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Summary

This thesis is concerned with the basic building blocks of human visual perception, which are inves-
tigated through psychophysical experiments coupled with computational modelling of the proposed
underlying processes.

Influential models of edge detection have generally supposed that an edge is detected at peaks in the Ist
derivative of the luminance profile, or at zero-crossings in the 2nd derivative. However, when presented
with blurred triangle-wave images, observers consistently marked edges not at these locations, but at
peaks in the 3rd derivative. This new phenomenon, termed ‘Mach edges’ persisted when a luminance
ramp was added to the blurred triangle-wave. Modelling of these Mach edge detection data required
the addition of a physiologically plausible filter, prior to the 3rd derivative computation. A viable
alternative model was examined, and rejected on the basis of data obtained with short-duration, high
spatial-frequency stimuli.

Detection and feature-marking methods were used to examine the perception of Mach bands in an
image-set that spanned a range of Mach band detectabilities. A scale-space model that computed edge
and bar features in parallel provided a better fit to the data than 4 competing models that combined
information across scale in a different manner, or computed edge or bar features at a single scale.

The perception of luminance bars was examined in 2 experiments. Data for one image-set suggested a
simple rule for perception of a small Gaussian bar on a larger inverted Gaussian bar background.

In previous research, discriminability (d’) has typically been reported to be a power function of contrast,
where the exponent (p) is 2 to 3. However, using bar, grating, and Gaussian edge stimuli, with several
methodologies, values of p were obtained that ranged from 1 to 1.7 across 6 experiments, This novel
finding was explained by appealing to low stimulus uncertainty, or a near-linear transducer.
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Chapter 1

Introduction to the thesis and to

feature detection

1.1 Thesis overview

This thesis addresses the issue of how edges and bars are processed, early in the human