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This multi-modal investigation aimed to refine analytic tools including proton 
magnetic resonance spectroscopy (1H-MRS) and fatty acid gas chromatography-mass 
spectrometry (GC-MS) analysis, for use with adult and paediatric populations, to 
investigate potential biochemical underpinnings of cognition (Chapter 1). Essential 
fatty acids (EFAs) are vital for the normal development and function of neural cells. 
There is increasing evidence of behavioural impairments arising from dietary 
deprivation of EFAs and their long-chain fatty acid metabolites (Chapter 2). 
Paediatric liver disease was used as a deficiency model to examine the relationships 
between EFA status and cognitive outcomes. Age-appropriate Wechsler assessments 
measured Full-scale IQ (FSIQ) and Information Processing Speed (IPS) in clinical and 
healthy cohorts; GC-MS quantified surrogate markers of EFA status in erythrocyte 
membranes; and 1H-MRS quantified neurometabolite markers of neuronal viability 
and function in cortical tissue (Chapter 3). Post-transplant children with early-onset 
liver disease demonstrated specific deficits in IPS compared to age-matched acute 
liver failure transplant patients and sibling controls, suggesting that the time-course 
of the illness is a key factor (Chapter 4). No signs of EFA deficiency were observed in 
the clinical cohort, suggesting that EFA metabolism was not significantly impacted by 
liver disease. A strong, negative correlation was observed between omega-6 fatty 
acids and FSIQ, independent of disease diagnosis (Chapter 5). In a study of healthy 
adults, effect sizes for the relationship between 1H-MRS- detectable neurometabolites 
and cognition fell within the range of previous work, but were not statistically 
significant. Based on these findings, recommendations are made emphasising the 
need for hypothesis-driven enquiry and greater subtlety of data analysis (Chapter 6). 
Consistency of metabolite values between paediatric clinical cohorts and controls 
indicate normal neurodevelopment, but the lack of normative, age-matched data 
makes it difficult to assess the true strength of liver disease-associated metabolite 
changes (Chapter 7). Converging methods offer a challenging but promising and 
novel approach to exploring brain-behaviour relationships from micro- to 
macroscopic levels of analysis (Chapter 8). 
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1 Exploring the biological basis of individual 
variation in cognitive ability 

 

1.1 Approaches to studying human intelligence differences 
 

This chapter provides a brief introduction to some of the approaches to studying the 

individual variation in cognitive ability and outlines the aims of this thesis. 

 

The wide ranging variability in cognitive ability found in human beings results from 

differences in brain functioning, differences in the exploitation of learning opportunities 

provided by the environment, and from interactions between the brain and the 

environment (Angoff, 1988; Ceci and Williams, 1999; Sternberg, Lautrey et al., 2003). 

Individual differences in intelligence are typically measured using psychometric tests, 

which cover cognitive domains such as reasoning, processing speed, executive function, 

memory and spatial ability. The term ‘general intelligence’ or ‘g’ (interchangeable with 

IQ) (Spearman, 1927), recognises that people who perform well in one domain of 

psychometric assessment also tend to perform well in the others (Chabris, 2006; Deary, 

2001; Deary, Penke et al., 2010; Neisser, Boodoo et al., 1996). Figure 1-1, adapted from 

Deary, Penke et al. (2010) illustrates the high associations between g and five principal 

cognitive domains putatively assessed with psychometric measures. 

 

 

Figure 1-1 The hierarchy of intelligence differences, adapted from Deary, Penke et al. (2010) 
The diagram shows the high inter-relatedness of different cognitive domains putatively assessed with 
psychometric measures. Data is based on 33 studies conducted by (Salthouse, 2004) comprising 7,000 

participants from age 18–95.  

 

Maclullich, Seckl et al. (2003) suggested that validating the construct of intelligence and 

cognitive abilities involves, in part, discovering associations between more basic 

cognitive constructs and individual differences in psychometric test scores. This type of 

reductionism is realised in two broad approaches: (1) the relationships between tests of 
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psychometric intelligence and basic information processing tests, such as reaction times 

and inspection time, which are used to discover the extent to which putatively 

fundamental cognitive components account for variance in broader IQ-type measures 

(Vernon, 1983); and (2), more biological approaches, such as the relationships between 

tests of psychometric intelligence and measures of brain structure and function 

(Garlick, 2002; Gray and Thompson, 2004; McDaniel, 2005; Thompson, Cannon et al., 

2001; Toga and Thompson, 2005). 

 

Investigations into the bases of human intelligence differences can thus be separated 

into two broad groups: cognitive correlates and biological bases (Figure 1-2, page 19, 

adapted from Deary and Caryl (1997)). ‘Differential psychology’ is the general term for 

research that seeks to accurately describe cognitive and personality traits and discover 

the real-life impact of trait differences, whilst ‘differential neuroscience’ is the term 

more specifically concerned with research investigating the biological bases of 

quantitative intelligence differences (Deary, Penke et al., 2010). 

 

These two approaches can be considered as looking at intelligence on different levels. 

The cognitive (differential psychology) approach is a factor-driven strategy, which 

identifies the cognitive components that give rise to differences in human abilities and 

how these are related to one another, without necessarily revealing the causes or 

consequences of these differences. The biological (differential neuroscience) approach 

uses more of a constructivist account by understanding the underlying differences in 

brain structure and function that provide a scaffold for variation in cognitive skills 

across the population. In Figure 1-2 the asterisks indicate the normally assumed 

(reductionistic) direction of causation of intelligence differences, but Deary and Caryl 

(1997) stressed that these relationships are not unidirectional; the direction of 

causation could be reversed, or individual differences in both variables might be caused 

by a third variable. 
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Figure 1-2 Research on human intelligence differences, adapted from Deary and Caryl (1997). 

Approaches to investigations of intelligence can be divided into those seeking cognitive correlates and 
those seeking the biological bases of variation in cognitive abilities. The asterisks indicates the normally 

assumed (reductionistic) direction of causation of intelligence differences. 

 

Cognitive and biological approaches can be used together in a mutually informative 

way. Developments in the accuracy, resolution, versatility and accessibility of 

psychological assessment methods and neuroimaging technologies are advancing the 

study of the neurophysiological basis of individual variation in cognitive ability in 

normal individuals, with increasing precision (Deary, 2001; Deary, Penke et al., 2010; 

Haier, 2009; Jung and Haier, 2007; Matarazzo, 1992).  

 

The challenge, however, is to specify the appropriate functional outcome to be 

measured. In the interests of hypothesis-driven inquiry, the most productive approach 

is to measure an outcome known to be associated with a particular biochemical 

pathway or mechanism. The investigation of information processing speed (IPS) has, for 

example, been integral to the study of individual differences in cognitive ability and goes 

back to early notions by Galton (1883) (in Sternberg, Lautrey et al., 2003), who 

attempted to measure reaction time and diverse sensory and motor variables in relation 

to independent indicators of accomplishment or intelligence. 
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Salthouse (1996) suggested that a basic parameter such as speed is directly related to 

biological factors and is essential for higher order cognitive processing. Vernon (1983) 

asserted that a large part of the variance in g is attributable to variance in speed and 

efficiency of execution of a small number of basic cognitive processes. The existence of a 

unitary intelligence factor is in itself, however, a matter of some debate (Kranzler and 

Jensen, 1997). The strength of the relationship between processing speed and 

intelligence is also debateable (Neisser, Boodoo et al., 1996); processing speed cannot 

substitute psychometric intelligence or g as it is not identical with intelligence (Chabris, 

2006; Deary and Caryl, 1997). Reed and Jensen (1992) suggest that in theory, inter-

individual differences in speed of information processing could be due to differences in 

brain (cerebral cortex) structure, average cortical nerve conduction velocity (NCV), 

average cortical speed of synaptic transmission, or most likely, to differences in all of 

these.  

 

Whilst the functional organisation of neurons is vital to the study of cognitive function 

(van den Heuvel, Stam et al., 2009), an investigation of inter-individual variation in the 

biological properties of neurons and the physiology of neuronal cell membranes is likely 

to provide information about the mechanisms of information processing in the brain, 

and provide some suggestions as to the cause of individual differences in the ability to 

process this information. 

 

1.2 Applying an integrative multi-modal approach 
 

The process of effectively describing complex phenomena such as cognitive ability and 

putative biological bases poses a considerable challenge. A multitude of terms have 

been used to describe combinatorial approaches, including integration, synthesis, multi-

method and mixed-methods, but these can be generally described as the integration of 

more than one method or data source to investigate a phenomenon (Creswell, 2003). 

Combinations of methods can provide advantages at different levels of analysis in the 

spectrum from molecule to man, and triangulation can be used as means to gain 

multiple perspectives on complex phenomena and produce a more complete picture. 
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1.3 Aims 
 

1.3.1 General aims 
 

Using a multi-modal approach, the present set of studies aimed to develop and refine 

analytic tools for biochemical assays, for use with both adult and paediatric populations. 

The main aim was to investigate some of the potential biochemical underpinnings of 

cognition, relating neural, systemic and behavioural levels of analysis. 

 

At the systemic level, quantification of fatty acid biomarkers in erythrocyte membranes 

with gas chromatography-mass spectrometry (GC-MS) provides surrogate markers for 

cortical fatty acid levels, allowing the study of the cognitive effects of variation in 

phospholipid cell membrane composition. At the neural level, proton magnetic 

resonance spectroscopy (1H-MRS) enables non-invasive, in vivo analysis of brain 

metabolism and offers a way of investigating the strength of relationships between 

biochemical markers of neuronal viability and cognitive ability. Figure 1-3, page 22 

provides an overview of the converging methods approach of the current work 

investigating potential biochemical correlates of cognition. 
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Figure 1-3 The converging methods approach used in the present study 
Quantification of fatty acid biomarkers and 1H-MRS-detectable neurometabolites enables the 

investigation of specific biochemical properties of neuronal function which may underlie variability in 
performance of psychometric measures of intelligence and processing speed. 

 

1.3.2 Specific aims  
 

A deficiency of essential fatty acids (EFAs), which are crucial for normal neural function 

and development, is common in children with liver disease. Liver disease and 

subsequent liver transplantation provide models to answer questions of whether: 

 

1. Sub-optimal concentrations of essential fatty acids, as a result of fat 

malabsorption or dependence on inadequate dietary sources, is associated with 

deficits in cognitive ability. 

2. 1H-MRS-detectable metabolites can provide surrogate markers of sub-clinical 

changes in neuronal viability. 
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To answer these questions, the aims were to: 

 

1. Measure and evaluate the range of fatty acid concentrations in cross-sectional 

cohorts of children with a variable onset of liver disease, pre- and post-liver 

transplant. 

2. Provide a set of convergent measures for assessing the impact of potential EFA 

deficiency in paediatric liver disease. 

3. Determine if/how cognitive function is related to fatty acid status. 

4. Characterise surrogate measures of neural viability and health using 1H-MRS and 

assess the relationships between 1H-MRS-detectable metabolites and cognitive 

ability in both a healthy and clinical population. 

 

1.4 Summary of chapters 
 

Chapter 1 introduced the framework for investigating the biological bases of cognitive 

ability and outlined the approach and aims of the present study. 

 

Chapter 2 provides an overview of the physiological importance of EFAs and the 

potential mechanisms that may impact cognitive function. 

 

Chapter 3 provides descriptive data for the clinical patient population and outlines the 

three converging analytical methods used: psychometric assessments, GC-MS for 

assessment of fatty acid status, and 1H-MRS for analysis of in vivo brain biochemistry. 

 

Chapter 4 investigates the impact of the time-course of liver disease and subsequent 

liver transplantation on cognitive ability. 

 

Chapter 5 investigates the effect of paediatric liver disease on EFA status and the 

relationships between levels of omega-6 and omega-3 fatty acids and cognitive ability. 

 

Chapter 6 examines the use of 1H-MRS as a tool for assessing brain tissue composition in 

vivo and the relationships between 1H-MRS-detectable neurometabolites and cognitive 

ability in a healthy adult cohort. 
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Chapter 7 explores the ability of 1H-MRS-detectable metabolites to provide surrogate 

markers of subclinical changes in neuronal viability in paediatric liver disease, and 

whether levels of these markers can be related to cognitive function.  

 

Chapter 8 summarises the main findings and their implications, offers suggestions of 

future directions of work motivated by this study, and concluding remarks. 
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2 Essential fatty acids and the brain 
 

The adult brain contains approximately 50–60% of its dry weight as lipid and is 

exceeded only by adipose tissue in its concentration of fatty acids (Yehuda, Rabinovitz 

et al., 1999). High levels of fatty acids are found in cellular membranes and the myelin 

sheath of the cortex, which are composed of 50% and 70% of fatty acids respectively 

(Yehuda, Rabinovitz et al., 2005) and they appear to be vital to the structure and 

function of neural tissue. The nature of essential fatty acid (EFA) metabolites, and their 

importance and function in the brain, are described in this chapter. 

 

2.1 Common fatty acids and nomenclature 
 

Fatty acids are major components of brain lipids. They consist of hydrocarbon chains of 

different lengths, terminating in a methyl group at one end and a carboxyl group at the 

other (see Figure 2-1). Most naturally occurring fatty acids consist of an even number of 

carbon atoms. The number of intermediate carbon atoms vary and as such, fatty acids 

chains can be classified as short (2–4 carbon atoms), medium (4–6) or long (6–10 and 

greater). 

 

 

 

Figure 2-1 The basic structure of a fatty acid 

 

The term ‘saturation’ refers to a chemical structure in which each carbon atom in the 

fatty acyl chain is bound to (‘saturated with’) four other atoms. Saturated fatty acids 

have no double bonds, mono-unsaturated fatty acids have one double bond and 

polyunsaturated fatty acids have two or more (see Figure 2-2, page 26). For example, 
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oleic acid (18:1) has 18 carbon atoms and one double bond. The location of the first 

carbon atom, where the first double bond appears when counting from the methyl end 

of the molecule, is designated by the omega or n number. The main types of 

polyunsaturated fatty acyl chains found in mammalian membrane lipids can be 

categorised into three main families based on the location of the first double bond, 

namely n-3, n-6 and n-9 (see Figure 2-2). 

  

 

 

Figure 2-2 Examples of structural formulas for omega-9, -6 and -3 fatty acids 

 

2.2 Fatty acid biosynthesis 
 

The availability of EFA precursors and the action of metabolic enzymes are crucial to 

the synthesis of highly polyunsaturated fatty acids (PUFAs). The mechanisms of fatty 

acid metabolism have been reviewed in depth by Sprecher (2000) and will be briefly 

summarised here.   

 

Higher animals are unable to synthesise de novo neither omega-6 or omega-3 long-chain 

PUFAs as they lack the capacity to introduce double bonds at the n-6 and n-3 positions 

from the carbonyl end of oleic acid (Calvani and Benatti, 2003). As such, they are 

dependent on dietary sources of EFA precursors, such as linoleic acid (LA, 18:2n-6) and 

α-linolenic acid (ALA, 18:3n-3), to meet their physiological needs for these families of 

fatty acid (Simopoulos, 2000; Sprecher, 2000). Figure 2-3, page 27, adapted from de 

Groot (2003), is a schematic representation of the major pathways of fatty acid 

metabolism and illustrates the synthesis of long-chain PUFAs. Table 2-1, page 28, lists 

the principal fatty acids with their common, chemical and abbreviated designations. 
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Figure 2-3 Schematic representation of the major pathways of fatty acid metabolism, adapted 
from de Groot (2003) 
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Table 2-1 Fatty acids with their common, chemical and abbreviated designations 

Common name Abbreviation Systematic name 
Omega-
reference 

Omega-9 

 Mead 
 

all-cis -5,8,11-eicosatrienoic 20:3n-9 

 Omega-6 

Linoleic LA cis,cis-9,12-octadecadienoic 18:2n-6 

γ-linolenic GLA all-cis-6,9,12-octadecatrienoic 18:3n-6 

dihomo-γ-linolenic DGLA cis,cis,cis--8,11,14-eicosatrienoic 20:3n-6 

arachidonic AA all-cis-5,8,11,14-eicosatetraenoic 20:4n-6 

Osbond 
 

all-cis-4,7,10,13,16-
docosapentaenoic acid 

22:5n-6 

Omega-3 

α-linolenic ALA all-cis-9,12,15-octadecatrienoic 18:3n-3 

eicosapentaenoic EPA 
all-cis-5,8,11,14,17-
eicosapentaenoic 

20:5n-3 

clupanodonic DPA 
all-cis-7,10,13,16,19-
dicosapentaenoic 

22:5 n-3 

docosahexaenoic DHA 
all-cis-4,7,10,13,16,19-
docosahexaenoic 

22:6n-3 

 

Saturated fatty acids can be synthesised de novo from Acetyl coenzyme A. The liver is 

the most important organ for such synthesis, which takes place both in mitochondria 

and in the endoplasmic reticulum. Reactions are catalysed by several enzymes that form 

a multi-enzyme complex known as fatty acid synthetase. The end product of these 

reactions would normally be palmitic acid (16:0). Double bonds are formed in 

desaturation reactions catalysed by a site-specific enzyme, represented by Δ. The 

numbering for the site of action of these enzymes is taken from the position of the 

double bond in relation to the carboxyl end of the molecule. 

 

LA and oleic acid compete for the same Δ6-desaturase in the metabolic cascade. The 

desaturase enzymes show a preference for the different fatty acid series, in descending 

order from n-3 to n-6 to n-9. Oleic acid is not an EFA, as in animals, including humans, 

there is the capacity to introduce a double bond, or desaturate at the Δ9 position in 

saturated stearic acid. There is little requirement for saturated fatty acid synthesis in 

humans because the dietary supply is usually adequate. 
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Omega-6 and omega-3 fatty acids share metabolic pathways (see Figure 2-3, page 27) 

and thus interact with each other through a complex system involving several factors: 

dietary substrate availability, competition for the same metabolic enzymes for synthesis 

and membrane incorporation, and negative feedback of the end products.  

 

2.2.1 Omega-6 fatty acid synthesis 
 

In the omega-6 pathway, LA is converted to γ-linolenic acid (GLA, 18:3n-6), a positional 

isomer of ALA. GLA, in turn, can be converted to the longer chain arachidonic acid (AA, 

20:4n-6). The activity of the desaturation/elongation pathway in the liver is the most 

important in terms of supply of long-chain omega-3 PUFAs to other tissues. The initial 

conversion of ALA to stearidonic acid by the action of Δ6 desaturase is the rate-limiting 

reaction of the n-3 pathway. The activity of the Δ6-desaturase is slow and can be further 

compromised by nutritional deficiencies and inflammatory conditions. Therefore, the 

maximal capacity for synthesis of AA occurs with GLA, the product of the Δ6-desaturase. 

GLA is converted to dihomo-γ-linolenic acid (DGLA) and then to AA. Like the Δ6-

desaturase, the activity of the Δ5-desaturase is limiting in AA synthesis and its activity is 

also influenced by diet and genetic factors (Simopoulos, 2010). The metabolic pathway 

of omega-6 fatty acid synthesis is illustrated in Figure 2-4. 

 

 

Figure 2-4 The metabolic pathway of omega-6 fatty acid synthesis.  
FADS: Fatty acid desaturase enzymes (1 and 2) which are responsible for catalysing the conversion of 

fatty acids. 

FADS2 

FADS1 
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2.2.2 Omega-3 fatty acid synthesis 
 

The introduction of a double bond at the Δ6 position is followed by the addition of two 

carbons by elongation and then by desaturation at the Δ5 position by Δ5 desaturase to 

form EPA. DPA (22:5n-3) is synthesised from EPA by the further addition of two 

carbons, and is then converted into DHA (22:6n-3) by further chain elongation, Δ6-

desaturation and peroxisomal β-oxidation. The metabolic pathway of omega-3 fatty acid 

synthesis is illustrated in Figure 2-5. All reactions occur in the endoplasmic reticulum, 

with the exception of the final reaction, which results in the formation of DHA. Although 

ALA can serve as the precursor for EPA and DHA synthesis in humans, the rate of 

conversion of dietary ALA to DHA in the body is very low (Pawlosky, Hibbeln et al., 

2001), and varies between individuals. Therefore, direct dietary intake of omega-3 fats 

rich in EPA and DHA is of the most benefit to compensate for the potentially suboptimal 

levels derived solely from endogenous metabolism of ALA precursors. 

 

 

 
Figure 2-5 The metabolic pathway of omega-3 fatty acid synthesis.  

FADS: Fatty acid desaturase enzymes (1 and 2) which are responsible for catalysing the conversion of 

fatty acids. 

 

FADS2 

FADS1 
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2.2.3 Recommended and actual dietary intake of essential fatty acids 
 

It is now accepted that it is important to consider the functions of the different types of 

fatty acids (omega-3, -6, and -9) rather than simply the amount of total fat or 

polyunsaturated fat. Fatty acids other than the EFAs can be synthesised endogenously, 

however, the major source is from dietary fat, which accounts for 25–50% of the energy 

content of most diets (Heird and Lapillonne, 2005). 

 

Healthy adults have approximately 1kg of LA stored in adipose tissue, yet adipocytes 

contain hardly any ALA or long-chain PUFAs (LCPUFA). Recommendations regarding 

adequate dietary intake of EFA and LCPUFA (generally expressed as g/day–1 or as a 

percentage of total energy intake), are highly variable between countries, and vary with 

age (i.e. with adipose tissue stores and growth rate). The International Society for the 

Study of Fatty Acids and Lipids (ISSFAL) has produced a number of statements which 

deal with recommendations for dietary intake of PUFAs throughout life, which are 

summarised in Figure 2-6, adapted from Alessandri, Guesnet et al. (2004).  

 

 

 

Figure 2-6 Recommended dietary intakes for omega-3 fatty acids (g/day), adapted from 
Alessandri, Guesnet et al. (2004). 
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The estimated daily intake of omega-3 PUFA in western countries varies greatly, 

ranging between an intake of 15/1 to 16.7/1 omega-6 to omega-3, compared to a ratio 

of closer to one based the diets humans evolved eating (Simopoulos, 2000). DHA intakes 

largely depend on fish consumption, which can differ greatly between countries (Welch, 

Lund et al., 2002), and has been related to the quality and length of education and 

degree of attention paid to maintenance of a healthy diet (Johansson, Solvoll et al., 

1998).  

 

The nutritional demands for DHA in healthy adults are likely to be modest, as they 

reflect principally the need to supply DHA to support turnover and re-synthesis of cell 

membranes. The actual intake is often under the recommended amount, for example, 

the mean intake of ALA rarely reaches that which is recommended (Johansson, Solvoll 

et al., 1998). Table 2-2 summarises the various international recommendations on 

dietary PUFA intake (ISSFAL, 2010), which include an intake of 2% of total energy 

intake for LA and 0.7% for ALA for adults. 

 

Difficulty in estimating recommended intakes, particularly for infants, arises from three 

principal issues identified by Gibson and Makrides (2000). Firstly, LCPUFAs can be 

synthesised from precursor fatty acids; secondly, plasma omega-3 LCPUFA 

concentrations representing deficiency and sufficiency are not clearly defined; thirdly, 

there are currently no recognised clinical tests for omega-3 LCPUFA deficiency and 

sufficiency. 

 

The importance of breast milk as the sole natural source of omega-3 fatty acids, as well 

as the omega-6 fatty acids to support the growth and development of the breastfed 

infant, is well documented (Innis, 2000; Innis, 2004; Innis, 2007; Koletzko, Agostoni et 

al., 2001; Koletzko, Lien et al., 2008). Breast milk from women following western diets 

generally contains 10% to 17% LA, 0.8% to 1.4% ALA, 0.3% to 0.7% AA, and 0.1% to 

0.5% DHA (Innis, 2003). Concentrations are largely dependent on maternal dietary 

intake (Innis, 2004) and varies with dietary habits and geographic region (Yuhas, 

Pramuk et al., 2006). For example, DHA can be up to 1% of total milk lipids in cases 

where fish is a major food source. 
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The IFFSAL report summarises the general consensus that the total fat content of infant 

formulas falls within a range of 4.4–6.0 g/100 kcal (equivalent to about 40–54% of 

energy content), which is a value consistent with that typically found in breast milk, and 

which is taken as the gold standard. A summary of recommendations for EFA intake for 

full-term infants is found in Table 2-2, page 34, adapted from (ISSFAL, 2008). For LA, 

the level accepted in formulas ranges from around 6% to as much as 25–30% of total 

fatty acids. In general, the minimum acceptable level of LA is around 3% of total energy. 

The low level of ALA in breast milk (usually less than 0.2% of total fat) has prompted 

agencies to make recommendations for minimum requirements.  
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Table 2-2 Summary of the international recommendations on dietary polyunsaturate intake, 
adapted from ISSFAL (2010) 

Source Date 
n-6:n-3 

ratio 

Other specific 
recommendations (%en = 
percentage of daily energy 

intake) 

National Nutrition Council 
of Norway 

1989 none 
0.5%en n-3 LCPUFA (1-2g 
/day) 

NATO workshop of -3/-6 1989 none 
0.8g/day EPA/DHA 
(0.27%en) 

Scientific Review 
Committee of Canada 

1990 5:1-6:1 n-3 at least 0.5%en 

British Nutrition 
Foundation Task-force 

1992 6:1 EPA 0.2-0.5%en; DHA 0.5%en 

FAO/WHO Expert 
Committee on Fats and Oils 
in Human Nutrition 

1994 5:1-10:1 
Consider pre-formed DHA in 
pregnancy 

UK Committee on Medical 
Aspects of Food Policy 
(COMA) 

1994 none 
Minimum intake EPA/DHA 
200mg/day 

Ad Hoc Expert Workshop 2000 none 
EPA+DHA -.03%en; 
0.65g/day minimum 

France: AFFSA, CNERNA & 
CNRS 

2001 5:1 
500mg n-3 LCPUFA/day; DHA 
120mg minimum 

US National Academy of 
Science/ Institute of 
Medicine 

2002 none 130-260mg EPA+DHA/day 

American Heart Association 2002 none 
If no coronary heart disease, 
eat oily fish twice a week 

UK Scientific Advisory 
Committee on Nutrition 
(SACN) 

2004 none 
Minimum intake EPA/DHA 
450mg/day 

ISSFAL 2004 none 500mg n-3 LCPUFA/day 

Australia and New Zealand 
Government 
Recommendations 

2005 none 
LC n-3 for men: 160mg/day; 
for women: 90/mg/day 

Superior Health Council of 
Belgium 

2006 none 
Minimum 0.3%en EPA+DHA 
for adults 

Health Council of the 
Netherlands 

2006 none 450mg n-3/day 
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2.3 Physiological functions of EFAs 
 

The cell membrane provides structure for cells and organelles.  For neuronal cells, it 

maintains the internal and external physiochemical properties fundamental to the 

propagation of action potentials and the general functioning of the cell (Alberts, 2002). 

Mammalian cell membranes consist of a bilayer composed primarily of lipids 

(phospholipids and cholesterol) embedded with protein receptors, transporters, and 

enzymes. Figure 2-7, adapted from Sum (2005), provides a schematic representation of 

the phospholipid membrane that encapsulates all mammalian neurons. 

 

 

 

Figure 2-7 Schematic representation of a phospholipid cell membrane, adapted from Sum (2005) 

 

Phospholipids are one of the principal lipid components of the membrane. Each 

phospholipid has a glycerol 3-carbon backbone with a phosphorous attached at the 3 

position, to which one of five possible ‘head’ groups are attached (choline, 

ethanolamine, inositol, glycerol and serine). These five types of phospholipid make up 

over 80% of total phospholipids (Reddy, Keshavan et al., 2004). A more detailed 

account of the structure of the various phospholipid species is provided by Christie 

(1982). Each phospholipid type consists of a large number of fatty acid chains, attached 

to the 1- and 2-carbon atoms in the glycerol backbone, which governs the functional 

properties of the phospholipid, such as its conformational shape (see Figure 2-8). 
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Figure 2-8 Schematic illustrating phospholipid membrane fluidity conferred by LCPUFAs, adapted 
from Nelson and Cox (2000) 

Red squares signify double bonds which result in a ‘kinked’ structure 

 

As an integral component of cell membranes, fatty acids exert a multitude of effects not 

only on phospholipid membrane structure and function, but also on enzymes and 

receptors embedded in the membrane and through localised action as precursors for 

localised hormone-like factors. Some of these effects are briefly described below. 

 

2.3.1 Membrane fluidity 
 

Both the chain length and the number of double bonds of the fatty acyl chains that 

constitute membrane phospholipids have substantial and significant effects on the 

dynamic properties of the membrane, such as its fluidity, permeability and rigidity 

(Hac-Wydro and Wydro, 2007). Saturated fatty acids, for example stearic acid (18:0), 

have straight carbon chains that cause relatively solid regions in the membrane. In 

contrast, PUFAs, such as oleic acid (18:1n-6), LA (18:2n-6) and ALA (18:3n-3), have a cis 

configuration at each double bond that produces ‘coiling’ of the hydrocarbon backbone 

resulting in a reduction in fatty acid length and a more curved, or ‘kinked' structure that 

increases the fluid properties of the membrane (Figure 2-8, adapted from Nelson and 

Cox (2000)). DHA (six double bonds) and EPA (five double bonds) confer the greatest 

level of fluidity from the major membrane fatty acids (Feller, Gawrisch et al., 2002; 

Gawrisch, Eldho et al., 2003). As a rule, the more fluid a membrane, the more efficient its 

biochemical performance (Else and Hulbert, 2003).  
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Alterations in the fluid properties of the lipid membrane can affect the conformation of 

integral membrane proteins which in turn modulates their function. The most detailed 

characterisation of direct PUFA–protein interactions comes from studies on rhodopsin 

(Grossfield, Feller et al., 2006), which show that DHA acyl chains specifically bind to the 

protein and directly modifies its conformational state. 

 

2.3.2 Myelination 
 

The myelin sheaths surrounding axons of the central and peripheral nervous systems 

are specialised extensions of glial cells, with unique morphological and biochemical 

properties related to axon protection and impulse conduction. The integrity of the 

myelin is of the utmost importance for the proper functions of axons in the nervous 

system. Myelination improves the connectivity of the brain, facilitating the synchronous 

integration of information across the many spatially segregated associative neocortical 

regions involved in higher cognitive functions (Nicholls, Martin et al., 2001). 

 

Lipids constitute around 70% of the myelin sheath, and dietary fatty acids are positively 

involved in the control of myelinogenesis (Di Biase and Salvati, 1997). During 

maturation, a shift from short chain saturated fatty acids to the long chain unsaturated 

forms has been observed (O'Brien and Sampson, 1965; Svennerholm, Vanter et al., 

1978). In rats fed with diets rich in polyunsaturated omega-3 fatty acids, decreases in 

the relative amount of myelin basic protein (MBP) and a CNPase activity indicate a delay 

in myelin deposition and/or an instability of its structure (Di Biase and Salvati, 1997), 

whilst acceleration of myelinogenesis can also be induced by dietary lipids (Salvati, 

Sanchez et al., 1996). 

 

2.3.3 Ion Channels 
 

Fatty acids are important direct modulators of ion function, both through modulation of 

membrane parameters such as fluidity (Leaf, Xiao et al., 2002), but also through direct 

action on channel proteins (Ordway, Singer et al., 1991; Tillman and Cascio, 2003). It is 

not only the presence of specific lipids, but the particular combination of lipids which 
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are necessary for ion channels to exhibit native properties (le Maire, Champeil et al., 

2000).  

 

For example, Ehringer, Belcher et al. (1990) have shown that DHA has a more 

pronounced effect on membrane ion permeability than LA, despite largely similar 

effects of both fatty acids on membrane fluidity. In terms of direct action on ion 

channels, DHA has been shown to have a facilitatory effect on NMDA-glutamate 

receptors in rat pyramidal neurons (Nishikawa, Kimura et al., 1994), whilst in CA1 

neurons isolated from the rat hippocampus, both EPA and DHA had an inhibitory effect 

on sodium and calcium currents by inducing a shift in the inactivation response 

observed in more negative potential membranes (Verlengia, Gorjao et al., 2004). AA has 

been shown to modulate secretory chloride channels (Hwang, Guggino et al., 1990) and 

specific classes of K+ channels have also been shown to be reversibly opened by AA, with 

a dependence on PUFA carbonyl chain length (Fink, Lesage et al., 1998). 

 

Whilst there is a wealth of evidence suggesting the modulatory role of PUFAs in ion 

channel function, Tillman and Cascio (2003) stress the difficulty of assigning the causes 

of the observed effects of fatty acids due to the multiple, inter-dependant and complex 

factors which govern the interaction ion channels and their lipid environment. 

 

2.3.4 Neurotransmitter function 
 

The decreased DHA in the brain of animals fed an ALA-deficient diet during 

development is accompanied by altered metabolism of several neurotransmitters, 

including dopamine and serotonin, and membrane-associated enzyme and receptor 

activities (Innis, 2007). Chalon recently summarised investigations of chronic omega-3 

fatty acid deficiency and neurotransmission in rodent models (Chalon, 2006) (where 

the these effects best described), and report complex, multi-factorial modulations, 

including synthesis, storage, release, and receptor-mediated uptake, with effects also 

differing between regions of the cortex. 
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2.3.5 Eicosanoids and immune function 
 

Whilst PUFAs are widely understood for their role in cell membrane structure and 

function as described above, they have an important secondary role as eicosonoid 

precursors. Eicosanoids are hormone-like autocrine or paracrine factors such as 

leukotrienes, prostaglandins, and thromboxanes that exert local effects by mediating 

processes such as constriction or relaxation of endothelial cells, platelet aggregation, 

leukocyte activation and chemotaxis, and consequently modulate the immune response 

(Shaikh and Edidin, 2008). 

 

AA is the precursor of 2-series prostaglandins and 4-series leukotrienes, which are 

highly-active mediators of inflammation and generally pro-inflammatory and pro-

aggretory. Factors derived from EPA, however, perform competitive functions that 

decreases the production of several substances, including cytokines, interleukin 1β (IL-

1β) and tumour necrosis factor α (TNF-α), leading to a predominantly anti-

inflammatory state (Calder, 2002; Calder, 2006; Simopoulos, 2002b). EFA-derived 

eicosonoid precursors are also involved in the brain in oxidative stress, memory and 

learning, and potentially in neuropsychiatric disorders such as depression (Tassoni, 

Kaur et al., 2008). Figure 2-9 summarises some of the physiological effects of essential 

fatty acids. 

  

 

 

 

 

 

 

 

 

Figure 2-9 Summary of physiological functions modulated by EFAs, adapted from Horrocks (2003) 

 

In summary, the effects of EFAs are multifactoral and are also specific to individual 

classes of fatty acid. EFAs and their PUFA metabolites have important roles not only at 

the membrane level, but also through their involvement in inflammatory processes, 
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both of which may be important in understanding the modulatory role of fatty acids on 

cognition in health and in disease. 

 

2.4 Essential fatty acids and cognitive ability 
 

2.4.1 Essential fatty acids and brain composition 
 

Within the brain, four EFAs are particularly important: DHGLA (23:3n-6) and AA of the 

omega-6 series, and EPA (20:5n-3) and DHA (22:6n-3) of the omega-3 series (Sprecher, 

2000). Between them, these four fatty acids make up 15–30% of the dry weight of 

neuronal tissue, with AA and DHA amounting to approximately 80–90% of that total 

(Horrobin, 1998). Figure 2-10 illustrates the routes whereby the EFAs required for 

normal brain function reach brain phospholipids. 

 

 

Figure 2-10 The routes whereby the EFAs required for normal brain function reach brain 
phospholipids, adapted from Horrobin (1998) 

 

Individually, DHA constitutes 10–20% of total fatty acid composition, compared ALA, EPA 

and DPA, which comprise <1% (McNamara and Carlson, 2006). DHA has also been reported 
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to constitute as much as 15–25 mol% of the lipids of the grey matter of the human brain 

(Huber, Rajamoorthi et al., 2002). The presence of DHA chains in mixed-chain 

phospholipids leads to a marked increase in the fluidity of the saturated chain (see section 

2.3.1), with the ‘kinked’ structure of the fatty acid chains able to influence permeability 

properties of the bilayer (Huber, Rajamoorthi et al., 2002), 

 

DHA accumulates specifically in phosphatidylserine in brain cortex and hippocampus and 

plays a regulatory role in membrane phospholipid homeostasis (Kim, 2007). This relatively 

specific tissue distribution of DHA gives some indication of a possible important role in the 

membranes of these tissues. Figure 2-11, adapted from Stillwell and Wassall (2003), 

illustrates the incorporation of DHA into the phospholipid membrane and its association 

with cholesterol and trans-membrane proteins. 
 

 

 

Figure 2-11 The incorporation of DHA (22:6n-3) into the membrane phospholipid bilayer, adapted 
from Stillwell and Wassall (2003) 
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2.4.2 The impact of EFA deficiency on cognitive ability 
 

The plasma membrane is a primary interface between exogenous influences (for 

example, diet) and endogenous control over the biosynthesis or utilisation of varied 

substrates. The physical properties of the individual lipid components in the membrane 

are integral to the characteristics of the lipid matrix. The specific organisation and lipid 

composition of membranes affect their physicochemical properties and determine their 

proper functioning. It is therefore of interest to consider whether dietary fatty acid 

balance modulates the lipid composition of the plasma membrane, thereby having 

potential to modify control functions at this cellular interface, which have identifiable 

cognitive outcomes. 

 

One of the best ways of identifying the importance and functions of EFAs is to study the 

consequences of EFA intervention. There are three principal methods typically 

employed: (1) animal studies, which involve controlled dietary deprivation of EFAs with 

comparison to untreated offspring; (2) observational breast feeding studies comparing 

breastfed vs non-breastfed children (EFA-deficient formula milks); and (3) randomised 

controlled trials comparing children fed formulas either supplemented or 

unsupplemented with EFAs such as DHA.  

 

EFAs and their LCPUFA metabolites, omega-6 fatty acids (n-6) and the omega-3 fatty 

acids (n-3), are crucial for the normal function and development of human and animal 

cells. The functional importance and mechanisms of action of omega-3 fatty acids on 

brain function have been extensively reviewed (Alessandri, Guesnet et al., 2004; Benatti, 

Peluso et al., 2004; Salem, Litman et al., 2001; Simopoulos, 2000; Sinclair and Wesinger, 

2004; Wainwright, 2002; Wurtman, 2008; Yehuda, Rabinovitz et al., 1999; Yehuda, 

Rabinovitz et al., 2005). A summary of findings relating the importance of EFAs to 

cognitive outcomes, using the three methods outlined above, will be briefly described 

here. 
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2.4.2.1 Animal models of essential fatty acid deficiency 

 

A main advantage of animal studies is that they afford the opportunity for more 

flexibility in design and in the ability to control experimental variables than can be 

achieved in human studies. Animal studies with different proportions of PUFAs in the 

diet have proved fruitful in identifying broad dietary requirements for maintaining 

optimal brain function (discussed in section 2.2.3, page 31) and have demonstrated that 

metabolic and behavioural defects arise from severe long-term omega-3 PUFA dietary 

deprivation. This allows the physiological effects of these fatty acids to be magnified and 

the behavioural consequences to be more easily identified. Feeding the newborn animal 

with milk formulas low in ALA reduces DHA and increases AA and osbond acid (DPA; 

22:5n-6) in the brain, brain synaptic membranes and retina (Ward, Huang et al., 1998). 

 

Levels of DHA and EFA precursors seem to be crucial for normal cognitive function as 

deviation from its physiological level is associated with cognitive impairment, including 

impaired visual evoked potential and disturbances of cognition, including deficits in 

frontal cortex-dependent working memory, hippocampus-dependent spatial learning 

and elevated indices of anxiety and depression (reviewed by McNamara (2006)). 

 

The latest work in rat models of omega-3 deficiency have found deficits in spatial 

reversal learning that may be related to changes in dopamine transmission in critical 

brain circuits such as frontal cortex and hypothalamus (Fedorova, Hussein et al., 2009) 

and delay in the development of parameters related to glutamate transmission, which 

manifests as increases in memory impairment and anxious behaviour in adulthood 

(Moreira, Knorr et al., 2010). 

 

Compared to a DHA and EPA diet, omega-3 deficient and low LA diets also caused a 

substantial deficit in prepulse inhibition (PPI) in rats, whereas the high LA diet induced 

a less pronounced, but significant reduction of PPI (Fedorova, Alvheim et al., 

2009). Deficits of PPI manifest in the inability to filter out the unnecessary 

environmental information and have been linked to abnormalities of sensorimotor 

gating. 
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Regionally specific effects of DHA have also been observed with relation to learning 

performance in rats. Hippocampal DHA levels were observed to increase from 12 to 

15% in supplemented rats, accompanied by improved water-maze learning memory 

performance (Chung, Chen et al., 2008), whilst others have observed that chronic 

administration of DHA may be conducive to the improvement of reference memory-

related learning ability, which may be related to the ratio of DHA to AA in hippocampal 

tissues (Gamoh, Hashimoto et al., 1999).  

 

Whilst there is an abundance of research with rodent models, there have been few 

investigations of non-human primate models of omega-3 deficiency and behaviour. In 

rhesus monkeys, chronic dietary deficiency in omega-3 fatty acids has been associated 

with deficits in visual acuity and electroretinogram abnormalities, which represent 

defects in photoreceptor function in rod and cone cells (Anderson, Neuringer et al., 

2005), as well as deficits in visual attention processes, related to attention to novel 

stimuli (Reisbick, Neuringer et al., 1997), and increased stereotype behaviour (Reisbick, 

Neuringer et al., 1994). The extrapolation of animal models, particularly from rats to 

human infants, should be done with caution as omega-3 fatty acid depletion is typically 

more severe and the animals have often been depleted for more than one generation. 

 

2.4.2.2 Human infant models of essential fatty acid deficiency 

 

Results of intervention trials assessing the cognitive effects of omega-3 deficiency in 

humans have been variable, and the experimental protocols less rigorous, because of 

ethical considerations such as the potential of long-term dietary restriction, and indeed 

supplementation, for inducing long-term irreversible damage.  

 

Much of the support for the importance of EFA intake in early life comes from 

observational studies of breastfeeding data. The importance of EFAs in infant nutrition 

is confirmed by the rapid accumulation of these fatty acids in the brain during the first 

postnatal year (Martinez, 1992) and last intrauterine trimester. After birth, infants are 

reliant on maternal breast milk (or formula) as the sole source of DHA, with substantial 

accumulations of DHA and AA in the human brain during the first postnatal months 

(Heird and Lapillonne, 2005). 
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Although infants are able to synthesise DHA de novo, the amount produced may be 

inadequate to support the DHA levels observed in breastfed infants. The cerebral and 

overall DHA status of breastfed babies is better than that of infants fed formula lacking 

DHA (Cunnane, 2000), with the accumulation of DHA and phosphatidylserine (PS) 

during development required to prevent inappropriate cell death and to support 

neuronal differentiation (Kim, 2007). Breast-fed infants are also uniquely provided with 

an additional digestive enzymes which are essential for the complete hydrolysis of 

triacylglycerols containing arachidonic acid or DHA (Chen, Blackberg et al., 1994).  

 

Feeding infant formulas devoid of preformed LCPUFA has been associated with 

decreased brain DHA and AA contents and with transiently impaired neurological 

maturation (Lauritzen, Hansen et al., 2001). The effect of postnatal omega-3 fatty acid 

deficiency on neurocognitive development of full term infants has previously been 

reviewed in detail (Carlson and Neuringer, 1999; Gibson, Neumann et al., 1996; McCann 

and Ames, 2005; Uauy, Hoffman et al., 2001), and include for example, delayed VEPs for 

retinal function, preferential looking activity, and means-end problem solving Findings 

from animal studies have been extended to understanding of the impact of EFA 

deficiency in human infancy (Innis, 2000), with findings replicated in infants fed 

formulas deficient in omega-3 fatty acids (Hoffman, Birch et al., 2000; Hornstra, 2000), 

see Lauritzen, Hansen et al. (2001) and Uauy, Mena et al. (2000) for reviews. 

 

Because of the high concentrations of omega-3 and -6 fatty acids in neural tissue 

membranes, all domains of neural and cognitive function are potentially influenced by 

LCPUFA status. The hypothesis that EFA deprivation should manifest as changes in 

broad-based measures of cognitive function, such as FSIQ is supported by a meta-

analysis of breastfeeding studies conducted by Anderson, Johnstone et al. (1999) which 

suggests that, after adjustment for appropriate key cofactors, including duration of 

breastfeeding, socio-economic status and age at gestation, breastfeeding was associated 

with significantly higher cognitive development scores (3.2 points; p< .001) for 

breastfed compared to formula-fed infants. 

 

More recent evidence from a randomised trial of nearly 14,000 children assessed at 6.5 

years of age with the Wechsler Abbreviated Scales of Intelligence (WASI) measures 
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found that that prolonged and exclusive breastfeeding improves cognitive development 

(Kramer, Aboud et al., 2008). Kramer et al. concede, however, that the variability of 

WASI scores and wide confidence intervals in both the experimental and controls 

groups means that the true magnitude of observed effects is uncertain.  

 

McNamara and Carlson (2006) summarised some of the more specific neurocognitive 

impairments in formula-fed versus breastfed children: lower visual acuity, slower 

processing speed on tests of visual recognition memory, deficits in problem-solving and 

more mature motor movement, problem-solving, and psychomotor function.  

 

A recent review of randomised control trials concluded that those studies with 

experimental formulas providing DHA close to the worldwide breast milk average of 

0.32% were more likely to yield functional benefits, such as improvements in visual 

function and cognitive ability, than those formulas with less than this putatively optimal 

amount (Hoffman, Boettcher et al., 2009). For example, in a study considered to be of 

high-quality in a recent Cochrane review of cognitive outcomes in full-term infants 

supplemented with LCPUFAs (Simmer, Patole et al., 2008), Birch et al. found that visual 

acuity in the PUFA-supplemented group was significantly better than in the control 

group at ages 6, 17, 26, and 52 weeks (Birch, Castaneda et al., 2005).  

 

Tests of human infants in general use standardised global tests that screen broadly for 

cognitive-related functions, usually the Bayley Scales of Infant Development, which has 

scales for Mental and Psychomotor Development Index (MDI; PDI). Supplementation of 

term infant formula milk with 0.36% DHA and 0.72% AA during the first 4 months of 

life was associated with a mean increase of 7 points on the MDI at 18 months of age over 

the control formula group (Birch, Garfield et al., 2000). Improvements in MDI have also 

been observed over shorter periods, with Gibson et al. seeing an improvement of MDI in 

exclusively breastfed infants at 12 months of age following just 3 months postpartum 

maternal dietary supplementation (Gibson, Neumann et al., 1997). Improvements on 

Bayley indices following supplementation have not always been observed when 

followed up over a similar time period (Ben, Zhou et al., 2004; Makrides, Neumann et al., 

2000; Scott, Janowsky et al., 1998). 
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Taken together, findings from animal models, observational studies of breastfeeding 

effects and supplementation trials suggest that interference in the accumulation of EFAs 

by nutritional deprivation has lasting effects on neural functions and developmental 

processes which influence later cognitive outcomes. 

 

Chapter 3 outlines the converging methods used to investigate the effects of EFAs on 

cognitive outcomes using a paediatric liver disease model. 
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3 Methods 
 

The following chapter provides descriptive data for the primary clinical patient 

population and outlines the three converging analytical methods used: psychometric 

assessments, GC-MS for assessment of fatty acid status, and 1H-MRS for analysis of in 

vivo brain biochemistry. A brief summary of the background and utility of each 

technique is followed by details of the procedures and data acquisition parameters used 

in this study. 

 

3.1 Ethical considerations 
 

Informed consent was obtained from all participants and guardians under a protocol 

consistent with the tenets of the Declaration of Helsinki and with the approval of the 

Black Country Research Ethics Committee (08/H1202/38) and the Aston 

University’s Human Subjects Ethics committee (REG/00/175). Written consent was 

obtained from the participant’s parent or guardian. Verbal assent was obtained from 

children prior to testing. Participants were permitted to withdraw at any stage and 

were reassured that their withdrawal would not affect the level of clinical care they 

subsequently received. Oral and written debriefing was given after each session and 

procedure. Principal researchers had previously obtained Criminal Bureau Enhanced 

Disclosure for working with children and vulnerable adults. All blood samples were 

treated in compliance with the Human Tissues Act 2004. 

 

3.2 Participants 
 

Over a two and a half year period (2007–2010) all children under the age of 18 with a 

diagnosis of liver disease and their healthy siblings were recruited into study from the 

Liver Unit at the Birmingham Children’s Hospital. 
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3.2.1 Patient exclusion criteria 
 

 Children who cannot undergo neurophysiological testing before liver 

transplantation (for example fulminant liver failure) 

 Recipients of multi-organ transplants and re-transplants 

 Children of families who do not consent to the procedure 

 Participants with any contraindications for the MR procedure (ferrous metal 

implants, bone pins etc.) were specifically excluded from the 1H-MRS. 

 

3.2.2 Sibling control exclusion criteria 
 

Sibling control participants were screened prior to testing to exclude the presence of 

probable neurological dysfunction, including previous serious brain injury, history of 

learning disability, neurological disease, psychiatric diagnosis or current use of 

psychoactive medication. Sibling controls with any contraindications for the MR 

procedure (ferrous metal implants, bone pins etc.) were also excluded from the 1H-MRS 

portion of the study. 

 

3.2.3 Liver disease categorisation 
 

The liver disease patients were divided into three principal categories, which are 

outlined in Table 3-1. Descriptive data for the patient and control populations is 

provided in Table 3-2, page 50. 

 

Table 3-1 Categorisation of liver disease patients 

Disease category Criteria for classification 

Early-onset, pre-
transplant 

Patients with stable, well compensated congenital liver disease, 
who did not require transplantation, or were on the transplant 
waiting list at the time of participation in the study. 

Early-onset, post-
transplant 

Patients with severe congenital liver disease who had undergone 
liver transplantation prior to participation in the study. 

Acute liver failure, 
post-transplant 

Patients who developed postnatal liver disease after two years of 
age, usually presenting with acute liver failure, who had 
undergone liver transplantation prior to participation in the 
study. 
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3.2.4 Descriptive data for the sibling control and liver disease groups 
 

Table 3-2 Descriptive data for the sibling control and liver disease groups 

Group 
Total 

n 

Mean 
age 

(years) 

SD age 
(years) 

M:F 
Mean 

onset age 
(years) 

n Diagnoses 

Sibling controls 11 12.2 5.08 5:6       

Early-onset liver 
disease, pre-
transplant 

17 11.8 5.08 6:11 - 

9 Extra-hepatic biliary atresia 

1 Alpha 1-antitrypsin (A1AT) deficiency 

5 Progressive familial intra-hepatic cholestasis 

1 Neonatal haemochromatosis 

1 Alagille's syndrome 

Early-onset liver 
disease, post-
transplant 

8 15.5 3.2 3:5 - 

2 Progressive familial intra-hepatic cholestasis 

2 Extra-hepatic biliary atresia 

1 Aegeneas Syndrome 

2 Neonatal liver failure 

1 Alpha 1-antitrypsin (A1AT) deficiency 

Acute liver 
failure, post-
transplant 

6 13.7 3.7 2:4 5.4 

1 Autoimmune hepatitis 

1 Fulminant hepatitis A infection 

1 Wilson's disease 

3 Sero-negative hepatitis 
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The three principal methods employed in this study (psychometric assessment, blood 

sampling for GC-MS analysis of erythrocyte EFA status and 1H-MRS) were routinely 

administered in a single day. Due to the young age and nature of the patient’s 

conditions, successful completion of all three modes of assessment was not always 

possible. Specific descriptive data of the number and composition of each sample group 

with the appropriate data available is provided in each of the separate analyses in 

Chapters 5 and 7. 

 
3.3 Psychometric assessments 
 

Cognitive ability was assessed using the following age-appropriate Wechsler scales, 

depending upon the age of child at testing: 

 

 Wechsler Preschool and Primary Scale of Intelligence for Children – 3rd Edition 

(WPPSI-III), for children aged between 2 years 6 months and 7 years 3 months 

(Wechsler, 2002). 

 Wechsler Intelligence Scale for Children – 4th Edition (WISC-IV), for children 

aged between 6 years 0 months and 16 years (Wechsler, 2003).  

 Wechsler Adult Intelligence Scale – 3rd Edition (WAIS-III) or the Wechsler 

Abbreviated Scale of Intelligence (WASI), for those aged 16 years and over 

(Wechsler, 1997a; Wechsler, 1997b). 

 

The Wechsler scales provide a measure of general cognitive ability across both verbal 

and non-verbal dimensions. FSIQ is an estimate of overall IQ based on performance 

across 11 subtests. Separate estimates of verbal and performance IQ contribute to FSIQ; 

the Verbal dimension reflects language-mediated skills and the Performance dimension 

reflects non-verbal, visual-spatial and visuo-motor skills. In addition to the IQ scores, 

the Wechsler scales also yield sub-scores across a number of processing dimensions, 

such as the Information Processing Speed (IPS) index (aka Processing Speed Index), 

which is derived from the Symbol Search and Coding subscales. The IPS index is taken 

as an indicator of the mental and motor speed required to solve visuo-spatial problems 

as contributions of higher cognitive functions to task performance are minimised 

(Groth-Marnat, Gallagher et al., 2000). 
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Each of the Wechsler tests yields IQ indices with a population mean of 100 and standard 

deviation of 15. Performance on each of the individual subscales has a mean of 10 and 

standard deviation of 3. All standard scores can be converted to z-scores to enable 

comparison between standard scores with different population means and standard 

deviations. 

 

The WAIS, which consists of 6 subtests, was administered solely in the healthy adult 

population studied in Chapter 6. The WASI has high reliability (.98 for FSIQ in adult 

samples) and high validity characteristics (r=.92 with WAIS-III FSIQ). 

 

There is some overlap between these tests, with children aged 7 being able to complete 

the WPPSI or the WISC, and children aged 16 being able to complete the WISC or the 

WAIS. In cases where the patient fell in the intersecting age range, it was at the 

discretion of the patient’s referring Clinical Psychologist, who had knowledge of the 

patient’s case history and background, which assessment was administered. Different 

floor and ceiling effects can be achieved using the different tests, allowing for a greater 

understanding of the child’s abilities or deficits. In the current patient sample, the lower 

age limit was used in all cases: all patients above 6 years 0 months performed the WISC-

IV and all patients above 16 years 0 months performed the WAIS-III. 

 

All versions of tests were administered according to the standardised test protocol, in a 

single session, and within one week of completing the neuroimaging and blood 

sampling procedures. 

 

3.4 Essential fatty acid status 
 

3.4.1 Erythrocyte biomarkers of fatty acid status 
 

Biochemical analysis of biopsy samples is the traditional method for the determination 

of metabolite concentrations in tissue. Whilst histological evidence from animal and 

post-mortem data has revealed a great deal about the basic metabolic processes of the 

brain, the research has been hampered by the need make inferences of processes 

occurring in a highly dynamic tissue from either static or remote investigative tools, 
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revealing two distinct disadvantages: (1) labile metabolites may be altered or destroyed 

during the tissue extraction procedure and the decomposition products may become 

more abundant; and (2) tissue biopsies cannot be obtained from healthy, living human 

brain tissue. 

 

Histological evidence is certainly vital for the development of theory, but in vivo or 

surrogate biomarker techniques have important wider applications in the study of 

living tissues and individuals. A functional marker may reflect a biochemical (e.g. 

micronutrient-dependent enzyme activity) or physiological (e.g. cognitive ability) 

response upon current or imminent micronutrient deficiency. Kuratko and Salem 

(2009) outline the properties of acceptable biomarkers for fatty acid status: (1) the 

method of measurement is standardised, specific and sensitive; (2) the biological 

material used for biomarker determination is easily obtainable; (3) a correlation 

between the nutrient biomarker and intake of the nutrient is established; (4) the 

relationship of the biomarker status and nutrient intake is sensitive and specific; and 

(5) the biomarker status shows an association with important clinical outcome. 

 

Erythrocyte EFA levels are commonly used as an in vivo measure of EFA status in 

human studies, as samples are easily accessible through phlebotomy. Such measures 

provide a reliable estimate of cellular EFA status, reflecting bone marrow fatty acid 

availability and the plasma–RBC phospholipid exchange aggregated over the lifespan of 

the cell, or its 120-day half-life. Erythrocyte EFA has some clear advantages over plasma 

for EFA assessment. The fatty acid profile of plasma derives from at least four different 

lipid classes, which are located in various lipoproteins with different functions, origins, 

targets, turnover rates and inter-individual compositions. In erythrocytes, however, the 

fatty acids derive solely from plasma membrane phospholipids, which contain the full 

range of long-chain PUFAs and can be analysed using standard lipid quantification 

techniques (Arab and Akbar, 2002). 

 

Erythrocyte biomarkers are well-defined with respect to their dietary dependence and 

correlate with the fatty acid composition of brain. The strength of correlation between 

dietary intake and biomarker values, however, may vary considerably between 

individual fatty acids. Factors such as affinities to particular enzymatic pathways and 
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varying inter-conversion rates means that fatty acids are incorporated with different 

efficiencies (Katan, Deslypere et al., 1997). It is predicted that biomarkers of the omega-

3 and omega-6 PUFAs, such as LA and ALA, would have the strongest association with 

intake since the inability to generate double-bonds more than nine carbons from the 

carboxyl or delta end of the fatty acid ensure these PUFA may be derived from diet 

alone. 

 

EPA levels in cholesteryl esters reflect intake over the past week or two, in erythrocytes 

over the past month or two, and in adipose tissue over a period of years (Katan, 

Deslypere et al., 1997). Justification of the use of erythrocyte DHA as a marker for neural 

DHA comes primarily from the work by Carlson et al., which demonstrated that 

weanling rats fed a diet with a 240:1 ratio of LA to ALA (where ALA is the precursor to 

DHA) had lower concentrations of DHA in the phosphatidylethanolamine fraction of 

erythrocytes, brain cortex and cerebellum, compared to those fed a diet with a ratio of 

LA to ALA of 7:1 (Carlson, Carver et al., 1986). 

 

In humans, Makrides et al. have shown that erythrocyte DHA is a significant predictor of 

DHA levels in the cortex by demonstrating that infants who were breastfed had a 

greater proportion of DHA in both their erythrocytes and cortical tissue relative to those 

fed formula (Makrides, Neumann et al., 1994). A dietary intervention study of human 

adults showed that erythrocyte DHA was correlated with dietary intake over a period as 

short as 3 weeks (r= ~.4) (Poppitt, Kilmartin et al., 2005), confirming its potential as a 

reliable biomarker. In their summary of DHA biomarkers, Kuratko and Salem (2009) 

found that circulating DHA appears to show the strongest correlation with brain tissue 

when assessed in the context of background diet and when correlations are made with 

DHA as a percentage of total dietary fatty acids instead of absolute values. 

 

In addition to values of individual PUFAs of interest such as LA, ALA, DHA and EPA, 

biomarkers of EFA deficiency can potentially provide a more subtle analysis of fatty acid 

metabolism and utilisation. The body compensates for EFA deficiency in two ways: first 

through enhanced conversion of omega-3, -6, -9 fatty acids to their derivatives, and 

second through the accumulation of mono-unsaturated fatty acids. 
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Mead acid (20:3n-9) synthesis (see Figure 2-3, page 27) is ordinarily inhibited by 

adequate concentrations of ALA and LA. The presence of mead acid, therefore, acts as a 

functional marker for suboptimal levels of fatty acids of the omega-3 and -6 families 

(Fokkema, Smit et al., 2002). Similarly, if there is a functional shortage of DHA, the body 

begins to synthesise the analogous long-chain polyene of the omega-6 family: osbond 

acid (22:5n-6) (de Groot, 2003). Therefore, under steady state conditions, the ratio 

between DHA and osbond acid is a reliable indicator of the functional DHA status 

(Hornstra, 2000). Table 3-4 on page 61 summarises the various biomarkers in 

erythrocyte membranes used to assess fatty acid status. 

 

3.4.2 Gas chromatography-mass spectrometry 
 

Gas chromatography-mass spectrometry (GC-MS) is an instrumental technique, 

comprising of a gas chromatograph (GC) coupled to a mass spectrometer (MS), by which 

complex mixtures of chemicals may be separated, identified and quantified. The 

information provided by a GC-MS analysis of fatty acyl chains consists of GC retention 

times, which can subsequently be compared with known structural properties of 

various compounds, and the mass spectral data of the corresponding compounds 

derived from the mass spectrometer. Details of the GC-MS technique have been 

described by Harris (1999). A detailed discussion of the various chromatographic 

methods for the assessment of phospholipids in biological samples has been provided 

by Peterson and Cummings (2006). 

 

3.4.3 Lipid extraction and fatty acid methyl ester derivitisation 
 

3.4.3.1 Reagents 

 

All reagents and solvents (HPLC grade unless otherwise stated in Table 3-3, page 56) 

were purchased from Fisher Chemicals (Leicester, UK) and Sigma-Aldrich (Dorset, UK). 

Consumables for the Agilent 6890 GC were purchased from Agilent Technologies (West 

Lothian, UK). 
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Polyunsaturated fatty acids autoxidise rapidly when exposed to air; the more double 

bonds present, the more rapid the rate of oxidisation. Tissues will contain natural 

antioxidants such as a-tocopherol (Wang and Quinn, 1999), but the levels of these may 

not be sufficient to prevent deterioration on storage. The synthetic antioxidant 

butylated hydroxytoluene (BHT; 2,6-di-tert-butyl-p-cresol) was therefore added to all 

solvents used in the extraction and transmethylation process. Addition of BHT does not 

interfere with chromatographic analysis as it is relatively volatile and can be removed 

together with the solvents when evaporated under nitrogen. Any residual BHT elutes 

just after the isohexane peak and ahead of the fatty acid methyl esters (FAMEs). All vials 

were additionally flushed with nitrogen at various stages in the extraction procedure 

and before storage at -80°C. 

 

Table 3-3 List of reagents for fatty acid extraction and derivitisation 

Reagent Specific grade 

Butylated hydroxytoluene (BHT; 
2,6-di-tert-butyl-p-cresol). 

Technical grade 

Chloroform  
>99% HPLC certified, Fischer Scientific (+ 50 mg 
of BHT/litre) 

Deionised water HPLC certified, Fischer Scientific 

Ethanol >99.8% HPLC certified, Fischer Scientific 
Hydrochloric acid Optima Ultra Pure grade, Fischer 
Isohexane >99% HPLC certified, Fischer Scientific 

Methanol 
99.8+% HPLC certified, Fischer Scientific (+ 50 mg 
of BHT/litre) 

Phosphate buffered saline (PBS) 

Molecular Biology grade, 1X solution (0.137M 
sodium chloride; 0.0027M potassium chloride; 
0.0119M phosphates) 

Sodium chloride solution Technical grade; 5% in deionised water 

 

3.4.3.2 Phlebotomy and sample storage 

 

5ml of venous blood was obtained from each participant and dispensed into tubes 

containing 0.10ml of 15% anticoagulant solution (ethylene diamine tetra-acetic acid 

EDTA; 15 mg). The sample was centrifuged at 3,000 rpm for 10 minutes with the 

resulting plasma supernatant and buffy coat discarded. The sample was then washed 

twice with 5ml PBS at 3,000 rpm for 10 minutes. The RBC precipitate was then 
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resuspended in 5ml PBS, aliquoted into 2ml glass vials, and sealed under nitrogen and 

stored at -80 °C until required. 

 

3.4.3.3 Lipid extraction  

 
Prior to any analysis of fatty acids by GC-MS, the compounds of interest must be 

extracted and split into their constituent fatty acid methyl esters (FAMEs). First, the 

membrane lipids must be separated from the biological milieu of the blood sample to 

remove any other constituents such as proteins, sugars or other small molecules that 

would interfere with the chromatographic analysis. Secondly, before the fatty acid 

components of lipids can be analysed by GC, it is necessary to convert them to low 

molecular weight non-polar derivatives, such as methyl esters, through the process of 

derivitisation. 

 

Various solvents or solvent combinations have been suggested as optimal extractants of 

lipids from biological samples, but the most widely used are the Folch (Folch, Lees et al., 

1957) and the Bligh and Dyer (Bligh and Dyer, 1959) methods. Both methods were 

trialled and evaluated for efficacy based efficiency and quantity of fatty acid mass 

extracted from 1ml of RBC sample. Extractions using the Bligh and Dyer method 

resulted in approximately 3.5±0.5mg of fatty acid per 1ml sample, but by contrast the 

Folch method was able to extract 5.0±0.5mg per sample. A modified version of the Folch 

method (described in more detail below) was subsequently adopted as the standard 

procedure for lipid extraction from whole RBC samples. 

 

After removing the tissue from storage at -80°C the 1 ml suspension of RBC in PBS was 

brought to room temperature. The sample was transferred to a glass homogeniser and 

6ml chloroform containing BHT (0.1% w/v) was added. The mixture was homogenised 

for 60 seconds before adding 3ml methanol containing BHT (0.1% w/v) and the 

homogenisation was then repeated. 2ml sodium chloride was added to the extract to aid 

removal of any non-lipid contaminants and vortexed for 30 seconds. The mixture was 

centrifuged for five minutes at 3,000 rpm to aid phase separation. The lower chloroform 

phase contains the lipids, while the upper acidified methanol/water phase contains and 
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most of the non-lipid contaminants. Protein precipitates are present at the interface 

between the two layers. 

To maximise the removal of contaminants, the upper aqueous methanol layer was 

discarded and additional wash of 4.5ml methanol/water (1:1 v/v) was added to the 

remaining chloroform phase, followed by gentle mixing and centrifugation as previously 

described. The lower chloroform layer containing the purified lipid was transferred 

using a glass Pasteur pipette to a 10ml glass tube and evaporated to dryness under 

nitrogen at 25°C using a Techne "Dri-Block" sample concentrator. Evaporation of the 

final 1ml of solvent was carried out in a pre-weighed 2ml glass vial, which was re-

weighed on completion. The weight difference was taken as total weight of lipid 

extracted. The lipid sample was resuspended in 1ml chloroform, sealed under nitrogen 

and stored at -80°C. 

 

3.4.3.4 Fatty acid methyl ester derivitisation 

 

The determination of the fatty acids involves their derivitisation to give their 

corresponding FAMEs. The fatty acids undergo a reflux reaction with excess anhydrous 

methanol in the presence of an acidic catalyst, leading to the trans-esterification of the 

ester linked fatty acids, and producing a mixture of fatty acid methyl esters (Christie, 

1989).  

 

Purified lipid fractions were trans-methylated by reflux with methylating reagent (2.5% 

sulphuric acid: 97.5% methanol) at 80°C for 70 minutes. FAMEs were extracted into 

isohexane (1.5ml) partitioned against water (1ml) following thorough mixing of the 

phases. The isohexane phase containing the FAMEs was transferred to a 1.5ml glass vial 

and evaporated to dryness under nitrogen. The FAME were subsequently re-suspended 

in 100µl isohexane in a glass capillary insert and stored at -80°C, pending GC analysis. 

 
3.4.4 Gas chromatography methods 
 

Gas chromatography is used to separate volatile organic compounds (Harris, 1999). All 

systems of chromatography consist of a stationary and a mobile phase. The compounds 

to be separated are placed on a stationary phase, which for lipids is liquid, and then 
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volatilised and passed through a mobile phase where a stream of inert gas (helium) is 

allowed to pass through the system. Substances are separated according to their 

partition coefficients, yielded by the varying physical and chemical properties that 

impart different affinities for the two phases. The time point from the injection of the 

sample to that when the maximum amount of each component emerges (i.e. when the 

peak has reached its maximum height) is known as the retention time of the substance. 

 

The method of gas chromatography is both specific and sensitive for the determination 

of individual fatty acids, including DHA. Modern capillary columns are highly efficient 

and provide complete separation of longer-chain fatty acids DHA from other fatty acids 

(Masood, Stark et al., 2005), for measurement of values as low as 0.01 percent weight. 

In the present study, conventional GC analyses were performed on an Agilent 6890N 

with a DB-23 30m capillary column, coupled with an Agilent Technologies 5973 

Network Mass Selective Detector.  

 

Operating conditions were as follows: the split-splitless injector was used in split mode 

with a split ratio of 1:50. The injection volume of the sample was 1l. The injector and 

detector temperatures were kept at 250°C and 270°C respectively. Total run time was 

29 minutes per sample. Helium was used as the carrier gas, with a linear velocity of 

36cm/sec (average at 160°C). Pressure: 7.64psi; detector gas flows: H2: 1ml/min; air: 

350ml/min; make-up Gas (N2): 53.8 ml/min. Fatty acid methyl esters were separated by 

thermo gradient elution 180–240°C. The temperature program is illustrated in Figure 

3-1, total run time 29 minutes per sample. 

 

 

Figure 3-1 GC-MS temperature sequence 
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3.4.5 Mass spectrometry methods 
 

Mass spectrometry allows qualitative identification of the compounds extracted 

through chromatography (Harris, 1999). In the mass spectrometer, organic compounds 

in the vapour phase are bombarded with electrons and form positively charged ions, 

which can fragment in a number of different ways to give smaller ionised entities. The 

resulting ions are then passed through a powerful magnetic field and are separated 

according to their mass to charge ratio (m/z). The resulting mass spectrum displays the 

relative abundance of each fragment striking the detector of the mass spectrometer. As 

discussed previously, fatty acids differ not only in chain length, but also in the position 

of double bonds; the longer the chain length and the greater the number of double 

bonds, the longer the retention time (Christie, 1982). 

 

Data acquisition and processing were performed on Agilent Technologies 5973 

Network Mass Selective Detector standard software for the Agilent GC system. Peak 

identification was based upon comparison of spectra with known standards in the NIST 

library software. Having identified the fatty acid components using this method, 

samples were routinely run on under identical chromatographic conditions, but using a 

flame ionisation detector (FID), with fatty acid identification made based on retention 

times. 

 

3.4.6 Fatty acid biomarkers 
 

Fatty acid analysis was limited to a number of individual fatty acids and the four main 

fatty acid families: saturated (SFAs), monounsaturated (MUFAs), omega-3 PUFAs and 

omega-6 PUFAs.  

Table 3-5 summarises the biomarkers used to evaluate fatty acid status. Values in 

analyses are reported as percentages of the 12 fatty acids quantified in total. 
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Table 3-4 The major fatty acids detected in 
erythrocyte samples with conventional GC-MS 

Common name 
Carbon 
number 

Saturated fats  

myristic 14:0 

palmitic  16:0 

stearic  18:0 

Monounsaturated fats  

oleic  18:1 

Omega-9  

mead 20:3 

Omega-6  

linoleic (LA) 18:2 

dihomo-γ-linolenic (DHGLA) 20:3 

arachidonic (AA) 20:4 

Adrenic 22:4 

osbond 22:5 

Omega-3  

eicosapentaenoic (EPA) 20:5 

docosahexaenoic (DHA) 22:6 

 

Table 3-5 Summary of erythrocyte biomarkers of fatty acid status. 

Fatty acid biomarkers Fatty acids 

SFA 
stearic (18:0n-6) + palmitic (16:0n-6) + 
myristic (14:0n-6) 

MUFA oleic (18:1n-6) 

Omega-3 index  DHA (22:6n-3) + EPA (20:5n-3) 

Omega-6 index arachidonic (20:4n-6) + linoleic (18:2n-6)  

Omega-3:Omega-6  Omega-3 index/Omega-6 index 

EFA shortage marker mead acid (20:3n-9) 

Functional DHA shortage 
marker 

DHA/osbond acid (22:5n-6) 

 

3.4.7 Fatty acid biomarker reliability analyses 
 

The accuracy and reliability of fatty acid measurements are affected by a number of 

factors including intrinsic sample variability, sample handling and the extraction and 

quantification methodology employed (Arab and Akbar, 2002).  
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To ensure maximum reliability for fatty acid identification, only fatty acids that matched 

with 98% or greater accuracy with known standards in the NIST library software were 

included in analyses. To maximise quantification accuracy, all samples were run in 

duplicate, with the averaged value used in subsequent analyses. In cases where values 

for individual fatty acids exceeded 10% variance between runs, the sample was run a 

third time.  

 

3.5 Proton magnetic resonance spectroscopy (1H-MRS) 
 

Modern imaging paradigms, including conventional radiography, computerised 

tomography (CT), positron emission tomography (PET) and single photon emission 

computerised tomography (SPECT), now make it possible to study normal brain 

biochemistry in vivo. However, while these techniques may be used with paediatric 

patient populations when expressly clinically warranted, the ethics of exposing children 

to the radioactive isotopes required for these techniques solely for the advancement of 

science are less than clear (Casey and Cohen, 1996). 

 

By taking advantage of the unique electronic structure of molecules to characterise a 

wide variety of different chemical compounds (Govindaraju, Young et al., 2000), 

magnetic resonance spectroscopy (MRS) addresses the shortfall of histological methods 

by virtue of being a non-destructive procedure that does not require parenteral 

injections nor use radioactive materials evidence, to provide relatively region specific, 

quantitative, biochemical brain data in vivo. The physical properties of MRI facilitate 

investigations of the structure, metabolism and function of the brain in normal healthy 

individuals, and allow monitoring of progression and recovery in abnormal 

development. 

 

3.5.1 The magnetic resonance phenomenon 
 

The physics behind the magnetic resonance technique has been described in detail by 

Freeman (2003) and practical applications discussed by Ross and Bluml (2001). Nuclei 

that have an odd number of nucleons (protons and neutrons) possess both a magnetic 

moment and angular momentum (or spin). In the presence of a homogeneous external 
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magnetic field these nuclei precess around their axis at a rate proportional to the 

strength of the magnetic field, emitting electromagnetic energy in the process. 

 

In 1H-MRS, a large static magnetic field (B0) preferentially aligns hydrogen nuclei along 

the direction of the applied field. In clinical scanners, the strength of B0 is most often 1.5 

or 3 Tesla (T) and is oriented horizontally from head to toe along the long axis of the 

cylindrical magnet. A pulse of electromagnetic energy is applied at a specific 

radiofrequency (RF) with an RF coil placed around (or near) the head. The frequency is 

selected to be the same as the frequency of precession of the imaged nuclei at a given 

strength of B0; for hydrogen, this ‘resonant’ frequency is approximately 127.7 MHz at 

3T. The RF pulse rotates the precessing nuclei away from their axes and a receiver coil 

measures the time it takes for the nuclei to ‘relax’ back to their original position 

pointing along B0. The spatial origin of the signal is determined using subtle position-

related changes in B0 induced by gradient coils. 

 

The signals generated are subsequently amplified and displayed as a sinusoidal wave 

that decays with time, termed free-induction decay, and it is this transient signal that is 

amplified electronically, detected and then converted into a spectrum for high-

resolution MRS, or an image for MRI (see Figure 3-2, page 65 adapted from Chan 

(1985)). 

 

3.5.2 1H-MRS metabolite detection and quantification 
 

A brief overview of the MRS technique is provided below. Refer to Lambert and Mazzola 

(2004) for a comprehensive description of the physical basis of MRS, Ross and Bluml 

(2001) and Soares and Law (2009) for a broad discussion of the current understanding 

and applications, and Rosen and Lenkinski (2007) for a discussion of the most recent 

technical advances in the technique. 

 

Chemical bonding within a given molecule modifies the shape and density of its outer 

valence electrons, effectively creating a ‘magnetic shield’ that dictates the magnetic field 

of the nucleus. The corresponding change in the nuclear precession frequency is called 

the chemical shift and it is this parameter that permits identification of the chemical 
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environment of a given atom and gives rise to the individual peaks seen in MRS spectra. 

The chemical shift is measured using the dimensionless unit parts per million (ppm) 

and is the position on the δ scale where the peak occurs. It is defined in absolute terms 

by the frequency of the resonance expressed with reference to a standard compound, 

which is defined to be at 0 ppm. 

 

Most atoms have at least one isotope that possesses a magnetic moment, but the most 

widely used nuclei in biomedical MRS are hydrogen (1H), phosphorous (31P), carbon 

(13C) and sodium (3Na). 31P-MRS was the first to be applied to medicine in vivo and can 

be used to evaluate brain metabolic energy (Argov and Chance, 1991). The major 

motivation for using the proton nucleus (1H-MRS) is that hydrogen has the highest 

natural abundance in the body, which results in greater sensitivity of MR methods to 

this particular nuclei, compared with either 31P or 13C. 

 

Observing nuclei other than protons requires the development of radio-frequency coils 

and other specialised hardware tuned to their specific frequencies; 1H-MRS uses the 

same hardware, such as head coils, as standard MRI. The boundaries between MRI and 

MRS are becoming blurred as developments in MRI underline developments in MRS and 

vice versa. Cox (1996) suggests that to some extent, the proton-derived spectrum can be 

considered as another contrast parameter in the MRI examination, but adds that this 

does injustice to the wealth of chemical information available, and motivates the use of 

MRS as an MR paradigm with specific utility in the present study. Since Frahm, Bruhn et 

al. (1989) published the first reports of in vivo 1H-MRS, in which the methodology used 

in the detection and measurement of metabolite concentrations in the human brain was 

described, 1H-MRS has become the dominant tool in cognitive spectroscopy. 
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Figure 3-2 Simplified explanation of the magnetic resonance phenomenon, adapted from Chan 
(1985) 
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The initial intensity of the 1H-MRS signal is proportional to the number of nuclei giving 

rise to the signal. Protons attached to large macromolecules have short T2 values and 

are observed as broad, short peaks, whereas protons attached to small metabolites have 

longer T2 values and are observed as narrow, tall peaks in the proton spectrum. In 

principle it is the area under the individual peaks of the spectra which is indicative of 

the concentration of the particular chemical. In practice, however, there are so many 

variables that influence the signal intensity that absolute quantification is still relatively 

difficult to achieve (Freeman, 2003; Lambert and Mazzola, 2004). 

 

MRS is generally less sensitive than MRI because the concentrations of atoms measured 

by MRS are orders of magnitude less than the concentration of hydrogen used in 

anatomical MRI; only compounds in or near the millimolar range can be detected in vivo. 

Compounds of interest in biological systems are typically in the order of 1–10 mmol/L 

and are masked by the presence of a large background signal arising from water, which 

can have a concentration approaching 90 mol/L in protons (Rosen and Lenkinski, 

2007). Techniques such as water suppression are therefore employed to minimise these 

intense proton signals, which would otherwise interfere with detection of the signals of 

interest (Freeman, 2003). 

 

In the brain, the strongest and most reliable metabolite signals in 1H-MRS are generated 

by N-acetyl aspartate (NAA), creatine and phosphocreatine (Cre), choline (Cho), and 

myo-Inositol (mI). These four metabolites, and other reasonably well-resolved 

compounds such as glutamate/glutamine (Glx) and lactate, form the principal focus of 

1H-MRS research (Imamura, 2003; Inder and Huppi, 2000; Lambert and Mazzola, 2004; 

Rosen and Lenkinski, 2007; Ross and Bluml, 2001). Hunter’s Angle is the nominal 45 

degree ratio between the major metabolites, deviation from which is taken as an 

indication of abnormality (Danielsen and Ross, 1999). A typical, representative MRS 

spectrum is illustrated in Figure 3-3, page 67. 
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Figure 3-3 Representative 1H-MRS spectrum of normal human brain 
The five major metabolite peaks (choline, myo-Inositol, creatine, N acetyl aspartate and Glx) and Hunter’s 

Angle, the putative 45° ratio signifying ‘normal’ adult spectra, identified. 

 

3.5.2.1 Metabolite quantification as ratios 

 

All analyses reported in the present work adopt the standard convention of expressing 

metabolite ratios to an internal creatine standard. The creatine peak is thought to be 

relatively constant between individuals and in most brain areas, and is therefore used 

as an internal reference, where creatine equals 1 in the expression of all ratios 

(Danielsen and Ross, 1999). The explicit rationale for this approach is that the use of 

ratios will correct for several unknown, difficult to obtain or uncontrollable 

experimental conditions. These include static (B0) and radiofrequency (RF, B1) field 

inhomogenieties, instrumental gain drifts, imager and localisation method differences, 

and voxel partial volume contamination with metabolite-free cerebral-spinal fluid (CSF) 

(Li, Wang et al., 2003). 

 

3.5.3 Single-voxel 1H-MRS acquisition parameters 
 

All MR acquisitions were carried out on a Siemens 1H-Magnetom 3T (Siemens Medical 

Solution, Berkshire, UK) using standard software and quadrature head coil. 
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Scout images for localising the volume of interest (VOI) were acquired using a 5-plane 

localiser (Relaxation time (TR); 20msec, Echo time (TE); 5msec, 10 slices at 5mm 

thickness). 

 

1H-MRS data were acquired in a 2cm3 volume using a stimulated echo acquisition mode 

(STEAM) pulse sequence (TR; 2000msec, TE; 30msec, 96 averages). The choice of TE 

and TR reflects a compromise between a number of factors including scan time, patient 

tolerance and obtaining optimal information. With increasing TE, those neurochemical 

compounds with the shorter spin-spin (T2) relaxation times (mI and Glx) disappear, 

while those with longer T2 values (NA, Cr, Cho) become more prominent. With TEs 

shorter than 30ms, the mI and Glx region of the spectrum become even more 

prominent; however, water and lipids become more difficult to suppress adequately 

and the pulse sequences become more prone to artefacts. Voxel size is limited by a trade 

off between the signal-to-noise ratio (SNR) and tissue specificity; with smaller voxel 

sizes, specificity of voxel localisation is increased but SNR is reduced (Freeman, 2003). 

The acquisition parameters summarised in Table 3-6  consistently produce a high-

quality spectra containing all the major MR-visible compounds within the brain in an 

examination time of approximately 3 minutes per voxel.  

 

Table 3-6  1H-MRS acquisition parameters 

Repetition time (TR) 2000 msec  
Echo time (TE) 30 msec 
Number of averages 96 
Flip angle 90o 
Voxel size 2 x 2 x 2 cm3 
Pixel resolution 1024 

 

Water suppression was achieved by using three chemical shift-selective radio-

frequency pulses followed by a dephasing gradient applied on each of the three axes. 

Localiser scans were performed after each acquisition to compensate for potential 

participant movement between scans. Scan sequences and duration are summarised in 

Table 3-7, page 69. 
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Table 3-7 1H-MRS scan sequences and duration 

Scan sequence 
Duration 

(min:secs) 

Localiser 0:09 

5-plane localiser 0:40 

STEAM occipitoparietal cortex 3:20 

STEAM frontal cortex 3:20 

 

The technical limits of magnet construction, coupled with the presence of the 

participant in the scanner, introduces inhomogenieties in the magnetic fields over the 

whole of the brain volume located within the detection coil. This results in distorted 

lineshape of the spectra, leading to poor resolution and sensitivity. Small gradients in B0 

are compensated for by ‘shimming’, which is the application of a small DC current 

through x, y, z gradient shim coils. An active, automated first-order shim was performed 

prior to each acquisition for each participant introduced in the scanner.  During the 

shim process, a 3D gradient echo sequence acquires volumetric data of the region to be 

shimmed. The Siemens 1H Magnetom 3T scanner software analyzes the collected data to 

estimate the current needed in each shim coil to compensate for deficiencies in field 

homogeneity and  optimize the magnetic field homogeneity 

 

3.5.3.1 Voxel localisation 

 

Whilst differences in grey/white tissue composition affect the metabolite values 

obtained (Wang and Li, 1998), the brain region that is measured may be of more 

importance with respect to the cognitive domain that is tested. In the present study, 

voxels in the frontal cortex were selected because of the association between this region 

and executive cognitive function (Baddeley, 1996; Duncan, Seitz et al., 2000). A volume 

in the occipitoparietal cortex was selected as a control region to assess the functional 

specificity of the brain-behaviour relationship, and the comparatively homogenous 

nature of the cortical tissue in this region aids in providing consistent high-quality 

comparison spectra. Inter-hemispheric metabolite differences in metabolite values have 

been observed (Jayasundar, 2002; Jayasundar and Raghunathan, 1997). In the present 

study, a single hemisphere was focused on in the interest of parsimony, as reductions in 
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the number of variables and statistical comparisons required, decreases the 

probabilities of Type 1 error. 

 

Positioning of the voxel in the region of interest was achieved using anatomical 

references and ventricle landmarks from the 5-plane scout images. For the left frontal 

VOI, the voxel was placed as close possible to the anterior of the brain, centred superior 

to the lateral ventricles and avoiding overlap into the skull and corpus callosum. For the 

left occipitoparietal VOI, the voxel was placed in the region encompassing both occipital 

cortex and the inferior parietal lobule, with placement preferentially positioned in the 

anterior of the brain to avoid overlap into the skull or cerebellum. In all cases, manual 

positioning ensured that the voxel did not encroach upon non-neural sources such as 

skull, meninges, ventricles and major blood vessels and avoided as many of the cerebral 

sulci as possible. 

 

Figure 3-4 shows the location of the voxels in occipital and frontal cortex. Using a rule-

based approach to identifying anatomical landmarks for head positioning and voxel 

placement provided a straightforward method for effective and consistent voxel 

localisation. 

 

  

 

Figure 3-4 Localisation of 1H-MRS voxels shown in the saggital and transverse planes 
Voxel in frontal cortex is shown in orange and occipitoparietal cortex in blue.  
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3.5.4 LCModel 
 

The metabolite values obtained were subsequently modelled with LCModel software 

(Provencher, 2001), a user-independent fitting routine which provides spectral 

quantification and metabolite detection optimised for short echo time spectroscopy by 

fitting spectra in the frequency domain using a basis set of spectra of in vitro metabolite 

solutions acquired under conditions identical to those under which in vivo data are 

acquired. By using a nearly model-free constrained regularisation method to 

automatically estimate the smoothest lineshape and baseline consistent with the data, 

the model has the potential to improve the reliability of the metabolite values obtained 

(see below) and specifically addresses the problems of spectra complexity and baseline 

formation, in addition to providing results with a broader basis of comparability. 

 

3.5.5 1H-MRS reliability analyses 
 

In order for 1H-MRS to be a valid technique in metabolite quantification, data needs to 

be accurate and reliable. Accuracy refers to the degree of conformity of the measured 

quantity to its actual or true value. In living tissue it is difficult to quantify, as many 

standard measurement techniques, being invasive, are impractical. Reliability and 

precision refers to the variation in replicated readings, for example, as a result of 

variance introduced by scanner-related factors such as that caused by field 

inhomogenieties. 

 

To validate data quality and assess reliability, data from two successive scans of the 

same voxel were obtained and averaged at each voxel placement. Standard software 

with the Siemens 1H Magnetom 3T scanner produced metabolite values which were 

reliable when intra-voxel values are compared; all metabolites both in frontal and 

occipital regions were significantly correlated (p< .05). These values were, however, 

susceptible to large and unexpected distortions such as residual water signal, 

macromolecules and lipid signals, which may account for the range of correlation 

coefficients (.29 to .82) observed. The coefficients of variance were approximately 9% 

for frontal and 8% for occipitoparietal voxels, values which demonstrate acceptable 
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precision of the technique and which are consistent with data from previous 

reports (Ross et al., 2005). 

 

The LCModel (Provencher, 2001) specifically addresses the problems of spectra 

complexity and baseline formation. By accounting for unexpected distortions in the 

baseline, correlations between values for the first and second scan improved to a range 

between .773 and 0.976 (p <.01), and produced mean metabolic concentrations 

consistent with literature values (Danielsen and Ross, 1999). Coefficients of variance 

with LCModel were now between 6 and 8%. Chard, McLean et al. (2002) contend that 

with use of the LCModel, biological factors contribute a greater proportion to 

measurement variability than 1H-MRS measurement errors. In comparison with the 

AMARES (Advanced Method for Accurate, Robust and Efficient Spectral fitting) tool 

(Vanhamme, van den Boogaart et al., 1997), Kanowski, Kaufmann et al. (2004) found 

that metabolite-to-creatine ratios, estimated by LCModel with extended prior 

knowledge, are more accurate than absolute concentrations, and are nearly 

independent of SNR and line broadening. 
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4 Cognitive outcomes in paediatric liver disease 
 

4.1 Summary 
 

The aim of the present cross-sectional study was to evaluate neuropsychological 

function in children with liver disease and to investigate the impact of the disease on 

cognitive ability compared to sibling controls, in the context of covariates such as the 

age of onset and transplant intervention. 

 

Chronic liver disease appears to have significant negative effects on cognitive 

development, with age at the onset of disease an important moderator of this effect. 

Significant differences were observed between the early onset, post-transplant group 

and age-matched sibling controls on a measure of IPS (p= .017; (d)= 1.36), with 31% of 

the variance in IPS accounted for by the early onset of liver disease coupled with 

transplantation. 

 

There is a general pattern in the literature that supports the theory that early-onset 

liver disease has a significant impact on cognitive outcomes, possibly through the 

disruption of early neurodevelopment processes. Whilst greater numbers of 

participants are required to achieve the statistical power required to genuinely probe 

the effects of disease onset and some of the cofactors which may contribute to the 

cognitive deficits observed, the results of the present study show that the effects in this 

sample of this rare population is considerable. Enrolling children with liver disease in a 

large-scale, longitudinal study would help illuminate the extent and persistence of the 

cognitive deficits observed in paediatric liver disease. 

 

4.2 Introduction 
 

Liver transplantation (LTx) is now a standard treatment for children with end-stage 

liver disease (Muiesan, Vergani et al., 2007). With improving survival rates, resulting 

from innovations in operative techniques and the development of more effective 

immunosuppressant drugs (Kelly, 2008; Kelly, 1998), the life-expectancy of children 

with end-stage liver disease has significantly improved. One-year survival rates now 
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exceed 90% across most centres, and long-term survival figures for 10–15 years are 

greater than 80% (Soltys, Mazariegos et al., 2007). With a rapidly growing population of 

children who are long-term survivors of liver disease, there is an increased focus on 

variables associated with longer-term survival and cognitive and psychosocial outcomes 

(Alonso, 2008; Andrews, Sommerauer et al., 1996; Fouquet, Alves et al., 2005; Park, Rim 

et al., 2005). 

 

Some of the earliest investigations of children who had undergone LTx compared their 

neurocognitive outcomes to those of disease control groups, for example cystic fibrosis. 

Compared to cystic fibrosis patients, Stewart, Hiltebeitel et al. (1991) and Stewart, 

Silver et al. (1991) identified deficits specific to post-liver transplant patients in a 

variety of cognitive domains, including learning and memory, abstraction and concept 

formation, visual-spatial function, and motor function. However, a more recent study 

with the same experimental and control groups found no statistically significant 

differences between them on measures of visual-perceptual and visual-motor skills, but 

found deficits in language abilities in the liver disease group (Krull, Fuchs et al., 2003). 

 

A group of studies conducted in the late-1980s through early 1990s by Stewart et al. 

found that the child’s age at the onset of disease correlates with levels of physical and 

cognitive impairment. Children who developed liver disease in infancy had significantly 

lower IQ scores compared with children who became symptomatic later in life (Stewart, 

Campbell et al., 1992; Stewart, Uauy et al., 1988; Stewart, Uauy et al., 1989). In addition, 

the developmental delay which appears to be a frequent problem in infants awaiting 

liver transplantation does not reverse quickly after transplant (Wayman, Cox et al., 

1997). 

 

Given these age of onset related effects, the majority of children receiving liver 

transplants may be at risk of cognitive impairment, since the median age of paediatric 

liver transplant recipients is less than 2 years (Krull, Fuchs et al., 2003). Although 

specific cognitive deficits have been identified previously in liver disease patients, there 

have been few additional studies since the early work of Stewart et al. 
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4.2.1 Aims 
 

The aims of this cross-sectional study were to: 

 

1 Examine neuropsychological function in children with liver disease in order to 

investigate the impact of the disease on cognitive ability in comparison to sibling 

controls. 

2 Assess the effects of age of onset and transplant intervention on cognitive outcomes, 

specifically, FSIQ and IPS. 

 

4.2.2 Hypotheses 
 

1 Children with liver disease would score lower than the comparison control group on 

global measures of cognitive ability, specifically FSIQ and IPS. 

2 Children with early-onset liver disease would show greater deficits in cognitive 

ability than sibling controls and those who developed the disease later in childhood. 

 

4.3 Methods 
 

4.3.1 Participants 
 

Psychometric data was available for a total of 32 participants, 23 patients with a liver 

disease diagnosis and 9 healthy sibling controls (16 females, 16 males; mean age 13.1, 

SD: 5.0), from the larger sample described in Chapter 3 (Table 3-2, page 50). 

Psychometric data was not collected for two sibling controls and four patients in the 

early onset, post-transplant group who had consented into the study because of lack of 

availability at the time of testing. One patient in the early onset, pre-transplant group 

and one in the early onset, pre-transplant group were not available to complete the 

psychometric assessment battery. Table 4-1, page 76 shows the descriptive data of the 

patients consented into the study and the mean and standard deviation of psychometric 

scores. 
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Table 4-1 Descriptive data for the sibling control and liver disease groups with available psychometric data 

 

 Group 
Total 

n 

Mean 
age 

(years) 

SD age 
(years) 

M:F 
Mean onset 

age 
(years) 

n Diagnoses 

Sibling controls 9 13.2 4.5 6:3 
   

Early-onset liver 
disease, pre-
transplant 

10 14.9 4.0 4:6 - 

7 Extra-hepatic biliary atresia 

1 Alpha 1-antitrypsin (A1AT) deficiency 

1 Progressive familial intrahepatic cholestasis 

1 Neonatal haemochromatosis 

Early-onset liver 
disease, post-
transplant 

7 16.3 2.4 3:4 - 

2 Progressive familial intrahepatic cholestasis 

2 Extra-hepatic biliary atresia 

2 Neonatal liver failure 

1 Alpha 1-antitrypsin (A1AT) deficiency 

Acute liver failure 
(late onset), post-
transplant 

6 13.7 3.7 3:3 5.4 

1 Autoimmune hepatitis  

1 Fulminant hepatitis A 

1 Wilson's disease + acute liver failure 

3 Sero-negative hepatitis  

Dash indicates that liver disease was diagnosed from birth 
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4.3.2 Psychometric assessments 
 

The standardised protocol for administration of psychometric assessments is described 

in Chapter 3 (section 3.3, page 51). 

 

An age-appropriate battery of the Wechsler Preschool and Primary Scale of Intelligence-

III, Wechsler Intelligence Scale for Children-IV or Wechsler Adult Intelligence Scale-III 

was administered for each child to derive scores for Verbal, Performance, Working 

Memory, FSIQ, and IPS. 

 

4.4 Results 
 

4.4.1 Descriptive data and psychometric scores 
 

Table 4-2 shows the mean and standard deviation of psychometric scores of sibling 

controls and liver disease groups. Table 4-3, page 78 provides descriptive data for the 

patients consented into the study.  

 

Table 4-2 Summary of psychometric scores for sibling control and liver disease groups 

Psychometric measure 
Sibling 

controls 
EOLD 

pre-Tx 
EOLD  

post-Tx 
ALF 

post-Tx 

FSIQ 103.8 (21.9) 91.6 (19.2) 80.9 (21.3) 102.3 (21.4) 

IPS 104.7 (12.8) 91.7 (10.7) 81.6 (21.2) 102.5 (12.0) 

Verbal IQ 104.2 (23.3) 91.0 (20.1) 81.4 (22.0) 101.2 (22.2) 

Performance IQ 99.1 (20.7) 94.7 (15.8) 83.7 (22.4) 105 (20.2) 

Working Memory* 102.6 (12.0)a 89.0 (16.1)b 89.3 (20.9)c 97.3 (15.7)d 
EOLD: Early-onset liver disease, ALF: Acute liver failure, Tx: liver transplant. 
Mean z scores and standard deviations are shown. Wechsler assessments have a population mean of 100 
and standard deviation of 15. 
* n= 17; an=7, bn=3, cn=3, dn=4 

 
4.4.2 Cognitive outcomes in paediatric liver disease 
 

A one-way ANOVA was conducted to assess the differences in performance on the 

various psychometric indices based on diagnostic grouping. The results are shown in 

Table 4-3. 
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Table 4-3 Differences in psychometric scores between sibling 
controls and liver disease groups 

 Psychometric measure ANOVA 

  F df P 

FSIQ 1.949 3,28 .145 

IPS 4.124 3,28 .015* 

Verbal IQ 1.708 3,28 .188 

Performance IQ 1.423 3,28 .257 

Working Memory† 1.181 3,13 .355 
*p<.05, †n=17 

 

The ANOVA showed no significant difference between groups for FSIQ (p>.5). IPS was, 

however, identified as significantly different between groups (Table 4-3). Descriptive 

statistics (Table 4-1, page 76) show that mean IPS score was lower in the early onset, 

post-transplant group than the other two patient groups and the sibling controls. A one-

way ANOVA showed that this difference was statistically significant (F= 4.124 (p .015)), 

which represented an effect size Eta2 of .31, showing that 31% of the variance in IPS can 

be accounted for by the early onset of liver disease coupled with transplantation. 

 

A post hoc Tukey’s Honestly Significant Difference test, which corrects for Type 1 error, 

confirmed that the difference between the early onset, post-transplant group and 

sibling controls was unlikely to have arisen due to sampling error (p= .017, effect size 

(d)= 1.36). The Tukey test also showed that difference between the early onset, post-

transplant group and acute liver failure (late onset), post-transplant group approached 

statistical significance p= .06; effect size (d)= 1.26) (see Figure 4-1, page 79). 
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Figure 4-1 Comparison of IPS performance between control and liver disease groups 
Error bars represent ±1 standard error mean. The early onset, post-transplant cohort had significantly 

lower IPS scores compared to sibling controls (p= .017, effect size (d) = 1.36). 

 

4.5 Discussion 
 

The present study presents cross-sectional psychometric data from a total of 23 

patients with liver disease who were categorised into three independent groups: early 

onset pre-transplant, early-onset post transplant and acute liver failure, post-transplant. 

Performance on tests of cognitive ability was compared between the liver disease 

patient groups and with nine age-matched healthy sibling controls. 

 

As hypothesised, chronic liver disease appears to be associated with impaired cognitive 

development and the age of liver disease onset appears to be important. A statistically 

significant difference between the early onset, post-transplant group and age-matched 

sibling controls on IPS scores (p= .02, (d)= 1.36 was observed. The difference between 

the early onset, post-transplant group and acute liver failure, post-transplant group for 

this measure also approached statistical significance (p=. 06; (d)= 1.26). Cognitive 

deficits appear to be specific to processing speed; no statistically significant difference 

was observed for FSIQ scores, although the pattern of results between groups was the 

same. 
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It has been previously demonstrated that the cognitive effects of liver disease cannot be 

accounted for by the general effects of chronic, life-threatening disease. Compared to a 

group of cystic fibrosis (CF) disease controls, Stewart, Hiltebeitel et al. (1991) found 

that children studied at one-year post-LTx showed deficits in the areas of learning and 

memory, abstraction and concept formation, visual-spatial function, and motor function. 

They did not demonstrate differences in Verbal IQ, alertness and concentration, 

perceptual-motor, and sensory-perceptual areas.  

 

Building on this work, Stewart, Silver et al. (1991) narrowed the age range of the cohort 

and concentrated on a more selective neuropsychological test battery to study potential 

lateralisation effects associated with vocabulary performance. They found that children 

between the ages of 4 and 9 years showed similar deficits to the previous older age 

group studied by Stewart, Hiltebeitel et al. (1991), with no differences in lateralisation, 

but with the addition of deficits in Verbal IQ. 

 

Krull, Fuchs et al. (2003) also found that post-transplant children tended to have lower 

scores, particularly on receptive language tasks, but observed no significant difference 

between 15 liver and 15 CF patients on measures of academic achievement or visual-

spatial performance. As with Stewart, Hiltebeitel et al. (1991), Krull, Fuchs et al. (2003) 

found specific effects on verbal ability, something which was not seen in the cohort in 

the present study. 

 

Whilst significant difference for IPS between the early and late-onset groups were 

observed, the significant difference in FSIQ seen in the studies conducted by Stewart et 

al. was not replicated. Despite variations in the cognitive abilities assessed, the present 

findings are in accordance with previous evidence that the onset of liver disease may 

interfere with important early stages of cognitive development. In a heterogeneous 

group of 36 children who were 4 years old or older when they were referred for liver 

transplant, cognitive assessments pre- and one year post-transplant showed that 

children who developed liver disease in infancy had significantly lower IQ scores than 

children who became symptomatic later in life (mean ± SD for FSIQ; 85 ± 8.8 versus 99.5 

± 13.8) (Stewart, Uauy et al., 1988). 
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A subsequent study of 43 school-age children with advanced liver disease confirmed the 

findings that the onset of symptoms of liver disease in the first year of life had a 

stronger negative impact on cognitive function than those who were older at the time of 

transplantation, independent of diagnosis (Stewart, Campbell et al. 1992). In the 

present study, the acute liver failure transplantation group had comparable 

psychometric scores to the age-matched sibling controls (Table 4-2, page 77, and Figure 

4-1, page 79), lending support to the idea that time of onset is a key factor. 

 

Stewart, Silver et al. (1991) suggested that deficits found on performance tasks, rather 

than reflecting decreased visual-spatial function, may be indicative of diminished ability 

for other skills that underlie many of the visual-spatial tasks, such as timed 

performance. Given the systemic nature of liver disease, effects on global, rather than 

domain-specific, measures of cognitive ability would be anticipated. In the present 

study, a specific deficit it processing speed measures was observed in the early onset, 

post-transplant cohort, which may be related to myelination in so much that the 

primary function of myelin is the acceleration of neural impulses. The degree of and 

integrity of myelination is strongly related to processing speed measures, including the 

Wechsler measures of IPS employed in this study (Turken, Whitfield-Gabrieli et al., 

2008), and processing speed is thought to underlie, but is not synonymous with, general 

cognitive ability (Miller, 1994; Salthouse, 1996; Vernon, 1983). Myelination begins in 

the second trimester of gestation and continues into adulthood (Lenroot and Giedd, 

2007). Early onset of liver disease may specifically interfere with key 

neurophysiological developmental mechanisms such as myelination, resulting the 

deficits observed in this study. One of the potential mechanisms by which this may 

occur, related to EFA status, is discussed in the following chapter.  

 

As with the present work, the studies conducted by Stewart et al. used a cross-sectional 

design, which has the limitation of introducing heterogeneity (i.e. inter-individual 

confounders) into the population and data. However, when Stewart et al. studied 

children longitudinally, both before and after transplantation, the same pattern of 

results was observed: children with persistent cognitive deficits after transplant were 
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more likely to have had onset of disease in the first year of life (Stewart, Uauy et al., 

1989).  

 

Another finding of note in the present study was that deficits in cognitive performance 

were not uniform across both early-onset groups, but were largely limited to the post-

transplant patients. Whilst this non-uniformity may be a result at least in part from the 

small sizes typically employed in studies of this kind, there is also evidence that 

transplantation coupled with early onset has specific detrimental effects, which is to be 

anticipated as transplanted patients are usually the most severely ill. Kennard, Stewart 

et al. (1999) suggest that developmental delay, secondary to chronic liver disease in 

infancy, and acute or chronic hepatic encephalopathy in older children may result in 

enduring cognitive deficits and learning disabilities even after successful liver 

transplantation. This may explain the findings observed in early onset, post-transplant 

patient group. 

 

Wayman, Cox et al. (1997) found that infants who received LTx before 2 years of age 

had standardised scores of mental and motor developmental that dropped below pre-

transplant levels at 3 months post-transplant, and recovered to pre-transplant levels 

only at 12 months after the procedure. Similar deterioration preceding recovery in both 

cognitive and physiological outcomes has also been reported by van Mourik, Beath et al. 

(2000). The study by Wayman et al. was conducted in a young population 12 months 

post-transplant. These results cannot be easily compared to findings from the present 

study, which studied children at around 12 years of age, in some cases years after 

having received a transplant. Whilst the cognitive deficits observed in these children 

could improve over time, Wayman et al. suggest that post-operative effects, lasting up to 

one year post-transplant, are likely to persist in the longer term.  

 

The results from Wayman et al. and the present study demonstrates the need for a 

longitudinal investigation with a considerable follow-up period in order to probe the 

longer-term, potentially persistent effects of transplantation on cognitive development. 

The children in the current study were recruited post-transplant and therefore pre-

transplant evaluations were unavailable. It is possible that some of the deficits are 

related to the major surgery of liver transplantation and/or immunosuppressant 



83 
 

medication following transplantation, which may also explain the post-operative effects 

identified by Wayman et al. 

 

Krull, Fuchs et al. (2003) also highlight a number of cofactors which need to be taken 

into consideration. In a group of 15 liver transplant patients, they observed that the 

number of days in the intensive care unit, the total number of days spent in the hospital 

during the first year following the transplant, and elevated pre-transplant bilirubin 

levels, significantly predicted the speech and language delays. Only data for bilirubin 

levels at the time of study were available in the present study, and no correlation was 

observed between this marker of disease severity and IQ performance (p <.05). 

Hyperbililirubinemia (>342 µmol/L (20mg/dL)) in infancy is, however, associated with 

a higher risk of for low IQ scores (<85) at age 17 (Seidman, Paz et al., 1991), which again 

supports the theory that greater disease severity in early infancy is associated with 

poorer cognitive outcome in later childhood. Data for a number of co-factors, including 

length of hospitalisation and periodic measures of bilirubin levels was collected in a 

number of the patients in the current study (see Appendix A), but analysis was 

considered beyond the scope of this thesis. 

 

In the present study, age-matched healthy children were used as a control group. 

Employing an intra-subject design would alleviate the problem of identifying an 

appropriate comparison group. Given the ongoing complications associated with liver 

failure and post-transplant recovery, an age-matched chronic disease group, such as 

cystic fibrosis patients used in previous studies, has greater utility in controlling for co-

factors such as number of days missed from school, hospital visits and similar 

potentially confounding effects. 

 

4.6 Conclusion 
 

The most important finding of the present study is that post-transplant children with an 

early onset of liver disease show deficits in cognitive ability, specifically in Information 

Processing Speed, compared to age-matched acute liver failure transplant patients and 

sibling controls. This highlights the need to assess the developmental and cognitive 

status in children with liver disease and the importance of the timing of the onset of 
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illness. Whilst the results of the present study are in keeping with the literature 

demonstrating age of onset-related cognitive deficits in children with liver disease, the 

limited number of participants in each group, and the heterogeneity in specific 

diagnoses, is a significant limitation and the findings of the present study must be 

interpreted with caution, despite the large effect sizes.  

 

The numerous activities of the liver that are disturbed as a consequence of liver disease 

may each contribute in some small degree to the observed deficits in cognitive 

functioning. One possible mechanism that may explain the results is the reduced 

exposure to molecules important in development of brain, such as EFAs, which is 

investigated Chapter 5.  

 

Greater numbers of participants are needed to achieve the statistical power required to 

genuinely probe the effects of disease onset and some of the cofactors identified which 

may contribute to the cognitive deficits observed. Longitudinal studies would help 

illuminate the extent and persistence of the cognitive deficits observed in paediatric 

liver disease. The availability of patients is, however, a significant limiting factor to 

large-scale studies with this group, which means that in general there is a shortage of 

studies assessing the impact of liver disease, and treatment-related variables, on 

neuropsychological function. 
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5 Polyunsaturated fatty acids and cognitive 
outcomes in paediatric liver disease 

 

5.1 Summary 
 

Using a paediatric liver disease model, the aim of this study was to evaluate whether 

sub-optimal concentrations of EFAs, as a result of fat malabsorption or dependence on 

inadequate dietary sources, is associated with deficits in cognitive ability, particularly as 

specific deficits in processing speed measures were observed in children with early-

onset congenital liver disease who had received a liver transplant (see Chapter 4). 

Specifically, the aim was to measure and evaluate the range of EFA biomarker 

concentrations in cross-sectional cohorts of children with a variable onset of liver 

disease, some of whom with more severe manifestations of liver disease had received a 

liver transplant, and determine if cognitive ability in these children is related to their 

EFA status. 

 

GC-MS analysis of erythrocytes was used to quantify biomarkers of fatty acid status, 

including the major omega-6 fatty acids (LA and AA), LCPUFA omega-3 fatty acids (DHA 

and EPA), and specific functional deficiency markers (osbond and mead acid). Fatty acid 

status was compared between groups of patients with liver disease and age-matched 

sibling controls and relationships between EFAs and the cognitive outcomes described 

in Chapter 4 were investigated. 

 

Compared to sibling controls, no signs of fatty acid deficiency were observed in any of 

the cohorts of patients with liver disease. This suggests that: (1) these patients were not 

deficient in their dietary intake of EFAs, LA and AA and (2) these patients are able to 

sufficiently metabolise these precursor lipids to synthesise LCPUFAs, DHA and EPA, to 

levels comparable to sibling controls. Duration of breastfeeding was not correlated with 

later cognitive outcomes in this cohort, but a strong correlation was observed between 

omega-6 (LA and AA) status and FSIQ and IPS (r= -.62 and -.39; p< .001), independent of 

disease diagnosis. 
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5.2 Introduction 
 

The advent of paediatric liver transplantation has placed additional emphasis on the 

importance of optimum nutritional management of children with chronic liver disease, 

as improvement of nutritional status in the pre-transplantation period maximises 

success of the liver transplant itself. There is also a growing awareness of active 

nutritional support for children with end-stage liver disease in order to maintain a state 

of health that supports normal physical and psychological development (Alonso, 2008; 

Bavdekar, Bhave et al., 2002; Protheroe, 1998). 

 

Whatever its original cause, chronic liver disease in children is characterised by an on-

going inflammatory process that injures the liver tissues causing fibrosis and in severe 

cases, cirrhosis. Some children require a liver transplant to survive, although many can 

be managed with medical treatments such as drugs to regulate the immune system and 

food supplements to compensate for fat malabsorption (Kelly, 2008; Kelly, 1997; Kelly, 

2006; Kelly and Sibal, 2006). 

 

The liver has a diverse range of functions including the production of bile, constituents 

of which are required for efficient intestinal fat absorption. Additionally, biliary 

secretion of cholesterol (as such, or after incorporation into bile salts) and 

phospholipids from the liver into the intestine is of major importance in body lipid 

homeostasis. Most importantly, the liver is the site of active synthesis, metabolism 

and/or oxidation of a wide range of proteins and carbohydrates, as well as EFAs and 

LCPUFA, which are the subject of this study. For a more detailed discussion of lipid 

absorption and metabolism in cholestasis refer to Werner, Kuipers et al. (2003). 

As a result of the importance and functions of EFA, which were described in Chapter 2, 

interest in the role of EFAs in liver disease has been growing rapidly in recent years (de 

Meijer, Le et al., 2010; Diamond, Sterescu et al., 2008; Lee, Gura et al., 2007). Isolated 

omega-3 deficiency has attracted attention since its recognition in a 6-year-old girl who 

received long-term total parenteral nutrition that lacked adequate omega-3 fatty acids 

(Holman, Johnson et al., 1982). 
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5.2.1 Dietary EFA deficiency in paediatric liver disease 
 

Malnutrition and consequent EFA and PUFA deficiency can be a result of multiple 

factors, such as increased energy requirements, malabsorption and abnormal hepatic 

metabolism (Motta, Sterling et al., 1999; Protheroe, 1998). Patients are at risk of 

malnutrition if under 2 years of age, or having severe cholestasis, or progressive liver 

disease, such as biliary atresia or severe neonatal hepatitis, and if awaiting liver 

transplantation intervention (Protheroe, 1998). Malnutrition is however recognised as 

a risk factor that is potentially reversible, making nutritional support a cornerstone of 

therapeutic management of these children. 

 

Malabsorption of lipids is a critical nutritional issue, particularly in cholestasis, because 

a fundamental energy source is lost. Inadequate energy intake due to malabsorption of 

fat can be compensated for by using  soluble medium-chain triglycerides (MCTs), which 

are fatty acids with carbon chain lengths between 6 and 12 (primarily octanoic (C8) and 

decanoic (C10) acids). Most infant formulas used by children with liver disease contain 

MCTs (for examples of feeds, see Table 5-1, page 88). MCTs do not require extensive 

biochemical transformation or incorporation into chylomicrons during intestinal 

absorption and MCT oil supplemented diets have been successfully used in reducing 

steatorrhea, improving energy balance, and promoting growth in liver disease patients 

(Cohen and Gartner, 1971; Kaufmann, Murray et al., 1987). 

 

Concerns have been raised that MCT-based nutritional feeds, lacking adequate levels of 

EFAs lead to deficiency states (Hirono, Suzuki et al., 1977; Pettei, Daftary et al., 1991). 

Furthermore, EFA deficiencies in patients on parenteral feeds are not easily reversed, at 

least in the short term (Deurksen, Nehra et al., 1999). Table 5-1, page 89, shows the 

fatty acid content of Pregestimil and Peptisorb, two feeds used by the Birmingham 

Children’s Hospital to treat children with cholestasis and which contain no AA, EPA or 

DHA. Table 5-2, page 89, shows the fatty acid content of Pepti Junior, an alternative feed 

that contains appreciable levels of LCPUFAs.  
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Table 5-1 Fatty acid content of two feeds used by the Birmingham 
Children’s Hospital to treat children with cholestasis 

Brand of feed MCT (%) Fatty acid content 
(mg/100ml) 

   
18:1 18:2 

18:3n-
3 

Pregestimil 54 179 220 28.9 

Peptisorb 47 408 1010 92.7 

Data retrieved from http://nutritiondata.self.com/facts/baby-
foods/440/2 

 

Table 5-2 Fatty acid content of Pepti Junior, an MCT-based feed with appreciable levels of LCPUFAs 

Brand of feed 
MCT 
(%) 

Fatty acid content (%/100g FA) 

    18:1 18:2 18:3n-3 18:3n-6 20:4 20:5 22:6 

Pepti Junior 50 22.7 14.4 2.7 0.02 0.2 0.05 0.2 

 

5.2.1.1 EFA deficiency due to fat malabsorption 

 

Even with adequate intake, up to half of dietary fat, along with fat-soluble vitamins and 

the essential PUFAs, may be malabsorbed due to reduced intraluminal bile 

concentration (Beath, Hooley et al., 1993; Glasgow, Hamilton et al., 1973). Fat 

malabsorption has also been shown to decrease EFA serum concentration, whilst total 

unsaturated fatty acid concentration is maintained through increases in nonessential 

fatty acid endogenous production (Jeppesen, Christensen et al., 1997). Abnormalities in 

the hepatic omega-6:omega-3 PUFA ratio impacts hepatic lipid homeostasis through 

modulation of transcription factors, and also impacts fatty acid desaturase (FADS) 

enzymes which have a major role in fatty acid metabolism and fat accumulation in the 

liver (El-Badry, Graf et al., 2007). 

 

In summary, infants with cholestatic liver disease are at risk of DHA deficiency as a 

result of malabsorption of LCTs, prescription of diets rich in MCT, or suboptimal liver 

desaturase enzyme activity. The critical role of PUFAs such as DHA in neuronal 

development (Chapter 2) suggests that adverse effects of inadequate levels of these 

nutrients may manifest as deficits in cognitive ability in later life and may be one of the 

mechanisms that explains, at least in some part, the specific deficit in processing speed 

measures observed in the early-onset liver disease patients in Chapter 4. 

http://nutritiondata.self.com/facts/baby-foods/440/2
http://nutritiondata.self.com/facts/baby-foods/440/2
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5.2.2 Aims 
 

Using a paediatric liver disease model, the aim of this study was to evaluate whether 

sub-optimal concentrations of EFAs, as a result of fat malabsorption or dependence on 

inadequate dietary sources, is associated with deficits in cognitive ability. Specifically, 

the aims were to: 

 

1. Measure and evaluate the range of EFA biomarker concentrations in cross-

sectional cohorts of children with a variable onset of liver disease who may also 

have had a liver transplant. 

2. Determine if cognitive ability in these children is related to their current EFA 

status. 

 

5.2.3 Hypotheses 
 

1. Patients with liver disease would show biomarkers of EFA and PUFA deficiency 

compared to the sibling control group. 

2. Omega-3 fatty acids (particularly DHA) would be positively correlated with 

broad-based measures of cognitive ability. 

 

5.3 Methods 
 

5.3.1 Participants 
 

Blood sample data was available for a total of 39 participants, of which 28 patients had a 

liver disease diagnosis and 11 were sibling controls (24 females, 15 males; mean age 

13.8, SD: 4.2), from the larger sample described in Chapter 3 (Table 3-2, page 50). EFA 

data was not available for three of the early onset, pre-transplant patients. One patient 

did not provide a blood sample on the study day and blood samples from two patients 

were not of sufficient quantity to permit adequate lipid analysis. Descriptive details of 

the subsample included in this study are provided in Table 5-3, page 90. 
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Table 5-3 Descriptive data for the sibling control and liver disease groups with available psychometric and EFA data 

 

Group 
Total 

n 

Mean 
age 

(years) 

SD age 
(years) 

M:F 
Mean 

onset age 
(years) 

n Diagnoses 

Sibling controls 11 12.2 5.1 5:6       

Early-onset liver 
disease, pre-
transplant 
(EOLD pre-Tx) 

14 13.6 4.6 5:9 - 

8 Extra-hepatic biliary atresia 

1 Alpha 1-antitrypsin (A1AT) deficiency 

4 Progressive familial intrahepatic cholestasis 

1 Neonatal haemochromatosis 

Early-onset liver 
disease, post-
transplant 
(EOLD post-Tx) 

8 15.5 3.2 3:5 - 

2 Progressive familial intrahepatic cholestasis 

2 Extra-hepatic biliary atresia 

1 Aegeneas Syndrome 

2 Neonatal liver failure 

1 Alpha 1-antitrypsin (A1AT) deficiency 

Acute liver 
failure, post-
transplant (ALF 
post-Tx) 
 

6 13.7 3.7 2:4 5.4 

1 Autoimmune hepatitis 

1 Fulminant hepatitis A infection 

1 Wilson’s disease 

3 Sero-negative hepatitis 
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The sample provides the study with statistical power in excess of 80% to detect 

moderate correlations of .4 and above, with statistical significance evaluated at an α 

level of .05 (Friedman, 1968). 

 

5.3.2 Quantification of fatty acid biomarkers in erythrocyte 
membranes 

 

The total lipids were extracted from the erythrocytes, transesterified to the methyl 

esters and analysed with conventional GS-MS. Details of the procedures and 

reagents are described in Chapter 3 (section 3.4, page 52). Fatty acid analyses were 

limited to a number of individual fatty acids and the four main fatty acid families: 

saturated (SFAs), monounsaturated (MUFAs), omega-3 and -6 PUFAs (refer to 

Chapter 3, page 60 for details). Table 5-4 summarises the biomarkers used to 

evaluate fatty acid status. 

 

Table 5-4 Summary of erythrocyte biomarkers of fatty acid status 

Fatty acid biomarkers Fatty acids 

SFA 
stearic (18:0n-6) + palmitic (16:0n-6) + 
myristic (14:0n-6) 

MUFA oleic (18:1n-6) 

Omega-3 index  DHA (22:6n-3) + EPA (20:5n-3) 

Omega-6 index arachidonic (20:4n-6) + linoleic (18:2n-6)  

Omega-3:omega-6  omega-3 index/omega-6 index 

EFA shortage marker mead acid (20:3n-9) 

Functional DHA shortage marker DHA/osbond acid (22:5n-6) 

 
5.3.3 Psychometric assessments 
 

An age-appropriate battery of the either the Wechsler Preschool and Primary Scale 

of Intelligence-III, Wechsler Intelligence Scale for Children-IV or Wechsler Adult 

Intelligence Scale-III, was administered to derive scores for Verbal IQ, Performance 

IQ, Working Memory and FSIQ, and IPS. The standardised protocol for 

administration of psychometric assessments was described in Chapter 3. 

Psychometric test scores were converted to scaled scores to standardise the data 

across age groups according to the standard Wechsler administration instructions 

(refer to section 3.3, page 51). 
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5.3.4 Breastfeeding data 
 

Breastfeeding data was collected by a physician who interviewed the mothers 

about both the timing and duration of breastfeeding.  

 

5.4 Results 
 

5.4.1 Summary of erythrocyte fatty acid biomarker data 
 

Figure 5-1 provides an example of a high-quality GC-MS spectrum of fatty acids 

extracted from erythrocyte membranes. Table 5-4, page 91, summarises the fatty 

acid data for each of the four participant groups.  

 

 

Figure 5-1 Example of high-quality GC-MS spectra of erythrocyte EFAs  
Spectra shown is from one sibling control participant. Fatty acids are identified by their relative 

retention times and are labelled on the spectra. The integral of the peak indicates relative quantity 
of each fatty acid. 

 
 



 

93 
 

Data for each of the biomarkers assessed consistently satisfied distributional 

assumptions of normality (evaluated with the Shapiro-Wilk statistic at an α level of 

.05), therefore justifying the use of parametric statistics in subsequent analyses.  

 

Psychometric data was available for 32 of the 39 participants, permitting 

correlational analyses of the relationship between cognitive outcomes and current 

fatty acid status. Mean and SD psychometric scores of the participants included in 

this study have been described previously in Table 4-2, page 77). 

 

Table 5-5 The distribution of erythrocyte EFAs in sibling controls and liver disease groups 

  
Sibling 

controls 
EOLD    

pre-Tx 
EOLD    

post-Tx 
ALF    

post-Tx 

N 11 14 8 6 

Fatty acid % Total (SD) 

SFA 27.95 (5.26) 27.93 (6.21) 30.21 (5.0) 27.76 (5.54) 

palmitic (16:0n-6)  7.02 (1.07) 6.86 (.93) 6.64 (.65) 6.64 (.49) 

stearic (18:0n-6)  9.21 (.80) 9.49 (1.02) 8.92 (1.57) 8.85 (1.03) 

MUFA 
8.64 (.63) 8.82 (1.15) 9.16 (1.71) 8.98 (.55) 

oleic (18:1n-6) 

Total omega-6  19.28 (1.86) 16.66 (2.71) 20.10 (3.11) 19.29 (1.74) 

linoleic (18:2n-6)  9.43 (.97) 9.58 (1.39) 9.89 (1.78) 9.16 (1.14) 

arachidonic 
(20:4n-6)  

9.85 (1.02) 10.06 (1.49) 10.22 (1.60) 10.13 (.76) 

Total omega-3  17.64 (1.70) 17.03 (3.40) 15.59 (2.68) 18.29 (2.37) 

EPA (20:5n-3) 8.68 (.87) 7.61 (3.51) 7.28 (3.13) 8.55 (.94) 

DHA (22:6n-3)  8.96 (.97) 9.41 (1.59) 8.63 (1.49) 9.73 (1.50) 

Omega-3:omega-6  .92 (.05) .91 (.17) .86 (.14) .95 (.13) 

DHA/osbond acid 
(22:5n-6) 

1.06 (.08) 1.07 (.25) 1.0 (.08) 1.14 (.20) 

Mean percentage total and standard deviation of fatty acids quantified in erythrocyte membranes 
are shown. Percentage values do not total 100% as only selected fatty acids were included in 
analyses (see Chapter 3). 
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5.4.2 Inter-diagnostic differences of EFA and PUFA and 
biomarkers 

 
Table 5-6 Differences in levels of fatty acid erythrocyte biomarkers 
between sibling controls and liver disease groups 

Fatty acid biomarkers ANOVA 

  F df p 

SFA .355 3, 35 .79 

MUFA .369 3, 35 .78 

Omega-3 index 1.030 3, 35 .39 

Omega-6 index .202 3, 35 .89 

Omega-3:omega-6 1.005 3, 35 .40 

Functional DHA shortage marker .585 3, 27* .63 
*Osbond acid (the denominator in this ratio) was below the detection 
threshold, in six of the participants 

 

No significant differences were observed between diagnostic groups and controls 

for any of the six EFA status biomarkers assessed (p> .05). 

 

5.4.3 Relationships between fatty acids and cognitive ability in a 
paediatric sample 

 

Findings from Chapter 4 showed that there was no statistically significant 

difference between diagnostic groups for FSIQ. This justified the investigation of 

correlations between this broad-based measure of cognitive ability and fatty acid 

levels across the entire cohort, including both sibling controls and clinical groups. 

Whilst group difference in IPS were observed (see section 4.3.2, page 77) analysis 

was also conducted to test the relationship between fatty acid levels and this 

measure, independent of disease diagnosis. 

 

To minimise susceptibility to Type I error, a Bonferroni correction was performed 

and the alpha level was set at .0014. No significant correlation was observed 

between total SFA (a composite of myristic, palmitic and stearic acid) for VIQ and 

PIQ (p>.03) or FSIQ and IPS (p> .05).  
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Table 5-7 Correlations between erythrocyte fatty biomarkers and cognitive ability 

FA 
biomarkers 

Correlation with cognitive indices; r (p value) 

  FSIQ IPS PIQ VIQ WM 

N 32 32 32 32 17 

SFA .33 (.07) -.01 (.97) .39 (.03) .38 (.03) .13 (.61) 
MUFA -.29 (.10) -.05 (.98) .23 (.20) -.34 (.06) -.20 (.45) 

Omega-3 
index 

.03 (.87) .20 (.26) -.71 (.70) .13 (.95) .44 (.08) 

DHA -.35 (.05) -.28 (.12) -.42 (.02) -.16 (.37) -.17 (.50) 

Omega-6 
index 

-.62 (.00)* -.39 (.03) -.60 (.00)* -.66 (.00)* -.48 (.05) 

Omega-3: 
omega-6 

.40 (.02) .32 (.08) .32 (.08) .39 (.03) .60 (.01) 

Functional 
DHA shortage 
marker 

-.24 (.90) .16 (.42) .03 (.86) .16 (.42) .21 (.44) 

FSIQ= Full-scale IQ, IPS= Information Processing Speed, VIQ= Verbal IQ, PIQ=Performance IQ,  
WM= Working memory, SFA= saturated fatty acids, MUFA = monounsaturated fatty acids,  
Omega-3 Index= EPA+DHA, omega-6 index= LA + AA 
EFA data were normally distributed justifying the use of parametric Pearson’s correlation 
coefficients 
*p<.0014 (Bonferroni-corrected α value) 

 

No significant correlation was observed between the omega-3 index (comprised of 

the percentage total of EPA and DHA) and any of the cognitive indices measured 

(p>.05). As DHA is putatively the most important long-chain PUFA, analyses were 

also targeted at this fatty acid specifically. However, no statistically significant 

correlation was observed between DHA values and FSIQ performance (r= -.35; 

p=.05, see Table 5-7). 

The omega-6 index (comprised of the percentage total of LA and AA) showed a 

strong, negative correlation with FSIQ (r= -.62; p< .001, see Figure 5-2 , page 96), 

and a trend towards moderate negative correlation with IPS (r= -.39; p= .03, see 

Figure 5-3, page 96), although this relationship was not statistically significant at 

the Bonferroni-corrected α level of .0014.  
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Figure 5-2 Correlation between % total omega-6 (LA and AA) and FSIQ 
r= -.62 p< .001; n= 32 

 

Figure 5-3 Correlation between % total omega-6 (LA and AA) and IPS 
r= -.39 p= .03; n= 32 
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The omega-3:omega-6 ratio showed a trend towards a moderate positive 

correlation with FSIQ (r= .40; p= .02, see 5-4), and a strong, positive correlation 

with Working Memory (r= .60; p= .01, n= 17). The functional DHA index (the ratio 

of DHA to osbond acid) was weakly and not statistically significantly correlated 

with cognitive indices (p>.05). 

 

Figure 5-4 Correlation between the omega-3-omega-6 ratio and FSIQ 
r= -.40, p= .02; n= 32.   

A small subset of participants (circled in red) appear to be qualitatively different to the rest of the 
group, falling well below an omega-3omega-6 ratio of .70(blue dashed line) 

 

Analysis of  Figure 5-4, page 97, shows that there may be a sub-group of four 

participants (circled in red) that are qualitatively distinct from the rest of the 

group, with an omega-3omega-6 ratio below an arbitrary threshold of .70 (blue 

dashed line). Removal of these four outliers negates the previously significant 

linear relationship between the omega-3:omega-6 ratio and FSIQ (r= .31, p= .27; n= 

28). The potential for categorical associations, rather than traditionally assumed 

linear relationships between EFA levels and cognitive variables is discussed in 

section 5.5.2.3. 
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5.4.4 Effect of breastfeeding on cognitive outcomes  
 

Breastfeeding data was collected for 34 of the 39 patients and controls. Data from 

one patient and their sibling control was removed as duration of breastfeeding 

exceeded three standard deviations from mean duration. 26 of the remaining 32 

participants had a full set of psychometric data. The numbers in each group are 

summarised in Table 5-8. 

 

Table 5-8 The number of breastfed children in each 
diagnostic group 

Diagnostic group Breastfed 

 
Yes No Total 

Sibling controls 3 6 9 

EOLD pre-Tx 5 7 12 

EOLD post-Tx 4 3 7 

ALF post-Tx 1 3 4 

 

Participants were first grouped into breastfed/non-breastfed categories to assess 

the overall impact of breastfeeding on later cognitive outcomes. The results are 

shown in Table 5-9. 

 
Table 5-9 Cognitive outcomes in breastfed vs non-
breastfed children 

  Breastfed vs non-breastfed 

  t Df p 

FSIQ -2.19 26  .04* 
IPS -1.43 26 .17 
VIQ -2.17 26    .04* 
PIQ -1.65 26 .11 
WM -1.97 15 .07 
FSIQ= Full-scale IQ, IPS= Information Processing 
Speed, VIQ= Verbal IQ, PIQ= Performance IQ,  
WM= Working memory 
Analyses were performed for the aggregated 
cohort of 26 children to assess the impact of 
breastfeeding on IQ, independent of disease 
diagnosis 
*p<.05 
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Independent-samples t tests showed that FSIQ was higher in the non-breastfed 

groups than the breastfed group (t= -2.19 (26); p= .04), largely as a result of 

differences in the VIQ performance (t= -2.17 (26); p= .04). 

 

Correlations between duration of breastfeeding (in weeks) and later cognitive 

outcomes in the 17 children with data available are shown in Table 5-10. 

 

Table 5-10 Correlation between duration of breastfeeding and cognitive outcomes 

  Correlation with cognitive ability; r (p value) 

  FSIQ IPS VIQ PIQ WM 

n 17 17 17 17 7 

Duration of 
breastfeeding 

.18 (.49) .37 (.15) .15 (.57) .40 (.12) -.49 (.26) 

FSIQ= Full-scale IQ, IPS= Information Processing Speed, VIQ= Verbal IQ, PIQ= Performance IQ,  
WM= Working memory 
Data were analysed with non-parametric statistics, Spearman’s Rho due to the small sample 
size 

 

Non-parametric correlations showed that duration of breastfeeding (number of 

weeks) was not significantly correlated with FSIQ (r= .18; p=.49). 

 

5.5 Discussion 
 

5.5.1 EFA deficiency in paediatric liver disease  
 

The risk of developing EFA deficiency depends on the amounts of different EFAs in 

the diet, the ability to absorb ingested fat, the demand for EFAs, and the amount 

and availability of endogenous stores. A poor EFA intake in the setting of a 

generally inadequate food intake has been considered as one of the major factors 

responsible for potential EFA deficiency in patients with liver disease. A lack of 

essential precursors certainly would be expected to lead to a deficit in LCPUFAs. 

The severity of the deficiency in the EFAs and LCPUFAs is related to the degree of 

overall malnutrition in these patients (Cabre and Gassull, 1996).  
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The evidence from this study, however, suggests that these patients do not show 

signs of EFA deficiency (see Table 5-5, page 93) as they had EFA levels comparable 

with the sibling control group. To prevent EFA deficiency, the diet requires only 

approximately .5% of the total caloric requirement as .7% ALA and 2% as LA 

(ISSFAL, 2010). Given that the average western diet provides 10–20 times more 

than these required amounts (Simopoulos, 2000), it is probable that levels of EFAs 

in the diets of the present cohorts was sufficiently high to prevent EFA deficiency. 

Examples of dietary data collected from a small number of patients involved in the 

current study (and additional disease control patients) are provided in Appendix 

A, Table A, page 206. Analysis of this small set of data is beyond the scope of the 

current study, but dietary data in future studies would be useful for providing 

greater context for investigations of deficiency and the erythrocyte biomarker 

data. 

 

No evidence was found of LCPUFA deficiency in the patient groups, suggesting that 

these patients are able to adequately synthesise long-chain fats from the levels of 

EFAs that are present. It has been suggested that PUFA deficiency may be more 

closely related to rates of very long-chain PUFA biosynthesis rather than 

inadequate intakes of LA and ALA (Burke, Ling et al., 1999), but only in cases 

where diets are not entirely fat-free, as is the case with present cohort. It has been 

observed that children with liver disease may have a specific problem with 

malabsorption that is characterised by decreased linoleic and arachidonic acids 

and increased non-essential fatty acids (Gourley, Farrell et al., 1982; Jeppesen, 

Christensen et al., 1997; Pettei, Daftary et al., 1991). Socha et al., also reported 

decreased plasma AA levels in paediatric cholestatic patients, which they 

attributed to impaired hepatic microsomal desaturase and/or elongase activity 

(Socha, Koletzko et al., 1998). In the current study, however, no decreases in either 

linoleic or arachidonic acid were observed in the patients compared to the sibling 

controls (see Table 5-4). 

 

In the absence of dietary DHA, Rapoport et al found that a normal brain DHA 

content can be maintained by liver conversion of ALA to circulating DHA, provided 
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sufficient ALA is present in the diet (Rapoport, Rao et al., 2007). In the present 

study, the question of whether DHA can be synthesised by older children in the 

absence of dietary sources of DHA was followed up in a clinical case study of a 

patient who was given an oral diet consisting of a specialised feed devoid of DHA 

for 12 months (see Appendix B, page 212). This individual (aged 11) was able to 

maintain erythrocyte DHA concentrations comparable to sibling controls, 

supporting the idea that dietary absence may not cause DHA deficiency, at least not 

detectable via erythrocyte biomarkers, provided EFA precursors are available for 

endogenous synthesis. 

 

It has been suggested that PUFA deficiency may be closely related to genetic 

factors. The conversion of EFAs to LCPUFAs is dependent on fatty acid desaturases 

(FADs), which show phenotypic variability within the human population 

(Simopoulos, 2010). In the context of end-stage liver disease and profoundly 

cholestatic conditions such as Alagille’s Syndrome, genetic-based variations in 

biosynthesis may be as important as inadequate intakes of LA and ALA (Burke, 

Ling et al., 1999), as these gene variants may be exacerbating the potentially higher 

than normal requirements for these nutrients in these patients. The genetic 

contribution to fatty acid metabolism is discussed as a future direction of research 

in Chapter 8, section 8.5.2. 

 

5.5.1.1 Functional biomarkers of PUFA deficiency: osbond and mead acid 

 

In addition to percentage values of the various lipids, biomarkers which provide a 

more subtle measure of EFA metabolism were also assessed. Osbond acid (22:5n-

6) is synthesised specifically in response to DHA shortage. For example, dietary 

ALA deficiency (the DHA precursor) promotes accumulation of osbond acid in 

brain tissue (Rapoport, Rao et al., 2007). Under steady state conditions, the ratio 

between DHA and osbond acid (22:5n26) is a reliable indicator of functional DHA 

status (Hornstra, 2000), that is, the amount of DHA that is available for use. No 

difference between the disease groups for levels of functional DHA marker 
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(DHA/osbond) were observed, which provides further support to the finding of a 

specific lack of deficiency in the liver disease cohorts. 

 

However, the near uniform presence of osbond acid in the patient and control 

groups (see Table 5-4) may indicate that, according to biomarkers representing 

three months dietary intake, even the sibling control group showed signs of DHA 

deficiency, which is in keeping with the hypothesis that modern western diets 

generally contain excessive amounts of omega-6 fatty acids and have a high ratio of 

omega-6 fats to omega-3 (Benatti, Peluso et al., 2004; Simopoulos, 2002a).  

 

However, the use of osbond acid as a functional DHA shortage marker is not 

without question. In the present study, a moderate, but not statistically significant, 

correlation was observed between osbond and DHA levels (r= -.30 p> .05). Innis, 

Vaghri et al. (2004) found no evidence that low DHA concentrations in humans are 

accompanied by high osbond acid concentrations when erythrocyte fatty acids are 

used as a measure of fatty acid status, which they propose is suggestive of the fact 

that metabolic markers of deficiency traditionally seen in animals may not be 

easily translated to humans fatty acid metabolic processes.  

 

Elevations in the triene:tetraene (arachidonic:mead) ratio have also been observed 

in patients with suboptimal lipid absorption (Pettei, Daftary et al., 1991). The 

failure to identify appreciable amounts of mead acid in any of the participants, a 

lipid that is produced in classic EFA deficiency by elongation and desaturation of 

oleic acid (18:1n-9) (see Figure 2-3, page 27), when LA and ALA are limited, may 

be a further explanation why the liver disease cohort did not present with EFA 

deficiency despite their illness. As with osbond acid, however, the use of mead acid 

as a deficiency biomarker is not unequivocal. Lands (2008) argued that detectable 

levels of mead acid may actually be a biomarker of the potentially beneficial 

restricted intake of omega-6 PUFAs, and may become a valid surrogate endpoint in 

future efforts to avoid excessive PUFA intakes and excessive omega-6 eicosonoid 

actions (see section 8.2.1). 
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5.5.2 EFA status and cognitive ability  
 

There is increasing evidence that EFAs have a central role in cognitive 

development, with EFA deficiency linked to cognitive impairment; The 

fundamental importance of EFAs, and their LCPUFA metabolites, particularly DHA, 

for brain development and cognitive function is beyond dispute (McCann and 

Ames, 2005).  

 

Results from Chapter 4 showed that early onset, post-transplant patients showed 

significant deficits in processing speed compared to sibling controls (p= .017, (d)= 

1.36; see Table 4-3 and Figure 4-1, page 78). Analysis of current fatty acid status, 

measured using erythrocyte biomarkers, showed that this patient group was not 

significantly different in EFA levels compared to controls, which means that 

deficits in processing speed in these individuals cannot be attributed to their 

current fatty acid status, or at least that the effects are negligible. 

 

The need for liver transplantation is an important indicator of disease severity so 

the finding that deficits were specific to the early onset, post-transplant group is in 

keeping with the hypothesis that EFAs may have a crucial role in later cognitive 

outcomes, given the relative importance of EFAs in early infancy (discussed in 

Chapter 2) and potential for EFA intake and metabolism to be disturbed in patients 

with liver disease (Beath, Hooley et al., 1993; Glasgow, Hamilton et al., 1973). That 

the acute liver failure group (with a mean age of onset of 5.4 years) did not show 

significant deficits compared to controls may be indicative of the fact that fatty acid 

intake and metabolism, as a result of liver disease, was undisturbed until after the 

crucial period of perinatal development, which is when EFAs are deemed 

especially important (Innis, 2007; Innis, 2008). 

 

One explanation for the specific deficit in processing speed may be the action of 

EFAs on the myelination process (section 2.3.1, page 37) and ion channel function 

and (section 2.3.2, page 37).  Rat models have shown that EFA deficiency during 

early development can give rise to aberrations in the process of myelination and 
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myelin composition (McKenna and Campagnoni, 1979; Trapp and Bernsohn, 

1977). The integrity of the myelin is of utmost importance for the proper functions 

of axons in the nervous system and for facilitating the synchronous integration of 

information across the many spatially segregated associative regions of the brain 

that are involved in higher cognitive functions (Nicholls, Martin et al., 2001).  

 

During maturation in humans, a shift from short chain saturated fatty acids to the 

long-chain unsaturated forms has been observed (O'Brien and Sampson, 1965; 

Svennerholm, Vanter et al., 1978). If myelin formation is compromised, particularly 

by a deficiency in LCPUFAs, nerve conduction velocity (NVC) may be suboptimal, 

resulting in a deficit in the ability to perform timed tasks of cognitive ability. NVC 

in brain nerve axons has been suggested to underlie general cognitive performance 

(McRorie and Cooper, 2004; Reed and Jensen, 1992). One way to probe the 

potential effects of liver disease on axons and myelination is to use 1H-MRS which 

is able to detect NAA, a metabolite found exclusively in the brain that has a role in 

myelination and is regarded as a marker of neuronal viability. The findings from 

the 1H-MRS study of the cohort of liver disease patients are presented in Chapter 7.  

 

The current study retrospectively recruited patients with liver disease and as a 

result, what is necessarily lacking are measures of EFA status at birth/infancy that 

would have allowed us to directly probe the effects of liver disease on EFA status at 

a time when intake may be most crucial. A limited number of prospective studies 

have investigated the direct effects of early PUFA exposure on later cognitive 

outcomes by assessing LCPUFA content of umbilical plasma and erythrocytes as a 

surrogate measure of the LCPUFA availability during late gestation, but the 

association does not appear robust. Neither plasma nor erythrocyte phospholipid 

DHA and AA levels showed any significant correlation with cognitive development 

at four years of age (Ghys, Bakker et al., 2002) and in a similar study performed in 

a Dutch cohort, B Bakker, Ghys et al. (2003) found no evidence of a positive 

relationship between cognitive performance at age seven and LCPUFAs measured 

both at birth (in umbilical plasma samples) and also at seven years of age (in 

venous plasma).  
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The studies described above show no relationship between perinatal EFA status 

and cognitive outcomes in later childhood in healthy individuals, but the 

disturbances to EFA metabolism in liver disease are considerable (Dupont, 

Ameedee-Manesme et al., 1990) and therefore a more significant impact on 

cognitive outcomes may be anticipated. Conclusions from the current study remain 

speculative without a prospective study collecting periodic measures of EFA status 

and cognitive outcomes from birth. 

 

5.5.2.1 Relationship between current omega-3 fatty acid status and 

cognitive ability 

 

The finding that FSIQ and EFA status was not significantly different between 

groups allowed aggregation of the cohort of 39 in order to assess the association 

between current levels of the various lipids and cognitive performance. The 

hypothesis that current levels of omega-3 fatty acids would have a positive 

relationship with cognitive performance was not confirmed when a strict α level of 

.0014 was applied to the data. The biomarker for omega-3 status (comprised of the 

sum of EPA and DHA, putatively the most important LCPUFAs), did not correlate 

with FSIQ or IPS performance (p> .05). 

 

Across the cohort of 39 participants, DHA was moderately, negatively correlated 

specifically with Performance IQ (r= .42; p=.02). Whilst the result is surprising, 

given the common consensus in the literature regarding the ‘positive’ effects of 

DHA such as increasing membrane fluidity and efficiency (Chapter 2), other studies 

have also found negative correlations between DHA levels and cognitive 

performance. For example, plasma DHA levels were associated with a slower 

learning curve on general speed of information processing as measured by the 

Stroop Colour Word Interference Test in a group of healthy adult women (de 

Groot, Hornstra et al., 2007). This suggests that the IQ relationship, at least for 

omega-3 fatty acids, is possibly not clear cut and this is certainly a reason for 

further research. 
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5.5.2.2 Relationship between current omega-6 fatty acid status and 

cognitive ability 

 

The most striking finding from the current results is the strong correlation 

between omega-6 fatty acids and cognitive measures. The omega-6 index 

(comprised of the percentage total of LA and AA) was negatively correlated with 

FSIQ (r= .62; p< .001; Figure 5-2 ), which appears to be a robust result given the 

strict  Bonferroni-corrected α level employed. Trend results were also observed for 

IPS (r= -.39; p= .03; see Figure 5-3, page 96), and Working Memory (r= -.48 =; p= 

.05). Whilst this negative relationship between omega-6 fatty acids and IQ 

measures was not predicted, it is in keeping with the present understanding of the 

functions of this group of fatty acids and their potential physiological effects.  

 

The difficulty in placing these findings in sufficient context, however, is that the 

vast majority of the literature has focused almost exclusively on the positive and 

potentially ameliorative effects of omega-3 on cognitive outcomes, at the expense 

of considering the effects of omega-6 fatty acids (negative or otherwise), a problem 

also identified by Eilander, Hundscheid et al. (2007). Furthermore, there has been 

far less research on the role of brain AA specifically, partly because it is difficult to 

deplete brain AA levels by dietary deficiency studies. 

 

5.5.2.3 The omega-3:omega-6 ratio and cognitive ability 

 

As discussed in Chapter 2, omega-6 and omega-3 fatty acids share metabolic 

pathways and thus interact with each other through a complex system involving 

several factors including dietary substrate availability, competition for the same 

metabolic enzymes for synthesis and membrane incorporation (see section 2.2, 

page 26). An improved understanding of the role of free EFA in mediating cognitive 

and biochemical functions was derived from a series of findings that indicate that 

not only are the levels of EFAs or PUFAs critical, but also the ratio between the 

omega-3 and omega-6 fatty acids, both in terms of cognition (Simopoulos, 2002a) 

and chronic disease (Simopoulos, 2008).  
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Generally, higher ratios of omega-3 to omega-6 fatty acids are associated with 

improved cognitive status (Yehuda, 2003). The effects of omega-3 deprivation 

were discussed in detail in Chapter 2, section 2.4, page 40. In the majority of cases, 

the ratio between omega-3 and omega-6 fats is not studied directly, but chronic 

supplementation or deprivation of fatty acids, such as DHA, is regarded as 

manipulating the physiologically active ratio through changes in bioavailability. 

For example,  in rats, administration of ALA and LA preparations with ratios of 

fatty acids ranging between 1:3.5-1.5 led to a significant improvement in learning, 

measured by performance on a Morris Water Tank task (Yehuda and Carasso, 

1993), and reduced reference memory errors on a radial tasks was associated with 

cerebral DHA/AA ratios, after chronic administration DHA supplementation 

(Gamoh, Hashimoto et al., 1999). 

 

Studies of humans, using erythrocyte biomarkers specifically relevant to the 

present study, appear to reinforce the importance of a higher omega-3:omega-6 

ratio.  In children  with attention deficit hyperactivity disorder (ADHD) for 

example, it has been negatively related with oppositional, restlessness and 

problematic behaviour scales (Colter, Cutler et al., 2008), and eight weeks of EFA 

supplementation has been shown to reduce the AA/EPA ratio, which was 

significantly higher in ADHD children than controls at baselinel, with changes in 

the AA/EPA ratio linked with significant improvements in Inattention and 

Hyperactivity using Connor’s short-term inventory (Germano, Meleleo et al., 2007). 

 

Studies of adults report associations between an imbalance in the erythrocyte 

omega-3:omega-6 ratio in psychiatric disorders such as depression (Maes, Smith et 

al., 1996), schizophrenia (Yao, van Kammen et al., 1994). Higher total omega-3 

fatty acids and DHA/AA ratios have been linked with better cognitive performance 

at the age of 64, even after accounting for IQ at age 11 (Whalley, Fox et al., 2004),  

and ratios of omega-3 to omega-6 fatty acids have also been inversely associated 

with mild cognitive decline (Heude, Ducimetiere et al., 2003). 
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In the present study, initial analysis with a bivariate, linear Pearson correlation 

showed a moderate, positive correlation between the omega-3:omega-6 ratio and 

FSIQ (r= .40; p=.02) and working memory (r= .60; p= .01, n= 17) .  More careful 

analysis of the data, however, showed that this regression was skewed by four sets 

of outliers (see Figure 5-4, page 97). Removal of these data resulted in a non-

significant linear relationships between the omega-3:omega-6 ratio and FSIQ and 

WM but also highlighted the need for a more subtle approach to analysing these 

complex relationships. 

 

It may not be as simple as treating these four outliers as anomalies, as they point to 

an important alternative method of approaching the data. Given the competitive 

metabolism and function of omega-3 and omega-6 fatty acids, and the robust 

nature of the cellular membrane, it is not unreasonable to speculate that effects of 

variations in omega-3:omega-6 ratios may not manifest until a critical threshold 

has been exceeded (in the current data, an arbitrary value of ~.70), revealing a 

categorical, as opposed to the traditionally assumed linear, association between 

EFAs and cognitive outcomes.  

 

Confined to data from only 39 participants, the idea of categorical dissociations 

must be treated with caution, but it is at least an idea worthy of consideration for 

future studies, particularly as much of the work in this field is still largely 

exploratory in nature. 

 

5.5.2.4 Mechanisms by which EFA levels can effect cognitive function 

 

The physiological roles that may explain the effects of omega-3 and omega-6 fatty 

acids on physiological function and therefore cognition were introduced in Chapter 

2. Yehuda, Rabinovitz et al. (2005) have summarised the potential effects of PUFAs 

on membrane function into six nominal categories: (1) modifications of membrane 

fluidity; (2) modifications of the activity of membrane bound enzymes; (3) 

modifications of the number and affinity of receptors; (4) modifications of the 

function of ion channels; (5) modifications of the production and activity of 
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neurotransmitters; and (6) signal transduction, which controls the activity of 

neurotransmitters and neuronal growth factors. There are two mechanisms of 

action: (1) a long-term action on the composition and functioning of the 

membranes; and (2) a short-term action that would involve the metabolism of 

phospholipids (with subsequent modulation of signal transduction) and the action 

of EFA-derived metabolites such as eicosanoids. 

 

The changes of greatest potential significance to the human infants and adults are 

those related to the physical properties of the membrane that impact membrane 

excitability. Both the chain length and the number of double bonds of the fatty acyl 

chains that constitute membrane phospholipids have substantial and significant 

effects on the dynamic properties of the membrane such as fluidity, permeability 

and rigidity (Hac-Wydro and Wydro, 2007). 

 

Membrane fluidity may be one of the most salient mechanisms of effect that may 

explain the negative relationship between omega-6 levels and cognitive 

performance. The cis configuration at each double bond produces ‘coiling’ of the 

hydrocarbon backbone, resulting in a reduction in fatty acid length and a more 

curved, or ‘kinked' structure. This results in longer-chain poly-cis unsaturated fatty 

acids (PUFAs; which have greater numbers of double bonds) occupying increased 

space in the membrane, resulting in bilayers that are thinner and more flexible 

than saturated/ monounsaturated chain bilayers (Rawicz, Olbrich et al., 2000). 

DHA (six double bonds) and EPA (five double bonds) confer the greatest level of 

fluidity from the major membrane fatty acids (Feller, Gawrisch et al., 2002; 

Gawrisch, Eldho et al., 2003). Arachidonic acid-containing phospholipid bilayers 

are, for example, more disordered and deformable than DHA-containing 

phospholipid bilayers (Rajamoorthi, Petrache et al., 2005). 

 

The ever-changing mobility and proximity relationships of lipid and protein 

molecules in the plasma membrane also has a significant impact on essential 

cellular processes, including signal transduction, carrier mediated cellular 

transport, membrane bound enzyme activity and receptor function (McNamara 
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and Carlson, 2006). The capacity for omega-6 fatty acids to regulate neuronal 

excitability, for example, has been shown by Tsutsumi, Yamauchi et al. (1995), who 

demonstrated that rats fed high LA sunflower oil exhibited decreased Na+, K+ 

ATPase activity in myelin, together with 5'-nucleotidase activity in the rat cortex 

and hippocampus following a decline in DHA levels. Numerous animal models have 

also shown how PUFA levels my may influence several pathways with different 

neurotransmitters such as serotonin, noradrenalin, dopamine and acetylcholine 

(Chalon, 2006; Yehuda, Rabinovitz et al., 1999). 

 

The finding that erythrocyte omega-6 fatty acids are inversely related to cognitive 

ability has also been observed in the elderly. Higher omega-6 PUFAs are associated 

with greater risk of cognitive decline, whilst omega-3 fatty acids may exert a 

neuroprotective effect (Heude, Ducimetiere et al., 2003). The competitive 

immunological functions of the two groups of PUFAs, may provide another 

explanation for their downstream cognitive effects, as cognitive decline, and 

psychiatric disorders including Alzheimer’s, have been linked to 

neuroinflammation (Gorelick, 2010). 

 

EFA in plasma membranes serve as substrates for a number of important, very 

active, short-lived, hormone-like compounds referred to as eicosanoids, which 

have numerous metabolic activities including platelet aggregation, inflammation, 

haemorrhage, vasoconstriction and vasodilatation, blood pressure and immune 

functions (Calder, 2007; Shaikh and Edidin, 2008; Simopoulos, 2002b). AA is the 

precursor of 2-series prostaglandins and 4-series leukotrienes, which are highly-

active mediators of inflammation, generally pro-inflammatory and pro-aggretory, 

leading to a predominantly inflammatory state (Calder, 2002; Calder, 2006; 

Simopoulos, 2002b). EPA and DHA serve as the precursors for potent 

neuroprotective and anti-inflammatory lipids termed resolvins and 

neuroprotectins (Serhan, 2005), which exert their anti-inflammatory actions by 

blocking transendothelial migration, reduce dendritic cell function and regulate IL-

12, thereby promoting the resolution of the inflammatory cycle.  
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PET studies have demonstrated increased brain AA incorporation in patients with 

Alzheimer’s disease compared with healthy age-matched controls, particularly in 

neocortical regions with high levels of inflammatory cytokines (Esposito, 

Giovacchini et al., 2008) and EFA-derived eicosanoid precursors are also involved 

in the brain in oxidative stress, memory and learning (Tassoni, Kaur et al., 2008). 

Again, studies in psychiatric disorders and inflammation have largely concentrated 

on the damaging effects of potential omega-3 deficiency or ameliorative effects of 

omega-3 supplementation (Maclean, Issa et al., 2005), making it difficult to draw 

strong conclusions about the effects of omega-6 specifically. How well results from 

studies investigating cognitive decline and inflammatory status can be translated 

to studies of variation in cognitive ability in an ostensibly cognitively ‘normal’ 

population is still a matter for investigation. 

 

5.5.2.5 Evidence from supplementation studies 

 

The cross-sectional correlational analysis performed here means that firm 

conclusions about the causality of the associations observed cannot be made. Aside 

from disease models, such as the one adopted in the present study, intervention 

studies offer the strongest model to study the potential dose-dependent linear 

effects of EFA status on cognitive performance. Studies into the effects of 

variations in EFA levels on cognition in humans have largely focused on the effects 

of EFA supplementation in pre and peri-natal development in infants (Simmer, 

Patole et al., 2008; Simmer, Schulzke et al., 2008), with mixed results. Although, 

there is evidence for a relationship between omega-3 intake and cognitive and 

visual development in infants, to date, there have not been enough randomised, 

controlled trials investigating the effects of fatty acid supplementation as a model 

for studying the effects of EFAs on cognition in older children (Eilander, 

Hundscheid et al., 2007).  

 

In contrast with the limited data in healthy children, there is more potential 

evidence for a beneficial effect of PUFA supplementation in children with 

neurodevelopmental disorders such as ADHD (Germano, Meleleo et al., 2007; 
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Richardson, 2006). Double-blind randomised controlled trials have shown 

promising results of supplementation with a combination of omega-3 and omega-6 

fatty acids on diminishing some behavioural symptoms, including inattention and 

impulsivity, in school-aged children with ADHD (Hirayama, Hamazaki et al., 2004; 

Richardson and Puri, 2002; Stevens, Zhang et al., 2003; Voigt, Llorente et al., 2001). 

The potential mechanisms accounting these for effects, however, remain to be 

explained. 

 

5.5.3 Breastfeeding 
 

Breastfeeding is a vital source of EFAs in infancy and is therefore and important 

factor for consideration in the wider context of the study. The importance of EFAs 

in infant nutrition was suggested by the rapid accretion of these fatty acids in the 

brain during the first postnatal year (Martinez, 1992) and last intrauterine 

trimester. After birth, infants are reliant on maternal breast milk (or formula) as 

the sole source of DHA, with substantial accumulations of DHA and AA in the 

human brain during the first postnatal months (Heird and Lapillonne, 2005). 

Neuronal accretion of DHA and phsophatidylserine (PS) during development is 

required to prevent inappropriate cell death and to support neuronal 

differentiation (Kim, 2007). Interference in their accumulation by nutritional 

deprivation or in pathological states may diminish protective capacity in the 

central nervous system, with significant implications for neuronal dysfunction. 

 

Although infants are able to synthesise DHA, the amount produced may be 

inadequate to support the DHA levels observed in breast-fed infants. In terms of 

fatty acid physiology, the cerebral and overall DHA status of breast-fed babies is 

better than that of infants fed formula lacking DHA (Cunnane, 2000). Breast-fed 

infants are also uniquely provided with an additional digestive enzyme known as 

bile-salt stimulated lipase, which Chen, Blackberg et al. (1994) demonstrated is 

essential for the complete hydrolysis of triacylglycerols containing AA or DHA. 
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The effect of breastfeeding on cognitive outcomes in the present sample, 

independent of disease diagnosis, was also investigated. When comparing 

breastfed vs non-breastfed participants, the breastfed group had significantly 

lower FSIQ scores (t(26)= -2.19, p= .04). This effect was not observed for IPS or 

Working Memory. Whilst this surprising finding may be a result of the small sizes 

of each group, split across the four diagnostic categories, the data is confounded by 

the fact that manufacturers introduced PUFAs to infant formulas (for example 

Pepti Junior, see Table 5-2, page 88) from around 1997 and almost as standard 

since 2000. 

                                           

In this group of 17 participants with available dietary and psychometric data, the 

duration of breastfeeding was not significantly correlated with FSIQ in later 

childhood (r= .18; p= .49). Although the majority of studies suggest that 

breastfeeding promotes intelligence, (Anderson, Johnstone et al., 1999; Innis, 

2008), with the positive effects of increased duration of breastfeeding potentially 

persisting into adulthood (Mortensen, Michaelsen et al., 2002), they have not 

always yielded consistent results. 

 

The interpretation of findings from breastfeeding studies must be made with 

caution, particularly because of strong confounders such as maternal IQ and 

socioeconomic status (SES), as well as physiological mechanisms such as the 

variability in foetal brain DHA accrual during gestation, variability in maternal 

breast milk DHA concentrations (discussed in Chapter 2) and differences in the 

test instruments used, testing procedures, or outcomes studied (McCann and 

Ames, 2005). A meta-analysis of all randomised trials in which full-term infants 

were fed with formula supplemented with omega-3 and -6 PUFA declared that 

‘there is little evidence’ that such supplementation is beneficial for visual or 

general development of full-term healthy infants (Simmer and Patole, 2004). 

 

A systematic review of the literature, conducted by Jain, Concato et al. (2002), 

concluded that the evidence from higher-quality studies, which had stringent 

control of susceptibility bias (for example controlling for SES) and used 
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appropriate outcome measures, was less persuasive. Jacobson, Chiodo et al. (1999) 

found that after adjusting for maternal IQ and parenting skills the child’s IQ was 

related to genetic and socio-environmental factors, rather than to the nutritional 

benefits of breastfeeding on neurodevelopment. The potential genetic contribution 

to EFA metabolism is discussed in greater detail in section 8.5.2, page 180. 

 

5.6 Conclusion 
 

There are two important findings from the present study, which was undertaken to 

assess the EFA status of patients with liver disease compared to sibling controls, 

and to investigate potential relationships between fatty acid status and cognitive 

ability. 

 

First, compared to sibling controls, no signs of fatty acid deficiency were observed 

in any of the cohorts of patients with liver disease. This suggests that: (1) these 

patients were not deficient in their dietary intake of the EFAs LA and ALA; and (2) 

these patients are able to sufficiently metabolise these precursor lipids to 

synthesise LCPUFAs, DHA and EPA, to levels comparable to sibling controls.  

 

Second, omega-6 (LA and AA) status was observed to have a strong inverse 

relationship with FSIQ and IPS, independent of disease diagnosis. EFA-derived LC-

PUFAs in particular, have significant direct and indirect actions on cerebral 

function, not only through their function as membrane phospholipid components, 

but their function as active substances such as eicosanoids. The influence of fatty 

acids on the biological mechanisms that explain the co-variation of omega-6 lipids 

with broad-based measures of cognitive ability require further investigation, 

particularly in light of the fact that the majority of the research has focused on the 

positive effects of omega-3 fatty acids. The potential for categorical, as opposed to 

linear relationships between EFA measures and cognitive outcomes, particularly 

with regards to the omega-3:omega-6 ratio, is also worthy of consideration. 
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This study has shown that the onset of liver disease does not appear to have long-

term effects on the ability of patients with liver disease to synthesise vital 

LCPUFAS.  Without specific information about EFA status and dietary intake data 

in infancy to provide context, however, cross-sectional studies of retrospectively 

recruited patients are limited in what they are able to reveal about the cognitive 

consequences of liver disease in infancy with relation to fatty acid metabolism. 

Prospective studies collecting periodic measures of EFA status and cognitive 

outcomes from birth are required to directly probe the early effects of liver disease 

on EFA status and later cognitive outcomes. 
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6 Investigating biomarkers of cognitive ability 
with 1H-MRS 

 

6.1 Summary 
 

1H-MRS is a non-invasive imaging technique that enables quantification of 

neurochemicals in vivo and thereby facilitates investigation of the neurochemical 

underpinnings of human cognitive variability. Studies in the field of cognitive 

spectroscopy have typically focused on relationships between measures of N-

acetylaspartate (NAA) and choline (cho) on broad measures of cognitive 

performance. In the present study, 1H-MRS was used to interrogate single-voxels in 

occipitoparietal and frontal cortical white matter in parallel with assessments of 

psychometric intelligence (FSIQ) in a sample of 38 healthy, adult participants. 

 

Correlations between 1H-MRS detectable neurometabolites and IQ were observed 

that were within the range reported in previous studies. However, the magnitude 

of these effects was dependent upon the extent to which outlying values were 

accounted for in statistical analyses. Coupled with the wide range of effect sizes 

reported in the literature, the substantial methodological variability between 

studies poses a significant challenge for drawing inferences about the strength of 

the relationship between neurometabolites obtained with proton spectroscopy 

and IQ variables at the population level. 

 

While 1H-MRS offers a sensitive tool for assessing neurochemistry non-invasively, 

the relationships between brain metabolites and broad aspects of human 

behaviour are subtle. In a field of research that is still largely exploratory, there is a 

need to develop an increasingly rigorous analytical and interpretive framework for 

reporting data obtained from studies of this kind. 
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6.2 Introduction 
 

Parallel refinements in neuropsychological assessment and neuroimaging 

techniques now make it possible to probe the neurophysiological basis of 

individual variation in cognitive ability with increasing methodological 

precision (Haier, 2009; Jung and Haier, 2007). 1H-MRS provides a neuroimaging 

paradigm that enables non-invasive quantification of neurochemicals and their 

metabolites in a pre-defined region of tissue, with a typical spatial resolution on 

the order of cubic centimetres (see Chapter 3). 

 

 In the brain, the strongest and most reliable metabolite signals are generated by 

N-acetyl aspartate (NAA), creatine and phosphocreatine (Cre), choline (Cho; 

predominantly glycerophosphocholine and phosphocholine), and myo-Inositol 

(mI). These four metabolites, and other reasonably well-resolved compounds such 

as glutamate/glutamine (Glx) and lactate, form the principal focus of 1H-MRS 

research (Ross and Sachdev, 2004; Soares and Law, 2009). Figure 3-3 on page 67 

illustrates a representative proton MRS spectrum that shows these main 

metabolite peaks. 

 

6.2.1 N acetyl aspartate (NAA) 
 

In human brain, the most prominent and stable signal obtained with 1H-MRS is that 

of N-acetyl aspartate (NAA), particularly beyond the age of three years (Danielsen 

and Ross, 1999). The three hydrogen atoms of the acetate group resonate a single 

sharp peak, with a chemical shift of 2.02 ppm relative to the tetramethylsilaneb 

standard (Moffett, Ross et al. 2007). While this peak at 2.02 ppm is mainly 

attributable to NAA, this signal includes smaller contributions from other 

acetylated compounds, such as the neuron-specific dipeptide, N-acetyl aspartyl 

glutamate (NAAG) (Caramanos, Narayanan et al., 2005), and underlying coupled 

resonances of glutamate and glutamine. 
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NAA is one of the most highly concentrated free amino acids in the brain, second 

only to glutamate. It is almost exclusively present in the central nervous system, 

where it is predominantly located in the soma of pyramidal cells, dendrites and 

axons (Simmons, Frondoza et al., 1991), oligodendrocyte type 2 astrocyte 

progenitor cells, and in immature (Urenjak, Williams et al., 1992) and mature 

oligodendrocytes (Bhakoo and Pearce, 2000).  As an osmolyte, NAA constitutes 1% 

of the dry weight of the brain and 3-4% of total brain osmolarity (Baslow, 2000). 

 

The functional role of NAA in the central nervous system and its metabolism has 

been extensively reviewed by Moffett, Ross et al. (2007). Amongst its many 

proposed roles, NAA is involved in osmoregulation and the control of cell volume 

(Davies, Gotoh et al., 1998). It is also linked with neuronal energy metabolism, as 

demonstrated by decreases in NAA that have been observed in a number of 

conditions of impaired energy metabolism in the brain (Clark, 1998). In addition, it 

has been proposed that NAA, NAAG and their intermediates are exchanged 

between neurons and glia as a mechanism of intercellular signalling (Baslow, 

2000). NAA has also been implicated in enhancing mitochondrial energy 

production from glutamate (Moffett, Ross et al., 2007); functioning as a molecular 

water pump (Baslow (2002) cf. Moffett et al. (2007)) to increase the speed and 

efficiency of neuronal signalling; osmoregulation and the control of neuronal 

volume (Davies, Gotoh et al., 1998), and in intercellular signalling (Baslow, 2000). 

 

NAA has been suggested to serve an important regulatory role within myelin lipid 

synthesis during postnatal axonal myelination (Namboodiri, Peethambaran et al., 

2006). Abnormal NAA metabolism has been implicated in the pathophysiology of 

Canavan’s disease, characterised by a progressive loss of myelin (Matalon, Michals 

et al., 1988; Namboodiri, Peethambaran et al., 2006). The NAA resonance within 

white matter regions is thought to reflect both the metabolic function of the 

neuronal axons as well as the extent and efficiency of myelination of those axons. 

The finding of approximately equal concentrations of NAA in white and grey 

matter of the human brain makes it clear that NAA is a component of the axon or 

the axonal sheath in man (Ross and Bluml, 2001). 



 

119 
 

Levels of NAA in various tissues of the brain have been found to correlate with 

neuronal health or integrity. Decreased levels of NAA have been interpreted to 

indicate neuronal/axonal loss, or compromised neuronal metabolism, leading to 

the idea that NAA is a neuronal marker (Moffett, Ross et al., 2007). This is, 

however, still a matter of debate, with some suggesting NAA is taken as a marker of 

functioning neurons rather than as a mere indicator of the presence of nerve cells 

(Pouwels, Brockmann et al., 1999); others refute the role of NAA as a marker 

altogether (Martin, Capone et al., 2001). 

 

6.2.2 Choline 
 

The major components of myelin and the cell membrane lipid bilayer 

(phosphatidylcholine (PCho), phosphatidyl -ethanolamine, -serine and -inositol; 

see Chapter 2) are most likely entirely immobile and MR-invisible (Ross and Bluml, 

2001), but their putative breakdown products are a normal feature of cerebral 

proton  spectra. The choline peak at 3.22 ppm is a narrow singlet originating from 

nine identical protons ((CH3)3) and reflects combined total choline including 

choline containing compounds such as PCho, glycerophosphocholine (GPCho) and 

a comparatively small amount of free choline (<5%) (Miller, Chang et al., 1996). 

The 1H-MRS choline peak is therefore thought to reflect the concentration of 

water-soluble choline-containing compounds and cellular density (Miller, Chang et 

al., 1996), as well as degradation of choline-containing phospholipids, which are 

abundant in cell membrane and in myelin (Alberts, 2002). 

 

Choline (Cho) and its metabolites are needed for the structural integrity and 

signalling functions of cell membranes. In addition, they are precursors in the 

synthesis and breakdown products of membrane phospholipids such as 

phosphatidylcholine (PC) and sphingomyelin. They are central to the production of 

potent lipid mediators such as platelet-activating factor and 

lysophosphatidylcholine, and in the syntheses of acetylcholine (Zeisel, Da Costa et 

al., 1991). Quantitatively, PC is the most important metabolite of choline and 

accounts for approximately one-half of the total membrane lipid content of the 
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brain (Zeisel, Da Costa et al., 1991). A comprehensive review of choline metabolism 

and production is provided by Freeman (1996). 

 

Free choline detectable by MRS is commonly associated with membrane turnover 

and inflammation, and negatively associated with cognitive ability (Danielsen and 

Ross, 1999). The signal intensity of choline may be increased by the acceleration of 

membrane synthesis and breakdown, or pathological conditions, where visible 

choline may be released from this pool. Further to its role in membrane 

composition, deprivation and supplementation studies of rats (Zeisel, 2004) have 

suggested that choline may have significant effects on gene regulation of cell 

division, apoptosis, migration and differentiation, through regulatory effects on 

DNA methylation. 

 

6.2.3 myo-Inositol 
 

The major nutritionally active form of inositol, myo-Inositol (mI), is vital to many 

biological processes of the body, participating in a diverse range of activities 

(Alberts, 2002). mI is a strongly coupled system and resonates at four chemical 

shift positions: 3.55, 3.61, 3.29 and 4.07ppm (Srinivasan, Vigneron et al., 2004). At 

3T these resonances are resolved, but the C4/C6 peak will be partially overlapped 

with the glutamine-glutamate (Glx) C2 triplets. Due to its short T2 relaxation times, 

mI is detected better at shorter echo times. 

 

mI plays an important role in the maintenance of osmotic equilibrium within the 

brain. For example, decreased brain mI has been measured in subjects with hypo-

osmolarity. With normalisation of serum osmolarity, mI levels returned to the 

normal range (Häussinger, Kircheis et al., 2000). In addition to its chemically inert 

function as an osmolyte or cell marker, mI is at the centre of a complex metabolic 

pathway that contains, among other products, the inositol-polyphosphate 

messengers, inositol-1-phosphate, phosphatidyl inositol, glucose-6-phosphate and 

glucuronic acid (Ross and Bluml, 2001). 
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6.2.4 Creatine 
 

Creatine is present in all neural cells, with in vitro work suggesting higher 

concentrations in oligodendrocytes (Urenjak, Williams et al., 1993). The creatine 

peak at 3.03 ppm, a narrow singlet peak originating from the CH3 group of the 

molecule, indexes the sum of creatine and phosphocreatine (PCr), except at high 

magnetic fields where the two can be separated (Danielsen and Ross, 1999). The 

Cr/PCr system plays a number of roles in regulating cellular bioenergetics, 

including serving as a temporal energy buffer for the cell, and as an energy carrier, 

transporting high-energy phosphate groups from sites of synthesis to the specific 

subcellular compartments in which they are required (Saks, Ventura-Clapier et al., 

1996).  

 

Because 1H-MRS sees both Cr and PCr as a single peak, the creatine signal cannot 

be strictly interpreted as either an index of current energy use or available energy 

reserves. The creatine peak is thought to be relatively constant between 

individuals and in most brain areas, and is therefore used as an internal reference, 

where creatine equals 1 in the denominator of expression of all neurometabolite 

ratios (Danielsen and Ross, 1999). 

 

6.2.5 1H-MRS metabolites and cognition 
 

The putatively important role of the metabolites most commonly resolvable at 1.5 

and 3T in neural tissue has been extended to investigations at more macroscopic 

levels of analysis, for example toward developing an understanding of the potential 

biochemical correlates of cognitive ability. One general approach has been to 

obtain measures of the NAA, choline and mI in cortical tissue with 

concurrent psychometric measures of cognitive skills, such as those provided by 

standardised IQ tests. 

 

The clinical utility of MRS in cases of aberrant neurometabolism is well established 

(Cox, 1996; Hollingworth, Medina et al., 2006; Ross and Bluml, 2001; Soher, 
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Doraiswamy et al., 2005; Steen, Hamer et al., 2005). Work in healthy individuals 

has largely concentrated on NAA in young adults, typically between the ages of 18 

and 25. NAA in occipitoparietal white matter has been reported to correlate 

moderately with timed measures of neuropsychological performance, but not with 

metrics of ability derived from non-timed tests (Jung et al., 1999a; Jung et al., 

1999b). NAA has also been demonstrated as a predictor of moderate effect for 

FSIQ, a construct derived from both timed and non-timed psychometric 

subscales (Jung et al., 2005). Choline has been positively correlated with 

vocabulary ability (Pfleiderer, Ohrmann et al., 2004) and, as with mI, negatively 

correlated with IPS in older, healthy adults (Ross, Sachdev et al., 2005). 

 

Table 6-1 on page 125 summarises the results from the published literature in this 

area. The lack of consistency in the methodology demonstrates that work in this 

field is still largely exploratory. Correlations between neurometabolites and IQ 

variables vary according to the particular IQ subscale assessed and with the 

cortical region and tissue type in which the MRS voxel was located, an effect that 

has also been observed in children (Ozturk, Degaonkar et al., 2009; Yeo, Hill et al., 

2000), adolescents (Gimenez, Junque et al., 2004) and in older populations 

(Charlton, McIntyre et al., 2007; Ferguson, MacLullich et al., 2002; Ross, Sachdev et 

al., 2005; Valenzuela, Sachdev et al., 2000). 

 

6.2.6 Aim 
 

The aim of this study was to build on previous work in an effort to examine the 

presence and strength of the relationships between 1H-MRS detectable metabolites 

and cognitive ability in healthy individuals, with the eventual aim of clarifying its 

use in the paediatric liver disease cohort. 
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6.2.7 Hypotheses 
 

1 Given its putative regulatory role in both myelination and in 

neurophysiological processing speed, positive associations between levels of 

NAA in frontal white matter and the IPS were predicted that would be stronger 

than those found for general cognitive ability (FSIQ). 

2 As 1H-MRS-detectable choline is associated with neuronal membrane turnover 

and breakdown, levels of this metabolite were predicted to negatively correlate 

with cognitive performance. 

 

The role of mI in neural function is still largely unknown and no specific 

predictions regarding this metabolite were made. As a control condition, measures 

of NAA, choline and mI were obtained for voxels in occipitoparietal cortex, for 

which the same pattern of covariance with IQ measures was not predicted. 
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Table 6-1 Summary of published investigations into the relationships between common 1H-MRS-detectable metabolites and cognitive abilities in 
healthy populations 

Study N 
Age in 
years 
(SD) 

Region(s) Key result 
Effect 

sizes (r2) 

Jung, Brooks et al. (1999) 26 
22 

(4.6) 
Left OP WM 

NAA, but not choline, positively correlated with 
FSIQ. 

.45 

Jung, Yeo et al. (1999) 45† 
23 

(4.9) 
Left OP WM 

NAA correlated with timed tasks to greater 
degree than general IQ. Choline was negatively 
correlated with FSIQ. 

.43; .23 

Yeo, Hill et al. (2000) 20 12.5 Right frontal WM 
NAA positively correlated with Working 
Memorya. Crb and Choc negatively correlated 
with DI. 

.45a; .31b; 

.30c 

Jung, Yeo et al. (2002) 37 
25 

(5.8) 
Left frontal WM 

Individuals with   high’ levels of Cho scored 10.55 
points lower on the PIQ than those with  low’ 
levels. No group difference in FSIQ. 

.22 

Pfleiderer, Ohrmann et al. 
(2004) 

62 
38.5 

(15.4) 

DLPFC, left anterior 
cingulate cortex 
(ACC) 

Choline correlated with vocabulary scoresd. NAA 
positively correlated with Verbal Intelligence in 
women in left DLPF and left ACCe. 

.13d; .53e 

Charlton, McIntyre et al. 
(2007) 

78 58.2 
Centrum semiovale 
WM 

NAA positively correlated with general 
composite measure of cognitive performancef. Cr 
positively correlated with Executive Functiong 
and long-term memoryh, but not after age is 
controlled for. 

.33f; .45g; 

.47h 

 
Jung, Gasparovic et al. 
(2009) 
 

63 
23.7 
(4.2) 

Left/right, 
posterior /anterior 
grey/white matter 

Lower right anterior GM NAA predicted Verbal 
IQi. Higher posterior GM NAA predicted 
Performance IQj. 

.10i; .12j 



 

125 
 

 

 

Study N 
Age in 
years 
(SD) 

Region(s) Key result 
Effect 

sizes (r2) 

Jung, Haier et al. (2005) 27 
24.8 
(5.9) 

Left OP, left frontal 
and right frontal 
WM 

Combination of higher left occipital WM and 
lower frontal WM NAA correlated with FSIQ in 
women. 

.82 

Valenzuela, Sachdev et al. 
(2000) 

20 72 
Left OP and left 
frontal and WM 

Frontal WM NAA/Cr correlated with executive-
attentional cognitive ability. 

.61 

(Ferguson, MacLullich et 
al. (2002) 

88 65–70 Left parietal WM 
Cho/Crk and NAA/Crl correlated with Logical 
Memory, but effect due to Creatine (Cr 
negatively correlated with Logical Memory). 

.14k; .24l 

Ozturk, Degaonkar et al. 
(2009) 

51 
12.3 
(3.6) 

Frontal WM, 
DLPFC, parietal 
WM, inferior 
parietal cortex, 
dorsal parietal 
cortex 

Left frontal WM NAA/Cr correlated with Purdue 
Pegboard right-hand raw scoresm. Right frontal 
WM NAA/Cr correlated with SB-IV “Bead 
Memory” raw scoresn. 

.12m; .10n 

Gimenez, Junque et al. 
(2004) 

21 
14 

(2.3) 
Left medial 
temporal cortex 

NAA/Cho related to free recallo and recognitionp 

memory abilities 
.56o; .51p 

Ross, Sachdev et al. (2005) 59 70.8 
Left frontal WM, 
midline OP GM 

Frontal WM NAA/H2O correlated with a 
composite measure representing speed of 
information processing, attentional function and 
visual memoryq. Cho/Crr, Cho/H2Os and mI/H2Ot 
negatively correlated with speed of processing. 

.32q; .07r; 

.08s; .08t  

Key inter-study variables such as the size of the populations and their age are described as well as the primary cortical regions studied. The principal research 
findings from each study are presented with the wide range of associated effect sizes  (r2).  
DLPFC: Dorsolateral prefrontal cortex; OP: Occipitoparietal; WM: White matter; GM: Grey matter 
†26 participants’ data previously published in Jung et al. (1999a) 



 

126 
 

6.3 Method 
 

6.3.1 Participants 
 

42 healthy volunteers (29 females, 13 males) were recruited from the local population 

and from the Aston University student body (mean age: 21.4, SD: 3.4). Informed consent 

was obtained from all participants under a protocol consistent with the tenets of the 

Declaration of Helsinki and with the approval of the University’s Ethics committee 

(REG/00/175). 

 

Participants were screened prior to testing to exclude the presence of probable 

neurological dysfunction, including previous serious brain injury, history of learning 

disability, neurological disease, psychiatric diagnosis or current use of psychoactive 

medication. The sample provides the study with statistical power in excess of 80% to 

detect moderate correlations of .4 and above, with statistical significance evaluated at 

an α level of .05 (Friedman, 1968). 

 

6.3.2 Neuropsychological assessment 
 

The Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler, 1997a) was 

administered to obtain scores for IPS and FSIQ, comprised of the Verbal and 

Performance IQ subtests). Refer to Chapter 3 for details. 

 

6.3.3 Neuroimaging 
 

Single-voxel 1H-MRS (2cm3) was performed following localisation of the volume of 

interest (VOI) using a 5-plane localiser (TR: 20 msec, TE: 5 msec, 10 slices at 5mm 

thickness). Automated shimming was followed by a stimulated echo acquisition mode 

(STEAM) pulse sequence (TR: 2,000 msec, TE: 30 msec, 96 averages), including water 

suppression, for voxels in frontal (Fro) and occipitoparietal (OP) cortex. Refer to 

Chapter 3 for details of the scanning procedures and acquisition parameters. 
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6.3.4 Data analysis 
 

The metabolite values were estimated post hoc using LCModel (Provencher, 2001). This 

software provides spectral quantification and metabolite detection optimised for short 

echo time spectroscopy. All analyses reported here adopt the standard convention of 

expressing NAA and choline and mI as a ratio to creatine (/Cr). 

 

6.3.5 1H-MRS data screening 
 

Two levels of screening were applied to the spectroscopy data to ensure accurate and 

reliable data before statistical analyses. The first pass for data screening was the 

rejection of spectral data based on on-line visual inspection of the acquired spectra. 

High-quality spectra were identified by their narrow, well resolved peaks, a reasonably 

flat baseline and the presence of Hunter’s Angle (in normal tissue). Poor quality spectra 

were recognised by a distorted baseline, reduced chemical shift dispersion and 

broadened linewidths (increased full-width half maximum peak height), see Figure 6-1. 

On-line data screening allowed reacquisition of data following necessary adjustments to 

the voxel location, maximising the possibility of acquiring high-quality data from every 

participant.  

 

 

Figure 6-1 Examples of high-quality (left) and poor quality (right) 1H-MRS spectra in frontal 
cortex, modelled with LCModel.  

During on-line data screening, high-quality spectra were identified by their narrow, well resolved peaks, a 

reasonably flat baseline and the presence of Hunter’s Angle (in normal tissue). Poor quality spectra were 

recognised by a distorted baseline (a), reduced chemical shift dispersion (b) and broadened linewidths 

(increased full-width half maximum peak height) (c) 

 

(c) 

(b) 

(a) 
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All subsequent data was run through LCModel. The second pass of data screening was 

the exclusion of data if metabolite values had a %SD (the estimated standard deviations, 

expressed in percent of the estimated concentrations) exceeding 20%, the approximate 

criterion for acceptable reliability suggested by Provencher (2008).  Based on visual 

inspection of the spectra and the 20%SD criteria, data from four participants were 

excluded due to unreliable, poor quality spectra, resulting from susceptibility or motion 

artefact (See Figure 6-1, page 127). 

 

6.4 Results 
 

38 participants (27 females, 11 males) from a total of 42 were included in the final 

analyses.  

 

6.4.1 Summary of spectroscopy data 
 

A summary of spectroscopy and psychometric data is provided in Table 6-2, page 129. 

Mean metabolite ratios to creatine were consistent with those reported previously. FSIQ 

scores were available for 29 participants, and IPS scores for 36 participants, out of the 

total 38 participants. MRS data for occipitoparietal cortex was obtained for all 38 

participants and for 36 out of 38 for the frontal cortex volumes. 
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Table 6-2 Summary of psychometric and spectroscopy data 

  
Mean SD Min Max 

Age (years) 21.3 3.5 18 34 

FSIQ†  111 16.2 52 153 

IPS‡ 108 15.1 57 140 

VIQ 114 15.2 57 147 

PIQ 110 17.0 54 150 

Frontal voxel 

Cho/Cr 0.25 0.06 0.01 0.35 

NAA/Cr 1.54 0.26 0.42 1.95 

mI/Cr 0.67 0.12 0.34 0.86 

Occipitoparietal voxel 

Cho/Cr 0.23 0.04 0.16 0.34 

NAA/Cr 1.61 0.22 0.78 1.88 

mI/Cr 0.65 0.08 0.46 0.85 
FSIQ: Full-scale IQ; IPS: Information Processing Speed 
OP: Occipitoparietal; Fro: Frontal 
†n=29; ‡n=36 

 

6.4.2 Correlations between neurometabolites and cognitive 
variables 

 

Distributions of data prior to the removal of outliers did not 

consistently satisfy distributional assumptions of normality (evaluated with the 

Shapiro-Wilk statistic at an α level of .05) and were first analysed using non-parametric 

statistics. Following the removal of participants with outlying data points, the same data 

distributions did not deviate significantly from normality, thereby justifying the use of 

parametric statistics for these analyses. All correlations were evaluated for statistical 

significance at a Bonferroni-corrected α level of .002 (.05/24 correlations). 

 

Table 6-3 and Table 6-4, page 130, present the correlations between the spectroscopic 

and IQ variables in two complementary ways. First, the metabolite values obtained from 

all participants were included in the analyses and assessed correlations using non-

parametric Spearman rank-order correlation coefficients (Table 6-3). Second, three 

multivariate outliers whose NAA/Cr, Cho/Cr or mI/Cr values were ±2SD the overall 

sample mean were removed, justifying the use of Pearson correlation coefficients (Table 
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6-4) as the data were now normally distributed. All correlations were evaluated for 

statistical significance at a  Bonferroni-corrected α level of .002 (.05/24 correlations). 

 

Table 6-3 Non-parametric correlations between unscreened 1H-MRS metabolite values and 
psychometric measures 

  Unscreened data 

 Correlation with cognitive ability; r (p value) 

  FSIQ IPS PIQ VIQ 

Frontal (n) 27 36 27 27 

Cho/Cr .03 (.94) -.15 (.37) .11 (.57) .04 (.85) 

NAA/Cr .09 (.65) -.13 (.44) .22 (.27) .11 (.58) 

mI/Cr -.02 (.94) -.07 (.70) .09 (.66) .12 (.54) 

Occipitoparietal (n) 29 38 29 29 

Cho/Cr -.07 (.73) -.07 (.67) .08 (.70) -.23 (.99) 

NAA/Cr .21 (.27) -.16 (.71) .34 (.07) .05 (.78) 

mI/Cr -.09 (.63) -.01 (.93) .02 (.92) .00 (.99) 
Unscreened metabolite values were not normally distributed and analysed with non-
parametric statistics (Spearman’s Rho) 
 n=27 

 

Table 6-4 Parametric correlations between screened 1H-MRS metabolite values and 
psychometric measures  

  Screened data 

 Correlation with cognitive ability;  r (p value) 

  FSIQ IPS PIQ VIQ 

Frontal (n) 24 33 24 24 

Cho/Cr -.08 (.72) .03 (.88) -.08 (.72) -.05 (.83) 

NAA/Cr .06 (.77) -.24 (.18) .06 (.78) .02 (.42) 

mI/Cr -.03 (.89) -.01 (.96) .12 (.59) -.10 (.63) 

Occipitoparietal (n) 26 35 26 26 

Cho/Cr -.04 (.85) .00 (.98) .21 (.32) -.17 (.40) 

NAA/Cr .11 (.60) .09 (.60) .21 (.31) .05 (.80) 

mI/Cr -.17 (.40) -.17 (.32) -.18 (.390) -.16 (.44) 

Three outlier values (±2SD) excluded; 
Normally distributed data analysed with parametric statistics (Pearson Product Moment 
Correlation) 
 n=24 

 

Correlation coefficients for the unscreened data showed that the relationships between 

IPS or FSIQ and NAA/Cr, Cho/Cr and mI/Cr were neither strong, nor statistically 
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significant, a pattern that was consistent across both occipitoparietal and frontal 

voxels. This pattern of result was upheld with parametric analyses when multivariate 

outliers were removed. 

A Related-samples Wilcoxon Signed-rank was used to assess inter-regional differences 

in metabolite values. No significant differences in mean NAA/Cr, Cho/Cr or mI/Cr were 

observed between frontal and occipitoparietal voxels (p= .07, .09 and .30, respectively). 

An Independent-samples Kruskall Wallis test showed no main effect of gender on 

metabolite values (p> .05). 

 

6.5 Discussion 
 

Neurometabolite changes, particularly for NAA, have been linked previously to 

psychometric and performance variables in a number of disorders of cognitive 

function, including traumatic brain injury, schizophrenia and Alzheimer’s disease (Ross 

and Sachdev, 2004). Such demonstrations of the utility of MRS in tracking neural 

viability in cognitive neuropathology has motivated the study of normal populations in 

order to assess the validity of using this paradigm to identify biomarkers of human 

cognitive variability. 

 

Several studies have demonstrated statistically significant correlations between 1H-MRS 

detectable metabolites and broad measures of cognitive ability, with typically small to 

moderate effect sizes in samples of putatively normal populations (see Table 6-1, page 

124). In the present study, measures of NAA, choline and mI were obtained with proton 

spectroscopy for a group of healthy adults. The principal finding is that quantitative 

estimates of these metabolites did not correlate strongly with standardised measures of 

IQ, including the IPS index, a construct of cognitive ability for which particularly strong 

relationships were predicted.  

 

The small correlations obtained between metabolite concentrations and measures of 

cognitive function echo other findings that have reported poor strength of association 

between IQ and neurometabolite variables in healthy cohorts (Filippi et al., 2002; 

Friedman et al., 1998; Gimenez et al., 2004; Shim et al., 2001). However, they also 

contrast with other demonstrations of strong and significant relationships 
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between these variables obtained with similar research designs (Jung et al., 1999a; Jung 

et al., 1999b; Jung et al., 2005; Yeo, Hill et al., 2000). 

 

6.5.1 NAA and cognition 
 

The general theory in the literature is that if NAA is taken as a functional neuronal 

marker with natural variation in the population, reduced levels of NAA may be reflective 

of increased neuronal death, or decreased neuronal metabolism or myelination, which 

may then manifest as the subtle changes in general cognitive ability. 

 

Weak to moderate positive and negative associations between NAA/Cr were observed 

in this cohort. These were within the range observed by others (Table 6-1, page 124), 

but were not statistically significant. Studies exclusively focusing on white matter have 

found associations between NAA and processing speed. NAA in occipitoparietal white 

matter has been reported to correlate moderately with timed measures of 

neuropsychological performance, but not with metrics of ability derived from non-

timed tests (Jung, Brooks et al., 1999; Jung, Yeo et al., 1999).  

 

NAA has also been demonstrated as a predictor of moderate effect for FSIQ (Jung, Haier 

et al., 2005). This association between occipitoparietal NAA with FSIQ was later 

replicated in a sample of 27 healthy volunteers, with a combination of left frontal and 

left occipitoparietal NAA strongly predicting performance in women, but not 

statistically significant in men (Jung, Haier et al., 2005).  

 

Corroborating evidence for this potential gender difference is work by Pfleiderer, 

Ohrmann et al. (2004), who found that, in women only, NAA in the left dorsolateral 

prefrontal cortex and in the left anterior cingulated cortex was positively correlated 

with raw, not age-corrected and standardised vocabulary assessment scores. In contrast 

to these two studies, no differences in gender were observed in the present cohort for 

any of the metabolites assessed. 

 

Valenzuela, Sachdev et al. (2000) observed a correlation between NAA/Cr in the left 

frontal subcortical white matter and attentional processing ability, which is functionally 
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associated with this region. In keeping with the findings of the present study, but unlike 

(Jung, Haier et al., 2005; Jung, Yeo et al., 1999), Valenzuela et al found no associations 

between measures in the occipitoparietal grey matter and cognition in these subjects. 

Ross, Sachdev et al. (2005) have shown a significant correlation between frontal white 

matter NAA/H2O and a composite measure of neuropsychological performance 

representing speed of information processing, attentional function and visual memory, 

controlling for age and sex, in a population of 5885 year old healthy individuals. 

 

6.5.2 Choline and cognition 
 

Weak, negative correlations, which were not statistically significant, were observed 

between choline and IQ measures (see Table 6-3, page 134). Choline concentration is 

reported to vary with the production and degradation of the choline-containing 

phospholipids, which are abundant both in cell membrane and myelin (Alberts, 2002). 

The free choline detectable by MRS is more commonly associated with membrane 

turnover and inflammation. An abnormality in membrane structure or myelination 

could potentially precipitate decreased synaptic strength and efficiency, manifesting in 

cognition as small, but significant, changes in ability. 

 

For example, weak negative correlations between choline and cognitive ability have 

been observed by Ross, Sachdev et al. (2005), but this was in healthy, elderly men and 

with choline value expressed as ratios to both creatine and water. Jung, Yeo et al. (2002) 

split participants into ‘high’ and ‘low’ choline groups (details of cut-off criteria were not 

provided), and found that individuals in the ‘high’ group performed significantly higher 

on the Performance IQ subtests, and specifically the processing speed index. No 

differences between the groups were observed for Full-scale and Verbal IQ or Working 

Memory performance. 

 

6.5.3 myo-Inositol and cognition 
 

The relationships between mI and cognition are understudied in comparison to NAA 

and choline. Two studies from those listed in Table 6-1 reported data for mI in healthy 

populations. No relationship between mI concentrations and broad-based measures of 
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cognitive ability were observed in healthy young adults (Jung, Yeo et al., 1999), but in a 

healthy elderly population Ross, Sachdev et al. (2005), report correlations of -.33 

between mI/Cr and mI/H2O and executive function, and -.28 between mI/H2O and 

speed of information processing. Studies of the role of mI in disease states and cognitive 

outcome in the elderly have been more fruitful, particularly in mild cognitive 

impairment and Alzheimer’s disease. mI has, for example, been shown to be strongly 

negatively correlated with Mini Mental State (MME) scores (r2= .54) (Salvan, Ceccaldi et 

al., 1998), and mI/H2O correlates with language function in left prefrontal cortex (r= -

.60) and visuoconstructional abilities in right prefrontal cortex (r= .68) in Alzheimer’s 

disease patients (Chantal, Labelle et al., 2002). However, elevated mI is has not always 

been found to be related to the presence of MCI (Metastasio, Rinaldi et al., 2006; Ross 

and Sachdev, 2004), and the relationship between mI and cognitive abilities is still 

largely unknown. The role of mI as a potential clinical biomarker in the specific context 

of liver disease is discussed in Chapter 7. 

 

6.5.4 Methodological issues in cognitive spectroscopy studies 
 

Examination of the existing literature reveals a number of methodological or research 

design features that vary greatly between studies (see Table 6-5, page 135). Differences 

in the age of the participants, the cortical regions in which the MRS voxels were placed, 

the constructs of cognitive abilities assessed and the quality of data screening applied 

(see Table 6-1, page 124) may all be factors which explain the the inhomogeneous 

effects found across the population of published studies. In the following section the aim 

is to place the results of the present investigation within the context of these inter-study 

differences and outline recommendations for reporting future studies in cognitive 

spectroscopy. 
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Table 6-5 Summary of inter-study variables in cognitive spectroscopy studies as a result of the 
methodological approach and data analysis employed 

Study 

 No. of comparisons 
 

Outliers 
screened 

Metabolite 
quantification 

No. of 
regions 

No. of 
psychometric 

sub-tests 

Total no. of 
comparisons 

Jung et al. 
(1999a) 

Absolute  
values 

1 11 9 N 

Jung et al. 
(1999b) 

1 10 9 N 

Yeo et al. 
(2000) 

1 7 9 N 

Jung et al. 
(2002) 

1 10+ 10+ N 

Pfleiderer et 
al. (2004) 

3 1 12 Y 

Charlton et al. 
(2007) 

1 14 20 N 

Jung et al. 
(2009) 

8 5 24 N 

Jung et al. 
(2005) 

3 12 30 Y 

Valenzuela et 
al. (2000) 

Cr ratio 

2 16 9 N 

Ferguson et 
al. (2002) 

1 11 33 Y 

Ozturk et al. 
(2009) 

6 4 20 N 

Gimenez et al. 
(2004) 

Cho ratio 1 18 7 N 

Ross and 
Sachdev 
(2005) 

H2O and Cr 
ratio 

2 15 8 N 

Differences in the method of metabolite quantification and expression, the number of comparisons 
made in statistical analyses as a function of the number of regions and psychometric measures 
assessed, and whether data were appropriately screened, may contribute to the variable strength and 
size of effect sizes reported in the literature. 

 

6.5.4.1 Age 

 

Previous studies of healthy populations varied substantially in the age of the population 

sampled, ranging from late childhood (Ozturk et al., 2009; Yeo et al., 2000) to older ages 

(Ferguson et al., 2002; Ross et al., 2005; Valenzuela et al., 2000) (see Table 6-1). In the 

present study of younger healthy adults with a mean age of 21 years, no significant 



 

136 
 

correlations were observed between the metabolites in either frontal or occipitoparietal 

voxels in the present study, yet the mean age and standard deviation of the participants 

was similar to that of other investigations of young, healthy adults, some of which 

have reported particularly large effects (Jung et al., 1999a; Jung et al., 2005; Jung et al., 

1999b) (see Table 6-1; for example r2= .45). Although previous reports suggest the 

presence of age-related metabolic changes across the lifespan (Angelie et al., 2001; 

Pouwels et al., 1999), there is no systematic relationship apparent between the age of 

the study sampled and the strength of the IQ/neurometabolite correlations (Table 6-

1). The most reasonable interpretation of these data is that age does not account for the 

variability in effect size of the NAA/IQ relationship in this cohort of studies. 

 

6.5.4.2 Metabolite quantification 

 

Published studies vary according to whether absolute concentrations of NAA are 

reported or whether NAA values are expressed as a ratio to another neurometabolite 

(typically creatine, or alternatively choline). Expressing NAA as a ratio to creatine 

confers the advantage of correcting for potentially important unknown or 

uncontrollable, yet correlated, experimental factors, such as static (B0) and radio 

frequency (RF, B1) field inhomogeniety. However, the validity of using such ratios may 

be undermined by the potentially under-conservative assumption of the stability of the 

reference metabolite (Li et al., 2003). Alterations in creatine may be observed not only 

in disease states, but also in healthy aging (Haga, Khor et al., 2009; Maniega, Cvoro et al., 

2008). 

 

A study by Ferguson, MacLullich et al. (2002) provides an example of the cautionary 

approach required when using creatine ratios. In contrast to the negative relationships 

between choline and cognitive performance observed by others, Ferguson et al. 

observed that Cho/Cr values were moderately and positively correlated with tests of 

visual and logical memory in an elderly, healthy population. To account for the fact that 

creatine may not be constant, and therefore inappropriate in ratio analyses, Ferguson et 

al. regressed each metabolite value (NAA, Cho, Cr) against the remaining two, creating 

standardised residual or ‘adjusted’ metabolite value. When they accounted for the 

potential association between creatine and psychometric measures by including 
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‘adjusted’ creatine as a cofactor in the regression, choline levels did not correlate 

significantly with any cognitive variables. Elderkin-Thompson, Thomas et al. (2004) 

have shown that among normal participants, cognition was positively correlated with 

Ch/Cr and negatively correlated with PCh/Cr in the four domains of verbal learning, 

recognition, recall and hypothesis generation. By contrast, depressed patients showed 

no consistent relationships between Ch/Cr or PCh/Cr and cognition. 

 

To remove issues of creatine as a confounder, a more optimal strategy may be to use 

one of a number of absolute quantification methods (Jansen, 2006), particularly using 

the water signal as reference. This may provide the most robust method for ensuring 

reliable results as the internal water standard technique can be readily implemented 

provides suitable precision and inter-laboratory reproducibility (Keevil et al., 1998). 

However, the differential water fractions of grey and white matter volumes necessitate 

precise tissue identification and is most reliably obtained with voxels of small spatial 

extent and verified following data acquisition. This in turn raises potential issues for the 

trade-off between ensuring sufficient sample sizes and tissue homogeneity across the 

voxels included in statistical analyses (see section 6.5.4.3 below). 

 

Despite these issues, analysis of the studies in Table 6-1 (page 124) did not identify any 

systematic relationship between the method of metabolite quantification adopted and 

the size and strength of the reported findings between IQ and NAA. Improved 

methodology for 1H-MRS data acquisition and analysis of absolute metabolite values is 

leading to the increased use of absolute metabolite values as a method of best practice 

(Jansen, 2006), but until such a standard referencing procedure is widely adopted, 

comparing data across studies that differ in this variable will remain difficult (De Beer 

et al., 1995; Knight-Scott et al., 2003). Investigating multivariate relationships using 

multiple metabolite expressions (for example ratios to water, choline and creatine 

(Ross, Sachdev et al., (2005)) compounds difficulties in interpretation, since this 

procedure increases greatly the number of potential statistical comparisons within a 

given study. 
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6.5.4.3 Tissue type 

 
The typically large spatial extent of the voxel from which data is acquired in MRS 

studies makes it difficult to obtain measures from homogeneous tissue. However, 

decreasing the spatial extent of the voxel size leads to a corresponding decrease in the 

SNR (Freeman, 2003). The extent to which MRS samples grey or white matter can 

modulate the metabolite values obtained (McLean et al., 2000; Wang and Li, 1998; 

Wiedermann et al., 2001). Jung et al. (2009) have reported that the patterns of 

relationship between NAA and IQ variables may also vary according to the tissue 

sampled. 

 

The precision gained from obtaining measures from homogeneous tissue, or after post-

hoc correction for tissue inhomogeniety, something which was not implemented in the 

current study, is a reasonable aspiration for future studies, yet few studies in this area 

have applied such procedures to their data. As an exception, Charlton et al. (2007) 

excluded voxels containing less than 75% white matter in their study, but acknowledge 

the inevitable reduction in sample size (and correspondingly in nominal statistical 

power) that potentially results from applying such screening criteria post hoc. 

 

6.5.4.4 Region 

 

A volume in the occipital cortex was selected because of the homogenous nature of the 

cortical tissue (Swanson, 2003), which aids in providing consistent high-quality spectra. 

Furthermore, metabolites in this region have been shown to correlate with cognitive 

abilities in both diseased (Modrego, Fayed et al., 2005) and healthy (Jung, Yeo et al., 

1999) cohorts. 

 

No significant differences in neurometabolites were observed between frontal and 

occipitoparietal voxels in the present analyses, a result that is in accordance with some 

studies using single-voxel 1H-MRS (for example Ozturk et al., 2009), but which contrasts 

with others that have observed significant inter-regional differences using both single 

(Minati et al., 2010) and simultaneous multiple voxel acquisitions (Angelie et al., 2001; 

Maudsley et al., 2009). 
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Assessments of metabolite concentrations in different tissues have not, however, always 

yielded the same pattern of effects (Wiederman et al., 2001). While the NAA/Cr and Cho, 

for the present study and for those listed in Table 6-1, are generally consistent with 

published normative data, it would not be surprising if the correlations between 

neurometabolites and cognitive function varied according to the cortical region 

investigated, given the functional specialisation of the cerebral cortex. Measures were 

obtained from voxels in frontal cortex, given the important role of this region in the 

higher cognitive functions assessed with the WAIS measures (Baddeley, 1996; Duncan 

et al., 2000), and from a control volume in occipitoparietal cortex, an approach that has 

also been adopted in other studies (Ozturk et al., 2009). 

 

6.5.4.5 Assessments of cognitive ability 

 

Most previous studies have used broad and non-specific measures of cognitive skill, 

such as those afforded by standardised assessments of general intelligence. As well as 

FSIQ, and its constituent Verbal and Performance subscales, other studies have adopted 

data reduction techniques to derive a composite score as a dependent variable (Ross et 

al., 2005; Valenzuela et al., 2000). Other studies have adopted a contrasting approach, 

measuring increasingly specific cognitive abilities such as working memory (Yeo et al., 

2000) or IPS (Jung et al., 1999b). 

 

In the present study a hybrid approach was adopted, assessing both FSIQ and the IPS 

subscale, measures that reflect both general cognitive ability and the mental and motor 

speed required to solve visuo-spatial problems respectively (Groth-Marnat et al., 2000). 

Given NAA’s putative role in myelination and in neural efficiency, IPS may be more 

closely linked to neurophysiological functions for which NAA is a mediator than to 

broad-based IQ measures. It was hypothesised that NAA would co-vary with general 

cognitive ability, but specifically more strongly with IPS. However, no relationships of 

note between NAA/Cr and either FSIQ or IPS (see Table 6-4, page 130) were observed. 

 

Whereas some studies have taken an exploratory approach to investigating 

relationships between neurometabolites and cognitive ability (Ferguson et al., 2002; 

Jung et al., 2009; Jung et al., 2005), others have either predicted a dissociation between 
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broad psychometric constructs (Jung et al., 1999b; Ross et al., 2005) or focused on 

increasingly specific cognitive attributes such as Executive Function (Charlton et al., 

2007; Valenzuela et al., 2000) or Working Memory (Yeo et al., 2000). Studies that used 

broad-based measures such as FSIQ, or a composite score for IQ derived by factor 

analysis, showed an average effect size of .50, compared to .32 for those studies 

reporting findings for specific cognitive measures (Table 6-1, page 124). 

 

A minority of studies have framed more specific hypotheses, for example regarding 

gender differences in NAA and verbal processing ability (Pfleiderer et al., 2004) or 

hemispheric specificity with relation to verbal working memory and motor 

speed (Ozturk et al., 2009). In the present study, broad-based FSIQ measure were used, 

but specific hypotheses relating to specific measures of IPS were made, with small 

effects observed in both instances. 

 

The methodological approach to data analytic strategy should be directly informed by 

the a priori hypotheses adopted (or lack thereof) as this will govern the choice and 

range of psychometric assessments and how subscales are treated in statistical analysis. 

Given the potentially diffuse role of NAA in brain function, broad-based measures of 

cognitive function may be the most fruitful variables to consider for further 

investigation. 

 

The relative merits of hypotheses that invoke brain plasticity, or subtle weak effects due 

to variations in neurometabolites, require considerable attention and are a reflection of 

the gap between molecules and manifest behaviour. The former hypothesis suggests 

that there may be no genuine consequence of relatively small variations in 

neurometabolites, whereas the latter suggests that these small natural variations could 

result in subtle performance deficits that are simply difficult to detect with current 

broad-based psychometric tools. 

 

6.5.4.6 Data screening and analysis 

 

Differences between studies are also apparent in their choice of analytical strategies, 

including procedures for data screening to ensure robust correlational data (Tabachnik 



 

141 
 

and Fidell, 2001). The validity of the data depends on several factors, including the 

assumption of univariate and multivariate normality and how outlying values are 

handled in statistical analyses. To date, most investigations have employed highly 

varying screening procedures, with little homogeneity of practice in the methods of 

analysis and presentation of data across studies. Levels of screening range from basic 

level removal of poor quality spectra (Jung et al., 1999b; Ross et al., 2005) to exclusion 

of metabolite values exceeding a critical statistical cut-off following post hoc 

quantification (Ferguson et al., 2002; Jung et al., 2005; Pfleiderer et al., 2004), or 

following screening for voxel tissue composition but not for the metabolite values 

obtained (Charlton et al., 2007). Other studies (Gimenez et al., 2004; Jung et al., 1999a; 

Valenzuela et al., 2000; Yeo et al., 2000) have neither reported the extent nor the 

methodology of data screening procedures. 

 

The procedures used for data screening and the suitability of statistical analysis strategy 

may critically underpin the validity of the findings from a given study. Normality of 

spectroscopy data cannot be assumed, yet none of the studies reviewed here (see Table 

6-1) included information on the normality or distributional assumptions of their data. 

However, all of the studies employed parametric statistics (Pearson correlation or 

linear regression analyses) in their data analyses. 

 

Had the unscreened data in the present study been analysed with parametric measures 

(which were not justified in this case), significant correlations reported would have 

between NAA and IQ variables on the order of r= .4, a finding similar to those in the 

published literature (Table 6-1). Given the potential impact of outliers and non-

Gaussian distributions of data on the validity of the results, a concerted effort should be 

made to report the extent of data screening employed in future studies. 

 

6.5.4.7 Multiple comparisons and a priori hypotheses 

 

Quantitative assessment of the data from healthy cohorts (Table 6-1) reveals a 

particularly strong negative correlation (r= -.68; p= .015) between the number of 

participants studied and the effect size for the main finding reported, indicating that the 

strongest relationships between NAA and cognitive abilities are typically found in 
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studies with smaller sample sizes. One interpretation of this effect is that insufficient 

screening of the data from relatively small samples, combined with the large number of 

variables investigated and a lack of specifically identified a priori research hypotheses, 

renders the typical study susceptible to inflated Type 1 error resulting from the large 

number of statistical comparisons employed. 

 

Furthermore, a key consideration for future studies in cognitive spectroscopy is the 

distinction between statistical significance and statistical relevance, and whether the 

correlation between NAA (or any other metabolite) and a specific psychometric sub-test 

is meaningful for the development and refinement of theory, particularly in cases where 

effect sizes may not be large enough to survive with adjustments in α such as Bonferroni 

corrections or relate to results that were not hypothesised a priori. 

 

The subtlety of the relationships that may exist between neurometabolites obtained 

with MRS and measures of cognitive ability motivates the collection of larger-sized 

samples of participants than have been typically obtained, to achieve the statistical 

power necessary to reliably detect multiple effects and their interactions (Jung et al., 

2009; Ozturk et al., 2009). With an anticipated effect size in the range of 0.15, at an α 

level of .01, a study would require a sample of at least 82 participants to have an 80% 

chance of detecting a noteworthy relationship. 

 

6.6 Conclusion 
 

1H-MRS provides a valuable and sensitive tool for quantification of brain tissue 

composition and viability in vivo, but the lack of a cohesive direction and consensus in 

the patterns of relationships across studies suggests that conclusions drawn from these 

types of studies need to be tempered by awareness of the methodological issues that 

complicate the work. 

 

In the present study, where particular care was taken with data acquisition and 

screening in order to maximise the reliability of the data and strict and specifically 

appropriate statistical analyses were applied, no significant relationships were 

observed between 1H-MRS detectable neurometabolites and measures of cognitive 
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ability. In future studies of this kind, emphasis must be placed on the need for specific, 

hypothesis-driven enquiry and awareness of the subtlety of the data analysis and 

psychometric measures being used and how they are reported. Despite its limitations, 

there is the potential for 1H-MRS to make a significant contribution towards 

understanding some of the neurobiological correlates of cognitive ability. 
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7 1H-MRS-dectable metabolites as biomarkers in 
paediatric liver disease 

 

7.1 Summary 
 

The aim of this study was to evaluate the extent to which non-invasive 1H-MRS can add 

information to the study of children with liver disease by revealing abnormalities in 

cerebral metabolism and to evaluate if performance on cognitive indices is related to 

concentrations of 1H-MRS-detectable neurometabolites. 

 

In a sample of 23 patients with liver disease and 11 sibling controls, single voxel 1H-MRS 

in occipitoparietal and frontal cortical white matter was used to assay concentrations of 

4 principal metabolites: NAA, choline, mI and Glx, in parallel with assessments of 

psychometric intelligence (FSIQ). 

 

The most important finding of the present cross-sectional study, which used 

quantitative short echo-time proton spectroscopy, is that there were neither significant 

differences in metabolite concentrations among the three groups of children with 

different stages of liver disease, nor between these patients and sibling control children 

matched for age. The similarity of the metabolite values observed between the patient 

and control groups suggests that neurodevelopment, assayed by surrogate 

neurometabolite markers, is normal in this cohort. 

 

When used in paediatric cohorts, 1H-MRS may supplement neuropsychological test 

batteries to enable evaluation of the neurophysiological impact of liver disease and 

patient’s response to clinical interventions designed to minimise disease progression. 

However, the use of 1H-MRS is still largely exploratory and what is currently missing is 

careful quantification, age-specific, reproducible, regional studies in newborns, infants, 

children and adolescents to provide context for the clinical data. 
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7.2 Introduction 
 

MRI studies have been used to probe the interplay between neuroanatomical and 

physiological changes in neural circuitry during cognitive maturation and development 

(Casey, Giedd et al., 2000; Casey, Tottenham et al., 2005; Paus, 2005). 1H-MRS was 

identified as a technique of emerging importance in the investigation of paediatric brain 

development in a major review by Novotny et al. over a decade ago (Novotny, Ashwal et 

al., 1998). Since then, substantial progress has been made in understanding the 

relationship between 1H-MRS-detectable metabolites and neurophysiological and 

neuropsychological development, both normatively and in abnormality. 

 

When applied in a clinical environment, the biochemical profiles generated by 1H-MRS 

reflect levels of endogenous metabolites involved in key cellular pathways. This data 

can therefore indicate the physiological status of neural tissue and potentially offer 

pointers to underlying pathophysiological processes to facilitate diagnosis of hereditary 

and acquired brain disorders in children (Grodd, Krageloh-Mann et al., 1991), and assist 

in the detection of functional abnormalities, potentially before the appearance of 

symptoms. This is discussed in greater detail below in the context of liver disease. 

 

As a diagnostic tool, 1H-MRS research has concentrated on the effects of diseased states 

such as metabolic (Zimmerman and Wang, 1997) and neurodegenerative (Tzika, Ball et 

al., 1993) disorders, hypoxic–ischaemic brain injury (Amess, Penrice et al., 1999), in 

utero drug exposure (Goncalves Rde, Vasconcelos et al., 2009; Smith, Chang et al., 2001) 

and epilepsy (Ranjeva, Confort-Gouny et al., 2000). 

 

7.2.1 Subclinical hepatic encephalopathy 
 

Hepatic encephalopathy (HE) is a syndrome encompassing a wide range of 

neuropsychiatric consequences of liver disease, which typically results from 

hepatocellular failure and/or portal-systemic shunts. The terms subclinical or ‘minimal’ 

hepatic encephalopathy (SHE) is used to describe the presence of cognitive impairment 

on psychometric testing and/or slowing of electroencephalographic (EEG) mean cycle 

frequency (for example reduced frequency of the α rhythm and disturbances by random 
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waves in the θ range over both hemispheres) in the absence of any clinically overt signs 

(Amodio, Montagnese et al., 2004; Ferenci, Lockwood et al., 2002). The broad definition 

of SHE reflects the existence of a spectrum of neuropsychiatric manifestations, which 

are typically diagnosed using neuropsychological or neurophysiological tools (Ortiz, 

Jacas et al., 2005), including composite measures such as the psychometric hepatic 

encephalopathy score (PHES) (Weissenborn, Ennen et al., 2001), which examines the 

motor speed and accuracy, visual perception and construction and attentional deficits 

which characterise the condition. The neuropsychological features of SHE are defined as 

a disorder of executive functioning, particularly selective attention and psychomotor 

speed (Amodio, Montagnese et al., 2004). 

 

When evaluated using standard tools of psychometric assessment, the results from 

Chapter 4 indicated that liver disease is associated with good long-term cognitive 

outcome, as indexed by broad-based metrics such as FSIQ. However, whilst 

neuropsychological test batteries are the current gold standard measures for cognitive 

ability, a considerable problem in using these tests alone is that the results are not 

specific to the disorder and are limited in what they are able to reveal about the 

mechanisms underlying changes in cognitive behaviour. The term subclinical HE 

highlights the need for complementary tests to diagnose degrees of brain dysfunction 

that may not be detected through standard clinical examination or assessment. 

 

7.2.2 1H-MRS biomarkers of subclinical hepatic encephalopathy 
 

As a non-invasive, non-destructive procedure that does not require parenteral 

injections, or use of radioactive materials, 1H-MRS is ideally suited for repeated 

measures of adult and paediatric populations where in vivo biochemical data is 

required. It has been shown repeatedly that for HE and SHE, a specific pattern of 

cerebral metabolic change exists in the brain, which even in the mildest form of HE can 

be detected using short echo-time MRS (Grover, Dresner et al., 2006). This typical 

pattern, largely observed in studies of adults, is a reduction in the mI and choline 

resonances and an increase in the glutamate/glutamine composite resonance (Glx) 

(Atkison, Ross et al., 2002; Kreis, Ross et al., 1992; Taylor-Robinson, Sargentoni et al., 
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1994b). Figure 7-1 illustrates a representative 1H-MRS spectra from a healthy 

individual. 

 

 

Figure 7-1 Representative 1H-MRS spectra of normal human brain 

 

In one of the few studies of metabolite changes in children, Tkac, Hamernick et al., 

(2004) observed that pre-transplant paediatric candidates had pronounced differences 

in neurometabolite levels, including increase of glutamine and the decrease of mI and 

NAA compared to controls, a pattern of results consistent with that from adult studies. 

 

If liver disease causes the cerebral metabolite changes described for SHE, reversibility 

of metabolite levels after liver transplantation can be predicted if no persistent brain 

damage has already occurred. This effect has been observed in several studies with 

adult liver transplant patients (Naegele, Grodd et al., 2000; Ross, Jacobson et al., 1994; 

Shawcross, Balata et al., 2004; Thomas, Huda et al., 1998) and in paediatric patients 

studied pre- and post-transplant (Tkac, Hamernick et al., 2004). The finding by Tkac et 

al. that only four of the eight patients studied showed improvement of neurometabolic 

status post-transplant motivates studies using convergent measures to understand the 

variability of metabolite values in these populations compared to sibling controls. 

 



 

148 
 

7.2.3 1H-MRS and cognitive ability in children 
 

1H-MRS has also proved useful in terms of relating potential deficits in cognitive 

development with changes in neurometabolic concentrations, for example in traumatic 

brain injury (Brooks, Friedman et al., 2001; Friedman, Brooks et al., 1998) and 

developmental dyslexia (Rae, Lee et al., 1998). It has even been suggested that 1H-MRS 

has the potential sensitivity to identify clinical subtypes of autism spectrum disorders 

(Gabis, Wei et al., 2008). 

 

1H-MRS has also been extended to assessment of developmental delay, whereby the 

metabolites provide supplementary information in cases where the cause of cognitive 

disturbance remains unknown. Filippi, Ulug et al. (2002) found that in children with 

normal MRIs, decreases in the NAA/Cr ratio and elevations of Cho/Cr in frontal and 

occipitoparietal subcortical white matter were associated with developmental delay in 

children over the age of two. This data in clinical populations of children point to the 

potential utility of 1H-MRS as an adjunctive investigative technique to the traditional 

methods of psychometric tests typically used to assess for the presence of HE and 

cognitive deficits in liver disease. 

 

1H-MRS studies of healthy human cognition have mainly examined adults (see Chapter 

6). Whilst methodological flaws are evident (see section 6.5.4), the findings from these 

studies suggest that NAA, measured across different cortical regions, co-varies with 

different constructs of cognitive ability, an effect that has also been observed in healthy 

younger populations. In healthy children, NAA/Cr ratios have been associated with 

measures of manual speed and dexterity, visual working memory (Ozturk, Degaonkar et 

al., 2009) and working memory (Ozturk et al., 2009; Yeo et al., 2000). In adolescents, 

Gimenez, Junque et al. (2004) have observed correlations between NAA and a 

composite measure of cognitive skill representing speed of information processing, 

attentional function and visual memory. 

 

In a recent study, Lightsey et al. employed multi-voxel spectroscopy, sampling both 

white and grey matter, in a cohort of healthy six to 19 year olds (Lightsey, 2010). They 

observed that higher NAA/Cr mean and lower NAA/Cr standard deviations in grey 
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matter is associated with higher memory performance in boys, while lower NAA/Cr 

mean and higher NAA/Cr standard deviations in gray matter is associated with higher 

memory performance in girls. As with the studies of adults described in Chapter 6, the 

general approach has been to obtain in measures of 1H-MRS metabolites in cortical 

tissue with concurrent psychometric measures of cognitive skills, such as those 

provided by standardised IQ tests. 

 

7.2.4 Aim 
 

The aim of the present study was to investigate whether children with liver disease 

have a neurometabolic pattern which differs from sibling controls and is indicative of 

SHE. Relationships between cognitive ability and neurometabolites were also 

investigated to determine if intellectual deficits associated with liver disease are 

reflected in reduced concentrations of NAA, or disturbances in other 1H-MRS-detectable 

cerebral metabolites. 

 

7.2.5 Hypotheses 
 

1. If present, the characteristic combination of biomarkers of SHE, namely reduced 

choline and mI and increased Glx, would correlate with greater cognitive 

dysfunction and decreased FSIQ. 

2. Post-transplant patients would show a pattern of metabolite values closer to that 

for sibling controls. 

3. As a potential marker of neuronal viability and health, NAA would negatively 

correlate with measures of general cognitive ability. 

 

7.3 Method 
 

7.3.1 Participants 
 

A total of 40 participants (15 females, 25 males; (mean age 13.1, SD: 5.0)) from the 

principal cohort described in Chapter 3 underwent the MR procedure. Twenty-nine 

participants from this cohort were patients with liver disease and 11 were healthy 

sibling controls.  



 

150 
 

 

34 participants (23 females, 11 males,) from a total of 40 participants were included in 

the final analyses. Descriptive data for the sibling control and patient groups are 

provided in Table 7-1, page 152. Three patients did not tolerate the scan procedure. 

Data from a further three participants was excluded due to poor quality spectra in both 

frontal and occipitoparietal voxels, as a result of artefact induced by motion or non-

neural tissues. 

 

7.3.2 Neuroimaging 
 

The standardised neuroimaging protocol is described in Chapter 3 (section 3.5.3, page 

67). 

 

The 1H-MRS data was obtained with a Siemens 3T Trio scanner (Siemens Medical 

Solutions, Berkshire, UK) using standard acquisition software and a quadrature head 

coil. Single-voxel 1H-MRS (2 cm3) was performed following localisation of the volume of 

interest (VOI) using a 5-plane localiser (TR: 20 msec, TE: 5 msec, 10 slices at 5 mm 

thickness). Manual voxel positioning maximised the white matter contribution and 

minimised the intrusion of grey matter, and ensured that the voxel did not 

encroach upon non-neural sources. Automated shimming was followed by a stimulated 

echo acquisition mode (STEAM) pulse sequence (TR: 2,000 msec, TE: 30 msec, 96 

averages), including water suppression, for voxels in both frontal (Fro) and 

occipitoparietal (OP) cortex. To validate data quality, assess reliability and quantify 

error variance introduced by scanner-related factors such as that caused by field 

inhomogenieties, data from two successive scans of the same voxel were obtained and 

averaged for each participant. 

 

7.3.3 Psychometric assessments 
 

The standardised protocol for administration of psychometric assessments is described 

in Chapter 3, page 51. 
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An age-appropriate battery of the Wechsler Preschool and Primary Scale of Intelligence-

III, Wechsler Intelligence Scale for Children-IV or Wechsler Adult Intelligence Scale-III 

was administered for each child to derive scores for Verbal, Performance, Working 

Memory and FSIQ and IPS. 

 

7.3.4 Data analysis 
 

Psychometric test scores were converted to scaled scores to standardise the data across 

age groups according to the standard Wechsler administration instructions. 

 

The metabolite values were estimated post-hoc using LCModel (Provencher, 2001). This 

software provides spectral quantification and metabolite detection optimised for short 

echo time spectroscopy. All analyses reported here adopt the standard convention of 

expressing NAA as a ratio to creatine (NAA/Cr). 

 

7.4 Results 
 

7.4.1 Summary spectroscopy data and data screening 
 

Ross, Jacobson et al. (1994) suggested quantitative criteria that enable prediction of 

SHE with MR spectroscopic data, whereby SHE is considered present when the mI/Cr 

and Cho/Cr ratios are less than 2SD below normal, with or without a Glx/Cr ratio more 

than 1SD above normal, where ‘normal’ was defined as metabolite values obtained in a 

sample of 12 sibling controls. Therefore, to adequately detect potential group 

differences in neurometabolite values, the stringent screening criteria applied to 

spectroscopic data in Chapter 6 (exclusion of data ±2SD) was not applied here. 
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Table 7-1 Descriptive data for the sibling control and liver disease groups with available psychometric and spectroscopy data

Group 
Total 

n 

Mean 
age 

(years) 

SD age 
(years) 

M:F n Diagnoses 

Sibling controls 11 12.2 5.08 5:6 
 

  

Early-onset liver 
disease, pre-
transplant 

13 13.1 5.0 8:5 
8 Extra-hepatic biliary atresia 

4 Progressive familial intrahepatic cholestasis 

    
1 Neonatal haemochromatosis 

Early-onset liver 
disease, post-
transplant 

5 16.2 3.0 3:2 

2 Progressive familial intrahepatic cholestasis 

2 Extra-hepatic biliary atresia 

1 Acute liver failure 

Acute liver 
failure, post-
transplant 

5 14.0 4.1 4:1 

1 Autoimmune hepatitis  

1 Fulminant hepatitis A infection 

3 Sero-negative hepatitis  
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Summary spectroscopy data for the sibling control group and the three individual 

patient groups (early-onset liver disease (EOLD) pre-transplant, EOLD post-transplant 

and acute liver failure (ALF) post-transplant) is shown in Table 7-2. 

 

 Table 7-2 Summary of spectroscopy data for paediatric liver disease patients vs sibling controls 

  

Sibling 
controls 

EOLD pre-
Tx 

EOLD 
post-Tx 

ALF 
post-Tx 

Mean age 12.7 13.8 16.2 14.0 

Mean age SD 4.90 4.97 2.95 4.01 

Occipitoparietal voxel 

N 11 13 5 5 

Mean Cho/Cr (SD) .23 (.05) .22 (.04) .25 (.02) .23 (.04) 

Mean NAA/Cr (SD) 1.61 (.84) 1.34 (.58) 1.60 (.33) 1.67 (.15) 

Mean mI/Cr (SD) .71 (.60) .69 (.21) .52 (.23) .70 (.07) 

Mean Glx/Cr (SD) 1.85 (.23) 2.35 (1.33) 2.05 (.24) 1.69 (.14) 

Frontal voxel 

N 10 11 5 5 

Mean Cho/Cr (SD) .25 (.07) .25 (.08) .18 (.13) .28 (.03) 

Mean NAA/Cr (SD) 1.58 (.13) 1.68 (.14) 1.02 (.71) 1.54 (.12) 

Mean mI/Cr (SD) .72 (.10) .71 (.38) 2.18 (3.36) .71 (.06) 

Mean Glx/Cr (SD) 1.95 (.21) 2.00 (.39) 9.99 (18.28) 1.90 (.21) 

Mean and standard deviations of metabolite values as ratios to creatine are shown for both frontal 
and occipitoparietal voxels. 
Frontal cortex data for one sibling control and two EOLD pre-Tx participants were excluded from 
analyses due to poor quality as a result of artefact induced by motion or non-neural tissues 

 

Mean metabolite ratios are largely consistent with those reported previously in adults 

and children (Danielsen and Ross, 1999; Ozturk, Degaonkar et al., 2009). Distributional 

normality of spectroscopy data cannot be assumed. As data from Chapter 6 showed, the 

procedures used for data screening and the suitability of statistical analysis strategy 

may critically underpin the validity of the findings obtained from a given study, a point 

particularly important here as outlier data were deliberately retained in the analyses. 

As with data from Chapter 6, the unscreened data did not 

consistently satisfy distributional assumptions of normality (evaluated with the 

Shapiro-Wilk statistic at an α level of .05), and as a consequence were analysed using 

non-parametric statistical techniques. 
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7.4.2 1H-MRS metabolite differences between patients and controls 
 

An Independent-samples Kruskall Wallis test showed no main effect of disease category 

on metabolite values. The significance values for each metabolite in both frontal and 

occipitoparietal cortex are shown in Table 7-3. 
 

Table 7-3 Differences in neurometabolite values between sibling 
controls and liver disease groups 

Metabolite 
Kruskall 
Wallis p 

value (3 df) 
Chi-square 

Frontal voxel 

Cho/Cr .563 2.05 

NAA/Cr .225 6.68 

mI/Cr .083 4.36 

Glx/Cr .838 .86 

Occipitoparietal voxel 

Cho/Cr .421 2.82 

NAA/Cr .094 2.12 

mI/Cr .549 6.39 

Glx/Cr .096 6.36 

Non-parametric Kruskall-Walllis test was used to assess differences 
in neurometabolites in both frontal and occipitoparietal cortex as the 
unscreened data did not conform to a normal distribution. 

 

Based on the mean values obtained in the sibling control cohort, none of the patients 

exceeded the diagnostic cut-offs established by Ross et al. (1994) in frontal cortex 

voxels (mI/Cr< .52 and Cho/Cr< .11, Glx> 2.16). The same is true of occipitoparietal, 

although frontal volumes were focused on due to their greater functional link to 

cognitive ability. Therefore, none of the patients in the present cohort could be 

diagnosed as having SHE using 1H-MRS data alone. 

 

Data illustrating the differences in neurometabolites according to disease category is 

shown for the frontal volume only (Figure 7-2 to Figure 7-5, pages 155 and 156) as this 

region is functionally related to the cognitive outcome measures of interest to a greater 

degree than the occipitoparietal cortex, a region which was used as a control. 
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Figure 7-2 Comparison of mean frontal cortex NAA/Cr values between control and liver disease 
groups 

Error bars represent ±1 standard error mean. EOLD post-Tx patients had lower NAA/Cr compared to the 
other three groups but this difference was not statistically significant. 

 

 

Figure 7-3 Comparison of mean frontal cortex Cho/Cr values between control and liver disease 
groups 

Error bars represent ±1 standard error mean. EOLD post-Tx patients had lower Cho/Cr compared to the 
other three groups but this difference was not statistically significant. 
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Figure 7-4 Comparison of mean frontal cortex mI/Cr values between control and liver disease 
groups 

 Error bars represent ±1 standard error mean. EOLD post-Tx patients had higher mI/Cr than the other 
three groups. The difference was not however statistically significant, an effect that can be attributed to 

the much greater variance in metabolite values in this patient group.  
 

 

Figure 7-5 Comparison of mean frontal cortex Glx/Cr values between control and liver disease 
groups 

Error bars represent ±1 standard error mean. EOLD post-transplant patients had higher Glx/Cr than the 
other three groups. The difference was not however statistically significant, an effect that can be 

attributed to the much greater variance in metabolite values in this patient group. 
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7.4.3 Inter-regional and gender differences in metabolite values 
 

A Related-samples Wilcoxon Signed-rank test was used to assess inter-regional 

differences in metabolite values across all groups. No significant differences in median 

NAA/Cr, mI/Cr or Glx/Cr were observed between frontal and occipitoparietal voxels 

(p= .83 .37 .05 respectively). Cho/Cr was significantly higher in frontal cortex than 

occipital cortex (p= .02). An Independent-samples Kruskall Wallis test showed no main 

effect of gender on metabolite values (p> .05). 

 

7.4.4 Relationships between 1H-MRS-detectable metabolites and 
cognitive ability 

 

The data from Chapter 4 showed that there were no significant differences between 

diagnostic groups for FSIQ. To supplement the findings in Chapter 6 for correlations (or 

lack of) between neurometabolites and cognitive variables in adults, the relationships 

between neurometabolites and cognitive ability were also assessed here. Analysis of the 

continuous relationships between MRS metabolites and cognitive variables across the 

entire cohort of 34 paediatric participants was justified as no statistically significant 

differences for metabolite values were observed between groups. 

 

Non-parametric correlation coefficients for the unscreened data (n= 34) showed 

that the relationships between IPS or FSIQ and Cho/Cr, NAA/Cr, mI/Cr and Glx/Cr were 

neither strong nor statistically significant at a Bonferroni-corrected α value of .003 

(.05/16 correlations).  
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Table 7-4 Correlations between neurometabolites in frontal cortex and IQ variables 

    Correlation with cognitive ability; r (p value) 

 
n FSIQ IPS PIQ VIQ 

Cho/Cr 29 .33 (.84) -.03 (.89) .39* (.04) .30 (.12) 

NAA/Cr 29 .10 (.61) -.06 (.77) .03 (.86) .14 (.46) 

mI/Cr 29 -.03 (.87) .19 (.34) .01 (.96) -.84 (.67) 

Glx/Cr 29 -.04 (.85) -.13 (.51) -.02 (.92) .12 (.54) 
Non-parametric Spearman’s Rho test was used to assess the relationship between 
neurometabolites and psychometric scores as the unscreened neurometabolite data did not 
conform to a normal distribution. 
*p< .05, but not statistically significant at Bonferroni-corrected α level of .003 

 

Screening of metabolite values to remove all univariate outliers (±2SD) results in the 

exclusion of data from six participants. Concentrations of the four metabolites of 

interest in the remaining sample of 28 were normally distributed when evaluated with 

the Shapiro-Wilk statistic at an α level of .05. However, no significant relationships 

between neurometabolite values and cognitive variables are observed when parametric 

(Pearson’s r) statistics are applied (p> .05). 

 

7.5 Discussion 
 

7.5.1 1H-MRS-detectable metabolites as biomarkers in paediatric 
liver disease 

 

1H-MRS is a valuable addition to existing neuroimaging methods for the study of brain 

development in humans and is able to provide in vivo biochemical information with 

potential diagnostic value. 1H-MRS was used in a cross-sectional study of a paediatric 

population to investigate whether children with liver disease have a neurometabolic 

pattern which differs from sibling controls in pattern association with subclinical 

hepatic encephalopathy. The most important finding of the present study was that there 

are no significant differences in metabolite concentrations, neither among the three 

groups of children with different stages of liver disease, nor between patients and age-

matched sibling control children. 

 

The findings of the present study are in contrast with previous studies of SHE in which 

two characteristic changes in 1H-MRS spectra are described: (1) an elevation of 

glutamine (Glx) peak, and (2) the reduction of the mI and choline peaks. The area under 
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each peak in the 1H-MRS spectra represents the relative concentration of nuclei 

detected for that particular molecule (see Chapter 3 for a detailed discussion), and is 

therefore reflective of the concentration of that metabolite in the tissue being assessed. 

The potential neuropathological changes associated with deviations in these particular 

metabolites in relation to liver disease has been almost exclusively observed in adults, 

and the mechanisms of action on cognitive outcomes in SHE are still largely unclear. 

 

7.5.1.1 Glx in liver disease 

 

The spectral peaks of glutamine and glutamate are often grouped together as Glx, 

because their spectral overlap makes it hard to resolve them adequately. Glutamine is 

easily detectable with 1H-MRS, whilst glutamate is the most abundant amino acid in the 

brain and is released by approximately 90% of excitatory neurons (Magistretti, Pellerin 

et al., 1999). The role of Glx in liver disease is open to speculation (Zwingmann and 

Butterworth, 2005), but the increase in Glx peaks seen on MR spectroscopy may be a 

result of excess ammonia taken up by the astrocytes, which then convert glutamate to 

glutamine. 

 

Ammonia metabolism is compromised by liver dysfunction and ammonia has 

consistently been shown to be important in the pathogenesis of HE (Lemberg and 

Fernández, 2009). Excessive ammonia is toxic to the CNS and can, for example, inhibit 

excitatory post-synaptic potentials, thereby producing a general depression of CNS 

function. In a small group of children with clinically suspected SHE, Foerster, Conklin et 

al. (2009) observed a positive significant correlation between grey matter Glx and 

ammonia levels (r= .66). Astrocytes are the site of ammonia detoxification in the brain 

and they eliminate ammonia by the synthesis of glutamine through amidation of 

glutamate. Accumulation of glutamine in astrocytes induced by hyperammonemia 

produces osmotic stress and astrocyte swelling (Häussinger, Kircheis et al., 2000). In 

the present study, however, elevated levels of Glx were not seen in the patient cohort 

compared to sibling controls, nor were 1H-MRS values representative of these 

metabolites correlated with cognitive function. 
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7.5.1.2 mI in liver disease 

 

A decrease in the concentration of brain organic osmolytes such as mI indicates the 

activation of the process of regulatory volume decrease of astrocytes. In response to 

elevated intracellular levels of glutamine resulting from excess ammonia, the astrocyte 

swelling hypothesis predicts that homeostatic mechanisms occur to limit the osmotic 

load in astrocytes, leading to the extracellular release of mI (Häussinger, Kircheis et al., 

2000). MR studies in SHE have provided important in vivo data, which have contributed 

to the current theories on astrocyte swelling (Häussinger, Kircheis et al., 2000). Ross, 

Jacobson et al. (1994) report that decrease in mI levels may be the central derangement 

in chronic HE, with grey and white matter mI levels proving the best predictors of mild 

HE, but no significant difference between patients and controls were observed in the 

present study. 

 

7.5.1.3 Choline in liver disease 

 

The choline resonance contains contributions from phosphocholine and 

glycerophosphorylcholine, both of which are cell membrane precursor and degradation 

products (Vereb, Szollosi et al., 2003). The characteristic reduction of choline in SHE, 

which was not observed in this present study, is likely to reflect choline’s importance in 

brain metabolism (Zeisel, 2000; Zeisel, 2004), specifically through alterations in 

phospholipid metabolism, membrane fluidity, or secondary changes in water content 

due to the osmolytic effects of choline. 

 

7.5.1.4 NAA in liver disease 

 

NAA provides a surrogate marker for the health and viability of neural tissue (Barker, 

2001; Moffett et al., 2007). NAA concentrations in white matter reflect the metabolic 

function of axons as well as the extent and efficiency of their myelination (Bjartmar et 

al., 2002). In comparison to the 1H-MRS detectable neurometabolites, it appears that 

neuronal loss and degeneration, as indexed by NAA, is largely unaffected in SHE, at least 

in adults (Binesh, Huda et al., 2005; Huda, Guze et al., 1998; Thomas, Huda et al., 1998). 

In a single, small study in children, Tkac, Hamernick et al. (2004) observed a reduction 
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of NAA/Cr in pre-transplant patients compared to sibling controls. However, to a large 

extent NAA has been overlooked as SHE does not seem to be associated with a loss of 

neurons or the reduced integrity of myelin. 

 

In the present study, although no significant inter-group differences were observed, 

there was an interesting pattern of results for the early-onset post transplant group. 

Frontal cortex NAA/Cr and Cho/Cr showed a trend toward reduced values compared to 

sibling controls (see Table 7-2, page 153), (d)= 1.33 (see Figure 7-2, page 155) and 1.55 

(see Figure 7-3, page 155, respectively. In addition, greater degree of variability in mI 

and Glx was observed in this group compared to the others (see Table 7-2 and, Figure 

7-4 and Figure 7-5 for illustration). The range in metabolite values, particularly of Glx 

(see Figure 7-4, page 156), are important, because variation in metabolite values must 

be significantly higher than the precision of the MRS measurement (approximately 9%, 

see Chapter 3) before metabolite values can be confidently interpreted as a true 

reflection of biological variation in SHE.  

 

In four paediatric post-transplant patients, Tkac, Hamernick et al. (2004) observed a 

regularisation in SHE markers that were previously abnormal. They noted, however, 

that the post-transplant concentration of glutamine specifically remained significantly 

higher compared to the normal adult brain, therefore indicating a slower than expected 

reversal of the effects of liver hypo-function on cerebral metabolic function, as 

detectable by 1H-MRS. However, given the small sample size of both the patient and 

sibling control group and the lack of plausible explanation for reduced NAA/Cr in the 

context of liver disease, these findings must be interpreted with caution as the 

generality of the effects of liver disease are unknown. 

 

7.5.2 The potential for age-related changes to mask disease-related 
effects 

 

Foerster, Conklin et al. (2009) suggest that children with clinically suspected mild HE 

have changes in metabolic profiles of mI and Glx which are similar to adults. However, 

they make this claim without reference to age-matched control data for their cohort of 

12 children, which they did not collect given ethical concerns about MR on small 
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children. The lack of a large database of normative age-matched data makes it extremely 

difficult to assess the true strength of disease-associated metabolite changes in 

childhood and is an important limitation for assessing the contribution 1H-MRS as a 

diagnostic tool. 

 

Two years of age marks a major landmark in brain development. The appearance of 

brain structures is similar to that of adults; the brain close to 80% of its adult weight, 

and all the major fibre tracts are identifiable by age three (Matsuzawa, Matsui et al., 

2001). Levels of 1H-MRS-detectable metabolites that may index various aspects of 

neurological development vary by anatomic region and have been shown to change 

nonlinearly with age. Metabolite changes, particularly for choline, mI and NAA, continue 

rapidly through the first year or so (Huppi, Fusch et al., 1995; Kimura, Fujii et al., 1995; 

Kreis, Ernst et al., 1993; Kreis, Hofmann et al., 2002; Pouwels, Brockmann et al., 1999; 

van der Knaap, van der Grond et al., 1990; Vigneron, Barkovich et al., 2001). 

Maturational changes of Glx are underreported in the literature due to their multiplet 

visibility and overlapping resonances of the two individual metabolites. 

 

An age-dependent increase of the total concentration of NAA in cerebral grey and white 

matter with normal brain development has been found predominantly during the first 

three years of life (Huppi, Fusch et al., 1995; Huppi, Posse et al., 1991; Pouwels, 

Brockmann et al., 1999). Since there is no major increase in the number of neurons after 

birth, this increase in NAA concentration must be related to other processes of 

neurological maturation, such as the proliferation of dendritic arborisations, synaptic 

connectivity and axonal myelination (Kato, Nishina et al., 1997). 

 

Several of the studies investigating newborns (Cady, Penrice et al., 1996; Huppi, Posse 

et al., 1991; Kreis, Ernst et al., 1993) have demonstrated decreases in choline with age, 

particularly in the first year. During later childhood and adolescence, choline remains at 

a constant adult level and therefore exhibits the same regional distribution as described 

for adults (Pouwels and Frahm, 1998). mI has been observed as the dominant peak in 

the 1H-MRS spectra at birth (Kreis, Ernst et al., 1993). 
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A few of the limited number of studies measuring maturational changes in mI have 

described subsequent decreases of mI during the first year of life and a continuing 

marked reduction of the metabolite up to the age of two (Huppi, Fusch et al., 1995; 

Kreis, Ernst et al., 1993). Whilst the majority of metabolite changes are apparent in 

neonates and infancy, they continue, but to a lesser degree, through adolescence 

(Horska, Kaufmann et al., 2002). Whilst explanations of the observed changes in 1H-

MRS-detectable neurometabolites are still largely a matter of debate, it is clear that they 

are related to maturational processes in the brain. 

 

A Spearman’s Rho tests for the relationship between non-normally distributed 

spectroscopy data and age in the healthy cohort of 11 showed no significant 

correlations for NAA, Cho or Glx in either frontal or occipitoparietal regions. 

Occipitoparietal mI was, however, strongly negatively correlated with age (r= -.68, p= 

.02). Pouwels et al. found that mI concentrations across the thalamus, basal ganglia and 

grey matter regions remain largely constant with age, but that mI in the cerebellum 

decreases from its highest value during early development by approximately 30% 

toward adolescence and adulthood (Pouwels, Brockmann et al., 1999). 

 

However, as other work has found no age-dependant change of mI in the cerebellum or 

any other region (Huppi, Posse et al., 1991), the interpretation of the non-parametric 

correlation between age and occipitoparietal mI/Cr values in this small healthy cohort 

requires cautious interpretation. This caution is further justified by further analysis, 

which showed that the non-parametric correlation between occipitoparietal mI and age 

became non-significant when assessed across the entire cohort of 34 (which is 

theoretically justified as no group differences were observed); r= -.31, p= .84. All other 

correlations between metabolites and age also remained non-significant (p> .05). It is 

also important to recognise simple linear regression analyses may mask non-linear 

relationships between age and neurometabolite values, but much greater numbers of 

participants are required in order to adequately investigate these potentially subtle 

associations.  

 

A deeper understanding of the changes in normal brain development is crucial prior to 

the application of 1H-MRS to the study of pathological conditions. Given the immaturity 
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of the brain at birth and its rapid postnatal development to approximate adult 

structures, such normative data needs to be age-matched and referenced. More studies 

of large populations, in well-defined clinical settings, are required in order to confirm 

and extend current findings from existing longitudinal and cross-sectional studies and 

determine if in vivo 1H-MRS can provide independent diagnostic and prognostic indices 

of liver disease. 

 

7.5.3 1H-MRS-detectable metabolites and cognitive ability in 
paediatric liver disease 

 

Non-parametric correlation coefficients for the unscreened data (n=34) showed that the 

relationships between IPS or FSIQ and Cho/Cr, NAA/Cr, mI/Cr and Glx/Cr were neither 

strong, nor statistically significant at a Bonferroni-corrected α level of .003 (see Table 

7-4, page 1588). Analysis of the FSIQ sub-scores shows a moderate statistically 

significant correlation between frontal Cho/Cr and Performance IQ scores at an 

uncorrected α level of .05 (r= . 39, p= .037; see Table 7-4)). Taken as a whole however, 

and when using strictly appropriate statistical analyses, the results of the present study 

indicate that there is no correlation between the concentrations of brain metabolites 

and the developmental achievement of the child. 

 

Others have observed relationships between SHE markers and cognitive performance. 

In a group of 17 patients diagnosed with SHE, Thomas, Huda et al. (1998) observed that 

performance on the Frontal Index (measured by performance on the assessments 

including the Colour Trails task, Rey-Osterreith and Digit Symbol subtests) was strongly 

correlated to baseline mI/Cr levels; patients with the lowest levels of mI/Cr were the 

most seriously impaired (r= .67, n= 17, p< 01). mI also correlated with Motor and 

Memory Indexes (r= .24), but the results were not statistically significant in their 

relatively small sample. This correlation with Frontal Index has also been observed by 

Huda, Guze et al. (1998), with Binesh, Huda et al. (2005) also finding a positive 

correlation between mI and motor speed and dexterity (r= .54). 

 

The role of ammonia in cognitive deficits associated with SHE also appears to be 

important. Both Thomas, Huda et al. (1998) and Huda, Guze et al. (1998) found that 
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baseline blood ammonia levels are associated with lower performance on cognitive 

measures. However, both studies also found that neither Glx, nor Cho/Cr, were 

correlated with cognitive measures. In a group of 30 post-liver transplant children, 

Gilmour, Adkins et al. (2009) observed a strong correlations between PIQ measures and 

pre-transplant growth retardation and elevated serum ammonia (r= .45). 

 

In support of ammonia as the potential link between cognitive ability and brain 

metabolism in SHE, Foerster, Conklin et al. (2009) found that that changes in choline 

and Glx within their patient group were proportional to biochemical markers of HE, 

including plasma ammonia level and the ratio of branched-chain to aromatic amino 

acids. However, as discussed earlier, no sibling controls were studied for comparison. 

Foerster et al.’s recent study is one of the few, along with Tkac, Hamernick et al. (2004), 

that employed 1H-MRS in children with liver disease, an indication of the relative 

paucity of 1H-MRS applications. 

 

The results of the present study also show that the putative neuronal viability marker, 

NAA, commonly overlooked in studies of SHE, does not provide a biomarker of 

intellectual performance per se. In the evaluation of a child with liver disease, one might 

encounter normal, low or even elevated concentrations of NAA in the brain. 

 

Pre and post-transplant data from children (Tkac, Hamernick et al., 2004) and adults 

(Thomas, Huda et al., 1998) and the limited studies investigating cognitive ability 

(Binesh, Huda et al., 2005; Huda, Guze et al., 1998; Thomas, Huda et al., 1998), suggest 

that the metabolite changes are not insignificant correlates of SHE and may reflect 

metabolism related to cerebral dysfunction. The relative reductions of NAA and choline, 

and greater variation in mI and Glx in the early-onset post transplant patients in the 

present study (see Figures 7-2 to 7-5), in parallel with specific deficits in IPS in this 

group (Chapter 3), is worthy of note and certainly motivates further investigations of 

MRS is paediatric liver disease patients. 

 

However, the concerns raised by Moss, Tarter et al. (1992), in relation to cognitive 

function and SHE assessed with serum liver function tests, apply just as well to 

spectroscopic studies: the heterogeneity of the subjects studied with respect to age, 
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gender, socioeconomic status, hepatic diagnosis and disease severity, as well as other 

intra- or extra-hepatic pathologic mechanisms (e.g. fatty acid deprivation, alterations in 

membrane fluidity or aberrant amino acid metabolism), are likely to have contributed 

to the substantial variability in the relationships between metabolites and cognitive 

ability observed by others, or lack of relationships in the case of the present cohort. In 

terms of MRS specifically, many of the issues that trouble the work in sibling controls, 

which are discussed in Chapter 6, apply here. Issues of data analysis, metabolite 

quantification, voxel placement and the like, are compounded further in clinical studies, 

where studies are necessarily fewer and with smaller cohorts. 

 

7.6 Conclusion 
 

The consistency of the metabolites observed between the patient and sibling control  

suggests that neurodevelopment, as assessed by selective 1H-MRS-detectable 

neurometabolite biomarkers, is ostensibly normal in this clinical cohort.  

 

Early detection of alterations in brain metabolites may be helpful in mitigating the 

neurocognitive declines seen in some children with liver disease. Whilst the present 

findings do not confirm the specific pattern of metabolite changes typically seen in 

healthy adults in other studies of this kind, they add to the small, but important and 

growing, body of studies neuroimaging neurometabolism with MRS children. 

 

MRS holds promise as a screening tool for biomarkers in liver disease because of the 

increased precision gained through using continuous measures rather than ordinal or 

categorical ones. It has the potential to become an alternative to neuropsychological test 

batteries for the assessment of the clinical manifestations of liver disease, and 

potentially allow tracking of the patient’s response to clinical interventions designed to 

minimise the progression of their disease. However, the use of 1H-MRS is still largely 

exploratory and what is currently missing is careful quantification, age-specific, 

reproducible, studies in newborns, infants, children and adolescents to provide context 

for the clinical data. 
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8 Discussion and conclusions 
 

8.1 Introduction 
 

Using a multi-modal approach, the present set of studies aimed to develop and refine 

analytic tools for biochemical assays, for use with both adult and paediatric populations. 

The main aim was to investigate some of the potential biochemical underpinnings of 

cognition, relating neural, systemic and behavioural levels of analysis. 

 

Chapter 1 introduced the approaches employed to studying the biological bases of 

individual variation in cognitive ability and the utility of the converging methods 

approach to clarify biological mechanisms which account for differences in 

psychometric test performance. Chapter 2 described the nature of EFA metabolites and 

their importance and function in neural tissue, highlighting that the effects of fatty acids 

are multifactorial and are specific to individual classes of fatty acid. EFAs and their 

PUFA metabolites have important roles not only at the membrane level, primarily 

through their influence in phospholipid cell membrane fluidity, but also through their 

involvement in inflammatory processes. Both of these roles may be important in 

understanding the modulatory role of fatty acids on cognition in health and in disease. 

 

Animal dietary deprivation models have demonstrated that chronic deficiency in EFAs, 

particularly in early neurodevelopment, is associated with significant cognitive 

impairment including deficits in memory and learning. Observational studies of 

breastfeeding versus formula feeding and randomised controlled trials comparing 

children fed formulas either supplemented or unsupplemented with EFAs and/or 

PUFAs are the common methods for investigating the cognitive effects of EFAs in human 

children. Whilst the data is not unequivocal, infants who receive formula milk, as 

opposed to breast milk which is naturally high in EFAs, suffer cognitive impairments 

including slower processing speed and lower general IQ. Supplementation with high 

levels of EFAs has been found to ameliorate some of these cognitive deficits, which are 

commonly assessed using the Mental and Psychomotor Development Indices of the 

Bayley Scales of Infant Development. 
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Disease models provide a useful paradigm for studying the cognitive deficits associated 

with suboptimal EFA levels in children. Intervention studies where EFA deficiency is 

induced are precluded by ethical considerations, such as the potential effects of long-

term dietary restriction. In the present study, a paediatric liver disease model was used 

to answer questions of whether: 

 

1. Sub-optimal concentrations of EFAs, as a result of fat malabsorption or 

dependence on inadequate dietary sources, is associated with deficits in 

cognitive ability. 

2. 1H-MRS-detectable metabolites can provide surrogate markers of sub-clinical 

changes in neuronal viability. 

 

This investigation entailed four main bodies of work, three with the paediatric liver 

disease clinical population and one with a set of healthy adult controls. The specific 

convergent methods employed were described in Chapter 3. 

 

 Chapter 4 investigated cognitive outcomes in a group of paediatric patients with 

early-onset liver disease or acute liver failure compared to sibling controls using 

psychometric tests to assess the neuropsychological impact of the disease. 

 Chapter 5 assessed the range of EFA concentrations and deficiency biomarkers in 

erythrocytes in the patient and control groups and examined the relationship 

between current EFA status and cognitive outcomes. 

 Chapter 6 investigated the relationships between natural variations in 

neurometabolites assayed by 1H-MRS and cognitive ability in a healthy adult 

population. 

 Chapter 7 evaluated the potential of 1H-MRS to add information to the study of 

children with liver disease by revealing abnormalities in cerebral metabolism. 

 

The conclusions that can be drawn from the studies described in this thesis fall into two 

categories; those relating to the empirical results and their implications for the 

understanding of EFAs and 1H-MRS-detectable metabolites in cognition in general and 

paediatric liver disease in particular, and those concerned with the experimental 

techniques employed and the theoretical framework in which they are currently used. 
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The following discusses the issues and limitations of 1H-MRS and GC-MS methods, 

followed by examples of directions of research motivated the present studies and 

concluding remarks. 

 

8.2 Key findings of the present studies 
 

In the following discussion, mutually informative studies have been grouped together. 

Cognitive outcomes (Chapter 4) will be discussed in the context of EFA status (Chapter 

5), followed by discussion of the 1H-MRS studies in sibling controls and the paediatric 

liver disease patients (Chapters 6 and 7). 

 

8.2.1 Studies 1 and 2: Cognitive outcomes and EFA status in 
paediatric liver disease 

 

In the first set of analyses the effects of chronic liver disease on cognitive outcomes as 

assessed with age-appropriate, standardised assessments of verbal and nonverbal 

cognitive skills were investigated. Liver disease appears to have significant negative 

effects on specific aspects of cognitive development, with age at the onset of disease an 

important moderator of these effects. Whilst no significant deficit was observed in FSIQ 

between disease groups, significant differences were observed between the early onset, 

post-transplant group and age-matched sibling controls on a measure of IPS, with 31% 

of the variance in IPS explained by the effects of onset of liver disease coupled with 

transplantation. 

 

The dissociation in results the between pre and post-transplant early-onset patients 

may be explained by the fact that the transplanted patients were those that were 

suffering the most severe effect of liver disease, which would therefore precipitate the 

most significant disturbances to normal development. This finding is in accordance with 

the literature, which has shown that earlier onset of liver disease is associated with a 

greater degree of cognitive deficits (Stewart, Campbell et al., 1992; Stewart, Uauy et al., 

1988; Stewart, Uauy et al., 1989), and is in keeping with the hypothesis that potential 

disturbances in the early stages of neurodevelopment as a result of liver disease 

precipitate demonstrable deficits in cognitive ability later in life. 
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Disturbances in EFA status, due to dietary deficiency resulting from dependence on 

artificial nutritional feeds and/or malabsorption due to the specific deficits in liver 

function and lipid metabolism, was hypothesised to be one the mechanisms that 

contributed to cognitive deficits observed in patients with early-onset liver disease. 

Compared to sibling controls, no signs of fatty acid deficiency, indexed by EFA status 

biomarkers in erythrocyte membranes, were observed in any of the cohorts of patients 

with liver disease. If the acquired biomarkers are accurate, this suggests that: (1) these 

patients were not deficient in their dietary intake of the EFAs, LA and ALA at least in the 

three months prior to the participation in the study; and (2) these patients are able to 

sufficiently metabolise these precursor lipids to synthesise the LCPUFAs, DHA and EPA, 

to levels comparable to sibling controls.  

 

Whilst the biomarkers indicate that the patients were not deficient in their current 

dietary intake, measures of actual dietary intake would provide useful context for the 

biomarkers detected in red cell membranes actual and help clarify potential 

dissociations between intake and metabolism. Dietary intake data was available for a 

limited number of patients recruited into the study (Appendix A, Table A, page 2076), 

but analysis of this incomplete set of data may not have been particularly informative. 

 

The findings of these two studies have important implications in the treatment of 

patients with liver disease. With respect to clinical outcomes, there is increasing 

support for the use of omega-3 fatty acids in the treatment of liver disease, particularly 

parenteral nutrition associated liver disease (PNALD) (Diamond, Sterescu et al., 2008; 

Koletzko and Goulet, 2010). Fish-oil based PN feeds have, for example, been associated 

with the reversal of cholestasis and fatal liver disease compared to soya-based feeds, 

which lack appreciable levels of PUFAs (Gura, Lee et al., 2008). 

 

The results of the present study suggest that early-onset patients, particularly those 

who are most ill and therefore require transplant, are those that may benefit from PUFA 

supplementation in early infancy. Phenylketonuria (PKU) is an inborn error of amino 

acid metabolism that precludes natural protein in a diet that is also typically DHA 

deficient and provides an analogous model to the one adopted in the present study. 

Whilst severe neurological damage is completely prevented in PKU-affected individuals 
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by adequate dietary management, in patients aged from 1 to 11, Koletzko, Beblo et al., 

(2009) observed that PKU patients showed slower visual evoked potentials, a measure 

of processing speed, compared to controls. These effects were ameliorated with 3 

months of high-dose omega-3 supplementation. 

 

The results from studies of PKU and PNALD patients provides rationale and motivation 

for better dietary management and prospective supplementation interventions in early-

onset patients with the aim of normalising the deficits in processing speed potentiated 

by suboptimal EFA status in early development. The acute liver failure patients, whose 

liver disease developed after the critical perinatal stage, showed no signs of cognitive 

deficit as a result of EFA deficiency, and may not therefore require specific EFA 

supplementation to achieve normal developmental outcomes. 

 

However, support for the use of PUFA supplementation must be tempered by the fact 

that the data on EFAs and cognitive outcomes is still largely exploratory. Studies of the 

effects of EFA supplementation on cognitive outcomes in children older than two years 

of age are severely limited in number (Eilander, Hundscheid et al., 2007), and have not 

consistently found positive ameliorative effects of supplementation (Gadoth, 2008). 

McCann and Ames (2005) stressed that the effects of omega-3s such as DHA may be 

overstated, because even in randomised controlled trials formulas are typically 

supplemented with other LCPUFAs, particularly AA, in addition to DHA. This confers an 

inherent lack of specificity and means that these studies are not therefore able to 

attribute significant effects to the presence of omega-3 fatty acids only. 

 

In the present study the hypothesis that current levels of omega-3 fatty acids would 

correlate strongly with cognitive performance was not confirmed. The biomarker for 

omega-3 status (comprised of the sum of EPA and DHA, putatively the most important 

LCPUFAs), did not correlate significantly with FSIQ or IPS performance (r= .03 and .20; 

p> .05). The omega-6 index (comprised of the percentage total of LA and ALA) was 

significantly negatively correlated with FSIQ (r= -.62; p< .001; see Figure 5-2 , page 96) 

and showed a trend correlation with IPS (r= -.39; see Figure 5-3, page 96). 
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EFAs are known to modify several important physiological features of neurons such as: 

membrane fluidity; the action of membrane bound enzymes, receptors and ion 

channels; production and activity of neurotransmitters; and signal transduction, which 

controls the activity of neurotransmitters and neuronal growth factors. There are two 

mechanisms of these effects: (1) a long-term action on the composition and functioning 

of the membranes; and (2) a short-term action that would involve the metabolism of 

phospholipids (with subsequent modulation of signal transduction) and the action of 

EFA-derived metabolites such as eicosanoids.  

 

The biomarkers of EFA status assessed in this study reflect intake and metabolism of 

EFAs over the preceding 3 months. That such a relatively transient measure is highly 

correlated with FSIQ (see Figure 5-2, page 96), which is ostensibly extremely stable 

over time, is worthy of note and implicates to a long-term moderator of EFA status. One 

such mechanism could be the recently identified genetic component of fatty acid 

metabolism, which is discussed in further detail as a future direction of research in 

section 8.5.2. 

 

8.2.2 Studies 3 and 4: Cognitive spectroscopy and the utility of 1H-
MRS biomarkers of paediatric liver disease 

 

The use of 1H-MRS in cognitive research is still largely exploratory, so before applying 

these measures in a clinical paediatric cohort, a study was undertaken to establish the 

strength of relationships between neurometabolites and cognitive variables in a cohort 

of 38 healthy young adults. Whilst the correlations observed between 1H-MRS 

detectable neurometabolites and IQ in the present study were within the range 

reported in the literature, the magnitude of these effects were dependent upon the 

extent to which outlying values were accounted for in statistical analyses (Chapter 6). 

 

Coupled with the range of effect sizes reported in the literature, is substantial 

methodological variability between studies. Differences such as the age of participants, 

the cortical regions investigated, the 1H-MRS acquisition parameters used and the 

cognitive skills targeted, pose a significant challenge for drawing inferences about the 
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strength of the relationship between neurometabolites obtained with proton 

spectroscopy and IQ variables at the population level. 

 

The final study (Chapter 7) evaluated the extent to which 1H-MRS can add information 

to the study of children with liver disease by revealing abnormalities in cerebral 

metabolism. A specific pattern of neurometabolite changes, specifically a decrease in 

choline and mI and increase in Glx, has been previously observed in adult and paediatric 

samples (Atkison, Ross et al., 2002; Kreis, Ross et al., 1992; Taylor-Robinson, Sargentoni 

et al., 1994b; Tkac, Hamernick et al., 2004). However, in this study, neither significant 

differences were observed in metabolite concentrations among the three groups of 

children with liver disease (early onset, pre-transplant, early onset, post-transplant and 

acute liver failure, post transplant), nor between these patients and sibling control 

children matched for age. 

 

The consistency of the metabolite values observed in the patients and control groups 

(Table 6-2, page 130) suggests that neurodevelopment, assayed by surrogate 

neurometabolite markers, is normal in this cohort, and that: (1) deviant 

neurometabolism, indexed by the particular set of 1H-MRS metabolites studied, is not 

the mechanism which explains deficits in processing speed seen in early-onset patients; 

(2) relations between neurometabolites and cognitive outcomes may be masked by 

other effects. The heterogeneity of the subjects studied with respect to age, gender, 

socioeconomic status, hepatic diagnosis and disease severity, as well as other intra- or 

extra-hepatic pathologic mechanisms (e.g. fatty acid deprivation, alterations in 

membrane fluidity or aberrant amino acid metabolism), are likely to have contributed 

to the substantial variability in the relationships between metabolites and cognitive 

ability observed by others, or lack of relationships in the case of the present cohort; (3) 

the cohort studied were not sufficiently compromised with respect to hepatic function 

for the previously reported pattern of neurometabolite changes to be precipitated. 

Participation in the current study required approval from the patient’s consultant. For 

five patients hospitalised while awaiting transplantation it was judged that they would 

not to be able to tolerate an MRS scan, which means that the most severe cases of liver 

failure were not included in this study for ethical and practical reasons. 
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8.3 Recommendations for future studies  
 

Based on the findings from the present set of studies and examination of the current 

state of the literature, three sets of specific recommendations are suggested to move the 

field forward. 

 

8.3.1 Implementation and reporting of data screening 
 

The first set of recommendations pertains to the reporting of data screening procedures 

and appropriate use of statistical analysis, particularly in 1H-MRS studies where there is 

considerable variability between studies. Neurometabolite data obtained from normal 

populations cannot be assumed to be normally distributed and given that inappropriate 

use of parametric statistics on non-normal data can lead to errors in data interpretation, 

it is recommended that a concerted effort should be made to make explicit the extent of 

data screening employed in future studies. 

 

8.3.2 Hypothesis-driven enquiry 
 

The second set of recommendations concerns the framework in which studies are 

performed. To date, the substantial number of variables (EFA biomarkers or 1H-MRS-

detectable neurometabolites) under investigation, coupled with a lack of specifically 

identified a priori research hypotheses, renders the typical study susceptible 

to inflated Type 1 error resulting from the large number of statistical comparisons 

employed. The methodological approach to data analytic strategy in future studies 

should be directly informed by the a priori hypotheses adopted as this will govern the 

choice and range of psychometric, EFA and spectroscopy measures and how these are 

treated in the analyses, minimising over-extrapolation of the data. 

 

8.3.3 The need for normative data 
 

In placing the clinical findings of the present study in context, it was stressed in Chapter 

7 that the lack of a large database of normative age-matched data makes it difficult to 

assess the true strength of disease-associated metabolite changes in childhood and  

 



 

175 
 

is an important limitation for assessing the contribution 1H-MRS as a diagnostic tool.  

An understanding of the changes that take place in normal brain development is crucial 

prior to the application of 1H-MRS in the study of pathological conditions, particularly 

given the demonstration of regionally specific, non-linear changes in metabolite 

concentrations, particularly in the first two years of life (Kreis, Ernst et al., 1993; 

Pouwels, Brockmann et al., 1999).  

 

The diagnostic criteria for neurometabolite values in SHE, suggested by Ross, Jacobson 

et al. (1994), which were based on normative data derived from an ostensibly normal 

group of 12 adults, were used in the present study. Whilst these data provide useful 

guidelines, the value of the data is limited by the lack of sufficient sample sizes and at 

various ages, which would provide wider context for abnormal changes, particularly in 

paediatric populations. 

 

Within the MRS community, there needs to be a concerted effort to follow the precedent 

set by the National Institute of Mental Health’s Pediatric Brain Imaging Project (Lenroot 

and Giedd, 2007) to create a database of developmental MRS data across the lifespan, 

comparable to that created by the project for anatomical MRI data. 

 

8.4 Methodological considerations and limitations in the 
present study 

 

8.4.1 Fatty acid analytic methods 
 

The application of conventional GCMS procedures to analysis of biological samples is 

disadvantaged by the high risk of contamination and recovery losses in multi-step 

procedures. Furthermore, these methods are impractical for analysing large series of 

samples, especially when the quantities of biological samples are limited. To overcome 

these disadvantages and owing to the time-intensive nature of GC, other studies have 

used alternative techniques such as High Performance Liquid Chromatography (HPLC) 

or Liquid Chromatography-Mass Spectrometry (LC-MS) (Peterson and Cummings, 

2006). Additionally, Thin Layer Chromatography (TLC), described in detail by Christie 

(1982), allows for quantification of fatty acids in individual phospholipids, for example 
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phosphatidylcholine or phosphatidylinositol, providing not only a quantitative measure 

of total fatty acids, but also where in the lipid membrane these fatty acids are located, 

further helping clarify their functional roles. 

 

Methods that combine extraction and derivitisation in a single step have been 

developed to provide higher resolving power and enable less abundant fatty acids to be 

detected. These include fast gas chromatography (Bondia-Pons, Castellote et al., 2004; 

Mondello, Casilli et al., 2004) and the use of a direct thermal desorption interface to 

profile the fatty acid composition of human plasma and whole human blood (Akoto, 

Vreuls et al., 2008). New optimised methods have been also devised that can profile 

lipids small quantity (i.e. fingertip (50l) blood samples), with the ability to detect 100 

fatty acids and related compounds (Bicalho, David et al., 2008). These methods provide 

the opportunity to develop an efficient and readily achievable database for large fatty 

acid methyl esters database from small, easily obtainable samples. Application of the 

analytic methods described above were beyond the scope and remit of the present 

study, but are worth considering in the broader scheme of its aims, particularly in the 

context of being able to easily create a databank of normative erythrocyte EFA data. 

 

8.4.2 Paediatric 1H-MRS 
 

A persistent and inherent problem in paediatric MRI is the difficulty involved with 

determining the histological correlates of the various tissue classes that are assigned as 

cortical ‘grey,’ ‘unmyelinated white,’ ‘myelinated white’ and ‘cerebrospinal fluid’. The 

ability to discriminate and measure different brain tissues is provided by the image 

contrast: the degree of the ‘white’ appearance of myelinated tissue, compared with the 

‘grey’ of the adjacent cortical grey matter. Tissue contrast in infant MRI scans differs 

from scans obtained in later childhood, primarily because of the higher water content 

and lower myelin deposition in infant brains (Barkovich, Kjos et al., 1988; Paus, Collins 

et al., 2001). Accurate localisation of a voxel to a specific anatomic location without 

spectral contamination from adjacent tissues is especially difficult in infant populations 

as their small brain size makes it difficult to sample homogenous regions of cortical 

tissue. 
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The extent to which MRS samples grey or white matter can modulate the metabolite 

values obtained (Wiedermann, Schuff et al., 2001). In the present study, frontal and 

occipitoparietal white matter was assessed by positioning the voxel so as to maximise 

sampling of white matter and minimise grey matter content. Whilst tissue 

compartmentation can be performed post hoc, the MRS spectra is principally an average 

over all tissue types that occur within the volume at the time of sampling, which for 

neural tissues includes glial and neuronal cells, and with different extracellular spacing 

depending on the amount of white matter, grey matter or cerebrospinal fluid the 

volume of interest contains. 

 

Smaller voxel sizes may aid in reducing the inhomogeniety of the sampled tissue, but 

decreasing voxel size leads to a corresponding decrease in the SNR of the MR signal 

(Freeman, 2003). Issues of tissue inhomogeniety and SNR can, in part, be overcome by 

multi-voxel techniques like chemical shift imaging (CSI), which acquires multiple 

spectra simultaneously from slices or volumes of the brain to form metabolite-specific 

images from the resulting peak-intensities. 

 

Discussion of the applications of MRS and the need for more normative data must also 

consider the associated limitations and hazards of MR techniques in order to ensure the 

method is safe (McKinley, Bouffler et al., 2008; Shellock and Kanal, 1994), particularly 

when considering paediatric populations (Peterson and Ment, 2001). The practical 

difficulties of functional MRI have been discussed previously (Logan, 1999); many, if not 

all, of the same issues apply to MRS. The obvious limitations for the general use of MRS 

are that it is still, in relative terms, very expensive and reliant on specialised medical 

physics support, and is therefore not commonly available outside principally clinical 

settings. 

 

MR methods also require a considerable degree of participant cooperation. This can be 

difficult to achieve with paediatric populations, where the unfamiliar environment of 

the scanner may induce anxiety. Immobility is also essential in order to minimise 

motion artefact and therefore sedation may be necessary for younger children. General 

anaesthesia undoubtedly allows MRI to be carried out in anxious or uncooperative 

children, but its use continues to be controversial and fraught with practical and ethical 
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complications (Lawson, 2000), and it may not be appropriate outside exclusively 

clinical settings. 

 

Foerster, Conklin et al. (2009) did not collect data from healthy controls in their study of 

paediatric HE over concerns of the ethics and practicalities of MR on small children. 1H-

MRS is entirely safe if strict standard operating procedures are followed (Kanal, 2004; 

Shellock and Kanal, 1994). Whilst MR of young populations is undoubtedly difficult, in 

the present work, MRS data was collected in 34 of 40 children (including 11 sibling 

controls, one as young as 2 years old). Only three patients were unable to tolerate the 

scanner procedure (with claustrophobia once in scanner bore cited as the principal 

factor). Data from a further three participants were removed because of poor quality 

spectra as a result of motion artefact or encroachment in the voxel of non-neural tissue.  

 

Successful scanning of young children in research settings is attributable to preparation 

with the child and guardian beforehand, and flexibility and patience with regards to 

scan sequences. As a part of the present study, an introductory video was developed 

that was aimed directly at the children and their guardians. The video provided a child-

centred guide to the MR process and environment in order to familiarise participants 

with the research prior to consent and participation in the study.  

 

In addition to issues of patient compliance, demands on scanner availability may 

preclude prolonged scan sessions. However, advances in MR technology are leading to 

progressively shortened scan times and allow acquisition of multiple spectra in a single 

occasion without the need for sedation. Compared with 1.5T, the improved SNR of 3T 

field strength adopted in the present studies shorted the total data acquisition time by a 

factor of 4 while maintaining a comparable SNR (Lin, An et al., 2003). 

 

Applications of MR technologies still tend to be technology-led and improvements in 

technical methodologies are central to further developments in achieving better control 

of artefacts, greater spatial resolution and allowing 1H-MRS to become progressively 

more quantitative within time-frames feasible for paediatric populations. With a large 

body of information on software, equipment, techniques, and activation results being 
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rapidly accumulated, cognitive-MRS studies should be easier to perform and the 

interpretation of the results more instructive in the future. 

 

8.5 Future directions 
 
A number of refinements to the methods and procedures employed and potential 

avenues of research motivated by the findings of the present work proposed. 

 

8.5.1 A neurophysiological measure of processing speed  
 

An alternative to behavioural paper-pencil or even computerised measures of 

processing speed is magnetoencephalography (MEG), a non-invasive neuroimaging tool 

that can tap processing speed at a neurophysiological level. By localising and 

characterising activity of the central nervous system through the measurement of the 

associated magnetic fields emanating from the brain, MEG is able to measure neural 

activity with millisecond precision. 

 

The temporal resolution of the auditory system is exquisite, with neural systems 

capable of sub-millisecond resolution in decoding features in the acoustic signal 

(Eggermont, 2001). Psychophysical measures of gap detection, where a silent gap is 

inserted in a tone or noise burst and the minimum detectable gap is measured, are in 

wide use as an objective method with which to evaluate auditory temporal acuity in 

both healthy and clinical populations (Eggermont, 2000; Eggermont, 2001) and may 

provide a useful endophenotype for developmental delay. 

 

As an adjunct to the present study, a small pilot investigation was conducted, with two 

sibling controls and two patients from the early onset, pre-transplant liver disease 

cohort, for the assessment of auditory-evoked field (AEF) responses in a gap detection 

task, in order to provide an efficient and objective index of auditory information 

processing in the human brain, with a view to use with young clinical populations. 

 

The findings from the pilot study were presented at the 2010 BIOMAG meeting (see 

Appendix B, page 215). Whilst a full discussion of the MEG data is beyond the scope of 
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this thesis, the findings of this pilot work is promising, as it is suggests a deficit in 

auditory temporal processing in patients compared to controls. Event-related fields 

(ERFs) afford the opportunity to acquire neural measures of auditory processing speed 

within a passive experimental paradigm in which children are not required to attend or 

respond to stimuli. The absence of confounds related to task compliance makes it 

possible to asses perceptual-level processing and makes this paradigm a particularly 

promising approach in the study of neurocognitive development and deficits in young, 

clinical populations. This paradigm offers a potential functional measure of processing 

speed at the neural level to complement biochemical data from 1H-MRS and the 

behavioural measures of psychometric tasks. 

 

8.5.2 The influence of genetic variation in fatty acid metabolism 
 

The Δ-5 and Δ-6 desaturase are the most important enzymes in the elongation and 

desaturation of EFA precursors (LA and ALA) to their long-chain PUFA metabolites 

(discussed in section 2.2, page 26; see Figure 2-4 and Figure 2-5, pages 29 and 30). 

Recent work suggests that there may be a strong genetic component to the fatty acid 

metabolism, with evidence of associations between single nucleotide polymorphisms 

(SNPs) in the two desaturase encoding genes (FADS1 and FADS2) and the concentration 

of omega-6 and omega-3 fatty acids (Lattka, Illig et al., 2010; Simopoulos, 2010). 

 

The action of the FADS gene variants influence the levels of both serum (Tanaka, Shen et 

al., 2009) and RBC membrane phospholipid levels (Rzehak, Heinrich et al., 2008) of 

EFAs. Variants in the FADS1 and FADS2 have a frequency of 26% and the minor alleles 

associated with lower AA and higher LA account for 28% of the variation in serum 

phospholipid AA and up to 12% of its precursor fatty acids (Simopoulos, 2010). 

 

The evidence gathered to date indicates that fats are systemically metabolised in 

different ways as a result of FADS gene variants, with a limited number of studies 

finding that this is associated with tangible changes in cognitive outcomes (Latta, Illig et 

al., 2010). Of particular relevance to the current study, Caspi, Williams et al. (2007) 

observed that IQ performance was higher in breastfed children compared with non-

breastfed children, and that there was an interaction between a specific SNP in the 
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FADS2 gene (rs 174575), breastfeeding and cognitive performance. The suggestion is 

that those children carrying one particular genotype benefit more from breast milk than 

children with a different genotype who neither gained an advantage from breastfeeding 

nor suffered a disadvantage from not being breastfed.  

 

Investigations into the influence of gene variants on EFA metabolism is an emerging 

field of research. Although this work is exploratory, if groups of fatty acids are 

differentially metabolised due to genetic variations, it is plausible that difference in EFA 

metabolism may lead to systemic changes in membrane EFA composition throughout 

the lifespan. Differences in EFA metabolism as a result of differences in FADS genes may, 

for example, explain the lack of association between breastfeeding and cognition 

observed by (Bakker, Ghys et al., 2003; Ghys, Bakker et al., 2002) in studies of early EFA 

status and cognitive outcomes. 

 

It may also explain the findings from the present study of negative associations between 

omega-6 fatty acids and FSIQ and IPS, as current fatty acid levels may be representative 

of long-term metabolism and utilisation. A speculative explanation for this finding may 

be that the long-term preferential metabolism and accumulation of omega-6 fatty acids 

by particular FADS gene variants may lead to displacement of important long-chain 

omega-3 PUFAs such as DHA and EPA in phospholipid membranes, leading to saturated, 

less fluid membranes, and other functional alterations as discussed in section 2.3. 

 

The incidence of allele variants of FADS1 and FADS2 and their impact on blood fatty 

acid levels and EFA utilisation may emerge as a productive area of research in 

contextualising the relationships between EFA status and cognitive outcomes. In terms 

of the wider study investigating the importance and potential deficiencies of EFAs in 

liver disease, identifying alleles associated with suboptimal EFA metabolism may be 

important, as these gene variants may exacerbate the potentially higher than normal 

requirements for these nutrients in patients with liver disease. 
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8.5.3 31Phosphorous spectroscopy 
 

Protons are in most cases the default nuclei for cognitive spectroscopy studies as 1H-

MRS uses the same hardware, such as head coils, as standard MRI. Observing nuclei 

other than protons requires the development of radio-frequency coils and other 

specialised hardware tuned to their specific frequencies and this has limited 

investigations in spectroscopy studies to only those neurometabolites with a high 

proportion of proton constituents. 

 

Phosphorous is an alternative nucleus that has particular relevance with the present 

study as 1H-MRS may not be the ideal tool for investigating choline-related metabolic 

developments in neuronal maturation.  

The normal phosphorous-MR spectrum of brain has seven major resonances (see Table 

8-1, page 183) Five of these; one from each of the three phosphates of ATP, one from 

phosphocreatine (a high energy buffer compound); and one from inorganic phosphate 

(a product of ATP breakdown), can be used as a measure intracellular inorganic 

phosphate (pHi), a surrogate marker of bioenergetics and metabolism (Erecinska, 

Stubbs et al., 1977). The two remaining major peaks, phosphodiester (PDE) and 

monoesters (PME), are in a complex way related to the 1H-MRS-detectable choline peak 

(Boulanger, Labelle et al., 2000). With proton nuclei, the biochemical interpretation of 

alterations in the MR-observed in vivo choline peak is complicated by the uncertainty in 

the metabolites contributing to the signal (see section 6.2.2, page 119). In neural tissue, 

choline is found primarily as membrane-bound phosphatidylcholine and also as a 

mixture of choline, phosphocholine and glycerophosphocholine in solution. 

 

PME and PDE reveal important information about neuronal cell membranes. 

Specifically, the PME resonance in 31P-MRS reflects membrane phospholipid anabolism 

as it includes the freely mobile precursors of membrane phospholipids such as 

phosphocholine and phosphoethanolamine. The PDE peak reflects membrane 

phospholipid catabolism as it contains contributions from breakdown products such as 

glycerophosphocholine and glycerophosphoethanolamine. It also contains 

contributions from less mobile phosphodiester-containing molecules, such as molecules 

involved in membrane structure (both cell membranes and intracellular organelle 
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membranes). As cell membranes are continually generated and broken down, 

expressing the PME and PDE levels as a ratio provides a measure of turnover 

equilibrium of membrane phospholipids. 

 
Table 8-1 Metabolites detectable by 31P MRS 

Metabolites Structure/function 

Phosphomonoester (PME) 
Phosphocholine, phosphoethanolamine and l-
phosphoserine contribute to the PME peak 

Phosphodiester (PDE) 
Glycerophosphocholine and glycerophospho-
ethanolamine contribute to the PDE peak 

Adenosine triphosphate 
moieties 

High energy phosphates and nucleotide and 
nucleoside phosphates 

Phosphocreatine (PCr) Energy storing moiety 

Inorganic phosphate (pHi) Intermediate in energy metabolism 

Macromolecular signals (broad 
components) 

Membrane phospholipids; phosphorylated proteins 

 

The PME peak is known to be elevated in areas of rapidly growing tissue and in cases of 

rapid membrane synthesis, such as in growing brain. It is probable that the elevation is 

caused by the increased presence of compounds meant for the production of membrane 

phospholipids (Boulanger, Labelle et al., 2000). If the choline peak mainly reflects 

structural components of cell membranes, especially myelin sheaths, a change in the 

Cho/Cre ratio may be closely related to the process of myelination. Depending on the 

region studied, decreases in choline values generally appear to be most prominent only 

after the first 2 years of life, which corresponds with the completion of the majority 

myelination (Kreis, Ernst et al., 1993). Investigation with 31P-MRS may aid in tapping 

more directly into the potentially disturbed processes of myelination in the early-onset 

patients with liver disease which may be precipitating deficits in IPS later in childhood. 

 

31P-MRS in cognitive research has largely focused on schizophrenia and schizo-affective 

disorders as a means of evaluating the role of the cell membrane in the aetiology of 

these disorders, specifically the membrane phospholipid theory of schizophrenia 

(Horrobin, 1998). These studies have yielded largely inconsistent results that none-the-

less point to decreased PMEs and increased PDE (indicating decreased membrane 

stability) in patients with schizophrenia (Puri, 2006; Puri, Counsell et al., 2008; Reddy, 

Keshavan et al., 2004; Rzanny, Klemm et al., 2003). 



 

184 
 

In terms of applications to liver disease, reductions in the PME/βATP and PDE/βATP 

ratios, have been consistently observed in adult patients with chronic liver disease, and 

these correlate with the reduction in choline concentrations observed using 1H-MRS 

(Patel, Forton et al., 2000; Taylor-Robinson, Sargentoni et al., 1994a). 31P-MRS is, 

however, yet to be used with younger populations in this context.  

 

There is also support for an association between peripheral and central measurements 

of membrane physiology. Richardson et al (2001) compared in vivo 31P-MRS 

measurements averaged over 10 large voxels within the brain and erythrocyte PUFA 

composition in normal adult subjects, and demonstrated an negative correlation 

between DHA and EPA acid content and PDE levels (Richardson, Allen et al., 2001). 

 

A correlation between RBC PUFAs and brain phospholipid metabolites does not indicate 

a direct causal relationship. If confirmed, however, such a correlation would provide a 

unique opportunity to simultaneously investigate convergent central and peripheral 

biochemistry with relation to EFA status and clinical and cognitive measures, in ways 

that are not possible with 1H-MRS measures of neurometabolic status. 

 

8.6 Conclusion 
 

This is the first study to have employed parallel measures of brain and blood 

biochemistry in a paediatric liver disease population with the aim of investigating some 

of the potential biochemical underpinnings of cognition. 

 

Multiple cellular functions and responses are affected as a consequence of 

neurometabolite and membrane lipid variations. Cognitive spectroscopy and studies of 

EFA and cognition in children are still largely exploratory, with a lack of consensus 

around the strength and significance of relationships between these biochemical 

markers and cognitive abilities. Inconsistencies and gaps in knowledge remain, making 

it difficult to draw general conclusions regarding the cognitive and functional changes in 

response to natural or induced variations in these neurometabolite and EFA substrates. 

The subtlety of these relationships motivates the development of an explanatory 
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framework that discriminates between statistical significance and statistical relevance, 

particularly in the studies of rare and difficult populations. 

 

The evidence presented here suggests that the numerous activities of the liver that are 

disturbed as a consequence of liver disease may each contribute in some small degree to 

the observed deficits in cognitive functioning, specifically information processing speed, 

and particularly in patients whose early neurodevelopment was impacted.  

 

Further cross-sectional longitudinal studies using 1H-MRS and GC-MS, or their variant 

techniques, in larger subject populations, will be instrumental in confirming and 

extending current findings. Quantitative studies that seek correlation with subsequent 

behaviour and cognition are likely to provide valuable insight into the organisation of 

neural systems that underlie cognitive development in children, the differential 

contribution of neurometabolites and EFAs to cognitive functioning across the life span, 

and the mechanisms that are impacted in abnormal states like liver disease. Studies may 

need to be multicentre in order to achieve reliably large numbers of subjects, or if 

performed in a single centre, conducted in such a way as to be comparable with data 

from other sites in future analyses. 

 

Converging methodologies offer a challenging, but promising and novel approach to 

explore brain-behaviour relationships from micro- to macro-scopic levels of analysis. 
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Appendix A: Catalogue of measures 
 

Below is a comprehensive list of the data and measures obtained in the present study. 

Inclusion and analysis of some portions of data collected was considered beyond the 

scope of this thesis, but will be informative in interpreting the data in future analyses. 

 

Demographic data 
 

 Date of birth 

 Age 

 Gender 

 Postcode (for calculation of Deprivation Index and estimate of SES) 

 Ethnicity. 

 

Clinical measures 
 

 Disease diagnosis 

 Disease category (early onset, pre-transplant; early onset, post-transplant; acute 

liver failure , pre-transplant) 

 Age of liver disease onset 

 Date of liver transplant 

 Length of hospitalisation 

 Bilirubin level at time of study. 

 

Anthropometry 
 

 Height (cm) + height z-score 

 Weight (kg) + weight z-score 

 Mid-arm circumference (cm) 

 Triceps skinfold (cm) 

 Head circumference (cm). 

 



 

207 
 

Dietary data 
 

 Estimate of frequency of current fish intake (per month) 

 Total dietary intake (g/day) 

 Percentage intake of average requirement 

 Dietary fatty acid intake (oleic, linoleic, α-linolenic, arachidonic, DHA; see Table 

A). 

 

Breastfeeding data 
 

 Duration of breastfeeding (weeks) 

 Estimate of frequency of maternal fish intake during pregnancy (per month). 

 

Psychometric assessment 
 

Wechsler Preschool and Primary Scale of Intelligence for Children ─ 3rd Edition (WPPSI-

III) (Wechsler, 2002) 

Wechsler Intelligence Scale for Children – 4th Edition, (WISC-IV) (Wechsler, 2003) 

Wechsler Adult Intelligence Scale – 3rd Edition (WAIS-III) (Wechsler, 1997b) 

Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler, 1997a) 

 

 Full-scale IQ 

 Verbal IQ 

 Information Processing Speed Index 

 Working Memory. 
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Table A Examples of fatty acid dietary intake data for patients enrolled in the current study 

Disease category Subject 

Total 
dietary 

fat 
(g/day) 

% average 
requirement† 

Oleic 
(18:1) 

(g) 

Linolenic 
(18:2) 

(g) 

Alpha-
linoleic 
(18:3) 
(mg) 

Arachidonic 
(20:4) (mg) 

DHA 
(22:6) 
(mg)‡ 

Metabolic disease 
(Tyrosinaemia)  

1 34.93 73 8.7 1.7 110 0 0 

2 33.95 133 14.4 1.7 260 20 0 

3 38.75 93 12.6 2.3 160 0 0 

4 84.5 183 13.9 36.85 230 0 0 

Early-onset liver 
disease (EOLD), no 
transplant  

5 71.9 80 24.1 7.44 320 0 0 

6 43.8 54 13.2 3.5 70 30 30 

Early-post liver 
disease + transplant 

7 43.27 51 17.8 4.61 50 0 20 

Acute liver failure 
(ALF) + transplant 

8 28.7 50 10 1.09 120 30 30 

9 81.8 104 2.11 1.18 60 280 70 

Healthy sibling 10 44.03 66 10.3 1.32 220 50 10 

† average of fat generally below recommended intake 
‡ Recommended DHA intake is 120mg (see Table 2-2, page 34 ) 
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Gas chromatography-mass spectrometry 
 

Table B Summary of fatty acids detected in 
erythrocyte membranes with standard GC-MS 

Common name 
Carbon 
number 

Saturated fats  

myristic 14:0 

palmitic  16:0 

stearic  18:0 

Monounsaturated fats  

oleic  18:1 

Omega-9  

 mead 20:3 

 Omega-6  

linoleic 18:2 

dihomo-γ-linolenic 20:3 

arachidonic 20:4 

adrenic 22:4 

osbond 22:5 

Omega-3  

alpha-linolenic 18:3 

eicosapentaenoic 20:5 

docosahexaenoic 22:6 

 

Table C Summary of erythrocyte biomarkers of essential fatty acid status 

Index Fatty acids 

SFA stearic + palmitic + myristic  

MUFA oleic 

Omega-3 index  DHA + EPA  

Omega-6 index arachidonic + linoleic  

Omega-3:Omega-6  Omega-3 index/Omega-6 index 

EFA shortage marker mead acid 

Functional DHA shortage marker DHA/osbond acid 
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Proton Magnetic Resonance Spectroscopy 
 

 N acetyl aspartate/creatine 

 Choline/creatine 

 Myo-Inositol/creatine 

 Glutamate-Glutamine(Glx)/Creatine. 

 

Metabolite values were obtained in two principal regions: frontal and occipitoparietal 

cortex. Additional temporal cortex data was also collected in 11 participants. 
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Appendix B: Conference abstracts 
 
The following is a list of abstracts of work from the present study presented at 
conferences. In addition to the investigations described in the main body of this thesis, 
some of the work presented included disease control patients with intestinal failure and 
metabolic disease who were recruited into the study and a number of clinical case 
studies. 

 
Aston University Postgraduate Research Day (July 2009) 
Birmingham, UK 
 
Biochemical correlates of cognitive function 
Abstract: Poster presentation 
 
Patel T, Talcott JB 
School of Life & Health Sciences, Aston University, Birmingham, UK  
 
Developments in psychological assessment and neuroimaging techniques are enabling 
the study of the neurophysiological basis of individual variation in cognitive ability with 
increasing refinement. Localized Proton Magnetic Resonance Spectroscopy (1H-MRS) 
allows non-invasive, in vivo quantification of neurometabolites such as N-acetyl-
aspartate (NAA), choline and myo-Inositol, which have been related to cognitive 
functions including information processing speed (IPS) (Ross and Sachdev. Brain Res 
Rev. 44, 83-102, 2004). This cross-sectional investigation of 35 healthy volunteers 
combined neuroimaging and biochemistry with cognitive testing (Wechsler Adult 
Intelligence Scales III), with the aim of linking brain-biochemistry to variability in 
behaviour. It was hypothesized that there would be a positive correlation between NAA 
levels, a marker of neuronal health, and cognitive performance, particularly IPS. 
Conversely, levels of choline and myo-Inositol, associated with membrane turnover and 
gliosis, would be expected to be negatively correlated with cognitive performance. A 
significant correlation was observed between frontal region NAA/creatine 
concentration and Matrix Reasoning score (r = 0.386, p = 0.043), with NAA/Creatine 
accounting for 14% of the variance in scores. No relationship was found between 
metabolite concentrations and IPS. No significant correlations were observed between 
cognition and metabolites in occipitoparietal region. 1H-MRS is potentially a sensitive 
tool for assessing the biochemical correlates underlying cognitive function. Possible 
mechanisms underlying the association of neurometabolites with cognition are 
discussed and future directions of work, including the addition of a more extensive test 
battery and assessing and improving the reliability of 1H-MRS measures, helping refine 
the use of MRS in behavioural neurosciences, are presented. 
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XIth International Symposium on Small Bowel 
Transplantation (September 2009) 

Bologna, Italy 
 
Tracking paediatric cognitive outcomes following small bowel transplantation: a 
case study 
Abstract: Poster presentation 
 
Patel T1, Blyth J2, Mears J2, Sira J2, Clarke S2, Kelly DA2, Gupte G2, Griffiths G1, Beath SV, 
Talcott JB1 
1Depts of Life & Health Sciences and Chemical Engineering, Aston University, 
Birmingham, UK 
2Birmimgham Children’s Hospital, Birmingham, UK 
 
Introduction: Infants with intestinal failure (IFx) now survive and grow satisfactorily 
with parenteral nutrition (PN), but IQ may be affected. A potential reason for this may 
be dependency on a single source of lipid based on soya oil (Intralipid), which lacks 
essential polyunsaturated fatty-acids (PUFAs) normally found in breast milk and diet. 
 
Methods: Psychometric data collected over ten years were used to assess 
developmental outcomes of an 11 year old boy who received SBTx at age 9 months 
because of liver failure secondary to PN and IFx caused by Hirchsprung’s disease. 
Current PUFA status was measured and neurochemistry non-invasively assessed with 
Proton-Magnetic Resonance Spectroscopy (1H-MRS).  
 
Results: Pre-Tx, the patient demonstrated mild cognitive delay and normal motor 
development. Six months post-Tx the patient displayed significant motor and mental 
delay. Between three and five years post-Tx, IQ plateaued in the borderline/low average 
range (72 and 79 respectively). By ten years post-Tx, IQ had risen to 97, well within 
average range. His PUFA intake was negligible until commencing Nutrtini orally (662 
mg/L PUFA), 6 months post-SBTx. He is now on a normal diet (300mg PUFA/day). 
Neurometabolite values, such as N-acteyl aspartate, which provide markers of neuronal 
health, showed a normal profile for a healthy 11 year old child. 
 
Conclusion: In contrast to a cohort of children maintained on PN for 5 years or more 
(Hill et al Arch Dis Child. 2005;90:A16), this boy, who commenced normal diet from 1 
year, has a normal IQ and distribution of neurometabolites, demonstrating that early 
SBTx is consistent with good long-term cognitive outcome. 
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British Society of Paediatric Gastroenterology, Hepatology 
and Nutrition (BSPGHAN) (January 2010) 
Liverpool, UK 
 
Tracking paediatric cognitive outcomes following combined liver small bowel 
transplantation: a case study 
Abstract: Oral presentation 
 

1T Patel, 2J Blyth, 2SV Beath, 2J Sira, 2J Mears, 2S Clarke, 2G Gupte, 1G Griffiths, 1JB Talcott, 
2DA Kelly. 
1Depts of Life & Health Sciences and Chemical Engineering, Aston University, 
Birmingham, UK 
2Birmimgham Children’s Hospital, Birmingham, UK 
 
Introduction: Infants with intestinal failure (IFx) now survive and grow satisfactorily 
with parenteral nutrition (PN), but IQ may be affected. A potential reason for this may 
be dependency on a single source of lipid based on soya oil (Intralipid), which lacks 
essential polyunsaturated fatty-acids (PUFAs) normally found in breast milk and diet. 
 
Aim: Our aim was to assess the long-term cognitive and developmental effects of 
combined liver and small bowel transplantation and the potential detrimental effects of 
PN-induced PUFA deficiency. 
 
Methods: Psychometric data collected over ten years were used to assess 
developmental outcomes of an 11 year old boy who received SBTx at age 9 months 
because of liver failure secondary to PN and IFx caused by Hirchsprung’s disease. 
Current dietary intake was assessed with a comprehensive 5-day diet diary. PUFA 
status was assessed in red blood cell (RBC) membranes by conventional Gas 
chromatography-mass spectrometry. Neurochemistry was non-invasively assessed with 
proton magnetic resonance spectroscopy (1H-MRS) in occipitoparietal and frontal 
cortex regions. 
 
Results: Pre-Tx, the patient demonstrated mild cognitive delay and normal motor 
development. Six months post-Tx the patient displayed significant motor and mental 
delay. Between three and five years post-Tx, IQ plateaued in the borderline/low average 
range (72 and 79 respectively). By ten years post-SBTx, IQ had risen to 97, well within 
average range. His PUFA intake was negligible until commencing Nutrini orally (662 
mg/L PUFA), 6 months post-SBTx. The patient is now on a normal diet (300mg 
PUFA/day). Neurometabolite values recorded by MRS, such as N-acteyl aspartate and 
choline, which provide markers of neuronal health, showed a normal profile for a 
healthy 11 year old child. At 10 years post-SBTx, the patient’s essential PUFA levels, 
specifically docosahexaenoic acid and eicosapentaenoic acid, were no different to 
healthy age-matched controls (4% vs 4.23% of total fatty acid content), which 
consistent with his MRS and cognitive assessments. 
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Conclusion: In contrast to a cohort of children maintained on PN for 5 years or more (S. 
Hill et al Arch Dis Child. 2005;90:A16), this boy, who commenced normal diet from 1 
year, has a normal IQ and distribution of neurometabolites and essential blood lipids, 
demonstrating that early SBTx is consistent with good long-term cognitive outcome. 
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17th International Conference on Biomagnetism (BIOMAG) 
(March 2010) 
Dubrovnik, Croatia 
 
Sensitivity to gaps in noise: Using MEG to assess auditory temporal resolution in 
paediatric populations  
Abstract: Poster presentation*  
1Patel T, 1Witton C, 1Thai JN, 2Beath SV, 2Kelly DA, 1Seri, S, 1Griffiths, G, 1Talcott JB 
1Depts of Life & Health Sciences and Chemical Engineering, Aston University, 
Birmingham, UK 
2Birmimgham Children’s Hospital, Birmingham, UK 
 
*Poster presented on my behalf by JB Talcott 
 
Impaired neural timing has been demonstrated across a range of developmental 
disorders (e.g. dyslexia) and clinical conditions (e.g. hepatic encephalopathy). Neural 
timing can be operationally defined in different ways, but one core feature that 
underlies performance on many cognitive and behavioural tasks is the encoding of 
stimulus changes that occur within a millisecond timescale. Auditory gap detection 
provides a measure of temporal resolution on this scale, where psychophysical 
thresholds indicate the shortest silent gap in noise which can be detected. Although gap 
detection has been measured previously with MEG, this study focused on developing an 
optimised paradigm for use with young children and patient populations where full 
compliance and vigilance for a neuroimaging task may not be assured. MEG data was 
collected using a 252 channel CTF scanner, while participants were presented with a 
420 second continuous diotic Gaussian noise stimulus. The noise was interrupted at 
jittered intervals around 500ms with pseudo-randomised gap durations of either 3, 6, 
10 or 30ms. Subsequent to the removal of baseline trend, the data was subdivided into 
500ms epochs centred around the gap and averaged for each gap length. Mean 
amplitudes of the evoked response for each gap duration was calculated for the sensor 
with the peak response and normalised to the response for the 30-ms gap. The gradient 
of the linear relationship between response amplitude and gap length therefore 
provided a metric of physiological sensitivity to gap duration. Data from both adult 
listeners and children with probable hepatic encephalopathy indicate that this MEG gap 
detection paradigm yields a reliable and valid index of auditory temporal resolution 
with potential clinical utility. MEG paradigms which minimise the length of the 
recording epochs are particularly beneficial for obtaining data with younger and other 
variably compliant populations.  
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Aston Postgraduate Research Day (June 2010) 
Birmingham, UK 
 
Investigating biochemical correlates of cognitive function with Proton Magnetic 
Resonance Spectroscopy: refining the methodological framework 
Abstract: Poster presentation 
 
Patel T, Talcott JB 
School of Life & Health Sciences, Aston University, Birmingham, UK 
 
Proton Magnetic Resonance Spectroscopy (1H-MRS) is a non-invasive imaging technique 
that enables quantification of neurochemicals in vivo and thereby facilitates 
investigation of the biochemical underpinnings of human cognition. Studies have 
typically focused on relationships between measures of N-acetyl aspartate (NAA), a 
surrogate marker of neuronal health and function, and broad measures of cognitive 
performance, such as Full-scale IQ. In this cross-sectional study of 34 healthy 
individuals, we assessed NAA levels in occipitoparietal and frontal cortical white matter 
in parallel with IQ measures. We hypothesized a positive correlation between NAA and 
Full-scale IQ, and with Information Processing Speed in particular. In contrast to several 
previous studies, we found neither strong, nor significant, predictive relationships 
between NAA and cognitive ability. The range of relationships and effect sizes in the 
literature reveals the exploratory nature of current cognitive spectroscopy. Sources of 
variability between studies include methodological differences in spectroscopic 
protocols, the neuroanatomical location of voxels, the neuropsychological assessments 
employed and heterogeneity in population samples. Of particular concern is the 
multiple comparisons problem inherent to studies that have measured several 
neurometabolites over multiple brain regions and employed a battery of intelligence 
measures without detailing specific research hypotheses a priori, as these are 
particularly susceptible to inflated Type 1 error rates. Although 1H-MRS offers a 
sensitive tool for assessing neurochemistry, the relationships between brain 
metabolites and broad aspects of human behaviour are subtle, and highlight the need to 
develop an explanatory framework that discriminates between statistical relevance and 
statistical significance in investigations of this kind. 
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American Association for the Study of Liver Disease (AASLD) 
Annual Meeting (November 2010) 
Boston, USA 
 
Polyunsaturated fatty acid status and cognitive outcomes in paediatric liver 
disease 
Abstract: Poster presentation* 
 

1T. Patel, 2S.V. Beath, 2J.Ackrill, 2S. Clarke, 2A.Daly, J. Blyth, 2J. Mears, 2J. Sira, 2G. Gupte, 
2P.McKiernan, 2I.van Mourik, 1G. Griffiths, 1J.B. Talcott, 2D.A. Kelly. 
1Aston University, Birmingham, UK 
2 Birmingham Children’s Hospital, Birmingham, UK 
 
*Poster presented on my behalf by DA Kelly 
 
Introduction: Essential Polyunsaturated Fatty Acids (PUFAs), omega-6 (n-6) and the 
omega-3 (n-3) are complex lipids found in high concentrations in the central nervous 
system, where they serve a multitude of structural and functional roles, which may 
modulate cognitive function. Fat malabsorption in liver disease, or abnormal fat intake 
caused by dependency on EFA-deficient intravenous nutrition, may lead to suboptimal 
concentrations of PUFAs in red blood cells, which may manifest as changes in cognitive 
ability. Our aim was to measure the range of PUFA concentrations in children with liver 
disease compared to sibling controls and assess the relationship between PUFA status 
and cognitive ability. 
 
Method: PUFA status was assessed in red blood cell (RBC) membranes by conventional 
Gas Chromatography-Mass Spectrometry. Percentage total of EPA and DHA were taken 
as markers of omega-3 status and Linoleic and Arachidonic acid of omega-6. Full-scale 
IQ was assessed with an age-appropriate Weschler’s psychometric test battery 
(Wechsler FSIQ). 
 
Results: We observed no significant difference in IQ between the groups, but a 
significant negative correlation was found between pro-inflammatory omega-6 fatty 
acids and FSIQ across the cohort (r = -0.525, p = 0.025). The omega-3:omega-6 ratio was 
also found to be significantly lower the chronic liver disease group compared to the 
sibling control and post-transplant group (F(2,15) = 4.88, p= 0.023, effect size (d) = 1.66 
and 1.23, respectively). 
 

Group n Mean age Mean n-3 
(% total) 

Mean n-6 
(% total) 

n-3:n6 FSIQ 

Sibling control 5 15.4 15.0 16.2 0.92 105 
Chronic liver 
disease (no Tx) 

3 14 13.9 18.1 0.77 85 

Post-Tx 10 14.1 15 16.8 0.90 95 

 
Conclusion: Our findings suggest no significant deficiency of omega-3 fatty acids in 
liver disease patients, but the relationship between pro-inflammatory fatty acids and IQ 
requires further investigation. Liver transplantation in early childhood is consistent 
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with recovery of good long-term cognitive outcome. Longitudinal studies of transplant 
patients assessing dietary intake and PUFA and cognitive status will help clarify the role 
of EFAs in cognitive development in paediatric liver disease. 
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American Association for the Study of Liver Disease (AASLD) 
Annual Meeting (November 2010) 
Boston, USA 
 
Essential fatty acids (EFAs) and polyunsaturated fatty acids (PUFAs) in patients 
with intestinal failure and after small bowel transplantation (SBTx): relationship 
to cognitive outcomes 
Abstract: Poster presentation* 
 

1Patel T, 2Beath SV, 2Clarke S, 2Sira J, 2Blyth J, 2Mears J, 1Griffiths G, 1Talcott J, 2Gupte G, 
2Kelly DA 
1Aston University, Birmingham, UK 
2Birmingham Children’s Hospital, Birmingham, UK 
 
*Poster presented on my behalf by DA Kelly 
 
Aim: To measure the status of EFAs and PUFAs in patients before and after SBTx, 
because the exposure to these fatty acids in parenteral nutrition and after 
transplantation is known to be widely different from healthy children. 
 
Methods: 4 children aged 11–15yrs and one infant aged 2 years were recruited: two 
had undergone SBTx 5 and 10 years previously and three were on the transplant list for 
small bowel transplantation. None of the children had been breast fed and all had 
received Intralipid, which lacks polyunsaturated fatty-acids (PUFAs), from birth. The 3 
children awaiting SBTx had been converted to a new source of lipid containing fish oils 
1–12 months prior to blood sampling (SMOFlipid Fresenius Kabi). We compared their 
exposure to EFAs and PUFAs at the same time as measuring their body PUFA stores in 
erythrocyte (RBC) membranes using Gas Chromatography Mass Spectrometry (GC-MS), 
and related these measures to their Full-scale IQ (Wechsler FSIQ). 
 
Results: All the children on SMOFlipid had satisfactory levels of DHA, but they had high 
levels of the pro-inflammatory PUFA arachidonic acid. Subjects 3 and 4 were carrying 
mead acid in RBC membranes, suggesting that they had had insufficient EFAs in the 
weeks preceding the blood sampling. The diet of subjects who had been successfully 
transplanted were associated with the EFA deficiency marker mead acid (subject 1) and 
subject 2 had relatively low amounts of DHA, neither subject showed a pro-
inflammatory bias. 
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Subject 
Total cals and 
type of lipid 

 

Fatty acid 
intake (mg/kg 

per day) 
18:1, 18:2, 18:3, 

20:4; 22:6 

RBC 
20:3 

% 

 
RBC 
20:4 

% 
 

RBC 
22:5 

% 

RBC 
22:6 

% 
FSIQ 

1 MK Oral diet  Pending (10mg/ 
kg PUFA/day) 

9.19 8.96 0.0 8.13 97 

2 RS Oral diet  Pending 7.52 7.83 6.34 6.56 90 

3 DS 48cals/kg/d2g/kg 
SMOF/day 

556, 374; 50; 
10; 44; 

10.76 11.40 0.0 10.72 100 

4 JB 76cals/kg/d2g/kg 
SMOF/day 

556; 374; 50; 
10; 44  

7.68 9.63 0.31 10.35 94 

5 AF 80cals/kg/d2.5g/
kg SMOF/day 

687; 460; 60; 
12; 54 

0.0 12.28 0.0 10.58  

Controls   8.1-
8.6 

8.1-
9.2 

6.7-
7.6 

7.1-
8.3 

100 

18:1 oleic acid; 18:2 linoleic acid, 18:3 linolenic acid, 20:3 mead, 20:4 arachidonic acid, 
 22:5 osbond, 22:6 docosahexaenoic acid (DHA) 
 
Conclusion: Children may require EFA supplements after SBTx. SMOFlipid is associated 
with above average DHA concentrations, but this is associated with a pro-inflammatory 
bias in patients awaiting SBTx. 
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British Association for Parenteral and Enteral Nutrition 
(BAPEN) (November 2010)  
 
Sequential changes in polyunsaturated fatty acid composition of red cell 
membranes before and after small bowel transplant; a case report 
Abstract: Poster presentation* 
 
S.V. Beath1, T. Patel2, S Clarke1, J Sira1, G. Gupte1, S.Protheroe1, DA Kelly1, G. Griffiths2, J 
Talcott2 
 
1Birmimgham Children’s Hospital, Birmingham, UK 
2Depts of Life & Health Sciences and Chemical Engineering Aston University, 
Birmingham, UK 
 
*Poster presented on my behalf by SV Beath 
 
Children with intestinal failure are dependent on intravenous lipid solutions to survive 
and historically the lipid source has been soya oil, which is rich in essential fatty acids. 
Recently there have been concerns that reliance on a single source of lipid, which 
contains a high proportion of so-called pro-inflammatory omega-6 fatty acids, may be a 
factor in the development of liver disease (Koletzko and Goulet. Curr Opin Clin Nutr 
Metab Care. 2010;13:321-6). The use of a multi-source lipid (SMOFresnius) consisting of 
soya oil, medium chain fatty acids, olive oil and fish oil became available in the UK in 
2007 and is being increasingly used, although the long-term effects on the liver function 
and other tissues have not yet been determined. The aim of this study was to evaluate 
the polyunsaturated fatty acid status in an 11 year old boy prior to small bowel 
transplant, when he was receiving SMOF as part of his parenteral nutrition, and 
periodically until 12 months after transplant, when he was established on the enteral 
feed Peptamen. PUFA levels were measured in red blood cell (RBC) membranes by Gas 
chromatography-mass spectrometry. The dietary intake of fatty acids was calculated 
from the PN prescription and dietetic records. 
 
The markers of both omega-6 (20:4) and omega-3 (22:6) PUFAs decreased significantly 
and came down to just above the range for healthy volunteers by 5 months post-
transplant. This change in PUFAs was associated with reduced intake of long chain fatty 
acids when PN was stopped and Peptamen Junior commenced. We conclude that the PN 
fat source may have been over-providing essential fatty acids and DHA, and despite a 
reduction in EFA intake and lack of DHA in Peptamen Junior, this child was able 
synthesise DHA satisfactorily from his enteral food source. 
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Pre-

transplant 
2 months 
after Tx 

5 
months 
after Tx 

8 
months 
after Tx 

12 
months 
after Tx 

Intravenous FA 
intake (mg/kg/ day) 

 

    18:1, 18:2;  556; 374;  

0 0 0 0 18:3n3, 20:4, 22:6 50;10; 44 

n3: n6 ratio -0.24 

Enteral FA* intake 
(mg/kg/ day) 

     

18:1, 18:2, 

0 

132: 320; 132: 
320; 

155; 374; 155; 374; 

18:3n3, 20:4, 22:6 70; 0; 0 70; 0; 0 82; 0 82; 0 

n3: n6 ratio -0.22 -0.22 -0.22 -0.22 

RBC PUFA (%)      

18:1; 18:2; 18:3 20; 10; 9;  10; 10; 11; 8; 10: 10; 10; 8; 11; 10;11;11; 

20:4; 22:6 11.3; 12.1 11.9; 8.4; 10; 9.4 10; 9.9;  11.4; 9.9 

n3:n6 ratio -0.71 -0.79 -1.05 -0.92 -0.88 

18:1: oleic acid; 18:2: linoleic acid; 18:3: α-linolenic acid; 20:4: arachidonic acid; 22:6: 
docosahexanaenoeic acid (DHA)  
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This multi-modal investigation utilises convergent biochemical assay techniques to 
explore the relationships between brain and blood biochemistry and cognitive ability. It 
is well-established that essential fatty acids (EFAs) are crucial for normal brain 
development and function, but their specific behavioural effects are yet to be elucidated. 
We employed conventional Gas chromatography-mass spectrometry of erythrocyte 
membranes in conjunction with standard batteries of psychometric assessment, such as 
the Wechsler’s Adult Intelligence Scale, to assess the relationship between EFAs and 
their long-chain polyunsaturated metabolites, such as arachidonic acid and 
docosahexaenoic acid, and specific cognitive abilities. In our cohort of healthy 
individuals, significant negative correlations were observed between levels of pro-
inflammatory omega-6 fatty acids in erythrocyte membranes and Full-scale IQ (r = -
0.401, p = 0.035). Alongside the blood measures, we employed single-voxel Proton-
Magnetic Resonance Spectroscopy (1H-MRS) in frontal and occipitoparietal cortex to 
assess biochemistry at the neural level. In contrast with previous cognitive 
spectroscopy studies, we observed no significant correlations between measures of 
cognitive ability and surrogate markers of neuronal viability such as N-acetyl aspartate 
and choline.  
 
Our results suggest that the relationships between brain and blood metabolites and 
broad aspects of human behaviour are subtle and complex, and highlight the need for 
both hypothesis-driven enquiry and for distinguishing between statistical relevance and 
statistical significance in studies of this kind. Multi-modal investigations offer a 
promising, novel approach to exploring brain-behaviour relationships from micro- to 
macroscopic levels of analysis, but the conceptual framework within which these 
techniques are employed requires refinement. 
 


