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This thesis presents research within empirical financial economics with focus on liquidity
and portfolio optimisation in the stock markets. The discussion on liquidity is focussed on
measurement issues, including TAQ data processing and measurement of systematic liquidity
factors. The portfolio optimisation section evolves around the properties of full-scale optimi-
sation (FSO). Furthermore, a framework for treatment of the two topics in combination is
provided.

The liquidity part of the thesis gives a conceptual background to liquidity and discusses
several different approaches to liquidity measurement. It contributes to liquidity measurement
by providing detailed guidelines on the data processing needed for applying TAQ data to
liquidity research. The main focus, however, is the derivation of systematic liquidity factors.
The principal component approach to systematic liquidity measurement is refined by the
introduction of moving and expanding estimation windows, allowing for time-varying liquidity
co-variances between stocks. Under several liquidity specifications this improves the ability to
explain stock liquidity and returns, as compared to static window PCA and market average
approximations of systematic liquidity. The highest ability to explain stock returns is obtained
when using inventory cost as a liquidity measure and a moving window PCA as the systematic
liquidity derivation technique. Systematic factors of this setting also have a strong ability in
explaining cross-sectional liquidity variation.

Portfolio optimisation in the FSO framework is tested in two empirical studies. These
contribute to the assessment of FSO by expanding the applicability to stock indexes and
individual stocks, by considering a wide selection of utility function specifications, and by
showing explicitly how the full-scale optimum can be identified using either grid search or the
heuristic search algorithm of differential evolution. The studies show that relative to mean-
variance portfolios, FSO performs well in these settings and that the computational expense
can be mitigated dramatically by application of differential evolution.
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Chapter 1

Introduction

This thesis is set in the field of empirical financial economics. The portfolio choice framework
of mean-variance optimisation (MV; Markowitz 1952, 1959) and the capital asset pricing
model (CAPM; Lintner 1965, Mossin 1966, Sharpe 1964) have had tremendous importance
for both the development of financial economics as an academic discipline, and for the devel-
opment of the financial industry to what it is today. Constituting the foundations of financial
economics theory, these models have been subject to extensive assessments, improvements
and extensions ever since they were founded. An important aspect of this work has been to
clarify the implications of key assumptions in the models, and to find ways to relax these
assumptions.

One clearly unrealistic assumption is that of frictionless financial markets — it is well-
known that it takes time, money, and effort for a trade to happen. Another assumption states
that investors’ preferences can be described using quadratic utility functions, implying that
the mean and variance of expected portfolio returns are enough to make portfolio allocation
decisions. This differs considerably from most investors’ reality, where risk of extreme events,
illiquidity risk, and downside risk are important variables for the decision-making. The re-
laxation of these two assumptions set the stage for this thesis, whose contributions lie in the
fields of liquidity and portfolio optimisation.

Liquidity is a concept describing the friction investors experience when trading securities.
This friction matters to investors to the extent that it significantly affects asset prices (Amihud
and Mendelson 1986a, Acharya and Pedersen 2005). Building on the finding that there
are market-wide factors driving changes in the liquidity of stocks across financial markets
(Chordia, Roll, and Subrahmanyam 2000, Huberman and Halka 2001, Hasbrouck and Seppi
2001), the aim of the liquidity study in Part II of this thesis is to establish how those factors
are best measured.

Full-scale optimisation (FSO) is a recent method for portfolio choice that is fully flexible

in the formulation of investor preferences (Cremers, Kritzman, and Page 2005, Adler and
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Kritzman 2007), relaxing the classical assumption of quadratic utility functions. In the anal-
ysis of Part IIT of the thesis, this approach is assessed empirically in different portfolio choice
settings, and different ways of finding the optimal portfolio are tested.

These parts have in common that they are both empirical in their nature, and that they
deal with equity market applications with the aim to show facts of direct relevance to the
financial industry. Both parts contain findings with implications for the investment decision.
In the concluding part of the thesis (Part IV), some ideas on how the different concepts can

be used in combination are offered.

1.1 Disposition

As indicated above, the thesis is divided into four parts: Introduction (this chapter), Liquidity
(three chapters), Portfolio Optimisation (three chapters), and Conclusions (one chapter). To
give the reader an overview of the work, I give here a brief introduction to each of the eight
chapters.

The focus of Part II is measurement of liquidity and derivation of systematic liquidity
factors. In Chapter 2, I give my understanding of the different dimensions of liquidity. In
that context I present eight different liquidity measures that I consider for the liquidity
analysis. Furthermore, I refer the literature on how liquidity affects stock prices. This gives
the understanding necessary for the analysis in the subsequent two chapters on liquidity.
To measure monthly stock liquidity I use high-frequency stock market data covering the
constituent stocks of S&P500 from 1995-2007. The data for this are available in the Trades
and Quotes database (TAQ). This is a vast database and a great resource for stock market
research, but it takes careful processing to digest its billions of observations on transactions
and orders. In Chapter 3, I present in full the processing I have done of this data set, referring
to the rather limited literature available on the topic. Specifically, I discuss issues of raw data
filtering, simultaneous observations on trades and quotes, matching of trades and quotes, and
the detection of erroneous data points.

In Chapter 4, I turn to analysis of how individual stock liquidity co-varies across stocks —
the main aim of the liquidity analysis in the thesis. The degree of co-variance is referred to
as commonality in liquidity. Commonality is driven by systematic liquidity factors that have
been identified as risk factors with influence on asset prices. My focus is the measurement
of these risk factors. To account for the possibility of time-varying co-variance structures in
liquidity, I introduce principal component analysis (PCA) with a dynamic estimation window
as a way of estimating systematic liquidity factors. I evaluate different versions of this method
along with traditional estimation techniques (full sample PCA and market average). My
evaluation criteria are (1) the ability to explain cross-sectional stock liquidity, and (2) the

ability to explain cross-sectional stock returns. For most of the common liquidity measures my
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results suggest that an expanding window specification of PCA is appropriate for systematic
liquidity estimation. For price impact liquidity measures (measuring inventory costs and
adverse selection costs), however, I find support for a moving window specification. The
market average proxy of systematic liquidity, which has been advocated in the literature,
produces the same degree of commonality, but does not have the same ability to explain
stock returns as the PCA-based estimates. Furthermore, I study dynamics in both liquidity
commonality and the explanatory power liquidity on stock returns, showing that these can
vary substantially over time. The findings of this chapter have also been published as a Federal
Reserve Bank of St Louis Working Paper (Hagstromer, Anderson, Binner, and Nilsson 2009).

Part IIT of the thesis deals with portfolio optimisation. In Chapter 5, I present portfolio
optimisation models in a utility maximisation setting. In particular, I focus on the FSO
model, where the empirical return distribution is applied to a utility function. The advantage
of this model is that preferences for skewness and kurtosis can be taken into account when
formulating the utility function, as no analytical solution is pursued. In this context I also
discuss the reason that return distributions are non-normal, why this matters to investors,
and how it can be accounted for in utility functions.

The problem of models such as FSO is how to find the optimum when no analytical solution
can be found. I demonstrate two different ways of solving this problem. In Chapter 6, I solve
a 3 asset portfolio selection problem featuring UK equity indexes using a grid search. I
identify several utility functions featuring loss aversion and prospect theory, under which
FSO is a substantially better approach than the MV approach. As the equity indexes have
return distributions with relatively small deviations from normality, the findings indicate
much broader usefulness of FSO than has earlier been shown. The findings presented in
this chapter have also been published in The Manchester School by Hagstrémer, Anderson,
Binner, Elger, and Nilsson (2008).

The grid search technique is computationally expensive and in large portfolio selection
problems it becomes unfeasible. For problems with many assets more efficient algorithms
are required to identify the optimal portfolio. In Chapter 7, I apply the heuristic technique
differential evolution (DE} to solve FSO-type asset selection problems of 97 stocks under
complex utility functions. I show that this problem is computationally feasible and that
solutions retrieved with random starting values are converging to one optimum. The study
constitutes the first FSO application to stock portfolio optimisation. The results indicate
that when investors are loss averse, FSO improves stock portfolio performance compared to
MV portfolios. The findings of this chapter have also been published in Applied Financial
Economics by Hagstromer and Binner (2009).

Chapter 8 (Part IV) concludes the thesis by pointing out the main findings and policy

implications. It also sketches a framework for how to combine the findings of the two preceding
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parts into one model. Finally, future avenues of potential research are pointed out.

1.2 Contributions and Limitations

The contribution of this thesis is twofold. Firstly, it gives further insight in measurement of
liquidity. A presentation of high frequency data processing is given at a high level of detail not
seen elsewhere in the liquidity literature; it compares eight different liquidity measures; and
it offers an extensive analysis of four different ways of deriving systematic liquidity measures,
including dynamic estimation window PCA techniques that have not been applied elsewhere.
This systematic liquidity study highlights many nuances on liquidity measurement that have
not been known before. Accurate measurement of liquidity, both for individual stocks and
on market-wide level is of high importance for investment decisions and for the handling of
liquidity risk in a stock portfolio. Secondly, this thesis holds two studies on how FSO can
be applied in different settings and how the optimum can be identified for these cases. The
findings show that F'SO is applicable to a much larger set of assets than previously shown, and
that the portfolio optimum is feasible to identify also in a relatively large problem domain.
This adds a useful tool for investment advice to investors whose view on risk goes beyond
expected return variance.

In a context of presenting contributions of the research, it is appropriate to also point to-
wards its limitations. All the work presented here is empirical in its nature, no new theoretical
model is built. Throughout the thesis I rely on secondary data. Empirical investigations al-
ways come with important limitations with respect to data. Availability, quality, processing,
and sample size are properties that always have to be questioned in a setting of empirical
studies, and the implications of the findings in data sets with other properties can never be
known beforehand. For the setting of FSO, I discuss the data limitations at some length in
Section 7.6. For the liquidity studies, measurement quality is the subject matter itself. I do
not investigate causes of liquidity or its co-variation, neither do I discuss corporate strategies

for promoting stock liquidity.
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Chapter 2

Liquidity: Definition,
Measurement, and Impact on

Asset Prices

In this chapter, I discuss the definition and economic intuition of liquidity, and connect that
to the different liquidity measurement techniques that have been suggested in the literature.
I present detailed data characteristics of eight different liquidity measures based on high-
frequency data. As much of the interest in liquidity research is due to its impact on asset
prices, I spend the final section of the chapter referring the literature on that topic. Overall,
the purpose of this chapter is to present my understanding of liquidity and its role in financial
economics, as well as introducing the data set that is the basis of my liquidity analysis in this

thesis.

2.1 What is Liquidity?

Liquidity is a term spread around many fields of economics. The definition of liquidity is de-
pendent on whether the setting is macroeconomics, corporate finance, or financial economics,
and this is causing some confusion around its exact meaning.! According to Hicks’ (1962) his-
torical presentation of the term, it became popular with Keynes’ work in the 1930’s, and then
was picked up in many different areas of economics. Researchers across the above-mentioned
fields agree that liquidity is about the availability of liquid assets, but they have different
settings in mind when defining it: the market as a whole, the balance sheet of a company,

or a stock’s tradability. However, in the context of this thesis the understanding of liquid-

! According to The Economist (February 8, 2007) liquidity is "one of the most mentioned, but least under-
stood, concepts in the financial market debate”.
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ity is clear: liquidity is a concept describing the friction investors experience when trading
securities.

This friction is understood as trading costs in terms of money, time, effort, and informa-
tion. Broker fees and taxes constitute direct costs. If the investor wants to trade at a certain
price, he may have to spend time and effort to find a counterpart for the trade, or accept
a worse price to close the trade immediately with available market participants. The cost
of immediate trading is typically described by the bid-ask spread. In an order-based market
the bid-ask spread is the difference between the lowest available sale price and the highest
available buy price in the order book; whereas in a market maker-based exchange the spread
is set by the market maker in accordance with its cost structure.? To understand liquidity
costs, it is useful to take the perspective of the market makers. Their business is to provide
liquidity (immediacy) to the traders at an exchange. This intermediation activity carries, in

excess of operating costs (such as fees, equipment, and staff), two types of costs:

1. Inventory cost: In order to provide immediacy the market maker needs to hold an
inventory of the securities he is dealing with. After trading with sellers, he may also
have to hold large quantities of stocks while searching for buyers. During the holding
period, the market maker is facing a risk of fundamental value change. The cost of this
inventory risk was first discussed by Stoll (1978) and has been modelled as part of the
bid-ask spread by e.g. Amihud and Mendelson (1980) and Ho and Stoll (1981).

2. Adverse selection cost: When offering trading services the market maker exposes himself
to a risk of trading with counterparties holding private information. Based on the
reasoning of Akerlof (1970), traders holding private information will sell (buy) if they
have bad (good) news, as their information is not incorporated in the market’s pricing
of the security. Non-informed traders have less incentive to trade, as they on average
will see no arbitrage opportunity in trading at the market price. Hence, the market
maker is likely to deal with traders with price driving information, which in the long
term will cause him losses, called adverse selection costs. In order to stay in business,
the market maker needs to balance their losses from informed trading by charging fees
from uninformed traders (Bagehot 1971). How the adverse selection cost is affecting the
pricing of securities has been modelled by e.g. Kyle (1985) and Glosten and Milgrom
(1985).

In a market with perfect competition, where the profits of market makers are zero, these

costs along with operating costs will constitute the bid-ask spread, making the market maker

20f course, trading can also take place outside the stock exchanges (e.g. in over-the-counter markets).
For such trading, liquidity costs are typically higher as it is harder to identify counter-parts and as there is
less transparency in price dynamics. In this dissertation, 1 focus on stock exchanges, so these cases will not
be discussed further. This also excludes derivatives and bond markets. Largely, similar discussions about
liquidity apply to all these excluded markets, but I leave that discussion to others.

2
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break even. As inventory risk should not affect the true value of the security, this part of
the spread variation is regarded as transitory. Adverse selection cost, on the other hand, can
cause permanent price changes to the extent that the order flow reveals private information
that should be incorporated in security valuation. This transformation of information from
private to public can be seen as an aspect of liquidity costs for an informed trader. The
extent to which order flows affect the market price of a stock is often referred to as Kyle's A,
relating to his model where price changes depend on traded quantities of privately informed
and uninformed traders together (1985).

Glosten and Harris (1988) summarise the modelling of how market maker costs motivate
the bid-ask spread in what is called the asymmetric information model.®> Following Kyle
(1985), the order flow is divided between information-based trading and noise trading. The
observed price at the time of trade k, pg, is equal to the true price, my, adjusted for trade-

specific costs that the market maker carries. They model this relation as

Pk = mg + DrCy, (2.1)

where C} is a cost component containing fees and inventory costs incurred to the market
maker (see Stoll 1978), but excluding costs of asymmetric information. Dy, is a direction of
trade dummy which is set to +1 when the trade categorised as buyer-initiated, and -1 when
the trade is categorised as seller-initiated. Dy C}. is called the transitory spread component,
as future observed prices are not related to Pj.

The true price of the stock is assumed to be affected only by changes in information related
to the company. Information reaches the market either trough a public information flow, vy,
or through information-based trading that reveals private information. Hence, according to

the asymmetric information model the true price process is

my = Mg—1 + DeZi + y, (2.2)

where DpZ;. is the cost component that is due to information-based trading. Zj is called
the adverse selection spread component, or the permanent spread component, as the dynamic
specification of the true price process makes the impact of adverse selection costs on the stock
price permanent.

The asymmetric information model offers a way of explaining the bid-ask spread in the
perspective of a market maker who provides immediacy to investors. This perspective is
useful as the immediacy isolates the temporal dimension of liquidity from the information
and inventory costs. The reasoning is however not limited to market maker-based exchanges.

At an order-based market, where the order book instead of the market maker constitutes the

3This model builds on the work by Glosten and Milgrom (1985), Glosten (1937), and Kyle (1985).
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liguidity provision, a similar reasoning applies. The individual investors that as a collective
form the order book should, on average, set their prices in the same way as a market maker.
As indicated in this discussion, the liquidity of a market has many aspects. Kyle (1985)

summarise these aspects in three concepts:

1. Tightness: How much it costs to turn over a position in a short time. If there is no

information content in the trade, this depends on C} in the asymmetric information

model.

]

Depth: The ability of the market to absorb quantities without large price impacts. This

relates to Kyle’s A and to Zj in the model by Glosten and Harris (1988).

3. Resiliency: The market’s ability to quickly return to the underlying value of a security,
e.g. after an uninformative price shock. This price discovery dimension of liquidity has
received relatively little attention in the literature, but an analysis is available in Dong,

Kempf, and Yadav (2007).

This multi-dimensionality of liquidity has triggered a voluminous literature on what is
the most appropriate measurement methodology. Depending on the research problem, differ-
ent researchers have found different measures more or less appropriate and no consensus on
measurement has been reached. It is beyond the aim of this thesis to add to the individual
liquidity measurement discussion, but as liquidity measures are needed for the subsequent

analysis, I present different approaches in detail below.

2.2 Liquidity Measures

In this section, I discuss in detail eight liquidity measures that I use in the subsequent analysis.
I refer the methodological discussion around each of them and look into data properties within
my sample. I divide the measures in three categories; (1) spread-based measures; (2) volume-
based measures; and (3) price impact measures. I estimate each liquidity measure ex post
on monthly frequency. Ex post estimation allows more precise liquidity measurement than
an ex ante approach. As no liquidity forecasting is done in this thesis, I choose the ex post
approach, which conforms to most of the liquidity literature.

Most liquidity measures are based on the cost of immediate execution, setting the time
cost to zero. This has the advantage that it yields comparable quantities of liquidity costs,
but the obvious shortcoming of not quantifying the time costs. The temporal dimension is
primarily important for resiliency and is not explicitly addressed by any measure referred
here. Resiliency is, however, captured to some extent by the inventory cost measures. Before
turning to the specific liquidity measurement discussion, I discuss the choice of data set and

establish some notation.



2.2.1 Sample and Data

I study liquidity in a context of the S&P500 index constituent stocks. This index of large-
cap companies traded on New York Stock Exchange (NYSE) and National Association of
Securities Dealers Automated Quotations (NASDAQ), maintained by Standard & Poor’s, is
one of the most followed large-cap indexes in the world. Empirical liquidity literature has a
strong bias towards US stock markets. This bias is likely to be due to the central role of US
markets in the world financial markets, but also to the availability of high quality data. My
choice of US stocks is due to both these reasons, as well as the ability to compare my results to
previous studies in the US context. S&P500 stocks have their primary listing on NYSE (most),
NASDAQ (about 100), and American Stock Exchange (AMEX; few). Accordingly, I restrict
my data set to trades and quotes from these three markets. As NYSE and NASDAQ feature
different market mechanisms, not many liquidity studies span all the S&P500 constituents.
Being a continuous auction market, NYSE has a liquidity measurement problem in that
trades frequently happen inside the bid-ask spread (Huang and Stoll 1996, Eleswarapu 1997),
which makes spread measures less reliable as approximations of transaction cost. NASDAQ),
which is a dealer market, has other liquidity measurement problems in the form of trade
reporting delays (Vergote 2005) and artificially high volumes (Amihud 2002). Furthermore,
rapid financial innovation in all stock markets creates time series inconsistencies in the market
structures. For example, both NYSE and NASDAQ have in recent years added automated
trading platforms to their systems (Arca and NASDAQ-ADF respectively). Rather than
modelling different markets and periods separately, I deal with all these different trading
mechanisms in one data set. This generalisation should be kept in mind when analysing the
subsequent results.

I caleulate stock liquidity measures on a monthly frequency. Liquidity measurement at
the firm level can be divided into two schools of thought. One branch of literature is trying
to minimise measurement error by looking in detail at behaviour of trade prices and volumes
and order flows, usually utilising high-frequency data of order books and transactions. For
assessing the impacts of liquidity over longer periods and for more markets, however, the low
availability of high-frequency data has motivated research on measures that proxy liquidity
using low-frequency data (daily/weekly /monthly), that are more readily available (Amihud
2002, Pastor and Stambaugh 2003, Hasbrouck 2009). For the analysis in this thesis, I use
high frequency data, as this allows me to consider a wide variety of high quality liquidity
measures. I use the high-frequency Trades and Quotes (TAQ) database, which holds data on
all transactions and frequently updated quotes of best bid and best ask prices at major US
stock markets, dating back to 1993. Data on individual trades and quotes are necessary for
many of the liquidity measures considered, and TAQ is the largest accessible data source for

such data. I limit my data set to stocks that were in the S&P500 index by the end of 2007.



The computational burden of dealing with recent TAQ data motivates the limitation with
respect to number of stocks. The reason that I use the same stocks throughout the sample
(rather than, e.g. updating the sample annually in accordance with S&P500 changes) is that
I utilise co-variance matrices in the subsequent analysis that need consistent time series of the
stocks considered. The maximum period that I consider is 19952007, but many stocks have
shorter series due to name and/or ticker changes and company restructuring. The reason that
I do not use data from 1993 and 1994 is that the number of order quote observations relative
to trade observations is very low for these years, and many liquidity measures are dependent
on matching quotes to trades.?

The raw data from TAQ need to be thoroughly processed before liquidity measurement
can be made. The rules applied for this are described in detail in Chapter 3. In digested
form, for each eligible trade & in month ¢ I have data on transaction price (py ), transaction
volume (V ), as well as bid and ask prices prevailing when the transaction occurred (Bid), ;
and Asky ;). The exchange where the trade occurred is also recorded. For each stock i the
data set also holds monthly information on lot size, shares outstanding and share types. All
variables in the presentation below are firm specific (where the opposite is not noted), but
the firm index 7 is dropped for brevity of exposition. The number of firms considered varies

over time but is in general N < 500, implying i = 1,2,..., N.

2.2.2 Spread-Based Measures

The most straightforward measure of liquidity is the bid-ask spread.® This provides an ex
ante measure of tightness in the market for a security. The spread is an intuitive measure of
the cost of an immediately executed round-trip trade of a stock (for a single trade the half
spread can be used). As stated in Section 2.1, it also summarises the costs of a market maker’s
exposure to inventory risk, adverse selection risk, and operating fees. According to Amihud
and Mendelson (1989) the measure is related to characteristics associated with liquidity such
as the number of investors, the transaction volume, the information availability, and the size
of the firm. Using data on the best bid and offer (BBO) prices available, the monthly quoted

spread (@spread) is calculated for each transaction using the formula

<t Asky, — Bidy s

9
Midy, ’ (28]

1
Qspread; = —
K o

where months are indicated with the index ¢ (which in my sampleis t = 1,2, ..., 156); trades in

month ¢ are indicated with the index k; and the number of trades in month ¢ is K, implying

4In January 1993 the number of eligible quotes are 2.8% of the number of eligible trades. The corresponding
number for January 1995 is 67.4%. Furthermore, large amounts of erroneous observations are recorded for
these years, particularly 1993, see Section 3.6.

5The first study to relate the bid-ask spread to transaction costs was, according to Amihud and Mendelson
(1986a), Demsetz (1968).



k=1,2,.., K;. In order to be cross-sectionally comparable it is common to calculate relative
spreads by dividing the nominal spread by its midpoint (Médy ), which is simply the mean
of the bid and ask prices prevailing at each transaction. The monthly spread is the average
spread across all trades that month.

Figure 2.1 shows the key statistics of a box plot of @spread for each month in my sample
(the mean is the bold black line and the median is the bold grey line). It can clearly be seen
in the figure that the @spread reacts to major events causing volatility in financial markets.
Examples of events causing peaks in the spread time series are the Asian crisis (Fall 1997),
Russian/Long Term Capital Management (LTCM) crisis (August-October 1998), the burst
of the dot-com bubble (March 2000), the terrorist attacks on New York (September 2001),
and the start of recognition of subprime loan losses by American banks (August 2007). The
fall in spreads in July 1997 and January 2001 can be connected to changes in the rules of
minimum tick size regulation at the NYSE. In July 1997, the minimum was changed from
1/8 to 1/16 and in January 2001 to 1/100 (referred to as decimalisation). Overall, a falling
trend in average spread over the sample period is obvious, from around 0.75% in 1995 to
around 0.10% by the end of 2007. All these observations are in line with previous findings in
the literature. In addition, it can be noted that the mean is slightly higher than the median,
which is not surprising considering that the spread by definition has a lower but no upper
bound.

The bid-ask spread is a straightforward measure of transaction costs, but has a weakness in
that not all trades actually occur at the spread. It is common that trades are executed within
the spread (because of e.g. bettered quotes or hidden limit orders) both at the NYSE and
NASDAQ (for discussion of this, see Huang and Stoll 1996, Petersen and Fialkowski 1994).
Different approaches to account for this fact have been suggested in the literature. One
method is the effective spread, which is the absolute difference between the actual trading
price and the midpoint of the prevailing bid-ask spread. This measure is calculated as

K, i
1 |pr.s — Midg ¢
dy = — Y 1Pt = MGkl 2.4
Reprepa= - ; Mide: (2:4)

ie. relative to the midpoint and averaged across all the trades in the month in the same
way as done for the quoted spread.® Note that this is measuring the half spread, meaning
that it will be half the size of @spread for trades occurring at the quoted price. It is argued
by Huang and Stoll (1996), as for spreads in general, that the effective spread should cover
the costs of market makers, otherwise the trades would not happen. On this basis, it is seen

as more accurate than the quoted spread. A drawback with the effective spread is that it

50ther spread measures include the realised spread, which is the effective spread adjusted for adverse
selection costs (Huang and Stoll 1996), and the amortised spread, which is the effective spread amortised
across the holding period (Chalmers and Kadlec 1998).
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Figure 2.1: Quoted relative spread, box plot for each month

Quoted spread is calculated as in Equation 2.3, on monthly frequency for 1995-2007. Tick marks on the x-axis
are placed at the January observation. The bold black line is the mean, and the bold grey line is the median.
The thin solid black lines are the lower and upper quartiles, and the thin dashed black lines are the upper
and lower whiskers associated with box plots. (The upper whisker is placed at the highest observation within
1.5 inter-quartile ranges (IQR) above the upper quartile. The same reasoning applies for the lower whisker,
in opposite direction.)

demands data on both trades and quotes, and these are not usually reported together. For
my analysis I consider both the quoted and the effective spreads. In Figure 2.2 it is seen
that Espread follows the same general pattern as Qspread, with peaks at events causing
financial volatility and lows at times of market-wide liquidity facilitating changes such as the
decimalisation. The magnitude is, as expected, less than half of the corresponding Qspread

observations, and there is a clear falling trend over time.

2.2.3 Volume-Based Measures

It is common (particularly in news media) to encounter the word liquidity in the meaning
of traded volumes. This relates to market depth — the market’s ability to absorb quantities
without large price changes. Volume measures, either number of shares or the value of shares
traded have also appeared in the liquidity literature, but mainly as a proxy of the bid-ask
spread where data on that is not available (e.g. Brennan, Chordia, and Subrahmanyam 1998).7
Good data availability make volume measures empirically appealing. Pure volume measures

have little theoretical appeal as they do not measure trading friction explicitly. When divided

TAccording to Chordia, Roll, and Subrahmanyam (2002), ”[s|tock trading volume is ... linked inextricably
to liquidity” (they are referring this to Benston and Hagerman, 1974, and Stoll, 1973).
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Figure 2.2: Effective relative spread, box plot for each month
Effective relative spread is calculated as in Equation 2.4, on monthly frequency for 1995-2007. The bold
black line is the mean, and the bold grey line is the median. The thin solid black lines are the lower and
upper quartiles, and the thin dashed black lines are the upper and lower whiskers associated with box plots.

(The upper whisker is placed at the highest observation within 1.5 IQR above the upper quartile. The same
reasoning applies for the lower whisker, in opposite direction).

by the number of shares outstanding, however, it describes the turnover of the firm; and
the inverse of that ratio is a measure of the average holding period of the investors of a
stock. This has theoretical appeal as a proxy of liquidity, as stocks with low liquidity are
unattractive to trade frequently, and hence attract investors with long investment horizon
(Amihud and Mendelson 1986a). Turnover, used by e.g. Datar, Naik, and Radcliffe (1998),

can be calculated by the formula,

K
Turnover; = SiOg Z Vit (2.5)
k=1

where SO, is the monthly number of shares outstanding for one stock. Unfortunately, SO;
is not reported for NASDAQ) stocks in TAQ, so my investigation of Turnover is limited to
NYSE and AMEX.

Turnover is bounded downwards (at zero) but has no limit upwards, making the mean
higher than the median (see Figure 2.3). Turnover is increasing in liquidity, so the increasing
trend seen over the sample considered corresponds to the falling trend in liquidity seen in
spreads. However, Turnover has peaks at the major events in my sample, indicating rising
rather than falling liquidity (that was seen for spreads). This highlights that Twurnover

measures a different aspect of liquidity — it is a measure of depth rather than tightness.
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Figure 2.3: Turnover, box plot for each month

Twurnover is calculated as in Equation 2.5, on monthly frequency for 1995-2007. The bold black line is the
mean, and the bold grey line is the median. The thin solid black lines are the lower and upper guartiles, and
the thin dashed black lines are the upper and lower whiskers associated with box plots. (The upper whisker
is placed at the highest observation within 1.5 IQR above the upper quartile. The same reasoning applies for
the lower whisker, in opposite direction).

It differs from many other depth measures though, in that it does not distinguish between

buyer- and seller-initiated volumes. This is done in the price impact measures presented next.

2.2.4 Price Impact Measures

Building on the models by Kyle (1985). Glosten and Milgrom (1985), and Glosten (1987)
several ways of measuring liquidity in terms of price impact exist. This relates to depth of a
market — how well a market can absorb trade quantities without major price changes. As
will be seen below, however, these measures capture elements of market tightness as well.
The asymmetric information model by Glosten and Harris (1988), referred in Section 2.1, is
one way to estimate the price impact of trading.

By taking the first difference of Equation 2.1, i.e. Ap; = pr — pr—1, and inserting Equa-

tion 2.2, Glosten and Harris (1988) retrieve
Ap = DrZy + DiCr — D—1Cr—1 + U, (2.6)

ie. the observed price change is related to the change in signed inventory costs (DpCj —
Dy, 1Ci—1) and the signed information cost (DyZ:). Both spread components are modelled

to be linear functions of volume of trade k, Vi, so the transitory (inventory) and permanent
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(information-based) spread components are expressed
Ck = q»‘ + :\Vk, (27)

and

2y =W+ AV, (28)

where W and A are coefficients for fixed and variable costs and "~" distinguishes transitory

from permanent costs. Inserting these expressions in Equation 2.2 yields
Apy, = UDy, + ADVi + $ADy, + MA(D Vi) + ik, (2.9)

where y, is again the public information flow at the time of trade k, and A is the first
difference operator.

In estimating this relationship, Glosten and Harris (1988) find that A=T =0, implying
that inventory cost is the effect of changes in trade direction, Dy — Dp_1, and that the adverse
selection cost is the effect of signed trading volume, D Vj.. Hasbrouck (1988, 1991) points out
that adverse selection costs can only appear in response to unexpected order flows, which has
been implemented in the model framework by Foster and Viswanathan (1993) and Brennan
and Subrahmanyam (1996) (by using the trade innovations from a model with lagged order
flows and lagged price changes). Sadka (2006) incorporates this in the Glosten and Harris’s

(1988) model by writing the adverse selection cost function as

where Ey._, denotes conditional expectations. Inserting this in the framework of Glosten and
Harris (1988) yields an expression of changes in observed stock prices showing that adverse

selection costs are incurred from unexpected trade flow changes:
Apy = U(Dg — Ex—1[Dx)) + M(Dx Vi — Eg—1[DiVi]) + WADy + AA(DrVe) + y- (2.11)

Sadka (2006) estimates the unexpected signed order flow as the residuals of an AR(5) model
of observed signed order flows and denotes it €, . The direction of trade dummy Dj, is set
+1 (-1) when the transaction price is higher (lower) than the prevailing spread midpoint,
implying that the trade is buyer-initiated (seller-initiated) (following the algorithm by Lee
and Ready 1991). By assuming a normal distribution of €, ; with constant variance, Sadka
(2006) is able to derive the unexpected order flow direction, which he denotes ey i, using
the cumulative density function. Letting the estimated time series of ¢, and ey replace

DV — Eyx—1[DyVi] and Dy — Ej_,[Dy] respectively, he is able to analyse the following
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relationship using ordinary least squares (OLS):
Apry = oy + View kg + Nen e + E:ADk,t + XtA(Dk,th,t) + Yk ts (2.12)

where a; is an intercept and the index ¢ indicates that the relationship is estimated on a
monthly basis. It is important to note that trades typically take place on irregular time inter-
vals, e.g. around the release of news intense trading can take place. Following Sadka (2006), I
treat the observations as if they happened on regular time intervals. An alternative approach
using durations is presented by Engle and Russell (1998). This could be an interesting way to
improve measurement in general, and possibly the resiliency dimension in particular. As it is
not the aim of this chapter to improve individual stock liquidity measurement techniques, I do
not pursue this here, but I regard it as an interesting future research topic. In the exposition
below, I refer to the four coefficients estimated here as price impact coefficients.

I estimate Equation 2.12 for each firm and each month, retrieving estimates of the coef-
ficients in the inventory cost (and other market making cost) function [¥ and A}; and of the
coefficients in the adverse selection cost function (¥ and A]. Following Brennan and Subrah-
manyam (1996) and Sadka (2006), I scale the coefficients by the end of month stock price,
in order to reflect relative costs rather than absolute. The distributional properties of each
of the coefficients are presented in Figure 2.4. These coefficients are falling in liquidity, so
falling trends over the sample periods are expected, and this holds for every coefficient except
A. This coefficient is also negative on average throughout the sample, which may seem pecu-
liar, but this is in line with the findings of Sadka (2006). Sadka interprets this as that total
costs are increasing with trade quantity, but that the information-based costs take a larger
proportion of the costs as volumes increase. This hypothesis is supported in my results as
the two variable cost series have a clear negative correlation, indicating that they counteract
each other. Sadka (2006) also emphasises that the total inventory cost is positive (up to a
certain quantity).

The transitory non-information fixed cost (II'; Panel C), as many other liquidity measures,
features peaks of low liquidity in the months previously identified as volatile in the stock
markets (October 1997, August 1998, February 2000, September 2001, August 2007}, and
it is falling sharply in the two months of market-wide decreasing tick sizes (July 1997 and
February 2001). The permanent information variable cost (\) features peaks in roughly the
same months, but does not show much reaction to the tick size changes, which is in line with
theory as these have nothing to do with informed trading. The permanent fixed cost (¥) and
the transitory variable costs (\) have less emphasised peaks.

In Figure 2.5 some diagnostics from the regression analysis are given. Overall, it shows
increasing significance of each coefficient over the period covered. A and U have high rejection

rates of the t test throughout the sample, meaning that they are consistently significantly
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Figure 2.4: Price impact coefficients. box plots for each month (see caption on p.35)
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Panel C: Transitory Fixed Costs (¥)
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Figure 2.4: Price impact coefficients, box plots for each month (see caption on p.35)
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Figure 2.4: Price impact coefficients. box plots for each month

Properties of the coefficients from the regression analysis of Equation 2.12 are presented in Panels A-D. The
estimation was run for each month over the years 1995-2007. The bold black line is the mean, and the bold
grey line is the median. The thin solid black lines are the lower and upper quartiles, and the thin dashed black
lines are the upper and lower whiskers associated with box plots. (The upper whisker is placed at the highest
observation within 1.5 IQR above the upper quartile. The same reasoning applies for the lower whisker, in
opposite direction).
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Figure 2.5: Price impact regression estimation diagnostics
The figure shows diagnostics from the regression analysis of Equation 2.12. The number of rejections of the
null hypothesis of the ¢ test (stating that the coefficient in question is equal to zero) divided by the number
stocks investigated is given for each coefficient and each month. A confidence level of 95% is applied. In

addition, the coefficient of determination, R2, of the regression is given for ecach month, averaged across
stocks. Note that in the legend A and W are written ~ X and ~ 0.

different from zero. The other two coefficients (A and ¥), as well as the regression intercept
«, show increasing rejection rates of the ¢ test null hypothesis over time. The increasing
significance of the coefficients over the period considered can be explained in several ways.
Firstly, the amount of data available on bid-ask spreads has increased immensely, which is
due to that reporting has been made automatic rather than changes in the market conditions.
This makes the measurement of price impact more exact, as it is possible to match trades to
market conditions prevailing when the trade happened. Secondly, the number of trades has
increased substantially. This increases the sample size and hence the accuracy of the price
impact regression. Thirdly, the decreased tick size that has been discussed above removes
noise from the observed price process. This is likely to make the deviations from the true
price process be more precisely described by inventory costs (see Equation 2.2). In fact, a

dramatic increase in significance for the inventory cost coefficients (U and \) as well as the
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intercept () is seen in January 2001, when NYSE moved to decimalisation. The intercept is
positive on average and significant in around 75% of the cases after decimalisation. This can
be due to the remaining discreteness of price movements.

The finding of Glosten and Harris (1988) that ¥ = X = 0 is not supported. The ¢ test null
hypothesis of each of the coefficients is rejected in more than 50% of the cases for almost all
months throughout the sample. Towards the end of the sample the rejection rate is higher
than 75%. Figure 2.5 also shows the explanatory power of the model, and this is falling during
the period 1995-2000, and then stabilises around 20% on average. This was not observed by
Sadka (2006). The stepwise decline indicates that this can be related to tick size reforms. I
do not address this issue further here, but regard it as interesting problem for future research.

For many applications, in particular asset pricing studies where long time series are needed,
the transaction data needed to estimate price impact measures are unavailable. To circumvent
this problem, Amihud (2002) suggests a liquidity measure based on low-frequency data with
the intention to proxy the A of Kyle's model (1985). He derives the price impact by dividing
absolute daily returns with the daily dollar volume trade. Aggregated to a monthly frequency

and adjusted for market capitalisation®, this measure takes the following form:

J
MCAPre f ¢l
meapy £ dvoljs’

ILLIQ, = (2.13)
where r;; and dvol;; are the return and dollar volume on day j in month t, j = 1,2, ..., J;,
and .J; is the number of trading days in month £. The Amihud measure is denoted ILLIQ),
which demonstrates the fact that it is falling in liquidity and hence rather measures illiquidity.
Key features of ILLI(Q are that it is an economically intuitive proxy of liquidity and that it
is utilising data available for most markets and long time series. This has made Amihud’s
(2002) measure a popular choice in the liquidity asset pricing literature. Figure 2.6 illustrates
the distributional properties of ILLI() within the sample considered. The figure shows the
price impact in relative terms (%) in response of average daily trading volume of $1 million.
What is striking here is that the mean series is clearly influenced by outliers (as it is higher
than the upper quartile for most of the sample). Focussing on the median, there is a falling
tendency over time and some of the major volatility periods are marked by peaks (October
1997, October 1998, March 2000, August 2007), which complies with other liquidity measures.
Furthermore, ILLIQ falls steeply at the time around the decimalisation of the NYSE in
January 2001.

8 As suggested by Acharya and Pedersen (2005), on the basis that dollar volume tends to grow over time,
indicating inflation rather than increasing liquidity. Note that market capitalisation (mcap is used, so the
measure is corrected by the same factor throughout the cross-section of firms. I use January 1993 as reference
date.
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Figure 2.6: Amihud’s illiquidity, box plot for each month
ILLIQ is calculated as in Equation 2.13, on monthly frequency for 1995-2007. Displayed values give the
price impact in percentage terms of a $1 million average daily volume. The bold black line is the mean, and
the bold grey line is the median. The thin solid black lines are the lower and upper quartiles, and the thin
dashed black lines are the upper and lower whiskers associated with box plots. (The upper whisker is placed

at the highest observation within 1.5 IQR above the upper quartile. The same reasoning applies for the lower
whisker, in opposite direction).

2.3 Descriptive Statistics of Liquidity Measures

In the exposition above, 1 have presented eight different liquidity measures that I will consider
in the subsequent analysis. Henceforth, I denote liquidity L, and the liquidity measures are
distinguished by superscript I = 1,2, ..., 8 referring to order of liquidity measures as shown
in Table 2.1, where basic statistical properties of the monthly liquidity measures are also
presented. I also provide correlations between liquidity measures, see Table 2.2.

The first four liquidity measures are by definition positive. Liquidity measures 5-8 are
based on the price impact regression, and the distributions of these regression coefficient series
all contain negative values. This is to be expected when a large number of regressions are
run. Overall, the values of the price impact coefficients are smaller than what Sadka (2006)
found, which reflects the fact that liquidity in general is known to be higher in my sample
than in his, both with respect to firms and with respect to time (he investigated 1983-2001,
with smaller firms on average). My results correspond well with those of Sadka (2006) in
that the transitory fixed costs are much higher than the permanent fixed costs (by a factor of
10); and that the variable costs are dominated by the permanent adverse selection component

(which is 0.37 on average, as compared to -0.01 for the transitory variable cost).

37



Mean Median Std.Dev = Max Min
LT QSpread (%) | 037  0.26 0.41 999  0.02
L? ESpread (%) 0.11 0.07 0.14 3.50 0.01
L} Turnover (%) | 10.49 7.70 11.41  556.58 0.122
L TLLIQ x 108 0.10 0.02 0.70 47.77 0.00
L} ¥ (%) 0.006 0.004 0.014 0.779  -0.591
L8 A x 108 0.37  0.16 138 6398 -53.42
LT U (%) 0.06  0.03 0.12 3.96  -0.58
L8 X x10° 012 -0.02 084 7189 -46.58

Table 2.1: Descriptive statistics of liquidity measures
The liquidity measures are calculated monthly for 1995-2007. ¥ and A are coefficients in the adverse selection

cost function, with permanent influence on stock prices. ¥ and A are coefficient in the inventory cost function
and have a transitory impact on stock prices. See Equation 2.11 for details.

As discussed above, the two variable costs show a very high (negative) correlation coef-
ficient. Twrnover and the transitory variable cost are in general negatively correlated with
other liquidity measures, showing that they are growing in liquidity. All the other measures
are measuring illiquidity. As expected, a very high correlation is seen between the two bid-
ask spread measures. The spreads are also highly correlated with ILLIQ and the transitory
fixed costs. Turnover has in general low correlation to other measures, which can be related
to the observation that it shows high liquidity in times of market turmoil or that it lacks

observations on NASDAQ stocks.

QSpread ESpread Turnover ILLIQ Y A 0 A
L} QSpread 1
L? ESpread 0.74 1
L} Turnover | -0.24 -0.16 1
L} ILLIQ 0.58 0.45 -0.36 1
L? ] 0.06 0.04 -0.1 0.19 1
LS A 0.19 0.13 -0.26 0.28 -0.13 1
LT 0 0.52 0.53 -0.21 044 001 023 1
Lé A -0.18 -0.14 0.22 022 011 -0.72 -0.25 1

Table 2.2: Average correlation between liquidity measures
This table shows the correlation between liquidity measures, averaged across stocks. The sample covers
the stocks that constituted the S&P500 index on December 31, 2007, over the period 1995-2007. Monthly
observations are used. Correlations are calculated on basis of those months in the sample where there are
observations on both liquidity measures. W and A are coefficients in the adverse selection cost function,

with permanent influence on stock prices. ¥ and \ are coefficient in the inventory cost function and have a
transitory impact on stock prices. See Equation 2.11 for details.

2.4 Liquidity Impact on Asset Prices

One of the main reasons for research on stock liquidity is that it influences stock prices. In
this section I first refer to the theory and evidence of individual stock liquidity impact on
individual stock prices briefly, as this is an important foundation to understand liquidity

effects on asset pricing. I then turn to the literature on market-wide liquidity and its impact
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on individual stock prices. As this is the focus of my analysis in Chapter 4, I cover this

literature in greater detail.

2.4.1 Individual Stock Liquidity and Stock Prices

The literature on liquidity impacts on asset pricing builds on a seminal paper by Amihud
and Mendelson (1986a). They formulate a model describing the relation between illiquidity,
in the form of relative bid-ask spreads, and gross stock returns. This model builds on two

hypotheses:

1. Investors will in general prefer a stock with low trading costs to an identical stock with

high trading costs.

2. As investors amortise the trading costs over their holding period, stocks with high (low)
trading costs will in equilibrium be allocated to investors with long (short) investment

horizons.

These two intuitive hypotheses together imply a positive and concave relationship between
gross returns and the relative bid-ask spread. The relation is positive because the spread
is discounted in the price, making returns higher when spreads are high, as the payoffs are
unaffected by the spread. Concavity follows from the clientele effect described in the second
hypothesis. As illiquid stocks are bought by long-term investors, the spread is amortised
over a longer period and will hence be discounted less in relative terms. Liquid stocks are
bought by short-term investors that discount trading costs over a shorter period. Amihud and
Mendelson (1986a) find empirical support for this model in a setting of annual observations
on NYSE stocks.

A related reasoning is given in a model by Constantinides (1986) dealing with portfolio
choice in a multi-period setting. He argues that there is a trade-off between the utility of
rebalancing the portfolio to its optimal allocations and the transaction cost, which has the
implication that assets with low trading costs will be traded more frequently than assets with
high trading costs.

A substantial empirical literature has focussed on assessing these hypotheses, using differ-
ent return adjustment approaches, different liquidity measures, different market mechanisms,
and different data frequencies. This includes Amihud and Mendelson (1989) who find support
for their model while accounting for return volatility; Brennan, Chordia, and Subrahmanyam
(1998) who use dollar trading volume and Datar, Naik, and Radcliffe (1998) who use T'urnover
as liquidity measure, both finding support for the illiquidity relationship to returns. Brennan
and Subrahmanyam (1996) use the framework by Glosten and Harris (1988) and find sup-
port for the positive return relationship for both fixed and variable costs, but they do not

find support for concavity in this relationship. Jacoby, Fowler, and Gottesman (2000) argue



that concavity of the relationship is likely in a highly liquid market (such as the one stud-
ied by Amihud and Mendelson 1986a), but in the limit (when the expected relative spread
approaches 100%), a level effect will dominate and cause convexity.

Eleswarapu and Reinganum (1993) find that the liquidity effect is only present in January,
giving rise to a seasonality discussion followed by Eleswarapu (1997) and Amihud (2002)
who both find support for a liquidity effect also in non-January months. Hasbrouck (2009),
however, using a liquidity measure based on a Gibbs sampler, does not find support for the
liquidity effect when accounting for the January effect. A detailed survey of the literature
on liquidity’s influence on asset pricing in general is available in Amihud, Pedersen, and
Mendelson (2005). As my main interests are the measurement and effects of market-wide

liquidity, I now turn the focus to that topic.

2.4.2 Systematic Liquidity, Liquidity Risk, and Asset Pricing

As illustrated in Section 2.2, liquidity varies substantially over time. In accordance with
the findings on liquidity impacts on prices, this time variation should be important for asset
pricing too, forming the concept liquidity risk. Furthermore, liquidity co-varies in the cross-
section, implying that it is driven by some underlying market factor structure. Several reasons
for cross-sectional co-variance have been suggested. These include the following categories

(similar arguments can be used to explain time-series variations in liquidity):

e Trading activity, market volatility, and funding conditions can affect the inventory cost
of market makers on a market-wide scale (Brunnermeier and Pedersen 2009, Chordia,

Roll, and Subrahmanyam 2000);

e Market makers and institutional investors that deal with many stocks simultaneously
can cause market-wide liquidity movements (Chordia, Roll, and Subrahmanyam 2000,

Coughenour and Saad 2004, Kamara, Lou, and Sadka 2008);

o Seasonality effects, such as the January effect discussed above (Eleswarapu 1997), are

a source of co-variation;

e Various macroeconomic indicators can lead market movements in liquidity (Chordia,

Roll, and Subrahmanyam 2001, Watanabe 2004).

The co-variation of stock liquidity across firms is called commonality in liquidity, and the
underlying market factors causing this are referred to as systematic liquidity factors. To the
extent that commonality in liquidity is strong and persistent over time, it should be treated as
a risk factor in asset pricing. Pioneering articles that established the existence of systematic
liquidity movements were Chordia, Roll, and Subrahmanyam (2000) and Huberman and

Halka (2001). Their results were reinforced by Chordia, Roll, and Subrahmanyam (2001)
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who used a larger set of firms over a much longer time span. In a contemporary article,
Hasbrouck and Seppi (2001) studied commonality in liquidity using PCA without finding
evidence thereof. Numerous studies have followed, studying commonality in liquidity with
respect to different markets, time periods, and liquidity measures. Systematic liquidity factors
are typically derived either as a market- or value-weighted average (following Chordia, Roll,
and Subrahmanyam 2000), or through a factor structure investigated using PCA (used by
Hasbrouck and Seppi 2001). Details on these methods are given in Chapter 4 — I here focus
on the theory and findings on systematic liquidity factors.

While the above studies investigate the US stock exchanges, commonality has also been
found in the London Stock Exchange (Galariotis, Giouvris, and Lane 2007), Athens Stock
Exchange (Giouvris and Galariotis 2008), the Frankfurt Stock Exchange (Xetra) (Kempf and
Mayston 2008, Kopp, Hiitl, Loistl, and Prix 2008), the Swiss Stock Exchange (Bauer 2004),
and Oslo Stock Exchange (Chollete, Nzes, and Skjeltorp 2007). Karolyi, Lee, and van Dijk
(2007) provide a study of commonality in liquidity in 40 different countries. Several studies
have looked further into commonality on NYSE, AMEX, and NASDAQ (Amihud 2002, Chen
2007, Chollete, Nzes, and Skjeltorp 2008, Chordia, Huh, and Subrahmanyam 2009, Goyenko,
Holden, and Trzcinka 2009, Kamara, Lou, and Sadka 2008, Korajczyk and Sadka 2008, Sadka
2006), reinforcing the evidence of systematic liquidity factors.

In order to study asset-specific liquidity shocks, liquidity data can be adjusted for the
effects that are known to cause market-wide liquidity changes. Applying the adjustment
methodology of Gallant, Rossi, and Tauchen (1992), Chordia, Sarkar, and Subrahmanyam
(2005) show how liquidity can be detrended and adjusted (using dummy variables) for financial
crisis, tick size changes, seasonality (with respect to weekday and month), holidays, and
macroeconomic shocks. Such adjustment puts the emphasis on the idiosyncratic liquidity
shocks rather than the common shocks. I do not adjust the liquidity data presented in this
chapter, as this would remove the commonality that I seek to analyse.

The degree of commonality depends on the liquidity measure applied. In the extensive
study by Korajezyk and Sadka (2008), commonality is compared across the same liquidity
measures as those presented in Section 2.2, showing strong commonality in quoted and effec-
tive spreads, and fixed inventory costs (¥). Commonality is also detected in Twrnover and
in fixed information-based costs ('), whereas the variable costs of inventory and asymmetric
information show little commonality. They also find persistence in the systematic factors for
all the eight liquidity measures, which is in line with other liquidity commonality studies and
a prerequisite for systematic liquidity factors’ importance in asset pricing.

The price implications of liquidity risk and systematic liquidity has been modelled by
Acharya and Pedersen (2005). They adjust CAPM (Sharpe 1964, Lintner 1965, Mossin 1966)

to study returns net of liquidity costs (r; — L;). This amendment implies that expected gross
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return is a function of the market risk as well as three different types of liquidity risk. These

can be described as follows:

e The first type of liquidity risk is the co-variance between stock liquidity and market
liquidity, which relates to the commonality in liquidity discussion. Stocks that become
more illiquid when markets in general are illiquid are unattractive to investors, and a
positive co-variance is hence compensated by a return premium. This type of liquidity
risk has been discussed by Chordia, Roll, and Subrahmanyam (2000) and Kamara, Lou,
and Sadka (2008). The latter shows that this type of liquidity risk has increased over
the years 1963-2005.

e The second type of liquidity risk is the co-variance between returns on individual stocks
and market liquidity cost. Stocks that show higher returns when markets are illiquid are
attractive to investors motivating the negative sign on this co-variance. This relation-
ship has been shown to hold empirically in several market liquidity studies, including
Chen (2007), Gibson and Mougeot (2004), Korajezyk and Sadka (2008), Pastor and
Stambaugh (2003), and Sadka (2006).

e The third type of liquidity risk describes how liquidity costs of individual stocks re-
act to movements in market returns. In market downturns investors often need to
liquidate positions. Stocks whose liquidity costs are low during downturns are hence
relatively highly valued, implying a negative sign on this kind of risk. The observations
in Section 2.2 indicate a tendency of negative co-variance between market return and
individual stock liquidity, as many measures demonstrate spikes in liquidity costs dur-
ing sharp falls in market returns, e.g. the Russian/LTCM crisis and the burst of the
dot-com bubble. This type of risk has not received much attention in the literature,
but the empirical investigation of Acharya and Pedersen (2005) find it to be the most
important of the three liquidity risk types, and they find support in the work of Lynch
and Tan (2004). Other empirical work on this type of risk includes Chordia, Roll, and
Subrahmanyam (2001) and Coughenour and Saad (2004) that find an asymmetry in

spread responses to up- and down-markets.

Many of the risk assessment studies referred above are performed in factor models as specified
by Fama and MacBeth (1973) and Fama and French (1993), in some cases including the
momentum factor of Carhart (1997). In this context the momentum anomaly (Jegadeesh
and Titman 1993, the possibility to make money by selling stocks in a falling trend, and
vice versa) has showed none or very little significance (Chen 2007, Chordia, Goyal, Sadka,
Sadka, and Shivakumar 2009, Sadka 2006), indicating that this anomaly may be explained
by liquidity costs.



2.5 Way Forward: Liquidity Measurement Issues

Clearly, liquidity has some influence on stock pricing. Measurement of this pricing effect
and of liquidity risk is however complicated by the measurement problem of liquidity itself.
The purpose of this chapter has been to give some insight in that measurement problem and
different ways of dealing with it. It is, however, not straightforward to calculate liquidity
directly from the empirical data even when the measures are well defined. Several details
on data processing remain to be addressed to achieve good measures. In the next chapter, I
discuss in full detail how the TA() database can be processed to a form suitable for liquidity
measurement in accordance with Section 2.2.

Another measurement issue, not discussed above, is how to best derive the systematic
liquidity factor(s), i.e. the underlying mechanisms driving market-wide changes in liquidity.
This is the focus of Chapter 4. There I present different approaches to systematic liquidity
measurement in detail, and suggest improvements on these. I then evaluate the different

methods’ ability to capture commonality in liquidity as well as ability to explain stock returns.
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Chapter 3

Using TAQ to Measure Liquidity

This chapter shows in full detail the data processing preceding liquidity measurement when
using high-frequency data, with specific focus on the TAQ data set. This is a process necessary
for liquidity research that has not previously been fully covered in the literature. In recent
vears the size of the TA() database, in particular the quote database, has increased immensely,
creating a new set of problems that have not been covered in previous processing guides. The
purpose of this chapter is to fill that gap in the literature by providing a transparent exposition
of the decisions necessary before liquidity measurement. In particular, data downloading
and filtering, the matching of trade and quote observations, and remedies for simultaneous

ohservations and erroneous observations are discussed.

3.1 Introduction

In the previous section I present monthly observations of liquidity measured in eight different
ways. These are based on the stocks that were in S&P500 on 31 December 2007, covering the
vears 1995-2007. For each liquidity measure, this implies an unbalanced panel of 156 months
and 500 stocks. The data used for calculating this liquidity data set comes from the TAQ
database. The processing preceding any calculations is extensive, but it is rarely documented
in detail. As this is a tedious but necessary part of liquidity research today, the lack of
guidance constitutes a clear gap in the literature. Several choices, often arbitrary, have to be
made in the processing of data, and transparency of these is important for analysis of the end
results. The purpose of this chapter is to provide a detailed exposition of the different steps
necessary to take prior to liquidity measurement when using TAQ data.

The reason that arbitrary decisions have to be made in the data processing is that the
size of the database prohibits manual evaluation of each data point. For the years 1995-
2007 and the stocks and exchanges that I cover, the TAQ database holds in total 5.2 billion

observations on trades and 24.3 billion observations on quotes. Figure 3.1 illustrates how the
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Figure 3.1: Number of observations from TAQ database 1995-2007

The number of trades and quotes observations are shown on a logarithmic scale monthly for the period
1995 2007, both in total and divided with number of stocks considered each month.

size of the database has developed over the years covered. As seen in the figure, which has a
logarithmic scale, there were more trades than quotes observation in 1995 (1.3 and 0.9 million
per month respectively). The number of quote observations have increased much faster than
the number of trade observations, and in 2007 there were almost 6 times more quotes than
trades (1 billion quotes and 0.17 billion trades per month).

An earlier description of TAQ data processing is available in Bauwens and Giot (2001,
Chapter 2), which describes the database structure in more detail than I do, and has a
focus on financial durations and intraday seasonalities — two topics that I do not cover here.
Furthermore, Boehmer, Broussard, and Kallunki (2002, Chapter 10), give an overview of how
to read TAQ data in the SAS software, and have some general advice on liquidity measurement
in terms of bid-ask spreads. Both of these guides overlap with the current chapter in that
they show how matching of trades and quotes can be done, but they do not incorporate the
latest research on the appropriate time stamp delay of trades (see Section 3.5). In addition,
they do not address the increasing problem of simultaneous observations (see Section 3.4),
which has appeared after the publication of their work, and they do not address erroneous
observations.

The processing of data preceding liquidity calculations can be described in five steps: (1)
data downloading; (2) data filtering (3) aggregation of simultaneous data; (4) matching of

trades and quotes; and (5) data cleaning. I present each of these steps below, with a summary
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of the workflow provided in Table 3.1, which can be used as a reference card throughout this

chapter.

3.2 Data Downloading

TAQ holds transaction data (trades) and order data (quotes) in separate files that can be
translated to trade and quote files using the software TAQJ3. Trade records hold data on
price (PRICE), volume (SIZ), time stamp (TTIM), and an indicator of the exchange where
the transaction took place (EX). All major exchanges in the United States are covered by
the database. Furthermore, information on special conditions of the trade and on whether
the trade was marked as corrected, cancelled or erroneous is given in two indicator variables
(COND and CORR). I am interested primarily in the first four variables, but all variables need
to be downloaded for data filtering purposes. Quote records contain information on best bid
price (BID) and volume (BIDSIZ) and best offer price (OFR) and volume (OFRSIZ) at a certain
time (QTIM) and exchange (EX). Specific conditions around quotes are given in an indicator
variable (MODE).

For each stock and each month, I download all trades recorded between 09.30 and 16.00
(the opening hours on AMEX, NYSE., and NASDAQ). It is also possible to specify what
exchanges should be included, but an indicator change of NASDAQ records on June 28 2006
that is not accounted for by TAQ3 makes it necessary to download data from all exchanges
in order to access NASDAQ trades (see TAQ3 documentation, read me file). Table 3.2 shows
an example of all the input parameters for TAQ3.! It is important to note that trade and
quote records are downloaded to separate files, they are not matched to each other at this
stage. TAQ also contains some monthly stock characteristics data stored in master files. 1
read these separately, not using the function in TAQ3.? These files give information for each
ticker (SYMBOL) on full company name (NAME), CUSIP number (CUSIP), number of shares
outstanding (SHARESOUT), lot size (UT), tick size (DENOM) and share type (TYPE).

3.3 Data Filtering

The stocks considered in this thesis are traded at many different exchanges, but have their
primary listing on NYSE, NASDAQ, or AMEX. Liquidity provided in smaller exchanges can
be interesting, but can also disturb the data set as trading rules differ across exchanges. To
minimise such effects, I limit the data set to the exchanges where stocks have their primary

listing. NASDAQ and NYSE have introduced automated trading platforms (NASDAQ-ADF

YFor this project T used monthly job files for each of the 500 stocks considered. These job files were
generated by a C program written by Yu Man at the Federal Reserve Bank of St Louis. This program was
very helpful in automating the downloading process.

2Statistical software used throughout this data processing is R 2.8, Windows version.
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1. Data downloading

Data files downloaded

Trade files (156 months, 500 stocks)
Quote files (156 months, 500 stocks)
Master files (156 months)

Variables

PRICE, SIZ, TTIM, COND, CORR, EX

BID, BIDSIZ, OFR, OFRSIZ, QTIM, MODE, EX
SYMBOL, NAME, CUSIP, SHARESOUT, DENOM, TYPE

2. Data filtering

a) Filters applied to both trades and quotes

EX; =1,N,T,A,D,Q,P*

Number of observations > 10

b) Filters applied to trades
0.5 < PRICE; < 15000
CORR = 0,1

COND = [blank],*,E,0

¢) Filters applied to quotes

OFR; > BID;

OFR; — BID; < $5

2(0OFR; — BID;)/(OFR; + BID;) < 0.25

NYSE, AMEX, NASDAQ, and NASDAQ-ADF data are
retained. Records from other exchanges are discarded.
*After February 2006, when NYSE took over Arca,
records from that exchange (P) are also retained.

Stocks that have less than 10 observation on either
trades or quotes in one month are excluded.

Trades with extreme transaction prices are excluded.
Records containing correct trades are retained

Trades without conditions, and trades marked as NYSE
Direct+ records are retained.

Only positive spreads are retained.
Large spreads are excluded.
Spreads larger than 25% of their midpoint are excluded.

3. Aggregation of simultaneous observations

a)

if TTIM; = TTIM; (i < j)
PRICE;S1Z, +PRICE; SIZ,

= PRICE; = S1Z;+51Z;

= SIZ; = SI1Z; + SIZJ-

= Discard trade j

b)
if QTIM; = QTIM; (i < j)
= Discard trade i

If two or more trades are recorded at the same second,
their volumes are summed and the aggregated trade
price is calculated as the volume-weighted average
trade price.

If two or more quotes are recorded at the same second,
the last quote record of that second is used.

4. Matching of trades and quotes

The quote prevailing at each trade is taken to be the last quote at least one second before the
trade. If no quote exists before the trade at that day, no quote is assigned. Quotes that are

not assigned to trades are discarded.

Table continued on next page

Table 3.1: Workflow for data processing (see caption on p.48)



Table continued from previous page

5. Data cleaning

a) Trades:

if |PRICE; — pr.i| > 30%.:(PRICE;) + (;

= Discard trade 1

& = min(10, # trades in the current day/270)
§ = 10%; ¢; = 2 x DENOM;

b) Spreads:

if PRICE; > 1.1 x OFR;
or PRICE; < 0.9 x BID;
= Discard quote i

a) Shares outstanding:

if ASHARESOUT; > 25%

and SHARESOUT;;; = SHARESOUT;_; + 10%
(= 1,52, 10)

= Discard SHARESQUT;:SHARESOUT;

Trades where the price is more than 3 standard
deviations (o, ;) away from its é-trimmed mean
(pg.:) over the & surrounding observations are
discarded. ; is a granularity term set to be
twice the tick size.

When the trade price is more than 10% higher
(lower) than the ask (bid) price, the quote
observation is discarded. The trade is not
discarded.

Changes in number of shares outstanding that
are reversed within 10 months are regarded as
erroneous. All observations from the change
until the reversal are discarded.

Table 3.1: Workflow for data processing

The table shows the workflow of data processing prior to liquidity calculation. The indexes 7 and j are discrete
positive numbers referring to records of trades and quotes. After the matching in step 4, trades and quotes

are in the same records.

and Arca respectively) parallel to their traditional exchanges. I include data from these

platforms as well. Records from all other exchanges are discarded, see Table 3.1:2a for exact

filter specifications.

In order to avoid noise in the liquidity measurement it is common to apply a number of

filters on trade and quote records. In this regard I follow the conventions of previous literature.

When a stock does not have at least 10 observations on both trades and quotes in a given

month, I exclude it from liquidity measurement that month, as the risk of measurement error

would be too large.

Trades that are cancelled, corrected, out of sequence, or have special conditions attached

to them are excluded. Such information is covered by the CORR and COND indicators in TAQ).

By applying the filters specified in Table 3.1:2b, I exclude trades with the conditions: Cash-

only basis, Bunched, Cash Sale, Next Day Settlement Only, Bunched Sold, Rule 127, Rule

155, Sold Last, Next Day, Opened Last, Prior Reference Price, Seller, Split Trade, Pre-/Post-

Market Trades, Average Price Trades, Opened After Trading Halt, Sold Sale, and Crossing

Section. In addition, I exclude trades at very high ($15000) or very low ($0.5) prices.

I follow Korajezyk and Sadka (2008) and classify quotes with negative spreads, spreads

larger than $5, or spreads larger than 25% when the spread midpoint is less than $20, as

implausible. The implausible quotes are discarded, as described in Table 3.1:2c.
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[JOBSETTINGS] [QUOTEFIELDS]
JOBDESCRIPTION=Example QTIM=1
INPUTSYMBOLFILE= BID=1
QUOTESFILENAME=D:\...\200702NYXq OFR=1
TRADESFILENAME=D:\...\200702NYXt QSEQ=0
STATSFILENAME= BIDSIZ=1
TIMEPERIOD=0 OFRSIZ=1
INPUTOPTIONS=0 MODE=0
INPUTSYMBOLLISTTYPE=0 EX=1
NUMBERFORMAT=1 MMID=0
TIMEFORMAT=2 [TRADEFIELDS]
DATEFORMAT=1 TTIM=1
OUTPUTOPTIONS=1 PRICE=1
OUTPUTFORMAT=1 SIZ=1
SELECTEDTIMERANGE=1 TSEQ=0
MONTHTOPROCESS=0 G127=1
TIMERANGEINTERVAL=1 CORR=1
INCLUDEQUOTES=1 COND=1
INCLUDETRADES=1 EX=1
INCLUDESTATS=0 [EXCHANGES]
INCLUDEHEADER=1 AMEX=1
HEADERFIRSTRECORDONLY=1 BOSTON=1
INCLUDEMAST=0 CINCINNATI=1
INCLUDEDIV=0 MIDWEST=1
OVERWRITEQOUTPUTFILES=1 NYSE=1
AFTERHOURSSTATISTICS=0 PACIFIC=1
DATABASEIMPORT=0 NASD=1
INCLUDECORRECTIONS=1 PHILADELPHIA=1
JOBACTIVE=1 INSTINET=1
STARTDATE=2/1/2007 CBOE=1
ENDDATE=2/28/2007 NASDADF=1

STARTTIME=09:30:00
ENDTIME=16:05:00
SYMBOL/CUSIPLIST=NYX

Table 3.2: Example job file for TAQ3

The table shows the inputs given to the trade and quote data downloading program TAQ3 through job files.
Job files were created for each stock and each month. The example covers ticker NYX in February 2007.
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3.4 Aggregation of Simultaneous Observations

As the number of quote records in TAQ has increased dramatically lately it is common to find
many quote observations of one stock that are reported in the same second. As TAQ does not
distinguish time units smaller than one second, all these quotes can not be considered. There
is not much guidance in the literature on how to deal with this problem. Brownlees and Gallo
(2006) recommend using the median quote but also say that the first or last observation could
be used (the latter is the choice of e.g. Korajezyk and Sadka 2008). There does not appear
to be any theoretical foundation for either, so I make an arbitrary choice and use the last
observation each second (see Table 3.1:3b).

Trades in the same stock that are recorded within one second are less common but happen
throughout the sample considered. As these will all be matched to the same quote, several
researchers merge the simultaneous trades (Hansch 2003, Engle and Patton 2004, Brownlees
and Gallo 2006). These researchers all agree that volumes can straightforwardly be aggregated
by summation, but there are different approaches to find a merged trade price. Engle and
Patton (2004) use the price of the first trade in each second, assuming that all trades in the
second are executed at the same price. Brownlees and Gallo (2006) use the median price in
each second. As price impact of trading is an important aspect of liquidity, I think that the
volumes of the simultaneous trades are important to consider. Hence, I use a volume-weighted
average as measure of aggregated trade price, and sum of volumes as measure of aggregated
trade volume (see Table 3.1:3a). It is noteworthy that if the assumption of Engle and Patton

(2004) is true, all these approaches will yield the same aggregated trade price.

3.5 Matching of Trades and Quotes

For Espread measurement and price impact regression analysis, trades need to be matched
with quotes prevailing at the time just before the trade was executed. This is needed for
determining whether the trade is buyer- or seller-initiated. Most of the liquidity literature
has used the findings of Lee and Ready (1991) as guidance on how to match trades and quotes
for this approximation. Based on delays in trade reporting, their recommendation is to use
the latest quote recorded at least five seconds before the trade. Henker and Wang (2006)
argue that the rule by Lee and Ready (1991) is based on manual trade reporting that is no
longer in use in the stock exchanges. According to Henker and Wang (2006), the reporting
process was made automatic during the period 1994-2001, leading to much shorter reporting
delays, or even simultaneous reporting. A history of trade reporting procedures is available
in Vergote (2005). Both Henker and Wang (2006) and Vergote (2005) have investigated what
time lag is appropriate after these reforms, finding one and two seconds respectively. Both

studies are limited to NYSE.
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Reporting delays in NASDAQ trades have been investigated by Ellis, Michaely, and
O’Hara (2000). In their sample from 1996-1997, they find that even though about 12.4%
of the trades are reported within 1 second after execution, a more typical delay is 15-16 sec-
onds (58.6%), and 6.4% of the trades have a longer delay than that. Still, they conclude that
a zero delay matching rule is appropriate, as they see no improvement in matching accuracy
when applying delays.?

I am not aware of any investigation of trade reporting delays on AMEX.

In order to match aggregate trades consisting of trades from several exchanges to appro-
priate quotes, I need to use the same matching rule for all trades in my sample. I choose
to follow the one second rule recommended by Henker and Wang (2006), as that study was
performed on the post-1993 S&P500 index stocks with primary listing on NYSE, which is
matching the majority of the trades in my sample (Vergote, 2005, uses a much smaller set
of NYSE stocks). The same rule has been used for NASDAQ trades in a recent study by
Stoll and Schenzler (2006), and this is close to the recommendation by Ellis, Michaely, and
O'Hara (2000). I do not investigate how sensitive my results are to the chosen trade delay
rule. As the rule has been derived on the basis of a sample matching the majority of the
trades in my data set, it is likely that a different trade reporting delay rule would yield less
accurate matching of trades and quotes, and accordingly induce more noise in the subsequent

estimates of systematic factors.

3.6 Data Cleaning

In a huge data set as the one at hand, there is an obvious risk of erroneous entries that
can have slipped through the above processing. Many studies deal with this process by
Winzorising the liquidity measures once they are calculated, i.e. they trim the tails of the
liquidity probability distributions (Amihud 2002, Sadka 2006, Korajczyk and Sadka 2008).
As this is arguably a crude method, I am instead dealing with unreasonable data points before
calculating liquidity measures. To distinguish erroneous data points from true observations
of extreme values is sometimes difficult. The data cleaning described in this section is done
with the purpose of removing errors but not true outliers. Unfortunately, the size of the
data set prohibits double-checking of each removed observation, making the correct design of

detection algorithms important.

3Ellis, Michaely, and O’Hara (2000), and later also Chakrabarty, Li, Nguyen, and Van Ness (2007), develop
algorithms for how to classify NASDAQ trades as buyer- or seller-initiated. These algorithms differ from the
quote rule that I apply. I stick to the simpler rule for computational reasons. Furthermore, simultaneous
trades (see section 3.3) can contain trades from both NYSE and NASDAQ), so applying different rules for
different exchanges would cause a classification problem for these trades.
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3.6.1 Trades

Trades in my relatively liquid sample typically occur in smooth price sequences. When in-
specting the data, it appears that in rare cases trades appear that are far off the price sequence
for the stock. This may be due to erroneous recording of transaction price, time, or trade
conditions. Brownlees and Gallo (2006) provide an algorithm for dealing with such trade
price inconsistencies. They suggest that for each day, trades that deviate more than three
standard deviations from the delta-trimmed mean should be regarded erroneous. Details of
this algorithm are given in Table 3.1:5a.

Brownlees and Gallo (2006) suggest that the number of observations (k) considered when
calculating the mean and the standard deviation should be chosen in accordance with the
trading activity in the stock. This allows for some time-variation in the standard deviation.
They choose k = 60 for their sample, which corresponds to a trading intensity of 270 x & per
day. I use this factor (270) to calculate x for each day for each stock, setting 10 as a minimum
value for k. For days with less than x observations, all observations are used. The granularity
coefficient ({), which is used to avoid zero variances, should be chosen as a multiple of the
minimum tick size. Brownlees and Gallo (2006) choose ¢ = 0.02, which is a multiple of 2 of
the tick size used in their sample (0.01). As the minimum tick size decreases substantially
over the years of my data set, I let the parameter be set by the double monthly tick size
variable (DENOM) available in TAQ.*

A potential development of the algorithm would be to introduce an autoregressive condi-
tional heteroscedasticity (ARCH) specification when calculating mean and standard deviation.
This could improve the precision in the filter, but would also add computational burden to
the filtering. I consider this an interesting venue for future research, but for the application
in this thesis I follow the algorithm as specified by Brownlees and Gallo (2006).

In 1995-2007, this filter captures 3.6 million trades, which is 0.07% of the total number of
observations on trades. The intensity of erroneous trades peaks at the burst of the dot-com
bubble in March 2000. Closer inspection shows that these observations primarily come from
NASDAQ companies, a tendency also reported by Brownlees and Gallo (2006). In Figure 3.2,
I provide a snapshot of a trading day with many trades identified as erroneous in one firm.
It shows that the algorithm captures trades that are clearly outside the core main price
sequence. It is known that the trade reporting sometimes has delays at NASDAQ), which
can make a trade look like it is out of sequence. If this is the case, it is good to remove
those trades, as they otherwise will have a time mismatch between trade and quote. Another
theory could be that informed traders would have reason to transact out of the price sequence.
However, deviations from the price sequence of this magnitude would be inefficient behaviour

by those traders, as they would reveal the private information to the market. Hence, I see it as

4Tick size data is not available in TAQ for all stocks. For these cases, the first 1000 non-aggregated trades
in the month are scanned to identify the minimum non-zero price movement.
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Figure 3.2: Illustration of erroneous trade oebservations, YHOO, March 30, 2000
Each black data point represents one trade in YHOO in March 30, 2000. Trades are sorted chronologically on

the horizontal axis. In total there were 15826 trades on the day, out of which 127 were identified as erroneous
by the Brownlees and Gallo (2006) algorithm (0.83% of total).

unlikely that the detected trades mirror true deviations from the trade sequence. The finding
of typical trade reporting delays of more than 15 seconds at NASDAQ (Ellis, Michaely, and
O’Hara 2000) implies that on days with high volatility many trades can appear to be out of

sequence.

3.6.2 Quotes

Another problem found in the TAQ database is quotes that are not on the same level as the
trade that they have been matched to, i.e. the trade price is outside the spread. I exclude
quotes observations if the trade is more than 10% outside the bid-ask spread, as described in
Table 3.1:5b. The decision level, 10%, is chosen arbitrarily, as no guidance has been found in
the literature. These trade and quote mis-matches are likely due to a lack of recent quotes in
the data set. If the trade price changes with more than 10% in one day, without any updated
quote observations, this type of erroneous outliers appear. This is not mirroring economic
events, and the observations should hence be removed. It does happen that trades are actually
executed outside the bid-ask spread, but in cases where this happens at more than 10% price
premium or discount, it is likely due to trade conditions not covered in this data set. This filter

excludes less than 0.001% of all quotes that are matched to trades in the sample 1995-2007,
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but has a much larger impact for 1993-1994 (16%), where quote observations are scarce. For
those years, there exists whole days where quote prices are unrelated to trade prices. This is
due to unknown problems in the TAQ database. The problem serves as further motivation

for excluding 1993-1994 data from the analysis.

3.6.3 Shares Outstanding

Finally, a measure in TAQ) that appears to have many erroneous entries is shares outstanding
(SHARESOUT). This measure is used when calculating Turnover, see Equation 2.5. An example
of erroneous data is the ticker TMK (Torchmark Corp.), in 1997. This stock had a split in
August 1997 that doubled its number of shares, which is correctly reported in TA(Q). SHARESOUT
is typically not a volatile measure, and in the two subsequent months its value is constant.
In November 1997, however, TAQ reports the pre-August level of SHARESOUT, and then in
December it is back at the newer value. This is illustrated in Figure 3.3. Such jumps in
SHARESQOUT are clearly erroneous, and they induce outliers in the turnover measure. As this
problem has not been discussed in the literature before (to my knowledge), I design an
algorithm for removing data periods with dubious reporting. If a change in SHARESQOUT of
> 25% is reversed within 10 months, the period of the temporary level is discarded. A
reversal is defined as a move back to the previous level (+£10%).> In the given example,
illustrated in Figure 3.3, this means that the observations for August-November 1997 are
discarded. The algorithm filters out 0.47% of all observations on SHARESOUT. The number of

erroneous observations is decreasing over time, indicating increasing quality of the data.

3.7 Concluding Remarks

The purpose of this chapter was to describe the data processing preceding actual liquidity
measurement that is necessary when utilising TAQ data. I described this process in five
steps with the objective to produce a transparent and useful guidance for liquidity research.
Some of the problems of TAQ processing have appeared over the last few years (post-2004),
in particular the problem of simultaneous observations. My summary on treatment on this
problem is a novel contribution to this small literature. In addition, the detection of errors in
the data on shares outstanding has not been dealt with elsewhere, and the approach described

in Section 3.6 is a first attempt to remedy that problem.

SThe threshold levels used in this algorithm are arbitrarily selected.
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Chapter 4

Dynamics of Systematic

Liquidity

I develop the principal component analysis (PCA) approach to systematic liquidity measure-
ment by introducing moving and expanding estimation windows.! I evaluate these methods
along with traditional estimation techniques (full sample PCA and market average) in terms
of ability to explain (1) cross-sectional stock liquidity and (2) cross-sectional stock returns.
For several traditional liquidity measures my results suggest an expanding window specifica-
tion for systematic liquidity estimation. However, for price impact liquidity measures I find
support for a moving window specification. The market average proxy of systematic liquidity
produces the same degree of commonality, but does not have the same ability to explain stock

returns as the PCA-based estimates.

4.1 Introduction

As referred in Section 2.4, it is well-established that liquidity affects equity prices and returns.
Furthermore, co-movements in stocks’ liquidity, driven by unobservable market forces called
systematic liquidity factors (Chordia, Roll, and Subrahmanyam 2000, Huberman and Halka
2001, Hasbrouck and Seppi 2001), have also been shown in many studies to affect individual
stock returns (Amihud 2002, Pastor and Stambaugh 2003, Acharya and Pedersen 2005, Ko-
rajezyk and Sadka 2008). Hence, systematic liquidity factors are relevant as risk factors to
any investor.

To manage liquidity risk, accurate measurement of systematic liquidity is crucial. In this

!The findings of this chapter have also been published as a Federal Reserve Bank of St Louis Working
Paper (Hagstromer, Anderson, Binner, and Nilsson 2009). For the work on this article, [ am grateful for useful
comments from Charles Gascon as well as seminar participants at the Arne Ryde Workshop on Financial
Economics 2009 {Lund University) and the Forecasting Financial Markets Conference 2009 (University of
Luxembourg).



chapter I use the familiar principal components estimation technique to derive the factors. 1
extend previous research by introducing dynamic estimation windows in this setting, allowing
an investigation of the temporal stability (robustness) of the systematic liquidity measure.

PCA is a popular method for explaining the co-variation between many variables in terms
of a small number of common factors. Most investigations use a static specification of PCA,
based on analysis of the co-variance matrix of variables of interest, which is assumed to be
time-invariant. In the case of liquidity, where both systematic liquidity and commonality
in liquidity are known to vary over time (Chordia, Roll, and Subrahmanyam 2001, Kamara,
Lou, and Sadka 2008), this assumption may be counterfactual. Still, all studies using PCA
to derive systematic liquidity choose this static approach.? I test the appropriateness of this
assumption by introducing moving and expanding (recursive) estimation windows for PCA.?
I compare my results to those obtained from PCA with static window (i.e. where the full
sample is used); and those from a cross-sectional (equal weighted) liquidity average, another
common approximation of systematic liquidity (Chordia, Roll, and Subrahmanyam 2000);
giving me four methods to approximate systematic liquidity.

For each of the eight liquidity measures described in Section 2.2, I evaluate the four
different methods for deriving systematic liquidity factors, using two different evaluation
criteria: (A) ability to explain cross-sectional variation in stock liquidity (i.e. commonality
in liquidity) and (B) ability to explain cross-sectional variation in stock returns. I argue that
high commonality is an indicator of systematic liquidity measurement accuracy. PCA is based
on the estimated co-variance matrix. If the estimated co-variance matrix differs over different
estimation horizons it can be due to either sampling error or actual time-variation in the
underlying co-variance matrix. If it is due to noise, a longer estimation window should yield
higher commonality, as the sampling error is smaller with more data. If there is time-variation
in the underlying co-variance matrix, the PCA with moving estimation window should be able
to capture this time-variation and therefore produce a higher degree of commonality. Hence,
by running commonality tests I investigate which estimation method yields factors that best
summarise cross-sectional liquidity variation.

As explaining stock returns is central to the application of systematic liquidity factors, I
make this ability my second evaluation criterion in my assessment of estimation methods for
systematic liquidity. I run an extended market model including systematic liquidity factors,
and study the improvement in return variation explanation relative to the standard market
model.

My first finding is that time-series properties of the liquidity co-variance matrix differ

2 Hasbrouck and Seppi (2001); Beltran-Lopez, Giot, and Grammig (2005); Chen (2007); Chollete, Naes,
and Skjeltorp (2007); Chollete, Nzes. and Skjeltorp (2008); Kempf and Mayston (2008): Kopp, Hiitl, Loistl,
and Prix (2008): Korajezyk and Sadka (2008).

3The only related liquidity study that does not stay with the static window (full sample) PCA is Chen
(2007) who uses an expanding window specification; however she does not discuss the implications of this and
the constant co-variance assumption remains present.

(5]
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across liquidity measures. When considering liquidity measured by the Qspread, Espread,
Twrnover or ILLIQ, the accuracy of estimated systematic liquidity is not improved by allow-
ing the co-variance matrix to vary over time. The static, expanding and moving window ap-
proaches produce roughly the same average commonality. This suggests that the co-variance
matrices of these measures are quite stable over time. For the price impact measures based
on Glosten and Harris (1988) and Sadka (2006), however, I find that the moving window ap-
proach improves the accuracy of estimated systematic liquidity, i.e. the average commonality
is consistently higher when applyving the moving window PCA. Hence, there appears to be
time-variation in the underlying co-variance matrix for these measures. My investigation of
ability to explain stock returns point in the same direction as that of stock liquidity. For most
liquidity measures, different estimation window specifications for PCA do not make any dif-
ference for explaining returns. Transitory fixed market maker costs, which is Sadka’s (2006)
measure of fixed inventory cost, is an important exception to this. The systematic factors of
this liquidity measure, relative to the other measures considered, have a good ability in both
explaining stock liquidity and stock returns (highest of all measures), and it is best estimated
using the moving window PCA.

A second finding is that the market average proxy of systematic liquidity, suggested by
Chordia, Roll, and Subrahmanyam (2000), produces a commonality that on average is in line
with the various PCA factors for all measures considered (with the exception of ILLI(Q), which
is plagued by outliers). For Turnover and spread measures of liquidity, the cross-sectional
average can be used as proxy for systematic liquidity. For the other measures, time series
properties in commonality produced by the market average differ substantially from those
of PCA measures. Furthermore, when applied to stock return variation, the PCA-based
measures are superior to the market average regardless of the choice of liquidity measure.

Thirdly, I find that the properties of static window (full sample) PCA and the expanding
window (recursive) PCA in terms of ability to explain both stock liquidity and stock returns
are converging over time. The latter is computationally more expensive, but the former is
suffering from a forward looking bias that undermines its applicability in practice. My findings
indicate that the static window PCA can be replaced by expanding window PCA without
loss of accuracy.

In the next section I present the framework applied to estimate systematic liquidity fac-
tors with PCA, along with a discussion on how to deal with missing data, outliers, and
computational burden for this kind of problems. In Section 4.3, I perform commonality tests
and analyse results thereof, and in Section 4.4 I evaluate systematic liquidity in terms of
explanatory power with respect to stock returns. Finally, in Section 4.5, I summarise the

main implications of the chapter.
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4.2 Systematic liquidity derivation

I assume that the data-generating process of liquidity for a given stock is driven by some
underlying market liquidity factor (F) and an idiosyncratic liquidity variable (I'*). In a
market of N firms for which 7 periods are considered, yielding a stock liquidity matrix L* of

dimension (N x 7), this process can be described as
L* = p(L*) +ZF +T'*, (4.1)

where the underlying market liquidity factor is described by H row vectors (h = 1,2, ..., H)
in the matrix F' (H x 7) and each stock’s sensitivity to these vectors is given in the matrix =
(N x H). The column vectors of F are defined to be orthogonal to each other. The matrix of
idiosyncratic liquidity shocks, I'*, has dimension (N x 7). The average liquidity across time
for each stock is given in the vector p(L*) of length N and ¢ is a vector of ones of length 7.
In order to estimate F' with equal influence of each stock’s variance, I standardise liquidity
of each stock to have unit variance and zero mean over the 7 periods of time.* Denoting
the vector of stock liquidity standard deviation for each firm o(L}), the elements of the

standardised liquidity matrix takes the form
Liy = (L — w(L7))/o(L5)- (42)
Using this expression, the factor model described in Equation 4.1 can be expressed as
L=¢F+T, (4.3)

where &, = Z;p/0(L]) and I';; = ', /o(L}). Allowing the idiosyncratic liquidity shocks
I' to be weakly cross-sectionally correlated, I estimate this as an approximate factor model
(Chamberlain and Rothschild 1983). The cross-sectional correlation is decreasing with the
numbers of factors used (H). The idiosyncratic liquidity shocks may also feature autocor-
relation. When 7 is large enough, the model can still be consistently estimated using PCA
(see Stock and Watson, 2002a, 2002b). The principal components are the eigenvectors of the
co-variance matrix of L (£,) multiplied by L, and sorted into row h = 1,2, ..., H of F by its

corresponding eigenvalues, starting with the highest.

1Standardisation of the data is customary for PCA, but the exact methodology to do this has varied in
the liquidity literature (and has often not been disclosed). For example, Korajezyk and Sadka (2008) are
using an expanding estimation window to calculate market-wide mean and standard deviation. I standardise
on a stock-by-stock basis using means and standard deviations calculated for the = periods considered, as
market-wide standardisation may give disproportionate weight to stocks with high liquidity volatility.
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4.2.1 PCA with Dynamic Estimation Window

In the systematic liquidity literature, 7 has typically been set to the sample size T, yielding
a static F. This implies an assumption of constant co-variances in the cross-section over the
sample size 7. As mentioned in Chapter 2, due to tick size changes, financial crises, and
macroeconomic events the data entering this analysis is likely to feature structural breaks.
Furthermore, there is evidence of seasonality patterns in liquidity time series (Chordia, Sarkar,
and Subrahmanyam 2005). This makes the assumption of constant co-variances questionable.

I challenge the validity of constant co-variances by running a moving window PCA, util-
ising only the 7 latest observations. This excludes old observations that may otherwise yield
biased estimates, e.g. in the presence of structural breaks. With a moving estimation window,
time-varying co-variances are allowed. Formally, this implies a structure with time index t on
each of the variables in Equation 4.3 and a time span (¢ — 7+ 1) : ¢ considered for estimation
in each period t. The estimation is repeated fort =7, 7+ 1,7+ 2,....,T.

I also consider expanding window PCA (or recursive PCA), where the problem dimension
is growing with ¢, implying a time span 1 : . This specification is appropriate if the co-
variances are believed to be time-invariant, and where the usage of future data should be
avoided. Such a specification has earlier been considered in a systematic liquidity study by
Chen (2007). Henceforth, I shall refer to the the moving and expanding window PCA methods
as PCA with dynamic estimation window.

Earlier economics applications of PCA with dvnamic estimation window have appeared in
literature on integration of equity markets (Volosovych 2005, Gilmore, Lucey, and McManus
2008) and macroeconomic forecasting (Heij, van Dijk, and Groenen 2008), and more com-
monly outside economics, in particular process monitoring (Li, Yue, Valle-Cervantes, and
Qin 2000, Wang and Xia 2002).

For both versions of dynamic estimation window PCA,| I start the estimation at 7 = 36 and
for the moving window specification I keep the sample size constant at that size throughout
the sample. This time horizon, three years, should be long enough to identify commonality
due to monthly seasonality in the liquidity time series. It is also short enough to get a useful
comparison between expanding and moving estimation windows. As a comparison to previous
studies, I also provide the traditional version of PCA, estimated over the whole sample (I refer
to this as static window PCA).

The three specifications of PCA can all be nested into the moving window notation of
time span given above, setting the window size to 7 = [36,¢, 7). For further comparison to
previous literature, I evaluate these methods together with an equal-weighted cross-sectional
average of liquidity, used by Chordia, Roll, and Subrahmanyam (2000).

When using liquidity data on a higher frequency, such as intra-day or daily, it is possible
that high-liquidity stocks are affected by market-wide liquidity changes before low-liquidity
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stocks see any effects (as discussed by Kempf and Mayston, 2008; and Hallin, Mathias, Pirotte,
and Veredas, 2009). Such intertemporal co-variations are ignored in PCA, as the analysis is
based on the static co-variance matrix. Dynamic PCA models (or generalised dynamic factor
models), introduced by Forni, Hallin, Lippi, and Reichlin (2000, 2005), consider leads and lags
in the estimation and derive common factors that are orthogonal at all leads and lags of the
series. In my application, with liquidity data on monthly frequency, lagged market liquidity
effects appear unlikely, which is why I do not use the dynamic PCA model. An application of
dynamic PCA on systematics in daily liquidity data is available in Hallin, Mathias, Pirotte,
and Veredas (2009). They also investigate commonality across liquidity measures. In their
setting, with daily data and multiple liquidity measures, the ability to investigate leads and
lags is important, and the dynamic PCA is an appropriate modelling choice.

The dynamic PCA model also has a clearer distinction between common and idiosyncratic
components than what is seen in PCA. Common components are orthogonal not only to
each other but also to the idiosyncratic component. Still, in all versions of PCA (static,
dynamic estimation window, and dynamic) some commonality remains in the idiosyncratic
component. Hence, the benefit of this property is limited for my application, though it can be
useful for determining how many common factors to use (traditional PCA does not have an
explicit rule for this). Also, in a recent Monte Carlo experiment with a finite sample setting,
Kapetanios, Marcellino, Schifanoia, and Salasco (2009) show that the correlation between
true and estimated factors is consistently higher when using the PCA estimator than when
using the dynamic PCA estimator.

In my analysis, I set the number of factors H = 3. This choice is based on the choice in
previous studies (Hasbrouck and Seppi 2001, Korajczyk and Sadka 2008, Chollete, Naes, and
Skjeltorp 2008), as well as visual inspection of eigenvalues, that shows the proportion of total

variance explained by each factor.

4.2.2 Estimation Methodology: Robust Asymptotic PCA

PCA has some technical complications that have rarely been discussed in the applications to
liquidity. When applying PCA with dynamic estimation windows, where PCA is run hundreds
of times, these complications become important for the robustness of the results. As PCA
is based on finding eigenvectors in the co-variance matrix of the underlying variables, it is
important that the co-variances are robustly estimated. In this subsection, I discuss problems
associated with that estimation in some detail, including issues with missing values, outliers,
negative eigenvalues, and computational burden. For a more general discussion of PCA and
technical considerations thereof, see e.g. Jolliffe (2002).

Firstly, the estimation of the co-variance matrix needs to be adapted for missing values.

Typically, when dealing with stock market data there is an unbalanced panel of observations
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as companies rise and fall and go through mergers and acquisitions. As exclusion of companies
that do not exist throughout the sample would cause material information losses, a method
for dealing with long series of missing values is needed. With a moving window specification,
stocks with long series of missing values can be excluded until they have enough observations.
This partially sidesteps the missing value problem, but temporary cases of missing values
remain. To estimate co-variances in the presence of missing values, I use element-wise esti-
mation, using all pairs of observations available for the two variables (referred by Jolliffe 2002,
Ch. 13). For a stock to be included in the analysis, I demand that more than 12 observations
are available in the time span considered.’

Secondly, outliers can inflate or deflate variances and co-variances to an extent that they
mislead the PCA substantially (see Jolliffe 2002, Ch.10). In my setting, large idiosyncratic
stock liquidity shocks are easily imaginable and these should not be allowed to influence the
estimation of systematic liquidity. To deal with this, I use the robust co-variance matrix
estimation technique by Mehrotra (1995). This technique is based on using medians rather
than means when calculating slopes needed in variance and co-variance estimation. This is a
computationally expensive technique, but it yields high stability in the principal components.

Thirdly, a problem appearing when using element-wise estimation of the co-variance ma-
trix is that it may no longer be positive semi-definite. The robust estimation limits this
problem, but I still detect several negative eigenvalues, showing that the co-variance is not
positive semi-definite. To limit this problem, I use asymptotic PCA as suggested by Connor
and Korajezyk (1986). With this methodology, the co-variances between time periods rather
than the co-variances between stocks are applied as the basis for PCA. Connor and Kora-
jezyk (1986) show that components derived using this method are asymptotically equivalent
to those of PCA, and my investigation shows that in my setting of 500 stocks, the methods
are equivalent. When using asymptotic PCA, the problem of negative eigenvalues is much
smaller than for PCA, though it is still present. Furthermore, the computational burden of

PCA is in this way limited, as the co-variance matrix has dimension 7 rather than V.

4.3 Commonality in Liquidity

The degree of commonality is the proportion of stock liquidity variation that is due to sys-

tematic liquidity variation. This can be measured by estimating the relationship

AprLi; = b1r + B A arE1n e + Uiy s (4.4)

5For two alternative methods dealing with missing values in a static setting, see Korajezyk and Sadka
(2008).



which is closely related to Equation 4.1. Here, ¢; ; is an intercept and ®; . is a vector of
systematic liquidity factor loadings. Stock liquidity is regressed on the first h rows of the
estimated systematic liquidity factor (i.e. the h first principal components). The residuals,
u; 1~ are taken to be idiosyncratic liquidity shocks. In accordance with Chordia, Roll, and
Subrahmanyam (2000), the proportion of variation in stock liquidity explained by systematic
liquidity, R?, averaged across stocks, is taken as the degree of liquidity commonality. As
indicated by A g, I follow Chordia, Roll, and Subrahmanyam (2000) and run the common-
ality test on innovations in liquidity. These are retrieved by fitting autoregressive models to
liquidity measures and systematic liquidity factors.® In some previous studies, the common-
ality test has been run in levels, but I experience substantial non-stationarity problems with
such a specification.” Note that in addition to the firm index 4, I add the subscripts [ and 7
to distinguish the different liquidity measures and PCA specifications that I evaluate in this
framework. Note also that I use non-standardised liquidity data, as denoted by L*.®

I investigate commonality in liquidity for h = 1,2,3. This means that the three first
systematic liquidity factors are included in the h = 3 case, implying that R? is growing with
h. As I am interested in the time-variation of commonality, I run this regression using a
moving estimation window of 36 observations. To capture potential short-term trends in the
underlying co-variance structure, I use a three year window for my regressions, the same as
I use for the moving window specification of systematic liquidity. I have experimented with
different window sizes, finding that a two year window yields a less stable systematic liquidity
measure (with lower commonality), whereas slightly longer horizons yield results similar to
the three year window. A larger estimation window has been considered for the commonality
regressions as well, but that naturally makes the differences between moving and expanding
windows less significant. I require more than 12 stock liquidity observations in the specified
time frame for a firm to be considered in this analysis. To investigate how commonality
depends on the estimation of the underlying liquidity factor estimation, the procedure is
repeated for my different settings of 7.°

Before analyzing these differences between systematic liquidity factors, it is useful to

5 Autoregressive order is chosen using the Schwarz Bayesian information criterion, with up to two lags
allowed. I allow the lag length to differ across liquidity measures. The model is run using a 36 months moving
window.

TOther ways to overcome this stationarity problem would be either to run the PCA on shocks in liquidity
rather than levels, or to use a dynamic PCA specification.

SAn alternative way of measuring commonality when using PCA is to study the magnitude of the co-
variance matrix eigenvalues. The variation explained by each component vector is equal to the ratio of its
corresponding eigenvalue to the sum of all eigenvalues. This method for liquidity commonality measurement
was introduced by Hasbrouck and Seppi (2001) and has also been applied by e.g. Chen (2007). Kempf and
Mayston (2008) and Kopp, Hiitl, Loistl, and Prix (2008). I do not apply it here, as I study shocks of principal
components, not the principal components directly.

9E.g. Kamara, Lou, and Sadka (2008) have looked at commonality in terms of the coefficient ®; ... When
using dynamic estimation window PCA, I have a sign indeterminacy in the factors, making that regression
coefficient unstable. It is also difficult to interpret the absolute size of ®; .. Hence, in my commonality test,
I focus on R2, which is unaffected by these problems. The problem of sign indeterminacy across liquidity
measures was discussed for the static window PCA case by Korajezyk and Sadka (2008). In the dynamic
estimation window setting the same problem is added in the time dimension.
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T 36 ¥

h 1 2 3 1 2 3 1
L; Qspread 0.11 0.19 0.26 | 0.16 022 0.26 | 0.15 021 027 | 0.23
L} Espread 0.12 0.21 0.27)0.20 0.24 0.27 | 0.20 0.25 0.28 | 0.29
L}  Turnover | 0.06 0.13 0.20 | 0.10 0.15 020 | 0.08 0.17 021 | 0.20
L} ILLIQ 0.08 016 0.21)0.15 021 0.25]0.16 0.22 0.25]0.14

T
2

L; ¥ 0.05 0.10 0.14]0.04 008 0.12]0.04 008 0.12]0.11
LS A 0.05 0.10 0.15|0.04 008 0.12|0.04 0.08 0.12 | 0.07
Ll o 011 020 026|014 018 0.22|0.13 0.16 0.20 | 0.26
LE A 0.05 0.10 0.15|0.04 0.08 0.11 |0.04 0.08 0.11 | 0.07
r® Returns [ 0.11 0.18 024|010 0.17 0.23]0.10 0.16 0.23]0.22

Table 4.1: Average degree of commonality in liquidity

The table shows the degree of commonality for eight different measures of liquidity. Degree of commonality
is defined as R? of regression run on Equation 4.4 run with a moving estimation window of 36 monthly
observations. Numbers in the table are averaged across stocks and time (December 1997-December 2007).
The estimation window size used for deriving systematic liquidity factors with PCA is given by 7, and the
number of systematic liquidity factors considered is given by h. The same procedure is run using cross-
sectional equal-weighted average liquidity, denoted L. ¥ and A are coefficients in the adverse selection cost
function, with permanent influence on stock prices. ¥ and A are coefficient in the inventory cost function and
have a transitory impact on stock prices. See Equation 2.11 for details. The routine is repeated for returns,
measuring to what degree common factors in returns can explain variation in individual stock returns.

ask whether a high degree of commonality is good. Does high commonality imply that the
systematic liquidity measure is more accurate? In the regression commonality test I use
systematic liquidity factors that have been estimated using different window specifications
7, but I evaluate them over the same time span. PCA is based on extraction of eigenvalues
and eigenvectors of the co-variance matrix. Estimated co-variance matrix differences between
short and long estimation windows can be due to either estimation error (sampling error)
or actual variation over time in the underlying co-variance matrix. If the latter is true, the
systematic liquidity factor utilising a short estimation window should be better suited to
capture commonality. If the variation is due to noise; however, a long estimation horizon
should yield higher accuracy. Based on this discussion, | argue that high commonality is
desirable; and more specifically, that high commonality is a sign of accuracy in the systematic
liquidity measurement.

The commonality regression as specified above allows me to investigate time dynamics
of commonality for different liquidity measures and different measurement methods. I look
at the dynamics over time below, but first I study overall differences between systematic
liquidity measures by looking at commonality averaged both cross-sectionally and over time.
These results are presented in Table 4.1.

To get an intuition of what different magnitudes of commonality imply I include the return
measure in the table. It is well known that the market as an aggregate to a large extent drives
returns in individual stocks. Using exactly the same methodology as for liquidity measures, I
find that the degree of commonality in returns at A = 3 is 20 to 25% (i.e. variation in common

factors of stock prices can explain more than 20% of the variation in individual stock price
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variations). For the bid-ask spread measures, Turnover, ILLIQ, and the fixed (transitory)
inventory cost (¥), I find commonality of about the same degree as for returns. The other
measures register lower degrees of commonality. Before turning to differences across 7, which
is my main interest, it is interesting to compare my results to some previous studies. In
the case of returns, a commonality of the same level has been found by both Hasbrouck
and Seppi (2001) and Korajczyk and Sadka (2008). Commonality tests of previous literature
are not directly comparable to my results, as specification of commonality tests, liquidity
variables, as well as data frequencies differ. Regardless, a brief review of their findings is
useful. Chordia, Roll, and Subrahmanyam (2000) find commonality in quoted and effective
spreads. Kamara, Lou, and Sadka (2008) identify commonality in the illiquidity measure by
Amihud. Korajezyk and Sadka (2008) perform level commonality tests on the same measures
as I use. They find high commonality in the bid-ask spread (quoted and effective), ILLIQ,
and ¥; and low commonality in ¥, A and X. This corresponds well to my results, although
the magnitudes of commonality they find are higher due to their commonality specification.
Their finding of weak commonality in Turnover is not reflected in my results.

The differences across my specifications of PCA with regard to commonality are on average
small, but some tendencies can be seen. The degree of commonality found in the first four
liquidity measures is slightly higher when using an expanding window rather than a moving
window. For the four price impact coefficients the tendency is the opposite. In accordance
with my interpretation above, the lower degree of commonality registered for the moving
window factors for the first four measures means that the underlying market liquidity is
disturbed by sampling error when a short estimation window is applied. If the co-variance
matrix is time-varying that sampling error should be counter-acted by an ability to capture
that variation. For the four price impact coefficients, such short-term effects appear to be
present, as the moving window consistently generates higher commonality than the expanding
window specification.

I also run the commonality test using the cross-sectional equal-weighted average lig-
uidity (L), which is another popular proxy for systematic liquidity (Chordia, Roll, and
Subrahmanyam 2000, Kamara, Lou, and Sadka 2008). This can be expressed as

AagL}; = b1+ P LAarL + uiy L, (4.5)

where L replaces 7 as subscript to distinguish the notation from Equation 4.4 and ®; 1 is a
scalar showing the sensitivity to mean liquidity. Results of this regression are given in the
rightmost column of Table 4.1. Performance of this average liquidity approximation of the
systematic liquidity factor varies widely across liquidity measures. Comparing it to PCA with
the first three factors considered (h = 3), it appears unsuited to capture underlying market

liquidity in terms of ILLIQ and Qspread as well as some of the price impact measures. In
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the case of ILLIQ), I believe that the low commonality is due to that the mean is driven by
some large outlier observations, particularly in the first half of the sample.

The static window PCA (7 = T) has often been used in previous systematic liquidity
literature (e.g. Hasbrouck and Seppi 2001, Korajczyk and Sadka 2008). With this method
the full time sample is considered in the estimation, implying that future information is
involved in the systematic factors that I evaluate in the commonality test. When looking at
liquidity in retrospect this is not a problem, but if these factors are applied to explain (or even
forecast) asset prices, there is a forward-looking bias.!” I note here that the static window
PCA factor registers degrees of commonality similar to those of the expanding window. If
the methods can be regarded as equivalent in terms of outcome, it would be appropriate to
use expanding window PCA rather than static, but before concluding this I have to see if the

findings are consistent over time.

4.3.1 Dynamics in Liquidity Commonality

I now turn to the commonality dynamics over time. Figure 4.1 displays the time dynamics of
commonality for different 7 (within each panel) and different liquidity measures (one in each
panel). The only difference between the curves within each panel is the horizon used when
estimating systematic liquidity factors.'’ Commonality depicted is based on the three first
systematic liquidity factors and regressions run on 36 observations.

The graphs reveal that commonality varies over time, and for some liquidity measures it
varies substantially. The largest variations are seen in the spread measures and the transitory
fixed cost measure (¥). For these measures the period chosen for measuring commonality
will matter substantially for what answer is retrieved. In many previous studies of common-
ality, measurement data have been chosen by availability, making the point of measurement
arbitrary. Furthermore, the graphs uncover some cases of substantial differences between
measurement methodologies. The difference between the most commonly used proxies of sys-
tematic liquidity, static window PCA and average liquidity, can be large (differences of > 0.1
in degree of commonality can be seen temporarily for most liquidity measures).

I now turn to analysis of the dynamics of the individual liquidity measures. For ILLIQ
I see that the expanding window consistently yields higher commonality than the moving
window. This implies that there are long term co-variances between asset liquidities that
are not revealed when using a short estimation window, and that these are more important
than potential short term changes in the co-variance matrix. For ILLIQ, average liquidity
appears to be a consistently worse predictor of firm liquidity than PCA proxies. This is

notable as L was the proxy used in a recent study of commonality in ILLIQ (Kamara, Lou,

108everal studies have used the static window PCA for such applications.

11 This implies that the moving and the expanding window PCA factors are by definition the same in the
first time period at t = 36 (Dec. 1997, not shown), and that the expanding and static window factors are by
definition the same in the last period (Dec. 2007).
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Figure 4.1: Dynamics in systematic liquidity pricing power (see caption on p.71)
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Panel C: Turnover
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Figure 4.1: Dynamics in systematic liquidity pricing power (see caption on p.71)
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Figure 4.1: Commonality dynamics
In each panel, time dynamics of the degree of commonality is graphed for 1998 2007. Degree of commonality
displayed is the R? value of Equation 4.4 estimated with A = 3. Commonality measures are averages across
stocks, estimated for the period (t-35):t. In each panel, the curves represent different settings of r = [36,¢, T,
denoted Mov. PCA, Ezp. PCA, Static PCA in the legend for each panels. Also, commonality as predicted
by the cruss-sectional average is given, estimated as in Equation 4.5. This curve is denoted Mean. Each panel
represents commonality in different liquidity measures: A) Quoted spread (Qspread); B) Effective spread
(Espread); C) Turnover; D) Amihud’s (2002) illiquidity measure (ILLJQ); E) Permanent fixed cost (¥);
F) Permanent variable cost (A); G) Transitory fixed cost (¥): H) Transitory variable cost (A). The last four

measures are based on Sadka’s (2006) implementation of the price impact regression from Glosten and Harris
(1988).

and Sadka 2008). As noted above, a reason for the poor performance of the average liquidity is
that it can be driven by large outliers. For T'urnover, the degree of commonality is relatively
stable over time and no consistent differences between systematic liquidity measures are seen.
The average liquidity proxy can hence be used without loss of precision. For the two measures
of the bid-ask spread, on the other hand, I find significant variation over time. The spike in
commonality in March 2000 coincides with the burst of the dot-com bubble. It is interesting
to see that this causes a sharp increase in commonality of spreads. This can be related to
discussion by e.g. Amihud, Mendelson, and Wood (1990) about strong liquidity co-movement
in times of crisis. For the spread measures, no recommendation on which systematic liquidity
measurement technique that should be used can be given. There appear to be important
short-term trends captured by the moving window PCA during parts of the sample, but
during other periods this method is less efficient in capturing trends appearing in the long
term sample.

For the price impact liquidity measures, the highest commonality is consistently recorded
by the moving window PCA. This implies time-varying co-variance matrices — revealing
significant short term trends. In general I find low commonality in the price impact measures,
except for the transitory fixed cost ¥, which is exactly the same finding as in Korajczyk and
Sadka (2008). This is the inventory cost that the market maker has to carry. When it is large
the market maker has to charge wider spreads in order to avoid losses. Systematic liquidity in
terms of ¥ is also well proxied by its cross-sectional average. Sadka (2006) and Glosten and
Harris (1988) find that this transitory fixed cost (¥) along with the permanent variable cost
(A) (i.e. the volume related adverse selection cost) are more important than the other two
price impact measures, and the magnitudes shown in Section 3 point in the same direction
for my study. My commonality regressions; however, which are more about variation than
magnitudes in the underlying liquidity measures, show that the other price impact measures
are as efficient as the permanent variable cost in explaining liquidity variation. This is another
indication of that these (¥ and )) are non-zero.

In general, the expanding window PCA and the static window PCA yield very similar

degrees of commonality. In most cases they have converged around 2003, implying that an
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eight year window is enough to capture long term trends in systematic liquidity. If such a
time frame is available, the forward-looking bias of static window PCA can be avoided by
applying the expanding window specification, as was done by Chen (2007), without loss of

accuracy.

4.3.2 Correlation Between Estimated Commonality Series

Although similar on average, commonality series for one liquidity measure often have quite
different time-series properties, i.e. are only weakly correlated, depending on the method used
for systematic liquidity estimation. This is especially so for the cross-sectional mean when
compared to the PCA-based estimates of systematic liquidity. Table 4.2 shows correlations for
the estimated time-series of commonality for each liquidity measure (i.e. correlations between

the series graphed in Figure 4.1).

Mov-Exp Mov-Stat Mov-Mean Exp-Stat Exp-Mean Stat-Mean
Qspread 0.52 0.72 0.43 0.82 0.91 0.77
Espread 0.43 0.62 0.37 0.81 0.90 0.82
Turnover 0.75 0.80 0.61 0.86 0.81 0.82
ILLIQ 0.70 0.68 -0.08 0.96 -0.01 -0.09
o 0.68 0.33 0.33 0.31 0.07 0.46
A 0.38 0.52 0.29 0.90 0.00 0.30
v 0.48 0.58 0.30 0.91 -0.03 -0.05
A 0.09 0.15 0.33 0.84 0.45 0.21

Table 4.2: Correlation between estimated commonality

For each liquidity measure, Pearson correlation coefficients between pairs of commonality series in terms of B2
of the models described by Equations 4.4 and 4.5 are calculated. Each series contains monthly observations
from December 1997 to December 2007. Mov is based on Equation 4.4 and 7 = 36; Exp is based on
Equation 4.4 and 7 = {; Stat is based on Equation 4.4 and 7 = T; Mean is based on Equation 4.5. ¥ and A
are coefficients in the adverse selection cost function, with permanent influence on stock prices. ¥ and A are
coefficient in the inventory cost function and have a transitory impact on stock prices. See Equation 2.11 for
details.

Apparently, the liquidity measures can be divided in two groups. The first group contains
quoted spread, effective spread, and Turnover. For this group, correlations are relatively
high for all estimation methods. The lowest correlation, 0.37, is between the cross-sectional
mean and the moving window (for E'spread) and the highest correlation 0.91 between the
expanding and static window (for @spread). For this group of measures, time series properties
of systematic liquidity are in general similar across estimation methods, implying that average
liquidity is a good proxy of systematic liquidity in terms of these measures.

The second group contains the price impact measures: ILLIQ), permanent market maker
costs (adverse selection costs; ¥ and \), and transitory market maker costs (inventory costs;
¥ and 5\). For this group, correlations vary considerably. Correlations between PCA-based

estimates are in most cases high, whereas correlations between the cross-sectional average

and the PCA-based estimates are much lower. For ILLIQ estimated by the cross-sectional
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mean, point estimates of correlation with the static, expanding and moving window are in
all cases negative: -0.09, -0.01 and -0.08, respectively. In other words, the cross-sectional
average estimate of systematic liquidity produces a commonality with very different time-
series properties than the PCA-based estimates of systematic liquidity. Given the fact that
the cross-sectional mean yields an average commonality that is much lower than PCA, this
suggests that the time-series properties of systematic liquidity are not fully captured by the
cross-sectional mean for JLLI(Q. This is interesting as many studies use the cross-sectional
average to estimate systematic liquidity in terms of ILLIQ (see Kamara, Lou, and Sadka
2008).

Turning to the price impact measures of Sadka (2006), similar results hold, i.e. commonal-
ity estimated using the cross-sectional mean is often in principle uncorrelated with common-
ality estimated using different specification of PCA. For example, for the fixed inventory costs
measure, which produces the highest commonality among Sadka’s (2006) four measures, cor-
relations between commonality for the cross-sectional average and the PCA-based estimates
of systematic liquidity are -0.05, -0.02 and 0.30. This is in spite of average commonality
being at the same level for PCA- and mean-based measurement. Again, this indicates that
time-series properties of estimated systematic liquidity are very different depending on the

method used for estimation.

4.4 Systematic Liquidity Factors and Stock Prices

Above I argue that commonality is an indicator of liquidity factor measurement accuracy. A
different matter is whether the liquidity factor is useful for explaining stock prices. As it is
well-known that individual stock liquidity affects prices (Amihud, Pedersen, and Mendelson
2005) it is sensible to believe that if systematic liquidity explains stock liquidity, it should
to some extent be priced in the cross-section of stocks. This hypothesis has been tested and
confirmed by Pastor and Stambaugh (2003) and Korajczyk and Sadka (2008), and is related
to the second type of liquidity risk in the theoretical framework by Acharya and Pedersen
(2005).

In the preceding section I study correlations between the commonality time series retrieved
with different systematic liquidity derivation techniques. High correlations between these
series would indicate that they also have similar abilities in explaining stock returns. In my
investigation above I find many correlations being low, implying fundamentally different time
series properties of the underlying market factors. If that is the case, the different systematic
liquidity estimation techniques may lead to differences in the ability to explain stock returns
too. This is the topic of investigation in the current section.

I adopt an extended market return model to evaluate the explanatory power of my sys-

73



tematic liquidity measures. I let
Tig = Titrl + TitroTse + g 7 AARF L 17 + Vigrts (4.6)

where r; ; is the return of stock ¢ in time ¢, and rp;; is the market return in time £. Intercept
and market return sensitivity are denoted ;-1 and m ;-2 respectively, and return sensi-
tivities to systematic liquidity are given by the coefficient vector II;; » (which is of length
h). Returns unexplained by the market returns and systematic liquidity factors are put in
the residual term v;; ;. As indicated by the indexes [ and 7, the regressions are repeated
for the eight liquidity measures and the three different PCA-based systematic liquidity mea-
surement techniques. I set h = 3. In the same fashion as above, I run the regression using
a 36 months moving estimation window. From these regressions I am primarily interested in
the explanatory power of the systematic liquidity factors with respect to returns. Hence, I
record the R* of each run of the regression and take the cross-sectional average, which gives
me time series of the explanatory power of liquidity. To isolate the effect of liquidity, I run
three versions of this model: (I) full regression; (II) setting all elements of II;; - to zero;
(III) setting m; ;-2 = 0. In Table 4.3 I present averages across time of the full model (I)
in Panel A; the excess explanatory power of the liquidity factor [(I)-(II)] in Panel B; and
finally the explanatory power of the liquidity factor alone (III) in Panel C.!? Also, as with

the commonality regressions I consider the alternative relation
Tig = Til,L,1 + T LLaTM + II-&.!,LAARZE + €L, Lts (4.7)

simply replacing the systematic liquidity factor with the cross-sectional mean liquidity and
changing the subscripts to L. As L only has one dimension, II;; , is here a scalar.

The results in Table 4.3 show that the systematic liquidity factor estimated using PCA can
have a substantial explanatory power for stock returns. When studied in isolation (Panel C}, it
ranges from 10.9% up to 16.4%. When accounting for the market return factor (Panel B), the
excess explanatory power of systematic liquidity ranges from 7.9% to 10.9%. Cross-sectional
mean liquidity has a substantially lower explanatory power regardless of what liquidity mea-
sure [ look at.

The results for the static window PCA systematic liquidity measure are, as was found for
commonality, similar to those of the expanding window PCA. The difference between moving
window and expanding window estimation for systematic liquidity is in general small, but
some cases where they differ can be noted. For ILLIQ, the expanding window is slightly bet-
ter than the moving, which is in accordance with my findings on commonality in Section 4.3.

Among the price impact regression coefficients, an expanding estimation window specification

12 As mentioned in conjunction to the commonality tests, | am unable to interpret the size and the sign of
11; ;- due to the sign indeterminacy of PCA factors. This is the reason that I focus on R? values.
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Panel A: Average R* of market return and liquidity factor
=308 =1t =T L

Qspread 0.286  0.286 0.284 | 0.235

Espread 0.287 0.287 0.289 | 0.235
Turnover | 0.291  0.290 0.293 | 0.234

ILLIQ 0.292  0.206 0.293 | 0.236

0.290 0.290 0.289 | 0.239

0.283 0.200 0.292 | 0.238

0.313  0.306 0.306 | 0.241

0.285 0.291 0.284 | 0.234

OO0 =] O U= Q0 I =T

=T =

Panel B: Average R? of liquidity factor in excess of market return

[ =386 =t =T L

1 Qspread 0.081 0.082 0.080 | 0.031
2  Espread 0.083 0.083 0.085 | 0.031
3 Turnover | 0.087 0.086 0.088 | 0.030
4 ILLIQ 0.087 0.091 0.089 | 0.032
5 U 0.086 0.085 0.085 | 0.035
6 A 0.079 0.086 0.088 | 0.034
7 0 0.109  0.102 0.102 | 0.037
g X 0.081 0.087 0.080 | 0.029

Panel C: Average R? of liquidity factor alone

l =30 m=%f #=7T L

1 Qspread 0.120 0.129 0.127 | 0.054
2 Espread 0.128 0.128 0.124 | 0.059
3 Turnover | 0.123  0.109 0.119 | 0.036
4 ILLIQ 0.112 0.117 0.114 | 0.038
5w 0.131  0.129 0.120 | 0.044
6 A 0.111  0.122 0.125 | 0.063
7 U 0.164 0.143 0.135 | 0.107
8 A 0.127 0.140 0.154 | 0.038

Table 4.3: Systematic liquidity factor ability to explain returns

Panel A shows, for each liquidity measure [, R® averaged across stocks and across time (December 1997
December 2007) for the model described in Equation 4.6 and 4.7; Panel B shows R? averaged across stocks
and across time for the model described in Equation 4.6 and 4.7 minus the corresponding number from the
same model but with all elements of II; ; - equal to 0; Panel C shows R? averaged across stocks and across
time for the model described in Equation 4.6 and 4.7 with m; ; » » = 0. 7 indicates how the estimation window
is specified in the systematic liquidity derivation in Equation 4.4. ¥ and A are coefficients in the adverse
selection cost function, with permanent influence on stock prices. ¥ and A are coefficient in the inventory
cost function and have a transitory impact on stock prices.



appears to be better for variable costs, whereas a moving window is better for fixed costs.
The spread measures yielded highest commonality of all measures, but do not stand out
as strong measures in terms of explanatory variables for returns. Hence, high commonality
does not necessarily imply high explanatory power of returns. The measure that recorded the
second highest commonality, transitory fixed costs (¥), has much higher pricing power than
all the other liquidity measures (10.9% in Panel B and 16.4% in Panel C, when using moving
window specification). Sadka (2006) argues that out of the four coefficients, ¥ and A should
be most important for pricing, but my results show that they are all on par with the other
liquidity measures in this regard. Again, the co-variation rather than the magnitude of the

underlying liquidity measure is what matters for the investigation.

4.4.1 Dynamics in Systematic Liquidity Pricing Power

Following the same disposition as in the previous section, I now turn to time series proper-
ties of the systematic liquidity pricing regression results. Figure 4.2 shows the dynamics of
systematic liquidity pricing power over time for different 7 (within each panel) and for differ-
ent liquidity measures (one in each panel). The statistic displayed is the excess R? achieved
when adding systematic liquidity to the market model, i.e. average R? from model (I) minus
average R? from model (I1) (the series covered in Panel B of Table 4.3).

It is clear from the figure that the PCA-based methods for deriving systematic liquidity
factors yield factors that are better than the equal-weighted average in explaining stock
returns. The difference between PCA-based methods and the average is consistent over time
and across all liquidity measures tested. This is the dominant difference between approaches to
systematic liquidity estimation — no consistency in differences between PCA-based methods
is seen.

The pricing effects of the spread measures and for ILLIQ (Panels A, B and D) are virtually
constant over time. This is an important difference from the pattern seen in commonality (see
Figure 4.1), where commonality is much higher from the beginning of 2000 to the beginning
of 2003, compared to the rest of the sample. Interestingly, the pricing power of the transitory
fixed cost () is increasing sharply in the beginning of 2000 and stays high until the beginning
of 2003 (see Panel G). This measure captures the part of the bid-ask spread that is associated
with inventory cost.

In my analysis above I established that the two different dynamic estimation window PCA
specifications on average resulted in systematic liquidity factors with rather similar explana-
tory power on returns. If the co-variance structure is time-varying, the gap between moving
PCA and other methods should get wider over time. For most of the liquidity measures, there
is no such pattern, and no other consistent difference between PCA methods either. There

is, however, one exception. For ¥, the graph in Panel G shows clearly that the difference
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Figure 4.2: Dynamics in systematic liquidity pricing power

In each panel, time dynamics of the liquidity pricing power is graphed for 1998 2007. The curves represent
different settings of T = [36,¢,T]. denoted Mov. PCA, Ezp. PCA, Static PCA in the legend, referring to
the estimation method used for derivation of systematic liquidity factors. Also, systematic pricing power as
predicted by the cross-sectional liquidity average is given, estimated as in Equation 4.7. This curve is denoted
Mean, Liquidity pricing power displayed is in excess of market returns. That is calculated as R? averaged
across stocks for the model described in Equation 4.6 and 4.7 minus the corresponding number from the
same model but with all elements of I, ; » and II; ; 1 equal to 0. The equations are estimated with h = 3,
meaning that the first three systematic liquidity factors are used. The systematic liquidity pricing power for
time t is estimated using the estimation window (£ — 35) : t. Each panel presents different liquidity measures:
A) Quoted spread (Qspread); B) Effective spread (Espread): C) Turnover; D) Amihud’s (2002) illiquidity
measure ([LLIQ); E) Permanent fixed cost (¥); F) Permanent variable cost (A\); G) Transitory fixed cost
(W): H} Transitory variable cost (:\). The last four measures are based on Sadka’s (2006) implementation of
the price impact regression from Glosten and Harris (1988).

on average between expanding and moving windows is due to the latter half of the sample.
Hence, moving window PCA appears to be the appropriate choice for this measure, whereas
a longer estimation window may be more appropriate for the other measures.

The small differences that are seen between expanding window PCA and full sample PCA,
all seem to be due to pre-2003 observations, reinforcing the view that the two methods con-
verge after approximately 8 years. For long data sets, an 8 year moving window specification
may be preferred, as the computational burden of expanding window PCA is increasing with

time.

4.4.2 Correlation Between Systematic Liquidity Pricing Power Se-

ries

As I did for commonality time series in the previous section, I now look at correlation between
time series on ability to explain returns. These correlations are presented in Table 4.4. In
Panel A, correlations between R> in excess of the market returns are given; and in Panel
B correlations between R? series of models estimated using liquidity factors as the only
explanatory variable are presented.

Similar to the case of commonality, the correlation between the moving window and ex-
panding window PCA specifications is in general high and positive. I interpret this as a
sign that the two methods explain the same pricing patterns. For ILLIQ, Turnover and
permanent variable costs (\) that correlation is lower, which can be interpreted as meaning
that the two methods capture different aspects of return variation. That implies that there
are both short and long term trends that contribute to the return data generating process,
captured by moving and expanding estimation windows respectively. When comparing PCA
specifications to the mean liquidity, correlations are in many cases very low or even negative.
This shows that mean liquidity explains other pricing patterns than the PCA measures.

The correlation between the static window PCA and expanding window PCA in terms of

pricing power is again found to be high. In the previous section I found that the two methods
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Panel A: Systematic liquidity pricing effect in excess of market returns

1 Mov-Exp Mov-Stat Mov-Mean Exp-Stat Exp-Mean Stat—Mean
1 Q@spread 0.67 0.48 0.20 0.73 0.42 0.55
2 Espread 0.57 0.438 0.19 0.67 0.32 0.35
3 Turnover 0.29 -0.12 -0.31 -0.31 0.10 0.41
4 ILLIQ -0.19 -0.30 0.04 0.77 0.57 0.63
5 U 0.76 0.73 0.56 0.85 0.39 0.58
6 A 0.31 0.34 0.06 0.80 0.80 0.80
70 0.85 0.89 0.85 0.95 0.93 0.93
8 A 0.55 0.54 0.50 0.82 0.77 0.55

Panel B: Systematic liquidity pricing effect alone

I Mov-Exp Mov-Stat Mov-Mean Exp-Stat Exp-Mean Stat-Mean
1 Qspread 0.86 0.86 0.34 0.95 0.50 0.54
2  Espread 0.53 0.46 0.49 0.20 0.71 -0.20
3  Turnover 0.24 0.56 -0.08 -0.06 0.12 0.03
4 JILLIQ 0.44 0.24 0.27 0.75 0.38 0.17
5 U 0.88 0.81 -0.18 0.89 -0.21 0.00
6 A 0.41 0.41 0.48 0.96 0.48 0.48
T 0 0.14 0.48 0.34 0.83 0.86 0.78
8 A 0.74 0.77 -0.09 0.89 0.01 -0.18

Table 4.4: Systematic liquidity factor pricing power: correlation between estimation tech-
niques

For each liquidity measure [, Pearson correlation coefficients between pairs of R? series of the models described
by Equations 4.6 and 4.7 are calculated. Panel A shows correlations between R averaged across stocks for
the model described in Equation 4.6 and 4.7 minus the corresponding number from the same model but with
all elements of Il; ; - equal to zero; Panel B shows correlations between R? averaged across stocks for the
model described in Equation 4.6 and 4.7 with 7;; -2 = 0. Each series contains monthly observations from
December 1997 to December 2007. Mov is based on Equation 4.6 and v = 36; Exp is based on Equation 4.6
and 7 = t; Stat is based on Equation 4.6 and 7 = T; Mean is based on Equation 4.7. ¥ and A are coefficients
in the adverse selection cost function, with permanent influence on stock prices. ¥ and A are coefficient in
the inventory cost function and have a transitory impact on stock prices. See Equation 2.11 for details.



also achieved equivalent levels of explanatory power. Hence, I conclude that the expanding
window PCA is a good substitute for the static window PCA, which has the important

drawback that it uses future information for its estimation.

4.5 Concluding Remarks

I improve the measurement of systematic liquidity, a factor describing market variation of
liquidity that has been shown to be an important risk factor in asset pricing. Traditionally
systematic liquidity is either proxied by the market average liquidity or derived using PCA. By
running PCA it is implicitly assumed that the co-variance matrix of cross-sectional liquidity is
constant. As this assumption may be unrealistic, I introduce PCA with dynamic estimation
window, which re-estimates the co-variance matrix for each period of time. This can be
done either with a moving or an expanding estimation window. Which one is appropriate
depends on the properties of the co-variance matrix over time. I assess these two specifications
of dynamic estimation window PCA together with the two traditional systematic liquidity
estimation techniques.

The evaluation of the four estimation techniques is run in terms of (A) ability to explain
cross-sectional stock liquidity and (B) ability to explain cross-sectional stock returns. The
first criterion is the explicit purpose of systematic liquidity factors, whereas the second is
important for its application in asset pricing. For both cases, I find support for using the
dynamic estimation window specification of PCA.

Which measurement technique that is most appropriate for systematic liquidity is depen-
dent on what liquidity measure is considered. For measuring illiquidity as defined by Amihud
(2002), a long time frame is beneficial both in terms of liquidity and return variation, so
an expanding window PCA estimation is appropriate. For Turnover and bid-ask spread
measures of liquidity, no single measurement technique dominate the other when measuring
commonality in liquidity. The simplest possible proxy, such as a cross-sectional average can
therefore be used. For explaining stock returns; however, all the PCA-based measures are
substantially better. For price impact coefficients as estimated by Sadka (2006), the high-
est commonality is retrieved when using a moving window to estimate systematic liquidity,
implying a time-varying co-variance matrix. The most important factor from Sadka’s price
impact regression, both in terms of liquidity and return variability, is the transitory fixed
cost variable, which is associated with the inventory cost that a liquidity provider carries.
Systematic liquidity in this variable is best estimated using a moving window PCA. Using
that methodology, 26% of the cross-sectional variation in liquidity can be explained, and 16%
of the cross-sectional variation in asset returns. This is higher than what I find for all the
other liquidity measures tested.

My investigations also show that the expanding window PCA yield results equivalent
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to those of the traditional static window PCA, both for explaining asset liquidity and for
explaining asset returns. Hence, where possible, expanding window PCA should replace
static window PCA, as the latter utilises future information for its estimation. Preliminary
evidence shows that the two methods converge after 8 years (96 observations). Hence, a
moving window PCA with 8 years of observations may be an appropriate method when no

time-variation in co-variances is expected. This would reduce the computational burden of

PCA in long time series.
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Part III

Portfolio optimisation
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Chapter 5

Introduction to Full-Scale

Optimisation

Portfolio selection problems can in general be described as utility maximisation problems
where utility is dependent on expected portfolio return distributions. A portfolio selection
problem with N assets is described in Equation 5.1. The utility function U is the objective
function, and the vector # with dimensions (N x 1) contains the decision variables — the
portfolio weights. The decision variables are subject to constraints given by the matrix Q.
Typically, §2 contains a budget constraint (6’c = 1, where ¢ is a vector of ones). Other
constraints may include e.g. upper and lower bounds on allocations, borrowing restrictions,
and Value at Risk restrictions. The optimal allocation vector 8* is the vector that maximises

the expected utility function while adhering to these constraints.

0" = argmaxy U

(5.1)
e

The utility function U describes the investor’s preferences with respect to the trade-off be-
tween returns and risk of investments. Typically, the investor defines risk as some function of
the probability distribution function (PDF) of portfolio returns. When maximising expected
utility, the investor may consider a matrix R of different outcomes (returns) for each admis-
sible asset (n = 1,..., N} in S different scenarios (giving R dimension N x S). As portfolio
returns are portfolio allocations multiplied by asset returns, 'R will be a vector of length S
that forms a probability distribution of portfolio returns for each 6.

The portfolio choice problem can hence be summarised in three sub-problems: (a) for-
mulating investor preferences in an utility function; (b) determining the PDF of portfolio
returns; and (c) finding the optimal portfolio allocation vector 6. In this chapter I first intro-

duce two portfolio choice frameworks, mean-variance (MV) and full-scale optimisation (FSO),
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and compare them in terms of the three sub-problems (Sections 5.1-5.2). Then, I go into
further detail on each of the three sub-problems (Sections 5.3-5.5). Overall, the purpose of

this chapter is to lay the foundations for the subsequent empirical chapters on FSO.

5.1 Mean-Variance Optimisation

The portfolio choice literature was founded with the seminal work by Markowitz (1952, 1959)
that introduced the MV model. Based on the assumption that the utility function is concave,
i.e. that investors are risk averse, Markowitz found that for a wide range of returns, a
quadratic utility function can serve as an approximation of investor preferences. Using that
approximation the expected utility maximisation can be solved analytically for a set level of

risk aversion, 7. The utility function is then expressed as
Uy =rp — 703, (5.2)

where r, is the portfolio return and crg its variance, which can be expressed in terms of the
stock return co-variance matrix %,
2 .
> = 0'Z4. (5.3)
In terms of the three sub-problems sketched above, by specifying the utility function as
quadratic Markowitz addresses sub-problem (a) and reduces (b) to estimation of expected
returns (E[R]) and the stock return co-variance matrix (X). Application of dynamic pro-

gramming gives the solution (c),
Orryv = argrglgaf;{E[Uq(rp, op)l- (5.4)

The portfolio return and variance can be derived from R, considering all possible future
scenarios. In practice the parameters are typically based on historical data and fundamental
analysis that in combination forms the future scenarios ((see Sharpe 2007).

The attractiveness of MV is that it is computationally economical to find the solution
vector. In addition, the trade-off between level and variance of returns is intuitive, which
has made the method popular in the investment industry. The usage of return variance as
measure of risk is, however, also the main drawback of the method. For the mean and variance
of returns to be the only parameters of importance for an investor’s risk analysis, either the
PDF must be spherical symmetric!, or the investor must be indifferent to higher moments
of the distribution, such as skewness and kurtosis. It is well-known that return distributions

in general do not conform to the normal PDF.2 It is also straightforward to understand that

I This was pointed out by Chamberlain (1983) Below, I refer to such distributions as normal, even though
e.g. the Joint Normal, the Uniform and the Binomial distributions also feature spherical symmetry.
2First recognised by Mandelbrot (1963), there is now overwhelming evidence available on the non-normality
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investors want to protect themselves against extreme events and are more averse to downside
than to upward volatility, which would imply that the second condition for MV efficiency is
violated as well. These limitations of the MV approach were established at an early point, not
least by Markowitz (1959). Arrow (1965) and Pratt (1964) showed that the quadratic utility
function implies that risk aversion is increasing in wealth, to the extent that it at some point
turns negative, which is an unrealistic property. However, it has been shown by many studies,
including Levy and Markowitz (1979), that the difference between the MV approximation and
the true utility maximum under exponential and logarithmic utility functions is small. Also,
they argue that the risk aversion problem argued by Arrow (1965) and Pratt (1964) does not
apply if the quadratic approximation is allowed to vary between portfolios.

As computational power has increased, the MV advantage of computational economies
has decreased in importance, making true utility maximisation models more popular. One of

those models is FSO, which is the portfolio choice model that I focus on in this thesis.

5.2 Full-Scale Optimisation

In FSO, empirical returns over a time period t = 1, ..., T for N assets constitute the scenarios
and can hence be expressed as a return matrix R of dimensions (N x T'). The elements of R

are defined
Pn.t
Pn,t—1

R = — 3, (5.5)

where p, ; is the price of asset n at time £. Once these returns are calculated, each column
R, of the matrix is treated as a future scenario with probability T~!. Utility is evaluated for
each possible f vector and each scenario in the sample. The # vector with highest average

utility across scenarios will be the optimal allocation combination, which is given by

T
ey T =1 ! 3
Orso = arg max (T ; U(e Rn)) . (5.6)

To compare FSO to MV it is useful to look at how the three sub-problems of portfolio
optimisation are addressed. In FSO the utility function (a) is predetermined, just as it is in
MV, but no restrictions are imposed on its functional form. This allows the optimisation over
more complex investor preferences than otherwise assumed. The PDF of the returns (b) is
given by the empirical distribution. This means that each historical observation of returns in
the cross-section of admissible stocks is treated as a possible future scenario. Each scenario
is assigned the same probability (7~!), which implies that the chronological order of these
scenarios is ignored, but the sample co-variance pattern between assets persists. In order to

find the solution vector of portfolio allocations (c¢), numerical /computational methods can

of returns. I discuss this further in Section 5.3.
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be used — no analytical solution is pursued. As the optimisation problem is not convex in
general, a search algorithm has to be used.

The term FSO was introduced by Cremers, Kritzman, and Page (2005), but the idea
is not unique. Gourieroux and Monfort (1998), Brandt (1999) and Ait-Sahalia and Brandt
(2001) all work with historical return distributions to approximate expected portfolio utility
but do not use the term FSO. Properties of the estimated portfolios have been explored by
Gourieroux and Monfort (2005). That each observation in history in general can be viewed as
a future scenario relates the studies based on empirical return distributions to scenario-based
approaches (using hypothesised outcomes with different probabilities attached), which have
been dealt with by Grinold (1999) and Sharpe (2007). The idea of utility maximisation as
a methodology for portfolio optimisation problems, based on the utility theory founded by
Von Neumann and Morgenstern (1947), can be traced back at least to Tobin (1958), and also
appears in several assessments of the MV approach (e.g. Levy and Markowitz 1979, Markowitz
1987).

The strength of FSO is the lack of restrictions on the utility function. It is straightforward
to implement risk preferences considering higher moments of the portfolio return PDF. As
empirical returns are used directly, performance of FSO is dependent on how well sample
scenarios mirror actual future scenarios. I discuss this further in Section 7.6, providing sug-
gestions on how to deal with the problem. It has been shown that FSO is particularly useful
when the utility function features different types of loss aversion, or when many constraints
are imposed (Cremers, Kritzman, and Page 2005, Adler and Kritzman 2007, Hagstromer,
Anderson, Binner, Elger, and Nilsson 2008, Hagstromer and Binner 2009). Accordingly, the
utility surface is often non-convex, which makes analytical solutions unfeasible. Instead search
techniques must be used, testing different solution vectors, 6.

In the following two chapters of this thesis I solve different empirical FSO applications.
Before doing that, it is useful to improve the understanding of the three sub-problems of
portfolio optimisation. The remainder of this chapter is hence dedicated to understanding
why return distributions are non-normal; why this matters to investors and how that can
be accounted for in uti[ity functions; and finally how a solution vector can be found once a

utility function has been specified.

5.3 Return Distributions

Understanding the deviations from normality in financial return distributions is important in
forming an efficient portfolio selection model. We need to understand both what is causing
the deviations and what preferences investors have for different distribution characteristics.
With that knowledge, appropriate utility functions can be formed and used for FSO portfolio

selection.
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As discussed by Mandelbrot (1963), financial asset price changes form distributions that
are more peaked than samples drawn from Gaussian distributions.” After Mandelbrot’s
article, an extensive literature on the proper mathematical formulation of financial return
distributions emerged, and eventually the problem was addressed with techniques such as
conditional heteroscedasticity models (Engle 1982, Bollerslev 1986), stochastic volatility mod-
els (Clark 1973, Taylor 1982, Taylor 1986), and regime switching models using a mixture of
normal distributions (Goldfeld and Quandt 1973, Hamilton 1989). As the return distribution
parameterisation is super-ceded by the FSO model, I do not refer to such problems further
here, but e.g. Aparicio and Estrada (2001) give a brief summary of the literature.

To illustrate the phenomenon of non-normal returns, I randomly generate a price series of
251 observations (that can be regarded as daily observations of one year), shown in Figure 5.1.
Prices and returns are displayed in Panel A and B respectively. Panel C displays how the
returns are distributed and how they differ from the normal distribution. As discussed in
Chapter 2, prices are driven by information flows. Information reaches the market in a
non-linear fashion, causing many calm days when no significant news appear and clusters of
price volatility trading on days of price-driving news (as seen in Panel B). This is the reason
that financial assets typically display leptokurtic return distributions (i.e. distributions with
higher kurtosis than the normal distribution) (Clark 1973). Days with relatively few news
and small returns form the high peak of the return probability distribution, and the large
price changes due to important news cause fat tails. Non-linear behaviour of investors has
also been pointed out as a reason for this pattern (Aparicio and Estrada 2001), which may
be due to uncertainty of information, or insider trading (Clark 1973). A high level of kurtosis
means that the asset has a high probability of extreme events (Lai, Yu, and Wang 2006).
This uncertainty typically makes risk averse investors dislike kurtosis. Such kurtosis aversion
is shown theoretically by Scott and Horvath (1980). Aparicio and Estrada (2001) point out
that investors that mistakenly assume normality when a return distribution is leptokurtic will
underestimate the risk of the asset substantially.

A second non-normality feature that is important for investors to follow is skewness (first
discussed by Beedles 1979). Skewness appears when the mean and the median do not coincide,
describing the degree of asymmetry in the PDF. A mean higher (lower) than the median
characterise positive (negative) skewness, which implies a higher chance (risk) of extreme
positive (negative) events. The example in Figure 5.1 features negative skewness (-0.5), likely
due to the two occurrences of returns around —7% that are not matched by positive returns
of the same magnitude. Negative skewness means that the risk for a substantial loss is bigger
than the chance of a substantial gain. Typically, investors are averse to negative skewness.

Skewness is created if a company’s value falls lower when negative news arrives than it rises

3Mandelbrot credits Wesley C. Mitchell as being the first one to point out this fact in 1915. See Mandelbrot
(1963, footnote 3) for full reference.
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Figure 5.1: Example price and return series

Panel A shows an example price series containing 251 observations of prices. The series was generated in R
2.8 using the function garch.sim (TSA package). Panel B shows the same series in terms of returns, pointing
out that clusters of volatility are caused by news information flows. Panel C shows the empirical distribution
of the return series, showing that the returns are leptokurtic and negatively skewed in relation to a normal
distribution. The series has excess kurtosis of 10.0, and skewness of -0.5.
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when good news arrive, or vice versa. Damodaran {1985) argue that this can be related to a
company’s propensity to release positive or negative news. Guidolin and Timmermann (2005)
show in a regime switching model that large negative skewness appears in the switch from a
"bull” to a "bear” state of the market. Preferences for positive skewness have been shown
theoretically by Arditti (1967) and Scott and Horvath (1980), and empirically by e.g. Sortino
and Price (1994), Levy and Sarnat (1984), and Sortino and Forsey (1996). This implies that
an investor would be willing to trade some average return for a lower risk of high negative
returns (as argued by Harvey, Liechty, Liechty, and Muller 2004). This reasoning links to
the literature on downside risk, including Value at Risk models. Opposite to typical investor
preferences stock return distributions usually feature some degree of negative skewness.
Using variance (the 2nd moment of the return distribution) as a stand-alone measure
of risk is the main drawback of using the quadratic utility function, applied in the MV
approximation of optimal portfolios, as it ignores preferences for skewness and kurtosis (the
3rd and 4th moments). The focus of the next section is how other utility functions account

for such preferences.

5.4 Utility Functions

Investor preferences are in economics usually described in terms of utility functions. Utility
can be a function of any variable that investors value. In the stock market setting the main
variable is wealth, which changes with stock returns. Investor utility can also be derived from
e.g. ethical values or liquidity preferences, but these are not common in the literature and I do
not consider such preferences in this part of the thesis. I define utility in terms of the portfolio
return (r,), rather than over wealth. This approach may be interpreted as a normalisation
of initial wealth to one, i.e. Wy = 1. A motivation for defining utility directly in terms of
returns can be found in Kahnemann and Tversky (1979). They argue that investors focus
more on the refurn on an investment than on the level of wealth.

Investor preferences implied by utility functions can be investigated by expanding the
utility function in a Taylor series around the mean (ui, the expected return on investment)
and taking expectations on both sides. This yields measures of the investors’ preferences in
terms of the distribution’s moments. Set up in the same fashion as in Scott and Horvath
(1980), the expected utility takes the following form:

B(U) = Uu) + L8 4 e 1), 6.1

where U* denotes the k" derivative of the utility function and p; the expected j'* moment

of the portfolio return. The expression shows that the expected utility equals the utility

of the expected returns, plus the impact on utility of deviations from the expected return.
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The influence of each moment on expected utility is weighted by the corresponding order
derivative of the utility function. Typically, U?(u1), for variance is negative; U®(u;) for
skewness is positive; and U*(u,) for kurtosis is negative. As stated above, the MV approach
is based on either assuming quadratic utility or a normal return distribution. The quadratic
utility function, given in Equation 5.2, implies U' (1) = 1, U?(u;) < 0 (usually referred to
as the risk aversion parameter, 1), and U*(uy) = 0 for all k > 2. If normally distributed
returns are assumed, all odd moments (k = 3,5...) will be zero, and all even moments will be
functions of the variance (see Appendix to Chapter 1 in Cuthbertson and Nitzsche 2004).

In the MV model the co-variance of the assets plays an important role. Utility functions
with higher moment preferences different from zero also take co-moments, such as co-skewness
and co-kurtosis, into account.* In principle there is no limit to the number of moments
to consider, but higher moments than kurtosis (£ > 4) have not been considered in the
finance literature, and will not be discussed here. However, according to Scott and Horvath
(1980), most investors have utility functions where moments of odd order (i.e. k = 1,3,5...)
have positive signs on its respective derivative, and moments of even order have negative
derivatives.

In the subsequent analysis I consider five families of utility functions. Their general
mathematical forms are presented in Table 5.1. Figure 5.2 displays how the utility varies
with returns for certain specifications of the four utility function families.

The parametric, closed form utility functions that are most common in the finance litera-
ture are the families of exponential and power utility functions. The former is characterised
by constant absolute risk aversion (CARA), and the latter by constant relative risk aversion
(CRRA), meaning that risk aversion varies with wealth level. In Figure 5.2 examples of
exponential and power utility function graphs are given in Panels A and B respectively.

For investors that put more emphasis on the higher moments skewness and kurtosis it may
be appropriate to specify utility functions that feature a critical level of return, under which
returns are given disproportionally bad utility. Examples of such utility functions include
the bilinear (Panel C in Figure 5.2), the kinked power (Panel D), and the S-shaped utility
functions (Panel E). The kinked functions capture a phenomenon that is central in investment
management today: loss aversion. The objective of limiting losses is motivated by monetary
as well as legal purposes. The issue is traditionally treated with Value-at-Risk models, and
can also be incorporated in FSO theory through a constraint on the maximisation problem
(as shown by Gourieroux and Monfort 2005). The bilinear utility functions have a kink at the
critical return level. Above the critical point, it follows a power utility function with v =1,
which implies a very low risk aversion for returns above that point. Below the critical point

it is a straight line, implying risk neutrality. The main incentive for the investor is to achieve

4Co-skewness is a phenomenon extensively discussed by Harvey, Liechty, Liechty. and Muller (2004).
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Panel A: Exponential Utility
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Figure 5.2: Utility function graphs

The figures show how utility varies with portfolio return under different specifications of utility functions.
Panel A shows exponential utility where the risk aversion parameter is set to A = 10. Panel B shows power
utility with risk aversion set to v = 6. All the utility functions featuring threshold in form of a kink or an
inflection point has that set to rj = 0%. Panel C shows the bilinear utility function with ¢ = 5. Panel D is
the kinked power utility function, with parameters v+ = 6 and x = 3. In Panel E, the S-shaped utility function

depicted has parameters 4 =1, B =2, 1 = 0.3, and 72 = 0.7.
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Exponential Utility:  Uesp = —exp(—A(1 + 1))

s L+r) =7 =1)/(1 —7) f >0
Power Utility: Upower = { 5;(1 _:IT)) /(=) lel: :: =i
" =
o - In(1+r)+elr,—r7) for r,<r*
~ -y — i B P P P
Bilinear Utility: Usitinaar { In(1 +rp) for rp>r

s i ; e —x(ry—r for ry<rl
Kinked power Utility: rg% =< P x(rj = 7p) ® 2R
Tp for r, > TS

UKP = Upowcr(rgdj)

i —AlrE —r, )M for 715 <7
S-shaped Utility: Ussua { B(r‘( ;L r*)ljr)z e Tp ; r;:
P P P P

Table 5.1: Utility function equations
In all the utility functions, rp represents portfolio return. A represents the degree of (absolute) risk aversion
in the exponential utility functions. In power utility functions, v is the degree of (relative) risk aversion. The
special case when v = 1 is also called logarithmic utility. In the bilinear, kinked power, and S-shaped utility
functions, rj is the critical return level, referred to as the kink in the former two, and as the inflection point
in the S-shaped.  is the penalty level for returns lower than the kink in the bilinear utility function. In the
kinked power utility function, + is the degree of (relative) risk aversion, and x the degree of loss aversion. The
latter is used to adjust sub-kink portfolio returns to get T;d; , which is evaluated in the power utility function.

In the S-shaped utility functions, A and B determine the disproportion between returns on different sides of
the critical level, and 1 and 2 are parameters determining the curvature of the S-shape.

returns above the critical level. The function has a discontinuous first derivative. This type
of functions has previously been applied by Cremers, Kritzman, and Page (2005) and Adler
and Kritzman (2007). The kinked power utility function works in the same way, but utilises
the relative risk aversion featured in power utility. The function has been used in portfolio
optimisation by Maringer (2008b).

The S-shaped utility function is motivated by the fact that it has been shown in behaviour
studies that investors prefer a certain gains to uncertain gains with higher expected value,
but also prefer uncertain losses to certain losses with higher expected value (see Kahnemann
and Tversky 1979). The utility function features an inflection point where these certainty
preferences change. This implies high absolute values of marginal utility close to the inflection
point, but low absolute marginal utility for higher absolute returns. The first derivatives are
continuous, but second derivatives are not.

In the subsequent empirical chapters I apply each of these utility functions to portfolio
choice problems. This creates utility maximisation problems that are non-trivial to solve.
Before turning to these chapters, in the next section I discuss the last sub-problem of portfolio

choice problems: how to find the optimum?



5.5 Finding the Optimal Portfolio Allocation Vector

Once a decision is made on how to characterise the expected return distribution and the
investor preferences, the remaining problem is to solve for the optimal portfolio weights. The
more involved the specifications of the return PDF and the utility functions are, the more
expensive it is to find the optimum. When Markowitz (1952, 1959) formulated his MV theory,
he was aware that both quadratic utility and normality of returns were unrealistic assumptions
to make (see Markowitz 1987, Chapter 3). He emphasised that the quadratic specification
was merely an approximation of the true utility. The advantages of that he pointed out were
the model’s economical properties — that the MV optimisation is much less expensive than
true utility maximisation, and that the specification of the utility function is down to choice of
the level of return variance aversion. The MV efficient portfolio can be found by application
of dynamic programming, using e.g. the programme in Markowitz (1987).

The low computational cost was very important when the MV model was founded in the
1950’s, and it certainly was a factor that earned it its popularity, not least in the investment
industry. With the technical progress over the years since, this advantage of the MV model
has decreased. As the cost of computations has fallen immensely, extensions of the MV model
and alternative portfolio choice models have appeared, utilising more computational power.
With the computing speed available today, true utility maximisation is becoming a viable
alternative. FSO constitutes hard evidence of this, as it has its origin in the investment
industry, where it is used for portfolio optimisation of e.g. hedge funds.”

FSO does not have an analytical solution and there is no quick way of identifying the
global optimum of the solution space. The number of candidate solutions (W) grows fast
with the number of assets (V) considered, as each asset added imposes another dimension on
the problem. As the return PDF is not parameterised, no analytical solution can be defined,
and any solution is bound to be an approximation of the true optimum. Hence, the number
of candidate solutions also depends on the precision (p) pursued in the solution vector. Using
the formula for combinations of discrete numbers with repetition, derived by Leonhard Euler

(1707-1783) [see e.g. Epp (2003)], the number of candidate solutions will be approximately

W= (N+1/p) =1 _ ((A/p) +1) = ((1/p) +2) % ... x ((1/p) + N — 1)
(/N =1} 1x2%...x(N—1) :

(5.8)

provided that no short-selling is allowed and that portfolio weights add up to one. To give
an understanding of the scope of this problem, I demonstrate in Table 5.2 how the number of
solutions is growing with the number of assets and the precision of the problem. In spite of
this dimensionality problem, Gourieroux and Monfort (2005), Cremers, Kritzman, and Page

(2003, 2005) and Adler and Kritzman (2007) all argue that the computational burden of the

5The authors of the original articles on FSO work at Windham Capital Management, LLC, and State
Street Associates, LLC, both in Cambridge, MA, USA.
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p=10% p=5% p=1% p=0.1%

N W W w W

1 il 1 1 1

2 11 21 101 1001

3 66 231 5151 501501

4 286 1771 176851 1.7TE+8
5 1001 10626 4.6E4+6  4.2E+10
10 92378 1.0E+7 4.3E+12 29E+421
20 | 2.0E4+7 6.9E+10 4.9E421 9.9E+39
50 | 6.3E410 1.16E+17 6.7E+39 5.5E+84

Table 5.2: Number of possible FSO solutions

This table shows the number of possible discrete solutions (W) of a portfolio selection problem with N assets,
where the smallest change of the discrete numbers are given by the precision parameter p, and the portfolio
weights are constrained to be larger than or equal to zero and to sum to one. The numbers are calculated
using the formula given in Equation 5.8.

FSO technique has become obsolete with the ample computational power on hand. There is
however, to my knowledge, no study verifying this. In Cremers, Kritzman, and Page (2005)
and Adler and Kritzman (2007), a search algorithm is applied to find the FSO optimum.
Such algorithms are necessary when using larger number of assets. Cremers, Kritzman, and
Page (2005) consider 61 assets in their application, and use a precision of 0.1% and do not
allow for short selling. This implies W = 7.23 x 10%, which is the number of vectors to be

evaluated over their 10 annual observations. They do not disclose their search algorithm.

5.5.1 Finding the Full-Scale Optimum: Two Empirical Studies

There are many alternatives on how a search algorithm can be applied to find the solution
to this problem. The purpose of the next two chapters of this thesis is to explore different
ways of doing this. Perhaps the most intuitive approach is the grid search, i.e. to evaluate
the utility function for each possible solution vector. In Chapter 6, I apply a grid search
to a portfolio optimisation problem featuring three different equity indexes. I evaluate the
FSO solutions identified under different utility function specifications in relation to the MV
solution, comparing utility achieved both in-sample and out-of-sample.

The grid search quickly becomes computationally unfeasible when more assets are added
to the problem. In Chapter 7 I address a stock portfolio optimisation problem of 97 stocks.
This is a largest data set in an FSO application to date and demands a more sophisticated
search algorithm than that used in Chapter 6. To avoid searching the whole set of possible
solutions, different heuristic search algorithms exist. Heuristic methods map the solution
set and are self-learning — the search is based on previous iterations of the algorithm. I
apply a heuristic method called differential evolution to solve my stock portfolio optimisation
problem. My results show that the problem at hand can be treated in a FSO framework. I
provide several performance metrics of the algorithm I use, as well as a comparison to MV in

terms of utility. I conclude with a word on precautions to take when using FSO in practice.
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Chapter 6

Full-Scale Optimisation using
Grid Search: Application to UK
Equity Indexes

In this chapter I apply FSO to a portfolio optimisation problem featuring three equity in-
dexes.! In this setting I identify several utility functions featuring loss aversion and prospect
theory under which FSO is a substantially better approach than MV. As the equity indexes
have return distributions with relatively small deviations from normality, the findings indi-
cate much broader usefulness of FSO than has earlier been shown. The results hold in-sample
and out-of-sample, and the performance improvements are given in terms of utility as well as
certainty equivalents.

In the first two sections of this chapter I present the problem setting for this empirical
application of FSO and the four different types of utility functions that I consider. Next, in
Section 6.3, I discuss the optimisation method used to solve the problem. In Section 6.4, I
present the methodology for evaluating the results, and in Section 6.5 I present the outcome

of that evaluation. In Section 6.6, I summarise the main findings of the chapter.

6.1 Setting: Equity Index Portfolios

There exist two earlier studies that evaluate the FSO methodology. Cremers, Kritzman, and

Page (2005) show in a hedge fund selection problem that the performance of FSO (in terms

IThe findings presented in this chapter have also been published in The Manchester School (Hagstrémer,
Anderson, Binner, Elger, and Nilsson 2008). I am grateful for comments and suggestions on that article by
Bjérn Hansson, Mark Kritzman, Paolo Porchia, Indranarain Ramlall, Jim Steeley, Szymon Wlazlowski, and
one anonymous referee, as well as conference presentation attendants at Financial Management Association
European Meeting 2007 (IESE Barcelona), European Financial Management Association Annual Meeting
2007 (Wirtschaftsuniversitit Wien), and Money Macro Finance Conference 2007 (Birmingham University].
and seminar attendants at Lund University Economics Department.
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of utility) is substantially better than Markowitz’s (1952, 1959) MV approach when investor
preferences are modelled to include loss aversion or prospect theory (based on Kahnemann
and Tversky 1979). The results are confirmed in an out-of-sample application by Adler and
Kritzman (2007). Both studies deal with hedge funds, an asset class that is well-known to
have return distributions that deviate much more from the normal distribution than e.g.
equity index returns or stock returns. When strong non-normalities exist, the potential for
FSO performance being superior to MV is higher, as investor preferences for such will matter
more.

In the empirical application in this chapter, I use an approach that strongly resembles the
two preceding evaluations of FSO, with the important difference that I use equity indexes
instead of hedge funds as admissible assets. This is a more challenging setting for the FSO
approach, as the returns from equity indexes typically deviate much less from the normal
distribution than hedge fund returns do. Specifically, I use three indexes that are published
by the Financial Times: FTSE 100, FTSE 250, and FTSE All-World Emerging Market Index
(EMI). FTSE 100 includes the 100 largest firms on the London Stock Exchange (LSE) and
FTSE 250 include mid-sized firms, i.e. the 250 firms following the hundred largest. FTSE
EMI reflects the performance of mid- and large-sized stocks in emerging markets.? The
data are downloaded from Datastream.® I calculate return series for eight years of monthly
observations (Jan 1999 - Dec 2006), vielding 96 observations. As shown in Figure 6.1, the data
feature two expansionary periods and one downward trend. The return distribution properties
given in Table 6.1 show that the three indexes display positive means over the sample period.
FTSE100 is the least volatile of the three, followed by FTSE250 and FTSE EMI. All indexes
feature negative skewness. Excess kurtosis is observed for FTSE 100 and FTSE 250. It is
shown with a Jarque-Bera test of normality (Jarque and Bera 1980) that normality can be
rejected for the UK indexes, but not for the EMI. For comparison, the hedge funds considered
by Cremers, Kritzman, and Page (2005) had skewness and kurtosis averaging -0.12 and 6.44

respectively, and they rejected normality in 85% of the return distributions considered.

6.2 Utility Functions

I apply my portfolio selection problem to exponential, power, bilinear, and S-shaped utility
functions. The same utility function types were investigated by Cremers, Kritzman, and Page
(2005) and Adler and Kritzman (2007), but they considered only a few cases of each utility
function type. I perform my investigation under several different utility function parameter
values, chosen with the intention to cover all reasonable levels.

The bilinear and S-shaped utility functions are my main focus, as it has been shown

2For  exact definition, see  http://www.ftse.com/Indices/FTSE_Emerging_Markets/Downloads
/FTSE_Emerging - Market_Indices.pdf
3The Datastream codes for the indexes are FT100GR(PI), FT250GR(PI), and AWALEGE£(PI).
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Mean  Variance Skewness Kurtosis J-B stat. p(J-B)
FTSE 100 0.0010  0.0015 -0.93 3.091 17.07 0.00
FTSE 250 0.0096  0.0025 -0.83 4.36 18.32 0.00
FTSE EMI 0.0122  0.0043 -0.24 2.91 0.93 0.63

Table 6.1: Summary statistics
The table shows the first four moments of the monthly data for the three equity indexes FTSE100, FTSE250
and FTSE EMI. Kurtosis is the estimator of Pearson’s kurtosis using the function kurtosis in R (this is not

excess kurtosis). J-B stat. is the Jarque-Bera test statistic, and p(J-B) is the probability that the series is
following a normal distribution according to this test.

in a hedge fund setting that FSO using these functions vields portfolio weights that differ
substantially from those of MV optimisation (Cremers, Kritzman, and Page 2005, Adler and
Kritzman 2007). I seek to test whether this difference holds in a portfolio selection problem
of equity indexes. I also include the traditional investor preferences of exponential and power
utility. Utility maximisation using these functions have repeatedly been shown to differ
only marginally to quadratic utility (Levy and Markowitz 1979, Markowitz 1987, Cremers,
Kritzman, and Page 2005), and I include them for the purpose of illustration. Gourieroux
and Monfort (2005) apply the FSO model to the exponential and power utility functions,
which allows them to derive the asymptotic properties of the FSO estimator. They establish
in this context that the utility maximising estimator yields greater robustness than the MV
counterpart, as the full empirical return distribution is considered.

The range of utility parameters tested is given in Table 6.2. For the exponential utility
function, the only parameter to vary is the level of risk aversion (A), which I vary between 1
and 10. The « parameter in the power utility function determines level of risk aversion and
how risk aversion decreases with wealth. As I let it vary between 1 and 5, I include the special
case when the power utility function is logarithmic (v = 1). The higher v and A are, the
higher is the risk aversion. For the bilinear utility function, I vary the critical point (the kink,
r5, varied from -4% to +0.5%) under which returns are given a disproportionate bad utility. I
also vary the magnitude, , of this disproportion from 1 to 10. In the S-shaped utility function
there are five parameters to vary. I test three levels for the inflection point, rj: 0%,—2.5%
and —5%. The parameters 7, and A respectively determine the shape and magnitude of
the downside of the function, whereas v, and B determine the upside characteristics in the
same way. The disproportion between gains and losses can be determined either by the
parameters or the A and B parameters, or both. I perform one set of tests where the ’s vary
(v2 > =) and the magnitude parameters are held constant and equal, and one set of tests

where the 7, and «, are constant and equal, but where A and B vary (A > B).
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Figure 6.1: Development of the three indexes over the time period considered

Monthly prices for FTSE100, FTSE250, and FTSE EMI, indexed for January 1999, are plotted for 1999-2006.

6.3 Optimisation Method: Grid Search

To identify the FSO optimum in this three-asset case I use grid search. In the grid search,
all possible solution vectors are evaluated, and the one that maximises utility is taken as the
FSO optimum. If the precision of the grid is high enough, the identified solution should be
near the global optimum of the utility surface. I let the precision parameter of the grid be
p = 0.5%. As I do not allow for short-selling, this three-asset problem has 20301 potential
solutions that I evaluate over 96 monthly observations. The choice of grid precision can
be made on the basis of the trade-off between the marginal utility of increasing p and the
additional computational cost of doing so. Setting the grid precision to 0.1% instead of 0.5%
increases the grid size by a factor of almost 25 (from 20301 to 501501). For most portfolio
choice problems such increased computational cost can not be motivated by the increased
utility achieved.

An alternative to increasing the precision of the complete grid is to perform a second grid
search around the optimum found in the first search. I perform a second step grid search using
p = 0.1% around the p = 0.5% optima, covering all possible allocation within the range of
#;+£1%. This is the range needed to cover all solutions not covered in the previous grid search,
as if two assets change by 0.5% in the same direction, the third has to change by 1%. In general
the range required for the second grid search is p(IN — 1), where N is the number of assets in

the problem and p is the precision of the first grid search. The second grid dimension is in

101



Utility function Parameter values

Exponential: 05<A<L6

Power: 1<vy<5

Bilinear: —4% <1, <05%;1<p <10

S-shaped: 5% <r; <0%;005<v<05;095<7%<05;A=15;B=15
—5%ST‘;SU%;’}(1:O.5;'7220,5;1.5§A§2.91.5§B§0.1;

Table 6.2: Utility function parameters
The table describes the intervals for parameter values applied to the utility functions considered in this chapter.

The utility function definitions are given in Table 5.1. Exact parameter combinations applied are given in the
results tables for each utility function (see Tables 6.5-6.9).

my case 67 < W < 331, depending on whether the first stage optimum contains allocations
close to the allowed limits 0 and 1 or not. I found that both the computational cost and the
utility improvement of the second grid search are minute. None of the utility improvements
exceeded 1%, and only 8 out of 132 utility functions had improvements exceeding 0.1%. This
utility improvement is what I sacrifice when choosing p = 0.5% rather than p = 0.1%. As
a grid search never can yield an exact solution, I also applied Simulated Annealing on the
area around the optimum (for a description of this technique, see e.g. Goffe, Ferrier, and
Rogers 1994). Again, the utility improvement is very small. I hence concluded that p = 0.5%
is enough precision for this application. In portfolio choice problems with large grids resulting
from a larger number of assets, the two-stage technique presented here may be a viable option
to decrease computational cost. Caution is needed however, as non-convexity may lead an
imprecise grid to an area not including the global optimum. The computational cost of the
second step grid search, measured in computation time, is also relatively small. Times needed
for performing FSO on each utility function type used in this article, for first and second step
grid searches respectively, are given in Table 6.3.

The study is performed in a one-period setting - no rebalancing of the portfolio is consid-
ered. In order to mitigate the probability of corner solutions, I scale all returns to conform
to implied returns of an equal-weighted portfolio (8, = N~!).* This does not change the
shape of the probability distribution, which is what matters for the optimisation and hence
the comparison between FSO and MV. Corner solutions need to be avoided, as solutions that
are bounded by the allocation constraints can give a false impression of equality of the two

methods.

1The difference between the average return of all three indexes and the return corresponding to the variance
of the equally weighted portfolio is added to each observation. In this case, the difference added amounts to
0.086%.



Utility function | Time 1st step Time 2nd step
Exponential: 1.25 0.00
Power: 1.47 0.01
Bilinear: 35.78 0.13
S-shaped: 44.75 0.14

Table 6.3: Computational cost of FSO

Time is specified in seconds. Optimisation was run over 96 time periods. The platform used was an Intel
Core 2. 2.16 GHz processor with 3GB RAM. Software used was R v2.6.1, applying the function system.time.

6.4 Model Evaluation

The methodology for comparing FSO to the MV approach is to a large extent inspired by
that applied by Cremers, Kritzman, and Page (2005) and Adler and Kritzman (2007), where
the performance of the different approaches is measured in utility.

In order to compare the FSO and MV optima, the expected FSO portfolio return is
calculated (E[rp rso| = E[0goR]). The corresponding MV optimal portfolio, 8y, is taken
to be the variance-minimising allocation that yields the same expected portfolio return, a

point on the MV efficient frontier.®

6.4.1 Utility Differences and Certainty Equivalents

The performance of the two solutions (frso and fyry) is calculated in terms of the utility
function applied for the FSO method. The relative expected utility difference between the

two portfolios can be calculated as

ElU(0FsoR)] — E[U(Oyv R)]
|E[U @y R *

EMYV = (6.1)

where ey is a measure of the MV approximation error.%

Measuring the difference in terms of improved utility has the drawback that utility is hard
to interpret in economic terms. Also, different utility functions yield different magnitudes of
utility variation for a set of returns. An alternative measure, which is more straightforward
to interpret, is the certainty equivalent.”

The certainty equivalent of a risky investment is the certain return yielding the same

5T use the original MV model as benchmark in this study. In this way, it can be established whether the
FSO model is superior to that model. The rich supply of MV extensions, however, is yet to be compared to
the FSO model.

5The MV solution can be calculated with much higher detail than the FSO portfolio, which is limited to
0.5% precision. Accordingly, a minor source of utility difference will be due to this limitation, which in the
comparison is to the MV method’s advantage.

"Certainty equivalents have earlier been used for FSO-MV comparisons in a working paper by Cremers,
Kritzman, and Page (2003).
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utility as the expected return of the risky investment. Denoting the certainty equivalent

return r¢ g, this relationship can be described as
U(l+rce) = E[U(1+8R). (6.2)

The difference between the expected return on the risky investment and the certainty equiv-
alent is usually defined as the risk premium, i.e. the additional expected return the investor
requires to take on the risky investment instead of the risk-free investment (Meucci 2005).
This number has an obvious economic interpretation and can easily be restated in mone-
tary terms. For example, if the risk-premium is 0.5%, the investor requires an extra $500 of
expected return per $100,000 invested.

Using the return series calculated for each optimum above, I can derive measures of
expected average utility for FSO and MV respectively over time, Ugso and Uary. This
simplifies Equation 6.2 to

Ul+reg)=U, (6.3)

which can be solved for each of the utility functions presented above, see Table 6.4. Having
calculated the certainty equivalent for the FSO and MV optima, the two can straightforwardly
be compared by letting

Arcg = T(Fjgo = T'g‘fg, (6.4)

where Are g is the improvement in certain return on investment corresponding to the utility
improvement of using FSO rather than MV. This difference can be interpreted in the same
way as the risk premium. Note that Arecp by definition always (in-sample) is positive or
equal to zero. As the corresponding MV solution is evaluated in the same utility function,
it can never (in-sample) achieve higher utility than the utility maximum identified by FSO.

Under quadratic utility however, it will be equivalent.

6.4.2 Success Rates

For the bilinear and S-shaped utility functions, I also calculate success rates of the same type
as in Cremers, Kritzman, and Page (2005). The success rate describes the relative frequency
of portfolio returns superior to the investor’s specified critical level (kink and inflection point

respectively). Denoted SR, the success rate is

” Zf;l I(rp >1})

SR T

; (6.5)

where I(-) is an indicator variable taking value 1 when the condition holds and zero otherwise.
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Utility function CE derivation

Exponential: —exp(—A(l +1p)) & rop= —ﬁﬂn(—ﬁ) -1
- 1=
Power: “if—):w—_—l- for y>0 & repg=[1+(1- 'y)ﬁ]ﬁ -1
In(l+1p) for y=1 & rog=exp(U)—1
Bilinear: In(l+1p) for r,271, © rcEp= exp(U) — 1
olrp—7r5) +in(l+ry) for rp<ry & *
- e
S-shaped: —A{ry — )M for r,<r; & rep=r,— (:U_AJ =
S A
+Blry — 2™ for >y & res=ry+(3)7

Table 6.4: Certainty equivalent equations

The utility function definitions are given in Table 5.1. *Under Bilinear utility when U < U (rp). no explicit
solution exists. This case is handled by a standard search algorithm.

6.4.3 Out-of-Sample Testing

In order to further examine the robustness of the FSO methodology, I repeat the procedure
described above in an out-of-sample setting. This is done using essentially the same method-
ology as in Adler and Kritzman (2007). For this purpose, the sample is split in two halves.
The first half is used for estimating optimal portfolio allocations, and the performance of the
optimal portfolio retrieved is measured on the second half.

I generate 10,000 samples of cross-sectional monthly returns by drawing from the second
half of my sample (with replacement), which was not employed for the portfolio optimisation.
This bootstrapping procedure allows me to study performance of the optimised portfolio out-
of-sample. The exercise is repeated using the second half of the sample for estimation and
the first half for the diagnostics. Finally, the average utility difference between FSO and MV
portfolios over the 20,000 samples is calculated.

6.5 Results

I run the portfolio selection problem described under 103 different utility function specifica-
tions: 12 with exponential utility; 9 with power utility; 31 with bilinear utility; and 51 with
S-shaped utility. Below the results are presented and interpreted for each utility function

type. The section is concluded with some general observations.

6.5.1 Exponential and Power Utility Portfolios

Running the exponential utility maximisation yields, as expected, portfolios with high weights

to risky assets when A is low and less so when the risk aversion parameter A is set higher
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FSO approach MYV approach EMV Arecg
A 0, B B4 & By B3 IS  00S IS 0O0S
0.5 1{ 0.000 0.000 1.000 1| 0.000 0.001 0999 | 00% 00% |01% 0.0%
1 | 0.000 0.000 1.000 | 0.000 0.001 0.999 | 0.0% 0.0% | 01% 0.0%
1.5 0.000 0.000 1.000 | 0.000 0.001 0.999 | 0.0% 0.0% | 0.1% 0.0%
2 | 0.000 0.230 0.770 | 0.000 0.230 0.770 | 0.0% 0.0% | 0.0% 0.0%
2.5 0.000 0.400 0.600 | 0.000 0.400 0.600 | 0.0% 0.0% | 0.0% 0.0%
3 | 0.000 0515 0.485 | 0.000 0.515 0.485 | 0.0% 0.0% | 0.0% 0.0%
3.5 [ 0.000 0595 0.405 | 0.000 0.595 0.405 | 0.0% 0.0% | 0.0% 0.0%
4 | 0.000 0.655 0.345 | 0.000 0.655 0.345 | 0.0% 0.0% | 0.0% 0.0%
4.5 | 0.000 0.705 0.295 | 0.000 0.705 0.295 | 0.0% 0.0% | 0.0% 0.0%
5 | 0.000 0.740 0.260 | 0.000 0.740 0.260 | 0.0% 0.0% | 0.0% 0.0%
55| 0.000 0.770 0.230 | 0.000 0.770 0.230 | 0.0% 0.0% | 0.0% 0.0%
6 | 0.000 0.795 0.205 | 0.000 0.795 0.205 | 0.0% 0.0% | 0.0% 0.0%

Table 6.5: Exponential utility results
This table shows results for FSO and MV portfolios using exponential utility. Each row represents a different
setting of the absolute risk aversion A, given in the first column. The following six columns present portfolio
allocations for FSO and MV portfolios. Portfolio allocations notation are as follows: f; is allocation to
FTSE100, 62 is to FTSE250, and 3 is to FTSE EMI. The given allocations are those estimated on the full
data set. In the four rightmost columns the utility improvement of using FSO rather than MV is given in
terms of utility and in terms of certainty equivalents. For each of these, both in-sample results (IS) and

out-of-sample results (OOS) are given. OOS results given are the averages of the two OOS applications.
Certainty equivalent improvements are given in annual terms.

(see Table 6.5). The portfolios identified are all very close to the MV efficiency frontier,
resulting in extremely small utility improvements, if any, when using FSO instead of MV. As
the FSO and MV solutions are close to identical, the differences in performance out-of-sample
are close to zero. Portfolio optimisation based on the power utility function is run with 9
different levels of the relative risk parameter v. As shown in Table 6.6, the power utility
function yields portfolios allocating the whole investment to the most risky asset (in terms
of variance), FTSE EMI, for v < 1.5, and then gradually moves towards the medium-risky
asset (FTSE 250) as v grows. The deviations from the MV frontier are slightly larger than
in the exponential utility cases, but differences in utility outcome both in-sample and out-of-
sample are still minute. In-sample utility improvement never exceed 0.02%, and out-of-sample
differences display neither substantial magnitude, nor consistent directions on deviations from
Zero.

The improvement in terms of certainty equivalents is zero or close to zero under both
exponential and power utility functions. Hence, an investor following these utility functions
is not prepared to pay anything to move from MV to FSO. These results conform well to those
of earlier assessments (Levy and Markowitz 1979, Markowitz 1987), showing that portfolio
allocations chosen by the utility maximising approaches yield very small improvements relative
to the MV approach, when the investor’s utility is well described by the exponential or the

power utility functions.
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FSO approach MYV approach EMV Arcg

b 4 91 92 93 91 82 9:5 IS 008 IS 00S
1 0.000 0.000 1.000 | 0.000 0.001 0.999 | 0.0% 0.1% | 0.1% 0.0%
1.5 | 0.000 0.000 1.000 | 0.000 0.001 0.999 | 0.0% -0.1% | 0.1% 0.0%
2 | 0.000 0.220 0.780 | 0.000 0.220 0.780 | 0.0% -0.2% | 0.0% 0.0%
2.5 [ 0.000 0.395 0.605 | 0.000 0.395 0.605 | 0.0% 0.1% | 0.0% 0.0%
3 0.000 0.510 0.490 | 0.000 0.510 0.490 | 0.0% 0.1% | 0.0% 0.0%
3.5 0.000 0.590 0.410 | 0.000 0.590 0410 | 0.0% 0.0% | 0.0% 0.0%
4 0.000 0.650 0.350 | 0.000 0.650 0.350 | 0.0% 0.2% | 0.0% 0.0%
4.5 | 0.000 0.700 0.300 | 0.000 0.700 0.300 | 0.0% 0.0% | 0.0% 0.0%
5 | 0.000 0.735 0.265 | 0.000 0.735 0.265 | 0.0% -0.1% | 0.0% 0.0%

Table 6.6: Power utility results

This table shows results for FSO and MV portfolios using power utility. Each row represents a different setting
of the relative risk aversion +, given in the first column. The following six columns present portfolio allocations
for FSO and MV porifolios. Portfolio allocations notation are as follows: @1 is allocation to FTSE100, 64
is to FTSE250, and 03 is to FTSE EMI. The given allocations are those estimated on the full data set. In
the four rightmost columns the utility improvement of using FSO rather than MV is given in terms of utility
and in terms of certainty equivalents. For each of these, both in-sample results (IS) and out-of-sample results
(O08) are given. OOS results given are the averages of the two OOS applications. Certainty equivalent
improvements are given in annual terms.

6.5.2 Bilinear Utility Portfolios

The tests on bilinear utility functions are performed with the kink (rj) at different levels
and with various penalties (¢) on sub-kink returns. Each kink value is tested for 3 different
penalty levels. As is shown in Table 5.1 above, the disutility of sub-kink returns is amplified
by the factor ¢. When ¢ = 1, there is no kink, and the utility function features no loss
aversion.

The results retrieved for bilinear utility functions are shown in Table 6.7. As expected,
the risk level of the optimal portfolios retrieved with FSO decreases as the kink and penalty
parameters increase. When the penalty parameter is set to 1 all wealth is allocated to the
most risky asset (FTSE EMI), which is due to the lack of risk aversion in this case. For higher
penalty levels, the portfolios are increasingly weighted towards the less risky assets (FTSE
100 and FTSE 250). At ¢ = 10, no allocations are made to the most risky asset. This occurs
when the incentive to avoid returns less than those associated with the kink dominates other
investor incentives, such as maximising returns or minimising risk by diversification. Portfolio
diversification is highest in portfolios optimised with ¢ = 5.

Whereas many of the portfolios optimised under bilinear utility are close to the MV
frontier, there are cases where the utility improvement is substantial (up to 4% in-sample and
13% out-of-sample). Looking at certainty equivalents, there is a positive, fairly consistent, but
small difference in favour of the FSO portfolios. On average, rog improvement amounted to
0.02% in-sample and 0.04% out-of-sample (see bottom of Table 6.7). This means that usage of
FSO rather than MV when investor preferences are correctly described with a bilinear utility
function, vields a utility improvement equivalent to that of a certain 0.02% annual return. Of

the 20,000 draws made for the out-of-sample test. 14% vield r¢g improvements higher than
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1%, and 8% yield less than —1% (in annual terms).

Looking at the distribution of returns out-of-sample, there are on average (of the 20,000
bootstrapped samples) no differences between FSO and MV in mean and variance. The
solutions under bilinear utility, however, yield higher skewness and higher kurtosis than what
MV solutions yield on average (as showed in Table 6.8). Bilinear utility does not penalise
kurtosis, as there is no decrease in marginal utility with returns (i.e. no risk aversion) except
for the jump at the kink. Accordingly, it can be seen that the corresponding MV portfolios
are more diversified than the FSO portfolios.

The success rates (ratio of portfolio returns exceeding the kink) are slightly higher on
average using FSO to implement the bilinear preferences than when using MV portfolios,
which can be related to the higher skewness resulting under bilinear utility (see bottom of
Table 6.7). Differences appeared only in 10 cases, out of which two were in favour of MV.
Success rates implemented by Cremers, Kritzman, and Page (2005) yielded similarly small

differences under the bilinear utility specification.

6.5.3 S-Shaped Utility Portfolios

As discussed in Section 5.4, the S-shaped utility function features risk loving behaviour when
returns are below a critical value ry, and risk aversion when returns are above that value. I
perform my tests with the inflection point set to 0%, —2.5% and —5%, with varying settings
of either the gamma values (y; and 7») or the magnitude parameters (A and B). These
parameters regulate the curvature of the S-shape.

As seen in Table 6.9, the utility from the FSO approach under S-shaped utility is con-
siderably better than the utility obtained with S-shaped preferences when evaluating alloca-
tions chosen via the MV approach. The average utility difference is 10% in-sample and 15%
out-of-sample. Certainty equivalent improvements are on average 0.2%, both in-sample and
out-of-sample (10 times higher than under bilinear utility). That is, using FSO causes an
increase in utility corresponding to a certain annual return of 0.2% on average - a substantial
gain. This Arcg is consistent throughout the 20,000 out-of-sample draws. It exceeds 1% in

35% of the cases, whereas it is lower than —1% in only 15% of the tests.
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Table 6.7: Bilinear utility results

This table shows results for FSO and MV portfolios using bilinear utility functions. Each row represents
a different, parameter sefting of the utility function. The values of the parameters v and rj, are given in
the first two columns. The following six columns present portfolio allocations for FSO and MV portfolios.
Portfolio allocations notation are as follows: #; is allocation to FTSEI00, 0 is to FTSE250, and 65 is to
FTSE EMI. The given allocations are those estimated on the full data set. In the next four columns the utility
improvement of using FSO rather than MV is given in terms of utility and in terms of certainty equivalents.
For each of these, both in-sample results (IS) and out-of-sample results (O0S) are given. OOS results given
are the averages of the two OOS applications. Certainty equivalent improvements are given in annual terms.
In the two rightmost columns success rates are given for FSO and MV portfolios respectively (both in-sample
for the full data set).

Utility function | Mean Variance Skewness Kurtosis

Bilinear utility | 0.0000  0.0000 0.0029 0.0180

S-shaped utility | 0.0004  0.0001 0.0687 0.0150

Table 6.8: Average out-of-sample differences in return distribution properties between FSO
and MV portfolios

The table gives the difference in portfolio return distribution properties between FSO and MV portfolios,
averaged over the 20,000 bootstrapped samples and across utility function specifications.

Return distributions on average of the 20,000 bootstrapped samples have higher means
and variances when optimising with FSO than with MV (see Table 6.8). As for the bilinear
utility case, skewness and kurtosis are also higher, the former with much higher magnitude
than under the bilinear preferences (0.069). In other words, the portfolios based on S-shaped
preferences have a higher risk level but a lower probability of very low returns in a single
month. The success rates are also clearly in favour of the FSO approach in cases where S-
shaped utility is believed to describe the investor’s preferences well, which was also found by
Cremers, Kritzman, and Page (2005). In 60% of the utility specifications the FSO success
rate is higher than the MV counterpart — another reflection of the increased skewness of the
FSO return distribution.

Variation in the ratio 71 /42 causes only minor changes in the allocations. These pa-
rameters primarily determine the bends of the S-shape, and the influence on allocations is
marginal. The variations of A and B, on the other hand, are more influential on allocations.
The higher the ratio A/B gets, the less risk (in terms of variance) is chosen for the portfolio.
Similar findings on the influence of S-shaped utility function parameters have been reported
by Benartzi and Thaler (1995). My results also indicate that, as expected, higher inflection

points correspond to higher loss aversion.
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Table 6.9: S-Shaped utility results

This table shows results for FSO and MV portfolios nusing S-shaped utility functions. Each row represents
a different parameter setting of the utility function. The values of the parameters 1, 42, A, B, and r* are
given in the five leftmost columns. The following six columns present portfolio allocations for FSO and MV
portfolios. Portfolio allocations notation are as follows: f; is allocation to FTSE100, 62 is to FTSE250, and
13 is to FTSE EMI. The given allocations are those estimated on the full data set. In the next four columns
the utility improvement of using FSO rather than MV is given in terms of utility and in terms of certainty
equivalent. For each of these, both in-sample results (IS) and out-of-sample results (O0S) are given. OOS
results given are the averages of the two OOS applications. Certainty equivalent improvements are given in
annual terms. In the two rightmost columns success rates are given for FSO and MV portfolios respectively
(both in-sample for the full data set).

6.6 Conclusions

The empirical application of this chapter constitutes the widest FSO-MV comparison to date
with respect to utility functions. The results extend earlier findings by Cremers, Kritzman,
and Page (2005) and Adler and Kritzman (2007), establishing the robustness of those studies’
results. The FSO methodology is useful when investor utility function features a threshold,
such as in the bilinear and the S-shaped utility functions (especially the latter). For tradi-
tional utility functions {exponential and power utility) there is no clear performance difference
between MV and FSO.

The fact that these results appear in an application of equity indexes increases the scope
of the FSO applicability considerably. It has earlier only been shown that FSO is useful in
allocation problems involving hedge funds, which have very non-normal return distributions.
Using assets with return distributions closer to normality vields smaller gains in utility, but
the improvements are still substantial.

FSO has great theoretical appeal in that it does not build on assumptions simplifying the
world of the investor. Return distributions are used in their entirety and utility functions
can be chosen with complete flexibility, without mathematical convenience considerations.
Challenges remaining for the investment advisor include correctly specifving the investor’s
preferences in a utility function, and to overcome the computational burden of the technique

that appears when more assets are added. I look closer at the latter issue in the next chapter.
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Chapter 7

Full-Scale Optimisation using
Differential Evolution:

Application to FTSE100 Stocks

In this chapter I apply the heuristic technique differential evolution (DE) to solve relatively
large portfolio selection problems under complex utility functions using FSO.! I show that
this is computationally feasible and that solutions retrieved with random starting values are
converging to one optimum.

Furthermore, the study constitutes the first FSO application to stock portfolio optimi-
sation. The assets considered are the constituent stocks of the FTSE100 index. My results
indicate that when investors are loss averse, FSO improves stock portfolio performance com-
pared with MV portfolios. This finding widens the scope of applicability of FSO, but it is
also stressed that out-of-sample success will always be dependent on the forecasting ability
of the input return distributions.

This chapter follows the same structure as the previous chapter. I begin with presenting
the problem setting and the utility functions applied. Then, in Section 7.3 I present the
DE algorithm in some detail. The model evaluation methodology used is similar to that of
the previous chapter, but some differences due to optimisation method and choice of utility
functions are presented in Section 7.4. In the results section, 7.5, I first present findings on
the reliability of DE optimisation, then 1 present results on FSO performance in this large

stock portfolio setting. Before concluding the chapter, in Section 7.6, I provide a discussion

IThe findings of this chapter have also been published in Applied Financial Economics (Hagstrémer and
Binner 2009). I am very grateful for the input from two anonymous referees for that article. Furthermore,
Richard G. Anderson, Keith C. Brown, Thomas Elger, Dietmar Maringer, Lars Qvigstad Serensen, Jonathan
Tepper, Peter Tino, and seminar participants at Lund University Economics Department and Arne Ryde
Seminar in Financial Economiecs in Lund, Financial Management Association European Conference in Prague,
and Nordic Finance Network Workshop in Bergen are gratefully acknowledged for their comments.
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of FSO weaknesses.

7.1 Setting: Large Stock Portfolios

In the previous chapter I showed that FSO is useful for the choice between equity indexes and
that this is robust for several different utility function specifications. That chapter extends
the findings of Cremers, Kritzman, and Page (2005) and Adler and Kritzman (2007), who
introduce FSO and demonstrate that it is useful for hedge fund selection. When investor
preferences are complex FSO has hence repeatedly been shown to be performing better than
traditional portfolio choice models. What has not been addressed by these studies is how
large portfolios can be optimised in a time-efficient manner. For larger problems (with many
assets), the grid search quickly becomes too burdensome computationally; and with investors
interested in higher moments of returns, gradient searches are likely to get stuck in a local
optimum. In the setting of FSO, there is currently no study on how to overcome the massive
computational burden associated with problems of several assets. Gourieroux and Monfort
(2005) state that the computational burden problem is obsolete due to modern computing
capacity. Cremers, Kritzman, and Page (2003) and Cremers, Kritzman, and Page (2005)
solve hedge fund selection problems of up to 61 assets, but they do not disclose what search
algorithm they apply to do that. The study presented in this chapter is the first to show
explicitly how the FSO optimum can be found in problems of that scale.

Large stock selection problems are common in portfolio optimisation practice. They are
encountered in actively as well as passively managed portfolios (such as index tracking port-
folios). For the latter it is common to choose among hundreds of stocks. In extreme cases,
portfolio choice problems can include thousands of assets. For an example, see Perold (1984).
By making assumptions on the shape of return distributions and on the utility functional
form, optima of such large scale problems are straightforward to find using MV. In the FSO
framework, however, the solution comes at great computational cost. To deal with large
stock selection problems within the FSO framework, I demonstrate how a heuristic search
algorithm such as DE can overcome the dimensionality problem.

Admissible assets in my empirical application are the constituents of the FTSE 100 index
(by 1 Jan 2005). I use daily price data for two years (3 Jan 2005-29 Dec 2006), yielding 502
observations, retrieved from Datastream. One observation is lost when prices are transformed
to returns. Due to missing data, five companies are excluded.? Properties of each asset return
series are given in Table A.1 in the appendix. The Jarque-Bera normality test (Jarque and
Bera 1980) shows that the null hypothesis of a normal probability distribution can be rejected
for all assets except one (BP). The fact that return distributions deviate from normality

implies scope for asset allocation superior to that of MV evaluation.

2Drax Group, Experian Group, Kazakhmys, Royal Dutch Shell A, and Standard Life.
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7.2 Utility Functions

In this chapter I consider two different families of utility functions: kinked power utility and
S-shaped utility (see Section 5.4 for definitions and discussion). Both of these feature loss
aversion of different types.

The kinked power utility function has earlier been implemented by Maringer (2008b). To
calculate this utility, returns are adjusted before they are evaluated in the utility function.
As shown in Table 5.1, returns lower than a set level rj, are given disproportionate weight
in accordance with a loss aversion parameter y. This yields a kink on the utility function
located at the critical value. A graphical example of this function can be seen in Figure 5.2,
Panel D).

The second group of utility functions applied is the prospect theory S-shaped utility
functions, which I also used in the previous chapter. For a graphical example, see Figure 5.2,
Panel E). The utility curve is concave as long as returns are positive, but for negative returns
it turns convex, showing risk seeking behaviour. Hence, under such preferences, the investor
wants to take on more risk when losses are made. In spite of this irrational feature, S-shaped
utility is applied in portfolio optimisation as a way of incorporating loss aversion, see e.g.
Aft-Sahalia and Brandt (2001) and Cremers, Kritzman, and Page (2005).

The definitions of the two utility functions considered here are reprinted in Table 7.1. I
vary the critical point 7 between the values —1.5%, —1%, —0.5%, and 0%. I let the loss
aversion parameter for the power utility vary between xy = 1,2 and 3 (hence including a
traditional power utility function without kink when x = 1), and the risk aversion parameter
between v = 0,2,4 and 6. This vields 36 different specifications of the power utility function.

For the S-shaped utility I use the same variations of r; as above. The gamma values
here regulate the curvature of the S-shape and are assumed to be equal, v; = 72 = 0.5 (as
they were found in the previous chapter to have little influence on portfolio allocations). The
disproportion between losses and gains (relative to r};} is instead regulated by the magnitude
parameters A and B. I vary the ratio between these parameters to % = 1,2 and 3. This
vields 12 different specifications of the S-shaped utility function, so in total I have 48 different

functions to evaluate.

7.3 Optimisation Method: Differential Evolution

When testing all possible solutions is not practicable, heuristic optimisation techniques consti-
tute one alternative. These are self-learning algorithms able to find optima in rough solution
surfaces. Local optima are avoided by use of stochastic elements. Clearly sub-optimal solution
areas are quickly by-passed, whereas areas around candidate optima are searched in detail.

Maringer and Oyewumi ((2007); dealing with index tracking applications) and Maringer and
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- - ] r* —xy(r*—r for r, <7
Kinked power utility: ri¥ =4 7 x(r5 = 15) P P
Tp for r, > e

UKP = Upﬂwer(r;dj)

—A(ry —rp)" for rp <y

S-shaped utility: Ussya = { Blr, — ) PN g
P P P P

Table 7.1: Utility function equations

In both the utility functions, rp represents portfolio return and rp is the critical return level. The latter is

referred to as the kink in the kinked power utility function, and as the inflection point in the S-shaped utility
function. In the kinked power utility function, - is the degree of (relative) risk aversion, and x the degree
of loss aversion. The latter is used to adjust sub-kink portfolio returns to get r;d"". which is evaluated in
the power utility function. In the S-shaped utility functions, A and B determine the disproportion between
returns on different sides of the critical level, and v; and 2 are parameters determining the curvature of the
S-shape (that are held constant and equal).

Meyer (2008; choosing between STAR models) have explored the efficiency and reliability of
different heuristic optimisation techniques in portfolio choice problems. In the competition
of threshold accepting, simulated annealing and stochastic differential equations, they find
DE to be well suited for non-convex portfolio choice problems. None of these studies has
assessed a FSO framework. A study closely related to this one is Maringer (2008b). It applies
a FSO-like framework (not using the term FSO), but focuses on higher moment outcomes
rather than utility performance differences.

DE has been shown to be efficient in converging to one (presumably global) optimum.
The algorithm utilises a low number of parameters and these need little calibration, which
makes it user friendly and time efficient. As independent restarts are part of the DE routine,
the computation time of DE can straightforwardly be cut by running many machines parallel
to each other. DE was introduced by Storn and Price (1997), and is described in detail in
Price, Storn, and Lampinen (2005). A description of the DE algorithm in a portfolio choice
setting is available in Maringer (2008b). Below, I give a brief summary of the six steps of
the algorithm, establishing the notation and understanding necessary for my analysis. This
summary is based on Maringer (2008b) and Price, Storn, and Lampinen (2005). To facilitate

understanding of DE, I also provide an illustration of the algorithm, see Figure 7.1.

(1) Initialise population: Randomly generate a set of Q starting value vectors, ¢ 5, of length
N, wherei = 1,2,...,Q and @ is the population size, such that BQ € Q (recall that € is
the permissible set of allocation combinations and that N is the number of admissible

assets). The index g denotes the vector generation which in the initialisation case is 1.

(2) Mutation: Generate a second set of @ vectors of length IV by the equation

0 =0f ,+(F+ z1)(8f,, — 0F, , + 22), where F is a difference vector scale factor, k1,k2

and k4 are randomly drawn discrete numbers from the set 1,2, ..., @, and z; and z5 are
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noise elements (see below for further definition of z; and zs).

(3) Offspring: Generate a third set of ) vectors Sg* of length N with crossover probability
7 of equalling 93; and probability (1—) of equalling 9:‘;’ Adjust these vectors to satisfy

the problem constraints using some function fo such that fg(ﬂg‘) = Eg e Q.

(4) Selection: Generate a fourth set of @) vectors of length IV consisting of the best solution

vectors in sets 87, and 65 by using the equation 6}, = argmax{6/,,6%}(U(6'R)).

(5) Iteration: Create a new vector generation by setting 9; 41 = 6‘;" and repeat steps (2)-(4)
until ¢ = G, where G is the halting criterion setting how many generations should be

used.

(6) Optimum: The DE optimum is given by #PF = arg maxe_sc{U(G’R)). Typically, to en-
sure that the random starting values do not affect the DE optimum, the whole procedure

is repeated several times.

Specific to the application in this chapter is that I use noise terms in the mutation (both in
the scale factor and the difference vector), and a limit on number of generations as halting
criterion.

The stock selection problem 1 assess contains 97 assets (N = 97). I apply a budget
constraint and a short selling constraint, yielding the following constraint set (where ¢ is a

vector of ones):

0<6;,<1
0= ; (7.1)
ngz. = I

These constraints are to be applied when forming 9{; and 91% in Steps (1) and (3) respectively.

The two constraints imply a function fqo(-) involving two steps. First, all negative elements
of 8;, are set to zero, and second, all elements are divided by the solution vector sum E?igc.
It should be noted that other constraints would make these adjustments insufficient. Price,
Storn, and Lampinen (2005) discusses different approaches on how to deal with constraints.

The mutation equation scale parameter chosen is F = 0.6 and I add noise elements
following the choices made by Maringer and Parpas (2009), generating z; ~ N(0,0.01) with
50% probability and zero otherwise; and zo ~ Uni(—0.005,0.005) with 1% probability and
zero otherwise (noise parameters are redrawn in every generation). The noise elements add
randomness to the algorithm, with the purpose of avoiding getting stuck in a local optimum
distant from the global optimum. Population size is set to about 3 x N, @ = 300, as
recommended by Maringer (2008a). The halting criterion is set to G = 400 for kinked power
utility applications, and G = 700 for S-shaped utility, which was found suitable in optimisation
monitoring. Crossover probability is set to m = 0.6, which is within the limits recommended
in the literature. For each utility function specification I perform 5 restarts. As will be seen

below, these parameter settings make the restarts converge to close to the same optimum.
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Figure 7.1: Flow chart for the DE algorithm

The figure describes the search algorithm for DE optimisation in five steps (1) (5). The variable to be
optimised is #, which has dimension N, i.e. the number of assets. In step (1) a set of @ solution vectors
are generated. denoted using index ¢ = 1,2,...,Q. This step is done at initialisation only, implying that the
generation index is g = 1. The superscript P indicates that these vectors are parent vectors. In step (2) a
set of () mutant vectors are generated, each being a function of three randomly chosen parent vectors and a
difference vector scale factor F. Two noise terms, z; and z», introduce randomness in the vector scale factor
and the difference vector. The set of mutant vectors are denoted with superscript M. In step (3) offspring
vectors are generated. Each element j (j = 1,2,.... N) in each vector i have a probability 1 — 7 to equal
element j of parent vector i, and a probability 7 to equal element j of mutant vector 7. Once all vectors are
determined. they are transformed to satisfy the constraints given by Q using the function fu. The set of Q
offspring vectors are denoted with superscript O. In step (4) the surviving vectors are chosen. The surviving
vector 9:’; is equal to the one of 9{; and Gg that yields the highest utility according to utility function U(8'R).
In step (5) the surviving vector set 93 forms the next parent vector generation Ggp 41, which is entered into
step (2) as long its subscript g is smaller than G. When ¢ = G, the final step (6, not illustrated) involves
choosing the vector OiSG out of the set GCS;, that maximises U(6'R). This vector gives the DE optimum.

7.4 Model Evaluation

The empirical application performed in this study is assessing the performance of FSO using
DE for solving a stock selection problem. The performance is evaluated towards MV, using
the same evaluation procedure as applied in Cremers, Kritzman, and Page (2005) and the
previous chapter of this thesis.

To compare the FSO and MV optima, the expected return of the FSO portfolio over the
considered return history is calculated (E[r,] = E[frgoR]). A corresponding MV portfolio
can then be found where the MV efficiency frontier intersects that return level. I take this to
be the corresponding MV optimum, @,y . Now, by calculating portfolio return distributions
for each optimum #rgo and €y, average utility can be calculated in accordance with investor
preferences. Comparing these two utilities yields a measure of the performance improvement

achieved by FSO. As discussed in the previous chapter, utility differences are difficult to
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Kinked power utility: reg =[1+ (1 —)U]™7 —1 for r,>r
rCE = ([1 + (1 -y - (1+ r;)) x 1+ ry for mp<r

=%

*

P
UL
S-shaped utility: rTCE =T, — (%) n for rp<r,
g
TCcE = i = (%) - for Tp > r;

Table 7.2: Certainty equivalent equations
This table shows equations for calculating certainty equivalents of utility under kinked power utility and S-

shaped utility. For brevity, the certainty equivalent of the logarithmic utility function v = 1 is not given. This
case is also not applied in the empirical application of this article.

compare in an intuitive way. To get around this problem I use certainty equivalents. Following
Equation 6.3, certainty equivalent expressions for each utility function can be derived. The
expressions for the utility functions considered in this chapter are given in Table 7.2.

‘When the full utility space is searched, so that the true global optimum is located, Arecg
is by definition never negative. When using a heuristic algorithm I can never be certain that
the optimum located is the global optimum, I only get an approximation. Hence, under this
optimisation scheme it is possible that the difference in certainty equivalents (Arcg) takes
on a negative value.

As in the previous chapter, when comparing portfolios resulting from FSO and MV re-
spectively, I study differences in the portfolio return distribution’s moments. As the MV
portfolio choice is based on the FSO portfolio return sample mean, the mean will be the same
for the two portfolios. Variance, skewness and kurtosis differences are, however, interesting
to interpret behaviour resulting from different utility function specifications.

No out-of-sample evaluation is performed in this chapter. I discuss the reasoning for this

in Section 7.6.

7.5 Results

In this section I first discuss the performance of the search algorithm used to find the full-scale
optimum. After that, I turn to evaluate the performance of FSO in the large stock portfolio

optimisation problem applied.

7.5.1 Differential Evolution Performance

The true full-scale optimum is by definition always superior or equal to the MV portfolio
when compared in-sample, as the MV solution is on the utility surface searched by FSO. The
optimum found using DE is an approximation of the full-scale optimum, and its precision is

dependent on the parameter settings in the algorithm. There is an obvious trade-off between
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solution quality and computational cost when using DE. If a high cost can be afforded, the
speed of convergence can be set low and the dispersion of candidate solutions can be set high.
In practice, there are few managers who would find it worthwhile to act on portfolio weight
differences smaller than a tenth of a percentage point, as administrative costs of such trades
would be too high. In this section I assess the performance of DE solutions to FSO in terms
of optimum stability over restarts (precision) and computational cost (in terms of time).

To analyse the precision of DE, it is interesting to look at the variation in results over
restarts. As the starting point of this heuristic optimisation is random, consistency in out-
comes would indicate that the number of restarts can be set low. I perform five restarts for
each utility function specification and rank the solutions by utility. To study the solution
stability, I measure the difference between the best and the worst solution for each utility
specification. Differences across restarts in terms of portfolio weights and annual certainty
equivalents are given in Tables 7.3 (kinked power utility functions) and 7.4 (S-shaped utility
functions). For kinked power utility functions, the allocations to one stock never differ by
more than 3 percentage points, and the performance difference in terms of certainty equiva-
lents is less than 0.08% in all cases. This indicates that the solutions are close to the same in
all restarts of the algorithm. Under the S-shaped utility specification, larger differences are
observed. In one case the allocations to one stock differ by 27 percentage points between the
DE optimum and the other candidate portfolios. Under such circumstances further restarts
can be useful. The performance differences between restarts are in general lower when using
kinked power utility than when using S-shaped utility (ranging up to 0.59%). The average
certainty equivalent differences are 0.02% and 0.15% respectively. I conclude from these re-
sults that under the current DE parameter settings, it is useful with some restarts (e.g. 5),
but that there is little reason to increase the number, except for a couple of cases.

An alternative to random starting points is to start with an educated guess (e.g. the MV
portfolio), which may speed up the search process, but at the risk of getting stuck in a local
optimum. Another approach would be to use a vector of an optimally dispersed portfolio
as starting values, to limit the risk of missing corners of the search surface. Fixed starting
values limit the benefit of restarting the algorithm and are primarily useful when restarts are
computationally expensive. For my purposes, restarts do not come at great cost. However,
choosing fixed starting values is an area of potential future research.

In order to illustrate the computational requirements for DE in an application like mine
I provide measures of the time needed for the algorithm under each type of utility function.
I relate this to the number of function evaluations (FF) needed, which is the product of
population size (Q), number of generations in halting criterion (G), number of restarts (R),
and number of scenarios considered (T). In Table 7.5, I present the settings used and the

resulting computational cost expressed in number of functional evaluations and in compu-



Parameters Maximum absolute weight differences
T Y X | 10na=0no| [0ng =603l [0ni—0Ondl |0n1—6ns| | Arceas

r 0 1 0.00 0.00 0.00 0.00 0.01%

2 1 0.00 0.00 0.01 0.01 0.01%

- 4 1 0.01 0.01 0.01 0.01 0.00%

- 6 1 0.01 0.00 0.01 0.01 0.00%

0 0 2 0.01 0.02 0.01 0.01 0.01%

0 2 2 0.01 0.01 0.01 0.01 0.01%

0 4 2 0.01 0.01 0.01 0.01 0.02%

0 6 2 0.01 0.01 0.01 0.01 0.01%

0 0 3 0.01 0.02 0.01 0.01 0.01%

0 2 3 0.01 0.01 0.01 0.02 0.02%

0 4 3 0.01 0.02 0.01 0.02 0.01%

0 6 3 0.02 0.01. 0.01 0.01 0.01%
-0.006 0 2 0.01 0.02 0.01 0.01 0.03%
-0.005 2 2 0.02 0.02 0.01 0.02 0.03%
-0.005 4 2 0.01 0.01 0.01 0.01 0.02%
-0.005 6 2 0.01 0.01 0.02 0.02 0.03%
-0.005 0 3 0.01 0.01 0.01 0.01 0.05%
-0.005 2 3 0.01 0.02 0.01 0.01 0.07%
-0.005 4 3 0.01 0.01 0.01 0.02 0.05%
-0.005 6 3 0.02 0.01 0.02 0.02 0.02%
-001 0 2 0.01 0.03 0.03 0.01 0.01%
-0.01 2 2 0.01 0.01 0.01 0.01 0.01%
-0.01 4 2 0.01 0.02 0.02 0.01 0.01%
001 6 2 0.01 0.01 0.01 0.01 0.01%
-001 0 3 0.01 0.01 0.01 0.01 0.04%
001 2 3 0.01 0.03 0.01 0.01 0.02%
-0.01 4 3 0.02 0.02 0.01 0.01 0.02%
-001 6 3 0.02 0.02 0.02 0.03 0.02%
-0.015 0 2 0.00 0.00 0.00 0.00 0.00%
-0.015 2 2 0.00 0.01 0.00 0.00 0.00%
-0.015 4 2 0.01 0.01 0.02 0.01 0.00%
-0.015 6 2 0.01 0.01 0.01 0.01 0.00%
-0.015 0 3 0.00 0.01 0.01 0.01 0.01%
-0.015 2 3 0.01 0.02 0.00 0.01 0.02%
-0.015 4 3 0.02 0.01 0.02 0.01 0.03%
-0.015 6 3 0.01 0.01 0.01 0.01 0.01%

Table 7.3: Stability of DE solutions under kinked power utility functions

In this table the DE solution for each utility specification is compared to each of the other four candidate so-
lutions. The comparison is performed in terms of portfolio weights and in terms of annual certainty equivalent

differences. The three leftmost columns are parameter settings for the kinked power utility function. v} and x
are used for sub-kink return adjustment, 2% = v — x{ry —rp) for rp <r}; 2% =, forrp > 5. Adjusted
returns are inserted in the utility function U = [ (1 4+ r;dj)l_"’ — 1)} /{1 — ). The next four columns are

showing the largest absolute differences in portfolio weights between the DE solution and each of the other
candidate solutions, ordered by utility from 1 to 5. Finally, the rightmost column shows the performance
difference between the DE solution and the worst candidate solution in terms of annual certainty equivalents.



Parameters Maximum absolute weight differences

T‘; 71 Y2 A B |'9NJ e 971-.1’-| |9u,1 = 91a.3| |0n.l i 9114[ |9'l’l.]. = '9?:..5| AT'CE[I.-B}

0 056 05 1.5 15 0.04 0.04 0.04 0.04 0.06%

0 05 0.5 l 2 0.27 0.27 0.27 0.27 0.27%

0 05 05 0.7 21 0.00 0.00 0.00 0.00 0.00%
-0.005 05 05 15 1.5 0.02 0.07 0.07 0.03 0.59%
-0.005 0.5 0.5 1 2 0.03 0.02 0.03 0.04 0.23%
-0.005 0.5 05 07 21 0.02 0.02 0.04 0.05 0.16%
001 05 05 15 15 0.00 0.01 0.01 0.02 0.26%
-0.01 05 05 1 2 0.00 0.01 0.01 0.02 0.16%
-0.01 05 05 07 21 0.03 0.03 0.03 0.02 0.12%
-0.015 05 05 15 1.5 0.00 0.00 0.00 0.00 0.00%
-0.015 05 05 1 2 0.00 0.00 0.00 0.00 0.00%
-0.015 0.5 05 0.7 21 0.01 0.00 0.01 0.00 0.00%

Table 7.4: Stability of DE solutions under S-shaped utility functions

In this table the DE solution for each utility specification is compared to each of the other four candidate
solutions. The comparison is performed in terms of portfolio weights and in terms of annual certainty equiv-
alent differences. The five leftmost columns are parameter settings for the S-shaped utility function, given
by U = —A(rj —rp)" for rp < rj and U = B(rp — r})7? for rp > r;. The next four columns are showing
the largest absolute differences in portfolio weights between the DE solution and each of the other candidate
solutions, ordered by utility from 1 to 5. Finally, the rightmost column shows the performance difference

between the DE solution and the worst candidate solution in terms of annual certainty equivalents.

Utility function Q G R T FE Time (seconds)
Kinked power utility: | 300 400 5 501 [ 3.01 x 10® 310
S-shaped utility: 300 700 5 501 | 5.26 % 108 592

Table 7.5: Computational cost of FSO using DE

Time is specified in seconds. P is population size in DE; G is number of generations in DE; R is number of
restarts performed of the DE algorithm; T is the number of scenarios considered. FE is number of function
evaluations, defined as the product population size, number of generations, number of restarts, and number
of scenarios, given by the equation FE = QGRT. The platform used was an Intel Core 2, 2.16 GHz processor
with 3GB RAM. Software used was R v2.6.1, applying the function system.time. The time given in the table
is the average of two different parameter specifications of each utility function.

tation time. This measure of computational cost in terms of time can also be compared to
those in the previous chapter. In that three asset portfolio choice problem, which I solve
using a grid search with 0.5% precision over 96 scenarios, the computations took 45 seconds
when applied to S-shaped utility. The time cost for my application in this chapter, with 97
assets, no restrictions on precision and 501 scenarios was about 10 minutes.®> A cluster of 5
processors of the same speed could bring this computational time down to 2 minutes. This
shows that the DE algorithm is immensely more efficient than the grid search.

Having established that DE produces stable optima in a time efficient manner, I now
turn to looking at the second issue of this chapter: how good the FSO solutions are in stock

selection problems.

3The time measures are directly comparable, as the same computer facility was used for the two studies.
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7.5.2 FSO Performance

Results of model comparisons for the 48 chosen utility function specification are given in
Table 7.6 (kinked power utility) and Table 7.7 (S-shaped utility). Here, only the best (elitist)
solution for each specification is considered. I find no case of MV portfolios yielding higher
utility than FSO using DE, which is a first indication that the DE approximation is close to
the FSO optimum (as the FSO optimum by definition yields a higher or equal utility than
the MV optimum).

I evaluate kinked power utility functions at different levels of the critical value (the kink,
r,) and different penalties (x) on the sub-kink returns, with different levels of risk aversion (7).
When the penalty parameter is set to one, I get a power utility function without kink. It has
earlier been found that FSO under power utility yields negligible improvements compared
to MV performance (see discussion in Sections 5.1 and 6.5.1). This is confirmed here, as
no utility improvement is seen, regardless of level of risk aversion. When the power utility
functions are kinked, however, FSO consistently shows substantially better performance than
MV. The difference is consistently larger the stronger the loss aversion y is. For example,
with r; = —1%, the utility difference between the FSO and MV portfolios correspond to an
annual certain return of 0.9% on average when x = 2, and 2.8% on average when y = 3. The
CE difference is the risk free annual return that would yield the same utility improvement as
the improvement achieved when using FSO instead of MV.

Looking at the portfolio properties resulting from FSO and MV respectively (Table 7.6
show how FSO portfolio moments compare to those of MV portfolios), it can be seen that
investors with kinked power preferences in general take on portfolios with higher variance
(and hence lower Sharpe ratio, as the mean return is fixed) than MV investors do. This
is a consequence of taking higher moments into account, and I observe the same pattern
under S-shaped preferences. Investors whose preferences correspond to the kinked power
utility function are averse to risk in general, and in particular to downside risk — losses are
heavily penalised (especially large losses). This behaviour implies that the investor pursues
positive skewness, trying to avoid assets with large risk of extreme negative returns. Such
skewness preference is well documented in the literature, see discussion in Section 5.4. The
risk aversion implies aversion towards variance and kurtosis (as shown in the Taylor expansion
of the utility function above). In my application, I see that the incentive to achieve positive
skewness is stronger than the incentive to limit variance and kurtosis (loss aversion dominates
risk aversion). This holds regardless of critical level, risk aversion, and penalty level on sub-
kink returns. Naturally, the effect is stronger (skewness is higher) when the loss aversion
parameter x is higher. Furthermore, when the kink r7 is lower, the difference in portfolio
return skewness between FSO and MV portfolios tend to be higher (with a few exceptions).

The number of stocks with allocations higher than 0.1% is also in general higher in the



MYV portfolios than those optimised under kinked power utility functions, indicating that
diversification is more important for MV investors. This relates to the MV focus on variance
as sole measure of risk.

Results for portfolios optimised for S-shaped utility functions are given in Table 7.7. The
FSO utility improvement as compared to the corresponding MV portfolio is highest when the
inflection point 73 is set at zero. For lower inflection points, the annual certainty equivalent
improvement is decreasing but is still substantial. Certainty equivalent improvements are on
average higher than 10% when the inflection point is at zero, 6.4% when r} = —0.5%, 2.6%
when rj = —1%, and 1.5% when r}; = —2%. The reason that the difference is decreasing as
the inflection point gets lower, is probably that there are fewer observations in daily return
series that fall short of the lower inflection points. This decreases the scope for avoiding such
returns, thus making loss aversion at this level less influential.

Investors adhering to S-shaped utility are primarily concerned with getting returns ex-
ceeding the critical value (the inflection point). As opposed to kinked power utility, large
losses are not penalised much more than small losses (below the inflection). Hence, a return
distribution with high median is pursued at the cost of relatively high risk of large losses.
In terms of moments, this implies acceptance of negative skewness, and little emphasis on
variance and kurtosis. The next three columns of Table 7.7 show how FSO portfolio moments
compare to those of MV portfolios. It turns out that skewness is indeed more negative in
FSO portfolios when the inflection point is 0% and —0.5%. This is not the case for lower
inflection points, which can again be explained with the limited scope for optimisation as
there are fewer daily returns falling short of these critical values. Diversification, measured as
number of stocks with weights exceeding 0.1%, does not differ consistently between S-shaped

and MV optimised portfolios.

7.6 FSO in Practice

There are two main points of critique towards methodologies such as FSO. Firstly, its com-
putational cost makes it expensive for many applications. I have shown in this chapter how
this cost can be substantially alleviated using heuristic optimisation techniques. Secondly,
FSO can be criticised for its dependence on the empirical return distribution as predictor of
the future return distribution. Previous studies assessing the performance of FSO have per-
formed out-of-sample studies to confirm the performance achieved in-sample (see Chapter 6
and Adler and Kritzman, 2007). These studies found that the performance improvement of
FSO persists out-of-sample, but that it is not as large as in-sample. However, as was pointed
out by Adler and Kritzman (2007), FSO performance out-of-sample is dependent on how
persistent the properties of the return distributions are over time. Skewness and kurtosis in

the historical sample of returns may not forecast skewness and kurtosis in the future. For
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Parameters Distribution characteristics Stocks used
:r; v x | Arcg | AVariance ASkewness AKurtosis | FSO MV
- 0 1] 0.0% 0.000000 0.00 0.06 1 2
- 2 1| 0.0% 0.000001 0.10 1.00 4 3
- 4 11 0.0% 0.000000 0.08 0.57 6 6
- 6 1| 0.0% 0.000000 0.06 0.28 7 7
0 0 21 0.5% 0.000001 0.04 0.50 20 20
0 2 2 04% 0.000001 0.07 0.42 18 20
0 4 21 04% 0.000001 0.06 0.35 19 20
0 6 2| 04% 0.000001 0.09 0.40 19 23
0 0 3| 06% 0.000002 0.06 0.56 25 26
0 2 3| 06% 0.000001 0.06 0.53 28 27
0 4 3| 05% 0.000001 0.08 0.52 26 27
0 6 3| 05% 0.000001 0.09 0.51 25 28
-0.005 0 2 1.1% 0.000003 0.30 0.84 16 17
-0.005 2 21| 0.9% 0.000002 0.27 0.65 18 18
00056 4 2| 0.7T% 0.000002 0.19 0.12 19 20
-0.005 6 2| 0.8% 0.000001 0.20 0.15 19 20
-0.005 0 3| 1.9% 0.000002 0.22 -0.11 20 26
-0.005 2 3| 21% 0.000002 0.23 -0.05 22 27
-0.006 4 3| 21% 0.000002 0.24 -0.15 20 27
-0.005 6 3| 2.2% 0.000002 0.24 -0.09 21 27
001 0 21| 0.8% 0.000003 0.28 0.61 9 11
001 2 2| 0.8% 0.000004 0.32 0.45 10 13
001 4 2| 0.9% 0.000003 0.31 0.29 11 16
001 6 2| 1.2% 0.000003 0.32 0.16 11 17
-0.01 0 3| 2.7% 0.000005 0.40 -0.02 11 18
-0.01 2 3| 2.8% 0.000005 0.39 -0.06 11 18
-0.01 4 3| 2.9% 0.000005 0.34 -0.30 12 20
-0.01 6 3| 2.8% 0.000004 0.33 -0.31 13 20
-0.015 0 2| 0.9% 0.000007 0.30 0.60 6] 7
0015 2 2] 0.9% 0.000007 0.35 0.89 6 9
0015 4 2| 0.7T% 0.000006 0.38 1.02 7 10
0015 6 2| 0.8% 0.000006 0.43 1.15 3 12
-0.015 0 3| 2.6% 0.000012 0.69 2.03 6] 13
-0.015 2 3| 26% 0.000011 0.72 2.39 10 13
-0.015 4 3| 2.6% 0.000011 0.77 2.40 9 16
-0.015 6 3| 25% 0.000011 0.82 2.63 3 17

Table 7.6: Results for kinked power utility

This table shows results of the empirical application performed under kinked power utility. The three leftmost
columns are parameter settings for the kinked power utility function. rj and x are used for sub-kink return
- ry — x(rp — rp) for 7p < 15; rﬁdj = rp for rp > rj. Adjusted returns are inserted
in the utility function U = ((1 —l—rgd’)l_"" - 1]) /(1 —~). The column denoted Arcg describes differences

in utility between the FSO and the MV solutions, expressed in certainty equivalent differences. Positive
numbers indicate that FSO is better than MV. The next three columns are differences in variance, skewness
and kurtosis between the FSO and MV portfolio return distributions. Positive numbers indicate that the FSO
portfolio measure is larger. Note that mean returns are by definition the same for FSO and MV portfolios.
The two rightmost columns shows the number of stocks with allocations > 0.1% for FSO and MV portfolios
respectively.

adjustment, r;
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Parameters Distribution characteristics Stocks used

T, 1 e A B | Arecg | AVariance ASkewness AKurtosis | FSO MV
0 05 05 15 15| 3.3% 0.000030 -0.35 1.36 20 13
0 05 05 1 2 10.8% | 0.000323 -0.85 -7.27 2 4
0 0.5 05 0.7 21| 18.2% | 0.000333 -0.85 -7.31 2 4
-0.005 05 05 15 15| 4.4% 0.000005 -0.19 0.74 32 27
-0.005 0.5 0.5 1 2 7.2% 0.000012 -0.28 1.00 30 17
-0.006 05 05 07 21| 7.5% 0.000020 -0.26 1.32 27 17
-0.01 05 05 1.5 15| 24% 0.000002 0.08 0.19 21 24
-0.01 05 05 1 2 2.8% 0.000003 -0.03 0.36 22 20
-0.01 05 05 07 21| 26% 0.000004 0.02 0.93 22 20
-0.015 05 05 15 15| 28% 0.000002 0.26 -0.05 20 23
-0.015 05 05 1 2 2.0% 0.000002 0.25 0.06 22 23
-0.015 0.5 05 07 21| 1.8% 0.000002 0.17 0.36 22 23

Table 7.7: Results for S-shaped utility

This table shows results of the empirical application performed under S-shaped utility. The five leftmost

columns are parameter settings for the S-shaped utility function, given by U = —A(rj, —rp)" for rp < rj and

U= B(rp — 1) for rp > rj. The column denoted Argp describes differences in utility between the FSO
and the MV solutions, expressed in certainty equivalent differences. Positive number indicates that FSO is
better than MV. The next three columns are differences in variance, skewness and kurtosis between the FSO
and MV portfolio return distributions. Positive numbers indicate that the FSO portfolio measure is larger.
Note that mean returns are by definition the same for FSO and MV portfolios. The two rightmost columns
shows the number of stocks with allocations > 0.1% for FSO and MV portfolios respectively.

example, skewness may be generated by one very large outlier that is unlikely to be repeated.
The historical observations may be viewed as estimators of future scenarios. The extent to
which in-sample performance does not persist out-of-sample is called estimation error by
Cremers, Kritzman, and Page (2005). In fairness, however, this line of critique applies to
all portfolio choice models based on historical return information. No matter if the portfolio
choice is based on estimates of a theoretical return distribution (such as Markowitz’s, 1952,
assumption of normally distributed returns or Harvey, Liechty, Liechty, and Muller, 2004,
fitting of skew normal distributions) or empirical return distributions, it will be dependent
on historical observations ability to predict the future. The quality of a model’s output will
never be higher than its input data. On the basis of this discussion, I do not perform an
out-of-sample study in this chapter.

In the MV framework the co-variance matrix plays an important role, and Harvey, Liechty,
Liechty, and Muller (2004) emphasises the role of co-skewness. The FSO framework implicitly
takes all these co-movements into account when treating historical observations as potential
future scenarios. If the investor expects a return different from the historical average, he can
adjust the historical returns to reflect this. Similar adjustments can be done if the investor
expects higher moments to differ from their historical levels, without affecting the information
on co-movements of asset prices. This discussion highlights the similarity between FSO and
Sharpe’s (2007) scenario-based utility maximisation, where mean, variance and correlation
adjustments are described as common in practice. Another possible adjustment at hand for

a practitioner would be to impose a weighting scheme on observations, so that more recent

127



information is given higher influence in the optimisation (i.e. relaxing the assumption of equal
probability 7! of all scenarios).

FSO is a technique that has been developed for the financial industry and it is applied
in different forms by several practitioners. A substantial amount of research has focussed
on how to forecast financial returns and their higher moments. If this knowledge can be
implemented in the FSO inputs, the benefits of the technique should become even clearer. I
encourage future research to look at how this can be done to limit the estimation error. The
results presented above should be viewed as indications that there are considerable gains to
be made by optimising stock portfolios using FSO, when higher moments are important to
the investor. These gains can be realised if the investor is able to construct good estimators

of future returns.

7.7 Conclusions

This chapter contributes to the assessment of the FSO technique in two respects. It shows

that:
1. DE yields approximations that appear to converge to the FSO optimum;

2. using DE to solve FSO problems the computational burden inherent in the technique can
be handled, and hence its applicability can be expanded to stock portfolio optimisation
(of up to 100 stocks).

FSO has great theoretical appeal as simplifying assumptions on expected return distributions
and investor preferences are avoided. This yields however a non-convex problem of great
dimension, in particular when many assets are considered and when investor preferences are
complex. The computational burden inherent in the FSO framework is its main drawback.

By introducing DE in this framework, I show that the computational burden of FSO
can be shortcut and broken down to achieve short computing times. This is important for
transferring the technique to the financial industry, and constitutes the main contribution of
this article. DE is easy to calibrate and can be divided between computers. I show that the
approximations it gives of the FSO optimum is stable, and that for most problems no more
than 5 restarts are necessary.

This chapter also constitutes the first application of FSO in a pure stock selection prob-
lem. Previous assessments have dealt with hedge fund selection and equity index selection
problems. I show that the in-sample utility improvement identified in those studies persist
in the stock selection setting. I also provide a discussion about out-of-sample performance,
claiming that it is dependent on how persistent the historical returns’ properties are over time,
and encouraging practitioners to adjust the empirical distribution to reflect their analyst’s

expectation of the future.



Utility functions considered in this chapter feature loss aversion and prospect theory.
Loss aversion has gained increasing attention recently, and different types of this concept
are captured with the chosen utility functions. My application shows how each type of
loss aversion influences the preferred portfolio properties: investors following kinked power
utility strive for positive skewness, whereas S-shaped utility investors are indifferent towards
skewness.

The computational problem of FSO has been called the curse of dimensionality. With

heuristic algorithms such as DE this problem can be substantially alleviated.
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Part IV

Conclusions
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Chapter 8

Concluding Remarks and Policy

Implications

In this final chapter of the thesis, I summarise the main findings on liquidity (Section 8.1)
and portfolio optimisation (Section 8.2). In Section 8.3 I then sketch a framework for future
analysis of how liquidity costs influence the portfolio choice. This highlights how the two
topics in this thesis do intersect and influence each other. Finally, in Section 8.4, I point out

further directions for future research.

8.1 Liquidity

Liquidity is a concept describing the friction investors experience when trading securities.
This definition does not specify what is meant by friction, thereby opening for discussion on
how liquidity should be measured. As discussed in Chapter 2, liquidity has many dimensions
and can be measured in many different ways (each way capturing different dimensions of the
concept). Many pages in the liquidity literature have been dedicated to the choice of liquidity
measure. This thesis presents that discussion, but its contribution lies in improved insights
in (a) the data processing preceding liquidity measurement; and once the individual liquidity
measures have been derived (b) the measurement of systematic liquidity factors.

The first of these two contributions is minor, but nevertheless important. Everyone study-
ing liquidity using high-frequency data needs to go through extensive data processing. Until
now, little guidance is available in the literature on how to do this. Chapter 3 can be used as a
step by step guide on how to process TAQ data. The chapter aim is to provide a transparent
exposition of the necessary steps towards a data set that can be used for reliable liquidity
measurement. The growth of the TAQ database in recent years has created new problems of

data processing that have been scarcely covered elsewhere. My presentation contains novel
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discussions on how to treat such problems, including handling of simultaneous observations
and detection of erroneous observations.

It is well-known that liquidity is co-varying in the cross-section of stocks, implying some
underlying liquidity market force. Systematic liquidity shocks, i.e. changes in that market
force, are recognised as an important risk factor in asset pricing (Acharya and Pedersen
2005, Korajczyk and Sadka 2008, Pastor and Stambaugh 2003). In order to handle this
liquidity risk it is crucial to have accurate approximations of the systematic liquidity factors.
Herein lies my second contribution on liquidity measurement (Chapter 7). The purpose of
systematic liquidity factors is to capture underlying forces that induce co-variance between
stocks’ individual liquidity costs. Hence, it is natural to base the analysis on the co-variance
matrix, which I do by using PCA. This approach is however only appropriate as long as the
sample co-variance forms a good approximation of the true co-variance structure. Previous
literature has assumed that this is the case, i.e. that co-variances are constant over time. In
my analysis, I allow for time-varying co-variances by introducing dynamic estimation window
PCA.

Analysing different techniques for derivation of systematic liquidity factors, my findings
differ across liquidity measures. For many liquidity measures, including quoted and effec-
tive spreads and turnover, the cross-sectional average is a good approximation of systematic
liquidity. For price impact measures, including proxies for inventory cost and adverse selec-
tion cost, I find that moving window PCA is a better methodology. In general, PCA-based
measures are better than the cross-sectional average for explaining return variations. I find
general support for using expanding window PCA rather than static window PCA, as these
methods converge after approximately 8 years, and the latter has a forward-looking bias. One
measure stands out in the investigation: fixed inventory costs. When systematic liquidity in
this measure is derived using moving window PCA, strong explanatory power is found for
both liquidity variation and return variation.

The contributions made here on liquidity measurement are important for the understand-
ing of liquidity in itself and its impact on asset prices. Extensive processing and computation
is necessary to achieve high quality measures, and there is reason for a practitioner to ask
whether all the work is worthwhile. My investigation shows that a computationally expensive
technique such as moving window PCA applied to a liquidity measure derived from high fre-
quency data explains stock returns better than any other approach. This should be relevant

for any fund manager and investment adviser that aim to handle liquidity risk.

8.2 Portfolio Optimisation

FSO is a portfolio optimisation framework where the empirical return distribution is used

as a set of future scenarios. These scenarios are the basis for expected utility maximisation.
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This method is attractive in that the utility function and portfolio constraints can be specified
without the restriction of mathematical convenience often seen in traditional portfolio optimi-
sation frameworks. The solution is approximated by application of a search algorithm to the
set, of candidate portfolio allocations. Previous literature has shown empirically that when
investors are loss averse, FSO portfolios differ substantially from MV portfolios, and that the
former yield higher utility (Cremers, Kritzman, and Page 2005, Adler and Kritzman 2007).
The existing empirical evidence is however limited to hedge fund selection problems and a
small selection of utility function specifications. Hedge fund returns are typically featuring
large deviations from the normal distribution, larger than what is typical for e.g. individual
stock returns. Furthermore, these previous articles do not show explicitly how the full-scale
optimum is found and to what extent the computational burden is a drawback of FSO.

In two empirical studies I address these gaps in the literature (Chapters 6 and 7). Firstly,
I extend the test ground by performing one application on equity index portfolio selection (a
three asset portfolio) and one on stock portfolio selection (the FTSE100 constituent stocks).
In comparison to MV, I find that FSO portfolios yield higher expected utility in-sample in
the setting of stock indexes as well as in the setting of individual stocks. This widens the
applicability of FSO to equity indexes and stocks. Secondly, I consider a wide range of utility
function parameters, which adds to the robustness of the results as well as the understanding
of the utility function parameters. Thirdly, I show explicitly how the optimum can be found
using either a grid search or a heuristic algorithm such as DE, and I give measures of the
computational burden associated with each method. The application of DE shows that FSO
can be solved in relatively large portfolio problems with good computational economy and
high solution stability. This is an important contribution to the FSO literature, as no previous
study has shown explicitly how the computational burden of the technique can be handled.

Out-of-sample evidence showing further robustness is provided in the first of the two
empirical studies. That application shows that the scenarios used in the estimation of portfolio
allocations are good approximations of the future. However, I also argue that the portfolio
estimated in FSO will be optimal only to the extent that the empirical return distribution
is a good approximation of future events. This limitation applies to any portfolio choice
framework that utilises historical data.

FSO is a technique with roots in the investment industry, and the findings here are hence
of clear interest to practitioners, but for successful management its limitations also need to

be kept in mind.
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8.3 A Framework for Liquidity-Adjusted Portfolio Opti-

misation

In this thesis I address problems of liquidity and portfolio optimisation in isolation, but the
two problems are actually intimately related in the investment decision. For instance, how
can a portfolio be said to be optimised if trading costs are ignored? Including assets with
different levels of liquidity in a portfolio choice problem without adjusting for trading costs
will, ceteris paribus, due to the illiquidity return premium result in a portfolio with high
weight to illiquid assets. This is misleading, as the trading costs of illiquid assets in practice
undermine the returns. In this section I aim to sketch a framework that can be used as a
starting point for combining the findings of this thesis into one model.

Several asset pricing studies provide frameworks for calculating liquidity risk premiums.
Using either the liquidity-adjusted CAPM (Acharya and Pedersen 2005) or a Fama and
French (1993) style factor model with systematic liquidity (as in Korajezyk and Sadka 2008),
liquidity risk premiums can be derived. By adjusting expected returns for these risk premiums,
traditional portfolio optimisation models can straightforwardly be applied to retrieve liquidity-
adjusted portfolios. The weakness of augmenting the asset prices for liquidity characteristics
is that liquidity is then handled in a risk management framework. As was pointed out by
Amihud and Mendelson (1986b), diversification does not mitigate liquidity costs. On the
contrary, there is a trade-off between diversification (risk management) and liquidity costs.

According to the clientele effect hypothesised by Amihud and Mendelson (1986a), the
excess returns from illiquid assets should be relatively attractive to long-term investors. The
intuition of this is that the high liquidity costs of illiquid assets can be spread over a long time
when the holding period is longer. Then the trade-off between excess returns and liquidity
costs will be favourable. For investors with a short holding period, on the other hand, the
liquidity costs will dominate the excess returns. Swensen (2000) discusses how long term
investors can benefit from the illiquidity return premium. His investment model for very long
term investors (such as university endowments) utilises illiquid investments to achieve returns
superior to bond and public stock investments.

In order to account for this feature of liquidity cost sensitivity, a natural starting point
for the portfolio optimisation problem is to formulate a utility function describing the trade-
off between risk management and liquidity costs, as well as the trade-off between illiquidity

premiums and the investment horizon. That function could in general be formulated as

UL — f (Tpr %) 3 (81)

where ITH is the investment horizon, L, the portfolio liquidity cost, and r, the portfolio

return. The ratio ‘%% is the portfolio trading cost amortised over the investment horizon.
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How to determine the functional form and the parameters of the utility function would be
the core problem of research in this direction. The utility function would typically be strictly
increasing in portfolio returns and decreasing in the amortised liquidity costs. The latter
implies a growing preference for illiquid stocks as the investment horizon grows.

Once the utility function is specified, one way to optimise the portfolio is to maximise
expected utility by applying FSO. Using empirical distributions of both returns and liquidity
costs as inputs gives a model that accounts for risk with respect to both returns and liquidity,
including co-variance structures and higher moments. Other utility-maximising methods
could also be considered.

Portfolio optimisation with respect to liquidity has earlier been approached by Longstaff
(2001), who analyses the effect of market restrictions on trade (such as dry-ups); and Ghysels
and Pereira (2008), who investigate the impact of liquidity on portfolio allocations under
different investment horizons. Further insights are given by Domowitz, Hansch, and Wang
(2005), demonstrating that liquidity volatility and its relation to return co-variance are im-
portant factors for effective diversification of a portfolio. The model proposed above should
be evaluated in relation to these earlier approaches. If it can be shown to handle liquidity
risk successfully, it can be a useful tool for fund managers as well as for investment advice to

institutional investors.

8.4 Recommendations for Future Research

Liquidity has received considerable attention since Amihud and Mendelson’s (1986a) seminal
paper, and the systematic liquidity literature has also grown large. In spite of this, several
directions of further research on systematic liquidity are possible. Analysis of the suggested
systematic liquidity factors in the factor model framework of Fama and French (1993) or the
liquidity adjusted CAPM by Acharya and Pedersen (2005) would be interesting for further
understanding of its impact on returns. How this differs across time and markets would be
an interesting research question. If liquidity behaves similarly across markets the systematic
factors of S&P500 liquidity may be possible to use to compose a liquidity index with appli-
cability to a wider array of stocks, as is often done with S&P500 returns. Other interesting
research venues include the causes of systematic liquidity shocks, which can help increasing its
measurement accuracy; and the relevance of Sadka'’s (2006) price impact regressions, which
has declined in latter years (as discussed in Chapter 2), even though its coefficients show
good ability in explaining both liquidity and returns. Furthermore, it would be interesting to
implement durations in the liquidity measurement context, following the modelling by Engle
and Russell (1998).

Future research in the area of FSO should look further into how the limitations of the

technique can be handled. Also, solution stability over time is a topic that has not been
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covered in this literature. This could be studied using a moving or expanding window in
the estimation — similar to the systematic liquidity study in this thesis. Another interesting
avenue of research would be to look at how to determine what utility function is appropriate
for an investor. Possibly, experimental economics can contribute in this area. This relates
directly to the model on liquidity-adjusted portfolio optimisation presented in the previous
section, where utility function determination is crucial. Liquidity influence on portfolio choice
is an important area, in particular to handle financial crisis. What properties of stock liquidity
are important to monitor when managing a portfolio? How can liquidity factors be used
to optimise the trade-off between illiquidity return premiums and the ability to liquidate
positions on short notice?

Liquidity crisis behaviour also forms a link to how macroeconomics can be better under-
stood. Measures of money supply are typically aggregates of different asset classes weighted
together by their respective degree of liquidity (see e.g. Elger and Binner 2004). If stocks
were included in such aggregates, would the stock illiquidity related to financial crisis be a

possible explanation for how a financial crisis can cause a recession in the real economy?
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