
Designing labs and exercises to promote
justified self-efficacy in computer science students. Dr. Lucy Bastin, Engineering and Applied Science

The problem...
Many computer science modules build on skills and competencies which students are
assumed to have acquired in introductory modules. However, students can enter modules by a
variety of routes; many lack confidence with what are seen as basic programming skills, and
find it difficult to reflect on their exact levels of skill in the many component areas that make
up deep knowledge of software engineering. This can reduce their persistence on important
challenges, and seriously impact on achievement.

In the module described here, common problems had historically been:

• An unwillingness to debug code, leading to poor performance on coursework.
• Problems with generalising specific lab challenges to unfamiliar problems
• Anxieties about independent work (and hence high levels of plagiarism)
• Unwillingness to use unfamiliar technical tools such as Javascript debuggers.

References / inspirations
1. Bandura, A. (1986). Social Foundations of Thought and
Action. Prentice-Hall.
2. Compeau, D. R., & Higgins, C. A. (1995). Computer self-
efficacy: Development of a measure and initial test. MIS
Quarterly, 19 (2), 189-211.
3. Gist, M., Schwoerer, C., & Rosen, B. (1989). Effects of
alternative training methods on self-efficacy and
performance in computer software training. Journal of
Applied Psychology, 74, 884-891.
4. Klinger, C. M. (2006). Challenging negative attitudes, low
self-efficacy beliefs, and math-anxiety in pre-tertiary adult
learners. In Connecting voices in adult mathematics and
numeracy: practitioners, researchers and learners.

Strategies for improvement (designed around factors identified [1] as contributing to self-efficacy)
• An initial diagnostic assessment of confidence on specific topics, through an anonymous questionnaire.
• Class discussion of the results, clearly signposting how topics contribute to the body of knowledge, and how/when they would be covered.
• Generate many small opportunities for students to succeed in finding and fixing problems, so that the process was habitual and less threatening (Mastery Experience [1])
• Replace model code solutions with narrated video walkthroughs of labs which demonstrate a large variety of commonly-encountered errors, and how to fix them.
• Refer to mistakes made in industry and consultancy, and their solutions, to show that errors can be part of experimentation and innovation, not an embarrassment. (Modelling [1.3])
• Require student questions to be posted on a discussion board, and use this to build up an FAQ page. (aiming towards Social Persuasion [1])
• Supply specific exercises based around fixing broken code, to (a) demonstrate that problems can be tracked and fixed (b) make the use of debugging tools routine and familiar.

Key: 4 = Very confident
3 = Confident
2 = Quite confident
1 = Not at all confident

Start of
module
Min – max
(mean) **

How was this addressed?

End of
module
Min – max
(mean)

How the Web works – theory
(e.g., protocols and languages)

2-4 (2.76) Covered in lectures and labs as a matter of course. 2-4 (2.90)

Working with the DOM (e.g., updating
paragraph elements in a document)

1-4 (1.84) All students had in theory already passed this topic, but knowledge was highly variable:
The first 3 labs were adapted to revise the topic, and re-use previous year’s materials.

2-4 (2.41)

Debugging Java (e.g., identifying a
problem within a ‘while’ loop)

1-3 (2.23) This should be a basic skill for students at this stage. Practice exercises were introduced,
e.g. code with deliberate bugs which students fixed with progressively less instruction.

2-4 (2.97)

Debugging javascript
(e.g., identifying a problem stemming
from a null var)

1-3 (2.08) An unfamiliar activity which requires the use of a novel tool (Firebug). Deliberate errors
were introduced into lab example code for students to track down. All but 2 labs
explicitly required Firebug to be used, and several video tutorials demonstrated its use.

1-4 (2.50)

Breaking code to see the effects
(e.g., overflowing a Java Array or
referencing null variables)

1-4 (2.16) I wanted to encourage students to ‘play’ and experiment without fear that their work
would be destroyed. Lab demonstrators showed how to temporarily, and safely,
generate error messages. Lab videos showed many common code errors and fixes.

2-4 (2.77)

Client-server interactions
(e.g., POST form responses)

1-4 (2.05) Covered in lectures and labs as a matter of course. 2-4 (2.50)

XML syntax (e.g., rules to which XHTML
documents conform)

1-3 (2.05) An intimidating topic for many students, generating many threads on the discussion
board. Extra labs and tutorials were produced, with model answers and examples.

2-4 (3.00)

The students...aka the solution.
This module (Web Development) was a core second-year requirement, but was also taken as an option by
third-year students from many other courses. Past experience of practical programming was highly variable,
and this led many students to assume that others in the class were more expert than them, and to be anxious
and concerned about this.

Comments from past years showed that one group in particular felt overwhelmed. Though this cohort actually
performed well, their ‘self-efficacy’ [1], or belief that their efforts would make a difference was clearly low.

What next?
Encourage students to post their own videos, to show
problems being fixed by ‘someone like me’.

Measure self-efficacy using a standardised scale [2], to
permit meta-analysis and longitudinal study.

Continue to design labs which provide many and early
opportunities for success.

Encourage students to reflect on how they physically
respond to uncertainty and novel challenges, and
whether this affects their impression of their own ability.

Students taking the module: 76
Hits on the discussion board: 2989

Messages posted: 78
Students who posted : 19 (25%)

Questions answered by another student: 20%

Only 4 plagiarism / colllusion cases *
(as opposed to 15 in the previous year)

2. Collaboration – not collusionEVALUATING THE OUTCOMES: 1. Increased confidence across a broad range of topics

* Code assessed using the Stanford University Measure Of Software Similarity tool

5. Better achievement on
practical assignments

3. Independent working

** Survey statistics for 2010 are based on 66 students (87% of cohort).

4. Reflection on skills and needs
43% of students felt that they were capable of generalising what
they had learnt outside its specific context.

As well as specific technical training, some students mentioned
that they had gained more general critical and analytical skills.

Students varied in the degree of help they wanted, but all
believed they were capable of ‘fixing the problem’ themselves.

Between 2009 and 2010, the average module
mark increased from 48.5 to 58.6. 60% of this
rise was due to increased marks on practical
coursework. Exam performance also
improved, particularly on questions which
assessed experience or critical analysis.
While the range of coursework marks in both
years ran from 0 to 100%, the 25th percentile
shifted upwards from 15 to 51%.

Discussion board and recordings were heavily
used outside formal teaching hours(VLE statistics)

Marks for practical coursework, 2009 - 2010

‘Self-efficacy’ in brief Self-efficacy [1] is not the same as simple self esteem or confidence. It refers to the level to which an individual believes in their own capabilities to achieve a specific goal.
Self-efficacy tends to correlate positively with performance and when cause/effect is further investigated, it appears that these positive results are often mediated more by persistence and engagement than by
innate ability. Self-efficacy tends to be increased when we experience meaningful accomplishments and feel that we have influence and agency, rather than by unspecific praise for effort or participation.

	Designing labs and exercises to promote �justified self-efficacy in computer science students. �

