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Abstract

The dynamics of Boolean networks (BN) with quenched disorder and thermal noise is studied via

the generating functional method. A general formulation, suitable for BN with any distribution of

Boolean functions, is developed. It provides exact solutions and insight into the evolution of order

parameters and properties of the stationary states, which are inaccessible via existing methodology.

We identify cases where the commonly used annealed approximation is valid and others where it

breaks down. Broader links between BN and general Boolean formulas are highlighted.

PACS numbers: 05.45.-a, 05.65.+b, 05.40.Ca, 87.16.Yc
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In his seminal work [1] Kauffman introduced a very simple dynamical model of biological

gene-regulatory networks. The state of each gene was modeled by an ON/OFF variable,

interacting with other genes via a coupling Boolean function which determines the state of

a gene at the next time-step. There are N such genes (sites) in the network and each gene

is influenced by exactly k other genes from the same network. In Kauffman’s approach, the

networks are constructed in a random manner by choosing Boolean functions from the set

of all 22
k

functions of k inputs and by connecting the inputs of each function to the genes

randomly selected from the set 1, .., N ; Boolean functions and connections are fixed for all

subsequent time-steps (quenched variables). The evolution of a such dynamical system is

deterministic and since the number of states is finite (2N) the system is driven to a periodic-

orbit attractor.

It was argued [1] that, despite its simplicity this model, also known as Random Boolean

network (RBN) or Kauffman net, is of relevance to the understanding of biological systems

and has been studied primarily for this reason [2]. RBN belongs to a larger class of Boolean

networks, the N-k model of N -variable dynamical systems with a discrete state-space and

k-variable interactions, that exhibits a rich dynamical behavior [3, 4]. The N-k model is very

versatile and has found its use in the modeling of genetic networks [5], neural networks [6],

social networks [7] and in many other branches of science [3, 4].

For over two decades the annealed approximation [8] has proved to be a valuable tool in

the analysis of large scale Boolean networks (N → ∞) as it allows one to predict the time

evolution of network activity (proportion of ON/OFF states) and Hamming distance (the

difference between the states of two networks of identical topology) order parameters. The

latter was used [8] to predict a phase transition at k=2 in RBN. The main assumption in

this method is to ignore the fact that both Boolean functions types and random connec-

tions in a Boolean network are quenched variables and enables one to resample them at each

time-step. This allows one to ignore the correlations among input-variables, which simplifies

an analytical treatment significantly. It was shown [9, 10] that the annealed approximation

indeed gives a correct result for the Hamming distance order parameter in RBN, but the

broad validity of the annealed approximation to general networks of this type has remained

an open problem [11]. Remarkably, the annealed approximation provides accurate activity

and Hamming distance results for many other Boolean models with quenched disorder but

cannot compute correlation functions, used in studying memory effects, due to the repeated
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resampling at different time steps that makes the various quenched systems indistinguish-

able. Furthermore, there are models [12] that have very strong memory effects in specific

regimes, where the annealed approximation is no longer valid.

In this Letter, we study the dynamics of the N-k model with quenched disorder and

thermal noise using the generating functional analysis (GFA), an established method for

studying physical systems of this type [13]; the analysis is general and covers a large class

of recurrent Boolean networks and related models. We show that results for the Hamming

distance and network activity obtained via the quenched and annealed approaches, for the

N-k model, are identical. In addition, stationary solutions of Hamming distance and two-

time autocorrelation function (inaccessible via the annealed approximation) coincide, giving

insight into the uniform mapping of states within the basin of attraction onto the stationary

states. In the presence of noise, we show that above some noise level the system is always

ergodic and explore the possibility of spin-glass phase [14] below this level. Finally, we show

that our theory can be used to study the dynamics of models with strong memory effects.

The model considered is anN -variable recurrent Boolean network with the parallel update

rule

Si(t+1) = αi(Si1(t), . . . , Sik(t)), (1)

where Si(t) ∈ {−1, 1} and αi : {−1, 1}k → {−1, 1} is a Boolean function of exactly k inputs.

We assume that the thermal noise can flip the output of a function with probability p [15].

The function at site i and time-step t+1 operates in a stochastic manner according to the

microscopic law

Pαi(Si(t+1)|Si1(t), .., Sik(t)) (2)

=
eβSi(t+1)αi(Si1 (t),..,Sik (t))

2 cosh βαi(Si1(t), .., Sik(t))

where the inverse temperature β = 1/T relates to the noise parameter p via tanh β = 1−

2p. The function-output Si(t+1) is completely random/deterministic when β → 0/∞,

respectively. Given the state of the network S(t) ∈ {−1, 1}N at time t the functions at time

t+1 are independent of each other. This suggests that the probability of the microscopic path

S(0) →· · ·→ S(tmax) is a product of (2) over sites and time steps. The joint probability

of microscopic states in two systems of identical topology but subject to different thermal
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noise is

P [{S(t)};{Ŝ(t)}]=P (S(0), Ŝ(0)) (3)

×
tmax−1
∏

t=0

P (S(t+1)|S(t))P (Ŝ(t+1)|Ŝ(t)) where,

P (S(t+1)|S(t))=
∏N

i=1 P αi(Si(t+1)|Si1(t), .., Sik(t)).

The quenched disorder in our model arises from the random sampling of connections and

Boolean functions generated by selecting the i-th function and sampling exactly k indices,

{i1, .., ik}, uniformly from the set of all possible indices. Boolean functions {αi} are sampled

randomly and independently from the set G of k-ary Boolean functions. To analyze the

typical properties of the system via the generating functional method one defines

Γ[ψ; ψ̂] =
〈

e−i
∑
t,i{ψi(t)Si(t)+ψ̂i(t)Ŝi(t)}

〉

, (4)

where 〈. . .〉 denotes the average generated by (3). The generating function (4) is used

to compute moments of (3) by taking partial derivatives with respect to the generating

fields {ψi(t), ψ̂j(s)}, e.g. 〈Si(t)Ŝj(s)〉 = − lim
ψ,

ˆψ→0
∂2

∂ψi(t)∂ψ̂j (s)
Γ[ψ; ψ̂]. We assume that

the system becomes self-averaging for N → ∞ [13] and compute Γ[ψ; ψ̂], where · · · is the

disorder average; this gives rise to the macroscopic observables

m(t)=
1

N

N
∑

i=1

〈Si(t)〉, C(t,s)=
1

N

N
∑

i=1

〈Si(t)Si(s)〉 (5)

C12(t)=
1

N

N
∑

i=1

〈Si(t)Ŝi(t)〉

where m(t) is the network activity (or magnetization [16]), C(t,s) is the correlation between

two states of the same network and C12(t) (related to the Hamming distance d(t) via d(t) =

1
2
(1−C12(t))) is the overlap between two copies of the same network.

Averaging (4) over the disorder [17] leads to the saddle-point integral Γ[. . .] =
∫

{dPdP̂}eNΨ[P,P̂ ] where

Ψ=i
∑

S, ˆS

P̂ (S, Ŝ)P (S, Ŝ)+log
∑

S, ˆS

P (S, Ŝ)e−iP̂ (S , ˆS) . (6)

For N→∞ the averaged generating functional is dominated by the extremum of Ψ. Func-

tional variation with respect to the order parameters P̂ (S, Ŝ) provides the saddle-point

equation
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P (S, Ŝ)=P (S(0), Ŝ(0))
∑

{Sj ,
ˆSj}

k
∏

j=1

[

P (Sj , Ŝj)
]

×

〈

tmax−1
∏

t=0

P α(S(t+1)|S1(t), .., Sk(t))P α(Ŝ(t+1)|Ŝ1(t), .., Ŝk(t))

〉

α

. (7)

The physical meaning of (7) relates to the average joint probability of single-spin trajec-

tories S and Ŝ in the two systems P (S, Ŝ) = limN→∞
1
N

∑N
i=1 〈δ[S;Si] δ[Ŝ; Ŝi]〉, while the

conjugate order parameter P̂ (S, Ŝ) is a constant. Equation (7) can be used to compute the

macroscopic observables (5), which evolve in time as follows below, denoting S = (S1, . . . , Sk)

and where the magnetization m̂(t) is computed by (8)

m(t+1) = fα(m(t))=tanh(β)
∑

S

k
∏

j=1

[

1+Sjm(t)

2

]

〈α(S)〉α (8)

C(t+1, s+1)=Fα(m(t), m(s), C(t, s))

=tanh2(β)
∑

S,Ŝ

k
∏

j=1

[

1+Sjm(t)+Ŝjm(s)+SjŜjC(t, s)

4

]

〈α(S)α(Ŝ)〉α (9)

C12(t+1) = Fα(m(t), m̂(t), C12(t)), (10)

Results for the order parameters (8)-(10), in combination with (7), suggest that the evolu-

tion of all many-time single-site correlation functions is driven by the magnetization m(t).

A similar scenario was observed in recurrent asymmetric neural networks [18], defined on

similar topology due to similarity in the equations for m(t) and C(t, s). This is not sur-

prising since asymmetric neural network is a special case of the N-k model when only linear

threshold Boolean functions are used. Furthermore, for the stationary solution m= fα(m)

(m=limt→∞m(t)) the solutions of q=Fα(m,m, q) (here q=limt→∞ limτ→∞C(t+τ, τ) is the

Edwards-Anderson order parameter, used in disordered systems [14] to detect the spin glass

phase where m = 0 and q 6= 0) and C12 = Fα(m,m,C12) are identical. This suggests that

there is only one average distance 1
2
(1−q) on the attractor [19] and that all points in the

basin of attraction uniformly cover the stationary states.

The annealed model, where connectivities and Boolean functions change at each time

step (1) provides identical results for m and C12 to those of (8) and (10) [11]. However,

the annealed correlation function C(t, s)=m(t)m(s), where t>s, is the solution of (9) only

when networks are constructed from a single function type.
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The annealed result [8] for RBN can be easily recovered from equations (8)-(10) using the

property 〈α(S)〉α=0 for all S∈{−1, 1}k and 〈α(S)α(Ŝ)〉α=0 , ∀S 6= Ŝ where the α average is

taken over all Boolean functions with equal weight. In this case, the magnetization m(t)=0

for all t>0 and q = tanh2(β)(1+q
2
)k, corresponding to the stationary solution of (9), has one

stable solution q 6=0 for all finite β and k. For β→∞ (no noise), a transition is observed

from one stable solution q = 1 for k≤2 to two solutions q=1 (unstable) and q 6=0 (stable)

for k>2 [8].

The unordered paramagnetic phase m = 0 is a fixed point of (8) only when
∑

S 〈α(S)〉α = 0. This is a stable and unique solution of (8) when tanhβ <
{

2k−1/k
(

k−1
(k−1)/2

)

; 2k−2/(k−1)
(

k−2
(k−2)/2

)

}

≡ b(k) for k odd and even respectively. To prove

this [17] we first find a Boolean function χ such that fχ(m) ≥ fα(m) when m ∈ [0, 1)

and fα(m) ≥ fχ(m) when m ∈ (−1, 0]; any function from the set χ(S) = sgn[
∑k

j=1 Sj]+

δ[0;
∑k

j=1 Sj]γ(S), where γ(S) ∈ {−1, 1} and such that
∑

S δ[0;
∑k

j=1 Sj]γ(S) = 0 [27] satis-

fies these properties. Secondly, we show that m> fχ(m) when m ∈ (0, 1) and fχ(m) >m

when m ∈ (−1, 0) (fχ(0) = 0) for tanh β < b(k). Thus, the ordered (ferromagnetic) phase

m 6=0 is a fixed point of (8) (if at all) only for values of β and k which satisfy tanhβ>b(k).

Similar results, for odd k only, have been conjectured using the annealed approximation and

multiplexing techniques [20].

For limt→∞m(t) =m, q = 0 is a fixed point of (9) iff 〈{
∑

S α(S)}
2〉α = 0 which occurs

only for balanced Boolean functions, with an equal number of±1 in the output. By similar

argument to the one used in the previous paragraph we show [17] that for m=0 the point

q = 0 is a unique stable solution of (9) when tanh2 β < b(k). The α-averages in equations

(8)-(9) can be computed for a uniform distribution over all balanced Boolean functions to

obtain m(t)=0 for all t> 0, which implies q=tanh2(β)
(

(1+q
2
)k(1+ 1

2k−1
)− 1

2k−1

)

. The latter

has only one q = 0 trivial solution for any finite β and develops a second q = 1 solution

only for β→∞. Thus, the case of m= 0, q 6= 0 and finite β occurs only (if at all) when

tanh2 β>b(k) and for non-uniform distributions over the balanced Boolean functions.

The upper bound b(k) computed here for k odd is identical to the one computed for noisy

Boolean formulas [21]. This is since each site i at time t in our model can be associated

with the output Si(t) of a k-ary Boolean formula of depth t which computes a function of

the associated initial states (a subset of {Si(0)}) [9]. In the presence of noise, a formula of

considerable depth (large t) loses all input information for tanh β<b(k) and odd k [21]. This
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suggests that the upper bound b(k), for odd k, is more general and is valid for transitions at

all m values identifying the point where stationary states depend on the initial states and

ergodicity breaks. For k even such general threshold is not yet known.

In model (1) the state of site i at time t depends on its states at previous times only indi-

rectly. In the limit of N→∞ these dependencies become weak and equation (7) factorizes;

this enables one to calculate the observables of interest (8)-(10). However, in a broad family

of models [22, 23] the state of a site i at a time t+1 depends directly on its state at time

t. An exemplar model with strong memory effects used to construct a model of cell-cycle

regulatory network (N=11) of budding yeast [24] is of the form

Si(t+1)=sgn[hi(t)−2h]+Si(t)δ[hi(t); 2h], (11)

where hi(t) =
∑k

j=1 ξij (1+Sij(t)) and ξij ∈ {−1, 1}. Mean-field theory (N → ∞) was de-

rived [12] using the annealed approximation in a variant of this model, where the interac-

tions {ξj} were randomly distributed P (ξj =±1) = 1/2. Significant discrepancies between

the theory and simulation results has been pointed out [12] for integer h values (in this

case it is possible that 2h=hi(t)), which was attributed to the presence of strong memory

effects. Refinements of the annealed approximation method improved the results obtained

only slightly [25, 26] but break down in most of the parameter space.

This model (11) can be easily incorporated into our theoretical framework. The result of

the GFA (7) for this process (with thermal noise) can be obtained by replacing the average

〈· · · 〉α by 〈· · · 〉ξ and the probability function Pα(S(t+1)|S1(t), .., Sk(t)) by

P ξ(S(t+1)|S(t);S1(t), .., Sk(t)) = (12)

eβS(t+1){sgn[h(t)−2h]+S(t)δ[h(t);2h]}

2 cosh β{sgn[h(t)−2h]+S(t)δ[h(t); 2h]}
,

where h(t) =
∑k

j=1 ξj(1+Sj(t)). In the case of h ∈ R, the probability function (12) is

independent of S(t) and equations (8)-(10) have the same structure as model (11): the

α-averages 〈α(S)〉α and 〈α(S)α(Ŝ)〉α are replaced by the averages 〈sgn[h(t)− 2h]〉ξ and

〈sgn[h(t)−2h] sgn[ĥ(t)−2h]〉ξ respectively. The equation for m(t) recovers the annealed

approximation result [12] (using the relation b(t)=(1+m(t))/2). In Fig. 1 (a,b), we plot our

analytical predictions for the evolution of m(t) and C(t+tw, tw) against the results of Monte

Carlo (MC) simulation which use (11). The correlation function C(t+tw, tw), in the limit of
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FIG. 1: (Color online). Evolution of the magnetization (m ≡ m(t)) and correlation (C ≡ C(t+

tw, tw)) functions with time t is governed by (11). Theoretical results (lines) are plotted against

the results of MC simulations (symbols) with N =105. Each MC data-point is averaged over 10

runs. Error bars are smaller than symbol size. Top: Evolution of m (a) and C (b) for h∈R. In

(b) we plot C for h=0.5 and k=3. Bottom: Evolution of m (c) and C (d) for h∈Z. In (d) we

plot C for h=0 and k=2.

t→∞, tw→∞, approaches the stationary solution of the overlap function (10) as predicted

(Fig. 1(b)).

The situation is very different when h∈Z. Then the magnetization m(t)=
∑

S P (S)S(t)

where P (S) is a marginal of (7) with Pα→Pξ, is no longer closed as in (8), but depends on

2t−1−1 macroscopic observables (all magnetizations, all multi-time correlations). Thus the

number of macroscopic observables that determine the value of m(t), or any other function

computed from (7), grows exponentially with time. Annealed approximation results [12] for

this model when h∈Z are only exact up to t<2 time steps (the equation for b(1)=(1+m(1))/2

in our approach and in [12] are identical) and deviate significantly from the exact solution

at later times (Fig. 1(c)). A typical evolution of the correlation function C(t+tw, tw) in the

system (11) when h ∈ Z is shown in Fig. 1(d).

As BNs are instrumental for our understanding of biological and other complex networks,

and are directly linked to general Boolean formulas there is a need to develop exact tools of

greater flexibility that cope with complex networks of variable Boolean functions with strong

memory effects and emerging correlations. This Letter is the first step in this direction.
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