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Over the full visual field, contrast sensitivity is fairly well described by a linear decline in log sensitivity as a function of
eccentricity (expressed in grating cycles). However, many psychophysical studies of spatial visual function concentrate on
the central 64.5 deg (or so) of the visual field. As the details of the variation in sensitivity have not been well documented in
this region we did so for small patches of target contrast at several spatial frequencies (0.7–4 c/deg), meridians (horizontal,
vertical, and oblique), orientations (horizontal, vertical, and oblique), and eccentricities (0–18 cycles). To reduce the
potential effects of stimulus uncertainty, circular markers surrounded the targets. Our analysis shows that the decline in
binocular log sensitivity within the central visual field is bilinear: The initial decline is steep, whereas the later decline is
shallow and much closer to the classical results. The bilinear decline was approximately symmetrical in the horizontal
meridian and declined most steeply in the superior visual field. Further analyses showed our results to be scale-invariant
and that this property could not be predicted from cone densities. We used the results from the cardinal meridians to radially
interpolate an attenuation surface with the shape of a witch’s hat that provided good predictions for the results from the
oblique meridians. The witch’s hat provides a convenient starting point from which to build models of contrast sensitivity,
including those designed to investigate signal summation and neuronal convergence of the image contrast signal. Finally,
we provide Matlab code for constructing the witch’s hat.
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Introduction

Inhomogeneity of contrast sensitivity

The inhomogeneity of the neural architecture of the
human retina (Perry & Cowey, 1985; Curcio & Allen,
1990) and the subsequent neural magnification factors
(Daniel & Whitteridge, 1961; Rovamo & Virsu, 1979;
Virsu & Rovamo, 1979) lead to nonuniform sensitivity
across the visual field (see Strasburger, Rentschler, &
Jüttner, 2011 for a review). A detailed understanding of
this variation is required to inform the design and
interpretation of studies involving spatially extensive
stimuli, such as those that investigate area summation
of contrast (e.g., Robson & Graham, 1981).

There have been several previous studies of the effect
of eccentricity on contrast sensitivity (e.g., Pöppel &
Harvey, 1973; Hilz & Cavonius, 1974; Koenderink,

Bouman, Bueno de Mesquita, & Slappendel, 1978a,
1978b, 1978c, 1978d; Rovamo, Virsu, & Näsänen, 1978;
Rovamo & Virsu, 1979; Rijsdijk, Kroon, & van der
Wildt, 1980; Robson & Graham, 1981; Wright &
Johnston, 1983; Kelly, 1984; Johnston, 1987; Pointer &
Hess, 1989; Rovamo, Franssila, & Näsänen, 1992;
Foley, Varadharajan, Koh, & Farias, 2007; Hess, Baker,
May, & Wang, 2008). The typical finding in these
previous studies is a linear decline in log contrast
sensitivity as a patch of target grating is shifted further
from the fovea. Several of these studies also investigated
spatial frequency effects (e.g., Robson & Graham, 1981;
Pointer & Hess, 1989) and found that the sensitivity
functions were vertical translations of each other when
eccentricity was expressed in terms of stimulus carrier
cycles (rather than degrees of visual angle). Another
established phenomenon is the horizontal–vertical an-
isotropy, where there is a shallower decline in contrast
sensitivity along the horizontal meridian compared to
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the vertical meridian. In addition, a vertical-meridian
anisotropy has been identified where sensitivity is greater
in the inferior meridian compared to the superior
meridian (see Abrams, Nizam, & Carrasco, 2012 for
data and a review).

Stimulus orientation effects have also been reported.
In the well-known oblique effect, diagonally oriented
stimuli are less detectable than horizontal or vertical
stimuli, though the effect is found only at mid-to-high
spatial frequencies (Campbell, Kulikowski, & Levinson,
1966; Berkley, Kitterle, & Watkins, 1975; Heeley &
Timney, 1988; Long & Tuck, 1991). In an extension to
this, Rovamo, Virsu, Laurinen, and Hyvarinen (1982)
measured spatial acuity for various orientations of
grating patches placed in the periphery along several
different meridians. At an eccentricity of 25 deg, they
found that acuity was affected by an interaction
between stimulus orientation and the position of the
stimulus in the visual field. Acuity was best for radial
grating patches whose orientation was aligned with the
meridian on which they were placed such that a line
drawn from the fixation point to the patch would be
parallel with the grating bars. Typically, they were worst
for tangential patches whose orientations were at right
angles to this. Rovamo et al. (1982) referred to this
effect as the ‘‘meridional resolution effect.’’ Sasaki et al.
(2006) reported a similar effect for contrast sensitivity.
In general we shall refer to these as relative orientation
effects. This suggests that the eccentricity effects for
contrast sensitivity described earlier might interact with
absolute and/or relative target orientation.

The studies listed above tended to spread their
investigations over a wide range of eccentricities. For
example, Pointer and Hess (1989) investigated almost
the full width of the visual field (660 deg) and most of
the other studies measured to an eccentricity of 20 deg
or more (see Table 1 for details). However, many
psychophysical investigations of human spatial vision
tend only to concentrate on the central visual field of
around 64.5 deg (e.g., Meese & Summers, 2007) or less
(e.g., Carney et al., 2000), where vision is most acute
and where visual attention is usually directed. Previous
studies have typically gathered very sparse data within
this range (often having tested at less than four
eccentricities within the range of 0 deg–4.5 deg for
spatial frequencies of 4 c/deg or less; see Table 1) and
several of them also used stimuli that were spatially
quite extensive (Robson & Graham, 1981; Wright &
Johnston, 1983; Pointer & Hess, 1989; Rovamo et al.,
1992; see Table 1). This means that the information
that is available within the central visual field is likely
to have been blurred by the large footprint of the
probe. Furthermore, with the exception of Abrams et
al. (2012)—who did not measure eccentricity func-
tions—none of the previous studies listed used a
method to indicate the location of the target patch.

This means that stimulus uncertainty (Pelli, 1985) or
attention (Carrasco, Penpeci-Talgar, & Eckstein, 2000)
might have been a complicating factor in those
experiments (see also Michel & Geisler, 2011).

Motivation and aims

To provide a more detailed understanding of the
functional inhomogeneity across the central visual field
(64.5 deg), we investigated binocular contrast sensitiv-
ity for small stimulus patches whose locations were
demarcated using medium contrast surrounding rings.
To investigate whether the oblique effect, a relative
orientation effect, and/or the two different meridional
anisotropies (e.g., Abrams et al., 2012) were important
within our region of interest, we also performed our
experiment at several different meridians and orienta-
tions. For generality and to address a specific question
that was raised by our results (see later), we also
performed the study at several spatial frequencies.

Within our region of interest we found little effect of
orientation. More importantly, however, instead of
finding the classical linear result, we found that the
decline in log contrast sensitivity with eccentricity was
well described by a bilinear function, with an initial
slope that was steep followed by a much shallower
decline. We summarized our results by constructing an
attenuation surface with the shape of an elliptical
witch’s hat that was slightly deformed in the inferior
visual field. Although our study shows that the
inhomogeneity for contrast sensitivity is a little more
complex than previously thought, the witch’s hat is
straightforward to construct (see Appendix B) and
provides a valuable component to the front end of any
model of contrast sensitivity, particularly if the stimuli
are concentrated in the central visual field.

Methods

Equipment

Three experimental setups were used. In each case,
stimuli were stored in a Cambridge Research Systems
(CRS) ViSaGe and presented on a gamma-corrected
CRT monitor (Nokia Multigraph 445X, Philips
MGD403, or Eizo Flexscan T68). All monitors had a
refresh rate of 120 Hz, and mean luminances varied
from 60 cd/m2 to 85 cd/m2 between the monitors. The
stimuli had 12 pixels per carrier cycle for spatial
frequencies of 2 to 4 c/deg. The viewing distance for the
4 c/deg stimuli was 119 cm. At this distance, 48 pixels
on the screen subtended 1 deg of visual arc. The
viewing distance was adjusted to scale the retinal image
to the desired spatial frequency (59.5–119 cm for the
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range 2–4 c/deg). For stimuli with a spatial frequency
below 2 c/deg, the stimulus was first doubled in size on
the screen (24 pixels per carrier cycle) and then the
viewing distance was adjusted appropriately (41.7–83.3
cm for the range 0.7–1.4 c/deg).

Most of the data collection for ASB and DHB was
performed using different experimental setups. To
ensure that this was not responsible for the individual
differences that we found between these observers (see
Results section), ASB and DHB each ran a subset of
the conditions from Experiment 1 on each other’s
equipment. In each case, the details of the results were
consistent within observer rather than within labora-
tory, confirming that the use of different equipment
was not important.

Stimuli

The stimuli for this experiment were luminance-
modulated Cartesian-separable cosine-phase log-Gabor
patches. These were defined in Fourier space by the
product of a one-dimensional log-Gaussian in the
spatial frequency dimension and a one-dimensional
Gaussian in the orthogonal dimension (see appendix C
of Meese [2010] for details). Stimulus contrasts are
expressed as delta-contrast:

cdelta ¼
Lmax � Lmean

Lmean
; ð1Þ

which is linearly related to Michelson contrast for the
stimuli used here, and also in dB re 1% as follows:

cdB ¼ 20 log10ð100cdeltaÞ: ð2Þ
Our stimuli had spatial frequencies of 0.7, 1, 1.4, 2,

2.8, and 4 c/deg and a minimum resolution of 12 pixels/
cycle. This was sufficient to avoid problems with
luminance artifacts that can arise from adjacent pixel
nonlinearity (Garcı́a-Pérez & Peli, 2001). The stimuli
had spatial frequency bandwidths of 1.6 octaves (full-
width at half-height) and orientation bandwidths of
6258 (6half-widths at half-height), which is a good
approximation of individual receptive field properties
in early vision (Meese, 2010). They had orientations of
908 (horizontal), 1358 (left oblique), 458 (right oblique),
and 08 (vertical), as shown in Figure 1. The stimulus
duration was 100 ms.

To reduce extrinsic uncertainty a circular ring
(diameter of three carrier cycles, line width of 1 pixel,
contrast set to 25%) was placed around the target
location and was visible continually. An identical ring
was also used to aid central fixation such that in most
conditions, two rings were visible. The one exception
was when the target was placed in the center of the visual
field, where only a single central ring was needed. In
Experiment 2, the rings were replaced with pairs of dots
as described in the results section for that experiment.

Observers

There were four observers. ASB, DHB, and TSM are
the authors and SAW was another experienced
observer. The observers were 22, 28, 46, and 44 years
old, respectively. Observers wore optical correction

Publication

Spatial freq.

(c/deg)

Stimulus

window/type Size

No. of

samples

within 4.5 deg Orientation

Eccentricity

MeridianCycles Degrees

Pöppel & Harvey, 1973 N/A Bright spot 0.08 deg radius 3 N/A 0–80 H

Hilz & Cavonius, 1974 2–45 Circle 2 deg–5 deg 5 Vertical 0–180 0–23 H

Koenderink et al., 1978a 2–25.5 Square 0.5 · 0.5 deg 4 Horizontal 0–80 0–8 H

Rovamo et al., 1978 1–32 Semicircle 1 deg radius 3 Vertical 0–60 0–30 H & V

Rijsdijk et al., 1980 0.35–6 Plaid patch 1 · 1 cycles 4 H · V 0–36 0–6 H, V, & D

Robson & Graham, 1981 1.5–24 Raised-cosine 4 · 4 cycles 3 Horizontal 0–32 0–21 V

Wright & Johnston, 1983 0.25–9 Rectangle 3.5 deg · 0.7 deg 4 Vertical 0–72 0–12 V

Kelly, 1984 0.5–16 Annulus 12–500 deg2 2 Concentric 0–36 0–12 N/A

Johnston, 1987 2–12 Square 12 · 12 cycles 2 H & V 0–480 0–40 H

Pointer & Hess, 1989 0.05–12.8 Gabor r ¼ 3.2 cycles 1 Horizontal 0–96 0–60 H & V

Rovamo et al., 1992 3 Not specified 6 · 6 cycles 2 Vertical 0–39 0–13 H

Foley et al., 2007 4 Gabor r ¼ 1 cycle 4 Vertical 0–20 0–5 H

Hess et al., 2008 0.5–3 Gabor r ¼ 1 cycle 1 Horizontal 0–30 0–60 H

Present Study 0.7–4 Log-Gabor sfbw: 1.6 oct.

oribw: 625 deg

9 H, V, & D 0–18 0–26 H, V, & D

Table 1. Experimental details from previous studies on the effect of retinal eccentricity on contrast sensitivity. Where spacings varied

across different conditions, we have shown the number of samples within 4.5 degrees for the conditions most similar to ours (i.e., spatial

frequency of 4 c/deg). Abbreviations: H ¼ horizontal; V ¼ vertical; D ¼ diagonals; sfbw ¼ spatial frequency bandwidth (full width at half

height); oribw ¼ orientation bandwidth (6 half width at half height).
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appropriate for the viewing distances tested when
required. All experiments were performed binocularly
with natural pupils.

Procedures

In Experiment 1, 4 c/deg log-Gabor stimuli of all
four orientations were presented at four eccentricities
(0, 6, 12, and 18 cycles; equivalent to 0 deg, 1.5 deg, 3
deg, and 4.5 deg of visual angle) along eight hemi-
meridians (08, 458, 908, 1358, 1808, 2258, 2708, and 3158)
radiating from the center of the visual field. This is
equivalent to four meridians using theþve and –ve sign
convention in Figure 2. Stimuli were blocked such that
in each session, thresholds were determined for a single
stimulus orientation at a single position in the visual
field (i.e., there should be no extrinsic uncertainty about
the stimulus properties). There were 100 blocks (the 25
locations in Figure 3 · 4 patch orientations) that were
repeated in a randomized order four times by two
observers (ASB and DHB). Two more observers (SAW
and TSM) performed a subset of the conditions.

Thresholds were measured using a two-interval
forced-choice (2IFC) procedure where each trial
contained two temporal intervals, each marked by a
beep. In one randomly chosen interval the stimulus was
presented at a contrast selected by a three-down, one-
up staircase procedure. The other interval was blank
(i.e., it was held at mean luminance). The observer’s
response was made by pressing one of two buttons to
indicate which interval they thought contained the
target. Feedback on correctness of response was
provided by the pitch of an additional beep after the
response. Each condition was repeated four times by
each observer and the thresholds (calculated using a
probit fit to the staircase data) were then averaged.

The conventional procedure for measuring contrast
sensitivity at various eccentricities is to vary the
position of the fixation mark while keeping the target
patch in the center of the display. This design ensures
that the results are not affected by any spatial
inhomogeneities in the equipment, such as variation
of mean luminance across the display (Garcı́a-Pérez &
Peli, 2001). However, our prime motivation for
carrying out this study was to estimate the spatial
inhomogeneity of sensitivity across a display field so

that this could be used in subsequent models of area
summation of contrast (e.g., see Baker & Meese, 2011;
Meese & Summers, 2012). For this reason, the fixation
ring was always presented in the center of the display
and the target positions were varied across the display.
A control experiment using the conventional method
and a subset of the conditions from Experiment 1
confirmed that that our principal findings (e.g.,
bilinearity) were the same using either method.

The methods for our other experiments were similar
to those used for Experiment 1, with detailed differences
described in the relevant part of the Results section.

Results

Experiment 1: Sensitivity across the central
visual field for four meridians and four
stimulus orientations

Contrast sensitivity along each of the eight hemi-
meridians is shown in Figure 3 for two observers. The
rates of decline as determined by linear regression are
shown in Table 2. Consistent with previous results (e.g.,
Pointer & Hess, 1989), sensitivity was greatest at the
center of the visual field, and the decline in sensitivity
was steeper along the vertical meridian than along the

Figure 1. Examples of the cosine-phase Cartesian-separable log-

Gabor stimuli used in the experiments.

Figure 2. Spatial layout of the main stimulus position used in

Experiment 1. Note the four meridians (vertical, horizontal, left

oblique, and right oblique) and the four eccentricities (0, 6, 12, and

18), expressed in carrier cycles. Finer sampling was used in

Experiment 2 and Experiment 3. The letter F labels the central

fixation circle and was not present in the experiment. Theþve and

-ve labels signify our sign convention used with the four

meridians. Alternatively, we sometimes find it convenient to refer

to the directions of the eight hemi-meridians as they are labeled

around the perimeter of the figure.
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horizontal meridian. The diagonal meridians appear to
show a decline in sensitivity that is intermediate
between those for the horizontal and vertical meridians.

The main effect of eccentricity was confirmed by
statistical analyses (not shown), but our deeper interest
involved the factor of orientation. A pair of three-way
repeated-measures analysis of variance (ANOVA) tests
was performed using predictive analytics software
(PASW Statistics; version 18.0, IBM Corp.) for each
observer. (Results from Mauchly’s test of sphericity are
also given. In all cases we found no significant violation
of sphericity and therefore no correction of the
ANOVA was necessary.) One of the tests was for
factors of eccentricity, hemi-meridian, and absolute
patch orientation. The other test was the same, except
that patch orientation was defined relative to the
meridian that the stimulus was placed on. For example,
a right oblique patch placed on the 2258 to 458 meridian
(see Figure 3) would have an absolute orientation of
458, but a relative orientation of 08. These analyses were
designed to test for the oblique effect and a relative
orientation effect, respectively.

Absolute orientation effects

Effects of absolute patch orientation were found for
both ASB (Mauchly’s test n.s. v2(5) ¼ 5.45, p ¼ 0.43;
ANOVA F(3, 9) ¼ 11.50, p , 0.01) and DHB
(Mauchly’s test n.s. v2(5) ¼ 4.01, p ¼ 0.61; ANOVA
F(3, 9) ¼ 5.52, p ¼ 0.02), but were small and not
consistent across observers. ASB was most sensitive to
vertical patches and least sensitive to horizontal patches
(compare blue and red symbols in the top four panels
of Figure 3), whereas DHB was most sensitive to
horizontal patches and least sensitive to left-oblique
patches (compare red and magenta symbols in the
lower four panels of Figure 3).

We performed three paired Bonferroni-corrected t
tests per observer to further investigate the orientation
effects. In the first analysis, two t tests compared each
patch orientation with its orthogonal patch orientation
(i.e., horizontal vs. vertical, left oblique vs. right oblique)
pairing by location in the visual field (meridian and
eccentricity). In a second analysis we averaged the results
across (a) the vertical and horizontal stimulus orienta-
tions and (b) the two oblique stimulus orientations and
compared these two sets of results to test for an overall
oblique effect. ASB showed significant differences in
sensitivity between the horizontal and vertical stimuli and
between the two oblique orientations (p , 0.01 in each
case); however a small overall oblique effect that was
found in the second analysis (0.13 dB) was not significant
(p ¼ 0.23). For DHB there was no difference between
either the horizontal and vertical conditions (p¼ 0.24) or
the two oblique conditions (p¼0.09). The overall oblique
effect was significant for DHB (p , 0.01) but small in size
(0.66 dB). This effect is smaller than those found at higher

spatial frequencies (e.g., Campbell et al., 1966 found
effects in the order of 2–6 dB for spatial frequencies in the
range of 10–30 c/deg), though it is well known that the
oblique effect diminishes at lower spatial frequencies
(Campbell et al., 1966; Long & Tuck, 1991) to levels
around those found here, or a little above. Overall, we
conclude that for the stimulus conditions here the
absolute orientation effects were of little concern, since
when they were statistically significant they were
inconsistent across observers and were small in size.

Relative orientation effects

Comparing the mean contrast detection threshold
of patches aligned with the meridian they were placed
on with that of patches having the orthogonal
orientation, we found a small radial advantage for

Figure 3. Contrast sensitivity from Experiment 1 for ASB (top) and

DHB (bottom). Different plots are for the four different meridians,

as shown by the insets. Within each plot the different symbols are

for the four different stimulus orientations. The spatial frequency

was 4 c/deg. Error bars in this and all other figures show 61 SE

where larger than symbol size. For clarity, the results are

normalized to the sensitivity of the central vertical patch for each

observer.
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both ASB (0.25 dB) and DHB (0.56 dB). The ANOVA
that tested relative orientation (across all four
orientations) found this effect to be nonsignificant
for ASB (Mauchly’s test n.s. v2(5) ¼ 4.39, p ¼ 0.56;
ANOVA F(3, 9) ¼ 1.54, p ¼ 0.27), but significant for
DHB (Mauchly’s test n.s. v2(5) ¼ 0.44, p . 0.99;
ANOVA F(3, 9) ¼ 4.07, p ¼ 0.04). However, despite
the result for DHB there were no significant pairwise
comparisons across aligned and orthogonal patches.

Previous studies that have reported an effect of
relative orientation (Rovamo et al., 1982; Sasaki et al.,
2006) have performed the experiment at greater
eccentricities (25 deg and 15.5 deg, respectively), so it
is possible that relative orientation effects are restricted
to the more eccentric locations. To test this possibility,
we looked for, but did not find, a two-way interaction
between eccentricity (ASB: Mauchly’s test n.s. v2(2) ¼
0.74, p¼0.69; DHB: Mauchly’s test n.s. v2(2)¼3.30, p¼
0.19) and relative orientation (ASB: ANOVA F(6, 18)¼
0.59, p¼0.74; DHB: ANOVA F(6, 18)¼2.09, p¼0.11).
However, the results of a supplementary experiment
(not shown) confirmed that when we approximated the
conditions of Sasaki et al. (2006) by using larger stimuli
(we halved our initial bandwidths) at a greater
eccentricity (62 cycles at 4 c/deg) we did find a relative
orientation effect. Thus, while we can confirm the
existence of this effect, we also conclude that it is not
sufficiently large or consistent to be relevant to the
central visual field, for studies of this type at least.

Results for vertical stimuli

As there was very little effect of target orientation,
our other two observers (SAW & TSM) performed the
experiment for vertical stimulus patches and the
vertical and horizontal meridians only. Their results
are shown in Figure 4 along with the corresponding
results for ASB and DHB, replotted from Figure 3.
Overall, the decline in sensitivity with eccentricity was
slightly steeper than that found in previous studies. For
example, Pointer and Hess (1989) found declines of 0.5
and 0.33 dB/cycle for the vertical and horizontal
meridians, respectively. These are shown by the dashed
lines in Figure 4, against which our results can be seen
to decline more rapidly.

Casual inspection of Figures 3 and 4 suggests that
the decline in log contrast sensitivity with eccentricity is

not linear. For most observers and hemi-meridians
there was a steep initial decline followed by a shallower
decline. However, the sampling of eccentricity in this
experiment was not sufficiently fine to identify the
location of the transition between the two slopes (the
knee point, see below) with much precision. Therefore,
we repeated some of the conditions from Experiment 1
using a finer sampling regime.

Experiment 2: Identifying the location of the
knee point using finely-spaced targets

Experiment 2 was similar to Experiment 1, but only
the vertical and horizontal meridians were tested and the
target orientation was always vertical. The experiment
was performed by all four observers. Retinal eccentricity
was sampled more finely than in Experiment 1, spanning
0–9 cycles in intervals of 1.5 cycles. However, a problem
with the fine spacing in this experiment was that it would
have caused an overlap between the ring that was used
to aid fixation and that which was used identify the
target location. To avoid this problem each ring was
replaced by a pair of dots, such that the target was
flanked by one pair of dots and the central fixation point
was flanked by another pair of dots. The pair of dots
was oriented either horizontally or vertically when
testing the vertical or horizontal meridians, respectively.

The results from Experiment 2 are shown in Figure
5, averaged across all four observers. A comparison of
the data points against the extrapolated gradient of the
initial decline (the dotted line) emphasizes the nonlinear
character of the function. Although the knee point did
not fall within the range of the fine sampling results
(triangles), taken together with the results from
Experiment 1 (circles, averaged from the same four
observers for the same stimulus configurations) they
suggest that the knee point is placed at about nine
cycles. This is addressed more thoroughly by our
detailed account of the curve fitting in a later section.

Experiment 3: Does the knee point depend on
stimulus cycles or visual angle?

In Experiments 1 and 2, only a single spatial frequency
was used and so it did not matter whether the eccentricity
axis was plotted in terms of stimulus cycles or visual

Observer

Individual hemi-meridian fall-off fits (dB/cycle) Averaged fits for meridians (dB/cycle)

08 458 908 1358 1808 2258 2708 3158 Vertical Horizontal Diagonal

ASB 0.72 0.61 0.55 0.64 0.65 0.65 0.55 0.59 0.69 6 0.04 0.55 6 0.00 0.62 6 0.01

DHB 0.79 0.70 0.79 0.90 0.92 0.86 0.74 0.84 0.86 6 0.07 0.77 6 0.03 0.83 6 0.04

Table 2. Gradient of decline in log contrast sensitivity (in dB/cycle) for linear fits to the data from Experiment 1. Averages are given as the

mean 61 standard error.
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angle. However, we wondered which one of these, if
either, the knee point depends on. For example, if it were
determined by retinal anatomy such as cone density
(Curcio, Sloan, Kalina, & Hendrickson, 1990; see
Appendix A) we might expect degrees of visual angle to
be the determinant, whereas if spatial frequency depen-
dent cortical processes are involved then eccentricity as
measured in stimulus cycles might be the critical factor.
Experiment 3 was based on a subset of the conditions
from Experiment 1, using horizontal log-Gabors placed
along the 1808 (inferior) hemi-meridian. The sampling of
the hemi-meridian was twice that used in Experiment 1
(i.e., from 0–18 cycles in intervals of three cycles). The
experiment was conducted using six spatial frequencies
(0.7, 1, 1.4, 2, 2.8, and 4 c/deg).

Results are shown in Figure 6 (the same data are
shown in the two columns but plotted against different

x-axes). As expected, contrast sensitivity decreased with
increasing spatial frequency. In agreement with previ-
ous studies (Robson & Graham, 1981; Pointer & Hess,
1989), the functions for each spatial frequency are
approximately parallel when eccentricity is expressed in
carrier cycles (left column) but the family of curves
splays outwards when the same results are plotted as
functions of visual angle (right column). This confirms
previous conclusions that the overall rate of decline in
contrast sensitivity with eccentricity depends on the
distance from the central fovea expressed in number of
stimulus cycles. However, our main aim here was to
establish whether this was also the case for the knee
point. Casual inspection of Figure 6 suggests that it is.
We consider this more closely in the following
modeling section.

Descriptive modeling

Bilinear model equations

We fitted descriptive model curves to our data for
two reasons. First, we wanted to produce convenient
quantitative summaries of our results. Second, we
wanted to determine whether our casual analyses of the
results were correct. For example, were we justified in

Figure 4. Contrast sensitivity across the vertical (top) and

horizontal (bottom) meridians for each of the four observers.

The stimuli were vertical log-Gabor patches with a spatial

frequency of 4 c/deg (Experiment 1). The eccentricity is

expressed in stimulus carrier cycles, the visual angle of the range

shown here is�4.5 deg to þ4.5 deg. The black dashed lines are

for comparison and indicate the overall decline in sensitivity with

eccentricity for the vertical (0.5 dB/cycle) and horizontal (0.33 dB/

cycle) meridians estimated by Pointer and Hess (1989). These

were derived from a much greater range of eccentricities (0–96

cycles) than those investigated here. The initial decline in

sensitivity measured here is steeper than that found by Pointer

and Hess (1989) but at greater eccentricities the two studies

become more similar.

Figure 5. Contrast sensitivity from Experiment 2 using the fine-

positioning regimen. Results are averaged across four observers

(ASB, DHB, SAW, and TSM). The triangles are for this

experiment and the circles are for the same four observers for

the vertical patches from Experiment 1. The curve-fitting is

explained in the Descriptive modeling section below. It is an eight-

parameter fit across the four panels (see forward to Table 4 for the

parameter values for fits to the results for individual observers and

the averaged results shown here). The overall RMS error for this

fit is 0.404 dB. The dotted lines extrapolate the initial (m1) gradient

(see Descriptive modeling section).
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claiming that the initial decline in contrast sensitivity
with eccentricity is steeper than the subsequent decline?

We devised an equation that produced a bilinear
curve as follows:

S ¼ �log10
10m1E

10ðm1�m2Þv þ 10ðm1�m2ÞE

� �
þ K; ð3Þ

where S is contrast sensitivity (expressed in dB) and E is
eccentricity expressed in either degrees of visual angle
or in stimulus carrier cycles (e.g., compare the two
columns in Figure 6). The free parameters are m1 and
m2, which control the slopes of the first and second
limbs of the function, respectively (they are the
gradients of negative slopes in dB/cycle), v, which
controls the location of the knee point (in the units of
eccentricity), and K, which controls the vertical
position of the function. To impose a convenient
meaning on K, we set K¼ k1þ k2, where k1 is given by:

k1 ¼ log10
1

10ðm1�m2Þv þ 1

� �
: ð4Þ

With this arrangement, the degree of freedom transfers
from K to k2, which is expressed in dB re 1% as defined
above (Equation 2). It is the observer’s contrast
sensitivity to a stimulus presented in the center of the
fovea (i.e., the vertical dB offset of the eccentricity
function from 0 dB).

Equations 3 and 4 do not allow a fit where the initial
slope is shallower than the subsequent slope. A peculiar
property of this equation is that if m1 is set lower than
m2 then their meaning switches (i.e., m2 describes the
initial slope and m1 describes the subsequent slope). As
this would cause problems in the fitting, the parameters
were constrained such that m1 � m2.

A bilinear function that flexes in the opposite
direction, where the first limb is shallower than the
second, is produced by adjusting Equations 3 and 4 to
produce Equations 5 and 6 as follows:

S ¼ log10
10�m1E

10ðm1�m2Þv þ 10ðm1�m2ÞE

� �
þ K ð5Þ

and

k1 ¼ �log10
1

10�ðm1�m2Þv þ 1

� �
: ð6Þ

For these equations parameters were constrained
such that m1 � m2. Because of the shapes that these
functions produce when plotted as radial functions in
3D (we explain this more fully in the Discussion), we
refer to Equation 3 as the witch’s hat and Equation 5 as
the samurai hat. To reiterate, for each hat, m1 and m2

describe the absolute gradients of the first and second
limb of a bilinear function. For the witch’s hat, m1 is
greater than or equal to m2, whereas for the samurai
hat, m1 is less than or equal to m2.

Which hat fits best? The witch hat fits best

The fitting of Equations 3 and 5 was done using
fminsearch in Matlab, which minimized the root mean
square (RMS) error of the fit (in dB) using a simplex
algorithm.

Our initial aim was to determine whether a bilinear
description of our results is justified over a linear
description. We did this by comparing the RMS errors
of the fits by the two different hat functions to the
results from each hemi-meridian that we measured.
Each hemi-meridian was fitted independently with four
free parameters: m1, m2, v, and k2. If a linear decline in
sensitivity was more appropriate on average, then
neither hat should win out over the other. The results of
this analysis applied to each of the three main
experiments and the two control experiments described
in the Methods section (the more traditional target
central on monitor presentation paradigm and the

Figure 6. Contrast sensitivity from Experiment 3 for six spatial

frequencies (different symbols). Different rows are for different

observers (ASB, DHB, and SAW). The same results are shown

against eccentricity in cycles of the stimulus carrier frequency (a,

c, and e) and degrees of visual angle (b, d, and f). The solid

curves are the fits of bilinear functions, with different fitting

methods for the two columns (see modeling section). Parameter

values for the fits are shown in Table 3. Grey dashed lines show

the positions of the knee points (m) and the m1 gradient

parameters (see Descriptive modeling section).
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equipment swap control) are shown in Figure 7. In the
great majority of cases (71 out of 76) the RMS error for
the witch’s hat was lower than for the samurai hat. A
sign test showed that this difference was highly
significant for each of the three main experiments (p
, 0.001). For both control experiments the witch’s hat
always outperformed the samurai hat; this was
statistically significant where sufficient data had been
gathered for it to be so (p ¼ 0.031 for the fixation
control, p¼ 0.125 for the equipment control).

How many parameters do we need?

In general, our model (Equation 3) was designed to
fit the results from individual hemi-meridians, which
involves four free parameters. As the overall sensitivity
parameter (k2) should be common to all meridians, it
follows that the number of free parameters needed to fit
a family of n hemi-meridians is 1 þ 3n. However, by
yoking other parameters across different meridians it is
possible to reduce the number of free parameters while
maintaining a good fit to the data. We were interested
in how far this could be taken because reducing the
number of parameters might allow an estimate to be
made of an entire witch’s hat from a smaller dataset.
For example, we wondered whether we could justify
collapsing across the left and right sides of the
horizontal meridian (for the binocular stimulus presen-
tation used here).

Akaike’s information criterion (AIC; Akaike, 1974;
see also Peirce, 2007) was used to evaluate the benefit of
the free parameters in several variants of the model by
playing off the number of free parameters against the
RMS error of the fit. The AIC value for a model is
defined as:

AIC ¼ n logðRMSeÞ þ 2p ð7Þ
where n is the number of data points, RMSe is the root
mean square error of the model fit to the data, and p is
the number of model parameters.

We considered several model variants involving
various different symmetries across the visual field.
The variants with the fewest and the greatest number of
constraints had 13 and four free parameters, respec-
tively. The former was capable of producing the most

irregular surface, whereas the latter was rotationally
symmetric. The results of fitting these model variants to
the data from Experiments 1 and 2 (vertical stimuli
placed along four cardinal hemi-meridians) are shown
in Table 3. The model variant with the lowest AIC score
was the eight-parameter model, which yoked the knee
point position for all directions and mirrored the

Figure 7. Comparison of the quality of the fits using the witch’s hat

and the samurai hat functions. RMS errors for the two fitting

methods are compared against each other in a scatter plot for the

three main experiments and the two control experiments. For

convenience of presentation, RMS errors were capped at 3 dB

(i.e., points where the RMS error was . 3 dB had this value reset

to 3 dB). This was necessary for just a single point. Points on the

dashed line y ¼ x indicate results that were equally well fit by a

witch’s hat or a samurai hat function (usually because they were

best fit by a linear function). Above-left of this line, the results were

best fit by a witch’s hat function, and below-right of this line the

results were best fit by a samurai hat function. The histogram in

the upper right shows the distribution of the differences between

the witch’s hat and the samurai hat RMS errors, using the same

color-code as in the scatter plot.

Model description Free parameters RMS Error (dB) AIC

Separate m1, m2, and m for each direction. Global k2. 13 0.38 �13.4
Separate m1, m2, and m for superior and inferior, combined for horizontals. Global k2. 10 0.40 �17.7
Combined m1, m2, and m for horizontals and for verticals. Global k2. 7 0.45 �19.0
Global m1, m2, m, and k2. 4 0.69 �7.5
Combined m1, m2 for horizontals. Global k2 and m. 8 0.40 �21.2*

Table 3. Number of parameters, RMS errors, and Akaike’s information criterion for fitting the results from the four hemi-meridians in

Experiments 1 and 2 (averaged across four observers) with different versions of the bilinear witch’s hat model. The model variant in the

bottom line is the one fitted to Figure 5.
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gradients across the horizontal meridian but allowed
different gradients for the superior and inferior hemi-
meridians. Nested model hypothesis testing also showed
this model to provide the best fit when the number of
parameters required is taken into account (F-statistic,
with significance set at p¼ 0.05). Increasing the number
of free parameters from 8 to 13 produced negligible
improvement in the RMS error of the fit (compare top
and bottom rows in Table 3), providing further
confirmation that our choice of the eight-parameter
variant is sound.

The witch’s hat provides a good fit to our
cardinal results

Fits of the eight-parameter model above are shown
for the vertical stimulus patches from Experiments 1
and 2 (for which we had data from all four observers)
in Figure 5. To reiterate, the offset parameter k2 and
the knee parameter v were each yoked across the four
meridians, and m1 and m2 were yoked across the two
horizontal hemi-meridians. With this simplification, the
fitting procedure placed the knee point at 8.5 cycles (see
Table 4). Increasing the number of free parameters by
two so that v was yoked in the same way as m1 and m2,
produced no improvement in the quality of the fit and
did not change our conclusions about the location of
the knee point.

Interpolation between cardinal meridians

We have measured the decline in contrast sensitivity
along several hemi-meridians, but how can this
information be combined to summarize sensitivity
across a two-dimensional retina? One way is to
construct an attenuation surface that interpolates
radially between the fits to the four cardinal hemi-
meridians. Bilinear fits to the results from Experiment 1
collapsed over target orientation (for ASB and DHB)
were used to define a witch’s hat shaped attenuation
surface (Figure 9) by allowing the parameters to vary
elliptically with the angle of the hemi-meridian, and
where these conic parameters were controlled separate-

ly for each quadrant (the details for this are provided in
the Matlab code in Appendix B).

To check the success of our approach we compared
the sensitivity predicted by the witch’s hat derived from
the four cardinal hemi-meridians to the data gathered
from the four diagonal hemi-meridians. This is to judge
how well the solid cyan curves are approximated by the
dashed purple curves in Figure 8. For both observers,
the RMS errors for these predictions (dashed purple
curves, no free parameters) compared well with the
general quality of fits that were achieved to the larger
data sets in Table 3 (see figure caption for details).

Scale invariance and the location of the knee
point

The model fitting to the results in Figure 5 placed the
knee point at 8.5 cycles for 4 c/deg stimuli. Here we ask
whether this result generalizes across other spatial
frequencies, or whether the knee point is better
described in terms of a fixed visual angle (e.g., 2.125
deg). To test this we fitted the model to the results from
Experiment 3 by yoking all of the parameters for a
single hemi-meridian across spatial frequency, with the
exception of the overall sensitivity parameter, k2. For
each of the three observers, we tested whether the fit
was better when m1, m2, and v were yoked in terms of
carrier cycles or scaled in terms of degrees of visual
angle. Testing every combination created the eight
factorial set of model variants in Table 5.

For each of the three observers, the family of spatial
frequency functions (Figure 6) were better fit when the
three parameters were yoked by cycles than by degrees
of visual angle (compare first and last columns in Table
5). A comparison of these two methods of fitting is
shown for each observer in the left and right columns of
Figure 6. For ASB, SAW, and the average of the three
observers, yoking by cycles for all three parameters
produced the best fits overall, whereas for DHB,
slightly better fits were achieved when the knee
parameter was yoked by degrees of visual angle,
though this difference was marginal (see the entries
marked by asterisks in Table 5).

Observer

Superior Inferior Horizontal Global

m1 m2 m1 m2 m1 m2 m k2

ASB 1.05 0.40 1.05 0.21 0.76 0.31 8.0 8.6

DHB 1.05 0.56 1.31 0.27 1.00 0.47 8.2 12.6

SAW 1.01 0.49 1.09 0.33 0.92 0.44 10.5 12.2

TSM 1.38 0.49 1.35 0.28 1.22 0.45 7.9 8.5

Average 1.12 0.50 1.20 0.28 0.97 0.43 8.5 10.5

Table 4. Model fit (eight-parameter version, see Table 3) to the data from Experiments 1 and 2 for each observer and to the averaged data

of the four observers.
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The parameters and RMS errors for the scale
invariant model fits are shown in Table 6. Note that the
sequence of k2 offsets describes the contrast sensitivity
function for the range of spatial frequencies tested.

The average value of the knee parameter (v) was 7.5,
which compares favorably with the average value of 8.5
derived from the larger data set in Experiments 1 and 2.
However, we did note that the current estimates were

more variable across observers than they had been
previously (Table 4). Fitting again with the knee
position fixed to that reported for each observer in
Table 4, we found the same scale invariance for a
negligible decline in the RMS errors (not shown).

Discussion

The decline in log contrast sensitivity with
eccentricity is not linear

Previous research (Robson & Graham, 1981; Pointer
& Hess, 1989; Foley et al., 2007) has reported a linear
decline in log contrast sensitivity with eccentricity.
However, our detailed investigation of the central 98 of
the visual field has shown that the decline is nonlinear
and is well described by a bilinear function for stimuli
within the 0.7–4 c/deg spatial frequency range. More-
over, the initial decline (1.12 dB/cycle) is much steeper
than the classical reports of 0.3–0.5 dB/cycle (Pointer &
Hess, 1989) and extends to a radius of around 8.5 cycles
(Table 4), though it is difficult to be precise owing to
some of the variation that we observed (Table 6).
Nevertheless, our results imply that centrally placed
target gratings with diameters of this order are subject
to much more severe attenuation with eccentricity than
has often been supposed. For example, sensitivity to a 4
c/deg patch of grating at an eccentricity of 2.125 deg is
only one third of that at its center.

The average value of m2 for the four cardinal
meridians in Table 4 was 0.41 dB/cycle. Thus, the
gradients of the second limbs are much closer to the
classical result (0.3–0.5 dB/cycle) than are those of the
initials limbs. This is probably because previous studies
have concentrated on the wider visual field, where the
second limb might be expected to dominate the
analysis, and have used fairly large stimulus patches,
thereby blurring the transition between the two limbs.
However, close inspection of some of the results in the
extensive Pointer and Hess (1989) study does reveal
several instances of the bilinearity that we are
advocating (e.g., see their figure 2d).

The decline in contrast sensitivity is scale-
invariant within our tested range

Our finding of a decline in contrast sensitivity that is
scale-invariant is in agreement with previous psycho-
physical results (Robson & Graham, 1981; Pointer &
Hess, 1989). However, sensitivity functions that are
vertical translations of each other when eccentricity is
expressed in stimulus carrier cycles do not derive from
retinal physiology in a straightforward way. For
example, we tested a model that predicted contrast

Figure 8. Comparison of the predictions and direct fits to the

results for the diagonal meridians. The solid cyan curves are

direct fits of the witch’s hat to the data involving 13 free

parameters (equal to the number of data points). The dashed

purple curves are predictions derived by radial interpolation from

the cardinal hemi-meridians using the witch’s hat (no free

parameters). Data points are the thresholds for stimulus patches

presented along the diagonal hemi-meridians collapsed across

patch orientation. For observer ASB the RMS error for the direct

fit was 0.03 dB and the RMS error from the interpolated fit was

0.63 dB. For DHB the RMS errors were 0.09 dB and 0.96 dB,

respectively. The dotted grey lines are extrapolations of the m1

gradient from the direct fit.
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sensitivity from the signal to noise ratios of ideally-
combined cone responses (as proposed by Ahumada &
Watson, 2011) and found that the rate of decline was
constant for different spatial frequencies when eccentric-
ity was expressed in degrees of visual angle, not carrier
cycles (see Appendix A). The basis by which the scale
invariance of our result is derived remains unclear to us.

Orientation effects are either weak or absent
in the central visual field

We found only marginal effects of orientation (either
absolute or relative) suggesting that a good estimate of

the attenuation surface within the central visual field
can be achieved by gathering data for just a single
target orientation. We also confirmed that a substantial
relative orientation effect is found only at greater
eccentricities than those concentrated on here.

Meridional anisotropies and constructing the
witch’s hat

The decline in contrast sensitivity was shallower
along the horizontal meridians than the superior
vertical meridians (cf. Pointer & Hess, 1989; Foley et
al., 2007; Abrams et al., 2012). This effect was evident

Figure 9. (a) A contour map (attenuation surface) of contrast sensitivity across the central visual field. The map is derived from the eight-

parameter witch’s hat (see Table 2) fitted to the averaged results of all four observers for vertical 4 c/deg stimuli (shown in Figure 5). (b) A

surface plot showing the same attenuation surface. The shape of this surface prompted us to call it a witch’s hat.

Parameter

Model variant (column headings indicate the form of yoking)

m cy m deg

m1 cy m1 deg m1 cy m1 deg

m2 cy m2 deg m2 cy m2 deg m2 cy m2 deg m2 cy m2 deg

ASB 0.740* 0.827 1.143 2.258 1.099 1.726 1.253 2.359

DHB 1.157 1.185 0.977 1.877 0.757* 2.142 1.007 1.938

SAW 0.679* 1.322 1.744 3.000 1.233 9.380 1.445 3.272

Average 0.594* 1.238 0.864 2.290 0.745 1.784 0.981 2.422

Table 5. RMS errors for 2 · 2 · 2 factorial model variants using each possible combination of the two methods of scaling the model

parameters (by carrier cycles or visual angle). The model variants were fit to the family of spatial frequency functions collected from each

of the three observers in Experiment 3 (Figure 6) and the average of those observers. When a parameter depended on carrier cycles no

scaling was required, whereas when it depended on degrees of visual angle it was multiplied by the spatial frequency of the stimulus.

Table entries are RMS errors (in dB) and an asterisk indicates the lowest error for each observer. The column headings indicate whether

yoking was in cycles (cy) or degrees (deg). Typically, the RMS errors were lower when the parameters were yoked in cycles.
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in both limbs of the bilinear functions for all four
observers confirming the horizontal–vertical anisotro-
py, though the effects were quite small (see Table 4).
More striking was the finding that the second slope
(m2) of the inferior meridian was almost half that for
the superior meridian, confirming the vertical-meridian
anisotropy (Abrams et al., 2012). In fact, the second
slope of the inferior meridian was even shallower than
for the horizontal meridians.

Our success in using the results from the cardinal
meridians to predict sensitivity for the diagonal merid-
ians confirms Abrams et al.’s (2012) conclusion that the
various benefits and inferiorities measured for different
hemi-meridians vary smoothly with radial angle. It also
shows that a good estimate of the attenuation surface
can be achieved by judicious choice of sampling. For
example, the different bilinear functions for the hori-
zontal, superior, and inferior meridians suggest that the
measurement of those three meridians is sufficient.
Furthermore, because the curves for the different spatial
frequencies are approximately vertical translations of
each other when expressed in dB/cycle (Figures 6a, c, &
e), this allows an attenuation surface derived from one
spatial frequency to be generalized across other spatial
frequencies when expressed in cycles of the carrier.

The witch’s hat that we radially interpolated from
the eight-parameter variant of the model outlined in the
Descriptive modeling section is shown in Figure 9 (the
details of the procedure are embedded in the Matlab
code in Appendix B). These summarize our estimate of
the spatial variation of contrast sensitivity across the
central visual field. The general elliptical shape of this
surface bears some similarity to a proposal by Pöppel
and Harvey (1973), though it differs in its detail. For
example, the shallow decline in sensitivity for the
second limb in the inferior field tends to raise the brim
of the hat at its front.

Summary and conclusions

The witch’s hat description of the variation of
binocular contrast sensitivity across the central visual
field provides a more detailed account of the inhomo-
geneity than has previously been available. This is of
value for any study involving detailed modeling of

spatial pattern vision at contrast detection threshold in
the central visual field, such as the results from
Modelfest (Carney et al., 2000).
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Peripheral vision and pattern recognition: A review.
Journal of Vision, 11(5):13, 1–82, http://www.
journalofvision.org/content/11/5/13, doi:10.1167/
11.5.13. [PubMed] [Article]

Virsu, V., & Rovamo, J. (1979). Visual resolution,

contrast sensitivity, and the cortical magnification
factor. Experimental Brain Research, 37, 475–494.

Wright, M. J., & Johnston, A. (1983). Spatiotemporal
contrast sensitivity and the visual field locus. Vision
Research, 23(10), 983–989.

Appendix A

Cone density fails to predict scale invariance

The cone density data of Curcio et al. (1990) were
collapsed over four hemi-meridians and fitted by a 10th
order polynomial to give density as a function of
eccentricity (Figure A1). This one-dimensional function
was extended to two dimensions (d) by treating it as a
radial function. Following Anderson, Mullen, and Hess
(1991), this was used to simulate a square cone matrix.
(For ease of exposition we use the one-dimensional
index i for the spatially two-dimensional functions in
this appendix). A contrast attenuation factor (a) was
calculated from the cone density (Ahumada & Watson,
2011; Anderson, Mullen, & Hess, 1991) as follows:

ai ¼
ffiffiffiffi
di

p
: ðA1Þ

This function was normalized to have a gain of unity at
the origin (the central point of fixation).

The attenuation surface derived from the cone
density function was incorporated into a model that
combines responses from individual locations over
space in order to predict the relative sensitivity to log-
Gabor patches at different eccentricities (0 deg–12 deg
of visual angle) and spatial frequencies (0.7–8.0 c/deg).

The predictions were calculated as follows. The
signal (s) at each of n locations (i) was multiplied by the
attenuation factor (a). Matching a template to the
expected signal resulted in each of these terms being
squared (see the numerator of Equation A2), after
which they were scaled by the stimulus contrast (c). We
assumed the signal at each location to be perturbed by
independent Gaussian noise with unit standard devia-
tion. Assuming an ideal observer, the noise is also
weighted by the template. The standard deviation of
the noise at each location was squared, and then those
variances summed and the square root taken to find the
standard deviation of the combined noise. Therefore,
the signal-to-noise ratio (SNR) is given by:

SNR ¼

Xn
i¼1
ðcs2i a2i Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
ðs2i a2i Þ

s : ðA2Þ
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Simplifying Equations A2 for a contrast of unity and
substituting =d for a gives the equation that we used to
create the curves shown in Figure A2:

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
ðs2i diÞ

s
: ðA3Þ

The curves in Figure A2 are close to parallel when
eccentricity is expressed in degrees but diverge when it
is expressed in stimulus carrier cycles. The prediction
for the decline based on cone density shown here is
most similar to our scale-invariant witch’s hat result
when the spatial frequency is around 2 c/deg (con-
firmed by a curve fitting procedure, not shown). This
may account for why previous models that have used
an attenuation surface based on cone density could
provide acceptable fits for stimuli with spatial frequen-
cies in that range (e.g., Ahumada &Watson, 2011). The
lack of scale invariance shown here does not depend
critically on our assumptions about how the signal and/

or noise are combined over space. Different assump-
tions produced predictions with the same form as those
here, but with slopes of uniformly steeper or shallower
gradients.

Appendix B

Matlab code for the witch’s hat

The Matlab code below produces a witch’s hat
attenuation surface from the eight-parameter fit, with
the peak at 0 dB (k2 is discarded).

Figure A2. Contrast sensitivity predicted by the signal-to-noise

ratios derived from the cone density data from Curcio et al. (1990)

and Equation A3. Eccentricity is plotted as a function of carrier

cycles and visual angle in the left and right columns respectively.

Top: Each curve is normalized to the SNR for the 0.7 c/deg patch

at an eccentricity of 0 deg. Bottom: Each curve is normalized to

the SNR at an eccentricity of 0 deg for that spatial frequency.

Figure A1. A one-dimensional polynomial fitted to the cone

density data (not shown) from Curcio et al. (1990). A two-

dimensional version was derived by treating this as a radial

function. The two-dimensional version is the function d in our

equations in this appendix.
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