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Abstract: 

Lipopolysaccharide (LPS), which generally activates Toll-like 
receptor 4 (TLR-4), is expressed on commensal colonic bacteria. In 
a number of tissues, LPS can act directly on epithelial cells to 
increase paracellular permeability. Such an effect in the colon would 
have an important impact on the understanding of normal 
homeostasis and of pathology.  Our aim was to use a novel primary 
culture of colonic epithelial cells grown on Transwells to investigate 
whether LPS, or Pam3CSK4, an activator of Toll-like receptor-2 
(TLR-2), affected paracellular permeability.  Consequently, [14C] 
mannitol transfer and transepithelial electrical resistance (TEER) 
were measured.  The preparation consisted primarily of cytokeratin-

18 positive epithelial cells that produced superoxide, stained for 
mucus with periodic acid-Schiff reagent, exhibited alkaline 
phosphatase activity and expressed TLR-2 and TLR-4.  Tight 
junctions and desmosomes were visible by transmission electron 
microscopy. Basally, but not apically, applied LPS from Escherichia 
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coli increased the permeability to mannitol and to a 10-kDa 
dextran, and reduced TEER.  The LPS from Helicobacter pylori 
increased paracellular permeability of gastric cells when applied 
either apically or basally, in contrast to colon cells, where this LPS 
was active only from the basal aspect.  A pan-caspase inhibitor 
prevented the increase in caspase activity caused by basal E. coli 

LPS, and reduced the effects of LPS on paracellular permeability. 
Synthetic Pam3CSK4 in the basal compartment prevented all 
effects of basal E. coli LPS.  In conclusion, LPS applied to the base 
of the colonic epithelial cells increased paracellular permeability by 
a mechanism involving caspase activation, suggesting a process by 
which perturbation of the gut barrier could be exacerbated. 
 Moreover, activation of TLR-2 ameliorated such effects.  
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ABSTRACT 

Lipopolysaccharide (LPS), which generally activates Toll-like receptor 4 (TLR-4), is 

expressed on commensal colonic bacteria. In a number of tissues, LPS can act 

directly on epithelial cells to increase paracellular permeability. Such an effect in the 

colon would have an important impact on the understanding of normal homeostasis 

and of pathology.  Our aim was to use a novel primary culture of colonic epithelial 

cells grown on Transwells to investigate whether LPS, or Pam3CSK4, an activator of 

Toll-like receptor-2 (TLR-2), affected paracellular permeability.  Consequently, [14C] 

mannitol transfer and transepithelial electrical resistance (TEER) were measured.  

The preparation consisted primarily of cytokeratin-18 positive epithelial cells that 

produced superoxide, stained for mucus with periodic acid-Schiff reagent, exhibited 

alkaline phosphatase activity and expressed TLR-2 and TLR-4.  Tight junctions and 

desmosomes were visible by transmission electron microscopy. Basally, but not 

apically, applied LPS from Escherichia coli increased the permeability to mannitol 

and to a 10-kDa dextran, and reduced TEER.  The LPS from Helicobacter pylori 

increased paracellular permeability of gastric cells when applied either apically or 

basally, in contrast to colon cells, where this LPS was active only from the basal 

aspect.  A pan-caspase inhibitor prevented the increase in caspase activity caused 

by basal E. coli LPS, and reduced the effects of LPS on paracellular permeability. 

Synthetic Pam3CSK4 in the basal compartment prevented all effects of basal E. coli 

LPS.  In conclusion, LPS applied to the base of the colonic epithelial cells increased 

paracellular permeability by a mechanism involving caspase activation, suggesting a 

process by which perturbation of the gut barrier could be exacerbated.  Moreover, 

activation of TLR-2 ameliorated such effects.  

Keywords: Colon, Lipopolysaccharide, Permeability, Toll-like receptor, Primary culture  
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INTRODUCTION 

 

A single layer of colonic epithelial cells, linked together by tight and adherens 

junctions, forms the barrier that prevents access of the enteric bacterial flora into the 

internal host tissues.  Importantly, perturbation of the gut barrier is increasingly being 

linked with disease.  Thus, in both Crohn’s disease1-3 and in ulcerative colitis,4 there 

is increased permeability through tight junctions and in Crohn’s disease changes in 

permeability may predict relapse.5  A current view is that the cytokines released into 

the mucosa in these inflammatory bowel diseases activate signalling pathways that 

ultimately effect changes in the tight junctions.6-8  

Cytokine release may be caused by pathogen-associated molecular patterns 

(PAMPs) such as lipopolysaccharide (LPS) which, for example, induces release of 

tumour necrosis factor-alpha (TNF-α) from macrophages.  Generally, the cellular 

receptor for LPS is Toll-like receptor-4 (TLR-4).  In the gut, messenger RNA (mRNA) 

for TLR-4 is present not only in macrophages but has been found in highly purified 

colonic epithelial cells from humans9,10 and mice,11 as has TLR-4 protein.11,12  In 

lung,13 corneal14 and cholangiocyte15 epithelial cells LPS directly increases 

paracellular permeability. We therefore hypothesized that LPS might act directly on 

colonic epithelial cells to increase paracellular permeability. A further issue is that 

since epithelial cells border the gut lumen, the presence of TLR-4 must be reconciled 

with normal homeostasis in the presence of commensal bacteria, many of which are 

Gram-negative, and thus will express LPS.  Recent suggestions are an intracellular 

location of TLR-4,16 sequestration of TLR-4 into crypts17 and the influence of 

regulation of TLR-4 signalling.18 Alternatively, expression of TLR-4 protein may 

normally be low, but be increased in pathological conditions such as Crohn’s disease 
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and ulcerative colitis.12  A further possibility, which is investigated here, is that 

responses of colonic epithelial cells might be polarized, whereby any effect of LPS 

applied to the apical lumen-facing aspect differs from that of LPS applied to the basal 

aspect.  

Toll-like receptor 2 (TLR-2) mRNA has been detected in human and mouse 

colonic epithelial cells10,11, as has the protein in mouse colonic epithelial cells.11  

Effects of TLR-2 can be investigated by using the synthetic TLR-2 ligand, N-

palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-(R)-cysteinyl-(S)-seryl-(S)-lysyl(S)-

lysyl-(S)-lysyl-(S)-lysine (Pam3CSK4).  In Caco-2 cells this ligand produced a 

transient increase in transepithelial electrical resistance (TEER), which was 

associated with a redistribution of the tight junction-associated protein ZO-1.19  

Consequently, we have investigated the effects of Pam3CSK4 on colonic cells in the 

presence and absence of LPS.  

Investigations of the effects of LPS using adenocarcinoma cell lines is 

problematic possibly because of the low expression of TLR-420 or of accessory 

proteins needed for receptor activation. For example, LPS does not affect TEER in 

Caco-2 cells,19 and Caco-2 cells produced very little interleukin-8 (IL-8) in response 

to LPS.20  Thus, we decided to build on our experience of primary culture of guinea 

pig gastric cells on Transwells21,22  to develop a preparation using colonic epithelial 

cells in which the effects of LPS on paracellular permeability could be explored by the 

apical to basal transfer of mannitol, and from measurement of TEER.  As described 

herein, we find that basally, but not apically applied, LPS increases permeability and 

that this effect is inhibited by a pan-caspase inhibitor and by the synthetic TLR-2 

ligand Pam3CSK4. 
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MATERIALS AND METHODS 

Animals and materials 

Dunkin-Hartley guinea pigs of 200-300g were obtained from Harlan UK, Bicester, 

Oxon.  All experimental work complied with the UK Animals (Scientific Procedures) 

Act 1986 and had been approved by the Aston University Bioethics committee. The 

LPS of Escherichia coli 0111:B4 was obtained from Sigma (Poole, UK).  Helicobacter 

pylori LPS was prepared from the type strain (NCTC 11637) as described 

previously.23 Synthetic Pam3CSK4 was obtained commercially (InvivoGen, San 

Diego, USA), and dissolved in sterile, endotoxin-free water before use. N-

benzyloxycarbonyl-Val-Ala-Asp(OMe) fluoromethyl ketone (Z-VAD-FMK) was 

obtained from R&D systems (Abingdon, UK). Unless otherwise stated, all other 

reagents including antibodies were obtained from Sigma. 

 

Primary culture of colonic cells 

Guinea pigs were anaesthetized with intramuscularly delivered Hypnorm (Janssen, 

Oxford, UK) at a dose of 1 ml/kg, and with intraperitoneal diazepam (3.75 mg/kg).  

The colon was removed from the rectum to a point 5 cm from the caecum.  

Subsequently, colonic mucosa was scraped from the muscle, minced with fine 

scissors, and incubated for 20 min in Dulbecco’s Modified Eagle Medium:F12 

Nutrient mixture, 1:1 (DMEM:F12, Invitrogen, Paisley, UK), containing bovine serum 

albumin (2 g/l), gentamicin (50 µg/ml), amphotericin B (2.5 µg/ml), and pronase E 

(0.5 mg/ml, Merck, Lutterworth, UK) at 37°C with shaking (120 cycles/min) in a mixed  

atmosphere of O2:CO2 (95%:5%).  After centrifugation for 2 min (200 x g, 15°C), the 

pellet was incubated with the same medium for 20 min, except that collagenase type 
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I (0.4 mg/ml) replaced pronase.  The digest was filtered through nylon mesh (150 

µm), again centrifuged for 2 min (100 x g and 15°C), and resuspended in culture 

medium composed of DMEM:F12 containing foetal calf serum (10% v/v), penicillin 

(100 u/ml), streptomycin (100 µg/ml), amphotericin B (2.5 µg/ml), epidermal growth 

factor from  mouse sub-maxillary glands (20 ng/ml), recombinant human insulin (10 

µg/ml) and hydrocortisone 21-hemisuccinate (150 nmol/l).  After a further 

centrifugation (75 x g, 15°C, 2 min), the pellet, which comprised crypt fragments (≥ 

20 cells) and single cells, was resuspended in culture medium (at 24,000 crypt 

fragments/ml). The suspension (0.5 ml) was added onto Transwell membranes (12 

mm diameter, polycarbonate membrane, 0.4 µm pore size) supplied by Corning 

(Appleton Woods, Birmingham, UK) which had been coated with collagen IV from 

human placenta.21  Culture medium (1.5 ml) was present in the basal compartment.  

Media were changed after 1, 3 and 6 d of culture using culture medium with serum 

reduced from 10% to 4% (v/v). Experiments were performed eight days after culture 

was initiated.  

Viability of cells at the end of a 5 h experiment was assessed by replacing the basal 

medium 30 min before termination with one which was identical except for the 

presence of the cell permeable nuclear stain bisbenzimide (H33258, 5 µg/ml) and the 

normally cell membrane impermeant propidium iodide (PI, 2 µg/ml).  After 30 min 

Transwell membranes were removed, mounted in phosphate-buffered saline (PBS), 

and examined under a fluorescence microscope with successively uv and green 

illumination.  Damaged cells were identified as those with nuclei exhibiting both blue 

(H33258) and red (PI) fluorescence. 

 

Paracellular permeability and TEER of colonic cells 
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D-[1-14C]Mannitol (GE Healthcare, Little Chalfont, UK) was introduced (0.9 µCi/ml 

15.5 µmol/l) into the apical compartment, and medium from the lower compartment 

was removed after 1 h for estimation of mannitol transfer by scintillation counting.  

This basal measurement was performed on all Transwells and was used for 

normalization.  Subsequently, reagents were added to apical and basal 

compartments as required and transfer of Transwells to new basal medium was 

made at times determined by the experimental design. Apparent permeability (Papp) 

to mannitol was calculated as described by Tavelin et al.24  Fluorescein 

isothiocyanate- (FITC-) labelled dextran 10 kDa (FD10) was present in the apical 

compartment (1 mg/ml), and its presence in the basal compartment was measured 

by using a fluorescence plate reader (Molecular Devices, Sunnyvale, CA) with 

excitation at 485 nm, emission at 530 nm and cut-off at 515 nm. At the beginning and 

the end of experiments TEER was measured by using an EVOM voltohmmeter 

(World Precision Instruments, Sarasota, Fl, USA) and chopstick electrodes as 

described previously.21 

 

Gastric epithelial cells 

Culture of gastric cells and measurement of TEER and paracellular permeability was 

as described in detail previously.21  Briefly, cells were isolated from minced guinea 

pig gastric mucosa by sequential digestion with pronase and collagenase, and after 

centrifugation, suspended in RPMI 1640 medium containing foetal calf serum (10% 

v/v), penicillin (100 u/ml), streptomycin (100 µg/ml), amphotericin B (2.5 µg/ml) and 

epidermal growth factor from mouse sub-maxillary glands (20 ng/ml) at 106 cells/ml. 

The suspension (0.5 ml) was added to Transwell membranes (12 mm diameter, 

polycarbonate membrane, 0.4 µm pore size), which had been coated with collagen 
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IV, and cultured for 3 d, after which time the cells were fully confluent and were used 

for experiments. 

 

Culture of Caco-2 cells 

Caco-2 cells, obtained from the American Type Culture Collection (ATCC, Rockville, 

MD), were plated on polycarbonate Transwells at 2 x 105 cells/cm2 and were grown 

in DMEM containing heat-inactivated foetal calf serum (10% v/v), penicillin (100 u/ml) 

and streptomycin (100 µg/ml) for 21 days at 37°C in 5% CO2 in air. 

 

Histochemistry 

To obtain vertical sections through Transwell preparations they were fixed for 10 min 

at room temperature in 4% (w/v) paraformaldehyde in PBS, washed in PBS at 4°C, 

and then infiltrated with a 10% (w/v) solution of gelatin (bloom number 300) for 15 

min at 37°C. Membranes were stacked, cooled to 4°C, embedded in OCT (optimal 

cutting temperature) compound and frozen in liquid nitrogen.  Sections (10 µm) were 

cut using a cryostat (Bright, Huntingdon, UK) and transferred to slides coated 

previously with gelatin (0.1% w/v) and chromium potassium sulphate (0.01% w/v).  

The use of gelatin enabled the retention of sections on the Transwell membrane and 

on the microscope slide.  Alternatively, cells were detached from Transwells by using 

trypsin/ethylenediamine tetraacectic acid (EDTA) fixed in 4% (w/v) paraformaldehyde 

in PBS and transferred to microscope slides by using a Cytocentrifuge (Shandon, 

UK).  Sections were stained with conventional haematoxylin and eosin stain, periodic 

acid-Schiff reagent21 , or alkaline phosphatase by soaking in PBS containing Tween-

20 (0.2% v/v) for 10 min, rinsing in PBS and incubating with Tris buffer (0.1 M, pH 

8.8) containing Fast Red TR (1 mg/ml) and Napthol AS-MX phosphate (0.5 mg/ml) 

Page 8 of 37

http://mc.manuscriptcentral.com/INI

Innate Immunity

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

for 30 min at room temperature. Nuclei were stained with 4’, 6’-diamidino-2-phenyl 

indole dihydrochloride (DAPI, 2 µg/ml).  

 

Fluorescence immunocytochemistry 

Transwell membranes were fixed in 4% (w/v) paraformaldehyde in PBS and they, or 

cytocentrifuge preparations, were permeabilized by incubation in Triton X-100 (0.1% 

v/v) in PBS for 10 min. After blocking with serum from the appropriate species (10% 

v/v) in PBS for 1 h, samples were incubated with either mouse anti-cytokeratin-18, 

(clone CY-90) monoclonal antibody (Mab), 1:400; mouse anti-human macrophages 

(clone MAC 387) Mab, 1:100 (Serotec Oxford, UK); mouse anti-α smooth muscle 

actin (clone 1A4) Mab, 1:400; or goat anti-vimentin antibody, 1:20 for 1 h at room 

temperature. Incubation with the appropriate conjugated secondary antibodies (FITC-

labelled goat anti-mouse IgG, 1:64; FITC-conjugated rabbit anti-goat IgG, 1:400; and 

tetramethyl rhodamine-labelled goat anti-mouse IgG, 1:128) was for 1 h at room 

temperature; after which preparations were washed and mounted in Vectashield hard 

set (Vector laboratories, Peterborough, UK).  Negative controls were obtained by 

omitting the primary antibody. Counting of apoptotic nuclei on Transwell membranes 

was performed using a Zeiss AxioCam HRc digital camera (Jena, Germany) with a 

x40 objective, by capturing six successive fields moving in from the edge of the filter, 

coding the output, and then counting total and apoptotic nuclei (which were 

characterized by condensation and fragmentation of chromatin).  Confocal images 

were obtained with a Zeiss LSM 510 confocal microscope. 

 

Electron microscopy 
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Transwell membranes were fixed for 1 h at room temperature in glutaraldehyde 

(2.5% v/v) in sodium cacodylate buffer (0.1M, pH 7.4).  Samples were post-fixed in 

osmium tetroxide (1% w/v) in the same buffer, dehydrated and embedded in LR 

white resin (Agar Scientific, Essex, UK).  Sections, approximately 70 nm thick, were 

stained with ethanolic uranyl acetate and Reynold’s lead citrate, before observation 

in a Jeol 1200 EXII transmission electron microscope. 

 

Immunoblotting 

Transwell membranes were rapidly extracted with 100 µl of electrophoresis sample 

buffer at 95°C in a microfuge tube and then maintained at this temperature for 3 min. 

Samples were sonicated at an amplitude of 10 µm for 10 s.  After sodium dodecyl 

sulphate polyacrylamide gel electrophoresis and transfer of separated proteins to 

polyvinylidene difluoride (PVDF) membranes, immunoblotting was initiated by 

incubation with blocking solution (defatted milk powder 5% w/v) in Tris-buffered 

saline [Tris (20 mM), NaCl (137mM), pH 7.6] containing Tween-20 (0.1% v/v) (TBS-

Tween) for 1 h at room temperature.  Primary antibodies used were rabbit anti-mouse 

TLR-4 (sc-30002; 1:200) and rabbit anti-human TLR-2 (sc-10739; 1:100) (both 

obtained from Santa Cruz, Heidelberg, Germany) diluted in blocking solution and 

incubated for 1 h at room temperature.  After washing in TBS-Tween, incubation with 

secondary goat anti-rabbit IgG peroxidase conjugate (sc-2004, Santa Cruz) diluted 

1:1000 in blocking solution was also for 1 h at room temperature.  Immunoreactant 

bands were detected by enhanced chemiluminescence (Pierce, Northumberland, 

UK).  Blots were then stripped and reprobed with rabbit anti-actin (Sigma A2066, 

1:2000) to check for equality of loading between lanes. 
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Caspase activity and superoxide production 

Superoxide production by intact cells was measured as superoxide dismutase 

inhibitable reduction of cytochrome C.21  Caspase 3-like activity on Transwell 

membranes, that had been rinsed in PBS, frozen in liquid nitrogen, and stored at -

70°C, was determined as described previously.25 Briefly, the release of fluorescent 

product from Ac-Asp-Glu-Val-Asp-7-amido-4-methylcoumarin was measured using a 

plate-reading spectrofluorimeter (Molecular Devices Ltd; Wokingham, UK). Alkaline 

phosphatase activity was extracted from frozen Transwell membranes, by thawing 

into extraction buffer (pH 8.0) containing Tris (10 mM), NaCl (150 mM) and Triton X-

100 (0.5% v/v). The extract (50 µl) was transferred to 150 µl of assay buffer (pH 9.2) 

comprising glycine (42 mM), MgCl2 (5 mM) and p-nitrophenylphosphate (4.5 mM),  

and the mixture incubated for 1 h at 37°C.  The reaction was terminated by addition 

of 50 µl of NaOH (1 M) and the absorbance read at 405 nm. 

 

RESULTS 

 

Colonic epithelial cells form a tight monolayer on Transwells 

The TEER increased markedly between three and six days of culture (Fig. 1A) but 

the subsequent increase was smaller (Fig. 1A).  Although TEER varied somewhat 

between cultures, intra-culture variation was generally much less (Fig. 1B).  There 

was a steep relationship between TEER and apparent permeability (Papp).  The mean 

Papp was similar to that found with a variety of colon cell lines derived from 

adenocarcinomas, which are know to form tight monolayers (Fig. 1C) 24, 26-30   

Examination of vertical sections through Transwell preparations by light 

microscopy revealed a thin layer of cells (Fig. 2 A) with basally located nuclei (Fig. 2 
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B, C).  The dimensions of the nuclei were similar to that of surface epithelial cells in 

sections of colonic mucosa but their orientation was rotated through 90º (compare 

Fig. 2 C and D).  Sections stained for mucus with periodic acid-Schiff reagent (Fig. 2 

E) as did both colonic epithelial cells and goblet cells in sections of colonic mucosa 

(Fig. 2 F).  The surface of the Transwell preparation stained for alkaline phosphatase 

(Fig. 2 G) as did surface regions of colonic mucosa (Fig. 2 H). The enzyme activity of 

alkaline phosphatase was 91 ± 5 nmol/h/mg protein.  Superoxide production (83 ± 21 

nmol/h/mg protein, n=4), was much higher than in Caco-2 cells31 and similar to that of 

guinea pig31 and human colonocytes32 in short-term culture.  A low power fluorescent 

microscope image of  cells fixed in situ on Transwells showed fairly evenly spaced 

nuclei and a ‘lawn’ of cytokeratin positive cells (Fig. 3 A, B), with more detail being 

shown by confocal microscopy (Fig. 3 C-E).  To quantify the proportion of the various 

cell types, they were detached from the Transwell membrane and transferred to 

microscope slides by using a cytocentrifuge.  A large proportion of cells were positive 

for the epithelial marker cytokeratin-18 (94 ± 2%, n=3; Fig. 3 F, G) and for mucin as 

determined by periodic acid-Schiff staining (96 ±1%, n=3, Fig. 3 H, I).  A small 

number of cells were positive for vimentin (3.3 ± 0.44% n=4 Fig. 3 J, K).  These cells 

were also positive for α-smooth muscle actin and were therefore probably 

myofibroblasts.33  Macrophages were undetectable.   

Transmission electron microscopy showed flattened interleaved cell plates 

with an intact and continuous apical surface but with extensive basolateral spaces.  

Nuclei were mainly basal (Fig. 4 A, B). Desmosomes and tight junctions were visible 

(Fig. 4 C).  The flattened nature of the primary culture may result from the lack of any 

constraint to lateral spreading and to rapid inhibition of cell division on contact.  

Caco-2 cells appear more columnar in culture and this may result from the much 

Page 12 of 37

http://mc.manuscriptcentral.com/INI

Innate Immunity

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

greater nuclear density that can be obtained with these cells than with the primary 

culture (Fig. 4 D and E).   

The Transwell preparation expressed both TLR-4 and TLR-2 after 8 d of 

culture and incubation for 5 h in the absence (Fig. 5 left-hand two lanes) or presence 

(Fig. 5 right-hand two lanes) of basal LPS (10-7 g/ml). The amount of these proteins 

appeared unaffected by the presence of LPS. 

 

Basal but not apical LPS increased tight junction permeability and apoptosis 

During 4-5 h after exposure to basally applied E. coli LPS, transfer of mannitol from 

the apical to the basal compartment was increased (Fig. 6A). The dose response 

curve for this effect was “bell-shaped” with LPS showing a maximal action at 10-7 

g/ml. Basal LPS produced a decrease in TEER, the magnitude of which correlated 

with the increase in permeability to mannitol (Fig. 6B).  The effect of 10-7 g/ml LPS on 

transfer of mannitol increased with time (Fig. 6C).  The presence of LPS in the apical 

compartment affected neither permeability to mannitol nor TEER (Fig. 6 A-C).  Basal 

application of LPS (10-7 g/ml) increased apoptotic activity as evidenced by an 

increase in caspase 3-like activity, in contrast to apical application (Fig. 6 D), and in 

the proportion of cells showing nuclear condensation and fragmentation (Fig. 6 E-F).  

Overall viability at the end of a 5h experiment was assessed by the proportion of 

bisbenzimide stained nuclei that did not stain with propidium iodide and was> 99% in 

both the absence and presence of basal LPS (10-7 g/ml). 

 

The effect of LPS on permeability to mannitol and FD 10 was proportionate 

Treatment of T84 cells with cytokines caused a much bigger increase in permeability 

to FD10, than to mannitol.34  Basally applied E. coli LPS (10-7 g/ml) increased 
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permeability to mannitol, which has a hydrodynamic radius of 4.1 Å,35 and to FD10 

with a hydrodynamic radius of 23 Å (Fig. 7).36  However, the magnitude of the change 

in permeability to these probes induced by LPS was very similar (Fig. 7 insert). 

 

H. pylori LPS increases paracellular permeability when applied to either the apical or 

basal sides of gastric cells but only affects colon cells from the basal aspect 

In order to establish whether the lack of response to apically applied LPS was a 

particular feature of colon cells, we undertook a comparison with gastric cells. We 

used a previously established preparation of gastric surface epithelial cells21, and 

LPS from the gastric pathogen H. pylori.  The bioactivities of LPS from H. pylori are 

generally less potent than that from E. coli, 23, 37, 38 but at concentrations of 10-6 g/ml 

and above, it increased permeability to mannitol and decreased TEER when applied 

either to the apical or the basal aspect of gastric epithelial cells (Fig. 8).  In contrast, 

H. pylori LPS only affected transfer of mannitol and TEER when applied to the basal 

aspect of colon cells (Fig. 8). 

 

Inhibition of caspase activation reduces the effect of LPS on paracellular permeability 

and TEER 

As shown in Fig. 9, when the pan-caspase inhibitor Z-VAD-FMK was present in the 

basal compartment of the Transwell, 5 h incubation with E. coli LPS did not increase 

caspase activity, in contrast to when Z-VAD-FMK was absent.  Furthermore, the 

effects of LPS on permeability to mannitol and TEER were significantly reduced 

(P<0.05 and P<0.01, respectively). 
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The synthetic TLR-2 agonist, Pam3CSK4 does not mimic the effects of LPS but rather 

inhibits them 

When applied to either the apical or basal aspect of the preparation Pam3CSK4 did 

not significantly affect permeability to mannitol, TEER or caspase activity (Fig. 10, 

open bars).  Nevertheless, when Pam3CSK4 was present in the basal compartment, 

10-7 g/ml basal E. coli LPS did not significantly increase permeability to mannitol or 

caspase activity, or significantly decrease TEER.  With Pam3CSK4 in the apical 

compartment there was still a significant effect of basally applied LPS on TEER and 

caspase activity (Fig. 10 B-C) but not on mannitol transfer. However, in the presence 

of apical Pam3CSK4 the effect of LPS on TEER was significantly reduced from a 

decrease of 55 ± 8% to 39 ± 6% (n=4, % calculated with respect to appropriate 

control, P<0.05 by paired t-test).  In summary, basally applied Pam3CSK4 completely 

abolished all effects of LPS on paracellular permeability, and apically applied 

Pam3CSK4 effected a partial inhibition of LPS action. 

 

DISCUSSION 

 

The primary culture procedure used in this study gave rise to a confluent monolayer 

the tight junctions of which exhibit permeability to mannitol similar to that of 

adenocarcinoma cell lines (Fig. 1C).  The initial TEER is somewhat higher than the 

3300 Ω.cm2 of T84 cells,39 and considerably higher than that of Caco-2 cells.24,29  

The other only apparent report of a primary colon culture, with separated apical and 

basal compartments, used weanling rats and had a much lower TEER, but was not 

characterized as to cell type.40  The key features of this present procedure are: (i) the 

use of guinea pig colonic mucosa which disaggregates rapidly compared to mouse 
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mucosa, (ii) usage of pronase to remove mucus during the disaggregation of tissue,41 

and (iii) utilization of Transwells which promote long-term cell survival much better 

than a plastic substratum.  Surface, but not crypt, guinea pig colonic epithelial cells 

express Nox 1, which enables them to produce superoxide.31  Alkaline phosphatase 

activity and apical membrane staining are features of colonic epithelial cells.42 

Colonic epithelial cells contain MUC4,43 and are periodic acid-Schiff positive.31  The 

production of superoxide, the presence of alkaline phosphatase and the high 

proportion of cells staining positively with periodic acid-Schiff reagent and for 

cytokeratin-18, indicate that the present preparations contain primarily colonic 

epithelial cells, resembling surface rather than crypt cells.  Cells were rather 

flattened, about half the height, of guinea-pig colonocytes in intact mucosa.44  Such 

flattening is found in primary cultures of jejunal45 and tracheal cells,46 and probably 

reflects the tendency of epithelial cells to spread as in wound healing until they reach 

contact when there is immediate inhibition of cell division.  Attempts to increase the 

cell density by plating increased numbers of crypt fragments did not enhance 

monolayer formation possibly because fragments attached to each other rather than 

to the Transwell membrane.  In a three dimensional system in vivo there is 

considerable lateral pressure which may induce a more columnar appearance by the 

cells.  

The bell-shaped dose response curves of E. coli LPS are characteristic of 

many actions of LPS mediated via TLR-4, e.g. in resected human ileal mucosa 47 and 

in the murine intestinal epithelial cell line m-ICcl2.
16  Furthermore, the low 

concentration at which LPS is effective implies a specific effect via TLR-4, and 

contrasts with the effect of high concentrations of apically applied LPS on Caco-2 

cells which appear to be mediated by CD14 and not TLR-4.48  The comparison 
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between the effects of highly purified LPS from H. pylori on stomach and colon cells, 

both grown on Transwells, shows that the effect of LPS on colon cells is specific to 

tissue, but not to the bacterial source of LPS. Furthermore, the results fit with the 

expectations derived from current knowledge of the relationship between the tissues 

and microorganism expressing the LPS.  Thus, H. pylori is a gastric pathogen and an 

increase in permeability of tight junctions to allow delivery of antibodies to the 

bacterium would seem an appropriate physiological response.  In contrast, the 

colonic epithelium has to tolerate a high luminal LPS load from the commensal 

enteric flora that are present and a lack of response to apical LPS would therefore 

seem appropriate. The significance of the effect of basal LPS on gut permeability 

needs further exploration but could clearly be of importance in exacerbating a 

defective permeability barrier.   

The action of LPS on paracellular permeability is probably not mediated 

indirectly by cytokines such as TNF-α and interferon-gamma (IFN-γ).  This is 

because, firstly, the effect of LPS observed here is evident after 2 h of exposure, 

whereas 24 h of exposure to such cytokines is required for an effect on paracellular 

permeability in intestinal (Caco-2) cells to be evident.8  Secondly, in contrast to the 

effect of LPS found in the present study, cytokines act preferentially on a subset of 

pores to increase the permeability of higher molecular mass probes (FD 10) to a 

greater extent than mannitol.34 Thirdly, the effect of cytokines can occur in the 

absence of the activation of caspases,49 in contrast to the caspase-dependent 

phenomenon observed here.  The dependence of the LPS-mediated increase in 

paracellular permeability on caspase activation may reflect increased leakage 

through apoptotic cells,39,50 or caspase-mediated cleavage and activation of Rho-

associated protein kinase 1 (ROCK-1)51 which can enhance paracellular 
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permeability.52 Such issues are the focus of our future studies. Overall, the findings 

suggest that the current paradigm that the effects of PAMPs on gut permeability are 

primarily mediated by the action of cytokines released from leukocytes6-8 may have to 

be modified to include direct effects on epithelial cells of one such pattern molecule, 

i.e. LPS.  

Synthetic Pam3CSK4 is a specific ligand for TLR-2.53  The Pam3CSK4 ligand 

has been reported to increase TEER in Caco-2 cells16, but no significant effect of this 

agent was found in the present preparation of colon cells.  This disparity may reflect 

the transient effect of Pam3CSK4 in Caco-2 cells or differences between the 

preparations.  Nevertheless, beneficial effects of Pam3CSK4-induced responses on 

the permeability barrier were observed in this study, namely the prevention of the 

deleterious effect of E. coli LPS.  The prevention of LPS-induced apoptosis by 

Pam3CSK4 is echoed by its inhibition of spontaneous apoptosis in sheets of mouse 

small intestine in primary culture54.  Finally, our finding that Pam3CSK4 delivered from 

the apical side was active in countering the effect of basal LPS is consistent with the 

use of orally delivered Pam3CSK4 to ameliorate the effect of dextran sodium 

sulphate-induced colitis in mice.54 There are, thus, parallels between the present 

work and that of others16, 54 which suggest a beneficial effect of Pam3CSK4 on the 

permeability barrier. Furthermore, the work raises issues related to the cross-talk 

between TLR-2 and TLR-4 in the colon in response to PAMPs. 

In conclusion, LPS increased paracellular permeability of colonic epithelial 

cells only when added from the basal side by a mechanism which involved caspase 

activation.  Perturbation of the gut barrier, which allows access of LPS to the base of 

colonic epithelial cells, could therefore result in a further exacerbation in paracellular 

permeability. The lack of effect of apically applied LPS on paracellular permeability 
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may contribute to the ability of the colon to exist in harmony with the enteric flora.  Of 

note, Pam3CSK4, an activator of TLR-2–mediated responses, prevented all effects 

induced by basally applied LPS, which suggests a possible protective effect of this 

agent in the colon. 
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Legends to Figures 

 

Fig. 1. Transepithelial electrical resistance (TEER) and paracellular permeability of 

colonic cells. (A) Increase in TEER with culture time.  Data are means ± SEM from 10 

experiments.  (B) Initial TEER and its relationship to basal permeability to mannitol 

for eight-day cultures.  Data points are means ± SEM for 14 plates from 7 

experiments with 12 wells on each plate. (C) Comparison between apparent 

permeability to mannitol from different preparations of colon cells.  Superscripts after 

the cell type indicate the source of the information (reference list). 

 

Fig. 2.  Light microscopy pictures of cryostat sections (10 µm) through Transwell 

membranes (A-C, E, G) and colonic mucosa (D, F, H, apical surfaces to the left). (A) 

Phase contrast view of unstained tissue. (B) The same section as in (A) under UV 

illumination showing nuclei stained with 4′, 6-diamidino-2-phenylindole 

dihydrochloride (DAPI) (the position of the membrane is shown by the horizontal 

white lines).  Sections stained with haematoxylin and eosin (C), with haematoxylin 

(D), with periodic acid-Schiff reagent (E) and (F) (goblet cells indicated by arrows in 

F), and for alkaline phosphatase (arrows) (G) and (H).  (A-E) and (G) are all at the 

same magnification and which can be judged from the thickness of the Transwell 

membrane (10 µm).  (F) and (H) are shown at 25% relative to the other pictures to 

enable the whole depth of the mucosa to be visible. 

 

Fig. 3. Examination of cells grown for 8 days on Transwells and fixed in situ (A-E) or 

detached, and transferred to microscope slides by use of a cytocentrifuge (F-K).  (A) 

Low power image showing nuclei stained with DAPI. (B)  The same cells as in (A) 
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showing extensive staining for cytokeratin-18. (C) Nuclei and (D) and (E) x, y 

confocal images, respectively, in and above the plane of the nuclei showing the 

presence of cytokeratin-18.  (F) Nuclei and (G) cytokeratin-18-positive cells on 

cytocentrifuge preparations. (H) Nuclei and (I) corresponding periodic acid-Schiff 

stained cells. (J) Nuclei and (K) corresponding vimentin-positive cell (arrow).  

 

Fig. 4. Transmission electron microscopy of vertical sections through the Transwell 

preparation. (A) Image showing a cross section of the monolayer resting on the filter.  

(B) Higher magnification image showing a basally located nucleus (arrow) and a 

cluster of granules (*). (C) Microvilli, desmosomes (twin white arrows) and apical 

junction complexes (single black arrow) were visible.  (E) and (F) Nuclear density 

achieved, respectively, with the present primary culture and with Caco-2 cells. 

 

Fig. 5.  Immunoblots for TLR-4 and TLR-2 with corresponding actin loading controls 

for cells incubated for 5h in the absence (control) or presence of LPS (10-7 g/ml). 

 

Fig. 6.  (A) Effect of the concentration of apical LPS (open bars) and basal LPS (filled 

bars) from E. coli on permeability to mannitol, and (B) on transepithelial electrical 

resistance (TEER).  Permeability was measured over a 1 h period starting 4 h after 

exposure to LPS was initiated.  The TEER was measured 5 h after exposure to LPS 

was started. (C) The change in the rate of mannitol transfer from apical to basal with 

time of exposure to LPS (10-7 g/ml). (D) Effect of the concentration of LPS on 

caspase 3-like activity measured 5 h after the start of exposure to LPS.  In (A-D) data 

are means ± SEM from four experiments; *P<0.05, **P<0.01 after analysis of 

variance followed by Dunnett’s test for comparison with results in the absence of LPS 
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(A, B, D) or with the data for 0-1 h (C).  (E) Nuclei on Transwells stained with 4′, 6-

diamidino-2-phenylindole dihydrochloride (DAPI) after 5 h incubation without or with 

LPS (10-7 g/ml) in the basal compartment.  Arrows point to apoptotic nuclei exhibiting 

features of condensation and fragmentation.  (F) The proportion of apoptotic cells on 

Transwells after incubation for 5 h in the absence or presence of basal LPS (10-7 

g/ml).  Data are means ± SEM of six Transwells from three experiments **P<0.01 by 

t-test. 

 

Fig. 7.  Effect of basally applied E. coli LPS (10-7 g/ml) (filled bars) compared to 

controls (open bars) on the apical to basal transfer of fluorescein isothiocyanate-

labelled dextran 10 kDa (FD10) and mannitol. Results, for the period 4-5 h after 

exposure to LPS was initiated, are means ± SEM from four experiments; *P<0.05 

and **P<0.01 for comparison with control by paired t-test.  The insert shows a lack of 

difference between FD10 and mannitol in the magnitude of the effect of LPS on their 

transfer. 

 

Fig. 8.  Comparison between gastric and colonic epithelial cells of the effect of 

incubation with apically applied (open bars) and basally applied (filled bars) LPS from 

H. pylori.  (A) Apical to basal transfer of mannitol and (B) the transepithelial electrical 

resistance (TEER).  Data were collected between 2-4 h after exposure of gastric cells 

to LPS, and from 4-5 h after exposure of colonic cells to LPS. The data are means ± 

SEM from three experiments for gastric cells and four experiments with colon cells. 

*P<0.05 and **P<0.01 for comparison with no LPS by analysis of variance and 

Dunnett’s test. 
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Fig. 9. Action of the pan-caspase inhibitor Z-VAD-FMK (50 µM) in the basal 

compartment (shaded bars) on the actions of basal E. coli LPS (10-7 g/ml). Mannitol 

transfer was measured between 4-5 h after exposure to LPS was initiated and 

transepithelial electrical resistance (TEER) and caspase 3-like activity after 5 h.  

Results are means ± SEM from four experiments and were obtained by calculating 

the effect of LPS in the presence and absence of Z-VAD-FMK. This inhibitor had no 

effect on mannitol transfer, TEER or caspase 3-like activity in the absence of LPS. 

*P<0.05, **P<0.01, ***P<0.001 for comparisons between the effect of LPS in the 

presence and absence of Z-VAD-FMK by a paired t-test. 

 

Fig. 10.  Effect of the TLR-2 agonist Pam3CSK4 (20 µg/ml). (A) Permeability to 

mannitol, (B) transepithelial electrical resistance (TEER) and (C) caspase 3-like 

activity in the absence (open bars) and presence (filled bars) of basal E. coli LPS (10-

7 g/ml).  Results are means ± SEM of four experiments. *P<0.05, **P<0.01 for effect 

of LPS in the absence of Pam3CSK4, or its presence in basal, or in apical 

compartments, by analysis of variance and a Newman-Keuls test.  The same test 

showed no significant effect of Pam3CSK4 on mannitol transfer, TEER or caspase 3-

like activity with respect to controls (no addition). 
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