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Thesis Summary 
 
The important role played by vascular factors in the pathogenesis of 
neurodegenerative disease has been increasingly realised over recent years. The 
nature and impact of ocular and systemic vascular dysfunction in the pathogenesis of 
comparable neurodegenerative diseases such as glaucoma and Alzheimer’s disease 
(AD) has however never been fully explored. The aim of this thesis was therefore to 
investigate the presence of macro- and micro-vascular alterations in both glaucoma 
and AD and to explore the relationships between these two chronic, slowly 
progressive neurodegenerative diseases.   
 
The principle sections and findings of this work were: 
1. Is the eye a window to the brain? Retinal vascul ar dysfunction in Alzheimer’s 
disease 

• Mild newly diagnosed AD patients demonstrated ocular vascular dysfunction, 
in the form of an altered retinal vascular response to flicker light, which 
correlated with their degree of cognitive impairment. 

 
2. Ocular and systemic vascular abnormalities in ne wly diagnosed normal 
tension glaucoma (NTG) patients 

• NTG patients demonstrated an altered retinal arterial constriction response to 
flicker light along with an increased systemic arterial stiffness and carotid 
artery intima-media thickness (IMT). These findings were not replicated by 
healthy age matched controls. 

 
3. Ocular vascular dysregulation in AD compares to both POAG and NTG 

• AD patients demonstrated altered retinal arterial reactivity to flicker light which 
was comparable to that of POAG patients and altered baseline venous 
reactivity which was comparable to that of NTG patients. Neither alteration 
was replicated by healthy controls.  

 
4. POAG and NTG: two separate diseases or one conti nuous entity? The 
vascular perspective 

• POAG and NTG patients demonstrated comparable alterations in nocturnal 
systolic blood pressure (SBP) variability, ocular perfusion pressure, retinal 
vascular reactivity, systemic arterial stiffness and carotid IMT.  

• Nocturnal SBP variability was found to correlate with both retinal artery 
baseline diameter fluctuation and carotid IMT across the glaucoma groups. 

 
 
Keywords : Neurodegeneration, Glaucoma, Alzheimer’s disease, Retinal Vessel 
Reactivity, Vascular dysregulation 
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1. Introduction 
 
 
The term neurodegeneration refers to a progressive loss of structure and function in 

the neurons of the central and/or peripheral nervous system and encompasses a 

large range of different disease conditions. One of the most significant risk factors for 

neurodegeneration is advancing age and as life expectancies increase so does its 

prevalence, making it a global issue of increasing concern 1. Discovering the triggers 

which promote neurodegeneration in the elderly and others and discovering the 

pathological mechanisms by which neurodegenerative disease develops is therefore 

currently a research area of intense interest. One of the most recognised locations for 

neurodegeneration within the central nervous system (CNS) is the brain, where it is 

commonly affiliated with the development of cognitive impairments such as 

Alzheimer’s disease (AD). AD is a prevalent neurodegenerative disease of poorly 

understood aetiology which affects over 35 million people worldwide 2. One of the 

major factors limiting our aetiological understanding of the neurodegenerative 

processes in AD and other cerebral diseases is the notorious difficulty associated 

with assessing and visualising the brain and cerebral neurons directly. As a result 

researchers are naturally starting to look to other more accessible regions of the CNS 

in order to gain a potential insight into the alterations which may be occurring at the 

cerebral level. Of particular interest in this regard is the eye and the neurons of the 

retina and optic nerve head (ONH), which also form part of the CNS and have been 

found to exhibit a number of features comparable to that of the cerebral unit 3. Indeed 

the ONH itself is recognised as an important site of neurodegeneration, whereby the 

progressive degeneration of ONH neurons is strongly affiliated with the development 

of the ocular disease glaucoma. Interestingly tentative associations have previously 

been made between the occurrence of ocular neurodegeneration in the form of 

glaucoma and cerebral neurodegeneration in the form of AD. This in combination with 

the multiple similarities previously identified in the structure and functioning of the 
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ocular and cerebral units has raised the question of whether these two 

neurodegenerative diseases may share a common underlying aetiology. This thesis 

aims to explore this possibility and to additionally address the question of whether 

functional assessment at the ocular level could prove effective as an indirect measure 

of cerebral function and hence whether the eye could be effectively used as a 

‘window to the brain’ in neurodegenerative disease. Of particular interest to this thesis 

is the involvement of vascular factors in the aetiology of both AD and glaucoma. 

Indeed one of the most prominent features shared by the ocular and cerebral units is 

the nature of their vascular supply, with the ocular and cerebral microcirculations in 

particular demonstrating a large number of anatomical and physiological similarities 4. 

Furthermore, although the involvement of vascular factors in the aetiology of both AD 

and glaucoma individually has been increasingly realised, the nature of this 

involvement is still somewhat uncertain and many questions remain. As such this 

thesis additionally aims to explore the presence and aetiological relevance of 

vascular disorders at both the ocular and systemic level in glaucoma and AD in order 

to try and enhance our understanding of the pathological mechanisms involved in 

these neurodegenerative diseases individually. To provide a basis for the research 

conducted in this thesis the following sections will outline the background and current 

aetiological thinking, firstly for the development of glaucoma and secondly for the 

development of AD, with particular emphasis on the role of vascular factors. The 

relevant ocular, cerebral and cardiovascular anatomy and physiology will also be 

discussed, followed by an outline of the current literature associating these two 

neurodegenerative diseases.  
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1.1 Primary Open Angle Glaucoma  

Primary open angle glaucoma (POAG) is a chronic, slowly progressive optic 

neuropathy characterised by progressive visual field loss and a distinctive excavation 

of the ONH 5. It is one of the leading causes of blindness in the world, affecting over 

66 million people worldwide and accounting for approximately 13% of those on the 

blind register in England and Wales 6. Its origin is strongly linked to the presence of 

elevated intraocular pressure (IOP) 7, 8, but despite this IOP is no longer included in 

the definition of glaucoma as its involvement with the disease process has been 

shown to be inconsistent.    

 

The first description of the term glaucoma (or ‘glaucosis’ in Greek) is accredited to 

Hippocrates in approximately 400 B.C 9. It was thought for many centuries that the 

‘hardness of the eyeball’ first identified as glaucoma resulted from some form of 

vitreous abnormality and it wasn’t until the mid-nineteenth century, following the 

development of the ophthalmoscope, that the now characteristic features of abnormal 

cupping of the ONH, increased ‘eye tension’ and visual loss were first linked 9. A 

differentiation between different forms of glaucoma, namely acute, chronic and 

secondary, all of which were associated with increased IOP, was first made by von 

Graefe in 1854 9. This was followed by the proposal that there may also be IOP-

independent causes of glaucomatous optic neuropathy (GON) by Jaeger in 1858 10 

and that both mechanical and vascular factors may be involved in the development of 

glaucoma by Smith in 1886 11. The suggestion that atrophy and excavation of the 

ONH occurring in the absence of elevated IOP should be considered a distinct form 

of glaucoma was subsequently made by Schnabel in 1892, leading to the 

categorisation of what is now commonly referred to as normal tension glaucoma 

(NTG). Finally, following the development of gonioscopic devices in the early 20th 

century, which allowed the anterior chamber drainage angle to be observed, a further 
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differentiation between open angle and closed angle glaucoma was made, leading 

ultimately to the adoption of a simple and broad classification for glaucoma in 1954 9 

which still forms the basis for glaucoma classification in the present day (Figure 1.1).  

 

 

Figure 1.1: Classification of glaucoma 

 

Open angle glaucoma (OAG) is the most prevalent type of glaucoma and forms the 

focus of this research. It is commonly divided into two subcategories, namely high 

tension or primary open angle glaucoma (HTG/POAG), in which IOP is elevated (>21 

mmHg) and NTG, in which IOP falls within the normal range (10-21 mmHg on diurnal 

testing). The distinctions between these two subcategories of OAG however have 

become somewhat blurred over recent years and this is discussed further in section 

1.1.2. Nevertheless, as it is still currently common practice in the recent literature to 

come across the terms POAG and NTG being referred to individually, for the purpose 

of this thesis, the term POAG will be used to refer to the development of GON in the 
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presence of raised IOP and NTG, which accounts for approximately 1/3 of all open 

angle glaucoma cases, will be considered separately. The only exception to this will 

be when citing previous research in which no distinction between patients with regard 

to their IOP level was made. In these cases the term ‘glaucoma’ is used to describe 

participants and will indicate a non-specific diagnosis of open angle glaucoma. 

 

1.1.1 Risk factors for glaucomatous damage 

Both POAG and NTG are asymptomatic until the late stages of the disease by which 

point significant visual field loss has already occurred. The necessity for early 

detection and management of the disease is therefore clear however this is hindered 

by our still relatively poor understanding of the pathogenesis of glaucoma, despite 

extensive research in the area. Multiple risk factors have been implicated in the 

development of glaucoma, the most acknowledged of which include advancing age 

12, elevated IOP 13, positive family history 14 and African descent 15, 16. At the ocular 

level the presence of myopia 17, 18, a large ONH 19 and/or a thinner central corneal 

thickness 15, 20, 21 have also been recognised to increase the risk of GON development 

as well as, hypertension 22, hypotension 23, 24, reduced OBF 25, vasospasm 26, 

oxidative stress 27, 28 and cardiovascular disease history 24 at the systemic level. With 

regard to NTG specifically, the occurrence of female gender 29, Japanese ethnicity 30 

and optic disc haemorrhages 31 are factors additionally identified as increasing the 

risk of its development. Such differences in the risk factors associated with POAG 

and NTG suggests that these two forms of OAG may represent distinct clinical 

entities, each with their own pathogenesis; however the relationship between them is 

not this clear cut, as discussed in the following section.  

 

1.1.2 POAG vs. NTG 

Although the separation of OAG into two distinct clinical entities on the basis of IOP 

has been common practice for many years, a large number of overlaps between the 
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pathogenesis and features of both POAG and NTG have been identified more 

recently, throwing this concept of a distinct separation into dispute. Indeed it has even 

recently been suggested that the terms POAG and NTG should in fact be abolished, 

along with the ‘arbitrary’ 21mmHg IOP cut off value and that glaucoma should instead 

be considered as a disease continuum across which IOP and pressure-independent 

risk factors coexist with a varying degree of influence 32-35. In support of this, factors 

more traditionally associated with POAG, such as elevated IOP, have been firmly 

established as part of the pathogenetic process in NTG 36-38 and similarly vascular 

alterations and other IOP independent factors, more traditionally linked to NTG, have 

also been linked to POAG 39-43. On the contrary however, there are still a number of 

studies which describe subtle but important differences in both the structural and 

functional ONH changes, as well as the vascular risk between POAG and NTG 

patients 31, 44-47. Indeed NTG patients have previously been demonstrated to show a 

greater degree of inferotemporal NRR thinning, notching and disc haemorrhaging in 

comparison to POAG patients 48, 49, as well as deeper, steeper sided and more 

central visual field (VF) defects 50, 51. Furthermore, with regard to vascular risk, 

stronger associations between the presence of vascular factors such as vasospasm, 

vascular dysregulation and hypotension have been made with NTG in comparison to 

POAG 26, 42, 52-54 and additionally NTG patients have also been demonstrated to show 

a greater frequency of related conditions such as migraine and Raynaud’s 

phenomenon 55. The possibility that POAG and NTG may still represent two distinct 

clinical entities can therefore not be ruled out, however much of the literature is 

conflicting and whilst the similarities and differences discussed above have been 

identified by some studies, others have found no such relationships, making it difficult 

to draw any firm conclusions 32, 44-46. Further investigation into the relationship 

between POAG and NTG and a thorough evaluation of their validity as distinct clinical 

entities would be beneficial in enhancing our understanding, diagnosis and future 
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management of these two conditions. A summary of the most commonly identified 

similarities and differences between POAG and NTG is given in table 1.1.  

 

  
POAG 

 
NTG 

 
Onset and Symptoms 

 
Gradual, asymptomatic 

 
Gradual, asymptomatic 
 

 
Clinical Profiles 

 
Non-specific 

 
 

 
- Lower body weight 
- Detail-orientated and health 

conscious  
 
Risk factors 
 

 
- Age 
- IOP* 
- Gender (female) 
- Family history 
- African Descent 
- Myopia 
- Thinner corneal thickness 
- Hypertension* 
- Hypotension 
- Altered OBF 
- Vasospasm/Vascular 

dysregulation 
- Oxidative stress 
- Cardiovascular disease 

history* 
 

 
- Age 
- IOP 
- Gender (female)* 
- Family history 
- African Descent 
- Japanese descent* 
- Myopia 
- Thinner corneal thickness 
- Hypertension 
- Hypotension* 
- Altered OBF* 
- Vasospasm/Vascular 

dysregulation* 
- Oxidative stress 
- Cardiovascular disease 

history 
 
Structural ONH Change 
 

 
- Progressive enlargement 

and deepening of the optic 
cup in conjunction with 
thinning of NRR 

- Deep cupping 

 
- Progressive enlargement 

and deepening of the optic 
cup 

- Inferotemporal NRR 
thinning predominantly  

- Disc haemorrhages 
Visual Field Defects  - Arcuate scotomas 

- Paracentral locations 
involved at later stages of 
field loss 

-  Deep, steep, paracentral 
defects  

 
Nature of Progression 
 

 
- More pronounced 
- Correlates with level of IOP 

 
- Less pronounced or even 

non-progressive 
 

Table 1.1: Comparison between POAG and NTG (*Indica tes where a risk factor is more 
predominant) 

 

All in all, it is clear from the wide range of both ocular and systemic risk factors 

implicated in the development of both forms of OAG that it is a disease of 

multifactorial origin, the end stage of which is known to involve the apoptotic loss of 

retinal ganglion cells (RGC), tissue remodelling and excavation of the ONH. The 
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mechanisms by which these multiple risk factors go on to contribute towards the 

classic glaucomatous ONH changes in both forms of the disease is however currently 

uncertain, with a number of different aetiological theories having been proposed. 

Gaining a better understanding of the exact pathophysiology of glaucoma could lead 

to huge advances in its diagnosis and treatment and significantly improve the 

prognosis for affected individuals. The current knowledge surrounding the aetiology 

of glaucoma and the involvement of both mechanical and vascular factors will now be 

discussed in detail, along with the anatomy and physiology of the ocular structures, 

which is necessary to aid the interpretation of this thesis. 

 

1.2 Anatomy and Physiology of the Retina, Optic Nerve and 

Ocular Circulation 

 
1.2.1 The Retina 

The vertebrate retina is a complex multilayered structure consisting of five types of 

neuronal cells (ganglion, bipolar, amacrine, horizontal cells and photoreceptors) and 

one type of glial cell (Muller) inter-dispersed by synaptic connections 56. Its 

anatomical structure is depicted in figure 1.2. 

  

The inner most layer, closest to the vitreous body is termed the internal limiting 

membrane (ILM) and is formed from Muller cell end plates. These cells extend 

vertically through the retina from the ILM to the external limiting membrane (ELM) 56 

and act to maintain homeostasis and provide support and protection for the neurons. 

The ganglion cells lie immediately behind the ILM with their axons making up the 

retinal nerve fibre layer (NFL), and their nuclei forming the so called ganglion cell 

layer itself. Two other cellular layers are also present in the retina, namely the inner 

nuclear layer and the outer nuclear layer. The inner nuclear layer contains the nuclei 
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and cell bodies of the bipolar cells, the amacrine cells and, along its outer margin, the 

horizontal cells. The outer nuclear layer on the other hand contains the cell bodies of 

the photoreceptors 56. Separating these two neural layers are two plexiform layers of 

synaptic connections; namely the inner plexiform layer and the outer plexiform layer 

56. The ELM separates the photoreceptor layer from the outer nuclear layer and in a 

similar way to the ILM is formed from Muller cell end plates 56. Finally the retinal 

pigment epithelium (RPE) forms the outermost retinal layer, separating the 

neurosensory retina from the underlying choroid and providing support for the 

photoreceptors.  

 

Ultimately, the RGCs are the means by which the retinal information is finally 

transferred to the relay stations in the brain for integration and processing 57. This 

transfer of information is achieved by convergence of the RGC axons from across the 

inner retinal margin, onto the ONH, and along the optic nerve 56 and only occurs 

following a series of complex interactions between the retinal photoreceptors (rods 

and cones) and the retinal neurons (bipolar, amacrine and horizontal cells). A full 

account of this is beyond the scope of this thesis but can be found in ‘Webvision: The 

Organization of the Retina and Visual System [Internet] 58. In short, the two types of 

retinal photoreceptors (rods and cones), which contain visual pigments (rhodopsin 

and opsin respectively), detect quanta of light and transfer information regarding this 

light signal to the outer plexiform layer 59. At the level of the outer plexiform layer the 

photoreceptor processes synapse with the horizontal and bipolar cells 60 and this 

information ultimately reaches the ganglion cells, via the inner plexiform layer through 

either the vertical pathways (photoreceptors – bipolar cells – ganglion cells) or the 

lateral pathways (photoreceptor – horizontal cells – amacrine cells – ganglion cells) 

57. 
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Figure 1.2: Diagrammatic representation of the huma n retina 

 
1.2.2  The Optic Nerve  

The optic nerve or second cranial nerve is part of the CNS with a pathway extending 

from the retinal level to the primary visual centres in the brain. It is commonly 

subdivided into four segments termed the intraocular, intraorbital, canalicular and 

intracranial segments 61. The intraocular segment of the optic nerve is commonly 

referred to as the head and the anatomy and physiology of this portion of the optic 

nerve is particularly relevant with regard to the development of optic neuropathies 

such as glaucoma.  

 

The ONH arises when the intraorbital portion of the optic nerve pierces the sclera, 

choroid and outer retinal layers and it is located approximately 4mm nasal to the 

posterior pole of the globe 61. The ONH itself can be further subdivided into three 

sections, termed the surface nerve fibre layer, the prelaminar region and the lamina 

cribrosa region (figure 1.3), with the remainder of the optic nerve being then termed 

the retrolaminar portion 62. The subdivisions of the ONH are outlined below: 
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• The surface NFL: a layer of compact nerve fibres formed from the convergence 

of the retinal nerves across the entire retinal surface towards the ONH before 

they bend to run backward along the optic nerve itself 62. It is the most anterior 

layer of the ONH and it is covered by the ILM of the retina. 

• The prelaminar layer: lies immediately behind the surface NFL and consists of 

nerve fibres arranged in bundles and surrounded by glial tissue septa 62. Within 

the glial septa are capillaries and between the bundles any loose glial tissue form 

trabelculae 62. The network of glial cells provides support, protection and nutrition 

to the optic nerve fibres in this portion of the nerve 63. The prelaminar layer is 

closely connected to the lamina cribrosa at its base and separated at its edge 

from the adjacent retina and choroid by a further layer of glial tissue 62. 

• The lamina cribrosa: a band of dense compact connective tissue which bridges 

across the entire thickness of the optic nerve. It is lamellar in structure, being 

made up of alternating sheets of connective and glial tissue and containing many 

oval or rounded openings which are lined by glial cells and allow the 

transmission of the nerve fibre bundles through the lamina layer. It also has a 

central opening allowing the transmission of the central retinal vessels 62. These 

openings or pores are larger in the superior and inferior sections compared to the 

nasal and temporal sections of the ONH 64. Each nerve fibre bundle is 

surrounded by a continuous glial membrane which separates it from the adjacent 

connective tissue and provides support, protection and nutrition. Capillaries, 

which lie within the fibrous septa, form a dense capillary plexus making the 

lamina region a highly vascular section of the ONH 65.    

• The retrolaminar portion: encompasses the intraorbital, canalicular and 

intracranial sections and is enclosed by dura, arachnoid and pia 62. In the 

intraorbital region the nerve fibres become myelinated and their bundles lie in 

polygonal spaces formed by the connective tissue septa. The septa contain 

blood vessels and are attached to the pia in the periphery, the connective tissue 
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envelope of the central retinal vessels centrally and the lamina cribrosa anteriorly 

62. From here the nerve fibres continue posteriorly through the canalicular and 

intracranial segments of the optic nerve to the primary visual centres in the brain.    

Figure 1.3: Diagrammatic representation of the opti c nerve head and its vasculature  

 

1.2.2.1 The Healthy Optic Nerve Head on Clinical Examination 

As well as the structural profile of the ONH it is important to also consider its clinical 

picture visible on examination. Indeed on clinical examination the ONH is vertically 

oval in form with a central depression, referred to as the cup, surrounded by a rim of 

neural tissue, termed the neuroretinal rim (NRR) (figure 1.4) 66, 67.  

 

In the healthy ONH the NRR is well perfused and orange/pink in colour. It has a 

characteristic physiological shape, defined by the ‘ISNT rule’, whereby its broadness 

decreases from being maximum in the inferior region, followed by the superior region, 

the nasal region and finally reaching its narrowest point in the temporal region of the 

ONH 66. The size of the ONH itself can show great physiological variation between 

individuals, with its area having been shown to range from 0.80 mm2 to 6.00 mm2 in a 

normal white population 66, 68, 69. The central cup is an area devoid of neural tissue 

and is usually horizontally oval and paler in colour compared to the NRR 66. Its size 
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and depth can also show great inter-individual variation and it is commonly graded in 

terms of cup-to-disc ratio 66. In the healthy ONH the area of the optic disc and the 

optic cup are correlated with each other, so larger optic discs are associated with 

larger optic cups 67, 69 and larger optic cups are associated with greater depths 67. 

Also visible in the central portion of the healthy ONH is the entrance/exit points of the 

CRA, CRV and their branches. Variations away from this healthy clinical picture can 

be indicative of optic neuropathy and the relevance of this with regard to 

glaucomatous nerve damage is discussed later in section 1.3. 

 

 

Figure 1.4: Diagrammatic representation of the heal thy optic nerve head 

 

1.2.3 The Ocular Circulation 

1.2.3.1 The Retrobulbar Vessels 

The blood supply to the ocular tissues primarily arises from the internal carotid artery, 

which branches to form the ophthalmic artery (OA) and subsequently the central 

retinal artery (CRA) and posterior ciliary arteries (PCAs) (figure 1.5). The OA, CRA 

and PCAs are collectively referred to as the retrobulbar vessels and their anatomy is 

as follows: 
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a) Ophthalmic Artery (OA) 

The OA is the first major branch of the internal carotid artery, arising, in most cases, 

just after the internal carotid leaves the cavernous sinus. From here it travels 

anteriorly, passing within the optic canal, usually inferolaterally to the optic nerve, 

until it enters the orbit at its apex 70.  Numerous branches arise from the OA along its 

pathway to the orbit and supply not only the orbit itself but also some structures in the 

face, nose and meninges 71. Anatomical studies have revealed multiple inter-

individual variations in the site of origin of the OA itself, its branches and the course it 

follows, therefore it is common practice to discuss its anatomy and pathway in terms 

of that most commonly observed. The most relevant branches arising from the OA 

with regard to the ocular circulation are the CRA and PCAs. 

a) Central Retinal Artery (CRA) 

The CRA is one of the first branches of the OA. It penetrates the optic nerve 

approximately 8mm posterior to the globe and travels anteriorly along the centre of 

the optic nerve before ultimately dividing into four major branches which supply the 

inner retinal layers 72 (see section 1.2.3.2). 

b) Posterior ciliary arteries (PCAs) 

The PCA circulation is the major source of the blood supply to the ocular structures 

and ONH. One to five posterior ciliary arteries branch from the OA at a point distal to 

the origin of the CRA. They travel forward along the optic nerve and further divide into 

multiple branches which pierce the sclera, usually laterally or medially to the optic 

nerve 73. These branches are of two types, termed short and long PCAs. The short 

PCAs (SPCAs), of which there can be 10-20, are also of two types, paraoptic and 

distal. Paraoptic SPCAs enter the sclera close to the optic nerve and contribute to the 

blood supply of the ONH, peripapillary choroid and the circle of Zinn and Haller, as 

well as sending recurrent branches to the retrolaminar ONH plial vascular plexus 73. 

The distal SPCAs enter the sclera a short distance away from the ONH and run 

radially towards the equator. Each distal SPCA supplies a sector of the choroid 
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extending from the posterior pole to the equator and then further subdivides into 

smaller choroidal arterioles which ultimately supply a lobule of choriocapillaries 73. 

The choriocapillaries exist as a single network of continuous capillaries located 

directly beneath the RPE, which demonstrate a segmental distribution and supply the 

outer portion of the retina extending from the RPE to the outer part of the inner 

nuclear layer 74, 75. The long PCAs (LPCAs), of which there are two (medial and 

lateral), enter the sclera in the horizontal plane on the medial and lateral sides and 

run radially towards the iris. Each LPCA  supplies a sector of the peripheral choroid 

as well as a small section of the ciliary body and iris 73. The choroidal circulation 

accounts for 85% of the total ocular blood flow and is characterised by very high flow 

and low oxygen extraction 76, 77. This high flow is facilitated by low resistance of the 

choroidal capillaries 78 and unlike the retinal capillaries, the choriocapillaries are 

fenestrated, demonstrate less autoregulation and have a rich autonomic innervation 

79-82. 

 

Figure 1.5: Diagrammatic representation of the retr obulbar circulation 
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1.2.3.2  Retinal Circulation 

Normal retinal function requires a stable blood supply that does not interfere with the 

optics of the system but still provides adequate nutrient delivery and temperature 

control. The major source of blood supply to the inner retina (extending from NFL to 

inner section of inner nuclear layer) is the CRA, whereas the outer portion of the 

retina (extending from outer section of inner nuclear layer to RPE) receives its blood 

supply from the SPCAs, via the choriocapillaries 75. 

 

The CRA, on leaving the optic nerve, divides into four major branches which lie in the 

nerve fibre and ganglion cell layers and run from the posterior pole to the periphery, 

supplying the whole inner retina 75. Some arterioles branch further to form side arms 

and supply a complex retinal capillary network. The retinal capillary network is split 

into three main sections, termed the radial peripapillary capillaries (RPCs), the inner 

capillaries and the outer capillaries 75. The RPCs lie within the inner part of the nerve 

fibre layer and run along the paths of the major CRA branches. The inner capillaries 

lie in the nerve fibre and ganglion cell layer, underlying the RPCs and form a complex 

capillary inner plexus. Finally the outer capillaries lie in the inner plexiform layer and 

inner nuclear layer and run to the border of the outer plexiform layer 75. This capillary 

network extends throughout the length of the retina, with the only exception being in 

the central macula region where a capillary free zone exists parafoveally 75.  

The outer portion of the retina, extending from the RPE to the outer section of the 

inner nuclear layer, receives its blood supply from the choriocapillaries which form a 

continuous single network and lie in the inner most layer of the choroid 75, 83.  

 

Drainage of the retinal circulation is achieved via the central retinal vein (CRV), which 

travels centrally within the optic nerve, alongside the CRA, before exiting the nerve 

and ultimately draining into either the superior ophthalmic vein (SOV), other 

intraorbital venous branches or directly into the cavernous sinus 61. Drainage of the 
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choroidal circulation and hence the outer portion of the retina is via the vorticose 

veins.     

 

On the whole, retinal circulation is characterised by a low level of flow and high level 

of oxygen extraction 78, 84. It is autoregulated, allowing blood supply to be adjusted to 

metabolic demand, but it receives no autonomic innervation 85-87. Tight junctions exist 

between the capillary endothelial cells forming a blood-retinal barrier similar to the 

blood-brain barrier of the CNS. The RPE, which is considered the most posterior 

layer of the retina, forms an outer blood-retinal barrier which complements the inner 

blood retinal barrier formed by the retinal capillaries and prevents the passage of all 

but essential metabolites from the bloodstream to the retinal tissues 78.     

 

1.2.3.3  ONH Circulation 

The ONH is a highly vascular structure which receives its primary blood supply from 

the SPCAs, either directly or via the peripapillary choroid. If present, contributions are 

also made from the intrascleral circle of Zinn and Haller 64.  

 

The nature of the blood supply varies slightly between the different portions of the 

ONH as outlined below: 

• Surface NFL: mainly supplied by the retinal arterioles and hence the CRA, in 

a manner continuous with the peripapillary retina 88. The temporal portion 

may be supplied by the PCA circulation from the underlying prelaminar region 

and if a cilioretinal artery is present then it will also contribute in the 

corresponding area 64.  

• Prelaminar region: mainly supplied by centripetal branches from the 

peripapillary choroidal vessels, particularly on the temporal side, however 

some of the blood supply may also come from the vessels located in the 
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lamina region 88. Blood supply is sectorial, in a similar way to the choroid, but 

no contribution is made by the CRA or the peripapillary choriocapillaries 64.  

• Lamina cribrosa region: supplied by centripetal branches arising either 

directly from the SPCAs or from the circle of Zinn and Haller, if present. The 

vessels form a dense capillary plexus making it a highly vascular region of 

the ONH 64, 88 however there is no contribution from the CRA. 

• Retrolaminar portion: has a centripetal vascular system formed primarily by 

recurrent pial branches arising from the peripapillary choroid and the circle of 

Zinn and Haller. Additional pial branches may also arise from the CRA or 

other orbital arteries. This network of precapillaries and capillaries run 

centripetally within the connective tissue septa 64. 

 

Venous drainage of the ONH is primarily via the central retinal vein however in the 

prelaminar region drainage can also occur via the peripapillary choroidal veins 

(vorticose veins) 64.  

 

The circulation of the optic nerve resembles the cerebral circulation and that of the 

rest of the CNS, in that, on the whole, tight junctions exist between vascular 

endothelial cells creating a blood-brain barrier (BBB) 89. This barrier prevents the 

passage of all but essential metabolites from the blood into the tissues, protecting 

them from the effects of foreign, potentially damaging, substances that could be 

present in the bloodstream as well as the effects of hormones or neurotransmitters 

that may be active in the rest of the body 90. The prelaminar portion of the ONH, 

however, has been to found to lack the BBB properties typical of the rest of the CNS 

and optic nerve, indicating that the vessels in the prelaminar region may demonstrate 

different permeability characteristics to that of the other regions of the ONH 89. These 

permeability differences could be important with regard to regulation of blood flow 
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and disease pathology in this region due to the possibility of diffusion of vasoactive 

substances from the choroidal circulation into the ONH. 

 

The ONH receives no direct autonomic innervation 91, 92, however its blood flow is 

autoregulated 87, 93, 94. This capacity for autoregulation is however considered to be 

less efficient than in the retina, but more efficient than in the choroid 95.  

 

1.2.3.4 Venous Drainage 

Anatomical studies reveal the orbital venous system to be complex and highly 

variable 70, 96. The SOV is generally accepted as the main route for venous drainage 

from the orbit. It is formed from the union of the supraorbital and angular veins just 

posterior to the trochlea and travels posteriorly, following the course of the OA, before 

ultimately leaving the orbit through the superior orbital fissure and draining into the 

cavernous sinus 96. Multiple venous tributaries drain into the SOV including the 

superior vortex, lacrimal, muscular, inferior orbital and CRV 70.  

 

The CRV is the main source of venous drainage from the retinal circulation. It travels 

centrally within the optic nerve, exiting 2mm behind the CRA entry point before 

continuing to run posteriorly below it. The CRV then either drains into the SOV, into 

other intraorbital venous branches or directly into the cavernous sinus 61.          

 

The vorticose veins, of which there are normally four, are the main source of venous 

drainage for the uvea. Each vorticose vein (superior and inferior lateral and medial) 

drains the corresponding quadrant of the choroid as well as the corresponding 

quadrant of the iris and ciliary body 83. The superior medial and lateral vorticose veins 

ultimately drain into the SOV and the inferior lateral and medial vorticose veins drain 

into the inferior ophthalmic venous plexus 96. The inferior ophthalmic venous plexus is 

the main component of the inferior orbital venous system. It runs posteriorly, close to 
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the orbital floor, and joins either the SOV or drains directly into the cavernous sinus. It 

receives contributing veins from the lower lid, lacrimal sac, inferior rectus and oblique 

muscles and the sclera (inferior vortex veins) 70, 96.  

  

1.2.3.5 Assessment of Ocular Blood Flow 

A variety of different techniques are available for the assessment of ocular blood flow 

(OBF) however no single technique is able to provide all the relevant information 

about the ocular vasculature in one reading as each tends to be designed to measure 

a specific aspect of ocular perfusion from one specific ocular vascular bed. The 

technique selected for the assessment of OBF in any research therefore needs to 

correspond with the vascular bed of interest. Indeed OBF can be assessed at the 

level of the retina, ONH, choroid or retrobulbar vessels and can either be measured 

directly or indirectly in terms of blood flow velocity, pulsatile OBF or vessel diameter 

changes. More recently enhanced techniques such as dynamic retinal vessel 

analysis (DVA), which enables retinal vessel reactivity to be assessed and retinal 

oximetry, which provides a direct assessment of retinal vessel metabolism, have also 

been introduced 97 98. An overview of the techniques currently available for the 

assessment of OBF is given in table 1.2.  
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Method  Vascular bed and 
measurement 

Advantages  Disadvantages  

 

Color Doppler Imaging 
(CDI) 

 

Retrobulbar vessels 
(OA, CRA, CRV, PCA) 
 
Blood flow velocity 

 

Non-invasive, high 
reproducibility, quick 

 

Poor inter-observer 
variability, retrobulbar 
assessment only, low 
resolution for smaller 
vessels 

 

Pulsatile OBF (POBF) 
 
(Langham OBF 
system; Laser 
interferometry) 

 

Choroid 
 
Pulsatile OBF via IOP 
pulse wave or 
interferometry  

 

Simple, non-invasive 
 

Provides an 
approximation only and 
influenced by IOP and 
gender 

 

Laser Doppler 
flowmetry (LDF) 

 

Choriod, ONH 
(depending on 
wavelength used) 
 
 
Capillary blood flow 

 

Direct assessment of 
blood flow,  non-
invasive 

 

Restricted to a small 
measurement area, 
exact volume of tissue 
measured unclear, inter-
individual comparisons 
poor 

 

Laser Doppler 
velocimetry (LDV) 

 

Retina 
 
Blood flow velocity 

 

Simple, quick, 
quantitative,  

 

Single vessel only 

 

Heidelberg Retina 
Flowmeter (HRF) 
 
(= a scanning laser 
Doppler flowmeter) 

 

Retina, ONH 
 
 
 
Capillary blood flow 

 

Non-invasive, does not 
require dilation, quick,  
direct assessment of 
OBF 

 

Requires clear media 
and good fixation. Very 
sensitive to illumination 
and measurement 
window changes, limited 
reproducibility 

 

Dynamic Retinal 
vessel analysis (DVA) 

 

Retinal vessels 
(>60µm) 
 
Retinal vascular 
diameter and reactivity 
 

 

Non-invasive, high 
reproducibility, low 
variability 

 

Requires clear media, 
good fixation and pupil 
dilation. More aimed at 
assessing retinal 
vascular function than 
OBF 
 

 

Fluorescein 
angiography 
(in conjunction with 
scanning laser 
ophthalmoscope) 

 

Retina 
 
 
Blood flow velocity 

 

Provides useful 
information on ocular 
perfusion 

 

Debatable correlation of 
passage of time of dye 
to OBF. Invasive. 
Difficult to quantify 

 

Indocyanine green 
angiography  
(in conjunction with 
scanning laser 
ophthalmoscope) 

 

Choroid 
 
 
Blood flow velocity 

 

Provides useful 
information on ocular 
perfusion 
 

 

Debatable correlation of 
passage of time of dye 
to OBF. Invasive. 
Difficult to quantify 

 

Laser speckle analysis 
 
 

 

Retina, ONH 
 
Blood velocity 

 

Provides overall map of 
retinal blood flow if 
used with scanning. 
Non-invasive 

 

Not direct assessment of 
OBF 
 

 

Blue field entoptic 
technique 

 

Foveal retina 
 

Allows assessment of 
foveal perfusion, non-
invasive 

 

Dependent on patient 
cooperation, subjective, 
limited to foveal area, 
large inter-individual 
variation 

 

Retinal Oximetry 
 

Retinal vessels 
 

Allows assessment 
of retinal metabolism 

 

Risk of influence by 
external factors e.g 
light 

 
Table 1.2: Overview of techniques available for ass essment of ocular blood flow 
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1.3 Glaucomatous Optic Neuropathy 

Whilst glaucomatous damage to the visual system has been demonstrated to involve 

pathological alterations in numerous areas, including the RGC bodies 99, 100, 

photoreceptors 101, 102, lateral geniculate nuclei (LGN) 103, 104 and visual cortex 104, it is 

the lamina cribrosa of ONH which is considered the principal site of RGC axon insult 

105-107. Indeed profound alterations within the prelaminar, laminar and peripapillary 

sclera tissues of the ONH have been identified by animal studies in the earliest 

detectable stages of experimental glaucoma 108-110. Such alterations, combined with 

RGC loss, contribute towards the characteristic enlargement and deepening of the 

optic cup and thinning of the NRR observed clinically in GON (figure 1.6) 111, 112. 

Indeed prelaminar thinning, posterior deformation of the lamina cribrosa and 

excavation of the ONH have been identified as key features of GON 111, 113. NRR 

thinning, indicative of nerve fibre loss, is unique to glaucomatous nerve damage and 

has a predilection for the inferotemporal and superotemporal regions of the ONH, 

extending to involve the temporal region as the nerve damage progresses before 

finally affecting the nasal region in advanced glaucoma 114, 115. Visual field and retinal 

NFL defects, characteristic of GON, develop in correspondence to the NRR thinning 

and subsequent excavation of the ONH 67, 116, 117.    

 

Figure 1.6: Diagrammatic representation of the opti c nerve head in glaucoma 

Retinal vessels 

  

 

 

 

 

Neuro-retinal rim 

Optic cup 

Glaucomatous optic nerve head 
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Whilst the clinical picture and features of GON are fairly well evidenced, the causes 

of the primary insults which trigger the cascade of events leading up to its 

development are less clear and have subsequently become a key focus of current 

glaucoma research.  

 

The evidence surrounding the potential role of elevated IOP in the developmental 

process will now be outlined in brief, followed by a detailed discussion of the vascular 

concept of glaucoma. 

 

1.3.1 The Role of Intraocular Pressure 

Traditionally the management of glaucoma has focused on the therapeutic reduction 

of IOP to below a certain target level with the aim of limiting the progression of ONH 

damage and visual field loss 118. There is no doubt that IOP is a relevant pathogenetic 

factor in the development of GON and since the introduction of the Schiotz tonometer 

in 1905, followed by the Goldmann applanation tonometer in 1954 9, it has been the 

focus of the majority of diagnostic examinations and considered the only modifiable 

risk factor of glaucoma. 

 

By definition IOP is a mechanical entity, referring to the normal force per unit area 

exerted by the intraocular fluids on the tissues that contain them 119. The normal 

range of IOP is defined as between 10-21 mmHg 118 and rather than being stable it 

exists in a state of constant flux, varying with cardiac and respiratory cycles and 

being influenced by factors such as posture and diet 120. Numerous studies have 

explored the normal circadian variations in IOP that occur over a 24 hour period 121-123 

and whilst it was initially believed that IOP levels were at their highest in the morning, 

lower later in the afternoon and at their lowest at night 120, other studies have 

suggested that IOP levels may in fact reach their highest levels nocturnally 124-126, 

regardless of whether measurements are being taken in the sitting or supine position 
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127. Deviations away from this normal circadian rhythm have been demonstrated in 

those diagnosed with glaucoma and it is possible that abnormal fluctuations in IOP 

could increase the risk of GON development 128-130. This has led to the suggestion 

that 24 hour measurement of IOP may be beneficial in at risk patients130, 131.       

    

By its very nature IOP exerts force on the lamina cribrosa, astroglia and axons of the 

ONH and when IOP is increased so is the strength of this mechanical force 132. As a 

result, the mechanical theory of glaucoma development proposes that in susceptible 

individuals abnormally elevated IOP damages the ONH by placing high levels of 

stress and strain on its tissues, ultimately leading to deformation of the cribriform 

plates of the lamina cribrosa and glial cell activation, followed by compression of the 

optic nerve fibre bundles and nerve fibre damage 109, 111, 133. Indeed support for this 

theory comes from multiple studies which have demonstrated GON development in 

response to experimentally increased levels of IOP which progresses according to 

severity and duration of elevated IOP exposure 8, 134, 135. The overall susceptibility of 

the ocular structures to the effects of IOP however appears to vary between 

individuals as a function of the individual eye’s anatomy and composition 111, 119 and 

such variation is perhaps demonstrated by the fairly high occurrence of the condition 

‘ocular hypertension’ (OHT), whereby elevated IOP exists in the absence of GON and 

by the occurrence of NTG and of progressive glaucoma, in which nerve damage 

continues to progress despite therapeutically lowered IOP. Therefore, whilst there is 

undoubtedly a lot of evidence for the role of IOP in the pathogenesis of glaucoma 8 

and for the benefits of IOP reduction in the treatment of management of glaucoma 36-

38 it is clear that alternative or additional causative factors need to also be considered 

with regard to the development of GON in the majority of cases. The most 

researched of these factors is the involvement of vascular abnormalities.  
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Disturbed vascular function is a concept which has long been recognised with regard 

to GON, with authors as early as 1925 proposing an alternative vascular theory of 

glaucoma development along with the aetiological involvement of microcirculatory 

disturbances and vascular dysregulation 136, 137. The role of both ocular and systemic 

vascular factors in the development of GON has been subsequently explored by 

numerous researchers; however our understanding of the complex interactions 

between these and the many other factors implicated in the aetiology of the disease 

is still incomplete.  

 

It is possible that rather than existing as two separate entities the so called 

mechanical and vascular theories of glaucoma could be intertwined and act 

synergistically to produce glaucoma, a concept first proposed by Flammer in 1985 138. 

Indeed elevated IOP can potentially influence ocular haemodynamics by 

subsequently raising venous pressure at the exit point of the eye and lowering the 

OPP (see section 1.4.1) 139. Furthermore large diurnal fluctuations in IOP could 

potentially alter the quality and stability of the blood supply to the ONH and also 

contribute to GON development 140. Alternatively it has been hypothesised that even 

if the primary insult of the ONH were not mechanical in origin, IOP related stress and 

strain could still contribute towards its final deformation 111. The vascular theory of 

glaucoma forms the focus of this thesis and will now be explored in detail. 

 

1.3.2 The Vascular Theory 

The concept that the quality of the blood supply to the ONH is altered in glaucoma is 

fairly well established and increasing amounts of evidence suggest that vascular 

insufficiency at the ONH plays an important role in GON development 95, 140-142. It is 

hypothesised that an alteration in blood supply, which could result from the direct or 

indirect actions of a combination of risk factors, contributes to GON development 

through ischemic and hypoxic insult of the ONH tissues, including the RGC axons, 
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astrocytes, glial cells, pericytes and the central retinal vessels 140. It is further 

hypothesised that the ischemic/hypoxic insult of the ONH tissues could produce its 

damaging effects through mechanisms of recurrent reperfusion injury (RRI) and 

oxidative stress 141. RRI is central to the current vascular theory of glaucoma and 

refers to the damage to a tissue caused when blood supply returns after a period of 

ischemia 143. This can lead to increased production of harmful ROS, which, if not 

combated by antioxidant activity, can potentially damage the ONH cellular 

components, leading to apoptotic loss of RGC and their axons. This in combination 

with astrocyte activation and an increased production of vasoactive agents such as 

ET-1, is thought to contribute to the development of GON 144. The concept of RRI and 

oxidative stress with regard to GON development is discussed further in section 

1.10.3.2. 

 

Confirming these vascular hypotheses and determining the combination of factors 

which contribute towards the reduction in the quality of the blood supply to the ONH 

in glaucoma is one of the main focuses of this thesis and current glaucoma research 

as a whole. Of particular interest is the exploration of the role that vascular factors 

play in NTG and progressive glaucoma development, where IOP involvement is less 

prominent.  At the current stage aetiological roles for both ocular and systemic 

vascular abnormalities have been identified in the development of GON. These 

abnormalities extend from reductions in blood flow, through to disturbances in 

vascular regulation and increases in vessel rigidity at both levels. In addition systemic 

dysregulations such as peripheral vasospasm and endothelial and ANS dysfunctions, 

as well as high levels of oxidative stress, have been advocated to play an important 

part in the development of glaucoma. Alongside this alterations in factors such as BP 

and HR, which can influence overall vascular physiology, have also been implicated 

however many questions still remain. A summary of how these many ocular and 

systemic vascular abnormalities may link together in the development of GON is 
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given in section 1.11 at the end of this chapter (figure 1.16). The physiology of OBF 

along with the current evidence surrounding the involvement and interactions of each 

of these factors will now be explored in detail.   

 

1.4 Ocular Blood Flow 

The overall blood flowing through the body is determined by the cardiac output, which 

itself depends upon stroke volume and heart rate. The distribution of this cardiac 

output between vascular beds varies according to the hemodynamic situation of the 

body and is influenced by systemic factors such as the ANS and circulating 

hormones 78. Within each vascular bed local factors strive to regulate the supplied 

blood flow to meet local needs. At the ocular level this regulation of blood flow has 

been identified as a multi-factorial and complex process 95, dependant on both ocular 

perfusion pressure (OPP) and vascular resistance. Indeed the rate of blood flow 

through any vascular bed is known to be directly proportional to the pressure gradient 

and inversely proportional to resistance 145.  

 

1.4.1  Ocular perfusion pressure  

OPP refers to the force of the blood flow through the intraocular vessels and is 

defined as the difference between the arterial and venous pressure. As a direct 

measure of arterial and venous pressure is not easily obtained from the retinal 

circulation, estimations have to be made in order to determine OPP. Experimentation 

has revealed that, due to the drop in BP between the heart and the OA, retinal arterial 

pressure can be estimated as 2/3 of the mean arterial pressure (MABP) and venous 

pressure can be taken to be approximately equal to the level of IOP 78, 146, as a result 

OPP can be calculated as shown in equations 1.1 and 1.2 
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OPP = Ocular perfusion pressure 

MABP = Mean arterial blood pressure 

IOP = Intraocular pressure 

Equation 1.1: Calculation of ocular perfusion press ure 
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MABP = mean arterial blood pressure 

DBP = Diastolic blood pressure 

SBP = Systolic blood pressure 

Equation 1.2: Calculation of mean arterial blood pr essure 
 

The relationship between blood flow and OPP in the eye is complex and as the 

equation above demonstrates both a lowering of MABP and an increase in IOP could 

potentially reduce OPP.  

 

1.4.2 Vascular resistance 

Vascular resistance, in addition to OPP, also plays a role in determining the amount 

of blood that flows through a vascular bed and itself is determined by blood viscosity, 

vessel length and vessel diameter 78. In the retinal vascular bed, due to constant 

capillary perfusion and a lack of precapillary sphincters, alterations in vessel length 

are not thought to play an important part in the regulation of OBF 78, 147. Furthermore, 

whilst alterations in blood viscosity have been found to substantially influence retinal 

blood flow 148, such alterations to not tend to occur without the presence of underlying 

pathology, such as sickle cell anaemia and other blood disorders 149, therefore the 

role that blood viscosity plays in the regulation of OBF in health is also not considered 
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significant. Vessel diameter on the other hand plays a major role in determining 

retinal vascular resistance and OBF. Vascular resistance is known to be inversely 

proportional to the fourth power of the radius of a blood vessel, hence only small 

changes in vessel diameter can significantly influence vascular resistance, with 

narrowing of the vessel diameter increasing resistance and reducing blood flow and 

widening of vessel diameter, reducing resistance and increasing blood flow. 

Reduced/unstable OBF could therefore occur, not only as a result of reduced OPP, 

but also as a result of an increase in vascular resistance due to abnormal alterations 

in vessel diameter, which themselves could occur as a result of either structural 

changes in the vessel wall or the presence of a functional dysregulation 95.   

 

Under normal physiological conditions the retinal vasculature exists in a state of 

partial constriction, referred to as the basal vascular tone. This state of partial 

constriction is one from which vessel diameter can be readily modified in response to 

hemodynamic alterations, such as a drop in OPP, to ensure maintenance of a 

constant blood supply to tissues and organs by a mechanism referred to as 

autoregulation 150. Autoregulation is an important mechanism which acts in response 

to alterations in perfusion pressure through modification of vascular resistance.  The 

autoregulation of blood flow will now be discussed in detail.  

 

1.4.3  Autoregulation 

Autoregulation refers to the ability of the cardiovascular system to modify vascular 

resistance  in order to allow a constant blood supply to be maintained despite 

variations in perfusion pressure 151. It operates to ensure tissues and organs receive 

an adequate blood supply despite variations in hemodynamic conditions and has 

been demonstrated in both the retinal 86, 152 and ONH circulation 94 as well as, to a 

lesser extent, in the choroidal circulation 81.  
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The most common method of evaluating autoregulatory function is through assessing 

the response of the ocular and systemic vasculature to provocation. This provocation 

can take the form of posture changes, artificial lowering of IOP, cold provocation, 

hand grip testing, flicker light stimulation or induced hypoxia and hypercapnia. Such 

provocations put the vascular system under stress and should evoke an 

autoregulatory response which allows maintenance of normal ocular perfusion, a 

failure to observe this autoregulatory response is indicative of disturbed 

autoregulation.  

 

Although the exact mechanisms underlying autoregulation are still unclear, metabolic, 

myogenic, neurogenic and humoral factors are all known to trigger autoregulatory 

responses in the ocular circulation, as are endothelial derived vasoactive agents 151, 

153, as summarised in figure 1.7. These autoregulatory triggers and their responses 

are outlined in the following sections 

 

Figure 1.7: Summary of the factors which trigger au toregulation of blood flow in the 
ocular circulation 
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1.4.3.1 Metabolic autoregulation  

Metabolic autoregulation refers to the regulation of blood flow in accordance with 

tissue metabolite concentration. A tight coupling mechanism is thought to exist 

between tissue metabolism and ocular perfusion 151, with alterations in the local 

concentrations of metabolites including oxygen (O2) and carbon dioxide (CO2) 
154, 155, 

potassium (K+), hydrogen (H+) 156 and adenosine 157 having been shown to influence 

ocular vascular tone.  

Partial oxygen pressure (pO2) has been identified as one of the main driving forces of 

metabolic autoregulation 158, 159. Under conditions of systemic hyperoxia and hypoxia 

autoregulatory mechanisms act to maintain retinal and ONH O2 at constant levels. 

Hyperoxic conditions trigger retinal arteriolar vasoconstrictions, reducing retinal blood 

flow and pO2 
154, 160 and hypoxic conditions trigger retinal arteriolar vasodilations, 

increasing retinal blood flow 161 and allowing normalisation of pO2. The hemodynamic 

response of the retinal vasculature to hyperoxia is thought to be mediated by 

endothelin 162, whereas the hypoxia-induced vasodilation of the retinal vasculature is 

thought to involve endothelial derived prostaglandins and/or adenosine 163-166.  The 

choroidal vasculature, in comparison, has been demonstrated to show little or no 

alterations in response to changes in blood oxygenation 167, 168.   

 

Under conditions of hypercapnia, in which the partial pressure of CO2  (pCO2) is 

increased, metabolic autoregulatory mechanisms have been demonstrated to 

function in the retinal, ONH and choroidal circulation bringing about a vasodilatory 

response of the vasculature which results in an increase in blood flow and pO2 
167, 169, 

170. The exact mechanism behind hypercapnia induced vasodilation is still the subject 

of debate, however it is thought that interactions between nitric oxide (NO) and 

endothelial derived prostaglandins play an important role 171.  
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1.4.3.2  Myogenic autoregulation 

Myogenic autoregulation refers to the regulation of blood flow in response to 

alterations in systemic BP and allows a constant blood flow to be maintained despite 

variations in BP 151. The myogenic response was first described by Bayliss in 1902 

and is characterised by a decrease in vessel diameter following an increase in 

transmural pressure 172. Its primary function in the body is to maintain the Starling 

equilibrium for capillary fluid exchange; however it is unclear whether this is also its 

primary function in the eye 173. Myogenic autoregulation is on the whole considered to 

be mechanically independent of the endothelium and intrinsic to the vascular smooth 

muscle cells (vSMCs), whereby stretching of the vessel wall is thought to lead to 

depolarisation of the vSMC membrane and vascular constriction 174. In the cerebral 

and renal circulation however myogenic induced vasoconstriction has also been 

suggested to be at least partly mediated by endothelial factors 175. Whilst myogenic 

regulation has been demonstrated in the ONH and retina 176 it is unclear whether 

myogenic mechanisms are also involved in the regulation of choroidal blood flow 173.  

 

1.4.3.3  Neurogenic control 

The eye has a rich autonomic innervation however this only extends to the uvea, 

PCAs and the extraocular portion of the CRA 177-179 and does not include the retina 

and prelaminar portion of the ONH 179, 180. Neuronal regulatory mechanisms are 

therefore suggested to play a key a role in the regulation of choroidal blood flow but 

have little effect on retinal or ONH blood flow 181, 182, despite alpha and beta-

adrenergic receptors having been identified in the retinal vessels 183, 184.  

Sympathetic stimulation of the choroid, via sympathetic nerves originating from the 

superior cervical ganglion, triggers constriction of the choroidal blood vessels and 

increases choroidal vascular resistance, reducing blood flow 80, 182. It has been 

suggested that this vasoconstriction response of the uveal vasculature may function 

to protect the eye against overperfusion during periods of increased HR or BP 185 and 
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indeed there is evidence demonstrating that under conditions of exercise, where 

sympathetic activity is increased, a regulatory vasoconstriction response of the 

choroidal vasculature allows maintenance of a constant blood flow in the face of an 

increase in OPP 81, 186. Numerous agents have been implicated as mediators of this 

neuronal regulation including acetylcholine 187, noradrenaline 187, vasoactive intestinal 

polypeptide 188, substance P 189 and NO 190, however the exact role played by each of 

these agents in ocular circulation physiology is still unclear. 

 

Parasympathetic nerves reach the eye through the oculomotor nerve, facial nerve 

and through the ophthalmic and maxillary divisions of the trigeminal nerve 78, 178 and 

there is evidence to suggest that parasympathetic innervation can stimulate a 

vasodilation response in the choroidal vasculature and increase blood flow. This 

evidence is variable however, as whilst intracranial stimulation of the facial nerve has 

been demonstrated to cause significant vasodilation in the choroid 80, 191, electrical 

stimulations of parasympathetic nerve fibres of the ciliary ganglion, although inducing 

intense miosis, have not been found to notably change the uveal vascular resistance 

182. The role of parasympathetic innervation in ocular neurogenic regulation is 

therefore uncertain.   

 

1.4.3.4  Humoral Control 

Humural control refers to the potential regulatory influence of numerous vasoactive 

agents present in the circulating blood which, through either direct interaction with the 

vascular smooth muscle cells (vSMCs) and pericytes or through mediation of 

endothelial cells 192, could influence OBF. Angiotensin and catecholamines for 

example, which are both circulating hormones, have been suggested to influence 

retinal and choroidal circulation, however the evidence is variable. Indeed whilst 

angiotensin-II receptor binding sites have been identified in ocular tissue 193, 

suggesting a role for the renin-angiotensin-system in OBF regulation 194, the majority 
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of data seems to suggest that in human healthy subjects this system does not play a 

major regulatory role 173, 195. Furthermore a similar uncertainty surrounds the role of 

catecholamines in OBF regulation after both a decrease 196 and an increase 197 in 

retinal perfusion following administration of adrenergic drugs has been demonstrated. 

Therefore whilst the potential influence of circulating and local hormones should not 

be discarded the evidence suggests that they are unlikely to have a major impact on 

the regulation of the choroidal and retinal blood flow. Furthermore the presence of the 

BBB prevents direct contact between the circulating blood and the retinal and ONH 

vSMCs indicating that the role of circulating hormones in the regulation of ONH blood 

flow in particular may be even less; however some diffusion of molecules from the 

choroidal vasculature may occur in the prelaminar region of the ONH due to the 

structural differences in this region (see section 1.2.3.3).        

 

1.4.3.5  Endothelial dependent regulation of vascular tone 

The vascular endothelium is an important mediator of vascular tone, releasing 

vasoactive agents both under basal conditions and in response to various chemical 

and mechanical stimuli. These vasoactive agents are commonly referred to as 

endothelial derived constricting factors (EDCF) and endothelial derived relaxing 

factors (EDRF) and they play an important role in the regulation of OBF 156. The 

endothelium and its regulatory roles are discussed in more detail in the following 

section. 

 

1.5 The Endothelium 

The vascular endothelium plays a critical role in the regulation of blood flow at both 

the ocular and cerebral level and as such a dysfunction of the vascular endothelium 

is commonly implicated as a possible causative factor in vascular disease 198, 199.  
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1.5.1 Background 

The endothelium is a highly specialised monolayer of cells which lines the inner 

surface of all of the blood vessels in the circulatory system (figure 1.8) 200. Its 

strategic anatomical position between the blood components and the vSMCs and 

pericytes places it in an ideal position to monitor and regulate vascular homeostasis 

199 in response to mechanical (e.g. shear stress), chemical (e.g. oxygen tension) and 

biological stimuli (hormones and vasoactive agents). 201   

 

 

Figure 1.8 Diagrammatic representation of the struc ture of the vascular wall and the 
location of the vascular endothelium 

 

The most critical role of the endothelium is as an active regulator of vascular tone 202-

205 however its other functions include inhibition of vSMC proliferation, regulation of 

inflammation, thrombosis and platelet aggregation, angiogenesis and control of 

vascular permeability 199, 201, 206. The endothelium exerts its functional roles through 

the release of a variety of regulatory agents following stimulation. Its critical role as an 

active regulator of vascular tone is achieved through the release of endothelial 

derived vasoactive factors (EDVF) which act on the underlying SMCs to bring about 

either vasodilation or vasoconstriction of the vessel wall (table 1.3). Of these EDVFs, 

nitric oxide (NO) has been identified as the most potent vasodilator and endothelin-1 

(ET-1) as the most potent vasoconstrictor 207-209 (see sections 1.5.2 and 1.5.3) 
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Endothelial derived 

relaxing factors 

(EDRF) 

Nitric oxide (NO), prostacyclin (PGI2), endothelial derived 

hyperpolarising factor (EDHF), adenosine triphosphate (ATP), 

substance P, acetylcholine, C-type natriuretic factor 

Endothelial derived 

constricting factors 

(EDCF) 

Endothelin-1 (ET-1), angiotensin II, thromboxane A2, 

prostaglandin H2, superoxide anions, ATP   

 
Table 1.3: Summary of the vasoactive agents release d by the vascular endothelium 

 
 

1.5.2  Nitric oxide (NO) 

NO was first recognised in 1980 by Furchgott and Zawadski as the primary 

vasodilating agent released by the vascular endothelium 202. It is synthesised during 

the oxidation of the amino acid L-arginine to L-citrulline within the endothelial cell 

membrane, by the enzyme endothelial nitric oxide synthase (eNOS) 210. Two other 

isoforms of nitric oxide synthase (NOS) also contribute to NO production, namely 

neuronal NOS (nNOS) which is found in some neurons of the central and peripheral 

nervous system 211 and inducible NOS (iNOS) which is only expressed after a 

challenge by immunological or inflammatory stimuli 212. All three isoforms of NOS 

have been identified in the ocular circulation 213-215.   

 

There is a constant basal production of NO by the endothelium, which contributes to 

the maintenance of optimum vascular tone 207, 216. However, on stimulation of the 

endothelial cell membrane by chemical, mechanical or biological factors, NO 

production is increased 217-219. This increase in production is achieved via activation of 

both a calcium/calmodulin complex and the NOS enzyme, following an influx of 

calcium across the cell membrane 210. Diffusion of NO from the endothelium into the 

neighbouring SMCs ultimately brings about a vasodilatory response of the vessel wall 

through stimulation of the guanylate cyclise enzyme and increased production of 

cyclic guanine monophosphate (cGMP) 220, 221 (figure 1.9).  
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Figure 1.9: Mechanism of endothelial nitric oxide ( NO) synthesis. Ca 2+: calcium ions; 
eNOS: endothelial NO-synthase; O 2: oxygen; GTP: guanosine triphosphate; cGMP: 

cyclic guanosine monophosphate  
 

 

NO plays an important role in the regulation of physiological functions in the 

cardiovascular system and the central and peripheral nervous systems. In addition to 

its vasodilatory role its range of functions extend to include anti-platelet, 

antithrombotic, anti-proliferative and anti-atherosclerotic actions 222. At the ocular 

level, NO has been identified as a physiological mediator in not only the retinal 

circulation but also the OA, PCA and the choroid 222, 223. Furthermore NO has also 

been suggested to play a functional role in the conjunctival vasculature, the cornea, 

the lens epithelium, the ciliary body and the neural retina 224. The NO mediated 

vasodilatory response is well evidenced in the ocular circulation and the important 

role played by NO in both the regulation of OBF and the maintenance of basal tone is 

well recognised 207, 225-227. As such any disturbance in the production or release of NO 

by the endothelium can have a significant effect on the ocular haemodynamics. 

Indeed disturbances of the l-arginine/NO system have already been identified in 

numerous ocular diseases including diabetic retinopathy, glaucoma and retinopathy 

of prematurity 198, 222, 228.  

 

 
Ca

2+

 eNOS 

L-arginine 

L-citrulline 

O
2
 

NO  
NO 

cGMP 

GTP 

G-cyclase 

Vasodilation 

Endothelial cell Smooth muscle cell 

Shear 

stress 

Acetylcholine 
Bradykinin 
Thrombin 
Serotonin 

 

Vascular lumen 



55 
 

1.5.3  Endothelin-1 (ET-1) 

ET-1 is the most important vasoconstrictive factor released by the endothelium and is 

active not only in the eye but throughout the rest of the body 229, 230. It is synthesised 

from the pre-propeptide big endothelin via an endothelin-converting enzyme 

dependent pathway in response to physiological stimuli such as hypoxia, ischemia 

and shear stress or in response to circulating substances such as thrombin, 

angiotensin II and cytokines 230, 231 (figure 1.13). The majority of its secretion occurs 

abluminally however there is also an element of intraluminal secretion which leads to 

a certain concentration of ET-1 in circulating blood 232, 233.  Two other isoforms of 

endothelin also exist, namely endothelin-2 (ET-2) and endothelin-3 (ET-3), each of 

which are derived from different genes and different cell types, however their roles 

are more poorly understood and less studied in comparison to ET-1 229, 230. 

 

The biological effects of ET-1 are governed by two different endothelin receptor 

subtypes, ETA and ETB. ET-1 has a higher affinity for ETA receptors which are located 

primarily in vascular SMCs and are the main mediator of its potent vasoconstrictive 

effect 234, 235.  ETB receptors, which are non-selective towards the endothelin 

subtypes, are located primarily on endothelial cells, neurons and glia however they 

can also be found in vascular SMCs where they contribute toward the endothelin 

induced vasoconstrictive response 236. Although at high concentrations ET-1 is known 

to bring about its potent and sustained vasoconstrictive effect, at lower 

concentrations it has in fact been demonstrated to produce a vasodilatory response 

237, 238. This vasodilatory response is mediated via the release of NO and/or 

prostacyclin following stimulation of the ETB receptors located on the endothelial cells 

239 (figure 1.10). Under physiological conditions the net effect of ET-1 therefore 

depends upon the balance between the expression of ETA receptors in vSMCs and 

ETB receptors on endothelial cells. In pathological states however an upregulation of 

ETB receptors on vSMCs and a possible downregulation of ETB receptors on 
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endothelial cells always results in a predominant ET-1 induced vasoconstrictive effect 

231, 240.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10: Mechanism of Endothelin-1 (ET-1) synth esis. ET A: endothelin type-A 
receptors; ET B: endothelin type-B receptors; cGMP: cyclic guanosine monophosphate  

 

The functions of ET-1 extend from the regulation of vascular tone and local blood flow 

to neuronal support and signalling as well as the proliferation and migration of vSMCs 

230, 241, 242. Clinically endothelin has been associated with many pathological 

conditions including hypertension, congestive heart failure and coronary artery 

disease 243-245. At the ocular level the endothelin system is thought to play a 

significant role in both normal and pathological processing, with ETA receptors having 

been identified in the retinal and choroidal vasculature as well as the iris and ETB 

receptors having been identified in the retinal neurons, glia and the lamina cribrosa of 

the ONH 246-248. Indeed multiple studies looking at the alterations in OBF which occur 

on administration of systemic ET-1 have revealed a dose-dependent reduction in 

choroidal, retinal and ONH blood flow when ET-1 levels are increased 249-251. 

Furthermore the role of ET-1 in the regulation of retinal blood flow 252 and choroidal 
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blood flow has also been confirmed, through for example, studies exploring the effect 

of ETA receptor antagonist infusion on choroidal blood flow during isometric exercise 

253. Due to its prominent role in the regulation of OBF, dysfunctions in ET-1 activity 

could potentially be implicated in the development of any ocular disease with an 

ischemic effect, such as glaucoma, via disturbances in autoregulation or vasospasm 

254.  

 

1.5.4  Endothelial dysfunction 

Endothelial dysfunction refers to an altered ability of endothelial cells to perform their 

normal physiological functions 255, 256. Its occurrence has been linked to the presence 

of established cardiovascular risk factors, such as hypertension, smoking, 

hypercholesterolemia, diabetes mellitus and obesity, chronic infections such as 

herpes viruses and cytomegalovirus, aging, cardiovascular diseases such as chronic 

renal failure, congestive heart disease and coronary artery disease as well as 

environmental factors such as hypoxia, oxidants, drugs and nutrition 231, 257-259. In the 

presence of endothelial dysfunction the vasculature exists in a pro-inflammatory and 

pro-thrombotic state accompanied by increased atherosclerotic plaque formation, 

increased vascular tone and reduced vasodilatory responsiveness 201, 256. These 

features are the result of a pathological alteration in the balance of mediators 

produced by the endothelium, characterised by: 

 

• A decreased biosynthesis and/or bioavailability of NO - potentially resulting 

from either deficient NOS levels, increased levels of NOS inhibitors such as 

asymmetric dimethylarginine, apoptotic loss of NOS containing cells or rapid 

inactivation of NO after its release 198, 201 

• Increased production of vasoconstrictors such as ET-1 and angiotensin II  

• An excess of oxidants  
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Endothelial dysfunction is known to be present at the earliest stages of a disease 

process and in addition to having been identified as an important early event in the 

pathogenesis of atherosclerosis 256 it has also been recognised as a preceding or 

predictive factor for the development of future cardiovascular disease 260-262 and in the 

development of glaucoma 198. Early assessment of endothelial function in the 

peripheral and/or coronary circulation of at risk individuals could therefore provide 

important prognostic information about the risk of future disease 256, 263. This, in 

addition to the fact that endothelial dysfunction has been shown to be modifiable in its 

early stages, has led to it becoming a research topic of great interest. 

 

The precise cause of endothelial dysfunction is currently unclear however oxidative 

stress and the production of ROS is one of the main aetiological factors implicated to 

play a central role in its development and is a common denominator in the majority of 

the above mentioned associated conditions 257, 264. Indeed increased production of 

ROS in the vascular system has been found to affect both the synthesis and activity 

of NO 265 and to promote the contraction of vSMCs 266. Strategies aimed at reducing 

cardiovascular risk, such as smoking cessation and physical exercise as well as 

treatment regimes involving lipid-lowering therapy, angiotensin converting enzyme 

inhibitors and antioxidants have all shown to be effective at improving endothelial 

dysfunction to differing degrees 231, 267, 268.  

 

1.5.5 Assessment of endothelial function 

The ability to reliably detect and assess endothelial dysfunction is important with 

regard to the diagnosis, understanding and treatment of neurodegenerative diseases 

such as glaucoma and AD. The methods available can generally be separated into 

three categories, the first being the determination of the presence of soluble 

circulating endothelial markers such as NO, ET-1 and von Willebrand factor (vWf), 

the productions of which are known to be disrupted in the presence of endothelial 



59 
 

dysfunction, the second being the functional measurement of endothelial dependent 

vascular tone at focal sites of circulation 269 and the third being measurement of 

morphological and mechanical characteristics of the vascular wall, which can be 

altered in the presence of endothelial dysfunction. A summary of these methods is 

given in table 1.4.    

 

The initial invasive methods of assessing endothelial function, such as quantitative 

coronary angiography and strain gauge plethysmography, have now largely been 

superseded by the introduction of non-invasive techniques such as brachial artery 

flow mediated dilation (FMD). Brachial artery FMD is considered the gold standard 

method of systemic endothelial function assessment in clinical practice and has 

therefore been the technique of choice in this thesis. Its principles are discussed in 

more detail in Chapter 3: Subjects and Methods. As a supplement to this technique 

an analysis of the circulating endothelial marker, vWf, was also made in this thesis.  

 

vWF is a large glycoprotein which is synthesised exclusively by vascular endothelial 

cells and circulates in the human plasma at a concentration of approx 10 µm/mL 270. 

It plays an important role in mediating platelet adhesion to damaged arterial walls 271 

and its production is known to be increased in the presence of damaged endothelial 

cells 272, 273. Indeed elevated levels of vWF have been identified in a number of 

different conditions known to be associated with endothelial dysfunction, such as 

atherosclerosis 272, diabetes 274, hypertension 275, cerebrovascular disease 276 and 

myocardial infarction 277. Furthermore correlations have been identified between 

impaired FMD, the gold standard technique for assessment of systemic endothelial 

dysfunction and increased levels of circulating vWF 278, 279. It is therefore  recognised 

as a useful biomarker for the presence of endothelial dysfunction 270, however  

it is important to note that some questions still remain around whether elevated levels 

of vWf can be considered a true indicator of impaired endothelial dysfunction in all 
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cases 280. This is largely due to its activity as an acute phase reactant, whereby its 

plasma levels may be increased in the presence of clinical conditions, such as 

infection or injury, which are not associated with endothelial dysfunction 280, 281. In the 

absence of other acute phase markers, such as C-reactive protein however, elevated 

vWF levels can be more reliably attributed to endothelial dysfunction 282.   
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Technique  Advantages  Disadvantages  
 

Circulating Markers  
 
Endothelin-1 (ET-1) 
Von Willebrand factor (vWf) 
Asymmetric dimethylarginine (ADMA) 
Tissue type plasminogen activator 
Plasminogen activator inhibitor-1 
Intracellular adhesion molecules 
Vascular cell adhesion molecules 
E-selectin 
P-selectin 

 
Decreased 
bioavailability can be 
one of earliest 
detectable signs 
 
Relatively simple 
technique 

 
Can be difficult to 
distinguish between 
release via normal 
endothelial stimulation 
and endothelial damage 
 
Large variations can 
occur day to day based 
on diet etc 

 

Nitric oxide (NO) production assays  
 
Urine NO concentration (NO3

-) 
Urine cGMP 

 
Early indicator of 
endothelial dysfunction 

 
Heavily affected by 
dietary habits 
 

 

Functional tests  
 
Systemic 
− Coronary angiography  

 
− Forearm venous occlusion 

plethysmography 
 
 

− Coronary positron emission 
tomography 
 

− Brachial artery ultrasonography 
(Flow mediated dilation, FMD)   

 
 
 
Ocular 
− Dynamic vessel analysis (DVA) 

 
 
Sensitive indicator of 
endothelial function 
 
 
 
 
Non-invasive 
 
 
Non-invasive 
Repeatable 
Sensitive indicator of 
endothelial function 
 
 
Non-invasive simple 
procedure. Good 
repeatability 

 
 
Invasive 
Poor repeatability and 
reproducibility 
 
 
 
 
 
 
Requires training and 
good control of testing 
environment to ensure 
reliability 
 
 
Affected by high 
refractive error, hazy 
media and unstable 
fixation 

 

Mechanical and morphological vascular wall assessme nt 
 
− Pulse wave analysis 
− Pulse contour analysis 
− Pulse amplitude tonometry 
− Intima-media thickness (IMT) 

 

 
Non-invasive, 
repeatable, simple 
techniques 

 
More indirect method of 
endothelial dysfunction 
compared to other 
techniques – less 
sensitive 

Table 1.4: Methods of assessing endothelial functio n 283, 284 
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1.6 Ocular Blood Flow and Glaucoma 

Evidence of reduced OBF, compromised circulation and increased vascular rigidity 

has been discovered by multiple studies at the level of the ONH 285-289, retina 25, 290-295, 

choroid 294, 296-298 and retrobulbar vessels 299-302 in patients with glaucoma and these 

blood flow reductions have been found to be prevalent in NTG and progressive 

patients 294, 303 and to correlate with deteriorations in visual function 289, 304, 305. 

Furthermore multiple population based studies have linked lower baseline OPP to 

increased prevalence of GON 22, 306-308, with Tielsch et al 306 for example finding that 

those with perfusion pressures of less than 30 mmHg have a six times greater risk of 

developing POAG than those with perfusion pressures of more than 50 mmHg and a 

number of other longitudinal studies demonstrating baseline perfusion pressure as 

not only an important risk factor for the development of GON but also for the 

progression of the disease 15, 23, 24. A full summary of these studies is given in 

appendix 1 and on the back of these findings reduced OBF is now considered an 

important IOP independent risk factor for the development of glaucoma. Concern was 

initially raised in the literature however about the possibility that the reduced blood 

flow detected in glaucoma patients, rather than being causative, could simply occur 

as a secondary effect to the loss of RGCs and reduction in OBF demand which 

occurs with the development of GON 95. Multiple studies have however gone on to 

demonstrate reduced blood flow in glaucoma patients prior to the development of 

ONH damage 25, 286, 309 and further studies have linked reduced blood flow to disease 

progression 302, indicating a primary causative role. Furthermore, moving away from 

the eye, an increased occurrence of ischemic lesions of the ear 310, heart 311 and 

brain 312, 313 as well as reduced blood flow in the carotid arteries 314 and peripheral 

capillaries 26, 315, 316 have also been identified in glaucoma patients. The co-existence 

of such systemic blood flow alterations is an important observation as it would not be 
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expected if the reduced blood flow demonstrated in glaucoma patients was simply 

occurring as a consequence of the nerve damage.   

 

The cause of the blood flow alterations detected in glaucoma patients has been the 

subject of debate. Rather than a sustained reduction in blood flow evidence suggests 

that the development of GON is more closely linked to unstable or fluctuating OBF 

317. Indeed the finding that conditions known to cause chronic reductions in blood 

flow, such as arteriosclerosis, are only weakly related to the development of GON 22, 

318 and that other conditions also known to cause a chronic reduction in blood flow, 

such as multiple sclerosis, often lead to atrophy but not excavation of the ONH, 

provide support for this theory 233, 319. Unstable OBF has subsequently become one of 

the most researched hypotheses of glaucoma development. The primary cause of 

this unstable blood flow is thought to be a dysfunctional autoregulatory mechanism. 

Indeed in the presence of disturbed autoregulation the ONH is susceptible to 

changes in OPP, IOP and BP, as well as to increases in local metabolic demand (see 

section 1.4). In basic terms, if blood supply is insufficiently regulated then the ONH 

and ocular structures are at risk of ischemic damage, RRI and subsequent RGC loss 

in periods when demand for blood and oxygen is high. The concept of disturbed 

vascular autoregulation in glaucoma will now be explored in more detail.  

 

1.6.1 Autoregulatory Dysfunction 

When confronted with an alteration in OPP, a change in vascular resistance or an 

increase in metabolic demand, autoregulatory mechanisms should act to adjust blood 

supply to ensure the needs of the ocular tissues are still met. If these autoregulatory 

mechanisms are defective however then the ocular tissues are at risk of exposure to 

ischemic episodes and RRI whenever metabolic demand is increased or blood flow 

parameters are altered. Defective autoregulation, through its contribution to unstable 

blood flow, could therefore potentially be linked to RGC loss, excavation of the ONH 
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and the GON development. Indeed multiple studies have provided evidence of 

disturbed autoregulation in glaucoma patients, not only at the ocular level 39, 320-322 but 

also at the systemic level 323, 324 and this disturbance has been found to be 

particularly noticeable in those with NTG 325, 326 and progressive glaucoma 327, 328.  

 

The mechanisms by which OBF autoregulation may become defective are unclear, 

however it is important to consider that, in addition to the mechanism itself being 

defective, defects in the OBF autoregulation could also potentially occur if the 

capacity of normal autoregulation is exceeded. Indeed the capacity of autoregulation 

is not infinite and can only function within a certain range of OPPs 87, 139, 156. If this 

range is exceeded, for example when IOP is exceedingly high (> 30 mmHg) or BP is 

exceedingly low (see equation 1.1), even a normally functioning autoregulatory 

mechanism would be unable to act to normalise blood flow and blood supply would 

be insufficient 87, 329. With regard to glaucoma, autoregulatory dysfunction has been 

identified in both NTG and progressive cases where IOP is considered within the 

normal range 294, 303. It is therefore considered more likely that in glaucoma patients, 

rather than the capacity of a normally functioning autoregulatory system having been 

exceeded, the autoregulatory mechanism itself may be defective in the majority of 

cases 139, 330. Indeed exploring the causes, mechanisms and implications of such 

autoregulatory dysfunctions is now one of the main focuses of glaucoma research. As 

mentioned previously autoregulation of OBF is a complex process involving 

numerous different systems including the ANS (neurogenic control), systemic BP 

(myogenic control) circulating hormones (humoral control) and the endothelium (see 

section 1.4.3) and underlying abnormalities such as endothelial dysfunction, 

vasospastic syndrome and ANS dysfunctions have been implicated to play a role in 

the development of autoregulatory abnormalities in glaucoma 331. Research is 

however ongoing and many questions still remain. These possible causes of 

defective autoregulation in glaucoma are summarised in figure 1.11 and the 
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background of these mechanisms with regard to the development of GON will now be 

discussed. 

 

 

Figure 1.11 Summary of the potential contributing f actors to disturbed autoregulation 
and hence unstable ocular blood flow in glaucoma 

 

 

1.6.2 Vascular dysregulation syndrome 

Vascular dysregulation is defined as an inappropriate constriction or inadequate 

dilation of the microcirculation when stimulated, combined with simultaneous dilations 

of the arteries or veins of neighbouring tissues 233. It was a term first introduced in the 

context of glaucoma by Flammer in 1994, superseding the use of the term 

vasospastic syndrome, which it was decided did not encompass the full nature of the 

condition despite vasospasms still being considered responsible for inducing the 

majority of the associated symptoms 332.  

 

Vascular dysregulation syndrome refers to the presence of a ‘global vascular 

dysregulation’  which affects many organs simultaneously or sequentially, including 

the heart, brain, fingers and eye 233, 333. These affected regions are subjected to 

 
Disturbed 

autoregulation 

 
Unstable blood 

flow 

 

Primary 

vascular 

dysregulation 

 
Endothelial 

dysfunction 

 

Autonomic 

nervous system 

dysfunction 

  
 

 



66 
 

episodes of local vasospasm and/or disturbed autoregulation often simultaneously 

334. This syndrome occurs in contrast to local dysregulations of blood flow which can 

develop in isolated regions in individuals as a result of pathological conditions such 

as endothelial or ANS dysfunction. Vascular dysregulation syndrome can be 

classified into two subcategories, namely primary vascular dysregulation (PVD) and 

secondary vascular regulation (SVD), with PVD being most relevant with regard to 

the development of GON.  

 

1.6.2.1 Primary Vascular Dysregulation syndrome (PVD) 

PVD refers to the occurrence of vascular dysregulation in the absence of any 

underlying disease 333. Individuals with PVD are usually otherwise healthy and do not 

require treatment 333. Under baseline conditions these individuals can hardly be 

distinguished from others as PVD syndrome has little influence on baseline blood 

flow, however under conditions of stress, such as cold, psychological or mechanical 

stress, there is an inborn tendency for the vascular systems of these individuals to 

respond differently, showing a more frequent and intense vasospastic response 

which can result in reduced blood flow 233, 333. This difference in response is thought 

to be due to a disturbance of the normal autoregulatory mechanisms in these 

individuals 332.  

 

PVD occurs more frequently in women 335 and in those with low body mass index, 

type A personalities 333 and a Japanese ethnicity 336, 337. Individuals with PVD 

syndrome have a tendency towards cold hands and feet 333, slower sleep onset times 

338, low BP, particularly at night and when young 339 and a reduced feeling of thirst 

(drinking because they know they have to rather than because of thirst) 340. They 

have also been shown to have a good sense of smell 141 and suffer more frequently 

from migraine than non-PVD individuals, however this is not a well established 

relationship 333. Some individuals also show an altered sensitivity to drugs, such as 
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an increased response to calcium channel blockers and systemic beta blockers, 

possibly related to the lack of an ABC transporter protein 341. Generally, all of these 

symptoms will first manifest in puberty and then decrease with age, showing a 

marked reduction after the menopause in women, but a possible increase again if 

they are treated with oestrogen-replacement therapy 141.  

 

There is a large body of evidence associating PVD syndrome with the ocular 

circulation, with the first links being made in the early 1980’s when diffuse or 

glaucomatous-like visual field defects, which fluctuated markedly and could 

spontaneously disappear, were noted in PVD sufferers 342, 343. This occurrence was at 

the time referred to as ocular vasospastic syndrome and was the first indicator that 

the eye may be affected by what is now referred to as vascular dysregulation 

syndrome 344. Further to this Gherghel et al 334, using Color Doppler imaging, found 

that individuals with vasospasm had decreased mean OPP and an increased 

resistivity index in the CRA compared to non-vasospastic individuals, providing 

evidence of both involvement of the retinal circulation and disturbed autoregulation in 

PVD sufferers. Indeed a number of ocular diseases have now been linked to the 

occurrence of PVD including, central serous chorioretinopathy 345, venous and arterial 

occlusions at a younger age 346, anterior ischemic optic neuropathy 347 and Susac 

syndrome 348. Of relevance here however is the large body of evidence linking PVD 

syndrome to the development of GON, as discussed in the following section. 

 

1.6.2.2 PVD and glaucoma 

The first associations, made between the presence of PVD and the development of 

glaucoma, arose from the finding that a minority of patients with the so called ocular 

vasospastic syndrome went on to develop GON 333. The possibility that PVD and 

glaucoma could share a common underlying mechanism was suggested on the back 

of multiple studies demonstrating disturbed autoregulation and altered blood flow in 
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PVD sufferers, similar to that found in glaucoma patients. Indeed there is now a large 

body of evidence supporting the role of PVD in glaucoma development, particularly 

with regard to NTG and an equally large body of evidence demonstrating increased 

tendency towards vasospasm in glaucoma patients. The role of PVD in the 

development of NTG is supported by the finding that NTG and PVD share a number 

of similarities, for example both occur more frequently in women 29, 335 and those of 

Japanese ethnicity 30, 337. Furthermore NTG patients suffer more frequently from 

migraine 55 as do individuals with PVD 349 and they suffer more commonly from silent 

myocardial ischemia 311, 350, of which PVD syndrome is a cause 351. Additionally, the 

occurrence of flame haemorrhages at the optic disc, which develop more commonly 

in NTG 31 has been linked to the presence of PVD 352.  Other studies have identified 

direct signs of vasospasm or vascular dysregulation in NTG patients, for example, the 

presence of peripheral vasospasm in NTG patients, using nail fold capillaroscopy and 

cold provocation has been demonstrated on numerous occasions 26, 353, 354. 

Furthermore, findings such as raised levels of ET-1, a potent endothelial derived 

vasoconstrictor 355-357, and of associations between NTG and the presence of 

migraine and Raynaud’s phenomenon 55, also highlight the potential role of 

vasospasm in the development of NTG.  Similarly, indirect evidence of vasospasm in 

NTG patients has been found by studies assessing vascular and functional 

responses to breathing the vasodilator CO2, 
358, 359 whereby it is hypothesised that 

significant increases in OBF parameters, recorded in response to CO2, are 

suggestive of the vasculature having been in an initial vasospastic state. 

 

The presence of PVD and vasospasm have also additionally been linked to the 

development of POAG, for example Goldberg et al 459 using the Hettinger Hand 

Vibration Test and Butt et al 361, both found signs of vasospastic tendencies in NTG 

and POAG patients, although the pattern of disturbance was slightly different 

between the two. Furthermore Rankin et al 301 found evidence of increased mean 
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resistivity index and decreased mean flow velocity in the OA and CRA of patients with 

POAG which were similar to those found in NTG patients. Other studies looking 

specifically at POAG patients have found that they show larger diurnal fluctuations in 

OBF parameters compared to controls, indicating unstable ocular perfusion and 

supporting the hypothesis that there may be an underlying vascular dysregulation in 

these patients as well 40. Additionally, Hosking et al 362 assessed BP and blood flow 

parameter changes to induced hyperoxia and hypercapnia and found that POAG 

patients showed a larger increase in blood flow velocity in response to hypercapnia, a 

vasodilator, compared to controls but no significant change in blood flow in response 

to hyperoxia, a vasoconstrictor, to which controls showed a decrease in blood flow, 

again suggestive that there may be an initial state of vasospasm in POAG patients 

similar to that mentioned previously with regard to NTG. 

 

It is possible that, in addition to disturbing blood flow regulation and contributing to 

ischemic damage, PVD may also render the eye more susceptible to changes in IOP. 

Indeed Schulzer et al 363 identified a distinct group of patients with vasospastic 

tendencies, which included both NTG and POAG patients, in whom a high positive 

correlation was found between mean deviation index of field severity and highest 

IOP. No such association was found in the other group who did not show vasospastic 

tendencies. Furthermore Hafez et al 364 found that vasospastic POAG and OHT 

patients showed the greatest improvement in NRR blood flow after sustained IOP 

reduction, compared to non-vasospastic patients and healthy controls, suggesting a 

closer relationship between OBF parameters and IOP level in patients with PVD 

syndrome compared to those without. Finally, Gugleta et al 328 found that progressive 

glaucoma patients who exhibited a vasospastic response which decreased choroidal 

blood flow by at least 10%, had lower IOPs compared to those with a milder 

vasospastic response, possibly suggesting that those with a greater degree of 
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vasospasm are more susceptible to IOP and therefore more likely to progress despite 

IOP being normalised.  

 

On the basis of this plentiful evidence it has been suggested that PVD syndrome 

should be considered an independent risk factor for the development of glaucoma 

and its presence could potentially interfere with OBF either through the manifestation 

of disturbed autoregulation, or through the combined effects of hypotension, which is 

more prevalent in PVD, and reduced OPP 95. A clinical diagnosis of PVD is largely 

based on history and symptoms and as such enquiries aimed at determining its 

presence, such as the occurrence of cold hands and feet or delayed sleep onset, are 

now recommended as routine practice in glaucoma 233. A more reliable diagnosis of 

PVD can be made using nail fold capillaroscopy and cold provocation, whereby 

capillary blood flow is measured in the nail fold area before, during and after cooling 

to -15oC and a reduced baseline blood flow velocity or a prolonged flow stop after 

cold provocation is considered indicative of PVD 349, 354, 365.    

 

1.6.2.3 Secondary Vascular Dysregulation 

Secondary vascular dysregulation refers to the presence of a local or systemic 

vascular dysregulation which has developed secondary to an underlying disease, 

such as multiple sclerosis, rheumatoid arthritis or giant cell arteritis 141, 233. Under 

conditions of stress or on stimulation, the vasculature of those with SVD exhibits a 

vasospastic response. The exact mechanism by which the underlying disease evokes 

this secondary vasospastic response is unclear, however a marked increase in levels 

of circulating ET-1, a potent vasoconstrictor released by the vascular endothelium, in 

response to inflammatory stress, has been identified in the majority of cases  233, 333.  

 

SVD tends to cause a more or less constant reduction in baseline blood flow and has 

little effect on autoregulation, making it less relevant to glaucoma development 141. At 
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an ocular level the effects can range from minimal to mild visual field reduction and a 

pale ONH 233. As SVD syndrome does not interfere with autoregulation it is 

considered only a minor risk factor for the development of glaucoma 366 in 

comparison to PVD.  

 

1.6.3 Endothelial dysfunction  

Endothelial dysfunction could potentially occur in isolation or in combination with PVD 

and/or ANS dysfunction in glaucoma patients 367. The concept and features of 

endothelial dysfunction were discussed in section 1.5.4 and there is now a fairly large 

body of evidence indicating the involvement of both ocular and systemic endothelial 

dysfunction in the dysregulation of blood flow and pathogenesis of both NTG and 

POAG. This endothelial dysfunction commonly takes the form of an imbalance in NO 

and ET-1 production, leading to reduced vasodilation, increased vasoconstriction and 

disturbed autoregulatory mechanisms in response to increased demand. The 

observation of both altered systemic and ocular endothelial dysfunction in glaucoma 

emphasises that, rather than just being a local ocular phenomenon, glaucoma may 

actually form part of a more global vascular dysfunction. The evidence linking 

endothelial dysfunction at both the systemic and ocular level to the development of 

glaucoma will now be discussed. 

 

1.6.3.1 Ocular Endothelial Dysfunction and glaucoma 

Direct assessment of endothelial dysfunction at the ocular level is more challenging 

than that at the systemic level as the ocular vasculature is less accessible. 

Nevertheless, multiple studies have found evidence of reduced NO 368 369 and 

increased ET-1 levels 357, 370, 371, characteristic of endothelial dysfunction, in the 

aqueous humour of both NTG and POAG patients, however as well as relating to the 

vascular endothelium, these findings could also be indicative of endothelial 
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dysfunction in the cells lining the trabecular meshwork and Schlemm’s canal. 

Stronger support for the presence of ocular vascular endothelial dysfunction in 

glaucoma therefore comes from functional studies. With regard to NO, abnormal OBF 

responses to systemic NOS inhibition, suggestive of reduced constitutive NOS at the 

ocular vascular level have been identified in POAG patients 372. Furthermore 

abnormal or reduced neurovascular coupling responses of the retinal and ONH 

vasculature have been identified in early glaucoma patients following exposure to 

flicker light stimulation via dynamic retinal vessel analysis (DVA) 41, 373. The concept 

of DVA, flicker light stimulation is discussed in more detail in Chapter 3: Subjects and 

Methods.  

 

With regard to ET-1, in addition to raised levels in the aqueous humour, chronic ET-1 

mediated ischemia of the ONH has been shown to induce glaucoma-like optic 

neuropathy in animals 374-376 suggesting a causative role. Furthermore the high 

sensitivity of the ocular circulation to changes in local ET-1 concentration has been 

demonstrated by the finding that intravenous application of ET-1 reduces pulsatile 

blood flow in the choroid and ONH at doses which show no effect on systemic 

haemodynamics 251.  

 

The ability to assess the ocular endothelium is improving through the development of 

techniques such as DVA, however due to the wide variety of procedures available 

and the easy accessibility of the systemic circulation more plentiful evidence exists 

for the presence of endothelial dysfunction at the systemic level in glaucoma patients.  

 

1.6.3.2 Systemic Endothelial Dysfunction and glaucoma 

A variety of different methodologies have demonstrated impaired NO activity and 

increased ET-1 activity along with reduced vasodilation and increased 

vasoconstriction responses, characteristic of endothelial dysfunction, in the systemic 
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vasculature of glaucoma patients. Considering NO first, reduced plasma levels of NO, 

cGMP and nitrite (NO2
-), have been demonstrated in both POAG 377 and NTG 

patients 378. Furthermore a higher plasma C-reactive protein level, a marker of 

reduced eNOS activity 379, has also been demonstrated in NTG patients 380, however 

this finding should be considered with caution as increased or normalised systemic 

levels of such markers have been demonstrated in glaucoma patients by other 

studies 381. In addition to this biological evidence, functional assessment of the 

system.ic endothelium in glaucoma patients has also revealed evidence of NO 

mediated dysfunction. Indeed using venous occlusion plethysmography, a reduced 

vasodilation response in the forearm to both acetylcholine 382 and ETA receptor 

antagonism has been identified in NTG patients 383, 384. Furthermore reduced brachial 

artery flow mediated dilation responses, indicative of impaired NO mediated 

vasodilation, have also been demonstrated in NTG patients 52 as well as POAG 

patients 385, although possibly to a lesser extent in this second group 42. (These 

measurement techniques were introduced in section 1.5.5 and are discussed further 

in Chapter 3: Subjects and Methods, section 3.3.4) 

 

With regard to ET-1, again from a biological point of view multiple studies have found 

increased levels in the plasma of NTG patients 355, 356 and progressive glaucoma 

patients 386. However, the majority of studies report no difference in plasma ET-1 

levels between POAG and healthy controls 357, 370, 387-389. This suggests systemic 

vasoconstriction or vasospastic tendencies play less of a role in the development of 

POAG in comparison to NTG and progressive cases. Indeed, a further illustration of 

ET-1 abnormalities in NTG patients comes from functional testing, whereby abnormal 

changes in plasma ET-1 levels, indicative of disturbed autoregulatory mechanisms 

and systemic endothelial dysfunction have been identified in response to posture 

changes 390 and following peripheral cooling in NTG patients 391, suggesting abnormal 

ET-1 mediated vasoreactivity . This also ties in with the findings of higher occurrence 
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of vasospastic related conditions such as migraine 55, Raynaud’s phenomenon and 

myocardial ischemia 311, 350 in NTG patients. 

 

Plentiful evidence currently exists therefore for the presence of endothelial 

dysfunction at the systemic level in glaucoma patients. In addition to the above 

findings which relate to NO and ET-1, plasma levels of circulating von Willibrand 

factor (vWf), an established marker of endothelial damage, have been found to be 

abnormal in both POAG and NTG patients providing further evidence for the 

presence of systemic endothelial dysfunction in glaucoma 392. Additionally, genetic 

studies have found evidence of polymorphisms in the eNOS gene in some familial 

POAG patients 393-395 and in the ETA receptor gene of some NTG patients 396, 397  

suggesting there a possible genetic involvement in the development of endothelial 

dysfunction in certain cases.  

 

1.6.3.3 Summary of the role of endothelial dysfunction in glaucoma 

A combined state of impaired vasodilation and increased vasoconstriction in the 

ocular and/or systemic vasculature of patients with glaucoma, as a result of 

endothelial dysfunction, is therefore hypothesised to play a key role in GON 

development through its significant impact on OBF regulation. Whether endothelial 

dysfunction occurs in isolation or in combination with other factors such as PVD or 

ANS dysfunction is currently unclear and little research has been conducted into the 

occurrence of simultaneous dysfunction of the ocular and systemic circulation in 

individual patients. Exploring the associations of endothelial dysfunction and 

determining whether a global dysfunction, affecting both the systemic 

macrovasculature and the ocular microvasculature, exists in glaucoma patients could 

lead to significant advances in our understanding of the development of the disease. 
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1.6.4 The Autonomic Nervous System (ANS) 

The hemodynamic situation of the body is supervised and influenced by the ANS via 

constant regulation and control of heart rate (HR) and blood pressure (BP), amongst 

other factors 398, 399. As such a dysfunction of the ANS system can impact on the 

regulation of blood flow in tissues in the eye and throughout the rest of the body and 

potentially play a part in the development of GON.  

 

1.6.4.1 Background 

The ANS itself forms part of the efferent division of the peripheral nervous system 

and is split into two systems, namely the parasympathetic nervous system (PNS) and 

the sympathetic nervous system (SNS), both of which innervate smooth muscle, 

cardiac muscle and glands 145, 400. 

 

The SNS promotes responses that prepare the body for strenuous physical activity in 

emergency or stressful situations (‘fight or flight’). The release of adrenergic agents, 

such as noradrenaline, from the postganglionic fibres of the SNS, results in an 

increased HR and force of contraction, vasoconstriction, pupil dilation, stimulation of 

sweat glands and a breakdown of glycogen and fat stores 400. The PNS on the other 

hand dominates under resting, relaxed, non-threatening circumstances, with the 

release of acetylcholine from the postganglionic fibres of the PNS leading to a 

decrease in HR and force of contraction, pupil constriction and constriction of the 

bronchioles 400.  

 

Under normal conditions both systems are partially active, giving rise to a basal 

sympathetic/parasympathetic tone. This tone can be involuntarily modified according 

to hemodynamic needs, allowing one system to dominate over the other so that the 

required response can be brought about 400. Most organs or tissues throughout the 
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body have both SNS and PNS innervations which are under reciprocal control; the 

exception to this is innervated blood vessels which only have sympathetic 

innervation.  

 

1.6.4.2 Role of the ANS in Regulating Cardiac Rhythm 

Among the hemodynamic factors regulated by the ANS is the cardiac rhythm. 

Rhythmical atrial and ventricular contractions pump blood out of the heart and into 

the systemic and pulmonary circulations as part of the normal cardiac cycle 145. Both 

electrical and mechanical events play a role in producing these rhythmical 

contractions.    

Electrical events 

Contraction of the cardiac muscle (myocardium) is initiated by spontaneous, electrical 

impulses which originate from the so called cardiac pacemaker cells. The sinoatrial 

node (SA node) is the primary pacemaker cell, located in the right atrial wall. It 

undergoes spontaneous depolarisation approximately 70 times per minute and brings 

about atrial contraction. The electrical impulse generated by the SA node is 

conducted via the internodal conduction pathway to the atrioventricular node (AV 

node), the secondary pacemaker cell. Subsequent conduction of the electrical 

impulse from the AV node to the ventricle walls, via the bundle of His and purkinje 

fibres, ultimately leads to ventricular contraction 145. The SA node receives extensive 

autonomic innervation from both the SNS and PNS meaning HR can be regulated by 

the ANS. Parasympathetic innervation of SA node initiates a rapid response which 

leads to a decrease in HR, whereas sympathetic innervation acts over a longer time 

course, bringing about increased HR and contractility of the cardiac tissue 398. At any 

given moment the overall HR is therefore determined by the balance between the 

PNS and SNS and under resting conditions it is the PNS which dominates, 

generating an average resting HR of 70 beats per minute 145.  
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Mechanical events 

The cardiac cycle begins with ventricular contraction, a phase referred to as systole. 

As the ventricles contract the pressure inside them rises rapidly and once it exceeds 

that inside the aorta and pulmonary artery, blood is ejected from the ventricle into the 

systemic and pulmonary circulations. The pressure subsequently decreases and the 

ventricles refill with blood, a phase referred to as diastole 145. The cycle then repeats 

itself. 

 

1.6.4.3 Heart Rate Variability (HRV) 

Under normal resting conditions the sinusal rhythm is highly irregular, varying as a 

result of changes in physiological parameters such as respiration, BP, body 

temperature, metabolic rate, hormone levels and sleep cycles 401. This high 

irregularity is evident when HR is examined beat by beat and is termed HRV. As the 

SA node, whose activity determines HR, is densely innervated by both the SNS and 

PNS, HRV reflects the modulating effect of the ANS on the intrinsic firing rate of the 

cardiac pacemaker cells 398. As such assessment of HRV can provide an indirect 

assessment of the autonomic control of the heart and a change in HRV pattern is 

recognised as an early sensitive indicator of compromised health 398. Indeed a low 

HRV, suggestive of a poor adaptability of the ANS, has been correlated with 

increased mortality 402. HRV is therefore commonly used for the investigation of 

normal physiology and pathological conditions and can be assessed using either a 

frequency domain or time domain analysis, as outlined below.  

Frequency domain analysis       

This technique involves spectral analysis of the arterial pulse wave in order to 

evaluate the predominance of the sympathetic and parasympathetic divisions of the 

ANS and their effects on HR 403. In normal individuals cyclic variations in HR occur in 

association with respiration and BP fluctuations. Respiratory related cyclic variations 
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are mediated by the PNS and occur at a high frequency (HF) (0.2-0.4 Hz) 398, 404. 

Conversely, cyclic variations related to fluctuations in BP and the subsequent 

changes in baroreceptor activity, typically occur at low frequency (LF) (0.0-0.04 Hz) 

and are mediated by the SNS 405. As well as considering these parameters 

individually the dynamics of the HRV signal and the sympathovagal balance of ANS 

function, can also be assessed through the evaluation of the LF/HF ratio 398, 406.       

Time domain analysis 

This technique involves the analysis of an individual’s electrocardiogram (ECG) 

profile and the subsequent determination of the average normal-to-normal heart beat 

interval (mean NN interval). This is then converted into a measure of HRV via simple 

mathematical evaluation 398, 407.  

 

1.6.4.4 Role of ANS in Regulating Blood Pressure 

Alongside modifying HR and influencing cardiac output, the ANS also plays a role in 

regulating MABP (see equation 1.2). MABP is influenced by both cardiac output and 

total peripheral resistance, with an increased cardiac output and/or increased 

peripheral resistance leading to the elevation of MABP. Baroreceptors located within 

the circulatory system constantly monitor MABP and if any deviation away from 

normal is detected a series of reflex responses, including stimulation of the ANS, are 

initiated 145. Subsequent autonomic innervation of the heart, arterioles and veins then 

leads to either adjustment of cardiac output or modification of peripheral resistance in 

order to normalise MABP accordingly. A detected increase in MABP, for example, 

leads to a decrease in sympathetic activity and an increase in parasympathetic 

activity and hence normalisation of MABP through a reduction of HR and cardiac 

output and an increase in peripheral vasodilation. A fall in MABP leads to the 

opposite effect. 
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Both BP and HR follow a normal circadian rhythm which is dependent on the ANS 145, 

408. ANS activity itself is also thought to follow a circadian rhythm, with sympathetic 

activity having been shown to be lower at night, along with HR and BP, however this 

can also vary according to sleep cycles 401. Through its influence on HR and BP a 

dysfunction or chronic imbalance of ANS activity could therefore significantly impact 

the regulation of blood flow not only in the heart, brain and/or peripheral vasculature, 

but also in the ocular circulation, due to the close proximity of the eye to the heart and 

brain via the carotid artery 409. The relevance of this with regard to the development of 

GON is discussed in the following section 

 

1.6.4.5 Autonomic Nervous System Dysfunction and Glaucoma 

Due to the important role that the ANS plays in the maintenance of blood flow 

physiology and the regulation of variables such as HR and BP, it is clear that a 

dysfunction of the ANS could have significant adverse hemodynamic effects. With 

regard to GON development both systemic parasympathetic and sympathetic 

neuropathies have been reported in those with POAG 43, 410-412 and those with NTG 

410, 413-415 using a variety of different assessment techniques. 

 

Studies monitoring 24 hour BP and HRV have demonstrated greater low frequency 

(LF) values in NTG patients 413 and greater LF values and LF/HF (low frequency/high 

frequency) ratio in POAG patients 43, both diurnally and nocturnally, suggestive of a 

high sympathetic tone. Furthermore abnormalities suggestive of altered systemic 

ANS function have been linked to abnormal OBF regulation in POAG patients using 

cold pressor testing 416 and on this basis it could be hypothesised that disturbed ANS 

function may contribute to the disturbed regulation of OBF and subsequently to the 

development of GON. 
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When considered as a whole the most recent evidence indicates the presence of a 

heightened sympathetic activity and suppressed parasympathetic activity in 

glaucoma patients; however some studies have found parasympathetic activity to 

also be increased. The exact nature of ANS dysfunction in glaucoma is therefore still 

unclear and the decision on whether it should be considered an independent risk 

factor for the disease or whether it simply occurs in coexistence with other factors has 

not been made. As mentioned in previous sections it is only the choroid and 

retrobulbar vessels which receive autonomic innervation at the ocular level, however 

multiple studies have demonstrated impaired regulation and reduced blood flow in 

both the retinal and ONH vessels as well. It is therefore likely that, if ANS dysfunction 

does play a role in the development of GON, it does not act in isolation. Links have 

been made in cardiovascular research between the coexistence of impaired ANS 

function and impaired endothelial function and it is possible that, due to the links 

between GON and endothelial dysfunction, similar dual impairments could be 

occurring in glaucoma patients 367.     

 

1.6.4.6 ANS and endothelial dysfunction 

Under normal conditions vascular tone is maintained by both the ANS and the 

endothelium, which work together in opposition. The release of vasodilating factors 

from the endothelium is balanced with the release of vasoconstricting factors from the 

sympathetic nerve terminals 367 and these vasoactive factors act together on the 

vascular smooth muscle cells to maintain vascular tone.  

 

The ANS and the endothelium are not completely separate systems. Endothelial cells 

possess receptors for both SNS and PNS neurotransmitters and therefore ANS 

activity can directly influence the endothelium 218, 417. As well as this direct influence, 

the ANS can also influence the endothelium indirectly through the release of 

neurotransmitters from its nerve terminals which influence the release of vasoactive 
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factors from the endothelium 418.  Conversely the endothelium can also directly 

influence ANS function, with the increased release of NO from the endothelium being 

found to inhibit the vasoconstricting effects of the SNS 418, 419 and the increased 

release of ET-1 from the endothelium being found to increase the vasoconstricting 

effects of the SNS 420. Both the ANS and the endothelium therefore interact with each 

other under normal conditions to ensure optimum vascular tone is achieved. 

 
It is possible that, due to this close working relationship between the ANS and the 

vascular endothelium, if a dysfunction occurs in one system then the other system 

may also be affected. A number of diseases, including diabetes, cardiovascular 

disease, hypertension and congestive heart failure, have been associated with both 

abnormalities of ANS regulation 421-423 and abnormalities of endothelial function 424-426. 

Whether a dysfunction in one system may have driven a dysfunction in the other, or 

whether both systems have developed a dysfunction independently as part of the 

disease process, for example due to the effects of factors such as oxidative stress, 

aging or insulin resistance, is difficult to determine however.  

 

In patients with congestive heart failure, studies have found that endothelin levels 

correlate negatively with some measures of HRV 312 and in patients with diabetes 

associations have been found between lower HRV and higher levels of von Willibrand 

factor, a marker of endothelial dysfunction 427. No such data has been collected for 

patients with glaucoma to date and it is therefore unknown whether similar coexisting 

dysfunctions are occurring in these patients. Determining this would provide 

important information that could assist in determining the aetiology of GON.      
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1.7 The Role of Systemic Blood Pressure  

Variations in systemic BP are among the vascular risk factors implicated in the 

development of GON 428. Regulation of BP is globally controlled by the ANS and 

follows a normal circadian rhythm 408.  Due to close relationship between BP, IOP and 

OPP (equation 1.1), abnormal fluctuations in BP can significantly impact the ocular 

circulation and in the presence of disturbed autoregulation, due to, for example, PVD 

syndrome, endothelial dysfunction and/or ANS dysfunction (see section 1.6), the 

impact of abnormal BP would be increased. Both hypertension and hypotension have 

been linked to the development of GON and the evidence surrounding their 

involvement along with an outline of the normal systemic BP physiology  is given in 

the following sections. 

 

1.7.1 Systemic Blood Pressure - Background 

BP, in basic terms, defines the force exerted by the blood against the vessel wall and 

is determined by both the volume of blood in the vessel and the distensibility of the 

vessel wall. It is commonly described in terms of systolic (SBP) and diastolic (DBP) 

blood pressure, with systolic being the highest measured pressure, corresponding to 

ventricular contraction and diastolic being the lowest measured pressure, 

corresponding to ventricular relaxation and refilling. It is measured in milligrams of 

mercury (mmHg) from the brachial artery in the upper arm using a 

sphygmomanometer. The most recent World Health Organisation (WHO) and 

International Society of Hypertension guidelines, which are based on the 1999  

publication for the classification of hypertension, are outlined in table 1.5. 
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Category 
 

 

Systolic (mmHg) 
 

Diastolic (mmHg) 

Optimal <120 <80 

Normal 120-129 80-84 

High Normal 130-139 85-89 

Hypertension:   

  Grade 1 (mild) 140-159 90-99 

  Grade 2 (moderate) 150-179 100-109 

  Grade 3 (severe) ≥ 180 ≥ 110 

Isolated systolic hypertension  ≥ 140 < 90 

 
Table 1.5 Classification of hypertension  

(World Health Organisation & International society of Hypertension) 
 
 

Another term used to describe BP is ‘mean arterial blood pressure’ (MABP), which 

was defined in equation 1.2. MABP defines the average BP over a single cardiac 

cycle and is constantly monitored and regulated by the body through control of 

cardiac output and total peripheral resistance. The regulation of MABP by the ANS 

was discussed in section 1.6.4.4. 

 

1.7.1.1 Normal Circadian Rhythm 

BP follows a distinctive circadian rhythm characterised by a decline in both SBP and 

DBP during sleep, reaching their lowest point between 2.00 am and 4.00 am, 

followed by a transient spike in arterial pressure in the early morning, soon after 

waking, which corresponds with the peak occurrence of cardiovascular incidents 429-

431. 

As indicated by this circadian rhythm, it is normal to observe a physiological dip in BP 

nocturnally. This dip is related to the reduced need for oxygen and nutrients in 

peripheral tissues during sleep and is brought about by a number of factors including, 

the normal decline in sympathetic nervous system activity over night, translocation of 

blood to the peripheral circulation, resulting in a lower venous return, and the effects 

of the recumbent posture taken on during sleep. The nocturnal dip in BP is 

traditionally categorised as being either a physiological dip, a non-dip or an excessive 
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dip 429, 432, 433. A drop in BP of around 10-20% of the average daytime level is 

considered physiological and occurs in approximately 2/3 of the healthy population 

434. Of the remaining population, those with a nocturnal dip in BP of less than 10% are 

classified as non-dippers and those with a nocturnal dip in BP of greater than 20% 

are classified as extreme dippers 433. 

 

Non-dippers tend to have an increased risk of cardiovascular morbidity, myocardial 

ischemia and cerebrovascular damage such as stroke, haemorrhages and 

thrombosis 435, 436. This is likely to be due to their sustained exposure to high BP 

levels over the 24 hour period compared to physiological dippers and extreme 

dippers 434. Extreme dippers on the other hand tend to have an increased risk of 

ischemic conditions such as nocturnal myocardial infarction and silent 

cerebrovascular damage, as significantly reduced BP levels can have a significant 

effect on perfusion levels.  

 

In order to fully assess an individual’s BP profile (or dipping status), 24 hour 

ambulatory BP monitoring (ABPM) is required. The superiority of 24 hour ABPM in 

comparison to conventional methods of BP assessment has been well demonstrated 

with regard to enhanced prediction of cardiovascular mortality and ability to overcome 

the so called ‘white coat syndrome’, whereby BP readings are recorded artificially 

higher in a clinical setting 437-440. The use of ABPM to evaluate BP in this thesis is 

discussed further in Chapter 3: Subjects and Methods, section 3.3.4.5. 

 

1.7.2 Hypertension and glaucoma 

Whilst the presence of hypertension has been associated with the development of 

GON, the evidence is somewhat variable. Some studies have identified hypertension 

as a potential risk factor for both development and progression of POAG 441, 442, 

especially if poorly controlled 443. Furthermore other studies have found that patients 
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with POAG in particular, tend to have slightly higher BP than controls 444-448 

suggesting a possible causative link. In contrast to these findings however a number 

of other studies have found either no association between hypertension and 

glaucoma 307, 449, or a positive association, whereby hypertension has been 

suggested to have a protective against the development of glaucoma. Leske et al 23, 

for example, found that those with systemic hypertension at baseline had half the 

relative risk of developing glaucoma after four years compared to those without 

hypertension and similarly Leske et al 24 found that those with higher SBP at baseline 

had a significantly lower risk of disease progression and these findings were then 

also confirmed by Leske et al 15. 

 

It is clear that the evidence linking hypertension and glaucoma is therefore very 

variable, with both positive and negative associations having been identified. On the 

whole, the literature suggests that hypertension should therefore not be considered to 

be a significant risk factor in the development and progression of glaucoma in the 

majority of patients. However, on saying that, with regard to circadian rhythm, there is 

evidence to suggest an association between progression of glaucoma and having an 

absent or reduced nocturnal dip in BP (less than 10%) i.e. having sustained exposure 

to high BP levels nocturnally may increase the risk of developing glaucoma 433, 450-452. 

Tokunaga et al 433 hypothesised that this may be associated with impaired 

microcirculation around the ONH, in the form of increased peripheral resistance and 

impaired blood flow, as a result of the increased BP and an increased production of 

free radicals or other toxic substances, however more research would be needed to 

confirm this.   

 

1.7.3 Hypertension and IOP 

There is some evidence to suggest that a positive correlation exists between systolic 

and diastolic BP and level of IOP introducing the possibility that hypertension may 
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contribute to the development of POAG through the elevation of IOP 22, 306, 453, 454. The 

magnitude of change in IOP with increasing BP however is very small, with a 

10mmHg increase in SBP leading to only around a 0.2 to 0.44 mmHg increase in IOP 

455. Nevertheless theories to explain the associations between BP, IOP and the 

development of POAG have been put forward, relating to the activities of the ANS 

and the renin-angiotensin system, both of which have dual control of BP and IOP 

regulation and to alterations in choroidal volume which can occur in response to 

elevated BP and impact on IOP 401, 456-458. Regardless of this, due to the weak 

relationship, the role that elevated BP plays in increasing IOP is considered unlikely 

to make a significant contribution to the disease process.       

 
1.7.4 Hypotension and glaucoma 

The evidence linking hypotension and glaucoma is more consistent and the majority 

of studies suggest that hypotension, particularly nocturnal hypotension should be 

considered an important risk factor for the development and progression of 

glaucoma, particularly with regard to NTG. The Early Manifest Glaucoma trial for 

example identified low SBP as a risk factor for the progression of glaucoma 24 and a 

number of further studies have found nocturnal BP levels to be significantly lower in 

both NTG and progressive glaucoma patients 54, 130, 459-462, suggesting a possible 

causative link. Furthermore, a large number of studies have found associations 

between large nocturnal dips in BP (>20%) and the progression of glaucoma 313, 433, 

450, 463-466, and increased variability in nocturnal BP parameters and the presence of 

NTG 53, 467, 468.  

 

The mechanisms by which nocturnal hypotension and large nocturnal BP dips may 

lead to the development and progression of glaucoma is not entirely clear; however it 

is thought to largely relate to the impact that reduced BP has on OPP. Indeed 

reduced OPP has been identified as an independent risk factor for the development 
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of GON (section 1.6) and, as equation 1.1 shows, in the presence of reduced BP, 

OPP would also be reduced. It could be hypothesised therefore that such a reduction 

in OPP, if combined with disturbed autoregulation, occurring either as a component of 

a PVD syndrome, endothelial dysfunction or as a result of disturbed ANS function 

affecting the normal circadian rhythm, could result in ischemic damage of the ONH 

and subsequent development of GON in at risk individuals, via RRI. This hypothesis 

is supported by a study conducted by Gherghel et al 469 which found that glaucoma 

patients with marked nocturnal dips in BP also had altered retrobulbar blood flow 

parameters. Furthermore, as IOP also follows a circadian rhythm, with levels being 

found to be highest nocturnally (see section 1.3.1) a combination of both low 

nocturnal BP and high nocturnal IOP could further reduce OPP beyond the capacity 

of the available autoregulatory system and contribute to the development of ischemia 

and optic nerve damage in susceptible individuals.   

  

An important factor to consider when exploring the presence of large nocturnal dips in 

BP is the role of antihypertensive medications. Indeed it is proposed that the 

increased risk of GON development may be associated with, or exacerbated by, the 

use of antihypertensive medications, which whilst effectively reducing diurnal BP, 

may lead to nocturnal hypotension 433, 470, 471, however the evidence supporting this 

association is variable. There are a number of studies, for example, which have 

demonstrated an association between the use of antihypertensive medications and 

glaucoma 307, 470, 471, however a number of other studies have found either no 

association or that antihypertensive medications may actually have a protective effect 

against the development of glaucoma 23, 448, 472. The evidence is therefore clearly 

variable however it is generally considered worthwhile to consider the possible role 

that antihypertensive medications may be playing on glaucoma, particularly in those 

patients who are progressing.    
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1.8 The Role of Cardiovascular Risk Factors 

The presence of cardiovascular disease and structural changes to the vascular wall 

have been variably linked to the development and presence of glaucoma and could 

potentially contribute to the alterations in vascular function and OBF regulation 

observed in glaucoma patients. The following sections outline the anatomy and 

physiology of the cardiovascular system and go on to discuss the role that systemic 

arterial stiffness and cardiovascular disease may play in the development or 

progression of glaucoma. 

 

1.8.1 Physiology of the Cardiovascular System 

The principle function of the cardiovascular system is to maintain adequate blood flow 

to all tissues, ensuring their oxygen and nutrient demands are met and waste 

products removed. Blood flows through the cardiovascular system primarily as a 

result of the pressure produced by the contraction of the heart ventricles, referred to 

as the systemic BP 473. Both systemic BP and HR are constantly regulated and 

controlled by the ANS in accordance with the hemodynamic needs of the body. The 

background and relevance of systemic BP and the ANS with regard to cardiovascular 

physiology is outlined in the following sections.  

 

1.8.2 Anatomy of the Cardiovascular System 

The cardiovascular system is composed of the heart and circulatory blood vessels 

and plays a primary role in the transport of materials to and from all regions of the 

body, including the eye and brain. On leaving the heart, the blood is distributed 

between two principle cardiovascular pathways, namely the pulmonary circuit and the 

systemic circuit 473. An overview of these circuits with relevance to this thesis is given 

in the following sections.  
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1.8.2.1 The Heart 

The human heart resembles a double pump system consisting of four chambers, 

namely the right and left atria and the right and left ventricles (figure 1.12). The atria 

function primarily as reservoirs, collecting blood returning in the veins and feeding it 

into the ventricles. The ventricles are the major muscular pumps of the heart, ejecting 

blood from the heart and into the circulatory system. Each ventricle serves as a pump 

for a specific cardiovascular pathway. The right ventricle pumps deoxygenated blood 

received back from the systemic circulation into the pulmonary circuit. Following the 

removal of carbon dioxide and the addition of oxygen, the left ventricle then receives 

the oxygenated blood from the pulmonary veins, via the left atrium, and pumps this 

blood into the systemic circuit via the aorta 473.  

 

1.8.2.2 Coronary arteries 

The blood supply to the metabolically active cardiac muscle, which lines the wall of 

the heart, is provided by the coronary arteries. The left coronary artery originates on 

the left side of the aorta and separates into three branches which supply much of the 

anterior wall of the heart and most of the left ventricle. The right coronary artery 

originates on the right side of the aorta and separates into two main branches which 

supply most of the wall of the right ventricle. The coronary arterial blood supply to the 

heart muscle can be described as an ‘end circulation’ as it represents the only source 

of blood supply to the myocardium, as such any blockage or dysfunction of the 

coronary arteries, for example through atherosclerosis, poses a critical threat to heart 

function, and could potentially lead to heart attack and/or myocardial infarction 474.  
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Figure 1.12: Diagrammatic representation of the hea rt 

 

1.8.2.3 Systemic Circulation: Carotid, Brachial and Radial Arteries 

The systemic circulation refers to the flow of blood from the left ventricle of the heart 

to the tissues of the body and back to the right atrium. All of the arteries which make 

up the systemic circulation branch from the aorta, which itself can be considered in 

three parts, namely the ascending aorta, the aortic arch and the descending aorta. 

The blood supply to the head and neck, which ultimately supplies the vascular 

networks of the eye and brain, originate from the aortic arch. Of primary interest to 

this thesis are the right and left common carotid arteries. The right common carotid 

artery originates from the first branch of the aortic arch, referred to as the 

brachiocephalic artery, whereas the left common carotid artery branches directly from 

the aortic arch itself. Both the right and left common carotid arteries extend superiorly 

within the corresponding parts of the neck before branching to form the right and left, 

internal and external carotid arteries 473 (figure 1.13).  

 

Other systemic arterial branches referred to in this thesis include the brachial artery 

and the radial artery. The brachial arteries are located in the upper arm on both sides 
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and are the common site for BP measurement. They arise from the subclavian artery, 

which itself arises either directly or indirectly from the aortic arch. The brachial artery 

branches at the elbow to form the radial artery which supplies the forearm and the 

hand and is common site for taking a pulse.     

 

 

Figure 1.13 Diagrammatic representation of the arte ries of the neck 

 

1.8.2.4 Structure of the Arterial Walls 

On leaving the heart the blood flows from the aorta, into the systemic arteries, which 

then repeatedly branch throughout the body forming progressively smaller arterioles 

and capillaries. As the vessels branch the structure of the arterial wall undergoes a 

gradual transition from high elasticity, low smooth muscle cell (SMC) content to high 

SMC content and low elasticity. The walls of the arteries and arterioles are composed 

of three layers referred to as the tunica intima, the tunica media and the tunica 

adventitia, as depicted in figure 1.14. The tunica intima is collective name for the 

innermost layers of the vessel wall, encompassing the endothelium and connective 

tissue, the tunica media is the middle and thickest layer and the tunica adventitia is 

the outermost layer 473.  
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Figure 1.14 Diagrammatic representation of the arte ry wall 

 

The structure of the smallest vessels, referred to as the capillaries, is somewhat 

different from that of the arteries and arterioles in that their wall consists only of a thin 

layer of endothelial cells, accompanied by an underlying basement membrane. This 

structure facilitates the exchange of materials between the capillaries and 

surrounding tissues. 

 

1.8.2.5 Atherosclerosis 

The arterial walls of the circulatory system undergo changes as they age, the most 

significant of which is a loss of elasticity. This loss of elasticity or ‘hardening of the 

arteries’ is termed arteriosclerosis and primarily effects the large elastic arteries such 

as the aorta and carotid arteries. A specific form of arteriosclerosis, termed 

atherosclerosis, refers to the hardening of the artery wall as a result of the deposition 

of fatty materials and plaque formation on the inner surface of the wall. This 

deposition leads to narrowing of the arterial wall, increasing resistance to blood flow 

and impairing blood circulation 473. It also increases the risk of vessel occlusion 

through thrombus formation. The severity and rate at which atherosclerotic changes 

develop has been linked to factors such as lack of exercise, obesity, smoking and 

high cholesterol diets but may also have a genetic influence 475. The detection of 

atherosclerotic vessel changes and the adjustment of modifiable risk factors is 

recommended in the treatment and prevention of cardiovascular disease. A summary 
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of the techniques available for detecting and/or monitoring atherosclerotic changes is 

given in table 1.6     

 

Method  Advantages  Disadvantages  
 

Angiography 
 

Original technique  
 
Allows an assessment of artery 
stenosis 

 

Detects only severe narrowing not 
the underlying atherosclerotic 
disease 
Invasive 

 

Stress testing 
 

Allows a general assessment of 
physical condition of patient 

 
Detects only severe narrowing not 
the underlying atherosclerotic 
disease 
Invasive 

Anatomic methods :   
 

 
• Coronary Calcium 

scoring by CT 
 

• Carotid intima-media 
thickness 
measurement by 
ultrasound 

 
 

• Intravascular 
ultrasound 

 
 
Directly measure aspects of the 
actual atherosclerotic disease 
process itself 
 
Allow detection of atherosclerotic 
changes before patient becomes 
symptomatic 
 
Allow tracking of disease 
progression 
 

 
 
More expensive 
 
Can be invasive 

Physiological methods :   
• Lipoprotein subclass 

analysis 
 

• HbA1c analysis 
 

• C-Reactive protein 
analysis (hsCRP)  

 
 

• Homocysteine analysis 
 

 

Cheap 
 
Safe 
 
Modification of abnormal parameters 
can slow progression 

Don’t allow the state of the disease 
to be quantified 
 
Don’t allow progression of disease 
to be tracked 

Table 1.6: Overview of the techniques available for  the detection of atherosclerosis 

 

1.8.3 Cardiovascular risk and Glaucoma 

There is evidence to suggest a higher incidence of cardiovascular disorders such as 

coronary artery disease, cardiac arrhythmias, atrial fibrillation, congestive heart failure 

and hemodynamic crisis in NTG patients compared to the average population 142, 350, 

444, 476; however this is not confirmed by all studies 477, 478. Furthermore POAG patients 

have been identified as having a higher cardiovascular risk than control patients 446 

and cardiovascular disease history has been identified as a risk factor for POAG 
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progression 24. Additionally an increased cardiovascular mortality has been described 

in those previously diagnosed with open angle glaucoma 479.  

 

Whilst these findings obviously support the role that systemic vascular disease may 

play in the development of glaucoma, other studies directly assessing arterial 

stiffness or the presence of arteriosclerosis and its risk factors in those diagnosed 

with glaucoma have given more mixed results, with some finding strong associations 

307, 480-483 and others finding no association at all 318, 484, 485. Furthermore risk factors 

classically associated with cardiovascular disease and arteriosclerosis, such as 

obesity, smoking and hypercholesterolemia have not been found to show any strong 

links to the development of GON 485-487. The role that systemic arterial stiffness and 

cardiovascular disease may play in the development or progression of glaucoma is 

therefore still uncertain.  

 

Increased arterial stiffness, an independent predictor of cardiovascular disease and 

stroke 488, can arise as a result of an age related breakdown of the elastin structures 

in the arterial walls, damage to the endothelium/smooth muscle system or an 

increase in MABP. Interestingly these are all factors that have been individually 

associated with GON development. Furthermore endothelial dysfunction has also 

been identified as the first detectable change in an atherosclerotic vessel so it is not 

unreasonable to hypothesise that, due to the fairly strong links between glaucoma 

and endothelial dysfunction; vessel wall changes such as atherosclerosis could 

contribute towards vascular dysfunction and GON development in certain individuals. 

Interestingly a recent study by Oettli et al 295 was able to identify increased arterial 

stiffness at the retinal level in NTG patients and found this correlated with level of 

glaucomatous damage, suggesting a possible role for both ocular and systemic 

arterial wall changes in the development of GON.   
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The possibility that cardiovascular disease and arterial stiffness may contribute 

towards the development of GON can therefore not be ruled out however further 

research is needed to elicit the exact nature of their association. Systemic arterial 

stiffness and  cardiovascular risk can be assessed by means of central pulse 

pressure, ultrasound measurement of distensibility and compliance, pulse wave 

velocity assessment, pulse wave analysis (PWA) techniques and carotid artery 

intima-media thickness (IMT) measurement 489. The most commonly used indices of 

arterial stiffness are detailed in table 1.7. Both PWA and IMT were conducted in this 

thesis and are discussed further in Chapter 3: Subjects and Methods 

 

 

Indices of arterial stiffness 
 

 

Definition 

 

Arterial distensibility 
 

 

Relative diameter or area change for a 
pressure increment 

 

Arterial compliance 
 

 

Absolute diameter or area change for a given 
pressure step at fixed vessel length 

 

Elastic Modulus 
 

The pressure step required for 100% stretch 
from resting diameter at fixed vessel length 

 

Pulse wave velocity (PWV) 
 

 

Speed of travel of pulse along an arterial 
segment 

 

Pressure augmentation 
 

 

Increase in aortic or carotid pressure after the 
peak of blood flow in the vessel 

 

Young’s Modulus 
 

 

Elastic modulus per unit area; pressure step 
per square cm required for 100% stretch from 
resting length 

Table 1.7: Overview of commonly used indices of art erial stiffness 490 
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1.9  Oxidative stress and the concept of reperfusion injury 

Regardless of the cause, the final common pathway in the development of GON 

remains the apoptotic loss of RGCs, tissue remodelling and excavation of the ONH. 

Increasing evidence suggests that oxidative stress, in combination with the more 

extensively researched causative factors discussed in previous sections, could also 

be a contributing factor in the development of GON.  

 
1.9.1 Background 

In simple terms, oxidative stress refers to an imbalance between the production of 

oxidants and antioxidants, in favour of the former, with the potential for damage 491. In 

biochemical terms ‘oxidation’ is a harmful process which refers to the loss of 

electrons and/or gain of oxygen by a molecule and is brought about by the action of 

so called ‘oxidising agents’ or ‘oxidants’ 492. Oxidants take the form of either free 

radicals, which are usually highly reactive and have one or more unpaired electrons, 

or non-radical species and can be derived from either oxygen (reactive oxygen 

species, ROS) or nitrogen (reactive nitrogen species, RNS), as outlined in table 1.8 

493  

Table 1.8: Summary of common reactive oxygen and re active nitrogen species 

 

 

Reactive Oxygen Species 
 

Features 
 

 
Singlet Oxygen (1O2) 

Oxygen molecule in its excited state. 
Generated through photodynamic reactions 494 

 
Superoxide anion (O2

-) 
Generated continuously by normal cellular 
processes from the reduction of O2. Converted 
to hydrogen peroxide by superoxide dismutase 
enzyme 493 

 
Hydrogen Peroxide (H2O2) and the hydroxyl 
radical (OH-) 

H2O2 only weak oxidising agent, but forms the 
more potent OH- on crossing cell membranes 
and reacting with copper/iron ions 493 

 

Reactive Nitrogen Species 
 

 

Features 

 
Nitric oxide (NO) and Peroxynitrite (ONOO-) 

NO is a free radical and reacts strongly with 
superoxide (O2

-) to form ONOO-. NO has both 
oxidant and antioxidant properties. 495    
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ROS are potentially harmful and can be generated as a by-product of normal O2 

metabolism by a cell. Therefore, although O2 is essential for maintenance of normal 

life in aerobic organisms, it also has the potential to cause harm 491. The eye, due to 

its unique constant exposure to light, atmospheric oxygen, environmental chemicals 

and physical abrasion is particularly susceptible to ROS formation 366. Under optimal 

conditions the rate and magnitude of ROS formation is balanced by the rate of ROS 

elimination through the action of antioxidants and minimal tissue damage occurs 492. 

Such antioxidants act by significantly delaying or preventing the oxidation of a 

substrate and form part of the body’s natural defence mechanism against the action 

of ROS 491. They take a variety of different forms and can be categorised as either 

enzymatic or non-enzymatic. These are summarised in table 1.9.  

 

 

Enzymatic antioxidants 
 

Features 
 
Superoxide Dismutase (SOD) 

Scavenges the superoxide anion (O2
-): 

catalyses the dismutation of O2
- to H2O2 and 

water 496 
 

Catalase (CAT) 
Important role in removing H2O2: catalyses 
H2O2 to water and oxygen 497 

 

Glutathione Peroxidase (GPX) 
Important role in removing H2O2: reduces 
H2O2 to water by oxidising glutathione (GSH). 
Oxidised from of glutathione (GSSG) is then 
catalysed by glutathione reductase 498  

 

Non-enzymatic antioxidants 
 

Features 
 
Glutathione (GSH) 

Strong antioxidant properties - donates 
electrons readily converting it to its oxidised 
from GSSG. GSH/GSSG ratio of a cell is 
good indicator of cellular redox balance 499, 500  

Heat shock proteins Produced by cells in response to stress. 
Regulate the function of other proteins 501 

Transferrins Bind free iron or metal irons in forms that will 
not stimulate free radical reactions 502 

Haptoglobins Haemoglobin-binding proteins – decrease 
effectiveness of lipid peroxidation 503 

Table 1.9 Summary of enzymatic and non-enzymatic an tioxidants 

 

If the oxidant/antioxidant balance is disturbed so that the level of oxidants exceeds 

the antioxidant capacity a state of oxidative stress is reached. The body is able to 

respond to a small level of oxidative stress by increasing its defence and repair 

mechanisms 504. However under conditions of sustained oxidative stress or excessive 
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ROS production the damage induced may exceed the capacity of not only the 

antioxidants but also the bodies repair mechanisms, leading to more permanent 

macromolecular damage. Proteins, lipids, sugar residues and DNA are at risk of 

damage, potentially resulting in growth arrest, growth modulation, cell death and 

disease formation 493. Indeed oxidative stress has been implicated as a causative 

factor in a number of pathological conditions including diabetes 505, atherosclerosis 

506, rheumatoid arthritis 507, malignant disease 508, human immunodeficiency virus 

(HIV) 508 and age-related macular degeneration (AMD) 509 and the bodies capacity for 

dealing with oxidative stress shows a normal age-related decline 510.  

 

A determination of the presence of oxidative stress can either be made through 

evaluation of oxidative stress related tissue damage, such as increased DNA breaks 

and increased proteosome activity, or through the more common method of analysing 

the circulating plasma oxidant/antioxidant balance which can be disrupted in the 

presence of oxidative stress. One such antioxidant is glutathione (GSH). GSH is the 

major low-molecular mass thiol compound in plants and animals and is among the 

most efficient substances that cells and tissues can use in their defence against 

oxidative stress 511. It is a tripeptide consisting of glycine, cysteine and glutamic acid, 

as depicted in figure 1.15 512 and is active in the eye. As an antioxidant GSH can 

prevent the devastating effects of ROS either directly through its oxidisation, or 

indirectly by maintaining other cellular oxidants in a functional state 513.  
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Figure 1.15: Chemical structure of the tripeptide g lutathione 

 

Glutathione is present in two forms in healthy cells and tissues, namely a reduced 

form, glutathione (GSH), and an oxidised form, glutathione disulphide (GSSG) and 

GSH is constantly being broken down to GSSG and re-synthesised 512, 514 (equation 

1.3). As such, GSSG, which is formed on oxidation of GSH following its interaction 

with harmful ROS, accounts for only around 10% of the total glutathione pool of a 

healthy cell, with GSH accounting for around 90% 514. Under conditions of oxidative 

stress however, ROS levels are raised and hence the production of GSSG is 

increased. As such determining the GSH:GSSG ratio, or glutathione status of a cell is 

considered a good indicator of cellular redox imbalance and oxidative stress 515, 

especially as maintaining an optimal GSH:GSSG ratio is critical for cell survival. A 

reduced GSH:GSSG ratio would be considered indicative of oxidative stress 516 
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Equation 1.3: GSH: reduced glutathione; H2O2: hydrogen peroxide (ROS); H2O: water, 
GSSG: oxidised glutathione; NADPH, NADP+: nicotinamide adenine dinucleotide phosphate. 
GPase: glutathione peroxidise, GRase: glutathione reductase 
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1.9.2 Oxidative Stress and Endothelial Dysfunction 

Over recent years oxidative stress has been increasingly linked to the development of 

endothelial dysfunction and has been implicated as a causative factor in the 

pathogenesis of multiple associated diseases, including neurodegeneration and 

atherosclerosis 517-519. The predominant pathway by which oxidative stress is thought 

to promote endothelial dysfunction is through reduction in the bioavailability of the 

vasodilator NO, resulting primarily from its increased reaction with ROS such as O2
-  

under conditions of oxidative stress 519. Disturbances in the functioning of NOS, or 

disruptions to the interactions between NO and the vSMCs, both of which are 

induced by an increased presence of ROS, can however additionally contribute to the 

reduced bioavailability of NO 519, 520 in oxidative stress. Interestingly the modification 

or correction of oxidative stress has been shown to alleviate induced endothelial 

dysfunction 521-523. As such, the detection and consideration of oxidative stress and 

the coexistence of endothelial dysfunction is important in the management of 

associated conditions, including neurodegenerative disease. The mechanisms by 

which oxidative stress and endothelial dysfunction may contribute to ocular 

neurodegeneration, in the form of glaucoma, are therefore discussed fully in the 

following sections.   

 

1.9.3 Oxidative stress and glaucoma 

 
The RGCs and axons of the ONH are considered particularly susceptible to the 

effects of oxidative stress due to their direct exposure to light, their high proportion of 

polyunsaturated fatty acids and their very high levels of O2 consumption, resulting 

from their lack of myelin sheaths and high concentration of mitochondria. Indeed 

multiple studies have found characteristic indicators of oxidative stress in glaucoma 

patients, including an increased number of DNA breaks 524, an upregulation of ET-1 

386 and metalloproteinase-9 (MMP-9) 525 and increased proteosome activity 526. 
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Furthermore, low plasma levels of the antioxidant glutathione (GSH) and total 

glutathione (t-GSH) have been demonstrated in glaucoma patients compared to 

controls 27 as well as a decreased activity of various other antioxidants and of the 

total serum antioxidant status 527, 528, indicative of an increased oxidative burden. It is 

therefore no surprise that oxidative stress has been linked to the development of 

GON and as well as being implicated in the so called vascular theory of the disease it 

has also been linked to the development of GON through mechanical means as 

discussed in the following section. 

 

1.9.3.1 Oxidative stress and IOP 

With regard to the mechanical theory, oxidative stress has been implicated to play a 

causative role in the elevation of IOP and subsequent development of GON. It is 

proposed that increased levels of oxidative stress in the aqueous humour, occurring 

as a result of light catalysed reactions, metabolic pathways or inflammation, leads to 

cellular loss and alterations of glycoprotein structure in the extracellular matrix of the 

trabecular meshwork (TM) cells. This is followed by an alteration in TM function, 

impaired aqueous outflow and increased IOP 28, 529, 530. Increased IOP, as discussed 

in section 1.9.4, can then contribute to the development of GON through either direct 

mechanical insult of the optic nerve fibres, inhibition of retrograde neurotrophin 

support to the RGCs, or alternatively through acting in combination with vascular 

alterations at the ONH. 

 

Multiple studies have demonstrated depletion of total antioxidant potential and 

enhanced antioxidant activity in the aqueous humour of glaucoma patients, 

suggestive of increased oxidative burden 527, 531-534, as well as the presence of 

oxidative damage in the TM cells 535, 536, which could potentially impede aqueous 

outflow. Oxidative stress can therefore be considered a potential risk factor for the 

development of POAG in particular 366.    
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1.9.3.2 Oxidative stress and reperfusion injury 

The vascular concept of glaucoma centres around the presence of unstable blood 

flow and/or altered autoregulation at the ocular and systemic level in susceptible 

patients. Unstable blood flow is characterised by a repeating cycle of normal then 

reduced perfusion and could potentially lead to cellular damage through RRI and 

oxidative stress. RRI refers to the damage to a tissue caused when blood supply 

returns after a period of ischemia 143. During ischemia, the absence of oxygen and 

nutrients from a cell impairs electron transport in the mitochondria, resulting in 

inefficient energy production and the presence of a number of spare electrons. When 

perfusion then returns to normal these spare electrons react with the now plentiful 

supply of O2 molecules, leading to the formation of damaging ROS 537. Mitochondria 

are abundant in the RGC axons of the ONH putting it at high risk of damage by ROS 

and it is hypothesised that, if mild RRI continues over a sustained length of time 

chronic oxidative stress, endothelial dysfunction, ONH damage and the development 

of GON would occur, regardless of antioxidant activity 141, 366.  

 

Apoptosis, referring to programmed cell death without necrosis 538, has been strongly 

implicated as the ulitmate pathway for RGC loss in glaucoma 100, 539, 540. The exact 

mechanism by which RRI and oxidative stress may contribute to this process 

however is still unclear. All cells have a genetically predetermined programme of 

death that is part of the normal cell life cycle and enables the maintenance of 

homeostasis and removal of pathologically altered cells. If this programmed cell 

death is activated inappropriately however, then pathological loss of cells and the 

development of associated disorders can occur. Both RRI and the subsequent 

activation of astrocytes are thought to play an important role in initiating inappropriate 

apoptosis of RGCs in glaucoma 541.  
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Astrocytes are found in the ONH and provide biochemical support to the RGC axons 

541. They have a high susceptibility to ROS and on becoming activated change 

appearance and start producing a variety of abnormal molecules, including ET-1 and 

NO, which can alter the microenvironment of the cell 144. Diffusion of NO from the 

astrocytes into the neighbouring RGC axons, where levels of ROS such as O2
- are 

high as a consequence of RRI, can lead to the formation of very damaging 

peroxynitrate (ONOO- ) 542.  It is proposed that subsequent diffusion of both O2
- and 

ONOO- within the RGC axons, towards the retina and LGN could then trigger the 

apoptotic loss of RGCs 141, 543, 544. In parallel to the loss of RGCs, ONH tissue 

remodelling is thought to occur as a consequence of not only mechanical force, but 

also an active biological process including the effects of MMP-9 141. Indeed diffusion 

of ET-1 and MMP-9, which are present in increased concentrations in the 

bloodstream of glaucoma patients, from the choroid into the surrounding ONH, can 

result in vasoconstriction and weakening of the BBB 545, with an increased risk of 

subsequent damage. In addition to via RRI, astrocyte activation may also arise as a 

direct result of the presence elevated IOP, through either its direct mechanical effect, 

or through its contribution to the apoptosis of RGC axons via disruption of axoplasmic 

transport and deprivation of essential growth factors 546, 547. Additionally raised ET-1 

levels, which may occur as a result of factors such as raised IOP, hypoxia or 

endothelial dysfunction, could also trigger the activation of astrocytes and initiate the 

apoptosis of RGC and their axons in the presence of oxidative stress 144 

 

All in all the concept of RRI and oxidative stress, combined with the subsequent 

activation of astrocytes and apoptotic loss of RGCs is the most widely accepted 

current pathogenetic concept for the development of GON. Indeed further evidence 

for the potential role of RRI in the pathogenesis of GON comes from its associations 

with sleep apnea and reversible shock-like states, both of which are conditions whose 

pathologies are linked to the presence of RRI 548, 549. It is the ocular and systemic 
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vascular mechanisms which contribute to this pathogenesis which is still the subject 

of debate. 

 

 

1.10  Overall summary of the current pathogenetic concept of 

glaucoma 

From the evidence discussed in the previous sections it is clear that open angle 

glaucoma is a disease of multifactorial origin and that vascular alterations appear to 

play a key part in its development.  Figure 1.16 summarises the current pathogenetic 

concept of GON development, the mechanisms thought to be involved and their 

interactions. Current thinking suggests a synergistic involvement of both mechanical 

and vascular factors in the aetiology of GON however the extent of involvement and 

coexistence of the many implicated factors is still uncertain and may vary between 

individuals 
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Figure 1 .16 Summary of the current pathogenetic concept of glaucomatous optic neuropathy development  
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1.11   Cerebral Neurodegeneration: Alzheimer’s disease 

1.11.1 Dementia overview 

AD is a form dementia. Dementia describes a progressive decline in cognitive function in 

a previously unimpaired person, beyond that which is expected through normal aging 550 

and is a broad term encompassing a large range of different cognitive impairments 551-

553. The most common form of dementia is AD, which accounts for approximately 80% of 

all cases and is the main focus of this thesis. An overview of the subcategories of 

dementia is given in table 1.10 

 

 

Dementia Classification 
 

Examples 
 

Primary degenerative disorders 
(progressive with no associated 
disease or cause) 

 

Alzheimer’s disease 
Lewy body dementia 
Pick’s disease (fronto-temporal dementia) 

 

Vascular dementias  
(cerebrovascular disorders with 
dementia) 

 

Multiple-infarct syndrome (cortical) 
Small vessel dementia (subcortical ischemic vascular 
disease) 
Strategic infarct dementia 

 

Secondary dementias 
(secondary to other physical disease, 
infection or injury) 

 

Huntington’s chorea related 
Parkinson’s disease related 
HIV related 
Creutzfeldt-Jakob disease related 

 

Reversible/Treatable dementia 
 

Normal pressure hydrocephalus related 
Brain tumour related 
Hypothyroidism related 
Vitamin B-12 deficiency (Korsakoff’s syndrome) 
Neurosyphilis related 

 
Table 1.10: Overview of the subcategories of dement ia 

 
 
1.11.2 Clinical presentation, diagnosis and treatment of AD 

AD is a progressive neurodegenerative disorder, first described by Alois Alzheimer in 

1906 554, which affects over 35 million people worldwide 2 and increases in prevalence 

after the age of 65 555. It is characterised clinically by a gradual decline in cognitive 

function to include memory impairment, confusion, disorientation, mood swings and in 

the later stages, speech abnormalities and a gradual loss of bodily function 556, 557. From 
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a neuropathological point of view two major hallmark lesions have been identified in the 

brain of AD sufferers, namely the formation of extracellular beta-amyloid senile plaques 

and the formation of intracellular neurofibrillary tangles, as a result of abnormal tau 

protein phosphorylation 558-561. These classic pathological lesions are thought to 

contribute towards the characteristic neuronal degeneration and cerebral atrophy which 

ultimately occurs in the AD brain; however their aetiology is still the subject of debate. A 

number of different theories for their development have been proposed including, 

damage through exposure of the CNS to increased mechanical stress 463, 562, 

inflammation 563, mitochondrial dysfunction 564 and oxidative stress 565. Of particular 

interest in this thesis however is the involvement of vascular factors, which have also 

been strongly hypothesised to play an aetiological role in AD 566.  

 

1.11.2.1 Diagnosis 

AD predominantly develops sporadically, with only 2.5% of all cases having being 

deemed to be of genetic origin 567, 568. The need for early and accurate diagnosis of the 

condition is therefore well recognised, particularly with regard to ensuring optimum 

treatment, care and prognosis for sufferers, however it still remains a challenge. A 

definitive diagnosis of AD can only currently be made post-mortem by the 

histopathological confirmation of the presence of senile plaques and neurofibrillary 

tangles in the brain. This is in accordance with the National Institute of Neurological  

Disorders and Stroke-Alzheimer Disease and Related Disorders (NINCDS-ADRDA) 

working group, which, along with the Diagnostic and Statistical Manual of Mental 

Disorders, VIth edition (DSM-IV-TR), forms the basis of AD diagnosis in research 569.  

 

The NINCDS-ADRDA, first proposed in 1984, is among the most used diagnostic criteria 

for AD 570. It allows the diagnosis of definitive, probable, possible or unlikely AD, as 

outlined in table 1.11. A diagnosis of probable AD is the maximum that can be made 
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clinically and requires the presence of progressive memory impairment with involvement 

of at least one other cognitive domain and the lack of other systemic or brain diseases 

that may account for the cognitive deficits 570. The DSM-IV-TR criteria, published in 

2000, also requires the presence of both memory impairment and a disorder in at least 

one other cognitive domain for the probable diagnosis of AD; however it additionally 

requires that these features also interfere with social function or activities of daily living 

569, 571. 

 

Whilst both the NINCDS-ADRDA and DSM-IV-TR have been validated against gold 

standards and have demonstrated high levels of sensitivity and specificity in 

distinguishing those with AD from those without dementia 572, 573, significant advances in 

the scientific knowledge and understanding of pathogenic events in the disease over 

recent years has lead to the proposal of revised diagnostic criteria which consider the 

presence of biomarkers of AD and centre around the detection of early memory 

impairment 569. Current biomarkers include an abnormal cerebral spinal fluid (CSF) beta-

amyloid and tau protein profile, structural brain changes on magnetic resonance imaging 

(MRI), hypometabolism or hypoperfusion changes on positron emission tomography 

(PET) scanning and the presence of pathogenic gene mutations 557, 574. Determining the 

presence of biomarkers allows in vivo biological evidence of AD pathology to be gained, 

however the methods by which they are obtained are often invasive so development of 

alternative non-invasive techniques would be beneficial.  

 

A large degree of variation exists in the presentation and course of AD between 

individuals and furthermore the disease is thought to exist in an undiagnosed state for 

an indeterminate period of time before its symptoms become apparent 575. Enhancing 

the ability to detect AD in its earliest stages has therefore become a research area of 

intense interest over the last few years due to its obvious benefits with regard to patient 

prognosis and management. As such several different stages of AD or memory 
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impairment have now been defined in order to document the progression of the disease. 

These are outlined in table 1.12 and are variably referred to as mild cognitive 

impairment (MCI), preclinical AD, prodromal AD and finally AD dementia, which itself 

can be further separated into mild, moderate and advanced AD 569. It is recommended 

that such further separation of AD dementia into differing degrees of cognitive 

impairment is made using formal standardised cognitive tests such as the Mini Mental 

State Examination (MMSE) 576, 577. This is a simple, widely used and validated test which 

takes only 10 minutes to complete and provides a global assessment of cognitive 

function. Out of a maximum score of 30, those achieving 25 or higher are generally 

considered as normal and those scoring less than 10 are considered to have a severe 

impairment 577. A score of around 19-24 is generally considered to indicate mild AD, 

however as the MMSE result has been shown to be influenced by factors such as age, 

ethnicity and education, it is recommended that adjustments are made where necessary 

to account for these factors 578, 579. 
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Diagnosis 
 

Features 
 

Probable AD 
 

Clinical diagnosis: 

• Dementia established by clinical examination and documented by the Mini-

Mental Test (MMSE) or similar and confirmed by neurophysical tests 

• Deficits in two or more areas of cognition 

• Progressive worsening of memory and cognitive decline 

• Normal level of consciousness 

• Onset between ages 40-90 

•  No other possible medical or neurological explanation 

Supported by presence of: 

• Progressive aphasia, apraxia and agnosia; impaired activities of daily living; 

family history of similar disorder; brain atrophy on CT/MRI; normal CSF 

Other consistent clinical features: 

• Plateaus in the course of progression 

• Associated symptoms, such as depression, insomnia, incontinence, 

illusions, weight loss, emotional or physical outbursts 

• Seizures in advanced stages 

• CT normal for age 

Exclusion factors: 

• Acute onset 

• Focal neurological findings 

• Seizures or gait disorders at early stages of disease 
 

Possible AD 
 

• The presence of dementia with an atypical onset or course that occurs in the 

absence of any other medical/neuropsychiatric explanation   

• Dementia in the presence of another brain or systemic disease not 

considered to be the cause of the dementia 

• Gradually progressive severe cognitive deficit in the absence of other 

identifiable cause (research purposes only) 
 

Definite AD 
 

• All the criteria of ‘probable AD’ plus histopathological evidence from biopsy 

or autopsy  

Table 1.11: NINDS-ADRDA Diagnostic criteria for AD 570 
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Stage 
 

Description 
 

Mild Cognitive Impairment 

(MCI) 

 

• Subjective memory and/or cognitive symptoms 

• Objective memory and/or cognitive symptoms 

• Normal, unaffected activities of daily living 

• Do not meet criteria for dementia or AD 
 

Preclinical AD 
 

• Long asymptomatic period between the first brain lesion and 

the first appearance of symptoms 

• Later go on to fulfil diagnostic criteria for AD 
 

Prodromal AD 
 

• Symptomatic pre-dementia phase 

• Often included within MCI category 

• Symptoms not yet severe enough to meet AD criteria  
 

AD dementia 
 

• Symptoms and features sufficient to meet accepted 

diagnostic criteria for dementia and AD 

• Progresses from mild to moderate and then advanced as 

symptoms worsen 

Table 1.12: Clinical stages of Alzheimer’s disease 569 

 

As mentioned previously a number of different theories have been proposed for the 

aetiology of the classic pathological brain lesions associated with AD. Of primary interest 

in this thesis is the role that vascular factors may play in the development of AD and the 

links between the ocular and cerebral vasculature. The following sections will discuss 

the cerebrovascular anatomy along with the current evidence surrounding vascular 

involvement in AD at both the ocular and systemic level.   
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1.12  Anatomy and Physiology of the Cerebral Vasculature 

The cerebral circulation can be broadly separated into the macro-vascular system and 

the microvascular system. These will now be discussed in turn. 

 

1.12.1 Macrovasculature 

The arterial blood supply to the brain is received is via two major vessels, the internal 

carotid artery (ICA) and the vertebral artery. These arteries enter the skull at the base of 

the brain and branch dorsally, spreading over the surface of the cerebrum in the 

subarachnoid space above the pia mater. The ICA is primarily responsible for the 

anterior circulation of the brain and gives rise to the anterior and middle cerebral 

arteries, which supply 80% of the blood that reaches the cerebral hemispheres 580. The 

vertebral arteries, on the other hand, fuse within the cranium to form the basilar artery 

which is primarily responsible for supplying the posterior circulation of the brain including 

the midbrain, cerebellum and brainstem as well as a small proportion of the cerebral 

hemispheres 580.  

 

The anterior and posterior circulatory regions do not act independently of each other and 

are interconnected by a series of communicating arteries which create the so called 

circle of Willis at the base of the brain 581. This network of vessels consists of the right 

and left ICAs, anterior cerebral arteries, posterior cerebral arteries, posterior 

communicating arteries and the anterior communicating artery (figure 1.17). This inter-

communication between the anterior and posterior regions is advantageous as if blood 

flow becomes insufficient in either area it is able to be redistributed, via the 

communicating arteries of the circle of Willis, according to requirement 580.    
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Figure 1.17: Diagrammatic representation of the cer ebral macrovasculature 

 

The cerebral macro-circulation is crucial in the conductance of blood flow to the various 

regions of the brain. The cerebral microcirculation then acts to regulate local blood flow 

and vascular tone within these regions. 

 
1.12.2 Microvasculature 

The cerebral microvasculature consists of a dense three-dimensional network of fine 

capillaries which act to maintain the BBB and sustain continuous oxygen, nutrient, 

electrolyte and waste product transfer between the blood and the cerebral tissues 580. 

The density of the capillary network is not uniform throughout the cerebrum and has 

been shown to be greater in areas of increased metabolic activity, in the grey matter 

compared to the white matter and in sensory and association centres compared to 

motor centres 580, 582, 583.  
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The cerebral capillaries have a specific structure which enables them to fulfil the crucial 

role of maintaining normal BBB function (figure 1.18). In a similar way to in the ONH 

(see section 1.2.3.3), the cerebral BBB prevents the passage of all but essential 

metabolites from the blood into the cerebral tissues, protecting them from the effects of 

foreign, potentially damaging substances that could be present in the bloodstream as 

well as the effects of hormones or neurotransmitters that may be active in the rest of the 

body 90.  

 

 

Figure 1.18 Diagrammatic representation of the stru cture of the cerebral capillaries 

 

A key feature of the cerebral capillary structure is the tight junctions that exist between 

the vascular endothelial cells. These form the basis of the BBB by preventing the free 

passage of metabolites from the blood stream into the cerebral tissues. Additionally the 

lack of endothelial cell fenestrations and the high level of mitochondria within the 

endothelial cells also assist in maintaining the structure of the BBB and the functioning 

of the specific BBB transport proteins, as does the basement membrane surrounding the 

endothelial cells. The basement membrane is lamellar in structure and has also been 

identified to provide physical support to the microvessels, control cellular migration, 

influence endothelial function, promote cell adhesion and protect the brain against 

circulating proteins 584. Another key feature of the cerebral capillary structure is the 

astrocytic processes which are apposed to the abluminal surface. These act as a link 
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between synaptic activity and the cerebrovascular cells and play a key role in the 

maintenance of BBB function 585 and in the regulation of vascular tone 586, 587.      

 

1.12.3 Regulation of cerebral blood flow  

As discussed in section 1.4 the blood flow through any microvascular bed depends on 

both perfusion pressure and vascular resistance and the maintenance of normal tissue 

structure and function depends upon a continuous and well regulated blood supply. The 

cerebral blood flow (CBF), in a similar way to OBF, is regulated according to changes in 

perfusion pressure (autoregulation) and also to changes in neural activity (neurovascular 

coupling) so that blood supply can always meet demand 588.  

 

1.12.3.1 Autoregulation 

Autoregulation, which was discussed in section 1.4.3, refers to the ability of the 

cardiovascular system to modify vascular resistance in order to allow a constant blood 

supply to maintained despite variations in perfusion pressure 151. It was first 

demonstrated in the cerebral circulation by Fog in the 1930s 589, 590 and later established 

by Lassen in 1959 591. Whilst the exact mechanisms underlying cerebral autoregulation 

are still unclear it is known to be triggered by metabolic, myogenic, neurogenic and to a 

lesser extent, humoral factors, as well as by endothelial derived vasoactive agents 588, 

592, 593. These triggers were discussed in detail in section 1.4.3 and act on the cerebral 

vasculature in a similar manner to that discussed with regard to the ocular circulation. 

Worth noting is the fact that the cerebral vessels, in a similar way to the choroidal 

vessels and unlike the retinal vessels, have a rich autonomic innervation which allows 

maintenance of blood flow in the presence of altered BP or HR. Sympathetic stimulation, 

although having little effect on regulation of blood flow under normal conditions, 

attenuates the increase in blood flow observed when BP is raised 594, 595 and 

parasympathetic stimulation acts to increase cerebral blood flow when required 596.  
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1.12.3.2 Neurovascular Coupling 

The other means by which CBF is regulated is via neurovascular coupling mechanisms. 

Neurovascular coupling refers to the ability to regulate blood flow according to changes 

in neural function and was first identified in the cerebral circulation in the late 1800s 597, 

598. The normal neurovascular coupling response at the cerebral level is characterised 

by the rapid dilation of arterioles and capillaries in a restricted brain region in response 

to a local episode of increased neural activity 599. This dilation response leads to a rapid 

increase in blood flow and oxygen supply to the active brain regions, ensuring the 

increased metabolic demand is met.  The exact mechanisms which drive the 

neurovascular coupling response are still unclear, however it is thought to involve a 

complex interplay between neurons, astrocytes and vascular cells (endothelial cells, 

pericytes and vascular smooth muscle cells) 600, 601, with the vasodilator nitric oxide (NO) 

having been identified as one of the important mediators of the response 602, 603. The key 

components of the neurovascular coupling response, namely neurons, astrocytes and 

vascular cells are commonly referred to collectively as the ‘neurovascular unit’ (NVU) 

and they are not only involved in the regulation of blood flow but also work to maintain 

the homeostasis of the cerebral microenvironment through controlling BBB exchange 

and contributing to immune surveillance 604. As well as having been recognised at the 

cerebral level, neurovascular coupling has also been demonstrated at the ocular level in 

both the retinal and ONH circulations605-607, whereby an increase in retinal neuronal 

activity stimulates the dilation of the retinal arteries and capillaries, increasing blood to 

flow to the excited regions. Further similarities in the functioning of the ocular and 

cerebral microcirculations are discussed in the following section. 
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1.12.4 The Vascular Theory of Alzheimer’s disease 

As discussed previously the formation of extracellular beta-amyloid senile plaques and 

intracellular neurofibrillary tangles, as a result of abnormal tau protein phosphorylation, 

are considered the hallmark lesions of AD 558-561. However whilst there is clear evidence 

that these features contribute towards the degeneration of neurons and synapses in the 

AD brain, the mechanisms which trigger their development is currently unclear. The 

potential role played by vascular factors and microvascular dysfunction in the 

development of such features has long been recognised and increasing amounts of 

evidence for a vascular aetiology of AD has accumulated over recent years. Indeed the 

presence of traditional vascular risk factors such as obesity 608, smoking 609, 

hypertension 610, hypercholesterolemia 611, diabetes 612, 613 and alcohol consumption 614, 

in both mid-life and in the elderly, as well as the occurrence of vascular diseases, such 

as heart disease, atherosclerosis, stroke and transient ischemic attacks 615, 616, have all 

been identified as established associates of AD. The so called vascular theory of AD 

development, first introduced by de la Torre et al 566, proposes that the presence of such 

cardiovascular risk factors could contribute to the development of AD through triggering 

either dysregulation of CBF and exposure of the cerebral tissues to repeated ischemic 

episodes, the development of chronic brain hypoperfusion 566, 617, 618, a disturbance of 

BBB function or a direct alteration in beta-amyloid regulation and function 619-621. Indeed, 

in support of this, numerous studies have found evidence of reduced CBF and glucose 

metabolism in AD patients 622-625, as well as disturbed cerebral autoregulation 567, 604, 617, 

620 and altered neurovascular coupling mechanisms 567, 626-630. Additionally impaired 

vascular function has been identified at the systemic level in AD patients 631 along with 

the presence of endothelial dysfunction and disturbances of the BBB 619, 632.  Links have 

also been made between cerebrovascular dysfunction and the abnormal regulation of 

beta-amyloid, a key feature of AD 604 and furthermore the distribution of beta-amyloid 

deposits across the cerebral tissues, has been shown to map the pattern of 
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microvascular damage in AD 633. The relationship between beta-amyloid and 

microvascular dysfunction however is not straight forward as it is possible for either of 

them to drive the development of the other. The accumulation of beta-amyloid, for 

example, is known to have a detrimental effect on the cerebrovasculature and to act as 

a potent vasoconstrictor; if occurring first it could therefore potentially contribute towards 

the development of cerebrovascular dysfunction 620. The initial presence of 

cerebrovascular dysfunction or ischemia on the other hand could promote the 

accumulation of beta-amyloid and, through disruption of the BBB, impair its regulation 

and removal from the cerebral tissues, contributing towards beta-amyloid plaque 

formation 620. Both mechanisms would lead to the development of AD pathology and 

recent evidence suggests their relationship is likely to be synergistic 604.   

 

Further evidence in support of cerebrovascular dysfunction in AD comes from studies 

looking at structural alterations in the cerebral microvasculature in AD patients, which 

could disrupt the cerebral microenvironment homeostasis and promote neuronal 

dysfunction 604. Indeed decreased microvascular density, increased tortuousity, 

basement membrane thickening, degenerative wall changes and the accumulation of 

beta-amyloid has been evidenced in the cerebral arterioles and capillaries of those with 

AD 580, 621, 634, along with the presence of atherosclerotic plaques in the cerebral 

macrovasculature 635, 636.  

 

The concept that a dysregulation of CBF, in the form of either disturbed autoregulation 

or neurovascular coupling, may be associated with the development of AD is therefore 

well evidenced. It has been proposed that the resultant exposure of the cerebral tissues 

to repeated ischemic/hypoxic episodes, if sustained over a long period of time, could 

potentially lead to neurodegeneration and the development of AD-type brain lesions, 

through the mechanism of RRI, astrocyte activation and exposure to oxidative stress 617, 

in a similar manner to that discussed with regard to glaucoma (section 1.9.13). Indeed 
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oxidative stress induced tissue damage in the form of lipid, nucleic acid and DNA 

modifications has previously been demonstrated in the cerebrovasculature of those with 

AD and also linked to the cerebral accumulation and dysfunction of beta-amyloid, a key 

feature of the disease 565, 619, 620, 637, 638. Interestingly the development of cerebrovascular 

dysregulation, if present, is thought to occur as an early event in the pathogenesis of 

AD, preceding symptoms and the characteristic progressive decline in cognitive function 

632, 639. The detection of such dysregulation at the earliest stages in at risk individuals 

could therefore be critical in the early diagnosis and management of the disease 640.  

 

Overall the evidence linking vascular dysfunction and cardiovascular risk factors to the 

development of AD is fairly strong. Indeed, on the back of recent evidence, questions 

have been raised as to whether AD should even still be considered as a primarily 

neurodegenerative disorder or in fact should be considered a primary vascular disorder 

630. Despite its apparently strong vascular component however it is important that AD is 

still distinguished from vascular dementia (VaD), the second most common type of 

dementia accounting for around 15% of cases, in comparison to AD’s 75-80% 641, 642. For 

clarity an overview of VaD and its characteristics in comparison to AD is given in the 

following section. 

 

1.12.4.1 Alzheimer’s disease vs. Vascular dementia 

VaD can be defined as a cognitive impairment resulting from cerebrovascular disease 

and ischemic and/or haemorrhagic brain injury 643. Where the hallmark characteristic of 

AD is the formation of extracellular beta-amyloid senile plaques and intracellular 

neurofibrillary tangles 558-561, the hallmark characteristics of VaD is ischemic damage and 

the presence of multiple infarctions due to cerebral vessel occlusion 644.  
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The relationship between AD and VaD has become complex due to the increasing 

amounts of evidence for vascular involvement in AD and the considerable overlap in the 

symptoms and pathophysiology of the two conditions. Indeed, it has recently been 

suggested that rather than considering these conditions as two separate entities they 

may in fact represent a dementia continuum, extending from pure AD through to pure 

VaD, with a ‘mixed’ component separating the two extremes 645, 646. Nevertheless and 

despite their similarities there are a number of distinctions that can be made between 

AD and VaD and this is particularly important for research purposes. These similarities 

and differences are summarised in table 1.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



121 
 

  
Alzheimer’s disease (AD) 

 

 
Vascular Dementia (VaD) 

 
Onset 
 

 
Gradual, often present for 
many years before diagnosis 
 

 
Abrupt 

 
 

 
Risk factors 
 

 
- Stroke 
- Hypertension 
- Heart disease 
- Diabetes 
- Hyperlipidemia 
- Atherosclerosis 
- Smoking 
- Obesity  
- Alcohol 
- Age 
- Education 

 

 
- Stroke 
- Hypertension 
- Heart disease 
- Diabetes 
- Hyperlipidemia 
- Atherosclerosis 
- Smoking 
- Obesity  
- Alcohol 
- Age 
- Education 

 
Characteristic features / 
hallmark lesions 
 

 
- Beta-amyloid plaques 
- Neurofibrillary tangles 

 
- Primary damage is ischemic  
- Physical and imaging 

evidence of cerebrovascular 
disease 
 

 
Clinical signs/symptoms 
 

 
- Cognitive decline and 

functional deterioration 
- Memory and language 

deficits more common 

 
- Cognitive decline and 

functional deterioration 
- Attention, planning and 

speed of mental processing 
deficits more common 

- Earlier and more severe 
mood/personality changes 
 

 
Diagnostic criteria 
 

 
NINDS-ADRDA 
 
(National Institute of 
Neurological Disorders and 
Stroke – Alzheimer’s disease 
and related disorders 
association) 

 
NINDS/AIRENS  

(National Institute of 
Neurological Disorders and 
Stroke / Association 
Internationale pour la 
Recherche et l’Enseignement 
en Neurosciences) 

 
Progression / Course 
 

 
- Predictable pattern of 

cognitive impairment 
- Predictable spread of 

cortical neuronal death  
- Predictable rate of cognitive 

decline 

 
- Fluctuating and variable 
- Unpredictable 
- Shorter life expectancy than 

AD but similar rate of 
decline 

 
Table 1.13 Features of Alzheimer’s disease vs. Vasc ular dementia 
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1.12.5 Cerebral and Ocular Microcirculations: Associations 

The cerebral and ocular microcirculations share a large number of similarities in their 

anatomy, physiology and embryology, with both forming part of the CNS 4. The tissues 

they supply, namely the brain and retina, are both highly metabolically active and rely 

upon the integrity of their respective microcirculations for maintenance of normal 

function. Blood flow is actively regulated at both sites via the mechanisms of 

autoregulation and neurovascular coupling 647 and maintenance of both normal brain 

and retinal tissue function is reliant on the integrity of the BBB, or blood-retinal-barrier as 

it is commonly referred to at the ocular level 648. As discussed in section 1.12.2, the 

cerebral capillaries have a characteristic structure which allows formation and 

maintenance of the BBB and this structure is replicated in the inner retinal capillaries. 

Additionally, both the cerebral and retinal microcirculations have been shown to undergo 

similar changes with aging, whereby a decrease in both CBF and OBF is observed 

along with disturbances in the structural integrity of the microvessels 4, 580, 649. These 

plentiful similarities between the anatomy and physiology of the cerebral and ocular 

circulations have inevitably led to the cerebral vasculature being considered in ocular 

disease and the ocular circulation being considered in cerebral disease. 

 
 

 
1.12.6  The Concept of using the ‘Eye as a Window to the Brain’ 

 
With the increasing amount of evidence linking vascular dysfunction to AD, the 

development of new or enhanced methods of detecting such vascular dysfunctions in 

the earliest stages of the disease process would be beneficial with regard to its 

diagnosis and management. It is with this in mind that AD research has expanded to 

look, not only at the cerebral vasculature, but also at the significantly more accessible 

ocular vasculature. Indeed the concept of using the ‘eye as a window to the brain’ has 

been increasingly recognised and explored 3 and it is proposed that through imaging and 
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analysis of the easily visible retinal vessels, information regarding the state and 

functioning of the cerebral vessels could be obtained non-invasively and diagnosis and 

understanding of cerebral diseases such as AD could be enhanced. 

 

The relevance of the retinal circulation in cerebral disease is highlighted by the presence 

of retinal microvascular abnormalities, including arterial narrowing, arteriosclerosis and 

the presence of retinal exudates or micro-aneurysms, in various forms of cognitive 

impairment 650-652. With regard to AD in particular, alterations in numerous aspects of 

ocular function, including visual changes, structural retinal vessel changes and OBF 

alterations, have been identified, highlighting the probable involvement of the ocular 

circulation in the AD disease process 3. Indeed difficulty with reading and finding objects, 

colour recognition problems, abnormalities in visual attention, memory, depth and motor 

perception, as well as reduced contrast sensitivity have been previously identified in AD 

patients 653-655 in the earliest stages of the disease, often before diagnosis has been 

firmly established, but these are primarily been linked to higher visual cortex changes 

rather than changes at the ocular level. The exception to this is reduced contrast 

sensitivity which has also been linked with alterations in the retinal ganglion cells and 

RNFL 653, 656, 657. At the retinal level, multiple studies have demonstrated structural and 

functional changes in AD patients including RGC degeneration 427, 658, a reduction in 

RNFL thickness and macular thickness 659, 660, RGC beta-amyloid deposition 661, 662, 

narrowed retinal blood vessels and reduced retinal blood flow 663. Furthermore increased 

cupping and reduced NRR volume and area has also identified at the ONH in AD 

patients 664-666 and away from the retina, beta-amyloid deposition has been identified in 

both the intraocular lens and aqueous humour 3, 667.  

 

Ocular involvement in AD is therefore fairly well evidenced and assessment of the 

retrograde loss of retinal and ONH nerve fibre layer tissue has even been proposed as a 

potential early biomarker of AD 668. The importance of considering the ocular circulation 
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in AD is supported further by the associations found between AD and the presence of 

ocular diseases such as glaucoma and AMD 669-671. Indeed the presence of beta-amyloid 

has even been identified in the drusen of patients with AMD 672. Of relevance to this 

thesis is the possible aetiological associations between AD and glaucoma, this is 

discussed in more detail in the following section.  

 
 
1.12.7   Alzheimer’s disease and glaucoma 

The possibility that AD and glaucoma may share a common underlying mechanism has 

been increasingly realised over recent years to the extent that glaucoma has been 

suggested as an ocular form of AD and AD as a cerebral form of glaucoma 671, 673. The 

two conditions have obvious associations in that they are both chronic 

neurodegenerative diseases, strongly related to aging, which involve the loss of nerve 

cells by apoptosis. The end stages of both conditions are fairly well evidenced, with 

RGC loss and ONH excavation being the key feature of glaucoma and the formation of 

extracellular beta-amyloid senile plaques and intracellular neurofibrillary tangles being 

the hallmark cerebral lesions of AD. The aetiological mechanisms which lead to the 

development of these characteristic lesions is currently uncertain for both diseases, 

however vascular dysregulation and oxidative stress has been strongly linked to both 141, 

565 (see sections 1.9 and 1.12.4).   

 
Evidence for an association between AD and both POAG and NTG comes from 

epidemiological, pathological and vascular studies. Firstly from an epidemiological point 

of view, multiple studies have demonstrated an increased rate of occurrence and 

progression of OAG (POAG or NTG) in patients diagnosed with AD 400, 436, 449, 674 and an 

increased prevalence of glaucoma in those with cognitive impairment or dementia 435, 675. 

Other studies, however have failed to demonstrate such an increased rate of POAG and 

NTG in those with AD 426, 676, making it difficult to draw any firm conclusions. The 

differences between these studies however could be accounted for by their differing 
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nature of evaluation, with the studies finding no increased rate being of a retrospective 

and register-based nature, which is a less favoured method of evaluation and has 

received some criticism 677. Secondly, from a pathological point of view, classic lesions 

commonly associated with AD have been reported at the ocular level in glaucoma 

patients and vice versa. Decreased levels of beta-amyloid and increased levels of tau-

protein, a feature commonly demonstrated in the CSF of AD patients, has for example 

been demonstrated in the vitreous humour of glaucoma patients 423. Furthermore, in 

glaucoma patients with unregulated IOP, an increased presence of abnormal tau protein 

molecules has been shown in the posterior retina 678 and in experimental glaucoma an 

increased aggregation of beta-amyloid and the presence of amyloid precursor proteins 

has been demonstrated in the RGC and ONH of rat eyes 419. On the other hand, 

reduced retinal perfusion and increased ONH cupping, characteristic of glaucoma, has 

been identified at the ocular level in AD patients 663, 665. This discovery of coexisting 

lesions in AD and glaucoma patients provides more direct support for the concept that 

both diseases may share a common underlying pathology. The nature of this common 

underlying pathology is unclear; however due to the strong vascular links outlined in 

both conditions individually and the similarities in the ocular and cerebral 

microcirculation, it is highly possible that this shared pathology may be vascular in 

origin. Indeed, evidence of increased cerebral small vessel ischemia 313 and AD-like 

perfusion patterns 468, have been demonstrated in NTG patients and evidence of 

disturbed cerebral autoregulation, in association with altered sympathetic innervation or 

endothelial function, has been found in both POAG and NTG patients 323. As both 

ischemia and cerebrovascular dysfunction have been previously linked to the 

development of AD, these finding suggest that microvascular abnormalities present at 

the ocular level in glaucoma patients could potentially extend to the cerebral level and 

be associated with the development of AD.  
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Aside from vascular factors, other aetiological theories linking AD and OAG have also 

been proposed relating, for example, to decreased cerebrospinal fluid pressure in both 

conditions 679, raised intracranial pressure in association with raised IOP 562 or the 

presence of common genetic risk factors 680, 681.   

 

All in all the associations between AD and glaucoma, although evident, are still 

surrounded by uncertainty. Establishing the nature of their relationship could be 

beneficial to the early diagnosis, treatment and pathological understanding of both 

conditions. Furthermore, exploring the relationship between the cerebral and retinal 

microcirculation and the concept of using the ‘eye as a window to the brain’ could offer 

new methods of assessment and diagnosis in AD. Both of these issues are addressed in 

this thesis 
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2. Research Rationale 
 

Central to both current glaucoma and AD research is the consideration that, aside from 

the local ocular or cerebral circulations, multiple additional systemic sites may also be 

involved in the aetiology of these diseases and that a generalised vascular dysfunction, 

affecting the circulatory system as a whole, may exist in diagnosed individuals. Exactly 

how such vascular alterations at multiple sites may inter-relate and their impact on the 

neurodegenerative disease process is however still poorly understood. Elucidating these 

inter-relations in both AD and glaucoma individually and establishing their relative 

impact in different subcategories of these diseases, such as POAG and NTG, could not 

only enhance our understanding of disease aetiology but also open up the possibility for 

new and alternative diagnostic and therapeutic avenues.  

 

As well as the interrelationships between vascular alterations at multiple sites in AD and 

glaucoma individually, the interrelationships between these two neurodegenerative 

diseases themselves, along with the potential benefits of utilising more accessible 

regions of the CNS, such as the ocular circulation, to gain an insight into the 

pathological mechanisms which may be occurring at the cerebral level, have been 

increasingly realised over recent years. Such utilisation of the ocular circulation could 

significantly aid the assessment and diagnosis of vascular alterations in AD and 

enhance our understanding and management of the disease. Furthermore if the exact 

nature of the relationship between AD and glaucoma could be established, the 

relevance of considering each disease process in the presence of the other could be 

highlighted and the diagnosis, management and aetiological understanding of both 

conditions could potentially be enhanced. At the present date, direct evidence of 

vascular dysfunction at the ocular level, comparable to that at the cerebral level is yet to 

be demonstrated and although a number of similarities between AD and glaucoma have 

been acknowledged in recent years, the exact association between these two 
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neurodegenerative diseases is still surrounded by uncertainty. Furthermore the concept 

of whether AD and glaucoma share a common underlying aetiology, comparable in both 

POAG and NTG, has not been fully explored. Through the development of new 

technologies aimed specifically at assessing ocular vascular function, such as dynamic 

retinal vessel analysis (DVA), there is however now an increased potential for this.  

 
Taking all of this into consideration, the principle purpose of this research was to fully 

establish and explore the presence of vascular alterations at both the ocular and 

systemic level in AD, POAG and NTG patients and to evaluate the potential impact that 

these vascular alterations may have, both on these disease processes individually and 

on the inter-relationships between them. In line with this the overall aims of this research 

are as outlined in the following section.  

 

2.1 Aims 

• To investigate the presence and impact of ocular and systemic vascular 

alterations in AD and to explore the concept of using the ‘eye as a window to the 

brain’ 

• To investigate the presence and impact of ocular and systemic vascular 

alterations in NTG  

• To investigate the possibility of a shared vascular aetiology, involving both the 

ocular and systemic circulations, in AD and both POAG and NTG. 

• To compare and contrast vascular alterations at both the ocular and systemic 

level in POAG and NTG and to explore their validity as distinct clinical entities 
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3. Subjects and Methods 
 
This chapter outlines the recruitment procedure, inclusion and exclusion criteria for the 

AD, POAG, NTG and control participants involved in this research. It then goes on to 

outline the study protocol and investigative techniques used throughout this thesis for 

the assessment of ocular and systemic vascular function. All disease participants 

recruited for this research were newly diagnosed and previously untreated. This ensured 

any vascular alterations identified were less likely to have occurred as a secondary 

effect of the disease process and could be more reliably attributed to the development or 

pathogenesis of the disease itself. 

 

3.1 Patient recruitment 

3.1.1 Recruitment of mild newly diagnosed AD patients 

Successive newly diagnosed mild AD patients were recruited from the Birmingham and 

Solihull Mental Health NHS Trust (BSMHT, UK) by a team of dementia specialists. 

Posters advertising the study were displayed in the clinic waiting areas along with 

information leaflets and flyers. The dementia team were fully briefed on the study 

protocol, inclusion and exclusion criteria.  

3.1.1.1 AD inclusion criteria 

Only those patients diagnosed with AD in accordance with the NINCDS-ADRDA and 

DSM-IV-TR criteria for diagnosis (see section 1.10.2) were considered for this study 569, 

682. Of these diagnosed patients only those classified as having mild AD, based on a 

MMSE score of between 18 and 24, were included in the final study. Following the 

identification of a suitable participant by the dementia team, the study was discussed 

with them and a detailed information booklet provided. 24 hours later the potential 

participants were contacted by the author to further discuss the study, answer any 

questions and confirm enrolment in the study for those who were willing.  
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3.1.2 Recruitment of newly diagnosed POAG patients 

Successive, early stage, newly diagnosed and previously untreated POAG patients were 

recruited from the glaucoma clinics at both the Heart of England and Sandwell and West 

Birmingham NHS Trusts. Posters advertising the study were displayed in the clinic 

waiting areas along with information leaflets and flyers. The diagnosis of early POAG 

was made by a team of ophthalmologists working under the supervision of two 

glaucoma consultants. Following diagnosis suitable participants were provided with 

detailed information about the study by the author and allowed at least 24 hours to 

consider their enrolment.  

3.1.2.1 POAG inclusion criteria 

Only those patients identified as having glaucomatous cupping of the optic disc, normal 

open anterior chamber angles and visual field (VF) defects consistent with the diagnosis 

of early glaucoma using program 24-2 of the Humphrey visual field analyser (HFA:Zeiss-

Humphrey, San Leandro, CA) were included. An early glaucomatous VF defect was 

defined as a mean deviation (MD) score of ≥ -6.00dB along with either a glaucoma 

hemifield test outside normal limits and/or a corrected pattern standard deviation 

(CPSD) with p-value<0.05 683. Only reliable VF plots, with <20% fixation losses and 

<33% false positive and false negative responses, were considered. Classification as 

POAG was based on an IOP measurements consistently above 21 mmHg on diurnal 

testing (measurements every 2 hours over an 8 hour period) with applanation tonometry. 

All patients were newly diagnosed and had no current or previous treatment with IOP 

lowering drops. 

 

3.1.3 Recruitment of newly diagnosed NTG patients 

Successive, early stage, newly diagnosed and previously untreated NTG patients were 

recruited from the glaucoma clinics at both the Heart of England and Sandwell and West 

Birmingham NHS Trusts. Posters advertising the study were displayed in the clinic 
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waiting areas along with information leaflets and flyers. The diagnosis of early NTG was 

made by a team of ophthalmologists working under the supervision of two glaucoma 

consultants. Following diagnosis suitable participants were provided with detailed 

information about the study by the author and allowed at least 24 hours to consider their 

enrolment.  

3.1.3.1 NTG inclusion criteria 

Only those patients identified as having glaucomatous cupping of the optic disc, normal 

open anterior chamber angles and visual field (VF) defects consistent with the diagnosis 

of early glaucoma using program 24-2 of the Humphrey visual field analyser (HFA:Zeiss-

Humphrey, San Leandro, CA) were included. An early glaucomatous VF defect was 

defined as a mean deviation (MD) score of ≥ -6.00dB along with either a glaucoma 

hemifield test outside normal limits and/or a corrected pattern standard deviation 

(CPSD) with p-value<0.05 683. Only reliable VF plots, with <20% fixation losses and 

<33% false positive and false negative responses, were considered. Classification as 

NTG was based on an IOP measurement consistently less than or equal to 21 mmHg on 

diurnal testing (measurements every 2 hours over an 8 hour period) with applanation 

tonometry. All patients were newly diagnosed and had no current or previous treatment 

with IOP lowering drops. 

 

 
3.1.4 Recruitment of healthy controls 

Age-matched healthy controls were recruited by inviting the participation of patients’ 

spouses, same-generation relatives and friends, as well as through promotion of the 

study at the Aston University Health Clinics via posters, information leaflets and flyers 

displayed in the waiting areas.  
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3.1.4.1 Healthy control inclusion criteria 

All healthy controls were screened for ocular disease and dementia, using the 

Addenbrooke’s Cognitive Examination-Revised (ACE-R; appendix 2) 684, before 

inclusion in the study. Only healthy individuals with a normal ocular examination (fundus 

assessment, IOP measurement and visual fields) and an ACE-R score of at least 88 

were then included in the study 684. 

 

 
3.1.5 Exclusion criteria for all groups 

Patients with closed iridocorneal angles, evidence of secondary glaucoma, 

pseudoexfoliation, pigmentary dispersion, history of intraocular surgery or any form of 

retinal or neuro-ophthalmological disease that could result in visual field defects were 

excluded from the study. AD, POAG, NTG and healthy participants were excluded if 

they were smokers or had a positive diagnosis of cardio- or cerebro-vascular disease, 

(coronary artery disease - CAD, heart failure, arrhythmia, stroke, transient ischaemic 

attacks), peripheral vascular disease, severe dyslipidaemia (defined as plasma 

triglycerides>6.00mmol/L or cholesterol levels>7.00mmol/L), diabetes, as well as other 

metabolic disorders or chronic diseases that required treatment. Participants were 

screened for ocular disease and were excluded from the study if they had a refractive 

error of more than ±3DS and more than ±1DC, IOP>24 mmHg, cataract or any other 

media opacities, as well as if they had a history of intraocular surgery or any form of 

retinal or neuro-ophthalmic disease affecting the ocular vascular system. Well controlled 

systemic hypertension was neither an inclusion nor exclusion criteria; however any 

individuals taking other medications which could potentially influence vascular function 

were excluded. 
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3.2 Ethical approval 

Prior to the study ethical approval was received from South Birmingham local research 

ethics committee, Heart of England and Sandwell and West Birmingham NHS Research 

Ethics Committees as well as the Aston University Life and Health Sciences Ethics 

Committee. Written informed consent was received from all subjects before entry into 

the study and all procedures were designed and conducted in accordance with the 

tenets of the Declaration of Helsinki. 

 

 
3.3 Methods 

The investigative techniques used throughout this thesis were carefully selected to 

ensure the most accurate and reliable assessment of vascular function at both the 

ocular and systemic level could be obtained. A summary of these techniques is given in 

table 3.1. All techniques were performed by the author with the exception of the blood 

analyses for von Willebrand factor and glutathione status, which were performed by Dr 

Lu Qin, an experienced lab technician. Prior to commencing recruitment the author was 

trained in the use of each technique by experienced colleagues and conducted a series 

of preliminary examinations on at least 15 volunteers to ensure an adequate level of 

competency was achieved. Across this series of preliminary examinations the 

importance of careful patient instruction, optimal patient adjustment and optimal 

examiner positioning was realised and the measurement procedures adjusted 

accordingly.        
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Technique 
 

Purpose 

 

Ocular level 
 

 

Dynamic retinal vessel analysis (DVA) 
 

 

Assessment of ocular vascular function 

 

Systemic level  
 

 

Flow mediated dilation (FMD) 
 

Systemic endothelial dysfunction 
 

Ambulatory blood pressure monitoring (ABPM) 
 

24 hour blood pressure profile 
 

24 hour Heart rate variability assessment (HRV) 
 

Autonomic nervous system assessment  
 

Pulse wave analysis (PWA) 
 

Systemic arterial stiffness  
 

Intima-media thickness measurement (IMT) 
 

Cardiovascular risk / atherosclerosis 
 

Blood analysis 
 

 

Von Willebrand factor (vWf) 
 

Systemic endothelial function 
 

Glucose, Cholesterol, Triglycerides 
 

Cardiovascular risk 
 

Glutathione status (GSH vs. GSSG) 
 

Oxidative stress 
 

Table 3.1 An overview of the investigative techniqu es conducted in this thesis 
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3.3.1 Experimental Protocol 

All measurements were performed between 8 am and 11 am following a 12 hour 

overnight fast, which included no alcohol or caffeine. All procedures were conducted in a 

consistent order outlined below and detailed in the following sections: 

 

1. Suitable participant identified, approached and provided with the study 

information pack 

2. Procedures and risks explained, concerns addressed 

3. Consent form read, understood, completed and signed by participant 

4. Preliminary assessments:  

• Demographic questionnaire 

• Addenbrooke's Cognitive Examination-Revised (ACE-R) 

questionnaire 

• Ocular assessment (Indirect ophthalmoscopy and visual fields) 

• IOP measurement 

• Height and weight measurement 

• Baseline BP readings 

5. 1% Tropicamide inserted into randomly selected eye  

6. Fasting venous blood sample obtained by venepuncture 

7. 24 hour BP and HRV monitor fitted (POAG, NTG, Controls only) 

8. Assessment of retinal vessel reactivity (DVA) 

9. Pulse wave analysis (POAG, NTG, Controls only) 

10. Intima-media thickness measurement (POAG, NTG, Controls only) 

11. Assessment of systemic endothelial function (FMD) 

12. Final BP measurement 
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3.3.2 Preliminary Assessments 

Demographic data regarding age, gender, ethnicity and current medication were 

collected by means of a short questionnaire. In order to ensure our healthy control and 

glaucoma patients were not suffering from any undiagnosed cognitive impairments 

which could have affected the reliability of our results, participants from these two 

groups were also screened for dementia prior to inclusion in the study using the ACE-R 

test (appendix 2) 684. In accordance with guidelines only healthy individuals with ACE-R 

score of at least 88 were included in the study 684.   

 

IOP was measured using Goldman applanation tonometry following instillation of 0.4% 

oxybuprocaine hydrochloride and fluorescein. Visual field analysis was conducted using 

the SITA 24-2 program of the Humphrey visual field analyser and the fundus was 

assessed using indirect ophthalmoscopy. Weight and height were recorded and BMI 

calculated (equation 3.7, section 3.3.5.4). EDTA blood samples were obtained from the 

antecubital fossa vein of all participants and were tested immediately for fasting 

triglycerides (TGs), glucose and total and HDL cholesterol, using a Reflotron Desktop 

Analyser (Roche Diagnostics, UK) and later analysed for vWf and oxidative stress. SBP 

and DBP were measured using an automatic BP monitor (UA-767, A&D Co. Ltd, UK). 

 
 

3.3.3 Assessment of Ocular Vascular Function: Dynamic retinal 

vessel analysis (DVA) 

As discussed in section 1.9.5, the presence of reduced/unstable blood flow in the retina, 

choroid, ONH and retrobulbar vessels of patients with glaucoma is already fairly well 

established; however the mechanisms by which the blood flow becomes reduced / 

unstable are less established. With regard to this thesis therefore, techniques aimed at 

assessing ocular vascular function, as opposed to simply measuring OBF, were of much 

greater interest. The dynamic retinal vessel analyser (DVA) is currently the most widely 
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used method for assessing retinal microvascular reactivity in health and disease and is 

considered to be a sensitive indicator of retinal microvascular function 685, 686; it has 

therefore been the technique of choice for assessing ocular vascular parameters in this 

thesis. DVA allows the dynamic behaviour of the retinal vessels to be assessed through 

the continuous online measurement of vessel diameter changes in response to 

provocation 687. As discussed in section 1.4, adjustments in vascular diameter and 

hence adjustments in vascular resistance play an important role in the local 

autoregulation of OBF. As disturbed autoregulation has been identified as a key risk 

factor in the development of glaucoma and AD, (see sections 1.9.7 and 1.10.3), 

assessment of the alterations in retinal vessel diameter in response to provocation, by 

means of DVA, can provide useful diagnostic information about autoregulatory function 

in such individuals. 

3.3.3.1 Basic principles 

The setup of the dynamic retinal vessel analyser device (DVA, IMEDOS, Germany) 

consists of a fundus camera (FF450, Zeiss Jena, Germany), a charged coupling device 

(CCD) camera, a high resolution video recorder, a real time monitor and a personal 

computer with analysis software, as illustrated in figure 3.1.  

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Diagrammatic representation of the dynam ic retinal vessel analyser set up  
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The DVA is capable of measuring retinal vessel diameter continuously along a selected 

vessel segment over a specified time. This is achieved via analysis of the brightness 

profile of the retinal vessels. Brightness profile is based on the absorbing properties of 

the red blood cells (RBC) within a vessel. With regard to retinal vessels, maximum 

absorption of light occurs at a wavelength of 400-620nm and by comparing the 

brightness profile of the RBC column within the vessel with that of the surrounding tissue 

a continuous assessment of vessel diameter can be made. DVA therefore measures 

vessel diameter as the width of the red blood cell column within the selected vessel. It 

achieves this as follows: 

 

• The illumination light of the fundus camera enters the eye through a dilated pupil 

and is reflected by the different layers of the retina and retinal vessels.  

• It is then delivered via the observation pathway to the CCD camera 

• The brightness profile data is then analysed by the computer system and 

simultaneously recorded by a high quality video recorder so that off-line analysis 

can be conducted at a later date if necessary.  

 

To ensure optimal alignment and set up the operator can observe an image of the 

fundus on the computer display (figure 3.2) and to ensure optimal contrast for vessel 

visualisation a green filter is inserted into the illumination pathway of the fundus camera. 

Furthermore, the device is equipped with a series of adaptive algorithms to compensate 

for any disruption of the vessel brightness profile, by the presence of either shadowing 

structures from the background or reflections from the vessel surface. It also has the 

capability to correct for slight eye movements during assessment and can continuously 

monitor image quality, according to image contrast and then automatically remove any 

inadequate measurements from the analysis 687, 688.   
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Figure 3.2 Dynamic retinal vessel analyser (DVA) 

 

The technical specifications of the DVA are summarised in table 3.2 687. The resolution 

of the device is such that accurate measurements cannot be achieved from vessels with 

diameters < 90 µm and the temporal resolution of the device is 40 ms, such that 25 

video frames are captured per second (i.e. sampling rate = 25Hz). The image field or 

camera angle should be set at 300 and a clear fundus image, with good contrast and 

even illumination should be obtained through a fully dilated pupil. All size related 

measurements are expressed in ‘units of measurement’ (UM), whereby 1 UM is 

equivalent to 1 µm in a normal emmetropic eye 687.    

Parameter  Value 
Measurement range 90 µm 

Measurement resolution < 1 µm 
Temporal resolution ≥ 40 ms 

Image field angle 30o 
Measuring time 350 seconds ( but can be up to 10 mins) 

Maximum length of vessel segment 3 mm 
Spatial resolution (along vessel segment) 180 µm 

Measuring sensitivity  1 MU/1 µm 
 

Table 3.2: Technical specification of the DVA 687 
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Over the last few years DVA has become a widely used method for assessment of 

retinal vascular function however it does have some limitations which are summarised 

below, along with its relative advantages:  

3.3.3.2 Advantages 

• Non-invasive 

• Continuous recording of vessel diameter allows quantification of the effects of 

provocation with high time resolution 

• Vessel segments and different retinal vessels can be investigated simultaneously 

• High reproducibility 689 

• Low variability 690 

3.3.3.3 Limitations 

• Reliant on patient having clear media to gain an image of sufficient quality 

• Reliant on good patient fixation over 350 second testing period 

• Requires full pupil dilation with Tropicamide 1% only (to avoid adverse vascular 

effects) 

• Assumes the eye has no refractive error 

• Doesn’t measure absolute retinal vessel size, instead uses standardised or 

relative units  

As mentioned previously in order to assess the dynamic behaviour and autoregulatory 

capacity of the retinal vessels the vessels need to be provoked. The DVA can be 

operated in conjunction with a variety of provocation devices including suction cup IOP 

enhancement, pure oxygen breathing, inhalation of CO2  and flicker light stimulation 687. 

For the purposes of this thesis flicker light stimulation has been used to assess dynamic 

retinal vessel reactivity and this will be discussed in more detail in the following section. 
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3.3.3.4 Flicker light stimulation 

Flicker light can be considered the most natural provocation method for assessing 

dynamic retinal vessel behaviour and has the advantage of stimulating the retina 

exclusively, without the involvement of any other vascular bed. The normal vascular 

response to flickering light has been widely studied 686, 691 and there is plentiful evidence 

to indicate that, under normal circumstances flicker stimulation should lead to an 

increase in vessel diameter, retinal blood flow and ONH blood flow in humans 692. 

 

Flicker light can be defined as illumination which alternates in brightness or colour at a 

frequency of approx 1-50 Hz 691. Electrophysiological studies have shown that the 

maximum sensitivity of the human visual system to flicker stimulation is obtained with a 

flicker frequency of between 10-20 Hz 685. The DVA device used throughout this thesis 

was equipped to generate flickering light at a sampling rate of 12.5 Hz via an 

optoelectronic shutter placed in the optical pathway of the camera. A sampling rate of 

12.5 Hz lies within the optimum flicker frequency range and has been shown to provide 

appropriate retinal stimulation by numerous studies 685, 691, 693.  

 

The measurement protocol used to assess retinal microvascular reactivity to flicker light 

in this thesis is in accordance with that introduced by Nagel et al 686. This protocol is 

widely used and recommended 688 and is outlined in the following section. 

 

3.3.3.5 Measurement protocol 

• The fundus camera is positioned so as to obtain a uniformly illuminated fundus image 

through the fully dilated pupil without unwanted reflections and the brightness is 

adjusted to ensure optimal contrast 

• The patient’s fixation is directed, with the use of a fixation needle, so that the 

measurement area of interest lies in the centre of fundus picture 
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• A region of interest is defined on the retina by the user selecting a rectangular area 

on the real time monitor which outlines the region to be studied (usually inferior to 

ONH).  

• From within this area a section of the inferior temporal retinal artery and a section of 

the inferior temporal retinal vein, located approximately 1.5 disc diameters from the 

ONH and approx 0.5-1 disc diameters in length and a reasonable distance apart, are 

selected for analysis and monitoring (figure 3.3).  

 

 

Figure 3.3 Example of retinal vessel selection prio r to dynamic retinal vessel analysis 

 

• Measurement then starts automatically and vessel diameters are continuously 

calculated along the length of the selected vessels over a 350 second testing period. 

This consists of 50 seconds of baseline measurements under still illumination (25Hz), 

followed by 3 cycles of 20 second flicker stimulation (optoelectronically generated at 

12.5 Hz) each interrupted by 80 seconds of still illumination (recovery), as outlined in 

figure 3.4. 
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Figure 3.4 Breakdown of the 350 second DVA testing period  

 

All measurements are performed in a quiet, temperature-controlled room (22oC) 

following full dilation of one unselected eye (1% tropicamide, Chauvin Pharmaceuticals 

Ltd). 

 

The use of a 350 second testing period with three sequential flicker cycles was initially 

introduced so that an averaged vessel response could be calculated and analysed to 

ensure stable results could be obtained over a testing period of tolerable length 686, 694. 

More recently however new techniques of analysis have been introduced which also 

consider the vessel responses to each flicker cycle individually as well as the overall 

average 695. This is discussed in more detail in section 3.3.3.8. 

  

3.3.3.6 Normal vascular response 

The normal retinal vessel response profile to flicker light stimulation by the DVA is 

illustrated in figure 3.5. Previous studies have shown that the maximum vessel response 

to flickering light typically occurs within 20 seconds 693. After this time period only small 

increases in diameter occur. Once the flicker stimulation ends, dilation ceases 

immediately but rather than simply returning to baseline, the baseline is usually overshot 

and a vasoconstriction occurs. This overshoot has been found to start within 

approximately 6-10 seconds following the end of the flicker period, reaching its minimum 

diameter between 10-40 seconds following the end of flicker 691, 693. The vessel diameter 

then returns to its baseline level. Both retinal arteries and veins respond to flicker light 

stimulation, however arteries tend to show a more pronounced diameter change in 

 
0    50     70       150      170         250        270          350 
  

Baseline Flicker 1 Recovery Recovery Recovery Flicker 3 Flicker 2 
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comparison to veins and whilst arteries start to react immediately veins have been 

shown to have approximately a 5 second delay before a response is seen 685, 693.  

 

Figure 3.5 Diagrammatic representation of a typical  retinal vessel response to flicker light 
on dynamic retinal vessel analysis 

 

Deviation away from this normal vascular response profile can be indicative of vascular 

disease and indeed numerous studies have already provided evidence of altered 

vascular response to flickering light in both ocular and systemic disease, including 

POAG 41, ARMD 696, diabetes 697-699 and hypertension 686. In order to understand the 

implications of an impaired or altered vascular response to flicker light with regard to the 

development of disease, it is necessary to try and understand the mechanisms by which 

flicker light provokes the retinal vessels.  
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3.3.3.7 Reaction mechanism 

Flicker light stimulation increases the neural demand of the retina, which, under normal 

circumstances should trigger a neurovascular coupling response of the retinal 

microvasculature, resulting in vasodilation 692 (see section 1.5.3.2) . In general terms an 

increase in the metabolic rate of the photoreceptors, following stimulation by flickering 

light, is thought to trigger the release of NO from the retinal vascular endothelium, 

bringing about an increase in vessel diameter followed by an increase in blood supply to 

meet the increased demand 226. An altered vascular response to flicker light therefore 

could be indicative of impaired autoregulatory mechanisms and/or endothelial 

dysfunction in the form of reduced bioavailability of NO (see section 1.6). However, due 

to the complexity of the neurovascular coupling response, it is highly likely that other 

causative factors such as altered ET-1 levels, altered astrocyte activity or changes in the 

basal tonus of the vessels could also play a role in altering the retinal vascular response 

to flicker. The role of the these alternative factors may be particularly relevant when 

considering the vascular constriction response following flicker 696.    

 

3.3.3.8 Data analysis  

Of primary interest when analysing the retinal vascular response profile to flicker light is 

the percentage dilation of the vessel in response to the stimulus and the time scale 

across which this happens, along with the percentage constriction or overshoot of the 

vessel following cessation of flicker and again the time scale across which this happens. 

In this thesis such analysis of the retinal vascular response was conducted using 

elements of a newly defined method of DVA analysis, termed ‘Sequential and Diameter 

Response Analysis’ (SDRA) in conjunction with our own novel vascular profile imaging 

methods. The inbuilt software of the DVA device itself does have the capability to 

provide an analysis of the retinal vascular response to flicker light, however this has 

been identified to have a number of shortfalls and the need to move away from this 

traditional inbuilt software analysis and to evaluate the retinal vascular response profile 
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in more detail has been increasingly realised by numerous authors in recent years 688, 

695, 696. Indeed SDRA, first introduced by Heitmar et al 695, was primarily designed to 

overcome the shortfalls of the inbuilt software analysis programme. An overview of this 

inbuilt DVA analysis and its limitations, along with a summary of SDRA and the novel 

imaging analysis methods used in this thesis is given in the following sections.  

 

3.3.3.9 Previous methods of analysis 

The inbuilt DVA software calculates the vascular dilation response to flicker light by 

averaging all three of the stimulation cycles and then taking the average diameter from 

the last +/- 3 seconds of flicker stimulation as the maximum diameter response to flicker 

(i.e average diameter reached between 17-23 seconds from start of flicker taken as 

maximum diameter response). The shortfalls of this method largely arise due to its 

incorporation of both time and diameter responses and its inaccurate assumptions about 

the nature of the vascular response 695. Indeed subjects who reach their maximum 

dilation outside the 17-23 second window would have their maximum dilatory response 

underestimated by this technique and furthermore by averaging the results from all three 

flicker cycles differences in the reaction pattern or time course of each individual cycle 

cannot be determined 695. Additionally this method of analysis does not take into 

consideration baseline fluctuation in vessel diameter (BDF), a parameter first highlighted 

as important in DVA analysis by Nagel et al 686. BDF refers to the spontaneous 

variations in vessel diameter, which occur under normal resting conditions, as a result of 

vascular tone and arterial pulsation and are superimposed on the vascular response 

profile 686. In order to account for the influence of BDF, Nagel et al 686 introduced the 

concept of baseline corrected flicker response (BFR), where BDF is accounted for by 

subtracting it from the dilation amplitude (DA) of the vascular response, as shown in 

equations 3.1 and 3.2.  
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	�� = �� − 	�� 

 BFR = Baseline corrected flicker response 

 DA = Dilation amplitude  

 BDF = Baseline diameter fluctuation 

 
Equation 3.1 Baseline corrected flicker response 

 
Where: 

�� = �� − �  

 DA = dilation amplitude 

 MD = maximum dilation 

 MC = maximum constriction 

 
Equation 3.2 Dilation amplitude 

 

3.3.3.10 Sequential and Diameter Response Analysis (SDRA) 

SDRA has the advantage of utilising the raw data set generated by the DVA device and 

allowing each individual flicker cycle to be considered separately. This enables a more 

accurate assessment of dynamic vessel response to be obtained and enables the 

inclusion of the parameters BDF, BFR and DA on top of the standard percentage 

dilation and constriction response parameters. Additionally it allows the time taken to 

reach maximum dilation and the time taken to reach maximum constriction to be 

determined for both the artery and vein for each individual flicker cycle. A summary of 

the SDRA parameters and how they relate to the vascular response profile is illustrated 

in figure 3.6 and summarised in table 3.4. 
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Figure 3.6 Diagrammatic representation of the param eters calculated from the dynamic 
retinal vessel analysis (DVA) response profile 

 
Table 3.3 Summary of the parameters which can be ca lculated and in used for analysis of 

the dynamic retinal vessel response profile 

 

Parameter 
 

Acronym 
 

Explanation 
 

Baseline 
diameter 
fluctuation  
 

 

BDF 
 

Calculated as the maximum range in vessel diameter 
during first 30 seconds of baseline readings (i.e. 
Difference between max diameter and min diameter at 
baseline) 

 

Percentage 
dilation  

 

MD% 
 

Calculated as the percentage change in vessel 
diameter from baseline to maximum following onset of 
flicker 

 

Baseline 
corrected flicker 
response 

 

BFR 
 

Percentage change in vessel diameter after taking 
into consideration the baseline diameter fluctuation 
(equation 3.1) 

 

Reaction time  
 

RT 
 

Time taken to reach maximum diameter from the 
onset of flicker  

 

Percentage 
constriction 

 

MC% 
 

Percentage constriction of vessel diameter below 
baseline following cessation of flicker. Calculated as 
smallest vessel diameter reached following cessation 
of flicker subtracted from average baseline diameter 

 

Constriction time  
 

tMC 
 

Time taken to reach the point of maximum 
constriction following cessation of flicker 

 

Dilation 
amplitude  

 

DA 
 

Amplitude of the dilation response, calculated as the 
difference in diameter between the maximum and 
minimum points (equation 3.2) 
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It is important to note that analysis of individual flicker cycles is reliant on a full data set 

having been obtained from the participant on each subsequent cycle. If this is not 

achieved, for example due to poor patient fixation, loss of concentration or excessive 

blinking, calculating and analysing the average data set using SDRA is considered more 

reliable. 

 

Overall the SDRA method has been validated and shown to be a sensitive measure of 

the vascular response to flicker light with good coefficients of variation 695. Furthermore it 

is able to overcome a number of the shortfalls of the inbuilt RVA analysis software. It 

has therefore been the analysis method of choice for this thesis; however we have taken 

it one step further and using the principles of SDRA have developed an additional way 

of imaging the retinal vascular profile to allow further aspects of the vascular response to 

be explored.   

 

3.3.3.11 Novel Analysis  

Whilst SDRA overcomes many of the limitations of the inbuilt RVA software analysis it 

still does not allow visualisation of the entire dynamic retinal vessel response profile. 

Furthermore, it has been suggested that, in addition to the parameters illustrated in 

figure 3.6 and summarised in table 3.3, evaluation of the slope of both the dilation and 

constriction responses to flicker light could give additional important information about 

the state of the retinal microvasculature in health and disease. In order to address this 

we have developed a new method of analysing and interpreting the retinal vascular 

response to flickering light using Matlab (MATLAB R2010a; MathWorks Inc., Natick, 

MA). Our method expands on the SDRA methodology by extracting the raw response 

data and applying a statistical polynomial regression algorithm, implemented using the 

polyfit and polyval functions of the Matlab high-level programming language 

(MATLAB R2010a; MathWorks Inc., Natick, MA). Dr Aniko Ekart, an experienced 
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mathematician and Matlab user assisted the author with the construction of the 

statistical algorithm used here. 

 

Given the measurements iy at times Titi ,...,1, = , we approximated )(tfy = by a 
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The polyval function was used to calculate the fitted polynomials which ultimately 

provided us with curves representative of the dynamic vascular response profile which 
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could then be used for analysis. The polynomial regression algorithms were performed 

on the averaged data for each individual patient. The degree of the polynomial, n, is an 

adjustable parameter. We applied ! = 15, as this value provided the closest fit 

polynomials on our data points.  

 

As well as the original SDRA parameters of baseline diameter fluctuation (BDF), 

maximum dilation (MD), maximum constriction (MC), reaction time (RT), dilation 

amplitude (DA) and baseline corrected flicker response (BFR), the polynomial fitted 

curves allowed the nature of the dynamic response profile and the slope of the vascular 

dilation and constriction responses to be calculated and compared between study 

groups. The slope may be an important parameter as it describes the interaction 

between the change in vessel diameter and the rate at which this change occurs, both of 

which are parameters that have shown to be altered in disease states individually. 

Dilation and constriction slope for both the arteries and veins were calculated as shown 

in equation 3.3. 

 

 

�#$%&#'! ($')* =  
�� - Av Baseline

RT
                       '!(&+#,&#'! ($')* =  

� − ��

 &��� 
  

    

 Where: MD = maximum dilation 
   RT = reaction time 
   MC = maximum constriction 
   tMDMC = time between MD and MC 
 

Equation 3.3 Dilation and constriction slope 
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3.3.4 Assessment of systemic parameters 

3.3.4.1 Endothelial function: Flow mediated dilation (FMD) 

Determination of the presence of endothelial dysfunction at the systemic level in 

neurodegenerative disease could provide important information about the involvement of 

macro-vascular function in the pathogenesis of the disease. 

FMD is considered the gold standard technique for assessing systemic endothelial 

function 199. It is a well-established technique that has been widely used in clinical 

research to assess peripheral vascular function and cardiovascular disease risk factors 

700, 701. Its main advantage over other techniques is that it is non-invasive and by nature 

of this, allows repeated measurements to be taken either sequentially or over time with a 

high level of patient acceptance 52. Its only disadvantage is that it requires practice to 

master the technique and carefully controlled experimental conditions are required to 

ensure reproducibility and reliability of results 52, 702. 

 

FMD refers to the dilation of a vessel in response to increased blood flow. A sudden 

increase in blood flow is known to exert a shear stress stimulus on the vessel wall 

which, under normal circumstances, triggers the release of the vasodilator NO from the 

endothelium leading to an increase in vessel diameter to accommodate the increased 

blood flow. A failure to observe this vascular dilation response to increased flow is 

considered indicative of endothelial dysfunction and hence important information about 

the functioning of the endothelium can be gained by assessing the dilation response of a 

systemic artery to an experimentally produced increase in blood flow in FMD. 

 

3.3.4.2 Protocol 

Measurement of endothelium dependent FMD in this thesis has been conducted in 

accordance with the guidelines for assessment published by Corretti et al 702. 
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The procedure involves ultrasound imaging of the brachial artery of the upper arm, with 

an ultrasound probe positioned in the longitudinal plane, 5-10cm above the antecubital 

fossa, using a 2D colour Doppler ultrasound system (CDI). 

  

Prior to all FMD assessments conducted in this thesis, patients were required to 

undergo a 12 hour fast due to the potential influence that food intake and caffeine can 

have on flow mediated vascular reactivity 702. Furthermore, as temperature can also 

influence vascular reactivity all procedures were conducted in a quiet, dark, temperature 

controlled room at 22OC.  The measurement procedure is summarised as follows:  

• The patient is positioned supine and allowed to rest in this position for 10 

minutes prior to first scan.  

• Their arm is then positioned comfortably in an extended position and an 

ultrasound image of the brachial artery is obtained from the upper right arm  

• A segment of the artery with clear anterior and posterior intimal-lumen interfaces 

is selected on the imaging screen to ensure optimum recording of vessel 

diameter changes (figure 3.7) 

 

 

Figure 3.7 Imaging screen in FMD with brachial arte ry segment highlighted 

 

• 2 minutes of baseline vessel diameter readings are taken from the brachial artery 

• A 5.6 inch wide BP cuff (sphygmomanometer) positioned at the forearm is then 

inflated to 50mmHg above the patients recorded SBP and is kept inflated for 5 
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minutes. The inflated cuff effectively occludes the blood flow through the brachial 

artery, inducing hypoxia and causing dilation of downstream resistance vessels. 

•  After 5 minutes the cuff is rapidly deflated and the brachial artery is imaged for a 

further 2 minutes to assess the hyperaemic response. (figure 3.8) 

 

 

Figure 3.8 Breakdown of the 7 minute FMD examinatio n protocol 

 

On deflation of the cuff, the brachial artery is no longer occluded and there is a sudden 

increase of blood flow through it (hyperaemia). As mentioned previously this increased 

blood flow produces a shear stress stimulus on the vessel wall which should trigger the 

endothelium to release NO, possibly in combination with other vasodilators, and an 

increase in vessel diameter should be seen. A failure to observe a good vasodilation 

response would indicate systemic endothelial dysfunction. 

 

Following FMD assessment and after a 10 minute rest period, the procedure is repeated 

using a sublingual tablet of nitroglycerin (GTN 0.3mg) in place of the 

sphygmomanometer. GTN is converted by the body into NO and this then acts directly 

on the vascular smooth muscle cells to bring about vasodilation, independent of the 

endothelium. GTN is therefore used to confirm whether any impaired dilation response 

detected by FMD can definitely be attributed to a dysfunctional endothelium and is not 

simply the result of a vascular smooth muscle dysfunction.  It would be expected that, 

even in the presence of endothelial dysfunction, nitroglycerin mediated vasodilation 

(NMD) should be unchanged. If NMD were significantly impaired to the same degree as 

 
0        2               5         7
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FMD it would suggest the vascular smooth muscle is not functioning properly and any 

impaired FMD responses could not be convincingly attributed to endothelial dysfunction. 

3.3.4.3 Analysis 

Flow mediated dilation is calculated as the percentage change in brachial artery 

diameter in response to hyperaemia (equation 3.4). Baseline vessel diameter is taken as 

the average diameter from the first 2 minutes of brachial artery ultrasound imaging and 

the vessel diameter following hyperaemia is taken as the maximum diameter reached in 

the 2 minutes following cuff deflation. 

 

��� =        
-� ℎ/)*+%*0#% − 	%(*$#!* -�

	%(*$#!* -�
      1 100 

 

FMD = Flow mediated dilation  

VD = vessel diameter 

 
Equation 3.4 FMD dilation response 

 

Previous studies have suggested that normal values for FMD should be considered to 

be between a 5-15% increase in brachial artery diameter and a 5-6 fold increase in 

blood flow on release of the BP cuff. A dilation response of between 0-5% indicates an 

impaired flow mediated dilation response 703, 704. 

 

Nitroglycerin mediated dilation is calculated in the same way but as the percentage 

change in brachial artery diameter in response to nitroglycerin (equation 3.5). 

 

��� =        
-� !#&+'3$/,*+#!* − 	%(*$#!* -�

	%(*$#!* -�
      1 100 

NMD = Nitroglycerine mediated dilation  

VD = vessel diameter 

 
Equation 3.5 NMD dilation response 
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3.3.4.4 Circulating markers – von Willebrand factor 

vWF levels were determined in this thesis via the analysis of fasting venous blood 

samples obtained by the author. The analysis was conducted by an experienced lab 

technician (Dr Lu Qin) according to the methodology outlined below: 

• Following the collection of fasted venous blood samples into citrate tubes, the 

samples were centrifuged at 3000rpm for 15 minutes and the supernatant was 

aliqouted and stored in a -800C freezer.  

• The citrated plasma was then thawed and analysed for vWf levels using a 

standardised ELISA kit which was optomised according to previously established 

methods 705, 706 and conducted as follows: 

1. A microtitre plate was coated with 100µl of dilated primary antiserum 

solution (30µl in 20.5ml coating buffer at pH 9.6) at room temperature 

and then refrigerated for a minimum of 60 minutes to over night 

2. The microplate was washed 4 times with 250µl of wash buffer per well 

before 100 µl of substrate was added with working strength detection 

antibody dilutant and incubated for 60 minutes at room temperature 

3. The microplate was then washed 3 times with wash buffer before 100µl 

of secondary antiserum was added and incubated at room temperature 

for 45 minutes 

4. The microplate was then washed again for a final 3 times and 100µl of 

substrate was added and then incubated at room temperature for 20 

minutes 

5. The enzymatic reaction was then stopped by adding 50µl of 

hydrosulphuric acid 

6. The absorbance of the solution was then immediately read on a 

microwell plate reader set at 492nm    
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3.3.4.5 Ambulatory blood pressure monitoring (ABPM) 

ABPM was the technique of choice for the assessment of systemic BP in this thesis and 

was conducted using the Cardiotens-01 device which is a computer operated 

ambulatory BP and ECG monitor (Cardiotens-01, PMS Instruments, Maidenhead, UK). 

This device has been validated in accordance with recommended protocols and has 

been widely used in previous clinical studies 707-710. Its set up is such that a blood 

pressure cuff is positioned around the upper left arm and connected to a personal 

monitoring device worn around the waist, via a fibre optic cable. The device was 

programmed prior to use using the BP monitoring software Cardiovisions 1.7.2 (PMS 

Instruments, Maidenhead, UK) and customised to each individual, with regard to sleep 

and wake times and measurement intervals, amongst other factors. Measurements of 

BP are obtained automatically using an oscillometric method and in the event of a faulty 

reading the device is programmed to re-inflate a second time in order to avoid missed 

data points. For the purposes of this thesis the device was programmed to take readings 

at intervals of 15 minutes during daytime and intervals of 30 minute nocturnally. Patients 

were advised to carry out their normal daily activities and to complete a diary outlining 

any periods of unusual exertion or changes in activity for consideration when evaluating 

their BP variations. After the 24 hour period the BP data was downloaded and analysed 

using the ‘Medibase’ software program (Meditech, version 1.42). Maximum and 

minimum, diurnal and nocturnal, SBP, DBP and MABP were recorded and the mean 

nocturnal dip in BP calculated (equation 3.6). Furthermore the short-term variability in 

SBP was determined for both the diurnal and nocturnal periods through calculation of 

the average coefficient of variation for each group (equation 3.7).  

 

�',&4+!%$ 	� 5#) = 6�#4+!%$ ��	� − �',&4+!%$ ��	�7 × 100 

     
    Where: MABP = mean arterial blood pressure, calculated according to equation 1.2 
 

Equation 3.6 Nocturnal blood pressure dip 
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 1 100 

 
Equation 3.7 Coefficient of variation 

 

3.3.4.6 Autonomic Nervous system assessment – Heart rate variability 

Assessment of ANS function commonly falls into two categories, the first being the 

evaluation of BP and HR responses to provocative stimuli designed to test baroreflex 

sensitivity and the second being the analysis of systemic BP, resting HR and HRV over 

a 24 hour period 399. For the purposes of this thesis ANS function was assessed using 

24 hour ECG monitoring and a frequency domain analysis of HRV using the Cardiotens-

01 device and ‘Medibase’ software introduced in the previous section (3.3.4.5). This 

device records continuous real time beat-to-beat ECG analysis via two independent 

channels following the precise placement of electrodes on the patient’s chest in the 

positions illustrated in figure 3.9. The electrodes are connected via a fibre optic cable to 

the personal monitoring device worn around the patient’s waist. 

 

Figure 3.9 Diagrammatic representation of the elect rode positioning for 24 hour ECG 
recording with the Cardiotens-01 device 
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Following 24 hours of ECG recordings the data can be downloaded from the device and 

a full frequency domain HRV analysis performed by the ‘Medibase’ software using a 

series of validated algorithms. An assessment of HRV and ANS function can then be 

made through analysis of the LF and HF values and the LF/HF ratio (see section 1.7.2), 

recorded during the diurnal (active) phase, nocturnal (passive) phase and over the entire 

24 hour period.  

 
 
3.3.5 Assessment of Cardiovascular risk 

As discussed in section 1.9.12 there is a possible role for increased ocular and systemic 

vascular stiffness and the presence of cardiovascular disorders in the development of 

GON, however the current evidence is variable. In order to explore this relationship 

further an assessment of systemic arterial stiffness, atherosclerotic vessel changes and 

cardiovascular risk has been made in this thesis using pulse wave analysis, intima-

media thickness measurement, calculation of Framingham risk score, BMI and routine 

blood analysis as outlined in the following sections.   

 

3.3.5.1 Assessment of arterial stiffness: Pulse wave analysis (PWA) 

The method of choice for the assessment of arterial stiffness in this thesis was pulse 

wave analysis (PWA) which was performed using the SphygmoCor device in 

accordance with a well-established protocol 711, 712. This is a simple, non-invasive, 

validated device which allows an assessment of arterial stiffness to be made with high 

repeatability 711-713. The procedure involves the placement of a high fidelity pressure 

sensor on the outside of the skin overlying the radial artery at the wrist which generates 

a signal representative of the intravascular pulse (figure 3.10). From this signal the 

SphygmoCor device generates a peripheral pressure waveform and then converts it, 

using measured values of brachial SBP and DBP, into a central aortic pressure wave 

from which arterial stiffness parameters, such as augmentation index (AIx) can be 
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calculated by the software. The SphygmoCor software also generates quality control 

indices and therefore, to ensure reliability of measurements, in this thesis only those 

readings obtained with an operator index of greater than 80 were accepted.  

 

Figure 3.10: SphygmoCor device set up 

 

The principle of PWA is therefore the generation and analysis of the central aortic 

pressure waveform, the profile of which can provide important information about the 

stiffness of the systemic vasculature. This aortic pressure waveform is derived from two 

separate components, namely a forward pressure wave created by ventricular 

contraction and a backward or reflected pressure wave created by the reflection of the 

incident wave back from bifurcations and peripheral vascular beds.  
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Figure 3.11 a,b,c: forward aortic waveform, reflect ed waveform, complete aortic waveform 

 
 
In elastic vessels the reflected wave returns to the aortic root in diastole, supplementing 

coronary perfusion in this phase and creating the waveform profile illustrated in figure 

3.11c. In stiff vessels the reflected wave can return earlier and therefore in systole, 

causing augmentation of systolic pressure and a decrease in diastolic pressure, along 

with decreased coronary perfusion, as illustrated in figure 3.12b. 

 
 

 

Figure 3.12 a: Normal aortic pulse waveform; b: Aor tic waveform in presence of arterial 
stiffness 

 
 

 

C

a b 

c 

Figure 3.12a: Normal aortic pulse 
waveform: smooth ascending limb, 
notch in descending limb just after 
systole due to wave reflection.  

 

Figure 3.12b: Aortic waveform in 
presence of arterial stiffness: increased 
systolic peak, shoulder in ascending 
limb indicating early return of reflected 
wave, steeper descending limb with 
loss of notch 
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The AIx parameter generated by the SphygmoCor was used as the marker for systemic 

arterial stiffness in this study. AIx is a widely used research parameter and is considered 

a sensitive indicator of arterial stiffness 712. It indicates the amount by which the aortic 

pressure is increased by the peripheral reflection of blood flow and it is given as a 

percentage value corrected for a HR of 75 beats per minute 714 (figure 3.13). AIx 

increases with increasing arterial stiffness due to an increased speed of reflection and 

has been shown to vary with both age and gender, being greater in females and older 

persons 715.  

 

Figure 3.13: Diagrammatic representation of the aor tic pressure waveform and 

augmentation index  

 

Normal or reference values for AIx in healthy individuals have been reported for 

numerous different ethnic groups. The reference values given by the SphygmoCor 

group for healthy individuals according to age are shown in table 3.4.  

 
Age Mean (%) Lower 5% CI (%) Upper 5% CI (%) 
20 -4.67 -23.27 16.87 
30 3.03 -15.57 24.57 
40 10.73 -7.87 32.27 
50 18.43 -0.17 39.97 
60 26.13 7.53 47.67 
70 33.83 15.23 55.37 
80 41.53 22.93 63.07 

Table 3.4: AIx Reference values for healthy individ uals provided by SphygmoCor 
Interval 
Upper 5% 
 

AIx 
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One potential limitation of PWA stems from the suggestion that the estimation of the 

central pressure waveform alone may be insufficient to accurately quantify the 

magnitude of pressure waveform reflection and therefore the true accuracy and 

reliability of any results generated through PWA may be limited 716. However, the 

majority of reports indicate that PWA and AIx can be considered good indicators of 

arterial stiffness and they are amongst the most widely used assessment parameters 711.   

 

3.3.5.2 Intima-media thickness (IMT) measurement  

Measurement of carotid artery IMT allowed a simple and non-invasive assessment of 

early arterial wall changes to be made in this thesis. IMT is a parameter widely used in 

clinical research and has been shown to provide a direct measure of carotid 

arteriosclerosis and an indirect measure of generalised atherosclerosis 717. Furthermore 

it has been demonstrated to offer predictive value with regard to future cardiovascular 

complications 718 and has shown a close relationship with the presence of 

cardiovascular risk factors 719-721 and calculated risk scores such as the Framingham risk 

score 722 (see section 3.3.5.3). 

  

Measurement of IMT (figure 3.14; 3.15) was conducted in this thesis using a well-

established protocol 717, 723. Patients were positioned supine with their head turned away 

from the measurement site and their neck slightly extended. High resolution B-mode 

ultrasonography (Siemens; Acuson Sequoia, UK) was used to obtain an image of the 

right common carotid artery at the level of the carotid bifurcation. IMT measurements 

were then taken from the central region of the inferior wall of the artery, using the inbuilt 

software calliper system, at a site proximal to the artery bifurcation. The presence of any 

arteriosclerotic plaques along the vessel wall was also noted and measured. A normal 

IMT measurement is considered to be anything below 0.1 cm 717.   
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Figure 3.14 Diagrammatic representation of the caro tid artery wall 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 Ultrasound image indicating carotid art ery intima-media thickness 
measurement site. C-IMT: carotid-intima media thick ness 

 

Ultrasound IMT measurement is generally considered a non-invasive and safe 

technique that is low cost and offers highly reproducible results. Questions have been 

raised about the possible subjective nature of the measurements and the risk of high 

between-observer variability, with the potential benefits of alternative automated 

analysing systems having been discussed 723, 724. However the within-observer variability 

in measurements has been shown to be small and hence manual IMT measurement is 
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still considered a very valid technique 723. All IMT measurements in this thesis were 

performed by a single operator.    

 
Research has suggested that IMT can be influenced by age, systolic BP and weight. 

These are parameters that therefore all need to be controlled when considering the 

results. Furthermore relationships have been identified between IMT and FMD, with 

multiple studies suggesting an inverse correlation between the two, in that a greater IMT 

is associated with a lower FMD result 725. This may be unsurprising as endothelial 

dysfunction has been shown to be an early occurrence in the development of 

atherosclerosis, of which IMT is a measure. Other studies have shown no correlation 

between the two measures suggesting that maybe they represent different stages of the 

atherosclerotic process, with endothelial dysfunction occurring in the earlier stages and 

increased IMT developing after more prolonged exposure to risk factors 726. 

Nevertheless determining the presence of any correlations between IMT and FMD in 

this thesis could provide a further insight into the role of arterial wall changes in GON.    

 

3.3.5.3 Framingham risk score 

Determination of cardiovascular risk is often made on the basis of lifestyle and history 

questionnaires which aim to determine the presence of factors such as obesity, 

hypercholesterolemia, diabetes and smoking. A more quantitative assessment however 

can be made through the calculation of risk scores such as the Framingham risk score. 

The Framingham risk score provides an estimate of the 10 year absolute risk of an 

individual developing coronary heart disease 727. It is sex specific, taking into account 

age, total cholesterol, HDL cholesterol, BP, diabetes and smoking and has been shown 

to be validated for use across different ethnic groups 728. The reference table on which 

the calculation is based is given in appendix 3. A Framingham risk score was calculated 

for all study participants in this thesis to provide an additional quantified measure of 

cardiovascular risk.        
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3.3.5.4 Body mass index (BMI) and blood analysis 

In addition to the above procedures a further assessment of cardiovascular risk was 

made through the recording of both weight and height measurements for all participants, 

followed by the calculation of body mass index (BMI) (equation 3.8) 

 

	�� =  
;*#3ℎ& 6<37

�*#3ℎ&�607
 

 
Equation 3.8: BMI 

 
 

Furthermore fasting EDTA blood samples were obtained from the antecubital fossa vein 

of all participants and tested immediately for fasting triglycerides (TGs), glucose levels 

and total and HDL cholesterol, using a Reflotron Desktop Analyser (Roche Diagnostics, 

UK). 

 

3.3.6 Evaluation of Oxidative Stress 

The potential role of oxidative stress in the development of neurodegenerative diseases 

such as glaucoma and AD was discussed in previous sections (see sections 1.10 and 

1.12.4).  An evaluation of oxidative stress was obtained in this thesis through the 

determination of circulating levels of the antioxidant glutathione (GSH, L-γ-glutamyl-L-

cysteinyl-glycine) from fasting venous blood samples obtained by the author. The 

analysis was conducted by an experienced lab technician (Dr Lu Qin) according to 

protocols optimised in house according to previously reported and validated methods 729. 

This methodology is outlined below: 

• Within 10 minutes of collection, 30µl of the fasting venous EDTA blood sample. 

combined with 33.3µl of sulfosalicylic acid and 936.7µl of sodium phosphate 

stock buffer solution, was centrifuged at 15000rpm for 5 minutes 

• 150µl of the supernatant was then aliqouted and cooled to -80oC for later 

analysis 



167 
 

• The analysis of glutathione levels is then determined using an enzymatic 

reaction created by: 

1. Adding 150µl of daily buffer to 50µl of DTNB solution in each microwell 

2. Then adding 25µl of the prepared plasma samle to each well and 

incubating this at 37oC for 3 minutes 

3. 25µl of GSR solution is then added to the previous mixture and read 

using a microplate reader set at 410nm. 

 

Following determination of the plasma GSH and GSSG levels the redox status or 

GSH:GSSG ratio was additionally calculated, along with the total plasma glutathione 

level (total-GSH, t-GSH) (see equation 3.9) 512, 729.  

 

 

&��� = ��� + 62 1 ����7 

 
Equation 3.9: Calculation of total-GSH 
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4. Is the eye a window to the brain? Retinal vascular 

dysfunction in Alzheimer’s disease 
 
4.1 Abstract 

Purpose:  To assess ocular and systemic vascular function and its relationship to the 

degree of cognitive deficit in newly diagnosed AD patients without overt systemic 

vascular disease.   

Methods : Retinal vascular reactivity to flickering light was assessed in 10 AD patients 

and 28 age-matched healthy individuals by means of Dynamic Vessel Analysis (DVA). 

Systemic vascular function was assessed in the same patients by means of flow 

mediated dilation (FMD). Mini-mental state examination (MMSE) and Addenbrooke's 

Cognitive Examination-Revised (ACE-R), as well as BP measurements and blood 

analyses for lipid metabolism markers were also performed in all cases.  

Results : AD patients demonstrated differences in their vascular reaction times to three 

repeated cycles of flicker exposure at the retinal arterial level compared with healthy 

controls (p=0.038, p=0.049 and p=0.028 respectively), which correlated with their 

degree of cognitive impairment at the time of the test ( R=-0.782, p=0.013).  

Additionally AD patients demonstrated an increased venous baseline diameter 

fluctuation prior to the onset of flicker in comparison to controls (p=0.001). No significant 

differences in systemic endothelial function were found between groups (p>0.05). 

Conclusions : Signs of microvascular dysfunction measured at the retinal level correlate 

with the degree of the cognitive decline at the time of diagnosis in mild AD patients. It is 

possible that this method of screening could offer valuable information about risk for 

future vascular complications as well as progressive cognitive decline these patients. 
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4.2 Introduction 

In addition to other risk factors such as mechanical stress 463, 562, genetics 568 and 

oxidative stress 565, vascular disease leading to chronic brain hypo-perfusion 566, 617, 618 

and more recently cerebral vascular dysregulation have also been implicated in the 

development of AD 619, 630-632. As such the assessment of cerebral vascular function is 

considered to be of increasing importance in regard to the early diagnosis and 

management of AD; however, due to the notorious difficulties associated with directly 

assessing and visualising the vasculature in this region the ability to do this non-

invasively is currently limited.  

 

One concept being increasingly explored is the possibility of using the eye as a “window 

to the brain” 3. This is a particularly attractive concept as the retinal and brain vessels 

are known to share a large number of embryological and anatomical similarities 4 and 

alterations in retinal structure that replicate cortical neurodegeneration 3, 659, 663, 

alterations in retinal blood flow 663 and deposits of amyloid-ß (Aß) 730 have all previously 

been demonstrated at the ocular level in AD patients. Additionally, the co-existence of 

either increased risk for, or clinical evident, cardiovascular disease (CVD) has previously 

been shown to result in a poor cognitive prognosis in AD 731. All of these observations 

lead to the suggestion that through the assessment of retinal vasculature function 

information could potentially be gained not only on future systemic vascular risk in AD 

patients but also on cerebral vascular changes which may impact on cognitive 

prognosis. Indeed it has already previously been demonstrated that by assessing retinal 

vascular responses to flickering light early signs of vascular dysfunction in apparently 

healthy individuals with various degrees of risk for CVD can be identified 710, 732. This 

study therefore aims to explore, through the use of DVA, if anomalies in vascular 

function are evident at the retinal level in mild newly diagnosed AD patients and whether 
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they can be linked to their degree of cognitive deficit and/or their degree of systemic 

vascular dysfunction, as measured by FMD.   

 

4.3 Aims 

The aim of this study was to identify if anomalies in vascular function are evident at the 

retinal level in mild newly diagnosed AD patients and whether any such anomalies can 

be linked to the degree of cognitive deficit and/or the presence of coexisting systemic 

vascular impairments in these patients. 

 

4.4 Hypothesis 

Disturbed vascular function will be present at the ocular level in mild newly diagnosed 

AD patients and will correlate with their degree of cognitive impairment and/or their 

degree of systemic vascular dysfunction. 

 

4.5 Subjects and Methods 

Mild newly diagnosed AD patients and healthy age matched controls were recruited for 

this study. The recruitment details, inclusion and exclusion criteria for these patients was 

detailed in section 3.1. The investigative procedures performed in this study are outlined 

below and were conducted in accordance with the protocols detailed in section 3.2. 

1. Preliminary tests 

2. Fasting venous blood sample obtained 

3. Blood pressure measurement 

4. Assessment of retinal vessel reactivity (DVA) 

5. Assessment of systemic endothelial function (FMD) 
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4.6 Statistical analysis 

The Kolmogorov-Smirnov test was used to determine the distribution of the data. As 

normality could not be confirmed in all cases the differences between groups were 

assessed using either the Student t-test for independent variables or the Mann-Whitney-

U test as appropriate and presented as either mean ± SD or median (IQR) accordingly. 

Two factor repeated-measures ANOVA was used to compare the retinal reactivity 

responses across each flicker cycle and between groups, with log transformations being 

made where necessary. A Pearson’s linear correlation analysis assessed the 

relationship between the level of cognitive impairment (MMSE score) and the vascular 

response. Multivariate analysis was performed to determine the influence of age, BMI, 

BP and the circulating markers on the measured variables; however no significant 

influences were found. P-values of less than 0.05 were considered significant, except in 

certain cases where a stricter p-value of less than 0.01 was adopted in order to correct 

for multiple comparisons. All analyses were performed using Statistica, version 6.0, 

Statsoft, Tusla, OK. 

 

4.7 Power calculations 

With regard to DVA, new measurement parameters and novel analysis methods were 

used in this study in patient groups which have not previously been examined with these 

techniques. Power calculation was therefore based on the results of previous studies 

which share the most similar protocols to that of the present research and was 

conducted using the computer based programme, GPower 3 733. A retinal vessel 

reactivity response to flicker light of 6% with a standard deviation of 2.5% is considered 

normal on the basis of previous research and around a 50% alteration in this response 

has been shown to be clinically significant 686. Furthermore, with regard to FMD, a 

brachial artery dilation response of 8% with a standard deviation of 3% is considered 

normal on the basis of previous AD research and a 40% reduction in this response has 
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been shown to be clinically significant 631. Analysis by t-tests for independent samples, 

as well as two factor repeated measures ANOVA was required in this study. Taking this 

into consideration, it was calculated that, in order to provide a statistical power of 80% at 

an α level of 0.05 a sample size of between 10-18 per group would be required (10 DVA 

t-test, 18 DVA within groups ANOVA, 18 DVA within/between ANOVA, 12 FMD t-test). 

The aim was therefore to recruit at least 18 patients in each study group. 

              

4.8 Results 

A total of 12 AD patients and 34 healthy controls were screened for inclusion in the 

present study however, in order to ensure all participants were matched on critical 

factors such as age and hypertensive status, all those under the age of 50, over the age 

of 75 or with a MBP of greater than 115 mmHg had to be excluded from analysis. 

Additionally, following the careful review of the obtained images, any patients who 

exhibited poor or incomplete results were also excluded meaning 10 mild newly 

diagnosed AD patients and 28 healthy controls were included in the final analysis. 

These numbers obviously fall below the intended target of 18 in the AD group, however 

statistical significance was still observed. The difficulties faced with recruitment of this 

category of patients is discussed in section 4.11 

 

4.8.1  Baseline values 

There were no significant differences in age, systemic BP, BMI, TGs, glucose, HDL 

cholesterol levels and total cholesterol levels between the two groups (all p>0.05). 

Furthermore there were no significant differences in IOP, MABP, OPP or Framingham 

risk score between groups (all p>0.05, table 4.1). The number of subjects with well 

controlled high BP was also proportionally similar in both groups (AD: n=3 and Controls: 

n=9, p>0.05; Chi-square test) 
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 Table 4.1: Summary of the baseline characteristics of the study groups. P<0.05 is considered a 
significant difference. SBP: systolic blood pressure; DBP: diastolic blood pressure; BMI: Body 
mass index; HDL-C: High density lipoprotein cholesterol; Total C: Total cholesterol; IOP: 
Intraocular pressure; MMSE: mini mental state examination. The presented SBP, DBP and IOP 
values are the baseline readings taken on the morning of the study and do not represent the 24 
hour or diurnal averages. OPP was subsequently calculated using these baseline values. 
 
 
4.8.2 Systemic endothelial dysfunction 

No significant differences were found between groups with regard to brachial artery 

FMD or NMD (p>0.05, table 4.2). Furthermore no significant differences in circulating 

vWF levels were identified between groups 

 

 AD Controls  p-value  

FMD (%) 10.97±11.28 11.04±8.53 0.985 

NMD (%) 25.95 (13.66-39.74) 20.80 (18.85-26.38) 0.894 

vWF 118.34±64.28 120.95±52.23 0.920 

Table 4.2: Systemic endothelial function. Data presented as mean ± SD or mean (IQR) 
depending on distribution. P<0.05 (*) is considered significant. FMD: flow mediated dilation; 
NMD: nitroglycerine mediated dilation; vWF: von Willebrand factor. 
 
 
4.8.3 Dynamic retinal vessel analysis 

For ease of interpretation the DVA response profile was considered in two parts, the first 

being the dilation response (baseline to maximum dilation) and the second being the 

 AD Controls  P-value  

N 10 28 - 

Gender  5F:5M 11F:17M - 

Age (years)  62.50±8.07 57.89±7.25 0.103 

SBP (mmHg)  141.70±14.21 131.21±17.67 0.100 

DBP (mmHg)  80.30±7.51 78.71±10.53 0.665 

BMI 27.61±5.80 27.58±4.80 0.989 

Glucose  4.40±1.44 4.99±0.96 0.163 

Triglycerides  1.28±0.60 1.18±0.36 0.542 

HDL-C (mmol/L)  1.33±0.25 1.16±0.29 0.121 

Total -C (mmol/L)  4.77±0.64 4.66±0.82 0.708 

IOP (mmHg)  16.50±2.12 18.00±2.62 0.470 

MBP (mmHg)  100.77±7.67 96.21±11.92 0.269 

OPP 84.96±9.46 80.26±12.48 0.299 

Fram Risk  Score  10.67±3.28 9.84±5.96 0.697 

MMSE score  23.60 ± 3.57 - - 
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constriction response (maximum dilation to maximum constriction). Each flicker cycle 

was analysed individually using traditional SDRA analysis with the artery and vein being 

considered separately. The dynamic nature or slope of the retinal vascular response 

profiles were fully explored using the polynomial fitted curves generated via our novel 

computational analysis (MatLab R2010a; MathWorks Inc., Natick, MA) (see section 

3.3.3.11). 

 

Arterial Response 

With regard to the arterial dilation response no significant differences in baseline 

diameter fluctuation (BDF), maximum diameter (MD), reaction time (RT) or baseline 

corrected flicker response (BFR) were found between groups on average (p>0.01, table 

4.3). On consideration of each flicker cycle individually however the arterial RT was 

found to be significantly longer in AD patients compared to controls on both the 1st and 

3rd flicker cycles (p=0.039, p=0.028 respectively) and significantly shorter on the 2nd 

flicker cycle (p=0.049) (table 4.4). Furthermore although no within groups differences 

were found in RT on progressing from flicker 1 to flicker 3, the nature of this progression 

was however found to differ between groups, with AD patients showing a reduction in 

RT on going from flicker 1 to 2 and healthy controls showing a contrasting increase 

(p=0.007, table 4.4). With regard to the dynamic nature of the arterial dilation response 

profile, evaluated using our novel matlab analysis, no significant difference in arterial 

dilation slope (SlopeAD) was however found between study groups (p>0.05, table 4.5).  

 

With regard to the second part of the dynamic response curve, no significant differences 

were found in the arterial constriction response (MC%) or the arterial constriction 

response time (tMC) between groups (p>0.01, table 4.3). Furthermore on consideration 

of the dynamic nature of the arterial constriction response profile no significant 

differences in constriction slope (SlopeAC) were found between groups (p>0.05, table 

4.5).  
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Table 4.3: Arterial vascular function parameters determined using dynamic retinal vessel analysis (DVA, 
IMEDOS GmbH, Jena, Germany). Data presented as mean ± SD or mean (IQR) depending on 
distribution. P<0.01 (*) is considered as significant.BDF: baseline diameter fluctuation; MD(%): 
percentage change in diameter from baseline to maximum; RT: reaction time BFR: baseline 
corrected flicker response MC(%): percentage constriction below baseline; tMC: constriction time. 
 

Table 4.4: Arterial vascular function parameters by flicker cycle. P<0.05 (*) is considered as 
significant on two factor repeated measures ANOVA. RT: reaction time. 
 

Table 4.5: Dynamic characteristics of the retinal vascular response profiles determined using our 
novel computational model. P< 0.05 (*) is considered significant. Slope AD: slope of arterial 
dilation; Slope AC: slope of arterial constriction  
 

Venous Response 

With regard to the venous dilation response no significant differences in maximum 

diameter (MD), reaction time (RT) or baseline corrected flicker response (BFR) were 

found between groups (p>0.01, table 4.6). The venous baseline diameter fluctuation 

(BDF) however was found to be significantly greater in our AD patients compared to 

controls both on average (p=0.001) and across each individual flicker cycle (F1: 

p=0.013; F2: p=0.004; F3: p=0.014, table 4.7). On consideration of the dynamic nature 

of the venous dilation response profile, evaluated using our novel matlab analysis, no 

ARTERY AD Controls   p-value  
BDF 5.44±2.11 4.86±1.77 0.420 

MD (%) 5.78±3.25 5.56±2.02 0.811 

RT 21.83 (16.33-31.33) 17.83 (15.50-24.33) 0.273 

BFR 4.88 (3.18-7.35) 4.66 (3.72-5.76) 0.529 

MC (%) -3.29±1.56 -2.59±1.62 0.267 

tMC 32.63±10.24 28.07±8.51 0.101 

ARTERY AD Controls  p-value  Within/ Between 
groups ANOVA 

RT     
Flicker 1 29.30±16.61 18.59±12.21 0.039* 0.007* 

Flicker 2 16.30±11.48 23.68±9.26 0.049*  

Flicker 3 27.89±17.62 17.07±10.43 0.028*  

Within group 
ANOVA 

0.093 0.059   

DYNAMIC 
RESPONSE 

AD Controls  p-value  

Arteries     
Slope AD 0.265±0.221 0.278±0.153 0.853 

Slope AC -0.194±0.070 -0.187±0.113 0.848 
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significant difference in the venous dilation slope was found between study groups 

(p>0.05, table 4.8).  

 

With regard to the second part of the dynamic response curve, no significant differences 

were found in the venous constriction response (MC%) or constriction time (tMC) 

between groups (p>0.01, table 4.6). Furthermore on analysis of the dynamic nature of 

the venous constriction response no significant differences in the venous constriction 

slope (SlopeVC) were found between groups on average (p>0.05, table 4.8).  

Table 4.6: Venous vascular function parameters determined using dynamic retinal vessel analysis (DVA, 
IMEDOS GmbH, Jena, Germany). Data presented as mean ± SD or mean (IQR) depending on 
distribution. P<0.01 (*) is considered as significant.BDF: baseline diameter fluctuation; MD(%): 
percentage change in diameter from baseline to maximum; BFR: baseline corrected flicker 
response MC(%): percentage constriction below baseline. 
 
 

Table 4.7: Venous vascular function parameters by flicker cycle. P<0.05 (*) is considered as 
significant on two factor repeated measures ANOVA. BDF: baseline diameter fluctuation. 
 

Table 4.8: Dynamic characteristics of the retinal vascular response profiles determined using our 
novel computational model. P< 0.05 (*) is considered significant. Slope VD: slope of venous 
dilation; Slope VC: slope of venous constriction. 
 

VEIN AD Controls  p-value  
BDF  5.83 (5.10-8.34) 3.24 (2.04-4.03)  0.001* 

MD (%) 6.12±3.14 5.18±2.69 0.352 

RT 20.33 (18.67-24.50) 20.00 (18.67-24.00) 0.688 

BFR 1.84 (-1.01-6.34) 3.18 (1.54-4.66) 0.265 

MC (%) -2.61±2.13 -1.99±1.34 0.341 

tMC 29.74±6.20 33.98±8.05 0.348 

VEIN AD Controls  p-value  Within/ Between 
groups ANOVA 

BDF     

Flicker 1 6.78±3.15 3.48±2.00 0.013* 0.961 

Flicker 2 6.07±3.45 2.92±1.13 0.004*  

Flicker 3 7.08±4.21 3.59±2.52 0.014*  

Within groups 
ANOVA 

0.820 0.295   

DYNAMIC 
RESPONSE 

AD Controls  t-test p -value  

Veins     

Slope VD 0.295±0.172 0.218±0.124 0.214 

Slope VC -0.204±0.193 -0.164±0.122 0.451 
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4.8.4 Correlations 

No significant correlations were found between the retinal vascular reactivity parameters 

(BDF, MD%, RT, MC%, tMC, DA, BFR, Slope) and the systemic vascular parameters 

(FMD) in either group (P>0.05). Interestingly however a significant correlation was found 

between the degree of cognitive impairment in our AD patients, as indicated by MMSE 

score, and the arterial RT on the 1st flicker cycle (R=-0.782, p=0.013, figure 4.1)  

 

 

Figure 4.1 Correlation between arterial reaction ti me (RT) on the 1st flicker cycle and 
MMSE score 
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4.9 Discussion 

4.9.1 Main findings 

This study has revealed differences in the response of the retinal vasculature to flicker 

light between mild newly diagnosed AD patients and healthy age matched controls. 

Newly diagnosed AD patients took significantly longer to reach the point of maximum 

arterial dilation on two out of the three occasions in which their retinal vessels were 

challenged by flickering light and this alteration in response was found to correlate with 

their degree of cognitive impairment. Furthermore AD patients demonstrated a 

consistently increased fluctuation in venous baseline diameter prior to the onset of 

flicker across all three cycles in comparison to healthy controls. No significant 

differences however were found in systemic endothelial dysfunction between groups.     

 
 
4.9.2 Systemic endothelial function 

No significant differences in systemic vascular endothelial function, as measured by 

FMD, were found between groups in this study. This is in contradiction to previous 

research by Dede et al (2007) who demonstrated impaired brachial artery FMD in a 

group of diagnosed AD patients compared to healthy controls 631. Such contradiction in 

findings between previous research and our present study could partly be accounted for 

by differences in the measurement protocol and/or differences in the severity of the AD 

patients assessed. Our present study included only mild newly diagnosed AD patients 

and therefore it could be hypothesised that, as endothelial dysfunction is known to occur 

much earlier at the microvascular level than at the macrovascular level in a disease 

process 734, signs of systemic endothelial dysfunction, although not yet detectable in our 

newly diagnosed AD patients on FMD, could become more apparent as the disease 

progresses. In line with this Dede et al 631 found that the degree of endothelial 

dysfunction as indicated by FMD correlated with the severity of cognitive impairment in 

their AD patients, with endothelial dysfunction getting worse as the severity of the 
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disease increased. Further research however would be required to confirm this 

hypothesis before any firm conclusions can be drawn. Alternatively, it is possible that the 

small sample size of AD patients included in this study did not provide sufficient power 

to detect a difference in FMD between groups. Indeed on power analysis it was 

identified that a sample size of 12 would be required to provide 80% power at an α level 

of 0.05, however only 10 AD participants were able to be recruited. Post-hoc analysis, 

conducted using G-power 3, reveals the sample sizes achieved in this study were in fact 

only able to provide a power of 69%. This could potentially explain these non-significant 

findings.  

 
4.9.3 Retinal vessel reactivity 

A large body of evidence exists linking AD to the presence of cerebral vascular 

dysfunction and highlighting the involvement of the ocular circulation in the AD disease 

process 3, 567, 617, 620, 621, 668, 669. Furthermore, the easy access to the neural and vascular 

tissue at the retinal level, as well as the many anatomical and physiological similarities 

shared by the ocular and cerebral microcirculation, makes the retina an ideal screening 

target in cerebrovascular disease. The use of techniques such as the DVA method used 

in the present study, which are aimed at assessing retinal microvascular function, could 

therefore not only offer information regarding general microvascular function in AD 

patients but also offer an assessment of the potential risk for future decline and 

development of systemic vascular disease. In the present study, DVA analysis revealed 

how our newly diagnosed mild AD patients without manifest systemic vascular disease 

took significantly longer to reach the point of maximum dilation on two out of the three 

occasions in which their retinal vessels were challenged by flickering light. These results 

indicate that some form of microvascular dysfunction, detectable at the retinal level, 

does indeed appear to exist in AD patients; the cause of this vascular dysfunction, 

however, can only be hypothesised at this point.  
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The retinal vascular response to flicker light occurs due to an increase in retinal 

metabolic demand and is predominantly a neurovascular coupling driven response 226, 

685, 686, 691, 692. It could therefore be hypothesised that the altered retinal vessel reactivity 

demonstrated in our AD patients is indicative of a disturbed neurovascular coupling 

mechanism, possibly related to endothelial dysfunction, a decreased bioavailability of 

the vasodilator NO or an alteration in the activity of astrocytes in these patients, all of 

which are known to be key mediators of the neurovascular response 600. Interestingly, 

both disturbed neurovascular coupling and dysfunction of the vascular endothelium have 

been previously linked to the aetiology of AD 631, 632, 735, 736, as have alterations in 

astrocyte activity 737-739 and in NO production/release 565, 740. Such alterations in the 

production/release of NO could additionally be attributed to either cholinergic receptor 

degeneration in AD 741 and the subsequent reduction in acetylcholine mediated NO 

release, or to Aß deposition and the subsequent impairment of neuronal NO production. 

Indeed acetylcholine receptor stimulation and subsequent release of NO has been 

previously identified to play a role in the retinal vasodilation response to flicker light in 

rabbits 742, 743 and the accumulation of Aß, a key feature of AD, has been previously 

identified to reduce NO production in retinal neuronal cultures 730, adding plausibility to 

this theory. 

 

Aside from disturbed neurovascular coupling mechanisms it could alternatively be 

hypothesised that factors such as relative arterial inertia due to either increased vascular 

stiffness or vasospasm, similar to that documented in AD and cognitively impaired 

patients at the cerebral level 636, 744, 745 may also contribute to the observed abnormalities 

in retinal vascular function. Such an alternative hypothesis could also partly explain the 

dissimilarities in reaction time observed in our AD patients on consecutive flicker cycles, 

in that the presence of limited arterial elasticity could theoretically lead to an incomplete 

baseline recovery after the initial stimulation cycle, reducing the time taken to then reach 

the point of maximum dilation on the subsequent flicker cycle. Exhaustion of vasoactive 
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mediator reserves, such as that of NO, which is a feature commonly associated with 

vascular endothelial dysfunction 201, could then theoretically override this and prolong 

the reaction time again on the final cycle. Further research however would be required 

to validate these assumptions.   

 

With regard to the venous dynamic retinal vessel response profile our AD patients 

demonstrated an increased fluctuation in baseline vessel diameter across all three 

cycles, prior to the onset of flicker, which was not replicated by our healthy controls. 

Consideration of baseline diameter fluctuation (BDF) was first recommended by Nagel 

et al 686 as a way of taking into account the effect of the spontaneous variations in vessel 

diameter that occur under normal resting conditions on the observed response of the 

vasculature to flicker light stimulation, however it is a parameter which is not commonly 

reported in the literature and which has, to date, mainly been considered in regard to the 

retinal arteries, where it has been tentatively linked to vascular disturbance in the form of 

instability or increased variation in vascular tone or rigidity 695, 746-748. As such the cause 

and relevance of increased BDF in the venous circulation is currently unclear. Retinal 

veins are generally thought to play a more secondary role in retinal autoregulation, 

perhaps providing a fine tuning of the regulation response following the active reaction 

of the retinal arteries and instigating a regulatory contribution passively in response to 

increased blood flow 685. Interestingly increased retinal venous diameters have been 

previously linked to impaired cerebral blood flow and have been suggested as a marker 

of both retinal and cerebral ischemia and hypoxia 652, 749-751. The finding here is 

somewhat different as fluctuations in diameter have been assessed dynamically as 

opposed to vessel diameter measurements being taken statically from photographs. 

Nevertheless, as both ischemia and hypoxia have been well linked to the development 

of AD, it could be hypothesised that the increased fluctuation in baseline diameter 

observed in these patients could be reflective of early hypoxic changes and perhaps an 
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increased risk of future damage. Further investigation however would be necessary to 

confirm these hypotheses.  

 

4.9.4 Vascular function vs. Cognitive impairment 

A significant positive correlation was found between the abnormal retinal arterial 

reaction to flickering light and the level of cognitive impairment in AD patients, 

suggesting a possible link may exist between the degree of vascular dysfunction and 

disease severity even in the early stages of the disease process. This is supported by 

previous research in which vascular dysregulation at the cerebral level has been shown 

to become more pronounced with increasing severity of AD 629 and by the finding of a 

correlation between cognition and the geometry of the retinal vessels in elderly people 

after correcting for age, visual acuity and apolipoprotein E status 752. The possibility that 

the degree of vascular dysfunction at the retinal level could be a sensitive predictor of 

cognitive decline in mild AD patients emphasises the important role that vascular factors 

might play in the aetiology of the disease. In addition, it is tempting to propose that 

examining the function of retinal microvasculature could predict future cognitive decline 

in patients suffering from AD; nevertheless, more research is necessary to validate our 

presumption.   

 

4.10  Conclusion 

This study demonstrates for the first time that abnormalities in retinal vascular 

dysfunction, potentially indicative of a disturbed neurovascular coupling response, may 

be present in mild newly diagnosed AD patients and that the extent of these 

abnormalities may be a sensitive indicator of the degree of cognitive impairment. More 

research however would be necessary to validate our assumptions.  

 



183 
 

4.11  Limitations 

One factor potentially limiting the conclusions which can be drawn from this study is the 

small sample size of AD patients. The strict inclusion/exclusion criteria were necessary 

to avoid any possible unwanted influences on the measured vascular parameters; 

however they also made patient recruitment a challenge. Regular contact was always 

maintained with the dementia team in order to try and maximise the recruitment of 

suitable participants and additionally all members of the team received a thorough 

briefing on the study protocol, inclusion and exclusion criteria. Although significant 

differences in DVA parameters were found, as mentioned previously, it is possible that 

the small sample size of AD patients and subsequent lack of statistical power may have 

limited the conclusions which can be drawn for other parameters, especially FMD.    

The results of this study do however go some way to providing a positive indicator that 

vascular dysfunction is a factor involved in the pathogenesis of AD and offer a relevant 

and adequate platform for further research in this area. Future research to include more 

patients with various degrees of cognitive impairment would be beneficial to validate 

these findings. 
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5. Ocular and Systemic Vascular Abnormalities in Newly-

Diagnosed Normal Tension Glaucoma Patients 
 
 
5.1 Abstract 

Purpose : To investigate signs of ocular and systemic vascular abnormalities in newly 

diagnosed and previously untreated normal tension glaucoma patients (NTG). 

Methods : Retinal vascular reactivity to flickering light was assessed in 19 NTG and 28 

healthy age-matched controls by means of dynamic retinal vessel analysis (DVA, 

IMEDOS GmbH, Jena, Germany). Using a newly developed computational model, the 

entire dynamic vascular response profile to flicker light was imaged and used for 

analysis. Assessments of systemic endothelial function (FMD), carotid intima-media 

thickness (IMT) and pulse wave analysis (PWA) were conducted on all participants, 

along with blood analyses for von Willebrand factor (vWf), glucose and lipid metabolism 

markers. 

Results : Patients with NTG demonstrated an increased carotid IMT (p=0.015) and an 

elevated PWA augmentation index (p=0.017) in comparison to normal controls, as well 

as an altered retinal arterial vascular response profile and a significantly steeper retinal 

arterial constriction slope (slope AC) following flicker light stimulation (p=0.031). No 

significant differences in systemic endothelial function were identified between groups 

(p>0.05) 

Conclusions :  Newly diagnosed and untreated NTG patients showed signs of 

subclinical vascular abnormalities at both ocular and systemic levels. Due to the 

importance of circulation-related pathologies in the aetiology and progression of this 

type of glaucoma early detection of such abnormalities and the introduction of disease 

modifying interventions could prove beneficial for disease prognosis.  
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5.2 Introduction 

Although abnormal intraocular pressure (IOP) is still considered a crucial risk factor for 

the development of normal tension glaucoma (NTG) 36, 37, other local culprits including 

ocular microvascular dysregulation 325 have been implicated in its aetiology. Moreover, 

systemic vascular pathologies, such as peripheral vasospasm 26, 353, endothelial 42, 384 

and autonomic nervous system (ANS) dysfunctions 413, 414 as well as high levels of 

oxidative stress 753 have also been reported in NTG patients, along with a high incidence 

of systemic cerebrovascular and/or cardiovascular disease (CVD)  24, 323, 444, 468, 477, 478, 754. 

The impact and inter-relationships of such vascular alterations, which appear to affect 

both the macro- and micro-vascular beds, is however still poorly understood and many 

questions still remain around the exact pathogenesis of glaucomatous optic neuropathy 

(GON). 

 

A common link between micro- and macro-vascular pathologies is endothelial 

dysfunction 255 and the assessment of this type of dysfunction across different vascular 

beds has been shown to be a good predictor of future vascular risk 263, 755, 756. 

Interestingly, the presence of endothelial dysfunction has previously been reported in 

the systemic macro-circulation of NTG patients 42 however, in the course of vascular 

disease development, the microcirculation is thought to be affected much earlier than 

the macro-circulation 734. Dynamic retinal vessel analysis (DVA) allows an assessment 

of the retinal microvascular response to stress and using this technique, a diminished 

venous dilation response to flickering light has previously been reported in early primary 

open angle glaucoma (POAG) 41. No such studies have however yet been carried out in 

NTG patients. Additionally the majority of currently published DVA analyses focus 

almost solely on the dilatory response of the retinal vasculature to flickering light 

however, in order to completely understand the mechanisms behind vascular 

dysfunction in ocular disease, as already recommended by previous studies 688, 696, the 
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entire profile of the retinal vascular response, including vessel recovery, should be 

considered. With this in mind the present study aimed, through the use of a new 

computational analysis of the complete DVA response profile, to study both the retinal 

dilation and constriction responses to flickering light in newly diagnosed and untreated 

NTG patients and to explore the coexistence of both micro- and macro-vascular 

abnormalities in these patients through the simultaneous evaluation of systemic macro-

vascular function markers. The assessment of vascular function in NTG patients is of 

particular interest as IOP is thought to play a less prominent role in the NTG disease 

process and hence diagnosis and treatment of the condition more commonly looks to 

IOP-independent causes, such as vascular alterations, whose roles are yet to be fully 

clarified. 

 

5.3 Aims 

The aim of this study was to assess ocular microvascular reactivity, in the form of both 

the retinal dilation and constriction responses to flickering light in otherwise healthy, 

newly diagnosed and untreated NTG patients and to fully explore the ‘sick eye in a sick 

body’ concept of glaucoma, through assessment of systemic endothelial function by 

means of FMD, systemic arterial stiffness and carotid artery IMT. 

 

5.4 Hypothesis 

Newly diagnosed and previously untreated NTG patients demonstrate altered retinal 

vessel reactivity to flicker light stimulation in conjunction with signs of vascular 

dysfunction at the systemic level.  
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5.5 Subjects and Methods 

Newly diagnosed and previously untreated NTG patients and healthy age matched 

controls were recruited for this study. The recruitment details, inclusion and exclusion 

criteria for these patients was detailed in section 3.1. The investigative procedures 

performed in this study are outlined below and were conducted in accordance with the 

protocols outlined in section 3.2: 

1. Preliminary tests 

2. Fasting venous blood sample obtained 

3. BP measurement 

4. Assessment of retinal vessel reactivity (DVA) 

5. Pulse wave analysis (PWA) 

6. Intima-media thickness (IMT) measurement 

7. Assessment of systemic endothelial function (FMD) 

 

5.6 Statistical Analysis 

The Kolmogorov-Smirnov test was used to determine the distribution of the data. As 

normality could not be confirmed in all cases the differences between groups were 

assessed using either the Student t-test for independent variables or Mann-Whitney-U 

test as appropriate and reported as either mean±SD or mean(IQR) accordingly. The 

only exception to this was with regard to IMT, where multiple regression analysis 

revealed systolic BP to be an influencing factor and hence a one-way ANCOVA, 

followed by Tukey’s post-hoc analysis, was subsequently conducted. Correlations were 

determined according to Pearson’s method or Spearman’s rank method as appropriate. 

P-values of less than 0.05 were considered significant, except in certain cases where a 

stricter p-value of less than 0.01 was adopted in order to correct for multiple 

comparisons and minimise bias towards type I errors. All analyses were performed 

using Statistica, version 6.0, Statsoft, Tusla, OK. 
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5.7 Power calculations 

With regard to DVA, new measurement parameters and novel analysis methods were 

used in this study in patient groups which have not previously been examined with these 

techniques. Power calculation was therefore based on the results of previous studies 

which share the most similar protocols to that of the present research and was 

conducted using the computer based programme, GPower 3 733. A retinal vessel 

reactivity response of 6% with a standard deviation of 2.5% is considered normal on the 

basis of previous research and around a 50% alteration in this response has been 

shown to be clinically significant 686. With regard to FMD, a brachial artery dilation 

response of 7.5% with a standard deviation of 2.3% is considered normal on the basis of 

previous glaucoma research and around a 40% alteration in this response has been 

shown to be clinically significant 42. With regard to PWA AIx and IMT similar deductions 

to that above, regarding clinical significance, were made on the back of previous 

research 482, 715, 726. Analysis by t-tests for independent samples was required in this 

study. Taking this into consideration, it was calculated that, in order to provide a 

statistical power of 80% at an α level of 0.05, a sample size of between 7-22 per group 

would be required (10 DVA, 7 FMD, 22 PWA, 9 IMT). The aim was to therefore recruit at 

least 22 participants in each study group. 

 

5.8 Results 

A total of 25 NTG patients and 34 healthy controls were screened for inclusion in the 

present study however, in order to ensure all participants were matched on critical 

factors such as age and hypertensive status, all those under the age of 45, over the age 

of 75 or with a MBP of greater than 115 mmHg had to be excluded from analysis. 

Additionally, following the careful review of the obtained images, any patients who 

exhibited poor or incomplete results were also excluded and 19 NTG patients (11 

female, 8 male) and 28 healthy age matched controls (12 female, 16 male) were 
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included in the final analysis. The number of NTG patients ultimately fell slightly below 

the optimum sample size suggested by power calculation; however post-hoc analysis 

using GPower 3 revealed the obtained sample sizes were still able to provide a 

statistical power of 82%.  

 

5.8.1 Baseline values 

 There were no significant differences in age, systemic BP, BMI, triglycerides, glucose, 

HDL cholesterol levels and total cholesterol levels between the two groups (all p>0.05). 

Furthermore there were no significant differences in IOP, MABP, OPP or Framingham 

risk score between groups (all p>0.05) (Table 5.1). The number of subjects with well 

controlled high BP was also similar in both groups (NTG: n=5 and Controls: n=9, p>0.05; 

Chi-square test). 

 

 Table 5.1: Summary of the baseline characteristics of the study groups. P<0.05 is considered a 
significant difference. SBP: systolic blood pressure; DBP: diastolic blood pressure; BMI: Body 
mass index; HDL-C: High density lipoprotein cholesterol; Total C: Total cholesterol; IOP: 
Intraocular pressure. The presented SBP, DBP and IOP values are the baseline readings taken 
on the morning of the study and do not represent the 24 hour or diurnal averages. OPP was 
subsequently calculated using these baseline values.  
 
 

 NTG Controls  P-value  

N 19 28 - 

Gender  11F:8M 12F:16M - 

Age (years)  60.16±12.13 56.82±7.54 0.251 

SBP (mmHg)  130.06±15.37 127.00±18.52 0.563 

DBP (mmHg)  78.39±11.14 76.39±10.91 0.551 

BMI 27.92±4.20 26.81±4.22 0.407 

Glucose  5.08±0.86 4.93±0.94 0.594 

Triglycerides  1.04±0.31 1.12±0.36 0.403 

HDL-C (mmol/L)  1.12±0.29 1.18±0.32 0.556 

Total -C (mmol/L)  4.58±1.04 4.75±0.86 0.560 

IOP (mmHg)  17.40±1.80 16.71±2.36 0.460 

MBP (mmHg)  95.61±10.93 93.26±13.00 0.529 

OPP 76.09±12.66 80.85±12.87 0.223 

Fram Risk  Score  9.67±7.50 8.31±5,24 0.499 
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5.8.2 Systemic vascular parameters 

5.8.2.1 Pulse wave analysis 

Pulse wave analysis AIx was found to be significantly greater in newly diagnosed NTG 

patients compared to healthy age matched controls (p=0.017) (Table 5.2). 

 

5.8.2.2 Intima-media thickness measurement 

Carotid artery IMT was found to be significantly higher in NTG patients compared to 

controls (p=0.015) (Table 5.2). Multiple regression analysis revealed significant positive 

correlations between IMT and SBP (p=0.035); therefore, the given p-value was 

calculated using ANCOVA correcting for the effect of SBP. 

 

 NTG Controls  p-value  

PWA: AIx (%) 26.06 ± 11.25 17.18 ± 9.32 0.017* 

IMT (cm) 0.064 ± 0.015 0.042 ± 0.223 0.015* 

Table 5.2: Systemic macro-vascular parameters. P<0.05 (*) is considered significant. PWA:AIx: 
pulse wave analysis: augmentation index; IMT: intima-media thickness. 
 

5.8.2.3 Systemic endothelial function 

No significant differences were found between groups with regard to brachial artery 

FMD or NMD. (p>0.05, table 5.3). Furthermore no significant differences in circulation 

vWF levels were identified between groups (P>0.05). 

 NTG Controls  p-value  

FMD (%) 11.01±6.97 12.55 ± 9.21 0.669 

NMD (%) 25.89 (15.12-52.96) 22.66 (19.69-29.63) 0.665 

vWF 118.17±63.46 126.58±55.35 0.696 

Table 5.3: Systemic endothelial function. P<0.05 (*) is considered significant. Data presented as 
mean ± SD or mean (IQR) depending on distribution. FMD: flow mediated dilation; NMD: 
nitroglycerine mediated dilation; vWF: von Willebrand factor. 
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5.8.3 Dynamic retinal vessel analysis 

For ease of interpretation, the dynamic retinal vessel profile curve was considered in two 

parts, the first part being the dilation response (baseline to maximum dilation) and the 

second part being the constriction response (maximum dilation to maximum 

constriction). The principle results are given based on the average of the 3 flicker cycles 

with the artery and vein being considered separately. Although each flicker cycle was 

also analysed individually this analysis did not yield any additional information and has 

therefore not been presented. The dynamic nature of the retinal vascular response 

profiles were fully explored using the polynomial fitted curves generated via our novel 

computational analysis (MatLab R2010a; MathWorks Inc., Natick, MA). These curves 

are illustrated in figures 5.1 and 5.2 for the artery and vein respectively.  

 
Figure 5.1: Averaged arterial response profile for NTG patients and healthy controls generated 
through Matlab. Demonstrates the significantly steeper arterial constriction slope found in NTG 

patients and the apparently greater percentage constriction response below baseline 
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Figure 5.2: Averaged venous response profile for NTG patients and healthy controls generated 

through Matlab. 
 

Arterial response  

Following the adoption of a stricter p value of less than 0.01 to account for the effects of 

multiple comparisons, no significant differences in the maximum arterial dilation (MD%), 

reaction time (RT), arterial baseline corrected flicker response (BFR) or the baseline 

diameter fluctuation (BDF) was found between study groups (all p>0.01, table 5.4). 

Furthermore with regard to the second part of the arterial dynamic profile curve, which 

looks at the activity of the retinal vessels following dilation and on cessation of flicker, 

again following the adoption of a stricter p-value of 0.01, no significant differences in the 

arterial constriction response (MC%) or constriction time (tMC) was also found between 

groups (p=0.028, p=0.462 respectively, table 5.4) 

 

On consideration of the dynamic nature of the arterial dilation response, evaluated using 

our novel matlab analysis however, despite no significant differences being found 

between groups with regard to slope (p>0.05, table 5.5), the arterial dilation profile did 
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appear to follow a different path in NTG patients compared to controls, with healthy 

controls demonstrating a ‘two humped’ arterial dilation response which was absent in 

our NTG patients (figure 5.2). Furthermore the arterial constriction slope (SlopeAC) was 

found to be significantly steeper in NTG patients compared to healthy controls on 

consideration of the dynamic nature of the arterial constriction profile, (p=0.031, table 

5.5).  

Table 5.4: Arterial vascular function parameters determined using dynamic retinal vessel analysis (DVA, 
IMEDOS GmbH, Jena, Germany). Data presented as mean ± SD or mean (IQR) depending on 
distribution. P<0.01 is considered as significant (*).BDF: baseline diameter fluctuation; MD(%): 
percentage change in diameter from baseline to maximum; BFR: baseline corrected flicker 
response MC(%): percentage constriction below baseline. 
 

 

 

Table 5.5: Dynamic characteristics of the retinal vascular response profiles determined using our 
novel computational model. Data presented as mean ± SD or mean (IQR) depending on 
distribution. P< 0.05 (*) is considered significant. Slope AD: slope of arterial dilation; Slope AC: 
slope of arterial constriction 
 

Venous response 

Following the adoption of a stricter p value of less than 0.01 to account for the effects of 

multiple comparisons, no significant differences were found between groups with regard 

to venous MD%, RT, BFR or BDF (p>0.01, table 5.6). Furthermore, with regard to the 

second part of the dynamic response curve, no significant differences were found in the 

venous constriction response (MC%) or the constriction response time between groups 

(p>0.01, table 5.6) 

ARTERY NTG Controls  p-value  
BDF 7.21 (4.50-9.08) 4.66 (3.51-5.45) 0.018 

MD (%) 4.28 (2.80-6.31) 3.70 (2.29-4.44) 0.138 

RT 21.09 ± 8.67 18.59 ± 5.79 0.256 

BFR -0.04±2.41 0.50±1.95 0.423 

MC (%) -2.64 ± 1.61 -1.56 ± 1.46 0.028 

tMC 34.99 ± 8.30 32.99 ± 8.92 0.462 

DYNAMIC RESPONSE NTG Controls  p-value  
Arteries     
Slope AD 0.300 ± 0.159 0.250 ± 0.149 0.294 

Slope AC -0.236 (-0.449—0.158) -0.153 (-0.207—0.110) 0.031* 
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On consideration of the dynamic nature of the venous response profile, evaluated using 

our novel matlab analysis, no significant difference in the venous dilation slope or the 

venous constriction slope (SlopeVD) was found between groups (p>0.05, table 5.7).  

 

Table 5.6: Venous vascular function parameters determined using dynamic retinal vessel 
analysis (DVA, IMEDOS GmbH, Jena, Germany). P<0.01 (*) is considered as significant.BDF: 
baseline diameter fluctuation; MD(%): percentage change in diameter from baseline to maximum; 
BFR: baseline corrected flicker response MC(%): percentage constriction below baseline. 
 
 
 

Table 5.7: Dynamic characteristics of the retinal vascular response profiles determined using our 
novel computational model. P< 0.05 (*) is considered significant. Slope VD: slope of venous 
dilation; Slope VC: slope of venous constriction.  
 
 

5.8.3.1 Correlations 

No significant correlations were found between the retinal vascular reactivity parameters 

(BDF, MD, MC, DA and BFR, Slope) and the systemic vascular parameters (AIx, IMT 

and FMD) in either of our groups (all p>0.05). 

 
 
 
 
 
 

VEIN NTG Controls  t-test p -value  
BDF  4.55 ± 1.72 3.36 ± 1.38 0.019 

MD (%) 4.38 ± 2.16 4.15 ± 2.33 0.753 

RT 22.63 ± 7.12 19.99 ± 4.08 0.128 

BFR -0.04 ± 2.56 1.72 ± 2.36 0.026 

MC (%) -0.61 ± 0.86 -0.93 ± 1.04 0.326 

tMC 39.31 ± 6.93 37.73 ± 9.57 0.575 

DYNAMIC 
RESPONSE 

NTG Controls  t-test p -value  

Veins     

Slope VD 0.235 ± 0.132 0.225 ± 0.133 0.816 

Slope VC -0.147 ± 0.090 -0.164 ± 0.124 0.630 
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5.9 Discussion 

5.9.1 Main findings 

Using a novel computational model, our results reveal that newly diagnosed, previously 

untreated NTG patients with no overt clinical signs of systemic vascular disease show 

an altered retinal arterial response profile to flicker light along with a significantly steeper 

retinal arterial constriction response following cessation of flicker. Moreover, subclinical 

signs of systemic arterial stiffness along with increased carotid artery IMT are 

consistently exhibited by our NTG patients but not by our age-matched controls.  

 
5.9.2 Systemic macro-vascular alterations in NTG 

Both the presence of systemic vascular disease and alterations in systemic vascular 

function have been well linked with the development of glaucoma, particularly NTG 42, 311, 

446, 757, 758.  Nevertheless, previous research into the role of systemic measures, such as 

arterial stiffness in the aetiology of glaucoma have given inconsistent results with some 

showing a strong association 481-483 and others showing no association at all 318, 485. Such 

variability in results could be partly accounted for by differences in the 

inclusion/exclusion of patients suffering from already diagnosed systemic vascular 

disease in these studies, especially as arterial stiffness is a measure of vascular function 

759. In this study we have demonstrated increased arterial stiffness and IMT in our NTG 

patients. Patients with well controlled hypertension were included in this study, however 

a similar number of subjects with such status were included in both the NTG and control 

group. The present report therefore simply shows that newly diagnosed NTG patients 

present with stronger signs of systemic vascular pathology, which could have possibly 

contributed to the onset of the ocular disease. In light of this it could be suggested that 

screening for such abnormalities in at risk or newly diagnosed individuals and 

addressing them through appropriate interventions could be beneficial with regard to 

disease prognosis.  
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With regard to macrovascular function, no significant differences in systemic endothelial 

function were found between NTG patients and controls in this study on brachial artery 

FMD or on the evaluation of the circulating endothelial marker, vWf. These findings are 

in contrary to the plentiful evidence in the literature indicating the involvement of 

systemic endothelial dysfunction in the glaucomatous disease process and to the 

findings of Su et al 52 who demonstrated impaired FMD in NTG patients. Such 

contradiction in findings between previous research and our present study could partly 

be accounted for by differences in both the measurement protocol and the patient 

inclusion criteria used, particularly as it is unclear whether the NTG patients included by 

Su et al were newly diagnosed and untreated or at a more advanced stage of the 

disease process. With this is mind it could be hypothesised that, as endothelial 

dysfunction is known to occur much earlier at the microvascular level than at the 

macrovascular level in a disease process 734, signs of systemic endothelial dysfunction, 

although not yet detectable in our newly diagnosed NTG patients on FMD, could 

become more apparent as the disease progresses. Further research however would be 

required to confirm this hypothesis and it is worth considering that there are studies 

which have previously indicated the presence of systemic endothelial dysfunction even 

in newly diagnosed NTG patients using alternative and now less favoured methods of 

assessment such as venous occlusion plethysmography 382, 384, however, these studies 

whilst conclusive, did involve very small sample sizes and it is unclear to what extent 

coexisting systemic disease was considered.  

 

The states of the macro- and microcirculation are known to be closely related 760-762 and 

in addition to systemic vascular abnormalities, NTG has also been associated with 

ocular microcirculatory changes. Indeed, Oettli et al 295 recently demonstrated an 

increased retinal vessel rigidity in untreated NTG patients that correlated with the level 

of glaucomatous damage. Our present results also demonstrate that in addition to 
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systemic vascular abnormalities, newly diagnosed and untreated NTG patients show 

signs of abnormal vascular function at the retinal vessel level.  

 
5.9.3 Retinal microvascular reactivity in NTG 

Considering the arterial dynamic retinal vessel profile first, no differences in dilation 

response were found between groups in this study; however the dilation profile did 

appear to follow a different path in NTG patients compared to controls. As illustrated in 

figure 5.2, our healthy controls demonstrated a ‘two humped’ arterial dilation response 

that is consistent with that previously demonstrated by Lanzl et al in a sample of young 

healthy volunteers 763 and to a lesser extent in a sample of older healthy volunteers 696. 

Our patients fall between the age ranges included in the above research and whilst the 

‘two humped’ aspect was present in our healthy control patients it was absent in our 

age-matched NTG patients. Lanzl et al 696 propose that such a ‘two humped’ profile is, 

amongst other factors, reflective of two separate systems that contribute to arterial 

dilation, the first being a fast onset, short duration system, mediated by endothelial NO-

synthase and free NO and the second being a slow onset, long duration system which 

represents the summation of dilation and constriction factors. As no differences were 

found in age, maximum dilation or the time taken to reach maximum dilation between 

our groups it is difficult to determine which of these systems, if any, may be affected in 

our NTG patients and lead to the loss of this ‘two humped’ pattern. It could be 

hypothesised that whilst there is sufficient NO production/availability to induce a dilatory 

response in the retinal arteries in our NTG patients initially, this NO is either of short 

supply or is rapidly deactivated after release, leading to a loss of the second dilatory 

phase and a predominance of vasoconstrictive factors such as ET-1. In line with this 

assumption, our newly diagnosed NTG patients demonstrated a steeper arterial 

constriction slope compared to our healthy age matched controls on cessation of flicker. 

Slope calculation considers the interaction between the percentage change in vessel 

diameter and the rate at which this change occurs. The relevance of a steeper arterial 
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constriction slope, as demonstrated in our NTG patients, is currently unclear as very few 

previous studies looking at vascular reaction to flickering light have investigated the 

constriction responses in detail. One factor which could contribute towards such a 

steeper arterial constriction slope is an enhanced percentage constriction response 

below baseline following cessation of flicker. Re-establishment of baseline diameter 

following stimulation is part of a complex inherent biological control process and a 

certain degree of overshoot in vascular diameter below baseline is expected even in 

healthy individuals following flicker light exposure 685, 693. Interestingly, in a similar way to 

our newly diagnosed NTG patients, a greater overshoot in arterial vessel diameter below 

baseline has previously been noted by Gugleta et al 746 in individuals with PVD, a 

condition known to be associated with both vascular dysfunction and NTG 26, 300, 334, 353, 

360, 383. With this in mind we could therefore propose that the steeper constriction 

response demonstrated in our NTG patients could be indicative of some form of 

vascular dysfunction. The cause of this vascular dysfunction, however, can only be 

hypothesised at this point. One potential contributing factor, as mentioned previously, 

could be a predominance of vasoconstrictive factors such as ET-1, the levels of which, 

although not measured here, have previously been shown to be increased in NTG 

patients and vasospastic patients 340, 355, 356 391. Alternatively an abnormal proliferation of 

astrocytes, which are known to be key mediators of the neurovascular coupling 

response 600 could also contribute to these findings. Indeed abnormal astrocyte 

proliferation has been previously linked to both the development of glaucoma 144 and to 

the re-establishment of vasomotor tone following neuronal stimulation 764, 765. Further 

investigations however would be needed to validate these hypotheses.     

 

With regard to the venous dynamic retinal vessel profile to flicker light stimulation, prior 

to correction for multiple comparisons a significantly reduced venous baseline corrected 

flicker response (BFR) was demonstrated in our newly diagnosed previously untreated 

NTG patients, which reinforces previous findings by Garhofer et al 41 who identified an 
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impaired retinal venous dilation response to flicker in early POAG patients. Similarly, 

baseline diameter fluctuation (BDF) was found to be significantly greater in both arteries 

and veins of those with NTG, however again this significance was lost on correction for 

multiple comparisons. Despite this there is evidence to suggest that increased BDF 

could be a relevant indicator of vascular disturbance 695, 746, perhaps indicating instability 

or increased variation in vascular tone or rigidity 747, 748 and therefore it may be a 

parameter worth exploring further in future research, especially as increased arterial flow 

pulsations, associated with aging and arterial stiffening have been linked with the 

occurrence of microvascular disease 766, 767.  

 

 
5.9.4 Ocular microvasculature vs. Systemic macrovasculature 

No correlations were found between the subclinical signs of systemic vascular disease 

and the retinal vascular response to flickering light in NTG patients; however, due to the 

complexity of comparing parameters from two different vascular beds using different 

measuring techniques this may not be surprising. Interestingly, this finding is in 

concordance with that of a number of recent studies which have similarly demonstrated 

no direct correlation between anomalies identified at the macro- and micro-vascular 

levels in various disease states 710, 768, 769. This supports the view that, whilst the states 

of these two systems may be closely related, they may in fact act independently of each 

other with regard to the rate and pathophysiological mechanism of their vascular 

dysfunction development. The possibility that each may drive or influence the other 

however cannot be excluded 770 and this requires further investigation. 

 

 
5.10  Conclusion 

In conclusion this study demonstrates the coexistence of static macro-vascular 

abnormalities and functional retinal microvascular abnormalities in newly diagnosed and 
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previously untreated NTG patients, highlighting the importance of considering multi-level 

circulation-related pathologies in the development of this type of glaucoma.   

 

5.11  Limitations 

Only a moderately sized cohort of NTG patients could be recruited for this study which 

could potentially limit the statistical power of the analysis and the conclusions which can 

be drawn from the presented data. The overall limitations of the presented research are 

discussed further in section 8.3.    
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6. Ocular Vascular Dysregulation in AD compares to both 

POAG and NTG 

 
 
6.1 Abstract 

Purpose: To investigate and compare vascular function at both the ocular and 

systemic level in newly diagnosed mild AD patients, newly diagnosed normal tension 

glaucoma (NTG) patients and newly diagnosed primary open angle glaucoma (POAG) 

patients. 

Methods:  Retinal vessel reactivity to flickering light was assessed in 10 AD, 19 POAG, 

19 NTG and 20 healthy age matched control patients by means of dynamic retinal 

vessel analysis (DVA, IMEDOS, GmbH, Jena, Germany). Systemic vascular endothelial 

function was additionally assessed in all patients by means of brachial artery flow 

mediated dilation and all patients underwent BP measurements and blood analysis for 

glucose and lipid metabolism markers.    

Results: AD patients demonstrated altered arterial retinal vessel reactivity to flicker 

light stimulation which was comparable to that of POAG patients (p=0.013) and altered 

baseline venous reactivity which was comparable to that of NTG patients (p=0.001). 

Neither were replicated in healthy controls. No significant differences in systemic 

endothelial function were identified between groups (p>0.05).  

Conclusion: AD patients demonstrate similar signs of retinal vascular dysfunction to 

both POAG and NTG patients at the early stages of their disease process, providing 

support for the concept of a common underlying vascular aetiology in both conditions 

and highlighting the need to consider ocular health in AD and cerebral health in 

glaucoma.    
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6.2 Introduction 

The possibility that AD and glaucoma may share a common underlying vascular 

aetiology has been increasingly realised over recent years. This stems not only from 

their obvious similarities as chronic neurodegenerative diseases associated with aging 

but also from the results of numerous studies which have identified alterations in 

cerebral perfusion and dynamic cerebral autoregulation, more commonly associated 

with AD, in both POAG 323 and NTG patients 313, 323, 468. Moreover reduced retinal 

perfusion and increased ONH cupping, more characteristic of glaucoma; have also been 

demonstrated in AD patients 663, 665. Despite these apparent associations however there 

is currently no research which directly explores and compares the nature and 

coexistence of vascular function abnormalities in both AD and glaucoma patients 

simultaneously. Interestingly, in Chapters 4 and 5 of this thesis, evidence of vascular 

alteration was identified in both newly diagnosed AD patients and newly diagnosed NTG 

patients, individually, in comparison to healthy controls. In order to expand on these 

findings, this study aims, through the simple, non-invasive evaluation of both dynamic 

retinal vessel function and systemic vascular endothelial function, to investigate whether 

such ocular and systemic vascular alterations coexist in newly diagnosed glaucoma and 

AD patients and to explore the similarities and differences between them. Furthermore, 

through consideration of two separate categories of glaucoma patients, namely POAG 

and NTG, this study additionally aims to determine whether any vascular alterations 

identified in AD patients are more closely related to those of patients diagnosed with 

POAG or to those of patients diagnosed with NTG. Increasing our understanding of the 

nature of vascular dysfunction in all of these conditions, if present, could provide an 

important insight into their disease aetiology and lead to better awareness and 

understanding of their potential coexistence.      
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6.3 Aims 

The aim of this study is to investigate whether ocular and systemic vascular alterations 

coexist in newly diagnosed POAG, NTG and AD patients and to explore the similarities 

and differences between them. Furthermore, this study aims to determine whether 

vascular alterations in AD, if identified, related to both POAG and NTG. 

 

6.4 Hypothesis 

Newly diagnosed mild AD patients will demonstrate signs of vascular dysfunction at the 

ocular and systemic level which are comparable to that also demonstrated by newly 

diagnosed POAG patients and/or NTG patients. 

 
6.5 Subjects and Methods 

Newly diagnosed and previously untreated NTG and POAG patients, mild newly 

diagnosed AD patients and healthy age matched controls were recruited for this study. 

The recruitment details, inclusion and exclusion criteria for these patients was detailed in 

section 3.1. The investigative procedures performed in this study are outlined below and 

were conducted in accordance with the protocols outlined in section 3.2: 

1. Preliminary tests 

2. Fasting venous blood sample obtained 

3. Blood pressure measurement 

4. Assessment of retinal vessel reactivity (DVA) 

5. Assessment of systemic endothelial function (FMD) 

 

6.6 Statistical Analysis 

All data were reported as mean ± standard deviation. The Kolmogorov-Smirnov test was 

used to determine the distribution of the data. Multivariate analysis was performed to 
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determine the influence of age, BMI, BP and circulating markers on the measured 

variables. Differences between groups were subsequently assessed using one-way 

ANOVA or ANCOVA, as appropriate, followed by Tukey’s post hoc analysis. Two factor 

repeated-measures ANOVA was used to compare the retinal reactivity responses 

across each flicker cycle. In cases where the normality of the data could not be 

confirmed log transformations were made. Correlations between the ocular and 

systemic parameters were explored using either Pearson’s linear correlation or 

Spearman’s rank method as appropriate. P-values of less than 0.05 were considered 

significant, except in certain cases where a stricter p-value of less than 0.01 was 

adopted in order to correct for multiple comparisons and minimise bias towards type I 

errors. All analyses were performed using Satistica, version 6.0, Statsoft, Tusla, OK. 

 

6.7 Power calculations 

With regard to DVA, new measurement parameters and novel analysis methods were 

used in this study in patient groups which have not previously been examined with these 

techniques. Power calculation would normally be based on the results of previous 

studies which share the most similar protocols to that of the present research, however 

due to the nature of the statistical analysis required in this study, namely one-way 

ANOVA (or ANCOVA) and two factor repeated measures ANOVA and the uniqueness 

of the comparisons being made, appropriate previous research was not available and 

the power calculations were therefore ultimately made based on a number of 

assumptions. Firstly a large effect size of 0.40 was selected from Cohen’s standardised 

effect sizes 771, along with a Pearson’s correlation coefficient among repeated measures 

of 0.5 and a non-sphericity correction of 1. The power calculation was made using the 

computer based programme, GPower 3 733 and it was calculated that, in order to provide 

a statistical power of 80% at an α level of 0.05 a sample size of between 4-19 per group 

would be required (19 one-way ANOVA, 4 within groups ANOVA, 13 between groups 
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ANOVA, 5 within/between groups ANOVA). The aim was therefore to recruit at least 19 

patients per group in this study.              

 

6.8 Results 

A total of 12 AD patients, 20 POAG patients, 25 NTG patients and 34 healthy controls 

were screened for inclusion in the present study however, in order to ensure all 

participants were matched on critical factors such as age and hypertensive status, all 

those under the age of 48, over the age of 75 or with a MBP of greater than 110 mmHg 

had to be excluded from analysis. Additionally, following the careful review of the 

obtained images, any patients who exhibited poor or incomplete results were also 

excluded meaning a total of 10 mild newly diagnosed AD patients, 19 POAG patients, 

19 NTG patients and 20 healthy controls were recruited for this study. These numbers 

obviously fall below the target of 19 per group with regard to AD patients however on 

analysis of the results statistical differences between AD, glaucoma and control groups 

were obtained inferring sufficient power was still achieved. The difficulties associated 

with recruitment of this group of participants was discussed in section 4.11 

 

6.8.1 Baseline values 

There were no significant differences in age, systemic BP, BMI, triglycerides, glucose, 

HDL cholesterol levels and total cholesterol levels between the four groups (all p>0.05, 

table 6.1). Furthermore there were no significant differences in MBP or Framingham risk 

score (P>0.05, table 6.1) and the number of subjects with well controlled high BP was 

proportionally similar between groups (AD: n=3; POAG: n=3; NTG: n=5; Controls: n=6; 

Chi-square test). As expected IOP was found to be significantly greater in our POAG 

patients in comparison to all other groups (p<0.001, table 6.1) and consequently OPP 

was also found to be lower in our POAG patients but only significantly so with regard to 

AD patients and controls (p=0.017, table 6.1).  
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Table 6.1: Summary of the baseline characteristics of the study groups. P<0.05 is considered a 
significant difference. SBP: systolic blood pressure; DBP: diastolic blood pressure; BMI: Body 
mass index; HDL-C: High density lipoprotein cholesterol; Total C: Total cholesterol; IOP: 
Intraocular pressure. The presented SBP, DBP and IOP values are the baseline readings taken 
on the morning of the study and do not represent the 24 hour or diurnal averages. OPP was 
subsequently calculated using these baseline values. 
 

6.8.2 Systemic endothelial function 

No significant differences were found between groups with regard to brachial artery 

FMD or NMD (p>0.05, table 6.2). Furthermore no significant differences in circulating 

vWF levels were identified between groups (p>0.05) 

 

 POAG NTG AD Controls  ANOVA p -

value 

Post

-hoc 

FMD (%) 5.82±5.64 11.01±6.97 8.54±9.19 10.27±7.64 0 .235 - 

NMD (%) 15.30±12.44 29.09±17.83 24.74±16.42 23.76±7 .63 0.258 - 

vWF 149.09±50.93 96.39±39.05 118.34±64.28 108.60±49 .23 0.496  

Table 6.2: Systemic endothelial function. P<0.05 (*) is considered significant. FMD: flow 
mediated dilation; NMD: nitroglycerine mediated dilation; vWF: von Willebrand factor. 
 
 

  

AD (1) 
 

POAG (2) 
 

NTG (3) 
 

Controls (4) 
 

ANOVA 

p-value 

 

Post-

hoc 

N 10 19 19 20 - - 

Gender  5F:5M 9F:10M 11F:8M 8F:12M - - 

Age (years)  62.50±8.07 65.26±9.52 60.16±12.13 58.00±4.32 0.143 - 

SBP (mmHg)  141.70±14.21 136.32±15.42 130.06±15.37 131.70±17.90 0.278 - 

DBP (mmHg)  80.30±7.51 79.11±9.80 78.39±11.14 79.70±9.39 0.952 - 

BMI 27.61±5.80 27.71±5.00 27.92±4.20 27.56±4.67 0.997 -  

Glucose  4.40±1.44 4.53±0.97 5.08±0.86 4.87±1.02 0.307 - 

Triglycerides  1.28±0.60 1.22±0.50 1.04±0.31 1.17±0.40 0.488 - 

HDL-C 

(mmol/L)  

1.33±0.25 1.17±0.26 1.12±0.29 1.14±0.32 0.315 - 

Total -C 

(mmol/L)  

4.77±0.64 4.29±0.78 4.58±1.04 4.73±0.67 0.376 - 

IOP (mmHg)  16.50±2.12 23.94±3.00 17.40±1.80 17.20±2.68 0.000* 2>1,3,4 

MBP (mmHg)  100.77±7.67 99.29±11.35 95.61±10.93 97.03±11.67 0.637 - 

OPP 84.96±9.46 47.12±16.93 76.09±12.66 82.65±12.06 0.00 2* 2<1,4 

Fram Risk  

Score 

10.67±3.28 11.18±5.56 9.67±7.50 10.11±5.20 0.921 - 
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6.8.3 Dynamic retinal vessel analysis 

For ease of interpretation, the dynamic retinal vessel profile curve was considered in two 

parts, the first part being the dilation response (baseline to maximum dilation) and the 

second part being the constriction response (maximum dilation to maximum 

constriction). Each flicker cycle was analysed individually using traditional SDRA 

analysis and the artery and vein were considered separately. The dynamic nature or 

slope of the retinal vascular response profiles were fully explored using the polynomial 

fitted curves generated via our novel computational analysis (MatLab R2010a; 

MathWorks Inc., Natick, MA).  

 

6.8.3.1 Arterial response 

Dilation 

With regard to the first part of dynamic profile curve, following the adoption of a stricter p 

value of 0.01 to correct for the effects of multiple comparisons no significant differences 

were found in the average arterial baseline diameter, maximum diameter (MD%), 

reaction time (RT) or baseline corrected flicker response (BFR) between all four study 

groups (all p>0.01, table 6.3). When considering each flicker cycle individually however 

using two factor repeated measures ANOVA, the arterial RT was found to be 

significantly longer on the final flicker cycle (F3) in both AD and POAG patients in 

comparison to healthy controls (p=0.016, table 6.4). Furthermore the sequential changes 

in the RT of the retinal arteries on progressing from flicker 1 to flicker 3 was found to 

vary significantly between groups (p=0.007, table 6.4), with healthy controls showing a 

significant decrease in RT on going from F2 to F3 (p=0.011, table 6.4) which was not 

replicated by any of the other groups, where in fact an increase was observed. On 

consideration of the dynamic nature of the arterial dilation response, evaluated using our 

novel matlab analysis, no significant differences were found between groups with regard 

to slope (p>0.05, table 6.5). 
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Constriction 

With regard to the second part of the arterial dynamic profile curve, which looks at the 

activity of the retinal vessels following dilation and on cessation of flicker, again following 

the adoption of a stricter p value of 0.01 to account for the effects of multiple 

comparisons, no significant differences in maximum arterial constriction (MC%) or the 

time taken to reach maximum constriction (tMC) were found between groups (p>0.01, 

table 6.3). Furthermore, on consideration of the dynamic nature of the arterial 

constriction response, evaluated using our novel matlab analysis, no significant 

differences were found between groups with regard to slope (p>0.05, table 6.5). 

Table 6.3: Arterial vascular function parameters determined using dynamic retinal vessel analysis 
(DVA, IMEDOS GmbH, Jena, Germany). P<0.01 is considered as significant (*).BDF: baseline 
diameter fluctuation; MD(%): percentage change in diameter from baseline to maximum; RT: 
reaction time BFR: baseline corrected flicker response MC(%): percentage constriction below 
baseline; tMC: time taken to reach maximum constriction. 
 
 
 
 

Table 6.4: Arterial vascular function parameters by flicker cycle. P<0.05 (*) is considered as 
significant on repeated measures ANOVA. RT: reaction time. 
 
 
 

ARTERY 
Average 
data 
 

AD (1) POAG (2) NTG (3) Controls  (4) ANOVA 
P-value 

Post -hoc  

BDF 5.44±2.11 7.67±4.17 7.85±4.18 4.74±1.94 0.012 -  

MD (%) 5.78±3.25 5.90±3.65 7.27±3.02 5.19±2.19 0.18 8 - 

RT 24.04±11.74 21.59±5.96 23.20±8.23 20.48±6.77 0.568 - 

BFR 3.46±3.79 2.60±3.91 2.84±2.97 2.80±1.89 0.943 -  

MC (%) -3.29±1.56 -3.85±3.72 -3.85±1.93 -2.55±1.85 0.210 - 

tMC (secs) 32.63±10.24 30.31±10.05 28.09±6.96  

 

27.08±7.68 0.752 - 

ARTERY AD (1) POAG (2) NTG (3) Controls  
(4) 

ANOVA 
P-value 

Post
-hoc 

Interaction  
p-value 

RT        
Flicker 1 29.30±16.61 19.42±14.17 24.94±14.46 20.05±12.07 0.236   

Flicker 2 16.30±11.48 21.72±12.11 21.82±15.80 25.85±9.00 0.260   

Flicker 3 27.89±17.62 26.40±10.82 23.94±8.74 15.55±11.07  0.016* 1,2>
4 

 

Within 
groups 
ANOVA  

0.093 0.314 0.787 0.011*    
(F2-F3) 

  0.007* 
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Table 6.5: Dynamic characteristics of the retinal vascular response profiles determined using our 
novel computational model. P< 0.05 (*) is considered significant. Slope AD: slope of arterial 
dilation; Slope AC: slope of arterial constriction; 
 
 

6.8.3.2 Venous response 

 
Dilation 

With regard to the first part of the venous dynamic profile curve, no significant 

differences were found in the average venous baseline diameter, maximum diameter 

(MD%), reaction time (RT) or baseline corrected flicker response (BFR) between all four 

study groups (all p>0.01, table 6.6). Venous baseline diameter fluctuation (BDF) 

however was found to be significantly greater on average in both our AD and NTG 

patients in comparison to our healthy controls (p=0.001, table 6.6). On consideration of 

the dynamic nature of the venous dilation response, evaluated using our novel matlab 

analysis, no significant differences were found between groups with regard to slope 

(p>0.05, table 6.7). 

 

Constriction 

With regard to the second part of the venous dynamic profile curve, which looks at the 

activity of the retinal vessels following dilation and on cessation of flicker, no significant 

differences in maximum constriction (MC%) or the time taken to reach maximum venous 

constriction (tMC) were found between groups (all p>0.01, table 6.6). Furthermore, on 

consideration of the dynamic nature of the venous constriction response, evaluated 

using our novel matlab analysis, no significant differences were found between groups 

with regard to slope (p>0.05, table 6.7). 

 
 

DYNAMIC 
RESPONSE 

AD (1) POAG (2) NTG (3) Controls  (4) ANVOA 
p-value 

Post -
hoc 

Arteries        
Slope AD 0.265±0.221 0.271±0.450 0.300±0.159 0.273±0.169 0.985 - 

Slope AC -0.194±0.070 -0.269±0.154 -0.282±0.158 -0.170±0.095  0.055 - 
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Table 6.6: Venous vascular function parameters determined using dynamic retinal vessel 
analysis (DVA, IMEDOS GmbH, Jena, Germany). P<0.01 is considered as significant (*).BDF: 
baseline diameter fluctuation; MD(%): percentage change in diameter from baseline to maximum; 
RT: reaction time BFR: baseline corrected flicker response MC(%): percentage constriction below 
baseline; tMC: time taken to reach maximum constriction. 
 

Table 6.7: Dynamic characteristics of the retinal vascular response profiles determined using our 
novel computational model. P< 0.05 (*) is considered significant; Slope VD: slope of venous 
dilation; Slope VC: slope of venous constriction.  
 

6.8.4 Correlations 

No significant correlations were found between the retinal vessel reactivity parameters 

and the systemic parameters (FMD, blood analyses) between groups (all P>0.05). 

 

 

 

 

 

 

 

 

VEIN 
 

AD (1) POAG (2) NTG (3) Controls  (4) ANOVA 
p-value 

Post -
hoc 

BDF 6.44±2.67 4.98±2.44 5.29±1.99 3.27±1.56 0.002* 1,3>4 

MD (%) 6.12±3.14 5.35±1.99 5.94±3.03 5.13±2.86 0.72 0 - 

RT 22.67±9.39 19.94±4.39 21.69±8.37 20.48±3.68 0.75 6 - 

BFR 2.16±4.03 2.81±2.56 2.72±2.92 3.30±2.28 0.765 -  

MC (%) -2.61±2.13 -2.60±2.46 -2.09±2.09 -1.77±1.40 0.572 - 

tMC 
(secs) 

29.74±6.20 34.25±8.65 31.63±12.99 34.25±9.40 0.664 - 

DYNAMIC 
RESPONSE 

AD (1) POAG (2) NTG (3) Controls  (4) ANVOA 
p-value 

Post -
hoc 

Veins        

Slope VD 0.295±0.172 0.229±0.094 0.219±0.141 0.222±0.132 0.518 - 

Slope VC -0.204±0.193 -0.154±0.103 -0.160±0.10 -0.164±0.137 0.281 - 
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6.9 Discussion 

6.9.1 Main findings 

This study has revealed for the first time evidence of altered reactivity to flicker light in 

the retinal arteries of both newly diagnosed, previously untreated POAG patients and 

newly diagnosed mild AD patients which is of a similar nature in both conditions and is 

not replicated by healthy control patients. The time taken for the retinal arteries to reach 

the point of maximum dilation following the onset of flicker light stimulation was found to 

be significantly greater in both AD and POAG patients in comparison to healthy controls 

on the final flicker cycle. Furthermore the sequential changes in the reaction time of the 

retinal arteries on progressing from flicker 1 to flicker 3 was found to vary significantly 

between groups with healthy controls showing a significant reduction in reaction time on 

heading into the final flicker cycle which was not replicated by any of the other groups. 

This study has also revealed evidence of altered baseline retinal venous activity which is 

of a similar nature in both our newly diagnosed and previously untreated NTG patients 

and our newly diagnosed mild AD patients and is again not replicated by healthy 

controls. No significant differences were identified between groups with regard to the 

systemic vascular parameters. 

 
6.9.2 Systemic endothelial function 

No significant differences in systemic vascular endothelial function, as measured by 

FMD, were found between all four groups in this study. This result indicates that the 

functioning of the systemic vascular endothelium is comparable between newly 

diagnosed glaucoma patients, mild AD patients and healthy controls. A comparison of 

this kind between all of these groups simultaneously has not previously been made 

however on an individual basis disturbed systemic endothelial function has previously 

been identified in both POAG 42, 385 and NTG patients 52 compared to healthy controls 

and also in AD patients compared to healthy controls 631. The possibility therefore that 
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vascular dysfunction at the systemic level may play a role in their disease aetiologies 

individually cannot be ruled out. All of our participants were newly diagnosed and at the 

very earliest stages of their disease process. It could be hypothesised therefore that 

measureable signs of systemic macrovascular dysfunction were simply not yet 

detectable in these patients at the point of investigation. Indeed it has previously been 

demonstrated that endothelial dysfunction affects the microvasculature at an earlier 

stage in a disease process in comparison to the macrovasculature 734 . Further research 

and follow-up would be required however in order to confirm this hypothesis.     

 
6.9.3 Retinal vessel reactivity 

With regard to retinal artery reactivity our mild AD patients and our newly diagnosed 

POAG patients took comparably and significantly longer to reach the point of maximum 

arterial dilation following the onset of flicker light compared to our healthy controls and 

NTG patients on the final stimulation cycle. A prolonged reaction time to flicker light is an 

established parameter which has been shown to indicate the presence of some form of 

vascular dysfunction at the retinal level 695, 710, 732. The present results suggest that this 

vascular dysfunction appears to be shared by both our AD and POAG patients however 

its exact aetiology can only be hypothesised at this point. As the retinal vascular 

response to flickering light occurs due to an increase in retinal metabolic demand and is 

predominantly a neurovascular coupling driven response 226, 685, 686, 691, 692, it could be 

hypothesised that the altered retinal vessel reactivity demonstrated here may be 

indicative of a similar disturbance of neurovascular coupling in AD and POAG patients 

which is exacerbated by repeated flicker stimulation. The variability in the progression of 

the arterial reaction time between groups over successive flicker cycles and the 

significant involvement of the final flicker cycle could further suggest that exhaustive 

factors, such as a progressive depletion of NO reserves, may play a role in the altered 

vascular reactivity observed here. Indeed altered NO activity and bioavailability has 

been previously described in both AD 772, 773 and POAG patients 368, 369, 377 and has also 
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previously been linked to alterations in retinal vessel reactivity to flicker light 41, 226. The 

presence of a common endothelial dysfunction in AD and POAG, oxidative stress or a 

common alteration in astrocyte activity, all of which have been previously demonstrated 

to varying degrees in these disease processes individually 42, 144, 198, 631, 632, 739 and are 

known to be key mediators of the neurovascular response 600, could potentially explain 

these exhaustive alterations. Due to the complexity of the neurovascular coupling 

response however, before any firm conclusions can be made regarding the exact nature 

of the observed vascular dysfunction in our AD and POAG patients’, further investigation 

would be required to validate all of these hypotheses.   

 

On consideration of the retinal venous reactivity, our newly diagnosed mild AD patients 

demonstrated increased fluctuations in baseline vessel diameter on average, prior to the 

onset of flicker, which were comparable to that of our newly diagnosed NTG patients 

and were not replicated by healthy controls or POAG patients. Consideration of baseline 

diameter fluctuation (BDF) was first recommended by Nagel et al 686 as a way of taking 

into account the effect of the spontaneous variations in vessel diameter that occur under 

normal resting conditions on the observed response of the vasculature to flicker light 

stimulation, however it is a parameter which is not commonly reported in the literature 

and which has, to date, mainly been considered in regard to the retinal arteries, where it 

has been tentatively linked to vascular disturbance in the form of instability or increased 

variation in vascular tone or rigidity 695, 746-748. As such the cause and relevance of 

increased BDF in the venous circulation is currently unclear. Retinal veins are generally 

thought to play a more secondary role in retinal autoregulation, perhaps providing a fine 

tuning of the regulation response following the active reaction of the retinal arteries and 

instigating a regulatory contribution passively in response to increased blood flow 685. 

Interestingly increased retinal venous diameters have been previously linked to impaired 

cerebral blood flow and have been suggested as a marker of both retinal and cerebral 

ischemia and hypoxia 652, 749-751. The finding here is somewhat different as fluctuations in 
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diameter have been assessed dynamically as opposed to vessel diameter 

measurements being taken statically from photographs. Nevertheless as both ischemia 

and hypoxia have been well linked to the development of AD and NTG, it could be 

hypothesised that the increased fluctuation in baseline diameter observed in these 

patients could be reflective of early hypoxic changes and a common increased risk of 

future damage in these patients.              

 

6.9.4 Retinal vascular dysfunction in AD compares to both POAG and 

NTG 

The concept that AD and glaucoma may share a common underlying vascular aetiology 

has been increasingly realised over recent years and evidence of vascular dysfunction, 

related to either disturbed autoregulation or disturbed neurovascular coupling 

mechanisms, has been previously demonstrated at the cerebral level in both conditions 

323, 567, 620, 626 and at the ocular level in both POAG and NTG patients 39, 41, 320. Until now 

however the presence of dynamic vascular dysfunction at the ocular level has not been 

assessed in AD patients and directly compared to that of glaucoma patients and healthy 

controls. The present study addresses this and provides support for not only a shared 

vascular dysfunction in AD and glaucoma patients at the earliest stages of their disease 

process but also for the presence of vascular dysfunction in both POAG and NTG. 

Interestingly the elements of ocular vascular dysfunction which we have demonstrated in 

our AD patients appear to relate to that of both POAG and NTG patients in a slightly 

different manner. Indeed with regard to retinal artery reactivity AD patients demonstrated 

a dysfunction that was similar in nature to that displayed by our POAG patients and not 

replicated by our healthy controls or NTG patients, whereas with regard to the retinal 

venous reactivity, AD patients demonstrated baseline disturbances that were of a similar 

nature to that displayed in our NTG patients and were again not replicated by the other 

two groups. The key feature of both POAG and NTG is RGC loss and excavation of the 
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ONH 109, 113. Vascular factors have been implicated in the aetiology of both conditions 141, 

320, 325 and both have been previously linked to AD 676, 677. It has been recently suggested 

that rather than being divided into two separate entities, glaucoma should instead be 

considered as a disease continuum, extending from pure POAG at one end, in which 

raised IOP plays a predominate role, to pure NTG at the other end, in which IOP-

independent or vascular factors play a more predominate role 32-34. This allows for a 

certain degree of overlap between the two extremes where a ‘mixed’ aetiology may 

exist. In a similar manner, due to the increasing evidence of vascular involvement in the 

AD process, AD dementia has also been described as a disease continuum extending 

from pure AD at one end to VaD at the other end, again with a mixed component 

separating the two extremes 645, 646. VaD is a condition which bares similarities to AD 

dementia but has an established primary vascular cause such as stroke 643. Increasing 

evidence suggests that the majority of patients may in fact lie somewhere between the 

two extremes in both the glaucoma and AD continuums and exhibit a mixed aetiology 

with important vascular elements. This may in part explain the findings here of vascular 

dysfunction in AD patients which relates to that of both our POAG and NTG patients. 

Further research investigating vascular dysfunction in AD and glaucoma patients 

however is still required to elicit the exact nature of the relationship between the two 

conditions. The need for consideration of glaucoma and ocular health in AD and the 

need for consideration of AD in those diagnosed with all forms of glaucoma has 

nevertheless been highlighted by this study.   

 

6.10  Conclusion 

In conclusion this study demonstrates for the first time that retinal vascular reactivity to 

flickering light is altered in a similar manner in both AD and glaucoma patients providing 

support for a common underlying vascular aetiology in both conditions. Furthermore this 

study has identified differences in the nature of these retinal vascular reactivity 
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disturbances between AD and POAG patients and AD and NTG patients, however 

further investigation is required in order to determine the significance of these findings.    

 

6.11  Limitations 

Only a small sample size of AD patients and a moderate cohort of glaucoma patients 

could be recruited for this study. This could potentially limit the statistical power and 

conclusions which can be drawn from the presented data. The overall limitations of the 

presented research are discussed further in section 8.3.    
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7. Primary open angle glaucoma and Normal tension 

glaucoma: two separate diseases or one continuous 

entity? The vascular perspective 
 
7.1 Abstract 

Purpose : To compare and contrast the presence of ocular and systemic vascular function 

across multiple levels in newly diagnosed and previously untreated primary open angle 

glaucoma (POAG) and normal tension glaucoma (NTG) patients and to evaluate the validity 

of these conditions as distinct clinical entities. 

Methods:  Systemic vascular function was assessed in 19 POAG patients, 19 NTG patients 

and 20 healthy controls by means of 24 hour ambulatory blood pressure (ABPM), 24 hour 

heart rate variability (HRV) assessment, pulse wave analysis (PWA), carotid intima-media 

thickness (IMT) and flow mediated dilation (FMD). Ocular vascular function was assessed by 

means of retinal vascular reactivity to flicker light using dynamic retinal vessel analysis 

(DVA, IMEDOS, GmbH, Jena, Germany). All patients additionally underwent blood analysis 

for oxidative stress. 

Results:  When compared to normal controls both POAG and NTG patients exhibited 

increased nocturnal systolic blood pressure (SBP) variability (p=0.011); systemic arterial 

stiffness (p=0.015), carotid IMT (p=0.040) and a comparably reduced OPP (p=0.001). 

Furthermore, both groups of glaucoma patients also exhibited a significantly steeper retinal 

arterial constriction slope following cessation of flicker (p=0.007) and an increased 

fluctuation in arterial and venous baseline diameter (p=0.008; p=0.010) when compared to 

healthy controls. No significant difference in FMD, HRV or oxidative stress parameters were 

identified between groups.  

Conclusion:  POAG and NTG patients demonstrate multiple comparable alterations in both 

ocular and systemic vascular function at the early stages of their disease process. This 

highlights not only the importance of considering vascular factors in both conditions, but also 

the need to perhaps become less rigid in our separation of the two conditions into distinct 

clinical entities when considering vascular risk. 
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7.2 Introduction 

The separation of OAG into two distinct clinical entities on the basis of IOP has been 

common practice for many years, with GON in the presence of IOP over 21 mmHg 

having long been described as POAG 774 and all other cases having been described as 

either low tension glaucoma (LTG) or NTG 775. Over recent years however, additional 

risk factors for both of these forms of OAG have been identified and the concept of 

POAG and NTG as distinct clinical entities has been questioned. Indeed features more 

traditionally linked to NTG development, such as ocular and systemic vascular 

dysfunctions, have been similarly demonstrated in POAG patients 39-43 and the effects of 

IOP reduction on disease progression has been similarly demonstrated in NTG patients 

36-38. Consequently recent research has recommended the abolishment of the terms 

POAG and NTG, along with the ‘arbitrary’ 21mmHg cut off value 34. Furthermore it has 

been suggested instead that OAG should be considered a disease continuum in which 

the aetiology of the disease extends from being predominantly IOP dependent at one 

end (pure POAG), to predominantly IOP-independent at the other end (pure NTG), with 

the involvement of vascular factors increasing as the predominance of IOP decreases 

and a large area of overlap existing between the two extremes 35. Nevertheless, a 

number of subtle but important differences have however previously been described 

between POAG and NTG patients in regard to both their structural and functional ONH 

changes 31, 44-46 as well as to their vascular risk 47. Indeed NTG patients show stronger 

vasospastic tendencies 26, greater systemic endothelial dysfunction 42, 52 and stronger 

links to the presence of hypotension 53, 54 in comparison to POAG patients. The 

possibility that these two conditions do in fact represent different clinical entities with 

different mechanisms of ONH damage can therefore not be ruled out and such a 

division is currently considered important with regard to both clinical diagnosis and 

management of the disease. Further investigation is therefore required into, not only the 

similarities and differences between POAG and NTG, but also into the aetiological role 
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and interactions of IOP and vascular factors in each condition. In Chapter 5 of this thesis 

abnormalities in both retinal vascular function and systemic vascular parameters were 

identified in our newly diagnosed NTG patients, highlighting not only vascular 

involvement in NTG but also the fact that a glaucomatous eye may represent a ‘sick eye 

in a sick body’. Furthermore in Chapter 6 of this thesis, NTG patients were found to 

exhibit comparable alterations in retinal vascular function to that of AD patients, which 

differed in nature to that identified in POAG and AD patients. Expanding on these 

findings and exploring whether POAG patients exhibit similar or differing vascular 

abnormalities in comparison to NTG patients across an even broader range of ocular 

and systemic vascular parameters than used in previous chapters could not only allow 

the concept of a mixed aetiology and a glaucomatous disease continuum to be explored 

but could also allow further exploration of the ‘sick eye in a sick body concept’ in 

glaucoma. As such this study aims to explore, compare and contrast vascular function at 

the ocular level and at numerous systemic levels in NTG and POAG patients in 

comparison to healthy controls. Determining which vascular features, if any, are shared 

by both POAG and NTG patients and which features, if any, could potentially distinguish 

the two conditions could prove beneficial for enhancing disease prognosis, 

understanding and management in the future. 

 
7.3 Aims 

To compare and contrast the presence of vascular dysfunction at the ocular level in the 

form of retinal vascular dysfunction and at the systemic level in the form of systemic 

endothelial dysfunction, arterial stiffness, IMT, HRV, ambulatory blood pressure and the 

presence of oxidative stress, in POAG and NTG patients in comparison to healthy 

controls. Furthermore to evaluate the concept of a glaucomatous disease continuum 

and the concept that glaucoma represents a sick eye in a sick body. 
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7.4 Hypothesis 

Evidence of ocular and systemic vascular dysfunction will be evident in both POAG and 

NTG patients but not healthy controls. The extent of vascular involvement will be more 

pronounced in NTG patients. 

 
7.5 Subjects and Methods 

Newly diagnosed and previously untreated NTG patients and POAG patients, along with 

healthy age matched controls were recruited for this study. The recruitment details, 

inclusion and exclusion criteria for these patients was detailed in section 3.1. The 

investigative procedures performed in this study are outlined below and were conducted 

in accordance with the protocols outlined in section 3.2: 

1. Preliminary tests 

2. Fasting venous blood sample obtained 

3. 24 hour blood pressure and heart rate variability monitor fitted 

4. Assessment of retinal vessel reactivity (DVA) 

5. Pulse wave analysis 

6. Intima-media thickness measurement 

7. Assessment of systemic endothelial function (FMD) 

 
7.6 Statistical Analysis 

All data were reported as mean ± standard deviation. The Kolmogorov-Smirnov test was 

used to determine the distribution of the data. Multivariate analysis was performed to 

determine the influence of age, BMI, BP and circulating markers on the measured 

variables. Differences between groups were subsequently assessed using one-way 

ANOVA or ANCOVA, as appropriate, followed by Tukey’s post hoc analysis. In cases 

where the normality of the data could not be confirmed log transformations were made. 

Correlations between the ocular and systemic parameters were explored using either 
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Pearson’s linear correlation or Spearman’s rank method as appropriate. P-values of less 

than 0.05 were considered significant, except in certain cases where a stricter p-value of 

less than 0.01 was adopted in order to correct for multiple comparisons and minimise 

bias towards type II errors. All analyses were performed using Satistica, version 6.0, 

Statsoft, Tusla, OK 

 

7.7 Power calculations 

With regard to DVA, new measurement parameters and novel analysis methods were 

used in this study in patient groups which have not previously been examined with these 

techniques. Power calculation would normally be based on the results of previous 

studies which share the most similar protocols to that of the present research, however 

due to the nature of the statistical analysis required in this study, namely one-way 

ANOVA (or ANCOVA) and the uniqueness of the comparisons being made between the 

three groups, appropriate previous research was not available. The power calculation for 

this study was therefore made on the basis of Cohen’s standardised effect sizes 771, 

whereby a large effect size of 0.40 was selected. The calculation was conducted using 

the computer based programme, GPower 3 733 and it was revealed that in order to 

provide a statistical power of 80% at a α level of 0.05 a sample size of 22 per group 

would be required. The aim was therefore to recruit at least 22 patients per group in this 

study.              

 

7.8 Results 

A total of 20 POAG patients, 25 NTG patients and 34 healthy controls were screened for 

inclusion in the present study however, in order to ensure all participants were matched 

on critical factors such as age and hypertensive status, all those under the age of 45, 

over the age of 75 or with a MBP of greater than 115 mmHg had to be excluded from 

analysis. Additionally, following the careful review of the obtained images, any patients 
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who exhibited poor or incomplete results were also excluded meaning 19 POAG 

patients (9 female, 10 male), 19 NTG patients (12 female, 7 male) and 20 healthy age 

matched controls (9 female, 11 male) were included in the final analysis. These sample 

sizes fall slightly short of the target of 22 recommended by power calculation however 

statistical significance was still achieved at a power level of 76%. 

 

7.8.1 Baseline values 

There were no significant differences in age, systemic BP, BMI, triglycerides, glucose, 

HDL cholesterol levels, total cholesterol levels and Framingham risk score between the 

three groups (all p>0.05, table 7.1). Furthermore the number of subjects with well 

controlled high BP was proportionally similar between groups (POAG: n=4; NTG: n=5; 

Controls: n=6, p>0.05). As expected IOP was found to be significantly greater in our 

POAG patients in comparison to NTG and controls (p<0.001, table 7.1). OPP on the 

other hand was found to be significantly lower in both our POAG and NTG patients in 

comparison to healthy controls (p=0.001, table 7.1).  
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Table 7.1: Summary of the baseline characteristics of the study groups. P<0.05 is considered a 
significant difference. SBP: systolic blood pressure; DBP: diastolic blood pressure; BMI: Body 
mass index; HDL-C: High density lipoprotein cholesterol; Total C: Total cholesterol; IOP: 
Intraocular pressure; MD: mean deviation. The presented SBP, DBP and IOP values are the 
baseline readings taken on the morning of the study and do not represent the 24 hour or diurnal 
averages. OPP was subsequently calculated using these baseline values. 
 
 
 

7.8.2 Ambulatory blood pressure 

No significant difference in SBP, DBP or MBP was found between groups across the 

diurnal, nocturnal or 24 hour measurement periods of this study (p>0.05, table 7.2). 

Furthermore no significant difference in the percentage nocturnal dip in BP (p>0.05, 

table 7.2) or in the number of non-dippers (less than 10% nocturnal dip in MBP), 

physiological dippers (between 10-20% nocturnal dip in MBP) and over dippers (greater 

than 20% nocturnal dip in MBP) between groups, were found in this study. A 

significantly higher variability in the nocturnal SBP measurements however was 

 POAG(1) NTG(2) Controls(3 ) ANOVA P-

value 

Post -hoc  

N 19 19 20 - - 

Gender  9F:10M 11F:8M 9F:11M - - 

Age (years)  65.26±9.52 60.16±12.13 60.65±4.20 0.174 - 

SBP (mmHg)  136.32±15.42 130.06±15.37 130.00±19.13 0.418 - 

DBP (mmHg)  79.11±9.80 78.39±11.14 78.15±10.03 0.956 - 

BMI 27.71±5.00 27.92±4.20 26.86±3.79 0.757 - 

Glucose  4.53±0.97 5.08±0.86 4.84±1.03 0.270 - 

Triglycerides  1.22±0.50 1.04±0.31 1.06±0.31 0.320 - 

HDL-C 

(mmol/L)  

1.17±0.26 1.12±0.29 1.18±0.35 0.840 - 

Total -C 

(mmol/L)  

4.29±0.78 4.58±1.04 4.76±0.74 0.293 - 

IOP (mmHg)  23.94±3.00 17.40±1.80 17.20±2.68 <0.001* 1>2,3 

MBP 

(mmHg) 

99.29±11.35 95.61±10.93 96.14±13.09 0.594 - 

OPP 47.12±16.93 46.24±7.84 72.77±18.01 0.001* 1,2<3 

Fram Risk  

Score 

11.18±5.56 9.67±7.50 10.22±5.14 0.824 - 

MD -1.58±0.54 -2.18±3.22 - 0.545 - 
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identified in both our POAG and NTG patients in comparison to healthy controls 

(p=0.011, table 7.3).   

Table 7.2: Ambulatory blood pressure parameters: SBP: systolic blood pressure; DBP: diastolic 
blood pressure; MBP: mean blood pressure; D- : diurnal; N- : nocturnal. P values <0.05 are 
considered significant 
 
 

Table 7.3: Coefficient of variation for systolic blood pressure across 24 hours, diurnally and 
nocturnally. SBP: systolic blood pressure; D- : diurnal-; N- : nocturnal-. P-values <0.05 (*) are 
considered significant  
 
 

7.8.3 Heart rate variability 

No significant differences in LF, HF or LF:HF were found between groups during the 

diurnal, nocturnal or 24 hour measurement period (all p>0.05, table 7.4)   

 

 

 

 

 

 

 POAG(1) NTG(2) Controls (3) ANOVA P-

value 

Tukeys  

24hr SBP 128.00±20.29 120.60±11.11 119.23±9.38 0.241 - 

24 hr DBP 71.64±11.75 67.00±9.49 69.23±7.95 0.458 -  

24 hr MBP 90.43±13.63 84.87±8.57 85.90±8.16 0.330 -  

DSBP 133.20±18.86 127.19±12.86 125.31±11.87 0.343 - 

DDBP 77.93±12.49 71.69±10.91 73.69±9.91 0.300 - 

DMBP 96.36±13.66 90.19±10.11 90.90±10.32 0.286 - 

NSBP 115.00±17.34 111.71±9.62 107.69±7.42 0.326 - 

NDBP 62.09±11.31 60.07±7.57 61.31±6.12 0.832 - 

NMBP 79.73±12.74 77.29±6.99 76.77±6.31 0.691 - 

Dip (%) 13.43±9.89 13.40±7.10 15.04±6.87 0.835 - 

Coefficients 
of variation 

POAG(1) NTG(2) Controls(3)  ANOVA p -
value 

Tukeys  

24 hr SBP 
(%) 

12.44±2.95 12.82±2.31 11.99±3.15 0.746 - 

DSBP (%) 10.96±2.27 11.27±3.10 10.02±2.59 0.464 - 

NSBP (%) 13.08±2.68 12.54±3.77 9.12±3.40 0.011* 1,2>3 
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Table 7.4: Heart rate variability parameters: LF: low frequency; HF: high frequency; LF/HF: low to 
high frequency ratio; D- : diurnal; N- : nocturnal. P<0.05 is considered a significant difference 
 

7.8.4 Pulse wave analysis 

Following correction for DBP, identified as an influence factor on multivariate analysis, 

pulse wave analysis augmentation index (AIx) was found to be significantly greater in 

both our POAG and NTG patients compared to healthy age matched controls (p=0.015) 

(Table 7.5). 

Table 7.5: Systemic arterial stiffness. P<0.05 (*) is considered significant. PWA:AIx: pulse wave 
analysis: augmentation index 
 

7.8.5 Intima-media thickness measurement 

Following correction for age and BMI, IMT was found to be increased in both our NTG 

and POAG patients compared to controls (p=0.040, table 7.6). 

Table 7.6: Carotid artery intima-media thickness. P<0.05 (*) is considered significant; IMT: intima-
media thickness 
 
 

 POAG(1) NTG(2) Controls (3) ANOVA P-

value 

Post -hoc  

24hr LF 57.15±18.77 63.81±10.01 63.30±11.27 0.714 -  

24hr HF 37.46±16.55 31.56±7.12 32.80±11.82 0.640 - 

24hr LF:HF 2.12±1.63 2.18±0.78 2.23±0.99 0.709 - 

DLF 56.92±18.67 63.00±11.25 65.20±12.57 0.359 - 

DHF 36.67±15.89 31.82±8.21 28.20±8.07 0.360 - 

DLF:HF 2.20±1.97 2.17±0.81 2.53±1.00 0.773 - 

NLF 54.42±19.92 65.31±10.06 60.67±15.54 0.366 - 

NHF 41.08±18.21 31.13±7.99 36.78±15.17 0.298 - 

NLF:HF 1.93±1.61 2.34±1.03 2.16±1.43 0.717 - 

 POAG(1) NTG(2) Controls (3) ANCOVA  

P-value 

 Post -hoc  

PWA: AIx 27.88±8.20 26.06±11.25 16.00±10.66 0.015* 1,2>3 

 POAG(1) NTG(2) Controls (3) ANCOVA 

P-value 

Tukeys  post -

hoc test 

IMT (cm) 0.063±0.014 0.064±0.015 0.042±0.028 0.040*  1,2>3 



226 
 

7.8.6 Systemic endothelial function 

No significant differences were found between groups with regard to brachial artery 

FMD or nitroglycerine-mediated dilation (NMD) (p>0.05, table 7.7). Furthermore no 

significant differences in circulating vWF levels were identified between groups (p>0.05) 

Table 7.7: Systemic endothelial function. P<0.05 (*) is considered significant. FMD: flow 
mediated dilation; NMD: nitroglycerine mediated dilation; vWF: von Willebrand factor 
 

 

7.8.7 Dynamic retinal vessel analysis 

For ease of interpretation, the dynamic retinal vessel profile curve was considered in two 

parts, the first part being the dilation response (baseline to maximum dilation) and the 

second part being the constriction response (maximum dilation to maximum 

constriction). The principle results are given based on the average of the 3 flicker cycles 

with the artery and vein being considered separately. Although each flicker cycle was 

also analysed individually this analysis did not yield any additional information and has 

therefore not been presented. The dynamic nature of the retinal vascular response 

profiles were fully explored using the polynomial fitted curves generated via our novel 

computational analysis (MatLab R2010a; MathWorks Inc., Natick, MA). 

 

7.8.7.1 Arterial Response 

Dilation 
 
With regard to the first part of dynamic profile curve, no significant differences were 

found in the average arterial baseline diameter, maximum diameter (MD%), reaction 

time (RT) or baseline corrected flicker response (BFR) between all four study groups (all 

 POAG(1) NTG(2) Controls (3) ANOVA P-

value 

Tukeys  

FMD (%) 6.38±8.66 11.01±6.97 13.35±8.71 0.190 - 

NMD (%) 14.80±7.58 25.04±15.61 25.07±7.59 0.093 - 

vWF 141.03±46.30 118.17±63.46 107.85±51.20 0.414 - 
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p>0.01, table 7.8). The arterial baseline diameter fluctuation (BDF) however was found 

to be significantly greater in both POAG and NTG patients compared to controls 

(p=0.008, table 7.8). On consideration of the dynamic nature of the arterial dilation 

response, evaluated using our novel matlab analysis, no significant differences were 

found between groups with regard to slope (p>0.05, table 7.9). 

Constriction 

With regard to the second part of the arterial profile curve, which looks at the activity of 

the retinal vessels following dilation and on cessation of flicker, no significant differences 

in maximum constriction (MC%) or the time taken to reach maximum arterial constriction 

after dilation (tMC) were found between groups (all p>0.01, table 7.8). On consideration 

of the dynamic nature of the arterial constriction response however, a significantly 

steeper arterial constriction was demonstrated in both our POAG and NTG patients in 

comparison to our healthy controls (p=0.007, table 7.9). 

 

Table 7.8: Arterial vascular function parameters determined using dynamic retinal vessel analysis 
(DVA, IMEDOS GmbH, Jena, Germany). P<0.01 is considered as significant (*).BDF: baseline 
diameter fluctuation; MD(%): percentage change in diameter from baseline to maximum; RT: 
reaction time BFR: baseline corrected flicker response MC(%): percentage constriction below 
baseline; tMC: time taken to reach maximum constriction. 
 
 
 

Table 7.9: Dynamic characteristics of the arterial vascular response profiles determined using our 
novel computational model. P< 0.05 (*) is considered significant. Slope AD: slope of arterial 
dilation; Slope AC: slope of arterial constriction;  
 

ARTERY 
 

POAG(1) NTG(2) Controls (3) ANOVA P-
value 

Tukey’s  

BDF 7.28±3.18 7.47±3.84 4.55±1.90 0.008* 1,2>3 

MD (%) 4.07±3.24 4.80±2.40 3.30±1.41 0.196 - 

RT 24.93±9.16 21.09±8.67 18.47±6.35 0.061 - 

BFR -0.02±4.61 -0.04±2.41 0.05±2.01 0.997 - 

MC (%) -2.72±3.18 -2.64±1.61 -1.30±1.43 0.101 - 

tMC (secs) 36.55±5.24 34.99±8.30 33.46±8.52 0.463  

DYNAMIC 
RESPONSE 

POAG (1) NTG (2) Controls  (3) ANOVA P-
value 

Tukey’s  

Arteries       
Slope AD 0.249±0.402 0.300±0.159 0.261±0.173 0.844 - 

Slope AC -0.257±0.144 -0.282±0.158 -0.150±0.075 0.007* 1,2>3 
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7.8.7.2 Venous response 

Dilation 
 
With regard to the first part of the venous dynamic profile curve, no significant 

differences were found in the average venous baseline diameter, MD%, RT, or BFR 

between all three study groups (all p>0.01, table 7.10). The venous BDF however was 

found to be significantly greater in both our POAG and NTG patients in comparison to 

our healthy controls (p=0.015, table 7.10). On consideration of the dynamic nature of the 

venous dilation response however, evaluated using our novel matlab analysis, no 

significant differences were found between groups with regard to slope (p>0.05, table 

7.11). 

Constriction 

With regard to the second part of the venous dynamic profile curve, which looks at the 

activity of the retinal vessels following dilation and on cessation of flicker, no significant 

differences in MC% or the time taken to reach maximum venous constriction after 

dilation (tMC) were found between groups (all p>0.01, table 7.10). Furthermore, on 

consideration of the dynamic nature of the venous constriction response, evaluated 

using our novel matlab analysis, no significant differences were found between groups 

with regard to slope (p>0.05, table 7.11). 

Table 7.10: Venous vascular function parameters determined using dynamic retinal vessel 
analysis (DVA, IMEDOS GmbH, Jena, Germany). P<0.01 is considered as significant (*).BDF: 
baseline diameter fluctuation; MD(%): percentage change in diameter from baseline to maximum; 
RT: reaction time BFR: baseline corrected flicker response MC(%): percentage constriction below 
baseline; tMC: time taken to reach maximum constriction 
 
 
 

VEIN 
 

POAG (1) NTG (2) Controls  (3) ANOVA P-
value 

Tukey’s  

BDF 4.84±2.28 5.07±2.15 3.29±1.41 0.010* 1,2>3 

MD (%) 4.04±1.43 4.12±2.32 3.99±2.47 0.982 - 

RT 20.89±7.98 23.47±7.65 18.55±2.22 0.081 - 

BFR 0.59±1.44 -0.10±2.62 1.79±2.25 0.033 - 

MC (%) -1.38±1.57 -0.85±1.57 -1.09±1.18 0.543 - 

tMC (secs) 39.08±7.93 39.02±6.80 36.29±9.34 0.489 -  
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Table 7.11: Dynamic characteristics of the arterial vascular response profiles determined using 
our novel computational model. P< 0.05 (*) is considered significant. Slope VD: slope of venous 
dilation; Slope VC: slope of venous constriction;  
 
 

7.8.8 Oxidative stress markers 

No significant differences in GSH, GSSG or total-GSH levels were found between 

groups in this study. Furthermore the redox balance (ratio of GSH:GSSG) was also 

found to be comparable between groups (all p>0.05, table 7.12) 

Table 7.12: Oxidative stress analysis. GSSG: oxidised glutathione, GSH: reduced glutathione; 
tGSH: total glutathione; GSH:GSSG: redox balance. Calculated using ANCOVA, correcting for 
SBP, DBP and BMI. 
 

7.8.9 Correlations 

A significant positive correlation was identified between nocturnal SBP variability and 

right IMT in POAG patients only (R= 0.74, p<0.001, figure 7.1) and between nocturnal 

SBP variability and retinal arterial BDF in NTG patients only (R=0.71, p=0.001, figure 

7.2). No other correlations between our systemic and ocular parameters could be found.  

DYNAMIC 
RESPONSE 

POAG (1) NTG (2) Controls  (3) ANOVA P-
value 

Tukey’s  

Veins       

Slope VD 0.261±0.200 0.219±0.141 0.225±0.140 0.705 - 

Slope VC -0.161±0.094 -0.160±0.10 -0.167±0.133 0.982 - 

 POAG(1) NTG(2) Controls(3 ) ANCOVA P-

value 

Tukey’s  

GSSG 38.98±21.99 37.59±23.88 61.89±46.34 0.169 - 

GSH 574.89±217.27 623.09±269.65 687.67±393.90 0.644 - 

tGSH 652.85±247.44 698.26±280.42 836.41±448.38 0.361 - 

GSH:GSSG 17.34±7.12 20.43±10.81 13.93±8.53 0.159 - 
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Figure 7.1 Nocturnal systolic blood pressure variab ility vs. intima-media thickness in 
POAG patients 

 
 
 
 
 
 

 

Figure 7.2. Nocturnal systolic blood pressure varia bility vs. retinal arterial baseline 
diameter fluctuation in NTG patients 
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7.9 Discussion 

7.9.1 Main findings 

This study reveals evidence of systemic and ocular vascular abnormalities which are 

comparable in both newly diagnosed and previously untreated POAG and NTG patients 

and are not replicated by healthy age matched controls. At the systemic level 

ambulatory BP abnormalities, in the form of increased variability in nocturnal SBP, along 

with comparably reduced OPP, increased systemic arterial stiffness and increased IMT 

were identified in both groups of glaucoma patients. Furthermore, at the ocular level, 

signs of retinal vascular dysfunction, in the form of a significantly steeper retinal arterial 

constriction slope following cessation of flicker and an increased fluctuation in arterial 

and venous baseline diameter, was identified in both our POAG and NTG patients and 

was again not replicated in the healthy control group. No significant differences in HRV, 

systemic endothelial dysfunction or glutathione levels were found between groups. 

  

7.9.2 Systemic vascular parameters 

7.9.2.1 Ambulatory blood pressure assessment 

Systemic BP follows a normal circadian rhythm and is constantly regulated by the ANS 

through modifications in cardiac output and total peripheral resistance 408. At the ocular 

level a close relationship exists between BP, IOP and OPP. As such the evaluation of 

ambulatory BP in patients with or at risk of ocular diseases such as glaucoma can not 

only give an insight into the presence of modifiable cardiovascular risk factors such as 

abnormal BP, but can also give an indication of the presence of local risk for ischemia. 

In the present study no significant differences in the average diurnal and nocturnal blood 

pressure parameters (SBP, DBP, MBP), or the nocturnal dipping status, were found 

between POAG, NTG and healthy control subjects following 24 hour BP assessment. 

This finding is consistent with that of a number of other studies that have assessed 24 
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hour BP in both newly diagnosed and more established glaucoma patients and have 

found no significant differences between groups 43, 414, 709, 776. Indeed, in retrospect, such 

a comparable finding may not be surprising with regard to this study as very strict 

inclusion criteria was imposed on participants and there was a necessity for the groups 

to be not only age matched but also disease matched. It cannot be denied however that 

many other studies have been able to identify associations between abnormal systemic 

BP and the presence of GON. Indeed, whilst the evidence surrounding hypertension has 

a tendency to be somewhat variable and inconsistent 307, 441-443, 449, the presence of 

hypotension, in particular nocturnal hypotension, has been more widely linked to the 

occurrence and progression of glaucoma 24, especially NTG54, 130, 459-462, as has the 

presence of large nocturnal dips in BP (>20%)313, 433, 450, 463-466. An increased 

variability/fluctuation in nocturnal SBP, as well as a reduced OPP at the time of testing, 

was however identified in both our POAG and NTG patients in comparison to healthy 

controls. Increased variability in BP is a parameter widely recognised in cardiovascular 

and hypertension research as a signal of increased risk for end organ damage 777 and 

over recent years its occurrence has also been increasingly considered in regard to 

other vascular diseases, including glaucoma  53, 467, 468. Indeed, in line with our findings 

here, previous studies have also identified increased nocturnal variability of BP in both 

NTG patients 53 and those with focal ischemic glaucoma 460, as well as in those with 

progressive NTG 451 following 24 hour ABPM and in those with POAG during the 

daytime using a slightly different technique 778. Whilst an association does therefore 

appear to exist between increased BP variability and GON, the exact mechanisms by 

which such increased variability, over the nocturnal period in particular, may relate to the 

development of GON is currently unclear. It could be hypothesised that, due to the close 

relationship between BP and OPP, an increased variability in BP may subsequently lead 

to an increased variability or fluctuation in OPP, which may have particular effect 

nocturnally when OPP is already physiologically reduced and the ONH is more 

vulnerable. Indeed strong links have previously been made between the development of 
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GON, nocturnal hypotension 24, 433, 450 and fluctuating or reduced OPP 15, 779-781, in that 

the risk of ischemia/reperfusion injury at the ONH and the subsequent risk of GON 

development is thought to be increased in the presence of these features, particularly if 

occurring in combination with autoregulatory dysfunction 141. In order to validate this 

hypothesis calculation of 24 hour OPP would ideally be needed; however in this study 

this information is not available as 24 hour IOP measurements were not taken. At the 

time of assessment however, OPP was found to be significantly reduced in both our 

POAG and NTG patients in comparison to healthy controls suggesting perfusion related 

vascular alterations are likely to be playing a part in the pathogenesis of both conditions. 

The relative contribution of IOP to this reduced OPP however is likely to vary between 

our glaucoma groups and as such consideration of the 24 hour IOP and its fluctuations, 

which themselves have been previously linked to GON development 129, 130, would also 

be beneficial.  

 

7.9.2.2 Arterial stiffness, IMT and systemic endothelial function 

In conjunction with increased nocturnal SBP variability, a comparably increased 

systemic arterial stiffness and carotid artery IMT was identified in both our POAG and 

NTG patients in comparison to our healthy controls. Arterial stiffness is considered an 

independent predictor of cardiovascular disease 488 and increased IMT has been 

suggested as an indirect measure of generalised atherosclerosis and cardiovascular risk 

782. The presence of cardiovascular disease and structural vascular wall changes has 

been variably linked to the presence of GON over recent years, with a number of studies 

having identified strong associations in both POAG 307, 481, 482 and NTG patients 480, 483 

individually and a number of further studies having revealed no such associations 318, 484, 

485, 487. The variability in results between these previous studies could in part be 

accounted for by differences in the inclusion/exclusion of patients suffering from already 

diagnosed systemic vascular disease, especially as arterial stiffness is a known 
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measure of vascular function 759. As most glaucoma patients seen in day-to-day practice 

suffer from a large variety of vascular pathologies, a careful selection of only those free 

from such diseases could bias results towards very rare occurrences. Consequently, the 

present study included POAG and NTG patients with well controlled hypertension, along 

with a similar number of subjects with such status in the control group. All groups were 

additionally matched on age and functional loss. In light of this and on the basis of our 

findings here, it could be hypothesised that systemic vascular wall changes may in some 

way contribute to, or signal a higher risk for, the development of GON in the early stages 

of the disease, regardless of the level of IOP. The mechanisms surrounding these 

associations however are currently unclear but could perhaps relate to the development 

of endothelial dysfunction or increased MABP, both of which have been widely linked to 

the presence of arterial stiffness and atherosclerosis 488 as well as to the presence of 

vascular dysfunction and the development of GON 198, 488.  On exploration however, no 

direct correlations could be found in this study between arterial stiffness, IMT and 

systemic endothelial function, however as systemic endothelial dysfunction, measured 

by FMD, was actually found to be comparable between groups here this finding may not 

be surprising. Interestingly however a significant positive correlation between nocturnal 

SBP variability and IMT was identified in POAG patients in this study. Such a 

relationship between these two parameters has also previously been reported in 

cardiovascular research 783, 784 and is thought to relate to the increased stress on the 

vascular wall imposed by increased fluctuations in BP which can result in structural 

alterations in the medial layer of the carotid artery 783. This finding provides support for 

the concept of a generalised systemic vascular dysfunction in glaucoma patients, 

however no such correlations were found in our NTG patients perhaps suggesting 

different mechanisms may be occurring here. Further investigation would be required to 

clarify this issue. 
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7.9.2.3 Heart rate variability (HRV) and the Autonomic nervous system 

(ANS) 

The ANS supervises and influences the hemodynamic situation of the body through its 

constant regulation of HR and BP and plays a vital role in blood flow physiology 399. 

Through the assessment of HRV an indirect measure of the autonomic control of the 

heart and hence the state of the ANS can be gained. In the presence of ANS 

dysfunction blood perfusion can be either altered or impaired in multiple vascular beds 

throughout the body, including in the eye. Its assessment and detection in those with 

ocular diseases with known vascular associations, such as glaucoma, is therefore of 

significant interest. No significant differences in ANS parameters (LF, HF, LF:HF) where 

identified between POAG, NTG and healthy controls in this study following 24 hour HRV 

assessment. Previous studies, using similar techniques, have however been able to 

identify HRV alterations suggestive of a high sympathetic tone in both newly diagnosed 

POAG patients 43 and NTG patients 413, but those findings could not be replicated here. 

Stricter inclusion criteria with regard to cardiovascular disease were imposed on this 

study compared to that of previous studies, which could perhaps explain these findings, 

however before any firm conclusions can be drawn further investigation into the role of 

ANS in the development and progression of GON is required.  Intriguingly there is 

evidence to suggest that the extent of any ANS dysfunction increases with glaucoma 

severity and progression, particularly in NTG patients 413, 414, the possibility that the ANS 

may become involved later in the disease process of our newly diagnosed glaucoma 

patients can therefore not be ruled out, however again further follow up would be 

required to confirm this.  

 

Interesting links have previously been made in cardiovascular research between the 

presence of ANS dysfunction and the presence of endothelial dysfunction in regard to 

the abnormal regulation of vascular tone 785, 786, whereby a dysfunction in one system 

has been suggested to drive a dysfunction in the other. No such research however has 



236 
 

previously been conducted in glaucoma patients, although both parameters have been 

individually linked to the disease. In the present study, across all three study groups, no 

correlations were found between our ANS parameters (LF, HF and LF:HF) and our 

systemic endothelial function parameters (FMD), which themselves were all found to be 

comparable between groups. A larger scale study, perhaps looking at patients with 

varying degrees of, or progressive, POAG and NTG may help to explore the potential 

relationship between the ANS and the endothelium further and determine whether those 

associations identified in cardiovascular disease are evident in glaucoma patients at any 

stage of the disease process. Such a discovery would contribute towards an enhanced 

understanding of the pathological process involved in the development of GON.      

 

7.9.3 Retinal vascular function 

With regard to retinal vascular function both our POAG and NTG patients demonstrated 

a comparably steeper retinal arterial constriction slope following the cessation of flicker, 

as well as an increased arterial and venous baseline diameter fluctuation (BDF) in 

comparison to healthy controls. Slope is an important parameter which allows an 

evaluation of the dynamic nature of the vascular constriction profile and is influenced not 

only by the percentage constriction in vessel diameter below baseline following 

cessation of flicker but also by the time scale across which this happens. As discussed 

in chapter 5 the relevance of such a steeper arterial constriction slope in glaucoma 

patients is currently unclear as very few previous studies looking at vascular reaction to 

flickering light have investigated the constriction responses in detail. Nevertheless, due 

to the links which have previously been hypothesised between an increased overshoot 

in vessel diameter below baseline following cessation of flicker, a parameter known to 

influence constriction slope, and the presence of PVD syndrome 746, as well as between 

altered astrocyte activity and re-establishment of vasomotor tone 764, 765, it is not 

unreasonable to hypothesise that the steeper retinal arterial constriction slope identified 
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here signals the presence of retinal vascular dysfunction in both our POAG and NTG 

patients. It is interesting that a steeper arterial constriction slope was identified in both 

groups of glaucoma patients in comparison to controls, especially as some of the 

conditions to which we have theoretically linked this finding, namely PVD and raised ET-

1 levels, have been more frequently related to NTG patients in the literature 26, 356. As 

such it could be hypothesised that similar conditions to those more commonly exhibited 

in our NTG patients are also evident in the early stages of POAG, however in order to 

determine whether this is in fact the case additional information, for example on the 

presence of PVD symptoms, such as cold hands and feet, exploration of nail fold 

capillary perfusion and determination of ET-1 levels in both groups of patients would be 

required. 

 

In addition to the steeper retinal arterial constriction slope, comparably increased 

fluctuations in baseline arterial and venous diameter, prior to the onset of flicker were 

also identified in both our POAG and NTG patients in comparison to healthy controls. 

BDF, as discussed in previous chapters, is a parameter, which although recognised is 

not commonly reported in the literature. Its consideration was first recommended by 

Nagel et al 686 as a way of taking into account the effect of spontaneous variations in 

vessel diameter, which occur under normal resting conditions, on the observed 

response of the vasculature to flicker light, however it is a parameter which is not 

commonly reported in the literature. As such the relevance of these findings with regard 

to GON development is currently unclear. Tentative links have been made in previous 

studies between the occurrence of increased arterial diameter fluctuations and the 

presence of vascular disturbance in both smokers and vasospastic subjects 695, 746-748 

and between increased retinal venous diameters and the presence of retinal ischemia 

and hypoxia 749, 751. On this basis it could be hypothesised that the increased BDF 

identified in both our POAG and NTG patients in this study is a further indicator that 

common alterations in retinal vascular function may exist in these individuals, perhaps 
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related to an increased variation in vascular tone or rigidity or the presence of ischemic 

and hypoxic changes. Interestingly a significantly positive correlation was found between 

arterial BDF and nocturnal BP variability in our NTG patients only. Variations in BP are 

known to influence baseline retinal vessel diameter even under normal resting 

conditions and this correlation confirms that in NTG patients in particular this influence is 

significant and may require consideration. Indeed on correcting for the effect of 

nocturnal BP variability on arterial BDF using ANCOVA the significant difference 

between NTG patients and controls is lost however the significance still remains 

between POAG patients and healthy controls. This not only highlights the importance of 

BP variability in NTG but also perhaps suggests that other factors separate to BP 

fluctuation may be affecting the stability of the arterial baseline diameter in POAG 

patients.  

 

7.9.4 Oxidative stress 

Oxidative stress has previously been implicated in the pathophysiology of both POAG 

and NTG. In this study however no significant differences in the circulating levels of the 

antioxidant glutathione could be found between groups (GSH, GSSG, GSH:GSSG). 

Such a direct comparison of oxidative stress status between POAG, NTG and controls 

has not previously been made, however there a number of studies which have been 

able to demonstrate evidence of oxidative stress in these glaucoma groups individually, 

in the form of increased DNA breaks 524, altered ET-1 and proteosome activity 386, 526 and 

decreased antioxidant activity 527, 528. Of particular relevance is a study by Gherghel et al 

787 which was able to identify low plasma levels of GSH and t-GSH in newly diagnosed 

POAG patients, suggestive of an increased oxidative burden. The patients included in 

this above study were slightly older than that of the present study which, due to the 

strong links between oxidative stress and age, could partly explain the difference in 

results; however it is difficult to draw any firm conclusions. Indeed, although no 
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significant differences in circulating glutathione levels were identified between groups in 

this study, the possibility that evidence of oxidative stress may be present in other forms 

in our POAG and NTG patients or be present in amounts which are not yet detectable 

systemically, cannot be ruled out. Further investigation may therefore be required in 

order to determine the exact associations between GON and oxidative stress.   

 

7.9.5 POAG vs. NTG 

The aim of this study was to compare and contrast the presence of vascular dysfunction 

at the ocular level and multiple systemic levels in POAG and NTG patients and to 

evaluate the validity of the concept that glaucoma may exist as a disease continuum and 

represent a sick eye in a sick body. This is the first time that direct comparisons such as 

these have been made between POAG and NTG patients across so many ocular and 

systemic parameters simultaneously, making it difficult to directly compare our findings 

to that of previous studies. Nevertheless we have identified evidence of altered retinal 

vascular reactivity, altered ocular perfusion, altered nocturnal BP variability and signs of 

systemic vascular pathology in both POAG and NTG patients, which are comparable 

and not replicated by healthy controls. Such findings suggest that a considerable 

overlap may in fact exist in the aetiology of both POAG and NTG, especially in the early 

stages of the disease. The finding of so many comparable parameters between our two 

groups of newly diagnosed glaucoma patients is perhaps somewhat surprising, 

especially as, on the basis of previous research, it was hypothesised that the evidence 

of vascular dysfunction would be more pronounced in our NTG patients. The relative 

influence of IOP on the results obtained in this study is difficult to determine and the 

possibility that the mechanisms by which these multiple vascular parameters become 

similarly altered could still vary between glaucoma groups cannot be ruled out. 

Regardless of this it does appear from our findings that the consideration of OAG as a 

disease continuum as opposed to as two separate clinical entities may well be a useful 
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and valid concept. Indeed we have clearly highlighted the need for consideration of 

vascular parameters in both POAG and NTG and have blurred the margins between 

these two forms of OAG.  

 

An additional consideration of this study was to determine whether any further support 

for the concept that glaucoma should be considered a sick eye in a sick body could be 

found. Interestingly, in addition to the finding of altered ocular and systemic vascular 

parameters in our POAG and NTG patients, correlations were also found between 

increased nocturnal BP variability and both IMT at the systemic level and retinal artery 

baseline fluctuation at the ocular level. These findings highlight the possibility that a 

generalised vascular function, in which abnormalities at one level are influencing or 

being influenced by abnormalities at another level, could be present in glaucoma 

patients and that glaucoma, may indeed represent a sick eye in a sick body. With this in 

mind it could be broadly hypothesised that the increased nocturnal BP variability 

detected in this study, could precipitate, through the imposition of increased stress on 

the arterial wall, an increase in carotid artery IMT and an alteration in the functioning and 

reactivity of the retinal vessels in our glaucoma patients, contributing to both an 

increased cardiovascular risk and the presence of unstable ocular perfusion. Additional 

alterations in retinal microvascular regulation and astrocyte activity in these patients 

could then further contribute to these disruptions in retinal vascular reactivity and to the 

instability of ocular perfusion. The origins of the increased BP variability itself could 

theoretically be linked to increased arterial stiffness, the presence of which has 

previously been suggested to interfere with the buffering of BP alterations through 

reducing the compliance of the vascular wall 788. Indeed increased systemic arterial 

stiffness was also identified in our glaucoma patients and although not measured here, 

increased arterial stiffness at the ocular level has also previously been reported in NTG 

patients by other studies 295. If these factors were to combine as hypothesised and 

create an unstable ocular perfusion, the mechanisms by which they may then go on to 
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produce GON is currently uncertain, however it would not be unreasonable to 

hypothesise the involvement of recurrent ischemia/reperfusion injury. Interestingly 

however no differences in oxidative stress, a key component of ischemia/reperfusion 

injury or in ANS activity and systemic endothelial function, both of which are commonly 

linked to such vascular alterations, were found between groups in this study. Further 

investigation may therefore be required to elicit the exact role of these parameters in the 

aetiology of GON and to expand on the above mentioned hypothesis of generalised 

vascular dysfunction in glaucoma. Indeed it is possible that these parameters may 

become altered at a later stage of the disease process or may be already altered at a 

degree not yet detectable at the investigated level, for example in the microvasculature 

rather than the macrovasculature with regard to endothelial dysfunction in particular. As 

such their involvement although unclear cannot be ruled out completely.    

 

7.10  Conclusion 

In conclusion this study has demonstrated multiple comparable alterations in both ocular 

and systemic vascular function between POAG and NTG patients, which not only 

highlights the importance of considering vascular factors in the aetiology and treatment 

of both conditions, but also highlights the need to become less rigid in our separation of 

the two conditions into distinct clinical entities when considering vascular risk. 

Furthermore additional support for the concept that a generalised vascular dysfunction 

exists in glaucoma patients and that glaucoma should be considered a sick eye in a sick 

body has been provided.    

 

7.11  Limitations 

One factor not explored in this study was the precise nature of the structural ONH 

changes between our glaucoma groups, so it is unclear whether differences were 

present in this regard. Furthermore, considering the presented mean IOP values for 
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each group (table 7.1), it is possible that a certain degree of overlap may exist between 

the reported glaucoma categories, which could perhaps account for the large number of 

comparable findings between the POAG and NTG patients in this study. The 

categorising of patients into groups in this study based on clinical IOP levels above or 

below 21mmHg is however reflective of current practice. It would be interesting to 

determine through further research whether the similarities between POAG and NTG 

identified here remain consistent as the disease develops or whether they become less 

comparable with progression and also whether they remain in POAG patients with 

higher IOP levels (26 mmHg or over). This would be important not only from an 

aetiological point of view but also clinically as different treatment methods may be 

required at later stages of the disease process.   
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8. Summary and Conclusions 
 
 
8.1 Summary 

Evaluating the importance of ocular and systemic vascular risk factors in the aetiology of 

both glaucoma and AD has been a research area of interest for some time and the 

scientific literature relating to this has been reviewed in Chapter 1 of this thesis. It is still 

unclear however how hemodynamic disturbances, affecting multiple vascular beds, may 

interrelate to cause neuronal degeneration at the ocular and/or cerebral levels in 

glaucoma and AD and how valid the assessment of vascular function at the ocular level 

may be as an indicator of dysfunction at the cerebral level. Elucidating or validating 

these relationships could not only enhance our aetiological understanding of ocular and 

cerebral neurodegenerative disease but could also potentially open up new diagnostic or 

therapeutic avenues for both glaucoma and AD. As such this thesis has been concerned 

with investigating the presence, impact and interactions of ocular and systemic vascular 

alterations in POAG, NTG and AD patients and how they may relate to the pathogenesis 

of these neurodegenerative diseases. Furthermore this thesis has explored the concept 

of using the eye as a window to the brain in AD patients as well the validity of POAG 

and NTG as distinct clinical entities and the validity of considering glaucoma as a ‘sick 

eye in a sick body’. 

 

In summary the findings of this work were: 

 
8.1.1 Is the eye a window to the brain? Ocular and systemic vascular 

dysfunction in Alzheimer’s disease 

Cerebral vascular dysregulation has previously been suggested to play a role in the 

development and progression of AD however the direct assessment of the cerebral 

vasculature is notoriously difficult. Furthermore questions still remain around exactly 
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how alterations in vascular function may lead to neuronal degeneration in AD. The aim 

of this study was therefore to determine for the first time whether vascular dysregulation 

could be detected at the ocular level in mild newly diagnosed AD patients using novel 

analysis methods and whether the degree of any dysregulation discovered could relate 

to either the degree of cognitive impairment or the presence of systemic vascular 

dysfunction in these patients. Following dynamic retinal vascular analysis, alterations in 

the retinal arterial response to flicker light, in the form of an increased arterial RT on two 

out of the three occasions in which the vessels were stimulated, along with alterations in 

baseline venous diameter, were detected in our mild AD patients. Furthermore this 

alteration in retinal arterial RT was found to correlate positively with degree of cognitive 

impairment in these patients. No significant differences in systemic endothelial function 

were however identified between groups. The exact cause of the retinal vascular 

alterations identified in this study can only be hypothesised at this point but nevertheless 

they provide support for a vascular aetiology in AD and, through the identification of 

retinal vascular dysfunction in mild AD patients for the first time, highlight the 

involvement of the ocular circulation in the disease process. Furthermore this study 

firmly introduces the idea that the functioning of the ocular circulation, as assessed by 

DVA, may be a useful marker for determining cognitive prognosis in AD patients and 

has provided a good basis for further exploration into vascular dysfunction in AD.  

 

 
8.1.2 Ocular and systemic vascular abnormalities in newly 

diagnosed normal tension glaucoma patients 

NTG has been widely linked to the presence of ocular and systemic vascular alterations 

however very few studies have simultaneously explored and directly compared the 

presence of ocular and systemic vascular alterations in these patients and many 

questions still remain around exactly how these alterations may relate to RGC loss and 

GON development. As such the aim of this study was to investigate the presence of 
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cardiovascular risk factors and alterations in vascular function at both the ocular and 

systemic level in NTG patients, using novel investigative techniques, and to evaluate the 

concept that glaucoma may be considered a ‘sick eye in a sick body’. It was 

hypothesised that, on the back of recent evidence highlighting the involvement of both 

the ocular and systemic circulations in NTG, our newly diagnosed and previously 

untreated NTG patients would demonstrate altered retinal vascular reactivity to flicker 

light in conjunction with signs of systemic vascular dysfunction. On investigation our 

NTG patients were indeed found to exhibit increased systemic arterial stiffness and 

carotid artery IMT in conjunction with alterations in retinal arterial reactivity to flicker light 

stimulation, in the form of an altered dynamic response profile and a steeper constriction 

slope following cessation of flicker. No direct correlations however could be found 

between the systemic and ocular vascular parameters explored in this study, and 

furthermore no significant differences in systemic endothelial function could be identified 

between groups. These findings indicate that subclinical signs of systemic vascular 

disease and disturbances in ocular vascular reactivity appear to be present in NTG 

patients at the earliest stages of the disease process and could potentially be 

contributing to the disease aetiology. The importance of considering systemic vascular 

factors in the diagnosis and management of NTG has therefore been highlighted and, 

furthermore, through the utilisation of novel analysis methods in conjunction with DVA 

assessment, a contribution to the aetiological understanding of vascular dysfunction at 

the ocular level in NTG has also been made. Additionally, although not conclusive, this 

research goes someway to reaffirming the concept that glaucoma may be considered ‘a 

sick eye in a sick body’. Further exploration into this concept, using a wider range of 

systemic investigation techniques, was subsequently conducted in chapter 7 of this 

thesis.   
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8.1.3 Ocular Vascular Dysregulation in AD compares to both POAG 

and NTG 

Having established the presence of retinal vascular dysfunction in both AD and NTG 

patients individually, an investigation into whether the nature of this vascular dysfunction 

is comparable between these groups of patients was the next logical step. A number of 

associations have previously been made between the presence and aetiology of these 

two neurodegenerative diseases; however the exact nature of their relationship is still 

uncertain. As such the aim of this study was to investigate for the first time, using novel 

techniques, the coexistence of vascular alterations at both the ocular and systemic level, 

in AD and both POAG and NTG patients, with the hypothesis that, on the back of recent 

evidence highlighting the potential aetiological similarities between these conditions, 

comparable alterations in vascular function would be found. On investigation our mild 

newly diagnosed AD patients were found to demonstrate an altered retinal arterial 

vessel reactivity to flicker light which was comparable to that of our POAG patients and 

an alteration in baseline venous reactivity which was comparable to that of our NTG 

patients; however no differences in systemic endothelial function were identified 

between groups. These findings go some way to provide support for the concept of a 

common underlying microvascular aetiology in AD and glaucoma and highlight the need 

to consider ocular health in AD and cognitive health in glaucoma. Interestingly, the 

similarities in the nature of the retinal vascular alterations identified in our AD and 

glaucoma patients appear to differ depending on whether POAG or NTG is being 

considered, this is a novel finding which would benefit from further investigation in order 

to clarify its significance. It also provokes questions about the similarities and differences 

which may exist in ocular and systemic vascular dysfunction between POAG and NTG 

patients themselves, which was subsequently explored in the following chapter.   
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8.1.4 Primary open angle glaucoma and Normal tension glaucoma: 

two separate diseases or one continuous entity? The vascular 

perspective 

Although more traditionally associated with NTG, vascular alterations at both the ocular 

and systemic level have also previously been identified in POAG patients and in a 

similar manner the benefits of IOP reduction, more traditionally linked with POAG, have 

also been demonstrated in NTG patients. Overlaps such as these has lead to the 

questioning of whether these two forms of glaucoma should still be considered as 

distinct clinical entities or whether glaucoma may in fact represent a disease continuum 

with no distinct borders of separation. As such the aim of this study was to compare and 

contrast the presence of ocular and systemic vascular alterations at multiple levels in 

both newly diagnosed and previously untreated POAG and NTG patients and to not only 

evaluate the validity of these two conditions as distinct clinical entities but to also further 

explore the concept that glaucoma may represent a ‘sick eye in a sick body’. It was 

hypothesised that, on the back of recent evidence, ocular and systemic vascular 

dysfunction would be present in both POAG and NTG patients but the extent of this 

vascular involvement would be greater in NTG patients. On investigation however 

comparative alterations in retinal vessel reactivity, OPP, nocturnal SBP variability and 

both systemic arterial stiffness and carotid IMT were found in our POAG and NTG 

patients. Furthermore significant correlations between systemic BP variability, IMT and 

retinal arterial baseline diameter fluctuation were found across the glaucoma groups. No 

significant differences in HRV, systemic endothelial function or oxidative stress 

parameters were however found between groups. This is the first time that direct 

comparisons between so many ocular and systemic parameters have been made in 

POAG and NTG patients. The inter-relationships identified between the investigated 

ocular and systemic parameters certainly provide support for the concept of a 

generalised vascular dysfunction in glaucoma and for the concept that glaucoma may 
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represent a ‘sick eye in a sick body’. Furthermore, although the finding of so many 

comparable vascular alterations between both POAG and NTG patients was perhaps 

surprising, it highlights the importance of considering the role of vascular factors in both 

forms of glaucoma and goes some to way to supporting the concept that glaucoma 

should be considered as a disease continuum rather than a disease with distinct clinical 

forms.   

  

8.2 Conclusions 

The aims of this work were: 
 
 
8.2.1 To investigate the presence and impact of ocular and systemic 

vascular alterations in AD and to explore the concept of using 

the ‘eye as a window to the brain’ 

The findings of this work were: 

• An altered retinal vascular response to flicker light stimulation, indicative of 

ocular vascular dysfunction, was identified on DVA analysis in mild newly 

diagnosed AD patients 

• The degree of this retinal vascular dysfunction was found to correlate with the 

degree of cognitive impairment in these AD patients 

• No significant differences in systemic endothelial dysfunction were identified 

between groups 

• Support for the concept of using the ‘eye as a window to the brain’ for the 

diagnosis and screening of cognitive impairment was provided 
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8.2.2 To investigate the presence and impact of ocular and systemic 

vascular alterations in NTG  

The findings of this work were: 

• An altered retinal arterial vascular constriction response following flicker light 

stimulation, indicative of ocular vascular dysfunction, was identified on DVA 

analysis in newly diagnosed NTG patients 

• Signs of subclinical vascular pathology in the form of increased systemic arterial 

stiffness and carotid artery IMT were also identified in these NTG patients 

• No significant differences in systemic endothelial function were identified 

between groups 

 

 
8.2.3 To investigate the possibility of a shared vascular aetiology, 

involving both the ocular and systemic circulations, in AD and 

both POAG and NTG. 

The findings of this work were: 

• AD and POAG patients demonstrated a common alteration in retinal arterial 

function in the form of a prolonged reaction time to flickering light 

• AD and NTG patients demonstrated a common alteration in retinal venous 

function in the form of an increased baseline fluctuation in venous diameter 

• No significant differences in systemic endothelial function were identified 

between groups 

• The possibility that AD and glaucoma may share a common underlying 

microvascular aetiology was highlighted, along with possibility that the nature of 

this shared aetiology may differ between POAG and NTG patients   
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8.2.4 To compare and contrast vascular alterations at both the 

ocular and systemic level in POAG and NTG and to explore 

their validity as distinct clinical entities 

The findings of this work were: 

• POAG and NTG patients demonstrated comparable alterations in nocturnal SBP 

variability, OPP, retinal vascular reactivity, systemic arterial stiffness and carotid 

artery IMT 

• Correlations were identified between nocturnal SBP variability and both retinal 

artery baseline diameter fluctuation and carotid IMT, highlighting the possibility 

that a generalised vascular dysfunction, affecting multiple vascular beds may be 

present in OAG patients and providing support for the concept that glaucoma 

may be considered a ‘sick eye in a sick body’ 

• On the back of these finding the validity of POAG and NTG as distinct clinical 

entities can be questioned and the concept that glaucoma may represent a ‘sick 

eye in a sick body’ can be somewhat reaffirmed. 

 

8.3 Overall Limitations 

The studies outlined in this thesis are subject to a number of potential limitations. Firstly, 

only a small sample of AD patients and a moderate sample of glaucoma patients could 

be recruited. This, along with the cross-sectional design, potentially limits the 

conclusions which can be drawn from the presented results as well as the statistical 

power of the analysis. The reason for this limited sample of patients was the very strict 

patient inclusion/exclusion criteria, which were necessary to avoid any possible 

unwanted influences on the measured vascular parameters, but unavoidably limited the 

number of suitable study patients that could be recruited.  
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Secondly, with regard to the glaucoma patients, objective data such as the precise 

nature of the structural ONH changes and VF defects was not recorded and used in 

analysis. Such parameters were however considered by the clinicians in the diagnosis of 

POAG and NTG and were used indirectly to group the POAG and NTG patients. 

Inclusion of such objective data could have potentially allowed clearer distinctions 

between the glaucoma groups involved in this study to be made and enhanced the 

interpretation of results.  

 

Finally multiple parameters were assessed and analysed simultaneously in AD, 

glaucoma and healthy control patients in this thesis. There is a risk when comparing 

multiple parameters that the rate of type 1 errors (false positives) will be increased. On 

statistical advice, a correction for multiple comparisons was therefore made in this thesis 

when comparing multiple sequential parameters on DVA analysis, whereby the p value 

for significance was reduced from p=0.05 to p=0.01. As the majority of other 

investigative techniques included in this thesis had only single output parameters a 

correction for multiple comparisons was not deemed necessary in those cases. It is 

however still possible that an increased family-wise error rate could have influenced the 

significant findings of this thesis, especially when reviewing the results of all of the 

investigative techniques as a whole. Significant parameters where the p-value is close to 

the 0.05 boundary should therefore be considered with caution. 
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8.4 Clinical implications 

8.4.1 Implications with regard to AD 

The need to consider the impact of vascular dysregulation and the role of vascular risk 

factors in the aetiology, diagnosis and management of AD has been highlighted. 

Furthermore the potential for utilising the easily accessible retinal vasculature to gain an 

insight into cerebral vascular alterations and/or cognitive risk, via DVA analysis, has 

been demonstrated. Finally the need to consider ocular health in AD patients, in the 

form of both POAG and NTG, has also been emphasised. On the basis of these findings 

and despite the need for further research and expansion of the study, it is recommended 

that the evaluation and assessment of ocular vascular function, ocular health and the 

presence of vascular risk factors should be considered in both the diagnosis and 

monitoring of AD, particularly in the early and pre-clinical stages of the disease. 

 

 
8.4.2 Implications with regard to glaucoma 

The potential role of both ocular and systemic vascular factors in the aetiology of POAG 

and NTG has been highlighted. Furthermore the coexistence of vascular alterations at 

multiple sites throughout the body and the impact of these alterations on the ocular 

circulation have been demonstrated in glaucoma patients. As such the extensive 

screening and assessment of both ocular vascular function and systemic vascular risk 

factors, to include 24 hour ABPM and arterial stiffness assessment, is recommended in 

the routine diagnosis and management of both of these groups of glaucoma patients 

and may be particularly relevant in cases where the disease is progressing.    
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8.4.3 Implications with regard to assessment of ocular vascular 

function 

A number of different ocular and systemic vascular techniques were conducted in the 

thesis. With regard to ocular vascular function and DVA in particular, through the 

utilisation of SDRA and the introduction of our novel Matlab imaging analysis, the 

dynamic nature of the retinal vascular response profile to flicker light was able to been 

explored fully for the first time. The importance of considering the full vascular profile, 

including constriction response, slope and reaction times was highlighted by the 

significant differences found in these parameters in this thesis, which would otherwise 

have been missed. It is therefore recommended that such analysis should be conducted 

in all future studies utilising DVA.  

 
 
8.5 Future Directions 

A number of new questions have arisen from the data presented in the major chapters 

of this thesis from which the following avenues of future research are worth highlighting 

in particular:  

 

8.5.1 Expansion of preliminary data 

Despite statistically significant results being demonstrated in this thesis with the sample 

sizes obtained, expansion of the four main presented studies to include a larger cohort 

of patients would enhance the validity and application of our findings. Furthermore 

expansion of our blood analyses to include the endothelial marker ET-1 could offer 

additional information on the state of the vascular endothelium and vessel tonus, which 

could in turn offer additional information of both aetiological and clinical relevance with 

regard to neurodegenerative disease.  
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8.5.2 Assessment of retinal vascular dysfunction in mild cognitive 

impairment (MCI) 

As well as expanding the presented research to include a larger sample of mild AD 

patients, it would be interesting to determine at what stage in the disease process such 

vascular alterations become apparent and whether their detection and management can 

impact on disease prognosis. Of particular interest in this regard would be the 

assessment of retinal vascular function in MCI patients. These patients are recognised 

as having memory impairment greater than that expected through aging alone and are 

considered to be at an increased risk for AD development. Indeed around 10-15% of 

MCI patients are thought to convert to AD annually, in comparison to only 1-2% of the 

normal elderly population . Assessment of retinal vascular function in MCI patients could 

not only provide an insight into whether vascular alterations are present at this mild level 

of cognitive impairment but could also, if conducted as part of a longitudinal study, 

provide an insight into whether the presence of retinal vascular dysfunction may predict 

or increase their risk of progression to AD. Furthermore a comparison between the 

nature of retinal vascular dysfunction in MCI patients and in those with mild and/or more 

advanced AD could provide an insight into how such vascular dysfunctions may 

contribute to neurodegenerative disease development and/or progression.             

 

 
8.5.3 Impact of ocular and systemic vascular dysfunction on the 

progression of POAG and NTG 

The presence of comparable alterations in ocular and systemic vascular dysfunction has 

been identified in mild newly diagnosed POAG and NTG patients in this thesis. As well 

as expanding on the aetiological relevance of these findings, future work assessing, 

through means of longitudinal study, whether the presence of such vascular alterations 

and risk factors at the earliest stages of the disease process affect the speed or severity 



255 
 

of disease progression and/or whether modification of these parameters, where 

possible, aids disease management would be beneficial in determining their clinical 

relevance. Furthermore the assessment of both ocular and systemic vascular function in 

glaucoma patients who are progressing despite maximum IOP therapy would also be of 

interest as it is widely thought that vascular or IOP-independent factors play a greater 

role in disease aetiology in such individuals. Indeed the assessment of ocular and 

systemic vascular function in progressive glaucoma patients not only has the potential to 

provide an insight into the vascular factors linked to this progression but could also open 

up new treatment and management options for these individuals without having to resort 

to surgery.     

 

8.5.4 Development of dynamic retinal vessel analysis as a tool for 

the assessment of neurodegenerative disease 

A database of normative values for retinal artery and venous function as assessed by 

DVA is not currently available. As such, although it has strong research implications, the 

viability of DVA as a diagnostic tool in neurodegenerative disease is currently limited. 

Future work to establish both a normative DVA database, across a range of ages and 

ethnic groups, using the parameters presented in this thesis and a disease related DVA 

database, across a variety of disease stages, is therefore needed.  

 

8.5.5 Expansion of flow mediated dilation analysis 

Current analysis of the systemic endothelial response to FMD is limited, with the 

percentage dilation response being the only parameter considered. Expansion of this 

analysis, to include parameters such as response and recovery times, dilation and 

constriction slopes and baseline diameter fluctuation, which are currently more 

commonly associated with DVA, could enhance the evaluation of systemic endothelial 

function and make comparisons between our ocular (DVA) and systemic vascular 
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parameters (FMD) more reliable. The development of new software programs and 

algorithms, capable of coping with large amounts of data, would be necessary for this to 

be conducted successfully.   
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Study  Participants  Site and technique of measurement  Findin gs 
  Retrobulbar   

Plange et al (2003) 29 NTG / 29 Controls CRA and SPCA 
Color Doppler Imaging and Fluorescein 
angiograms of ONH 

↓ blood flow parameters and ↑ resistance in most 
vessels, along with larger ONH filling defects in NTG 
patients 

Butt et al (1995) 34 LTG / 17 Controls CRA and OA 
Color Doppler Imaging 

↓ BF and ↑ resistance in CRA and OA of LTG 
patients 

Nasemann et al (1994) 8 NTG / 8 Controls CRA and OA 
Fluorescence perfusion scintigraphy 

↓ blood flow velocity in OA and CRA 

Yamazaki et al (1997) 16 NTG, prog VF 
15 NTG stable VF 
14 HTG, prog VF 
14 HTG, stable VF 

SPCA, CRA and OA 
Color Doppler imaging 

↓ blood flow velocity and ↑ resistance in CRA and 
SPCA of NTG patients with progressive visual fields 

Rankin et al (1995) 52 POAG 
24 NTG 
28 Controls 

CRA and SPCA 
Color Doppler imaging 

↓ blood flow velocity and ↑ resistance in CRA and 
SPCA of both NTG and POAG patients 

Rojanapongpun et al (1993) 60 POAG 
42 NTG 
35 Controls 

OA 
Transcranial Doppler ultrasound (2MHz) 

↓ blood flow velocity in OA of both POAG and NTG 
patients 

Gallassi et al (2003) 44 POAG over 7 years OA 
Color Doppler imaging and VF analysis 

↓ blood flow velocity and ↑ resistance in patients with 
deteriorating visual fields 

Satilmis et al (2003) 20 progressive POAG 
over approx 4 years 

CRA 
Color Doppler imaging and VF analysis 

↓ blood flow velocity in CRA correlates with visual 
field progression rate 

Zeitz et al (2006) 114 NTG / 40 Controls CRA, SPCA and OA 
Color Doppler imaging 

↓ blood flow velocity in the CRA and SPCA of 
progressing glaucoma patients 

Schumann et al (2000) 20 progressive POAG CRA and OA 
Color Doppler imaging and VF analysis 

↓ blood flow velocity in OA and ↑ resistance in CRA. 
Interocular differences in VF progression correlate 
with interocular differences in blood flow parameters.  

Januleviciene et al (2008) 30 POAG / 30 Controls CRA, OA and SPCA 
Color Doppler Imaging 
RNFL thickness using scanning laser 
polarimetry 

↓ blood flow velocity correlated with thinner RNFL in 
POAG patients. 

  Optic nerve head   
Michelson et al (1998) 91 POAG / 44 Controls Juxtapapillary retina and NRR 

Scanning laser Doppler flowmetry 
Analysis of visual fields 

↓ ONH and juxtapapillary retina blood flow in POAG 
with no field defect, borderline field defect and 
advanced disease 

IM
T 
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Plitz-Seymour et al (2001) 21 POAG suspects 
22 POAG 
15 Controls 

ONH – 4 quadrants, cup and foveola 
Laser Doppler flowmetry 

Similar levels of ↓ blood flow in the cup, 
superotemporal and inferotemporal NRR of suspect 
POAG and POAG patients 

Lam et al (2005) 16 glauc with 
asymmetry between 
eyes 
20 glauc with 
asymmetry superior to 
inferior 

Superotemporal and inferotemporal NRR 
and cup 
Laser Doppler flowmetry 

Reduction in blood flow greater in the eye with worse 
damage and the hemifield of the disc with greater 
damage 

Fontana et al (1998) 95 NTG / Controls Pulsatile ocular blood flow POBF ↓ in NTG patients with and without field loss 
and greater ↓ in eye with field defect compared to 
that with no field defect. 

Adam et al (1980) 171 POAG, OHT and 
Controls  

Filling defects in the rim, wall and floor of 
cup. 
Optic disc fluorescein angiograms 

Greater % of filling defects in the wall of the cup in 
glaucoma patients and ↑ with degree of field loss 

Grunwald et al (1998) 19 POAG / 15 Controls ONH – 4 quadrants and cup and foveola 
Laser Doppler flowmetry 

↓ in blood flow in inferotemporal and superotemporal 
NRR in POAG. Lower blood flow in those with more 
advanced VF defects. 

Findl et al (2000) 90 POAG / 61 Controls Cup and NRR 
Scanning laser Doppler flowmetry 
Fundus pulsation amplitude – cup and 
macula 

↓ blood flow and pulsation amplitude in cup, NRR 
and macula of POAG patients and correlation with 
degree of field defect 

Michelson et al (1996) 43 POAG / 43 Controls NRR and juxtapapillary retina 
Scanning laser Doppler flowmetry 

↓ blood flow at both the NRR and juxtapapillary retina 
in POAG 

Sato et al (2006) 54 NTG Superior and inferior NRR 
Heidelberg retina flowmetry 

Region NRR with greatest reduction in blood flow 
corresponded with region of visual field defect  

  Retina   
Mitchell et al (2005) 59 POAG 

163 OHT 
3065 Controls 

Stereo optic disc photography – analysis 
of retinal vessel diameter 

Significantly narrower retinal arteriolar diameters in 
POAG compared to OHT and controls 

Rader et al (1994) 226 POAG/NTG 
206 Controls / OHT 

Analysis of retinal vessel diameter Vessels more constricted closer to the disc 
compared to downstream in POAG/NTG patients 
and correlation with degree and site of ON damage 

Arend et al (2002) 36 NTG 
31 Controls 

Arteriovenous passage (AVP) time and 
peripapillary arterial and venous 
diameters. 
Digital scanning laser fluorescein 

Prolonged AVP time in NTG patients but no 
differences in vessel diameters compared to controls 
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angiograms 
Duijm et al  45 POAG 

43 NTG 
11 OHT 
20 Controls 

Retinal arteriovenous passage time. 
Video fluorescein angiograms 

Retinal AVP prolonged in POAG compared to other 
groups 

Berisha et al (2008) 12 Early POAG 
8 Controls 

Inferotemporal retinal artery blood flow 
parameters - Canon laser Doppler blood 
flow instrument 
Peripapillary RNFL thickness - OCT 

↓ blood flow and speed and thinner RNFL in POAG 
patients. Negative correlation between blood flow 
and RNFL thickness in POAG 

Logan et al (2004) 58 POAG 
76 NTG 
38 Controls 

Retinal blood flow – Heidelberg retinal 
flowmetry 
Structural damage of ONH – Heidelberg 
retinal tomography  

↓ retinal blood flow in both NTG and POAG. 
ONHs with abnormal segments had lower 
corresponding blood flow parameters. 
Glaucoma patients with normal ONH segments had ↓ 
blood flow compared to controls with normal ONH 
segments. 

Wolf et al (1993) 51 OAG 
Controls 

Retinal parameters including AVP time 
Video fluorescein angiograms 

Prolonged AVP time, ↓ dye velocity, increased 
plasma viscosity in POAG  

  Choroid   
Duijm et al (1997) 45 POAG 

43 NTG 
11 OHT 
20 Controls 

Choroidal blood refreshment time 
Video fluorescein angiograms 

Slower choroidal circulation in NTG compared to 
other groups  

Yin et al (1997) 25 POAG 
5 Optic Atrophy 
18 Controls 

Choroidal filling time – fluorescein 
angiography 
Choroidal thickness – light microscopy 

Thinner choroids and delayed choroidal perfusion in 
POAG patients 

Cellini et al (1996) 15 POAG 
 

Choroid, OA and SPCA 
Color Doppler Imaging 

↓ blood flow velocity and ↑ resistance in the SPCA 
and choroid in POAG 

Fuchsjager-Mayrl et al (2004) 140 POAG/OHT 
102 Controls 

Temporal NRR and cup – scanning laser 
Doppler flowmetry 
Choroidal blood flow – laser interferometry 

↓ ONH and choroidal blood flow in POAG/OHT 
patients and an abnormal association between BP 
and ocular perfusion  

Kerr et al (1998) 10 POAG 
14 OHT 

Temporal NRR and cup and peripapillary 
retina – scanning laser Doppler flowmetry 
and pulsatile ocular blood flow 

↓ blood flow at NRR, lamina cribrosa and choroid in 
POAG 



300 
 

Appendix 2:  Addenbrooke's Cognitive Examination-Revised (ACE-R) 
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Appendix 4: Conference Presentation 
 
 
 
Is the eye a window to the mind? Retinal vascular r eactivity as a marker for 
endothelial function in Alzheimer’s disease. 
Stephanie Mroczkowska, Alexandra Benavente-Perez, Sunni Patel, Lu Qin, Doina 
Gherghel 
 
School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK 
 
 
Aim: To assess the retinal and systemic vascular function in patients diagnosed with mild 
Alzheimer’s disease in comparison to healthy age matched controls. 
 
Methods: Nine newly diagnosed mild AD patients (MMSE score 18- 24) and 23 healthy 
age-matched controls without any cognitive dysfunction (ACE-R score ≥ 88) were 
recruited for the study. Retinal vessel reactivity was assessed using the retinal vessel 
analyser (RVA, IMEDOS, Germany). From these recordings the time taken to reach 
maximum dilation (RT), was determined for each individual flicker cycle. Systemic 
vascular function was assessed using flow mediated dilation (FMD) technique at the 
brachial artery level (Siemens; Acuson Sequoia, UK). Intraocular pressure (IOP) and 
systemic blood pressure (BP) were also recorded for each participant and OPP was then 
calculated. 
 
Results: There were no significant differences in age, mean BP, IOP or OPP between the  
two study groups (p>0.05). The retinal arterial RT to flicker light stimulation was found to 
be significantly longer in AD patients as compared to healthy control for both the first (p= 
0.01) and the third (p=0.049) flicker cycles. In addition, the RT measured at the chosen 
vein level was significantly longer in AD patients compared to controls for the first 
(p=0.046) and second (p=0.043) flicker cycles. No significant differences were found in 
the brachial arterial diameter between the two groups (p>0.05). 
 
Conclusion: In patients suffering from AD, the prolonged retinal vessel RT to flicker 
provocation could represent an early sign of vascular dysfunction evident at the 
microvascular level.  
 
 
Awarded ‘Best paper in section’ – 500 euro travel g rant 
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