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Abstract. We present an implementation of the domain-theoretic Picard method
for solving initial value problems (IVPs) introduced by Edalat and Pattinson [1].
Compared to Edalat and Pattinson’s implementation, our algorithm uses a more
efficient arithmetic based on an arbitrary precision floating-point library. Despite
the additional overestimations due to floating-point rounding, we obtain a sim-
ilar bound on the convergence rate of the produced approximations. Moreover,
our convergence analysis is detailed enough to allow a static optimisation in the
growth of the precision used in successive Picard iterations. Such optimisation
greatly improves the efficiency of the solving process. Although a similar optimi-
sation could be performed dynamically without our analysis, a static one gives us
a significant advantage: we are able to predict the time it will take the solver to
obtain an approximation of a certain (arbitrarily high) quality.

1 Context

Edalat and Pattinson [1] have introduced a domain-theoretic interpretation of the Picard
operator and implemented an initial value problem (IVP) solver based on this interpre-
tation. Amongst its strong points is the property that not only it gives validated results,
i. e. it gives an enclosure for the solution (assuming the IVP is Lipschitz) over the whole
time range up to a certain point, but also it is complete in the sense that convergence is
guaranteed. I.e., the enclosure can be improved to be arbitrarily close to the solution by
repeating the Picard iteration step. Moreover, the distance from the solution is shrinking
exponentially with the number of iterations.

Methods based on fixed precision floating-point interval arithmetic used commonly
in validated solvers lack such convergence properties. Nevertheless, as the authors indi-
cate, their method is not particularly efficient compared to time-step simulation methods
(eg Euler or Runge-Kutta1). This is caused mainly by the fact that each Picard iteration
takes much longer than the previous one due to the doubling of the partition density and
a fast increase in the size of the rational numbers that describe the enclosure.

We have addressed these problems, improving on [1] by:

– using a more efficient arithmetic, i. e. arbitrary precision floating-point numbers
instead of rationals, while obtaining very similar convergence results;

? Funded by EPSRC grant EP/C01037X/1.
1 For a domain-theoretic account of such a method, see [2]



– identifying and decoupling various sources of approximation errors (i. e. Picard it-
eration, integration partition density, field truncation and rounding error, integration
rounding error);

– allowing a finer control over increases in aspects of approximation quality and as-
sociated increases in computation effort in subsequent iterations;

– identifying a scheme to determine how the effort should be increasing in subsequent
iterations so that it is close to optimal (this scheme is static—effort increases for all
planned iterations are determined before performing the first iteration);

– providing a fairly accurate prediction of how long each iteration of this optimised
algorithm will take, parametrised only by the duration of basic arithmetic opera-
tions and several numerical properties of the IVP.

We first formalise the basic solver algorithm based on Picard iterations (Section 2),
then conduct a detailed analysis of its convergence properties (Section 3), deduce the
promised static effort increasing scheme (Section 4) and analyse its timing properties
(Section 5). In Section 6 we compare our solver and results to some other available
validated IVP solvers and outline our plans.

Remark 1. Due to lack of space, we have only included the proof of Theorem 1 in
Appendix A. More details and proofs can be found in the extended version [3].

2 Implementation of Picard iteration

Recall that an IVP is given by equations y′ = f (y), y(0) = a0 with a0 ∈ R
η and the

field f : Rη → Rη. If the field is Lipschitz, the IVP has a unique solution y: R → Rη.
A Domain-Theoretic Picard solver consists in constructing a sequence of improving
enclosures by an approximate interval version of the Picard operator

yk+1(t) = a0 +

∫ t

0
f (yk(x)) dx.

2.1 Approximating Reals and Functions

Before we can present the solver, we need to introduce a few concepts related to the un-
derlying arithmetic. Firtly, we provide notation for interval arithmetic based on floating-
point numbers that is used to implement exact real arithmetic in the style of iRRAM [4]2

and RealLib [5].

Definition 1 (floating-point number, granularity). In our framework, a floating-point
number is either one of the special values +0, −0, +∞, −∞, NaN3 or a quadruple
f = (s, g, e,m) consisting of: sign s ∈ {−1,+1}, granularity g ∈ N, exponent e ∈
{−2g,−2g + 1, . . . , 2g − 1, 2g} and mantissa m ∈ {0, 1, . . . , 2g − 1}.

The intended value of f is ~ f � B s × (1 + m
2g ) × 2e.

2 www.informatik.uni-trier.de/iRRAM/
3 Not a Number.



Note that the overall bit size of the representation is determined by the granularity
g. Also the computation time taken by primitive arithmetic operations depends chiefly
on g.

Definition 2 ( Fg, F, IFg, IF ). For each natural number g ∈ N, we write the set of
floating-point numbers with granularity g ∈ N as Fg, and by F we mean the union⋃

g∈N Fg. Also let (IFg,v) be the poset of all the intervals with floating-point numbers of
granularity g as their end-points ordered under the superset relation, ie:

IFg B {[x, y] | x, y ∈ Fg} and ∀α, β ∈ IFg : α v β⇔ β ⊆ α. (1)

Let IF B
⋃

g∈N IFg be partially ordered under the analogous superset relation.

It is clear that IF0 ⊂ IF1 ⊂ · · · ⊂ IF ⊂ IR∞ where IR∞ denotes the interval Scott-
domain over R ∪ {−∞,+∞}. Moreover, IF is a countable basis of IR∞.

Assume that we need to compute a function f : Rη → R. In our floating-point arith-
metic we would represent such a function by a computable Îf : N⊥ × IFη → IF. The
first parameter is an index of accuracy, which determines the precision of the compu-
tation process4 and the granularity of the result. By fixing the accuracy to i, we get
Îf (i, ) : IFη → IF, which we simply write as Îfi. We require that with increasing i,
these functions converge to some If : IRη∞ → IR∞, which has to be an extension of f .

Definition 3 (width of interval and function).
For any interval α = [α, α] ∈ IR∞, w(α) B α−α is the width of α. We extend this to the
width of a box α =

(
α1, . . . , αη

)
∈ IR

η
∞ by w(α) B max

{
w(αi) | i ∈ {1, . . . , η}

}
. Finally,

the width of a function If : IRη∞ → IR
η
∞ is defined as w( f ) B sup

{
w( f (x)) | x ∈ Rη∞

}
.

Definition 4 (Interval Lipschitz, Hausdorff Lipschitz from Below (HLFB) [7]).
1. Assume that width is defined over sets of intervals A and B. The function f : A→ B

is interval Lipschitz with constant L f if ∀α ∈ A : w( f (α)) ≤ L f · w(α)
2. If posets A and B are endowed with distance functions dX : X × X → R, (X ∈
{A, B}), the monotone function f : A → B is Hausdorff Lipschitz from Below if
and only if ∃L f ∈ R ∀α, β ∈ A : α v β ⇒ dB( f (α), f (β)) ≤ L f · dA(α, β)

Definition 5 (Uniformly Hausdorff Lipschitz from Below (UHLFB)).
Assume that A and B have width defined over their elements. The function f : A → B

is uniformly Hausdorff Lipschitz from Below if
∃L f ,Ef ∈ R : 0 < L f ,Ef < ∞ & ∀α ∈ A : w( f (α)) ≤ L f w(α) + Ef

2.2 Overview of the solver

Recall that we want to solve an IVP y′ = f (y), y(0) = a0 for y : R → Rη, (η ≥ 1) over
some time domain. In what follows, we focus on the case η = 1 and the time domain

4 For our purposes, the term accuracy refers to the width of the computed interval while preci-
sion, on the other hand, is a measure of accuracy for the basic field operations over floating-
point numbers. For more details, see [6].



Fig. 1 Three main stages of the Picard algorithm.
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[0, 1]. Generalizing to any higher dimension or other time domain is straightforward. To
implement the field f : R→ R, we pick a sequenceIf j satisfyingt{If j | j ∈ N} = If as
discussed in subsection 2.1. Recall that accuracy index j determines the granularity of
the calculation, which we shall denote by g j. Thus we have x ∈ IFg j =⇒ If j(x) ∈ IFg j .
We also assume lim j→∞ g j = ∞.

Each solution enclosure yk computed by the solver is a pair of piece-wise constant
() fucntions with the domain [0, 1] partitioned into 2n segments of the same size.
We call the number n the depth of the partition. In each Picard step, the field is applied
point-wise to the enclosure yk, giving another  function. This function is integrated,
which leads to a piece-wise linear () function ỹk+1. Finally, a process of conservative
flattening converts this  object into a  one, ready to go through the next step of
the iteration (see Figure 1).5

More formally, the solver follows the algorithm shown in Figure 2 on the fac-
ing page. In the algorithm, PWLtoPWC refers to the operator that turns a piece-wise
linear function into a piece-wise constant one (see Figure 1 below). The depths {n j}

and iterations per depth {k j} are left unspecified at this stage except that we require
lim j→∞ n j = ∞. In Section 4 we discuss how the increases in depth and granularity can
be determined statically.

5 We have not specified how one obtains the initial enclosure y0. In our tests we were able to
guess a uniform bound b over our time domain, i.e. we could set y0(t) = b. In general, one can
obtain y0 using a validated time-step method with fairly large time step. For an invalid y0, the
enclosures will eventually become inconsistent.



Fig. 2 Implementation of Picard method.
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In most applications, we can determine bounds for the field’s domain and range.
Thus we will assume that there are numbers N,M > 0 such that

∀ j ∈ N : Îf j : IF ∩ [−N,N]→ IF ∩ [−M,M] (2)

3 Convergence analysis

In this section, we analyse the convergence properties of the inner loop of the algorithm
in Figure 2. This will first and foremost confirm that the whole process converges but,
more importantly, will offer an important tool for static, i. e. a priori, analysis of the
convergence properties, allowing us to make informed choices for the increases in depth
and granularity.

While we focus on the inner loop only, we can drop the subscript j and work with a
fixed depth n and granularity g. Moreover, we drop the superscript and write yk and ỹk,
instead of yn j

k and ỹn j

k , respectively.

3.1 Convergence Analysis: No Round-off Errors

Each  solution enclosure partitions the time domain into 2n sub-intervals, which we
denote I1, I2, . . . , I2n . Thus, any point t ∈ (0, 1] falls into the sub-interval with index
dt2ne, i. e. t ∈ Idt2ne (See Figure 1 on the facing page).6

According to the algorithm in Figure 2, we would expect ∀t ∈ Ip:

ỹk(t) = a0 +

p−1∑
m=1

w(Im)If j(yk−1(Im)) + (t − Ip)If j(yk−1(Ip)) (3.a)

ỹk(t) = a0 +

p−1∑
m=1

w(Im)If j(yk−1(Im)) + (t − Ip)If j(yk−1(Ip)) (3.b)

6 dxe is the smallest integer greater than or equal to x, usually known as the ceiling of x.



Next, the algorithm traps the piece-wise linear result ỹk in a tight piece-wise constant
approximation yk using the following formulae:

yk(t) = min
{

ỹk(Ip), ỹk(Ip)
}

(4.a)

yk(t) = max
{
ỹk(Ip), ỹk(Ip)

}
(4.b)

Note that ∀m ∈ {1, . . . , 2n} : w(Im) = 2−n. We also make the following assumptions
before arriving at the final formula:

1. The field f is Lipschitz and its approximation Îf j is uniformly Hausdorff Lipschitz
from Below. We fix some numbers Λ and E with the property declared in Defini-
tion 5:

∀x ∈ IR∞ : w(Îf j(x)) ≤ Λ · w(x) + E (5)

2. For a function h which is constant on an interval x = [x, x], we abuse the notation
and define h(x) B h(m(x)), where m(x) = (x + x)/2. As the solution is considered
to be piece-wise constant over each interval Im, we write yk(Im) instead of yk(t),
where t ∈ Im, accordingly.

Theorem 1 (Inner loop width improvement without round-off errors).
Under the above assumptions, we can bind the width of the solution enclosure as

follows:

case (Λ > 0) and (E/Λ < 1) :

w(yk(Ip)) ≤ w(y0)
(
Λ

2n

)k(p + k − 1
k

)
+

(
w(a0) +

M
2n +

(
E

Λ

))
er (6.a)

case (Λ < E) including (Λ = 0) :

w(yk(Ip)) ≤ w(y0)
(
Λ

2n

)k(p + k − 1
k

)
+

(
w(a0) +

M
2n + E

( p
2n

))
er (6.b)

where in both cases r = (p + k − 1)Λ/2n.

Proof. See Appendix A

Remark 2. Please note that the index p = dt2ne depends on both t and n.

Note that formulae (6.a) and (6.b) deal with the inner loop only, hence they rely on the
parameter j. In particular, to discuss the outer loop, Λ, E and r should be thought of as
Λ j, E j and r j, respectively.

Theorem 1 gives an upper bound on the width of the result after one run of the outer
loop. In what follows it will be demonstrated that even at this stage with appropriate
choices of k and n one may get as narrow an interval as one wishes. However, as we will
discuss in Section 4, a well worked out strategy would provide a list of these parameters
for each run of the outer loop so that the convergence to the result is attained in a nearly
optimal manner.



Proposition 1. Assume that ∀ j : Λ j < Λ for some Λ < ∞7 and w(a0) = 0. Then for any
point t ∈ (0, 1) and ε > 0, we can have w(yn

k(t)) < ε with suitable choices of n, k and j.

Proof (Sketch). Here we only consider the case Λ > 0, therefore formula (6.a) will
be the appropriate one. Note that lim j→∞ E j = 0, as we have t{If j | j ∈ N} = If .
Considering that w(a0) = 0, we rewrite the right hand side as follows:

w(y0)
(
Λk

k!

)∏k
`=1(p + `)

2n

 +

(
M
2n +

(
E j

Λ

))
er j

Let us take t ∈ (0, 1) and assume some ε > 0 is given. We first pick some k for which
(Λ+1)k

k! < ε
w(y0) . Then for this k we find j0 and n0 such that for all j > j0 and n > n0:

1. n > log2(max{( k
1−t ),

4Me−(Λ0+1)

ε
}), which enforces p+k−1

2n < 1, and ( M
2n )er j < ε

4

2. E j <
εΛe−(Λ0+1)

4 , whic enforces
(

E j

Λ

)
er j < ε

4

Straightforward calculation shows that these conditions make (6.a) smaller than ε. ut

So far we have assumed that the basic arithmetic operations have no round-off errors.
In other words, if � is any of addition, subtraction, multiplication or division:

∀α, β ∈ IF : α � β = {t1 � t2 | t1 ∈ α, t2 ∈ β} (7)

where � on the left hand side is the “interval version” of the binary operator � on the
right hand side. Our framework accommodates imprecision, the case of which will be
analysed next.

3.2 Convergence Analysis: Round-off Errors

We devise operation �̊ in such a way that ∀α ∈ IFg1 , β ∈ IFg2 : α �̊ β = [r, s] where
[r, s] ∈ IFg3 and g3 = max{g1, g2}. The operation �̊ is seen as the imprecise counterpart
of �. Being imprecise does not mean giving up on soundness, i. e. ∀t1 ∈ α, t2 ∈ β : t1 �
t2 ∈ [r, s]. In other words, instead of aiming for an exact result, we contend with an
interval [r, s] which encloses the result as tightly as possible without increasing the
number of bits as dictated by the input arguments.

In order not to let this liberty take the better of the convergence, we postulate that
for each natural number g ∈ N, a bound εg > 0 exists such that:

∀α ∈ IFg1 , β ∈ IFg2 : w(α �̊ β) ≤ (1 + εg) w(α � β) (8)

in which the operator �̊ is the imprecise counterpart of � and g = max{g1, g2}.

Definition 6 (Enclosure Constant C).
Let f : IFη → IF with f̊ : IFη → IF as its imprecise counterpart such that:∀α ∈ IFg1 × . . . × IFgη : f̊ (α) ∈ IFg, g = max{g1, . . . , gη}

∀g ∈ N : ∃ ε f̊ ,g > 0: ∀α ∈ IFg1 × . . . × IFgη : w( f̊ (α)) ≤ (1 + ε f̊ ,g) w( f (α))

7 This assumption holds in almost all cases of practical interest. In fact, we can just take this
upper bound and assume ∀ j : Λ j = Λ.



We call (1 + ε f̊ ,g) an enclosure constant of f̊ at granularity g, and denote it by C(g, f̊ ).
When f is unambiguously understood from the context we simply write εg and Cg.

Again, we stipulate that:

1. There exists εg > 0 such that for all basic arithmetic operators f̊ , we have ε f̊ ,g < εg.
2. There exists δg > 0 such that for all f̊ ∈ {If i}i∈N the inequality ε f̊ ,g < δg holds.
3. limg→∞(εg + δg) = 0

In the analysis that follows, it is assumed that for some minimum g0 ∈ N, the
whole computation is carried out with numbers having granularities at least as big as g0.
Therefore, knowing that g0 may be increased as needed to reduce the effect of round-off

error, we define:

Definition 7 (C, D). For the minimum granularity g0 used during one run of the main
algorithm, we define C = 1 + εg0 and D = 1 + δg0 .

Once again, the convergence analysis is split into two cases, similar to those in Theo-
rem 1.

Theorem 2 (Inner loop width improvement including round-off errors).
Under the assumptions of Theorem 1 but taking account of rounding, we have:

case (Λ > 0) and (E/Λ < 1) :

w(ẙk(Ip)) ≤ w(ẙ0)
(
DCp+4 Λ

2n

)k (
p + k − 1

k

)
+

(
Cp+5w(a0) + C3 M

2n + Cp+4D
(
E

Λ

))
er (9.a)

case (Λ < E) including (Λ = 0) :

w(ẙk(Ip)) ≤ w(ẙ0)
(
DCp+4 Λ

2n

)k (
p + k − 1

k

)
+

(
Cp+5w(a0) + C3 M

2n + Cp+4DE

( p
2n

))
er (9.b)

where in both cases r = (p + k − 1)
(
DCp+4 Λ

2n

)
.

Proof. See the extended version [3].

4 Optimising the IVP solver

Theorem 2 is used to great effect as we finalise the solver algorithm, trying to finetune
the sequences {n j} {k j} and {g j} and thus distributing the computational effort between
integration depth and floating-point granularity.



Firstly, we set n j = j without loss of generality since k j can be 0 for certain j’s.
Now k j will indicate after how many Picard steps the depth should be increased by one.
The numbers g j indicate whether or not to raise granularity and by how much whenever
depth is increased.

To determine {k j} and {g j} one could use a modified algorithm that differs from
the original one in that it terminates the inner loop only when the width improvements
fall below some threshold. Also, whenever the increase in depth does not lead to a
significant width improvement, the algorithm will backtrack and restart the inner loop
with an increased granularity. If even increasing both the depth and granularity does
not lead to a significant improvement, the algorithm will try various combinations of
increases in depth and granularity in independent executions until it finds a combination
that produces an improvement above the set threshold.

The problem with the above algorithm is that it is very inefficient and its run-time is
rather unpredictable. We execute this algorithm but replace a genuine Picard step with
a simulation based on the appropriate formula from Theorem 2. To make this possible,
we also have to replace solution enclosures with upper bounds on the width of the
enclosures at the furthest time point of interest.

This simulation is very fast as the formula takes linear time with respect to the
number of iterations k to evaluate8. Thus we can say that the simulation provides a
viable static prediction of the convergence behaviour and a method to a priori determine
finite sequences {k j}, {g j} that are guaranteed to produce an enclosure with a desired
precision using a nearly optimal computation effort.

5 Prediction of computation time

In Section 3, we studied the overall rate at which the shrinking intervals generated by
the main algorithm converge to the solution. Here in this section we try to grasp the
number of operations needed to run the algorithm with certain input arguments. To this
end, we ought to put forward one acceptable way of breaking up the procedure.

Theorem 3 (complexity function ν). Assume that for any required binary operator
� : F2 → F, the complexity function ν� : N → N gives an upper bound for the number
of computational steps carried out to calculate x � y.

Then the function ν : N4 → N defined by

∀k ∈ N ∧ p ∈ {0, . . . , 2n} : ν(k, p, n, g) = ϑ

k∑
j=1

(
p + j − 1

j

)
(10)

where
ϑ B 2 (ν+(g) + ν×(g)) + νIfi (g) + νmin(g) + νmax(g)

gives an upper bound on the number of computation steps needed to compute the value
of the solution of the IVP over the sub-interval with index p at iteration k and integration
depth n with granularity g.

8 ... a time negligible compared to that of Picard iterations, which according to formula (10)
below is exponential in k.



Whenever g and n are clear from the context, we just write ν(k, p) instead of ν(k, p, n, g).

Proof (Main idea).

∀k ∈ N ∧ p ∈ {0, . . . , 2n} :


ν(k + 1, p + 1) = ν(k + 1, p) + ν(k, p + 1) + ϑ

ν(k, 0) = ν(0, p) = 0
(11)

6 Conclusion

This work has mainly been built on the work of Edalat and Pattinson [1]. However,
works on validated solutions for initial value problems abound. Notable examples in
our view are ValEncIA [8], VNODE [9] and COSY [10].

The main difference between our work and that of Edalat and Pattinson’s [1] on the
one hand, and the aforementioned on the other is the fact that theirs are not only based
on fixed-point floating-point arithmetic, but also the emphasis is mostly on practical use.
We believe that our implementation enjoys the positive points of all other works in that
not only it lends itself well to analysis while sitting nicely in a domain theoretic model,
but also it avoids the worst causes of inefficiency encountered by methods similar to
Edalat and Pattinson’s [1].

Yet another important motivation for us lies in what we believe is the first major
consideration of parallel validated IVP solving, for which we have found the Picard
method most suitable. The convergence and time-complexity analysis as presented here
is readily extended to the parallel scenario, where each decision to split a domain and
assign the computation task to different processors for each time sub-domain can be
guided prior to the actual computation process occurring.

Notwithstanding the fact that we believe the framework has vast potentials for de-
velopment, there are specific tangible choices for future directions:

1. In more immediate future, experiments must be carried out to show how closely the
bounds from Theorems 1 and 2 reflect real scenarios arisen from various classes of
IVPs. Our experiments so far have given promising results but they are not suffi-
ciently extensive to draw reliable conclusions.

2. The approximation and representation of functions can take various forms. Most
notably, piece-wise linear or piecewise polynomial representations usually give
much better convergence when incorporated in our method of IVP solving. Nev-
ertheless, extending our results to these representations seems to need considerable
effort due to the substantial increase in complexity.



A Proof of Theorem 1

Based on formulae (3.a–3.b) and (4.a–4.b) on pages 5–6, one can get an estimate on the
width of the piece-wise constant approximation to the solution:

w(yk(t)) = | yk(t) − yk(t) |
(Subtracting (3.a) from (3.b)) ≤ w(a0) +

p∑
m=1

w(Im)
(
If j(yk−1(Im)) − If j(yk−1(Im))]

)
(Accommodating (4.a) and (4.b)) +w(Ip) min

{
| If j(yk−1(Ip)) |, | If j(yk−1(Ip)) |

}
≤ w(a0) +

p∑
m=1

w(Im)
(
If j(yk−1(Im)) − If j(yk−1(Im))]

)
(Using (2) on page 5) +w(Ip)M

We can safely consider each If j to be uniformly Hausdorff Lipschitz from Below
(Definition 5 on page 3). Thus, we get:

w(yk(Ip)) ≤ w(a0) + w(Ip)M
p∑

m=1

w(Im)
(
LIf j

w(yk−1(Im)) + EIf j

)
(12)

According to assumption (5) on page 6 and as we have ∀m ∈ {1, . . . , 2n} : w(Im) =

2−n, an easier to handle bound on the term (12) above would be:

p∑
m=1

w(Im)
(
LIf j

w(yk−1(Im)) + EIf j

)
≤
Λ

2n

p∑
m=1

w(yk−1(Im)) +
p
2n E

Therefore, by defining

Υα B
α

2n E + w(a0) +
M
2n (13)

one can derive:



w(yk(Ip)) ≤
Λ

2n

p∑
m=1

w(yk−1(Im)) + Υp

(induction on k) ≤
Λ

2n

p∑
m1=1


 Λ2n

m1∑
m2=1

w(yk−2(Im2 ))

 + Υm1

 + Υp

=

(
Λ

2n

)2 p∑
m1=1

m1∑
m2=1

w(yk−2(Im2 )) +( Λ2n

) p∑
m1=1

Υm1

 + Υp

=

(
Λ

2n

)3 p∑
m1=1

m1∑
m2=1

m2∑
m3=1

w(yk−3(Im3 )) +

(
Λ

2n

)2 p∑
m1=1

m1∑
m2=1

Υm2 +

(
Λ

2n

) p∑
m1=1

Υm1 +

Υp

...

(Expanding (13)) ≤ w(y0)
(
Λ

2n

)k p∑
m1=1

m1∑
m2=1

· · ·

mk−1∑
mk=1

1 + (14.a)

(
E

2n

) k−1∑
`=0

( Λ2n

)` p∑
m1=1

m1∑
m2=1

· · ·

m∑̀
m`+1=1

1

 + (14.b)

(
w(a0) +

M
2n

) k−1∑
`=0

( Λ2n

)` p∑
m1=1

m1∑
m2=1

· · ·

m`−1∑
m`=1

1

 (14.c)

Note that w(y0) in term (14.a) on the next page is the width of the interval function y0
— the initial estimate — as defined in subsection 2.1.

Now, in order to be able to carry the derivation forward, we state:

Lemma 1. For any p, k ∈ N \ {0}:

p∑
m1=1

m1∑
m2=1

· · ·

mk∑
mk=1

1 ≤
p(p + 1) . . . (p + k − 1)

k!

=

(
p + k − 1

k

)
=

(
p + k − 1

p − 1

)



Proof. Left to the reader. ut

Lemma 2. Consider the real number Λ ≥ 0 together with the natural numbers p, k, n ≥
1, then:

k∑
j=0

(
p + j − 1

j

)(
Λ

2n

) j

≤ er

where

r =

(
Λ(p + k − 1)

2n

)
(15)

Proof.

k∑
j=0

(
p + j − 1

j

)(
Λ

2n

) j

= 1 +

k∑
j=1

p(p + 1) . . . (p + j − 1)
j!

(
Λ

2n

) j

≤

k∑
j=0

r j

j!
≤

∞∑
j=0

r j

j!
≤ er

ut

Using lemmata 1 and 2 it is easier to get bounds on terms (14.a), (14.b) and (14.c)
above. For term (14.a) one gets:

w(y0)
(
Λ

2n

)k p∑
m1=1

m1∑
m2=1

· · ·

mk−1∑
mk=1

1 ≤ w(y0)
(
Λ

2n

)k p(p + 1) . . . (p + k − 1)
k!

(16.a)

while term (14.c) can be bounded by:

(
w(a0) +

M
2n

) k−1∑
`=0

( Λ2n

)` p∑
m1=1

m1∑
m2=1

· · ·

m`−1∑
m`=1

1

 ≤ (
w(a0) +

M
2n

)
er (16.b)

using Lemma 2 with r as in 15. To get a bound on term (14.b), let us first consider

T =

k−1∑
`=0

( Λ2n

)` p∑
m1=1

m1∑
m2=1

· · ·

m∑̀
m`+1=1

1


We develop two bounds which cover all foreseeable cases:

(Λ > 0) and (E/Λ < 1) : In this case, we go down the following route and consider:

(
Λ

2n

)
T =

k∑
`=1

(
Λ

2n

)`(p + ` − 1
`

)
(Lemma 2) ≤ er



where again r is as in 15. Thus T ≤ er2n/Λ and as term (14.b) is just ET/2n the
bound is (

E

2n

) k−1∑
`=0

( Λ2n

)` p∑
m1=1

m1∑
m2=1

· · ·

m∑̀
m`+1=1

1

 ≤ (
E

Λ

)
er (16.c)

By combining (16.a), (16.b) and (16.c) we arrive at the first version of the bound:

w(yk(Ip)) ≤ w(y0)
(
Λ

2n

)k(p + k − 1
k

)
+

(
w(a0) +

M
2n +

(
E

Λ

))
er (16.d)

(Λ < E) including the case (Λ = 0) : In this case we cannot simply multiply and di-
vide by terms having Λ as a factor in their numerator. Instead, we factorize T in
another way. First we consider the simple fact that for any p ≥ 1:

∀` ∈ {1, . . . , k} :
p + ` − 1

`
≤ p (†)

Therefore:

T =

k∑
`=1

(
Λ

2n

)`−1(p + ` − 1
`

)
(
expanding the binomial term

)
=

k∑
`=1

(
Λ

2n

)`−1 (
p(p + 1) . . . (p + ` − 1)

`!

)
(
using (†) on the next page

)
≤ p

k∑
`=1

(
Λ

2n

)`−1 (
p(p + 1) . . . (p + ` − 2)

(` − 1)!

)
(
substituting j for ` − 1

)
= p

k−1∑
j=0

(
Λ

2n

) j ( p(p + 1) . . . (p + j − 1)
j!

)
(
Lemma 2 on page 13

)
≤ per

which implies that in this case, the bound on term (14.b) is:(
E

2n

) k−1∑
`=0

( Λ2n

)` p∑
m1=1

m1∑
m2=1

· · ·

m∑̀
m`+1=1

1

 ≤ E

( p
2n

)
er (16.e)

Thus, combining (16.a), (16.b) and (16.e) will result in the second version of the
bound (16.d) on page 14:

w(yk(Ip)) ≤ w(y0)
(
Λ

2n

)k(p + k − 1
k

)
+

(
w(a0) +

M
2n + E

( p
2n

))
er
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