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Abstract—Visualization of high-dimensional data has always
been a challenging task. Here we discuss and propose variants
of non-linear data projection methods (Generative Topographic
Mapping (GTM) and GTM with simultaneous feature saliency
(GTM-FS)) that are adapted to be effective on very high-
dimensional data. The adaptations use log space values at certain
steps of the Expectation Maximization (EM) algorithm and
during the visualization process. We have tested the proposed
algorithms by visualizing electrostatic potential data for Major
Histocompatibility Complex (MHC) class-I proteins. The exper-
iments show that the variation in the original version of GTM
and GTM-FS worked successfully with data of more than 2000
dimensions and we compare the results with other linear/non-
linear projection methods: Principal Component Analysis (PCA),
Neuroscale (NSC) and Gaussian Process Latent Variable Model
(GPLVM).

Keywords: Visualization, generative topographic map-
ping, feature saliency, log space, expectation maximiza-
tion, major histocompatibility complex, principal compo-
nent analysis, neuroscale, gaussian process latent variable
model.

I. INTRODUCTION

Recent advances in sciences such as astronomy, biology,
weather forecasting and economics have led to the generation,
collection, and storage of large high-dimensional datasets.
Such datasets have not only presented new challenges for
researchers but also created new openings for theoretical
developments [1].

Traditional statistical methods fail partially because of the
increase in number of objects but mostly due to the immense
increase in the number of variables [2]. The problems that
arise due to high dimensionality of data are termed the ‘curse
of dimensionality’ [3]. In this paper we study visualization
(i.e. projection of data to a low-dimensional space (usually
2D or 3D)) of large high-dimensional datasets in the domain
of bioinformatics.

Bioinformatics is the field of studying biological activities
of macromolecules, such as carbohydrates, lipids, proteins and
nucleic acids, using computational technologies. In general
there are three aims of bioinformatics [4]: the first is to
maintain a database (such as a protein data bank', for three-
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dimensional macromolecules, or the IMGT/HLA? database
for maintaining HLA sequences) accessible for researchers to
analyze it; the second is to develop tools that are helpful for
analyzing these datasets and to understand the functions of
macromolecules; and the third aim is to use these analysis tools
for interpreting biologically meaningful information about the
macromolecules.

Recent research in the field of bioinformatics has provided
an extensive set of protein amino acid sequences available
in the form of sequence databases such as Swiss-Prot?,
TrEMBL*, IMGT/HLA?® etc. In the February 2012 release,
there are 534,695 and 20,127,441 and 7,274 known se-
quence entries respectively. The function of very few protein
sequences in these databases are known today. Therefore,
predicting the functions of protein sequences is important
and is often achieved by searching for the most similar
(homologous) sequences with already known functionality [5].

Two sequences with high similarity in primary sequences
are expected to have similar three-dimensional structure
whereas two similar three-dimensional structures may not
have strong similarity in their amino acid sequences [6].
For example, the three-dimensional structures of the human
a-globin and myoglobin are very similar but their amino
acid sequences only have 26% identity [7]. Predicting protein
function from structure is known to be more successful than
predicting function from amino acid sequence; there are two
reasons for this. First, three-dimensional structures are more
conserved than amino acid sequences [8]. Second, the regions
where a protein can interact with a ligand® are determined by
three-dimensional structure [9].

X-ray Crystallography [10], Nuclear Magnetic Resonance
Spectroscopy [11] and Electron Microscopy [12] are the
standard techniques for determining three-dimensional protein
structures. These experimental methods are costly and time
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3Swiss-Prot is a high quality manually annotated and non-redundant protein
sequence database (http://web.expasy.org/docs/relnotes/relstat.html)

4TrEMBL is computationally generated annotation and
large-scale functional characterization sequence database
(http://www.ebi.ac.uk/uniprot/TrEMBLstats/)
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A ligand is an atom or a molecule or an ion that can bind to a specific
binding site of the protein. Binding is the key to protein function.



consuming [13]. Therefore, very few three-dimensional protein
structures are known in comparison to the large number of
known protein amino acid sequences [7]. The database that
holds three-dimensional protein structures is the Research
Collaboratory for Structural Bioinformatics (RCSB) protein
database [14]: in the March 2012 release there are 74,151
known protein structures and 5,890 other macromolecules.

Computational methods such as homology (comparative)
modeling have been developed for predicting the three-
dimensional protein structure for an amino acid sequences
using already known similar three-dimensional structures.
Therefore if the amino acid sequence of the known three-
dimensional structure and target protein sequence are at least
30% similar (i.e. in terms of number and similarity of amino
acid residues) then the predicted three-dimensional structure
based on the homology modeling is usually close to being
correct [15].

We are interested identifying and clustering protein families
(such as Major Histocompatability Complex (MHC)) using
spatially distributed properties like electrostatic and lipophilic-
ity around a given or predicted set of three-dimensional protein
structures. Electrostatic potential is important for understand-
ing the specificity and kinetics of proteins binding with ligands
and with other proteins, and can be calculated within and
around the protein three-dimensional structure. Algorithms
for computing electrostatic potential are usually described as
‘explicit-solvent’ or ‘implicit-solvent’ [16]. Explicit-solvent
methods treat the solvent with full atomic detail making them
computationally intensive. However, implicit-solvent methods
treat the solvent in its average effect on solute and are
thus much faster to compute. The latter method of comput-
ing electrostatic potential has opened new horizons for the
researchers in the field of drug design and computational
structural biology [17].

Using an implicit-solvent system, one popular method
of calculating the electrostatic potential for a protein in a
solvent is by numerically solving the Poisson-Boltzmann
equations [18] (there is no analytical solution) using finite-
element, finite-difference and boundary-element methods [16].
Software tools include: Delphi’ and University of Houston
Brownian Dynamics (UHBD)® use finite-difference numerical
methods; the Adaptive Poisson Boltzmann Solver (APBS)’
uses finite-elements; and Charged Particle Optics (CPO)"
uses the boundary-element method. These tools generate large
datasets containing the potentials at a fine grid of points in
and around the protein.

Clustering or grouping a set of proteins based on their
similarity is a valuable contribution to drug design. A web-
based tool called WebPIPSA [19] allows a user to compare
electrostatic potentials for a set of protein structures using the
PIPSA method (Protein Interaction Property Similarity Analy-
sis) [20]. The tool compares a pair of proteins using similarity

"http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:DelPhi
8http://adrik.bchs.uh.edu/uhbd.html
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indices and distance measures, and presents the results as a
colour matrix and a tree-like diagram. This tool has number of
limitations: first, being a web-based tool, it only supports the
comparison of a few proteins (up to one hundred); secondly,
the way the similarity indices are calculated can give a false
sense of similarity in a pair of proteins. Instead, we propose to
analyse the electrostatic potentials calculated at a fine grid by
projecting the dataset onto a low-dimensional space combined
with interactive data exploration techniques so that humans can
interpret easily a large set of proteins. In the domain of pattern
recognition various dimensionality reduction techniques, such
as principal component analysis (PCA) [21], projection pur-
suit [22] and factor analysis [23], have been used in different
domains with some success [24]. Dimensionality reduction
approaches based on variance, such as PCA, do not provide
good clustering or grouping information because certain fea-
tures with large variance can dominate the actual grouping
of the data. Therefore, advanced dimensionality reduction
techniques such as the self-organizing map (SOM) [25],
Sammon’s Mapping [26] and the Generative Topographic
Mapping (GTM) [27] have been applied more successfully
in bioinformatics [28] [29] [30] [31] [32]. However, GTM
worked better than other dimensionality reduction techniques
in the field of bioinformatics as shown in [33] [34] [35].
In [24], an algorithm for GTM with simultaneous feature
selection was proposed (GTM-FS), which projects the data
and also computes the saliency of each feature to help the
user determine the importance of each feature. Both GTM and
GTM-FS may fail when applied to high-dimensional datasets
(with more than 200 dimensions) partially due to numerical
problems. In fact, in high-dimensional spaces the probability
density values are sufficiently small that rounding error is
very significant (i.e. values may round to zero). Here, we
propose that using log-space values and re-arranging mathe-
matical expressions at certain steps of training algorithms and
visualization process of GTM and GTM-FS can avoid such
numerical problems.

The structure of the rest of the paper is as follows: the
proposed variant of the GTM and GTM-FS using log space
and a basic description of the original algorithms are given in
sections II and III respectively. A description of our visualiza-
tion software tool is given in section IV and a description of
the experimental validation is given in section V. Discussion
of the results is contained in section VI. Finally, we present
conclusions and future work in section VIIL.

II. GTM WITH LOG-SPACE PROBABILITIES

GTM was proposed as an alternative to the SOM which
estimates a generative probability distribution [27]. It is an
unsupervised learning algorithm and is a non-linear method
for representing high-dimensional data in a low-dimensional
space using a latent variable model. The generative model uses
a mapping from latent space to data space while the inverse
mapping that provides data visualization uses Bayes’ theorem.
GTM is based on a constrained mixture of Gaussians whose
parameters are optimized using an Expectation Maximization



(EM) algorithm. EM is an iterative procedure to compute the
maximum likelihood estimate of parameters in the presence
of missing or hidden data.

The primary objective of the latent variable model is to
estimate the probability distribution p(x) that represents data
x € RP using latent variables z € RY. The non-linear function
y(z; W) maps a point z in the latent space to a corresponding
point y(z; W) in data space and the mapping function is pa-
rameterized by the matrix W. A Radial Basis Function (RBF)
network is used as a mapping function and the parameter
matrix W represents the network weights and biases. GTM
is most useful when the latent-space dimensionality is one or
two (i.e. ¢ = 1 or ¢ = 2). Suppose we have a latent space
of dimensionality ¢ = 2 and data space of dimensionality
D = 3 then the function y(z; W) maps the latent space into
a g-dimensional manifold S in data space as shown in Figure
1.
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Fig. 1. Latent space to data space mapping using a non-linear mapping
function y(z;W).

To use GTM for visualization, the inverse mapping from
data space to latent space is performed using Bayes’ theorem
to compute the posterior probability density p(z|x,,) for a data
point x,,. Using the prior distribution as in [27], the posterior
probability density is a sum of delta functions centered at the
lattice points z; with weights given by R;, (i.e. p(j|z,) the
posterior probability of the jth component in the latent space).
For visualizing a set of data points, the posterior distribution
for each data point gives too much information (since this
would require a distinct 2D plot for each data point), and it
is therefore necessary to use a summary statistic, usually the
mean

(z|@n, W, o)

M
= Rjnz, )
j=1

where M is the number of latent space components. More
details of the GTM can be found in [27].

We shall focus on the main step where numerical problem
arise while using GTM for high-dimensional data. We propose
that a log-space version of a mixture of spherical Gaussians
(as shown in equation (2)) can be used with a GTM model to
compute the probability that a point = is generated by the jth

component.

P (x|j) = log

x—uj

where the [og superscript is used to denote values in the log
space. After calculating the log probabilities, the resultant val-
ues are converted back to real space to compute the component
responsibilities p(j|x) = R;, that are used in the M-step of
the EM algorithm.

III. GTM-FS USING LOG-SPACE PROBABILITIES

To calculate feature saliency with GTM, it is assumed
that features are conditionally independent given the mixture
component label [24]. Specifically for a mixture of Gaussians
such independence can be achieved using diagonal covariance
matrices. Therefore, GTM-FS uses a mixture of diagonal
Gaussians and the probability density function can be ex-
pressed as

M D
p(anle,0) = > a Il%mm 3)
m=1 d=1

where M represents the number of components, as in GTM,
am is a mixing coefficient that is assumed to be equal to
M, D represents the number of variables, z,, represents the
nth point (in R?), and p(z,4|0,,) represents the probability
density function of the dth feature for the mth component with
the mean and variance parameters 0,,q = {y(zm;W),03}.
As can be seen from the notation, it is also assumed that
o2 is same for all the components in the mixture. The dth
feature is considered as irrelevant only if the distribution of
the feature is independent of the mixture component labels and
is then modeled by the Gaussian distribution g(z,q|Aq) with
a diagonal covariance. We use ¢ = (v4,...,vp) to denote
a set of binary values where v, is equal to 1 for a relevant
feature and O for an irrelevant feature. With these definitions,
the probability density function is defined as

p(z,|) = Z H (TnalOma)]" [a(znalXa)] T,
m=1d=1
“4)
where Q@ = (0,,4,v4). The concept of feature saliency is

represented as follows.
e The v4s are treated as missing variables in the EM
algorithm.
o The probability of the relevant feature is represented as
Pd-
Now the resultant model can be written as

.’I,‘7L|T Z H PdP xndWmd)] [(1—Pd)Q(33nd\)\d)]7

m=1d=1
&)



where T = 0,,4, \g, pq represents all of the parameters of the
model. The complete-data log-likelihood of the data is defined
as

N
L(2n, ) =1n [ p(za|), (6)
n=1

where N represents total number of input points. For estimat-
ing parameter of the GTM-FS, here we present a variant of
the EM algorithm that uses the log space.

A. An EM Algorithm for GTM-FS using Log-Space

We propose a variant of the EM training algorithm for
GTM-FS that uses log space and is able to deal high-
dimensional data both for visualization and feature saliency
purposes. We use real to log-space transformations [36]. The
product of real-space values is equivalent to the sum of log-

space values
H T = Z log x;, @)

and the sum of real-space can be computed in log-space by

in — 1+ log Zexp(logxi —n) | =S5(x), ®)

where 17 = max; log x;. In the following derivation of the EM
algorithm the log superscripts are used to represent the values
in the log space.

In the EM algorithm of GTM-FS, the dth feature is consid-
ered to be relevant with probability p4: in that case, a mixture
component p(.|0,,4) is used to generate its value; otherwise a
common density represented by g(.|\g) is used.

We take y (the hidden class labels) and v4s to be the
missing variables. In the E-Step using the current parameters
T, posterior probabilities (i.e. Ry = P(yn = m|z,)) can
be calculated for the mth Gaussian component for each data
point as

D
Rt = [an+ X (5 (7 4 sl
d=1

(1= gl + qw%mndw))))]
©))

D
= Jom+ 32 (8 (6 + 9l
d=1

(1 pip?) + qw%xndw»))] .
Some of the terms used in equation (9) are defined in equations
(10) and (11).

2
log o _Umd * (mnd - Mmd)

+ log(\/oma) — log(2 x pi),

2
log _ 0a* (Tnd — Ha)
¢ (xpalra) = B E— an

+log(\/T;) —log(2 x ).

Based on the responsibility matrix R (as shown in equation
9)), the value Uypmg = P(vg = 1,y, = m|X,) can be
calculated which shows the importance (relevance) of the
nth pattern with mth component using the dth feature and
Viema = P(va = 0,y, = m|X,,) that shows the irrelevance
(noise) of the dth feature.

lo lo
Ungd =R,

+ plog + p'os (Tnd|Oma)
S(p'°9 + P19 (wnalbma), (1= piy?) + 09 (walAa)))
12)

Vamd = eXp(Rig%) - eXp(Ulo‘q )

nmd

13)

Now, during the M —step these posterior responsibilities are
used for estimating the weight matrix W by solving the
following set of linear equations for each feature,

¢ Gapiig = &7 exp(UL9) g, (14)

Where ¢ represents a M x K matrix, w, represents a K X
1 weight vector, U(liog is a M x M matrix calculated using
equation (12), x4 is a N x 1 data vector, and G4 is an M x M
matrix with elements
N
9mmd = eXP(S(U,l;:Zd))

n

15)

Where S represents a function of sum for log space values.
In this framework, g,,q is calculated in the log space (to
reduce rounding errors) and then transformed back to real
space to solve equation (14). Now, using this re-estimated W,
the centres of the mixture components in the data space can

be calculated using the mapping function
Meanby, = pim = $mW, (16)

where 11, represents a 1 x D vector. After updating the centres
for the mixture components in the data space, the variances
of the Gaussians for each feature can be calculated

04 = exp(SS(U, 4 +108](@na—pma) ]~ SS (U ). (17)

The parameters A of the common density ¢(znq|A\q) are
updated using a similar formula as in the original GTM-FS
algorithm

M@d = Zn(zm Vnmd)afnd

S Vora (18)
> N nm n _M/\)\ 2
Varig = 2n(Xm Vzd)(xvd cana) . (19)
nm Vnmd

The feature saliency parameters are updated during EM train-
ing as follows:

max (), Unmd — %, 0)

maX(Zn’rn Unmd - %7 O) + max(zn'rn Vnmd - %7 O) .
(20)
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IV. SOFTWARE ToOL

A well known framework for information visualization
system is Shneiderman’s mantra [37] which states: ‘Overview
first, zoom and filter, then details on demand’. Based on this,
a framework was proposed in [38] and a MATLAB-based tool,
Data Visualization and Modeling System (DVMS), was devel-
oped. It uses principled projection algorithms like PCA, GTM
and hierarchical GTM for dimensionality reduction combined
with information visualization techniques like scatter plots
and parallel coordinates. DVMS uses the MATLAB toolbox
NETLAB [39] for the machine-learning algorithms. First the
proposed framework performs dimensionality reduction from
high-dimensional data to two-dimensional space. The pro-
jected data can then be visualized using scatter plots to get an
overview of structure of the data. The system provides interac-
tive scatter plots by which the user can select any point from
the region of interest on the plot and a number of neighbouring
data points around the selected point: this group of points is
visualized using parallel coordinates, providing the user with
a more detailed view of data space. We recently re-designed
and re-developed DVMS to improve its usability using the
partially object-oriented facilities provided in MATLAB, and
have released this tool on our website'!. We have included
log-space versions of GTM and GTM-FS as part of this tool.

V. EXPERIMENTS
A. Dataset

The dataset we used for experiments is related to MHC
class-1. We downloaded a sequences of gene-A, gene-B and
gene-C alleles from the IMGT/HLA database [40] (releases
July 2011 for gene-A and November 2011 respectively for
gene-B and gene-C). According to the IMGT/HLA database
nomenclature!2, the HLA allele name has six parts of which
the first is HLA prefix, the second is gene name, the third
is allele group, the fourth is specific protein id, the fifth is
synonymous DNA substitution in the coding region and the
sixth contains codes to represent the differences in the non-
coding region along with a suffix to express changes in the
expression. At first we excluded all those sequences which
have ‘N’13 or ‘L’'* or ‘Q’" as suffix at the end of the
sixth part of the allele name. Secondly, from the rest of the
allele set we have considered only those protein sequences
that either have only one known DNA substitution within the
coding region or if there is more than one DNA substitution,
only the sequence with maximum length was considered. So,
we modeled 1,236 proteins for gene-A, 1,779 for gene-B
and 929 for gene-C, using homology modeling with three
reference proteins, as in [41], retrieved from the RCSB protein
database. For polymorphic residues, side chain placement was
performed using SCWRL4 [42]. All structures of gene-B and

Uhttp://www.aston.ac.uk/ncrg
12http://hla.alleles.org/announcement.html

13Null’, representing an allele which is not expressed.
l4representing a sequence with low cell surface expression.
Brepresenting sequences that are questionable.

gene-C were super-positioned on one of the structures of
gene-A based on the C-Alpha carbon atom. For computing
electrostatic potentials using the APBS tool, protein structures
(in PDB format) were surrounded by a three-dimensional grid
box with 173 grid points placed on the target region. We used
electrostatic potentials calculated at the top region of ol and
a2 chains with 9 x 172 = 2601 grid points (as shown in
Figure 2). We are interested to analyze electrostatic potential
values outside the van der Waals surface of proteins and
therefore we ignored electrostatic potential values of all points
which were inside the van der Waals surface of all the target
set of proteins. The number of dimensions we considered for
a set of alleles of gene-A, gene-B, gene-C, and all three genes
combined datasets are given in Table I. Figure 2 shows a
protein structure with the bounded box on the target region. We
considered electrostatic potential at all those grid points which
are outside the top surface of all the proteins in a given set,
resulting in different numbers of points in different datasets
(see Table I). The purpose of our analysis is to identify group
of similar proteins based on the similarities of electrostatic
potential around the top surface of MHCs that is exposed to
T cell Receptor (TCR), and to identify supertypes.

Gene No of Protein Structures | Target Region

Grid Points
A 1,236 2,369
B 1,799 2,382
C 929 2,388
A, B and C 3,944 2,418

TABLE I
SUMMARY OF PREDICTED STRUCTURES WITH TARGET REGION
DIMENSION.

Fig. 2. Three-dimensional structure of protein HLA-A-0001-01-01-01-01
with grid points (orange dots) around the target region of protein. Grid points
shown are outside the van der Waals surface.

We normalized the data using a linear transformation (Z-
score transformation) to maintain similar ranges for all vari-
ables and both the variants of the GTM and GTM-FS algo-
rithm were trained using M = 64 latent-space grid points.
For projection purpose we used proposed variants of GTM
(log-space) and GTM-FS (log-space) instead of using standard
GTM and GTM-FS to avoid numerical problems that can raise
due to the high dimensionality of the data. Standard GTM
and GTM-FS have shown numerical problems partially on



the dataset of dimension greater than 200 and fully on the
dimensions greater than 500. Projection of gene-A, gene-B and
gene-C datasets are shown in Figure 3, Figure 4 and Figure 5
using both proposed variants (GTM (log-space version) and
GTM-FS (log-space version)) respectively. Projections of the
combined dataset of gene-A, gene-B, and gene-C are shown
in Figure 6(a) and Figure 6(b) using GTM (log-space ver-
sion) and GTM-FS (log-space version) respectively. A feature
saliency plot for the combined dataset of gene-A, gene-B and
gene-C is shown in Figure 7(a) which explains saliency of each
feature in the dataset. The plot is bit cluttered due to the large
number of dimensions and it can be observed from the plot
that most of the features have high saliency for the dataset of
MHC class 1. For further exploration of these plots, interactive
functions are supported by DVMS to help users to select dense
areas to identify clusters or outliers either by drawing a polyg-
onal region of interest or selecting the k-nearest-neighbours
(based on Euclidean distance in the latent space) around a user-
selected point. The interactivity function is shown in Figure
7(b) to explain both the region selection methods (i.e. polygon
region and K-nearest neighbours region).

(a)

(b)

Fig. 3. Projection of Gene-A dataset. (a) GTM (Log-space version). (b)
GTM-ES (Log-space version).

B. Kullback-Leibler (KL) divergence

We compared the proposed variants of GTM and GTM-
FS on the combined dataset of gene-A, gene-B and gene-
C using Kullback-Leibler (KL) divergence as a measure of
class dissimilarity. We prefer projections in which these gene
classes are separated. To compute this dissimilarity measure,
we first built a Gaussian mixture model [43] (GMM) with
18 Gaussian mixture components on the projected data of
each three classes separately and then calculated the Kullback-
Leibler (KL) divergence [44] between classes using these

(a)

(b)

Fig. 4. Projection of Gene-B dataset. (a) GTM (Log-space version). (b)
GTM-ES (Log-space version).

(b)

Fig. 5. Projection of Gene-C dataset. (a) GTM (Log-space version). (b)
GTM-ES (Log-space version).

GMMs

Dicr(pallpn) = Y pal) log f}— 21)

where p, and p, are GMMs for the classes A and B. We
sum up the KL divergences for all pairs of classes and the
results are shown in Table II. Higher values of KL divergence
represents better separation between classes. The novel vari-
ances of GTM are also compared with other linear/non-linear



(b)

Fig. 6. Projection of combined dataset (Cyan color dots (*.”) for gene-A, red
positive sign (‘+’) for gene-B and blue squares (‘0") for gene-C). (a) GTM
(Log-space version). (b) GTM-FS (Log-space version).

(d)

Fig. 7. Feature Saliency and Projection of combined dataset. (a) Feature
saliency plot (b) GTM-FS (Log-space version) showing selection on the plot
using interactive tool.

projection algorithms: PCA, Neuroscale [45] (NSC), Gaussian
Process Latent Variable Model [46] (GPLVM).

We also computed other projection quality measures such
as trustworthiness and continuity [47], range from O to I,
taking 20 nearest neighbours. Higher values represents better
neighbourhood preservation and the results in Table II show
that GTM gives better neighbourhood preservation than of

GTM-FS and other algorithms.

Algorithm | KL divergence | Trustworthiness | Continuity
GTM

log-space

version 124.4432 0.8306 0.8407
GTM-FS

log-space

version 87.7051 0.7321 0.7957
GPLVM 16.0828 0.7171 0.7972
Neuroscale 20.3281 0.7061 0.8197
PCA 16.6686 0.6964 0.7961

TABLE II

VISUALIZATION QUALITY MEASURES.

VI. DISCUSSION

Both proposed variants of GTM and GTM-FS have yielded
similar visual representations for all the datasets. Figures 3(a),
4(a), 5(a) and 6(a) show all the latent-grid centres with
tight clusters around latent space grid points. On the other
hand, Figures 3(b), 4(b), 5(b) and 6(b) show some diagonal
structures in all the datasets.

The advantage of using GTM-FS is that the feature salien-
cies can be calculated during the training process. The KL
divergence, trustworthiness and continuity measures of GTM
(log-space version) are higher (as shown in Table II) than
the GTM-FS (log-space version) and other algorithms, which
shows that GTM gives much better separation between classes
and maintains better neighbourhood preservation. In both the
plots (Figure 6) there are three major groups (or clusters):
the first (the top right corner) where alleles of gene-C are
shown as separate cluster(s) from gene-A and gene-B alleles,
the second (the bottom area from centre to left) where gene-A
alleles have a separate cluster from gene-B and gene-C alleles
and the third (the diagonally central region from top left to
bottom right) where gene-B alleles are maximum in number
with few regions with some alleles of gene-A and gene-C.
Interactivity on these plots helps users to identify and select
regions to generate list of IDs for the alleles in the specified
region.

VII. CONCLUSION

In this paper we proposed variants of the non-linear projec-
tion methods of GTM and GTM with simultaneous feature
saliency (GTM-FS) to visualize high-dimensional datasets
in a low-dimensional space. Our proposed variants use a
transformation from real space to log space and vice versa at
certain steps of the EM algorithm for training the parameters
and during visualization process in order to avoid numerical
problems that arise due to the high dimensionality of the data.
We successfully tested both the proposed variants on the MHC
class-1 dataset (with more than 2000 dimensions). Both the
proposed algorithms have been incorporated into a visualiza-
tion tool (DVMS) that can be accessed freely online. We will
extend this approach to hierarchical GTM [48], a probabilistic
mixture-based hierarchical visualization algorithm.
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