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Ernst Mach observed that light or dark bands could be seen at abrupt changes of luminance gradient in the absence of
peaks or troughs in luminance. Many models of feature detection share the idea that bars, lines, and Mach bands are found
at peaks and troughs in the output of even-symmetric spatial filters. Our experiments assessed the appearance of Mach
bands (position and width) and the probability of seeing them on a novel set of generalized Gaussian edges. Mach band
probability was mainly determined by the shape of the luminance profile and increased with the sharpness of its corners,
controlled by a single parameter (n). Doubling or halving the size of the images had no significant effect. Variations in
contrast (20%–80%) and duration (50–300 ms) had relatively minor effects. These results rule out the idea that Mach bands
depend simply on the amplitude of the second derivative, but a multiscale model, based on Gaussian-smoothed first- and
second-derivative filtering, can account accurately for the probability and perceived spatial layout of the bands. A key idea is
that Mach band visibility depends on the ratio of second- to first-derivative responses at peaks in the second-derivative
scale-space map. This ratio is approximately scale-invariant and increases with the sharpness of the corners of the
luminance ramp, as observed. The edges of Mach bands pose a surprisingly difficult challenge for models of edge
detection, but a nonlinear third-derivative operation is shown to predict the locations of Mach band edges strikingly well.
Mach bands thus shed new light on the role of multiscale filtering systems in feature coding.
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Introduction

Mach bands

In the 1860s Ernst Mach observed that illusory light
(or dark) bars or bands could be seen in the absence of
corresponding peaks (or troughs) in luminance. The
phenomenon has come to be known as Mach bands,
though Weale (1979) argued that the bands were almost
certainly known to artists of the 15th century Italian
Renaissance. The bands are typically seen at abrupt
changes of luminance gradient, such as the junction of
a luminance ramp and a plateau—a luminance profile
often known as the Mach ramp. Importantly for
theories of visual feature detection (Morgan, 2011),
the existence of Mach bands shows that not all
perceived bars or lines arise from peaks or troughs in
the luminance profile. Given its long history, it is not
surprising that quite a number of models and theories

of the Mach phenomenon have been proposed (Pessoa,
1996). Though they differ in scope and detail, one
central idea—spatial filtering by even-symmetric, cen-
ter-surround receptive fields—is common to all models,
including MIRAGE (Morgan & Watt, 1997; Watt &
Morgan, 1985) and the local energy model (Ross,
Morrone & Burr, 1989). A long-standing difficulty has
been in constructing a broader theory that embeds this
filtering into a satisfactory, more general theory of
spatial vision. Our aims in this paper are (a) to describe
a multiscale model for visual (1-D) feature detection
based on earlier models of edge coding (Georgeson,
May, Freeman, & Hesse, 2007), extended to deal with
both even- and odd-symmetric features (bars and
edges) in an integrated fashion and (b) to apply this
model to new experimental data on the perceived
structure of Mach bands and the probability of
reporting them under different conditions.

With great prescience, Mach (1865) formulated a
mathematical expression for brightness that would
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explain the band phenomenon, proposing that the
bands were seen at peaks and troughs in the second
derivative of the luminance profile, and he conjectured
that this might be implemented by reciprocal interac-
tion of neighboring retinal cells. As a result, light (or
dark) bands would be seen when the luminance at one
location was higher (or lower) than the average of its
neighbors: ‘‘Whatever is near the mean of the sur-
roundings becomes effaced; whatever is above or below
is disproportionately brought into prominence’’ (Mach,
1865; see Ratliff, 1965, p. 306). Several early studies
concluded that Mach bands were seen at or near the
peaks and troughs in the second derivative of the
luminance profile (Burnham& Jackson, 1955; Charman
&Watrasiewicz, 1964; Ludvigh, 1953a, 1953b; O’Brien,
1958; Thomas, 1965). Put simply, the bands might
occur at points of maximum curvature in the luminance
profile, even when those points are not peaks or troughs
of luminance. However, the stimuli in those early
experiments were difficult to control, and the evidence
was not extensive. Our goal here is to provide a more
systematic account of the way Mach bands depend on
the spatial scale and shape of the luminance waveform
and to develop a computational model for bar and edge
features, based on Gaussian-derivative filtering that can
account accurately for the perceived structure of the
bands and the probability of seeing them. We collected
data on the perceived position of the bands and the
perceived position of the edges of the bands. We shall
see that the edges of Mach bands pose an interesting
challenge to models of feature detection. The experi-
ments and model thus focus on the type and location of
elementary features seen and do not address questions
about perceived contrast or brightness of the bands.
For an extensive review of early models and data and
translations of Mach’s six key papers, see Ratliff (1965)
and for a more recent review, see Pessoa (1996).

A note on terminology: Scale, blur, gradient,
derivative, Gaussian derivative

The terms scale and derivative are used extensively in
this paper, and we use them in several contexts that
should not be confused.

Scale here refers to ‘‘size’’ or ‘‘spatial extent’’ (not
‘‘axis’’ or ‘‘dimension’’). In the experiments we use edge
images that have a certain scale (the luminance
transition occurs over a given spatial extent), defined
by a scale parameter r. Doubling or halving r alters their
size or scale accordingly. But the spatial filters applied to
these images also have a range of sizes or filter scales s;
doubling or halving s shifts the filter by one octave
towards lower or higher spatial frequencies. Important-
ly, when an image is spatially filtered at multiple scales (a
multiscale filter system), then the response to a single

stimulus of scale r is distributed over many filter scales
(s) and over space (x). The 2-D distribution of responses
over (x, s) is a scale-space map. (For a wide-ranging
account of the scale-space approach to biological and
computer vision, see ter Haar Romeny, 2003, and for
more mathematical detail, see Lindeberg, 1994.)

Blur is a simple form of low-pass spatial filtering, in
which the image is smoothed by convolution with a
(usually) unimodal blur kernel or point-spread func-
tion. In Gaussian blur, the kernel is a Gaussian
function G(x, b) of unit area (in 1-D) or unit volume
(in 2-D). The degree of blurring is controlled by the
scale parameter or blur b.

The gradient profile of a 1-D image whose luminance
profile is L(x) is its first derivative L0(x) or dL/dx
defined in the usual way. It measures the slope of the
function at each point x—the change dL in L over an
infinitesimal distance dx. The second derivative is the
gradient of the gradient, d2L/dx2 equal to dL0/dx. It is
closely related to local curvature in L(x).

If we blur an image and compute its gradient profile,
these two linear operations can be lumped together as
one: We have calculated the smoothed derivative of the
image. Which operation comes first is immaterial. For a
noisy signal, the smoothing combats high frequency
noise that is amplified by differentiation. When the
smoothing is Gaussian, with scale s, the combined
operation is the Gaussian derivative and the filter kernel
is dG(x, s)/dx, sketched at the top of Figure 1D. In the
absence of nonlinearity, several blurring and derivative
operations can be chained (in any order) to create higher
order Gaussian derivatives. Gaussian-derivative filters
are spatial frequency tuned filters whose bandwidth
decreases as the derivative order (first, second, etc.)
increases. Peak spatial frequency is inversely propor-
tional to filter scale s. Receptive field symmetry matches
the derivative order: odd orders (1, 3, 5. . .) have odd
symmetry; even orders (2, 4, 6. . .) have even symmetry.
In this paper we consider mainly the first (odd) and
second (even) Gaussian derivatives. If we blur an
image with Gaussian blur b and compute its Gaussian
derivative at scale s, the blurring and smoothing
simply combine quadratically, s 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ s2
p

, and the
outcome is exactly equivalent to applying a Gaussian
derivative with a larger scale s 0. Because of this
quadratic relation, small input blurs b have little
influence at large filter scales, that is s 0 ’ s, if b � s.

Thus in this paper when we refer simply to derivatives
of the image we mean the pure mathematical (infinites-
imal) derivative, but when we refer to smoothed
derivatives, derivative filters, or multiscale derivatives
we mean Gaussian first (or higher) derivatives at one or
more scales s. We try to distinguish clearly between
stimulus scale (r) and filter scale (s). In particular, the
scale s of the most active filter can vary with the shape of
the waveform as well as the stimulus scale parameter r.
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Mach bands and spatial derivatives

Figure 1 shows luminance profiles (black curves) for
(A) a Gaussian bar, (B) a Gaussian-blurred edge, and
(C) an edge that is more like a Mach ramp (defined
more precisely later). Also shown are the corresponding
first and second derivative profiles, computed numer-
ically with high pixel resolution. As expected, the
second derivative (blue) shows peaks at points of high
curvature in the luminance profile—the center of the
bar (A) and the corners of the edge profiles (B and C).
Notice how at the corner points, the second derivative
amplitude increases markedly when the edge is made
more ramp-like (Figure 1C), making the corners
sharper. Points of high curvature in the luminance
profile may represent key features in the image, and so
the strength of Mach bands might depend directly on
the amplitude of the second derivative peaks. But if
that were so, then we should expect Mach bands to
have several interesting properties: (a) Mach band
strength should increase with contrast, because the
derivative amplitudes of any order (first, second, etc.)
are directly proportional to contrast; (b) Mach band
strength should be markedly greater when images are
scaled down in size, because there is an inverse-square
relation between second derivative amplitude and scale.
While the first derivative amplitude doubles, the second
derivative amplitude quadruples every time the ramp
width is halved. (c) Comparing the blue peaks in Figure
1B and C, we should expect Mach bands to be stronger
at sharper corners. Our experiments shed light on these
expectations, and we confirm item (c) but find no
evidence to support item (b) and no general support for
item (a), thus raising the question of what a more
suitable model should be like.

One observation that motivated our approach was
that Mach bands on Gaussian edges seemed rather
weak (and apparently passed unnoticed in an earlier
study; Hesse & Georgeson, 2005), while the corre-
sponding peaks and troughs in the second derivative
are substantial (Figure 1B). We shall suggest that a
general solution lies in the combination of two main
ideas—multiscale spatial filtering and a suitable com-
parison of the outputs of even- and odd-symmetric
filters to derive the type and location of features in the
image. These elements exist in previous models, but a
novel combination of them—briefly outlined next—
appears promising and fruitful.

Multiscale detection of bars and edges

In developing models for feature detection in
machine vision and building on the pioneering work
of Koenderink (1984) and Koenderink and van Doorn
(1987), Lindeberg (1998) showed elegantly how, for any

Figure 1. A, B, and C: Three luminance waveforms (black curves)

and their first (red) and second (blue) spatial derivatives

computed at high pixel resolution to approximate the mathemat-

ical (infinitesimal) derivative. Dashed curves show the negative

parts of each function while solid curves show the magnitude or

absolute value. Amplitudes of the derivatives have been arbitrarily

scaled (same scaling for A, B, and C) to illustrate our general idea

that the gradient response (red curve) might occlude the

perception of bars given by peaks in the second derivative in

some cases (A, B) but not others (C). A: Gaussian bar; B:

Gaussian edge; C: generalized Gaussian edge that is more like a

Mach ramp with exponent n¼ 5 (see Methods). D: Sketch of the

signal-processing model developed in this paper, based on

multiscale Gaussian derivative filters. Basic model (dubbed

N2þ1þ) contains odd- and even-symmetric receptive fields

(RFs; shaded boxes) whose outputs are half-wave rectified to

give response maps (scale-space maps) Eþ(x, s), Bþ(x, s) that are

a function of RF position (x) and scale (s). Channels of opposite

polarity (E�, B�) are also needed. The model reports Mach bands

at response peaks in Bþ or B� if the B/E response ratio exceeds a

criterion value. A third type of output channel (E2) was added to

account for the perceived edges of Mach bands.
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given feature such as a blurred bar, blob, or edge, the
amplitudes (gains) of a set of multiscale Gaussian
derivative filters of suitable order (first, second,
third. . .) could be chosen a priori to ensure that a peak
response over filter scales would always occur in the
filter whose scale equals that of the image feature in
question. Thus, in Lindeberg’s terminology, one can
use scale normalization (the setting of filter gains) to
achieve automatic, image-driven scale selection. This
peak-finding scheme can identify the location, scale,
and identity of image features—a crucial step in early
visual coding. Georgeson et al. (2007) showed how
these principles could be used to model the process of
localizing blurred edges and encoding edge blur in
human vision. They evaluated two models called N1þ
and N3þ that used multiscale first- and third-deriva-
tives, respectively. (Note: N denotes use of Lindeberg’s
scale-normalization; one or three indicates the order of
derivatives used; þ indicates the use of half-wave
rectification on the output of the filters.) In the present
paper we describe how this approach via Gaussian
derivatives in scale-space can be extended to encode
both bars and edges using even- and odd-symmetric
filters, respectively (Figure 1D; described in detail
later). We suggest that these filters do not act as
independent channels, nor are their responses com-
bined (as in the local energy model; Morrone & Burr,
1988; Ross et al., 1989), nor do they act competitively.
Rather, it is a comparison of the even and odd filter
responses that enables a decision about feature
presence or absence. Such a comparison also formed
part of the local energy model where it was used to
evaluate local phase and classify energy peaks as either
bars or edges. Here we make no use of the energy
measure because it is (by definition) the smooth spatial
envelope of the even and odd responses, and that turns
out to exclude too many features that are actually
perceived (Hesse & Georgeson, 2005).

Our concept of the even/odd comparison is illustrat-
ed in Figure 1B and 1C. The solid blue curve shows the
magnitude of the second derivative (the bar response),
while the solid red curve shows the first derivative
(gradient magnitude, a possible edge response), with
arbitrary relative scaling of the two curves. In brief, our
proposal is that a bar is seen at locations where (a) the
bar response is a local maximum and (b) that response
exceeds the edge response at the same location by a
sufficient amount that depends on internal noise and on
the observer’s criterion. Thus, in Figure 1B and 1C,
Mach bands might be more likely on the ramp edge (C)
than the Gaussian edge (B) not simply because the bar
responses are larger, but because the ratio of bar-to-
edge response is larger at the bar response peaks. Put
another way, we can say that the Mach bands on a
Gaussian edge are largely occluded by the edge
response but on the ramp edge they are not.

The present experiments

As part of our effort to understand how multiscale
spatial filtering serves to encode local features (Geor-
geson et al., 2007; Hesse & Georgeson, 2005; Wallis &
Georgeson, 2009), we here examine how the perception
of bars (Mach bands) is affected by the nature of the
transition from the ramp region to the plateau region.
We introduced a stimulus manipulation that changes
the curvature of the luminance profile at the ramp-
plateau junction. Since second derivative amplitude is a
measure of curvature (see above), we might expect this
manipulation to affect the probability of seeing Mach
bands. The luminance waveform was the cumulative
integral of a generalized Gaussian profile (described
below). In Experiments 1 and 3 we used the yes-no
method to evaluate the probability of reporting Mach
bands, and in Experiment 2 we used the feature-
marking method (Georgeson & Freeman, 1997) to
assess the geometry of Mach bands by marking both
the center positions of the bands and the edges of the
bands.

Methods

Stimulus design

Luminance profiles L(x) of the vertical 1-D images
could vary from a Mach ramp through to a Gaussian
edge and beyond under the control of a single shape
parameter n. Their first derivative (gradient) profile was
defined as a generalized Gaussian function (Figure 2A)

dL

dx
¼ Anexp

�jxjn

2rn

� �

; ð1Þ

where n¼ 1, 1.5, 2, 2.5, 3, 4, or 5, and An is a constant
that controls the gradient magnitude and contrast of
the image. When n ¼ 2 the first derivative was a
Gaussian. Each waveform was sampled at 1 min arc
intervals and integrated numerically using the cumtrapz
function in Matlab and scaled to a common amplitude
to form the luminance profile of a blurred vertical dark-
to-light edge (Figure 2B). A copy of each waveform was
left-right reversed to form a light-to-dark edge. Edges
of different scales were obtained by setting r¼ 3, 6, or
12 min arc. Increases (or decreases) of n sharpen (or
blur) the upper and lower corners of the waveform as
shown in Figure 2B. Thus the family of luminance
waveforms ranged from a very smooth profile (n ¼ 1;
Figure 2C) through the Gaussian integral (n ¼ 2), to a
slightly blurred Mach ramp (n ¼ 5; Figure 2D).

Figure 3A illustrates the family of luminance
waveforms (for n ¼ 1, 2, 3, and 5) at the three scales
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r, while Figure 3B shows the corresponding second
derivative profiles. Figure 3C reveals that the second
derivative peak amplitude is almost directly propor-
tional to the exponent n but falls as the inverse-square
of scale r; hence the second derivatives at Scale 12 are
16 times lower than at Scale 3.

A sine-wave edge was also included in the test set. It
was produced by integration of one half-cycle of a
cosine function. The frequency of the cosine function
(dashed curve in Figure 2A) was set to ensure that, like
all the other gradient profiles, it fell to 1/=e (61%) of
its peak value (An) at x¼6r. For the edge scales r¼ 3,
6, 12 min arc, the corresponding cosine half-periods
were 10.25, 20.5, and 41 min arc.

Experiment 1: Mach band detection

Image arrays were generated in Matlab on a
Macintosh G4 computer and displayed using Psych-

Toolbox software on an Eizo 6600-M greyscale monitor,
calibrated and gamma-corrected using a Minolta LS110
digital photometer. A Cambridge Research Systems
Bitsþþ interface was used in Monoþþ mode to render
14-bit greyscale resolution.

Images had one of two contrast polarities: dark-to-
light (DL; Figure 2C and 2D) or a left-right reversal of
this (LD). Image size was 256 · 256 pixels and
subtended 4.268 at a viewing distance of 123.4 cm. Test
images had Michelson contrasts of 0.4 and were
surrounded by a full-screen (168 wide · 128 high) of
uniform mean luminance (40.7 cd/m2). At each of the
three scales r, there were 16 test images (eight
waveforms, two polarities). Two examples are shown
in Figure 2C and 2D.

A single-interval yes-no response method was used.
Images were presented for 300 ms, preceded and
followed by a mid-grey screen with a central fixation
marker. Observers had unlimited time to press one of
two buttons to indicate whether Mach bands had been

Figure 2. Constructing the stimuli. Generalized Gaussian functions (A) were integrated numerically to produce the edge profiles (B). The

shape (kurtosis; peakiness) of the gradient profiles (A) is controlled by the exponent (n) in Equation 1 independently of spatial scale r.
Varying n allows one to move smoothly from the Gaussian edge (n¼ 2) to the Mach ramp (n high). Only dark-to-light edges are shown

here but both polarities were used. Luminance profiles were scaled to have the same contrast; maximum gradient increased with n. C and

D: High contrast examples of two dark-to-light (DL) images, with exponents n¼ 1 and n¼ 5. The reader may observe Mach bands in the

right panel that are absent in the left panel.
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perceived or not. Observers were instructed to report
‘‘yes’’ if they saw any Mach band, light, dark, or both.
As in all yes-no experiments, the uncertain observer has
to set their own criterion for saying yes or no. This
criterion forms part of the model described later. A
standard Mach ramp image—defined as a luminance
ramp (of similar width to the n¼ 5 waveform) flanked
by two plateaux—was shown prior to data collection,
as training. All 48 images (16 images at three scales)
were shown five times in randomized order within one
experimental session, which took about 10 minutes. Six
observers completed seven sessions each, but the first
session was discarded as practice. Only two observers
(the authors) were aware of the stimulus design. All
observers gave informed consent.

Experiment 2: Feature-marking

Experiment 1 gave data about the probability of
seeing Mach bands. In Experiment 2 these data were
complemented by studying the geometry or spatial
layout of Mach bands. We used a cursor to mark the
position of each visible Mach band and the position of
its edges.

The test images were the same as in Experiment 1
and were shown at the same contrast (0.4). Images were
displayed flashing (on 300 ms, off 600 ms) in order to
reduce the build-up of negative afterimages that cause
instability and possible shifts in feature location
(Georgeson & Turner, 1985). The interstimulus display
was a full-screen of mid-grey.

A feature-marking method was used (Georgeson &
Freeman, 1997) to identify the position and polarity of
all edges and bars seen in each image. Their position
was identified by the observer moving a marker across
the image and pressing a button when the marker was
over the center of an edge or bar. A second button-
press indicated the identity and polarity of the feature
as either a light-to-dark (LD) or dark-to-light (DL)
edge or a light or dark bar. Observers were not forced
to mark features they felt they could not see. Once all
the perceived features had been marked, the observer
initiated the next trial. The marker consisted of two
black dots, each 1 pixel wide by 3 pixels high. One dot
was centered 32 pixels (approx. 0.58) above the
horizontal midline of the image, and the other was 32
pixels below the midline. The observer was instructed
to fixate midway between the two dots. The starting

Figure 3. A: Luminance profiles for the family of generalized

Gaussian edges used in the experiments. The form of each edge

profile is defined by its scale (3, 6, or 12 min arc; red, blue, green

curves) and its exponent n. At each scale, four examples are

 
shown: n ¼ 1 (shallowest), 2, 3, 5 (steepest). B: Second-

derivatives of the waveforms shown in A, computed numerically.

C: Peak amplitude of the second derivative (B), normalized to a

maximum of one, varies nearly linearly with exponent n but as the

inverse square of the stimulus scale (r).
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position of the marker alternated between left and right
on successive trials.

One session consisted of a randomized presentation
of the image sets for all three image scales. Three
observers (author SAW, DHB, NRH; all had taken
part in Experiment 1) completed 10 sessions each, but
the first session from each observer was discarded as
practice.

Experiment 3: Effects of contrast and
duration on Mach band detection

The aim here was to examine how the probability of
Mach band perception was affected by contrast and
duration of presentation. The yes-no procedure of
Experiment 1 was repeated for a single stimulus scale (r
¼6 min arc) but with (a) three contrasts (0.2, 0.4, 0.8) at
a presentation duration of 300 ms and (b) three
presentation durations (50, 100, 300 ms) at a contrast
of 0.4. There are only five different conditions here, and
these five were presented in separate, randomly
interleaved blocks of trials. The exponent n varied
randomly from trial to trial (n¼1 to 5) as before. There
were five observers, including four who had taken part
in Experiment 1. When pooled over the two polarities,
there were 60 trials per condition per observer, as in
Experiment 1.

Results

Experiment 1—Mach band detection

For each observer, the probability of reporting Mach
bands was calculated from 60 trials for each condition
and plotted against the generalized Gaussian exponent
n. Observers’ responses were similar for the two
contrast polarities, and so group mean data, averaged
across polarity, are shown in Figure 4. The probability
of Mach band perception increased smoothly and
monotonically as the generalized Gaussian exponent
increased.

In a three-factor, repeated-measures analysis of
variance, we confirmed that the effect of contrast
polarity was not significant, F(1, 5) ¼ 4.9, p ¼ 0.078,
while the effect of exponent (n) was highly significant,
F(6, 30)¼ 107.6, p , 0.0001. The main effect of spatial
scale r was not significant, F(2, 10)¼ 2.47, p¼ 0.13, but
the interaction between scale and exponent that is
apparent in Figure 4 was statistically significant, F(12,
60)¼ 2.09, p¼ 0.03. Selective analyses, with either Scale
3 or Scale 12 excluded, showed that this Scale ·
Exponent interaction arose between Scales 3 and 6, F(6,
30) ¼ 4.15, p ¼ 0.004, while there was no interaction

between Scales 6 and 12, F(6, 30)¼ 0.79, n.s. No other
effects or interactions were significant. Thus to a large
extent the occurrence of Mach bands was scale-
invariant, but there was a tendency at the smaller
exponents for the smallest-scale stimuli to give more
Mach bands than the larger scales did, while Scale 6
gave the most Mach bands at the high exponents. The
strong influence of n and the weak, nonsignificant
influence of stimulus scale r imply that the shape of the
luminance waveform, rather than its size, is the key
factor in Mach bands.

Mean data for the sine edge have been inserted on
the exponent axis at n ¼ 3.4. Figure 4 (open symbols)
shows that this placement of the sine edge data
provides a good fit with the rest of the data (and this
was true also for individual observers—not shown).
The value n ¼ 3.4 was obtained by fitting a smooth
(Naka-Rushton) curve to each set of data points and
then finding the point that minimized the total squared
deviation between the sine-wave data and the curves.
The fit was good (RMS error¼ 0.013). Put simply, this
means that across the 18 datasets, the sine edge
behaved most like a generalized Gaussian edge with
an exponent of 3.4, as is evident in Figure 4. At all three
scales, Mach bands were much more likely for sine
edges (at n ¼ 3.4) than for Gaussian edges (n ¼ 2).

To assess their physical similarity, we computed the
correlation between the luminance profiles of the sine

Figure 4. Experiment 1. Probability of seeing Mach bands on

generalized Gaussian edges as a function of the exponent n.

Mean of six observers 61 SE based on a total of 360 trials per

point. Symbol shape and color denote image scale (r). Sine edge

data (open symbols) have been inserted at n ¼ 3.4 (see text for

details).
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Figure 5. Data and model compared. A, B, C: Probability of reporting Mach bands, from Experiments 1 (circles), 2 (squares), and 3

(diamonds; averaged over three of the five conditions excluding the conditions at 50 ms and 0.2 contrast). Sine edge data plotted at

exponent¼ 3.4. Grey curves show N2þ1þmodel’s probability of reporting Mach bands, obtained with parameters shown in Table 1. D, E,

F: Peak response of the Model B map (Bþ or B�, squares, blue curve) increased with exponent n. E response (red curve) at these B peak

�
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edge and test edges with different values of n. This
correlation was greatest (and the residual squared-error
was least) when n ¼ 3.2. The same was true for a
comparison of their gradient profiles and also when
each waveform was smoothed by a Gaussian whose
blur bmatched the edge scale r. Our estimate of n¼3.4,
based on similarity of Mach band probabilities, was
thus close to the point of maximum physical similarity
(n ¼ 3.2).

Experiment 2: Feature-marking of Mach
bands

Scatterplots were generated for each condition and
observer and likely button-pressing errors were correct-
ed by eye, e.g., where a single DL edge was marked
within a spatial region of many LD responses. This was
necessary for only 40 of the 23,988 responses. On each
trial, the number of features marked ranged from one to
seven, and grouping these responses in order to average
them across trials is not trivial. Where seven were
marked, they were taken to be derived from two Mach
bands, their edges, and an additional edge near the
image center. This assumption was supported by the
typical pattern of responses, which consisted (for a dark-
to-light image, marked from left to right) of LD edge, D
bar, DL edge, DL edge, DL edge, L bar, and LD edge.

A Matlab program automatically parsed the data
into seven feature bins according to logical rules. This
was needed as responses in a single trial could contain
up to three neighboring edges of the same polarity. The
parsing rules are specified in Appendix 1. The position
of each Mach band was defined as the mean position
within each bar bin.

The positions of Mach band features were similar
across observers and image polarity, so average Mach
band positions are shown for light and dark bands as
yellow and blue squares, respectively, in Figure 5J, 5K,
and 5L. Points where a feature was marked on fewer
than 10% of trials were omitted from the figure. For
scales of 3, 6, and 12 min, the mean Mach band
positions (taken over the range n¼ 2 to 5) were 4.7, 8.0,
and 14.7 min arc from the image center. Mach band
position was therefore nearly proportional to the scale
of the stimulus waveform.

The feature positions marked on stimulus waveforms
of opposite polarity showed a small but systematic bias
towards the side of the image that had lower luminance.

Helmholtz (2000, pp. 186–193) called this the ‘‘irradia-
tion effect’’ (white squares look larger than black
squares). We like to call it the Darth Vader effect—a
shift to the dark side. The origin of this shift in edge
positions may well be early compressive nonlinearity in
the response to luminance (Mather & Morgan, 1986).
Helmholtz noted that this explained why irradiation
increases with optical blur—confirmed by Georgeson &
Freeman (1997)—and we analyze it quantitatively later.
For our data (Experiment 2) the bias was equally evident
for edge and bar locations. To allow a better comparison
between model and data, this small fixed bias was
removed from the data by subtracting from each feature
position the mean position of all the features marked for
that stimulus scale at n � 2. For Figure 5J, 5K, and 5L
this simply shifted the spatial origin to the mean marked
position in each panel. For Scales 3, 6, and 12 these
mean shifts to the dark side were 0.96, 1.25, and 2.12
min arc, respectively.

The width of a Mach band can be taken as the
distance between the pair of opposite-polarity edges
that flanked it (shown as pairs of cyan and magenta
circles in Figure 5J, 5K, and 5L). Defined in this way,
Mach band width increased markedly with the scale of
the image. Mean width, again taken over the range n¼
2 to 5, was 5.1, 6.7, and 9.8 min arc at Scales 3, 6, and
12, respectively. Mach bands also became 20%–40%
wider as exponent n decreased: At image scales 3, 6,
and 12, mean widths were 1.16, 1.39, and 1.44 times
wider, respectively, at n ¼ 2 than n ¼ 5.

If Mach band perception were precisely scale-
invariant then the patterns of features seen in the three
scaled plots of Figure 5J, 5K, and 5L should all be
identical (note that x-axis range is proportional to
stimulus scale). Clearly they are similar, but at Scale 3
the bands were (relatively) wider and more separated
than at Scales 6 and 12. We show below that a small
degree of blur at the input can account for this
departure from scale invariance.

Experiment 3: Effects of contrast and
duration

Figure 6A shows the mean proportion of Mach
bands observed as a function of exponent n for the
contrasts used here (0.2, 0.4, 0.8). Mach band
probability increased with n, F(6, 24) ¼ 75.2, p ,
0.0001, as it did in Experiment 1, but showed only a

 
positions also rose with n, but less steeply. B:E ratio therefore rose with n, and this produced the increasing response probability seen in

A, B, C (grey curves). G, H, I: Examples of the response profiles (for n¼1, 3, 5, bottom to top in each panel) from which the B and E peaks

were drawn in panels D, E, F. Luminance profile is white; E response is red; B� response is blue and Bþ response is yellow. J, K, L:

Experiment 2. Comparison between full model (curves) and observed spatial layout (symbols) of Mach band features. Red triangles:

central edge; blue, and yellow squares: dark & light Mach band positions; cyan and magenta circles: dark and light edges of Mach bands.
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small dependence on contrast in this suprathreshold
range. Mach band probability was similar at contrasts
0.4 and 0.8, but a little weaker at lower contrast (0.2)
for n . 2. The main effect of contrast was not
significant, F(2, 8) ¼ 1.63, p ¼ 0.255, but the
interaction between contrast and exponent (n) was
significant, F(12, 48) ¼ 2.9, p ¼ 0.0044. Such near-
invariance with respect to contrast is important
because the response of any linear filter increases in
direct proportion to contrast, and so it follows that
Mach band probability cannot depend directly on the
response magnitude of linear filters. We consider
below a model in which the perception of a bar, or
Mach band, depends on the relative activation (the
ratio) of even to odd filter responses, which is
naturally contrast-invariant.

The effect of reducing duration (Figure 6B) was
similar to that of reducing contrast. For n . 2, Mach
bands were less visible at 50 ms than at 100 or 300 ms.
This interaction between exponent and duration was
highly significant, F(12, 48) ¼ 3.17, p ¼ 0.002, though
the main effect of duration was not, F(2, 8)¼ 3.42, p¼
0.085. We show below that the reduction in Mach band
probability with brief or lower-contrast images can be
explained by an increase in intrinsic blur.

The probability and geometry of Mach bands are
approximately scale-invariant (Figures 4 and 5). We
have seen (Figure 3B and 3C) that the amplitude of the
second derivative of luminance is very far from scale-
invariant and is therefore unlikely to be the controlling
factor. We argue instead that it is necessary to compute
the derivatives at multiple scales. Next we describe one
such model (dubbed N2þ1þ), extending a multiscale
edge-coding model (N1; Georgeson et al., 2007), but

now aiming to capture the location and scale of both
bars and edges, using even- and odd-symmetric
Gaussian-derivative filters in a scale-space framework.

The N2þ1þmodel

The N2þ1þ model, so-called because it uses scale-
normalized second and first derivative operators in
parallel, is sketched in Figure 1D. Examples of the
scale-space response maps are discussed in Appendix 2.
The basic model uses four parallel sets of channels—
one for each edge polarity (dark-to-light or light-to-
dark) and one for each bar polarity (light or dark). A
third mechanism E2 (Figure 1D) is introduced to find
the edges of Mach bands. All the filter kernels are
spatial derivatives of the standard unit-area Gaussian
function:

Gðx; sÞ ¼ 1

s
ffiffiffiffiffiffi

2p
p exp

�x2
2s2

� �

; ð2Þ

where s is the spatial scale.

Edge response maps

The edge filters N1þ are as described in the N1
model of Georgeson et al. (2007), followed by half-
wave rectification. The response map (Eþ) of the N1þ
channel to an image I(x) is the convolution of the image
with a Gaussian first-derivative filter

Eþðx; sÞ ¼ max k1s
aIðxÞ � ]

]x

�

Gðx; sÞ
�

; 0

� �

; ð3Þ

where s is the scale of the filter, ranging from 1 to 32
min arc in 0.02 octave steps, a ¼ 1/2 is the scale
normalization exponent (Lindeberg, 1998), and k1 is a
constant that sets the relative strength of even and odd
filter responses. The value of a is chosen a priori to
scale the filter response amplitudes, such that the peak
response to a Gaussian edge of blur b occurs in the
filter whose scale s ¼ b (Georgeson et al., 2007). This
means that the location of the peak response in scale-
space encodes edge blur and position veridically, Figure
A2(B). An expression for the scale-space edge map of
opposite polarity (E�) is the same except that the ] / ]x
filter is of opposite sign.

Bar response maps

The response Bþ of the light-bar channel (N2þ) of
scale s is defined by convolution with an even-
symmetric Gaussian second derivative filter

Figure 6. Experiment 3. Proportion of trials on which Mach bands

were reported for generalized Gaussian edges of scale r¼ 6 min

arc (filled symbols) and a sinewave edge (open symbols). Mean of

five observers 61 SE. A: at three contrast levels (0.2, 0.4, 0.8)

with duration 300 ms. B: for three durations (50, 100, 300 ms) at

fixed contrast (0.4). Blue triangles (300 ms, contrast 0.4) are the

same data in A and B. Curves show the fit of the multiscale model,

as in Figure 5B, but allowing internal blur b0 to increase as

contrast and duration decrease; see text for details.
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Bþðx; sÞ ¼ max k2s
bIðxÞ � �]

]x2

�

Gðx; sÞ
�

; 0

� �

; ð4Þ

where b is discussed below and k2 ¼ 1 (fixed). The
expression for the scale-space bar map of opposite
polarity (B�) is the same as Bþ except that the filter is of
opposite sign. Mathematical analysis, confirmed by
numerical computation, showed that choosing b ¼ 3/2
neatly achieves two things: the scale of the bar is
veridically encoded (a bar of scale b produces peak
response in the B filter that has scale s ¼ b), and the
ratio of response amplitudes B/E is scale-invariant. If a
signal is spatially magnified by some factor m, then the
E and B response patterns are preserved: they are
magnified by factor m and shifted in the (log) scale
domain by factor m, while the E/B response ratio at
(m.x, m.s) after the size change is the same as at (x, s)
beforehand. A practical consequence of such scale
invariance is that response ratios E/B would be
independent of viewing distance. The experiments,
however, suggest a slightly lower value for b, discussed
below.

The model filter responses are half-wave rectified to
create the Bþ (light bar) and B� (dark bar) responses,
and these responses across many scales s can be
visualized as scale-space response maps (Appendix 1).
The image of a single light or dark bar produces a peak
response at the center of the bar in one of the two maps
(Bþ, B�), see Figure A1(A). The coordinates of this
peak encode the position and scale of the bar. Its
polarity is obtained from the identity of the map (Bþ or
B�).

Any bandpass spatial filter (including the Gaussian
second derivative used here) produces more peaks and
troughs in the response than there are luminance peaks
and troughs in the image. For example the second
derivative of a Gaussian bar is the familiar Mexican hat
function—a peak flanked by two troughs. The same is
true in the present model where Bþ responses to a light
bar are flanked by B� responses, at all spatial scales,
Figure A1(A). Some means is therefore needed for
handling these multiple peaks to decide which ones
represent visible features, and which do not. The
MIRAGE model (Watt & Morgan, 1985), for example,
used a set of parsing rules to classify features from filter
responses. The N3þmodel for edge detection (George-
son et al., 2007) invokes third order Gaussian
derivative filtering in two stages (first derivative
followed by second derivative) and half-wave rectifica-
tion at the output of each stage was designed to screen
out spurious peaks and troughs introduced by filtering.
For bar detection, however, no such strategy seemed
viable, and instead we propose that a comparison
between the four response maps may achieve similar
ends (Figure A2). Notice how, in Figure A1(C) and
A2(C), the peak responses for candidate bars (open
squares) flanking a Gaussian edge or Gaussian bar,

might be screened out on the grounds that their
response amplitudes (Bþ, B�) are lower than the edge
responses (Eþ, E�) at the same scale-space point. Those
candidate bars are occluded by the edge responses and
so might be rejected as visible features. In a similar way,
candidate edges (at peaks in the Eþ or E� maps) can be
accepted or rejected by examining the edge:bar
response ratios at those points. The present experi-
ments support the view that such a comparative
selection or decision process operates in human
perception of Mach bands (see the section Noisy
decision rule below).

Intrinsic blur

A pragmatic factor required to fit the model to data
was intrinsic blur. Blur in the display monitor and in
the eye’s optics are inevitable, but the amount of blur is
not known precisely. In addition, high frequency
attenuation due to nonoptical factors in the contrast
sensitivity function may contribute a degree of effective
blur that is not otherwise represented in our model. For
simplicity, we bundled these three likely sources into a
single Gaussian blur that was imposed at the model
input (see Figure 1D), and we allowed the degree of
blur to be a free parameter in fitting the data. For all
the modeling shown in Figure 5, the intrinsic blur
parameter (b0) was set to 1.5 min arc—small enough to
suggest that display blur and dioptric blur (at the eye)
were the main sources. We also show (below) that this
intrinsic blur increases at lower contrast and short
duration (Figure 6). For a further discussion and
critique of the concept of intrinsic blur, see Watson and
Ahumada (2011).

Mach band geometry: Fitting the model

The model has many spatial filters, but these are
highly constrained with few free parameters, summa-
rized in Table 1. Here we describe how the parameter
values were selected on the basis of theory and data.
The model was first used to estimate the positions of
Mach bands across the whole stimulus set. Important-
ly, these predictions about the geometry of Mach bands
depend only on the image filtering stages of the model
and are independent of assumptions about the noisy
decision process described below. Thus the fit to about
150 data points (Figure 5J, 5K, and 5L) was achieved
with just five parameters (top half of Table 1), only
three of which were adjusted to fit the data. The factors
controlling Mach band position were the B scaling
exponent b and the input blur b0. The assumption of
scale invariance of the B:E ratio led us to expect a
theoretical value of b¼ 1.5 (see above) but the data did
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not support this. The peak filter scales were too large
and in consequence the predicted bands were too far
apart. A much better fit was obtained with b ¼ 1.15.
The choice of blur b0¼ 1.5 min arc was largely dictated
by Mach band positions at Scale 3 (Figure 5J); smaller
values of b0 led the predicted light and dark bands to lie
markedly closer together than the observed ones. With
these choices for b and b0, dictated by the data, the
model’s Mach band positions are shown as blue and
yellow lines in Figure 5J, 5K, and 5L. These are close to
the mean marked positions (blue and yellow squares).
Both the model and observed positions varied little
with exponent n, but the model does seem to correctly
capture a small increase in Mach band separation at
low exponents (n , 3).

Noisy decision rule and its application to
Mach band probability

The N2þ1þ model returns the location and scale of
bar features, but in the absence of noise the probability
of report is one or zero. To explain why different
stimuli evoke systematically different probabilities of
Mach band perception, we used standard signal
detection theory to add a noisy decision process to
the noise-free signal processing considered so far.

On each trial, the observer is assumed to base his or
her Mach band decision (yes or no) on the ratio of the
outputs of the B and E channels. These ratios are
obtained from the scale-space maps at the peaks in the
bar maps (Bþ or B�). If the B:E response ratio is above
some criterion c, the observer says ‘‘yes’’; otherwise
‘‘no’’. This response ratio is assumed to vary because of
added Gaussian noise. Thus the B:E ratio is Gaussian-
distributed with mean r and standard deviation m. The

probability of a yes is the area under this distribution
that lies above the criterion, and the probability p of a
yes is obtained from its z-score

p ¼ U
r� c

v

� �

; ð5Þ

where U(z) is the standard normal integral. Six
parameters were adjusted (see lower half of Table 1;
equivalent to two free parameters per stimulus scale) to
obtain a good fit by eye between model and observed
Mach band probabilities across all three scales (thick
grey curves in Figure 5A, 5B, and 5C). Although the
parameters were selected to fit the data, it is not trivial
that excellent fits were obtained. If the B:E ratio did not
rise monotonically with exponent n, no good fit would
be possible.

In summary, the model inputs were first slightly
blurred, then spatially filtered at multiple scales by even
(Gaussian second derivative, N2þ) and odd (Gaussian
first derivative, N1þ) filters, and then bar features
(Mach bands) were found (or rejected) at peaks in the
Bþ or B� scale-space response maps by a noisy
comparison of B:E responses at those peak points.

To visualize the steps in this process, consider the
middle column of Figure 5 (stimulus scale 6 min arc).
For stimulus exponents n¼ 1, 3, and 5, the yellow and
blue curves in Figure 5H show the spatial profiles of
responses Bþ, B� at the optimal filter scale; each is a
cross-section through the scale-space map. Blue and
yellow squares mark the peak B responses, and the
probability of a Mach band response depends on the
height of that point relative to the edge response (red
curve) at the same scale-space point. Moving up to
Figure 5E, we see that both the B and E responses at
these peak points increase with exponent n but the bar
response (B) rises more steeply and so the B/E ratio (r
in Equation 5) rises with n. This in turn makes the
model’s Mach band probability increase with n (thick
grey curve, Figure 5B).

Symbols in Figure 5B show the observed probabil-
ities from Experiments 1, 2, and 3. There is very good
agreement across the three experiments (even though
Experiment 2 had far fewer trials and was not designed
to estimate the probability). With suitable choice of
criterion and noise level in the model (values c and v in
Table 1), the model and observed probabilities are in
good agreement. Model fits for Scales 3 and 12 are
presented in the same way in the left and right columns
of Figure 5.

In short, with reasonable assumptions about the
decision criterion ratio (c ¼ 0.8 to 1.2) and internal
noise (v), the probability of reporting Mach bands can
be well described from the way the bar:edge (B/E)
response ratio varies with the exponent n. At all three
scales the B/E ratio is low (r , 1) when n is low (n , 2)
and rises monotonically with increasing n. Mach bands

Filtering scheme Source

Intrinsic blur b0 1.5 min Band position data; fitted

E scaling exponent a 0.5 Theory; fixed

B scaling exponent b 1.15 Band position data; fitted

E2 nonlinearity p 3 Edge position data; fitted

E2 scale s0 1.5 min Fixed ¼ b0

Filter comparison and noisy decision

E gain k1 0.37 Band probability data; fitted

B gain k2 1 Fixed

E2 gain k3 1.6 Not used to fit data

Criterion, scale 3 c 1.18 Band probability data; fitted

Criterion, scale 6 c 1 Fixed

Criterion, scale 12 c 0.84 Band probability data; fitted

Noise, scale 3 v 0.18 Band probability data; fitted

Noise, scale 6 v 0.12 Band probability data; fitted

Noise, scale 12 v 0.11 Band probability data; fitted

Table 1. Parameters for the N2þ1þmodel.
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are more probable on Mach ramps (with sharp corners;
high n) because the B/E ratio is well above the criterion
(r . c), but for Gaussian-like edges (n ’ 2) the bar:edge
response ratio is about equal to the decision criterion
(giving z ’ 0), hence the probability of reporting Mach
bands is only about 50%. Despite the apparent
similarity in their waveforms, the probability of seeing
bands on a sine edge was markedly higher than on a
Gaussian edge, and this difference is well captured by
the model.

Influence of contrast on Mach bands

In our model Mach bands arise from peaks in the
response of even-symmetric, second derivative filters
but, as anticipated in the Introduction, Mach band
strength does not depend directly on second derivative
amplitude, neither at a single scale nor at multiple
scales. Instead we have proposed that it depends on the
ratio of even-to-odd filter responses. For linear filters,
this ratio is invariant with contrast and so predicts that
Mach band probability should also be contrast-
invariant. This rather surprising outcome was con-
firmed in part by Experiment 3 where doubling the
contrast from 0.4 to 0.8 did not increase the probability
of Mach band reports. But at a lower contrast (0.2) the
probability of Mach bands was lower (Figure 6A). We
suggest that this reduction comes from a relative loss of
visibility of the higher spatial frequencies that are
critical to the visibility of the bands (Ross et al., 1989).
We found that the reduction in Mach band probability
at lower contrast and shorter duration can be rather
precisely described by our model with increases in
intrinsic blur b0. Curves in Figure 6 show the fit of the
model, computed exactly as for Figure 5, but allowing
intrinsic blur to increase at lower contrasts and briefer
durations. In Figure 6A, intrinsic blurs b0 ¼ 3, 1.5, 1
min arc gave excellent fits at contrasts 0.2, 0.4, 0.8,
respectively. Similarly, in Panel B, blurs b0 ¼ 3.5, 2.5,
1.5 min arc accounted well for the data at 50, 100, 300
ms.

Why should reducing contrast or duration increase
intrinsic blur? At low contrasts, spatial vision is
compromised by noise and uncertainty, and we can
expect perception of the higher spatial frequencies to
become relatively attenuated and eventually undetect-
able at contrasts for which the lower frequencies remain
visible (Campbell & Robson, 1968; Georgeson &
Sullivan, 1975). Thus reduction of contrast may
produce effects that are equivalent to an increase in
blur, as we saw in Figure 6A. The visibility of Mach
bands was closely associated with the visibility of the
higher spatial frequencies (Ross et al., 1989), and Mach
bands were not seen at all for ramps whose contrasts
were less than about 0.1 (Ross, Holt, & Johnstone,

1981; Ross et al., 1989). Thus our test contrast of 0.2—
fairly close to the Mach band threshold—may have
suffered this effective blurring while contrasts of 0.4 or
0.8 did not.

A similar argument can be invoked for short
durations. For example, when compared with long
presentations (160 ms), contrast thresholds at short
duration (40 ms) were raised by a similar factor at low
and high spatial frequencies (Georgeson, 1987; Legge,
1978) and this might suggest no effective increase in
intrinsic blur. But if instead we consider perceived
contrasts above threshold, it was found that short
durations reduced the perceived contrast of high spatial
frequencies but did not reduce, and sometimes en-
hanced, the perception of lower spatial frequencies (the
classic Broca-Sulzer effect) (Georgeson, 1987). This
implies that broadband images should suffer an
effective blurring at brief durations, consistent with
our modeling in Figure 6B.

Problem: The edges of Mach bands

The positions of peak responses in the bar maps Bþ

and B� correspond very well with the observed
locations of Mach bands (squares in Figure 5J, 5K,
and 5L). This depended on an appropriate choice for
the scaling exponent b (Equation 4). Nevertheless,
despite this success, there remains a substantial
problem—the edges of Mach bands. Our observers
marked the bands as having edges, with the systematic
layout seen in Figure 5J, 5K, and 5L.

As far as we know, the only previous work to
recognize that Mach bands have edges and that these
are a problem in need of explanation is the unpublished
report of Ludvigh (1953a). As in our experiments, his
observers used a pointer to mark the perceived edges on
waveforms that appear (from our analysis of his Figure
5) to be very similar to the sine edges we used. We
extracted and replotted his data and found that the
perceived position of the bands (taken as the mean
position for each pair of marked edges) and the width
of the bands (the separation between the edges) were
similar to ours and increased with edge scale in a
similar way. Ludvigh was keen to promote the role of
higher spatial derivatives in vision and was struck by
the fact that edges could be seen at image locations
where the gradient (first derivative) was close to zero:
‘‘If the significance of the higher derivatives for the
formation of contours is as great as it appears to be,
then we have found which feature of the physical world
chiefly carries visual ‘intelligence’’’ (Ludvigh, 1953a, p.
9). We have much sympathy with this view, and yet it
seems to us that Ludvigh (1953a, 1953b) did not
actually propose a theory for these edges.
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There must necessarily be some neural process that
enables the edges of Mach bands to be found, but
neither the N1þ model examined here nor the N3þ
model (Georgeson et al., 2007) that we also explored
extensively predicts any edges for Mach bands in our
experiments. We strongly suspect that no other
standard model of edge-detection would find these
edges either. The test images contain luminance
gradients of only one sign, and this means that for a
given test image the N1þ and N3þ models can at best
predict edges of only one polarity, because by design
each edge channel is gradient-polarity-specific. We
found that the N1þ model yields only a single central
edge—and no edges for the Mach bands—because its
scale-space response has just a single central peak, for
any n. The N3þ model can produce one of the two
edges for each Mach band (the inner edge, closer to the
center of the image), but only when the corner in the
luminance profile is sufficiently sharp, e.g., n ¼ 10,
outside the range of our experiments.

The N3þ model does correctly predict the Mach
edges that are seen flanking the peaks and troughs of
blurred triangle wave gratings (Wallis & Georgeson,
2009). For these stimuli the gradient profile (rather than
the luminance profile) is a Mach ramp, and so the
Mach edges are the analog of Mach bands but shifted
up by one derivative order; they emerge as peaks in the
third derivative rather than the second. But we now see
that the edges of Mach bands are a different problem
that requires a new solution, as follows.

Solution: A second route to edges, E2

We propose that the output of the B mechanisms
implicitly contains information about the edges of bars
and Mach bands, and that the B output is further
processed via an accelerating nonlinearity to make
them explicit. Our underlying philosophy is the same
throughout: that simple, feed-forward, signal process-
ing—combining (a) multiscale linear Gaussian deriva-
tive filtering, (b) pointwise nonlinearities (half-wave
rectification, power function transduction), and (c)
peak-finding in scale-space—should suffice to locate
and identify features, without logical parsing rules or
top-down intervention. For example, colored curves in
Figure 7B show how peaks in the gradient of the
(linear) B response (black curve) do not capture the
edges of Mach bands. There are four edges to be
explained but only three extrema in this smoothed third
derivative. On the other hand, raising the magnitude of
the B response to some power p . 1 (here, p¼ 3) while
preserving the sign sharpens and squeezes the B
response (black curve in Figure 7C). It then has four
(rather than three) points of steepest gradient, and so
taking its derivative does lead to four extrema (colored

curves, Figure 7C) that correspond well with the
observed edge positions (circles).

Figure 7D illustrates a simple variant of that idea in
which, consistent with our general approach, only
positive outputs are used and sign or polarity is carried
by parallel channels. To find the edges of Mach bands
the proposed chain of operations E2 is a form of
nonlinear third derivative (analogous to, but different
from, N3þ). As shown in Figure 1D, we take the second
derivative map Bþ or B�, pass its (always-positive)
values through an accelerating transducer (with power
p), filter again with a gradient (Gaussian derivative)
operator, half-wave rectify, take the pth root, then find
peaks in scale-space as usual using the E2/B ratio to
decide how probable those edges are, via Equation 5.
Note that the power p operation is crucial, but the pth
root is not so critical, because it does not alter the peak
locations introduced by the previous steps. Taking the
pth root does, however, render the response linear with
respect to contrast, and so makes the E2/B ratio
contrast-invariant.

The E2 response maps are defined by expressions of
the form

Eþ2 Bþðx; sÞf g ¼ k3

	

max

�

Bþðx; sÞp

� ]

]x

�

Gðx; s0Þ
�

; 0

�

1
p

; ð6Þ

where p¼3, k3 is a constant, and s0 is a small fixed scale
that was set equal to the intrinsic blur value (s0¼ b0 ¼
1.5 min arc). The E2 map needs to come in four flavors
to capture the positive and negative edges of light bars
and dark bars, respectively. These four variants are
obtained by using either the Bþ or B� map as input,
combined with a positive or negative sign on the ] / ]x
filter. Thus a peak in the map of Equation 6 represents
the left-hand (light) edge of a light bar. Its right-hand
(dark) edge would be captured by peaks in

E�2 Bþðx; sÞf g ¼ k3

	

max

�

Bþðx; sÞp

��]

]x

�

Gðx; s0Þ
�

; 0

�

1
p

; ð7Þ

while the light and dark edges of a dark bar would be
found using B� rather than Bþ as the input map. An
interesting consequence of this four-channel scheme
(Figure 7D) is that the system not only finds the light
and dark edges of Mach bands, but it also knows (from
the identity of the channel) what the polarity is and
whether those edges arose from, or belong to, a light
bar or a dark bar.

Finally, Figure 8 illustrates the full model’s scale-
space response maps (a composite of the eight maps for
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E6, B6, and E2
6{B6}), along with the features found in

those maps, for test images with exponents n¼ 1, 2, 3,
and 5 and scale 6 min arc. The maps for exponents n¼
2, 3, and 5 (Figure 8B, 8C, and 8D) show Mach bands
(blue and yellow squares), but the bands are weak
(open symbols) in the map for n ¼ 1 (Figure 8A). All
four maps show the central DL edge (red triangle) that
is seen in the data of Figure 5J, 5K, and 5L. The edges
of Mach bands (circles) emerge more reliably as n
increases.

With the addition of the E2 mechanism, we can now
see in Figure 5J, 5K, and 5L how well the full model
(Figure 1D, Figure 8) is able to account for the positions
of Mach bands (blue and yellow curves) and their edges
(cyan and magenta curves). The goodness-of-fit is clear
and the RMS errors are strikingly low, with little or no
systematic residual error. The gradual divergence of

band and edge positions as n decreases is well described,
especially for the dark bands (left side of each panel).

The predicted separation between the two edges of a
Mach band is controlled by the power p. Raising the
power p squeezes the B response profile (Figure 7) even
more and so decreases the separation between the
edges. For simplicity we set p to a single value (p ¼ 3)
and this gave an excellent fit for all three stimulus
scales. This proposed nonlinearity is consistent with
earlier findings. The value p ¼ 2 represents half-
squaring of the linear filter output—a common
property of physiological models for V1 cells (e.g.,
Heeger, 1992)—but higher values of p are common in
the physiological and psychophysical literature. Values
of p between two and three are typically used to model
the response nonlinearity at low contrasts in contrast

Figure 7. Finding the edges of Mach bands: problem and solution. A: Luminance profile of an edge with n¼3, r¼6. B: black curve shows

the corresponding output of a Gaussian second-derivative filter. Black squares show that peaks are in good agreement with positions of

Mach bands observed in Experiment 2 (seen more fully in Figure 5). Vertical position of these data is arbitrary, so they are simply placed

on the model curve to which they relate. Colored curves show positive and negative parts of the gradient of the black curve (Gaussian

derivative, computed with fixed scale s0 ¼ 1.5 min arc). Problem: The perceived edges of Mach bands (circles) don’t correspond with

peaks, troughs, or zero-crossings in either of these derivatives. C: Solution: As B, but the magnitude of the second-derivative filter output

(black curve in B) has been raised to power p ( p¼3) with preservation of the sign before the third derivative operation. Peak position and

sign now correspond well with the perceived edges of Mach bands. D: A simple variant of the scheme in Panel C, in which, via half-wave

rectification, different channels are used to carry features of opposite polarity. Colored solid curves represent the positive and negative

parts of the derivative of (Bþ)p while dashed curves show the same for (B�)p. Peaks in these four sign-specific E2 channels correspond

well with the perceived edges of Mach bands (filled circles). Note: These worked examples used a single scale (s¼ 0.85*r¼ 5.1 min arc)

for the B filter, but the full multiscale model was used for Figure 5, as illustrated in Figure 8.
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discrimination experiments (Foley & Legge, 1981;
Legge & Foley, 1980; Nachmias & Sansbury, 1974).

Single-scale models

There is a wealth of evidence that the early visual
system filters and encodes data at multiple spatial
scales, and our scale-space peak-finding model is
evidently successful in its application to the perception
of edges and Mach bands. But it is reasonable to ask
whether, or to what extent, a simpler single-scale model
might suffice. We addressed that question by forcing the
model to use just a single filter scale, then computing the
RMS error between predicted and observed feature
locations for Experiment 2, just as in Figure 5, with all

parameters unchanged. The goodness-of-fit, assessed by
RMS error, is plotted in Figure 9 as a function of the
filter scale used. For each stimulus scale (r) there was a
clear point of minimum error, implying an optimum
filter scale, and this optimum increased roughly in
proportion to the scale of the stimulus.

Perhaps surprisingly, the best goodness-of-fit in the
single-scale cases was as good as, or a little better than,
the fit of the multiscale model (marked by three
horizontal lines in Figure 9). Does this mean that the
multiscale nature of our model is unnecessary? We
think not. To find the optimum single scale (at the
minima in Figure 9) we had to test many filter scales for
each stimulus scale, then choose the best one in each
case using prior knowledge of the perceived features’
identity and location (the experimental data). But, like

Figure 8. Scale space map and features found by the full N2þ1þmodel for test images (r¼6 min arc) with exponents n¼1 to 5. The map

is a color-coded composite, representing the max at each point over the eight contributing maps. Blue and yellow regions are (part of) the

bar response maps (B� and Bþ); pink region is from the edge response map (Eþ); cyan regions are from the two E2
� maps; magenta

regions (the E2
þmaps) are entirely hidden behind the Eþmap. A, B, C, and D: As n increases, the corners in the luminance profile (white

curve) sharpen; Mach bands emerge (blue and yellow squares) and shift progressively towards smaller scales. Open squares for n¼ 1

show potential Mach bands in the bar maps that are occluded by a higher response in the edge map. Red triangle is the very salient

central edge from the Eþmap, while cyan and magenta circles are the edges of Mach bands from the E2 maps. Solid white curve is the

luminance profile after blurring (b0 ¼ 1.5 min arc); dashed curve, where visible, is the luminance profile before blurring.
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the real visual system, the multiscale model did not
enjoy this luxury of extrasensory perception, and its
automatic selection of filter scales was driven entirely
by the stimulus input interacting with the structure of
the filtering system. That is a key insight drawn from
Lindeberg’s (1998) analyses of Gaussian-derivative
scale-space, implemented here by suitable choice of
scaling exponents a and b.

Nevertheless, it was surprising that a single filter
scale—albeit hand-picked—could work so well (Figure
9). We think this occurs because, with this stimulus set,
even the multiscale model picks a very limited range of
filters for a given stimulus and so a single filter scale—
chosen for that stimulus—can produce a similar
outcome. A glance at Figure 8 confirms that for a given
exponent (e.g., n¼ 3, Figure 8C), nearly the same filter
scale is picked for all seven features. These filter scales
shift to smaller values as exponent n increases (Figure
8D). This is quantified in Figure 9 by the leftward
progression of the five grey-filled points that represent
the geometric mean filter scale for each of the exponents

n¼1 to 5. For n¼1 the filter scales were about an octave
higher than the rest, but for n¼ 2 to 5 (the four leftmost
points on each horizontal track), the mean scales
clustered quite closely together and the mean of this
cluster was, in all three cases, close to the optimum
single scale. In short then, in the range n � 2 for which
the RMS error was computed, the mean filter scale
selected by the multiscale model was close to the best
single scale. This explains why a fixed scale can
substitute for variable scale selection. Importantly, both
analyses tell us that to account accurately for the layout
of the bar and edge features, the filter scale must increase
with the stimulus scale: visual filtering is multiscale.

There was no single filter scale that was optimum
over all three stimulus scales, and we emphasize that to
select a single scale requires unrealistic prior knowledge
of the stimulus. The multiscale model therefore has
several important advantages over its single-scale
counterparts. The functional advantage of automatic,
localized scale selection would be much more apparent
for images that (unlike our test images) contained a
wider range of sharp and blurred features in different
locations.

Nonlinear response to luminance: The shift to
the dark side

We noted earlier that the marked features (Experi-
ment 2) exhibited a systematic shift to the dark side of
the edge, and to keep the model simpler we removed
that small (1–2 min arc) effect from the data by
subtracting the overall mean position. Having devel-
oped a successful model, we can now return to the
uncorrected data to ask whether, with nonlinear
transduction of luminance (a model photoreceptor),
the same model can predict this shift to the dark side
while preserving the correct pattern of observed
features.

The model transducer was a standard Naka-Rush-
ton function

IðxÞ ¼ ð1þ SÞ LðxÞ
S:L0 þ LðxÞ ; ð8Þ

where L(x) is the input luminance profile (after blurring
by the display and the eye; Figure 1D), L0 is the mean
luminance, S is the semisaturation constant, and SL0 is
the semisaturation luminance. The constant term (1 þ
S) is a convenient normalizing factor that implies I¼ 1
when L ¼ L0. Note that S is expressed in units of L0,
and so a given value of S represents a certain degree of
compressiveness in transduction independently of mean
luminance. Lower values of S produce a more
compressive response to luminance while higher values
tend towards linearity. Georgeson & Freeman (1997)
measured and modeled the perceived offset of blurred

Figure 9. Goodness-of-fit for single-scale models. The full model

(Figure 5) was constrained to use a single fixed scale for the E

and B filters, and the RMS error in predicted feature positions

(taken over exponents n ¼ 2 to 5; N ¼ 42 data points) is plotted

against the filter scale used, for edge Scales 3 (red curve), 6 (blue

curve), 12 (green curve). For comparison, horizontal lines mark

the corresponding goodness-of-fit for the multiscale model, from

Figure 5. The five points on each line indicate, reading from right

to left, the average filter scale selected by the multiscale model for

each of five exponents (n¼1, 2, 3, 4, and 5), averaged (geometric

mean) over the seven features found for each stimulus.
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Figure 10. Nonlinear response to luminance explains why features shift to the dark side. A: Linear response to luminance. Curves: model

feature positions (Scale 6, dark to light stimulus edge); symbols: experimental data with no correction for the shift to the dark side. Offset

of data to the left of the model is obvious. B: Model with a nonlinear response to luminance captures this offset very well. C: E and B filter

responses plotted separately for the dark band (B�, solid curves) and the light band (Bþ, dashed curves). D: Predicted probability of dark

�
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edges towards their darker side and concluded that a
value of S between 0.5 and one was broadly consistent
with the observed magnitudes of the offset. Here we
chose S ¼ 1.1 to model the data of Experiment 2 and
used S ¼ 999 to represent the linear response.

With linear transduction the model, as expected,
showed no shift of feature positions to the dark side;
curves in Figure 10A (same as in Figure 5K), are
symmetrical about x¼0. In contrast, symbols in Figure
10A show experimental data from Experiment 2 now
plotted with no correction. Systematic offset of data to
the left (the darker side) is obvious, and RMS error in
model fitting (1.39 min arc) was more than doubled
compared with Figure 5K. But with the inclusion of a
nonlinear response to luminance (S ¼ 1.1), the model
captured both this offset and the pattern of feature
positions very well indeed (Figure 10B). RMS error was
low (0.66 min arc) and almost as good as for the hand-
crafted correction (0.60 min arc; Figure 5K). This
analysis has considered Scale 6, but similar results were
obtained at Scales 3 and 12. Averaged over N ¼ 42
features (n � 2) the model predicted mean dark shifts of
�0.62,�1.06,�2.02 min arc for stimulus Scales 3, 6, 12,
and this agreed well with the observed mean shifts of
�0.96, �1.25,�2.12 min arc, respectively.

Our finding that Mach bands, as well as edges, are
shifted a little to the darker side is not trivial. Bars or
lines that arise from a physical, symmetrical, luminance
peak cannot be shifted laterally by compressive
transduction, because symmetry is preserved. But the
Mach band stimulus is not symmetrical, and there is no
luminance peak. Compressive transduction modifies
the luminance profile (Figure 10E and 10F), and this in
turn alters the first and second derivatives. Peaks in
both these derivatives shift to the darker side as Figure
10B has shown.

The compressive response to luminance predicts a
second, rather subtle effect: The dark bands should be a
bit more visible than the light bands. Figure 10C shows
why: The E and B filter responses are plotted separately
for the dark band (B�, solid curves) and the light band
(Bþ, dashed curves). The compressive luminance
response smooths the upper corner of the luminance
profile (see Panels E and F), reduces the Bþ response
and the Bþ/E ratio, and so leads to fewer ‘‘yes’’
responses for the light band than the dark band. These
predictions (Figure 10D, solid and dashed grey curves)
gain some support from the data of Experiment 2,
showing that observers marked fewer light Mach bands
(light triangles) than dark Mach bands (dark triangles).

Such a difference was also evident in the data for Scale
12, but not at Scale 3. A yes-no experiment with more
statistical power, many more trials, and independent
judgments of light and dark bands would be needed to
confirm this finding. Further support comes from
earlier findings that increment thresholds (Thomas,
1965) and contrast thresholds (Ross et al., 1989) for
seeing the dark bands were systematically lower than
for the light bands, implying greater visual sensitivity
for the dark bands. Ross et al. (1989) suggested that
this difference arose because luminance gain is greater
locally for the dark band than for the light band, i.e.,
that it arose from a form of compressive luminance
transduction, as we also suggest.

Discussion

Summary of the model’s main principles

We began with one main idea, that bars might be
perceived at spatial peaks in the even-symmetric spatial
filter output provided those peaks are not exceeded by
the level of the odd filter output at the same place.
Figure 11 shows in a single picture how that idea was
applied and how it explains our findings. For a given
stimulus scale (r¼ 6 min arc) we can approximate the
multiscale model fairly well using a single filter scale (s¼
6 min arc) as we saw above. The odd filter is a Gaussian
first-derivative, which both smooths the image and
computes its derivative (gradient profile). The outcome
E(x) is a smoothed derivative, shown as thin lines in
Figure 11, for four values of the exponent (n¼ 1, 1.5, 2,
5). Similarly, the even filter smooths and computes the
second derivative of the image (the gradient of the
gradient). The outputs B(x) are shown as thick curves in
Figure 11, and their peaks—candidate bars—at posi-
tions x0 are marked by solid symbols.

We assumed that the ratio r¼B(x0)/E(x0) was noisy,
with variance v2 at scale r, and that Mach bands would
be seen on those occasions when the ratio r exceeded
some criterion c. To visualize this noise in Figure 11, we
can pretend that the odd filter is noise-free and attribute
all the noise to the even filter. Thus the grey bars show
61 standard deviation of the noise, equal to v.E(x0)
when expressed this way. The clear message is that for n
¼ 1 the candidate bar response lies well below the edge
response and predicts 0% Mach bands, but as n
increases the peak bar response rises and eventually

 
and light Mach bands (solid and dashed curves) along with data from Experiment 2, showing that fewer light Mach bands were marked

(light triangles) than dark Mach bands (dark triangles). E: Like Figure 8B, a composite scale-space response map for Gaussian edge

(Scale 6, n ¼ 2) but with nonlinear luminance response. Dashed white curve: nominal luminance profile. Solid white curve: luminance

profile modified by front-end blurring and nonlinear transduction; note the leftward shift. F: as E, but exponent n ¼ 5.
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exceeds the edge response quite reliably, giving 94%
Mach bands for n ¼ 5. This trend is similar to the
experimental results (Figures 5B and 6). ThemeanMach
band position (68 min arc) is also well described, as is
the increase in separation of the bands as n decreases.

In short, in our model the emergence of Mach bands
depends on the relation between the responses of even
and odd spatial filters that have a suitable form
(Gaussian first and second derivatives), with suitably
chosen relative gains (influenced by parameters a, b, k1,
Table 1) and a suitably selected spatial scale s for the
filters. We see from Figure 11 that a single-scale model
contains all the main elements for our proposed
account of Mach bands, but automatic selection of
spatial scale is a key advantage of the multiscale model,
to which we now turn.

The value of the multiscale model

We studied both the probability of observing Mach
bands and the perceived spatial layout of the features of
the bands (bars and edges) across a novel family of edge
profiles. The results led to an apparent paradox for
explanations based on the second spatial derivative of
the luminance profile. On the one hand, the main factor
determining Mach band probability was the exponent n
that controls the sharpness of the corner in the

luminance profile. This main result (Figures 4 and 6)
is similar to Ross et al.’s (1989) finding that contrast
sensitivity for seeing Mach bands decreased markedly
as the ramp was made more blurred. Blurring the ramp
is analogous to decreasing n, and in both cases the
second-derivative amplitude is correlated with corner
sharpness and with Mach band perception. But, in
apparent conflict with this idea, Experiments 1 and 3
showed that the likelihood of seeing Mach bands was
largely independent of the spatial scale and image
contrast in the suprathreshold range. These near-
invariances imply that the probability of seeing Mach
bands is not determined directly by the amplitude of
peaks in the second derivative, because that is not
invariant—it increases with image contrast and de-
creases greatly with increasing image scale (Figure 3).

This conflict was resolved by the multiscale model in
two ways. First, we proposed that Mach bands (and
presumably real bars too) depend on a comparison (the
ratio) of the outputs of odd and even filters (Gaussian
first and second derivatives, named E and B) at the
peaks in the scale-space second derivative response. In
agreement with our results, the model B:E ratio is
contrast-invariant but increases with corner sharpness
n. Second, the profound decrease in second derivative
amplitude that would occur with increasing stimulus
scale (Figure 3) is countered by the scale normalization
factor (sb, Equation 4). This key factor increasingly
amplifies the response of the larger-scale filters.
Importantly, the B:E ratio—and hence Mach bands—
would be precisely scale-invariant as well as contrast-
invariant, if sb¼ s.sa, implying b¼ aþ 1. This is because
the second-derivative falls much faster than the first-
derivative with increasing scale (inverse-square, vs.
inverse), and so to maintain a constant B:E ratio, it
needs to be amplified correspondingly more (by factor
s). Ideally then, a ¼ 0.5 and b ¼ 1.5 (see Appendix 2).
We set a¼ 0.5, but found that b¼ 1.15 (rather than 1.5)
gave a better account of the data on Mach band layout,
and this necessarily compromised the B:E scale
invariance to a small extent that was compensated by
allowing the criterion response ratio to differ at
different stimulus scales. It would be more elegant if
perfect scale invariance prevailed (b¼ 1.5), but the data
dictated otherwise.

To account for the edges of Mach bands that were
otherwise hard to explain, we introduced a second
process (E2) that is a nonlinear form of third derivative
alongside the basic edge response (E) that is based on
the first derivative. Such duplication is not implausible,
but on grounds of parsimony, having two edge
mechanisms might sound like one too many. We
wonder whether some additional nonlinearity in the
N3þ channel (Georgeson et al., 2007) might be able to
unify the properties of E and E2 into a single edge
mechanism, but this remains a task for future work.

Figure 11. Summary of the main ideas developed in this paper,

expressed at a single filter scale (s ¼ 6). Thin curves are the

output of the odd filter in response to four of our edge images (n¼
1 to 5, as shown). Thick curves show the even (smoothed second

derivative) filter output magnitude; peaks (filled circles) are

candidate bars (Mach bands), and grey bars represent noise

(61 SD). Peaks in the even filter exceed the corresponding odd

filter response more often with increasing n, thus predicting an

increasing proportion of Mach bands (shown here as %), as

observed in all three experiments. Locations of the peaks

correctly predict perceived positions of Mach bands and the

way they change with exponent n (Figure 5). See text for details.
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Comparison with other models

Many models of Mach bands have been proposed
(Pessoa, 1996) having many common features (King-
dom & Moulden, 1992; Morgan, 2011). It is difficult to
rule out any model completely, because every model is
really a class of models that are variants of each other
with different parameters and different ancillary as-
sumptions. Even if all tested versions fail, some modified
version as yet untested might succeed. And useful
insights may be drawn from several related models, even
though none is perfect. From such ideas new informa-
tion-theoretic methods of multimodel inference have
been developed (Burnham & Anderson, 2004). Full
evaluation of other models is beyond the scope of this
paper, but some brief comments are in order.

The properties of the MIRAGE model (Watt &
Morgan, 1985) are well-known and it has several points
of contact with ours. It uses linear, even-symmetric
(Gaussian second derivative) filters at several scales and
half-wave rectifies the outputs to give responses very
like Bþ and B� in the present model; then it combines
outputs of the same sign across scales and uses a fixed
set of rules to interpret the two resulting profiles as
features. In brief, if two adjacent peaks of the combined
responses have opposite signs they are interpreted as an
edge, but if those two peaks are separated by a gap (a
null region in the filter responses) then the two peaks
would be interpreted as a pair of light and dark bars.
The response to a Mach ramp is of the latter kind,
giving two bars as the output description. This rule
works well for Mach ramps (high n), but it cannot
predict Mach bands on a Gaussian edge, because no
null region exists between the peak and trough in this
case at any one filter scale or in the combined response.
Our experiments consistently showed Mach bands to be
reported on about 60% of trials for Gaussian edges (n¼
2), and this does not appear to be a baseline rate of
false alarms or guesses because much lower probabil-
ities were recorded for n¼ 1.5 and n¼ 1. Thus, without
modification, MIRAGE cannot predict the Mach
bands seen on Gaussian edges. Indeed the two
interpretations (as one edge or two bars) are mutually
exclusive; unlike the present model, MIRAGE could
never see Mach bands and an edge at the same time.
This is evidence against the enforced combination of
responses across filter scale, as Kingdom and Moulden
(1992, p. 1579) pointed out.

Ross et al. (1989) described other difficulties for
MIRAGE, and they claimed that it did not mark Mach
bands for ramp widths of 25 min arc wide or less. This
was inconsistent with their results (and indeed with our
results, given that our ramp width, 2r for high n, was
always less than 25 min arc). However, our own
simulations of MIRAGE confirmed the original report
of Watt and Morgan (1985), reiterated by Morgan and

Watt (1997), that MIRAGE does deliver Mach bands
for ramps as narrow as 5 min arc. We found that this
depended on a suitable choice of the model’s noise-
reduction threshold. Thus the apparently conflicting
predictions derived from the same model may hinge on
details of implementation—an example of the difficulty
of model comparison referred to above. When we
applied MIRAGE to our stimulus set we confirmed
that no Mach bands were predicted for n � 2, and we
could not find any set of parameters that would
consistently deliver Mach bands at all three stimulus
scales (3, 6, and 12 min arc).

Kingdom and Moulden’s (1992) MIDAAS model
was a development of MIRAGE, and it aimed to
explain the (often illusory) profiles of perceived
brightness for a wide range of 1-D luminance profiles,
conceiving of brightness as a continuous function over
space. This contrasts with feature detection models,
including the present one, which aim to derive a sparse
set of features describing the spatial structure of the
luminance profile (see review by Morgan, 2011).
Ideally, a model of early spatial vision would do both;
our model is limited at present because it has little to
say about apparent brightness either at feature
locations or between them. MIDAAS is successful, at
least qualitatively, in accounting for a wide range of
brightness phenomena though it has not, as far as we
know, been tested quantitatively on available datasets.
And although it uses the MIRAGE edge/bar parsing
rules at each filter scale as a step towards deriving
brightness, it does not appear to deliver a feature
description after the outputs at different filter scales
have been combined (averaged) to produce the final
brightness profile. Hence it is not clear that it could be
tested against our present dataset.

The local energy model (Morrone & Burr, 1988)
predicts the occurrence of light and dark bars from
peaks of energy on Mach ramps, and with some
ancillary assumptions about the processes of detection,
it successfully predicted contrast thresholds for seeing
Mach bands and the increase in these thresholds as the
ramp was made more blurred (Ross et al., 1989). But
du Buf (1994; figure 14) showed that very similar
predictions could be obtained from the even-symmetric
filters alone without combining even and odd responses
into an energy measure.

Our efforts to predict the observed Mach band
positions (Figure 5J, K, L) from peaks of local energy
met with only limited success. We implemented the
filters from the description given by Ross et al. (1989)
but allowed a broad range of filter scales so that we
could examine the behavior of energy peaks over scale.
For n � 2, no Mach bands appeared; instead, at all
filter scales, a single energy peak represented only the
central edge. For n¼ 3 to 5, Mach bands of the correct
polarity appeared across a range of filter scales, but
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their positions varied smoothly with filter scale and
without a rule for scale selection we could not properly
compare those positions with our data. For the sine
edge, Mach bands were predicted only over a narrow
range of filter scales. At finer scales the energy model
instead incorrectly reported edges (not bars) located at
x ¼ 6 h / 2, where h is the width (half-period) of the
sine edge—an effect that arises from discontinuity in
the higher spatial derivatives at these two locations. To
screen out these false edges a rule for scale selection
would again be needed. In short, the energy model does
predict Mach bands, but would need modification to be
tested against our results. As with MIRAGE, it is
possible that some new assumptions about scale
selection, filter bandwidth, or other changes of imple-
mentation detail might improve it.

More generally, it is well known that the energy
model suffers what du Buf (1994, p. 458) called the
‘‘curse of the sinewave grating’’—that no features are
predicted for a periodic sinewave luminance profile,
while human observers clearly see light and dark bars
and can judge the position and blur of the edges
between them (Georgeson et al., 2007). This curse is
intrinsic to the energy model: For any luminance
waveform the local energy profile is, by definition, the
envelope of the outputs of the paired quadrature-phase
filters and that smooth envelope has no peaks at many
of the underlying features that humans perceive (Hesse
& Georgeson, 2005).

The present model aimed to draw insight from these
earlier models and others while overcoming some of the
problems just discussed. (a) UnlikeMIRAGE, it uses the
outputs from filters at particular scales rather than
combining them across scales. But it does not allow
arbitrary access to different filter scales and positions;
instead it uses scale normalization and peak-finding in
scale-space (Figures 8, A1, A2) to reduce the response
maps to a sparse set of feature points whose scale and
location are given by the peak point and whose identity
(bar or edge) and polarity is given by the identity of the
map (B6 or E6) in which the peak occurs. (b) Like the
energy model, but unlike MIRAGE, it compares even
and odd filter responses to classify bars and edges
respectively, but the manner of comparison is different
from the energymodel. Both use the B/E ratio, but rather
than using the ratio at energy peaks as a measure of local
phase, our model uses the ratio as an indication that a
peak bar response B should be treated as significant.

One key difference between models is whether they
adopt spatial filters that have only even symmetry
(MIRAGE; MIDAAS) or parallel filters with even and
odd symmetry (energy model; the present model).
Physiological evidence tends to favor the idea that V1
cell receptive fields come with a wide range of
symmetries (phase characteristics) including even and
odd (e.g., Field & Tolhurst, 1986; Hamilton, Albrecht

& Geisler, 1989) with some preference for even and odd
over intermediate phases (Ringach, 2002). In psycho-
physics, Huang, Kingdom, and Hess (2006) failed to
replicate one of the key studies that implicate distinct
even and odd filters in spatial vision tasks (Burr,
Morrone, & Spinelli, 1989) and proposed instead that
psychophysical phase discrimination tasks are based
solely on even-symmetric filters. This pivotal issue
needs further study.

Conclusion

The multiscale Gaussian-derivative model (N2þ1þ)
developed here is related to several earlier models, and
gives an accurate, principled, and detailed account of
the appearance of bar and edge features in Mach bands
over a range of scales and spatial waveforms. It needs
to be tested over a broader range of stimulus types and
will no doubt need further development, but it holds
promise as the basis for a more general theory of
feature coding in human vision.
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Appendix 1. Parsing rules applied
to the feature-marking data

The parsing rules were applied to the data from each
condition in turn and consisted of two passes over the
data as follows (for light-to-dark images, LD):

First Pass:

1. Obtain the data for one trial.
2. If there are seven features, place each one in the

seven bins, in position order.
3. If there are fewer than seven features, then:

a. Place any bars into the bar bin of its polarity
(Bins 2 and 6).

b. Place any DL edges that are to the left of the
image center in Bin 1.

c. Place any DL edges that are to the right of the
image center in Bin 7.

d. If there are three LD edges, place them in Bins 3
to 5, in position order, but if there are less than
three then delay assignment until second pass.

4. Repeat the above steps for every trial in the same
condition.

Second Pass:

1. Calculate the position of each bin from the mean of
its contents.

2. Obtain all of the LD data remaining from Pass 1
for the whole condition, and place each datum in
its nearest LD bin.

3. Recalculate the LD bin positions from the mean of
their contents.

Finally, the mean position of each feature was
assigned as the mean of each bin’s contents.

Appendix 2. Scale space
response maps from the N2þ1þ
model

The edge mechanism has odd-symmetric, Gaussian
first-derivative filters—described as model N1 (mne-
monic: N for scale-normalized, 1 for first-derivative) by
Georgeson et al. (2007). Half-wave rectification of its
outputs creates separate channels for positive and
negative edges, N1þ and N1-. That model is extended
here to include a parallel system of even-symmetric,
Gaussian second-derivative, bar-sensitive channels
(N2þ) whose definition is exactly analogous to N1þ.
The combined model is called N2þ1þ. When the E2

process is added, we refer to ‘‘the full N2þ1þmodel.’’

Examples

An example of the scale-space bar maps alone (Bþ

and B�) is shown in Figure A1(A) in response to two
Gaussian bars of different scales. The corresponding
edge maps alone (Eþ and E�) are in Figure A1(B). Since
all responses are positive, a convenient way to visualize
the population response is to plot a single map, M(x, s)
¼ max(Eþ, E�, Bþ, B�) where the max operator picks
the largest of the four responses at each position and
scale (x, s). The composite map M(x, s) for the same
two bars (Figure A1[C]) shows how the relation
between E and B responses may be important in
deciding what features are present. Potential Mach
bands (blue squares in Figure A1[A]) may be occluded
by larger edge responses (Eþ or E�) at the same place
and might not be visible (squares now shown as open
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symbols in Figure A1[C]), depending on noise and
decision factors discussed in the main text.

A similar analysis for input comprising two Gauss-
ian edges of different blurs is given in Figure A2. Note
how the potential Mach bands (open squares) might be
occluded by the E response (pink region).

With scaling exponents a ¼ 0.5, b ¼ 1.5, the relative
activation of E and B filters and the relative scales and
positions of bar and edge features are all scale-
invariant. Despite these elegant properties, we found
that that this scale invariance property did not hold
exactly when the experimental data were fitted; we had
to reduce b to about 1.15 to match the observed spatial
layout of Mach bands shown in Figure 5, thus
compromising this scale invariance to some extent.

Figure A1. A: Scale-space map of the second-derivative N2þ
channel responses (Bþ, yellow; B�, blue) to two Gaussian bars of

scales 2 and 8min arc.White trace is their luminance profile. PeakB

responses are marked by square symbols. Note that the bar

positions (632 min arc) and scales (2, 8 min arc) are veridically

encoded (two yellow squares) but there are potential Mach bands

(dark bars; blue square symbols) flanking each light bar. B: Map of

the first derivative N1þ channel responses (Eþ, red; E�, green) to

the same two Gaussian bars. C: All four channel responses

together. Thismap is a composite of PanelsA andB and showsonly

the largest of the four responses at each scale-space point. Peak B

responses are marked by squares, peak E responses by triangles.

Amplitude scaling (normalization) exponents were chosen to give

scale invariance: a¼ 0.5, b¼ 1.5; see Appendix for details.

Figure A2. A, B, and C: As Figure A1, but for two Gaussian-

blurred edges (n ¼ 2), again with blurs of 2 and 8 min arc. Peak

responses are marked by symbols. Note that edge positions (632

min arc) and scales (2, 8) are veridically encoded (two red

triangles) but there are potential Mach bands (light or dark bars;

square symbols) flanking each edge.

Journal of Vision (2012) 12(13):18, 1–25 Wallis & Georgeson 25

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/932801/ on 07/12/2018


	Introduction
	f01
	Methods
	e01
	f02
	f03
	Results
	f04
	f05
	The N2
	e02
	e03
	f06
	e04
	e05
	t01
	e06
	e07
	f07
	f08
	e08
	f09
	f10
	Discussion
	f11
	Burnham1
	Burnham2
	Burr1
	Campbell1
	Charman1
	duBuf1
	Field1
	Foley1
	Georgeson1
	Georgeson2
	Georgeson3
	Georgeson4
	Georgeson5
	Hamilton1
	Heeger1
	Helmholtz1
	Hesse1
	Huang1
	Kingdom1
	Koenderink1
	Koenderink2
	Legge1
	Legge2
	Lindeberg1
	Lindeberg2
	Ludvigh1
	Ludvigh2
	Mach1
	Mather1
	Morgan1
	Morgan2
	Morrone1
	Nachmias1
	OBrien1
	Pessoa1
	Ratliff1
	Ringach1
	Ross1
	Ross2
	terHaarRomenyBM1
	Thomas1
	Wallis1
	Watson1
	Watt1
	Weale1
	a01
	a02


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU ([Based on 'AP_Press'] Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


