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Thesis Summary ;;}

This thesis is a study of low-dimensional visualisation methods for data visualisation
under uncertainty of the input data. It focuses on the two main feed-forward neu-
ral network algorithms which are NeuroScale and Generative Topographic Mapping
(GTM) by trying to make both algorithms able to accommodate the uncertainty.

The two models are shown not to work well under high levels of noise within the

data and need to be modified. The modification of both models, NeuroScale and GTM,

are verified by using synthetic data to show their ability to accommodate the noise.

The thesis is interested in the controversy surrounding the non-uniqueness of pre-
dictive gene lists (PGL) of predicting prognosis outcome of breast cancer patients as
available in DNA microarray experiments. Many of these studies have ignored the
uncertainty issue resulting in random correlations of sparse model selection in high
dimensional spaces. The visualisation techniques are used to confirm that the patients .
involved in such medical studies are intrinsically unclassifiable on the basis of provided
PGL evidence. This additional category of ‘unclassifiable’ should be accommodated
within medical decision support systems if serious errors and unnecessary adjuvant
therapy are to be avoided.
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Chapter 1

Introduction

1.1 Context

This thesis is about finding the best way to represent data in a simpler form for
interpretation by aiming to preserve the ‘topology’ of the data. The representation

of data in visual projections in a form which allows people to understand the data

casier [84] can be referred to as “visualisation”. One single data sample can consist of
many entities describing that particular sample, leading to the ‘hiwgh*dimensional nature
of data. It is often difficult to investigate all the entities to understand the structure
of the data in the original space. ‘Data visualisation’ is an essential tool for aiding
the users to understand and making further data analysis and evaluation. For human
visual perception, the projection from the high dimensional space which holds all the
data entities to the reduced dimensional form facilitates the understanding of the data
and assists the interpretation by using the brain’s ability to a,ssimilaté patterns in data.A
Clearly we can not perceive visualised images in more than three dimensions and can
understand better two-dimensional representations [59].

Figure 1.1 shows the process of data visualisation from the given information. The
first stage is where mathematical models are required to project or transform from
more complicated data to a data format which is easier to represent using image rep-
resentation techniques in the second stage. Many people refer to data visualisation as
just one of the two stages of the whole process of data visualisation. To differentiate

between two stages, it is common to refer to this first stage as ‘data projection’ [84] or

13
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‘embedding techniques’ [36]. This thesis will mainly foeus"-’d?n;"thi first
visualisation. The transformed features obtained from this stagef:\"caﬁ; hen e used
easily with any graphic representation techniques in the second st‘agé‘, - .

Many existing techniques ignore the fact that real—ﬁbrld data is usually noisy and
imprecise. Moreover, when mathematical model involved in the data modeling also
increase the uncertainty. This type of uncertainty is called model uncertainty which is
also very important. Ignoring this information can alter the final projective represen-
tation and lead to incorrect understanding and assumptions of the data. This thesis
uses examples from systems biology in which uncertainty is quite common but very
sensitive. Projecting the data down to low dimensions without caution can aflect the
results and lead to incorrect interpretation, which is very dangerous especially if it is
part of a life-critical application [69, 95]. The thesis uses the representations of genomic
microarray data as a real-world example because of its high levels of noise in the data,
its very high dimensional nature, and the recent importance of DNA microarrays for

the extraction of biomarkers for cancer, for example [90].

Data Visualisation

High dimensional

data D> Data modeling | b

Graphic
Representation

Figure 1.1: The process of data visualisation.

1.1.1 Topographic Visualisation

Tipping [84] mentioned that in this information age where large amounts of information
can be easily obtained, using all the available information makes understanding and
interpretation difficult. Topographic visualisation is a data projection method which
yields the preservation of the structure of the data between the data space and the re-
duced dimensional space. A topographic projection preserves the geometric structures
of the data by mainly retaining the relative similarities between data in the high and

low dimensional spaces. Therefore, the visualised image of the data in the two or three

14
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dimengional representation is very helpful. Alternatively, t’h‘e’tép‘iograa:
only consider the maintenance of neighbourhood relationships asbie‘iin‘g. po ant

that points that originally lie close together are likewise preserved .in the :map,.and;this ﬁ.
is referred to as topological ordering. ‘

Nevertheless, information obtained from real-world data is usually noisy and will
eventually distort the resulting projections of the data that hence do not represent
the true structure of the data. Even though many studies have been focusing on
the noise in supervised classification and regression, not enough attention has been
paid to uncertainty in unsupervised methods, such as data visualisation [15, 77, 78].
The thesis will investigate this problem motivated by a real-world example in medical
systems biology where data have high levels of uncertainty but high accuracy of data

interpretation is also crucial.

1.1.2 Systems Biology

Systems biology is the study of functional properties of living organisms by looking at a
big system of many interactions between small constituents. It is a recent field in molec- '
ular biology which traditionally looks at only a single property bf a constituént without
understanding the interactions between them. Studying.a single molecular property
independently does not lead to understanding about the true living organisms.since
within their biological systems, there are interactions and dynamics involved which
creates dependency between constituents. The developments of molecular biology in-
clude producing new high throughput techniques and analysis of functional behaviour
of the interactions of multiple constituents within cells {10]. Therefore mechanisms for
helping scientists to observe and understand the system are required. The technology
exists to allow scientists to observe everything that happens in the system, nevertheless,
in order to completely understand a system the theoretical background and thorough
observations are also required {10]. Systems biology helps interpret the biological de-
velopment by not only understanding the interactions and dynamics in the system but
also by trying to build the mathematical model to ‘fit’ the observed data and with the
aim eventually to predict future outcomes. Clearly, large systems such as in systems

biology, require a comprehensive study for qualitative and accurate interpretation of
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systems. Reliable visualisation tools help the biologists to 'unders.ta;n‘df he
and make correct decisions. One large problem in systems biology is hmcraarmy; tec
nology which has a wide range of benefits in both medical and biologi’cal domains which

helps identify genetic structure and pathways of diseases [10].

1.1.3 Gene Expression

Gene expression is the process by which a gene transcribes from DNA into RNA. The
transcription process is a process of making RNA from one strand of the DNA molecule.
Then RNA gained from the transcription leaves the nucleus and is translated to the
required protein [48]. Any gene which is active in this way at a particular time is said
to be expressed. It is clear that gene expression plays the key role in regulating all the
functions. This gene expression information is important because the role of a gene is
determined by the protein it produces. The improper expression of genes can be de-
tected compared to the standard one. Furthermore, different environmental conditions
can cause different expressions of genes. This adaptability to the environment of genes
can cause disease if genes express in an improper manner. It is important to know
in which environment genes create unwanted behaviour or, pefh&ps, in which environ-
ment genes behave in a proper manner in order to develop the biological environment
for each gene. The technology that can investigate multiple genes simultaneously is

microarray technology, which is described in the next section.

1.1.4 Microarray Technology

The microarray is a powerful recent technology [99, 39] that allows the investigation
of the ‘gene expression’ level of thousands of genes at the same time. The reason for
its popularity is that microarrays changed the way researchers work. Instead of work-
ing on a gene-by-gene basis, scientists can study large numbers of genes at once [48].
Therefore, improper gene expression, which can cause genetic health problems can be
identified more easily. One of the most common diseases that uses this technology
is cancer [96]. Nevertheless, with microarray technology, rather than giving better
accuracy in the data, much higher error rates are produced than traditional meth-

ods [10]. Most publications on microarray experiments do not discuss the implications
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of uncertainty in the data and consequences for the reéuﬁl-_ts.

The microarray is physically a slide where genes under investié;at_bﬂ are spotted
a defined position of a regular grid [13, 39, 64]. The microarray slide can be made by .
nylon meshes, silicon, or nitrocellulose. There are many applications of microarrays
but one common way that will also be used in this thesis is to use the relative intensities
of the cell in two different conditions which are the sample cells, such as cancer, and
normal cells in order to investigate genes that have different expressions compared
to the other conditions. The procedure of extracting the intensitieé from two cells is
described below.

The two cells need to be identified differently. RNA is extracted from the two
previously prepared cells and labelled with two different fluorescent dyes. The red-
fluorescent dye or Cy5 is for the diseased cell and the green-fluorescent dye or Cy3
is for the normal or control cell. Both of them are combined to a pre-arranged DNA
microarray [49]. If the sequence is complementary to the DNA spot on the array,
known as a probe, those RNAs will hybridise to that spot. The RNA which can find
the complementary pair is measured by being excited by two different types of laser for -
different dyes, red for Cy5 and green for Cy3. The intensity oi the emitted light from
each dye is measured by a detector which records its intens‘i/t/y.;The scanned data are
then transformed into two digital images of the array. The éolours which are used to
identify in this image are similar to the previous laser coldurs, red for Cy5 and green
for Cy3. This final image can used as an RGB image to represent the levels of intensity
of the spots. Figure 1.2 summarises all the microarray manufacturing processes as
described above.

In the real-world of the microarray experiments, errors can be produced at any
stage of the experiments. For example, the intensity of light can be recorded from a
different spot during the scanning process. Moreover, the intensity in some spots may
be high because of extra light contributing to the background of noise of the scanned
array image. In addition the miéroarray chips always contain distorted spots or spots
with irregular shapes similar to Figure 1.3. Some spots combine together to make
a single spot and the spots do not have definite, fixed or expected positions. As a

result, processing the images to get a correct estimation of the true expression values
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Final RGB

Figure 1.2: The manufacturing process of microarray Data. Firstly, cells from two
different conditions are chosen and then labelled differently by using different colours.
Next, hybridise to the prepared chip. Then, use two different colour lasers to activate
and measure the intensities from different spots and create two grey scale images.
Finally, put both images in different colours and superimpose to create the final RGB
image. '

18



Chapter 1

which is measured from an intensity at a wavelength beeomes..eﬁfre‘rﬁ:éliy‘ hard
normalisation techniques can help reduce some errors wit-h-i'n.' the mi’(ﬁroafra - chip
however, using normalisation techniques alone can not remove all types of error that
occur during the process of manufacturing and measurement. The final values always

include some errors and some missing spots.

Figure 1.3: A microarray chip with errors in some spots. Some spots are too big which
may interfere the results of the neighbouring spots, such as the one in the top left
corner of this chip.

In order to make a more appropriate assumption about the underlying structure of
the data, uncertainty measures should be attached to the gene expression values before
any further data processing. Using data visualisation with uncertain data information
can give incorrect data structures, therefore it can mislead the interpretation of the

projected microarray data.

Errors in Microarray Data

There are many different sources of variation in microarray data experiments. Errorsin
microarray can be as simple as created by human, such as swapping dye from different
channel or replica. Since microarray process involves many biological process from
extracting mRNA in which the control condition is very sensitive to get the correct
results on the gene chip. The production of the microarray can also create errors,
mainly dué to machine error such as quality of printed probe. The hybridisation
and scanning process can also created variation in the final results of the microarray
experiments [99].

Some sources of error can be reduced by using data normalisation. By first, us-
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when the chip was not washed evenly. Then, background correction will be
correction will reduce the effects of any signal which is measured as optical intfensities-
which is produced in the background and irrespecti've of the true signal. Further more,

dye-effect corrections will be performed on the microarray measurement. This normal-
isation will reduce the different properties in two dyes of the dual-channel array [99].
Finally within replicate and across-conditions normalisation will be done. Within repli-
cate normalisation refers to the normalisation of the data in the same slide. For this
normalisation, define M = log(Cy3/Cy5) and A = @g&;«_@_@ The 2-dimension plot
of M against A is produced. This normalisation shifts the tend line of this plot, pro-
duced by value M down to zero along with the values of A, under the assumption that
most genes have not been differentially expressed. Across-conditions normalisation is
to make the mean or the median of the different arrays in different conditions into the
fixed quantity. This process assumes that the average intensity from all the different

conditions used in the normalisation are similar.

1.2 Uncertainty

Data quality is a very important topic in data assessment [91], especially in a med-
ical domain where small errors can cause incorrect diagnosis resulting in dangerous
outcomes. It is essential to know whether the data used is of good or poor quality. Ex-
pressing an estimate of the quality in terms of the uncertainty of the data is meaningfﬁl
and should not be neglected [65]. The scientific community is focused mainly on the
development and invention of new instruments to reduce errors in measurements. Rep-
resenting the quality of the data in terms of the uncertainty of the data is, therefore,
the right direction towards reducing error and increasing the degree of belief to make
the result more reliable. However, it is not always possible to minimise or nullify all
the errors. In some cases a small amount of error is acceptable. If the erroneous results
are used to make further assumptions or analysis, it can eventually lead to incorrect
conclusions. Acknowledging the nature of errors énd investigating the errors by using

a knowledge of the uncertainty, and by taking into account the range of the errors, an
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appropriate assessment of data can eventually be obtained frdm‘ sucﬁf e}:p.e
Uncertainty is the concept of ‘a lack of precise 1nforma,tlon of a cel. ain v ‘
event’ [32]. We can express this extra uncertainty information on the resulting Value
obtained from the scientific experiments. Most of the time scientists can give afdegree
of belief to the resulting value from a certain experiment as additional information.
Of all the frameworks used to model uncertainty, the most principled and developed
is probability theory. At a trivial level, estimates of variance (0?) can be used to
represent the likely value, or error bars to bound the values in a certain region by
limiting the upper and lower bound of the data can also be obtained. One approach
for qualifying the quality of the microarray data is from the BlueFuse software [1] which
provides a direct numerical ‘score’ for ‘confidence’ however the detailed explanation of
this approach is not very clear. It tries to estimate the uncertainty level by analysing
the final image of the gene chips. Alternatively, if the data uncertainty in not explicitly
available and the model uncertainty can be estimated, this uncertainty should also be

used.

1.2.1 Types of uncertainty

Two main types of uncertainty are usually associated with data analysis. The intrinsic
noise derived from the data themselves and the model uncertainty. Noise can be added
to the data either at the input from sensor noise or measurement noise or at a later
stage after the transformation which is called predicted target noise, ¢,. Target noise
is illustrated in Figure 1.4. The target noise is the noise that affects the model of the
system resulting in the input data predicting the output inaccurately. The observed
target can be expressed as:

ty = f(2n, W)+ en (1.1)

where the target variable ¢ is assumed to be given by a deterministic function f(zn, W),
7, is the observed data and W is a parameter of the model class used with additive
noise. Using the noisy target can result in poor model accuracy when trying to recon-
struct the function from the input data. This noise may be reduced by having more
targets from the same input, Zn. In addition to the target, noise also can affect the

input. The intrinsic uncertainty of the data propagates through the model used to
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describe the functional relationships in the data.

The model uncertainty, o2 is affected by unknown model chalfac_t;e}iéé{tib
the different training of different final c;)nﬁguration parameters. The iﬂtrillsi‘ci ullbérr' ‘
tainty of the data, expressed by o2. The common assuniption of the total uncertainty:
is a combination of uncertainties o? = o2, + o2. There are many different approaches
for estimating the errors of models. Many techniques associated with this problem
include classical techniques such as, Bayesian techniques [8] and Bootstrap [32, 23],

or neural-network related, such as Network Ensembles [63] or using predictive error

bars [52].

1.2.2 Related techniques for unéertainty modelling in microar-

ray data

In microarray data analysis, there are concerns over uncertainty -issues in the data.
One of the traditional methods for expressing uncertainty in microarray data is using
the standard error from different repeat measurements from different experiments.
However, more recently researchers have proposed new ways of attaching unc:ertainty
to the microarray data [1, 67, 3, 17] by using Bayesian statistic‘al techniques from only
a single replicate. BlueGnome’s technology platform, BlueFuse [1], is one of the most
widely used software environments for microarray data measurement which introduces
a ‘confidence’ level to attach to the final gene expression results.

Bluefuse automatically generates information from microarray images. Moreover,
it calculates the signal intensities of dual channels, fluorescently labelled, microarray
images based on image processing. The operation is fully automated; saving time,
removing human subjectivity and raising experimental repeatability. BlueFuse uses
statistical modelling techniques to “learn” from the array data and so does not require
skilled human operators during the process as in earlier techniques [1]. This software
combines mathematical models and uses Bayesian methods to extract more justifiable
biological measurements from microarray experiments. Precise details of what quantity
is calculated and how, are not publicly available. Some information can be obtained
from the BlueGnome website [1]. In the development of the BlueFuse software, a

great deal of ‘prior knowledge’ about the process used to generate microarray data was
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utilised. In practice this prior knowledge varies from a ’hi-gh, degree ojf';’jg'
as detector performance, to that which is less predictable, such aswashl g effects. The
power of Bayesian systems lies in their ability to rigorously combine all grades of prior
knowledge with the data to deliver improved results [29]. BlueFuse uses this variability
of results to create a single ‘Confidence Estimate’ for each log-ratio of observed dual
channel expression values. The observed dual channels are normally between the test
and controlled channels. This estimate lies between 0 and 1. A Confidence Estimate
close to 1 indicates a high level of confidence in the log-ratio calculation [1] while
a confidence estimate close to 0 indicates a low level of confidence in the log-ratio
calculation. This Bayesian technique helps to improve the traditional approaches which
only set a threshold to divide the results between those that are either ‘certainly present’
or ‘certainly absent’ [1). We intend to use this extra knowledge as part of this thesis
work.

Another interesting method is using the PUMA (Propagating Uncertainty in Mi-
croarray Analysis) method which uses within-sample testing as an important source
of uncertainty estimation [67). Similar to the Bluefuse software, PUMA uses Bayesian
inference to estimate the propagation of uncertainty from the probe-level by estimating
the model using a gamma distribution of the positive probe intensities and the posterior
distribution of expression levels. It also suggests that all stages of uncertainty anal-
ysis of different levels should be combined to one single probabilistic model. Current
visualisation methods are unable to take into account the influence of uncertainty mea-
surements. Part of this thesis will investigate the consequences of incorporating this

extra information of uncertainty in expression values in data visualisation methods.

1.2.3 Importance of uncertainty

Ignoring uncertainty information means all available data have the same level of as-
sumed quality. Mathematical models estimated from such data will treat every data
point equivalently. A single outlier can alter the overall structure. A simple example
is given in Figure 1.4 which is the simulation of the noisy sine function ¢ = sin(z) + ¢
with one outlier added to the point 70. The noisy data ¢ is plotted in blue dots. The

underlying function sin(z) is plotted in black and the model approximated by using
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that one single outlier point can distort the model in the surroundinjg\f\_rég\,fji\ér\i_..
result any new data points that fall in that region will ‘be corrupted. Hence it is very

important to take into account input/output uncertainty.

RBF apporximation
4 T T ! T —&

& Noisy Data
31 | me=m=mes Underlying Fn

sm=ma RBF

.

Figure 1.4: The simulation of RBF approximation of y = sin(z) with added noise e.
The function approximated by the RBF is plotted in a blue line.

This example illustrates that when estimates are made without taking into account
the obvious outlier, a part of the model can be distorted. Hence incorporating this

uncertainty information for model estimation is crucial.

1.3 Model uncertainty

In different data modelling approaches, such as classification and regression models,
incorporating of uncertainty has been considered extensively. Many techniques asso-
ciated with this problem include classical techniques such as, Bayesian techniques 8]
and Bootstrap [32, 23], or neural network related, such as Network Ensembles [63] or

using predictive error bars [52].

1.3.1 Bayesian

The first approach is using Bayesian approximation by integrating all the parameters

to obtain suitable probability of each value [8].
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Noise can affect the data from the input state. Further the target nmse ’

_lN:TRoD U‘C'T;IO'\N," .

problems can disturb the data after the transfor mation(o7), and prlor mformatlc)n of

the input data (o%).

o) =02 4 of, + 03, (1.2)

where ¢? is the variance of the input data. The first term can be derived by the Bayes

rule. The results are given by

1
ol = 5t GTAT'G. (1.3)

The second term is from the width of the posterior distribution of the model uncer-

tainty, o, and the last term can be approximated by
= hT%;h, (1.4)

where h = dy(z, W))/dz is the input gradient of the neural network output measured
at the noisy input data, and ¥; is full covariance of the input noise which is assumed

to be known.

1.3.2 Bootstrap

The bootstrap method is a method for estimating the standard error of statistical
parameters. This technique uses different set of samples in each training set and the

output of the network is obtained by

i) = 37 > (s, W) (1)

The confidence interval can be estimated by

[y(z, W1) — g(2))*. (1.6)

Mz

2
ow (Y M 1
=1

1.3.3 Network Ensemble

The bootstrap method is similar to using different neural networks which is known as

the network ensembles [63].
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The general ensemble function is
M M , . . -
feeMm = Z a; f; = flz) + Zaimi, ‘ , an
2==1 =1 ;

which m; is the misfit function that is the deviation of the output data of ‘each
model 7 , y;, to the target, m; = f(z) — y:(z).
The combined output of the network is

M
Yycomm = Z Q55 (1.8)

i=1
. . . N
The model cocfficient, «; satisfies the constraint ) ,_, ;. The mean square error

is the sum of the combination of the error from different networks,
MSE = ZaiajC,;j, (19)
i, .

where C;; = E[m;, m;] is a correlation between two models. If each models is assumed

independent then «; given by

0—2

= ———M Y
Zl:l 0,

(1.10)

a;

2 _
where o, = Cii~

From the committee the outcome for each patient can be determined by (1.8). To

2

gain uncertainty information for the new data, error estimation is required. The o;
estimation from the above method is derived literally from the error compared to the
target vector.

of = (|7 — Tll| M;). (1.11)

However, this method does not provide the predictive property for the new data. But,

this can be used with the predictive error bar methods.

1.3.4 Predictive Error Bar

Another approach is to use another neural network layer for predictive error bars.
In [52], they use another layer of RBF networks with the same hidden unit to estimate
another set of error bars. The first network estimates the optimum output which is
(t(z)|z) which gives the local variance of [[t(z) — (t(z)|z)[|>. This value can be used

for training another network for the uncertainty prediction. The optimum output of
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this network is an approximation of variance for a given input, wh-i,ch}g;c_a"
estimating the uncertainty o?(z) = (||¢(z) — (t(z)|z)|*|z). Both networks shiare
same input, the same first layer and hidden units of the neural networks but the outpuf
layers are separated with different sets of parameters. This model will be diécussed in
more detail in Chapter 6. .

The optimisation process contains two stages. The first stage is to optimise the
weights W1 for the traditional output of the network given the tdrget values for re-
gression. In the second stage, the network is the same but another neural network is
attached to the hidden unit of the previous network (the first stage network). Weights
for this network are optimised to achieve the error prediction trained, by using the
variance of the previous output of the network. This method is obviously faster and
does not need any assumptions of Gaussian distributions as in the simple Bayesian
approach. If the uncertainty is assumed to be Gaussian, the likelihood can also be
written down. However, any error can be used for the network training to obtain the
error bars for the new network input.

Similarly, [62] used this same method but using multilayer perceptrons instead of
RBF networks and obtained the variance by using the maximum likelihood approach

which gives results similar to the Bayesian approach:
N

of =Y [thx) — y(x, w)?, (1.12)

=1

where N is the number of training examples and t(z) is the desired target. The output
y(z,w) is the output of the first network.

Besides the low processing time of this method, the second stage neural network for
predicting error bars can be used with new data efficiently. However, the disadvantage
is that the extra layer may induce an extra weight uncertainty.

Similarly, for the visualisation model, the uncertainty of the data will induce model
uncertainty and creates a poor projection of not only the data with large noise but also
the surrounding data. However, for unsupervised techniques, such as visualisation,
uncertainty has not been looked at so extensively. Only a few studies have been
conducted, for example in the missing data problems, which can be regarded as data
with very low uncertainty level in GTM model [9, 55]. This will be discussed further

in chapter 4. In this thesis, the effect of incorporating uncertainty information which
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may be available from data measurements, or estimated from impfecise models wi '

studied on visualisation techniques

1.4 Biomarkers from Gene Expression Profiles

In order to extract biomarkers from gene expression profiles, there are many different
techniques using machine learning approaches. The simplest method is by detecting
biomarkers using supervised classification. This method identyfies gene signature which
~most associate with the disease outcome. In this method, it is important that some
validation set is needed to be set aside to test the performance of chosen biomarkers.
To avoid overfitting of the biomarker extraction which is strongly dependent on the
specific supervised training set available, an unsupervised technique provides another
approach. This method aims to search for genes with similar structures of gene ex-
pression across a number of samples. This method is aiming to search for genes with
similar structure of gene expression across number of samples. It is believed that genes
with similar function will create the same outcome to the patients [87]. Data visual-
isation is regarded as an unsupervised data investigation. Other recent unsupervised
data investigation of microarray includes, the Self Organising Map (SOM) to investi-
gate yeast [81] and human cancers [30] and [92], the latter in combination with the
k-means algorithm. Analogously, Principal Component Analysis (PCA) has been used
to investigate yeast [46] and to identify tissue-specific expression of human genes [57].

Furthermore, many publications have suggested using expression of multiple genes
related to the life cycle of breast cancer patients [21, 93, 90, 80], lung cancer patients 5],
combination of cancer patients [66] and of patients with other genetic diseases [20, 19].

One of the high profile examples of a biological study into breast cancer markers
from high dimensional microarray data is that of the research team of Laura van't
Veer [90]

This study was motivated by personalised treatment for breast cancer patients.
Breast cancer is the second most common cancer (10.6% of all cancer patients) after
lung cancer and is the most common in women [100]. It is also the disease that

carries significant psychological impact for women [79]. Traditional biomarkers used
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for prognosis include tumour size, lymph node status and éstrogén;,r.e:@.ep;téi;
these fail to correctly predict the outcome and prognosis for indi&id_:uélv .];?)‘a\f,\t{ixenﬁsfiw}h_d
need a tailored treatment plan to undergo cytolytic therapy, such as éhemothefa_ﬁy, |
which has unpleasant side effects as it can affect not only the cancer cell but also

the normal surrounding cells [4]. The conventional treatment region allows 70-80% of

cancer patients to unnecessarily undergo these therapies [26, 90, 89]. They would likely

survive without treatment. Many publications are trying to improve this problem by

using alternative methods. Gene variation gives a more thorough understanding into

each individual patient. Not all patients with the same symptoms require the same

treatment, and it depends also on their genetic profile which impacts on how the

body processes each medication [4, 64]. Personalised medicine is a treatment paradigm

where one size does not fit all [94] which overcomes the traditional approach in which

the average treatment is advised for all patients [27, 64]. The emergence of using gene

expressions for tailoring the treatments for each individual patient’s need has become

more popular in cancer research [61].

The dpproa,ch that is now becoming more common is to detect breast cancer sus-
ceptible genes such as BRCA1 and BRCA2 which are high risk germline mutations for
breast cancer [34]. Although successful as indicators, they are only found in at most 5
percent of breast cancer patients [88].

In addition, there is also a study using a gene expression profile together with
traditional clinical information such as lymph node status [37] as biomarkers. However,
none of these publications take into account any uncertainty measure. The aim of these
gene set studies is to emphasise personalised care for breast cancer patients by using

“informative’ genes to predict the development of distant metastasis in the patients.

1.4.1 The van’t Veer data set

This thesis will focus mainly on the data obtained from the van’t Veer study. The van’t
Veer study suggests a new methodology for predicting which breast cancer patients are
prone to developing distant metastases, which means the cancer spreads beyond the
breast area to other distant part of the body. From this stage, the rate of mortality

in breast cancer patients is very high. Therefore preventing patients reaching this
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stage means preventing the death-in the patients. The adjuvent then'apji‘és,'; uch

chemotherapy, helps impede the tumours to develop. However, not all spofaﬁdiotuﬂibdﬁrsi
will develop into this stage. Current pathology diagnosis; such as family historical .
background, tumour sizes, lymph node status, fails to correctly classify the patients
who need or who need not undergo these treatments. The van’t Veer study suggested
that using only gene expression profiles from patients, the predictability outperforms
those clinical parameters that are currently used.

The van’t Veer data set uses mainly 78 patients: 34 of whom developed distant
metastasis within 5 years, which will be called poor prognosis patients. The remaining
44 patients are disease-free after a period of at least 5 year, which will be called good
prognosis patients. All of them are lymph node negative and aged under 55 years
old. RNAs are extracted from each patient and used for deriving complementary
RNA(cRNA). The reference cRNA was made by extracting similar amounts of 5ug from
each of the sporadic carcinomas. The hybridisations for each tumour were carried out
by using a fluorescent dye reversal technique on microarrays containing approximately
25,000 human genes synthesised by inkjet technology. Only 5,000 genes were significant
that is giving at least a twofold difference and P-value of less than 0.01 in more than five
tumours. In the original paper, some of the histopathological data, such as oestrogen
receptor(a) were presented for comparison [90].

In the van’t Veer study, significant genes are then extracted by calculating the
correlation coefficients which give the significant outcome of the disease from 5,000
genes to 231 genes. Furthermore, to find the optimum genes for predicting metastasis,
this paper suggests building a “prognosis classifier” by using a subset of 5 genes from
the top-ranked of the correlation coefficient magnitude trained by using the leave-one-
out cross-validation. A subset of 5 genes from the top-ranked list are then added up
recursively until all the 231 genes were used. The number of genes that optimally gives
the highest accuracy is selected. Seventy genes were found to be the most optimum
informative genes for predicting the distant metastasis.

During the selection of informative genes for prediction, a huge reduction in gene
numbers are made. In the van’t Veer data set, there is an approximate 95% reduction

of the number of genes from the significantly expressed genes to significantly correlated

30




Chapter 1

genes, from about 5,000 to 231 genes, under the assumption that all gye_lri"ga expressmn
true values without any distortion or occurrence of uncertainty in the déﬁaf Obv1ously
if any values are imprecise with some errors in the experiments, the resulting set of
genes will very likely be different. In addition using a different training set for gene
extraction will result in a different subset of genes as discussed in [24, 56]. However,
high levels of noise in the microarray data may induce random correlation while trying
to select features. Using a small subset selection of genes from very high dimensional
gene samples can easily have random correlation between genés,especially if the data
set has a very small sample size, such as 78 patients in the van’t Veer study. Attaching
uncertainty levels to gene expression data is important and will help to avoid misleading
information [95] in order to achieve higher overall accuracy, with reduced risk to the
patient. The most relevant uncertainty information for this data set comes from the
small sample patients that used for investigation in the study, not the data uncertainty

of the selected genes.

1.4.2 Why data visualisation helps

Dimensionality reduction techniques are required for visualising microarray data. Vi-
sual representation of the biological data can help in making a faster inspection and
revealing structure hidden in complex gene expression data [59]. The dendrogram is
one of the traditional approaches to perform microarray data clustering. Some stud-
ies extend the use of a traditional dendrogram for easier use [33]. However it usually
produces a suboptimal local clustering solution and is not effective as a spatial vi-
sualisation tool to reflect relative dissimilarities. Many other algorithms for reduced
dimensionality representation have previously been used to visualise microarray data.
For instance, VistaClara, an interactive visualization tool [42], the Self Organising Map
(SOM) has been used to investigate yeast [81] and human cancers [30] and [92], the
latter in combination with the k-means algorithm. Analogously, Principal Component
Analysis (PCA) has been used to investigate yeast [46] and to identify tissue-specific
expression of human genes [57]. However, both SOM and PCA have significant draw-
backs. PCA is a variance-preserving linear projection, and this limitation does not lead

to a topographic representation [101]. On the other hand, the SOM lacks a sound the-
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oretical underpinning (for example, there is no cost function to optimi_sé;,\",\and‘»;i‘;jr"
parameters must be chosen arbitrarily). .

Many studies investigate the van’t Veer data set in terms of classification rate by
building many different supervised classifiers and presenting cooperative performance
figures by revealing different rates of classification [90]. This thesis alternatively uses an
unsupervised visualisation approach to investigate this study. The fully unsupervised
visualisation models allow the data to reveal the true structure of all given samples
without any interference of the predefined class labels that depend largely on the sam-
ples chosen for training. One could argue that constructing supervised models, such as
a classifier, may reveal a better understanding of the data by differentiating data mto
different groups making interpretation easier. However, this is a misleading argument
since the limited number of samples and random correlations in the van’t Veer data
prevents reliable discrimination as we will discuss later in the thesis. Classifiers trained
on these data samples will not be reliable. The results will be sensitive to the chosen
classification models and chosen data samples for training. Therefore this thesis will
look at an alternative approach using projective data mappings, or, data visualisation.
Data visualisation with attached uncertainty will be investigated and explored. The
technique therefore will be applied on real data. The extra novelty also explored in
this thesis is the incorporation and influence of uncertainty (from models as well as

data when available) on the projective models.

1.5 Plan of the thesis

Chapter 2: is a comparative analysis of the established techniques of visualisation
which includes both deterministic and probabilistic approaches and suggested ways of
improvement toward uncertainty and visualisation.

Chapter 3: demonstrates the use of existing visualisation techniques on the exam-
ple of the cancer data, the van’t Veer data set. This chapter compares and discusses
different approaches of visualisation techniques on one data sample. The problem of
the uncertainty in the van’t Veer data set is being discussed in more details.

Chapter 4: suggests an improvement of the Generative Topographic Mapping
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method to incorporate the uncertainty level. Synthetic examﬁles are usedfor ev alu
tions. | \ -

Chapter 5: suggests the extension of NeuroScale models with a probabilié’ycic
approach to be able to incorporate uncertainty. This chapter also discusses probabilis-
tic distance measurement and improvement of both heuristic and fully probabilistic
approaches toward the standard NeuroScale model.

Chapter 6: uses the van’t Veer data set as a case study for the modified GTM
and NeuroScale. This chapter suggests an approach to evaluate the uncertainty level
of the van’t Veer data set. This chapter shows the intrinsic nature of the uncertainty
in the data set.

Chapter 7: concludes the thesis with summary and suggests the direction for
future research. ‘ ‘

Appendix A: shows the lists of predictive gene list as originally suggested in [90]
(List A) and the alternative gene list which is suggested in this thesis (List B).

Appendix B: shows the misclassification matrices according to the visualisation
results suggested in chapter 3.

Appendix C: explains basic visualisation methods which are Multidimensional
Scaling and Principal Component Analysis.

Appendix D: reviews the standard shadow target algorithm which is used for

training the standard NeuroScale models.
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Standard Visualisation Techniques

Dimensionality reduction techniques are becoming significant tools for analysing bio-
logical data. The traditional techniques are Principal Component Analysis and Multi-
dimensional Scaling.

Recent developments in visnalisation focus on retaining the structure of the high-
dimensional data. There are many approaches have been discussed. Topographic
mappings are mechénisms that map the data in a high dimensional space into a low
dimensional space in such a way that preserves the structure of the data.

This “structure of the data” usually means the similarity between two data sam-
ples. In other words, the data samples that are similar in a high dimensional space
should stay close together in a lower dimensional space and data that are dissimilar
in a high dimensional space should remain apart in the lower dimensional space. This
chapter compares and contrasts previous significant nonlinear topographic models that '
have been established. The aim is to establish the state-of-the-art and to identify weak-
nesses in existing approaches. Methods can be subdivided into deterministic projection
methods and probabilistic and generative models. In generative models we assume a
latent variable approach in which data samples in the observation or data space are
generated from the latent space over some probability distributions. Deterministic ap-
proaches provide more direct projections without use of distributions over generator

space. We discuss first deterministic approaches.
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2.1 NeuroScale

Neuroscale [51, 86, 60] is a deterministic projective mapping based on the stati_s\,tic\all
methods of Multi Dimensional Scaling, MDS, a topographic mapping that maps the
distribution and relative positions of the points in the projection space representing
data vectors to reflect the relative dissimilarity between data measurements in the high-
dimensional space, and hence generalises the established Sammon map concept [40].
N measurement vectors x;, {z = 1,...,N} in RP are transformed using a Radial
Basis Function (RBF) [12, 50] network to a corresponding set of feature (visualisation)
vectors y; in R%. An RBF comprises a single hidden layer of 4 neurons which represents
a set of basis functions, each of which has a centre located at some point in the input
space. NeuroScale uses the shadow targets optimisation algorithm [Appendix D] to help
train the network without predefined target vectors for the RBF network. The shadow
targets algorithm gives good generalisation performance since it implicitly incorporates
an automatic regularisation process. The network performance is insensitive to the
complexity of the RBF network and RBF function models [86] provided the network
has sufficient initial complexity. The quality of the projection is measured by the
 Sammon stress metric (n.b. we are using a reduced form here, neglecting a denominator

often employed):
N

N
E=>") (d—dy), (2.1)
J

i

where d;; = |ly; — y;|l and dj; = |lx; — x;|| represent the inter-point distances in
projection space and data space respectively. The aim of the training process is to
set the parameters of the RBF, W which is the weight matrix of the network: y; =
RBF(z;,W). A gradient method is used to minimise the stress metric from each wg,.,

between k hidden unit and output r dimension.

OE <~ OFE
= . .2
au}k'r ; awkzr (2 )
where,
oE di; — dij
T -2 ;(T)(%’ —Yj)- (2.3)

Hence the stress captures the functional relationship between the original data

distribution and the projected images. Once the functional mapping has been obtained
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PROJECTIVE SPACE

DATA SPACE

Figure 2.1: The NeuroScale architecture.

using NeuroScale, the model can be reused without reconstruction of the model by using
the trained network on the novel data. This is the advantage over the original Sammon
mapping. Because the Sammon map only acts as a look-up table, novel data can not
be located in the feature space without full reconstruction of a new look-up table.
NeuroScale has parameters, the number and location of the RBF centres that need
to be determined. However the outcome 1is robust to the choice of centres since an
implicit smoothing regularisation is used as part of the optimisation process [84]. As
normal practice, the number of centres is chosen to be the same as the number of
training data points, so that each data point can be used as a centre of the RBF
functions. NeuroScale is a deterministic projection approach and lacks a probabilistic
interpretation. Therefore if the data is inherently uncertain, NeuroScale simply maps

the data samples including the noise. See Figure 2.1 for the architecture of NeuroScale.

2.2 Isometric Mapping

Isometric Mapping (Isomap) [83] builds on classical MDS but improves it by aiming
to preserve the geodesic distance of the data. The geodesic distance is defined by the
approximation of adding up a sequence of “short hops” between neighbouring points.
This can be done by finding the shortest paths in a graph with edges connecting
neighbouring data points [83].
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Figure 2.2: The comparison of the two measurements between the distance measured
by the geodesic distance and the Euclidean distance.

Figure 2.2 shows that the distance between two points which is measured by Eu-
clidean distance in high dimensional space may not be a good measure of structural
similarity. The true measure of this data set or the geodesic distance, is the measure
along the surface of the S-curve. Isomap estimates this geodesic manifold distance
between data points. It is done by first, defining the graph between two data points,
i and j by connecting both points if both points lie in some fixed radius(e) or if 4
is the K nearest data point of j. The distance of these neighborhoods is defined as
d.(1,7). Next, the geodesic distance between two data points is obtained by comput-
ing the shortest path distances in the graph(de(4, j)). This distance is initialised by
de(i,§) = dg(i, ) if 4,7 are linked by edge and dg(i,z) = oo otherwise. Then, for
K =1,2,...,N in turn, replace dg(i, j) = min(d¢(1, 5),de(i, k) + de(k,7)). The fi-
nal matrix of graph distance is therefore Dg. Finally, apply MDS (See Appendix C)
to preserve the intrinsic distance. The coordinate y; is chosen to minimise the cost

function

E = |l(Dg) = r(Dy)l (2.4)

where Dy is the Euclidean distances of the projecting space. The 7 operator converts
distance to inner product.

Isomap is related to the NeuroScale method if the input dissimilarity is changed
to reveal the intrinsic distance of the data rather than using just a normal Euclidean
distance. The NeuroScale results will be similar to the Isomap but with an extra

advantage of interpolation ability which can create a transformation mapping. Another
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related method, S-Isomap [28] proposed a way of incorporating class inﬁrm\a_t_iéyn; "‘t‘r
the dissimilarity measures which claims to compensate for the noise if thé classof each °
datum is known. However, this method is a supervised technique which: will have the
same problem as expected for classifiers if data are not representative or dense enough

to model each class.

2.3 Locally Linear Embedding

Locally Linear Embedding (LLE) [71] is another local method, similar to Isomap. It
focuses on preserving the topographic distance in small neighborhoods by using an
eigenvector method [72]. The LLE uses the linearity in the local area and overcomes
many limitations that occur in a fully global linear method. We define x to be a vector
of N data points in D dimensional space, sampled from some smooth underlying man-
ifold. Provided there is sufficient data, we expect each data point and its neighbours
to lie on or close to a locally linear patch of the manifold. In the simplest formulation
of LLE, we need to identify K nearest neighbours per data point, as measured by

Euclidean distance from a point of interest. This cost function is defined by:

N K
(W) =3 = 3 Wikl (2.5)
i j=1 ,

Wi; is a weight between a point i and its neighbours j. In order to compute the
appropriate weight, we minimise the cost function in the equation (2.5) subject to two
constraints: first, that each data point x; is reconstructed only from its neighbours,
set W,;=0 if x; does not belong to this set; second, that the rows of the weight matrix
sum to one: Z W” = 1.

If we look at the equation (2.5) locally, the error contribution € from each data

point x; conditioned on Zle W;; = 1 can be written as:

K

-JZ%W7M—ZZMM@M (2.6)

J

where C, are elements of a covariance matrix within the neighbourhood of x; and 7;

is the neighbour of the data point x;.
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Figure 2.3: The Locally Linear Embedding algorithm.

i T
ik = (xi = m;)" (% — k)- (2.7)
This cost function can be minimised by using a Lagrange multiplier to enforce the

constraint that > Wi =1 Therefore, the optimal weights are given by:

Zlm Cl1;I

Each high dimensional point x; is mapped to a low dimensional point y; in low

(2.8)

dimensional space, representing global internal coordinates on the manifold. This is
done by choosing d-dimensional coordinates y; to minimise the cost function in low

dimensional space:
N K
(YY) = Z lyi — Z Wiiy;l% (2.9)
i j

where W;; is fixed from (2.8). This cost function can be minimised by solving sparse
N x N eigenvector problem, whose bottom d non-zero eigenvectors provide an ordered
set of orthogonal coordinates centered on the origin.

This algorithm has only one free parameter: the number of neighbours per data
point, K. The higher the value of K, the more similar to the NeuroScale method this
method will be. Practically, it is very hard to find a value of K to suit the given data
set. Furthermore, it is hard to find an appropriate value of K which performs well
across different choices of data sets. It is typically much smaller than the number of
data points. Figure 2.3 summarises the LLE algorithm.

However, the algorithm is easy to implement and it is claimed not to have local min-
ima problems as many other non-linear methods have encountered. Similar to Isomap,

which control the number of neighborhood points, these local methods have big advan-
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tages on embedding data in which normal distance measures fail to cor,rec“tl;},f;év@l;da:ﬁ:
the geodesic distance. An example is the S-curve shown in Figure 2.5 which LLE o
and Isomap properly reduce the 2-dimensional surface embeddéd in the 3-dimensional

space, as shown in Figure 2.5(a).

The main drawback of local methods such as LLE is that although they preserve
topography in the local area, most of the time they lack the ability to verify the global
alignment of different local neighborhoods.

LLE can give more faithful representations when the real distances between points
are largely different from Euclidean distance measures. However, when the true dis-
tance can be computed straightforwardly or is close to Euclidean distances, using the
local approach is not so useful. LLE and Isomap are similar in the way that both of
them are topographic which is to use the local distance in the original data space as
an important criterion. We now discuss a class of methods motivated from a different

perspective, linked to the intent of incorporating probabilistic knowledge.

2.4 Probabilistic PCA

The previous methods are based on the neighbours of the data deterministically and
do not take into account the level of noise in the data space. Probabilistic Principal
Component Analysis (PPCA) [85] uses a probabilistic approach extending the stan-
dard method of traditional PCA (see Appendix C). The probabilistic PCA models the
projection of the data to y from the observed variable x with a probabilistic generative

model,

plxly) = o @0l — Wy — wl) (210)
where g allows the observed data to have nonzero mean with an added Gaussian
noise, 77 ~ N(0,0%I). The latent variable, conventionally, is assumed sampled from an
independent Gaussian distribution with a unit variance, y ~ N(0,I). The objective

function is the likelihood:
P(xilyi, W,0) = Nx;|Wy; + p,0°I). (2.11)

Marginalising the latent variable, we obtain

40



Chapter 2 STANDARD VISUALISATION TECHNIQUES

P(x;|W,0) = N(x;|, WWT + 0°I). i (212) o

The objective function is the log likelihood of the function:

L= ——%[-{dln(%r) +In|C| +tr(C71S)}, (2.13)

where ¢ = WWT 4+ ¢2]. Maximising the objective function to obtain the optimum
solution for W and o:

Wi = Ug(Ag — °T)°R, (2.14)

where the d column vectors of the matrix Uy € RP*? are the principal eigenvectors of
the data covariance matrix, S, with corresponding eigenvalues in the d x d diagonal

matrix Ay and R is a rotation matrix which can be chosen to be R = I. Similarly,

D
1

which is clearly the variance that is lost during the projection. For dimensionality

reduction purposes, the projection of x can be defined as a posterior mean of y
(ysPxs) = MW (xi — ), (2.16)

where M = WTW + ¢%I is a covariance of size d x d. PPCA can also be extended
from a single component Gaussian to a mixture density with a mixing coefficients m,
M
p(xi) = Z Tap(xin), (2.17)
n=]

where p(x;|n) is a single PPCA model. R;, is the posterior responsibility of mixture n

for the generating data x; defined as [, = P (’;"(L:f)"", with mixing coefficient and mean
of each component as:
N
5 1
o= > Rin, (2.18)
i=1
N
~ anl Rfinxfi ’
n= e (2.19)
Zn:l R’i"

The reduced dimensionality projection data can be obtained from the posterior mean
of the highest m,. This method is one of first methods of the probabilistic approach to

visualisation.
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Figure 2.4: The GTM architecture.
2.5 Generative Topographic Mapping

Similar to the previous PPCA, the Generative Topographic Mapping (GTM) [9] is a
probabilistic model. However, this method uses a generative model transforming from
the latent variable to the data space by using an RBF neural network which malkes it
straightforward for training and applying to the unseen data set. This algorithm uses
a constrained mixture of Gaussians from a basic concept of SOM [43] in that it has
representative nodes in the low dimensional space. However, GTM uses a probabilistic
density model to form the high dimensional space generated from the low dimensional
grid. The GTM architecture is shown in Figure 2.4

GTM overcomes the drawbacks of those in SOM; specifically the lack of an explicit
cost function, and a transformation and convergence criteria, between two spaces which
are linked by a function f(t; W) which maps t to x and forms a corresponding Gaussian
with a common standard deviation ¢ and parameterised by W. The distribution of

the data x conditioned on latent variables t is given by

p(x\t,W, U) . llf(t1 W) B XHQ

- (27r02)d/2€Xp{— 20?2 b (220

The density in data space is obtained by integrating out the latent variables and choos-

ing the prior p(z) to be a sum of delta functions; the marginal probability becomes

(x{W o) p(x|t;, W, o) (2.21)

||‘M§

The model parameters W can be obtained by simply using maximum log likelihood,
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given by

LW) = n ] p(ta|W). - L (0)) :

n=1

Equations (2.21) and (2.22) give

Zln{ Z ptalz;, W, o)}, (2.23)
By choosing an RBF for the function f(t; W), we can write
[t W) = Wo(i), (2.24)

where the elements of ¢(z) consist of K fixed basis functions of ¢;(x), and W is a
d x K matrix.
GTM uses the (iterative) EM algorithm which in the E-step calculates the posterior

probability, or responsibility, of each component j of each data point ¢,,. We get

R (WM gm)y = Pty WM, o)
In ’ M ?
’ 2o Py, W, o0m)

(2.25)

where m indexes the iteration number.
The M-step consists of maximising the expectation with respect to W of the

complete-data log likelihood giving:

(Leomp(W)) = ZZR(’“ (W 0N {p(t,|x,, W,0)}. (2.26)

n=1 j=1
Maximising the expectation of the complete-data log likelihood (2.26) with respect to

W together with (2.20) and (2.24), gives:
TG P(WINT = TR T (2.27)

where ® is the M x K RBF design matrix with elements ®;; = ¢;(x;), T is the N x d
data matrix, R is an M x N responsibility matrix with elements Rj, and G is an
M x M diagonal matrix with elements G;; = Zg___l R;n(W,0).

Similarly, maximising (2.26) with respect to 0 we obtain the following re-estimation

formula,

N M
(o HD)2 ZZ R™ (W)W g (t.) — x, 2. (2.28)
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For visualisation purposes, GTM can summarise the whole data set by using the mear

of each component in the mixture model distribution and gives the pro_jectibn'data\y,
M
=1
Alternatively, the mode of the posterior can be used
Jmaz = argmaijjn- (230)

GTM has the advantage of using a probabilistic approach which is more flexible
with noise in the data. Probabilistic approaches are more suitable for dealing with
uncertainty in the data than deterministic approaches. However, the number of RBF
basis functions and distribution of the latent space sample points are chosen by hand.
The complexity of the model is determined by the number of RBF centres. The number
of latent points, t, helps determine data model. Too few latent points compared to
the number of basis functions will result in the Gaussian components becoming rela-
tively independent and effectively no smooth manifold will be found. For visualisation
purposes, the number of latent nodes and the latent shape need to be specified in ad-
vance. However, there is no correct way of choosing these parameters. As a result, the

visualisation can depend on the choices of these parameters.

2.6 Stochastic Neighbour Embedding

Stochastic Neighbour Embedding (SNE) [36] borrows a concept from NeuroScale as it
uses a pairwise similarity between points but measures similarity using a probabilistic
distance approach to preserve the neighbourhood identities. A Gaussian distribution
is centred on each data point in the high dimensional space and a probability density
is defined over all the potential neighbours of that point. This approach permits a
1-to-many mapping of high dimensional points to projection space as discussed later.

The high dimensional related probability for each point, 4, and each potential neigh-
bour, 7, is computed using the asymmetric probability, p;;, that 4« would pick j as its

neighbour,
exp(~2)
Pij = :
’ Zk¢i exp(—d;)

(2.31)
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The dissimilarities, d;; can be based on standard Euclidean distances and scaled bya -

smoothing factor o; which is empirically determined, d;; = “x—;yxﬂ
y

The low dimensional images y; of the points are used to define a probabilistic

density in the mapping space, g;;, as:

eIy -yl
5 om b (— s — yill)

(2.32)

ij
The aim of this SNE method is to match the above two distributions as closely as
possible. The Kullback-Leibler divergence, which is a measure of dissimilarity between
two probability distribution is used here as a cost function. This can be achieved by
manipulating the coordinates y; to minimise the cost:
N N
=33 pylog 2L, (2.33)
PR qij
The SNE model can be extended to multiple projections of a single object by using
a mixture of densities, which produces a probabilistic density in the mapping space:

S Y 75 exp(=llyi, = 5.l
Qi,j: 7”’) Z J ” b J ) .
b c k

Zd Tky exp(— “yib - ykd.‘

(2.34)

2)’
The number of clusters in the mixture also needs to be determined empirically. Each
data point x; can be projected to the various modes of the mixtures y;, or y;,. The
benefit of mapping a single data point to multiple locations allows ambiguous objects,
like the document count vector for the word bank, to have meaning close to the images
of both river and finance without forcing the images of outdoor concepts to be located
close to those of corporate concepts. However, for the experiments in this paper, only
one projection modes per datum will be used. Because it is quite hard to show in
practice.

The main advantage of SNE is its probabilistic approach but the results of the SNE
are strongly dependent on the chosen o. If the chosen o is too large, the projecting data
is likely to collapse to a single point. The suggested ¢ is o = log(K'), where K is the
number of neighbours used to define a local cluster. However the main drawback is the
proper way ol determining o to properly fit the data withouvt knowing the underlying

projection in advance.
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2.7 Parametric Embedding

Another recently proposed method of dimensionality reduction method is ‘Parka‘metr\ic
Embedding (PE) [38] which is an extensive of SNE. However this method requires
class labels to be specified in advances, since PE uses the conditional probabilities of
classes given data. These probabilities can be given as a supervised model. However,
the difference to the other supervised classification models is that rather than using
the supervised information given as a hard classification, it is given by a probabilistic
representation in term of conditional probabilities.

This approach projects both data points and data labels in the embedding space by
assuming a spherical Gaussian distribution around each class, c;. The algorithm will
try to match the location of all data points, y with high the conditional probabilities
of any class and will be projected down close to the class location, ¢, in the low
dimensional space.

Parametric embedding approximates conditional probability, p(ck|z,), under the

assumption of a unit variance spherical Gaussian mixture model in the embedding

space
, pler) exp(=3 11y — &ll*)
plerlyn) = =% - . (2.35)
2oz plen) exp(=3llyn — &4ll?)
where ||.|| is the Euclidean norm in the projection space.

The aim is to match the conditional probabilities between x and y by using the
reduced form of Kullback-Leibler divergence which measures the distance between

plex|xn) and plclyn):

N K
E(Yn, ) =— 2 > plcklxn) log pleklyn)- (2.36)
n=1 k=1
The derivatives of (2.36) are:
or
Dy Zank ajq;: Zank b — (2.37)

k=1
where o, = plerlxn) — plerlyn)-
The visualisation result of y,, depends on the initial coordinates of classes ¢,. Both

data, y and ¢, can be optimised by any non-liner optimisation algorithms. The advan-
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tage of this method is that it can be used directly as a clagsifier. Class labels\afeﬁ’al's'” \'
projected down in the low dimensional projection which make very c’Ieaf diétirictions’ :
between classes. However, for the general case where classification is not essential, this
method may not be useful since class labels need to be specified in advance.  More-
over, the appropriate way of estimating the conditional probabilities, p(c|k) is very

important in determining the visualisation results.

2.8 Other techniques

The Autoencoder [18] uses a multi-layer feedforward neural network combining an
encoder which transforms the high dimensional data to low dimensional data and a
decoder ‘which recovers the data from the code by using multi-layer hidden units of a
neural network. Many layers are needed to be trained, therefore it is very difficult to
find the optimum global solution.

Hinton [35] claims the technique, “Restricted Bolztman Machine” can initialise the
weights closer to the optimal solution for this autoencoder method.

ISOTOP [47) uses a modification of a SOM using a neural network to create a
functional mapping but it faces the same drawback as SOM as it does not have an
explicit cost function.

Stochastic Proximity Embedding [2] uses the geodesic distance by trying to preserve
the distances in the low dimensional space not to fall below the distances provided by
distance from the original high dimensional space.

There are also techniques which combines global and local techniques, such as,

Local Linear Coordination (LLC) [82].

2.8.1 Computational Complexity

This section gives a brief overview of the computational complexity of each visualisa-
tion techniques, which is important for the applications. For number of data n and
k nearest neighbours, Isomap performs eigen analysis of n X n matrix and additional
neighbourhood search gives the computational time of (k +log(n) +n*)n. In contrast,

SNE computes distances of matrix n x n for 7 iterative time, therefore the compu-
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tational complexity is O(in?). LLE has computational complexity from comput\i'_:ng;ﬁs,\’ﬁf

eigenvector from sparse matrix(O(pn?)) and solving linear system of size k x k, the i

overall complexity is (k3 + pn + log(n))n For NeuroScale and GTM, the complexity
depend mainly on the size of training data and number and form of basis functions.
The main advantage of these two method is that with the large data set, not all data
points are necessarily included in the training phase. Once the model is trained both
GTM and NeuroScale can retrieve the low dimensional projections of those novel data

point with small computational requirement, which is different to all other methods.

2.9 Discussion

Global techniques have the advantage that overall properties and structure are retained
while local models use local properties of nearby points which sometimes may not
reflect global metric properties. NeuroScale can reflect local properties without any
interference to the model by exploiting hand-tuned parameters such as o in a Gaussian
RBF network or by altering the input dissimilarity matrices to reveal the intrinsic
distances of the data. Local methods have an advantage over global methods when the
intrinsic distance is different from the global metric properties, such as a 2-dimensional
embedded S-curve in a 3-dimensional space as shown in Figure 2.5(a). This figure
shows the projection using both global and local techniques. Local techniques, such as
LLE 2.5(c), Isomap 2.5(d), reveal the true embedding data of the s-curve while the
global methods achieve poor reconstructions. Other techniques fail to correctly keep
dissimilar points apart, such as some areas at the edges of the curve. However, if the
number of neighbours is chosen incorrectly the results will be no different to those in
the global techniques. Even though many global techniques are not suitable for this
example, most of them are not as sensitive to parameter choice as the local methods.
NeuroScale generally produces consistent mappings with different parameter settings
given the same distance measure.

Using this example for comparison with some global techniques, PCA and Neu-
roScale gave similar results in 2.5(e) in which the edges of the curve combine with the

middle part of the S-curve and are seen as nearby points and hence projected down
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Figure 2.5: The three dimensional data (b) sampled from two-dimensional manifold
(a). The LLE algorithm discovers the neighbourhood-preserving mappings shown in (c)
where K = 12; the colour coding reveals how the data is embedded in two-dimensions.
(d) shows the resulting mapping using Isomap. PCA (e) and NeuroScale using Eu-
clidean similarity (f) incorrectly map the intrinsically faraway points close together.
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close together.

Figure 2.5(e) shows the results from the same S-curve in Figure 2.5(b) but using -
PCA (Figure 2.5(e)) and NeuroScale (Figure 2.5(f)). Both of them occasionally map
faraway points to nearby points in this example.

Another example is shown in figure 2.6. This example has data in 2 clusters with one
point between clusters in 3 dimensional space shown in figure 2.6(a). Different clusters
are colour coded with different colours. Figure 2.6(b) and 2.6(c) show successful data
projections using PCA and NeuroScale respectively. Figure 2.6(d) shows the LLE
projection using K = 15 where the structure of one of the clusters is distorted. It
can be seen that the local methods do not well preserve the original structure in this
type of example where data from different clusters can be viewed as nearby neighbors.
Global methods do not have this problem.

In addition, the approaches have been categorised into deterministic and probabilis-
tic approaches. SNE, PE and GTM use probabilistic intuition by assuming Gaussian
distributions centred around each data point. The stochastic approach is easier for
mapping a single data point to multiple locations in a low dimensional space. How-
ever, the known uncertainty knowledge cannot be used with these probabilistic models.
Modifications of these models are required.

Furthermore, the main drawback of existing deterministic techniques is that they
do not support uncertainty information if it is available. Uncertainty is dealt with
by alternative approaches such as regularisation. These techniques assume all data
points have the same uncertainty information which is not always true as discussed
previously in Chapter 1. Techniques using probabilistic approaches are potentially
useful in modelling the data with uncertainty. In addition, the main advantage of
using explicit mapping functions such as neural networks for dimensionality reduction
is that they provide an explicit implementation of applying the trained network to
new unseen data points. [6] discusses the possibility of the extension of using LLE,
Isomap and MDS with a small modification of the algorithms to be able to project
unseen data. NeuroScale which is currently a deterministic approach and SNE and PI5
which are probabilistic approaches have the same idea of preserving the topology of the

data. However, NeuroScale has the advantage of using neural networks to implement
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Figure 2.6: The three dimensional data (a). The LLE algorithm discovers the
neighbourhood-preserving mappings shown in (d) where K = 15; using PCA (b) and
NeuroScale (c) can well preserve the structure of this data set.
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the projection while the latter two just use simple look-up optimis&tion’techhidﬁ@

which are not as useful as building mapping functions between the data s.’pacé a\nd_. t\hé o

projection space. The main disadvantage of NeuroScale - its inability to explicitly deal

with uncertainty - will be examined later in the thesis when we extend the method into

a probabilistic NeuroScale, capable of incorporating uncertainty and local information.
Next chapter will examine some of these established methods and applied to the

controversial microarray data set in order to see the hidden uncertainty in the data set.



Chapter 3

Prognosis Gene List and Patient

Visualisation

3.1 Introduction

This chapter discusses the traditional approach to data analysis which neglects impre-
cision in the data. We illustrate standard methodologies on an important real-world
study, the van’t Veer data set, discussed in the first chapter. Animportant consequence
that this chapter will illustrate is that generic finite feature subset selection in such
high-dimensional noisy data can have a strong correlation with a desired outcome. The
implication of this is that the selection of predictive features in such situations is not

reliable. This is a further motivation to include uncertainty in such analysis tools.

3.1.1 The van’t Veer data problem

In the area of genetic diseases, which includes the van’t Veer study, there has been
controversy surrounding the non-uniqueness of ‘predictive gene lists’ (PGL) to be used
as prognostic indicators based on small selected subsets of genes from very large num-
bers of potential candidates as available in DNA microarray experiments [7, 45, 24].
Many studies have focused on constructing discriminative semi-parametric models and
as such are also subject to the issue of random correlations of sparse model selection
in high dimensional spaces.

However, it still remains controversial whether the use of gene expression profiles
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really outperforms traditional methods based on non-genomic biodata. Although man}%; -

studies claimed success in using gene expression profiles, there was little commonality_
across preferred gene subsets [24]. In recent work [70, 22], it was argued that the 70-gene
subset of the van’t Veer study [90] does not significantly outperform existing clinical
criteria based on non-genomic biomarkers. In this latter work, the gene expression
prognosis ability was compared to the Nottingham Prognostic Indicator (NPI) and
traditional non-genomic biomarkers. This lack of superiority of the genomic approach is
not surprising from a systems biology perspective, where we would regard cancer as the
result of complex interactions between genetic, temporal, biological and environmental
influences.

The original gene selection process used the correlation between the response and
outcome to rank potential genes. The problem is whether the quality gene expression
data values are accurate enough for extracting appropriate numbers of genes. Although
feature selection and feature extraction are often unsupervised methods, in the liter-
ature in this domain it is more usual for feature selection for a supervised approach
to be used based using a specific choice of a nonparametric model linking the gene
expressions to the outcomes. Therefore, the question arises as to whether a specific
PGL can be obtained based on clinical datasets, given these concerns over reliability
of pattern processing techniques.

This chapter explores visualisation projections of high dimensional data using sev-
eral nonlinear visualisation models to introspect the van’t Veer breast cancer study to
investigate whether PGL determined by the van’t Veer group can be used as a suc-
cessful biomarker. As a comparison with the original PGL selected by the van’t Veer
study, an alternative PGL based on cross-patient consistency is selected. We examine
and compare the performance of our alternative PGL to the claimed prognostic PGL
from the van’t Veer study. Additionally, in this chapter we will construct supervised
classifiers to make a comparative investigation of the prognosis indicator of each pa-
tient using the resulting projections from visualisation techniques and to investigate
whether a-posterior: two prognosis groups are separable on the evidence of the gene

lists.
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3.1.2 The previous study of non uniqueness gené list

In [24], it was shown that the top 70 most correlated genes in the van’t Veer study
can vary significantly depending on the specific training set of patients used. Different
randomly selected 70 gene PGL’s were selected and shown to have similar prediction
ability. They suggested that there is no unique set of genes that can be assumed to
be the best or the only set of genes for prognosis accuracy of breast cancer. A follow-
up study [25] also suggested a similar conclusion, that we cannot create a definitive
classifier from a small subset of genes based on the small patient datasets available.
Generally, large patient sample sizes are needed to produce viable and robust prediction

outcomes of cancer prognosis.

An alternative PGL

To illustrate the lack of prognostic uniqueness of capability of the van’t Veer gene
list, which we denote List A, we will compare results using a different gene list, de-
noted List B, selected on the basis of cross-patient consistency rather than maximising
classification accuracy on a specific classification model [75].

Let x* denote the gene expression vector for patient ¢ of the van’t Veer PGL. x¢,
where G € {1,2,...,44} represents a set of expression values across all good prognosis
patients, and xp, where P € {45,46,...,78} represents the set of all poor prognosis
patients. The expression values have been normalised before the selection.

The variance of individual gene expression values within each patient group is esti-
mated by

o7 = ((xi = X1))ier,
where L = {G, P} and the average is taken across all patients. Assume RJ[ is the rank
order of gene j by variance for each patient group. The unique top 7" ranked genes

from each group are extracted,
Lp = {j|R] <T}.

The number of genes, T, is chosen so that List B has a total number of genes

equal to 70, the same as List A. Specifically, in this case the 35 lowest non-overlapped

(@3
(@3
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s ]

variance genes from each patient group were extracted.

List B={LcULp}—{LeN Lp}.

This selection criterion emphasises consistency of gene expression across patients within
patient group, rather than explicitly seeking discrimination. Examining the details of
the two 70-gene subsets, we observe that there are only siz genes in common between
the van’t Veer study and our alternative gene list. List B is trying to search for the
gene expressions which are similar in the same patient group to extract genes that
act differently in different conditions and may reveal the true underlying cause of the
cancan patients. It can be expected that patients with the same prognosis outcome is
likely to have a similar molecular profile [87].

If List A has superior prognostic value as mentioned in the literature, its projective
visualisation and discrimination properties should be better than those of List B, since
List A was chosen explicitly to maximise discrimination using a supervised training
process while the maximisation of classification accuracy is not the main criteria of
List B. The list of gene in List A and List B can be found in Appendix A.

Both gene lists will be used to compare the separability between pre-specified pa-

tient groups by using standard but state-of-the-art visualisation techniques.

3.2 Experiments on the van’t Veer data

Since microarray data distributions have a non-linear structure in high dimensional
spaces, four different approaches of non-linear data visualisation methods were used
for comparison; the NeuroScale model, Generative Topographic Mapping, Local Lin-
ear Embeddings (LLE) and Stochastic Neighbour Embeddings (SNE) as have been
discussed in the previous chapter.

Both List A and List B were used for constructing 2-dimensional projections.

3.2.1 Classifier Comparison

For comparison with the literature, we will also construct classifiers based on the two

gene lists.
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In order to avoid problems of high dimensionality in small data samples r,fc,hat;nlnigcht;;"r .

have occurred in the original study which constructed classifiers using leave-one-out
cross-validation. Alternatively, we constructed classifiers on the visualisation space
which sensibly reduced the dimensionality structure of the data. The classifiers are
constructed on the two dimensional input of the visualisation space using separate
RBF nonlinear classifiers [77, 78]. The classifiers use 2 coordinate input values and
produce 2 output values indicating good and poor prognosis likelihood respectively
and are trained using the original 78 patients. Specifically, the desired target value
is T = {T1,T5} where T € {[1,0],[0,1]} represents good and poor prognosis patients
respectively.

The outputs of the RBF network are then transformed using the softmax function,

giving a vector prognosis indicator for each patient, P = y“—’i‘i%é?—)
> .

One of the two
outputs which represents the good prognosis class is used as an indicator and contours
of the indicator values are superimposed on the projection map space to show the
likelihood of the good prognosis indicators.

The use of classifiers will show the ‘confidence’ of being in one class versus the
other. Furthermore, the classifier should provide evidence for the separability perfor-
mance of each gene lists. The contour lines showing the results of the classifier will be
superimposed on the visualisation results. Patients with predicted prognosis values in
the range 0.3 — 0.7 are considered as ambiguonsly classified. This range is chosen to

maximise the classification results for both List A and List B.

3.2.2 NeuroScale Projection

First, the NeuroScale model was applied to the 70 dimensional input vectors corre-
sponding to the individual patient PGL to give the 2 dimensional projection. The
number of centres is 77, which is as many as data points excluding one for the bias and
the activation function was the ‘thin plate spline’, (r?log(r)). The advantage of this
method, as stated in the previous chapter, is the model once trained can be reused with-
out reconstructing the projection over the extended data by just passing the new data
POINtS, Xpew through the transformation function. ynew = f(Xnew, W). Figure 3.1(a) is

the result from a 2-dimensional NeuroScale projection using List A and Figure 3.1(b)

o7
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is the result using List B. The group of poor-prognosis and good-prognosis patients

are labelled differently, with black diamonds and grey circles respectively although this
class information was not used in the NeuroScale projection model.  The results both
show some separation between the two groups of patients with a few patients wrongly
mapped into the opposite class. This projection appears to support the previous result
of van’t Veer et. al. in that List A appears to have some discriminatory capability,
although it is evident from these figures that any discrimination is on a graded and
overlapping scale rather than providing completely separable distributions.

The prognosis indicator values as given on the contour lines, vary on the level of
overlap marked between the two prognosis groups. The areas where there is large over-
lap between the two patient groups reflects ambiguity of any likely class membership.
Therefore, we regard these patients as low confidence samples as far as determining
class information and we should regard them as ‘unclassifiable’. Ignoring those data
and regarding those intrinsic unclassifiable data as one of the correctly classifiable re-
sults may give the wrong impression and given on overly optimistic impression of the
prediction to that data set [69].

Both gene lists show equivalent performance in separating the two patient groups.
A detailed analysis will be given in the next section.

As in Figure 3.1(a), there are some patients that are projected to the wrong class,
however if only high confidence patients are used for consideration the classification
result increases to 100% accuracy. The classification matrices can be found in the
Appendix B. There are only 30 patients who fall in the high confidence regions, less than
one half of all patients. Similarly the results using List B , give the same classification
rate as using list A but with 4 fewer high confidence patients. The results of the
projection maps and the classifications support the lack of uniqueness of a single PGL
since there is no clear separability or global distribution between the results of List A

or List B.
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Good
Poor

Good
Poor

(b) The NeuroScale map of gene List B.

Figure 3.1: NeuroScale projections of Lists A and B. Note the approximate separation
of the centroid between poor (diamonds) and good (circles) prognosis groups. Specific
individual patients are highlighted with arrows. Contour lines show the likelihood
values of belonging to the good prognosis class as determined by the classification
models.
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3.2.3 Locally Linear Embedding

The Locally Linear Embedding results using two different gene sets are pro jecﬁed down
and shown in Figures 3.2(a) and 3.2(b) using K = 5 and in Figures 3.3(a) and 3.3(b)
using K = 20 together with the classification contour lines of the good prognosis.
indicator. K is the number of neighbours used to construct the mapping which has to
be chosen empirically. With K = 5, within a good prognosis cluster of both gene lists,
there are four obvious poor prognosis patients. Three of them are common across both
list projections. These four patients remain in the wrong place even after the number
of neighbours increases. Between 13 and 16 poor prognosis patients are likely to be
misclassified as good prognosis patients in the ‘boundary layer’.

The best representation seems to be K = 20 with List A giving slightly better sep-
aration with fewer patients misclassified, with 7 good prognosis and 4 poor prognosis
patients likely to be misclassified, from inspection of the figures without the classifi-
cation results. However, some regions can be classified better when the classifier is
trained on the particular data set. For example, a few good prognosis patients in Fig-
ure 3.3(a) are on the right of the projection while most of the good prognosis patients
are supposed to be on the left side. Those few patients create the region where patients
are likely to be assessed as good prognosis even though this could be the result of these
few outliers.

Both List projections have a separability of the modes of the two groups even
though some pafienl;s appear in the wrong relative positions for their prognosis groups.
Nevertheless, the difficulty for LLE is choosing the appropriate value for K. The result
shows better separation of the training data with K = 20. For Figure 3.3(a), poor
prognosis patients P45, P55, P54 are isolated from the other patients. However, having
these three patients correctly classified could result in poor generalisation across new
data. Other than this, the LLE projections reflect some similarities to the NeuroScale
projections.

For K = 5, visually from Figure 3.2, List B gives a more distinct projection than
List A with more clusters of good prognosis patients separated without overlap of many
poor prognosis patients. When only high confidence patients are retained, no patients

are projected to the wrong class using either gene list although the number of high
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45 46 5473 55 63

(b) List B.
Figure 3.2: The LLE results with K = 5. (a) LLE projection of patients using PGL

A. (b) the projections of the same patients but using PGL B. Also superimposed are
the contour lines from the classification model.
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(a) List A.

(b) List B.

Figure 3.3: The LLE results with K = 20. (a) LLE projection of patients using PGL
A. (b) the projections of the same patients but using PGL B. Also superimposed are
the contour lines from the classification model. With this K, the separation between
classes are better to with the K = 5 shown in 3.2. P54 is a significant outlier for List
A but it is not with List B.
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confidence patients using List B is more than using List A by 8 patients.

For K = 20 which is shown in Fig 3.3, contrary to the K =5 caée., the ré_sult using
List A with K = 20 gives better performance. The classification matrices can bé found
in Appendix B. The classification rate is quite high with 93.58% accuracy with larger
numbers of high confidence patients compared to the other methods, but this could
result from the overfitting of this particular model. As can be seen in Figure 5, the gap
of the contours between 0.4 to 0.7 is quite narrow. Choosing the exact boundary that
determines the prognosis signature of each patient is therefore critical. As a result, if
patient values contain uncertain information or noisy data, the resulting classification
outcome of such patients is likely to be effectively random. Therefore the data of
such uncertain patients should not be taken into account in representing performance

results. We investigate the generalisation of these results in the next section.
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3.2.4 Generative Topographic Mapping

The Generative Topographic Mapping model uses the Radial Basis Function as in the
NeuroScale models. This model needs a specification of the latent shape. The model
was trained using the 70 dimensional input vectors corresponding to the individual
patient PGL to give the 2 dimensional projection. The number of centres is 77, as
many as the data points excluding one for bias and the activation function was the
‘thin plate spline’, (r?log(r)). This method also has the same advantage as NeuroScale
as the trained model can be reused easily. The visualisation results used the mean of

the mixture model distribution giving the projection data y,
M
y = <t|Xn,W,O'> = Z Rjntj- (31)
j=1

For the new data projection, R;, is therefore recalculated according to the stored W.
M

Ynow = (E|Xnew, W, 0) = > Rjut;. (3.2)
j=1

Figure 3.4(a) shows the GTM visualisation results using List A, with latent shape
8 which gives a number of latent points that is close to the number of data points.
Similarly, the model is also applied to List B. The result of List B is shown in Figure
3.4(b). The contour lines of Figure 3.4(a) using List A, have narrow gaps between
prognosis indicators, especially in the middle. Magnification factors are also shown in
the background to indicate the strength of the corresponding area to fit the data set.
The magnification factor is most area are quite similar, except for the area closed to
P54, an outlier, where it shows high magnification factor. For comparison, Figure 3.5
shows the GTM results of both List A and List B using the latent shape of 56. The
results of List A is similar to the results of using latent shape of 64 but with List B, there
are more overlaps of data points with the smaller latent shape. Therefore, we will focus
more on the latent shape of 64. From Figure 3.4, fewer patients, in List A, give high
confidence compared to Figure 3.4(b). Furthermore, there are many patients projected
on top of each other. List B shows better performance, using these 78 patients. No
poor prognosis patients are projected to the wrong class. In addition, List B shows

correct classification results with high confidence of P44 and P53. However, List A
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usiai

projects these two patients on top of each other and regards them as poor prognésié;wi .

with good confidence, even though it is incorrect for P44.
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2412 20 8 45
(b) List B.

Figure 3.4: The GTM results with 77 RBF centres and the latent shape is 8 . (a) the
GTM projection of patients using PGL A. (b) the projections of the same patients but
using PGL B. Also superimposed are the contour lines from the classification model.
List A creates small gaps between contour lines and many patients collapse to a single
point. Magnification factor is shown in colour. Large magnification factor is more in
pink while smaller magnification factor is plotted in blue.
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Good
Poor

(a) List A.
ListB

(b) List B.
Figure 3.5: The GTM results with 77 RBF centres and the latent shape is 56. (a) the

GTM projection of patients using PGL A. (b) the projections of the same patients but
using PGL B. This figure is for comparison with the previous GTM projection.
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3.2.5 Stochastic Neighbour Embedding

The Stochastic Neighbour Embedding method requires the selection of a ‘51noothing"
factor o. The projection maps of Stochastic Neighbour Embedding shown in Figure
3.6 reflect different results for o = log(5) shown in Figures 3.6(a) and 3.6(b), and
o = log(20) shown in Figures 3.7(a) and 3.7(b). From these figures it can be seen
that the relative distributions of the patient projections are quite different for differing
choices of the value of ¢ and it is is quite hard to determine the optimal value of
o. With o = log(20), patients from both gene groups are mostly overlapped. The
separation is not as good as in the previous two models.

Figures 3.6(a) and 3.6(b) show the classification contour lines superimposed on the
SNE projection maps using the two different gene lists with o = log(5), and figures
3.7(a) and 3.7(b) with o = log(20).

List B gives better overall performance but only when high confidence patients are
being measured. No patients are misclassified with almost the same number of high
confidence patients using both gene lists. Again, this supports the proposition that
equivalent performance can be obtained on dissimilar gene lists. For o = log(20), both
gene lists gave perfect classification rates when restricted to high confidence patients
although list A has more high confidence patients (18 patients), compared to 14 patients
in list B. Nevertheless, the number of retained high confidence patients in this method

is very low.
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Poor

(b) List B.

Figure 3.6: The SNE results with o = log(5). (a) the SNE projection of patients using
PGL A. (b) the projections of the same patients but using PGL B. Also superimposed
are the contour lines from the classification model. The separation between the two
classes is quite poor compared with LLE and NeuroScale.
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Good
Poor

(b) List B.

Figure 3.7: The SNE results with o = log(20). (a) the SNE projection of patients using
PGL A. (b) the projections of the same patients but using PGL B. Also superimposed
are the contour lines from the classification model. The result of SNE shows the
sensitivity of o. In addition P54 which contains missing information is classified with
high confidence in this method.
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e czanrnad

Model used List A List B
Good | Poor || Good | Poor
NeuroScale 7 6 6 7
LLE(K =5) 7 9 3 7
LLE(K = 20) 1 4 7 5
GTM 4 11 6 10
SNE(log(c) =5) |7 9 9 6
SNE(log(c) = 20) | 10 6 9 11

Table 3.1: The table shows misclassified patients from all different models from the
visualisation results.

3.3 Discussion

3.3.1 Comparison across models

The four methods gave different visualisation outcomes. Table 3.3.1 summarises the
misclassification results from all models and parameters.

From the visualisation results, LLE with K = 5 represents the data as a quasi
1-dimensional representation while the other three models present 2-dimensional dis-
tributions. However on inspection, they reveal some similarities. For both gene sets,
poor prognosis patients whose gene feature vectors are significantly placed in the wrong
cluster are consistently misplaced across models. For LLE, there are 4 poor prognosis
patients (in both gene sets) who are projected to the wrong cluster. Recall that the
feature sets used are almost non-overlapping. These patients may be used to compare
between models. For List A, instead of P73 using LLE, P60 has a low confidence and
is more likely to be misclassified. Only NeuroScale places P54 far from the remaining
patients. We note that P54 is exceptional in that the patient’s gene list has several
missing values (and for this reason was eliminated from analysis in the paper by Ein-
Dor [24]). The NeuroScale model correctly identifies 754 as an outlier patient requiring
further investigation. Note that a classification model built from this project.ion would
place P54 into a good or poor prognosis class despite the missing information.

With K = 20 in LLE, three patients, P54, P55, P45, are separated from the

remaining patients, instead of clustering amongst the other good-prognosis patients as
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indicated by the other projection models. With this number of neighbours in LLE, the

projection is giving better patient group separability despite having outliers.

The GTM models do not obviously show the outliers. Even though P54 is an outlier
and projected far from the remaining patients, the projection is not so obvious as in
LLE and NeuroScale because the visualisation created by GTM has been controlled
by the shape of latent points. In addition, many patients are projected on top of each
other. However, this model gave very small misclassification of good prognosis patients,
none for List B.

For the SNE projective visualisation, P54 has a surprisingly high confidence of being
correctly classified and does not reflect the problems of missing information. Instead
of patient P54, P59 is misclassified by the SNE projection but with low confidence.
On the other hand the likely misclassified good prognosis patients are common using
both LLE and NeuroScale but with some slight difference to the SNE for which P12
does not significantly project to the wrong cluster.

In addition, for List B, all of LLE, shown in Fig 3.3(b), GTM, shown in Fig 3.4(b),
and NeuroScale, shown in 3.1(b), give similarly consistent results for projections of
good and poor prognosis patients into the incorrect groups as shown in both visuali-
sation and classification results. The difference using SNI is that SNE gives a better
representation of P46 but gives an incorrect projection to P51 instead. Similarly, the
significantly misclassified good prognosis patients are the same using both LLE and
NeuroScale but it is very difficult to discriminate using Stochastic Neighbour Embed-
ding.

Both LLE and SNE show sensitivity of projections to empirical choices of selectable
parameters, but projections can be found with some consistency of patient distribution
across all four nonlinear topographic projection methods. However, NeuroScale and
GTM have an advantage over the other two methods because of their principled basis
in a machine learning parameterised mapping that can be reused in a generalisation
experiment without the need to retrain any models. We will validate this feature in

the next section.
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3.3.2 Comparison of PGLs across patient groups

Both gene lists A and B produce similar projections, except that P55 in List A is
mostly projected to the wrong group by all four models. However, with List B it is
not as unambiguous since this patient is projected into the interface between the two
prognosis groups. P45 appears as one of the wrongly projected poor prognosis patients
instead of P55. Except for these two patients with different results, both gene lists
create similar projections, despite the fact that both gene sets have very few genes in
common.

This supports the opposing view, that different gene lists can be created from
small sample patient groups which randomly correlate with arbitrary outcome. The
classification results, which can be seen in the Appendix B, confirm the similarity using
both gene lists.

From the observations, most patients have similar representations in the projected
mappings. Some patients are better represented by one PGL or the other. Nevertheless
both gene lists produce an overlapping region in which patients in this area cannot be
separated into either good or poor prognosis groups. The clinical prognosis label of
these patients should be unclassifiable instead of being assigned into any one prognosis
group. This new patient type can be crucial in the medical domain where the advice
to the clinician should be that no prediction can be made on the available information
and extra information is needed in addition to the gene expression profile.

Additionally, there are some possibilities for identifying the disease pathogenesis
from the visualisation results by looking at high certain patients which can be separated
from the remaining patients and searching for the similarity in the gene expression
among those patients. Nevertheless, to retrieve reliable underlying structure of the

data requires sufficient numbers of data samples.

3.4 The validation set

A follow-up study [89] from the van’t Veer group was performed which marked the
progression of another set of patients to verify the original study. This follow-up data

set, which we refer to as the van de Vijver data, contains 295 patients with 106 poor-
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prognosis and 189 good-prognosis patients. The poor-prognosis patients are categorised .

into 3 sub-categories: patients with metastasis who did not die as a direct result of :
the metastasis; patients who died without developing metastasis; and the patients who
developed metastasis and eventually died. Within these 295 patients, 61 of them are
present in the original study. Those patients were removed in this chapter to ensure
we call exaline generalisation on a separate set, of 234 different patients, 159 of whom
are categorised as good-prognosis patients.

In the earlier studies of van’t Veer et. al., validation of the original 70 PGL was
made by obtaining good performance on an additional patient data set. In this section
we perform the same comparison, making use of the functional mapping ability of
NeuroScale applied to the extended new data.

NeuroScale and GTM have an advantage over some other topographic models in
that new data can be projected through a prior learned projection mapping. Once the
functional mapping has been obtained using NeuroScale or GTM, the model can be
reused without reconstructing the projection using novel data. For additional compar-
ison, this section will also use a retrained LLE model (trained on the new full data set)
with K = 20 which performed well with the previous patient set, as a comparison to
NeuroScale and GTM.

For validation, the new patient set of van de Vijver will be projected using the
same networks for both gene lists. In their study [89], they verified the viability of
their 70 nominated genes as prognosis indicators of breast cancer by using the previous
78 patients as a training set and testing on this new patient set. We will investigate
this claim further by applying trained topographic visualisation to this new patient set
using both PGL lists A and B, and observe the consistency of the distribution between
the two groups of patients. The classification results of the validation set are shown in
table 3.4.

Figures 3.8(a) and 3.8(b) show the projections of those remaining 234 patients,
labelled into 4 different groups, which are (1) good-prognosis patients (circles), (2)
metastasis patients (asterisks), (3) death (stars) and (4) both metastasis and death
(diamonds). Both PGL projective visualisations seem to give similar projections on

the new data. For List A from Figure 3.1(a), good prognosis patients are likely to be
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Figure 3.8: The NeuroScale visualisation projection of the new 234 patients trained
using the original 78 patients based on List A and List B. Circles represent healthy
patients who did not develop any further sign of relapse, asterisks for patients who
developed metastasis but did not die, diamonds for the patients who died without
developing metastasising cancer and stars for patients who developed metastasis and
then died consequently. The contour lines from the previous 78 patient projections
are superimposed on the visualisation results of this validation set of both GTM and
NeuroScale.The overall performance using the new patient set is dramatically reduced.
Both figures show a different projection of P192 and P327 where they are at the edge
with List A but they are in the central region using List B.
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Model used List A List B
Good | Poor || Good | Poor
NewroScale | 19 |77 ||43 |59
GTM 15 80 11 111

Table 3.2: The table shows misclassified patients of the validation set using the RBF
network trained on the original 78 patient set.

projected towards the top of the visualisation map while the poor prognosis patients
are at the bottom. The projection of new data for List A in Figure 3.8(a) shows some
density of good-prognosis patients on the top of the visualisation map, similar to Figure
3.1(a). However, many good-prognosis patients are distributed across the visualisation
map. For List B, the patient gene vectors are quite dense in Figure 3.8(b); however
a number of good-prognosis patients tend to be projected on the top left of the plot,
similar to Figure 3.1(b).

Similarly, the GTM model has the same advantage of being capable of extension
to the new data set. Figure 3.9(b) and 3.9(a) shows the visualisation results using
GTM with the 234 patients. Only 44 patients are high confidence using List A and
all of them are projected to be good prognosis. No poor prognosis patients have high
confidence. Even though in the 44 high confidence patients, only 1 patient is inbthe
wrong class (which is a high classification rate), the model does not give advantages over
other models. By contrast, List B gives a poor result but it improves when only high
confidence patients are considered. Nevertheless, the size of high confidence regions are
quite small compared to the NeuroScale model. More patients have high confidence
using NeuroScale. However, similar to the NeuroScale, more good prognosis patients
are likely to be separated from the poor prognosis patients. However, the separation
is not as good as NeuroScale.

For comparison, LLE was relrained on the full set of 234 patients and also projected
down. The results are shown in Figures 3.10(a) and 3.10(b) using K = 20. These new
projections of good or poor prognosis patient groupings have little resemblance to the
previous results obtained on the original training set.
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