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Abstract8

This work is concerned with approximate inference in dynamical systems, from a variational Bayesian

perspective. When modelling real world dynamical systems, stochastic differential equations appear as a

natural choice, mainly because of their ability to model the noise of the system by adding a variation of

some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much

attention. Here a new extended framework is derived and present that is based on a local polynomial

approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the

new extension of this variational algorithm can be used for state estimation (smoothing) and converges to

the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems

(i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different

systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, which

its exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double

well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is

also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new

approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented

Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as

a function of observation density or length of time window increases. In particular we show we are able to

estimate parameters in both the drift (deterministic) and diffusion (stochastic) part of the model evolution

equations using our new methods.
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1. Introduction11

Stochastic differential equations (SDEs) (Kloeden and Platen [35]) are a powerful tool in the modelling12

of real-world dynamical systems (Honerkamp [27]). Most phenomena observed in nature are time dependent13

and a common characteristic is that they consist of many sub-systems which, quite frequently, have different14

time scales. Hence in the description of the dynamics of the slow components of a system, the very fast15

ones can often be treated as noise. One strength of SDEs lies in their ability to model these very fast16

sub-systems as a stochastic process and incorporate a deterministic drift, which usually includes all the17

available knowledge of the system via physical laws, to formulate a model that best describes the observed18

system. However, such dynamical systems are usually formed by a very large number of unknown variables19

(or degrees of freedom) and are only partially/sparsely observed at discrete times, which makes statistical20

inference necessary if one wants to estimate the complete state vector at arbitrary times.21

1.1. Bayesian treatment of SDEs22

Inference for such systems is challenging because the missing paths between observed values must also23

be estimated, together with any unknown parameters. A variety of different approaches has been developed24

to undertake inference in SDEs; for a review see Sorensen [54]. This paper focuses largely on Bayesian25

approaches which from a methodological point of view can be grouped into three main categories.26

The first category attempts to solve the Kushner-Stratonovich-Pardoux (KSP) equations (Kushner [39]).27

The KSP method, described briefly in Eyink et al. [19], can be applied to give the optimal (in terms of28

the variance minimising estimator) Bayesian posterior solution to the state inference problem, providing the29

exact conditional statistics (often expressed in terms of the mean and covariance) given a set of observations30

and serves as a benchmark for other approximation methods. Initially, the optimal filtering problem was31

solved by Kushner and Stratonovich [55, 37, 39] and later the optimal smoothing setting was given by an32

adjoint (backward) algorithm due to Pardoux [49]. Unfortunately, the KSP method is computationally33

intractable when applied to high dimensional non-linear systems (Kushner [38], Miller et al. [44]), hence a34

number of approximations have been developed to deal with this issue.35

For instance, when the problem is linear the filtering part of the KSP equations (i.e. the forward36

Kolmogorov equations) boil down to the Kalman-Bucy filter [31], which is the continuous time version of37

the well known Kalman filter [30]. When dealing with systems that exhibit non-linear behaviour a variety38

of approximations, based on the original Kalman filter (KF), have been proposed. The first approach is to39
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linearise the model (usually up to first order) around the current state estimate, which through a Taylor40

expansion, requires the derivation of the Jacobian of the model evolution equations. However, this Jacobian41

might not always be easy to compute. Moreover the model should be smooth enough in the time-scales42

of interest, otherwise linearisation errors will grow causing the filter estimates to diverge. This method is43

known as the extended Kalman filter (EKF) (Maybeck [42]) and was succeeded by a family of methods44

based on statistical linearisation exploiting the observation that it is sometimes easier to approximate a45

probability distribution than a non-linear operator.46

A widely used method that has produced a large body of literature is the ensemble Kalman filter (EnKF)47

(Evensen [17]), or when dealing with the smoothing problem the ensemble Kalman smoother (EnKS)48

(Evensen and van Leeuwen [18]). In DelSole and Yang [8] an ensemble Kalman filter (EnKF) is devel-49

oped for stochastic dynamical systems and the paper includes an interesting discussion of the issues of50

parameter estimation in such system which is discussed further later. Recently another sampling strategy51

has been proposed. Rather than sampling this ensemble of particles randomly from the initial distribution52

it is preferable to select a design (i.e. deterministically chose them), so as to capture specific information53

(usually the first two moments), about the distribution of interest. A widely used example is the unscented54

transform and the filtering method is thus referred to as the unscented Kalman filter (UnKF), first in-55

troduced by Julier et al. [29]. Another popular, non-parametric, approach is the particle filter (Kitagawa56

[33]), in which the solution of the posterior density (or KSP equations) is approximated by a discrete set of57

particles with random support [34, 20]. This method can be seen as a generalisation of the ensemble Kalman58

filter, because it does not make the linear Gaussian assumption when the ensemble is updated in the light59

of the observations. In other words, if the dynamics of the system are linear then both filters should give60

the same answer, given a sufficiently large number of particles / ensemble members.61

The second category applies Monte Carlo methods to sample from the desired posterior process, focusing62

on areas (in the state space) of high probability, based on Markov chains (Neal [47]). When the dynamics63

of the system is deterministic, then the sampling problem is on the space of initial conditions. In contrast,64

when the dynamics is stochastic the sampling problem is on the space of (infinite dimensional) sample paths.65

Therefore Markov chain Monte Carlo (MCMC) methods for diffusions are also known as “path-sampling”66

techniques. Although early sampling techniques such as the Gibbs sampler Geman and Geman [21] can be67

applied to systems, convergence is often very slow due to poor mixing in the Markov chains. In order to68

achieve better mixing of the chain and faster convergence other more complex and sophisticated techniques69

were developed. Stuart et al. [56], introduced the Langevin MCMC method, which essentially generalises70
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the Langevin equation to sampling in infinite dimensions. A similar approach is the hybrid Monte Carlo71

(HMC) method (see Duane et al. [13]) which was later generalized for path sampling problems by Alexander72

et al. [1]. Both algorithms need information on the gradient of the target log-posterior distribution and73

update the entire trajectory (sample path) at each iteration. They combine ideas of molecular dynamics,74

employing the Hamiltonian of the system (including a kinetic energy term), to produce new configurations75

which are then accepted or rejected in a probabilistic way using the Metropolis criterion. Further details of76

this method are given in Section 4.2.77

Following the work of Pedersen [50], on simulated maximum likelihood estimation (SMLE), Durham and78

Gallant [14], examine a variety of numerical techniques to refine the performance of the SMLE method by79

introducing the notion of the Brownian bridge, between two consecutive observations, instead of the Euler80

discretisation scheme that was used in [50]. This lead to various “blocking strategies”, for sampling the sub-81

paths, such as the one proposed by Golightly and Wilkinson [22], as an extension to the previous “modified82

bridge” [14]. The work of Elerian et al. [15], Eraker [16] and Roberts and Stramer [52] is essentially based on a83

similar direction, that is augmenting the state with additional data between the measured values, in order to84

form a complete data likelihood and then facilitate the use of a Gibbs sampler or other sampling techniques85

(e.g. MCMC). A rather different sampling approach is presented by Beskos et al. [7], where an “exact86

sampling” algorithm (in the sense that there are no discretisation errors), is developed that does not depend87

on data imputation between the observable values, but rather on a technique called retrospective sampling88

(see Papaspiliopoulos and Roberts [48] for further details). Although this method is very appealing and89

computationally efficient compared to other sampling methods that depend on fine temporal discretisation90

to achieve sufficient accuracy, the applicability of the method depends heavily on the exact algorithm, as91

introduced by Beskos et al. [6].92

Another alternative methodology, considered in this paper, approximates the posterior process using93

variational techniques (Jaakkola [28]). A popular treatment, which is operational at the European Centre for94

Medium-Range Weather Forecasts (ECMWF), is the four dimensional variational data assimilation method,95

also known as “4D-Var” (Dimet and Talagrand [12]). This method seeks the most probable trajectory (or96

the mode), of the approximate posterior smoothing distribution, within a predefined time window. This97

is found by minimizing a cost function which depends on the measured values and the model dynamics.98

However, this method does not provide uncertainty estimates around the most probable solution. The99

“4D-Var” method, as adopted by the ECMWF and others, makes the strong assumption that the model is100

either perfectly known, or that any uncertainties are negligible and hence can be ignored. A generalization101
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of this strong perfect model assumption, is to accept that the model is not perfect and should be treated102

as an approximate solution the real equations governing the system. This leads to a weak formulation of103

4D-Var [11, 63]. The theory behind the weak formulation was introduced in early 70’s by Sasaki [53] -104

several versions are described in Tremolet [57] and will be discussed later (see also Appendix B).105

Another variational technique that seeks the conditional mean and variance of the posterior smoothing106

distribution is described in [19]. Eyink et al. [19] advocates that the ultimate goal of a data assimilation107

method is to recover not a specific history that generated the observations, but rather the correct posterior108

distribution, conditioned upon the observations. To achieve that Eyink et al. [19] apply a mean field109

approximation to the KSP equations. More recently the work of Archambeau et al. [4], suggested a rather110

different approach, where the true posterior process is approximated by a time-varying linear dynamical111

system inducing a non-stationary Gaussian process, rather than assuming a fully factorising form to the112

joint posterior. This linear dynamic approximation assumption implies a fine time discretisation if good113

accuracy is to be achieved, and globally optimises the approximate posterior process in terms of minimizing114

the Kullback-Leibler divergence (Kullback and Leibler [36]), between the two probability measures. This115

method is further reviewed in Section 2.2.116

1.2. Motivation & Aim117

This paper extends Vrettas et al. [59] and is motivated by inference of the state and (hyper-) parameters118

in models of real dynamical systems, such as the atmosphere (Kalnay [32]), where only a handful of Kalman119

filter approaches have been applied to joint state and parameter inference (Annan et al. [2]). In this work we120

develop a local polynomial approximation to extend the variational treatment proposed in Archambeau et al.121

[5]. The argument behind the use of the polynomial approximation in the variational algorithm is to control122

the number of free parameters that need to be optimized within the algorithm and constrain the space of123

functions admitted as solutions, in order to increase the robustness of the original algorithm with respect124

to different initialisations. In addition, this re-parametrisation of the original variational algorithm helps to125

improve the accuracy of the estimates, by allowing the application of higher order (and accuracy) integration126

schemes, such as Runge-Kutta 2nd order methods, when solving the resulting system of ordinary differential127

equations. The aim of this paper is three-fold: (a) to introduce this new local polynomial based extension, (b)128

to provide evidence that it converges to the original variational Gaussian process approximation algorithm,129

with less demand on computational resources (e.g. computer memory) and (c) to present an empirical130

comparison of the proposed extension, estimating both state and system parameters. The comparison is131
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performed by applying well known methods that cover all the aforementioned categories dealing with the132

Bayesian inference problem for SDEs to a range of increasingly complex systems.133

1.3. Paper outline134

The paper is structured as follows. Section 2 briefly reviews the variational Gaussian process based135

algorithm (Archambeau et al. [5]), hereafter VGPA. Only the basic, but essential, information is given so136

that the reader can understand the rest of the paper. Section 3 presents the new polynomial approxima-137

tion. Details of the approximation framework are explained thoroughly and mathematical expressions for138

the general multivariate case are provided. After the experimental set-up is illustrated, the stability and139

convergence of the new extensions are tested, on both univariate and multivariate systems, in Section 4.140

Section 5 empirically explores the asymptotic (infill and expanding domains) behaviour of the algorithm with141

increasing observation numbers, in comparison to other estimation methods. In addition the application of142

the new method to a system of 40 dimensions (stochastic Lorenz ’96) is demonstrated which shows that the143

proposed method can attain good estimates of the system parameters in this smoothing framework on rea-144

sonably high dimensional systems. Conclusions are given in Section 6, with a discussion of the shortcomings145

and possible future directions.146

2. Approximate Bayesian inference147

This section reviews the VGPA algorithm first introduced in [4]. This algorithm, for approximate infer-148

ence in diffusions, was initially proposed for state estimation (smoothing) and later was extended to include149

also estimation of (hyper-) parameters [5]. In this paper the VGPA provides the backbone on which the150

new extensions are built. Before proceeding to the basic setting a very short overview of partially observed151

diffusions will be given. This is necessary to provide a precise description of the approach adopted to the152

treatment of dynamical systems.153

2.1. Markov processes and diffusions154

A stochastic process can be seen as a collection of random variables indexed by a set, which here is155

regarded as time (i.e. X = {Xt, t ≥ 0}). An informal and short introduction to stochastic processes can be156

found in [43]. A Markov process is a stochastic process in which if one wants to make a prediction about the157

state of the system at a future time ‘tn+1’, the only information necessary is the state of the system at the158

present time ‘tn’. Any knowledge about the past is redundant. This is also known as the Markov property.159
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Diffusion processes are a special class of continuous time Markov processes with continuous sample paths160

(Kloeden and Platen [35]). The time evolution of a general, D dimensional, diffusion process X = {Xt}tft=t0161

can be described by a stochastic differential equation (here to be interpreted in the Itō sense):162

dXt = f(t,Xt; θ) dt+Σ(t,Xt; θ)
1/2

dWt , (1)

where Xt ∈ ℜD is the D dimensional latent state vector, f(t,Xt; θ) ∈ ℜD is the (usually) non-linear drift163

function, that models the deterministic part of the system, Σ(t,Xt; θ) ∈ ℜD×D is the diffusion or system164

noise covariance matrix and dWt is the differential of a D dimensional Wiener process, W = {Wt, t0 ≤ t ≤165

tf}, which often models the effect of faster dynamical modes not explicitly represented in the drift function166

but present in the real system. θ ∈ ℜm is a set of (hyper-) parameters within the drift and diffusion167

functions.168

Often the latent process X is only partially observed, at a finite set of discrete times {tk}Kk=1, subject to169

error. Hence170

Yk = hk(Xtk) + ǫk , (2)

where Yk ∈ ℜd denotes the k’th observation taken at time tk, hk(·) : ℜD → ℜd is the general observation171

operator and the observation noise ǫk ∼ N (0,R) ∈ ℜd, is assumed to be i.i.d. Gaussian white, with172

covariance matrix R ∈ ℜd×d, although this can be generalised. In what follows, the general notation173

N (µ,Σ) will denote the normal distribution with mean µ and (co)variance Σ.174

2.2. Variational Gaussian approximation of the posterior measure175

Equation (1) defines a stochastic system with multiplicative noise (i.e. state dependent). The VGPA176

framework considers diffusion processes with additive system noise [4, 7], although re-parametrisation makes177

it possible to map a class of multiplicative noise models into this additive class, as stated in Kloeden and178

Platen [35]. Consider the following SDE:179

dXt = f(t,Xt; θ) dt+Σ1/2 dWt , (3)

where for simplicity the covariance matrix Σ is assumed diagonal and all the assumptions about the dimen-180

sions of the drift and diffusion functions and the Wiener process remain the same as Eq.(1).181

In addition, for notational convenience, it is further assumed that the discrete time measurements are182
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“direct observations” of the state variables (i.e. Yk = Xtk +ǫk). This assumption simplifies the presentation183

of the algorithm and is the most common case in practice. Adding arbitrary observation operators to the184

equations only affects the system in the observation energy term in (5) and can be readily included if185

required. In this work the interest is on the conditional posterior distribution of the state variables given186

the observations, thus following the Bayesian paradigm one seeks the posterior measure given as follows:187

p(Xt0:tf |Y1:K) =
1

Z
×

K∏

k=1

p(Yk|Xtk)× p(Xt0:tf ) , (4)

where K denotes the number of noisy observations, Z is the normalising marginal likelihood (i.e. Z =188

p(Y1:K)1), the posterior measure is over paths X = {Xt, t0 ≤ t ≤ tf}, the prior measure p(Xt0:tf ) is over189

paths defined by (3) and p(Yk|Xtk) is the likelihood for the observation at time tk from (2).190

The VGPA algorithm approximates the true posterior process by another that belongs to a family of191

tractable ones, in this case the Gaussian processes. This is achieved by minimising the “variational free192

energy”, defined as follows (see also Appendix A):193

F(q(X|Σ), θ,Σ) = −
〈

ln
p(Y,X|θ,Σ)

q(X|Σ)

〉

q(X|Σ)

, (5)

where p is the true posterior process, q is the approximate posterior process, 〈.〉q(X|Σ) denotes the expectation194

with respect to q(X|Σ) and time indices have been omitted for simplicity.195

The approximation of the true posterior process by a Gaussian process implies that q must be defined196

using a linear SDE. It follows that197

dXt = gL(t,Xt) dt+Σ1/2 dWt , (6)

where gL(t,Xt) = −AtXt + bt, with At ∈ ℜD×D and bt ∈ ℜD define the linear drift in the approximating198

process. Both of these variational parameters, At and bt, are time dependent functions that need to be199

optimised as part of the estimation procedure. The time dependence of these parameters is a necessity due200

to the non-stationarity that is introduced in the process by the observations and system equations. Another201

point worth noting is the diffusion coefficient Σ, which is chosen to be identical to that of the true process202

Eq.(3). This is a necessary condition because in the case where these two parameters are not identical then,203

as shown in [5], the bound on the negative log-marginal likelihood, given by Eq.(5), would not be finite.204

1For notational brevity p(Y1:K) is shorthand notation for the joint density p(Y1,Y2, . . . ,YK).
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The time evolution of this general time varying linear system (6) is determined by two ordinary differential205

equations (ODEs), one for the marginal means mt and one for the marginal covariances St. These are given206

by the following equations (see also Kloeden and Platen [35], Ch. 4):207

ṁt = −Atmt + bt , (7)

Ṡt = −AtSt − StA
⊤
t +Σ , (8)

where ṁt and Ṡt denote the time derivatives dmt

dt and dSt

dt accordingly. Thus we can write208

q(Xt) = N (Xt;mt,St) , (9)

where mt ∈ ℜD and St ∈ ℜD×D.209

Equations (7) and (8) are constraints to be satisfied ensuring consistency in the algorithm (Archambeau210

et al. [4, 5]). One way to enforce these constraints, within a predefined time window [t0, tf ], is to formulate211

the following Lagrangian functional:212

L = F(q(Xt), θ,Σ)−
∫ tf

t0



λ⊤
t (ṁt +Atmt − bt)
︸ ︷︷ ︸

ODE for the means

+ tr{Ψt (Ṡt +AtSt + StA
⊤
t −Σ)

︸ ︷︷ ︸

ODE for the covariances

}



 dt , (10)

where λt ∈ ℜD, Ψt ∈ ℜD×D are time dependent Lagrange multipliers, with Ψt being symmetric matrix.213

Given a set of fixed parameters for the diffusion coefficient Σ and the drift θ, minimising this quantity (10)214

and hence the free energy (5), will lead to the optimal approximate posterior process.215

3. Local polynomial approximation216

This section proposes a new extension to the previously described VGPA algorithm [5], in terms of217

polynomial approximations. Connections with previous work, on the same subject, will be given first,218

followed by the general multi-dimensional case, which will be derived and explained in detail.219

The linear drift gL(t,Xt) in Eq.(6) is defined in terms of At and bt. These functions are discretised220

with a small time discretisation step (e.g. δt = 0.01), resulting in set of discrete time variables that need221

to be inferred during the optimisation procedure. In Vrettas et al. [59], these time varying functions were222

approximated with basis function expansions that cover the whole time domain of inference (i.e. T = [t0, tf ]).223
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This allowed a reduction in the total number of control variables in the optimisation step, as well as some prior224

control over the space of functions admitted as solutions. However, the At and bt variational parameters225

are, by construction, discontinuous when observations occur. Thus a large number of basis functions was226

required to capture the roughness at observation times.227

The solution proposed here is to define the approximation only between observation times such as,228

[t0, tk=1], (tk=1, tk=2], . . . , (tk=K , tf ]. This way one approximating function can be defined on each sub-229

interval (without overlap), further reducing the total number of parameters to be optimised.230

3.1. Re-parametrisation of the variational parameters231

The variational parameters At and bt in Archambeau et al. [5] are represented as a set of discrete time232

variables whose size scales proportionally to the length of the time window of inference, the dimensionality233

of the data (state vector Xt) and the time discretisation step. In total we need to optimise234

Ntotal = (D + 1)×D × |tf − t0| × δt−1 , (11)

variables, whereD is the system dimension, t0 and tf are the initial and final times and δtmust be sufficiently235

small for numerical stability in the system being considered.236

By replacingAt and bt with local polynomials on each sub-interval the following expressions are obtained:237

Ã
j
t = A

j
0 +A

j
1 × t+ · · ·+A

j
M × tM ,

b̃
j
t = b

j
0 + b

j
1 × t+ · · ·+ b

j
M × tM , (12)

where Ãj
t and b̃

j
t are the approximating functions defined on the j’th sub-interval, Aj

i ∈ ℜD×D and b
j
i ∈ ℜD

238

are the i’th order coefficients of the j’th polynomial and i ∈ {0, 1, . . . ,M}, with M being the order of the239

polynomial.240

It is important to distinguish from the case where the polynomials are fitted between the actual measur-241

able values (e.g. cubic splines). Here the polynomials are rather inferred between observation times. Note242

also that the order of the polynomials between Ã
j
t and b̃

j
t , or even between the j’th polynomial of each243

approximation, need not to be the same; however in the absence of any additional information about the244

functions, or lack of any theoretical guidance, an empirical approach is followed that suggest the same order245

of polynomials, under the condition that they provide enough flexibility to capture the discontinuity of the246
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variational parameters at observation times, as shown in Figure 1.247

Figure 1: An example of the local polynomial approximation, on a univariate system. The vertical dashed lines
represent the times the observations occur and each polynomial is defined locally between two observation times.
The filled diamond and circles indicate closed sets, while the clear diamonds define open sets. Note that only the
first polynomial is defined in a closed set from both sides, to avoid overlapping.

The expression for the (approximate) Lagrangian for the j’th sub-interval thus becomes:248

L̃j = F̃ j(q(Xt), θ,Σ)−
∫

t∈T j

(

λ⊤
t (ṁt + Ã

j
tmt − b̃

j
t ) + tr{Ψt(Ṡt + Ã

j
tSt + StÃ

j⊤
t −Σ)}

)

dt , (13)

where T j ⊂ T , or T = {T 1 ∪ · · · ∪ T j ∪ · · · ∪ T J}, with J ≥ 1, being the total number of disjoint sub-sets.249

The expressions for the polynomial approximations, Eq. (12), can be presented more compactly using250

matrix notation. This simplified presentation is used from this point forward:251

Ã
j
t = Aj × pj(t) ,

b̃
j
t = bj × pj(t) . (14)

Schematically these matrix - vector products can be seen as:252

Ã
j
t

reshape to←












A
j
1(t)

A
j
2(t)

...

A
j
D2(t)












=












A
j
1,0 A

j
1,1 · · · A

j
1,M

A
j
2,0 A

j
2,1 · · · A

j
2,M

...
...

. . .
...

A
j
D2,0 A

j
D2,1 · · · A

j
D2,M












︸ ︷︷ ︸

Aj

×












1

t

...

tM












︸ ︷︷ ︸

pj(t)

.
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Here A
j
r,i represents the r’th (scalar) component of the A

j
i coefficient in the j’th sub-interval. Effectively,253

we have reshaped the A
j
i weights in column vectors and packed them all together in one matrix of size254

D2 × (M + 1). For the b̃
j
t a similar procedure is followed, which is simpler because the b

j
i coefficients are255

already vectors, so there is no need to reshape them. Hence we have:256

b̃
j
t ←












b
j
1(t)

b
j
2(t)

...

b
j
D(t)












=












b
j
1,0 b

j
1,1 · · · b

j
1,M

b
j
2,0 b

j
2,1 · · · b

j
2,M

...
...

. . .
...

b
j
D,0 b

j
D,1 · · · b

j
D,M












︸ ︷︷ ︸

bj

×












1

t

...

tM












︸ ︷︷ ︸

pj(t)

,

where b
j
r,i represents the r’th component of the b

j
i coefficient.257

Eq. (14) shows that the vectors pj(t) can be precomputed off-line for all predefined discrete time do-258

mains, reducing the computational complexity of estimating the coefficients of the polynomials. pj(t) is259

precomputed and stored column-wise in a matrix, as shown on Table 1. Thus the reconstruction of the ap-260

proximate variational parameters Ãj
t and b̃

j
t , for their whole time domain, can be done by a simple matrix261

- matrix multiplication (e.g. Ãj
t = Aj ×Πj(t)).262










1 1 1 · · · 1
tk+δt tk+2δt tk+3δt · · · tk+1

t2k+δt t2k+2δt t2k+3δt · · · t2k+1
...

...
...

. . .
...

tMk+δt tMk+2δt tMk+3δt · · · tMk+1










Table 1: Example of Πj(t) matrix, defined on T j = (tk , tk+1].

The number of coefficients for both variational parameters Ãt and b̃t is:263

Ltotal = (D + 1)×D × (M + 1)× J , (15)

variables, where D is the system dimension, M is the order of the polynomials and J is the total number264

of disjoint sub-intervals (i.e. the number of observation times increased by one). Usually, it is anticipated265

that Ltotal ≪ Ntotal, thus making the optimisation problem smaller.266

The original VGPA algorithm, uses a scaled conjugate gradient (SCG) algorithm (see Nabney [45]), to267

minimize Eq.(10) with respect to the variational parameters At and bt. The same procedure is used here268
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computing the gradients of the approximate Lagrangian Eq.(13), with respect to the coefficients Aj and269

bj , of the re-parametrized variational parameters, for each sub-interval. To further improve computational270

efficiency and stability a modified Gram-Schmidt orthogonalisation is applied (Golub and van Loan [23])271

to the rows of the pre-computed Πj(t) matrices, as shown in Table 1, on each sub-interval separately. In272

practice this orthogonalisation dramatically reduces the number of iterations required for the algorithm to273

reach convergence.274

4. Numerical simulations on artificial data275

This section explores the convergence properties of the new Local Polynomial (hereafter LP) approxima-276

tion algorithm comparing to the original VGPA framework. The new LP approach is validated on one linear277

and two non-linear dynamical systems. The experimental set up will be shown first, followed by results for278

the uni- and multi-variate systems.279

4.1. Choice of systems & experimental design280

The first system considered is the linear one dimensional Ornstein-Uhlenbeck process (OU). Originating281

from the physics literature it was proposed as a model for the velocity of a particle undergoing Brownian282

motion (Uhlenbeck and Ornstein [58]). Here it is understood as a continuous Markov process with dynamics283

that can be represented by the following SDE:284

dXt = −θXt dt+Σ1/2 dWt , (16)

where θ > 0 is the drift parameter, Σ ∈ ℜ is the diffusion coefficient2 and Wt ∈ ℜ is the univariate Wiener285

process. In fact this system is one of very few on which exact inference can be performed. The prior process286

is Gaussian (linear), and given that the initial state is fixed (X0 = x0), the (non-stationary) covariance287

function for the posterior process is given by:288

Cov(Xt, Xs) =
Σ

2θ
(exp{−θ|t− s|} − exp{−θ(t+ s)}) , (17)

which can then be used in a Gaussian process regression smoother to compute the exact posterior (Rasmussen289

and Williams [51]).290

2To keep the notation consistent we use Σ instead of σ2, and we represent the scalars with normal fonts while vectors and
matrices are represented with bold fonts.
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Figure 2: An example of the Ornstein-Uhlenbeck diffusion process that will be used later in the simulations.

Secondly, the non-linear double well model (DW), which is a stochastically forced scalar differential291

equation with three equilibrium values at Xt = 0 and Xt = ± θ (Miller et al. [44]) is considered. As shown292

in Fig. 3(a) the position of a particle at 0 is unstable, while stable equilibria are found at ± θ in the absence293

of noise. Mathematically, the potential is given by U(x) = −2x2 + x4. Notice that the drift function in294

Eq. (18), is simply the derivative: − dU(x)
dx = 4x(1 − x2), for θ = 1. However, within our setting random295

forces occur and occasionally drive the particle from one basin to the other (see Fig. 3(b)). This effect is296

known as “transition” between the two stable states. The SDE that describes the dynamics of this system297

is the following:298

dXt = 4Xt(θ −X2
t ) dt+Σ1/2 dWt , (18)

where θ > 0, is the drift parameter which determines the stable points. Although a simple system, the299

double well has served as a benchmark in a number of references such as [19, 5].300
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(a) Double well potential
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(b) Double well simulation

Figure 3: (a) The double well potential. The circles indicate the stable points (in this example ±1), in the absence of
stochastic forcing, while the triangle denotes the unstable point. (b) An example of a DW sample path including a
transition. This sample path will be used as the history in the experimental simulations.
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The final system is a stochastic version of the three dimensional chaotic Lorenz ’63 (L3D), driven by the301

following SDE:302

dXt =









σ(yt − xt)

ρxt − yt − xtzt

xtyt − βzt









dt+Σ1/2 dWt , (19)

where Xt = [xt yt zt]
⊤ ∈ ℜ3 is the state vector representing all three dimensions, θ = [σ ρ β]⊤ ∈ ℜ3, is303

the drift parameter vector, Σ ∈ ℜ3×3 is a (diagonal) covariance matrix and Wt ∈ ℜ3 is an uncorrelated304

multivariate Wiener process. The deterministic version of this model (i.e. without the noisy part of Eq. (19))305

was first introduced by Lorenz [40] as a low dimensional analogue for large scale thermal convection in the306

atmosphere. This multi-dimensional non-linear system produces chaotic behaviour when its drift parameters307

σ, ρ and β lie within a specific range of values and is used in a large body of literature (see Evensen and van308

Leeuwen [18], Miller et al. [44] and Hansen and Penland [25]). The choice of the drift values, in this work,309

are those which produce chaotic behaviour (as shown in Table 2) and are the most commonly used values.310
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(a) Lorenz 3D simulation
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(b) Lorenz 3D in X-Z plane

Figure 4: (a) A typical realisation of the stochastic Lorenz ’63 system as time series in each dimension. (b) The same
data but in X-Z plane where the effect of the random fluctuations is more clear.

Following a similar strategy to Apte et al. [3], the time discretisation is applied only in the posterior311

approximation; the inference problem is derived in an infinite dimensional framework (continuous time312

sample paths), as shown in Section 2.2. The Euler-Maruyama representation of the prior process (3), leads313

to the following discrete time analogue314

xk+1 = xk + f(t,xk; θ) δt+
√
Σδt ξk , (20)

where ξk ∼ N (0, I) and the positive infinitesimal dt in Eq.(3), has now been replaced by a positive finite315
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System t0 tf δt θ Σ Nobs R

OU 0 20 0.01 2 1 2 0.04
DW 0 20 0.01 1 0.8 2 0.04
L3D 0 20 0.01 [10, 28, 2.6667] 6 10 2

Table 2: Experimental setup that generated the data (trajectories and observations). Initial times (t0) and final times (tf )
define a fixed time window of inference, whilst δt is the time discretisation step. θ are the parameters related to the drift
function, while Σ and R represent the noise (co)variances of the stochastic process and the discrete observations accordingly.
In the multivariate system these covariance matrices are diagonal. Nobs represents the number of available i.i.d. observations
per time unit (i.e. observation density), which without loss of generality is measured at equidistant time instants.

number δt. In addition, this expression can be used to provide approximate sample paths (in terms of316

discretising a stochastic differential equation) from the prior process (Higham [26], Kloeden and Platen317

[35]). Under this first order approximation we impose a suitably small discretisation step δt to achieve good318

accuracy.319

In the numerical experiments a fixed inference window of twenty time units (i.e. T = [0, 20]) was320

considered for all systems and the time discretisation was set to δt = 0.01 for numerical stability. For the321

L3D the deterministic equations were integrated forwards in time for Tburn = 5000 units, in order to get322

the initial state vector X0 on the attractor and then generated the stochastic sample path (Figures 4(a) and323

4(b)). Table 2 summarizes the true parameter values, that generated the sample paths for the simulations324

that follow. Note that 20 time units within these systems corresponds to a rather long assimilation window325

compared with operational systems.326

4.2. State estimation results327

The presentation of the experimental simulations begins with results for the OU process. Figure 5 shows328

the results from the LP approximation of the VGPA algorithm, of polynomial orderM = 5. For this example329

the measurement density of 2 observations per time unit (hence 40 in the whole time domain T = [0, 20]),330

with M = 5 and J = 41, produces a set of Ltotal = 492 coefficients to be inferred, compared to Ntotal = 4000331

in the original VGPA framework. This is roughly 12.3% of the size of the original VGPA optimisation332

problem. For this system, as mentioned earlier, one can use the induced non-stationary covariance kernel333

function Eq.(17) and compute the exact posterior process. Comparing the results obtained from the LP334

approximation with the results from a GP regression smoother with the OU kernel the match is excellent, as335

expected for a linear system, where the approximation is theoretically exact (in the limiting case as δt→0).336

To provide a robust demonstration of the consistency of the results of the LP approximation, with337

respect to the original discretized VGPA, fifty different realisations of the observation noise, from a single338

trajectory, were used. The order of the polynomials was increased to explore convergence of the LP to the339
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Figure 5: The marginal values of the means (solid blue line) and variances (shaded grey area) obtained by the LP
approximation of 5’th order on a single realisation of the OU system. The results from the GP regression, on the
same observation set, are visually indistinguishable and are omitted. The circles indicate noisy observations.

original VGPA. Summary statistics from these experiments, on the OU system, concerning the convergence340

of the free energy obtained from the LP approximation algorithm compared with the one from the original341

VGPA, are shown in Figure 6(a). Here the median is plotted along with the 25’th and 75’th percentiles in342

box-plots, while the extended vertical dashed lines indicate the 5’th and 95’th percentiles, from these 50343

realisations, when the system has converged to its free energy minimum. For this example, with only second344

order polynomials (i.e. M = 2), the LP algorithm reaches the same free energy values as the original VGPA.345
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Figure 6: (a) The median and the 25’th to 75’th percentiles as box-plots of the variational free energy, from fifty
realisations of the observation noise, as a function of the increasing order of polynomials M , keeping the drift and
diffusion parameters fixed to their true values. Extended vertical dashed lines indicate the 5’th and 95’th percentiles.
The horizontal dashed (blue) line represents the 50’th percentile of the free energy obtained from the original VGPA
on the same 50 realisations and the shaded area encloses the 25’th to 75’th percentiles. (b) The summaries from the
same experiment concerning the number of iterations both algorithms needed to converge to optimality. Again, the
horizontal lines (and shaded area) represent results obtained for the original VGPA, while boxplot results from the
LP approximation, as in (a).

Figure 7(a) compares the results obtained from the LP approximation with 5’th order polynomials, on346

a single realisation of the DW system, to the outcomes of a Hybrid Monte Carlo (HMC) sample from the347

posterior process, using the true values for the drift and diffusion parameters. The HMC algorithm [13],348
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combines Hamiltonian molecular dynamics with the Metropolis-Hastings accept/reject criterion to propose349

a new configuration (or a new sample path) of the posterior process (Eq. 4). The algorithm begins with350

an initial (discrete time) sample path Xj = {xj
k}Nk=0, where j > 0 is the step in the iterative process and351

proposes a new sample path Xj+1 = {xj+1
k }Nk=0. This is done by simulating, forwards in time, a fictitious352

time deterministic system:353

dx
j
k

dτ
= pk and

dpk

dτ
= −∂H(xj

k, pk)

∂x
j
k

, (21)

where pk ∼ N (0, 1) are the fictitious momentum variables assigned to each state variable xk, resulting in a354

finite size random vector p = {pk}Nk=0. These deterministic equations are discretised with a time step δτ355

and solved with a leapfrog integration scheme. The Hamiltonian of the system H(X,p) is:356

H(X,p) = Epot + Ekin , (22)

where Epot = − ln p(Xt0:tf |Y1:K) is the potential energy associated with the dynamics of the system (SDE)357

as well as the observations Eq.(4) and Ekin = 1
2pp

⊤ is the kinetic energy.358

The HMC solution is assumed to provide a reference solution to the smoothing problem. The setting359

for the DW example is 25, 000 iterations of which the first 5, 000 are considered as a burn-in period and360

discarded. Each HMC iteration generates 80 posterior sample paths (or configurations) of the system with361

artificial time δτ = 0.01, of which only the last one is considered as candidate state. In total 2, 000, 000362

sample paths are generated from which only 20, 000 are sampled uniformly to compute the marginal mean363

and variance as shown in Figure 7(a). The convergence results of this simulation are shown in Figure 7(b).364

Even though there exist recently proposed MC sampling algorithms, such as the generalised HMC as suggest365

by Alexander et al. [1] to speed up the convergence of the Markov chain, here a rather classical hybrid Monte366

Carlo, as was first introduced by Duane et al. [13] is used.367

Although the variance of the LP approximation is slightly underestimated, the mean path matches the368

HMC results and the time of the transition between the two wells is tracked accurately. The variational369

approximation as shown in Section 2.2 is likely to underestimate the variance of the approximating process,370

as is often the case when the expectation in the KL divergence is taken with respect to the approximating371

distribution3 in Eq.(5). Empirically we have found this to have a relatively minor impact as long as the372

system is well observed, which keeps the posterior process close to Gaussian. Where the true posterior process373

3That is KL[qt‖pt] instead of computing KL[pt‖qt], where pt is the true posterior while qt is the approximate one.
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is strongly non-Gaussian, and in particular where it is multi-modal there is more significant underestimation,374

as might be expected.375
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Figure 7: (a) Comparison of the approximate marginal mean and variance (of a single DW realisation), between the
“correct” HMC posterior estimates (solid green lines and light shaded area) and the LP approximation, of 5’th order,
(dashed blue lines and dark shaded area). The circles indicate noisy observations. (b) Trace of the potential energy
(-x- axis is in log-space), of the Hamiltonian, in the HMC posterior sampling. The vertical dashed line, indicates the
end of the burn in period and the beginning of the posterior sampling.

Figures 8(a) and 8(b), present results comparable to Figures6(a) and 6(b), but for the DW system.376

Again 50 different realisations of the observation noise, from a single trajectory, were generated and both377

LP approximation and VGPA algorithms were applied, given the true parameter values for the drift and378

diffusion coefficients. The summaries from these runs show the consistency of the LP approximation, when379

applied to non-linear systems. The algorithm exhibits stability and slightly outperforms the original VGPA380

framework, in terms of minimizing the free energy, although this has a very minor impact in terms of solving381

the ODEs (Eq. 7, 8) to produce the marginal means and variances as shown in Figure 7(a).382
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Figure 8: (a) Similar to Fig.6(a), but from fifty different realizations of the observation noise of the DW system. (b)
Again, similar to Fig.6(b), but for the DW system.

To provide a more complete assessment of how this new LP approximation approach to the VGPA383
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algorithm scales with higher dimensions the same experiments were repeated on a multivariate system,384

namely the Lorenz ’63 (L3D). Figures 9(a) and 9(b), show the approximated mean paths obtained with a385

3’rd order LP algorithm, against the posterior mean paths computed using HMC, in XY and XZ planes386

respectively, from a single realisation of the stochastic L3D shown in Figure 4(a). The observation density387

for this example was relatively high (Nobs = 10, per time unit), hence it was possible to set the order of the388

polynomials to M = 3. In this example, unlike the previous case of the DW, the LP approximation slightly389

overestimates the marginal variance (Figure 10(b)) compared with the estimates obtained by using HMC.390

However, the same effect is observed when applying also the original VGPA framework, hence this is not an391

artefact of the polynomial approximation but rather of the variational framework.392
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Figure 9: The marginal means, obtained from the LP approximation and the HMC sampling in XY (a) and XZ (b)
planes respectively, on a single realisation of the L3D (see Fig. 4(b)). In both plots, the dots (black) are the results
from the LP approximation (of 3’rd order), while the squares (red) are results from HMC. Crosses (blue) indicate
the noisy observations. The E[·] notation in the figures axis represents expected value.

The tuning of the HMC sampling scheme was similar to the one used to obtain the posterior estimates393

for the DW system, only in this case a smaller artificial time step was necessary to correctly sample the394

posterior process. In total 25, 000 iterations of the HMC algorithm were used, with the first 5, 000 considered395

as burn-in. Each HMC iteration produced 50 new configurations of the system (posterior sample paths),396

where only the last one was proposed as a new configuration. The artificial time step was δτ = 0.004.397

Sampling from high dimensional distributions, with the HMC, is not a trivial task. Sampling continuous398

time sample paths, which when discretised result in a large number of random variables that need to be399

jointly sampled at each iteration is challenging. For the L3D system considered here, we had to sample400

Nrv = 6003, random variables at each iteration. The trace of the potential energy of the Hamiltonian (for401

the L3D example), is presented in Fig. 10(a). Considerable effort was expended to ensure that the HMC402

sampler converged and gave a sufficiently uncorrelated set of samples.403

20



10
0

10
1

10
2

10
3

10
40

1000

2000

3000

4000

5000

6000

7000

8000

n (samples)

E
po

t

(a) Potential energy trace

0 2 4 6 8 10 12 14 16 18 20
0

2

4

t

R
at

io
−V

ar
x

0 2 4 6 8 10 12 14 16 18 20
0

5

t

R
at

io
−V

ar
y

0 2 4 6 8 10 12 14 16 18 20
0

5

10

t

R
at

io
−V

ar
z

(b) Ratios in marginal variance

Figure 10: (a) Trace of the potential energy of the Hamiltonian in the HMC posterior sampling of the L3D example.
The vertical dashed line, indicates the end of the burn in period and the beginning of the posterior sampling. Notice
also the logarithmic scale on the horizontal axis. (b) The ratios, in each dimension of the L3D, between the LP
approximate variance over the one obtained by the HMC sampling (i.e. V arLP

V arHMC
). The overestimation from the LP

approximation is apparent in all three dimensions.

The performance of the new polynomial framework seems to scale well for this multivariate system. As404

shown in Figures 11(a) and 11(b), when comparing the minimisation of the free energy and the number of405

iterations to reach convergence, the LP approximation is very stable and fully converges to the original VGPA406

with only M = 2 order of polynomial. The experiments were extended up to M = 20, and showed similar407

outcomes although with higher computational cost and are omitted from the plots. The observation density408

considered (i.e. Nobs = 10) implies that M = 9 is the limit where both algorithms LP and VGPA optimise409

the same number of parameters. For values of M > 9, the LP becomes more demanding in computational410

resources. However, when tested with M = 3, we obtain Ltotal = 9, 648 whilst Ntotal = 24, 000 hence411

achieving a 59.8% reduction in the number of variables to be optimised.412
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Figure 11: (a) Box-plots of the free energy attained from 50 realisations of the observation noise (on a single L3D
sample path) as a function of the order of polynomials M . The horizontal dashed line (and the solid ones above and
below) represent the 25, 50 and 75 percentiles from the VGPA free energy on the same data sets. (b) Presents a
similar plot but for the number of iterations in the SCG optimisation routine at which convergence was achieved. In
both plots the extreme values (outliers) have been removed for better presentation.
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The reduction in the memory requirements of the algorithm does not produce a similar reduction in413

computational time. Figures 6(b), 8(b) and 11(b) compare the number of iterations of the LP algorithm414

to reach convergence with the number of iterations from the VGPA. These results are summaries from 50415

different realizations (of the observation noise on a single trajectory) of the OU, DW and L3D systems416

respectively, and show that the original VGPA algorithm, while optimising a larger number of parameters,417

still converges in slightly fewer iterations.418

5. Parameter estimation in stochastic systems419

The original VGPA algorithm can be used to estimate unknown model parameters (Archambeau et al.420

[5]). The new LP algorithm is also able to estimate the (hyper-) parameters of the aforementioned dynamical421

systems. In this work the focus is on estimating the drift parameters θ and diffusion coefficients Σ, although422

estimation of the prior distribution over the initial state (i.e. N (µ0, τ0)) and the noise related to the423

observations R can also be included.424

The classical approach to parameter estimation, from incomplete data, is the Expectation-Maximization425

(EM) algorithm, that was first introduced by Dempster et al. [10] and later extended to partially observed426

diffusions by Dembo and Zeitouni [9]. However, even though the EM algorithm is well studied with a broad427

range of applications it cannot be applied successfully in the current variational framework, because the428

approximate posterior distribution qt, induced by Eq. (6), is restricted to have the same diffusion coefficient429

Σ. Therefore, although an EM approach can be used to estimate the drift parameters θ, the system noise Σ430

would have to be held constant during the Maximization step. As a result a different approach for estimating431

the parameters is adopted.432

Based on the fact that the variational free energy, Eq. (5), provides an upper bound to the negative433

log-marginal likelihood (details are in Vrettas et al. [60]):434

− ln p(Y|θ,Σ) = F(q(X|Σ), θ,Σ)−KL[q(X|Σ)‖p(X|Y, θ,Σ)]

≤ F(q(X|Σ), θ,Σ) , (23)

where KL[q‖p] ≥ 0, is the Kullback-Leibler divergence between the approximate and correct posteriors and435

the time dependence has been omitted, two approaches are considered. Initially a discrete approximation to436

the posterior is constructed, based on a fixed set of possible parameter values. Subsequently gradient based437
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methods are developed to find the approximate “maximum a posteriori” (MAP) values of the parameters.438

5.1. Discrete approximations to the posterior distribution439

As seen from Equation (23), the negative free energy can be substituted for the log marginal likelihood440

and by choosing suitable prior distributions p0(θ) and p0(Σ), with θ and Σ treated as random variables.441

To illustrate this approach an example, for the drift parameter θ is given.442

Keeping the diffusion noise Σ fixed to its true value, initially select a set of points Dθ = {θi}nθ

i=1 at which443

to approximate the posterior distribution. Run the variational approximation to convergence with these444

selected values. This yields a corresponding set of free energy values DF = {F(q(X), θi,Σ)}nθ

i=1 that can be445

used to evaluate exp{−F(q(X), θi,Σ)} instead of the true likelihood p(Y|θ,Σ). Thus446

p(θ|Y,Σ) ∝
{

exp{−F(q(X|Σ), θi,Σ)} × p0(θi)

}nθ

i=1

, (24)

where nθ ∈ N is the number of discrete points. Similar discrete approximations, to the posterior distribution,447

can be computed for the system noise Σ. In the above procedure the parameters that are not approximated448

are kept fixed (to their true values). In the results that follow Gamma priors are defined for the drift449

parameters and inverse Gamma for the system noise covariance, i.e. p0(θ) = G(α, β) and p0(Σ) = G−1(a, b).450

The values of the parameters α, β, a and b, were chosen such that the mean value of the distribution451

coincides to the true values of θ and Σ, but with large variance to reflect our “ignorance” about the true452

values of the parameters.453

Figure 12(a), compares the profile of the approximate marginal likelihood, of the OU drift parameter,454

obtained with the original variational framework (VGPA) and the local polynomial (LP), on a typical455

realisation. For this system we also show the “true” marginal likelihood obtained using a Gaussian process456

regression smoother (with OU kernel function). The LP framework converges to the original VGPA when457

4’th order polynomials are employed, which is consistent with the state estimation results in Fig 6(a). The458

minimum of the profile can be well identified with only 2’nd order polynomials, which suggests that for the459

drift parameter, in this example, the bound on the true likelihood does not need to be very precise, if a460

point estimator is sought.461

Figure 12(b), shows the results from the LP (of 4’th order) discrete approximation to the posterior462

distribution of the drift parameter θ using a G(4.0, 0.5) prior. Here the results are compared with 80, 000463

samples from the posterior (presented as a histogram), obtained from four independent Markov chains464

(20, 000 samples per chain), using HMC sampling. The same prior distribution (continuous green line) is465
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Figure 12: OU system: (a) The profile marginal likelihood of the drift parameter θ, keeping the system noise Σ fixed
to its true value, obtained by the GP regression (blue circles) with the OU kernel, which gives the exact likelihood,
against the original VGPA algorithm (green squares) and the new LP extension with different order of polynomials.
(b) The histogram of the posterior samples obtained with the HMC. The continuous green line shows the G(4.0, 0.5)
prior of the (hyper)-parameter θ, while the red circles connected with the dot-dashed line represent the discrete
approximation to the posterior distribution obtained by the point estimates of the LP algorithm with 4’th order
polynomials. Both the HMC posterior sample histogram and the LP approximation have been normalized, such that
the area they define sums to unity. In both figures the vertical dashed line represents the true parameter value that
generated the data.

used in both cases and in addition the results are presented such that the areas defined by the histogram466

and the approximate discrete estimates (red circles), sum to one. Although the results, for both algorithms,467

are slightly biased the LP algorithm provides a better approximation because for a linear system, such as468

the OU, the variational Gaussian process yields an optimal approximation while the HMC approximation469

remains subject to finite sample effects.470
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Figure 13: OU system: (a) Plot similar to Fig. 12(a) only for the system noise Σ and keeping the drift θ fixed to its
true value. Again, the results of the GP regression represent the exact marginal likelihood. (b) As Fig. 12(b), only
the continuous line now is the G

−1(3.0, 2.0) prior of the (hyper-) parameter Σ.

Figures 13(a) and 13(b), show similar profile and posterior results, but for the OU system noise coefficient471

Σ. It is apparent that for this parameter the LP method needs higher order of polynomials to match the472

results from the original VGPA. All methods locate the minimum of the profile at a smaller value than473
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the true one. Furthermore, both methods seem to deviate from the true likelihood (blue circles), as the474

value of this parameter becomes more distant from the true value that generated the data. The same bias475

effect can also be seen in Figure 13(b), where the LP method (5’th order) is compared with the HMC476

posterior sampling. However, MCMC methods for sampling this parameter can be problematic due to the477

high dependencies between the system noise Σ and the states of the system Xt, which results in slow rates of478

convergence (Roberts and Stramer [52], Golightly and Wilkinson [22]). Again the same G−1(3.0, 2.0) prior479

(continuous green line), was used for both algorithms.480
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Figure 14: DW system: (a) The profile approximate marginal likelihood of the drift parameter θ, keeping the system
noise Σ fixed to its true value, obtained by original VGPA algorithm (blue circles) and the new LP extension with
different order of polynomials. (b) The histogram of the posterior samples obtained using the HMC. The continuous
green line shows the G(2.0, 0.5) prior of the (hyper-) parameter θ, whilst the red circles connected with the dot-dashed
line represent the approximate posterior distribution obtained by the discrete estimates of the LP algorithm with 3’rd
order polynomials. Both the HMC posterior sample histogram and the LP point estimates have been normalized,
such that the area they define sums to unity.

Likewise, the approximate posterior distributions and profile likelihoods, for a single realisation of the481

DW system are presented for the drift θ in Figures 14(a) and 14(b) and for the diffusion coefficient Σ in482

Figs. 15(a) and 15(b). Here there is no method to compute the exact likelihood, hence the only comparison483

is between the profiles obtained from the VGPA algorithm against those obtained with the LP method.484

For both parameters θ and Σ, the results are almost identical with 3’rd order polynomials. Both estimates485

are biased, the drift towards a higher value, while the noise towards a smaller value, but these biases are486

consistent with those seen in the HMC posterior samples.487

The profiles of the drift parameter vector θ = [σ ρ β]⊤ for the L3D system are shown in Fig. 16(a)488

where the original VGPA algorithm (red circles) is plotted against the LP approximation, with 2’nd order489

polynomials (green squares). The results are almost indistinguishable and the minimum values are well490

estimated for all parameters. Figure 16(b), presents similar profiles but for the diagonal elements of the Σ491

matrix (i.e. Σx, Σy and Σz). Both the VGPA and the LP (3’rd order) exhibit identical behaviour; unlike492
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Figure 15: DW system: (a) Plot similar to Fig. 14(a) only for the system noise Σ and keeping the drift θ fixed to its
true value. (b) As in Fig. 14(b), only the continuous line now is the G

−1(3.0, 2.0) prior of the (hyper-) parameter
Σ. Again the areas that both algorithms define (HMC and LP) have been normalized. In both figures the vertical
dashed line represent the true parameter value that generated the data.

the drift parameters the system noise profiles are not as informative. Only the first dimension ‘x’, shows a493

clear minimum, although biased towards a smaller value (the true values are indicated with vertical dashed494

lines). The third dimension ‘z’, shows a weak minimum, i.e. there is quite flat region around the minimum495

value and the second dimension ‘y’, does not posses a minimum within the range of values explored.496
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Figure 16: L3D system: (a) The profile approximate marginal likelihood for all three parameters of the L3D drift
vector. From left to right the profiles for σ, ρ and β obtained from the original VGPA algorithm (red circles) are
compared against those obtained with the LP with 2’nd order polynomials (green squares). (b) As before but for
the system noise, on each dimension (Σx, Σy and Σz). Here the LP approximation uses 3’rd order polynomials. The
vertical dashed lines indicate the true values of the parameters that generated the datasets.

Figure 17 (upper three panels), presents the posterior estimates of the L3D drift vector θ, obtained497

from the HMC algorithm. The lower three panels present the approximate posterior distributions (discrete498

estimates) from the LP algorithm. Both algorithms used the same prior distributions (p0(σ) = G(20, 0.5),499

p0(ρ) = G(56, 0.5) and p0(β) = G(6, 0.5)), nonetheless the comparison between the upper and lower panels500

is not straightforward, because the approximate posterior distributions obtained with the LP algorithm are501
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conditional, in the sense that the two other drift parameters are kept fixed to their true values, whereas502

the posterior distributions from the HMC are obtained jointly (i.e. all the drift parameters are sampled503

simultaneously). The results from the LP method show week biases towards smaller values in all parameters,504

which is consistent with the HMC results, except the σ parameter (first column) which the LP approximation505

estimates more accurately.506
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Figure 17: L3D system: The upper three panels, starting from left to right, present the joint posterior HMC samples
for the drift parameters σ, ρ and β. The lower three panels, following the same order, show the approximate
posterior distributions (blue dots connected with the dot-dashed line) obtained from the LP algorithm with 2’nd
order polynomials. The continuous lines represent the Gamma prior distributions that were used. Notice that the
priors are very broad. In all the above results the system noise is assumed to be known and fixed to its true value.

5.2. Maximum likelihood type-II point estimates507

Another approach for estimating the (hyper-) parameters, as suggested in [5], is also based on the bound508

that the variational free energy provides to the marginal likelihood (Eq. 23), but instead of constructing509

approximate posterior distributions to the (hyper-) parameters, as in the previous section, it employs a510

conjugate gradient algorithm to provide point estimates. More specifically, the algorithm works in an511

outer/inner loop optimisation framework, where in the inner loop the variational approximation framework512

is used to compute the optimal approximate posterior process q(Xt), given a fixed set of the parameters (θ513
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and Σ). Then, in the outer loop, a gradient step is taken to improve the current estimates of the (hyper-)514

parameters. This procedure, as shown in Table 3, alternates until the gradients of the optimal process515

(Eq.10), with respect to the θ and Σ are zero (∇θL = 0 and ∇ΣL = 0), or the estimates cannot improve516

any further (i.e. the optimal Gaussian process estimated in the inner loop does not change significantly, e.g.517

∆L ≤ 1.0e− 6).518

ML type-II parameter estimation algorithm
1: initialize{θ0, Σ0, n = 0, Nmax = 1, 000} \* initialize the algorithm *\

2: θ ← θ0, Σ← Σ0 \* set the initial parameter values *\

3: L ← inner-loop(θ, Σ) \* optimal posterior process *\

4: outer-loop:
5: compute{∇θL, ∇ΣL} \* gradients w.r.t. the parameters *\

6: if (∇θL⊤∇θL == 0 or ∇ΣL⊤∇ΣL == 0) \* check if the gradients are zero *\

7: return{θ, Σ} \* return the old parameter values *\

8: end
9: update{θ∗, Σ∗} \* new parameter values *\

10: L∗ ← inner-loop(θ∗, Σ∗) \* new cost function value *\

11: if {∆L∗ & ∆θ∗ & ∆Σ∗} ≤ 1.0e− 6 \* check for termination *\

12: return{θ∗, Σ∗} \* return the new parameter values *\

13: end
14: L ← L∗, θ ← θ∗, Σ← Σ∗ \* set the old values to the new *\

15: n ← n+1 \* increase the loop counter by one *\

16: while(n ≤ Nmax) \* maximum number of iterations *\

17: return{θ, Σ} \* if it has not convergence yet *\

Table 3: Pseudo-code of the “maximum a posteriori” (MAP) estimation algorithm in practice. Every time the parameters
are updated the inner-loop(θ,Σ) function recomputes the optimal Gaussian process approximation for a given set of fixed
parameter values.

The same dual optimisation approach can also be used with the LP approximation framework, without519

any change in the code, since the re-parametrisation of the variational parameters At and bt, affects only520

the smoothing algorithm (inner loop), while leaving the outer loop unaffected. In fact, the new approach521

is more flexible, because we can adjust the bound of the variational algorithm to the marginal likelihood,522

by tuning the order of the polynomial approximation. To present a more comprehensive study the new LP523

approximation framework is compared, in terms of estimating the (hyper-) parameters of the aforementioned524

dynamical systems with other well known method that cover all the main categories that deal with the525

Bayesian inference problem.526

The first method considered is based on the unscented Kalman filter (UnKF). As discussed in Section 1,527

this method utilizes a technique known as the “unscented transformation”, to estimate the states of the528

dynamical system considered and was primarily introduced, as an alternative to the extended Kalman filter529

(EKF), to address its linearisation limitations. The UnKF has been extended to model parameter estimation530
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problems [61, 62]. Two approaches were taken: (a) augmenting the state vector with the model parameters531

and then applying a single filter recursion to estimate both of them jointly and (b) using two separate filters532

one to estimate the system states, given the current estimates for the parameters, and one to estimate the533

model parameters given the current state estimates. In approach (b) two filters are run in parallel and are534

known as the dual filter. In this work a dual unscented Kalman filter (dual UnKF), similar to the one used535

by Gove and Hollinger [24] to assimilate net CO2 exchange between the surface and the atmosphere, is536

implemented.537

The second algorithm considered is based on the four dimensional variational assimilation method.538

As described earlier, the 4D-Var method minimizes a cost function that measures the distance of the539

most probable trajectory from the observations, within a predefined time window of inference. In most540

operational implementations the model equations are assumed perfect (strong constraint), or that the errors541

are sufficiently small to be ignored. In this work the model is assumed to be known only approximately,542

hence allowing for model error to exist in the problem formulation. This formulation is known as “weak543

constraint 4D-Var”. Tremolet [57], describes different variations of this algorithm, with the one closer to544

our approach denoted in his work, as “4D − V arx”, where the subscript “x” denotes the control variable545

in the optimisation procedure. In our implementation since every (discrete in time) system state xk is a546

control variable we also refer to it as “full weak constraint 4D-Var”.547

Although this method is well studied for estimating the states of a system, not much work has been548

done in estimating model parameters. Navon [46] provides a useful review for parameter estimation, in the549

context of meteorology and oceanography. In our work a dual approach similar to the LP approximation550

algorithm is taken. The estimation framework is based on an outer/inner optimisation loop. The inner loop551

estimates the most probable trajectory, given the current estimates for the drift and diffusion parameters552

and subsequently the outer loop, conditioning on the most probable trajectory, updates the estimates of the553

parameters by taking a gradient descent step. The cost function to optimize is given by:554

Jcost = Jx0
+ Jf + Jobs + Jhp + C , (25)

where Jx0
, is the contribution of the prior over the initial state xk=t0, Jf is the influence of the model555

equations (drift function), Jobs is the contribution of the observations, Jhp comes from the priors over the556

(hyper-) parameters and C is a constant value that depends on the system noise coefficient Σ (details of557

the cost function can be found in Appendix B). In practice, one needs to compute the gradients of the cost558

function with respect to the control variables (i.e. ∇x0:N
Jcost), for estimating the most probable trajectory559
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(inner loop) and then the gradients of the cost function with respect to the (hyper-) parameters (i.e. ∇θJcost560

and ∇ΣJcost), for updating their values in the outer optimization loop.561

The following sections present an empirical comparison of the marginal and joint estimation of the drift562

θ and diffusion coefficient Σ, using the UnKF, 4D-Var and LP methodologies in two distinct asymptotic563

regimes: (a) infill asymptotics, where the observations are sampled more and more densely, within a fixed564

time domain (i.e. Nobs → ∞, while T = [t0, tf ]) and (b) increasing domain asymptotics, where the ob-565

servation density remains fixed, whilst the time window of inference increases (i.e. Nobs = const. and566

T →∞).567

5.2.1. Infill asymptotic behaviour, Nobs →∞568

Before proceeding a few issues need to be clarified concerning the presentation of the results. As men-569

tioned earlier the variational LP approximation method and the weak constraint 4D-Var based algorithm,570

provide point estimates of the (hyper-) parameters, in a gradient based optimisation framework. The dual571

unscented Kalman filter approach provides mean estimates (of the parameters), as a function of time. To572

make the results of the dual UnKF more comparable with those from the other two methods we treated573

the collection of the mean estimates as a (filtered) distribution and compute estimates of its moments, such574

as the mean value (Hansen and Penland [25]). An example of this procedure is shown in Figure 18, where575

the dual UnKF is applied to estimate the drift parameter of the DW system, on a single data set. As a576

general rule, we used only the second half of the mean estimate values. We argue that in these controlled577

experiments4 there is no need to average over the whole time window because the initial estimated value578

is wrong by construction. Hence we allow the filter to converge around a value before averaging. The579

second remark has to do with the quantities that we plot. In order to provide a more general analysis thirty580

different observation noise realisations were created, for each observation density. The results are presented581

as summary statistics, illustrated using the 25’th, 50’th (or median value) and the 75’th percentile of the582

estimated values from each algorithm.583

We begin with the conditional5 drift estimation of the OU and DW systems (see Figures 19(a) and 19(b)584

accordingly). The results for the OU system show that the LP approximation has a small increasing trend585

and settles to a higher value, compared with 4D-Var, although this higher value is also seen in the HMC586

posterior estimates of this parameter (Fig. 12(b)). Also both algorithms narrow the range of estimates, as587

4Here we imply that we know a priori the true values that generated the data and also we know that the initial value of the
estimation process is deliberately wrong but close to the true one.

5This term is used to signify that all the other parameters, such as the system and observation noises (Σ and R), are
assumed known and fixed to their true values.
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Figure 18: An example of mapping the results from the application of the dual UnKF algorithm applied to a single
trajectory, estimating the DW drift parameter, to a point estimate (mean value). The blue circles indicate the
ensemble mean estimates as a function of time, while the continuous red line is the mean value of these estimates
over the period used for averaging. The vertical dashed line marks the beginning of the time window where the
average takes place.

the observation density increases (the error bars are closer to the median value), as one would expect. On the588

other hand the results from the UnKF based algorithm, show a more steep trend and only when the system589

is highly observed are the estimates close to the true generating value. Here, as in all the experiments that590

follow, all three algorithms were initialized with the same value for the parameter(s) that were estimated.591
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Figure 19: Drift (conditional) estimation: (a) Presents the summary statistics (25’th, 50’th and 75’th percentiles)
after estimating the drift parameter θ from thirty different realizations, of the observation noise, on the OU system
keeping the system noise coefficient Σ fixed to its true value. The left panel (blue) presents the results from the LP
algorithm, while the middle (red) and the right (green) the results from the (full) weak-constrained 4D-Var and the
dual UnKF accordingly. In (b) we repeat the same estimation experiment but for thirty different realizations, of
the observation noise, of the DW system. All estimation results are presented as functions of increasing observation
density.

For the DW system the algorithms were more stable, in the sense that they converge to a stable value592

and there are no major trends as in the OU case. The results from all methods are biased either towards593

higher values (LP and 4D-Var), or lower values (UnKF). Once again the LP algorithm bias matches the594

HMC posterior estimates as shown in Fig. 14(b). Although the results from the dual UnKF seem inferior595
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compared to the other two algorithms, it should be recalled that this is a filter estimation, which means596

that it “sees” the observations sequentially, only up to the current time and does not take into account the597

future observations.598

Figures 20(a) and 20(b), present the results of estimating the system noise Σ, of the OU and DW systems.599

It is obvious that the estimation for the OU system is stable, while for the DW the process needs to be600

well observed (e.g. Nobs ≥ 10), before convergence to a value is seen. Both plots show consistency with601

the HMC posterior estimates from the previous section. Here we show only the estimates obtained from602

the LP approximation method. The other methods, although they were applied to the same datasets, they603

were unable to provide good estimates, hence were omitted. Recently, DelSole and Yang [8], presented an604

ensemble Kalman filter (EnKF) for providing general maximum likelihood estimates for the state and model605

parameters, of stochastic dynamical systems. In this paper the authors obtain good estimates of the noise606

(stochastic) parameters, although in a rather different setting then the one considered here. However, this607

Kalman filtering approach is unable to estimate simultaneously the drift and diffusion parameters as we608

present later.609
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Figure 20: Noise (conditional) estimation: (a) shows the conditional estimation of the system noise coefficient Σ,
keeping θ to its true value. The plot presents the 50’th percentile (red circles) and the 25’th to 75’th percentiles
(blue vertical lines). (b) repeats the same experiment but for the DW system. All results were obtained with the
LP method (3’rd order) and presented as functions of increasing observation density.

The experiments on the uni-variate systems conclude with the joint estimation of the drift parameter θ610

and the system noise coefficient Σ. Figures 21(a) and 21(b), summarize the results obtained from the LP611

approximation method. The drift estimation for the OU system, shows a significant bias to smaller values612

(compared with the conditional estimation of Fig. 19(a)), where the bias was towards a higher value. These613

estimates become more confident as the observation density increases (smaller error bars). Meanwhile, the614

estimation of the OU diffusion noise is consistent with the conditional outcomes. Unlike the OU system, the615
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DW shows consistent estimation for the drift parameter and a surprising improvement of the system noise616

estimation. In these plots, in contrast to the conditional ones, we can not refer directly to the posterior617

HMC estimates, because here the parameters are estimated simultaneously, while the results of the HMC618

were obtained by fixing the parameters that are not estimated to their true values.619
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Figure 21: Joint estimation: In (a) the drift and diffusion coefficient, of the OU system, are estimated jointly. The
left upper panel shows the results for θ, while the left lower panel for Σ. The results are summaries (25’th, 50’th and
75’th percentiles) from thirty different observation realizations. (b) shows the same joint estimation but for the DW
system. The right upper panel shows the results for θ, while the right lower panel for Σ. All results were obtained
with the LP method (3’rd order) and presented as functions of increasing observation density.

Next we consider the conditional estimation of the drift vector θ, of the L3D system (Figure 22). It is620

clear that in this example the 4D-Var estimation method (middle column), performs better and produces621

more stable and certain results. The LP algorithm when tested with 4 and 6 observations per time unit622

seems to be under-sampled, hence the state estimation (inner loop of the optimisation procedure), does not623

actually converge to the optimal posterior process. Therefore, the parameter estimates are also not reliable.624

When the process is observed more frequently (e.g. Nobs ≥ 8), it produces more stable results. The dual625

UnKF estimation results are reliable, with the exception of the ρ parameter (third column, second row),626

which is very biased with sparse observations. However, all parameters asymptotically converge close to the627

true values, as the observation density increases.628

Similar to the univariate systems, the conditional estimation of the system noise coefficient Σ, was629

feasible only with the variational LP approximation algorithm. Because the covariance matrix is assumed630

diagonal (see Eq.3), we only need to estimate the three diagonal components, which correspond to the noise631

added in each dimension of the L3D dynamical equations (see Eq.19). Figure 23 suggests that to estimate632

this very important parameter one has to have dense observations. For the L3D system we observe all three633

dimensions. Components Σx and Σz converge close to the true values roughly after 16 observations, per634

time unit, while the Σy parameter converges to a higher value. These results are in agreement with the635
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Figure 22: Drift (conditional) estimation: The infill asymptotic results for the L3D drift parameter vector θ. The
summary results when seen horizontally compare the same drift parameter but with different estimation method,
while vertically the results are presented for the same estimation method but for all three parameters (σ, ρ and
β). The methods tested, from left to right are the LP algorithm (3’rd order), the (full) weak-constraint 4D-Var
and the dual UnKF accordingly. In all sub-plots the horizontal dashed lines indicate the true values of the drift
parameters that generated the observed trajectories. Where possible the y-axis was kept the same for all plots to
make comparison easier. All algorithms were tested on the same thirty different realisations of the observation noise.

approximate marginal profiles produced earlier (Fig. 16(b)).636
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Figure 23: Noise (conditional) estimation: Summary results (25’th, 50’th and 75’th percentiles) from thirty different
observation realizations, of the L3D system, when estimating conditionally the system noise coefficient matrix Σ.
The results were obtained using the LP algorithm (3’rd order) and presented as functions of increasing observation
density. The estimation of the noise is presented separately in each dimension x, y and z from left panel to right
accordingly.
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To conclude with the infill asymptotics section, we demonstrate the application of the newly proposed637

LP approximation framework to the joint estimation of the drift and diffusion matrix of the L3D system. In638

total we estimate six (hyper-) parameters (σ, ρ, β, Σx, Σy and Σz), as shown in Figure 24. The asymptotic639

behaviour is similar to that observed when estimating the parameters conditionally, which gives us some640

level of confidence that our algorithm is stable. The general message is that we achieve good estimates when641

the system is well observed.642
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Figure 24: Joint estimation: The summary results (25’th, 50’th and 75’th percentiles) when estimating jointly the
drift parameters σ, ρ and β (upper three panels), and the system noise coefficients Σx, Σy and Σz (lower three
panels), of the L3D system. The same dataset of the thirty different realisations of the observation noise is used, as
in the previous experiments.

5.2.2. Increasing domain asymptotic behaviour, T →∞643

This section discusses another important asymptotic property; when the observation density remains644

fixed, but the duration that an event (or the random process) is observed, increases to infinity. To explore645

this behaviour new extended sample paths were created for all the dynamical systems considered in our646

previous simulations and then the total time-window was split into smaller, but equal, time intervals. TAn647

example is given on the DW system. As presented in Figure 25, we have a sample path (or history), of the648

DW system, with time-window Ttotal = [0, 50]. The next step consists of measuring the history with fixed649

observation density (e.g. Nobs = 2). Then the total time-window is divided in five sub-domains of ten time650
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units to create five time-windows (T10 = [0, 10], T20 = [0, 20], · · · , T50 = [0, 50]), including the observations651

from the previous steps. Finally, the estimation methods are applied on each sub-interval, by introducing652

the new observations incrementally.653

0   5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

t

X
(t

) T10

T20

T30

T40

T50

Figure 25: A typical example of a DW sample path with an extended time-window that is used for the increasing
domain asymptotic behaviour of the algorithms. The vertical dotted lines split the total time window in five time
domains starting from T10 = [0, 10] to T50 = [0, 50], which are presented to the estimation methods incrementally.

Figures 26(a) and 26(b), show the results of the conditional drift estimation for the OU and the DW654

systems respectively, as the time-window of inference increases. As in the infill asymptotic simulations,655

thirty different realizations of the observation noise were generated and the results are presented as summary656

statistics of the estimation outcomes. Here because the simulations performed were fewer than the previous657

case all the results are presented with box-plots which provide a richer presentation. It is apparent that658

in this type of asymptotic convergence, the LP approximation algorithm is remarkably stable with results659

that are very close to the ones that generated the data. The drop under the true value (as indicated by the660

horizontal dashed line), in the DW example (Fig. 26(b)), for the third time window (i.e. T30 = [0, 30]), can661

be explained by the fact that the transition between the two wells, happens between the 22’nd to 27’th time662

units, as shown in Figure 25, affecting the estimation. However, when the time-window increases further663

the algorithm recovers to the initial value. For the same example, the 4D-Var method starts with a higher664

estimated value but after the transition occurs it settles to a lower value. A similar behaviour can also665

be observed for the UnKF results, were the method approaches the true value, although it becomes less666

confident (larger error bars), which was unexpected behaviour.667

The conditionally estimated diffusion coefficients are presented in Figures 27(a), for the OU and 27(b),668

for the DW. Here only the LP approximation method was used, as in the previous section. The estimates,669

for both examples, are stable and improve as the time window increases. Especially for the DW, the results670

get closer to the true value after the transition has been observed (T30). In a similar way, the results for the671

joint estimation of the drift θ and diffusion Σ, are consistent and presented in Figures 28(a) and 28(b).672
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Figure 26: Drift (conditional) estimation: (a) Presents the summary statistics (box-plots) after estimating the drift
parameter θ from thirty different realizations, of the observation noise, on the OU system keeping the system noise
coefficient Σ fixed to its true value. The left panel presents the results from the LP algorithm, while the middle and
the right the results from the (full) weak-constrained 4D-Var and the dual UnKF accordingly. In (b) we repeat the
same estimation experiment but for thirty different realizations, of the observation noise, of the DW system. All
estimation results are presented as functions of increasing time domain, keeping the observation density fixed.
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Figure 27: Noise (conditional) estimation: (a) shows the conditional estimation of the system noise coefficient Σ,
keeping θ to its true value. The plot presents box-plots (5’th, 25’th, 50’th, 75’th and 95’th percentiles), from thirty
different realizations, of the observation noise, of the OU system. (b) repeats the same experiment but for the DW
system. All results were obtained with the LP method (3’rd order) and presented as functions of increasing time
domain, keeping the observation density fixed.

This section concludes with the results of the L3D system. Figure 29, presents the summaries of the673

jointly estimated drift parameter vector θ = [σ ρ β]⊤, conditional on the system noise matrix Σ set to its674

true value, from all three estimation methods. All algorithms are stable and produce good results, with675

4D-Var having the smallest bias. Once again, the 4D-Var and UnKF methods failed to provide stable results676

when estimating the system noise coefficients, hence only results from the LP method are shown. The joint677

estimation of the noise coefficients Σx, Σy and Σz, conditional on the drift vector θ being fixed to it true678

value, are illustrated at Figure 30, where it was necessary to observe with quite high density (Nobs = 18).679

In addition, the joint estimation of all the (hyper-) parameters, of the L3D system, as the time-window of680

inference increases, is shown in Figure 31. The results are in accordance with the conditional estimates,681
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although the observation density was set to ten observations, per time unit (i.e. Nobs = 10).682
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Figure 28: Joint estimation: In (a) the drift and diffusion coefficient, of the OU system, are estimated jointly. The left
upper panel shows the results for θ, while the left lower panel for Σ. The box-plots present summaries from thirty
different observation realizations. (b) shows the same joint estimation but for the DW system. The right upper panel
shows the results for θ, while the right lower panel for Σ. All results were obtained with the LP method (3’rd order)
and fixed observation density to two per time unit (Nobs = 2).

5.3. Special case: stochastic Lorenz ’96 (40D)683

In this section the application of the new LP variational approximation framework is illustrated in a684

forty dimensional system, namely the Lorenz ’96 (L40D). An example of this system is given in Figure685

32(a), where are shown all forty dimensions for a time period of ten units T = [0, 10]. The drift function of686

the system is given by:687

fL40D(Xt; θ) =












(x2
t − x39

t )x40
t − x1

t + θ

(x3
t − x40

t )x1
t − x2

t + θ

...

(x1
t − x38

t )x39
t − x40

t + θ












, θ ∈ ℜ . (26)

This drift function consists of forty equations:688

f(xi
t) = (xi+1

t − xi−2
t )xi−1

t − xi
t + θ ,

where i ∈ {1, 2, . . . , 40}, with cyclic indices and θ ∈ ℜ is the forcing (drift) parameter. These equations689

simulate advection, damping and forcing of some atmospheric variable xi, therefore it can be seen as a690

minimalistic weather model (Lorenz and Emanuel [41]).691

Figure 32(b), shows the approximate marginal mean mt and variance St, of three selected dimensions692

from the L40D system. The mean paths are reasonably smooth and the variances are broad enough to693
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Figure 29: Drift (conditional) estimation: This plot compares the increasing domain asymptotic results (fixed obser-
vation density), when estimating the L3D drift parameter vector θ. The summary results when seen horizontally
compare the same drift parameter with different estimation methods, while vertically the results are presented for
the same estimation method and all three parameters (σ, ρ and β). The methods tested, from left to right are the
LP algorithm (3’rd order), the (full) weak-constrained 4D-Var and the dual UnKF accordingly. In all sub-plots the
horizontal dashed lines indicate the true values of the drift parameters that generated the history sample. Where
possible the y-axis was kept the same for all plots comparing the same parameter to make the comparison easier.
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Figure 30: Noise (conditional) estimation: Summary results (box-plots) when estimating jointly the noise coefficients
Σx, Σy and Σz, of the L3D system. The results were obtained with the LP method (3’rd order) and presented as
functions of increasing time domain, keeping the observation density fixed (Nobs = 18).

enclose the observations. Similar results were also obtained for the other dimensions of the system.694

Finally the new approach was compared against the original VGPA algorithm, in producing conditional695
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Figure 31: Joint estimation: Summary results (box-plots) when estimating jointly the drift parameters σ, ρ and β

(upper three panels), and the system noise coefficients Σx, Σy and Σz (lower three panels), of the L3D system. The
results were obtained with the LP method (3’rd order) and presented as functions of increasing time domain, keeping
the observation density fixed (Nobs = 10).
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Figure 32: Lorenz 40D: In (a) all forty dimensions (top to bottom) of a ten units time-window (T = [0, 10]), of
the stochastic Lorenz 40D system, used for the experiments. (b) presents three examples (3’rd, 19’th and 36’th
dimension) of the marginal means (solid green line) and variances (shaded light green area) obtained with the LP

algorithm (3’rd order), at convergence. The crosses indicate the noisy observations. Similar result were also acquired
for the remaining dimensions.

profiles for the forcing (drift) parameter θ (see Figure 33(a)) and system noise coefficients Σ (see Figure696

33(b), for the system noise in the 20’th dimension). Both algorithms produce smooth profiles, with the697

new approach identifying the minimum slightly better. However, more important is that these results were698

obtained by achieving a significant reduction of 67.6% in optimisation space. For this example the observation699
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Figure 33: Marginal (approximate) profiles: In (a) the approximate marginal profile log likelihood of the drift pa-
rameter θ, obtained with the original V GPA algorithm (left panel, red circles) is compared against the one obtained
with the LP algorithm with 3’rd order polynomials (right panel, blue diamonds). In this example the system noise
covariance matrix Σ is fixed to its true value. (b) presents similar results but for the conditional estimation of the
system noise on the 20’th dimension, assuming the drift is known. Similar profiles were also generated for other
dimensions. In all sub-plots the vertical dashed lines represent the true values of the parameters that generated the
data.

noise variance was set to R = 1.0, with eight observations per time unit (hence J = 81) and third order700

polynomials (hence M = 3), we have to infer Ltotal = 531, 360 variables, comparing to Ntotal = 1, 640, 000,701

of the original VGPA. Joint estimation of the drift and diffusion coefficients for this system is also possible702

and produces similar results, albeit at a slightly higher computational cost.703

6. Conclusions and discussion704

This paper has presented an alternative parametrisation of the VGPA algorithm [4, 5] for Bayesian705

approximate inference in partially observed diffusions with additive noise. The general case of arbitrary706

state dependent diffusions (multiplicative noise) is not covered in this work. This is related to limitations707

that follow the original variational framework proposed in [4]. To be more specific, the VGPA algorithm708

requires the true and the approximating posterior processes (pt and qt respectively) to share the same709

diffusion coefficient, otherwise the bound on the true negative log marginal likelihood would not be finite.710

In other words the integral 31, as shown in Appendix A, goes to infinity in the limiting case of δt → 0.711

However there is a cure to this problem and we are currently working towards a version of the variational712

algorithm that will overcome this limitation. The main idea is to work entirely in discrete time, therefore713

instead of computing integrals that go to infinity one will have to work with sums (possibly large) but still714

bounded to a finite number. This will allow us to relax the constraint of using the same diffusion coefficient715

for both processes pt and qt and will enable the treatment of state dependent diffusions. We also note that716

for the class of diffusion processes that can be mapped into an additive noise process Kloeden and Platen717
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[35], the VGPA methods will work effectively. Finally, in some cases it might be possible to capture much of718

the structure of the model discrepancy / model error in the drift (deterministic) part of the dynamic model,719

for which our methods have no limitations, leaving the residual discrepancy well approximated by additive720

noise. This is an area also which should be further explored.721

This new approach uses local polynomials to approximate the variational parameters At and bt of the722

linear drift approximation (Eq. 6) to control the complexity of the algorithm and reduce the number of723

variables need to be optimized. The LP algorithm is validated on a range of different systems to test its724

convergence behaviour w.r.t. the original VGPA and shows remarkable stability. In most of the examples it725

requires 3’rd order polynomials to match the original algorithm, although the order is likely to increase as726

the observations become more sparse (i.e. the time between observations increases).727

Despite the notable reduction in optimized variables the LP approach does not produce similar results in728

computational time. This is mostly because the new gradients of the cost function (Equation 13) w.r.t. the729

coefficients of the polynomial approximations, have to be computed separately in each sub-interval where730

each polynomial is defined. In our implementation priority was not given to the computational cost, hence a731

simple serial approach was chosen. However, a parallel implementation in which the necessary gradients are732

computed simultaneously is straightforward and could reduce dramatically the execution time, especially733

for treating long time windows. Another advantage with the LP framework is that different classes of734

polynomials can be used. In this work we also experiment with different classes of polynomials, mostly735

orthogonal, such as Chebyshev and Legendre however the results were not significantly different in the736

systems tested here hence were omitted.737

The new LP algorithm can be used to construct, computationally cheap, discrete approximations to the738

posterior distribution of the (hyper-) parameters θ and Σ (Section 5) matching the results of the HMC739

sampling rather well, in the examples tested. In exploring the infill and increasing domain behaviour on740

estimating the parameters of the OU, DW and L3D, all methods show biases and the response was different741

over the range of the systems. The methods are largely comparable with the UnKF being less stable and742

slightly more biased. LP and weak constraint 4D-Var are more comparable (since both provide smoothing743

solutions to the inference problem) but there was no clear preference from one another, except in the case of744

estimating the system noise parametersΣ. In this case both 4D-Var and UnKF failed to provide satisfactory745

results, giving the LP a clear advantage. However, as discussed in DelSole and Yang [8], estimation of drift746

(deterministic) and diffusion (stochastic) parameters are fundamentally different problems. As shown in747

Equations (7) and (8), the system noise coefficient Σ directly affects the marginal variance. This means that748
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when one conditions the estimation of this parameter only on the, rather smooth, mean path (or the mode749

in the 4D-Var case) all the information on the roughness of the true trajectory is lost. Therefore, the UnKF750

and the 4D-Var method were unable to estimate this important parameter accurately. On the contrary, the751

VGPA approximations base their estimation on a bound to the complete marginal likelihood, as a function752

of both drift and diffusion parameters, allowing for joint estimation. A particularly difficult case is the noise753

estimation in the L3D system where the process has to be observed very frequently. We believe that this754

is related to the chaotic behaviour of the L3D system which makes identification of noise using infrequent755

observations very challenging.756

Comparing the results on the two asymptotic regimes reveals that increasing domain is more promising757

than infill and suggests that in order to identify a model parameter, is better to observe an event over a large758

period of time, rather than observe it more densely in a short period of time. Moreover, another appealing759

asymptotic behaviour, that is not covered here but is worth exploring, is with the system noise Σ fixed and760

the observation noise going to zero (R → 0). An interesting question that is raised is how the parameter761

estimates are affected if the process is not observed uniformly (at equidistant times), as was the case here,762

but rather with different densities over different periods of time. An example, on a DW trajectory, would763

be the estimation of the system noise Σ by having more frequent observations around the transition time764

than the rest of the sample path.765

We believe the range of systems on which these methods have been applied (OU, DW, L3D, L40D) show766

their generic utility. The systems cover frequently used exemplars in synthetic data assimilation experiments,767

and include non-linear systems that are often used as surrogates for the sorts of models used in operational768

weather and climate modelling. The nature of the non-linear interactions in the systems is similar to the769

interactions seen in more realistic models. The range of observation densities chosen is comparable to those770

in realistic settings. We note that the length of assimilation window considered in this work is longer than771

is typical in data assimilation studies, this being related to our aim of learning about model parameters. It772

seems likely that the results we find in this paper would generalise to more operational settings, although773

considerable work remains to be done to address the computational cost of the VGPA methods.774

Although the application of our variational approach to the forty dimensional Lorenz ’96 system (L40D) is775

very encouraging, there is still an open question on how we can apply this algorithm to very high dimensional776

models (such as those used for numerical weather prediction). We believe that the LP approximation is777

a step towards that direction. In most of the examples presented here the computational resources were778

reduced more than 60% (in terms of optimizing variables) comparing to the original VGPA. By imposing779
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further assumptions on the Gaussian process approximation (e.g. by defining a special class of linear drift780

functions) it is possible to control the complexity of the posterior variational approximation and reduce the781

number of variables even further. Finally, a drawback of our algorithm is that it remains quite complex and782

is our intention to provide more guidance on the usage of the VGPA based algorithms in the future.783
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A. Variational Free Energy788

As shown earlier in Section 2.2, the definition of the so called “variational free energy”, is given by789

Equation (5). The derivation of the free energy leads to the following expressions:790

F(q(X), θ,Σ) = −
〈

ln
p(Y,X|θ,Σ)

q(X|θ,Σ)

〉

q(X)

(27)

= −
∫ tf

t0

q(Xt) ln
p(Ytk ,Xt)

q(Xt)
dXt (28)

=

∫ tf

t0

q(Xt) ln
q(Xt)

p(Ytk ,Xt)
dXt (29)

=

∫ tf

t0

q(Xt) ln
q(Xt)

p(Xt)
dXt

︸ ︷︷ ︸

(I1)

−
∫ tf

t0

q(Xt) ln p(Ytk |Xt)dXt

︸ ︷︷ ︸

(I2)

, (30)

where X = {Xt, t0 ≤ t ≤ tf} is the diffusion process, Y = {Ytk}Kk=1 the observations and the conditioning791

on the (hyper) parameters θ and Σ has been omitted for notational simplicity. Solving the integrals I1 and792

I2, results in the following expressions:793

A.1. Energy term from the SDE.794

Using of the fact that both processes p and q are Markovian yields:795

I1 =
1

2

∫ tf

t0

〈
(f(t,Xt)− gL(t,Xt))

⊤Σ−1(f(t,Xt)− gL(t,Xt))
〉

q(Xt)
dt+KL [q(Xt0)‖p(Xt0)] , (31)
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where f(t,Xt) ∈ ℜD is the drift function, gL(t,Xt) ∈ ℜD is the linear approximation, < · >q(Xt) denotes796

the expectation with respect to measure q(Xt) and KL[q(Xt0)‖p(Xt0)] is the KL divergence at initial time797

Xt=t0.798

A.2. Energy term from the observations (likelihood).799

Assuming that the measurements are i.i.d. with zero mean and covariance matrix R, we have:800

I2 = −1

2

∫ tf

t0

〈
(Yt − h(Xt))

⊤R−1(Yt − h(Xt))
〉

q(Xt)

K∑

k=1

δ(t− tk) dt+
d

2
ln(2π) +

1

2
ln |R| , (32)

where |R| is the determinant of matrix R (observation noise covariance) and δ(t) is Dirac’s delta function,801

which is added due to the discrete time nature of the actual observations. For a complete derivation of the802

above equations we refer to [60].803

B. Weak constraint 4D-Var cost function804

In a Bayesian framework, if one is interested in estimating the system states X as well as the model805

parameters6 Θ, then is interested in the joint posterior distribution of the states and the parameters, given806

the observations (i.e. p(X,Θ|Y )). Via Bayes rule this posterior is given by:807

p(X,Θ|Y ) =
p(Y |X,Θ)p(X|Θ)p(Θ)

p(Y )

∝ p(Y |X,Θ)p(X|Θ)p(Θ) (33)

where p(Y |X,Θ) is the likelihood of the observations given the current state of the system and the (hyper-)808

parameters, p(X|Θ) is the prior distribution over the system states, p(Θ) is the prior over the (hyper-)809

parameters and p(Y ) is the marginal likelihood.810

Having discretised the continuous time sample path X = {Xt, t0 ≤ t ≤ tf}, using the Euler-Maruyama811

method (see Section 2), one has to compute the following posterior distribution:812

p(X0:N ,Θ|Y1:K) ∝ p(Y1:K |X0:N )
︸ ︷︷ ︸

B1

p(X0:N)
︸ ︷︷ ︸

B2

p(Θ)
︸ ︷︷ ︸

B3

(34)

6Within our framework it includes all the parameters in the drift and the system noise covariance matrix (i.e. Θ = {θ,Σ}).
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where the dependencies on the parameters have been omitted for simplicity.813

B.1. Likelihood of the observations814

Assuming that the measurements are i.i.d. with zero mean and covariance matrix R, we have:815

p(Y1:K |X0:N) =

K∏

k=1

N (Yk −Xtk |R)

=
K∏

k=1

(2π)−D/2|R|−1/2 exp{−0.5(Yk −Xtk)
⊤R−1(Yk −Xtk)}

=
[

(2π)−D/2|R|−1/2
]K

exp{−0.5
K∑

k=1

(Yk −Xtk)
⊤R−1(Yk −Xtk)} (35)

where all the assumptions about the state and observation vector dimensions are the same as introduced in816

Section 2.817

B.2. Prior over the states818

Using the assumption that the process is Markov, we have:819

p(X0:N ) = p(X0)

N−1∏

k=0

p(Xk+1|Xk) (36)

= p(X0)
N−1∏

k=0

N (Xk+1|Xk + f(Xk)δt,Σδt) (37)

= p(X0)

N−1∏

k=0

(2π)−D/2|Σδt|−1/2 exp{−0.5(δXk+1 − f(Xk)δt)
⊤(Σδt)−1(δXk+1 − f(Xk)δt)} (38)

= p(X0)
[

(2π)−D/2|Σδt|−1/2
]N

exp{−0.5δt
N−1∑

k=0

(
δXk+1

δt
− f(Xk))

⊤Σ−1(
δXk+1

δt
− f(Xk))}, (39)

where δXk+1 = Xk+1 −Xk and δt = tk+1 − tk. For the initial state X0, we either assume that it is given820

by fixed values (i.e. X0 = x0), or that we know its distribution. In this case we chose an initial state that is821

normally distributed such as X0 ∼ N (τ0,Λ0). Notice also the unusual scaling of the system noise coefficient822

Σ, with the time increment δt. This comes from the discrete version of the SDE (see Eq.20), where the823

scaling is necessary to achieve the limit of the diffusion process as δt→ 0.824

46



B.3. Prior over the parameters825

For this prior density we assume that the parameters have no dependencies between them, hence we can826

write their joint density as the product of their marginal densities:827

p(Θ) = p(θ,Σ)

= p(θ)p(Σ) , (40)

where p(θ) is the prior marginal distribution of the drift parameters and p(Σ) is the same but for the system828

noise coefficient. We do not extend any derivation here because these densities can be parametrized with829

any distribution of choice. In our framework we use the same prior distributions as in the HMC and the830

variational framework. That is p(θ) = G(α, β) and p(Σ) = G−1(a, b).831

B.4. Jcost - Total cost function832

It is common practice in optimisation when one wants to find the minimum (or maximum), of a cost833

function to look for the minimum (or maximum) of the logarithm of the cost function (due to the mono-834

tonicity of the logarithmic function). Hence instead of maximizing the posterior p(X0:N ,Θ|Y1:M ), we can835

minimize the negative ln p(X0:N ,Θ|Y1:M ), which has some nice characteristics. Therefore, the complete836

cost function is given by:837

Jcost = − ln p(X0)
︸ ︷︷ ︸

JX0

+ 0.5δt

N−1∑

k=0

(
δXk+1

δt
− f(Xk)

)⊤

Σ−1

(
δXk+1

δt
− f(Xk)

)

︸ ︷︷ ︸

Jf

+ 0.5
K∑

k=1

(Yk −Xtk)
⊤R−1(Yk −Xtk)

︸ ︷︷ ︸

Jobs

− ln p(θ)− ln p(Σ)
︸ ︷︷ ︸

Jhp

+ 0.5 [K ln |R|+N ln |Σδt|+KND ln(2π)]
︸ ︷︷ ︸

C

, (41)

where K > 0 is the total number of observations, N > 0 is the number of the discrete time states and D > 0838

is dimensions of the system states and observations.839
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