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Abstract

The thesis presents the work of dynamics study of fluid-loaded mi-
croplate and its application in a novel biosensing system, which is
designed to be able to detect the properties of biological cells in a lig-
uid (fluid) environment. Knowledge and understanding the dynamic
characteristics of microplates in fluid is critical to its application in
biosensing. The thesis presents the theoretical models and first ana-
lytical solution of the vibration of microplates involving two loading
conditions, distributed mass and fluid loading. Various microplates
with different dimensions and boundary conditions are manufactured
using microfabrication techniques and their dynamics are experimen-
tally tested. A mnovel biosensing system is developed utilising the
dynamical characteristics of microplates. A new system identifica-
tion methodology based on artificial neural network and distributive
sensing approach for biosensing is also developed and tested using
bio-experimental data. This work of the thesis paves the way of a real

time continuous cell monitoring biosensing system.

The thesis first proposes two mathematical models developed for the
dynamics analysis of fluid-loaded microplate. The first model based
on Rayleigh-Ritz energy method is to estimate the resonant frequen-
cies and mode shapes, while damping mechanisms of this coupling
system is analyzed by using the second model built upon Guz’s for-
mulations of hydroelasticity for compressible viscous fluid. Either the
first model or the second model can be widely applied to dynamics
analysis of fluid-loaded of rectangular plates with various boundary



conditions. The equations derived for the damping mechanism anal-
ysis in second model is the first analytical solution to this problem.
Moreover, these theoretical models and corresponding analytical so-
lutions also give fundamental contributions to the general engineering
problem of fluid-structure interactions. The dynamic properties of
fluid-loaded micro-scale plates are examined and discussed through

the numerical simulations based on these models.

A testing system is then designed and employed to experimentally
determine the dynamics of fluid-loaded microplates. In this experi-
mental system, the base excitation technique combined with pseudo-
random test signals and cross-correlation analysis is applied to test
microplates. The dynamic experiments cover a series of testing of var-
ious microplates with different boundary conditions and dimensions,
both in air and immersed in water. It firstly demonstrates the abil-
ity and performances of base excitation in the application of dynamic
testing of microstructures that involves a natural fluid environment.
Additionally, this experimental system and analytical methodologies
presented in this part contribute a convenient and fast way in the
field of dynamics testing of microstructures. The obtained experi-
mental data provide important information to further understand the
dynamic characteristics of fluid-loaded microplates, and also verified

the proposed theoretical models.

Next an integrated biosensing system, which is using-the microplate as
sensing platform and is capable to be self-sensing and self-excitation,
is proposed and manufactured. In this microsystem, a scheme of dis-
tributed piezoresistive sensors is used to measure the deflection of the
sensing surface that is actuated by the PZT thin films. This is the
first design to apply a distributive sensing strategy into a microsys-
tem. In addition, this novel configuration of actuators and sensors
allows the microsystem is able to work both under static mode and
dynamic mode.



Finally biological cells are planted onto the sensing surface of mi-
croplates to test their performance in the application of biosensing.
A series of bio-experiments are implemented on several different types
of microplates. The bio-experiments involve planting different certain
amount of cells onto the sensing surface of microplates, and measur-
ing the corresponding dynamics information in the forms of a series
of frequency response functions (FRFs). All of those experiments are
carried in a truly cells culture medium to simulate a practical working
environment and a large number of such bio-experiments are imple-
mented, which are seldom achieved in other researches of biosensors.
The shifts of resonant frequencies of microplates are firstly used to
give a preliminary analysis on the coated cells. Afterwards, the dis-
tributed sensing scheme with artificial neural network algorithm is
then used to process the measured data and perform a more accu-
rate identification on the features of cells. The latter methodology
has been widely used in many researches, but it is of a brand new
concept in the area of biosensing. The analytical results in this work
demonstrate great potential advantages of applying this methodology

into the area of biosensing.
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Chapter 1

Introduction

1.1 Dynamics of Microstructures In Fluid

Micro electromechanical systems (MEMS) can be applied in a variety of practical
sensing or actuating functions. Systems utilizing micromachined structures rang-
ing in size from a few hundred nanometers to a few millimeters have attracted
more and more interest over the past decades, especially in the field of biosensing.
The performance and reliability of most MEMS devices are largely determined by
the dynamic behavior of those core microstructures[l]. Moreover for biosensing
applications, a natural liquid environment is usually required for the biological
organism growth. Consequently an understanding the dynamical properties of
these microstructures when vibrating in a fluid environment is critical for the

preliminary design of MEMS-based biosensors.

The dynamical study of fluid-structure interaction is one of the most significant
problems in many engineering fields, and indeed, the simulation of MEMS devices
in a fluid environment has received extensive attention. Although there are many

numerical methods (such as FEM, BEM etc) that can be used to approximately



1.2 Cell Detection

predict dynamical responses of the fluid-interacting structures, the discovery of

theoretical models and accurate analytical solutions remains a challenge.

The specific problem of the vibration of a thin microplate immersed in fluid is
studied in this thesis. In the design of a microplate based biosensing system, a
model can be set up to infer the loading conditions from the sensory data of the
vibrating plate through the dynamic simulation of a submerged microplate.

1.2 Cell Detection

Cell detection is one of most important topics involved in the study of such var-
ied areas as cell culture, clinical pathologic diagnosis and pharmacology analysis.
Currently, the measurement of physical properties and the behaviour of biological
cells is mainly performed using microscopy imaging systems. However, the pro-
cess of cell growth is difficult to visualise continuously in real time. The tasks of
cell culture, monitoring and manipulation can therefore be tedious and time con-
suming. Cell responses to external stimuli are also frequently difficult to visualise

in real time. More advanced tools are required to improve these measurements.

Driven by the rapid development of MEMS(Microelectromechanical Systems)
technology, the design and creation of rapid, ultrasensitive, and economical biosen-
sors for the detection of cell growth becomes possible. In the past decade, many
researchers and practitioners have used bending and oscillating cantilevers as the
sensing element to detect cell growth as well as other femtogram-level(10~'8kg)
mass entities. Moreover, the concept of measuring mass changes by tracking
corresponding resonant frequency shifts in micro-cantilevers has become a well-
established technology in chemical and biological sensing applications.

Limitations On reviewing the results of the research works of micro-cantilevers,
it is clear that some limitations exist when using cantilever as the sensing elements

in micro-mass Sensors.



1.3 A Novel Biosensing Microplate Transducer

a) The detection resolution of the microcantilever mass sensors is sharply de-
creased in a fluid medium(even in air ambient) due to the reduction of the
resonator quality factor caused by increased viscous damping by the liquid.

However in many cases, majority cells can only live in liquid ambient.

b) The position of the mass(cell) along the cantilever also affects the frequency
shift. If this condition cannot be identified, it could give wrong measurement

results.

c¢) Micro-cantilever mass sensors based on the principle of frequency shifts can
only be used to measure mass changes. Due to the one-dimensional space of
microcantivlever, it is difficult to provide more information such as the shape
and position of the masses. This may also be important under some situations

of cell culturing detection.

1.3 A Novel Biosensing Microplate Transducer

The research discussed in this thesis utilises silicon-based microplates with dis-
tributed sensors and actuators to replace the conventional cantilever-type sensing

element for cell detection.

In macroscale devices, it is common to use plates as sensing surfaces. One ex-
ample of these is the force plate, which can provide very accurate measures of
the force and moment components generated as a person walks over a surface
and can hence be used as a tool for gait analysis[2]. In addition, distributed sen-
sors and actuators embedded in plates have found wide application in dynamic
measurements and vibration control of structures[3], especially in plate damage
detection[4, 5|. Through correlating and analysing input signals from actuators
and output signals from sensors, changes in plate modal parameters can be es-
timated. The variation of modal parameters can usually be used as effective
indicators of the measurement subjects. Similarly, in microscale systems it is also

possible to use microplates to identify cells.



1.3 A Novel Biosensing Microplate Transducer

Some researchers have already made attempts to apply silicon-based microma-
chined plates(membranes) as the basic sensing element in bio-sensors for real-
time biological measurements. Cedric Ayela and Liviu Nicu[6] developed High-Q-
factors(up to 150) circular micromachined piezoelectric membranes as a potential
alternative to cantilevers for biological applications in liquid environments. They
also experimentally proved that Lamb’s theoretical model for a plate vibrating
in a fluid is valid for microscale structures and that the variation of liquid vis-
cosity has no effect on the dynamic behaviour of the membranes as long as the
viscosity is lower than 10cP. Edwin et al[7] have also devised a micromachined
surface stress sensor based on a thin suspended crystalline silicon circular plate.
They successfully utilised differential surface stress changes in the sensing plate
to detect the bending behaviour caused by vapor phase chemisorption of the
alkanethiol monolayers.

Advantages The aforementioned technologies and papers suggest that micro-
fabricated plates possess attractive advantages comparing with cantilever beams
as the basic sensing element in the application of micro-mass detection.

a) High Q-factor micro-plates can be achieved in liquid environment|[6], this will

enhance the measurement resolutions of femtogram/attogram mass sensors.

b) The microplate with distributive sensors could potentially provide more in-
formation, rather than just the weight of cells, and could help to enhance the
mass sensitivity too.
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1.4 Objectives

The main Objectives of the research involved in this thesis may be summarised

as follows:

1. Build mathematical models for the evaluation of dynamical characteristics
of submerged microscale plates, the numerical results to be used as reference

data for the design of microplate-based microsystems.

2. Manufacture a series of silicon micromachined rectangular plates and ex-
perimentally investigate their dynamic charactersitics.

3. The modelling, simulation and manufacture of integrated biosensing sys-

tems based on microplates.

4. Apply the microplate biosensor to detect various biological particles in a

liquid environment and test their biosensing performance.
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This thesis comprises six chapters, including four sections of original researches
together with a chapter of literature review and a chapter of conclusions. Figure
1.1 shows the organization structure and work relationships of these chapters.

Chapter 1 — Introduction
Chapter 2 — Literature Review

Chapter 3 Chapter 4
Theoretical Models Dynamic Experiments
= 1% Theoretical Model (added _ ¢ Fabrication of microplales maeasuremant
Validation lo

mass)

the the ! instruments
/1 _heteoy |, Base excitation & pseudo- f\./\
o 2" Theorelical Model \ﬁ random signal

(damping analysis)
e Modal parameters exiraction . Chapter 6_
«  Simulation resulls Biosensing Experiments
Guide the design = Blo-experiments
¢ FDR/AFDR index analysis
Chapter 5 Devices tesling [\
Microsystem Design & s Neural nelwork analysis
Manufacture V

= Microsystem design (Self-
acluation & Self-sensing)

s FEM simulations

o  Manufaclure process llow

Chapter 7 — Conclusions & Future Work

Figure 1.1: Thesis organization

In chapter 2, the published work related to the research of this thesis are reviewed.
The work in the field of vibration analysis of rectangular plates with different
loading cases (fluid, distributive mass attachment) is extensively examined in the
first section. The next section presents various experimental approaches for the
excitation and measurement of microstructures, in which the based-excitation
method is mainly discussed. The design and manufacture of some existing inte-
grated microsystems is then introduced in the following section. The last part
in this chapter reviews different types of mechnical biosensors. In the meanwhile
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the advantages and disadvantages of these biosensors with different biological

applications are commented upon.

Chapter 3 describes the first task completed in this research, ie building theo-
retical models for the analysis of the vibration of submerged microplates. Gen-
eral formulations and equations of a vibrating isotropic rectangular plate are
presented. The effects of fluid loading on submerged plates is discussed, for ne-
glecting viscous damping. The balance of this chapter concerns two alternative
mathematical models. The first model is based on Rayleigh-Ritz energy method.
Numerical results for natural frequencies and mode shapes of three different types
of microplates, involving both fluid-loading and external distributed mass loading
are obtained. Based on the first model, the scaling of fluid loading effect on a mi-
croplate is analyzed. Another, more complex, mathematical model is developed
for the analysis of the damping mechanism in submerged microplates, including
acoustic radiation damping and viscous damping. Damping ratios as well as the
Q-factors of microplates then can be evaluated from this second model.

In chapter 4, a base-excitation experimental system is developed for testing the
dynamics of submerged microplates. The theory, testing apparatus and PRBS ex-
citation signals for this experimental system are then described in detail. Several
modal analysis methods are introduced and employed to extract modal param-
eters from the measured data. Finally, the experimental results for a series of
submerged microplates are presented and compared with the numerical results

obtained from the two theoretical models.

Chapter 5 presents the biosensing systems based on microplates that have been
designed and fabricated in this thesis. Simulations on PZT thin films and piezore-
sistive gauges are implemented and discussed for the optimal designs of microsys-
tems. The fabrication processes for these microsystems are also introduced at the

end of this chapter.

The details of bio-experiments involving the planting cells on the sensing surface
of microplates and examination of the dynamic differences are firstly described

in chapter 6. Afterwards a large number of bio-experimental results of a series
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of microplates, using the resonant frequency based indices, are presented which
verify the biosensing ability of microplates working under liquid environment. A
further analysis using neural network method on these experimental results is

demonstrated lastly.

Chapter 7 presents the conclusions as well as the limitations that have been drawn
or found during the works in this research. Potential applications utilizing the
achivements of this research are discussed next in this chapter. Some suggestions
for further research on topics of this thesis are also presented.



Chapter 2

Literature Review

2.1 Introduction: Scope of the literature survey

The research presented in this thesis mainly consists of three parts: the dynamical
investigation of fluid-loaded microplates, the study of the biosensing ability of a
microplate and an integrated biosensing system design. The work thus, inevitably,
covers a wide range of topics, including the vibration of microplates, acoustic
radiation, microfabrication techniques, biosensors and system identification. The

literatures related to these areaes of research is reviewed in this chapter.

Traditional vibration analysis for macro-scale plates provides critical theoretical
basis and background to understand the dynamic characteristics of micro-scale
plates. Various theories, models and approaches for the vibration analysis of
plates in vacuo, in fluid or with mass loading are extensively reviewed in Section
2.2. Furthermore, some published researches on the effects of fluid viscosity on
the motion of microstructures are also reviewed, with the purpose of building an
accurate damping analysis model for submerged microplates. As a consequence,
the literature review in this section leads to the development of theoretical models
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of submerged micro-scale rectangular plates carrying distributed masses (Chapter
3).

Experimental work is essential to further understand the vibration behaviours
of microplates and to validate the theoretical predictions. In Section 2.3, var-
ious experimental approaches for the excitation and vibration detection of mi-
crostructures are reviewed. Based on this previous experience, a base-excitation
experimental system for the dynamical measurement of microplate behaviour is
designed and demonstrated, in Chapter 4. Methods of modal analysis for base
excitation and the modal parameters estimation in the frequency domain from
FRF (frequency response function) data are also reviewed in this chapter. These
methods are useful in extracting dynamic models of microplates from the exper-

imental data.

Much previous work has been carried out on microcantilever-based biosensing
systems. and developed lots of microsystem fabrication techniques, experimental
approaches on coating bio-materials and corresponding identification methbds,
which are instructive to design the experiments of testing the performance of
microplates as a biosensing element. In section 2.5 some examples of the appli-
cation of microcantilevers in biosensing are discussed. Some attempts to apply
micromachined plates(membranes) in biosensing, are also reviewed at the end of
that section.

The literature that discusses the physical parameters and characteristics of PZT
thin films and piezoresistors for MEMS applications are reviewed in section 2.4.
Knowledge of PZT thin films and piezoresistive gauges is required in the design of
integrated microplate-based biosensing systems, in which the PZT thin films are
used to excite the microplate, while the distributive piezoresistive gauges are used
to track the vibrational response of the microplate. Some of the critical microfab-
rication techniques in PZT films deposition and piezoresistive gauge manufacture
are reviewed in relavent to optimal design practice.

In summary, all the research areas that covered in the literature review of this
chapter is listed in Figure 2.1.

10
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Figure 2.1: Literature review structure

2.2 Vibration of Submerged Rectangular Plates

The vibration analysis of isotropic rectangular plates in vacuo has been fully in-
vestigated by many researchers. Detailed formulation and description of the free
vibrations of rectangular plates can be found in Leissa’s paper[8] and book[9]. A
summary of formulas and principles on the vibration of various types of plates
also provided in Blevins’s book[10]. These analytical methods always required to
select the approximate mode shape functions in each of two axes. Warburton[11]
first proposed the use of same mode shape functions for beams, which have the
same boundary condition as plate. In addition, Bassily and Dickinson[12] stated
that the beam functions used in the analysis of plates with one or more free
edges need to be modified. Throughout these analytical solutions, the superpo-
sition method[13, 14] gradually was used as an analytical procedure to solve the
plate vibration problem, especially for the plates with ordinary boundary condi-
tions(simple supported, clamped and free). The Rayleigh-Ritz energy method is
also widely used to extract the natural frequencies and mode shapes of free vibra-
tion in plate systems[15, 16, 17]. Both the superposition method and Rayleigh-
Ritz energy method are adopted in this thesis as a basis and origin to develop
advanced theoretical models for submerged microplates.

The study of the vibration of thin plates in contact with fluids started with

11
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Figure 3.8: FRF at point (La/2, Ls/2) of forced vibration of a fluid-loaded 100m x 100um x
5um C-C-C-C microplate (frequencies scanning from 1kHz to 5MHz)
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2.2 Vibration of Submerged Rectangular Plates

the work of Lamb[18], who presented a simple model and calculated resonant
frequencies of a thin circular plate in contact with water. In Lamb’s model, fluid
is assumed to be inviscid, incompressible and have no effect on the vibration
mode shapes of the plate. The concept of added mass was proposed to calculate
the resonant frequencies with fluid loading on the plate. Subsequently a large
number of researchers had worked out the vibration modelings of submerged or
floating plates with varied geometries and boundary conditions based on Lamb’s
method and the added mass assumption. More recently Kwak and Kim[19, 20, 21]
presented the non-dimensional added virtual mass incremental (NAVMI) factors
computation method for circular or rectangular plates. They pointed out that
NAVMI factor can be predicted by the ratio between the kinetic energies of the
fluid and the plate. Liang et al.[22] used an empirical added mass formulation
and the Rayleigh-Ritz method to analyse the vibration frequencies and mode
shapes of submerged cantilever plates. The added mass method was then widely
employed to approximately evaluate the natural frequencies of fluid-loaded plates

and other structures.

Apart from the added mass(mass-loaded) effect the surrounding fluid medium
generates additional damping. This is referred to as acoustic radiation damping.
The radiation of acoustic energy from the plate causes cross-modal couping be-
tween the surrounding fluid and the vibrating plate. It induces two different types
of external forces on the motion of the plate, acoustic reactance force(inertial

forces) and resistive force.

The reactance force will decrease the resonant frequencies of plate. This effect
is indicated by the well-known added mass factor. Whereas the resistive term
appears as a damping and reflects the energy dissipation from the plate to the
fluid, as acoustic radiation[23]. Lax[24] was the first to explain the acoustic
damping phenomenon in terms of the plate cross-modal couping, and in his paper
the self and mutual radiation modal impedances for a clamped circular plates were
computed.

Junger and Feit[25] presented detailed theoretical foundations for the problem

12
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of acoustic structural coupling on vibrations. They showed how the acoustic
impedance can be a useful parameter in evaluation of acoustic radiation damp-
ing. Many approximate analytical and numerical approaches were proposed to
obtain the solution for acoustic modal impedances for fluid-loaded simply sup-
ported plates. These have the simplest mode shape functions and are ideal for
analysis. There are two different forms of the acoustic radiation pressure[25, 26],
both of which can be used to deduce the acoustic impedance of plate. One is the
Rayleigh formula with finite integral domain[27], from which close-form analyti-
cal expressions for the acoustic impedance in a restricted frequency domain can
be derived. The other form is yielded from the Helmholtz equation and double
Fourier transform[25]. The latter form of acoustic pressure involves an infinite
integral domain, but is useful in the analysis of high—freqﬁency behaviour and
for asymptotic solutions[26]. Based on the Rayleigh formula, Wallace[28] ap-
proximately evaluated the cross-modal acoustic radiation resistance of a simply

supported plate in an infinite rigid baffle for under the critical frequencies.

A detailed derivative process of the theoretical formulations of the cross-modal
coupling acoustic impedance for the simply supported rectangular plate in an
infinite rigid baffle was derived by Davies[23]. In his paper, an asymptotic solution
was also presented for low frequencies and the fluid-loading effect on plate was
studied by direct comparison with the unloaded case.

Subsequently this approach has been widely used to analysis the acoustic radia-
tion effect on the vibration of rectangular plates. Pope and Leibowit[29] presented
a more complete calculation procedure than Davies’s asymptotic solution for the
acoustic coefficient by employing contour integration. A numerical algorithm
for calculating this acoustic modal impedance was also developed and proposed
by Chang[30]. By decomposing the integrand into a series sum expansion, Li
and Yam(31] also proposed a new simple analytical solution for the self- and
mutual radiation impedance of a rectangular plate. Graham|[32, 33] in 1995 pre-
sented a detailed process of asymptotic analytical solution of this acoustic modal

impedance by using contour integration to replace the double Fourier transform.

13
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Sandman[34] proposed an analytical expression for the non-dimensional acoustic

impedance by using Rayleigh’s formula and a neat integral transformation.

All of these analysis however are based on the simply supported plate. The
investigation of acoustic impedance for other boundary conditions is very limited.
In Chapter 3 general analytic solution, which is appropriate for all of the ordinary
boundary conditions, relevant to the acoustic impedance of a baffled rectangular
plate is proposed. Additionally an effective numerical Monte Carlo algorithms is
adopted to the compute t‘he complicated acoustic-related integration .

Unfortunately, the added mass factor and the acoustic impedance are difficult
to evaluate for rectangular plates, especially for plates without simply supported
edges. Therefore some researchers resort to approximate numerical methods,
such as finite element method[35, 36], boundary element method(37] and doubly
asymptotic approximations[38] etc. These numerical methods have been exten-
sively used for solving fluid-structure interaction problems within commercial
codes. The difficulty of obtaining the analytical solution of added mass or fluid
loading effect is mainly due to the integral singularity of acoustic impedance[30].
In recent years some useful explicit integration methods have been developed for
evaluating the acoustic impedance of special cases. Pierce et al.[26] eliminated
the integral singularity by reducing each double integral into single integral and
transforming from the Cartesianism coordinates to a polar coordinates. Although
Pierce only analysed the situation where each integrand of impedance is of finite
sum of exponential function, it is clear that this integration technique is applicable

to more general cases.

In this thesis Pierce’s method is used to evaluate the kinetic energy of the fluid,
which can be represented as the effect of incompressible fluid loading and that
has an analogous form with acoustic impedance.

The hydrodynamic force of a viscous fluid acting on a solid boundary is mainly
composed of the inertial force and viscous force. The ratio of inertial force to
viscous force can be indicated by Reynolds number (Re = pwL?/u) [39, 40], which
is a dimensionless quantity. For most macro-scale cases, the Reynolds number is

14
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always very large and this implies that the viscous force is small enough to be
neglected, comparing with the inertial force and the fluid can be assumed to
be inviscid. For a microstructure the resonant frequencies are typically in the
range from kHz to MHz and the characteristic length, is at most few hundreds
of microns. In such case the Reynolds number for fluid over a microstructure
decreases to Re ~ O(1) [41]. Consequently, the inertial force and viscous force of
a fluid acting on the microstructures are of the same order of magnitude and the

inertial force can no longer dominate the motion of fluid.

The analysis of the effects of fluid viscosity on the motion of microstructures is a
challenge, due to the difficulties of solving the Navier-Stokes equations. Neverthe-
less some asymptotic approaches have been developed to predict the frequency
response of the widely-used microcantilever, immersed in a viscous fluid. The
earliest attempts on the viscosity damping analysis are based on the idea that
the microcantilever can be considered as a moving sphere in the fluid[42, 43].
Obviously this approach makes a strong approximation to the actual geometries
and is unable to obtain satisfied simulation results. For more accurate analysis,
theoretical model was proposed by Sader[41] in 1998, in which analytical solu-
tions of the microcantilever frequency response in a viscous incompressible fluid
were obtained with the help of a series of approximate hydrodynamic functions.
Further experimental results demonstrated that Sader’s analytical model can ac-
curately predict the resonant frequencies of a micro-cantilever in viscous fluid
for many cases[44, 45]. However the limitations of Sader’s model are that the
aspect ratio of the cantilever beam must be very large and fluid is assumed to be

incompressible.

Some alternative approaches had been proposed to overcome the limitations of
Sader’s model or design to be suitable for specific cases. Decuzzi et al[46] analysed
the dynamic response of a beam immersed in a viscous liquid in close proximity to
a rigid substrate by using the Euler-Bernoulli model coupled with the Reynolds
equation. Basak et al[47] proposed a three-dimensional, finite element fluid-
structure interaction model. It was shown that their model can yield excellent

predictions of the submerged microcantilever vibration. As most assumptions in

15



2.2 Vibration of Submerged Rectangular Plates

the damping analysis of microcantilevers are not valid for microplates, none of
these microcantilever models can be directly applied to the microplates. However
the simulation results from these models provided substantive information for the
understanding of the viscous damping mechanism of a microstructure vibrating
in fluid.

More recently, some investigators have made efforts on the viscosity analysis of
plate-like structures, and their models have become good references in the design
of microplate based microsystems[40, 48, 49]. Both Dohner and Sorokin proposed
a two-dimensional closed form analytical model for a viscous fluid loaded flexural
plate. Using this model, Dohner analysed the damping mechanism of an air
loaded SiN plate, and found the viscous dissipation is the dominant damping
rather than the sound radiation. Sorokin proposed a standard algebraic solution
for that model and analysed in detail the attenuation of the propagating waves
induced by the fluid viscosity. Atkinson et al also built an theoretical model
for a wide rectangular cantilever plate vibrating in a viscous incompressible fluid
through obtaining an analytic expression of the fluid reaction force. However
in Dohner’s plate analysis a simply supported boundary condition was used for
simplification, whereas the second viscosity was neglected in Sorokin’s solution
and the acoustic radiation was not considered in Atkinson’s model. Moreover,
all of these models are of the two-dimensional, which means that one dimension
of the plate (length) is always assumed to be infinite. Obviously it is far fetched
to make such an assumption on a microfabricated plate or membrane, and may

lead to inaccurate predictions for the plate frequency response.

.Rega.rding the problems of the dynamics of rigid and elastic solid bodies in a
quiescent or moving compressible viscous fluid, Guz has extensively investigated
and presented a series of formulations in this field[50, 51]. By using the linearized
Navier-Stokes equations, general solutions for each component of fluid velocities
potential and stress tensors have been developed in Guz’s model, which has shown
to be appropriate for the analysis of small oscillations of solid bodies in fluid at low

Reynolds numbers[52]. A three-dimensional theoretical model has been proposed
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in this thesis for the vibration analysis of rectangular micro-plates submerged in

a quiescent compressible viscous fluid.

In terms of predicting the dynamics of biosensing microplate carrying cells or
particles, the presence of the biologcial molecules can be considered or simulated
as distributive mass loading. Most of the published research on the vibration of
mass loaded plate considers concentrated mass. Very few papers were found that
study the effects of distributed mass in vacuo. Kopmaz and Telli[53] presented
a mathematical model of a rectangular plate carrying a uniformly distributed
mass, using the Galerkin method to discretize the plate partial differential equa-
tion. Wong[54] proposed a formulation to the eigenvalue problem of plates with
distributed mass loading based on the Rayleigh-Ritz energy variational principle.
Regarding the problem of the vibration of mass loading plate in fluid, the only
published work found on this topic was that of Sandman([34].

2.3 Experimental Dynamics of Microstructures

The experimental investigation of the dynamic behaviour of microstructures plays
a fundamental role in the study of MEMS, and is especially useful in providing
guidance in the design of microsystems. The experimental evaluation of dynam-
ics data is also in determining the natural vibration response of microstructures
and validation of theoretical models [55]. However the dynamic testing of a mi-
cro scale structure always involves great challenges, as the direct approach of
input excitation and output measurement is not possible[56]. The mechanical
resonant frequencies of microstructures are typically in the range from kHz to
MHz, and even GHz[55], and the dynamic and vibration analysis equipments
are difficult to excite and measure at such high frequencies. Moreover, due to
the miniature dimensions, it is difficult to directly apply physical external loads
or attach extra sensing element on the test microstructures. Consequently con-
ventional excitation tools (such as electric shaker and hammer) and mechanical

sensors (like accelerometer), which are commonly used in the modal testing of
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macro-structures, are not appropriate for microstructures. Nevertheless some al-
ternative excitation and measurement techniques and tools have been developed

for the dynamic testing of microstructures over recent decades.

These various excitation methods including: electrostatic actuation techniques,
have been extensively applied to drive MEMS devices by integrating electrodes on
the surface of the microstructures. Comb-drive actuators have designed to utilise
electrostatic forces to excite microstructures. Examples can be found in IJn-
tema et al[57], Burns et al[58] and Smith et al[59]. However the non-linearity of
electrostatic force with input voltage and potential squeezed-film damping make
the electrostatic actuation method unsatisfactory for the experimental study of
microstructures.

Piezoelectric materials such as aluminum nitride, zinc oxide and PZT, have been
extensively used to make MEMS actuators utilizing their inherent advantage of
large actuation force and low power consumption. Tilmans et al[60] proposed an
experimental system in which one piezoelectric element acts both as an actuator
and a sensor for the resonance detection of micro-beams. Swei et al[61] also
demonstrated the excitation ability of piezofilms in their experimental modal
analysis of a suspension structure in a hard disk. '

In the case where large force and large displacement is required for actuation(62],
an electromagnetic method can be adopted to excite microstructures, through
the use of implanted magnetic materials. Wilson et al[63] investigated the elec-
tromagnetic force as a source of excitation in an experimental modal analysis
system for small structures. Although the electromagnetic method can pro-
vide non-contact excitation and its excitation force can be accurately measured
and controlled, low frequency bandwidth limits its applications to dynamics of
microstructures[55].

Other techniques such as electrothermal excitation[64, 65] and acoustic excitation[66]
have also applied to drive microstructures for dynamic testing. However most of
these techniques require complex experimental facilities and only suited to specific

applications.
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A major disadvantage of all of the above excitation methods is that an extra
shaker element (additional materials or electrodes etc) is always attached to the
test structure, which can significantly change the physical properties of the orig-
inal test microstructures. The base excitation method was chosen for the work
described i.e. the experimental investigation of isotropic thin microplates in fluid.
The base excitation method for structural modal analysis is not particularly de-
signed for MEMS devices but has been applied to applications in space vehicle and
nuclear industries[67]. Chou and Wang[68] introduced the base excitation prin-
ciple into experiments for testing MEMS structures and derived a mathematic
model in terms of velocity frequency response functions. Lai and Fang[69] later
applied a ultrasonic transducer as the base-shaker to excite the microstructures
and to obtain a wide frequency range response. Hu et al [70] used a PZT ceramic
plate as base-excitation source to execute dynamic testing on microcantilevers.
They also found that the performance of base excitation was more powerful than
self excitation in the stimulation in mode shapes of micro devices. Epp et al[56]
presented an improved experimental facility for base excitation, in which the

external noises from the facility and environment were reduced.

Although base excitation can be more easily affected by ambient noise and unex-
pected resonant frequencies of the system, it does not require any extra elements
on the test structures. With the help of well-designed base excitation facilities[56]
and modal analysis methods[67], the base excitation can be an ideal tool for the

dynamic testing of microstructures.

To avoid extraneous disturbances and interference, non-contact, high frequency
techniques are always desired for the measurement of the frequency response of
microstructures. The Laser Doppler Vibrometer (LDV) is one of the most popular
non-contact devices and has been extensively used in the experimental dynamic
analysis of microsystems[71]. LDV measures the perpendicular velocity of the
test subject surface through the Doppler effect in laser beams. When LDV is
applied to a microsystem, the laser beam is usually ejected through a microscope
and the size of the focused laser spot can be reduced to circa 1um. LDVs are
thus capable of providing highly accurate point position measurement during the
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motion of microstructures. In the experiments presented in this thesis the Polytec
MSV-400 is used to record the vibration of the test microplates. MSV-400 is a
scanning laser vibrometer, which can automatically measure multiple points in
a predefined domain for a single test[1l]. The MSV-400 can achieve picometer
vibration resolution and up to 20 MHz frequency bandwidth.

Some other optical based non-contact instruments have also been developed and
applied in the measurement of microsystems. Interferometry devices can capture
the motion of the whole surface rather than a single point[1] and perform high
frequency measurements (GHz) [55]. Video-imaging and stroboscopy instruments
are suitable for the analysis of in-plane motions of microstructures(1].

The correct choice of input excitation signal to achieve experimental accuracy
and efficiency in the structural modal analysis, depends mainly on the dynamic
characteristics of the test subject. Nowadays, the most commonly used excitation
signals for modal analysis are random, pseudo random, burst random, sine chirp
and stepped sine [72]. As the fluid-loaded isotropic microplate is a fairly linear
system pseudo-random excitation was employed in the dynamic tests. Pseudo-
random signals have constant spectral amplitude over a wide frequency band
of interest[72] and have almost the same properties as white noise, in terms
of covariance function. Lowrey has demonstrated the advantages of employ-
ing pseudo-random excitation signals in a cross-correlation identification method
for the dynamic analysis of plate systems: noise immunity, small amplitude dis-
turbances and the avoidance of resonance excitation[73]. Rufer et al [74] also
presented a “Built-In-Self-Test” implementation for the mechanical and thermal
characteristic evaluation of cantilever MEMS structures, using pseudo-random
sequence to simulate the impulse excitation. Due to the ergodic, repetitious and
deterministic nature of the pseudo-random signal testing systems, it can achieve a
steady state over a broadband frequency response, which is ideal for the scanning

measurement of microstructures.

The aim of the experimental investigation of a structure is usually to obtain a se-

quence of vibrational modes, which are always characterized by natural frequency,
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damping ratio and mode shape. The process of extracting modal parameters from
a set of measured dynamic data is usually called curve fitting[75]. The measure-
ments can be either in the frequency domain or the time domain. In this thesis
frequency response function (FRF) (frequency domain) is measured and collected
for modal analysis. For a conventional impact test or shaker test, the FRFs can
be simply calculated as the ratio of Fourier transformation of input and output
signals. However the modal parameter estimation method for a base-excitation
system is slightly different. A detailed dynamic theory and modal parameter esti-
mation methods for base excitation system is developed and presented by Beliveau
et al[67]. Lee et al [76] presented a mathematical model on a general driven-base
dynamic testing system, which gave the theoretical basis for the development
methods of modal parameter estimation. Ozdoganlar et al [1] derived the spe-
cific formulations of vibrational microcantilevers under base-excitation testing.
Once the analytic model for the testing system is built, modal parameters can
be estimated by curve fitting on a set of measured FRF data. Richardson and
Formenti [75] ’s RFP (rational fraction polynomials) method was employed in
this work to calculate modal parameters from dynamic experimental data. The
RFP method can accurately and speedily perform both local and global curve
fittings directly on the FRF data containing noise.

2.4 Integrated Microsystems Design

Integrated microsystems (active biosensors) which are capable of performing sens-
ing and measurement without external hardware (self-sensing) and easily embed-
ded into typical CMOS circuits, are gradually used in the real biosensing appli-
cations, especially for the lab-on-a-chip solutions. Wee et al [77] demonstrated a
type of static-mode microcantilever with self-sensing piezoresistive gauges (ploy-
silicon) for protein detection. However, in the microbalance-mode or dynamic-
mode biosensors, a self-actuation and self-sensing capability is required to com-

plete the integrated microsystem. Jin et al [78] implanted a piezoresistive bridge
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2.4 Integrated Microsystems Design

and a metal coil into the cantilever for dynamic sensing and magnetic force res-
onance excitation, respectively. With optimized electromagnetic excitation, high

sensitivity and tens-picogram resolution for in-air mass sensing was achieved.

Piezoelectric materials, such as aluminum nitride (AIN), zinc oxide (ZnO) or
lead zirconate titanate (PZT), based MEMS resonators have, in recent years,
attracted more interest than other ways of actuation (e.g. electrostatic, thermal
and electromagnetic resonator), due to the unique advantages of self-actuation
and self-sensing capability, high driving force, ultra-low driving voltage and low
power consumption[79]. Several types of microcantilever biosensors that embed
with piezoelectric films for the function of both actuation and sensing have been
presented[80, 81]. Furthermore very thick piezoelectric films, especially PZT
films, with large actuation forces are believed to be able to overcome the viscous
damping of microcantilevers in a fluid environment[81, 82]. On the other hand,
Lu et al pointed out few disadvantages when using PZT films as an actuator or

sensor in cantilevers:

a) The sensing signals from PZT films are weak and required additional high

precision pre-amplification for the detection;

b) Placing PZT-film into a microcantilever results in a multi-layered structure
for the transducer, which may include a silicon-based structure layer, PZT
layer, electrode layer and bio-selective layer. Mechanical property differences
between each layer results in dynamic responses which are more complex and
more nonlinear than a single-layer structure. Moreover, it may contribute
significant energy dissipation in the transducer due to the electro-mechanical

energy conversion in the PZT film(83];

¢) Residual stress and initial strain in PZT electrode layers also leads to difficul-
ties in system integration[79].

Consequently, Lu et al developed a series of novel integrated mass sensing microsystems|79,
84], in which the PZT actuator is isolated from the resonant structure. The em-
bedded piezoresistive gauges are employed to replace PZT sensors for dynamic
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2.4 Integrated Microsystems Design

response detection. A similar integrated biosensing microsystem based on mi-
croplate is presented in chapter 5.

In practice the piezoelectric actuator is usually fabricated by depositing a layer
of piezoelectric material (like PZT film) on the silicon membrane substrate, using
sputter and sol-gel techniques[85]. A piezoelectric actuator is capable of con-
verting the electric energy into mechanical energy (vibration); the ratio between
the two converted energies mainly determinates the performance of piezoelectric
actuator. Cho et al presented a one-dimensional mathematical model[86] and ex-
perimental results[87] for the effects of design parameters: such as the thickness
ratio of the PZT film to the silicon substrate, size aspect ratio, residual stress. A .
finite element model of the micro/nano piezoelectric film is proposed by Southin
et al [88], in which the electromechanical coupling factor is the target coefficient
" to be considered in the geometrically optimal design of the piezoelectric based
structure. Lu et al [89] experimentally examined the influence of film-thickness
on the mechanical/electric properties of PZT cantilever films. They discovered
that the Q-factor of microcantilever films can be enhanced and the residual stress
in the PZT film is decreased with increasing the film thickness. Jae Hong Parket
al [90] believe that thick PZT films can provide lager excitation force, higher elec-
tromechanical coupling factor and low dissipation loss, which would be suitable
to use in liquid environments. In their paper, a microcantilever with 22um thick
PZT layer on a 12.3um thick silicon membrane substrate was fabricated and the
characteristics of thick PZT film was experimentally demonstrated.

Micro-piezoresistive gauges acting as embedded sensors in a microsystem, are
commonly fabricated through Boron diffusion[83] to form a doped poly-silicon
or Boron ion implantation|77, 78, 91]. Wheatstone bridge circuit is required to
amplify the output signals of the micro-piezoresistor. Kon et al [92] provided a
theoretical model that governs the characteristics of piezoresistive strain sensors
in the application of vibration measurement. They also revealed the relation-
ships between the sensitivity (gauge factor) of piezoresistive gauges and their

geometries and parameters, which can be used to guide the optimal design of
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piezoresistive guages. Duval et al[91] employed piezoresistor sensors to measure
the displacement and force of a PZT cantilever actuator.

Distributive sensing techniques have been widely used to monitor and reconstruct
the static deformation or dynamic responses of conventional structures: in the
fields of vibration control, damage detection and biomedical analysis etc. One
notable instance is a beam-like or plate-like smart sensing surface with few dis-
tributive tactile sensors, which are placing at well-selected locations and used to
collect the data of surface deformation. Any change upon the sensing surface can
result in corresponding change of measurements in each sensor. The features or
properties of contacted object are related to the sensory data. Advanced non-
linear feature analysis methods, for example neural network, can be applied to
infer the properties of a contacted subject. These kinds of tactile sensing surfaces
have been successfully applied to determine a description of force loading[93],
localize a contacting subject[94] or even human gait analysis[95]. Apparently the
design of integrated microsystems for biosensing can also borrow the concept of
the smart sensing surface, in which multi-dimensional signals rather than single
output from the sensing surface, can be collected and used for pro-processing and
analysis. This system has potential to extract more information than previous
mass microsystems, such as distribution or pattern, of analyses for biosensors. In
chapter 5, a novel microplate biosensing surface equipped with distributive tactile

sensors is designed and studied.

2.5 Microsystems in Biosensing

The development of biosensors can be traced back to 1962, with Leland C. Clark’s
first demonstration of an oxygen electrode based “biosensor” for enzyme detec-
tion. Since then, the research and development of biosensing devices has contin-
ued to the present. The applications of various biosensors have been extended into

many fields such as clinical detection, health diagnosis, drug delivery, pathogen
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detection of food and environment control etc. Nevertheless, seeking more pre-
cise, reliable and rapid biosensing materials, approaches and methodologies is an
important topic and still posses many challenges in the field of bio-detection. The
core components of a biosensor usually consists of a bioreceptor and a sensing
transducer[96]. The bioreceptor is the interface where biosensors interact with the
biological environment. The transducer is used to convert the physical/chemical
information of the biological particles (such as cells, proteins or DNA) into a
measurable signal.

Over the last two decades the fast development of MEMS/NEMS(Micro/Nano-
Electro-Mechanical Systems) technologies provides great opportunities to design
and create rapid, accurate, ultrasensitive and economical biosensors. Moreover as
the MEMS/NEMS based biosensing devices can be easily embedded into standard
microelectronic circuits like CMOS (complementary metal oxide semiconductors),
some lab-on-chip solutions for automated biological testing have also been pro-
posed and developed to replace the traditional expensive, labor intensive, and

time consuming biological experiments[97].

The physics of MEMS/NEMS biosensing transducer usually involve mechani-
cal, thermal, optical and magnetic phenomena etc. These different sensing ele-
ments can perform several types of combinations, suitable for various applications
of biosensing[96]. A micromachined electro-mechanical transducer that detects
surface-attached biological particles through the changes in mechanical energies

or properties is the most common biosensing element used.

There are three popular types of electro-mechanical biosensing transducer that
have been widely studied: surface acoustic wave (SAW), quartz crystal microbal-
ances (QCM) and various micromachined cantilevers. SAW based biosensors im-
plement the biosensing function through detecting the changes in surface acoustic
waves induced by the absorption of biomolecules on the sensing surface[98]. The
SAW devices are usually operated at very high frequencies, and thus high mass
sensitivity can be potentially obtained[98].

The quartz crystal microbalancs measure the additional surface mass loading via
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the decrease of resonance frequency and have been widely applied in gas sensors.
More recently some experiments have also demonstrated that QCM systems can
be used in sensing DNA and proteins[99]. Nevertheless, both SAW and QCM
devices experiences difficulties when applied to stand MEMS fabrication[98] or
integrating with MEMS devices[99]. Microcantilevers have attracted significant
interest in the field of biosensing and are believed to be a promising platform
for future biosensors. Microcantilever possesses several unique advantages such
‘as high sensitivity and high throughput. They are suitable for batch fabrication

and are easy to integrate etc[100].

A large number of inverstigators that have demonstrated the unparalleled sensing
ability of microcantilevers in the detection of ultral small masses or mechanical
stress[77]. With cantilever surface functionalization[100] that is selective coat-
ing/depositing with different biological receptors (such as antibodies and phages),
microcantilever-based biosensors can achieve various specific applications of bio-
detection. In general, the microcantilever can perform in two different sensing
modes: static deformation and resonance response variation[77, 101]. With ad-
sorption of the target analytes into the receptor layer, additional surface stresses
are accumulated that will inevitably result in the increase of static deformation
of microcantilever. Several researchers have shown that the the steady-state de-
formation of the biosensing microcantilever is a function of detected analytes
concentration[102, 103], or even a good linear relationship[104].

The second method mentioned above is a microbalance approach, which detects
surface-attached mass using resonant frequency shift. Its principle is based on the
fact that the added mass to the cantilever is proportional with the change of its
fundamental resonance frequency, if the stiffness of cantilever is assuming to be a
constant. The resonance sensing mode of microcantilevers is capable of measuring
femtogram (107'%g)[105] or even attogram (10~'8¢)[106] mass entities. Further-
more, this resonant frequency-based mass detection approach has become a well-
established technology in various biological sensing applications[107], such as bi-
molecular interactions[108, 109], specific cells/virus/bacteria detection[105, 110,

111] and DNA hybridization[112] etc. However, the sensitivity of microcantilever-
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based biosensor depends heavily on the value of the quality factor (Q) of the
microcantilever, which is largely decreased when the microcantilever is suffering
with high damping. Consequently, several techniques have been proposed and de-
veloped to improve the low quality factor when the microcantilever is in a liquid
biosensing environment. The Q-factor can be enhanced by an active feed-back
circuit with a variable amplifier and phase shifter. Mehta et al [113] employed the
cantilever as part of a passive feedback oscillator, and improved the Q-factor of
the microcantilever up to two orders of magnitude. Vidic et al [114] later induced
internal magnetic or electrostatic stimulation to microcantilevers and employed
a closed feed-back loop to drive the cantilever into oscillation. More than two
orders of magnitude of Q-factor of a microcantilever in liquid was achieved in

their experiments[114].

In terms of actuation and sensing technologies, microcantilever-based biosensors
can be operated in two ways: passive and active[115]. For the passive type, exter-
nal actuation and measurement devices are usually required to stimulate micro-
cantilever and monitor the dynamic behavior response. The microcantilevers of
active biosensors can operate in the self-actuating and self-sensing modes. As the
active operation mode is usually the ultimate form of biosensor for practical appli-
cations, several driving and readout techniques and approaches for self-actuating
and self-sensing cantilevers have been developed, such as optical, piezoresistive,

piezoelectric and magnetostrictive[115] cantilevers.

Micromachined plates (membrane and diaphragm) have become increasing in-
terests as mass/stress sensing structure in last few years, and some researchers
have already made attempts to apply micromachined plates (membranes) in bi-
ological detections. Li et al [116] introduced a piezoelectric micro-diaphragm
(microplate) to replace the traditional microcantilever as the platform of mass
detection for biosensing applications, and they theoretically found that the mass
sensitivity of the micro-diaphragm is higher than the microcantilever for the same
material and size. Carlen et al [7] also designed a micromachined surface stress
sensor based on a thin suspended crystalline silicon circular plate. They suc-

cessfully utilized differential surface stress changes of the sensing plate to detect
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the bending behaviour caused by vapor phase chemisorption of the alkanethiol
monolayers. Furthermore, Nicu et al [99] employed micromachined piezoelec-
tric membranes in a flow injection analysis (FIA) system for DNA hybridization
detection, and Xu et al [117] developed piezoelectric membrane-based biosen-
sor array for immunoassay applications. Most of these proposed investigations
and applications on micro-membrane based biosensors are using the same sens-
ing modes with microcantilevers: static deformation[7] and resonance response
variation[99, 116, 117]. In Chapter 6, the biosensing sensitivity and performance
of silicon-based microplates (membranes) has been studied in detecting two dif-

ferent types of bio-particles.

2.6 Summary

This chapter has reviewed the literature of four areas related to the research in
this thesis. These pertinent researches offer a strong background in the theories,
methodologies, experimental instruments and design principles for the various

analysis and designs of microplates.

A brief history of the dynamics of isotropic rectangular plates was reviewed ini-
tially, in which the superposition method and Rayleigh-Ritz energy method for
solving plate-related dynamic problems were introduced. Both of these two meth-
ods have relative advantages and disadvantages: Rayleigh-Ritz method is more
effective but it is normally used in the analysis of conservative systems. The
superposition method is capable in principle of applying to all situations but it
can be very difficult to get direct solutions in some cases. Previous researches
with various methods in the fields of dynamic characteristics of submerged plates,
adhesive mass loading effects and dampings of microstructures were presented.
The shortcomings of these methods and some unreached research issues, such as
the issue of a vibration plate involving fluid loading and distributive mass loading

simultaneously, were also discussed.
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The base excitation method is believed to be the best choice for testing mi-
croplates based on a review of a series of excitation approaches in dynamic ex-
periments of microstructures. Several published papers that contain the theories,
experimental devices or analysis methods surrounding base-excitation method
were discussed.

A type of integrated system that is capable of self-excitation and self-sensing was
then introduced in section 2.4. The characteristics and design principles of PZT
films and piezoresistive guages were discussed. These are the key components in
the microsystem that was designed and manufactured for the research discussed

in this thesis.

Various investigations on mechanical biosensors were reviewed and presented. A
range of biological experiments and corresponding applications of microcantilever-
based biosensors which are of the most popular type over last decade were dis-
cussed. Finally, some pioneer works on microplate-based biosensors were also
presented, in which the promising biosensing ability of microplates such as high
sensitivity and large sensing area were demonstrated[99, 117].
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Chapter 3

Theoretical model of submerged
microplates with distributed

mass

3.1 Introduction

Micromachined plate(membrane and diaphragm) gradually become a promising
sensing structure in the field of chem/biosensors[6, 117, 118|. In general most
microplates-based biosensors are sensing the biomolecules through detecting the
resonant frequency variations due to the extra mass loading. These biosensors
usually need to interact with biological particles in a fluid environment. Con-
sequently an accurate theoretical model for the frequency response analysis of
microplate in fluids is always desired to design a high sensitivity microplates
based sensing system. The motivation of the research presented in this chapter
is to build a mathematical model for the microplate sensing element in cell de-

tection biosensors. This kind of biosensor is designed to be able to work in fluid
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3.1 Introduction

and the variation of microplate dynamic characteristics induced by the surface
attached cells will be sensed for the measurement.

Two theoretical models have been built in this chapter to analyse vibration char-
acteristics of the submerged microplates. In the situation that the fluid can be
considered inviscous and incompressible, resonant frequencies and mode shapes
of submerged plates can be roughly calculated by using the Rayleigh-Ritz energy
method[119]. Rayleigh-Ritz method is very effective to evaluate the undamped
modal parameters; thus it is useful in a large number of cases analysis. Vibration
characteristics of the coupling system that fluid-loaded rectangular isotropic plate
attached with a uniformly distributed mass are also investigated in this chapter.
A lot of papers in literature have respectively presented the changes on the plate
vibration behaviour induced by the acoustic field or the attached mass loading.
This chapter investigated the issue of involving these two types of loading simul-
taneously. With Lamb"s assumption on the fluid-loaded structure motion and
Rayleigh-Ritz energy method, an analytical solution is proposed to estimate vi-
bration frequencies and mode shapes of the coupling system. Numerical results
for the plates with different types of boundary conditions have also been obtained
and compared with experimental or numerical results from previous pertinent re-
search. Furthermore this theoretical model has been used in the design of novel
biosensing devices.

Nevertheless the model based on Rayleigh-Ritz method is unable to be applied
to analysis of the dampings of microplates, which is related to the biosensing
sensitivity. At the micron scale significant discrepancies could occur when using
the Rayleigh-Ritz approach to predict the dynamic responses[41], especially for
the high modes. This is mainly due to the fact that energy dissipation becomes
non-negligible when the submerged structure sizes reduce to micron levels. The
dissipation of the vibration energy of a microplate in a viscous compressible fluid is
caused by acoustic ra.dia.tion,s internal structure damping and viscous losses[120].
The energy losses in the structure is usually small[121], whereas the energy losses
in fluid contribute the dominant damping to the vibration. A detailed damp-
ing analysis of the submerged microplates is presented, for which are due to the
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3.2 Microplate Model with Distributed Mass

acoustic radiation and viscous losses. Based on Guz’s model and formulations, a
three-dimensional theoretical model has been proposed in the analysis of vibra-
tion characteristics of a microplate immersed in viscous compressible fluid. This
microplate-fluid interaction model is built based on the linearized Navier-Stokes
equations and non-slip interface condition. The analytical solution of this spe-
cific problem of micro-plates has been obtained by applying the double Fourier
transform in the Helmholtz equations of the scalar and vector velocity potentials.
A complicated damping matrix is derived and used to study the effects of acous-
tic radiation and viscous loss. With the help of Quasi-Monte Carlo integration
approach, numerical results are also provided to investigate the damping effects
on the resonant frequencies and the corresponding Q-factors. Using this model,
the effects of acoustic radiation and viscous loss on the fluid induced damping of
vibrating microplate have been investigated. The results will show that acoustic
radiation contributes the dominant damping of the microplate, however in some
particular cases the viscous losses are enhanced and become unneglectable. This
chapter also comments on the sensitivity of the microplate-based biosensors with

the consideration of viscous fluid dampings.

3.2 Microplate Model with Distributed Mass

The schematic diagram of the sensing system(simplified model) is shown in Figure
3.1, the sensing microplate is assumed to be thin, elastic, isotropic and surround-
ing by the infinite rigid baffles. A small circular distributed mass resting on the
plate sensing surface is used to simulate the cells attachment. In most theoreti-
cal vibration analyses of the plate contact with fluid, a simplified model that the
plate is placed in an infinite plane baffle is usually considered. This case conforms
with the microplate which is always surrounding by a thick wafer, and the size
of the wafer could be 1000 times larger than the thin plate.
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3.3 Formulations of the Vibration of Microplate

the cell covers on plate, it can be expressed in the following form.

H(z,y) ={H[z — (z. — R)] — H[z — (z. + R)|}

(3.2)
{Hly — (yo — VR?* — 2%)] — Hly — (y. + V R?* — 2?)]}

Heaviside function H(z) is a discontinuous function whose value is zero for neg-
ative argument and one for positive argument. Consequently, it can be used to
mathematically define a geometric domain. The first half of Eq. 3.2 described
the region along z direction. The left part of Eq. 3.2 restricts the region of y and
also gives the circular relation between z and y.

The linear solution of Eq.(3.1) can be obtained by summing a series of eigenfunc-
tions in each separated mode[122].

w(@,9,8) = 3 3 Winn Xon (@) Ya ) 0(2) (3.3)

m=1 n=1

Where 6(t) is the time dependency of the transverse displacements, in a harmonic
vibration 6(t) = sin(wt + 9), ¥ is the initial phase difference. For the linear vi-
bration without acoustic pressure (p(z,y,0) = 0) and mass attachment (2, = 0),
Xm(z) and Y, (y) are the orthogonal mode shape functions, which exactly satisfy
the boundary conditions in the x and y direction, respectively. From Leissa’s
analysis([9], page 41), X,,(z) and Y,,(y) can be chosen as the same mode shape
functions of beams that have the same boundary conditions. Four types of plate
boundary conditions have been investigated in this thesis: simple supported(S-S-
S-S), all clamped(C-C-C-C), cantilever(C-F-F-F) and two opposite edges free and
the other two clamped(C-F-C-F). Thus the following four types of beam function
are required:
(a)For simple supported at each end(S-S), the beam function is

Xom(2) = sin ?m (m=1,2,3,-) (3.4)

a
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3.3 Formulations of the Vibration of Microplate

where L, and L; are plate’s length and width respectively, m represents the modal
number.

(b)For clamped-clamped(C-C) bounda.ry- conditions,
Xm() = cosh (FE:':) — cos (Egj) — am[sinh (ng) — sin (Ggf)] (3.5)

B __ cosh (€,) — cos (em)
c0s (em) cosh (em) —1=0, om = sinh (&) — sin (€x)

(3.6)

(c)The beam function of clamped-free(C-F) boundary conditions has same form

as clamped-clamped, but has different constants of ¢, and a,,
sinh (€,,) — sin (&)

cos (€p) cosh (6,,) +1 =0, oy = cosh (e) — cos (&) (3.7)

(d)For free-free(F-F) boundary conditions,

X (z)=1 Xo(z) =32z —1) | (3.8)

EmT { €mT . EmT . [ €mx
X () =pm[cosh ( L. ) +cos( L. )] —am[smh( I. ) + sin ( I, )]

(m=234,---) (3.9)

_ cosh (e,) — cos (em) __ sinh (ep,) + sin (em)
e ™" sinh (6,) sin (€;)

(3.10)

sinh (€p,) sin (€,)
where the constant of ¢, for free-free boundary conditions is same as the one of
clamped-clamped. Y,(y) is in the same form that replace z to y and L, to L, in
each beam shape function, respectively.
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3.4 The Effects of Acoustic Loading on Plate

3.4 The Effects of Acoustic Loading on Plate

It had been shown in a large number of published papers that heavy fluid (like
water) loading has significant influences on the plate vibration characteristics. As
seen from Eq. (3.3), a vibrating plate in vacuo has infinite discrete orthogonal
modes. In the presence of fluid, each mode of the plate motion can generate an
acoustic pressure. Therefore the total external force applied on the plate is the
sum of excitation force and the resultant acoustic pressure field. Nevertheless in
general the resultant acoustic pressure induced by a single in vacuo mode is not
orthogonal to the other modes[25]. Therefore in the presence of fluid excitation
of the plate for a single mode can bring out other modes. That means that
one in vacuo mode can “indirectly apply” forces and transfer energy to another
mode via the coupling medium, fluid[24]. This cross-modal coupling phenomenon
will mainly result in two effects on the vibration of plate: (a)The fluid loading
generates an additional inertia to the plate, and it will lower the plate resonant
frequencies. (b)The vibrating plate radiates acoustic energy into the fluid, this
dissipation of the vibration energy of plate adds a resistive term of the impedances
of plate[24], as a result the quality factor of the vibrating plate will decrease.

The acoustic velocity field induced by the plate motion is governed by a three-
dimensional Helmholtz wave equation[25],

_1_82¢(w, Y, 2, t)

2 —
\% @(.’L‘,y, Z, t) - c2 A2

(3.11)

where V? is the three-dimensional Laplacian operator, ¢ is the sound veloc-
ity of fluid and ®(z,y, 2,t) is the velocity potential of fluid. Boundary condi-
tions(continuity of normal velocity) at the interface between the fluid and the
baffled plate(z = 0) can be expressed as,

s o®
(.;—z z.=0 = 68—1;} on the pl{ﬂ.te, E - =0 on the baffle pfate (3-12)

For a steady-state response of a harmonic motion, the acoustic velocity potential

becomes ®(z,y,2,t) = ¢(z,y,2)e . Then by using double Fourier integral
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3.4 The Effects of Acoustic Loading on Plate

transforms to Helmholtz wave Eq.(3.11), the solution of acoustic velocity potential
can be obtained|[25]

D(Vay Yy) €XP [172T + iy + i(k? — 42 — ¥2)V/22]
9(2,9,2) = 1 f f - - —dyedy,

k= — Yo — 'Yy
(3.13)

where ¢(z,y,z) is the spatial velocity potential function, k¥ = w/c is acoustic
wave number and w(7z,7y) is the double Fourier transforms of plate deflection
function. This above form of velocity potential solution is useful in obtaining
asymptotic solutions for the purpose of the high modes analysis[26, 33]. However
as a result of its integral singularity it will encounter great difficulty to acquire
accurate numerical results for the most cases of boundary conditions. An alter-
native solution(Eq.3.14) given by Rayleigh’s formula[25] is used in the following
analysis.

dedn  (3.14)

iw £ﬂ)exp(%k\/(m—€)2 +(y—n)+2%)
P2 = / VE-+ -1+

where S is the integral domain for the whole rectangular plate.

When we deal with the vibration analysis for first few modes of the plate, we
can make the following assumptions and simplification on the fluid[19]: (a)The
fluid is incompressible and inviscid. In general, water is ideally satisfying the
“incompressible” assumption. Therefore the Helmholtz wave équation reduces to
a single Laplace transform(c — 0o,k — 0). The influence of fluid viscosity on the
vibration of plate is very small, and it has been verified by Atkinsona et al.[40]
and Ayela[6]. Ayela also experimentally proved that for a microplate as long as
the viscosity of fluid is lower than 10cP (water is 0.894). (b)The fluid is infinite,
irrotational and has no wall effects. Thus the primary effect of the surrounding
fluid on the vibrating plate is the additional inertia. Thus the natural frequency
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of fluid-loaded plate can be approximately determined by the added mass factor

wf,mn = wv,m‘n = ww,mn (3 1 5)

V1t (Ma/Mp)  V1+ B

where wy mn and wy . are respectively the natural frequencies of plate in vacuo
and in fluid. B, is the added mass factor. From the view of energy, the added
mass can be evaluated as proportional to the kinetic energy of the fluid (7%)[19],
which is defined as

1 ® [ 9¢(z,y,0

Substituting Eq.(3.14) into Eq.(3.16) with the case k = 0 and combining the
fluid-structure interface boundary conditions of Eq.(3.12), we can rewrite T in

the form

_ ,O_fw w(m,y)w(fﬂ?) dzdydédn (317)

€2+ (y —n)?

3.5 Rayleigh-Ritz Solution

3.5.1 Using Rayleigh-Ritz Energy Method

Using Rayleigh’s quotient[123], the natural frequencies of plate in vacuo can be ap-
proximately determined by the ratio between the maximum potential energy(U,)
and the reference kinetic energy(7;) of the plate. When dealing with the coupling
problem of fluid-loaded plate with mass attachment, the reference kinetic energy
should be replaced by summing that of the plate, the fluid(7’f) and the mass(7,).
These relations can be written as[19]

2 _ Up 2 Up .

Wy = 700 We = ok e (318)
T TS +T; + 15,
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where w, represent natural frequency of the coupling plate. The potential energy

and reference kinetic energy of the plate are defined in the forms

D Pw  Pw,, O*w %w 8w \?
Up_?//{ o a )~ UL=Y) [axg o (3:683.') ]}dmdy (3.19)
S

1 .
73 = oot [ [ W )dsdy (3.20)
S

The reference kinetic energy of fluid TF = T /w?.

The reference kinetic energy of distributed mass can be obtained by employing

the aforementioned Heaviside function.

= %é/ meH(z, y)w*(z, y)dzdy (3.21)

With the assumption that mode shapes of the plate remain almost the same in
the fluid, all the above energy formulations can be approximately evaluated by
using the plate “dry” mode shapes(Eq. (3.4)-Eq.(3.10)). The total energy of the

coupling system then can be expressed as
V=U,— Ty +T;+Ty) (3.22)

Substituting Eq. (3.3) into Egs. (3.19), (3.17), (3.20), (3.21) we can obtain the
expansion formula of these energy equations in terms of the plate orthogonal
shape functions. By minimizing the Eq. (3.22) with respect to the unknown

deflection coefficient W,

ov
—— 2
W, 0 (3.23)
we can obtain a series of eigenfunctions
Z Z {Up,mnqr al wz(T;,mnqr F Tf*,mnqr i T;z,mnqr)} Wmﬂ = 0 (324)

m=1n=1
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where
s = 5 [ { @) XDV l0):06) + Xn D) X0 )+
S
QVXm(x)Xq(w)Yn(y)j}r(y) +2(1— V)Xm(m)xq(w)yn(y)ﬁ.(y)}dmdy
(3.25)
T s = pp f f Xon(2) X, (2)Ya (v)Ys () dady (3.26)

e

T = 37 [ [ Xn®) Xe@ a0V )@, ) dady  (3.28)
S

Alternatively, we can rewrite Eq. (3.24) in the matrix form
{K] - w*M]H{z} =0 (3.29)

where K and M are the stiffness matrix and inertial matrix of the vibration

system respectively, and there elements are
Kij = Upmngr
M = T; mnqr + T}(,mnqr + T:1 Jmngr
i=llg-1)+r, j=Illm-1)+n, leN*

Premultiplying the Eq. (3.29) by M1, we can arrive another form of the former
matrix equation[71]

{[A] = Al]H{z} =0 (3.30)
where A = MK and I is the unit matrix. ) is equal to the square of circular
frequency. Hence, the natural frequencies and corresponding mode shapes of the
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3.5 Rayleigh-Ritz Solution

coupled plate are liable to obtain by extracting the eigenvalues and eigenvectors
of matrix A respectively[15].

As mentioned before, reference kinetic energy of fluid 7%,,,,. has a integral sin-
gularity of square root and cannot be straightforward to numerical evaluation.
Following Pierce’s integral methodology[26], the fourfold integral of T7,,,,. can

be reduced into a double integral form

1 1
* _ Pfr2r2 1
T} mngr = 4WLaLb/; l RFX(u,m,q)FY(v,n, r)dudv (3.31)

where R = y/L2u? + Ljv? and inner integrand function F'X (u,m,q), FY (v,n,7)

are defined as

1 1—u
FX(u,m,q) = / Xm(2) Xy(z' = u)dz + Xon(2) Xy(z" +u)dz (3.32)
u 0

FY (v,n,r) = / Yoy )Yo(y —w)dy + /O Y@YW twdy (3.33)

where ' = ©/Lo, Yy = y/Lp, & = €/La,n =n/lp,and u =2 — &, v =19y —
7. Substituting the beam shape functions(Eq. (3.4)-Eq.(3.10)) into Eq.(3.32),

Eq.(3.33) and decomposing them into a series of single integrals, functions F' X (u, m, q)

and FY (v,n,r) can be evaluated in closed forms'.

In order to eliminate the square root singularity, the whole integral of Eq.(3.31)

can be transformed into a polar coordinate system. Then dividing the square

1Each of these separated integrals can be solved in closed forms, in Appendix B the solutions
for the clamped boundary conditions are demonstrated. All the cases of three different boundary
conditions (C-C-C-C, C-F-F-F, C-F-C-F) have also been worked out in this work, which were
turned into the MATLAB codes (provided in the source code disk).
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3.5 Rayleigh-Ritz Solution

integral domain of (u,v) plane into two right triangles[26], we can define v =
Rcos8/L,, v = Rsin /L, with the new integral domain 0 < R < L,/ cos(d), 0 <
6 < tan~1(Ly/L,) for lower triangle and analogous relations for upper triangle.
The integral of Eq.(3.31) becomes

T = pr Lb(/ /ms :Rcosf)’m’q)FY(RSLn(a),n,r)defR
b

fez /me FX(fRsm(a?) OFY (:RCOS('-"') n,r)dedﬂl)
b
(3.34)

where 6, = tan=1(Ls/La) and 85 = tan'(Lq/Ls)

Normalizing the integral domain of R into [0, 1], we can rewrite Eq.(3.34) in the

form
01 in
T} ronar = p s’ Lb(f f FX(R,m, )FY(:EILCS (g’;),n, e )dedG
b2 sin
f / FX(HEL"CD 9)) JQ)FY (R,n,7)- ()d:RdB)

(3.35)

Consequently, with the close-form solution of functions FFX and FY we can
accurately evaluate Eq.(3.35) by using normal numerical quadrature routines.

3.5.2 Numerical Results of Natural Frequencies and Mode
Shapes

The resonant frequencies and mode shapes of the submerged microplate carrying
a distributed mass are obtained by numerically solving a truncated subset of the
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3.5 Rayleigh-Ritz Solution

infinite series of Eq. (3.24) in MATLAB codes. All of the simulation results
presented in this part are generated by using (25x%25) terms of Matrix A, and
the reference kinetic energy of fluid(7’) is doubled for the case of submerged
microplate. It can be proved that (25x25) terms are able to result in sufficient
convergence. The material properties of the plate, fluid (water) and attached

mass used in numerical computation are as follows:

e Plate Length: L, = 100um

e Plate Width: L, = 100um

e Plate Thickness: h = 5um

e Plate Young’s Modulus: E = 150G Pa
e Plate Poisson’s Ratio: v = 0.17

e Plate Density: p, = 2330kg/m3

e Fluid Density: p; = 1000kg/m?

e Radius of Attached Mass: R = 20um

e Surface Mass Density of Attached Mass: 7, = 0.02kg/m?

From Eq.(3.24), it can be seen that when T} = 0 and T;; = 0, the coupled
system reduces to the case of unloaded plate motion in vacuo, and if 7, = 0,
the problem becomes the one of an unloaded plate vibrating in a fluid. Figure.
3.2-3.4 respectively shows the plate resonant frequencies and mode shapes for
three types of boundary conditions in four different loading cases: (A)plate in
vacuo without carrying the mass, (B)plate only under fluid loading, (C)involved
both fluid-loading and a center mass attachment(z, = Lo/2, y. = Ls/2), (D)is
the case with a corner mass attachment(In Figure 2 and 4, the corner mass is
at T, = Ls/4, y. = Ly/4. In Figure 3, the corner mass is at z. = 3L,/4, y. =
3Ly/4).
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A B C D
Modes (in vacuo) (in water) (in water with (in water with
center mass) corner mass)

Xum) ===
f=13.73

3I'd

5lh

um 100
f=24.62 s f=16.51 f=16.49

Figure 3.2: C-C-C-C plate resonant frequencies(MHz) and mode shapes
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Figure 3.3: C-F-F-F plate resonant frequencies(MHz) and mode shapes
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A B C D
Modes (in vacuo) (in water) (in water with (in water with
center mass) corner mass)

X{um) 100
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Figure 3.4: C-F-C-F plate resonant frequencies(MHz) and mode shapes
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3.5 Rayleigh-Ritz Solution

From the above three data plots, we can see that both the fluid loading and the
attached distributive biological particles have significant impact on the resonant
frequencies and mode shapes of micro plates. The inertial forces of fluid sharply
reduce resonant frequencies, especially in the fundamental modes (by more than
50%). Fluid has a reduced effect on most of mode shapes, some phase changes can
be found in a few cases. On the other hand, due to the low density ratio(density
of attached mass vs density of micro plate) the distributed mass caused very small
changes on the resonant frequencies. However it induced distinct changes to the

most mode shapes, especially in high modes.

3.5.3 Validation of the Rayleigh-Ritz Solution

There are very few papers that discuss the dynamics of a distributive mass-loaded
plate in a fluid. In order to verify the present method, the numerical results for
plates without mass attachment vibrating in fluid are obtained to compare with
the published results. An experimental dataset suitable for this comparison is
the one published by Lindholm (1965) for the submerged cantilever plates[124].
The dimensions and properties of the cantilever plate used here for comparison
are: L, = Ly = 8inch, p, = 7.324 x 1074lb/in3, E = 30 x 10°psi, v = 0.3. Table
3.1 compares the first five natural frequencies for this plate in vacuo and in water

respectively.

The results of Table 3.1 show close agreement between the method of this paper
and Lindholm’s measurements. However quite large differences exist in the first
two wet mode frequencies, as the plate used in our model is surrounded by an
infinite baffle plane, while the plate of Lindholm’s approach is resting on a free

surface.

The comparison of NAVMI (Non-dimensional Added Virtual Mass Incremental)
factors for simple-supported and clamped plates between the present method and
Kwak’s results(read from his data plot)[21] are listed in Table 3.2. The aspect
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3.5 Rayleigh-Ritz Solution

Table 3.1: Comparison of natural frequencies(Hz) of a cantilever plate submerged

in fluid with Lindholm’s experimental results

In Vacuo In Water

Modes Lindholm Present Lindholm Present

1 99.5 99.3 51.4 45.0

2 243.0 243.5 154.0 144.8
3 610.0 622.5 355.0 358.7
4 782.0 769.2 534.0 511.4
5 ~ 887.0 898.2 585.0 590.9

ratio € here is equal to 1. It can be seen that this method can accurately calculate
the NAVMI factors and therefore the natural frequencies of the submerged plates.

Table 3.2: Comparison of NAVMI factors of simple-supported and clamped plates
with Kwak’s BEM results

S-S-S-S C-C-C-C
Modes Kwak Present Kwak Present

1,1 041 041 035 0.3484
1,2(2,1) 018 0.1823 0.6 0.1609
22 013 0128 012 0.1182

3.5.4 The Effect of Distributed Mass Loading

All of the numerical results in Figure 3.2,3.3,3.4 have demonstrated the effect of
a small distributed mass loading. Additional mass attachment on a microplate
decreases natural frequency and distorts mode shape of each resonant mode.
Comparing with center mass. the corner mass has less influence on natural fre-

quencies, but could cause much more mode shape distortion in some cases. In
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3.5 Rayleigh-Ritz Solution

general the level of these changes of dynamic parameters are mainly determinated
by the size and position of attached mass, assuming that surface mass density is
uniform and constant. In other words, physical properties and behaviour of the
attached distributed mass have very close relationships with the dynamic infor-
mation of the sensing microplate. This is the principle of using a microplate as

the biosensing transducer to detect cells.

‘A simple simulation demonstrates that the plate dynamics change with different
cases of cells adhesion herein. Larger radius and higher thickness of a circular
distributed mass is used to simulate more quantity of attached cells, natural
frequencies and mode shapes of 6 different loading cases on a 300um x 300pum x
5um cantilever microplate are evaluated by using the Rayleigh-Ritz theoretical
model in the simulation. The first 5 natural frequency shifts of these 6 cases are
shown in Table. Figure 3.5 illustrates the differences of the first 5 mode shapes

between case 1 and case 6.

Table 3.3: Simple Simulation Results of the First 5 Natural Frequencies (KHz)
of a Microplate With Cells are Growing on Its Surface
No. of Cells 1 mode 2 mode 3 mode 4 mode 5 mode

0 22.850 82.163 190.088 291.117 336.667
1 22.847 82.163 189.968 290.818 336.666
5 22.759 82.096 187.584 285.389 336.113
10 21.476 76.530 168.644 261.207 307.755
50 17.727 61.847 123.832 201.674 240.354
100 14988 51.638 99.066 165.749 . 197.678

49



3.5 Rayleigh-Ritz Solution

casel case6

Figure 3.5: Mode shapes comparison between case 1 (no cells) and case 6 (100

cells) adhesion
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3.6 Damping Analysis of Fluid-loaded Microplates

3.6 Damping Analysis of Fluid-loaded Microplates

3.6.1 Equations for Quiescent Compressible Viscous Fluid

When a solid structure is excited in a fluid by prescribed external forces, the
resultant inertial and friction forces of fluid react against the motion of structure
and represents the dissipation of energy. In order to analyse these reaction forces
and the dissipating mechanism, the fluid has to be modeled as viscous and com-
pressible. Both the solid and fluid media are assumed to be homogeneous herein,
and the fluid medium is considered to be at rest initially. The motion of a viscous
compressible fluid is governed by the linearized Navier-Stokes equations, in which

the non-linear convective inertial term is ignored[39):

ov
Py — KVV = (u+ 1) V(Y -v) + Vp =0 (3.36)

where v is the velocity vector of fluid, p is the fluid pressure, pyo is the quiescent
fluid density, u is the dynamic viscosity coefficient of fluid, and p” is the second
viscosity coefficient of fluid and can be considered to equal —2/3u. The motion

of fluid also satisfies the continuity equation:

0
P 4 ppV v =0 (3.37)
ot
and momentum equation: 5
P _ 2 (3.38)
Opy

The solution of the fluid velocity field can be expressed as a sum of a scalar and
a vector potentials[51]:
v=Ve+4+VxV¥ (3.39)

with an additional condition:
V- ¥=0 (3.40)
Substituting this solution back into Eq.(3.36,3.37,3.38), we can obtain the follow-
ing equations[50]:
4 .
p= gﬂvz@ — pso® (3.41)
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3.6 Damping Analysis of Fluid-loaded Microplates

m .1

204+ V2 — b= :

V2 + 3pfoc2v S8=0 (3.42)
V20 — p—;’:’xi: =0 (3.43)

If only the situation of harmonic motion is considered ®(z,y, 2,t) = ¢(z,y, z)e"wt
and ¥(z,y,2,t) = ¥(z,y, z)e”™*, the above two equations can be rewritten as

the following forms:

Vi +kip =0 (3.44)
V3 + k2 =0 (3.45)
where
2/c?
e .
L= T G 3o (3.46)
K2 = I 3.47
m (3.47)

where k; and k, can be considered to be virtual wave number, which are complex

numbers.

3.6.2 Vibration of Rectangular Plate

The governing equation of the forced vibration of a rectangular isotropic plate is
defined as

*w tw  tw 8w _

+57) +rhgy

D( ozt * 232:2;9'2 dy

F(z,y,t) (3.48)
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3.6 Damping Analysis of Fluid-loaded Microplates

F(z,y,t) is the external force function applied on the plate, which includes the
hydrodynamic loading and excitation force. However this classical thin plate
theory is only valid in the frequency range[25]:

wh
TCs

<0.1 (3.49)

where ¢, = \/E/(2p,(1 +v)) is the shear wave speed of the material. Take a
5pm thick 200pum square silicon micro-plate as an example, the above condition
can be satisfied within the frequency band of 20MHz (critical frequency), which
is adequate for the frequency analysis of microplates in this thesis.

3.6.3 Boundary Conditions at the Fluid-Plate Interface

In such a situation of small oscillations, it is generally believed that at the fluid-
plate interface the fluid will have no velocity relative to the plate[125]. This
condition is known as the no-slip condition, which can be stated by the following

equality constraints:
ouP

- vi, #r=¢' (3.50)
where u” is the displacement vector of plate. It means at the contact interface
the velocity of fluid is equal to the velocity of plate, and the stress tensor along
the fluid boundary (&) is identical to the stress vector of plate surface(&?).
Expanding the above boundary conditions in the Cartesian coordinates(Z, ¥, Z),
then the vector potential v is written as:

7/) = ¢$f+ 71’3;3?"‘ ")bzg (351)

The velocity field Eq.(3.39) is expanded as the following form(the superscript “ f
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” is indicated for the fluid):

op  OY, O
R —
Yz = Be + dy 0z
0¢ Oy Oy
- —_—t
=%yt ez T s
0p Oy s
F_00 0%y OY
Y= 52 + ox By

The velocity field of a vibrating plate in the form of flexural waves(bending waves)

can be represented as[126]:

h 0%w
v = 2 0zt
» h 8%w
w = —=
Y 2 Oyot
ow
r — ¥
v Bt

Supposing the fluid-plate contact interface is located at z = 0, the no-slip bound-

ary condition for the velocity field is then expressed as:

vl = |0, vf =0Blim0, U] =0E|mg (3.52)

The continuity of the stress tensor along the boundary implies the hydrody-
namic forces loading on the plate are determinated by the motion of fluid. The
six components of the fluid stress are obtained in the following forms(Stokes’s
hypothesis)[125]:

= —p+2 Qv_f — g a_'Uf_ + B_Uf 3?);)
Ta = TPT UG, T 3" T Ty
_ 49 vl 2 (8'Uf avf 81)5)
g ol 2 (vi ol avg
= 52 3" oz 83;
vl vl
Toy = Ty = P‘-(__ By
vi 5"055
Tyz = 82)
8v£ o’
Tee = Taz = P"( e + Oz )
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3.6.4 Hydrodynamic Force Function on A Rectangular
Plate

In this part we present an analytical expression of hydrodynamic force loading
on a rectangular plate. When the plate is immersed in the fluid and is excited -
into motion, the motion of plate generates a new stress field of the fluid on both
sides of the plate. The hydrodynamic loading Fhydro(2, ¥, 0, t) on the transverse
motion of the plate is the difference of the surface hydrodynamic force between
plate top-surface and bottom-surface:

thdro(m: Y, 0: t) = thdro(mj Y, 0_: t) - thdro(m: Y, 0+: t) (353)

where Fhyaro(,y,0—,t) and Fryaro(z,y, 0+, t) are the surface hydrodynamic force
on the bottom side and top side of the plate respectively. As the thickness of

plate is small, we can assume:

thdro(ma Y, 0_1 t’) = _thdfo(x! Y, 0+1 t) (354)

According to the no-slip condition, each component of the surface hydrodynamic
force are all depend on the fluid stress tensor, thus it is expressed in the following

form:

h (0T,y  OTy
thdm(ﬂ%y, 0+) =0z — '§ ( 9z + By ) (355)

Substituting the expressions of velocity field into the fluid stress tensors, the

04, Tzz, Toy CaN be rewritten as followings:

. 82 82 82 .
8% %, 0%, 0%, 0%y
Teo = H (2 Ox0z Byaz - Oyozx - H22 + 92 ) (3.57)
_ 824’ az'wy 321102 82:¢$ azdjx
T =4 (2 oydz  0xdy T Bxdz 2 + 522 ) (3.58)
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The scalar and vector potential fields ¢, can be obtained through applying
double Fourier transforms on the Eqgs.(3.44,3.45). The solution for the ¢, of the
transformed Helmholtz equations have the following forms:

Bkar ky; 2) = A exp (i, [k — K2 — k2. z) (3.59)
Dks, ky; 2) = B - exp (f.::1 [kt — k2 — k2. z) (3.60)

where ¢ and 7 are the Fourier transform of scalar and vector fields.

Then the potential fields have the following solutions by applying inverse Fourier
transformation:

#(z,v,2) = ﬁ / / A exp (ikya + ikyy + o[ — K2 — K - ) dhadk, (361)

—00

1T '
W(z,y,2) = yos /f B - exp (zkzm + ikyy + iy k2 — k2 — k2 - z) dkdk, (3.62)

where A and B(B,, B, B.) are the coefficients need to be determinated. By, By, B,
are the coefficients for the each component of vector field v, ¥y, ¥, respectively.
Substituting the solutions of potential fields into the double transformed conti-
nuity condition Eq.(3.52) of the velocity field at the fluid-plate interface(z = 0)
and Eq.(3.40), we can list four linear equations for these four undeterminated

coefficients:
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ik} — k2 —k2- A—ik,B, +ik,B, = ©

koA— k2 —k2 —k2-B,+k,B, = —okoti

h, -
kyA+ [k — K2 — k- B, —k:B. = —hkyb
keBy +kyBy+\/k2—k2—k2-B, = 0

Thus the coefficients A, B, By, B, can be obtained,

—h(k2 + k2) + 2i(k2 + k2)/\/ K} — k2 — K2
a=|

2k2 + k2 + /K2 — k2 — K2 SRE— R — D) 569

7

|
K — k2 — k2

hky\/k? — k2 — k2 — 2ik,

B, = — W (3.64)
2(k2 + K2 + (k2 — k2 — k2, /RE — k2 — R2)
B, = Y W (3.65)
2K2 + k2 + [k2 — k2 — k2 /RE— RE — F2)
B,=0 (3.66)

Now we can present the analytical expression of the hydrodynamic force by sub-
stituting the solutions of potential fields Egs.(3.61,3.62)into Eq.(3.55), and it can
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be written in a concise form,

1 i -
thdro(ms Y, 0+) = m / T(km ky)w exp(ika:m + Ekyy)dkfcdkx (367)

where the inner function T'(k;, k,) = Ti(kz, ky) — %Tz(kx,ky). T1(kz, ky,) and
Tg(kmky) are the coefficient functions from the solutions of normal stress and

shear stresses respectively.

= [2u(kz + k2) — ipgow)A'—

1
2pu(kor /K — k2 — k2B, — kyy/k? — k2 — k2B,
Ty = —ip[24/k? — k2 — K2(k2 + k2)A'+
(3.69)

key (K — 2k2 — 2k2) B, + ko (—k} + 2k2 + 2k2) B,

(3.68)

where A" = A/, B, = B, /W, B, = B /.

Concerning the specific case of inviscid compressible fluid (x = 0), the virtual
wave numbers in Eqs.(3.44,3.45) becomes k; = w/c,ks — oo and the hydrody-

namic force function of Eq.(3.67) reduces to the form of acoustic pressure.

1 i W ex (ikyx + ik
Fh’!f“"o(x: Y, 0+) = —p(ﬂ?, Y, 0+) = m ]/ P10 p yy)dkxdk:c

\/kE — k2 — k2

The form of Eq.(3.70) has been found widely used in the study of plate-borne
acoustic radiation([25, 30, 32, 127]. It implies that Eq.(3.67) can also be applied in

the situation of very low viscosity, in which case the no-slip condition is violated.

(3.70)
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3.6.5 Analytical Solution - I (Directly Using Governing
Equations)

If the excitation force is assumed to be a concentrated force(F;), which is ap-
plying at the point (zo, o), then the whole external force F(z,y,t) in Eq.(3.48)
loading on a submerged plate can be expressed,

F({E, y) = Fema(m - mﬂ)é(y - yﬂ) + thdro(x:y; 0) (371)

Substituting the Eqgs.(3.3,3.71,3.67) into Eq.(3.48) and multiplying W, and in-
tegrating over the whole region of the plate, we can obtain the solutions of the

submerged plate vibration in the following matrix form,

SN (@ + iwhnngr) (W} = Fr - ¢,7=1,2,+ ,00 (3.72)
Where F,, is the generalized external force and can be represented in the form,
P = [ [ Fu(a = a0)o(y = ) X,(a)Y: 0) d dy (3.73)
s
and [I'] is the modal coefficients of plate stiffness and its elements are,

I'=M [wl, -] E (3.74)

where E is an identity matrix, M is the mass of plate and wy,, is the plate

natural frequency in vacuo of (m,n) mode. For an all clamped rectangular plate,
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the natural frequencies can be evaluated from the following formulation:

. g [ Xn X Yo Yndzdy

2 4 4

=— | k& +2 k 3.
s

Linngr is the direct and mutual mode fluid-loading impedance including the effects
of acoustic radiation and viscosity. It can be seen that Imnge is the coupling
coefficient linked two discrete vibrating modes of plate, namely (m,n) and (g,7).

Lnngr is expressed in the following form,

1 o0 . |
T = 3 [ Tk b )by (3T6)

where Xmn(Kkz, ky) and x;,.(ks, ky) are double Fourier transform of the plate modal

shape functions,

Som(kia, ) = j / Xon(2)Ya () exp(=i(koz + kyy))dedy  (3.77)
S

The fluid-loaded impedance function Imngr involves a 6-folder integration and
tedious to be numerically evaluated. Fortunately, the inner function xm, and xj,
can be solved in closed forms for the ordinary boundary conditions (all clamped,
cantilever and etc). The solution of X, for an all clamped rectangular plate is
shown in the following formulations 3.78. Solutions for other boundary conditions

are similar and have also been worked out in this thesis.!.

an(kan ky) = [IXcos(ms IIl‘::.u:) - iIXsin(ma k:l:)] [IYcos (ﬂ;, ky) - "':IYsz'n(n: ky)] (378)

1Refer to the Matlab Source Codes in Appendix D

60



3.6 Damping Analysis of Fluid-loaded Microplates

where
1 kmLa (], o
Ixms(m, kx) = I:m (C (k: Sln(Lakx) + km COS(kan))‘F
_ ) 1 sin(Ly(km + kz))
kmLu _ = @ m
e (kg sin(Loks) — km cos(kzLa))) 2( e 1 +

sin(Lq (km + km)))] — o, [2( ! (eFmLe (kg sin(Loks) + km cos(ksLa))+

km - kx szn + k%)
e~ *mla (L, sin(Lgks) — ki c08(kgLa)) — 2km)+

1 cos(Lq(km + kz)) — 1 + cos(Lq(km — kz)) — 1)

(3.79)

1

Ixsin(m, kg) = (eFmLa (k,, sin(Loks) — kg cos(kyLa))—

2k, + k3)
e~*mle(k sin(Lok,) — kg cos(kzLg)) + 2ks) + %(COS(Lag;m:kkz)) -1
cos(Lqg(km — kz)) — 1 1 ko La ) B
T ke )] - am {Q(kfn T (hmsin(Loks)
kg c08(kyLa)) + € *mE (K, sin(Lokz) + kg cos(kzLa)))+
l(sin(La(km +kz)  sin(La(km — kz)) )]
2 km + ke km — ks
(3.80)

The forms of Iyes(n,ky) and Iyen(n,k,) are the same with I Xcos(T, ky) and
Ixsin(n, ky) by replacing k, to k, and L, to Ly, respectively. Consequently,
the integration in function Ingr reduces into a two-fold form and is easier to

solve numerically.

3.6.6 Analytical Solution - II (Principle of Virtual Work)

In the previous section 3.6.5, the solution is explicitly obtained from the governing
equation of plate vibration along with the superposition method. It leads to the
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3.6 Damping Analysis of Fluid-loaded Microplates

concept of fluid impedance, which is useful to analyse various fluid-loading effects
on the motion of microplates. However this solution is only appropriate for the
plates with orthogonal mode shape functions, for example the all clamped plates.
It would result in significant errors when applied to the plates involving two
opposite free edges, such as C-F-F-F or C-F-C-F plates. This is due to that the
first two mode functions of a F-F boundary condition are not orthogonal. For
example the first mode function is usually selected to be equal 1, which is not
orthogonal to the other mode functions as shown in Eq. 3.81.

hn= [ X@W) = [Ya) £0, n>2 (3.81)

A more general solution is derived in this section from the following equations
giving by the principle of virtual work[128].

2 |
0-Up+ / f psh%}éwdxdy - / / (Feg + Fhyaro) dwdzdy = 0 (3.82)
S S

where U, is the potential energy of plate defined in Eq. 3.19, dw is the virtual
displacement of plate and assumed to be very small and constant over the plate
domain. Substituting the solutions or expressions of U,, w (Eq. 3.3), Firyaro (Eq.
3.70) into Eq. 3.82, an analytical solution based on the principle of virtual work
is obtained.

[ T o] I
Py . mngr _ —
;Z(Up,man_pr,mW+zw' 2 ){Wmﬂ}_Fw ¢,r=1,2,-++,00

" (3.83)

where Upmngr and Ty g have the same forms with Eq. 3.25 and 3.26 respec-

tively. It can be seen that the form of Eq. 3.83 is similar to the solution (Eq. 3.24)
of Rayleigh-Ritz method. Both methods don’t require the mode shape functions
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3.6 Damping Analysis of Fluid-loaded Microplates

to be orthogonal. Therefore the solutions on C-F-F-F or C-F-C-F plates can be
obtained by using Eq. 3.83.

3.6.7 Numerical Simulations

As the simulations of microplates are at micron level (10~%), direct evaluation of
integrations of impedance and dry natural frequencies could result in arithmetic
overflow or significant errors due to the precision limitations of computer. Before
one performs numerical evaluation of the vibration of fluid-loaded microplates, it
is necessary to normalize these mathematical expressions. The inner integrations
in Eq. 3.75 can be transferred into the following form, which is independent of

plate dimensions.

(S

X! Y.Y,dzd
2. =2 (ke + f“ Jp X mon a0 | g (3.84)
pph j;] [0 X,2Y 2dzdy

where X (z) and Y, (y) are the non-dimensional mode shape functions.

X, () = cosh (€n) — €08 (€mT) — tm, [sinh (€mz) — sin (€,,7)] (3.85)

The fluid-loaded impedance integral is naturally scaled with acoustic wave-number
(k = w/c), and then all the other wave-numbers (k;, ks, k2, ky) can be normalized
to be non-dimensional[32]. If defining k, = kK, and k, = kK, the fluid-loaded

impedance becomes:

PR .
var = 53 / /_ DKy Koo (K Ko (Ko KIS, (3:86)

The modal coefficients (Wi,,) at a specific frequency of the forced vibration of
a fluid-loaded microplate thus are determinated from a truncated subset of Eq.
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3.6 Damping Analysis of Fluid-loaded Microplates

3.72. As the analysis presented in this part is mainly concentrated at the first few
modes, only 9 X 9 terms of Eq. 3.72 or Eq. 3.83 are taken and calculated in every
simulation, which can be proved to have sufficient accuracies. The deformation
of the vibrating microplate at each point then can be evaluated from Eq. 3.3.
If performing this kind of simulation at a series of linearly spaced frequency-
sequence, the frequency response function (FRF) of the fluid-loaded microplate
over a specified frequency range is then produced. Using the FRFSs, theoretical
results of the modal parameters, natural frequencies, damping ratios and mode

shapes of fluid-loaded microplates can be obtained.

The material properties of microplate and water selected are the same as the
values used in Rayleigh-Ritz model in this simulation. The sound velocity and
viscosity of water are chosen as ¢ = 1482m/s, p = 1.003cP. Although this
theoretical model is derived to involve both the acoustic radiation damping and
viscous damping, it is also appropriated to the extreme cases. If assuming no
viscous damping p = 0, the motion of microplate only suffers acoustic radiation
damping and the simulation results can be used to analyze acoustic damping
effects. If assuming no damping that g = 0 and ¢ — oo, this vibration of
microplate therefore reduces to be a conservative system and the corresponding
simulation results should match the results obtained from Rayleigh-Ritz model.

However most difficult part in numerical simulation of the forced vibration of
fluid-loaded microplates (Eq. 3.72) is the evaluation of fluid-loaded impedance
Imngr- The integration of impedance involves double infinite ranges and exists
square root singularities. As the inner integrands T'(k, ky) and Xmn(kz, ky) are
of very complicated forms, acquiring accurate solutions like the aforementioned
Rayleigh-Ritz method becomes unachievable. Quasi-Monte Carlo integral algo-
rithm (see Appendix A) is then employed to obtain an approximate numerical
solution of the impedance. The infinite integral ranges ([—o0, 00|, [—00, 00]) have
also to be truncated into finite ranges ([—,!],[—{,]) in the process of numeri-
cal evaluation. Figures 3.6 and 3.7 demonstrate the convergence and acceptable
associated errors with the selected number of Monte Carlo integration samples
and truncated integration ranges respectively, in the process of evaluation of the
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3.6 Damping Analysis of Fluid-loaded Microplates

impedance Inge for a 100pum x 100um x 5um C-C-C-C rectangular microplate
at frequency 3.37TM Hz (around its first wet resonance mode). The values of
T1111, L1212, 2222 and Iaggs with a series of different sampling number and in-
tegral ranges are tested. The results prove that good convergent results can be
obtained when the number of sample points and truncated integral ranges are
sufficient large. Eventually the sample number for each Monte Carlo integration
is chosen as 5 x 10° and the double infinite integral ranges are truncated into
[-10,10],[-10,10] in all subsequent simulations of C-C-C-C microplates. The
selected parameters for C-C-C-C micrplates are indicated with the perpendicular
red lines in these Figures. Similar convergence testing is also preformed on C-F-
C-F and C-F-F-F microplates, for which integral rangés have to be extended into
[~100,100], [-100, 100] and the number of Monte Carlo sampling is set to 5 x 108
correspondingly.

3.6.8 Numerical Results of Fluid Damping

Numerical results of the vibration of microplates with three different cases of
fluid loading are estimated from this theoretical model: (i)Assuming no damping,
u = 0 and ¢ — oo; (ii)Only acoustic radiation damping is considered, u = 0
and ¢ = 1482m/s; (iii)Consider both acoustic damping and viscous damping,
p = 1.003¢cP and ¢ = 1482m/s. The FRF for each case of the three different
boundary conditions (C-C-C-C, C-F-F-F, C-F-C-F) microplates are presented
in Figures 3.8, 3.9 and 3.10 respectively, and all of which have dimensions at
100pm x 100pm X Sum.

The predicted resonance frequencies in these three cases are well matched and
have a good agreement with the results of Rayleigh-Ritz model. Additionally in all
these three figures the FRF curves of case (ii) and case (iii) are almost coincidence.
It demonstrates that the dominant damping of fluid loading is caused by acoustic
radiation rather than viscous relaxation. It can conclude that viscous damping is
negligible when the fluid viscosity is very low (like water) for the dynamic analysis
of fluid-loaded microplates. This conclusion is very different than the viscous
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Figure 3.6: Convergence demonstration of Monte-Carlo integration algorithms
in evaluation of fluid-loaded impedance (integral ranges are all truncated into
[-10,10], [-10,10])
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Figure 3.8: FRF at point (L, /2, Ly/2) of forced vibration of a fluid-loaded 100um x 100um x

5um C-C-C-C microplate (frequencies scanning from 1kHz to 5MHz)
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Figure 3.9: FRF at point (L,/2,0) of forced vibration of a fluid-loaded 100pm x 100um x 5um
C-F-F-F microplate (frequencies scanning from 1kHz to 3MHz)
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Figure 3.10: FRF at point (L, /2, L;/4) of forced vibration of a fluid-loaded 100um x 100um x

5um C-F-C-F microplate (frequencies scanning from 1kHz to 3MHz)
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analysis of fluid-loaded micro-cantilevers[41, 47], where viscous damping is more
dominant. This is primarily due to that microplates have much higher Reynolds
number than microcantilevers. In the applications of mass sensing, it proves that
microplates are more robust in resistivity of fluid viscosity than micro-cantilevers.
A normalized Reynolds number that reflects the ratio between inertial forces and
viscous forces of fluid is proposed by Sader[41] with the following form

2
Re = P wetol” (3.87)

4p

Where wyeto is the damped resonant frequency of micro-structures and b is the
width. Take a 100pm x 100um x 5um cantilever type (C-F-F-F) microplate and a
100pm X Sum x 5pm micro-cantilever with same material properties as examples,
Reynolds number of this cantilever microplate is estimated to be 5118, whereas
the value of micro-cantilever is only 12.29, which is more than 400 times less
than that of the microplate. It also can be calculated that microplates with other
boundary conditions (C-C-C-C or C-F-C-F) have much higher Reynolds numbers.
It implies that viscous forces are extremely small comparing with inertial forces
of fluid that load on the submerged microplates. Therefore only considering
acoustic radiation damping is accurate enough for the damping analysis of fluid-
loaded microplates in the case of low viscosity. Fluid-loaded impedance Inqr of
Eq. 3.76 is then reduced into the following form of acoustic radiation impedance
I5nqe- Most damping analysis of fluid-loaded microplates presented in this thesis
directly employs this Eq. 3.88, which is more computationally efficient comparing
with Eq. 3.76. The corresponding Q-factor at each mode can be evaluated by
using the damping ratio (Eq. 3.89).

o prw * Xmn(ke ky)X;r (kg ky)
I =2 dk,dk 3.88
mngr 472 f [ o / k§ — kxz — kg Y ( )
Q=5 (389)
=5 | .
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3.6 Damping Analysis of Fluid-loaded Microplates

Due to the term |/k* — k2 — kj, we can separate the impedance I, into the

mngr

acoustic resistance rmng. and reactance Mg in the following way[25, 127),

Tngr = Re(I&ngr), When k2 + k2 < k; (3.90)

Mmngr = —éfmg(fglmr), when k2 + k) > k% (3.91)

As seen from these equations, the acoustic resistance term 7,4, stems from the
supersonic (k2 + k2 < k?) sound radiation induced by the plate motion and
represents an energy loss of the plate; the reactance term m,;nq. comes from the
subsonic(k2 + k2 > k?) pressure field and appears as an additional inertial term
to the plate[127], which results in the added mass factor.

3.6.9 Numerical Simulation of High Viscosity Effects

In this section, the dynamics of fluid-loaded microplates suffered high viscous
damping are discussed with the numerical results from the theoretical model.
Cedric Ayela and Liviu Nicu [6] have experimentally investigated the relations
between fluid viscosity and the dynamic behaviours of fluid-loaded circular mi-
croplates. Their experimental results demonstrate lower fundamental frequencies
and lower Q-factors when increasing liquid viscosity. They also proved that liquid
viscosity has no effect on the dynamic characteristics of the microplates when it

is lower than 10¢P.

Numerical results of 7 different fluid viscosity! on the three different types of
microplates (C-C-C-C, C-F-C-F and C-F-F-F) are generated and compared for

1(0.001cP, 100cP, 300cP, 600cP, 900cP, 1200cP, 1500cP), 1500¢P is the viscosity of 100%

glycerol at 25°C, all the other simulated viscosity are also reasonable in practice if considering
the liquid mixture of water/glycerol. However in fact the density of water/glycerol solution

varies at different proportion of glycerol[6], for example 100% glycerol is 1258.02kg/m3 while
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the analysis of high viscosity effects. Figures 3.11, 3.13 and 3.16 illustrate the
amplitudes and phases of FRFs at each different viscosity of these three types
of microplates respectively. These FRF plots prove that microplates suffer more
dampings and resonant frequencies are slightly decreased when increasing the
fluid viscosity. Quantities of resonant frequencies shifts and Q-factor (damping)
changes due to the high viscous damping are also plotted against the viscosity, as
show in Figures 3.12, 3.15 and 3.17. Approximate linear relationships are existed
in both of the two curves. Cedric Ayela and Liviu Nicu also reached similar

conclusions from their experimental analysis[6].

3.7 Scaling of Fluid Loading Effect on A Mi-

croplate

3.7.1 Scaling on Added Mass Factor

The above equations and analysis are based on the general dynamic problem of
a fluid-loaded rectangular plate, by no means specific to micro scale. However
the issue of physical and mechanical changes due to the size reduction are always
concerned in the design and analyse of MEMS devices. In this section the scaling
of fluid loading effect on a microplate is investigated. added mass factor is em-
ployed for the scaling analysis of fluid inertial effect on a microplate. The added
mass factor at each mode can be approximately evaluated as the ratio between
the reference kinetic energies of the fluid (T%) and plate (7},), which is defined

50% is 1123.75kg/m>. In order to clearly and only demonstrate the fluid viscosity effects on
the behaviours of microplates, the fluid density in all theoretical simulations herein is assumed

to be the same of 1000kg/m?3.
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Figure 3.11: FRFs of a C-C-C-C 100um x 100em x 5pm microplate under different
high viscous dampings
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Figure 3.12: Shifts trend of first mode resonant frequency (a) and corresponding
Q-Factor (b) of a C-C-C-C 100um x 100pum x 5um microplate under different
high viscous dampings
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Figure 3.13: FRFs of a C-F-F-F 100m x 100pm x 5m microplate under different
high viscous dampings
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Figure 3.14: FRFs of a C-F-F-F 100m x 100m x 5m microplate under different

high viscous dampings: partial enlarged view for the first mode
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Figure 3.16: FRFs of a C-F-C-F 100um x 100um x 5pm microplate under different
high viscous dampings
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as[19]
2 *
Wy, mn Tf mnmn
ﬁmﬂ. = ( ] ) -1= - (392)
wfumﬂ Tp T

The inner integral part in each formulation of these two energies can be written

as the following non-dimensional form,

T} v = 2 - p‘f 2L3/ / 7 —FX(u,m,m)FY (v,n,n)dudv (3.93)

1 1
T = goohe [ [ X2(Lao)V2(L)dady (399
0 Jo

where ¢ is the plate aspect ration Ly/Lq, R = 1/(eu)? + v2. The functions FX
and FY are naturally non-dimensional and mode shape functions X,,(L,z) and
Yo(Lpy) are non-dimensional. Therefore in terms of geometrical dimensions,

Bran Eﬁ—b (3.95)
From Eq.(3.95) it can be seen that the added mass factor scales by L,/h for a
uniform rectangular thin plate with fixed aspect ratio. However the size reduction
of width (L;) and thickness (h) of plate are usually of the same order. Conse-
quently there is no scaling difference of the inertial effect of fluid loading between
on a macro plate or on a micro plate. In other words the decrease of natural
frequencies of plate due to the fluid loading will also happen for a micro plate

and the proportion of frequency shift are the same as that of a macro plate.

81



3.8 Conclusion

3.8 Conclusion

This chapter first proposed an analytical model for the dynamic system of fluid-
loaded plates with distributed mass attachment based on Lambs model and the
RayleighRitz energy method. Pierces integral technique is used to overcome the
difficulty of evaluating the effects of fluid loading. The numerical results calcu-
lated using this novel methodology are compared with Lindholms experimental
results and Kwaks NAVMI-based results and show close agreement. It is con-
cluded that the methodology based on RayleighRitz energy principle proposed in
this chapter can be widely applied to most boundary conditions of rectangular
plates, provided that the mode shape functions are known. It is the first ana-
lytical solution to this problem, taking into consideration both fluid loading and
distributive mass loading effects. Both of these factors are important in micro-
biosensor design using microstructures. Numerical results of the plate-resonant
frequencies and mode shapes under different loading cases are presented. This
novel methodology and the dynamical characteristics of microplates derived can
be applied in the design of microplate-based biosensing systems. A simple simu-
lation of cell attachment derived from this theoretical model was used to examine
the effect of mass loading on micrplates, in which both of the changes of natural
frequencies and mode shapes are demonstrated.

In order to analyse the damping mechanisms of fluid-loading on the microplate, a
more precise model considering both of acoustic damping and viscous damping is
derived. In the process of derivation the linearized Navier-Stokes equations for the
fluid dynamics is solved based on the non-slip boundary conditions of the fluid-
structure interface. Due to the complicated forms of this second model, the Monte
Carlo simulation method is used to obtain an approximate solution. From the
numerical results of second mode under different assumptions of fluid, it reveals
that acoustic damping dominant the dampings of the dynamics of fluid-loaded
plates when the viscosity of fluid is low. From the simulation results obtained
under different high fluid-viscosity, it reaches a conclusion that fluid viscosity
has smaller effects on the dynamics of microplates than micro-cantilevers. The

scaling of fluid loading effects based on these two theoretical models are then

82



3.8 Conclusion

investigated. It is theoretically proved that the added mass factor is independent
the scaling of plate.

In summary, we developed two different mathematical methods for the dynamic
analysis of fluid-loaded plate in this chapter. These two models have different
features and are appropriate to use in different situations.

For the first model, which is based on RayleighRitz energy method:

(a) The solution of this model is obtained through the evaluation of eigenvalues
and eigenvectors of a matrix. Therefore the natural frequencies and mode
shapes can be fast to estimate by using this method.

(b) It provides an alternative way that can more accurately evaluate the added
mass factor of the fluid-loading on rectangular plate, comparing with the

approximate formulation in [10].

(c) As it ignores the damping effect of fluid, this method is not appropriate to
perform damping analysis or sensitivity (Q-factor) analysis for fluid-loaded
plates.

For the second model, which is using the non-slip boundary conditions:

(a) Comparing with the first model, this theoretical model is more precise with
considering both the acoustic damping and viscous damping. This model is
suitable to analyse the damping mechanism of the fluid-loaded plate.

(b) This model is capable to trace out the frequency response graph of a fluid-
loaded plate. The frequency response trends are very helpful for fully under-
standing the dynamic characteristics of fluid-loaded plate.

(c) However, it usually requires to sweep over a certain frequency range to obtain
the frequency response function. In each single simulation at a sepecific

frequency it has to calculate the corresponding hydrodynamic force, which is
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3.8 Conclusion

a very complex mathematical form. Consequently, this is a time-consuming

process to use this method to analyse the dynamics of fluid-loaded plate.

Although these two methods is designed for the dynamics of rectangular plate,
their concept can also be extanded to apply to other fluid-structure interaction

problems.
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Chapter 4

Experimental dynamics analysis

of submerged microplates

4.1 Introduction

An experimental testing system for the study of dynamics behavior of fluid-loaded
rectangular micromachined silicon plates is designed and presented in this chap-
ter. In this experimental system, the base excitation technique combined with
pseudo-random signal excitation and cross-correlation analysis is applied to test
fluid-loaded microstructures. The dynamic experiments cover a series of testings
of various microplates with different boundary conditions and dimensions, both
in air and immersed in water. This is the first work that demonstrates the ability
and performances of base excitation in the application of dynamic testing of mi-
crostructures that involves a natural fluid environment. Traditional modal analy-
sis approaches are used to evaluate natural frequencies, modal damping and mode
shapes from the experimental data. The obtained experimental results are dis-
cussed and compared with theoretical predictions. This research experimentally
determines the dynamic characteristics of the fluid-loaded silicon microplates,
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4.2 Manufacture of Rectangular Microplates

which can contribute to the design of microplate based microsystems.

In this dynamic testing system designed for the fluid-loaded micro-plates, an
ultrasonic transducer with 1.65MHz bandwidth of frequency response is used for
base-excitation and the micro scanning laser vibrometer (Polytec MSV-400) is
used to record the vibration signal of the micro-plate. MSV-400 Vibrometer is
developed specially for the vibrational analysis of MEMS devices, and its fast,
accurate and non-contacting properties makes it an ideal tool for studying micro
structure dynamics. MSV-400 can achieve picometer vibration resolution and
up to 20 MHz bandwidth. Pseudo-random signal is used in the experiments for
excitation. Pseudo-random signal is of deterministic signal and has almost the

same properties as white noise in terms of covariance function.

The fabrication process and mechanical properties of measured silicon microplates
are introduced first in this chapter. A detailed description of base-excitation based
experimental system has been presented. It is followed by the mathematical
model of the testing system, and analysis of pseudo-random excitation signal and
cross-correlation techniques in modal testing of microplates. Lastly, RFP curve
fitting approaches were applied to extract modal parameters that include resonant
frequencies, modal damping ratios and modal constants from the measured FRF
spectrums. The experimental results of vibration characteristics of submerged
microplates are compared with the simulation results predicted by theoretical
models in Chapter 3.

4.2 Manufacture of Rectangular Microplates

The microplates were fabricated from silicon on insulator (SOI) wafers with 5um
or 3um thickness active silicon layer. The material of the active silicon layer
is silicon(100). As illustrated in Figure 4.1, the membrane structure for each
microplate was etched out by inductively coupled plasma (ICP) using the Deep
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4.2 Manufacture of Rectangular Microplates

Reactive Ion Etching (DRIE) process from the back side of SOI wafer. After-
wards Nitric acid was used to remove the buried SiO; layer. The boundary
conditions of microplate were also defined by DRIE from the top side of SOI
wafer. Three different boundary conditions of microplates were fabricated and
tested in our experiments: (a)Type C-F-C-F is the microplate with two opposite
edges clamped and the other two edges free; (b)Type C-F-F-F is the cantilever
microplate, (¢)Type C-C-C-C is the microplate with all edges clamped. The ma-
terial properties of the silicon plate are listed in the Table 4.1, which is refer
to the data of silicon(100). All of these microplates are designed to be square
and with lengths from 100um to 400um long. However, due to nature of the
microfabrication process, the length and width of each microplates is not quite
the designed value. For example, the measured sizes of three 300m microplates
are measured and listed in Table 4.2.

5-10pum
clamped ~Sum - -] :
ree
/ l_ Buried
? & oxide
Handle _ ¥
wafer

Figure 4.1: Schematic plot of micromachined silicon plate

Figure 4.2: LSM images of 300um microplates (Type C-F-C-F, Type C-F-F-F,
Type C-C-C-C)
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Table 4.1: Material parameters of the silicon plate

Thickness Young’s Poisson’s  Density

h(um)  E(GPa)  (v)  pplkg/m?)
Plate 5 150 0.17 2330

Table 4.2: Measured sizes of each type plate(L, x Ly, pm X pm)
C-F-C-F C-F-F-F C-C-C-C
296.9 x 309.5 294.3 x 295.3 358.1 x 359.9

4.3 Experimental Testing System

4.3.1 Theory of Base Excitation On Microplate

Mathematical modelling of this testing base excitation system designed for mi-
croplates is similar to previous pertinent work[1, 67, 68, 76]. Formulation deriva-
tion of the vibration of fluid-loaded microplates stimulated by base excitation
are specially discussed in this section. Figure 4.3 illustrates the motion of a
microplate under the testing of a base excitation system. The vibration of an
isotropic thin-film rectangular microplate can be expressed in Eq. 3.48. Here
w(z,y,t) indicates the function of plate absolute deflection. The boundary con-
ditions of clamped edges of microplate that continuously linked with the rigid
base are changed to (as example the clamped edge is along = = L,),

0 (3)

On the other hand, the boundary conditions of free edges in base excitation

(w) =0 o 4)

z=Lg

system remain the same,

53w BPw

9%w 0w
(— + V—) L = 0, [ﬁ + (2 - v)78$3y2]

ox? oy?
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microplate
f
u(x.yt wix,y.t)
%% I
2 v(t) X base excitation

Figure 4.3: Schematic plot of micromachined silicon plate

Applying the new boundary conditions of Eqs. 4.1 and 4.2, the deflection of
microplate under base excitation can be solved from the plate governing equation.
However it would be an intractable process due to the non-homogeneous nature of
the new boundary conditions(1]. In order to change the boundary conditions to be
homogeneous, relative motion of the microplate to the excited base is employed to
obtain the solution. The absolute velocity of microplate w(z, y,t) and the velocity
of base ©(t) can be directly measured and recorded by the vibrometer respectively.
All system motions are assumed to be mainly along the vertical direction of the
base excitation apparatus, therefore the relative motion of microplate u(z,y,t)

to the excited base can be expressed as,

u(z,y,t) = w(z,y,t) —v(t), u(z,y,t)=1i(z,y,t)— () (4.3)

Notice that the base motion of v(t) is assumed to be an independent form with
respect to the plane coordinate (z,y), therefore the governing function of mi-
croplate vibration and the boundary conditions in terms of relative motion v(t)
can be expressed in the following forms. The boundary conditions of free edge
remain the same forms and are naturally homogeneous.

*u(z,y,t 8u(t
V(e 1,0) + ph B8 oy, - pp T2 (4
ou
(u) - =0, (%) - =0 (4.5)
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4.3 Experimental Testing System

Therefore the relative motion of microplate can be solved in Eq. 4.4 by us-
ing the same routines presented in chapter 3. That is substituting mode shape
functions X,(z), Y;(y) (Egs. 3.5 ~ 3.8) into Eq.4.4, multiplying both sides with
cross-modal functions X,,(z), Ya(y), and integrating over the whole plate domain.
Then the following characteristic equation for the relative motion of based-driven

microplate is obtained considering a simple harmonic motion at frequency w,

MW,pn(w2,, — w?) = Frp + w2 pphCrrnv(t) (4.6)

where M is the mass of plate and wy,, is the plate natural frequency in vacuo of
(m,n) mode. F,, is the generalized force and can be represented in the form,

La Ly
Fn = f /0 Fi(x — 50)5(y — %0) Xm(2)Ya(v) da dy (4.7)

Cmn is a scaling constant,

La Ly,
= ] Xm(@)Ya(y)dody (48)
0 0

The last term of Eq.4.6 represents the base excitation force acting on the mi-
croplate. It can be seen that base excitation force is an inertial force of base
motion scaled by the integral of normalized mode shapes(1]. The external force
F,. equates zero when the experiment is executing in vacuo. In the case that the
whole base excitation system immerses in fluid (water), the external force Fin
is the fluid loading force on the testing microplate. According to the analysis
presented in Chapter 3, the effect of fluid can be described with adding an added
mass term and an additional damping term into Eq.4.6,

[(M + M) (w2, —w?) + 2ijnwmnw] Winn = W pphCrnnv(t) (4.9)

mmn
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4.3 Experimental Testing System

If substituting the solution of the coefficient for each mode shape function in
Eq.4.9 into Eq. 3.48, the relative motion u(z, y, t) can be evaluated. Consequently

the theoretical model for the vibration of base-driven microplate is set up.

Due to the importance and convenience of using the frequency response function
(FRF) in the practical experimental modal analysis, a mathematical model on
FRFs of the base-excited microplate is derived in following section. For the vi-
bration of the microplate in the relative coordinates, the mechanical force and
damping force are functions of relative displacement and relative velocity respec-
tively, while the virtual external force depends on the absolute acceleration of
the microplate[67]. Therefore the relative vibration of the microplate in the base

excitation in Eq.4.9 can also be written in the following matrix form,

[M){ii — ¥} + [CNu} + [K{u} = [F] (4.10)

where the matrices [M], [C] and K] are the mass, viscous damping and stiffness
of microplate respectively.

If Eq.(4.10) is transfered into the frequency domain, we can obtain the following

equation,

Uw) = Hw)V(w)

w2

Hw) = —anq+wlc] K]

(4.11)

where H(w) is called the frequency response function, it can be directly applied
to perform the modal analysis of microplate. However both relative displace-
ment U(w) of microplate and displacement of base V(w) are not the direct mea-
surements in the experiment. Therefore the velocity based frequency response
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4.3 Experimental Testing System

function is adopted, which is determined in the following form[56],

_Uw) W)

Vw) V(w) (4.12)

Hy(w)

As W (w) and V(w) are the direct output of vibrometer, the modal parameters of
microplate can be extracted from the velocity based frequency response function.

4.3.2 Experimental Setup of Base Excitation

An experimental system has been designed for the dynamic characteristics mea-
surement of micro-plates in air or tmmersed in water. Figure 4.4 shows this
testing system. The petri dish containing the base excitation facility is situated
on the stage of a microscope, which is used to visualize the microplates and accu-
rately localize the laser spot for the velocity measurement. The laser vibrometer
(MSV-400) is connected to the microscope through mounting its adapter on the
camera port of the microscope. The embedded signal generator in MSV-400 is
used to provide excitation signals, the signal output port on the junction box of
MSV-400 connects the electrode wires of an actuator in the petri dish. Figure
4.5 shows the details of base excitation apparatus. At the lowest layer there is
a glass slide, which is used to support the actuator for the base excitation. The
actuator is an ultrasonic piezo-transducer with 1.66MHz bandwidth of frequency
response. A plastic jig with a trapezoid slot is tightly bonded on this actuator. A
10mm long and 10mm wide silicon die, in which the microplate is embedded at
the center, is inserted into the trapezoid slot and can be tightly clamped. Figure
4.6 illustrates the signal flow in each of this modal testing experiment. The exci-
tation signal returns back to pro-analyzer (embedded in MSV-400) as a reference
signal, and then it is cross-correlated with the original measured response from
the laser vibrometer. Ultimately the frequency response functions of the testing
microplate are obtained from the cross-correlation result by performing FFT.
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Figure 4.5: Base excitation apparatus
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Figure 4.6: Schematic diagram of experimental signal flow

Before the vibration testing of microplates, multiple uniformly distributed testing
points that can cover the whole domain of the microplate are defined. Afterwards
pseudo-random signal from the embedded generator is amplified to 10 volts and
applied to the actuator to excite the whole apparatus. As the mass of petri dish
and glass slide is much lager than the mass of exciter (ultrasonic transducer),
the excited motion from the actuator is mainly transfered towards the silicon die
along the perpendicular direction[56]. Simultaneously the laser beam projects
on the surface of microplate and measures the velocity of vibration. The output
signal of vibrometer is then correlated to the input excitation signal to determine
the frequency response function(FRF), which can be used directly to extract
modal parameters. The FRFs at each of these predefined points are recorded,
therefore the vibration shape of microplate at any frequency within the testing
band (2MHz) can be reconstructed.
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4.3 Experimental Testing System

4.3.3 Pseudo-random Excitation Signal and Correlation

Techniques

As stated previously pseudo-random signal was chosen to excite the microplates
for the dynamic modal testing. The binary maximum length sequences (m-
sequences) are the normally used type of pseudo-random signal. The pseudo-
random signal is a periodic signal with the period of T' = NAt, where N is the
sequence length and must be an odd integer and At is the clock period. The
characteristics of pseudo-random signal in both time and frequency domain are
deterministic, as a result the system response of a linear structure under pseudo-
random signal excitation is also deterministic and it makes the measurements in

the dynamic testing experiments become reproducible.

The usage of pseudo-random signal in structural modal testing is close to its
application in system identiﬁca,tion[129], that correlation functions have to be
induced to process the measurement of system response. The left part of Figure
4.6 shows the signal conversion in the dynamic testing system, in which y(t)
is the direct measurement (system response), z(¢) is the excitation signal and
also the reference signal used for post-processing. The testing system is fairly
linear, deterministic and also follows superposition principle [129]. Therefore the
system response (vibration of microplate) can be modeled by an impulse response
function h(t). Once the model of impulse response function h(t) is built up, the
complete dynamic responses caused from any excitation input can be determined

by using a convolution integral[73].

The following gives a brief derivation on how to determinate a system natural
model h(t) from the direct system measurement y(t) in a pseudo-random stimu-
lated testing system. The cross-correlation function R, (7) of system output y(%)
and input z(t) is defined in the following form[129)],

Ray(r) = ] " Rua(r — MY\ (4.13)
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where 7 is the time delay in cross-correlation and R, is the autocorrelation func-
tion of pseudo-random signal z(t). The pseudo-random signal can be designed to
approximate white noise, then the auto-correlation function of z(t) approaches a

impulse function,

Raw (7 — A) = Sod(7) (4.14)

where Sy is the power spectral density of pseudo-random signal. Then Eq. 4.13
becomes a simple linear form and the system model function 2(7) can be expressed

in the form,

h(r) = ——R“”;LET) (4.15)

As a result the system model function h(7) can be directly evaluated as a propor-
tion of the cross-correlation function of system input z(t) and output y(t). Ap-
plying Fourier transform to the above functions, the frequency system response
H(f) can also be obtained as to be proportional of R,y(f).

Figure 4.7 demonstrates the pseudo-random signal employed to excite the mi-
croplates in this work, including three plots that are one period of pseudo-random
sequence, its autocorrelation function and its power spectrum respectively. It can
be seen that autocorrelation function is ideally an impulse and the distribution
of power spectrum is fairly uniform over the frequency range less than clock fre-
quency f, = 1/At. The pseudo-random signal here has the following parameters:
sequence length is V = 16384 and clock period is At = 58e — 6s.

Figure 4.8 shows an example of processing experimental result of a C-C-C-C mi-
croplate using correlation techniques. The first plot is the original time series data
collected from Laser Vibrometer. The following plot is the frequency response
function, which is‘ obtained from the Fourier transformation of the correlation
result between original time series and pseudo-random signal. Resonant peaks of

the testing microplate are distinctly appeared in this FRF plot.

96



4.3 Experimental Testing System
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Figure 4.7: A sample of pseudo-random signal used in testing
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Figure 4.8: An example of microplate experimental data
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4.4 Experimental Modal .Analysis

4.4.1 Modal Analysis Procedures

The aim of experimental modal analysis is to determine the modal parameters
(natural frequencies, modal damping ratios and mode shapes) from experimental
data. As the vibration of a microplate either in air or in water is a fairly linear,
time-invariant system, the modal parameters at each resonant mode are essential
to describe the dynamic characteristics of microplate. The FRFs the resonant
modes of a testing microplate become evident and the corresponding resonant
frequencies can be directly obtained. On the other hand, modal damping ratios
and modal constants (mode shapes) are more difficult to obtain[130], because
the results can be easily affected by local perturbations of the original signal.
Therefore further process and calculation are required to obtain more accurate
modal parameters. The FRF spectrum in Figure 4.8 as an example is based on the
absolute motion of a microplate, however it is not appropriate for implementing

conventional modal analysis methods.

Figure 4.9 illustrates the significant errors of modal parameters, especially on the
damping ratios, when directly applied modal evaluation on the absolute motion
based FFT spectrum. According to the theoretical analysis presented in section
4.3.1, the direct output of FFT has to be transformed into the form of relative
motion (Eq. 4.12) in order to obtain an ordinary vibration model (Eq. 4.10) of
the base-excited microplate. The denominator in the frequency response function
of Eq. 4.11 is the complex characteristic equation of vibration system[71]. The
complex roots (complex poles) of this equation are highly related to each modal
frequencies and modal dampings. A particular element in the matrix function of
[H(w)] can also be rewritten in terms of the complex poles[67].

k
A*r Art
Hpn(w) =)  —mn 4 —me (4.16)

W —pr W — pr

r=1
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absolute motion
where A7 is modal residue (modal constant) and p, is the modal pole.

The work of modal analysis (modal parameters extraction) is to match the mathe-
matical model of Eq. 4.16 with the experimental data and determine the unknown
coefficients using curve fitting techniques. A schematic diagram in Figure 4.10
shows the signal process procedures for modal parameter extraction in this base-
excitation dynamical experiments of microplates. The whole process of modal

analysis is divided into four phases:

a) The measured system outputs are entered in a cross-correlator to obtain the
FFT of the absolute motion. This work can be automatically finished in the
laser vibrometer MSV-400.

b) Both magnitude and phase components of the complex FFT of a particular
testing point, are then transfered into a form of relative motion refer to the
Eq. 4.12. A FFT spectrum of excited base is required as the reference of base
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d)

motion in this transformation. The base-reference point is usually defined on
the silicon die that is outside the domain of microplate, where the measurement
of base-reference point can be taken at the same time when testing scanning

the microplate.

A signal processing technique is employed to eliminate noise and local dis-
turbances of FRF signals to obtain smoothed FRF signal without losing the
modal information. This will reduce the chance of incorrect curve fitting.

Eventually traditional curve fitting methods are applied to extract modal
parameters. This modal analysis process is based on one-point FRF mea-
surement, the accuracy of modal analysis can be enhanced by performing
modal estimation from the FRF measurements of a set points or the whole
microplate-domain.

Measured
Signals
Modal Parameters
FFT (Mag & Phase) FRF relative velocity Signal |smoothed J 1. Natural Frequencies
Cross- ofatestingpoint |y o " FRF spectrum | Smoothing signal %
Correlator -~ T & e o= 2 Damping Ratios
FFT of a reference mm Nolse ﬂmm
point on the base Reduction 3. Modal Constants

Figure 4.10: Experimental modal analysis procedures

4.4.2 Signal Smoothing and Noise Reduction

An order 3 polynomial SavitzkyGolay smoothing filter is chosen to execute an

initial curve matching and reduce noise of the transformed FRF signals. The FRF

signals of dynamic microplate usually contains very high frequency components

(up to MHz) and has a very large frequency span. The Savitzky-Golay filtering

method is believed to be better to process frequency-based signals than standard

averaging FIR filters, which would suppress some modal information of the FRF

signals. The main advantage of SavitzkyGolay filter is that it is able to preserve

the high-frequency components of the signal. The frame size of this filter is set at
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where A7 is modal residue (modal constant) and p, is the modal pole.

The work of modal analysis (modal parameters extraction) is to match the mathe-
matical model of Eq. 4.16 with the experimental data and determine the unknown
coefficients using curve fitting techniques. A schematic diagram in Figure 4.10
shows the signal process procedures for modal parameter extraction in this base-
excitation dynamical experiments of microplates. The whole process of modal
analysis is divided into four phases:

a) The measured system outputs are entered in a cross-correlator to obtain the
FFT of the absolute motion. This work can be automatically finished in the
laser vibrometer MSV-400.

b) Both magnitude and phase components of the complex FFT of a particular
testing point, are then transfered into a form of relative motion refer to the
Eq. 4.12. A FFT spectrum of excited base is required as the reference of base
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motion in this transformation. The base-reference point is usually defined on
the silicon die that is outside the domain of microplate, where the measurement
of base-reference point can be taken at the same time when testing scanning

the microplate.

A signal processing technique is employed to eliminate noise and local dis-
turbances of FRF signals to obtain smoothed FRF signal without losing the

modal information. This will reduce the chance of incorrect curve fitting.

Eventually traditional curve fitting methods are applied to extract modal
parameters. This modal analysis process is based on one-point FRF mea-
surement, the accuracy of modal analysis can be enhanced by performing
modal estimation from the FRF measurements of a set points or the whole

microplate-domain.
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Figure 4.10: Experimental modal analysis procedures

4.4.2 Signal Smoothing and Noise Reduction

An order 3 polynomial SavitzkyGolay smoothing filter is chosen to execute an
initial curve matching and reduce noise of the transformed FRF signals. The FRF

signals of dynamic microplate usually contains very high frequency components

(up to MHz) and has a very large frequency span. The Savitzky-Golay filtering
method is believed to be better to process frequency-based signals than standard

averaging FIR filters, which would suppress some modal information of the FRF

signals. The main advantage of SavitzkyGolay filter is that it is able to preserve

the high-frequency components of the signal. The frame size of this filter is set at
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7. Few measured FRF samples are used to experimentally test the performance
of these parameters of this filter, which are shown in Figure 4.11. Plots (a-
i) and (a-ii) are real and imaginary parts of the relative FRF spectrum of a
300m C-C-C-C microplate in air, respectively. (b-i) and (b-ii) are the same
plots but for the microplate immersed in water. It can be seen that a smooth
curve is produced and noise is also suppressed in each of these fitting results.
In the meanwhile some of noise components and fake resonant peaks are still
remaining after the SavitzkyGolay filtering. Smoothed signal with less noise can
be obtained by setting a higher frame size, but more modal information around
the resonant peak would be lost. In the next step, modal analysis method with
noise immunization capability is required.
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Figure 4.11: Example samples of signal smoothing
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4.4.3 Modal Parameters Estimation

Numerous curve fitting methods have been developed to estimate structural
modal parameters in the frequency domain using FRF measurements, and they
can be categorized as four types: Local SDOF, Local MDOF, Global and PolyReference[131].
In this section SDOF or MDOF methods are introduced to evaluate modal pa-

rameters.

The Local SDOF curve fitting method is only applied on one FRF measurement of

“a selected testing point and individually analyses the parameters of each resonant
mode that dominantly appears in the FRF plot[131]. A process of simply SDOF
fitting employed in this work is illustrated in Figure 4.12, in which the modal
frequency is approximately evaluated as the center frequency (fn) at resonance
peak of imaginary FRF spectrum and the modal damping ratio is estimated by
using the following formulation Eq. 4.17. The signal sample in Figure 412 is
taken from the segment of around the first mode of a 300um C-F-F-F microplate
FRF spectrum. Both the real and imaginary trends in this sample are clear and
easy to identify, as they are close to the theoretical forms.

As mentioned previously, vibration shapes of the testing microplate at each fre-
quency can be automatically reconstructed in the software provided by MSV-400.
The vibration shape at each frequency peak can be used to identify and eliminate
the fake resonance modes, as well as to more accurately localize the resonance
frequencies. Approximate resonant frequencies and damping ratios can be deter-
mined in the simply process of SDOF modal analysis.

f'r_f.{

= (4.17)

C:

The MDOF curve fitting method used in this thesis is called Rational Frac-
tion Polynomials (RFP), which is developed by M. H. Richardson and D. L.
Formenti[75]. Rather than using the partial fraction form of Eq. 4.16 to present
the mathematical model of FRF, a rational fraction form of two polynomials
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Figure 4.12: Simply SDOF modal analysis

as in Eq. 4.18 is developed for the curve fitting and modal parameters extrac-
tion. Similar to the partial fraction form, the denominator polynomial can be
considered as the characteristic function of system. Therefore, fitting the mea-
sured data to this analytical model of Eq. 4.18 and solving the roots of both
the numerator and denominator polynomials, poles and residues of the dynamic
system can be determined[75]. Before applying the RFP method to curve fitting
the experimental FRFs, the number of modes that appear in the frequency band
has to be specified in advance by using the simply SDOF method. A MATLAB
program of RFP method using orthogonal polynomials that is provided by Cris-
tian Gutierrez Acuna', is used to perform the local MDOF curve fitting on the
dynamic experimental data of microplates. Examples in Figure 4.13 and 4.14
demonstrate that acceptable RFP curve fitting results at most resonant modes
were achieved. In both of these two figures, the upper plots are the case testing
in air and the lower plots are in water. As expected, it has lower natural frequen-
cies and higher dampings when microplates vibrating in water than in air. The
obtained modal parameters of these FRF samples are presented in next section

Ihttp:/ /www.mathworks.co.uk/matlabcentral /fileexchange/3805
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4.5 Validation of Theoretical Model

and used to validate the theoretical model.

i ax(jw)*
Hw)y =22 (4.18)
> bi(jw)*

k=0

4.5 Validation of Theoretical Model

The resonant frequencies and mode shapes of the fluid-loaded microplate are
obtained by numerically solving. The densities of air and water are assumed to
be constant, and equal to p, = 1.225kg/m? and p,, = 1000kg/m? respectively.
The material properties of the silicon plate are listed in the Table 4.1.

The numerical results and The experimental results of three different types of
micro scale plates are presented and compared in Tables 4.3, 4.4, 4.5 and 4.6.
Although these three microplates were all designed to be 300um, the length
and width of each microplates are not the designed value due to the nature of
microfabrication process. Most data set of natural frequencies shows a good
agreement between the numerical and experimental results. However there are
few cases of large derivations in the data of natural frequencies of Type C-F-C-F
and Type C-C-C-C plates. One main reason is that the rectangular corners of
microplates along the clamped edges can not exactly satisfy design requirements
due to limitations of the microfabrication processes. On the other hand, the
experimental results and corresponding theoretical predictions on damping ratios
in Table 4.6 are only at the same order of quantities, which hard to be accurately
matched. It is mainly due to that the damping ratios measurement are easily
effected by ambient noise and system errors. Nevertheless both numerical results
and experimental results reveal that high resonant modes of microplate suffer less

damping, which is related to the high Q-factors.
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Figure 4.13: Curve fitting results of microplates (C-F -C-F) experimental data by

using RFP methods (the upper plot is n air and the lower plot is in water)
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Figure 4.14: Curve fitting results of microplates (C-F-F-F) experimental data by

using RFP methods (the upper plot is in air and the lower plot is in water)
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4.5 Validation of Theoretical Model

Table 4.3: Theoretical and experimental results on natural frequencies of a C-F-
C-F microplate(kHz)
In Vacuo In Air In Water
Modes Theo. Expe. Theo. Expe.
1st 436.80 433.3 371.87 130.40 117.2
2nd 537.59  534.5 542.19 22798 278.1
3rd 911.98 909.6 929.06 453.65 405.0

Table 4.4: Theoretical and experimental results on natural frequencies of a C-F-

F-F microplate(kHz)

In Vacuo In Air In Water
Modes Theo. Expe. Theo. Expe.
1st 75.9 754 731 239 250

2nd 195.3 1948 1919 845 -
3rd 475.7 474.1 4644 1999 200.0

Figures 4.15 ~ 4.23 show the raw data of velocity based frequency response
function of a series of microplates in air or in water (the three different types on
200pm, 300p4m, 400pm). The first few modes of in air or in water were labeled in
these plots respectively.

As the whole domain of the microplates have been scanned in each experiment,
the vibration mode shapes of microplates can be constructed. Figure 4.24 shows
the comparison of wet mode shapes (in water) of each type of microplates from
the theoretical analysis and experimental measurement respectively. It can be
seen that the mode shapes derived from the theoretical analysis agree well with
those from the experimental testing.
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4.5 Validation of Theoretical Model

Table 4.5: Theoretical and experimental results on natural frequencies of a C-C-

C-C microplate(kHz)

In Vacuo In Air In Water
Modes Theo. Expe. Theo. Expe.
1st 523.08 519.67 460.0 152.67 153.44
2nd 1065.8 1062.6 1018.1 436.44 445.3
4th 1581.3 1577.8 1542.8 733.78 793.75

Table 4.6: Theoretical and experimental results on damping ratios of the three

types of microplates

C-F-F-F C-F-C-F C-C-C-C
Modes Theo. Expe. Theo. Expe. Theo. Expe.
1st 2.83% 2.13% 2.38% 1.47% 3.21% 1.81%
2nd - - 0.21% 0.27% 0.20% 0.32%
3rd(4th) 0.38% 0.26% 0.17% 0.18% 0.02% 0.08%
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Figure 4.15: Original measured FRFs of a 200um C-F-C-F microplate
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FRF of A 300pm Type-A Microplate In Air
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Figure 4.16: Original measured FRFs of a 300um C-F-C-F microplate
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Figure 4.17: Original measured FRFs of a 400um C-F-C-F microplate
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Figure 4.18
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FRF of A 300um Type-B Microplate In Air
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Figure 4.19: Original measured FRFs of a 300um C-F-F-F microplate
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Figure 4.20
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Figure 4.21: Original measured FRFs of a 200um C-C-C-C microplate
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Figure 4.22: Original measured FRFs of a 300um C-C-C-C microplate
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4.6 Conclusion

4.6 Conclusion

Both theory and apparatus design of the base-excitation experiments on the dy-
namics testing of microplates had been presented in this chapter. The function
of pseudo-random excitation signal and cross-correlation techniques in the modal
testing were studied in the application of microplate testing. Lastly, different
curve fitting approaches were applied to extract modal parameters that include
resonant frequencies, modal damping ratios and modal constants from the mea-

sured FRF spectrums.

Although there are many published works that have successfully used base-
excitation system to study the dynamics of microstructures, most of those ex-
periments were usually implemented in a very ideal environment - vacuo or very
low air pressure. The work presented in this chapter is the first time to apply
base-excitation technique together with a well-designed pseudo-random excita-
tion signal in the dynamic testing of fluid-loaded micro-structures. It proves
again that the base-excitation method is able to stimulate the dynamic informa-
tion of microstructures in a normal damping ambient (in air), or even under a
very high damping circumstance (in water). It also demonstrates the distinct ad-
vantages of using pseudo-random excitation signal in the process of experimental
testing of microstructures.

A series of different types and sizes of microplates were tested, measured and
analysed in this work, both in air and in water. The modal parameters (nat-
ural frequencies, mode shapes and damping ratios) of fluid-loaded microplates
extracted from experimental FRF measurements are compared with the theoreti-
cal results, and they matched very well. Additionally, the obtained experimental
* data provide important information to fully understand the dynamic character-
istics of fluid-load microplates, and are also very useful in the design of related
microsystems. Finally it comes to the conclusion that the proposed experimen-
tal system and methodologies provide a convenient and fast way in the field of

dynamics testing of microstructures.
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Chapter 5

Design and manufacture of a
microplate-based biosensing

system

5.1 Introduction

This chapter is aimed to design a new integrated biosensing platform for discrim-
inating biological cells’ property or behaviour. The developed biosensing system
is able to work independently and can be integrated into a CMOS circuit to
form a lab-on-chip system. The sensing system employs a microplate (thin mem-
brane) with different configurations as the transducer. There are five different
types of platform that have been designed in this chapter, with varying boundary
conditions (clamped, free or point supported), different excitation and sensing lo-
cations. The biosensing platform uses the variation of its dynamic characteristics
as the information source to sense the properties of the surface-contact biological
cells and particles. The sensing system is designed to be capable of self-excitation
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5.2 The Microsystem Design

(actuators) and self-sensing (sensors). The microplate (membrane) in this sys-
tem could be excited by the sinusoidal function or a wide frequency band random
signal (white noise, pseudo random and burst random, etc) due to different im-

plementation purposes.

During design process, Finite-element analysis (FEA) of microsystems is per-
formed to determine the dimensions of microplates, actuators and sensors. Fur-
ther FEM simulations on the whole microsystems are also carried out to examine

the performance of these microsystems before fabrication.

Advanced microfabrication tools and techniques are used for the manufacture of
these microsystems. Most processes are implemented in the Scottish Microelec-
tronics Center. Section 5.4 gives a brief description on these fabrication processes

and the corresponding techniques used in each step.

5.2 The Microsystem Design

Figure 5.1 shows the 3-D schematic view of one of proposed microsystems. The
microplate is a thin membrane which acts as a micro-scale sensing platform. The
microplate is deformable and has dimensions in the range of hundreds of microns
in the X- and Y-directions. The thickness of microplate in the Z-direction is about
3 pm. The microplate illustrated in Figure 5.1 is supported by four hinges, each
hinge is located centrally along a respective one of the four sides of the microplate.
This is one example of the microplate boundary conditions. The microplate may
be supported by means of a variety of different boundary conditions to achieve
different sensitivities and biosensing purposes (e.g. clamped, cantilever, free and
point supported, etc.). Figures 5.2 and 5.3 list all the design sketches on 5 different

types of microsystems fabricated in this work.

Actuators are required to excite the microplate into vibration in a cell culture
medium. The actuators in the microsystem are two PZT (Lead Zirconate Ti-
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5.2 The Microsystem Design

The biosensing surface of
micro plate (membrane)
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Figure 5.1: The schematic 3D drawing of the biosensing platform
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Figure 5.2: Design sketches of four different types of microsystems with PZT
films beside microplate (Type A ~ Type D)
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Figure 5.3: Design sketch of the microsystem with a PZT film is inside of mi-
croplate (Type E)

tanate) thin films that are able to provide powerful excitation force with lim-
ited energy consumption. PZT thin films are deposited beside the region of
microplate, for the purpose of avoiding negative effects (residual stress and initial
strain) of PZT[79]. An exception type illustrated in Figure 5.3 (Type E) is also
proposed for comparison. In addition, four distributive piezoresistive gauges are
placed at selected locations for obtaining whole-domain dynamical information of
the microplate. Locations of piezoresistive sensors are chosen at optimal points,
where maximum modal deflection can be detected and the modal contours can
be avoided. The four sensors are always schemed such that one is placed at the
center and the other three are asymmetrically placed around and have different
distances to center.

The PZT actuators and piezoresistive sensors are of good compatibility with
CMOS circuits and could be easily integrated with other electronic components.
The electronic part of this system (electrode wires, gold pads, and connecting
probes) are sealed with biocompatible material. The whole platform is packaged
using standard DIL (Dual in-line) technique. The signal flow (input and out-
put signals) would be processed either through external instruments or internal
electronic chips.
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5.3 Actuators and Sensors

The surface is in the form of a 100 ~ 300um square microplate and its materials
(silicon, gold wires and PZT etc) are biocompatible. The microsystem is designed
to be able to work in fluid (water) with an acceptable bio-sensitivity under the
high damping conditions. Therefore the platform could be either single-sidely or
double-sidely immersed in cell culture media to maintain the natural cell living

environment.

5.3 Actuators and Sensors

Key components in the integrated microsystem are PZT films and piezoresistive
gauges, which provide the functions of vibration excitation (actuator) and de-
tection (sensor) respectively and can determine the performance of microsystem.
Simulations on PZT films and piezoresistive gauges are separately carried out
using finite-element method and theoretical model. The electromechanical cou-
pling factors and sensitivity obtained from the simulation results are then used
to optimize the design parameters of the PZT films and piezoresistive gauges,
respectively.

5.3.1 PZT thin film

PZT film is one of piezoelectric material that has been widely used for microactua-
tors in MEMS. As PZT has a much larger piezoelectric coefficient (ds3) than other
piezoelectric materials such as aluminum nitride (AIN) or zinc oxide (ZnO)[85],
it is excellent for excitation in microsystems. Usually a PZT thin film actua-
tor has multiple layers sandwiched between two electrode layers on the silicon
membrane. During the process of PZT thin film actuation, the electrical energy
applied is converted into mechanical energy. Therefore the work efficiency of PZT
based actuator can be indicated by the ratio of energy conversion. This ratio is
also called effective electromechanical coupling factor k. In a certain vibrational
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5.3 Actuators and Sensors

mode, the resonance and anti-resonance frequencies of this multi-layer structure
can be used to indicate the electromechanical coupling factor. The definition of
k is given in the following form(88].

k2 fféf‘f (51)

where f, is resonant frequency and f, is anti-resonant frequency.

Obviously, the electromechanical coupling factor k£ will be affected by the actuator
geometry. The aspect ratio between PZT thin film and the silicon substrate needs

to be studied in order to obtain a high electromechanical coupling factor.

The finite element models for the whole microsystem were built in ANSYS to
optimize the design parameters of PZT thin films. To simplify the model and
concentrate on the study of PZT thin films, the top and bottom metal electrode
layers and piezoresistive gauges are ignored and only the microplate part is consid-
ered. The physical/mechanical bara,meters of silicon microplate in the simulation
are the same as those in the theoretical model in chapter 3, while PZT-4 mate-
rial with Z-polarization was selected for the PZT thin film in this ANSYS model
and the corresponding piezoelectric matrix is formed (refer to VM231). ANSYS
APDL source codes for the FEM model of one type microsystem are attached in
appendix C, all other models were also built with a similar way in this work. In
the codes, three different analyses (modal analysis, static deformation analysis

and harmonic motion analysis ) are respectively defined and executed.

Figure 5.4 shows an initial static deformation analysis of the microsystem when
apply an 5V electric field to both of the PZT films. It proves that the side-placed

PZT thin films can produce sufficient deformations on the microplate.

Figure 5.5 shows the frequency response function at the center of micropl.f;\,te
obtained from harmonic analysis on the FEM model. The resonant frequencies
can be clearly identified from this FRF plot, which verifies that the proposed
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5.3 Actuators and Sensors

Figure 5.4: FEM simulation result of static deformation microsystem




5.3 Actuators and Sensors

configuration of excitation and sensing mechanism is capable of capturing the

dynamics of the microsystem.

Figure 5.5: A FRF plot from harmonic analysis on the FEM model of a Type-C

microsystem

The electromechanical coupling factor k can be evaluated from modal analysis in
the FEM models. Resonance frequencies are obtained in the case of short circuit
(all electrode elements are applied to voltage 0), while anti-resonance frequencies
can be solved in open circuit (only ground electrode elements are applied with
voltage 0)[88]. Figure 5.6 shows the electromechanical coupling factor square
(k*) varying with the thickness ratio of PZT thin film and silicon membrane. In
most cases, when the ratio is in the range of 0.3 ~ 0.45 the microsystem can
achieve a maximum of energy conversion efficiency. Figure 5.7 demonstrates the
coupling factor square k* and surface deflection varying with the aspect ratio
of one PZT film and microplate (both are square). When the length of PZT is

half of the silicon microplate, the coupling factor is a maximum. The surface

128




5.3 Actuators and Sensors

deflections at the selected two points (one is the microplate center and the other
is the maximum deflection on the hinge) are continuously increasing with higher
aspect ratio of PZT and microplate in plot (b) of Figure 5.7. For the eventual
design with considering practical fabrication limitations, the thickness of silicon
membrane is selected as 3um and thickness of PZT film is 1um, the size of each
PZT film is designed to be 60um by 60um for a 200um square sensing microplate.
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Figure 5.6: Electromechanical coupling factors square k? of first resonance mode

for each microsystem varying with the thickness ratio of PZT/Si

5.3.2 Piezoresistive gauge

Four piezoresistive sensors are distributively placed on the microplate sensing
surface, two of which are on the x axis and the other two are parallel to the y
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5.3 Actuators and Sensors

axis as shown in left plot of Figure 5.8. The sensitivity of a piezoresistive sensor
(strain gauge) is quantified through its guage factor as given by Eq. 5.2 [132].
The resistance change ratio of piezoresistor is proportional to its local deforma-
tion, therefore its output signal can be used to directly indicate the vibration of
microplate.

Figure 5.8: Four piezoresistive sensors on a microplate surface and Wheatstone-

Bridge with quarter bridge connection

AR
? =Ge x u?(;t‘o,y{]) (52)

where G is the gauge factor, and it is determined by three independent piezore-
sistive coefficients (711, 712 and myy) of the piezoresistive material. For the doped

polysilicon (n-type) that used as piezoresistive sensor in our microsystem, the
gauge factor is around 30[132].

The right plot in Figure 5.8 demonstrates the Wheatstone-Bridge circuit used for
each piezoresistive sensor. The three reference resistors (Ry) are exactly same
with the active sensor and just placed beside the microsystem. Wheatstone-
Bridge is commonly used to improve accuracy of piezoresistive measurement and
compensate the variations induced from environment (temperature). For the con-
figuration with quarter bridge connection, the ratio between the applied voltage
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Vs, and the output voltage Vj, can be roughly determined by in Eq. 5.3 in the
case of AR < R.

Vo 1AR

S e 5.3

V"1 R (5.3)
In practical experiment the output signal V4 is usually very small and need an
amplifier. Assuming a maximum strain at the center of microplate is 100u¢ (refer
to the analysis in above section ), the piezoresistive gauge factor is 30 and applied
voltage is 5V, the calculated output voltage V; is then 3.75mV. Therefore an

200 ~ 500 amplifier is required to the measurement system.

Refer to the FEM analysis results presented in [133](plot a. of Figure 3), a rect-
angular piezoresistive gauge can achieve better sensitivity with smaller thickness
and width. The eventual dimension in each piezoresistive sensor is chosen to be
20pm x 2um x 0.5um.

5.4 Manufacture Processes

All the microsystems are fabricated using 3um-thick SOI wafers. Figure 5.9 illus-
trates the detailed microfabrication processes. The following paragraph presents

a short description on each step.

1. Oxide growth
The first step was to grow 100 nm-thick SiO5 layer on the whole SOI wafer

for the protection of active silicon.

2. Alignment marks etched
Afterwards, some marks were dry etched on the SiO, layer for the purpose
to align the masks used in following fabrication processes. As there are
totally seven masks that will be used in this fabrication, it is necessary to
use one or two cross marks to precisely localize the masks in operation.
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5.4 Manufacture Processes

3. Piezoresistive sensors
A 500 nm-thick poly-silicon layer (piezoresistive sensor layer) was deposited
onto the oxidised device layer of a SOI wafer by low pressure chemical
vapour deposition (PCVD) . This layer was then doped by ion beam im-
plantation using a 50Kev Boron source giving a doping denisty of 1el5 to
enhance the piezoresistive deflection sensitivity. The sensor shapes were

formed by photo-lithography and subsequent reactive ion etching (RIE).

4. PZT films
In the PZT film fabrication, a sandwiched structure of a 100 nm-thick
Pt/Ti bottom electrode, a 1 um-~thick PZT film and a 100 nm-thick Pt top
electrode was deposited on the SOI. The top and bottom electrodes were
deposited by evaporation using e-beam evaporator systems, the deposited
PZT was deposited as a spin on sol-gel which was then annealed to produce
the required PZT film. The top and bottom electrodes was patterned and
etched by ion beam milling. The redundant PZT material was wet etched.

5. Oxidation protection & etch
After that a SiO, layer was coated on the top surface of this processed SOI
wafer for protecting the PZT-electrode stacks. Electric contact windows for
both of the PZT-electrodes and piezoresistive sensors were also created by

using the RIE to remove the coated SiOs.

6. Top electrode layer (Al) deposit & patterning
In this step, an additional 500nm-thick electrode (Aluminum) layer was
deposited and patterned to form the electric pads and wires.

7. Top SOI wafer etch
All the redundant SiO, and other materials were etched and removed from

the top surface of SOI wafer, especially on the defined domain of membrane.

8. Bottom silicon etch & oxide etch
Finally, back side silicon and buried SiO, layer were etched and removed to

form the membrane structure of microplate.
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Figure 5.10 shows the SEM images of the 5 types of fabricated microsystems,
in which the microplates are roughly 100um squares. Microsystems with other
dimensions of microplates (200um, 3001 and 400um) were also manufactured.

5.5 Discussion

A novel bio-sensing microsystem is proposed, designed and fabricated. In the
design of such a microsystem, two key components that are PZT actuators and
piezoresistive gauges are specifically investigated. The electromechanical cou-
pling factor is used to guide the design of PZT actuators. Optimal thickness
ratio between PZT film and silicon substrate for the microsystem is calculated.
The design of piezoresistive gauges is mainly based on the published results of
piezoresistor in the application of MEMS. The amplification requirement of the
Wheatston-Bridge is calculated according to the microplate deflection in the FEM
simulation. 5 types of microsystems with different boundary conditions of mi-
croplates are proposed and manufactured. Those various microsystems will pro-
vide the opportunity to find out an optimal structure (boundary condition) in
the application of biosensing.

Comparing with the traditional microcantilever biosensors, this microplate-based
bio-sensing platform have the following advantages:

a) The microplate is believed to have higher sensitivity (Q-factor) than micro-
cantilever and be more suitable to work under heavy damping circumstance
(natural cells culture media)[99, 117);

b) Distributive sensors are used to this sensing surface, which will then poten-
tially be able to provide more information (such as spatial) of the target

molecules/cells rather than only the mass measurement;

135



5.5 Discussion

(e) Type E

Figure 5.10: SEM images of the fabricated microsystems (Type A ~ Type E)

with 100um square microplate
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¢) This novel microsystem can also work both under dynamic mode and static
mode. In a dynamic mode PZT and piezoresistors can work together as actua-
tors and sensors for the dynamic/vibrational excitation and detection respec-
tively. While for the static mode the piezoresistors can work independently
to sense the static deflections of microplate due to the accumulation of target

molecules.
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Chapter 6

The investigation of microplates

as biosensing platform

6.1 Introduction

In this chapter, biological experiments are implemented by culturing different
types of cells on the microplates. Without specifying any particular bio-application,
the investigation is mainly concentrated on the performance of microplates as a
general biosensing platform. Therefore there is no layer of functionalized material
such as antibody coated on the sensing surface of microplates beforehand, and
testing cells are directly cultured to the microplates. From the engineering point
of view, the ability to sense ultra-small mass change related to cell growth by a
submerged microplate is the primary goal. Furthermore, all the bio-experiments

discussed in this chapter are conducted in true cell culture environment.

Most of the previous experimental works of MEMS-based biosensors are usually
taken very few experimental instances or samples. For the dynamic mode of
mechanical biosensors, inference of cells or other biological particles from these
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samples is commonly based on the natural frequency shifts. However, due to the
individual difference of biological entities few bio-experimental samples are not
capable to provide convincing evidence in biosensing application. Many batches
of bio-experiments on microplates are carried out and repeated in the work of this
chapter. A large number of experimental results, including various distribution of
" cells on microplates and the corresponding dynamic measurements for each set of
experiment, are then measured and recorded. These experimental data provide
a good opportunity to seek and derive the relationship between cell attachment

and the dynamics variation of microplates.

The measured dynamics information of microplates with or without cell adhesion
are recorded in the forms of a series of FRFs over the whole sensing domain.
However, for instance two sets of FRF data, in which one belongs to the mi-
croplate coating with cells and the other is a reference data with empty coating,
are difficult to directly make a comparative analysis. According to the analysis
presented in chapter 4, modal parameters can be extracted from the measured
FRF curves. It has been proved that changes of modal parameters, for example
the natural frequency, are highly related to the information of cells.

Natural frequency shifts at each measured mode are firstly used to perform a pre-
liminary analysis with cells culture density. In this analysis, some cases demon-
strate a linear relationship between frequency change ratio and cells density, but
it is not always the case in other experiments. The reasons behind these opposite
results in the analysis of using the frequency-based method are then discussed.
Even in the situations that linear relationships exist, this frequency method can
only produce very approximate estimates of cells densities. Consequently, more
robust and more accurate methods are desired to infer information on cells. The
last section in this chapter introduces a Back-Propagation Neural Network based

nonlinear system identification method to successfully evaluate cell population.
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6.2 Biological Experiments on Microplates

6.2.1 Bio-Experiments Design

The work of bio-experiments on microplates are divided into two discrete phases.
Initially, cells with selected density are coated onto the surface of the microplate
and then incubated for a prescribed period. Afterwards the dynamics of mi-
croplates attached with a certain amount of cells will be measured by using the
testing system presented in chapter 4.

Before making plans for the completed bio-experiments of microplates, some pre-
liminary trials have to be implemented in advance. A very clean environment
is always critical for cell culture, sterilisation effects on the silicon dies as well
as the base-excitation testing devices as shown in Figure 6.2 are examined. The
silicon dies can easily pass the sterilisation test with just an ethanol wash and
a short period of UV light exposure. However, the testing devices are unable to
maintain a sterilised state for cell culture in dynamic experiments. It means that
cell culture and performing dynamics measurement simultaneously is impossible
and they have to be separated, because cells can’t grow in the environment in-
volving testing devices. The next challenge is to coat cells onto the silicon-surface
of a microplate. Fortunately many biological cells are inherently able to tightly
attach to the bottom surfaces of culture containers, on which the attached cells
will then be divided and propagated.

Two different schemes of bio-experiments as illustrated in Figure 6.2 are designed
in this chapter. In both of them, four different times of cell culture in each batch
of experiment are accomplished and every batch of these experiments is repeated
two or three times for validation. In the first scheme, labeled as BioExperiment-I,
identical microplates are repeatedly used four times for cell culture with progres-
sively increased cell density and a fixed incubation period. The cells in these four
experiments belong to four different generations, which are believed to be in a

close physical properties but might be different in biological activities. On the
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6.2 Biological Experiments on Microplates

Figure 6.1: Cells attachment experiment: left image is only on microplates and

right image is on base-excitation testing devices

other hand, the second type bio-experiment (BioExperiment-II) employs four dif-
ferent microplates but with same size and same boundary conditions to perform
these four times cells culture simultaneously. The initial cells density are all the
same in these four experiment, and multiple extended incubation time are pre-
scribed to each of these microplates. The cells in BioExperiment-II are therefore
of the same generation.

Consequently, both of BioExperiment-I and BioExperiment-II are able to provide
four different situations of cell growth with the corresponding dynamic measure-
ment for a perticular microplate in each batch experiment. For BioExperiment-I,
the dynamic measurements in each experiment of a microplate with different cell
adhesion will be referred to the dynamics of this microplate that has no cells. Be-
cause the microfabrication process results in different practical sizes of microplates
even if they are of a same type (in section 4.2), four different dynamic references
are then required for each of the testing microplate in the BioExperiment-II. In
other words, the experimental factors of uncertainty in BioExperiment-I are sup-
posed to be less than BioExperiment-II. Therefore, the measured data and results

from BioExperiment-I are assigned to the primary analysis in cells discrimination.
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Figure 6.2: Two schemes of Bio-Experiments

6.2.2 Work Flow of Bio-Experiments

Cells are easily affected or contaminated in a natural environment and can only
grow under very severe conditions, such as a sterilized container, specific tem-
perature and humidity. Therefore all the experimental operations related to cell
culture on microplates have to be under a sterile environment and follow certain
regulations. However, the dynamics measurement of a microplate carrying cells
is very difficult to execute in a sterilized environment, unless a clean room is pro-
vided. Sterilization of the microplates is then required before each cell culture.
Figure 6.3 demonstrates the series of operational flows for each bio-experiment.
The cycle of work flows means that each microplate can be repeatedly used in bio-
experiments after Re-Sterilization. The following part gives a detailed description
on some of the work phases.

1. Cleaning and Sterilisation

Few steps were successively applied in order to thoroughly clean and ster-
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Figure 6.3: Bio-Experimental work flow

ilise the silicon dies (with microplates inside). The steps include chemical
solution wash, autoclave and UV light irradiation.

The silicon dies were initially swilled in a flood of 70 ~ 80% ethanol to
remove dust as well as bacteria. Some tightly attached residuum can be
wiped off by using a piece of soft pledget or lens tissue with the mixed
solution of ethanol and acetone. Cleanliness of the top surface of silicon
die, especially around the region of the microplate, is optically inspected.

Afterwards, autoclave was applied to provide a more severe sterilisation for
the silicon dies. A program of heating the stem up to 121°C' and lasting 15
minutes was selected, which is standard for glassware autoclave. However,
early experiments reveals that the top surface of a silicon die could be easily
oxidated under this high temperature, and some impurities of the chamber
could be permanently deposited on the surface in the process of autoclave.
In order to avoid this issue, a water bath environment was provided to these
silicon dies and bottom surfaces were faced upward during the process of
autoclave.

The silicon dies picked out from the autoclave machine have to be dried
and examined again under a microscope. Those intact silicon dies were
then going to be used in pre-sterilised petri dishes(35mm x 10mm), and
washed by 70 ~ 80% ethanol again in order to kill any microbial or bacterial
organisms. This operation should be carried out in a fuming hood to ensure
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6.2 Biological Experiments on Microplates

a bacteria-free environment. Eventually, the petri dishes including the dies
were dried and sterilised using the UV light irradiation for a period of
2 ~ 3hours.

. Cells Maintenance

Two types of cells are chosen for the bio-experiments of the silicon mi-
croplates: an endothelial cell line (EA.hy 926) and a macrophage cell line
(J774.2). The human hybrid EA.hy 926 cell is derived from the fusion of
the human umbilical vein endothelial cells with A549/8 human lung carci-
noma cell line. EA.hy 926 is a permanent human endothelial cell line that
expresses highly differentiated functions characteristic of human vascular
endothelium. The J774.2 cell is derived from a tumour in adult female
BALB/c mouse. Macrophages are phagocytes, acting in both non-specific
defense (and innate immunity) as well as to help initiate specific defense
mechanisms (or adaptive immunity) of vertebrate animals. It is necessary
to keep culturing a certain quantity of live and EA .hy 926 and J774.2 cells
during the period of Bio-Experiments of microplates.

J774.2 cells were maintained in 30ml Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with 2mM glutamine and streptomycin 100ug/mi
and penicillin 100U /ml and 10% heat inactivated foetal bovine serum (FBS).
Cells were cultured in an incubator at 37°C with an atmosphere of 5%
CO2 and 95% air. Cells were grown in a 75¢m? flask and passaged when
reaching ~ 90% confluence. Once cells roughly reached 90% confluence
the media was removed and the cells washed with 5m! phosphate buffered
saline (PBS). Cells were detached from the bottom surface of the flask by
using a cell scraper and the cell clusters were then separated with repeated
pipetting. The PBS was then removed and 5ml fresh media was added to
the cells in a new 75cm? flask, in which the cells grow into next generation.

Human EA.hy 926 endothelial cell lines are also maintained with DMEM,
but supplemented with 10% FBS, streptomycin 100ug/ml and penicillin
100U /ml, and 10m! HAT (100uM hypoxanthine, 0.4uM aminopterin, 16 M
thymidine). The environment for the EA.hy 926 cells growth is exactly the
same as that of the above J774.2 cells. The process of passage of EA.hy 926
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cells is also similar. Cell culture media was removed from the cells and the
cells were then washed with 10ml sterile PBS until the media appears col-
orless. EA.hy 926 cells were then detached by the addition of 2.5ml Trypsin
with a 3 minute standard incubation. Cell clusters were also dispersed for
a fairly uniform distribution by repeated pipetting with 5m! new DEME
media. Afterwards the cell suspension was centrifuged at 1500rpm for 5
minutes and the media was then removed and cells were re-suspended in
10ml fresh media. Finally a prescribed cell density of the mixed media was
made by adding certain mount meida and then went into a brand new flask

for the next generation growth.

. Planting Cells on Microplates

Before planting cells on the microplates, the cell density of suspension dur-
ing the process of passage has to be established in advance. The numbers
of viable cells were estimated by taking 20ul of the cell suspension and
mixing it with a 20ul trypan blue. Cell count was then performed from
this new mixture by using improved Neubauer haemocytometer. Once the
cell density was established a 5mi cell suspension of EA.hy 926 or J774.2
cells at a certain density was made up using the media of these cell lines.
Tables 6.1 and 6.2 list the EA.hy 926 and J774.2 cells density respectively
used in each time during BioExperiment-I. However, in order to increase
the chances of planting the cells to the 100um x 100pm microplates that
have the smallest sensing area, double cell density was usually used rather
than that shown in Tables 6.1 and 6.2.

Eventually the above cells were poured into the fully sterilised Petri dishes
with silicon dies (microplates) for culturing the cells on the microplates.
The cells were then incubated in an incubator at 37°C with an atmosphere
of 5% CO2 and 95% air for at least 24 hours to'ensure cell attachment to

the sensing surface.

Preliminary experiments as shown in Figure 6.4 and 6.5 have proved that
both of EA.hy 926 cells and Macrophages are able to tightly stick onto the
surfaces of silicon dies as well as the domain of microplates after a period
of incubation. Comparing with the attachment of cells, the physiology of
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Table 6.1: EA.hy 926 Cell Suspension Density Used in Microplates at Different

Time of Bio-Experiment

" Times Volume-of Cell Suspension  Volume of Media  Final Cell Density

Added (pul) with Added (pl) used on Microplates
Density of 5 x 10°/pul for EA.hy926 Cells (per ul)
1%t 100 1900 25 x 103
ond 200 1800 50 x 10°
3rd 400 1600 100 x 10?
4th 800 1200 200 x 10°

Table 6.2: J774.2 Cell Suspension Density Used in Microplates at Different Time

of Bio-Experiment
Times Volume of Cell Suspension Volume of Media  Final Cell Density

Added (pul) with Added (ul) used on Microplates
Density of 1 x 108/l for J774.2 Cells (per ul)
15t 100 1900 5x 104
ond 200 1800 10 x 10*
3rd 400 1600 20 x 104
4th 800 1200 40 x 10*
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6.2 Biological Experiments on Microplates

endothelial cells ensures a spreading of the cell on a surface to form a mono-
layer and consequently cover a lager surface area per cell as compared to
the macrophage cell line. The endothelial cells therefore form more attach-
ment sites on the surface of the microplates and are then believed to induce
more stress onto the sensing surface than macrophage cells. Consequently,
the attachment of endothelial cells leads to more changes of dynamics of

microplate than that of macrophage cells.

Figure 6.4: Endothelial cells coating on the surface of a microplate
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Table 6.3: Measured Density and Viscosity of the DEME media
Density  Viscosity
pslkg/m®)  u(cP)
993.86 0.8247

4. Cells Image Scan
In order to record the cell growth situation, images of the surfaces of mi-
croplates coated with cells are captured by using a confocal laser scan mi-
croscopy (LSM) - Zeiss Axioplane 210. From these LSM images, the infor-
mation of cell number and distribution can be easily obtained. It is required
to take silicon dies out of the cell culture media and perform the image scan
in a dry environment for the purpose of obtainning clear images. The dy-
namic measurement must be implemented immediately after finishing the
image scan, as the cells could start to perish after a period of 2 ~ 3 hours

in a dry environment.

5. Dynamics Measurement
The dynamics of microplates with cells adhered can be measured through
the base-excitation apparatus, in which the fluid of cells culture media
(DMEM) is used instead. Afterwards, the cells are removed and the dynam-
ics of microplate measured again. The FRF data for each specific microplate
with cells and without cells are compared to infer the information of cells,
which is recorded in the LSM scanned images.

From the dynamic standpoint of view the fluid-structure interaction, density
and viscosity of fluid are the primary factors that can affect the dynamic
behaviours of the vibrating structure. The density and viscosity of DMEM
media around 20°C is measured, which are listed in the following Table. It
can be seen that the measured properties of DMEM media are very close

to water.

6. Cell Removal
The process of removing the attached cells on the surface of silicon die is

similar to the normal procedures of cleaning.
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6.3 Preliminary Identification on Cell Density

6.3.1 Changes of Dynamic Information Related to Cells

Distribution

In chapter 3, it is theoretically demonstrated that additional mass loading on a
submerged microplate can generate distinct changes of its dynamic characteris-
tics, such as resonant frequencies or mode shapes. Therefore, it is concluded that
the features of attached cells on a microplate can be inferred from the changes of
dynamic information. The reconstruction of an exact image of cell distribution
from dynamic information of the microplate is highly challenging. This work
attempts to find the inherent links between variations of dynamic information
and cell distribution on a microplate sensing surface. Different densities of cell

distribution are identified by using various indices of microplate dynamics.

Figures 6.6 and 6.7 present the frequency response function of a microplate with
cells attaching and without cells attaching on it, respectively. The FRF plots
in Figure 6.6 are on a 100um type C-F-F-F microplate with endothelial cells,
and Figure 6.7 is for a 300um type C-C-C-C microplate with macrophage cells.
The first and forth measured mode shapes are compared between the cases of
cells-loading and without cells. It can be seen that first mode shapes are almost
identical, while the forth mode shapes have distinct changes. This shows that
changes of mode shapes of microplates due to cell adhesion is more obvious at
high resonant modes. It is in agreement with the theoretical results presented in
Figures 3.2~3.4 in chapter 3.

Generally, additional mass loading of attached cells on the surface of microplates
results in both resonant frequency shifts and resonance amplitude variations,
which are indicated in the FRF plots. Resonant frequencies are the inherent
property of the dynamic system and can be used for straightforward comparison.
However, the amplitude of FRFs can be largely affected by the pre-tightening
loads on the silicon die or external disturbances at each experiment. As the first
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mode shapes remain almost constant, the amplitudes of each FRF can be self-
normalized with respect to the amplitude of the first resonant mode. Then the
changes of the resonant amplitudes of two self-normalized FRFs can be compared
and evaluated on higher modes. Figure 6.6 shows much more FRF changes than
the case presented in Figure 6.7. It implies that the first type microplate has
higher sensitivity in detection of attached cells than the second type and en-
dothelial cells induced more stresses to the bio-sensing surface than macrophage
cells. It is also noticed that nonlinearity occurs on the dynamics of microplates
due to the cell attachment in Figure 6.6. In fact most experimental results of
FRF's microplates involved cell attachment are suffered with nonlinearities to a

certain degree.

6.3.2 Resonant Frequency Based Indices

Most dominant change of the dynamics of microplates induced by cells loading
is the resonant frequencies shift. The following two resonant frequency based
indices (Eq. 6.2) are utilized to perform a preliminary analysis on the experi-
mental results. The index of FDR, (Frequency Difference Ratio) is evaluated as
the normalized resonant frequency difference between the cell-loaded and barren
(reference) microplate at each corresponding measured resonant mode. The index
of AFDR is the average of all measured FDR,,. Considering the submerged mi-
croplate as a general oscillation system, resonant frequency can be approximately
determinated only by its stiffness and mass, the first equation in 6.1. If one as-
sumes the system stiffness is a constant, the mass change ratio is proportional
with frequency change ratio as shown in second equation of 6.1. It is therefore
believed that indices F DR,, and AF DR are able to roughly reflect the cells den-
sity. However in realistic situations cell attachment would also affect the stiffness
of sensing microplate more or less, especially the endothelial cells. This leads to
complication and makes FDR, and AF DR unable to indicate the cells density
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Figure 6.6: Frequency response functions comparison of a C-F-F-F Microplate
with endothelial cells attaching and without cells attaching (Normalized to first

resonant mode)
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in some cases.
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Figures 6.8~6.18 are the analytic results of using FDR, and AFDR on twelve
different batches of bio-experiments. Results in Figures 6.8~6.14 are from the bio-
experiments on endothelial cells and Figures 6.15~6.16 are of macrophage cells
experiments. In all of these figures the left two plots are the evaluated results
of FDR,, and AFDR respectively at each time experiment in one batch, while
the right four or three images illustrate the corresponding different cell coating
situations, in which cell densities are gradually increased. Four or three measured
resonant modes are chosen to calculate the indices and these modes are usually
the dominant resonances in the measured FRFs. The cells distribution images
are all double enlarged and their contrast are also enhanced for clarity. The first
ten figures of experimental results present fairly linear relationships between cell
density and the indices of FDR,, and AFDR, particularly AFDR. On the other
hand, the results in Figure 6.17 and Figure. 6.18 demonstrate cases when F DR,
and AF DR failed to indicate cells density.

After detailed examination of these experimental results, we can conclude the
following on the microplates when their resonant frequencies are used as indices
in the detection of cells distribution.

1. First of all, some trends of the index FDR, at one or two modes are not
the same with the increase of cell quantity. This phenomenon is quite
different from the bio-experimental results of microcantilevers, where the
FDR at the fundamental mode always has a linearly relationship with
cell number[105, 111]. The potential reasons for this phenomenon are:
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(a)Microplates usually have much larger sensing area and carry much more
cells than microcantilever in the bio-experiments. Apart from mass change,
the accumulation of cells may also result in change of structural stiffness.
In such cases, the linear relationship of the FDR will be violated. (b)The
bio-experiments presented in this work for microplates are involved a very
practical environment, for example the dynamics of microplates are all mea-
sured in a truly cell culture media. (c)Nonlinearity of the dynamics of sub-
merged microplates with randomly distributed cells are also existed in most

experimental measurements.

. For most types of microplates index AF DR is capable of giving an approx-
imate prediction of cell density. However the values of AF DR for different
microplates don’t always appear in a same range (same type in a close
range). This is due to the fact that the sensitivities of index AFDR are
very different on different types of microplates, as shown in these figures
“the 200um C-F-C-F and 100pum C-F-F-F microplates have much higher
sensitivity than the 200um and 300um C-C-C-C microplates. Comparing
the results in Figure 6.8 and Figure 6.15, it can be noticed that endothe-
lial cells generate higher values of AF DR than macrophage cells, that is
corresponding to more changes of dynamic information. Consequently self-
calibration for each distinct microplate and cells will be necessary when ap-
plying AF DR index to indicate cells density in microplate-based biosensing

systems.
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Figure 6.8: Results of a batch BioExperiment-I on a C-F-C-F 200um square
microplate with endothelial cells and corresponding trends of frequency based

indices (experiment dates: Feb. 4th 2009 - Feb. 12th 2009)
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Figure 6.9: Results of a batch BioExperiment-1 on a C-F-C-F 200um square
microplate with endothelial cells and corresponding trends of frequency based

indices (experiment dates: Apr. 2nd 2009 - Apr. 10th 2009)
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Figure 6.11: Results of a batch BioExperiment-I on a C-F-F-F 100pum square
microplate with endothelial cells and corresponding trends of frequency based

indices (experiment dates: Apr. 2nd 2009 - Apr. 10th 2009)
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microplate with endothelial cells and corresponding trends of frequency based

indices (experiment dates: Apr. 2nd 2009 - Apr. 10th 2009)
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Figure 6.14: Results of a batch BioExperiment-I on a C-C-C-C 300um square
microplate with endothelial cells and corresponding trends of frequency based

indices (experiment dates: May 20th 2009 - May 30th 2009)
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Figure 6.15: Results of a batch BioExperiment-I on a C-F-C-F 200um square
microplate with macrophage cells and corresponding trends of frequency based

indices (experiment dates: May 20th 2009 - May 30th 2009)
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Figure 6.16: Results of a batch BioExperiment-1 on a C-C-C-C 300um square
microplate with macrophage cells and corresponding trends of frequency based

indices (experiment dates: June 11th 2009 - May 22th 2009)
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Figure 6.17: Results of a batch BioExperiment-II on four C-F-C-F 300um square
microplates with endothelial cells and corresponding trends of frequency based

indices (experiment dates: Oct. 4th 2008 - Oct. 12th 2008)
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Figure 6.18: Results of a batch BioExperiment-I on a C-F-F-F 200um square
microplate with endothelial cells and corresponding trends of frequency based

indices (experiment dates: Feb. 4th 2009 - Feb. 12th 2009)
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6.4 Neural Network Method

On a whole, resonant frequency based indices either FDR, or AFDR are only
able to predict the cell density with very limited accuracy. This is mainly due
to the complication and nonlinearities of a microplate sensing system. Other
algorithms are desired to perform more accurate and reliable identification on cell
distribution from the measured dynamics data. In this section, a simple attempt
that an artificial neural network technique to build the relationship between the
sensory data and cell distribution is carried out.

6.4.1 Quantization of Cell Population

In the above experimental results, LSM images were used to intuitively presented
the cell population in the microplate sensing domain. However a quantitative
index is also necessary to indicate the number of cells for a more precise analysis.
This is especially true for endothelial cells, the number of which are very hard to
count. A simple image processing method was carried out on each LSM image to
convert it into a binary image by using the MATLAB Image Processing Toolbox.
Initially the LSM image is loaded and the most clear layer is selected for the
following processes, as the LSM image taken under the reflection mode usually
contains three layers. Then the background image of this LSM image is created
by using morphological opening technique. Afterwards the background image
is subtracted from the original image and the image contrast is enhanced, to
highlight the domain of cells occupied. Finally the corresponding binary image is
created, in which the background (microplate sensing area) is black and the parts
of implanted cells are white. Therefore the cell population on the sensing domain
can be approximately evaluated by the white area ratio in this binary image. This
ratio is called cell density ratio (CDR) in this thesis. Figure 6.19 demonstrates
the results of this evaluation processes on four different LSM images, which are
obtained in a same batch of bio-experiments. It can be seen that the white
region of each binary image'ca.n roughly indicate the shapes of endothelial cell
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distribution, although some local errors exist in the binary images. The evaluated

ratios of white region are also listed in the bottom of Figure 6.19.

However, these evaluated CDRs are not suitable to be used directly in the analysis
due to the following points: (1)Apart from each cell bulge, the endothelial cells
also generate a thin film over all of the culture surface. Each evaluated CDR is
raised up 10% ~ 15% to consider this thin film loading effects, for distinguishing
from the case of no cells loading; (2) For the case that cells covered nearly the
whole sensing domain, i.e. the 4th one in Figure 6.19), the predicted value of CDR
is usually much lower than the practical situation. Therefore the predicted value
needs to be increased in such cases. The modified CDRs for each experimental

sample are then used as the target values in neural network applications.

10.46%

Figure 6.19: Quantization of cells population based on a simple image process

technique

6.4.2 FRF Data Normalization and Order-Reduction

Although the experimental settings are the same for all the dynamic experiment,

the amplitudes of every FRF measurements are varied due to different experimen-
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tal environment and external disturbances. Consequently it is better to normalize
the measured FRFs and scale them into a same level for comparison and analysis.
On the other hand, there are multiple FRF datasets (50 ~ 100 for one microplate)
in each dynamics measurement and each FRF dataset contains 6400 frequency
spectral lines. Obviously such FRF datasets (50 ~ 100 x 6400) are too large to
directly apply into the neural network. Therefore the dimension of dataset has
to be reduced before the application of neural network.

Only four FRF sets are chosen for each microplate to apply into the neural net-
work. The Locations of selected sample points of FRF are in the same configu-

ration as illustrated in Figure 5.8.

For the FRF normalization, it should be firstly converted into the relative motion
according to Eq. 4.12. Then each FRF spectrum is normalized with respect to
the amplitude of its own first resonant mode. The reason that choosing the first
resonant mode as the reference is based on the theoretical analysis results in
chapter 3, in which the mass loading has the slightest effects on the first resonant
mode of a rectangular plate. Figure 6.20 illustrates the normalization results on
a batch of FRFs. In plot (b) the amplitudes of all FRFs are roughly scaled into

a very close range.

For the dimensionality reduction of FRF datasets, Karhunen-Loeve (K-L) decom- -
position method is used to extract the principal components on a multiple-FRF
dataset. The Karhunen-Loeve (K-L) decomposition is a useful method to cre-
ate low dimensional, reduced-order models of dynamical systems[134]. Assuming
there are M FRFs with N frequency spectral lines in each dynamics measurement
of a microplate, this dataset forms a M x N matrix [H(w)]mxn. The process
of principal components extraction of the matrix [H(w)] using Karhunen-Loeve
(K-L) method has the following steps:

1. First, a correlation matrix [Claxa is defined based on the FRF matrix
[H(w)]mxn-
[Cluxm = [H(W)]MxN[H(w)me (6.3)
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(b)

Figure 6.20: FRF normalization on a batch of experimental results
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2. The principal components are then obtained from calculating the eigenval-

ues and corresponding eigenvectors of matrix [C].
[C1[X] = A[X] (64)

3. Finally, the M extracted eigenvalues are examined and the first few largest
eigenvalues are selected. The eigenvectors associated with these largest
eigenvalues are then considered to be the principal components and be able

to represent the most significant information of the original FRF dataset.

6.4.3 Dataset of Samples Creation

The analytical results of resonant frequency based indices in section 6.3.2 il-
lustrates that different types of microplates have very different sensitivities and
behaviours in the detections of different cells. All the samples for the application
of neural network herein are selected from the sensing results of 200um C-F-C-F
microplate on endothelial cell detection. Figures 6.8 and 6.9 have demonstrated 4
different samples of Bio-experiment I respectively. Another 4 different eﬁperimen-
tal samples obtained in one batch of Bio-experiment II are employed to extend
the dataset. FRF's of 4 different microplates without any cell loading are provided
in the dataset as the reference cases. Two extra samples are also selected, one is
from the batch of Bio-experiment I and the other from Bio-experiment II. Con-
sequently a total of 18 different samples are created for training and validation
of the neural network. The eigenvectors related to the largest eigenvalue of FRF
datasets of each sample are extracted as the neural network input and the CDR
of every samples are calculated as the the neural network output. Table 6.4 lists
the data of all the samples used in neural network.
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Table 6.4: Extracted data of 18 samples used in neural network
No. PCA1 PCA2 PCA3 PCA4 AFDR CDR
0.6330 0.4871 0.5124 0.3153 0 0
0.5356 0.5047 0.5373 0.4118 0.0702 0.1784
0.6278 0.4798 0.5288 0.3099 0.2461 0.2514
0.6635 0.4472 0.4350 0.4130 0.3475 0.8066
0.56966 0.4022 0.5686 0.3987 0 0
0.4796 0.5804 0.5597 0.3461 0.1610 0.2546
0.5576 0.4222 0.5437 0.4640 0.2180 0.4527
0.4573 0.7273 0.3829 0.3396 0.3175 0.5469
0.5216 0.7969 0.2957 0.0737 0.4212 0.9879
0.6623 0.3719 0.5341 0.3712 0 0
0.5210 0.5194 0.6053 0.3040 0.1082 0.1752
0.3935 0.6100 0.5029 0.4692 0.1151 0.2535
0.6015 0.3586 0.4932 0.5161 0.1674 0.5583
0.6383 0.6356 0.2818 0.3304 0.1813 0.4531
0.6588 0.4494 0.5148 0.3147 0 0
0.6551 0.4584 0.4686 0.3757 0.0334 0.1093
0.5415 0.5578 0.5159 0.3597 0.2198 0.2726
0.6050 0.3408 0.6455 0.3182 0.3020 0.4185

© o0 =~ O O s W N

T e T T O N
o0 ~J] O D b= W N = O
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6.4.4 Network Design and Training

The back-propagation (BP) neural network was selected to perform the task.
Figure 6.21 illustrates the concept of using BP neural network to predict cell
distribution. Besides the principal components extracted from FRF datasets, the
value of index AF DR of each sample provide an additional input to the neural
network. As the index of AF DR has been proved to be closely related to cell
distribution in section 6.3.2, it can help the neural network to achieve a fast
convergence and good prediction. Among the 18 samples listed in Table 6.4, the
first 14 samples are used for training the neural network and the left 4 samples
are used for validation.

4 Sensory FRFs Input Layer Hidden Layer Output Layer

\|f
&

K-L
decomposition

—

Vector of 1" Principal Compencnt

BP Network
Figure 6.21: Schematic diagram of BP network used for cells identification

As the number of samples are very limited, it is sensible to design and use a
simple neural network rather than a complicated one. The BP neural network
used here is designed to have only one hidden layer with few neurons. Several
trails with different number of hidden layer neurons were carried out to test the
differences on the normalized system error. It is shown in Table 6.5 that the
hidden layer with 5 neurons produces the best performance.
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The training process of BP network is trying to setup an approximate function
(nonlinear regression) between the inputs and output targets, through iteratively
adjusting the weights and biases of the network to meet a setting goal (mean
square error). The training parameters can affect the network convergence speed
as well as the final predication accuracy. Bad parameters may lead to slow train-
ing process or over-fitting results. Several tests were carried out to determinate
the suitable training parameters. The final training parameters used in this work
are selected as: moment rate is 0.9, learning rate is 0.1, the max error is 0.001

and the max number of iteration is 3000.
Table 6.5: Normalized system error of the training process of BP network varies
with the number of hidden layer neurons

Noo. 3 4 5 6 7 8
Err(%) 014 017 0.10 011 013 0.12

6.4.5 Prediction Results

Table 6.6 demonstrates the prediction results of CDR on samples No.15 ~ No.18
obtained from the trained result of BP network using sample No.1 ~ No.14. The
prediction results are well matched to the CDR values calculated from corre-
sponding LSM images.

Table 6.6: Prediction results on CDR
Sample No. Calculated CDR (%) Predicted CDR (%) Error (%)

15 0 4.40 -

16 10.93 9.98 8.71
17 27.26 29.64 8.72
18 41.85 38.04 9.09
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6.4.6 Discussion

This section demonstrates that a simple BP neural network can successfully pre-
dict the cell density from the extracted dynamic data of sensing microplate. The
work presented in this section is a preliminary attempt, as the number of samples
used in the neural network is limited and all the sensory data in dataset are of
the same type microplate. Nevertheless it proves that the distributive sensing
approach and artificial neural netwrok can be used to analyse the dynamics of

the information output of the contacting biological cells.

6.5 Conclusion

The biosensing performances of microplates are examined in this chapter. A
large number of bio-experiments using a series of different types of microplates
have been implemented. First, the traditional method of evaluating the shifts of
resonant frequencies due to the cell adhesion is employed to analyse experimental
results. Although it is hard to achieve a fairly linear analytic conclusion using
the resonant frequency based indices, it still demonstrates that microplates have

attractive biosensing ability even under high-damping liquid conditions.

A novel methodology using the artificial neural network with a distributed sens-
ing scheme on the microplate sensing surface is proposed to estimate the density
of cell distribution. Karhunen-Loeve (K-L) decomposition method is successfully
used to reduce the dimension of measured FRF datasets. Optimal parameters
of a BP neural network are obtained based on a set of selected experimental
samples. The final predicted results reveal that this methodology, using a neural-
network based algorithm to perform the feature identification of biological parti-
cles from distributive sensory measurement, has great potential in the applications

of biosensors.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions and Innovations of the Research

This thesis first investigated the dynamical characteristics of the fluid-loaded
rectangular microplate, both theoretically and experimentally. The theoretical
simulation results and experimental results on a series of microplates with differ-
ent boundary conditions and dimensions are presented, compared and discussed.
Then the impacts of fluid-loading on a microplate, such as added mass, acoustic
and viscous damping, are fully studied. The dynamic investigation can be used
to guide the design of biosensing systems. Then a series of novel biosensing inte-
grated systems based on using the microplate as a sensing surface were designed,
simulated and fabricated. A large number of bio-experiments were carried out
to test the biosensing performances on different types of microplate. Several ap-
proaches including the neural network method are proposed and studied for the

identification of cells coated on the microplates.

In chapter 3, two theoretical models were developed to study the dynamics of
the fluid-loaded rectangular plates. The first one is based on Rayleigh-Ritz en-
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ergy method. A very accurate solution for this model is achieved through using
Pierce’s integral technique and a series of closed-form solutions of the cross mode
shape functions, which are demonstrated in appendix B. This first model is suit-
able to predict the natural frequencies and mode shapes of a series of rectangular
plates, but it ignores all the system dampings. The second model is then designed
to analyse the dampings of plates induced by the fluid-loading. The second theo-
retical model is built upon Guz’s formulations for the problems of hydroelasticity
for compressible viscous fluids. Both the acoustic damping and viscous damp-
ing are considered in this model. Numerical results for the second model are
approximately solved using a Monte Carlo integration technique. It was proved
by the numerical results that the acoustic damping of submerged microplates is
much larger than the viscous damping, which can be ignored as long as the fluid
viscosity is less than 10cP.

Generally speaking, dynamic behaviour of fluid-structure interaction is a very
fundamental and important engineering problem. However, most theories on this
topic developed in previous research are limited to specific conditions. Therefore
most engineering solutions for the question of fluid-structure interaction are ob-
tained by using computation methods, such as FEM, BEM (Boundary Element
Method) and SEA (Static Energy Analysis) etc. The two theoretical models de-
veloped in this thesis provide fairly complete analytical solutions for the linear
dynamics analysis of fluid-loaded rectangular plates. The two models are able to
be applied to most types of rectangular plates as long as their mode shape func-
tions can be mathematically described. Furthermore the two theoretical models
were applied to analyse the dynamics of microscale rectangular plates under fluid-
loading. The numerical results on a series of different types of microplates form
the fundamental knowledge on the research topic of this thesis, which is biosensing
of cell properties.

Chapter 4 presents the work of experimental study of the dynamics of fluid-
loaded microplates. The base-excitation method is the key technique used in
this chapter. Theoretical analysis shows that relative motion of the microplates
(or other testing structures) need to be evaluated for the modal analysis in the
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base-excitation testing system. A dynamic testing system for the fluid-loaded
microplates using a simple base-excitation apparatus was then realized. Pseudo-
random signals also demonstrated their advantages in the modal testing of this
work. A process of signal smoothing and modal parameter extraction using the
RFP curve fitting method was applied to a series of microplates, with or without
fluid-loading. The experimental results were then used to validate the theoretical
models of chapter 3. The base-excitation approach is widely used to test the
dynamics of microstructures; this work is the first investigation of this technique

on dynamics testing in liquid environment.

The idea of the microsystems proposed in chapter 5 is novel compared with other
biosensing systems. First of all the microplate is used as the biosensing platform
in this microsystem. It has proved that microplates have attractive advantages for
biosensing compared to microcantilevers. Furthermore, it would be able to work
under high damping conditions. Additionally, the microsystems designed in this
chapter have two innovations; one is the distributive sensors on the microplate
sensing surface and the other is the working-mode of the microsystem. The layout
of distributive sensors potentially enables the application of more sophisticated
algorithms to extract information of cells density and distribution from a few
sensing points. As the PZT actuator and piezoresistive sensors in the microsystem
can work independently, the microsystem can work either under static mode or

under dynamic mode.

The work employing the microplate as a biosensing platform is presented in chap-
ter 6. The analytical results (based on resonant frequency indices) from a large
number of bio-experiments reveal that different types of microplates have differ-
ent biosensing performances. Moreover different microplates within the same type
(size, boundary conditions) also show variations in the application of biosensing.
This is mainly due to the problem of fabrication precision of microplates, which
is discussed in chapter 4. The neural network method was employed to perform
a more accurate identification for the cell distribution. In the application of the

neural network method, the variations of same type microplates were overcome
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since the neural network ultilises the inherant nonlinear coupling of sensing points

to identify cell properties.

In a summary, the most important contributions we achieved in this research are

listed as follow:

1. In the two theoretical models, some difficulties of obtaining the analyti-
cal solutions of the fluid-loaded rectangular plates are first solved in this
area. Those approaches would also benefit to the research of general fluid-

structure interaction problems.

2. Although there are many published works on the dynamics of plate, few
of them provided experimental results. Our work contributes lots of ex-
perimental data on the dynamics of microscale plate without or with fluid-
loading. Those experimental results are very useful to the further research
of the dynamics of plates.

3. Lastly we proposed a new methodology that using a neural-network based
algorithm to perform the features identification of biological particles from a
distributive sensory measurement. This brand new concept is never appear

in biosensing field before.

7.2 Limitations

An interesting phenomenon that the vibration of a fluid-loaded plate possesses
multiple resonance with a same or very close mode shape, is observed both from
the experimental results of this research in chapter 4 (ie. the plots (b) in Figures
4.15, 4.18 and 4.21) and the theoretical predictions from other researchers[135].
Obviously this multiple resonance phenomenon is generated by the non-linear
dynamics of fluid-plate interaction, which can not be analysed using the proposed
theoretical models. Only linear dynamics of microplate and fluid are considered
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in the derivations of the the two proposed theoretical models proposed in chapter
3.

For the experimental testing system, it mainly suffers the issues of limited band
of excitation frequency, external disturbances, difficulty of calibration and the
inherent system error. The excitation frequency band is 2MHz due to the lim-
itation of actuator used in this experimental system. Due to the shortages of
base-excitation apparatus, the dynamic testing process is very readily affected by
external disturbances. Strong noises and feak resonant peaks in the original FRF
measurements have been shown in Figure 4.15 ~ 4.23. This adds the difficulties
for the post-process of measured FRFs. The amplitudes of the excited vibration
of microplates depend on not only the excitation force (applied voltage) from
actuator, but also the mass of the base. As the amount of water in the petri dish
(base) varies in every experiment, the amplitudes of the measured FRFs are very
difficult to calibrate.

The fabrication is challenging for the microsystem designed in chapter 5, espe-
cially on the process of PZT thin film deposition. Due to the complication of
fabrication processes as illustrated in Figure 5.9, the cost of making such mi-
crosystems inevitably becomes high. Therefore it will limit the applications of
this proposed microsystem.

Although a large number of batches of bio-experiments have been implemented
in this work, the samples on each type of microplate are insufficient, especially for
the application of neural network. The microplates are prone to be damaged in
the cleaning process in the bio-experiment. The algorithms for cell identification
from the sensory data of microplates were not adequately developed. Current
methods (FDR, AF DR and the BP neural network) can only estimate the vaules
of cells density (population or mass). The prediction of shapes and positions
(distribution) of cells will need further research.
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7.3 Potential Applications

One of the most distinct achievement in this research is the designed and fabri-
cated novel biosensing system. Although only two different type of biological cells
are tested in the bio-experiments, this kind of biosensing platform is expected to
have a wide range of applications (such as the protein and DNA detection) in the
field of biosensing, as long as an appropriate identification method or algorithm

is developed for the specific application.

In addition, the theoretical models built in this thesis are also very useful in the
application of solving the general engineering problems of fluid-structure inter-
actions. These theoretical models can help to form the added mass matrix and
related damping matrix in the process of finite element analysis for complicated

structures.

The dynamic testing system designed for the microplates can also be applied
to test other types of microstructures. If the excitation frequency band can be
raised, its applications can be then expanded into much a microstructures or even

nanostructures.

7.4 Suggested Further Work

Both the dynamics testing and bio-experiments based on the microplates have
been implemented in this thesis. This is only an important preliminary work on
this research. In order to create a device (sensor) using the microplate as the
transducer and apply it in practical biosensing tasks, the following work needs to
be finished.

1. Many more bio-experiments on the selected types of microplates need to be
completed to create a sufficient large database for the development the cell

identification approach.
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2. For specific biological applications, suitable, robust, reliable and accurate

algorithms (neural networks) must be developed.

3. A lab-on-chip integrated system needs to be created, in which the biological
cells can be cultured and detected and the corresponding information can
be measured, recorded and analysed without the need for external measure-

ment equipment.
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Appendix A

Quasi-Monte Carlo Integration

Monte Carlo algorithms, also called computational random simulating method,
is widely used to solve physical and mathematical problems(Wikipedia). It also
provides a fast convergence way to integrate multi-dimensional function with a
relative precise. Consider a n-dimensional Integrand function f which is defined
in the domain V, randomly peaking N points {£1,&2,- -+ ,€n} in this domain,
then Monte Carlo integration method can be expressed in the following way[136],

/Vde ~V . %; f(&) (A.1)

Quasi-Monte Carlo(QMC) method employs deterministic sequence rather than
random points in the evaluation procedures, in this way we can obtain a faster
convergence rate of numerical integration and lower the corresponding expected
errors. The most important characteristic of these deterministic sequences is
that they are uniformly distributed in the integration domain V, called low dis-
crepancy sequences[137]. There exists many ways to construct low discrepancy

sequences, such as Faure, Halton, Hammersley, Sobol, Niederreiter and van der
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Corput etc(Wikipedia). Here in this report, Halson sequences were used. The
following MATLAB codes exhibit the algorithms of generating Halson sequences.

function HaltonSeq = HaltonS(N, base)
HaltonSeq = zeros(N,1);
for i=1:1:N

HaltonSeq(i) = GenOneEleForHaltonSeq(i,base);

end

function outside = GenOneEleForHaltonSeq(index, base)

locallndex = index;

remainder = 0; I

outside = 0;

fraction = 1 / base;

while locallndex > O
remainder = mod(localIndex,base);
outside = outside + fraction*remainder;
locallndex = fix(localIndex/base);
fraction = fraction/base;

end

end
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Closed-Form Solutions on the

Integrations

The functions of FX (u,m,q) or FY (v,n,r) in chapter 3 can be expanded into
the following form by substituting the mode shape functions. The case of only
clamped boundary conditions is demonstrated, the other boundary conditions are

similar.

FX(‘U,,m,Q')=I1+12+I3+"'+I14+f15+113 (Bl)

where

1 1-u
I = / cosh(enz) cosh(eq(z — u))dr + / cosh(enz) cosh(e,(z + u))dx
u 0

L= f cos(€nx) cosh(e,(z — u))dz + /ﬂ h cos(€nz) cosh(e,(z + u))dz
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1-u

Iy = —ap, [/: sinh(e,z) cosh(e,(z — u))dz +/0 sinh(e,,z) cosh(e,(z + u))d:c]

L =a [/: sin(en) cosh(e,(z — w))dz + /Ol—u sin(enz) cosh(eqg(z + u))d:n]

;|

Is = /: cosh(€,z) cos(ey(z — u))dz + ]; ' cosh(enx) cos(eg(z + u))dx

1-u

Iy = fl cos(emz) cos(e,(z — u))dz + f cos(€emz) cos(eq(z + u))dx

0

1-u

I =0 U: sinh(enz) cos(e,(z — u))dz + /0 sinh (e, z) cos(eq(z + 'u.))d:z:]

1-u

A [ /ﬂ " il oontea—)d /0 e cile e u))dzz:]

1-u

p— [ [u " cosh(ena) sinh(e,(z — w))dz + fo sioalil st BT s - u))d:r]

1-u

Lo = qq [ ]; ' cos(€enz) sinh(e,(z — u))dz + fo cos(epz) sinh(e,(z + u))da:]

1-u

I11 = amoy [j: sinh (e, z) sinh(e,(z — u))dz + ](; sinh(e,z) sinh(e,(z + u))da:]
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L1 = —amoy [ /u 1 sin(&y,x) sinh(e,(z — u))de + -/0 o sin(en,) sinh(e,(z + u))dm]
Lis =0y [/ﬂl cosh (e, ) sin(e,(z — u))dz + /‘;1—1& cosh(en) sin(eq(z + u))da:]
Ly = —qy [[: cos(emz) sin(eq(z — w))dz + j:_u cos(emx) sin(ey(z + u))da:]

Lis = —amay [/ﬂl sinh(e,z) sin(ey(z — u))dz + /Dl—u sinh(enz) sin(eg(z + u))da:]

1-u

Iig = amoy [ fu 1 sin(en, ) sin(e,(z — u))dz + /(; sin(enz) sin(eq(z + u))d:c]

All of these above separated integrations can be solved as in the following closed

forms.

1( 1
L=5 [2_(625,,._(,,,“ — 2wt _ gomt f gmmt) 4 (e~ - en¥)(1—w) | (m =)

1 ecm+eq —€qU g tm—¢g +equ efm —€gtequ _ 6:,,.%—5,I —€qlU
L== E - -
4\ ente Em + € €m — €g €m — €q

efmt —ptmi etmu —pfmt
- + - +
Emt€ €Ente€ Em—€ €n—¢
Em+Eg—EmU —€m—€gtemi Em—€qgteEmu __pfmteg—Emu
€ e [ [
€m + €4 €m 1+ € €m — €q €m — €g
efat __pfqlt efat — et

- + - )(m#Q)

€Emt+€ Ent€ En—€ Em—E

186



1

L= —m e9™4% (¢, 8in(€y) + €4 €08(€m)) — (€m Sin(€mn) + €4 cOS(Emu))+

e~cateat (¢, sin(€y) — €4C08(€m)) — (€m Sin(Emu) — €4 cOS(Enu))+
€% (€ SIN(Em (1 — 1)) + €4 C08(€m (1 — 1)) — e eg+

e (em sin(en(1 — 1)) — €gcos(em(l — u))) — e7“(—¢g)

(47 —
13 —~ m e2em—emu +e 2emtemu eemu) (m = q)
de,,

1
13 = —la

o (6em+eq—£.,u + e—cm—eq+equ _ eemu + e—emu+
4 €m+ €

eem+eq—emu L e—em—eq+£mu —— eeq-u + e—-c.,u)
]

(eem—eq+equ A e‘—fm+fq_€qu + efmt _|_e—emu+
€m — €g

etm—fq‘l'fmu _|_ e—Em+Eq_'€mu —l— eeu + e—fqﬂ) (m 7£ q)

AT
T2+ )

€7 (4, 0S(€m) — €9 5iN(Em)) — (€m COS(€mu) — €qSin(emu))+
e~co+a% (¢, cos(€m) + €45in(€m)) — (€m COS(Emu) + €4 sin(emu))+

€% (€ co8(€m (1 — u)) — €g8in(em(l — u))) — e en+

€% (€m cos(em(1 — u)) — ggsin(em(l — u))) — e“e"“em]
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| S
TG

e (g 8in(6g(1 — 1)) + €m cos(eg(1 — ))) — e em+
™" (&g 8in(eg(1 — u)) — €m cos(eg(1 — w))) + €™ emt

e"“(l_u)(eq sin(eg) + €m co8(¢g)) — (€g5in(equ) + €m cos(equ))+

e m(-%) (¢, sin(e,) — €m cos(€q)) — (€gSin(equ) — €m cos(equ))

Is = sin(2em — €mt)/(26m) + c08(€mu) — sin(enu)/(2em) — cos(enu)u (m = q)

1 1 . . . .
Ie= 5 [Em e (sin(em + €5 — €qu) — sin(enu) + sin(em + € — Enu) — sin(egu))+
q

— (sin(em — €4 + €qu) — sin(emn) + sin(em — € — €mu) + Sin(equ))] (m # q)

Iy=——0m
RPICEN")

e (g 8in(eg(1 — w)) + € cO8(€q(1 — u))) — €™ em—
e~ (egsin(eg(1 — u)) — €m cos(eg(1 — u))) + e " e+
e (%) (¢_sin(e,) + € cos(eq)) — (€ 8in(€qu) + €m cos(equ))—

e~m1=%) (¢, sin(e,) — €m cos(€g)) — (€gSin(equ) — €m cos(equ))]

o = 2 (cos(2e — ) — cos(ema)) (m =9
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1
8= 5 [e . (cos(€m + €5 — €qu) — cos(€mt) + cos(€m + €5 — emt) — cos(equ))+
m q

— (cos(em — € + €qu) — cos(€enu) + coS(€m — €g — Enlt) — cos(equ))] (m#q)

€m — €g

Ig — _Eﬂ i(ehm—fmﬂ + e—2Em+Emu_
4 €y

et e 4 (1= )1+ (e = )] (m=g)

Ig - _F& 1 (ecm+eq—equ + e—cm—cq+equ — efmY | pTEmY
4 |em + €4
eem+cq—emu + e—-em—cq+emu R +e—cqﬁ)_
1

( eem—cq+equ + e-£m+fq_€qu + efmt + e tmt +

6£m-£q—emu +e—£m+eq+em1&+e£q‘u +e—equ)] (m% q)

_ Qq
- 2(e2, + eg)

(e7a% — 1) (€, Sin(€m) + €4 C08(€m)) — (€774 — 1) (e sin(em) — €4 c08(€m))+

Il(]

€ (€ Sin(€m (1 — u)) + € co8(em (1 — u))) — e Meg—

e e sin(em (1 — u)) — €5 co8(em(l —u))) — e_“*“eq]

1 —E. - €
111 _ a,;aq ?(ezem—emu _ e—zsm+emu —emt 4 e mu) _ (e em¥ 4 o m“)(l _ u)] (m — q)
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1 - e -
Ill — (e£m+€q €U __ o~€m €qtequ __ efmt +e emu_l_
4 |em+eq

e£m+cq—£mu. _ e—em—6q+emu _ Bequ + e—equ)_i_

1

(_eem—eq-l-.squ + e—£m+£q—equ + efml _ o EmU __

€m — €q

efm—eq —Emi + e—£m+cq+cmu + e—cqu _ eequ)] (m 79 q)

Ly = —ﬁ [e“*“ﬁ"“(em c08(€m) — € 8in(€m)) — (€m cOS(emu) — €;sin(enu))—

e~ % (e, co8(€m) + €4 8in(€m)) — (€m COS(emu) + €4 Sin(emu))—
€“(€m co8(€m(1 — u)) — €8in(€n(1 — u))) — e e —

€5 (€ €OS(€m (1 — u)) + €5 8in(em(1 — u))) — e “ep,

—ﬁieg) e“™ (€gco8(€q(1 — u)) — €m sin(eg(1 — u))) — e™ e+

Ii3 =
= g cos(eq(1 — ) + e in(eq(1 — 1)) — e“¥er+
em(1=%) (¢, cos(€,) — €m sin(eg)) — (€4 cO8(€qu) — €m sin(equ))+
=<1 ¢, cos(ey) — e sinley) — (6 08(eqt) — ém sin(equ)

Oq

Ly = 2. (cos(2€m — €mu) — cos(enu)) (m =q)

- (coS(em + €4 — €q1t) — COS(€mt) + COS(Em + € — Emt) — cOS(€gu))+
m T €

P (— cos(€m — € + €qu) + cos(emu) — cos(€m — €4 — €mu) + cos(equ))| (M # q)
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Iis = —5—=<
TGRS

™ (€4c08(€eq(1 — 1)) — €m sin(eg(1 — u))) — ™" eg—
e (€4 co8(€q(1 — w)) + €m sin(eg(1 — u))) + €™ €4+

em1=)(e, cos(cq) — €m sin(cg)) — (cq CO8(eqt) — €m5in(eg)u) —

e~ (=% (¢ cos(e,) + €m sin(eg)) + (€4 co8(€qt) + €m sin(equ))]

Iig = —aumay l%(sin(%m — €mu) — sin(enu)) — (1 —u) cos(emu)] (m = q)

L = _“rr;aq L (sin(em + €4 — €qu) — sin(emu) + sin(ey, + €4 — €nu) — sin(equ)+
m T €q
1 . . .
P (= sin(em — €4 + €qu) + sin(epu) — sin(e, — € — €nu) — sm(equ))] (m #q)
m — €
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Appendix C

FEM Simulation Model for
Designed Microsystems(Ansys
APDL Codes)

! PZT actuated Microsystem Simulation, Zhangming Wu 2008 @ ASTON
! Reference: 1. VM231 (ANSYS Tutorial)
! 2. Francois Pigache, 2007,

! Tutorial for ANSYS piezoelectric simulation

1 sk kot o sk ok ak ok sk kskokskoksk ks skotofkoR ko ks o ko ok ok ok Kok ok
! Initilize Ansys

1 stk ko ko ok ook sk sk sk ok Kok ok R sk sk ksk ok ok ook ok ok

Finish

/clear ! Clear previous work

/CWD, C:\PZTSimulation\Microsystem_2 ! Set work directory

192



/FILNAME, pzt_mems2_analysis, 1

/prep7
lemunit ,mks ldefine units
csys,0 ldefine coordinate system

1 s ok she s ok sfe ke ke e e e e o ok ok ok ok ook ke s ko e ke sk sk ok sk ok ok ok ok ok skok s kool ok

! Geometrical Parameters of Microsystem

1 e sk sk sk sk s ke ke sk ok ke ok ok sk sk ok ok ok ok ok ok o ok sk sk ok ok sk ok ok sk sk ok ok ok sk ok ok skok ok ok ok sk

uMKSV system, um, uN, uC

len_plate = 200
width_plate = 200
th_plate =5
len_pzt = 60
width_pzt = 60
th_pzt =1
len_hinge = 18

width_hinge = 12

y_offsetl = 0!(-width_plate + width_hinge)/2
y_offset2 = y_offsetl

y_offset3 = 0! (width_plate - width_hinge)/2
y_offsetd = y_offset3d

1 sk kst ks skotoRoRokoR o ko Kk Kk sk sl ks R sk Rk ok sk ok ok sk ok ok ok
| Design Microsytem Structures

1 skoksk ok ok ok sk okok ok kR sk ok ksl ok sk ks ok ksl Rk KRR Rk KKK Rk K oK
Isilicon plate with pzt base

1Al

K, 1, len_plate/2, width_plate/2

K, 2, -len_plate/2, width_plate/2

K, 3, -len_plate/2, -width_plate/2

K, 4, len_plate/2, -width_plate/2

A
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1A2
K, 5, len_plate/2+len_hinge, width_hinge/2+y_offsetl

K, 6, len_plate/2, width_hinge/2+y_offsetl

K, 7, len_plate/2, -width_hinge/2+y_offsetl

K, 8, len_plate/2+len_hinge, -width_hinge/2+y_offsetl
A,8,7,6,5

1A3

K, 9, len_plate/2+len_hinge+len_pzt, width_pzt/2+y_offset2
K, 10, len_plate/2+len_hinge, width_pzt/2+y_offset2
K, 11, len_plate/2+len_hinge, -width_pzt/2+y_offset2
K, 12, len_plate/2+len_hinge+len_pzt, -width_pzt/2+y_offset2
A,12,11,10,9
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K, 13, -len_plate/2, width_hinge/2+y_offset3

K, 14, -(len_plate/2+len_hinge), width_hinge/2+y_offset3
K, 15, -(len_plate/2+len_hinge), -width_hinge/2+y_offset3

K, 16, -len_plate/2, -width_hinge/2+y_offset3
A,16,15,14,13

1AS

K, 17, -(len_plate/2+len_hinge), width_pzt/2+y_offset4

K, 18, -(len_plate/2+len_hinge+len_pzt), width_pzt/2+y_offsetd
K, 19, -(len_plate/2+len_hinge+len_pzt), -width_pzt/2+y_offset4
K, 20, -(len_plate/2+len_hinge), -width_pzt/2+y_offset4d
A,20,19,18,17
VOFFST, 1, th_plate ! left hand, nagetive normal
VOFFST, 2, th_plate
VOFFST, 3, th_plate
VOFFST, 4, th_plate
VOFFST, 5, th_plate
I'pzt actuators
BLC4, len_plate/2+len_hinge,

(~width_pzt/2+y_offset2), len_pzt, width_pzt, th_pzt
BLC4, -(len_plate/2+len_hinge+len_pzt),
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(-width_pzt/2+y_offset4), len_pzt, width_pzt, th_pzt

lglue together
VSEL, ALL
VGLUE, ALL

1 ke sk ke sk ke ke ok ke ok ok ok ok ok ok ok ok ok
| Element Types
sk s skook ok sk ok okok ok ok o o ok ok
ET, 1, s0lid98, 0
KEYOPT, 1, 3, 1
ET, 2, solid92
ALLSEL

! for pzt actuator

I for silicon plate

1 sfe s she ke ok ke ok Sk ok ok 3 ok ok ok ok sk ok sk sk ofe ok ke s sk e e sk ke ok e ke ek ok ok kol ok skok ok ok

| Materials Properties of PZT

1 sk ok ok s o sfe e 3 ke b ke ok b ke ok sk ok ke ok ok ook ok sk ok s sk ok s ke sk ke el ke ok ke ok sk ok ok sk ok ok

/com PZT4 Z-polarized
/com Stiffness Matrix
TB, ANEL, 1
TBDATA, 1, 13.2E4, 7.1E4, 7.3E4
TBDATA, 7, 13.2E4, 7.3E4
TBDATA, 12, 11.5E4

TBDATA, 16, 3.0E4

TBDATA, 19, 2.6E4

TBDATA, 21, 2.6E4

/com Piezo Matrix

TB,PIEZ,1

TBDATA, 16, 10.5
TBDATA, 14, 10.5
TBDATA, 3, -4.1
TBDATA, 6, -4.1
TBDATA, 9, 14.1

/com Dielectric Matrix
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! DEFINE STRUCTURAL TABLE
! INPUT [C] MATRIX

! DEFINE PIEZ. TABLE

| E61 PIEZOELECTRIC CONSTANT
! E52 PIEZOELECTRIC CONSTANT
! E13 PIEZOELECTRIC CONSTANT
| E23 PIEZOELECTRIC CONSTANT
! E33 PIEZOELECTRIC CONSTANT



MP, PERX, 1, 804.6 | PERMITTIVITY (X DIRECTION)
MP, PERY, 1, 804.6 | PERMITTIVITY (Y DIRECTION)
MP, PERZ, 1, 659.7 ! PERMITTIVITY (Z DIRECTION)
/com Density

MP, DENS, 1 , 7500e-18

1 skesk sk sk sk sk sk ke ke o s ok ook sk ke ok ok sk ok ok ok ok ok sk ok ok ok sk ke sk sk ok sk sk sk sk ok sk ok k ok

! Materials Properties of Silicon

1 sfe e sk sk sk sk sk sfe ke ke ke ke sk ok ok ok ke ok s ok sk 3 ok e e s e ke sk sk koK ok koo ok sk ok sk okok sk ok ok

density_si = 2330e-18
young_si = 1.5eb
poisson_si = 0.17

MP, DENS, 2, density_si
MP, EX, 2, young_si
MP, NUXY, 2, poisson_si

1 sk sk sk ke sk e s ok sk ok ok ke ok sk ok ok s sese ok ke sk sk sk sk ke s sk s kkok skok sk ok sk

| ET & Material Affiliation

1 ke sk ke sk ke 3k st ok ok ok ok ok sk e ok ok ok ok s ok ke ok e ok ek e e foofeoke sk ok ko ko ok skok

VSEL, ALL

VSEL, S, LOC, Z, 0, th_pzt !pzt actuators

VATT, 1, , 1 'pzt ET & Material 1

VSEL, ALL

VSEL, S, LOC, Z, -th_plate, O Isilicon plate

VATT, 2, , 1 . Isilicon ET & Material 2
ALLSEL

1 sk sk sk ke sk s ok o sk sk o sk ok ok ok e se s ok ek s sk ok ok sk ok sk s e sk sk ok ok ok sk ok

! MESHING

1 she sk ke sk ke ok ok ok ok ke o ok s ke ok ok ok ok sk o e e sk e ok e e e ke sfeofe o ok o ok e ok ook kol ok ok

ESIZE, 10
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VMESH, ALL
ALLSEL
FINISH

1 stk kskok ok sk sk ok ks kol s kol skkskok sk sk kR skokok sk sk Rk ok ok ok
! Apply Loads on Electrodes
1 okeokokskok ok sk sk ookok s ok ko sk koo sk kol ok ok ok ook ok ok ook ok sk ok
/PREP7
NSEL, S, LOC, Z, O
NSEL, R, LOC, X,
len_plate/2+len_hinge, len_plate/2+len_hinge+len_pzt
NSEL, R, LOC, Y,
-width_pzt/2+y_offset2, width_pzt/2+y_offset2
CP, 1, VOLT, ALL |
*GET, n_ground1l, NODE, O, NUM, MIN
ALLSEL

NSEL, S, LOC, Z, 0
NSEL, R, LOC, X,
-(len_plate/2+len_hinge+len_pzt), -(len_plate/2+len_hinge)
NSEL, R, LOC, Y,
-width_pzt/2+y_offset4, width_pzt/2+y_offsetd
CP, 1, VOLT, ALL
*GET, n_ground2, NODE, O, NUM, MIN
ALLSEL
NSEL, S, LOC, Z, th_pzt
NSEL, R, LOC, X,
len_plate/2+len_hinge, len_plate/2+len_hinge+len_pzt
NSEL, R, LOC, Y,
-width_pzt/2+y_offset2, width_pzt/2+y_offset2
CP, 3, VOLT, ALL
*GET, n_supplyl, NODE, O, NUM, MIN
ALLSEL
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NSEL, S, LOC, Z, th_pzt
NSEL, R, LOC, X,
-(len_plate/2+len_hinge+len_pzt), -(len_plate/2+len_hinge)
NSEL, R, LOC, Y,
-width_pzt/2+y_offset4, width_pzt/2+y_offset4d
CP, 3, VOLT, ALL
*GET, n_supply2, NODE, O, NUM, MIN
ALLSEL

D, n_groundl, VOLT, O ! Apply O voltage to the ground electrode
D, n_ground2, VOLT, O

D, n_supplyl, VOLT, 5 ! Apply 5 voltage to top electrode

D, n_supply2, VOLT, 5

ALLSEL

Dok kokokskok okt skokorok ko kol kol ok ok ok Kok o ok ok
! Boundary Conditions

1 skskok koo sk sk ok sk ook sk ok sk Kok sk ook kool ok sk ko sk sk ko
NSEL, S, LOC, Y, width_plate/2

NSEL, R, LOC, X, -len_plate/2, len_plate/2
D,ALL,UX,,,,,UY,UZ

NSEL, S, LOC, Y, -width_plate/2
NSEL, R, LOC, X, -len_plate/2, len_plate/2
D,ALL,UX,,,,,UY,UZ

NSEL, S, LOC, X, len_plate/2+len_hinge+len_pzt
INSEL, R, LOC, Y, -width_pzt/2, width_pzt/2
D,ALL,UX,,,,,UY,UZ

NSEL, S, LOC, X, -(len_plate/2+len_hinge+len_pzt)

INSEL, R, LOC, Y, -width_pzt/2, width_pzt/2
D,ALL,UX,,,,,UY,UZ
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ALLSEL
FINISH

I skeok ook ok ok ok o sk s o e ok sk ok ok o ok s ok ok ook o ok ok s o ok sk ok
! Static Analysis

1 sokakokok ok ok ok ook sk o ko oKk kol o sokskokskok ok ok ok sk sk Kok koK kK
/SOLU

ANTYPE, STATIC

SOLVE

FINISH

1 stk ki sk ok ook ok sk ook k sk ek sk sk skokor stk ok sk sk ok ke ok ok ok
| Modal Analysis

1 stk s ksl ok sk skok sk ok ok sk ok sk sk s kil sk o ok akok sk o sk s ok sk ok ok
1/SOLU

'ANTYPE, MODAL

IMODOPT, LANB, 3,10000,20000000, ,ON

Isolve

Ifinish

1/POST1

'SET,LIST

IFINISH

Dtk ko ok ok sk kiR sorRoR ROk Kok Kk ko kRl kR Rk ok ok
! Harmonic Analysis

1 skeok sk sk sk ok sk ok sk ok sk o ok ok ok ok sk ok skok ok sk sk ks sk Rk ks ok kK
!/SOLU

IANTYPE, HARMIC

'HARFRQ, 500,30000,

INSUBST, 200

ISOLVE

'FINISH
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Appendix D

Simulation Source Codes

All the simulation routines developed and all original and analytic resutls in this
thesis are provided in a Disk. The following table lists the catalogues and gives

a short description on the contents.

Table D.1: Simulation Source Codes Lists
MicroClamped This folder contains the m files (MATLAB)

developed on Rayleigh-Ritz theoretical model

that can generate simulation results on natural
frequencies and mode shapes of C-C-C-C microplates.
Outputs of functions in U_mnqr.m, Tp_mnqr.m

and Tf.mngr.m files are three key coefficients

of Rayleigh-Ritz model.
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MicroCantilever

For C-F-F-F microplates on Rayleigh-Ritz model.

Micro2C2F

For C-F-C-F microplates on Rayleigh-Ritz model.

DampingClamped

This folder contains the routines (MATLAB)

that can generate the FRFs for C-C-C-C microplates
under different damping conditions.

Functions in Imngr.m, Imnqr0l.m and Imnqr00.m
files are the fluid-loading impedances of

microplate for the cases of assuming fluid to be
viscous compressible, inviscous compressible and

inviscous incompressible, respectively.

DampingCantilever

For damping analysis of C-F-F-F microplates.

Damping2C2F

For damping analysis of C-F-C-F microplates.

DynamicExp

The programme provided in this folder are used to
process the experimental data of microplates.

MPE.m is the function designed to estimate modal
parameters from the original data.

This folder also contains all the dynamic experimental

results for different types and sizes of microplates.

Bioplates

The routines in this folder are used to analyse
the bio-experimental results. Both the original
data and processed results from the bio-experiments

were also copied into this folder.

NNplates

This folder contains the source codes of a BP
neural network used in this thesis, as well as

the data process mehods (normalization and PCA).
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