the optimum launch power,
for various dispersion maps studied in Fig. 3.

#149559 - $15.00 USD Received 20 Jun 2011; revised 27 Jul 2011; accepted 8 Aug 2011; published 15 Aug 2011
(C) 2011 OSA 29 August 2011/ Vol. 19, No. 18/ OPTICS EXPRESS 16924



(a) 0% (SSMF) (b) 0% (NZDSF) (¢) 90% (NZDSF)

B | e
2L XL EE %
LR EEL TR E
LR L X Le B X
N T I TICEE X o
o et bt E
Yy [T Y. 5
W B e e A L
o

Inphase

Fig. 4. Constellation maps after SI (top) and EDC (bottom) for 28 Gbaud PM-64QAM at
optimum launch power. (a) 0% inline compensation (SSMF), PSI and EDC (b) 0% inline
compensation (NZDSF), PSI and EDC (c) 90% inline compensation (NZDSF), SSI and EDC.

As expected for all the fibre configurations in Fig. 3, full precision DBP and both forms of
SI outperform EDC, and for these configurations all of the studied reduced complexity DBP;
also outperform EDC. For the uncompensated links (Fig. 3(a) and Fig. 3(b)), enhancing the
accuracy of SI by employing pre-compensated SI (PSI) enables the performance of DBP(40)
to be approached. In the case of SSMF (Fig. 3(a)), the remaining compensation asymmetry,
due to inherent first-order approximation of nonlinear impairments taking place within L,z
results in a slight penalty of ~0.3 dB. This penalty is almost completely eliminated for low
dispersion fibres (Lp>L,,,). For the dispersion managed transmission (Fig. 3(c)), the
symmetry of the nonlinear regions is sufficient for the uncompensated standard SI (SSI) to
even outperform all forms of electronic compensation. Note that in this study, we have
assumed a dynamic network where each channel operates at its minimum power, and so the
primary limitation arises from intra-channel nonlinearities, such as self-phase modulation [25]
and intra-channel four-wave mixing (Lp<<L,y) [26], Gordon-Mollenauer (Lp>>L,,,) [27] and
parametric noise amplification (all the dispersion lengths) [28]. Whilst self-phase modulation
and intra-channel four-wave mixing are ideally compensated in all the dispersion regimes, the
remaining two involve a nonlinear interaction with noise which is only partially compensable.
In the case fo DBP, these effects both favour the highest possible local dispersion (lowest Lp).
However, due to the dependence of the compensation accuracy of PSI on waveform
symmetry, PSI favours low dispersion (high L), and so presents a clear trade-off between
compensation accuracy and intra-channel nonlinearity. This results in marginally improved
performance with ideal DBP for the highest dispersion fibre, but slightly greater performance
for PSI uncompensated NZDSF.

In the case of dispersion managed fibre, the compensation symmetry ((Lgu,-Ley)/Lp) is
sufficiently high to enable the use of SSI, but the low dispersion also exacerbates the impact
of parametric noise amplification. In this case, parametric noise amplification demonstrates
super-linear length dependence, and splitting the link into two halves results in a significant
reduction in the impact of this effect, enabling SSI to outperform ideal DBP significantly. A
corollary of these results is that we would expect PSI to begin to outperform DBP for longer
transmission distances.
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Having established that PSI matches, or outperforms 40 steps per span DBP, it remains to
analyse the implementation complexity and power consumption of two techniques. Figure
3(d) shows the performance of DBP with varying precision or step size per span, both for
SSMF and NZDSF. It can be seen that for SSMF, SSI and PSI enable performance
improvements equivalent to DBP employing ~5 steps per span and ~22 steps per span,
respectively. This can be seen as SSI and PSI enabling 80% and 96% simplifications to one
step per span SC-DBP. Likewise, for low dispersion fibre, SSI and PSI enable performance
enhancements corresponding to 12 steps per span and 18 steps per span, respectively. These
findings clearly demonstrate that even though significant efforts are put into simplifying
standard DBP algorithms, conventional simplistic SI radically outperforms DBP technique.
However, these considerable savings in application specific integrated circuit (ASIC)
complexity and computational load must of course be traded-off with the complexity of
adding PSI at appropriate network node, suggesting that a hybrid solution using SI to
compensate the bulk of the SPM, and simplified DBP to accommodate the residual penalties
due to varying SI location would offer the optimum configuration.

5. Conclusion

We have compared various nonlinearity compensation techniques and have reported that
single-channel spectral inversion always outperforms low-precision single-channel digital
back-propagation. We have also demonstrated that the performance of SI is further increased
by employing pre-chirped SI, approaching the performance of ideal 40 steps per span DBP.
Our results suggest that employing SI at ROADM site would significantly reduce the DBP
computational load, leading to an optimum hybrid solution to compensate fibre nonlinearity.
In particular, compared to single-step per span DBP, symmetrised SI enables Q.
improvement up to ~3.5 dB and P; improvement up to ~6 dB, equivalent to ideal SC-DBP, in
a coherently-detected mixed bit-rate 28 Gbaud PM-mQAM WDM system. Furthermore, for
some legacy dispersion managed links SI may enable enhanced performance that DBP. Note
that for networks employing homogenous traffic, the complexity reductions reported here will
remain valid, however with reduced intra-channel nonlinearity compensation benefits due to
strong cross-phase modulation effects.
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