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Abstract 
 

 

We use molecular dynamics simulations to compare the conformational structure and 

dynamics of a 21-base pair RNA sequence initially constructed according to the canonical 

A-RNA and A’-RNA forms in the presence of counterions and explicit water., Our study 

aims to add a dynamical perspective to the solid-state structural information that has been 

derived from X-ray data for these two characteristic forms of RNA. Analysis of the three 

main structural descriptors commonly used to differentiate between the two forms of 

RNA - namely major groove width, inclination and the number of base pairs in a helical 

twist – over a 30ns simulation period reveals a flexible structure in aqueous solution with 

fluctuations in the values of these structural parameters encompassing the range between 

the two crystal forms and more. This provides evidence to suggest that the identification 

of distinct A-RNA and A’-RNA structures, while relevant in the crystalline form, may not 

be generally relevant in the context of RNA in the aqueous phase. The apparent structural 

flexibility observed in our simulations is likely to bear ramifications for the interactions 

of RNA with biological molecules (e.g. proteins) and non-biological molecules (e.g. 

non-viral gene delivery vectors). 
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1 Introduction 
 

 

RNA molecules are critical to many biological processes in life science, the most reported 

of which include the transmission of genetic information, the catalysis of biochemical 

reactions, RNA inference in eukaryotes and a structural role in cellular organelles 
1-5

. The 

2’-hydroxyl (2’-OH) group is the main difference between RNA and DNA and plays a 

fundamental role in both RNA structure and function. In general, unlike the regular 

conformation of DNA, such as A-, B- or Z-DNA, RNA structures are strikingly diverse, 

from linear duplex RNA, hairpin molecules to loop structures 
6-10

. Among RNA 

double-helices, two major right-handed conformations: the 11-fold helix of A-RNA and 

12-fold helix of A’-RNA have been identified experimentally in crystal structures
11-16

. 

The major A-RNA conformation is apparent in natural RNA polynucleotides, or when 

crystallized from solutions of low ionic strength, while A’-RNA is formed from higher 

ionic strength solutions.
17

 The two forms of RNA retain the same overall helical features, 

however A’-RNA possesses a wider major groove than that of A-RNA. The details of 

their structural characteristics are discussed in several texts about nucleic acid 

structures.
11-13

 For example, from Protein Database Bank (PDB) and Nucleic Acid 

Database (NDB) survey data, the following three RNA molecules have been found to 

adopt the structural features of A’-RNA: the tridecamer r(UGAGCUUCGGCUC), the 

RNA dodecamer duplex (r-GGACUUCGGUCC)2 and helix IV of 5S rRNA.
16,18,19

 For 

later reference the helical parameters, groove widths and torsion angles of these 

structures are provided in Table 1, computed utilizing two common structural analysis 

programs 3DNA 
20

 and CURVES.
21,22
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Understanding both the structure and dynamics of RNA molecules on the atomistic level 

is critical to gaining a clearer picture of their role and function as therapeutic agents in 

gene silencing. This challenge can be addressed by a combination of experimental 

approaches and molecular dynamics simulations. In recent years, a significant number of 

molecular dynamics studies 
23-30

 on DNA and RNA systems have appeared. Cheatham & 

Kollman reviewed molecular dynamics simulations of nucleic acids from 1995 to 2000, 

discussing force fields for nucleic acids and simulation protocols using explicit solvent 

and counterions.
30,31

 Computational studies of DNA and RNA have also been elaborated 

in the recent book by Sponer and Lankas.
32

 In relation to molecular dynamics simulations 

of RNA specifically, progress made in the last twenty years in this area has been 

summarized by McDowell et al. 
33

 and by Hashem et al.,
34

 providing summaries of 

simulations, force field approximations, RNA interactions with solvents and ions, 

catalytic RNAs and RNA-protein (or small molecule) complexes. tRNA was the first 

RNA molecule with an X-ray structure to be studied by MD simulations.
35,36

 Although 

the first simulation of tRNA was quite simple without explicit treatment of solvent, 

counterions and hydrogen atoms of the backbone, it was an important step towards the 

study of RNA molecules using the MD simulations. More recent studies have covered 

longer timescales with stable simulations of solvated and neutralized systems.
37-43

 

Comparative studies of duplex RNA and DNA have revealed a striking contrast in 

structural flexibility.
44,45

 Attention has been focused both through experiment and 

simulation
46

 on the phenomenon of base pair opening and closing, which has been found 

to occur much more readily in RNA than in DNA. In addition, the opening mechanism of 

wobble pairs d(G·T) and r(G·U) in DNA and RNA duplexes was investigated with a 
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combination of imino proton exchange and molecular dynamics simulation.
47

 The results 

indicated that the opening of wobble pairs is the rotation of bases toward the major 

groove. Further recent progress has been discussed by Hall.
48

  

 

While as summarized above there have been a number of MD simulations for RNA, 

studies of the dynamical properties of A’-RNA are apparently still rare. By virtue of its 

characteristic 12-fold helix, the wider major groove of A’-RNA could be considered to 

bear some ramifications with respect to the propensity for complexing with other proteins, 

vectors or drugs. It is however worthy of note that the structures of A-RNA and A’-RNA 

have only been distinguished as independently stable conformations in the context of 

crystal structures, although the NUCGEN module of AMBER facilitates the construction 

of both forms with any given RNA sequence. In this paper, we use molecular dynamics 

simulations to compare the conformational structure and dynamics of a 21-base pair RNA 

sequence initially constructed according to the canonical A-RNA and A’-RNA forms in 

the presence of counterions and explicit water., in order to add a dynamical perspective 

relevant for the aqueous phase beyond the static perspective that has been derived from 

X-ray data. The original motivation was to explore whether a priori one might expect an 

A’-RNA conformation to display contrasting complexation propensities with other 

biomolecules in comparision with A-RNA due to its apparently wider major groove. The 

first step in examining this question was to analyse the fluctuations in major groove width 

for the two forms of RNA in aqueous solution. As will be seen below, the marked 

structural flexibility of RNA reveals itself yet again in our simulations – to the extent that 

we cannot find any evidence on the basis of our MD simulations that A-RNA and 
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A’-RNA are indeed distinguishable stable conformations in solution – at least for the 

specific RNA strand studied herein. We have additionally examined the phenomenon of 

base pair opening, revealing base-pair opening and closing events for both r(A-U) and 

r(G-C) base pairs on timescales consistent with that found in the earlier work of 

MacKerrel and Pan
46

 using the CHARMM forcefield (in contrast to the present AMBER 

ff99 force field) and again with no marked contrast between simulations that started with 

the A-RNA and the A’-RNA forms respectively. 

2 Simulation details  
 

The sequence of the 21 base pair siRNA is taken from the earlier study by Putral et al 
49

 

and is as follows: 

Sense            5'-   GCAACAGUUACUGCGACGUUU-3' 

Antisense         3'- UUCGUUGUCAAUGACGCUGCA  -5' 

The present MD simulations used the AMBER9 software package with the all-atom 

AMBER99 force field (ff99) for RNA. Both 3’-terminal UU of the RNA duplex were cut 

to form a canonical RNA duplex and then A-RNA and A’-RNA was generated in the 

NUCGEN module of AMBER. The electrostatic interactions were calculated with the 

particle mesh Ewald method and a cutoff of 10 Å was employed. Using the LEAP 

module in AMBER, Na
+
 counterions were added to the RNA structure to neutralize the 

negative charge and the whole system was then immersed in a truncated octahedral water 

box with a solvation shell of 8 Å thickness using TIP3P model for water. This procedure 

resulted in solvated structures containing approximately 30 000 atoms which include the 

1215 RNA atoms, 36 counterions (Na
+
), and the remainder were water molecules in a 

single simulation box 18.774 Å in length. 
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The minimization procedure for solvation of RNA consisted of two steps. In the first step, 

the RNA part was fixed while minimizing the positions of the water and ions. The 

solvated structures were then subjected to 500 steps of steepest descent minimization 

followed by 500 steps of conjugate gradient minimization. During this minimization the 

RNA molecule was held fixed in its starting conformations using harmonic constraints 

with a force constant of 500 kcal/mol/Å
2
. In the second stage, the entire system was 

minimized by 2000 steps of steepest descent minimization followed by 8000 steps of 

conjugate gradient minimization without the restraints. 

The optimized structure was then subjected to 20 ps of MD, using a 2 fs time step for 

integration, during which the system was gradually heated from 0 to 300 K using 10 

kcal/mol/Å
2 

weak positional restraints on the RNA. The SHAKE algorithm was used in 

which all bonds involving hydrogen are constrained. After the system was heated at 

constant volume with weak restraints on RNA, the main MD simulation was performed 

for 30 ns with a time step of 2 fs under constant pressure (average pressure 1atm) and 

constant temperature (T=300K) conditions (i.e., an NPT ensemble) without positional 

restraints. The random number seed was changed at each restart
50,51

 and periodic 

boundary conditions were employed in three dimensions. Isotropic position scaling was 

used to maintain the pressure and a relaxation time of 2 ps was used. SHAKE was used to 

constrain bonds involving hydrogen and the temperature was kept at 300 K with the 

Langevin dynamics using a collision frequency of 1.0 ps
-1

. 
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3 Results and discussion 
 

We begin with a consideration of two different common approaches to characterizing the 

structural parameters of our RNA. As noted in the introduction above, groove widths, 

helical parameters and torsional angles were calculated for the three A’-RNA structures 

obtained from PDB and NDB databases with two commonly used programs, namely  

CURVES5.1 
21,22

 and 3DNA (Table 1).
20

 The major groove width from 3DNA is 

calculated in terms of refined phosphate-phosphate distances, which take into account the 

directions of sugar-phosphate backbones. Given the implicit definitions in the two 

programs, for comparison purposes the final width from 3DNA is shifted by a subtraction 

of 5.8 Å from the original values.
52

 It can be seen from the comparison of the structural 

parameters calculated by the two programs in Table 1 that most parameters are similar. 

However, the values of the inclination angles and the major or minor groove widths are 

quite different. For example, the inclination angle of the 413D RNA sequence changes 

from -5° computed via CURVES to 12.8° computed via 3DNA, while its average major 

groove width (i.e., averaged along the strand) is about 8 and 11 Å, respectively. The other 

two sequences in Table 1 show similar consistencies and contrasts. As has also been 

pointed out previously,
53-55

 the two programs produce different values of helical and 

base-pair parameters, especially on distorted and irregular RNA molecules. Lu and Olson 

have demonstrated that the main cause of conflicting structural interpretations from the 

different programs relates to the reference frames used by each program.
54

 To resolve the 

numerical discrepancies, in 1999, the Tsukuba Workshop on nucleic acid structure and 

interactions reached an agreement with "a standard reference frame for the description of 

nucleic acid base-pair geometry".
56

 In accord with this, the 3DNA program with this 
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standard reference frame is utilized for the data analysis below.  

 

To explore the conformational dynamics, two separate MD simulations were seeded with 

canonical A-RNA and A’-RNA structures respectively and run over a period of 30ns.  

Plots shown in Fig.1 of the RMSD for both forms behave similarly over the 30 ns 

simulation and the oscillations about a stable mean from ca. 3ns onwards indicate that the 

simulations are stable over this period. Figs. 2a and 2b provide stereo views of both the 

canonical structures and the time-averaged MD structures of the A-RNA and the A’-RNA 

respectively. Corresponding structural data associated with these figures is provided in 

Table 2. Comparison of two average structures indicates that they are broadly similar to 

each other. It is relevant to point out that a number of the structural parameters in Table 2 

display quite large standard deviations (SDs) – a measure of the magnitude of 

fluctuations over the time of the simulation. We should stress here that these large SDs do 

not imply that the simulation is not equilibrated, since they do not decrease over time. 

Rather they are indicators of intrinsic structural flexibility. This leads one to examine the 

basis for distinguishing between the A- and A’-RNA structures in more detail.  

 

Our principal strategy in analyzing the dynamics is to examine the three main structural 

parameters that are commonly used to distinguish A-RNA from A’-RNA in crystal data, 

namely major groove width, inclination and the number of base pairs per helical twist. 

We compute these paramaters for snapshots of the RNA system at 1ns intervals along 

each trajectory, the results of which are presented in Fig. 3. In Fig. 3a the major groove 

width is plotted as a function of time for both simulations. Also indicated by arrows 
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against the vertical axis are the “canonical” values generated by the NUCGEN module of 

AMBER9 (i.e., prior to structure optimization and thermalisation), which are based on 

collective consideration of various crystal structures. A comparison of the t=0 starting 

values for the MD with the canonical values generated by NUCGEN reveals that even 

during the relaxation stages both RNA strands attain significantly larger groove widths 

than the typical crystal-packing values as represented by the arrows – presumably relating 

to the intrinsic differences between the crystal and the aqueous phases (i.e., different 

amounts of water, the lack of there-dimensional periodic packing forces in the aqueous 

phase as compared with the crystal, etc.). In Fig. 3b we present the values for the 

inclination parameter, computed similarly at ns intervals along each trajectory. Finally in 

Fig. 3c is shown the number of base pairs per helical twist, evaluated by manual 

inspection of the structures at ns intervals. From inspection of Figs 3a-c it becomes 

immediately apparent that the conformational fluctuations of both the “A-RNA” and the 

“A’-RNA” simulations are significant, encompassing in each case ranges wider than the 

initial difference between the two. Also indicated in Figs. 3a and 3b are the standard 

deviation (SD) estimates for the major groove width and inclination parameters (vertical 

bars on each point). These SDs, which are also quite significant in magnitude, relate to 

the fact that the groove width and inclination are evaluated with respect to individual base 

pairs and then averaged along the strand. Hence, the SDs are a reflection of the structural 

variability along the strands at any given time. Thus, both from the point of view of 

intra-strand structural heterogeneity and time-dependent behaviour, collective 

consideration of the results in Figs3a-c leads to the suggestion that the MD simulations in 

aqueous solution for the A-RNA and A’-RNA structures show no evidence that these can 
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be regarded as distinct conformational structures.  

 

One could potentially question whether there is some aspect lacking in the forcefield that 

we have utilized here (AMBER ff99) that prevents it from reliably simulating stable 

A-RNA and A’-RNA conformers. However, there are at least two factors lending 

confidence that the observations derived from this work are plausible. Firstly we note that 

our finding is not inconsistent with the fact that, to the best of our knowledge, the 

evidence for these two distinct conformations derives to date only from X-ray studies of 

the crystalline state. Secondly, our results appear to be broadly consistent with features 

seen previously in the simulations of Pan and MacKerell,
46

 in their comparative study of 

RNA and DNA dynamics using the CHARMM27 forcefield. Their 5-7ns simulations 

were carried for a series of shorter RNA strands (8-12 base pairs) and hence do not admit 

comparison of helical structural parameters such as those characterized here in Fig.3. 

Rather, they focused on the phenomenon of base pair opening, i.e., localized cleavage of 

the Watson-Crick hydrogen bonded base pairing. Their simulations revealed base pair 

opening events lasting for periods from a few ps to a few ns before the hydrogen bond 

was re-established. This phenomenon, which occurred more rarely and with much shorter 

open state lifetimes in their DNA simulations, was found to occur for both r(U·A) and 

r(G·C) pairs. We observe the same phenomenon in our simulations as exemplified in Fig. 

4, which plots the N1-N3 hydrogen bond distance as a function of simulation time for 

r(U·A) and r(G·C) pairs selected close to the end of the strand and also in the middle. The 

spikes in the main plot (some representative examples are shown in higher resolution in 

the insets) correspond to opening events in which the hydrogen bonds were stretched 
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beyond 4.5Å for longer than 10ps.  

 

The conformational flexibility of RNA revealed in this work (and foreshadowed in part 

by the earlier simulations of Pan and MacKerell
46

) may be a significant factor in relation 

to its structural diversity and biological function. Generally speaking, a wide major 

groove should enable it to easily interact with proteins, while a narrow one would tend to 

obstruct such interactions. For instance, helix IV of 5S rRNA has a wide major groove 

due to the combination of cross-strand purine stacks, in which the major groove width is 

11 Å.
19

 Furthermore, the major groove of helix IV is wide enough to accommodate an 

interacting protein, such as the ribosomal protein L25, which can be used for RNA 

recognition. Another interesting example is base-pair dynamics in sarcin-ricin domain 

RNA 
61

. The domain is a universal element of the large subunit ribosomal RNA. The 

sarcin-ricin domain is necessary for binding elongation factors and can be specifically 

cleaved by two ribotoxins α-sarcin and ricin. The imino proton exchange experiments 

indicated the presence of opening and closing dynamics for a selected base pair of the 

active area, which suggested that these opening conformational changes might be 

significant for the recognition of RNA by the two toxins. The present simulations add a 

dynamical context to this general understanding – highlighting that structural parameters 

such as major groove width are remarkably flexible in short RNA strands – potentially 

allowing them to adapt on the ps to ns timescale during encounter and interaction with 

complexing partners.  
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4 Conclusions 
 

Among RNA double-helices, two major right-handed conformations: the 11-fold helix of 

A-RNA and 12-fold helix of A’-RNA have been identified experimentally in crystal 

structures
11-16

. The major A-RNA conformation is apparent in natural RNA 

polynucleotides, or when crystallized from solutions of low ionic strength, while A’-RNA 

is formed from higher ionic strength solutions.
17

 These two forms of RNA retain the same 

overall helical features, however A’-RNA holds wider major groove than that of A-RNA. 

In this work we have carried out 30ns MD simulations using the AMBER ff99 forcefield 

to explore the structural and dynamical features of A-RNA and A’-RNA forms of the 

same short strand sequence in an aqueous environment. Monitoring the three major 

structural parameters commonly used to distinguish the A- and A’- RNA conformers as a 

function of time, namely the major groove width, the inclination and the number of base 

pairs per helical twist, we find that these descriptors fluctuate significantly for both 

simulations, covering in each case a range at least as great or larger than the initial 

difference between the canonical A-RNA and A’-RNA forms. This indicates substantial 

flexibility in the RNA structure in the aqueous environment, to the extent that – at least 

for the specific strand studied here - we can find no evidence that the A-RNA and 

A’-RNA can be regarded as independently stable and distinct conformers. The 

implication of this is that the two forms may in fact be stable only in the presence of the 

appropriate crystal packing forces – an observation not inconsistent with the fact that the 

extant data characterizing the two forms is derived only from the crystalline states of 

various RNA strands. We find similar base-pair opening dynamics on comparable 

timescales to the earlier study of Pan and MacKerell based on the CHARMM forcefield
46
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– again emphasizing the flexibility of short RNA strands in water and lending some 

confidence that our simulations do not suffer from artifacts related to one specific force 

field. The observed fluctuation of the major groove width may have significance for the 

interactions of RNA with proteins and organic compounds. The interaction of various 

dendritic polycations utilized in gene delivery with RNA is currently being explored with 

a view to better understanding their interactions with RNA at the atomistic level. 
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Figure Captions 

Figure 1. Root mean square deviation (RMSD) of A-RNA (red line) and A’-RNA (black line).   

 

Figure 2. Stereo views of the starting and averaged structures of (a) A-RNA and (b) A’-RNA. 

 

Figure 3. (a) Plot of major groove width (averaged over strand length, standard deviation 

indicated by vertical bar) as a function of time for A-RNA (red line) and A’-RNA (black line); (b) 

Plot of inclination angle (averaged over strand length, standard deviation indicated by vertical bar) 

as a function of time for A-RNA (red) and A’-RNA (black); c) Number of base pairs per helical 

twist versus time for A-RNA (red) and A’-RNA (black). 

 

Figure 4. Plot of N1-N3 distance of base pair versus time for A-RNA (red) and A’-RNA (black): a) 

r(U16·A23) base pair; b) r(U10·A29) base pair; c) r(G15·C24) base pair; d) r(G9·C30) base pair. 

(only the simulations with base opening events of longer than 10 ps and higher than 4.5 Å are 

included.) 

Note: The numbering scheme for the bases is as follows: 

5'-  G20CAACAGUUA29C30UGCGACGU38 -3' 

3'-  C19GUUGUCAAU10G09ACGCUGCA01 -5' 
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Table 1 Comparison of different results by CURVES and 3DNA programs  
 

 413D 255D 2ZKO 

 CURVES 3DNA CURVES 3DNA CURVES 3DNA 

x-disp (Å) -3.25±0.33 -5.19±2.46 -3.40±0.34 -5.39±2.25 -3.88±0.32 -4.16±1.62 

Inclination (°) -5.00±2.13 12.60±8.21 -2.98±2.51 13.76±6.20 7.86±2.68 14.81±9.89 

Slide (Å) -0.31±0.43 -1.84±0.32 -0.40±0.49 -.199±0.27 -0.22±0.38 -1.54±0.34 

Rise (Å) 3.21±0.29 3.34±0.17 3.13±0.24 3.35±0.16 2.86±0.18 3.23±0.13 

Roll (°) 9.01±2.12 6.15±2.69 8.64±1.40 6.88±1.87 3.55±3.66 7.78±3.94 

Twist (°) 29.80±5.70 30.60±8.09 30.31±6.42 30.84±9.04 31.59±3.12 31.02±5.09 

Stretch (Å) -0.23±0.51 -0.17±0.18 -0.29±0.61 -0.18±0.21 -0.08±0.29 -0.24±0.30 

Stagger (Å) -0.19±0.16 -0.13±0.15 -0.11±0.13 -0.05±0.12 -0.09±0.12 0.06±0.17 

Minor groove 

width (Å) 
9.95±0.74 11.54±0.56 9.83±0.59 11.53±0.60 10.20±0.44 11.81±0.55 

Major groove 

width (Å) 
8.54±0.25 11.44±0.52 7.94±0.28 11.36±0.51 5.68±2.19 10.76±0.93 

 

Note: The above values show the average structure parameter and standard deviation for each 

oligomer. The coordinates used her for the calculation of the structure parameters were taken 

from PDB, the ID number being 413D, 255D, 2ZKO.   
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Table 2 Starting structures and average structures in 30 ns of A-RNA and A’-RNA for the backbone 

angles and helical parameters. 

 

 A-RNA A’-RNA 

 Starting structures 
Average structures 

in 30 ns 
Starting structures 

Average structures 

in 30 ns 

x-disp (Å) -4.61±0.28 -4.71±1.34 -4.72±0.30 -4.69±0.67 

Inclination (°) 16.02±0.68 15.33±6.29 9.97±0.46 18.20±4.42 

Shift (Å) 0.00±0.02 0.06±0.18 0.00±0.02 -0.07±0.25 

Slide (Å) -1.75±0.03 -1.73±0.22 -1.90±0.04 -1.74±0.28 

Rise (Å) 3.40±0.01 3.30±0.13 3.37±0.01 2.74±0.19 

Tilt (°) 0.00±0.08 0.20±0.72 0.00±0.04 -0.08±0.61 

Roll (°) 8.91±0.12 7.81±3.05 5.14±0.04 9.56±2.64 

Twist (°) 31.55±1.23 29.13±2.45 29.62±1.20 29.25±1.09 

Shear (Å) 0.00±0.11 0.00±0.15 0.00±0.10 -0.12±0.46 

Stretch (Å) -0.12±0.06 -0.14±0.08 -0.12±0.06 -0.52±0.21 

Stagger (Å) 0.03±0.00 -0.03±0.05 0.04±0.00 -0.01±0.06 

Buckle (°) 0.00±0.20 -0.75±4.33 0.00±0.22 -0.50±3.11 

Propol (°) 13.74±0.01 -12.73±2.76 15.11±0.04 -13.20±1.57 

Opening (°) -5.52±0.13 0.90±1.16 -5.63±0.09 0.86±1.58 
 

 

 

 


