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We explore the dynamics of a periodically driven Duffing resonator coupled elastically to a van
der Pol oscillator in the case of 1 : 1 internal resonance in the cases of weak and strong coupling.
Whilst strong coupling leads to dominating synchronization, the weak coupling case leads to a
multitude of complex behaviours. A two-time scales method is used to obtain the frequency-
amplitude modulation. The internal resonance leads to an antiresonance response of the Duffing
resonator and a stagnant response (a small shoulder in the curve) of the van der Pol oscillator. The
stability of the dynamic motions is also analyzed. The coupled system shows a hysteretic response
pattern and symmetry-breaking facets. Chaotic behaviour of the coupled system is also observed
and the dependence of the system dynamics on the parameters are also studied using bifurcation
analysis.

1. Introduction

In the macro world, one can easily find models of single, and coupled nonlinear oscillators in
many different scientific disciplines, for example, biology, electronics and physics. However,
in the small world, recent development in M/NEMS (Micro/Nano Electromechanical
Systems) technology now can enable physicists to design and manufacture large arrays
of coupled M/NEMS nonlinear oscillators to explore the mathematics and physics of
emergent phenomena that appear in the self organization of the interacting individual
elements. For instance, intrinsic localized modes and moving discrete breathers have been
observed in coupled microcantilever resonators [1, 2]. Therefore, the fundamental study
of coupled nonlinear oscillators is significant in understanding the emergent behaviour of
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complex dynamical systems and developing novel M/NEMS devices [3–5]. This work is also
motivated by the fact that analysis of simpler cases as the building blocks can help us to
gain insight into larger complicated systems [6, 7]. Among the building blocks studied in the
literature, the essential elements are either self-sustained oscillators (van der Pol oscillators)
or dissipative oscillators (Duffing type resonators) and the most intensively studied cases
are the coupled van der Pol and the coupled Duffing oscillators [8–10]. To the best of our
knowledge, less has been done in a dynamic system consisting of a Duffing type resonator
coupled to a self-excited oscillator. Our aim in this paper is to consider the dynamics of such
a system externally driven by a periodic force. The motion of the coupled dynamical system
in dimensionless form is described by the following set of equations:

ẍ1 + c1ẋ1 + x1 + k3x
3
1 = kc(x2 − x1) + fd cos

(
ωd

ω1
τ

)
,

ẍ2 + c2
(
x2
2 − 1

)
ẋ2 +

(
ω2

ω1

)2

x2 = kc(x1 − x2),

(1.1)

where x1, c1, ω1 and x2, c2, ω2 are the displacement, damping coefficient, and fundamental
frequency of the Duffing resonator and the van der Pol oscillator, respectively. fd and ωd

are the amplitude and frequency of the external driving force. k3 is the nonlinearity of
the Duffing resonator and kc is the coupling stiffness between the two coupled elements.
When kc diminishes to zero, (1.1) uncouple to yield a driven Duffing resonator and a
van der Pol oscillator whose limit cycle is determined by c2. For the case of fd = 0,
(1.1) can be considered as a damped Duffing resonator driven by a van der Pol oscillator.
The dynamics of the undriven system has been numerically studied using three control
parameters, namely, two damping coefficients (c1 and c2) and coupling stiffness (kc) [11].
Three different synchronization phenomena were found and a chaotic state was clearly
identified in the phase diagram. The dynamics of such an undriven system was also studied
in the form of a van der Pol oscillator with a nonlinear restoring force coupled to a Duffing
resonator through a mixed velocity and displacement coupling condition [12] and an inertial
force condition [13]. Analytic solutions of stable oscillation states were derived in both cases
and the chaotic behaviour was also observed. As a result, we can envisage that more complex
dynamics could appear in such an externally driven nonlinear system of two elastically
coupled oscillators of different types of attractor.

This paper is organized as follows. In Section 2, we give an analytic treatment of
(1.1). The method of multiple time scales is used to find approximate solutions of the
oscillatory states. We end this section by giving a stability analysis of the fixed points on
the stable oscillation curve. Section 3 presents bifurcation analysis of the coupled system in
the parameter space. Section 4 is concerned with asymptotic dynamics of the coupled system
using a direct integration method. Concluding ideas are given in Section 5.

2. Analytic Treatment

Usually, MEMS resonators and oscillators are working in a high Q scenario while they are
driven into their resonances with a small force. However, if the Duffing resonator and van
der Pol oscillator are working at different fundamental frequencies (the nonresonant case
ω1 /=ω2), it can be proven that the dynamic systems are uncoupled and the time evolution
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of the amplitudes is the same as the classical driven Duffing resonator and van der Pol
oscillator. In the following section, we consider only the case where both the internal and
external resonances coincide (ω1 = ω2). As the coupling stiffness varies across a large range,
we deal separately with the system of weak coupling (kc � 1) and strong coupling (kc � 1).

2.1. The Resonant Case of Weak Coupling

When the van der Pol oscillator is weakly connected to the Duffing resonator, we rewrite (1.1)
as follows:

ẍ1 + εμ1ẋ1 + x1 + εαx3
1 = εβ(x2 − x1) + εF cos(Ωτ),

ẍ2 + εμ2

(
x2
2 − 1

)
ẋ2 + x2 = εβ(x1 − x2),

(2.1)

where c1 = εμ1, c2 = εμ2, k3 = εα, kc = εβ, fd = εF, Ω = ωd/ω1 and ε is a small parameter.
The stable response of the system driven near the primary resonance can be calculated

from (2.1) using the standard two-time scales method [14]. Briefly, we introduce a fast scale
τ0 (τ0 = τ) and a slow scale τ1 (τ1 = ετ0) characterizing the modulation in amplitudes and
phases and seek solutions of (2.1) that are expressed in the form of an asymptotic expansion
as follows:

x1 = x10(τ0, τ1) + εx11(τ0, τ1),

x2 = x20(τ0, τ1) + εx21(τ0, τ1).
(2.2)

Substituting (2.2) into (2.1) and equating coefficients of like powers of ε, we obtain
that

D2
0x10 + x10 = 0, (2.3a)

D2
0x20 + x20 = 0, (2.3b)

D2
0x11 + x11 = −2D0D1x10 − μ1D0x10 − αx3

10 + β(x20 − x10) + F cos(Ωτ0), (2.3c)

D2
0x21 + x21 = −2D0D1x20 − μ2D0x20

(
x2
20 − 1

)
+ β(x10 − x20), (2.3d)

where D0 = ∂/∂τ0 and D1 = ∂/∂τ1.
The general solution of (2.3a) and (2.3b) can be expressed as

x10 = A1(τ1)eiτ0 + c.c,

x20 = A2(τ1)eiτ0 + c.c,
(2.4)

where A1 and A2 are arbitrary constants and c.c denotes the complex conjugate.
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Substituting x10 and x20 into the right-hand side of (2.3c) and (2.3d), we obtain the
following set of equations by imposing secular conditions:

2A′
1 + μ1A1 − 3iα|A1|2A1 + iβ(A2 −A1) − i

2
Feiστ1 = 0,

2A′
2 + μ2

(
|A2|2 − 1

)
A2 + iβ(A1 −A2) = 0.

(2.5)

We have introduced the frequency detuning σ to characterize the closeness of driving
frequency to the fundamental frequency, given by Ω = 1 + εσ.

Expressing A1 and A2 in polar form:

A1 = a1e
iθ1 ,

A2 = a2e
iθ2 ,

(2.6)

and substituting the polar expressions into (2.5) and separating real and imaginary parts, we
obtain the following coupled first-order differential equations:

2a′
1 = −μ1a1 + βa2 sin γ2 − F

2
sin γ1,

2a′
2 = −μ2

(
a2
2 − 1

)
a2 − βa1 sin γ2,

2a1γ
′
1 = −(β − 2σ

)
a1 + 3αa3

1 − βa2 cos γ2 − F

2
cos γ1,

2a2γ
′
2 =

(
β − 2σ

)
a2 − βa1 cos γ2 − 2a2γ

′
1,

(2.7)

where γ1 = θ1 − στ1 and γ2 = θ2 − θ1.
To determine the steady-state motion, we use the condition that a′

1 = a′
2 = 0 and

γ ′1 = γ ′2 = 0. From (2.7), we obtain the following set of algebraic equations,

(
a1
(
β − 2σ

)
+ 3a3

1α − a2
2

(
β − 2σ

)
a1

)2

+

(
a1μ1 −

a2
2μ2

a1

(
1 − a2

2

))2

=
1
4
F2, (2.8a)

(
β − 2σ

)2
a2
2 + μ2

2a
2
2

(
1 − a2

2

)2
= a2

1β
2. (2.8b)

Equation (2.8b) shows Duffing-type behaviour of the van der Pol oscillator, provided that the
coupling and damping coefficients are not zero. If the coupling effect diminishes, then (2.8a)
will be reduced to the frequency-amplitude modulation of a normal Duffing resonator.

2.2. The Resonant Case of Strong Coupling

If the coupling stiffness kc is not the same order of magnitude as the other parameters, the
analysis in Section 2.1 does not hold, so a modified analysis considering strong coupling is
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given as follows. When kc is larger than 4.5 for example, 1/(2kc+1) is less than 0.1. Therefore,
We choose ε = 1/(2kc+1) and assume all other coefficients are small as defined in Section 2.1.
Then (1.1) can be rewritten as

ẍ1 + ẍ2 + εμ1ẋ1 + εμ2

(
x2
2 − 1

)
ẋ2 + x1 + x2 + εαx3

1 = εF cos(Ωτ),

ε(ẍ1 − ẍ2) + ε2μ1ẋ1 − ε2μ2

(
x2
2 − 1

)
ẋ2 + x1 − x2 + ε2αx3

1 = ε2F cos(Ωτ).
(2.9)

Repeating the same analysis in Section 2.1, we obtain the solutions of (2.9) for the zero-
order approximation as

D2
0(x10 + x20) + x10 + x20 = 0, (2.10)

x10 − x20 = 0. (2.11)

Equation (2.11)means that the Duffing resonator and the van der Pol oscillator are completely
synchronised. As shown in Section 2.1, we can easily write down the solutions of (2.10) and
(2.11) as follows:

x10 = x20 = Aeiτ + c.c. (2.12)

The first-order approximation gives

D2
0(x11 + x21) + x11 + x21 = −2D1D0(x10 + x20) − μ1D0x10

− μ2

(
x2
20 − 1

)
D0x20 − αx3

10 + F cos(Ωτ),

x11 − x21 = 0.

(2.13)

Apparently, the Duffing resonator and the van der Pol oscillator are still completely
synchronised in the first-order approximation when they are strongly coupled. Substituting
the expressions of x10 and x20 into the right-hand side of (2.13), we obtain the following
equation by imposing secular conditions:

4A′ +
(
μ1 − μ2

)
A + μ2A|A|2 − 3iαA|A|2 + i

1
2
Feiστ1 = 0. (2.14)

Expressing A in polar form as defined in Section 2.1 (note that a1 = a2 = a, θ1 =
θ2 as (2.12) holds), and substituting into (2.14), we obtain the following set of first-order
differential equations for the amplitude and phase:

4a′ =
(
μ2 − μ1

)
a − μ2a

3 − 1
2
F sin γ1,

4aγ ′1 = −4aσ + 3αa3 − 1
2
F cos γ1.

(2.15)
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Figure 1: The frequency-amplitude curves of the system when the van der Pol oscillator is weakly coupled
to the Duffing resonator. The parameters are, respectively, c1 = c2 = 0.001, k3 = 0.003, kc = 0.002, and
fd = 0.002.

For the steady state solutions, we obtain the following algebraic equation describing the
amplitude response of the system:

a2
(
−4σ + 3αa2

)2
+ a2

(
μ1 − μ2 + μ2a

2
)2

=
1
4
F2. (2.16)

After eliminating the secular terms in the two-time scales analysis, the second-order
differential equation, (2.13) can be solved. Accordingly, x11 and x21 are obtained as follows:

x11 = x21 =
1
16

(
α − μ1i

)
A3e3iτ + cc. (2.17)

Therefore, the general solution of the strongly coupled Duffing resonator and van der Pol
oscillator in the first-order approximation is given by

x1 = x2 = R(x10 + εx11) =
(
aei(Ωτ+γ) +

1
16

ε
(
α − μ2i

)
a3e3i(Ωτ+γ) + cc

)
, (2.18)

which shows that in the case of strong coupling, the van der Pol oscillator is completely
synchronized to the Duffing resonator and their oscillations are also locked to the external
driving force by a phase lag.

2.3. Stability Analysis

The frequency-amplitude relation for weak coupling and strong coupling is, respectively,
governed by (2.8a)-(2.8b) and (2.16). By varying the frequency detuning σ, the amplitudes



Mathematical Problems in Engineering 7

0.985 0.99 0.995 1 1.005 1.01 1.015 1.02 1.025
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a
1

Ω = 1 + εσ

(a)

0.985 0.99 0.995 1 1.005 1.01 1.015 1.02 1.025
0

0.2

0.4

0.6

0.8

1

1.2

a
2

Ω = 1 + εσ

Stable branch
Unstable branch

(b)

Figure 2: The stability of the frequency-amplitude curves shown in Figure 1 with the parameters of c1 =
c2 = 0.001, k3 = 0.003, kc = 0.002, and fd = 0.002.

(a1 and a2) are computed numerically with other parameters provided. Figure 1 shows a
frequency response for a weakly coupled system. The amplitude of the Duffing resonator
bends towards the higher frequency side like a normal Duffing resonator with a hardening
cubic stiffness, but there is another antiresonance peak in addition to the hysteresis domain.
Interestingly, even though the van der Pol oscillator is weakly connected to the Duffing
resonator, its dynamic behaviour is strongly affected by the Duffing resonator as shown in
Figure 1.

The van der Pol response curve reveals a new behaviour. Its resonance is sharpened
and a shoulder has been introduced at the location of the antiresonance of the Duffing
resonator, but more relevant is the appearance of additional multiple hysteresis branches,
denoting new characteristics of the weakly-coupled van der Pol oscillator.
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Figure 3: The frequency-amplitude curves of the systemwhen the van der Pol oscillator is strongly coupled
to the Duffing resonator. The parameters are, respectively, c1 = 0.1, c2 = 0.05, k3 = 0.3, kc = 8, and fd = 0.2.

Are these branches stable or not? To answer this, the eigenvalues of the system’s
Jacobianmatrix Jacwere evaluated at a pair of equilibrium points (ae1 , ae2)which correspond
to a pair of points in the frequency response curves of Figure 1 for the Duffing resonator
and van der Pol oscillator, respectively. The eigenvalues of Jac determine linear stability of
the equilibrium, which is asymptotically stable if all eigenvalues have negative real parts
whereas it is unstable if at least one eigenvalue has positive real part. Figure 2 shows the
stable (solid lines) and unstable (dotted lines) branches of the coupled system. As can be
expected, the middle branches of the hysteresis for the Duffing resonator and van der Pol
oscillator, respectively, are unstable for the system parameters that have been chosen. The
system also displays interesting phenomena such as an antiresonance atΩ ≈ 1 and a shoulder
in the curve which is due to a stagnant response of the van der Pol oscillator. The stability of
the system is further investigated numerically in the next section where an analysis of the
time series is carried out using tools to study chaos in nonlinear dynamical systems. The
oscillating states of the system at specific points on the branches are shown in Figure 9.

For the case of strong coupling, the van der Pol oscillator is synchronized to the
Duffing resonator and the coupled system oscillates like a single unit, exhibiting Duffing
behaviour. This can be illustrated in Figure 3 where the frequency response curve of the
system is plotted to first-order approximation.

Similarly, the stability was checked by calculating the eigenvalues of the correspond-
ing Jacobian matrix of (2.15). Choosing several fixed points on one of the branches shown
in Figure 3, we found that as in the case of normal Duffing resonators, the top and bottom
branches are stable, while the middle branch is unstable. This is further verified by the
transient simulation given in Section 4, where transitions between branches are observed.

3. Bifurcation Analysis

In the two-time scales analysis in Section 2, most coefficients of (1.1) are assumed small and of
the same order. However, it is very interesting to know the dynamics of the system when the
parameters vary in different ranges. In this section, the dependence of the system dynamics
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Figure 4: Bifurcation diagram showing the coordinate x1 (a) and x2 (b) of the Poincaré Section versus the
driving frequency in the range of 0.6 → 0.85 with parameters of c1 = c2 = 0.1, k3 = 1, kc = 5, and fd = 4.5.

on its parameters are studied using a bifurcation analysis. We transform (1.1) into a set of
first-order differential equations as follows:

ẋ1 = y1,

ẏ1 = −c1y1 − x1 − k3x
3
1 + kc(x2 − x1) + fd cos(z),

ẋ2 = y2,

ẏ2 = −c2
(
x2
2 − 1

)
y2 − x2 + kc(x1 − x2),

ż = Ω,

(3.1)

where z = Ωτ = (ωd/ω1)τ and the internal resonance condition ω1 = ω2 is applied.
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Figure 5: Bifurcation diagram showing the coordinate x1 and x2 of the Poincaré section versus the driving
frequency in the range of 1.2 → 1.45 with parameters of c1 = c2 = 0.1, k3 = 1, kc = 5, and fd = 4.5.

Usually, it is easy to adjust the driving force to change the behaviour of the coupled
system once it is designed and physically constructed. Therefore, the frequency and the
amplitude of the driving force are used as main control parameters in the bifurcation. For
better visualisation of the attractors and their bifurcations the dynamics is investigated in the
Poincaré section defined by,

∑
=
{(

x1, y1, x2, y2, z
) ∈ R4 × S1 : z = const.

}
. (3.2)

In order to investigate the dependence of the system on a single control parameter, several
bifurcation diagrams have been computed.

Each bifurcation diagram is calculated by changing the value of the control parameter
in small steps. The last computed values (for a particular control parameter value) are used
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Figure 6: Bifurcation diagram showing the coordinate x1 and x2 of the Poincaré section versus the driving
frequency in the range of 1.2 → 1.45 with parameters of c1 = c2 = 0.01, k3 = 1, kc = 5, and fd = 4.5.

as a new set of initial conditions for the next control parameter value. Equation (3.1) with
different driving frequencies is integrated using a fourth-order Runge-Kutta method with the
step size of (2π/Ω)/40, where 2π/Ω is the period of the driving force. Numerical solutions
corresponding to the first 500 driving cycles are removed as transient. The given bifurcation
diagrams show the projection of the attractors in the Poincaré section onto the x1 and x2

coordinates versus the control parameter.
Figure 4 shows the symmetry breaking bifurcation of the periodically driven Duffing

resonator coupled to a van der Pol oscillator. When the driving frequency Ω varies from
0.6 to 0.85, the system undergoes a period-one to a period-two and then to a period-one
behaviour again. If the frequency of the driving force varies from 1.2 to 1.45, the coupled
system suddenly enters into a chaotic state after a short range of period-one motion as shown
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Figure 7: Largest Lyapunov Exponent (LLE) for Figure 6.

in Figure 5 and then the system transits into period-one motion. There is a narrowwindow in
the chaotic regime showing multiple period motion. If the damping coefficients c1 and c2 are
decreased, a few more enlarged windows open up as shown in Figure 6, where the system
has undergone period-one, chaotic, and multiple-period motion when the frequency varies.
The transition between these different dynamics is justified by examining the Lyapunov
exponents of the system shown in Figure 7, which shows the weak degree of chaos in specific
windows of the driving frequency.

For a single Duffing resonator, there is a critical value of the driving force which can
drive it from the simple regime to the chaotic regime. The external force will also influence
the van der Pol oscillator through the elastic coupling. As shown in Figure 6, the system
experiences a multiple-periods motion at the frequency 1.325. Using the same parameters,
we investigated the effect of the driving force by varying its amplitude from 0.1 to 10. As
shown in Figure 8, the system exhibits complex behaviour when the force changes.

4. Dynamics of the Coupled System

The dynamics of the coupled system was studied by integrating (1.1) directly using the
fourth-order Runge-Kutta method. As indicated in Section 2.1, the weakly coupled Duffing-
van der Pol system has complicated dynamics. Using the parameters in Figure 1 and choosing
the frequencyΩ at 1.01, where stable and unstable branches of the frequency response curves
coexist, we computed the transient motion of the Duffing resonator and van der Pol oscillator.
The Poincaré section in Figure 9 shows the system converges to an attractor after a long
transient motion and the system shows weak chaos with the largest Lyapunov exponent
being about 0.007.

When the coupling stiffness becomes stronger, the van der Pol oscillator quickly
synchronizes to, and behaves like the Duffing resonator. The numerical experiment of
sweeping the frequency of the driving force clearly illustrates a jumping/hysteresis
phenomenon as shown in Figure 10, which is further confirmation of the two-times-scale
analysis in Section 2.
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Figure 8: Bifurcation diagram showing the coordinate x1 (a) and x2 (b) of the Poincaré section versus the
amplitude of driving force. The frequency of driving force is 1.325 and the initial conditions are x1(0) = 1,
ẋ1(0) = 0, x2(0) = 0, ẋ2(0) = 0 with other parameters are c1 = c2 = 0.1, k3 = 1, and kc = 5.

5. Conclusion

In this paper, we have studied the dynamics of a coupled nonlinear system consisting of
a van der Pol oscillator coupled to a periodically driven Duffing resonator, both of which
show different attractors individually. The competition between the two different attractors
depends upon the coupling constant and the control parameters.

In the strong coupling regime, dominating synchronization is observed, where the van
der Pol oscillator is locked to the behaviour of the Duffing resonator.

The weak coupling regime reveals a multitude of complex behaviours, including
multiperiod transitions and weakly chaotic motion which was confirmed by an analysis of
Lyapunov exponents of the system Jacobian. We have also observed, multistable branches
in the asymptotic amplitude-frequency response curves, and also an antiresonance in the
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Figure 9: Poincaré section of the Duffing Resonator (a) and the van der Pol oscillator (b) with the
parameters used in Figure 1. The frequency Ω is equal to 1.01 where six branches of the frequency
response curve are expected and the initial conditions for transient analysis are x1(0) = 1.05703, ẋ1(0) = 0,
x2(0) = 0.11727, ẋ2(0) = 0 with other parameters are c1 = c2 = 0.1, k3 = 1, and kc = 5.

Duffing response leading to a sharpening and a shoulder in the van der Pol response
curve.

These unexpected characteristics will have profound consequences when we construct
chains and arrays composed of repeated units of coupled Duffing and van der Pol systems.
Arrays of such components could have practical use as compact and resilient sensor arrays,
for example. However the response of a sensor array of such coupled subsystems is likely to
have a complexity of response characteristics beyond normal expectations of current sensor
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Figure 10: Van der Pol oscillator (b) is synchronized to the Duffing resonator (a) and behaves like a normal
Duffing resonator showing a hysteresis curve and jumping phenomena whenΩ varies between 0.6 and 1.4
with the initial conditions of x1(0) = 1, ẋ1(0) = 0, x2(0) = 0, ẋ2(0) = 0 and the parameters of the system are,
respectively, c1 = 0.1, c2 = 0.05, k3 = 0.3, kc = 8, and fd = 0.2.

arrays. The next challenge will be in designing sensor arrays based on these subsystems
which utilise this vast spectrum of computational behaviours.
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