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ABSTRACT  

    By conducting point-by-point inscription in a continuously moving slab of a pure fused silica 

at the optimal depth (170 µm depth below the surface), we have fabricated a 250-nm-period 

nanostructure with 30 nJ, 300 fs, 1 kHz pulses from frequency-tripled Ti:sapphire laser. This is 

the smallest value for the inscribed period yet reported, and has been achieved with radical 

improvement in the quality of the inscribed nanostructures in comparison with previous reports. 

The performed numerical modeling confirms the obtained experimental results.  
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1. Introduction   

    In 2004, two groups independently reported the application of a point-by-point (PbP) 

technique to fibre Bragg grating (FBG) inscription in standard non-photosensitive fibers [1-3]. 

Both groups used tightly-focussed femtosecond (fs) IR laser (λ = 800 nm) radiation and a sub-

micron precision positioning system. The FBGs produced exhibited either fourth-order (Λ = 2.14 

µm) [1] or from first- to fourth-order (with the strongest second-order, Λ = 1.07 µm) [2,3] 

periods for the reflection peak at the telecommunications wavelength 1.55 µm. Since that time, 
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the PbP technique employing the output of a femtosecond Ti:sapphire laser has evolved to 

become a relatively routine method for the fabrication of gratings in fibers with typical values of 

the inscribed period of 1.07 µm [3-8] or 1.12 µm (third-order grating for the 1080 nm reflection) 

[9]. Recently, with tightly-focused 800 nm femtosecond light pulses, injected into a slab of pure 

fused silica using a special, reflective microobjective, the fabrication of first-order gratings for 

1550 nm wavelength (Λ = 0.535 µm) was reported [10,11]. Very recently, by introducing index-

matching fluid between the planar microscope cover slip and fiber, the same 535 nm period was 

achieved with FBG recording in standard fiber [12].  

    It should be noted that all of the foregoing investigations on point-by-point microfabrication 

have employed 800 nm femtosecond light pulses, which excite the samples of fused silica (or 

germanosilicate glass) via five-photon absorption [13]. Such a multi-photon approach can 

employ the different wavelengths and different numbers of photons in one elementary absorbing 

act [14], so facilitating inscription inside various non-photosensitive optical materials. It is also 

known that the propagation of a femtosecond 800 nm pulse inside a bulk dielectric (e.g. fused 

silica glass) with a peak power exceeding the threshold (critical power) results in self-focusing. 

Remarkably, this regime is characterized by reduction of the spatial dimensions of the 

photoinduced material modifications below the diffraction limit [15]. Since the achieved size of 

the pitch (modification) is about 270 nm and much smaller than the inscribing wavelength of 800 

nm, further feature size reduction would appear to be highly unlikely using this method. 

However, shifting the wavelength of the inscribing Ti:sapphire laser radiation into the UV range 

(e.g. to 267 nm with simultaneous decrease in the order of absorption process from five-photon 

to two-photon [14]) immediately makes it possible to record structures with even smaller 

periods. Such a development is very important, for example, for the point-by-point fabrication of 

first-order Bragg gratings possessing a peak reflectance wavelength of ~1 µm.  
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    In our previous work, the use of 267 nm femtosecond pulses with 82 nJ energies led us to the 

inscription of 300-nm-period structures [16]. In the current work, the optimising of the 

inscription depth has allowed us to decrease the inscription energy down to 30 nJ and to inscribe 

the 250-nm-period structure. In addition, the quality of the nanostructures was significantly 

improved in comparison with our previous report.  

 

2. Experimental set-up  

    Femtosecond pulses at 800 nm were produced by a Ti:sapphire chirped pulse amplification 

laser system consisting of a „Tsunami“ oscillator and a „Spitfire“ amplifier (both from Spectra-

Physics). The laser system delivered 0.8 mJ pulses with 150 fs duration and 1 kHz repetition 

rate. The IR beam diameter after the amplifier was 2.5 mm at FWHM. The set-up for third-

harmonic generation (THG) was similar to that described earlier [17]. The pulses at 267 nm were 

produced by non-collinear sum-frequency mixing between fundamental radiation and that at the 

second harmonic (Fig. 1 a).  A half-wave plate was used to distribute the energy of 800 nm 

pulses between two channels, which allowed us to manipulate the energy at the entrance of 

second-harmonic generator and, thus, the energy of the output radiation at 267 nm. The pulses at 

400 nm were produced in a 1 mm thick BBO crystal cut for type I collinear second harmonic 

generation (θ = 29.2°, φ = 90°) [18]. A second half-wave plate was used for 90° polarization 

rotation of the 400 nm beam. Using three mirrors with high reflectance at 400 nm, the second 

harmonic beam was separated from the fundamental. The 400 and 800 nm pulses were directed 

into a 1.0 mm thick BBO crystal cut for type I sum-frequency generation (θ = 44.3°, φ = 90°) 

[18]. The angle between the 800 nm and 400 nm beams was less than 2° in the horizontal plane. 

Using highly-reflecting UV mirrors and the non-collinear geometry of THG, we easily separated 

the 267 nm radiation. The UV pulse energy was monitored by a PD10 photodiode (Ophir 

Optronics). The energy of the third harmonic pulses was about 80 µJ with pump energy at 800 
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nm of 800 µJ. By varying the optical delay and measuring the cross-correlation function between 

the fundamental pulse and it’s second harmonic, we estimated the width of both 400 nm and 267 

nm pulse to be about 300 fs.  

    Fused silica samples of 50 × 20 mm size and 1 mm thickness (Schott Glas) were used in the 

experiments. They were moved in the horizontal plane in two perpendicular directions by an air-

bearing translation stage ABL-1000 (Aerotech). The translation speed was varied in the range of 

0.25−1.0 mm/s.  The absolute and relative micropositioning accuracies were both better than 50 

nm.  

    The UV laser beam was directed in a strictly perpendicular direction on to the surface of the 

fused silica sample from the top (Fig. 1 b). It could be focused to any selected depth between 0 

and 600 µm below the surface with accuracy of 1 µm. For focusing, we used a reflective 

microscope objective with numerical aperture of 0.65 (Ealing), manipulated by a 3D-

micropositioning manual translation stage 17 MAX 303 (Melles Griot). The inscription energy 

values were varied between 20 and 400 nJ, whilst the length of inscribed tracks was usually 

between 0.5 and 4 cm.  

 

3. Characterisation of inscribed structures 

    To establish the optimal conditions for inscription, one should carefully adjust at least four 

parameters including, particularly, the laser pulse energy, the speed of translation stage 

movement, the focus depth inside the sample, and the polarization of the inscribing light with 

respect to the direction of sample movement. Other parameters, including the numerical aperture 

of the microscope objective, the repetition rate, the wavelength and the duration of the inscribing 

pulses, also could be varied. The resulting number of experimental tracks could easily reach 

some thousands: thus, an express visualization method is needed for such optimisation.       
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    We perform the characterisation of the irradiated samples using an optical microscope, 

Axioscope-2 MOT plus (Zeiss), which was equipped for both transmitted light and differential 

interference contrast (DIC) measurements. The resolution of a conventional optical microscope 

is considered to be of the order of the illumination wavelength: in our experiment, even with the 

use of a blue filter it was rather difficult to distinguish the 600-nm-period perturbations induced 

in the bulk of the material. However, the use of DIC technique enabled us to monitor structures 

with periods down to 250 nm. In the experiments, we used the combination of a Plan-

Apochromat oil immersed objective (×100/1.40/DIC) and an Achromatic-Aplanatic condenser 

(1.4H/PH/DIC) with numerical aperture of 0.6 (or higher). A DIC-prism (III/1.4) and DIC-slider 

(×100/1.40III) were also used; such a combination seems to be the best one commercially 

available from Zeiss. The refractive index variation is expected to be of the order of 10-4, which 

corresponds to a few times more than the sensitivity level of this DIC microscope, based on the 

comparable experiments conducted with known samples. 

    It is important to note that DIC microscopy does not present the real image; rather, the 

resulting picture contains the information of both the intensity distribution and the derivative of 

the optical phase between two orthogonally polarised beams, spatially separated by a distance 

smaller than the resolution of the ×100, NA = 1.4 microscope objective. Thus, periods of about 

few hundred nanometres can be detected. 

    For the independent resolution check of DIC microscopy, some tracks exhibiting topographic 

changes of the sample surface were characterized with atomic-force microscopy (AFM) [19]. We 

used a commercial instrument, the Dimension Nanoscope III (VEECO), working in the tapping 

mode. 

 

4. Results and discussion 
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    We allied the optimisation procedure to the search for the optimal focus depth whereby 

inscription with smaller energy (leading to smaller beam diameter and, hence, to smaller 

nanostructure period) will be possible. In contrast with [16], in this work we used only the π 

polarization of the 267 nm inscribing beam (parallel to the translation direction). 

    We started our inscription experiments by focussing our microscope objective on the surface 

of the fused silica sample. With pulse energy as small as 38 nJ, we were able to record 

nanostructures with a translation speed of 1.0 mm/s. Taking into account the repetition rate of 1 

kHz, it is easy to deduce that the recorded grating nanostructure possesses a 1000 nm period 

(Fig. 2). The DIC microphotography taken at the surface of our fused silica sample shows that 

the laser beam cross-section in the focal plane is not ideal and varies in size from pulse to pulse. 

A similar picture was revealed by topographic changes of the sample surface while using the 

AFM technique (Fig. 3 a). The asymmetry seen in individual voxels is probably related to the 

light diffraction on wire holders of a small mirror inside the microobjective. From further 

consideration it will be evident that such diffraction becomes unimportant while focussing inside 

the slab of fused silica. We have also applied the AFM method for the independent calibration of 

our DIC microscopy approach. Figure 3 b (cross-section of the image of Fig. 3 a along the 

grating) shows that 10 periods of our nanostructure inscribed on the surface of fused silica 

sample correspond exactly to 10 µm length, confirming our calibration shown at Fig. 2 (the scale 

bar is 10 µm).  The cross-section in the perpendicular direction (presented in Fig. 3 c), which is 

an ablation profile, gives an upper estimate of 400 nm for the diameter of the laser beam cross-

section at FWHM at the surface of our sample, which agrees with the spot sizes deduced from 

Fig. 2 (210−310 nm).  

    To estimate the beam-waist diameter in the focal plane, one can use the well-known 

expression for diffraction-limited focusing, NACw λ=0 , where λ is the inscription wavelength, 

C is a constant ~1.2−1.6, defined by the exact profile of the laser beam, and NA is the numerical 
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aperture of the microscope objective. Substituting λ = 267 nm and NA = 0.65 gives the beam-

waist diameter 0w  of 500−600 nm, which agrees with the experimental values given above.  

    Much better results - inscription at smaller translation speed values down to 0.25 mm/s - were 

obtained with the inscribing light tightly focussed to a depth of 170 µm below the surface of a 

fused silica sample. Figure 4 a demonstrates the periodic structures obtained using 30 nJ pulses 

with sample translation speed values of 1.0, 0.5, and 0.4 mm/s, respectively, i.e. with periods 

1000, 500 and 400 nm, respectively. The excellent quality of the gratings obtained should be 

emphasized (cf. structures with similar periods obtained in our previous work and depicted in 

Fig. 4 b). Furthermore, the irregularity in spot size was strongly reduced.     

    The measurements of the beam-waist diameter of the spots presented in Fig. 4 a show that the 

decrease of the translation speed value from 1.0 mm/s to 0.5 mm/s and further to 0.4 mm/s leads 

to the simultaneous decrease of the beam-waist diameter from 630 nm to 300 nm and then to 230 

nm (with accuracy ± 10 %). Interestingly, a similar feature could be seen in the tracks with 

similar periods presented in our previous report (Fig. 4 b). This could be related to the change of 

glass properties (e.g., induced UV absorption and/or refractive index change) performed by the 

previous neighbour inscription pulse (pulses), which increases the absorption and hence 

following self-focusing for the next inscription pulse (pulses). The decrease of the translation 

speed value should increase the probability of such effect.   

    Figure 5 shows the nanostructures obtained at the same focus depth (170 µm) using sample 

translation speed values 0.3 and 0.25 mm/s, i.e. with periods of 300 and 250 nm, respectively. 

The deterioration of quality of these gratings could be connected with overlapping between 

neighbouring spots (if the size of a spot exceeds a half of the nanostructure period, i.e., 150 nm) 

and/or with the nanostructure period smaller than the resolution limit of DIC microscopy. Future 

investigation of recorded structures by scanning electron microscopy would help to elucidate this 

point. In any case, in this work at optimal focus depth, we have obtained evidence for 
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nanostructure inscription with a period as small as 250 nm. We recall that, in our previous report 

[16], for this particular polarization of the inscribing laser beam only the 400-nm-period 

structure was recorded.          

    The importance of using the optimal focus depth can be illustrated by experiments conducted 

at 330 µm below the sample surface. At this focus depth, using 89 nJ pulses, we managed to 

record structures with periods down to 500 nm (Fig. 6); at the optimal inscription depth (170 

µm), with 92 nJ pulses, we recorded the structures of 400- and 300-nm periods (Fig. 7).  

    It should be emphasized that the value of the optimal inscription depth obtained in this work 

(170 µm), differs from the one obtained in our previous report (300 µm). The reason for this 

could be the inaccurate positioning of the correction ring of the microscope objective. Due to 

this, in our previous work, the microscope objective was not aligned for minimisation of 

aberrations whilst being focussed on the surface of the sample (as was done in this 

investigation). It is essential to note, that the x100 oil-immersed objective we used has the 

correction (lowest aberrations) at the depth of 170 µm as well. We believe, that the combination 

of two factors, namely, thorough optimisation of the inscription conditions when we position the 

periodic structure at the depth of the best resolution of the monitoring objective, enabled us to 

achieve the lowest  

    The minimal pulse energy value of 30 nJ used for the inscription can be compared with the 

typical pulse energy value of 600 nJ used earlier in 800 nm nanostructure fabrication [10, 11]. 

Such a decrease in the inscription energy is in line with the decrease of the order of the 

absorption process, from five-photon to two-photon [14, 17]. It should be emphasized that the 

laser pulse peak power values used in our experiments (100−300 kW) correspond to the critical 

power for self-focusing in fused silica, which at 267 nm is estimated to be ∼150 kW (compared 

with 2300 kW at 800 nm [11]). The importance of the 170-µm-thick glass layer for the 

substantial decrease of the focal beam spot is undoubtedly related to nonlinear effects. 
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5. Numerical modelling 

    For numerical modeling of the plasma formation during nonlinear propagation of high-

intensity femtosecond 267 nm laser pulse through fused silica media with subsequent two-

photon absorption (TPA) and self-focusing, the adaptive mesh approach [20, 21] was used. This 

approach was already used earlier for the theoretical description of the five-photon absorption 

case, which takes place while the high-intensity 800 nm femtosecond pulse is propagating 

through the same medium [10, 11]. Here we will present only some essential results of numerical 

calculations for UV PbP inscription, the detailed description will be published elsewhere. 

    First we will determine two important physical parameters for 267 nm case, one of them being 

the critical self-focusing power 

2

2

2 nn
Pcr π

λ=  (1) 

where λ is the inscription wavelength, n is the linear refractive index at the inscription 

wavelength [22] and n2 is the nonlinear refractive index which is for fused silica nearly constant 

through the high transparency region and equal to 3 × 10-16 cm2/W [22]. The calculation made 

gives a value of about 250 kW. This is by an order of magnitude smaller than the similar value 

for the 800 nm case (2300 kW [11, 20]). It should also be emphasized that in our case of 

recording the structures with the 250 nm period (∼125 nm spot diameter), it means we are 

reaching the intensity of 2 × 1015 W/cm2. 

    Another important parameter is the Ith “threshold intensity” for femtosecond inscription to 

begin [2]. It originates from the rate equation for plasma generation under femtosecond laser 

radiation: 
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the multiphoton absorption coefficient β(K)can be expressed as: ATK
K ρσωβ ⋅⋅=h)( , with the 

3
22 1101.2

cmAT ⋅=ρ  is the density of atoms, and Kσ  with K=2 for two photon excitation (Eg = 

7.6 eV is assumed in fused silica) is the two-photon absorption cross-section, BDρ  is the plasma 

frequency (ρBD~1.6·1022 1/cm3). The estimation using formula (2) with 
W

cm11
2 102 −⋅=β  [22] 

gives the threshold of femtosecond inscription at 267 nm of about 6.2·1013 W/cm2. This is more 

than two times higher than the threshold intensity at 800 nm (2.5·1013 W/cm2).  

The laser peak power in our experiments with UV femtosecond laser was of the order of Pcr.  

Top margin of the intensity for UV femtosecond micro-fabrication may be obtained with the 

following expression for ITPA – the saturation intensity of TPA-induced ionisation: 

e

at

e
TPA

h
I

τβ
ρν

τσ 22

1 ==   (3) 

where σ2 is the absorption cross-section of two-photon transition, τe = 1.7 × 10-15 s is the 

electronic collision relaxation time, hν - photon energy at 267 nm, ρat = 2.1 × 1022 atoms/cm3 is 

the material concentration, β2 = 2 · 10-11 cm/W is the two-photon absorption coefficient at this 

wavelength [22, 23]. The calculations give for ITPA a value of 7 · 1014 W/cm2 at 267 nm 

irradiation, which is by more than order of magnitude higher than the value obtained above with 

the formula (2). 

Based on the results of the numerical simulation we found that the intensity could not reach ITPA 

(7 · 1014 W/cm2) regardless of the input laser pulse energy power and inscription depth. 

As it was mentioned in [24], the ratio of critical power for self-focusing and the threshold 

intensity for inscription defines a “critical” focal spot area:  

CR
TH

cr S
I

P =  (3) 
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The significance of this parameter is in the following: if the focal spot is larger than SCR (linear 

focusing), the Kerr nonlinear term will contribute to the dynamics of focusing. Estimation using 

formula (3) gives critical radius of the order of 360 nm. As we mentioned above, in our 

experiment we expect the focal spot radius to be of about 250−300 nm, which is close to critical 

radius. This means that we have to consider the contribution of nonlinear effects. Using the 

formula (5) from [24] we can estimate the threshold energy for femtosecond inscription to be 5nJ 

only (due to the Kerr nonlinearity). The 6 times difference with our experiment may be attributed 

to the non-Gaussian profile of the intensity distribution in our experiment due to the specific 

design of our objective.    

    Figures 8 a, b, c, d, e demonstrate the plasma density distributions (normalized to plasma 

breakdown density) in fused silica for the focusing depth of 200 µm and five different values of 

laser radiation power, from 0.2 Pcr to 5 Pcr. It is clearly seen how, with the raise of intensity, the 

self-focusing takes place and the “light bullet” forms. Figures 9 a, b, c demonstrate the plasma 

density distributions for three different focusing depths (100, 200 and 300 µm) and radiation 

power of 5 Pcr. It is evident that the focusing depth of 200 µm is optimal, as it corresponds to the 

smallest beam cross-section value. Hence the results of numerical calculations are in good 

agreement with our experimental findings. 

   

6. Conclusion 

    Using 30 nJ, 267 nm, 300 fs laser pulses, tightly-focussed at a depth of 170 µm below the 

surface of a fused silica sample, we have succeeded in recording nanostructures with periods 

from 1000 nm to 250 nm. To the best of our knowledge, the latter period has never been 

achieved before from this type of inscription process. The optimisation of the fused silica layer 

thickness led us also to the inscription of the nanostructures with an improved quality. The 

performed numerical modeling confirms the obtained experimental results. 
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Figure captions 

Figure 1. (a) Experimental set-up for third-harmonic generation; (b) PbP inscription set-up. 

Figure 2. DIC microphotograph of the 1000-nm-period nanostructure, fabricated on the surface 

of a fused silica sample. The energy of the inscribing pulses was 38 nJ. The size of the bar 

corresponds to 10 µm. 

Figure 3. (a) Topography of the same 1000-nm-period nanostructure as in Fig. 2, investigated by 

AFM; (b) Cross-section of the image, presented in Fig. 3 a, along the inscription direction. (c) 

Cross-section of the image, presented in Fig. 3 a, perpendicular to the inscription direction.  

Figure 4. (a) DIC microphotographs of structures with 1000, 500 and 400 nm periods inscribed 

at the optimal focusing depth of 170 µm with sample translation speeds of 1.0, 0.5 and 0.4 mm/s, 

respectively. The energy of the inscribing pulses was 30 nJ. The size of the bar corresponds to 10 

µm. (b) DIC microphotographs of similar structures inscribed earlier at a focus depth of 300 µm 

[16]. The energy of the inscribing pulses was 82 nJ. The size of the bar corresponds to 10 µm. 

Figure 5. DIC microphotographs of structures with 300 and 250 nm periods inscribed at the 

optimal focus depth of 170 µm with sample translation speeds of 0.3 and 0.25 mm/s, 
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respectively. The energy of the inscribing pulses was 30 nJ. The size of the bar corresponds to 10 

µm. 

Figure 6. DIC microphotographs of structures with 1000 and 500 nm periods inscribed at a focus 

depth of 330 µm with sample translation speeds of 1.0 and 0.5 mm/s, respectively. The energy of 

the inscribing pulses was 90 nJ. The size of the bar corresponds to 10 µm. 

Figure 7. DIC microphotographs of structures with 400 and 300 nm periods inscribed at the 

optimal focus depth of 170 µm with sample translation speeds of 0.4 and 0.3 mm/s, respectively. 

The energy of the inscribing pulses was 90 nJ. The size of the bar corresponds to 10 µm. 

Figure 8. Plasma density distribution (normalized to plasma breakdown density) in a fused silica 

for the focusing depth of 200 µm and different laser radiation power values: (a) 0.2 Pcr ;  (b) 0.5 

Pcr ;  (c) 1.0 Pcr ;  (d) 2.0 Pcr ;  (e) 5 Pcr . The divisions on vertical and horizontal axes are in mm, 

they represent the propagation direction and the perpendicular one, respectively. The colour 

scale corresponds to plasma density distribution normalized to plasma breakdown density.  

Figure 9. Plasma density distribution (normalized to plasma breakdown density) in a fused silica 

for laser radiation power of 5 Pcr and different focusing depths: (a) 100 µm; (b) 200 µm; (c) 300 

µm. The divisions on vertical and horizontal axes are in mm, they represent the propagation 

direction and the perpendicular one, respectively. The colour scale corresponds to plasma density 

distribution normalized to plasma breakdown density.  
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Figure 1 a 
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Figure 1 b 
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Figure 2 
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Figure 3a 
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c) 

 

Figure 3 b, c 
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Figure 4 a 
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