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Abstract. We present a mean-field model of cloud evolution that describes
droplet growth due to condensation and collisions and droplet loss due to fallout.
The model accounts for the effects of cloud turbulence both in a large-scale
turbulent mixing and in a microphysical enhancement of condensation and
collisions. The model allows for an effective numerical simulation by a scheme
that is conservative in water mass and keeps accurate count of the number
of droplets. We first study the homogeneous situation and determine how the
rain-initiation time depends on the concentration of cloud condensation nuclei
(CCN) and turbulence level. We then consider clouds with an inhomogeneous
concentration of CCN and evaluate how the rain initiation time and the effective
optical depth vary in space and time. We argue that over-seeding even a part of
a cloud by small hygroscopic nuclei, one can substantially delay the onset and
increase the amount of precipitation.
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1. Introduction

This paper presents an idealized model of the evolution of turbulent warm clouds with large-
scale inhomogeneities in the concentration of cloud condensation nuclei (CCN). The need for
such studies comes from two sets of different and urgent problems.

Firstly, the greatest uncertainty in the assessment of climate forcing by anthropogenic
aerosols is their effect on clouds, referred to as the aerosol indirect effect [1]–[3]. Indirect effects
of aerosols on climate is, firstly, via changes in the CCN numbers which influence the optical
depth of clouds and, secondly, via precipitation rate and lifetime of clouds [4]. Since both natural
and anthropogenic aerosols are often distributed very non-uniformly, it is important to develop
a description of the evolution of such inhomogeneities. In particular, our study will be pertinent
to stratiform clouds containing only the liquid phase, which are one of the most important in
their effect on radiation (they cover 18 and 34% over land and ocean, respectively). Another
possible application is to the evaluation of the global cooling geo-engineering, proposed with
the use of albedo enhancement by hydroscopic seeding of maritime clouds [5, 6].

Secondly, it is often desirable to postpone rain, for instance, to bring precipitation inland
from the sea [7]. Suppression of warm rain by hygroscopic seeding is also a possible mechanism
of hurricane modification [8, 9]. For a recent review on cloud seeding see [10]. It is known both
from observations [11]–[14] and from modelling [7] that by seeding clouds with a sufficient
number of small hygroscopic aerosol particles one can delay and even suppress precipitation.
This is due to a dependence of the number of activated droplets on the CCN concentration.
Abundance of very small droplets at the beginning of the cloud formation may result in
suppressing their collision rate and in slowing down further droplet growth. The observational
data are mostly from urban pollution by large cities and natural pollution by dust storms and
forest fires which seeds clouds on the scales of tens of kilometres [12]–[14]. If one desires to
bring rain from the sea then seeding may be from platforms or ships, i.e. on a much smaller
scales (hundreds of metres up to a kilometre). Indeed, it is known that smoke particles from
ships burning fuel leave ship tracks in the clouds. Can one use cloud seeding on a sub-kilometre
scale to influence precipitation? This is considered to be impractical: ‘It would be necessary
to treat all portions of a target cloud because, once precipitation appeared anywhere in it, the
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raindrops . . . would be circulated throughout the cloud . . . by turbulence’ [15]. We believe that
this conclusion ignores another, positive, aspect of cloud turbulence, namely the mixing and
homogenization of partially seeded cloud during the condensation stage. Moreover, because
maritime clouds appear in clean air with a small concentration of CCN, they often precipitate
when a substantial amount of vapour has not condensed; we show here that seeding such clouds
hygroscopically not only delays but also can substantially increase the precipitation.

Therefore, modelling a cloud with an inhomogeneous distribution of CCN is needed for
checking the feasibility of hygroscopic cloud seeding, quantitatively describing effects of air
pollution on precipitation, observable properties of ship-tracks in clouds etc. Another objective
of this work is to develop a simple yet reliable model to account for the effects of turbulence
on the distribution of droplets both over sizes and in space. Turbulence mixes horizontal and
vertical inhomogeneities and enhances the collision rates. Our goal here is to quantify the
interplay of these effects. Ours are ‘idealized simulations, in which the interactions of physical
processes are easier to discern than in the real atmosphere’ [16]. In the present paper, we further
develop the mean-field model introduced in [7] by accounting for the effects of turbulence.

The role of turbulence in the evolution of clouds is a subject of numerous works from
(i) global circulation modelling (see e.g. [17] and the references therein) to (ii) three-
dimensional (3D) large eddy simulations and observations of a given cloud (see [18]–[21] and
the references therein) to (iii) micro-physical modelling of droplet condensation and collisions
in a turbulent cloud, see [22]–[34]. These approaches span the scales from thousands of
kilometres to microns. Our model accounts only for horizontal inhomogeneities and it is in
between (i) and (ii) in scales (from one to several kilometres) while at the same time accounting
phenomenologically for the microphysical effects of (iii).

2. Model

We are interested in the conditions when precipitation starts relatively fast so that clouds
remain low-level and warm. We therefore consider warm clouds where droplets grow by vapour
condensation on CCN and by coalescence due to collisions until the raindrops fall out of the
cloud, see e.g. [4]. Those processes can be modelled by the equations for the local distribution of
droplets over sizes, n(a, r, t), and the water vapour density, M(r, t). For simplicity, we assume
that the cloud ascends in such a way that the degree of supersaturation s = (M − M0)/M stays
approximately constant (here M0 is saturated density). The equations take the form

∂n

∂t
− divD(r)∇n = −

κs M

ρ0

∂

∂a

n(a)

a
− n(a)

ug(a)

L

+
∫

da′

[
K(a′, a′′)n(a′)n(a′′)

2(a′′/a)2
− K(a′, a)n(a′)n(a)

]
, (1)

∂ M

∂t
− divD(r)∇M = −4πs Mκ

∫
an(a) da + S. (2)

See table 1 for the definitions of the variables. The first term in the rhs of equation (1) describes
condensation and is correct quantitatively up to order-unity factor [4, 7], which is enough for
our purposes here. The second term there models the loss of droplets falling with the settling
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Table 1. Definitions of variables.

Quantity Units Description

a µm Droplet radius
D cm2 s−1 Turbulent diffusivity
n(a) cm−3 µm−1 Distribution of droplet sizes in a unit volume
r km Spatial coordinate
t s Time
W g m−1 Amount of water in the unit volume of the cloud
T ∗ s Rain-initiation time
K cm3 s−1 Collision kernel
ug cm s−1 Fall velocity
g cm s−2 Acceleration of gravity
ε cm2 s−3 Energy-dissipation rate in turbulence
ν cm2 s−1 Air viscosity
ρ g cm−3 Air density
ρ0 g cm−3 Liquid water density
L km Cloud vertical size
M g m−3 Water vapour density
κ cm2 s−1 Water vapour diffusivity
τ # Optical depth of the cloud layer

velocity ug from the cloud of the vertical size L . Since L are generally large (from tens to
hundreds of metres) and ug(a) grows with a, fallout is relevant only for sufficiently large drops
(raindrops). Such a fallout term parametrizes conversion from cloud water to rainwater; as an
alternative one can also use the usual threshold model [35]. The third term in the rhs of (1)
describes coalescence due to collisions, here a′′

= (a3
− a′3)1/3 is the size of the droplet that

produces the droplet of size a upon coalescence with the droplet of size a′. The diffusion terms in
the lhs correspond to turbulent diffusivity D(r) which is generally scale-dependent (see below).
The last term in (2) is due to supersaturation fluctuations.

Let us stress that the model is of a mean-field nature, i.e. it is supposed to describe the
quantities averaged over the vertical coordinate which thus vary at the scales comparable and
exceeding the vertical extent of the cloud L . The nonlinearity of the microscopic equations (for
the velocity field, temperature, vapour density and droplet distribution) does not allow a rigorous
derivation of the model (by integration over the vertical coordinate and coarse-graining over the
horizontal coordinates), which is thus of a semi-empirical nature and its (few) parameters must
be adjusted to the results of observations. The homogeneous (r -independent) version of the
model without effects of turbulence has been introduced in [7] to study the dependence of the
rain-initiation time on the amount and distribution of CCN over sizes. Some analytic results for
the homogeneous model are given in appendix A.

The main focus of the present work is on the effects of cloud turbulence which determines
the turbulent diffusivity D and the supersaturation rate of change S and influences the collision
kernel K . We characterize turbulence level by the energy-dissipation rate ε ∼ 10–1500 cm2 s−3.
Kolmogorov (viscous) scale is η = 6ν3/4ε−1/4 and the respective inverse time λ = (ε/ν)1/2.
We take the kinematic air viscosity ν = 0.15 cm2 s−1. For ε = 10 one has λ ' 8 s−1, η ' 0.1 cm.
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We introduce also the dimensionless Stokes number characterizing inertia of the droplet
of size a: St(a) = λτ(a). The Stokes time is τ = (2/9)(ρ0/ρ)(a2/ν) ≈ 1.5 × 103a2, where
a must be taken in centimetres. We neglect fluctuations in the turbulence level (i.e. the model is
of a mean-field nature) and back reaction from the evolution of M and n on ε (briefly discussed
in the summary).

2.1. Turbulent diffusion and collision rate

In the reference frame moving with the mean velocity, the character of dispersion of the spot
of size r depends on r (see e.g. [36]). When r is less than the velocity correlation scale (outer
scale of turbulence), Richardson super-diffusion corresponds to D(r) = ε1/3r 4/3. At the scales
exceeding the outer scale, D(r) is scale-independent. We shall always count r from the centre
of the spot (of extra seeded CCN) and approximate D(r) smoothly as

D(r) = ε1/3 L4/3 tanh
[
(r/H)4/3

]
. (3)

Here, we denoted the outer scale of turbulence as H which may be comparable with the height.
Note that there are numerous physical situations where the diffusion approach is not enough
and somewhat more regular flows participate in the spreading of the aerosol spot. Such large-
scale flows can be characterized by their local velocity gradient V/L leading to an exponential
stretching of anisotropic streaks, which wins over diffusive spreading at the scales exceeding
the crossover scale

√
DL/V (see e.g. [36]). Since D ' wL with turbulent velocity w ' (εL)1/3

then the crossover scale is
√

LLw/V , i.e. for w ' V it is between L and L. Stretching times of
such regular flows are a few hours and more; here, we study inhomogeneous clouds on a shorter
timescale of about an hour (see figures 5–8) so that we account for diffusion only. If necessary,
it is straightforward to incorporate large-scale regular flows into our model.

The collision kernel is the product of the target area and the relative velocity of droplets on
contact: K (a, a′) ' π(a + a′)21v. According to the recent measurements [37] the coalescence
efficiency of the droplets in the relevant intervals is greater than 0.95, we put it unity in our
calculations. Collisions are due to gravity fall and motion in a turbulent flow, which both
contribute to the collision kernel K . We consider here relatively weak turbulence and neglect
the interference between the air flow and gravity using the collision kernel as a direct sum
K = Kg + K t . Here, the gravity collision kernel is

Kg(a, a′) = π(a + a′)2 E(a, a′)|ug(a) − ug(a
′)|. (4)

The fall velocity ug is obtained from the balance of gravity force 4πgρ0a3/3 and the drag
F(ug, a). The drag force depends on the Reynolds number of the flow around the droplet,
Rea ≡ uga/ν. When Rea is of order unity or less, F = 6πνρaug and ug = gτ where ρ is the
air density and τ = (2/9)(ρ0/ρ)(a2/ν) is called Stokes time. We use ug = gτ for a < 40 µm
and take ug(a) from the measurements [38] for a > 50 µm with a smooth interpolation for
40 µm < a < 50 µm. Hydrodynamic interaction between approaching droplets is accounted in
Kg by the collision efficiency E , which values we take from [39] at the 750 mbar altitude.

According to [22]–[27], we take the turbulent collision kernel approximated as follows:

K t = 4πλa3
{(30π)−1/2g(a) + 0.3 exp[−1.7/St (a)]} , (5)
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where a = a1 + a2 and 2St(a) = St(a1) + St(a2). The enhancement factor due to preferential
concentration, g(a), is taken as a power law: g(a) = (η/a)α with α = (3/4)St2/(0.1 + St3) and
g(a) = 1 when |a1 − a2| > 1 µm (according to [24, 28] it works better at high Re than the linear
Re dependence used in [25]).

2.2. Fluctuations of the supersaturation

Measurements in cloud cores reveal a broad size distribution of small droplets while classical
air-parcel models point to narrowing size spectra during the condensation stage. As was
extensively discussed before (see [4, 29, 30] and the references therein), one mechanism is
the interplay between vertical inhomogeneity (of the supersaturation s) and cloud turbulence.
Attempts to describe this phenomenon by introducing random vertical motion into air-parcel
models [31, 32] give very limited spreading. Moreover, it has been noticed in [33] that the very
notion of an air parcel is pretty much meaningless in a turbulent cloud since, for instance,
two points a distance r apart separate to the viscous scale during the time λ−1ln(η/r) and
then to the distance R during (R2/ε)1/3. For ε = 100 cm2 s−3 separating from r = 10 µm to
R = 100 m takes on average less than a couple of minutes. That also means that among the
droplets found in close proximity many were hundred metres apart before a minute. It has
been recently demonstrated by direct numerical simulations of turbulent flows that an ability
of any given droplet to span large-scale vapour fluctuations leads to a significant broadening
of droplet distribution over sizes during the condensation stage [33, 34]. We assume that the
vapour density has large-scale gradients (vertical due to temperature profile and horizontal
due to entrainment of dry air) that can be estimated as M/L . Note that this is the estimate
from below since the scales of inhomogeneities can be substantially smaller than the cloud
size (hundreds and tens of metres [4, 33]). The last term in (2) is thus taken as multiplicative
noise, S = ws M/L (different from the additive noise ws M0/L considered in [32]). Note that
this effect is slow as it changes the vapour density on a timescale of the large-scale turnover
time. Indeed, the inverse turnover time, w/L ' (ε/L2)1/3 6 10−3 s−1, is generally much smaller
than both the inverse droplet growth time, κ M/ρ0a2

' 10−2 s−1, and the vapour depletion rate,
4πκan ∼ 12 × 0.25 cm2 s−1

× 50 cm−3
× 10−3 cm ' 0.15 s−1. However, we shall show that it

may lead to significant changes because even a small broadening of droplet distribution over
sizes dramatically increases gravitational collisions. We assume that during the (relatively short)
condensation stage clouds ascend in such a way that the supersaturation s stays approximately
constant. In a future sophistication of the model, one can consider temperature T (related to
cloud height) as an independent variable and treat supersaturation as a function s(T ). That will
allow to account for convection and other phenomena.

The homogeneous system

∂n

∂t
= −

κs M

ρ0

∂

∂a

n

a
−

ugn

L
+

∫
da′

[
K (a′, a′′)n(a′)n(a′′)

2(a′′/a)2
− K (a′, a)n(a′)n(a)

]
, (6)

dM

dt
= −4π Mκs

∫
an(a)da +

ws M

L
, (7)

allows one to study the role of supersaturation fluctuations in broadening the distribution
over sizes and accelerating rain. Here, we take w(t) as a short correlated process with the
variance 〈w2

〉 = (εR)2/3, where R is the smallest among L and the collision mean free path
rc = (4π E

∫
n(a)a2da)−1.
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Figure 1. Fraction of water left in the cloud as a function of time, ε = 0.

The fluctuations of supersaturation are particularly important at the early stage when
condensation dominates the droplet growth and collisions and fallout can be neglected. The
system then takes the form

da2

dt
= −

2κs M

ρ0
, (8)

dM

dt
= −4π Mκs

∫
an(a)da +

ws M

L
. (9)

3. Rain-initiation time in a homogeneous case

Here, we show how the rain-initiation time T depends on different parameters. We solve
numerically the homogeneous system (6), (7) with M(0) = M0 = 1 g m−3 and s = 0.01. We use
the numerical scheme first suggested in [7] (see appendix B). Without turbulence (ε = 0), as
expected, timescales of precipitation depend dramatically on the form of initial distribution as
seen from figure 1 that shows the total water density W (t) = M(t) + (4πρ0/3)

∫
n(a, t)a3 da

normalized to its initial value W0. For a rectangular initial distribution within the interval
1–3 µm, precipitation develops very slowly due to condensation–collision bottleneck.
On the other hand, the initial distribution with an exponentially decaying tail towards large
sizes (which models the presence of a small number of so-called ultra-giant nuclei), n(a, 0) =

(n0/3)exp(−(a − 1)/3), where a is measured in micrometres (a > 1), provides for a dramatic
acceleration of droplet growth and fallout in agreement with [40, 41]. The figure also shows that
too small CCN number leads to substantial residual water remaining in the cloud after a rainfall.
Taking clouds with a small number of CCN (less than 100 cm−3) and seeding them may thus
lead to a substantial increase of precipitation (up to 15% according to figure 1).

Following [7], we define the rain-initiation time, T ∗, as the point where the absolute value
of the second derivative |d2W (t)/dt2

| is maximal (another possible choice is the inflection point
in the dependence W (t) which gives practically the same results). Figure 2(a) corresponds to the
system (6), (7) without the last term (which accounts for supersaturation fluctuations), it shows
that already an account of turbulence enhancement of collisions substantially accelerates droplet
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Figure 2. Rain-initiation time versus turbulence level (a) and versus the CCN
number (b). M0 = 1 g m−3, rectangular initial distribution 1–3 µm.

Figure 3. Rain-initiation time versus the initial vapour density for n0 =

500 cm−3, ε = 100 cm2 s−3, rectangular initial distribution 1–3 µm.

growth and fallout. Under the same condition, we obtain the data presented in figure 2(b), which
are of most interest for what follows. These data quantify the growth of the rain-initiation time
with the CCN number (when it is sufficiently large—the whole non-monotonic dependence has
been obtained within a more crude model without turbulence [7]). Note that when T ∗ is getting
large enough clouds may come into an environment where they evaporate, so that seeding can
indeed be not only a mechanism of rain delay but also of rain suppression [42]. In the next
section, we shall exploit the growth of T ∗ with n0 to show that one can locally over-seed a cloud
front to get a substantial effect of rain delay in a wide area.

Figure 3 shows the dependence of the rain-initiation time on the initial water vapour density
M0. We see that T ∗(M0) ' M−c

0 with c between 1.7 and 1.8. Since the condensation time decays
as M−1/3

0 , i.e. much slower, it is clear that in this regime the rain initiation time is determined
by collisions. According to the predictions of [7], T ∗ ∝ M−α/3

0 at not very high M0, assuming
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Figure 4. Fraction of water left in the cloud as a function of time with
the account of supersaturation fluctuations. M0 = 1 g m−3. (a) n0 = 50 cm−3 and
(b) n0 = 500 cm−3.

that the collision kernel behaves as a power law: K ∝ aα. Figure 3 thus suggests an effective α

between 5.4 and 5.6.
Let us now add an effect of supersaturation fluctuations. The simulation comprises three

stages. During the first stage a truncated system (8), (9) is simulated and we determine the aver-
age time 〈T 〉 for which the vapour content M falls below the threshold of 30% of its initial value.
The average is computed from 5000 Monte Carlo runs. Then another Monte Carlo simulation is
performed of the same system (8), (9) when the evolution of the fluctuating distribution n(a, t)
and M(t) are followed up to the time t = 〈T 〉 when the average size distribution 〈n(a, 〈T 〉)〉

and 〈M(〈T 〉)〉 are determined in such a way that the total amount of water, W , is conserved.
Afterwards the averaged size distribution and vapour density are inserted as initial conditions
for the system (6), (7) but this time the fluctuating term in (7) is neglected since vapour is
already depleted. Figure 4 presents the results obtained within the framework of (6), (7).

We see that an account of supersaturation fluctuations in the framework of our
multiplicative noise model does not significantly change the timescales yet affects the amount of
residual water (which depends non-monotonically on the turbulence level as seen in figure 4(a)).

We conclude this section by remarking that acceleration of the rain initiation by turbulence
(in either condensation or collision stage) is comparable to that by ultra-giant nuclei in the
interval of parameters studied.

4. Evolution of clouds with non-uniform CCN distribution

Here, we consider cloud evolution under the action of an external source of CCN localized
in space. In this case, both n and M depend on the spatial coordinate r . Turbulent diffusion
provides for an exchange between different regions marked by different r . Depending on the
space dimensionality d, the radial part of the diffusion operator takes the following form:
divD(r)∇ = r 1−d∂rr d−1 D(r)∂r .

Our model is averaged over the vertical coordinate so it is applied only to horizontal large-
scale mixing. That means that it is supposed to work on a timescale exceeding the time (L2/ε)1/3

needed for vertical homogenization.
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Figure 5. Spatial distribution of the fraction of water left in the cloud for three
different times. Top panel 2d, seeding of a circular spot, r is the radial coordinate.
Bottom panel 1d, seeding a strip, r is the coordinate across the strip.

We start from a 2d axially symmetric case, i.e. we consider a circular spot of additional
CCN released at the beginning (t = 0). The initial distributions over sizes in all cases were
rectangular between 1 and 3 µm multiplied by the distribution in space n0 + n1exp(−r 2/2l2)

with the values l = 1 km, n0 = 50 cm−3 and n1 = 1000 cm−3. We take the initial distribution
of vapour M(r, 0) = M0 − M1exp(−r 2/2l2) with M0 = 1 g m−3 and M1 ≈ 0.04 g m−3 so that
W (r, 0) was uniform at t = 0. We take H = 500 m, L = 2 km and ε = 100 cm2 s−3. Some details
of the numerical scheme are given in appendix B. Figure 5 shows W (r, t), i.e. the amount of
water in grams per cubic metre left in the cloud as a function of space and time. One can see
how turbulence spreads the seeding and how precipitation is delayed in a widening region. The
increase in the amount of water left in the cloud is given by 2π L

∫ R
0 [W (r, t) − W (R, t)]r dr '

1.7 × 107 kg after t = 2500 s for seeding by n1 × L × πl2
' 6 × 1018 CCN particles. Here,

R = 25 km is the radius of the simulation domain.
Let us now describe how seeding influences optical properties of the cloud characterized

by the optical depth which is determined by the effective droplet area and the cloud height:
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Figure 7. The spreading of a ship track for ε = 10 cm2 s−3. Initial spot size was
1 km and n1 = 1000 cm−3 particles were seeded.

τ(r, t) = π L
∫

a2n(a, r, t)da. For drops larger than the wavelengths of visible light, albedo is
equal to τ/(τ + 7.7) [4]. Figure 6 shows the plot of τ(r, t) for the same initial distribution and
ε = 10 cm2 s−3 (more appropriate for stratus clouds).

Consider now a 1d situation, d = 1. It corresponds either to an initial seeding along a strip
or to a stationary situation when clouds move relative to the permanently acting seeding source.
For a stationary situation, t is to be interpreted as a spatial coordinate (divided by the cloud
speed with respect to the source). This is particularly similar to ship tracks which can be seen
in marine stratus clouds as cloud reflectivity changes in the wake of the exhaust of a ship’s
engine. Figure 7 shows how a track from a moving source looks in our model (again, t must
be multiplied by the source speed to give a distance from the source). Another situation we
have in mind is a cloud front moving with respect to a stationary permanently acting source
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Figure 8. The difference, W̄ , in the total amount of water left in the cloud (per
unit distance from the shoreline) due to seeding.

of CCN intended to postpone precipitation. This is particularly important in cases (like Israel,
California, etc) where rains are in winter when the sea is warmer than the shore. As a result,
clouds coming from the sea start raining before coming ashore. Let us see how much water
one can move further downwind by a local permanent seeding in our model. Bottom panel of
figure 5 shows the distribution of water left in the cloud. Comparison of the top and bottom
panels, unsurprisingly confirms that continuous seeding is much more effective than releasing
a puff. Figure 8 shows how much one can increase the amount of water left in the cloud
front (per unit distance from the coastline) W̄ (t) = L

∫ R
0 [W (r, t) − W (R, t)] dr by seeding with

different amounts of CCN. To put that into numbers we take wind speed u = 10 m s−1 and
see that by seeding n1 × L × l × u = 1016 particles per second (the weight of smoke micro-
particles that can serve as CCN is 10−15–10−14 g), we get the increase of cloud-carried water
flux W̄ (t) × u ' 104 kg s−1 across the shoreline at the distance ut = 20 km from the source of
seeding.

5. Summary

We have presented a model of cloud evolution that incorporates both macroscopic and
microscopic effects of turbulence. This model should be considered as but a first crude attempt
to put together the results of numerous studies of different groups to consistently incorporate
turbulence effects on all scales into the description of warm clouds. Practically every aspect,
from micro-scale effects (condensation and collisions) to macro-scale mixing needs further
elaboration. In particular, spectrum broadening during the condensation stage deserves more
detailed studies. Inhomogeneous seeding provides for inhomogeneous heat release rate due
to condensation and provides for inhomogeneous turbulence which enhances the mixing, we
believe that can be incorporated into our model by making ε dependent on the condensation
rate. Generally, it is pretty straightforward to incorporate into this model an extra equation
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relating ε change to M and n. Such feedback relations are to be established from detailed studies
of 3d local structure of clouds and turbulence by large eddy simulations and other methods
(see [19]–[21] and the references therein). The feedback mechanisms and relations may be
different for different types of clouds; much future work is needed here. Next, suppression of
low-level rainout and aerosol washout allows transport of water to upper levels where it can
freeze so that a consistent description must take ice into account as well.

Still, within the timescales and parameters considered the model gives answers with a
reasonable order of magnitude. To fine-tune the parameters, comparison with the observations
that include the same set of variables is needed, it requires further work. After such fine-tuning,
the model can be useful not only in extracting qualitative dependences between parameters but
also in obtaining quantitative estimates. We believe that calculations within the framework of
such mean-field models can present parametrization schemes to be used for cloud description
(particularly for an account of inhomogeneous CCN concentration) in mesoscale models.

Let us now answer the question on rain delay by over-seeding posed in the introduction.
Based on the present results we can conclude that well before the seeded area is ‘infected’ by
raindrops from outside it is spread in space to the extent that makes such an over-seeding a
practical possibility. We believe that this line of study is worth pursuing further.

Acknowledgments

The work has been supported by the grants of the EPSRC, Minerva and the Israeli Science
Foundations and by the Minerva Einstein Center funded through the BMBF.

Appendix A. Condensation with fallout

During the initial stage, when collisions and the fluctuations of the supersaturation can be
neglected and ug = αa2 (Stokes law), the spatially uniform equation

∂n

∂t
= −

κs M

ρ0

∂

∂a

n(a)

a
− n(a)

ug(a)

L

has an analytic solution for f (a2, t) = n(a, t)/a determined by the initial condition f (a2, 0) =

f0(a2):

f (a2, t) = f0(a
2
− β(t)) exp

[
α

L

(∫ t

0
β̇(t ′) t ′ dt ′

− a2t

)]
,

β(t) = (2κs/ρ0)

∫ t

0
M(t ′)dt ′. (A.1)

From (7) (without the fluctuating term) and (A.1) one obtains an integral equation for M that
can be solved by iterations:

M(t) = M(0) exp
{
−2πκs

∫ t

0
dz exp

[
−

α

L

2κs

ρ0

∫ z

0
M(u)(z − u)du

]
×

∫
f0(a

2)(a2 + β(t))1/2 exp[−αza2/L]d (a2)

}
. (A.2)
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It is useful to introduce normalized units: T = t/τ , x = (a/ā)2, f̃ (x) = f (x) ā2/n0,
m(T ) = M(t)/M(0) = M(t)/M0, here ā = (3M0/(4πρ0n0))

1/3, n0 =
∫

n(a, a)da, τ =

(4πκsn0ā)−1 and the dimensionless parameter

ε̃ =
α τ ā2

L
=

αā

4π κs L n0
∝ n−4/3

0 .

Then, the equation for m can be written as

m(T ) = exp
{
−(1/2)

∫ T

0
dz exp

[
(2ε̃/3)

∫ z

0
m(u)(z − u)du

]
×

∫
∞

0
f̃ 0(x)

(
x + (2/3)

∫ T

0
m(p)dp

)1/2

exp[−ε̃ z x]dx

}
. (A.3)

Let us make some numerical estimates. Let us take M0 = 1 g cm−3, n0 = 50 cm−3, L =

2 km, s = 0.01, κ = 0.25 cm2 s−1 and finally α = (2/9) (g/ν) (ρ0/ρ) = 1.5 × 106 cm−1 s−1.
This yields ā ≈ 17 µm, τ ≈ 378 s and ε̃ ≈ 8. The latter estimate shows that the effects of
gravitational fallout cannot be neglected when the water is depleted.

Appendix B. The numerical scheme

Equations (1) and (2) can be rewritten in a formal operator form:

∂

∂t

(
n(a, r, t)
M(r, t)

)
= (D̂ε + K̂)

(
n(a, r, t)
M(r, t)

)
, (B.1)

where D̂ε = r−1 ∂r ε1/3 r 7/3 ∂r is the operator of turbulent diffusion and K̂ encompasses the
collision term in (1) as well as the effects of sedimentation and vapour condensation. Note
that operators D̂ε and K̂ act upon different variables: the former describes propagation in space
while the latter forms the size distribution locally at each point in space. Since the two operators
have physically different origins we use the split-operator technique to propagate the solution.
Indeed using the Baker–Hausdorff formula, we can write an infinitesemal propagator of the
distribution n(r, a, t) as

n(r, a, t + 1t) = exp[(D̂ε + K̂) 1t] n(r, a, t)

= exp[D̂ε 1t] exp[K̂1t] exp
[
−

1
2 [D̂ε, K̂] 1t2 + O(1t3)

]
. (B.2)

If we neglect the non-commutating nature of operators D̂ε and K̂, that is we neglect the last
factor in (B.2), we will have the scheme that is first-order in 1t . The accuracy can be readily
increased if we use a symmetrized split-operator scheme:

n(r, a, t + 1t) = exp[D̂ε 1t/2] exp[K̂1t] exp[D̂ε 1t/2]. (B.3)

From the Baker–Hausdorff formula it follows that scheme (B.3) is, in fact, a second-order
scheme in 1t .

We use the following schemes for the individual propagators exp[D̂ε 1t/2] and exp[K̂1t].
First of all, we note that exp[D̂ε 1t/2] is the subdiffusive heat kernel and its coordinate
representation G(r, r ′, t) (Green function) is well known [36]. It has a sub-Gaussian asymptote
at large distance, R, from the origin G(R, 0, t) ∝ exp[ − const R2/3/(ε1/3t)]. In the numerical
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simulation it is convenient to make a variable substitution x = r 1/3. In this new variable the
diffusive behaviour is close to normal diffusion and we can use standard numerical schemes
for the diffusion operator. In our simulation, we used an implicit scheme in discrete time variable
ti. A standard von Neumann analysis yields the following stability criteria:

α ≡
ε1/3 1t

(1x)2
<

1

2(d − 1/3)2
, (B.4)

where 1t is the fixed time step, 1x is the fixed step in the variable x , and d = 1 and 2 is the
dimensionality of the problem. In our simulations, the computational boundary was R∗ = 25 km
and the number of discrete coordinate points Nx was 12. This insures that stability criterion (B.4)
is fulfilled while the number of points falling inside of the initial distribution peak is estimated
as Nl = Nx (l/R∗)

1/3
≈ 3 which is enough for our purposes.

As for the size distribution propagator exp[K̂1t], we will use the highly efficient scheme
which was first suggested in [7]. In this scheme, the droplet radii are discretized so that at each
point r the distribution is presented as the set of concentrations ni(r, t) of droplets with radii
between ai and ai + 1ai . In our simulations, the grid was taken to be exponential with 512 points
ranged between amin = 1 µm and amax = 104 µm. The collision term in (1) is treated as follows:
let the radius (ai + a j)

1/3 of the droplet resulting from the merging of two droplets with radii
ai and a j be in between the two radii ak and ak+1 from the grid. Then the collision results in
decreasing ni and n j by the quantity 1N = K (ai , a j)ni n j1t , while the concentrations nk and
nk+1 are increased in such a way that the sum of their change is 1N and the whole amount of
water in droplets is conserved in coalescence:

δni = δn j = −1N = −δnk − δnk+1,

a3
kδnk + a3

k+1δnk+1 = (a3
i + a3

j )1N .

From these two equations follow the sought increments:

δnk+1 = 1N (a3
i + a3

j − a3
k )/(a

3
k+1 − a3

k ),

δnk = 1N (a3
k+1 − a3

j − a3
i )/(a

3
k+1 − a3

k ).
(B.5)

If 1N is greater than either ni or n j , we choose 1N = min(ni , n j) to keep the numbers positive.
The condensation term in (1) was treated separately using an explicit finite differencing

scheme which was adjusted to conserve the total amount of water W (t). The treatment of the
sedimentation term in (1) and the condensation term in the rhs of (2) does not present any
difficulties.
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