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Computer Science, Aston University
Aston Triangle, Birmingham B4 7ET

United Kingdom
email: a.ekart@aston.ac.uk

A. B. Németh
Faculty of Mathematics and Computer Science
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Abstract

A very fast heuristic iterative method of projection on simplicial cones
is presented. It consists in solving two linear systems at each step of the
iteration. The extensive experiments indicate that the method furnishes
the exact solution in more then 99.7 percent of the cases. The average
number of steps is 5.67 (we have not found any examples which required
more than 13 steps) and the relative number of steps with respect to
the dimension decreases dramatically. Roughly speaking, for high enough
dimensions the absolute number of steps is independent of the dimension.

1 Introduction

Projection on polyhedral cones is one of the important problems applied op-
timization is confronted with. Many applied numerical optimization methods
uses projection on polyhedral cones as the main tool.

In most of them, projection is part of an iterative process which involve its
repeated application (see e. g. problems of image reconstruction [1], nonlinear
complementarity [4, 9], etc.). Hence, it is important to get fast projection
algorithms.

∗1991 A M S Subject Classification. Primary 90C33; Secondary 15A48, Key words and
phrases. Metric projection on simplicial cones
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The main streems of the current methods in use rely on the classical von
Neumann algorithm (see e.g. the Dykstra algorithm [3, 2, 10]), but they are
rather expensive for a numerical handling (see the numerical results in [7] and
the remark preceding section 6.3 in [5]).

Finite methods of projections are of combinatorial nature which reduces
their applicability to low dimensional ambient spaces.

Recently we have given a simple projection method exposed in note [8] for
projecting on so called isotone projection cones. Isotone projection cones are
special simplicial cones, and due to their good properties we can project on
them in n steps, where n is the dimension of the ambient space. In the first
part of that note we have explained our approach by considering the problem of
projection on simplicial cones by giving an exact method based on duality. This
method has combinatorial character and therefore it is inefficient. More recently
we observed that a heuristic method based on the same ideas gives surprisingly
good results. This note describes the theoretical foundation of the heuristic
method and draws conclusions based on millions of numerical experiments.

Projection on polyhedral cones is a problem of high impact on scientific
community.1

2 The simplicial cone and its polar

Let Rn be an n-dimensional Euclidean space endowed with a Cartesian reference
system. We assume that each point of Rn is a column vector.

We shall use the term cone in the sense of closed convex cone. That is, the
nonempty closed subset K ⊂ Rn in our terminology is a cone, if K + K ⊂ K,
and tK ⊂ K whenever t ∈ R, t ≥ 0.

Let m ≤ n and e1, . . . , em be m elements in Rn. Denote

cone{e1, . . . , em} = {λ1e1 + · · ·+ λmem : λi ≥ 0, i = 1, . . . ,m},

the cone engendered by e1, . . . , em. Then,

cone{e1, . . . , em} = {Ev : v ∈ Rm
+}, (1)

where E = (e1, . . . , em) is the matrix with columns e1, . . . , em and Rm
+ is the

non-negative orthant in Rm.
Suppose that e1, . . . , en ∈ Rn are linearly independent elements. Then, the

cone

K = cone{e1, . . . , en}
= {λ1e1 + · · ·+ λnen : λi ≥ 0, i = 1, . . . , n} = {Ev : v ∈ Rm

+},
(2)

with E the matrix from (1) for m = n, is called simplicial cone. Denote N =
{1, 2, . . . , n}.

The polar of K is the set

K◦ = {x ∈ Rn : x>y ≤ 0, ∀y ∈ K}. (3)

K∗ = −K◦ is called the dual of K. K is called subdual, if K ⊂ K∗. This is
equivalent to the condition e>` ek ≥ 0, `, k ∈ N.

1see the popularity of the Wikimization page Projection on Polyhedral Cone at

http://www.convexoptimization.com/wikimization/index.php/Special:Popularpages.

2



Lemma 1 The polar of the simplicial cone (2) can be represented in the form

K◦ = {µ1u1 + . . . µnun : µi ≥ 0, i = 1, . . . , n}, (4)

where ui(i = 1, . . . , n) is a solution of the system

e>j ui = 0, j = 1, . . . , n, j 6= i,

e>i ui = −1

(ui is normal to the hyperplane span{e1, . . . , ei−1, ei+1, . . . , en} in the opposite
direction to the halfspace that contains ei). Thus,

K◦ = {Ux : x ∈ Rn
+}

with Rn
+ = {x = (x1, . . . , xn)> : xi ≥ 0, i = 1 . . . n} and

U = −(E−1)>. (5)

For simplicity we shall call U the polar matrix of E. The columns of U are
{ui: i = 1, . . . , n}.

Proof. Let y =
∑n

j=1 µ
juj and z =

∑n
i=1 α

iei for any non-negative real

numbers αi and µj . The inner produce of y and z is non-positive because

y>z =

n∑
i=1

n∑
j=1

αiµje>i uj = −
n∑

i=1

αiµi ≤ 0

But y is an arbitrary element of the right hand side of (4) and z is an arbitrary
element of K, thus we can conclude that the righ hand side of (4) is a subset of
K◦.

The vectors u1, . . . ,un are linearly independent. (This can be verified by
assuming the contrary, and by multiplying the subsequent relation by ej to get
a contradiction.) Hence for y ∈ K◦ we have the representation

y = β1u1 + · · ·+ βnun.

By (3),
e>k y = −βk ≤ 0

so βk ≥ 0 which prove that y is an element of the right hand side of (4). Thus
we can conclude that K◦ is a subset of the right hand side of (4). 2

The formula (5) of Lemma 1 is equivalent to the formula (380) of [1].

Corollary 1 For each subset I of indices in N , the vectors ei, i ∈ I,uj , j ∈ Ic
(where Ic the complement of I with respect to N) are linearly independent.

Proof. Assume that ∑
i∈I

αiei +
∑
j∈Ic

βjuj = 0 (6)
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for some reals αi and βj . By the mutual orthogonality of the vectors ei, i ∈ I
and uj , j ∈ Ic it follows, by multiplication of the relation (6) with

∑
i∈I α

ie>i
and respectively with

∑
j∈Ic βju>j , that∑

i∈I
αiei = 0

and ∑
j∈Ic

βjuj = 0.

Hence, αi = βj = 0 must hold. 2

The cone K0 ⊂ K is called a face of K if from x ∈ K0,y ∈ K and x−y ∈ K
it follows that y ∈ K0. The face K0 is called a proper face of K, if K0 6= K.

Lemma 2 If K is the cone (2) and K◦ is the cone (4), then for every subset
of indices I = {i1, ..., ik} ⊂ N the set

FI = cone{ei : i ∈ I} = {x ∈ K : x>uj = 0 : i ∈ Ic} (7)

(with FI = {0} if I = ∅) is a face of K. If ih 6= il whenever h 6= l, then FI is
for k > 0 a nonempty set in Rn of dimension k. (In the sense that FI spans a
subspace of Rn of dimension k.)

Every face of K is equal to FI for some I ⊂ N. If I 6= N then FI is a proper
face.

Proof.
The relation in (7) follows from the definition of the vectors uj in Lemma

1, while the assertion on the dimension of FI is obvious.
Suppose that x ∈ FI and y ∈ K with y ≤ x.
Then (x − y)>uj = −y>uj ≤ 0, ∀j ∈ Ic and y>uj ≤ 0, ∀j ∈ N , because

y ∈ K. Thus y>uj = 0, ∀j ∈ Ic, hence y ∈ FI , showing that FI is a face.
Suppose that x ∈ F for F an arbitrary proper face of K. Since x ∈ K, by

the definition of the vectors uj , x
>uj ≤ 0 for j ∈ N.

If x>uj < 0, ∀j ∈ N , then there exists a positive scalar t with (x−ty)>uj ≤
0, ∀j ∈ N . Hence, x− ty ∈ K and thus ty ≤ x. But then ty ∈ F and since F
is a cone, y ∈ F . This means that K ⊂ F , that is, F cannot be a proper face.

We have to show that F has a representation like (7). By the above reason-
ing, for each x ∈ F there exist some index i ∈ N with with x>ui = 0.

If F = {0} we have the representation (7) with I = ∅.
If F 6= {0}, take x in the relative interior of F and let I be the complement

in N of the maximal set of indices j with x>uj = 0. (I must be a nonempty,
proper subset of N since x 6= 0.)

Take y ∈ F arbitrarily. By the definition of x, x−ty ∈ F for some sufficiently
small t > 0. Hence,

(x− ty)>ui ≤ 0, ∀i ∈ N. (8)

By y ∈ F ⊂ K we also have y>ui ≤ 0, ∀i ∈ N. If y>uj < 0 for some j ∈ Ic,
then (8) would imply

x>uj ≤ ty>uj < 0,
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which is a contradiction. Hence, we must have y>uj = 0, ∀j ∈ Ic; and accord-
ingly

F ⊂ {z ∈ K : z>uj = 0, ∀j ∈ Ic}. (9)

Suppose that y ∈ K and y>uj = 0, ∀j ∈ Ic. From definition we have
x>ui < 0 for each i ∈ I, whereby for a sufficiently large t > 0,

(tx− y)>ui ≤ 0, ∀i ∈ N.

Hence, tx−y is in the polar of K◦, which by Farkas’ lemma is K (This follows in
fact, in our case, also by the symmetry of the vectors ei and uj in the formulae
of Lemma 1.) Thus 0 ≤ y ≤ tx, whereby 0 ≤ (1/t)y ≤ x. Since F is a face
of K, we have (1/t)y ∈ F and since it is also a cone, y ∈ F. This proves the
converse of the inclusion in (9) and completes the proof.

2

Thus a maximal proper face of K is of the form

Ki0 = cone{ei : i ∈ N \ {i0}} = cone{ei : i ∈ N, e>i ui0 = 0},

hence it is also called the face of K orthogonal to ui0 . Similarly, we have a
maximal proper face of K◦ orthogonal to some ej0 .

An equivalent result to the one presented in Lemma 2 is given by the Cone
Table 1 on page 179 of [1].

Thus a maximal proper face of K is of the form

Ki0 = cone{ei : i ∈ N \ {i0}} = cone{ei : i ∈ N, e>i ui0 = 0},

hence it is also called the face of K orthogonal to ui0 . Similarly, we have a
maximal proper face of K◦ orthogonal to some ej0 .

Let F = cone{ei : i ∈ I} and F⊥ = cone{uj : j ∈ Ic}. Then, from the
above results it follows that

F = {x ∈ K : x>uj = 0, j ∈ Ic}

and
F⊥ = {y ∈ K◦ : y>ei = 0, i ∈ I}.

The faces F ⊂ K and F⊥ ⊂ K◦ of the above form are called a pair of
orthogonal faces where F⊥ is called the orthogonal face of F and F is called the
orthogonal face of F⊥.

3 Finite method of projection on a simplicial
cone

For an arbitrary u ∈ Rn denote ‖u‖ =
√
u>u. Let K ∈ Rn be an arbitrary

cone and K◦ its polar, and C ⊂ Rn an arbitrary closed convex set. Recall that
the projection mapping PC : H → H on C is well defined by PCx ∈ C and

‖x−PCx‖ = min{‖x− y‖ : y ∈ C}.

Then, Moreau’s decomposition theorem asserts:

5



Theorem 1 (Moreau, [6]) For x, y, z ∈ Rn the following statements are equiv-
alent:

(i) z = x + y,x ∈ K,y ∈ K◦ and x>y = 0.

(ii) x = PKz and y = PK◦z.

Suppose now, that K is a simplicial cone in Rn. We shall use the represen-
tation (2) for K and the representation (4) for K◦. Hence,

e>i uj = −δij , i, j = 1, . . . , n

where δij the Kronecker symbol. As a direct implication of Moreau’s decompo-
sition theorem and the constructions in the preceding section we have:

Theorem 2 Let x ∈ Rn. For each subset of indices I ⊂ N , x can be represented
in the form

x =
∑
i∈I

αiei +
∑
j∈Ic

βjuj (10)

with Ic the complement of I with respect to N , and with αi and βj real numbers.
Among the subsets I of indices, there exists exactly one (the cases I = ∅ and
I = N are not excluded) with the property that for the coefficients in (10) one
has βj > 0, j ∈ Ic and αi ≥ 0, i ∈ I. For this representation it holds that

PKx =
∑
i∈I

αiei, αi ≥ 0, (11)

and
PK◦x =

∑
j∈Ic

βjuj , βj > 0. (12)

Proof. The first assertion is the consequence of Corollary 1.
The projections PKx and PK◦x as elements of K and K◦, respectively can

be represented as

PKx =

n∑
i=1

αiei, αi ≥ 0 (13)

and

PK◦x =

n∑
j=1

βjuj , βj ≥ 0. (14)

To prove existence, let Ic = {j ∈ N : βj > 0} and let I be the complement of Ic

in the setN of indices. For an arbitrary element z ∈ Rn, denote P>Kz = (PKz)>.
If αj > 0 would hold in (14), for some j ∈ Ic, then by Lemma 1 it would follow
that P>Kx·PK◦x < 0, which contradicts the theorem of Moreau. Hence, (13) can
be written in the form (11) and (14) can be written in the form (12). Therefore,
Theorem 1 implies

x = PKx + PK◦x =
∑
i∈I

αiei +
∑
j∈Ic

βjuj ,

where αi ≥ 0, ∀i ∈ I and βj > 0, ∀j ∈ Ic.
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To prove uniqueness, suppose that in the representation (10) of x we have
αi ≥ 0, βi = 0 for i ∈ I and βj > 0, αj = 0 for j ∈ Ic, where I is a subset
of N , and Ic is the complement of I in N (the cases I = ∅ and I = N are not
excluded). Then representations (11) and (12) follow from Theorem 1 by using
the mutual orthogonality of the vectors ei, i ∈ I and uj , j ∈ Ic. From (11)
and the uniqueness of the projection PKx it follows that I is unique.

2

From this theorem it follows that a given simplicial cone K ⊂ Rn determines
a partition of the space Rn in 2n cones in the sense that

Rn =
⋃
I⊂N

cone{ei,uj : i ∈ I, j ∈ Ic}

and for two different sets I of indices the respective cones do not contain common
interior points. The cones in the above union are exactly the sums of orthogonal
faces.

This theorem suggests the following algorithm for finding the projection
PKx:

Step 1. For the subset I ⊂ N we solve the following linear system in αi

x>e` =
∑
i∈I

αie>i e`, l ∈ I. (15)

Step 2. Then, we select from the family of all subsets in N the subfamily ∆
of subsets I for which the system possesses non-negative solutions.

Step 3. For each I ∈ ∆ we solve the linear system in βj

x>uk =
∑
j∈Ic

βju>j uk, k ∈ Ic. (16)

By Theorem 2 among these systems there exists exactly one with non-negative
solutions. By this theorem, for corresponding I and for the solution of the
system (15), we must have

PKx =
∑
i∈I

αiei.

This algorithm requires that we solve 2n linear systems of at most n equa-
tions in Step 1 (15) and another 2|∆| systems in Step 2 (16). (Observe that all
these systems are given by Gram matrices, hence they have unique solutions.)
Perhaps this great number of systems can be substantially reduced, but it still
remains considerable.

Remark 1 If K is subdual; that is, if e>k e` ≥ 0, k, l ∈ N , the above algorithm
can be reduced as follows: By supposing that we have got the representation (10)
of x with non-negative coefficients, we multiply both sides of (10) by an arbitrary
e>l . If x>el < 0 then l cannot be in I, otherwise the relations ujel = 0, j ∈ Ic
and e>i el ≥ 0, i ∈ I would furnish a contradiction. Thus, we have to look for
the set I of indices (for which we have to solve the system (15)) among the
subfamilies of {i ∈ N : x>ei ≥ 0}. (Arguments like this can be used, as it was
done e. g. in [7] for the Dykstra algorithm, to eliminate some hyperplanes while
comkputing successive approximations of the solution.)
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Obviously, the proposed method is inefficient. It was presented by A. B.
Németh and S. Z. Németh in [8] as a preparatory matherial for an efficient
algorithm for so called isotone projection cones only. For isotone projection
cones we can obtain the projection of a point in at most n steps, where n is the
dimension of the space. Isotone projection cones are special simplicial cones.
Even if there are important isotone projection cones in applications, they are
rather particular in the family of simplicial cones.

4 Heuristic method for projection onto a sim-
plicial cone

Regardless the inconveniences of the above presented exact method, which follow
from its combinatorial character, it suggests an interesting heuristic algorithm.
To explain its intuitive background we consider again the simplicial cone

K = cone{e1, . . . , en}

and its polar
K◦ = cone{u1, . . . ,un}

given by Lemma 1.
Take an arbitrary x ∈ Rn. We are seeking the projection PKx.
If e>i x ≤ 0, ∀ i ∈ N , then x ∈ K◦ = kerPK , hence PKx = 0.
If u>j x ≤ 0, ∀ j ∈ N , then x ∈ K, and hence PKx = x.
We can assume that x /∈ K ∪K◦. Hence, x projects in a proper face of K

and in a proper face of K◦.
Take an arbitrary family I ⊂ N of indices. Then, the vectors

ei, uj : i ∈ I, j ∈ Ic

entgender by Corollary 1 a reference system in Rn. Then,

x =
∑
i∈I

αiei +
∑
j∈Ic

βjuj (17)

with some αi, βj ∈ R. (As far as the family I ⊂ N of indices is given, we can
determine the coefficients αi and βj , according to Theorem 2, by solving the
systems (15) and (16).)

If we have αi ≥ 0, βj ≥ 0 : i ∈ I, j ∈ Ic, then from Theorem 2 we obtain

PKx =
∑
i∈I

αiei

and
PK◦x =

∑
j∈Ic

βjuj .

In this case x is projected onto face F = cone{ei : i ∈ I} ortogonally along
the subspace engendered by the elements {uj : j ∈ Ic}, roughly speaking, along
the orthogonal face F⊥ of F .

Suppose that βj < 0 for some j ∈ Ic. Then, considering the reference system
entgendered by ei, uj , i ∈ I, j ∈ Ic, x lies in its orthant with negative jth

8



coordinate, that is in the direction of the vector −uj . By construction, ej and
uj form an obtuse angle. Hence the angle of ej and −uj is an acute one. Thus
there is a real chance that in a new reference system in which ej replaces uj ,
the coordinate of x with respect to ej has the same sign as its coordinate with
respect to −uj , that is positive (or at least non-negative).

If we have αi < 0 for some i ∈ I, then by similar reasoning it seems to be
advantageous to replace ei with ui, and so on.

Thus, we arrive to the following step in our algorithm:
Substitute uj with ej if βj < 0 and substitute ei with ui if αi < 0 and solve

the systems (15) and (16) for the new configuration of indices I. We shall call
this step an iteration of the heuristic algorithm.

Then, repeat the procedure for the new configuration of I and so on, until
we obtain a representation (17) of x with all the coefficients non-negative.

5 Experimental results

The heuristic algorithm was programmed in Scilab, an open source platform for
numerical computation.2 Experiments were performed on numerical examples
for 2, 3, 5, 10, 15, 20, 25, 30, 50, 75, 100, 200, 300, 500 dimensional cones. The
algorithm was performed on 100000 random examples for each of the problem
sizes 2, . . . , 100. Statistical analysis on a subset of 10000 examples from the
set of 100000 examples for size 100 indicates no significant difference in overall
results and performance, therefore we subsequenlty reduced the number of ex-
periments on larger problem sizes. 10000 random examples were used for sizes
200 and 300 and 1000 examples for size 500, as the time needed by the algorithm
increases with size. Table 1 shows the experimental results. For each problem
size, the averages of all runs are shown, together with a confidence interval at
confidence level 95% where appropriate.3 The Changes column indicates the
total number of swaps uj for ej and ej for uj , respectively, before reaching the
solution. The Iterations column indicates the number of iterations (as defined
in Section 4) the algorithm performed before reaching a solution. The Iter-
ations with increases column shows the percentage of iterations where the
number of changes increased from the previous iteration. We noticed that in the
majority of iterations the number of changes decreased, which led to the quick
convergence of the algorithm in the vast majority of cases. In all examples the
starting point for the search was the e1, . . . , en base. The final column shows
the percentage of problems where the algorithm was aborted due to going in a
loop by allocating in some iteration a set of ejs and ujs that were encountered
in a previous iteration. The percentage of loops was exponentially decreasing
as the size increased and we did not observe any loops in any experiments on
problem sizes of 30 or above. Overall, loops were observed in 0.1% of the exper-
iments, so the heuristic algorithm was successful 99.9% of the time. A solution
that we see for solving the problems that lead to a loop is to restart the algo-
rithm from a different initial set of ejs and ujs. The problems ending in a loop
were excluded from the detailed analysis that follows.

2http://www.scilab.org/
3Any difference less than ±0.5 for integers and ±0.1 for percentages, respectively, is not

shown, as deemed irrelevant for the analysis.

9



Table 1: Number of changes, iterations, iterations where the number of changes
increased and loops for the various cone dimensions

Size Changes Iterations Iterations with Loops
increases [%] [%]

2 1 1 0 4.382
3 2 1 3.9± 0.1 4.278
5 4 2 13± 0.2 1.396
10 11 3 26± 0.3 0.273
15 17 4 30.3± 0.3 0.029
20 24 4 31.6± 0.3 0.007
25 30 4 31.2± 0.3 0.003
30 37 4 29.9± 0.3 −
50 64 5 26.8± 0.3 −
75 97 5 24.2± 0.3 −
100 131 5 23.8± 0.3 −
200 267± 1 6 19.9± 0.8 −
300 409± 1 6 26.2± 0.9 −
500 700± 5 7 25.7± 2.7 −

More detailed analysis of the three main performance indicators of changes,
iterations and iterations with increases was performed using boxplots as shown
in Figures 1, 2 and 3. Although the total number of changes performed increases
linearly with problem size (at a rate of less than 2 × n, even if considering
maximum numer of changes), this does not affect the performance substantially
(see Figure 1, where the results were split into two parts for a clearer view).
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Figure 1: Boxplots of number of changes performed for the various cone dimen-
sions

The number of iterations is the crucial indicator of performance. As shown
in Figure 2 the number of iterations reaches at most 11 (for sizes 15 and 20),
but in 75% of cases has a value of 7 or below. We ran a few experiments on
larger sizes, up to 1750, and the largest number of iterations we obeserved was
13. Running experiments on very large problem sizes is problematic due to
computer memory limitations and the Scilab built-in solving of linear systems.4

4 Note that the time needed by one iteration substantially increases with problem size n
as one iteration involves solving a linear system with n equations and n variables.
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The major benefit of this heuristic algorithm is the small number of iterations
even for very large number of cone dimensions.
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Figure 2: Boxplots of number of iterations needed for the various cone dimen-
sions

As our heuristic algorithm seems to converge quickly, we wanted to know how
frequently it deviates from the optimal path. An optimal path would consist of
iterations with decreasing number of changes. Figure 3 shows the boxplots for
the number of iterations where an increase in the number of changes took place.
The maximum number of such iterations over all experiments is 4, but 75% of
examples involved only one or no such iteration. This provides an explanation
for the fast convergence: the algorithm very rarely deviates from the optimal
path.

6 Conclusion

We presented a heuristic method of projection on simplicial cones based on
Moreau’s decomposition theorem. The heuristic algorithm presented in this
note iteratively finds the projection onto a simplicial cone in a surprisingly
small number of steps even for large cone dimensions in 99.9.% of the cases.
We attribute the success to the fact that the algorithm rarely deviates from the
optimal path, in every iteration it usually has to change less base values than
in the previous iteration. We are planning to further extend the algorithm with
random restart hoping to achieve 100% success rate.
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[6] J. J. Moreau. Décomposition orthogonale d’un espace hilbertien selon deux
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