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The human visual system is sensitive to second-order modulations of the local contrast (CM) or amplitude (AM) of a carrier
signal. Second-order cues are detected independently of first-order luminance signals; however, it is not clear why vision
should benefit from second-order sensitivity. Analysis of the first- and second-order contents of natural images suggests
that these cues tend to occur together, but their phase relationship varies. We have shown that in-phase combinations of
LM and AM are perceived as a shaded corrugated surface whereas the anti-phase combination can be seen as corrugated
when presented alone or as a flat material change when presented in a plaid containing the in-phase cue. We now extend
these findings using new stimulus types and a novel haptic matching task. We also introduce a computational model based
on initially separate first- and second-order channels that are combined within orientation and subsequently across
orientation to produce a shading signal. Contrast gain control allows the LM + AM cue to suppress responses to the LMj AM
when presented in a plaid. Thus, the model sees LM j AM as flat in these circumstances. We conclude that second-order
vision plays a key role in disambiguating the origin of luminance changes within an image.
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Introduction

The human visual system is sensitive to variations of
second-order cues such as modulations of the local
contrast (CM) of textured stimuli. This is true for both
moving (see Baker, 1999 for an early review) and static
(Badcock, Clifford, & Khuu, 2005; Dakin & Mareschal,
2000; Georgeson & Schofield, 2002; Graham & Sutter,
2000; Henning, Hertz, & Broadbent, 1975; Larsson,
Landy, & Heeger, 2006; Nachmias, 1989; Nachmias &
Rogowitz, 1983; Schofield & Georgeson, 1999, 2003;
Sutter, Sperling, & Chubb, 1995) stimuli, although here
we concentrate on static cues. There is strong psycho-
physical evidence to suggest that static CM is detected
separately from first-order luminance modulations (LMs).
For example, there is no sub-threshold facilitation between
the cues (Schofield & Georgeson, 1999), they can be

distinguished at detection threshold (Georgeson& Schofield,
2002), lateral interactions are different for the two cues
(Ellemberg, Allen, & Hess, 2004), their channel structure
is different (Ellemberg, Allen, & Hess, 2006), noise
masking is doubly dissociated (Allard & Faubert, 2007),
they make separate contributions to global form detection
(Badcock et al., 2005) and different contributions to
contour linking processes (Hess, Ledgeway, & Dakin,
2000). Finally, although most retinotopic visual areas
respond to both LM and CM, there is preferential fMRI
adaptation for CM in the higher areas (specifically VO1,
LO1, and V3a; Larsson et al., 2006).
It is also clear, however, that CM and LM are integrated

or partially integrated in some cases. For example,
contrast modulations of high-contrast grating carriers
mask LM signals (Henning et al., 1975; Nachmias &
Rogowitz, 1983), but modulations of low contrast noise
carriers do not (Schofield & Georgeson, 1999). LM masks
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the detection of CM in noise carriers but not vice versa
(Ellemberg et al., 2006; Schofield & Georgeson, 1999),
and similar asymmetric interference has been found for
global form detection (Badcock et al., 2005). The orienta-
tion of first-order stimuli affects the perceived orientation
of second-order stimuli (Morgan, Mason, & Baldassi,
2000). The signal types combine at low contrasts to
improve perceptual accuracy (Smith & Scott-Samuel,
2001). Further, tilt and contrast reduction after-effects
transfer between LM and CM (Georgeson & Schofield,
2002), as does the tilt illusion (Smith, Clifford, &
Wenderoth, 2001). Finally, we have previously shown
that LM and CM interact in the perception of shape from
shading (Schofield, Hesse, Rock, & Georgeson, 2006).
The physiological evidence for independent first- and

second-order mechanisms is less clear-cut and comes
mainly from studies using moving stimuli. Mareschal and
Baker (1998) found cells in cat area 18 that are responsive
to second-order stimuli, but these also responded to first-
order stimuli: suggesting early integration. However,
typically, preferred frequencies for the two cues were
slightly different. They concluded that such cells were
likely to take their input from independent first- and
second-order sub-mechanisms (see also Song & Baker,
2006; Zhou & Baker, 1996). Further, in physiology, it is
common to search for cells using first-order stimuli. Any
cell that is then found to be sensitive to second-order cues
will, by definition, also be sensitive to first-order stimuli.
Finally, second-order signals may be extracted in another
visual area; V3a has been implicated in second-order
processing for both static (Larsson et al., 2006) and
moving stimuli (Ashida, Lingnau, Wall, & Smith, 2007).
Perhaps second-order signals are extracted in V3a and fed
back to V1/V2.
Despite the above evidence for separate but interacting

first- and second-order mechanisms, psychophysically
human vision is an order of magnitude less sensitive to
CM than LM (Schofield & Georgeson, 1999) and similar,
if less extreme, results have been found for motion in
cat area 17/18 (Hutchinson, Baker, & Ledgeway, 2007;
Ledgeway, Zhan, Johnson, Song, & Baker, 2005; Mareschal
& Baker, 1998; Zhou & Baker, 1996) and monkey MT
(Albright, 1992). This suggests that CM is something of
a secondary cue, and it is not yet clear why the independent
detection of static second-order cues is beneficial to human
vision. We now address this question.
Human vision presumably obtains some advantage from

processing first- and second-order cues independently and
indeed from detecting second-order cues at all. Johnson
and Baker (2004) measured the relationship between
patterns of LM and CM in natural scenes and found the
two cues to be highly correlated on an unsigned magnitude
metric. This implies that CM variations tend to occur
alongside LM. However, Schofield (2000) performed a
similar analysis using a signed metric and found that
whereas the two cues may be strongly correlated within a
single image the sign of the correlation varies between

images, such that they are uncorrelated over an ensemble
of images. Taken together, these results suggest that CM
is an informative cue in natural images, but that informa-
tion may be conveyed by its relationship with LM rather
than its mere presence.
In this paper (as previously, Schofield et al., 2006), we

prefer to use the term amplitude modulation (AM) over
CM because although they are mathematically equivalent
when presented alone, when combined with LM they can
be interpreted as distinct image properties with AM being
the better description for our purposes. Schofield et al.
(2006) showed that LM and AM are yoked whenever an
albedo-textured surface is shaded or in shadow (see Figure 1
for a natural example of such shading and Schofield et al.,
2006 for a full account of the yoking between these cues).
Albedo textures represent locally smooth surfaces whose
local reflectance changes creating a visual texture. So LM +
AM represents a strong cue to shading/shadows when
certain textured surfaces are present.
People see sinusoidal shading patterns as sinusoidally

undulating surfaces (Kingdom, 2003; Pentland, 1988;
Schofield et al., 2006; Schofield, Rock, & Georgeson,
submitted for publication) even though such surfaces only
give rise to sinusoidal shading in restricted circumstances.
We presume that the luminance component of the LM +
AM signal is coded as a shading pattern and then interpreted
as a corrugated surface via shape from shading (Christou
& Koenderink, 1997; Erens, Kappers, & Koenderink,
1993; Horn & Brooks, 1989; Kleffner & Ramachandran,
1992; Langer & Bülthoff, 2000; Ramachandran, 1988;
Todd & Mingolla, 1983; Tyler, 1998) whereby luminance
level is equated with surface gradient such that the parts of
the surface that are most luminous are seen as being
oriented toward the illuminant. When the direction of the
illuminant is unknown, humans assume a lighting-from-
above prior (Adams, Graf, & Ernst; 2004; Brewster,
1826; Mamassian & Goutcher, 2001; Ramachandran, 1988;
Rittenhouse, 1786; Sun & Perona, 1998). Our earlier results
(Schofield et al., 2006) with LM + AM sinusoids are
consistent with this interpretation, except that we now
propose an illumination prior that is a mixture of diffuse
and point source lighting (Schofield et al., submitted for
publication; Schofield, Rock, Georgeson, & Yates, 2007).
The filter–rectify–filter model used by Schofield (2000)

to extract second-order cues from natural images was
sensitive to AM, and it seems likely that natural images
containing positively correlated first- and second-order
cues are dominated by shadows and shading. However,
what is the composition of those images that contain
negatively correlated cues?
Transparent overlays also give rise to second-order cues

in natural stimuli (Fleet & Langley, 1994). The specific
case of a semi-opaque light (or milky) transparency is
pertinent here. Those parts of a textured surface that are
obscured by such a transparency suffer an increase in
mean luminance (e.g., if the base color of the overlay is
white, its luminance will be higher than the mean
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luminance of the texture) but a decrease in local amplitude
(the difference between the light and dark parts of the
texture will fall due to the blurring caused by the semi-
transparent medium). This configuration exhibits nega-
tively correlated LM and AM (LM j AM; note, however,
that if the transparency is dark, LM and AM will again be
positively correlated). The notion that LM j AM is a
possible cue for transparency is supported by the
qualitative description of such stimuli given by Georgeson
and Schofield (2002; they used the term LM j CM). If
LM j AM is seen as a cue to transparency, then the
overall perception is likely to be of flat surfaces although
the semi-transparent regions may be seen as being in front
of the main surface. LM j AM might also be interpreted
as a material change, as there is no restriction on the
relationship between LM and AM when two surfaces
comprising materials with different textures are abutted
(see Figure 1).

The idea that LM j AM may be interpreted as either a
material change or as an overlaid transparency was given
empirical support by our previous finding that this cue is
seen as flat when presented in a plaid with LM + AM
(Schofield et al., 2006). LM + AM is, by contrast, seen as
a shading cue and is therefore perceived as corrugated in
depth via shape from shading. However, when presented
alone LM j AM is also seen as corrugated albeit less
strongly (less reliably) than LM + AM. Why might LM j
AM be seen as flat in some cases and corrugated in
others? There are cases where undulating surfaces can
produce negatively correlated LM and AM. An example
of such a surface would be a physically textured (rough)
surface under certain illumination conditions (see Figure 2
of Schofield et al., 2006). Thus, we previously concluded
that whereas LM + AM is a strong cue to shading, LM j
AM is rather ambiguous when seen alone. However, when
intimately associated with LM + AM as in the case of a

Figure 1. (a) A natural image showing part of a building on the University of Birmingham campus. The building “steps” out twice working
left to right and the orientation of the faces produces shading but not cast shadows. The brick sections are, approximately, a reflectance
texture of the type described in the text. The image also shows gross reflectance changes, most notably the strips of sandstone among
the red brick sections. The red and blue boxes show approximate sampling regions for the traces of (b) and (c), respectively. The red
section of (a) was extracted and rotated so that the shading edges were vertical. The blue section of (a) was extracted and rotated so that
the sandstone edges were vertical. Sample sections were also converted to grayscale. (b) Mean (blue line) and standard deviation (red
line) of the gray level values in each column of the rotated red section. Mean pixel values are a measure of luminance whereas their
standard deviation measures luminance amplitude or range. Transitions of high to low luminance (LM) are clearly mimicked by changes in
luminance amplitude (AM) and the two cues are positively correlated. (c) Mean and standard deviation for the columns in the rotated blue
section of (a); here the transition to high luminance in the sandstone section is not mirrored by a change in standard deviation.
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plaid stimulus where the two cues are necessarily
presented with the same texture carrier the interpretation
of LM + AM as being due to shading seems to force the
interpretation of LM j AM as being due to some sort of
material change (Schofield et al., 2006).
The notion that the relationship between LM and AM

provides a key for separating shading and shadows from
material changes has important implications for human
vision and applications in machine vision. In principle, a
given image can arise from an infinite number of scene
and lighting combinations. Human vision may make
considerable use of stored knowledge about the world in
a top-down fashion to correctly interpret visual scenes.
However, natural images may also contain cues that can
be used to disambiguate the incoming luminance varia-
tions via bottom-up processes. Specifically, luminance
variations are ambiguous; they may result from changes in
illumination (shadows and shading) or changes in surface
reflectance. If human vision were only sensitive to
luminance, its ability to distinguish these possibilities on
the basis of low-level cues would be greatly restricted.
Barrow and Tenebaum (1978) showed how some progress
can be made toward the separation of illumination and
reflectance in a “luminance only” system, but they also
highlighted the potential benefits of being sensitive to
other cues and the importance of understanding how cues
relate to one another in real-world stimuli. Others have
shown that hue can be used to separate illumination from
reflectance changes (see, for example, Kingdom, 2003;
Olmos & Kingdom, 2004; Tappen, Freeman, & Adelson,
2005). Here we consider the use of AM as a cue to separate
the luminance changes due to variations in surface
reflectance from those due to variations in illumination or
shading, and we provide a simple bottom-up modelVbased
on both the filter–rectify–filter model of second-order
vision (Wilson, Ferrera, & Yo, 1992) and the processing
scheme for envelope neurons proposed by Zhou and Baker
(1996)Vthat can account for our psychophysical results.
In our earlier study (Schofield et al., 2006), we asked

observers to make relative depth judgements about pairs
of probe points from which we derived normalized
gradients before reconstructing perceived surface profiles:
we did not measure perceived depth directly. Thus, we
were unable to express perceived depth in absolute terms,
unable to measure differences in depth between stimuli
with very different signal strengths, and unable distinguish
between low-relief and unreliable depth percepts. Further,
participants in our earlier experiments reported that the
depth probe task felt artificial because the probe markers
did not appear to be attached to the surface. We avoided
these problems here by asking observers to match the
properties of a haptic surface to the perceived corrugations
in a co-located visual stimulus. This task felt natural to
participants and gave direct and absolute estimates of
perceived depth amplitude.

We report three experiments. In the first experiment, we
fixed the position of the haptic cue based on the results of
a pilot study and asked observers to set the amplitude of
the haptic undulations to match the perceived surface
undulations. Our previous study (Schofield et al., 2006)
only measured depth profiles at two levels of LM (for
fixed AM) and found little difference between these
conditions. We now measure perceived depth amplitude
(PDA) as a function of signal strength, varying LM and
AM together (Experiment 1) yielding a better under-
standing of how LM and AM interact at different signal
strengths. In Experiments 2 and 3, we fixed the contrast of
the LM cue and measured PDA as a function of AM
signal strength in both plaid (Experiment 2) and single
component (Experiment 3) stimuli, exploring the role of
AM in more detail. We also present a biologically
plausible model providing a good fit to the data suggesting
that human performance in this task can be explained by
a bottom-up system that first detects and then integrates
first- and second-order information.

General methods

We introduce a new method for assessing shape from
shading. Observers viewed sinusoidal visual stimuli while
stroking a sinusoidally corrugated haptic stimulus and
were asked to set the depth amplitude of the haptic
stimulus to match the visually perceived surface. Visual
stimuli comprised various combinations of LM and AM as
described below. After a short training session, this
method felt very natural to the observers. However, the
method relies on the assumption that observers would
perceive sinusoidal luminance patterns as sinusoidal
corrugations with the same spatial frequency. This
assumption is supported by our previous depth mapping
experiments (Schofield et al., 2006), the findings of
Pentland (1988), and results from a gauge figure experi-
ment reported elsewhere (Schofield et al., submitted for
publication). There is also a danger that the haptic
stimulus might alter the visual experience, perhaps acting
as a training stimulus (Adams et al., 2004). We think that
this is unlikely partly because results from the haptic match
task are similar to those obtained with other methods
(Schofield et al., 2006 and Schofield et al., submitted for
publication). Further, while we do not doubt that haptic
stimuli can be used to alter visual perception, we see no
reason why such cross-modal influence should be man-
datory. Here we made it clear that observers should treat
the visual stimulus as the fixed reference and set the haptic
stimulus to match it. Other than being a sinusoid of the
same frequency as the visual cue, there was no systematic
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manipulation of the haptic stimulus to entrain the visual
percept.

Visual stimuli

We follow Pentland (1988) and Kingdom (2003) in
using sinusoidal shading patterns with no occluding
boundaries. Stimuli were not rendered surfaces. Studies
of shape perception more typically use images of rendered
(or real) objects, irregular shapes, or sections thereof. We
used grating stimuli and random noise textures for the
following reasons: (1) shading is known to be a relatively
weak or secondary cue to shape and can be dominated by
other cues including object outlines. Thus, the outlines of
rendered objects or blobs can influence both the perceived
surface shape (see Knill, 1992) and the strength of the
depth percept. (2) We need to simulate textured surfaces
in our stimuli, but if these had been rendered, then
geometric distortions in the texture would have been an
additional cue to shape. Our noise textures were isotropic,
providing no cue to shape. (3) With gratings, it is very
easy to control the phase relationship between LM and
AM and the amount of AM. (4) The use of gratings made
it easy for us to cue which component was to be matched
to the haptic probe.
Visual stimuli were formed from isotropic binary visual

noise with a Michelson (and r.m.s.) contrast of 0.1, onto
which we imposed sinusoidal modulations of luminance
and amplitude. Noise elements comprised 2� 2 screen pixels
and subtended 0.06 degrees of arc at the 57-cm viewing
distance. We imposed five types of sinusoidal modulation
onto these noise textures: (a) LM-only (Figure 2a) compris-
ing luminance modulations added to the noise pattern with
no variation in AM, (b) AM-only (Figure 2b) comprising
amplitude modulated noise, (c) LM + AM alone (Figure 2c),
(d) LM j AM alone (Figure 2d), and (e) plaid stimuli
comprising LM + AM on one oblique and LM j AM on
the other (Figure 2e). Except when AM modulation depth
was zero, we did not test plaids composed of the same
cues (i.e., both LM + AM) on both diagonals. In the case
of plaids, either the LM + AM or LM j AM component
could be designated as the test cue making a total of 6 test
conditions in all (but not all conditions were tested in
every experiment). Test cues were presented in one of
two orientations; left oblique or right oblique (T45-). The
wavelength of the modulations was 25 mm (spatial
frequency = 0.4 c/deg). The contrast of the LM signals
and the modulation depth of the AM signals varied
between experiments and conditions. Stimuli were pre-
sented in a modified ReachIN haptic workstation (Reachin
AB, Sweden) depicted in Figure 3. Visual stimuli were
presented on a 17W Sony Trinitron CPD G200 CRT
monitor (Sony, Japan) mounted at an angle of 45- above a
horizontal half-silvered mirror. Observers looked into the
mirror at a downward angle and thus perceived the visual
stimulus to be beneath the mirror and approximately

perpendicular to their line of sight. A hood prevented the
observer from viewing the monitor directly. Observers
were asked not to tilt their heads to one side but, except
for the need to sit close to the workstation and the
limitations imposed by the hood, viewing position was not
physically constrained. Stimuli were viewed in the dark
such that observers could not see their own hand beneath
the mirror. Viewing was binocular and so the visual
stimulus provided stereoscopic cues to flatness. However,
a robust percept of shape from shading can be derived
from such stimuli (Schofield et al., 2006).
Stimuli were calibrated against the monitor’s gamma

characteristic using lookup tables in a BITS++ attenuation
device (CRS, UK), which also served to enhance the
available gray level resolution to the equivalent of 14 bits.
Values in the lookup tables were determined by fitting a
four-parameter monitor model to luminance readings
recorded with a CRS ColourCal photometer. Problems in
presenting AM stimuli associated with the adjacent pixel
non-linearity (Klein, Hu, & Carney, 1996) were avoided
by using a high bandwidth monitor and noise samples
with relatively low contrast but relatively large element
size. However, the noise elements were unlikely to be
large enough to produce a noticeable clumping artifact
(Smith & Ledgeway, 1997; see Schofield & Georgeson,
1999 for a full discussion of these issues).

Haptic stimuli

Haptic stimuli were presented via a Phantom-Desktop
(SensAble Technologies, MA, USA) force feedback
device located beneath the mirror and consisted of a
virtual surface collocated with the visual stimulus. Haptic
surfaces had sinusoidal undulations in the direction of the
visual test cue. The spatial frequency of the undulations
matched that of the visual stimuli. Observers held the
Phantom’s stylus like a pen with their dominant hand and
stroked the surface. The Phantom provided physical
resistance whenever the observer tried to move the stylus
tip through the virtual surface. Three markers were added
to the visual stimulus: one at the center and two at opposite
corners of the stimulus, so that the alignment of the three
markers indicated the direction in which observers should
stroke the haptic surface in order to feel the undulations.
We verified that distances specified in the haptic stimuli
were faithfully reproduced by the Phantom. Visual and
haptic stimuli were generated on the same PC.

Visual cursor

We ensured that the location, orientation, and spatial
frequency of the haptic stimuli matched the visual stimuli
well. However, we also conducted a pilot experiment to
verify that observers could reliably match the position of
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Figure 2. Extracts from sample stimuli. (a) LM-only, formed by arithmetically adding a luminance grating to spatial binary noise. (b) AM-only,
formed by modulating the amplitude (standard deviation) of the noise. (c) LM + AM only, formed by combining the cues of (a) and (b) in-
phase, equivalent to multiplicative shading. (d) LM j AM only, formed by combining the cues of (a) and (b) in anti-phase. (e) LM + AM
and LM j AM in a plaid configuration; here LM + AM is on the right oblique. Note that noise contrast has been increased from 0.1 to
0.3 to aid presentation.
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the haptic undulations to visual features. In this experi-
ment, the visual stimuli consisted of a horizontal lumi-
nance grating and observers were asked to adjust the
position of the peaks in the haptic stimuli to match the
position of the luminance peaks. In the absence of any
visual feedback as to the location of the stylus tip,
observers were unable to match the positions on the
visual and haptic stimuli with any reliability (standard
deviation of match positions = 0.288 wavelengths).
However, reliable position matches were possible on the
introduction of a visual cursor that tracked the tip of the
stylus (standard deviation of match positions = 0.041
wavelengths). A cursor was therefore included in all the
experiments. We conclude that co-registration of the
haptic and visual stimuli is not sufficient to allow reliable
position matching in the absence of visual feedback.
Further, although we have not tested this directly, we
suspect that precise co-registration is not necessary if
feedback is provided. We note, for example, that computer
users can reliably place a pointer at a specified screen
location despite a gross mismatch between the physical
positions of the pointer and “mouse”.

Position of haptic stimulus

Prior to the main experiments, we asked observers to
adjust the position of a haptic stimulus to match that of the
perceived corrugations in the visual stimuli. These settings
were then used to determine the precise relative position
of the visual and haptic stimuli in the main experiments
such that haptic peaks were always aligned with perceived
surface peaks. Typically, perceived surface peaks (and
hence haptic peaks) are offset from the luminance peaks
(see Schofield et al., 2006). Details of how these measure-
ments were performed can be found in Experiment 1 of
Schofield et al. (submitted for publication). We measured

offsets (the difference between the position of the
luminance peaks and the haptic peaks) for LM + AM,
LM j AM, LM-only, and AM-only in the single oblique
condition and LM + AM when presented as part of a plaid
stimulus. AM-only offsets were measured relative to
peaks in the amplitude signal. We then applied the
appropriate offsets between our visual and haptic stimuli
on a per condition and observer basis. However, we could
not measure offsets for LM j AM stimuli in the plaid
configuration as observers saw this cue as flat and therefore
could not identify any surface peaks against which to make
a match. Instead, we used the LM + AM offsets when
testing LM j AM in a plaid.

Main adjustment task

In the experiments reported below observers adjusted
the amplitude of the haptic surface up or down by pressing
one of two keys on a numeric keypad. A third key toggled
the step size for adjustments between 2 and 0.5 mm (half-
height amplitude). Observers heard a long tone for each
2-mm adjustment and a short tone for each 0.5-mm
adjustment. Observers could not drive the amplitude of
the haptic surface below zero and received an auditory
warning of any attempt to do so. Estimates of PDA were
calculated as the median of at least 5 measurements.

Observers

Five observers took part in the experiments. With the
exception of author PR, observers were naive to the
purposes of the experiment and were paid for their time.
Author PS was a naive observer at the time of the study.
Author AJS contributed some additional data to Experi-
ment 2. All observers had normal or corrected-to-normal
vision and no physical disability or injury. Observers held
the stylus in their dominant hand: JG is left-handed; the
remaining observers are right-handed.

Experiment 1: Perceived depth
amplitude versus overall signal
strength

In this experiment, we considered the effect of overall
signal strength on the PDA of visual stimuli. We also
varied the relative phase of the LM and AM cues at the
test orientation, and we compared two component (plaids)
with single component stimuli (gratings). The LM contrast
and AM modulation depth were equal in any given
stimulus, consistent with multiplicative shading for in-
phase pairings.

Figure 3. Sketch of the ReachIN workstation with additional hood;
support structure not shown.
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Methods

Signal strength, governing both LM component contrast
and AM component modulation depth, was varied in
multiples (0.1, 0.4, 0.8, 1.6, 3.2, and 4.0) of each
observer’s AM detection threshold as measured in
separate sessions using a staircase method (Levitt, 1971)
and a two-interval forced-choice design. In this pilot
experiment, stimuli consisted of AM gratings presented
alone. Note that our AM gratings are identical to the CM
gratings often used to study second-order vision. The
mean AM threshold across observers was 0.086, and this
is consistent with the literature on second-order vision
(Schofield & Georgeson, 1999). Stimuli consisted of
plaids comprising LM + AM on one diagonal and LM j
AM on the other (Figure 2e), LM + AM presented alone
(Figure 2c), or LM j AM presented alone (Figure 2d).
Because they contain two orientation components, plaids
had greater overall contrast and modulation depth than
single component stimuli. Many of the stimuli in this
experiment contained sub-threshold levels of AM, but
their LM components were likely to be supra-threshold
because thresholds for LM in visual noise are about an
order of magnitude lower than AM (CM) thresholds
(Schofield & Georgeson, 1999).

Results and discussion

Figure 4 shows the results of Experiment 1 averaged
over the five observers. Mean PDA was low for weak
stimuli regardless of their composition and remained low
for LM j AM at all signal levels when this cue was part
of a plaid (squares in Figure 4b). However, when LM j
AM was presented alone (squares in Figure 4a), PDA
increased with signal strength. PDA also increased with
signal strength for LM + AM whether presented alone
(circles in Figure 4a) or in a plaid (circles in Figure 4b).
Although the variances were high, we note that PDA rises
to a level significantly above zero for all cues except LMj
AM presented in a plaid (error bars in Figure 4 represent
95% confidence intervals). PDAs for strong LM + AM
gratings tend to be greater than those for LM + AM
presented as part of a plaid despite the fact that overall
luminance contrast was higher for the latter stimulus. This
trend can also be seen in weaker stimuli where compo-
nents of a plaid produced lower PDAs than single grating
stimuli. For single obliques, strong LM + AM gratings
produced somewhat greater PDAs than LM j AM
gratings, but only when AM was above threshold.
Perceived depth for LM + AM was also greater than for
LM j AM in plaid stimuli and this seemed to hold down
to signal levels where AM was below threshold (between
0.4 and 1 � AM threshold). Lines in Figure 4 show
predictions of the model described later.

Noting that the plots of Figure 4 are approximately
linear against log signal strength, we estimated (with
linear regression) the slope of the relationship between log
signal strength and PDA separately for each participant
and each stimulus type. Figure 5 plots the mean slope for
each stimulus type and their associated 95% confidence
intervals. Slopes for LM j AM were not significantly
different from zero regardless of the configuration used
(one-sample, one-way t-test: LM j AM only, t = 2.55,
df = 4, p 9 0.05; LM j AM in plaid, t = 1.16, df = 4,

Figure 4. Experiment 1. Perceived depth amplitude as a function
of overall signal strength: (a) single oblique stimuli, (b) plaid
stimuli. Blue circles show the perceived amplitude of LM + AM
mixes; red squares show LM j AM mixes. X-axis shows signal
strength as a multiple of AM threshold. Error bars represent 95%
confidence intervals and are drawn single-sided to aid interpreta-
tion. Lines show predictions of the “shading-channel” model; blue
and red for LM + AM and LM j AM, respectively (see description
of model for details).
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p 9 0.05). LM + AM stimuli produced significant slopes
(LM + AM only, t = 4.26, df = 4, p G 0.05; LM + AM in
plaid, t = 3.74, df = 4, p G 0.05). A repeated measures
ANOVA (with Greenhouse–Geisser correction) showed
that there were significant differences between the mean
slopes across the four conditions (F = 8.57, df = 1.6, 6.38,
p G 0.05). Bonferroni corrected post-hoc paired compar-
isons showed that slopes for LM j AM in a plaid were
significantly lower than those for the LM + AM conditions
(LM j AM in a plaid vs. LM + AM in plaid, t = 6.2,
df = 4, p G 0.05; LM j AM in plaid vs. LM + AM only,
t = 5.32, df = 4, p G 0.05). The difference in slopes
between LMj AM in a plaid and this cue presented alone
was significant prior to Bonferroni correction but not after
(t = 3.1). None of the other pairings were significantly
different suggesting that LM j AM presented alone
produces behavior similar to that of LM + AM.
Taken together, these results show that LM j AM is

seen as a shape-from-shading cue when presented on its
own. PDAs for this cue are about the same as those for
LM + AM in a plaid but below those for LM + AM
presented alone. When LM j AM is presented as part of a
plaid, however, it is seen as quite flat. Inspecting individual
data revealed that most observers saw this condition as
almost completely flat even at high signal strength and that
the slope observed in Figure 4 is largely due to one
observer who saw this stimulus as conveying some depth.
By contrast LM j AM alone was seen as quite corrugated
by all but one observer and the two LM + AM conditions
were seen as corrugated by all observers. PDAs naturally
converge toward zero as signal strength is reduced. PDAs
for single components converge at about the point where
the AM signal falls below threshold. PDAs for the two

members of a plaid converge at a point below the
measured AM detection threshold; this could be due to
probability summation that may serve to increase the
visibility of AM in plaid stimuli above that of single
orientation components. It is clear that LM is the
dominant cue for depth perception in shaded textures but
that its relationship with AM and the overall configuration
of the stimulus is also important. We now investigate the
specific role of AM in more detail.

Experiments 2 and 3: Effect of AM
modulation depth on perceived
depth amplitude

In these experiments, we varied AM strength while
keeping LM contrast constant. We thus assessed the ability
of AM to influence perceived depth.

Methods

Visual stimuli were diagonally oriented gratings and
plaids with a fixed LM contrast of 0.2 and several AM
modulation depths (0, 0.1, 0.2, 0.4). Again, we varied the
phase relationship between LM and AM. In Experiment 2,
we tested plaid stimuli only. Experiment 3 tested single
component stimuli including AM-only gratings (see
Figure 2b). When we devised Experiment 2, we consid-
ered the LM + AM and LM j AM components to be
distinctly different stimulus types. We therefore did not
test the case where the AM signal was zero (i.e., an LM-
only vs. LM-only plaid). We later realized that these cues
form a continuum running from strong negative AM to
strong positive AM, with LM-only (AM modulation
depth = 0) representing the midpoint on this continuum.
We thus added the AM = 0 case to the test battery for
Experiment 3 and tested an additional observer in
Experiment 2 including the AM = 0 case.

Results

Figure 6 shows PDA as a function of AM modulation
depth. Blue squares show the results for plaid stimuli
(Experiment 2); red circles and green triangles show the
single component results (Experiment 3). There was no
effect of test orientation (left or right oblique) so we
averaged across this condition.
Experiment 2: Plaids. For plaid stimuli, PDA increased

with signed modulation depth such that stimuli were seen
as increasingly flat for negative modulation depths (LM j
AM) and increasingly corrugated for positive modulation
depths (LM + AM). There was a pronounced increase in

Figure 5. Mean slopes for regression fits to individual data from
Experiment 1 for each of the four test conditions. Error bars
represent 95% confidence intervals.
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PDA around AM = 0. A repeated measures ANOVA (with
Greenhouse–Geisser correction) showed that the overall
change in PDA was significant (F = 42.468, df = 1.493,
7.464, p G 0.01) and Bonferroni corrected post-hoc paired-
samples t-tests showed that anti-phase stimuli (LM j
AM) produced significantly lower PDAs than in-phase
stimuli (LM + AM). Results from the one observer (AJS)
tested with AM = 0 (open square symbols in Figure 6)
suggest that PDAs for LM-only plaids fall nicely on the
continuum from LM j AM to LM + AM.
Experiment 3: Single components. There was much less

variation in PDA with AM modulation depth in the single
component stimuli. Here we found only a gradual increase
in PDAwith AMmodulation depth and hardly any increase
at all among LM + AM stimuli. The overall trend was not
significant (Greenhouse–Geisser corrected ANOVA, F =
4.013, df = 1.583, 7.916, p = 0.069). There were no
significant differences between any of the levels tested for
the single component stimuli (based on Bonferroni
corrected paired t-tests). Paired-sample t-tests between

AM-only stimuli (triangles) and single component mixed
stimuli (filled circles) with equivalent levels of AM
suggest that the AM-only stimuli were seen as signifi-
cantly flatter than LM/AM mixes regardless of the phase
relationship in the mix (based on paired samples t-tests
corrected using Horn’s multistage Bonferroni method).
Similarly, PDAs for LM + AM in a plaid were significantly
greater than their AM-only counterparts. In contrast, PDAs
for LM j AM stimuli in a plaid were not significantly
greater than those for AM-only. Finally, we note that
LM j AM stimuli in a plaid are seen as significantly less
corrugated than the equivalent single component stimuli
but that the differences between LM + AM in plaid and
single component configurations are not significant.

Discussion

Taken together, the results of Experiments 2 and 3 show
that LM j AM was seen as flat when shown in a plaid
with LM + AM but was seen as corrugated otherwise.
PDAs for LM j AM and LM + AM stimuli tend to be
similar at low AM modulation depths. This result is to be
expected because these cues become identical as AM
modulation depth approaches zero. However, while PDAs
for the LM + AM and LM j AM gratings (at a single
orientation) were almost identical for AM modulation
depth in the range j0.1 to +0.1, those for the plaid stimuli
varied significantly over this range.
We note that LM + AM stimuli also appear a little less

corrugated in a plaid than they do as single components,
and although these differences are not significant, some
discussion is merited. We note particularly that plaid
stimuli with little or no AM signal have a doubly corrugated
or “egg box” appearance. The PDA of such stimuli in a
given direction is likely to vary with position along the
orthogonal axis and this may reduce the average PDA.
Single component stimuli appear as single corrugations
whose PDA does not vary with position in the direction
orthogonal to the modulations. It is possible that the “egg
box” effect accounts for the observed difference between
plaid and single component stimuli in the LM + AM case.
However, there is an alternative explanation based on
mutual suppression between obliques and we discuss this
next.

Model

We constructed a model to explain our data. The
purpose of the model is to demonstrate that the observed
effects can be predicted by bottom-up mechanisms
involving biologically plausible second-order processes.
The model (shown in Figure 7) is intended to represent
one spatial frequency tuned “shading channel” within a

Figure 6. Experiments 2 and 3. Perceived depth amplitude as a
function of AM modulation depth and sign. X-axis shows AM
modulation depth; negative values mean that the AM cue was in
anti-phase with the LM cue (LM j AM). Green triangles, AM-
alone. Red circles, single oblique LM and AM signals. Blue
squares, LM and AM presented as a plaid. Note that when AM
was in anti-phase with LM on the test oblique (negative values)
the non-test oblique had an in-phase mix with an equally strong
AM cue (and vice versa). Open squares, results for observer AJS
for plaid stimuli including the case where AM modulation depth
was zeroVi.e., LM-only on both obliques. Lines represent model
fits for the “shading-channel” model. Except for the open squares,
data points are the means of 5 observers and error bars represent
95% confidence intervals. For AJS (open blue squares), error bars
represent the standard deviation of individual depth estimates.
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multichannel scheme. It is based on the processing
scheme for envelope sensitive neurons proposed by Zhou
and Baker (1996) and the filter–rectify–filter (FRF) model
of second-order vision (Wilson et al., 1992) and has
similarities with the three-stage model proposed by
Henning et al. (1975). The first-stage comprises a bank
of linear filters tuned to multiple spatial frequencies and
orientations. These filters share a gain control mechanism.
The second-stage consists of a bank of rectifiers followed
by linear filtering (the RF of the FRF scheme) taking their

input from high-frequency first-stage filters. This stage
extracts the AM cue and is not directly subject to gain
control. At the third stage, we take a weighted sum of the
outputs of like-oriented linear and FRF channels, producing
behavior like that of Zhou and Baker’s (1996) envelope
neurons. This final stage is subject to gain control. We
envisage that separate signals for first- and second-order
cues are available at the points marked LM and AM,
respectively, and that these signals support the detection
of these cues.

Figure 7. (a) Schematic diagram of the “shading-channel” model; see text for description. (b) Input–output response for first-order (LM)
sub-channel. (c) Input–output response for second-order (AM) sub-channel.
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We now address the biological plausibility of the
proposed scheme, considering the following components:
Linear first-stage filtering with gain control, rectification,
independent outputs, weighted summation between sub-
mechanisms, final gain control.
Linear first-stage filtering with gain control. Linear

spatial frequency channels were first proposed by Campbell
and Robson (1968) and are now accepted as the basis for
early visual processing. More recent evidence suggests
that while such mechanisms are approximately linear they
have a non-linear transfer function, which is expansive for
low-input values and compressive for larger inputs (Legge
& Foley, 1980). This compression is now thought to be
due a contrast gain control mechanism that pools input
from many channels and across space (Foley, 1994) and
has been proposed as an explanation for the compressive
behavior of simple cells in primary visual cortex (Albrecht
& Geisler, 1991; Heeger, 1992, 1993). However, the
pooling process is far from uniform: masking (and indeed
facilitation) depends on the relative, frequency, orienta-
tion, and spatial locations of the test and mask stimuli
giving rise to complex patterns of behavior (Foley, 1994;
Meese, 2004; Meese, Challinor, Summers, & Baker,
2009). Specifically, a given channel receives most mask-
ing from channels tuned to similar frequencies and
orientations although the orientation tuning of masking
is very broad (Foley, 1994). Thus we apply cross-channel
gain control to our first-stage filters. Each filter has its own
gain control pool with equal weight being given to all
orientations in the pool but less weight given to frequencies
distant from the preferred frequency of the filter in
question. Because of the simple nature of our stimuli, we
only modeled first-stage filters tuned to the image
equivalent of 0.4 and 16 c/deg and T45-. First-stage
responses are given by

Ri ¼ Cp
i

sq1 þ ðPCq
a þ w

P
Cq
bÞ
; ð1Þ

where Ci is the pre-gain control response of the ith filter,
Ca is the response of all filters with the same preferred
frequency as the ith filter, Cb is the response of filters with
preferred frequency different to that of the ith filter, w is
the weight applied to off-frequency filters in the gain pool,
p and q represent exponents on the forward and gain
control terms, respectively, and s1 is the semi-saturation
constant. In line with other similar models, we set p and q
to 2.0 (e.g., Meese et al., 2009); s1 and w were free
parameters. Application of this gain control mechanism
results in a first-stage transfer function that initially
accelerates and then saturates (Figure 7b) broadly con-
sistent with both psychophysical “dipper” experiments
(Legge & Foley, 1980) and physiology (Albrecht &
Geisler, 1991; Ledgeway et al., 2005).
Rectification. Nonlinear FRF channels similar to our

rectification stage (where the first filters are found in the

first-stage of our model) have been proposed to explain
the detection of contrast modulations (our AM; Wilson
et al., 1992) and various texture segmentation phenomena
(Graham & Sutter, 2000; Landy & Bergen, 1991).
Although the FRF mechanism is now widely accepted as
the means by which second-order cues are detected,
debates continue about the wiring between first- and
second-stage filters and the shape of the rectifying non-
linearity. Within the context of our limited model and
following Sutter et al. (1995) and Dakin and Mareschal
(2000), we connect our second-stage filters to only the
high-frequency first-stage filters according to

Si ¼ fi

�jX fhf ðIÞj+�; ð2Þ

where fi is a second-stage filter with the same spatial
frequency and orientation as the ith first-stage filter (but
only low-frequency second-stage filters are implemented),
fhf are the high-frequency first-stage filters, kIk represents
rectification, and + governs the shape of the rectifier. We
sum first-stage filter responses across orientation and after
application of the gain control (Equation 1). Graham and
Sutter (2000) suggest that + should be about 3.5; however,
this is based on psychophysical results that depend on the
operation of the whole mechanism. Ledgeway et al.
(2005) note that cells responsive to second-order cues
demonstrate an accelerating transfer function and do not
saturate. We used a linear rectifier (+ = 1) but tested the
transfer function of our model in respect of AM signals
and found it to accelerate as the cube of input strength
with no saturation (see Figure 7c). This lack of saturation
can explain why CM stimuli do not mask themselves
(Schofield & Georgeson, 1999). We believe that the early
gain control mechanism and linear rectifier serve to
produce the cubic transfer function in the FRF network.
It should be noted that cell responses to second-order
stimuli are likely to saturate at some point if both the
carrier and modulation signals are high enough. Due to the
simplicity of our stimuli, we only implemented second-
stage filters at 0.4 c/deg and T45-.
Independent outputs. It should be noted at this point that

second-order detection could, in principle, be achieved by
a single stage of non-linear filtering but that this would
prevent the independent processing of first- and second-
order cues. In the Introduction section, we describe a
considerable body of evidence to suggest that the cues are
detected independently. We will not rehearse that argu-
ment here, but it is our basis for proposing a separate
second-order mechanism. However, the finding that cells
responsive to first- and second-order cues have different
preferred frequencies for the two cues strongly suggests
the existence of separate sub-mechanisms (Mareschal &
Baker, 1998). Given that we will shortly propose the
integration of first- and second-order cues, the evidence
for independent detection also leads us to propose that the
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outputs of the mechanisms are separately available. If the
first-order signals were extracted prior to the summation
stage, this would explain why CM does not mask LM as
second-order signals have no direct access to the first-
stage gain control mechanism. This “separate signals”
hypothesis is somewhat at odds with the physiological
evidence. Although cells responsive to only first-order and
both first- and second-order cues have been found, there is
little or no physiological evidence for the existence of cells
responsive to second-order signals only, but (as discussed
in the Introduction section) this may be due to sampling
biases.
Weighted summation between sub-mechanisms. For

motion at least, there is compelling physiological evi-
dence for cells that linearly sum first- and second-order
information (Hutchinson et al., 2007; Ledgeway et al.,
2005; Mareschal & Baker, 1998; Zhou & Baker, 1996).
Hutchinson et al. (2007) explicitly tested for interactions
between the two cues and found that cell responses were
dependent on the phase relationship between the two cues,
strongest for in-phase stimuli and considerably weaker for
anti-phase stimuli. They used stimuli that produced
equally strong responses when presented alone. Our AM
cues were weaker (compared to threshold) than our LM
cues so we should expect a weaker interaction. We note
that our second-order mechanism is inherently insensitive.
That is, by the time our relatively weak carrier has been
filtered and the envelope extracted the response to the
AM cue is very lowVabout 1/30th of the equivalent LM
response. In order to provide some differentiation between
LM + AM and LM j AM and to give the model more
flexibility, we introduced a gain term (or weight) on the
output of the second-stage filters. However, it is the overall
sensitivity to AM relative to that for LM that matters. The
output of each “shading channel” after the sum is given
simply by

Di ¼ Ri þ gSi; ð3Þ

where g is the gain term for the second-order mechanisms.
Only low-frequency first-stage filters and their corre-
sponding second-stage filters are included at this stage.
Final gain control. The final gain control process is the

most speculative part of the model, but its existence and
position are fundamental to the successful operation of the
model. It is these mechanisms that turn the relatively poor
differentiation between LM + AM and LM j AM for
single gratings into the relatively strong differences found
for plaids. Its position, after summation, is key to this. If it
acted before LM and AM were summed, then there would
be no difference in signals to drive the “winner take all”
behavior that the model needs to describe the plaid data.
External justification for late gain control is provided
by late interactions between the cues as noted in the
Introduction section, most notably the transfer of the
contrast-reduction after-effect and the tilt after-effect

(Georgeson & Schofield, 2002). Several authors have
linked simultaneous masking with sequential adaptation
(Foley & Chen, 1997; Meese & Holmes, 2002). So
evidence for a crossover of adaptation could be taken as
evidence of gain control. However, based on the evidence
for independent detection, this would have to take place
after an initial detection stage. The final response of the
model is given by

Ui ¼ K I
Dp

i

sq2 þ
P

Dq
j

; ð4Þ

where Di is the output from the ith “shading channel”, Dj

is jth channel’s input to the gain control pool, s2 is the
semi-saturation constant, and exponents p and q were
again set to 2.0. K is a final scaling factor used to equate
the range of model outputs to the human data but with no
influence on the shape of the model output curves.

Implementation

For the purpose of fitting the data, the model was
implemented analytically. That is, we calculated ideal
filter responses based on the stimulus parameters: we did
not actually filter images. We subsequently implemented a
“filter-based” version of the model that was capable of
processing natural images (see later text). A final consid-
eration is how to relate model output to measured PDAs.
If we assume that the final output of the model described
above is fed into a shape-from-shading module, then the
model output up to that point can be thought of as a
conditioned shading signal. That is, LM is assumed to be a
shading signal, but its efficacy is modulated both by the
presence of AM with the same orientation and the context
provided from other orientations. For the purposes of
model fitting, we assume a linear relationship between the
input and output of the hypothesized shape-from-shading
module (Pentland, 1988) such that the contrast of the input
signal at any orientation gives the perceived depth of
surface undulations in that direction up to a scale factor;
K in Equation 4.

Operation of the model

When an LM/AM mix is presented on only one oblique,
the action of the normalization stage is largely irrelevant
as there are only two channels, one of which has no
output. In this case, AM will have a slight modulatory
effect on the shading signal determined by the overall
sensitivity of the AM channel. LM j AM will hence be
seen as less corrugated than LM + AM, but the difference
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will be small. When an LM/AM plaid is presented to the
model, the stronger LM + AM signal will dominate the
weaker LM j AM signal at the final gain control stage,
driving its output down but the mutual inhibition will also
limit the LM + AM signal to a value below that which
would be obtained for LM + AM alone.

Model fits

The model described above has four free parameters: w,
the weight applied to off-frequency maskers in the gain
control of Equation 1, the semi-saturation constants s1 and
s2, and the second-stage gain term g. Noting that, due to
arbitrary scaling, the maximum theoretical output of the
model prior to the multiplier K is 1 we simply set K = 4 to
match the maximum mean PDA. The remaining param-
eters were fit to the data for Experiments 2 and 3 using the
fminsearch function in Matlab (The Mathworks, MA).
Fitted parameter values are shown in Table 1 and the fits
are shown as lines in Figure 6. The model fits the data
well. A key characteristic of the model is that it allows
LM j AM to be seen as relatively strongly modulated in
depth when presented alone but flat when presented in a
plaid. The model highlights the continuous nature of the
relationship between LM and AM. Even in the plaid case
adding weak AM does not produce an abrupt change in
perceived depth amplitude.

We also used the model to predict the results of
Experiment 1. Here PDA was measured as a function of
AM threshold. The model has no concept of threshold so
we added an extra parameter T, which represents the base
AM modulation depth from which model “threshold”
multiples were calculated. This parameter was used to fit
the model to the data of Experiment 1 but with no further
adjustment of the other parameters. Model predictions are
shown as lines in Figure 4. The model provides a good fit
to the data.
The gain term g is of interest only because it relates to

the overall sensitivity of the second-order mechanism. Of
more interest is the relative sensitivity of the two
mechanisms. We recorded output strengths for LM-only
and AM-only gratings at contrast/modulation depth = 0.2.
These were 0.93 and 0.09, respectively, making second-
order sensitivity 1/10th that of first order, and correctly
predicting the ratio found by Schofield and Georgeson
(1999) on noise carriers with contrast = 0.1 (as used here).

Processing natural images

It is useful to fit an analytical model to data, as done
here. In particular, restricting the complexity of the model
reduces the number of free parameters and this is useful
for fitting purposes. However, it does not follow that the
model will produce meaningful results when applied to
real-world images such as that in Figure 1. Even if
implemented with filters, the model described above
would be useless in such an application because it has
only two oriented channels at one spatial frequency. At
best, it would produce plaid-like outputs for every image.
We therefore implemented a more complete model with
multiple orientation and frequency channels (both first and

Parameter Value

w 0.23
s1 0.029
s2 0.25
g 3.0

Table 1. Model parameters.

Figure 8. (b) Results of applying the multichannel shading model to an image of a section of wall (a) similar to that shown in Figure 1.
(c) Results of applying the model to the plaid stimulus of Figure 2e.
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second order) carried through to the final output. We used
3 frequency bands and 16 orientations; 48 channels in all.
Apart from having multiple channels, the structure of the
model was very similar to that of Figure 7, a key
difference being that we dispensed with the early gain
control stage and replaced it with a simple sigmoidal
transfer function. We did this because we felt unable to
model the subtle spatial interactions required of a full-
blown gain control mechanism (Meese, 2004). This model
captures the spirit of the “shading channels” described
above. As might be expected, we find the model to be
most effective in cases where LM + AM and LM j AM
co-exist in the same scene. Figure 8a shows a sample
input image and the resulting model output (Figure 8b).
Figure 8c shows the result of processing the stimulus
example shown in Figure 2e. In both cases, the model
successfully separates shading (or perceived shading)
from reflectance changes.

General discussion

The results presented here extend those of Schofield
et al. (2006) by introducing a more natural depth matching
task, new test conditions, and a computational model.
Observers had to set the amplitude of haptic stimuli to
match the properties of a visually perceived surface.
Perceived depth amplitude increased with overall modu-
lation strength (Experiment 1) for all stimuli containing
LM except LM j AM in a plaid. LM j AM in a plaid
was perceived as nearly flat across a range of signal
strengths but, consistent with our previous findings, LM j
AM was seen as modulated in depth when presented
alone. Note that, as we found previously, LM j AM alone
was seen corrugated, but less so than LM + AM alone.
This difference is smaller when measured with the haptic
task. Keeping LM contrast constant while varying AM
modulation depth (Experiments 2 and 3) allowed us to
study the influence of AM on LM cues. Increased AM
modulation depth did not greatly affect the PDA of LM
when the two were presented in-phase and alone (LM +
AM, circles to right of Figure 6). Anti-phase AM did
reduce the PDA of the associated LM signal (LM j AM)
but only slightly (circles to left of Figure 6). However,
AM had a more marked influence on PDAs in the plaid
configuration. Here increasing AM in-phase with LM
produced a marked but saturating increase in PDA while
anti-phase AM reduced PDA (squares in Figure 6). We
stress that in these plaids LM + AM and LM j AM were
seen together such that as AM was stronger in the LM j
AM component it also became stronger in the associated
LM + AM component and vice versa. The pattern of results
observed would not necessarily hold if say the LM j AM
member of a plaid were fixed while the AM part of the
LM + AM cue was allowed to vary, although the model

would allow us to make predictions for this case. Amplitude
modulations presented alone produced only a weak depth
percept, but perceived depth amplitude did increase a little
with AM modulation depth (triangles in Figure 6).
It is tempting to suggest that higher level cognitive

processes must be at work in the interpretation of stimuli
when, as here, the stimulus context is relevant to the
interpretation of a particular cue: here LM j AM was
seen as flat only when present in a plaid with LM + AM.
However, we have successfully modeled the data with an
architecture that requires no top-down control and that
could well be implemented in early visual areas such as
V1 or V2 with the possible aid of V3a to process AM. The
model combines LM and AM responses in an additive
fashion within a given orientation/frequency band and
then combines those responses across different orienta-
tions with gain control governing the balance between
them. The resultant shading signal tends to be stronger
when AM is presented in-phase with LM but is very weak
when the anti-phase combination occurs in a plaid along-
side an LM + AM component. A multichannel version of
the model was tested on natural images and worked well in
conditions where LM + AM and LMj AM cues co-existed.
The model presents some challenges to our previous

work on cue independence. We have previously argued
quite strongly that LM and CM (in our current terminol-
ogy AM) are detected independently (Georgeson &
Schofield, 2002; Schofield & Georgeson, 1999), but our
current model suggests relatively early summation and a
lack of independence. We suggest that LM and AM are
indeed detected independently and are thus (for example)
discriminable at threshold but that they are summed for
the purpose of disambiguating the role of the luminance cue
at some stage beyond simple detection. Such a configu-
ration would allow the two cues to interact in various ways
both with each other and with other cues such as disparity
and texture. Our proposal here is that the two cues are
summed to aid the computation of shape from shading, and
perhaps in other situations too, but we do not suppose that
this summation is either ubiquitous or mandatory.
The model makes some clear predictions about inter-

action of LM and AM in shape from shading. If such
processing is based on the early channel-like mechanisms
with gain control, then we should expect interactions
along the lines of those described above for a variety of
interleaved stimuli. For example, we might expect it to be
possible for LM j AM to be seen as corrugated if
presented alone in one part of a stimulus but flat in some
other part of the same stimulus if it overlapped with LM +
AM in that region. We might expect some degree of
spatial overlap to be necessary between LM + AM and
LM j AM for the latter cue to be seen as flat but that the
overlap need not be complete. We predict that plaids
should behave as described above when their components
are not orthogonal, but only if there is sufficient separation
between the orientations that they fall into different
orientation channels. We similarly expect LM + AM and
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LM j AM to dissociate if handled by different spatial
frequency channels. Finally, adding an additional LM +
AM component at another orientation should further
suppress PDA for an LM j AM cue. We have yet to
test these interesting predictions.
We presume that if AM is used to disambiguate LM in

the way described above then this interaction should be
driven by ecologically valid constraints. That is, LM j
AM should be a reliable cue to a material change but only
in the context of LM + AM cues. We have previously
noted that visual texture can arise from a variety of
sources and that the yoking of LM and AM (LM + AM) is
only guaranteed for shaded albedo textures (Schofield et al.,
2006). LM j AM can arise when a rough corrugated
surface is shaded, although such an outcome is not
guaranteed. However, it is highly unlikely that a doubly
corrugated locally rough surface could give rise to LM j
AM on one oblique and LM + AM on the other. We
therefore conclude that the co-presentation of LM + AM
and LM j AM confirms the former cue as shading of an
albedo texture and the latter cue as due to reflectance
changes within that texture.

Conclusion

In conclusion, second-order modulations (specifically
modulations of local luminance amplitude/contrast) can
affect the perception of shape from shading from
luminance-modulated textures. In some cases, this influ-
ence is profound with the phase relationship between LM
and AM determining the perceptual role of the luminance
cue, flipping it from being used as a shading cue to a cue
for material change. Given that luminance changes are
ambiguous about their environmental causes, second-
order vision may play an important role in the interpre-
tation of luminance variations. Perhaps the need to
compare these two cues is one reason why human vision
is configured to detect AM (CM) cues separately from LM
in the first place. In general, when AM varies in anti-phase
with LM (LM j AM) surfaces are seen as flatter than
when the two cues co-vary in phase (LM + AM). The
flattening observed in LM j AM stimuli is most
pronounced when it is presented in a plaid configuration
with an LM + AM cue. However, this context effect does
not require a top-down interpretation because it was
possible to model key features of our data using bottom-
up channel-like mechanisms.
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