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Thesis Summary

Exploratory analysis of data seeks to find common patterns to gain insights
into the structure and distribution of the data. In geochemistry it is a valuable
means to gain insights into the complicated processes making up a petroleum sys-
tem. Typically linear visualisation methods like principal components analysis,
linked plots, or brushing are used. These methods can not directly be employed
when dealing with missing data and they struggle to capture global non-linear
structures in the data, however they can do so locally.

This thesis discusses a complementary approach based on a non-linear prob-
abilistic model. The generative topographic mapping (GTM) enables the visu-
alisation of the effects of very many variables on a single plot, which is able to
incorporate more structure than a two dimensional principal components plot.
The model can deal with uncertainty, missing data and allows for the exploration
of the non-linear structure in the data.

In this thesis a novel approach to initialise the GTM with arbitrary projec-
tions is developed. This makes it possible to combine GTM with algorithms like
Isomap and fit complex non-linear structure like the Swiss-roll. Another novel
extension is the incorporation of prior knowledge about the structure of the co-
variance matrix. This extension greatly enhances the modelling capabilities of the
algorithm resulting in better fit to the data and better imputation capabilities for
missing data.

Additionally an extensive benchmark study of the missing data imputation
capabilities of GTM is performed. Further a novel approach, based on missing
data, will be introduced to benchmark the fit of probabilistic visualisation algo-
rithms on unlabelled data.

Finally the work is complemented by evaluating the algorithms on real-life
datasets from geochemical projects.

Keywords: Generative Topographic Mapping, Data Imputation, Data
Visualisation, Covariance Matrix, Chemometrics
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Chapter 1 INTRODUCTION

In all sciences the amount of available data is steadily growing. Increasing
capabilities of analysis methods and decreasing costs for the capture, process-
ing and storage of data are likely to further increase this trend in the future.
For example, in chemistry and geology modern technologies allow samples to
be automatically analysed for chemical composition or biomarkers. In molecu-
lar biology, micro-array analysis allows access to large quantities of data. The
method is used to decode the information stored in the DNA of living organisms
and for large scale experiments to test the reactivity of biologically active com-
pounds helping with the development of drugs or in understanding and fighting
diseases. Financial markets are getting ever more complex with vast amounts of
different economic indicators, products and price quotes allowing for arbitrage
opportunities if one can find and distinguish new and emerging patterns and
trends early enough. The internet created a new challenge for semantic data min-
ing: for example the tasks of classification, categorisation and exploration of the
huge amounts of documents in databases like Google Scholar, personalised pro-
files on social networking sites like Facebook or short paragraphs of content like
in Twitter.

To cope with the vast amount of information and find patterns as well as un-
derlying processes, rules and structures the available data are analysed with the
aid of methods from statistics and mathematics to help and guide the analysts.
This analysis supports the discovery of regularities or irregularities, which are
hard to find when looking at the raw data in tables of numbers, symbols, text or
images. In statistics common methods like multidimensional scaling or princi-
pal component analysis are quite sophisticated however they lack the ability to
account for noise in the data and cannot deal appropriately with missing values.
Missing values occur for different reasons but exist in most real world data sets.
Some reasons for missing data are:

e ‘incomplete or censored recordings;

e errors in automated machines or algorithms;

e mistreatment of samples or contaminated samples;

e export from analog to digital;

e diverse treatment of samples (using different analysis techniques);
e lack of response (from humans in surveys);

e other forms of human failure.

Many existing mathematical and statistical analytical algorithms cannot treat
these data without prior processing. The most common method to deal with
these incomplete samples is to either delete the sample itself or exclude a whole
category/variable from the analysis if too many samples are missing this entry
(Schafer, 1997). Generally this is neither sensible nor desirable since a lot of valu-
able information is lost and, far worse, one might introduce a serious bias to the
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end results if the underlying process, which generated these missing values is just
ignored (Little and Rubin, 2002). In the scientific literature better methods have
been proposed but mainly with reference to specific domains like census prob-
lems, population surveys or genetics while neglecting their possible application
to other sciences and the impact on the field of data visualisation (Raghunathan
et al., 2001; Oba et al., 2003).

1.1 Data Exploration/Visualisation and GTM

Capturing structures in high-dimensional data is a complex and tricky task. Hu-
man visual understanding of geometry ends at three or arguably with the help of
advanced plotting mechanisms like colour, size and shape of the plotted points,
at up to six dimensions. Thus finding structures with direct visualisation alone is
not possible on data sets with more than three to six dimensions.

One way to get over this dilemma is to project this high-dimensional data
onto a low-dimensional representation while preserving as much information
about the structure as possible. This low-dimensional representation is usually
two-dimensional to be representable on screen or paper and is often called the
visualisation space or latent space. This way the human analyst can look at the data
and spot eye-catching structures. There are many possible ways to obtain such
a low-dimensional representation and the best choice depends on many factors
like the data, the application and the practitioner. A general introduction to these
methods is given in chapter 4.

Another way to find structures is to use clustering algorithms like K-means
clustering (Hartigan and Wong, 1979) or Gaussian Mixture Models (Nabney, 2002).
These algorithms try to find groups in the data set and cluster the points to them
accordingly. The major problem of these algorithms is the definition of good
clustering and complexity criteria since it is usually neither known how many
clusters there are in the data nor how the borders between the clusters should be
drawn.

In conjunction with cluster algorithms, visualisation methods can help to spec-
ify the parameters like the number of classes. Conversely cluster algorithms may
help to validate the visualisation. Ideally one would employ both methodologies
in the exploration of unlabelled data. However in this thesis the focus will be on
visualisation algorithms.

A method of particular interest is the Generative Topographic Mapping (GTM)
introduced in chapter 4. It can be described as a constrained Gaussian Mixture
Model where the Gaussians are connected via a two-dimensional flexible grid. A
good analogy for the GTM is a flexible rubber-sheet which stretches and bends
itself to fit the data as good as possible. The result is a probabilistic latent trait
model for data visualisation which indicates topographic rather than real dis-
tances between points. It was developed by Bishop et al. (1996) at the NCRG,
Aston University with the goal of improving the Self Organising Map (SOM)
(Kohonen, 1995) by a more principled probabilistic method. The algorithm has a
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successful track record in various applications, including the following examples:

e A study about semantic space models utilised multiple randomly initiated
GTM models to create a set of new lower dimensional spaces which were
analysed for common structures and patterns (Lowe, 2001).

e Comparison of dimensionality reduction methods for wood surface inspec-
tion where GTM was found to be preferable for the purpose of interactive
classification by humans (Niskanen and Silven, 2003).

e Outlier detection in scatterometer data used for predicting wind vectors
(Bullen et al., 2003).

e Dimension reduction in speech analysis using voice morphing technology
to enable users to transform one person’s speech pattern into a different
pattern with distinct characteristics while preserving the original meaning
(Orphanidou et al., 2003).

e Condition monitoring and fault diagnosis of a gearbox (Liao and Shi, 2004).
e Analysis of microarray data (Grimmenstein et al., 2004).

e Training of an Al player to play pong using a GTM latent space obtained
from observation data recorded from games played by humans (Leen and
Fyfe, 2005).

e Identification and visualisation of clusters formed by motor unit action po-
tentials (MUAPs) to aid with investigations seeking to explain the control
of the neuromuscular system (Andrade et al., 2005).

e Data visualisation during the early stages of drug discovery (Maniyar et al.,
2006a).

e Handling outliers in brain tumour magnetic resonance spectroscopy (MRS)
data analysis through robust topographic mapping (Vellido and Lisboa,
2006).

e An application involving missing data and a decision support system to
assist water managers with their decision making tasks when exploring the
ecological status of human altered streams (Vellido et al., 2007).

e Word segmentation of handwritten text using supervised classification tech-
niques (Sun et al., 2007).

e Investigation of the existence of abandonment routes (ways customers leave
the actual provider) in the Brazilian telecommunications market, accord-
ing to the customers’ service consumption pattern where GTM was used
to learn families to segment and visualise the data, as well as to identify
typical churn routes (Garcia et al., 2007).
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This thesis centres around the use of visualisation tools to enhance the analy-
ses of geochemical data in the presence of missing values. GTM is the method of
choice due to its probabilistic and non-linear nature allowing it to be expanded
and modified for the needs of the practitioners. The model further allows the use
of different diagnostics to extensively analyse the obtained visualisation. Two
major extensions for GTM will be proposed and the actual utility of the method
as well as outstanding issues and problems will be highlighted and discussed.

1.2 Petroleum Exploration

Crude oil and refined petroleum products are some of the most important re-
sources in the modern industrial world. They include fuels in cars, aircrafts, ships
or electricity generators, lubricants in machinery, asphalt for road building and
the manufacturing of all sorts of synthetic materials in the chemical industries
like plastics. They play an important role in our modern society and the demand
is rising steadily together with price and the need for the exploration of more oil
fields.

In ancient times oil was collected at the earth’s surface. Today oil is being pro-
duced from accessible underground reservoirs and it is becoming increasingly
difficult to locate new areas which could have produced hydrocarbon-impregnated
rocks and thus oil. Geologists all over the world look at aerial and satellite im-
ages, examine rocks and take samples to detect if there is a chance of finding oil
producing source rocks in a certain area. Then geophysicists study the physical
properties of the subsurface using various methods like gravimetry and magne-
tometry to decide if the underlying strata are likely to contain traps or faults that
could be filled with hydrocarbons.

Then all the results are accumulated and studied to decide if it is sensible to
build a well and drill into the earth to collect samples of cuttings as well as cores
to analyse them further. At this point the geochemical analysts get involved.
They analyse the composition of the cuttings and cores to estimate if the sampled
rocks have the potential to be source rocks. If this is the case the next step is the
modelling of the basin based on the stratigraphy. The goal is to predict possible
reservoirs for oil and gas and based on these predictions to drill new wells. As
soon as a well finds oil or gas the work is not yet done. To commercially exploit
any reservoir one has to determine how big it is and answer the question how
and where the oil was generated. Depending on the structure in the subsurface
and the composition of the oil one might be able to find more oil reservoirs when
one can trace the source or sources.

For example in one possible scenario the source rock has expelled oil into
different directions and one has found only one of many traps with oil entrapped
in it. In another scenario the oil in the actual trap is being loaded by two or more
different source rocks, where scenario one gets even more likely. To answer these
questions a geochemist tries to perform an oil-oil or oil-source rock correlation.

22




Chapter 1 INTRODUCTION

1.3 Motivation

A geochemist performs exploratory analysis of petroleum geochemical data to
find common patterns to distinguish between different source rocks, oils and
gases. The aim is to explain the source of the petroleum together with its matu-
rity and any intra-reservoir alteration. However, at the outset, the geochemist is
typically faced with a large matrix of samples each with a range of molecular and
isotopic properties, with a spatially and temporally unrepresentative sampling
pattern, noisy data, and often a large number of missing values. This inhibits
analysis using conventional statistical methods. Typically visualisation methods
like principal components analysis are used but these methods are not easily able
to deal with missing data and they struggle to capture global non-linear structure
in the data.

Another approach to discovering complex, non-linear structure in the data is
through the use of linked plots, or brushing, while ignoring the missing data.
These approaches do not make the most use of the available information and
further are likely to miss possible non-linear relations and structures.

The realm of machine learning and probabilistic inference offers a number of
well studied frameworks to fit a probabilistic non-linear model to data, which
can cope naturally with the missing data, for example exploiting the EM algo-
rithm. These methods offer the ability to deal with the above mentioned prob-
lems. The motivation of this project was to complement the known chemomet-
rical approaches on dealing with the issue of missing data and non-linearity in
visualisation by employing and enhancing well known machine learning algo-
rithms. For example one obvious approach is to integrate geochemical expert
knowledge into these models via a range of mechanism including the covariance
structure of the data. By doing so we hope to support the geochemical analyses
and this motivated the project.

1.4 Project Aims

The overall goal of this project has been to develop new and improved statistical
methods for the analysis of complex geochemical data. The aim of this thesis is
to provide an outlook on their possible application and expected performance on
geochemical data with and without missing values. More specifically the aims
can be split into the following objectives:

e Assess the the capabilities of GTM to deal with missing data and compare
these with competing alternative methods.

e Assess the implication of missing data on the visualisation capabilities.

e Automate, improve and assess the initialisation of GTM.

e Evaluate the possibility of including prior information into GTM and assess
if this results in improved model fit and quality of the projection.
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Review extensions of the GTM regarding their usefulness in modelling and
exploring geochemical data.

Apply GTM and its known and newly developed extensions to geochemical
data and assess if the usage of these methods improves the exploration and
modelling of this data.

Explore how GTM and other multivariate methods can be used to help with
the exploration of geochemical data in a real-life environment

To meet these objectives the Netlab (Nabney, 2002) toolbox was used and
where possible modified. For the following known and public algorithms no
source code was available and the algorithms were therefore implemented as part
of this project (EM for missing data (GMM and GTM) and Bayesian Correlation
Estimation). The novel extensions and heuristics were all implemented in Matlab
and also partly in C++ for the usage in pIGI, a computer programme employed
by IGI to explore geochemical data. IGIis a geochemical consulting company and
the industrial CASE partner for this project.

1.5

Report Overview

This thesis is structured into 8 chapters, the remainder of which are organised as
follows:

Chapter 2

Chapter 3

Chapter 4

Chapter 5

introduces the basics of geochemistry. It gives an overview of the process for
obtaining the data and the commonly used techniques to analyse the data.
It concludes with a overview of the usage of multivariate and statistical
methods in the subject area.

establishes and explains the different toy data sets which are used to illus-
trate, analyse and benchmark the different algorithms and methods intro-
duced in this thesis.

defines multiple models and algorithms for data exploration. Their general
benefits are discussed and their usability and differences are demonstrated
using the toy data sets established in chapter 3. The list of models includes
GTM, PCA, PPCA, KPCA, GPLVM, Neuroscale and Isomap.

proposes two novel extensions of the GTM algorithm. The chapter starts
with a general overview of all known extensions of GTM. It continues with
two novel extensions for GTM. The first extension deals with the embed-
ding of prior knowledge about the covariance structure into the algorithm
and is called block GTM (B-GTM). A modification for the EM algorithm is
discussed as well as two techniques to obtain this information. The second
extension called VSRMI, visualisation space reverse mapping initialisation,
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Chapter 6

Chapter 7

Chapter 8

1.6

enables the GTM algorithm to utilise any 2D mapping of a dimension re-
duction algorithm to initialise itself on the data. This allows GTM for exam-
ple to avail itself of local geometry embedding techniques like Isomap to fit
complex data which can not be fit by using the conventional initialisation
via PCA.

comprises of a benchmark study of GTM, the block extensions to GTM
and selected imputation algorithms to assess their capabilities when deal-
ing with missing data. First the theoretical basis of treating missing data is
reviewed. Then a short summary of the most commonly used imputation
methods is given. Afterwards selected imputation methods are introduced
in more detail which cover a broad range of available techniques. The ex-
tension of the EM algorithm in the presence of missing data is then outlined
and consequently extended for GTM and B-GTM. Finally all methods are
benchmarked against each other using the toy data sets and artificially cre-
ated missing data patterns with 10% to 60% missing data.

outlines the application of the discussed methods on real geochemical data
sets. It starts off with discussing the structure of the data, their pre-processing
and possible problems that one may encounter. Then a short overview is
given about the actual implementation and integration of PCA and GTM
into pIGI and other utilities. This is followed up by an introduction about
how one can use the non-linear mapping of GTM for exploratory analysis of
data in real applications. Subsequently three real geochemical data sets are
used. Due to confidentiality issues these are discussed in varying degrees
of detail. The first data set comprises of Barents Sea oils from the public do-
main where GTM was used to identify three clusters of oils from biomarker
data. The second and third data sets are then used for a benchmark and
performance study to assess the novel extensions of GTM.

concludes the thesis with a discussion and summary of the main results. Fi-
nally a survey of the open questions and possible future research motivated
by this thesis is presented.

Publications resulting from this thesis

Refereed international journal papers

M. Schroeder, D. Cornford, P. Farrimond, and C. Cornford 2008. Addressing
missing data in geochemistry: A non-linear approach. Organic Geochemistry
39, 1162- 1169.

Refereed international conference papers

M. Schroeder, D. Cornford and I.T. Nabney, 2009. Data visualisation and ex-
ploration with prior knowledge. International Conference On Engineering
Applications Of Neural Networks 2009, CCIS 43, pp. 131-142, 2009.
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Conference talks

e On “Exploring Geochemical Data with Missing Values” at the Natural Com-
puting Applications Forum Meeting January 2008.

e On “Data Visualisation and Exploration with prior knowledge about group-
ing in the covariance structure” at the Young Statisticians’ Meeting 2009.

Conference poster presentations

e On “Exploring geochemical data using non-linear projection methods” at
the International Meeting on Organic Geochemistry 2007.

e On “High-dimensional Data Imputation and Visualisation: a Geochemical
Case Study” at the Centre for Research in Statistical Methodology workshop on
Bayesian Analysis of High Dimensional Data April 2008.

e On “High-dimensional Data Imputation and Visualisation: Application in
Geochemistry” at the Royal Statistical Society Conference 2008.

e On “Data Visualisation and Exploration in Geochemistry with prior knowl-
edge about grouping in the covariance structure” at the International Meeting
on Organic Geochemistry 2009.

Technical reports

V e M. Schroeder and D. Cornford 2007. Data Visualisation with Missing Data:
A Non-Linear Approach. Technical report NCRG/2007/04, Aston University,
Birmingham.

e M. Schroeder, I.T. Nabney and D. Cornford. Block GTM: Incorporating prior
knowledge of covariance structure in data visualisation. Technical report
NCRG/2008/006, Aston University, Birmingham, 2008.
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1.7 Notation

To ease reading a consistent notation is used throughout the thesis. A bold upper-
case letter M is used to indicate a matrix of n rows and m columns where each
element in the matrix is indicated through the subscripts i = 1,...,n and j =
1,...,m therefore MI-]- is the element in row i and column j of the matrix.

A bold lower case letter x is used to indicate a vector of size n, where each
element in the vector is indicated through the subscript i = 1 : n and therefore x;
is the i-th element of the vector. However x; is the j-th vector or data point. In the
case where a list of multi-dimensional data points needs to be indicated a matrix
is used with data points are aligned as row vectors.

The superscripts o (observed) and m (missing) are used for matrices and vec-
tors alike and indicate the observed or missing values respectively. These may be
different for different vectors, matrices or data points, e.g. (M°,x°).

Functions are indicated by an upper-case Greek letter like © while the corre-
sponding variables or parameters are indicated by lower-case Greek letter like 6.
Further x is used to indicate location in the unobserved latent space while y is
used to indicate data in the observed feature space.

Short Version:

M = matrix M;; = element of matrix

Y = List of vectors y; = single vector

X = vector x, = element of vector

x” = observed part x"" = missing part

©(0) = Function of 6 § = variable/parameter

x = latent space values y = data space observations

L = dimension of latent space D = dimension of data space

K = number of Gaussians or centres N = number of data points

B = number of Radial Basis Functions (RBFs)

[(8) = data likelihood depending on 6 —L = —In[l(#)] (Negative data
log likelihood)
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1.8 Abbreviations

The text contains a lot of abbreviations to make the text more concise. The fol-
lowing table contains a list of all used abbreviations:
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ARMSE  Average Root Mean Square Error
BCE Bayesian Correlation Estimation
B-GTM  Block Generative Topographic Mapping
BPCA Bayesian Principal Component Analysis
DVMS  Data Visualisation and Modeling System
EM Expectation Maximisation
F-GTM  Full Generative Topographic Mapping
GC-MS  Gas Chromatography Mass Spectrometer
GC Gas Chromatography
GMM Gaussian Mixture Model
GPLVM  Gaussian Process Latent Variable Model
GIM Generative Topographic Mapping
GTMI Generative Topographic Mapping Imputation
IGI Integrated Geochemical Interpretation
KPCA  Kernel Principal Component Analysis
MCMC  Markov Chain Monte Carlo
MDS Multi Dimensional Scaling
MI Mean Imputation
MRI Multiple Regression Imputation
MRS Magnetic Resonance Spectroscopy
NCRG  Non-linearity and Complexity Research Group
NIPALS Non-linear Iterative Partial Least Squares
NL Non-linear
NLL Negative Log Likelihood
NNLE  Nearest Neighbour Label Error
MLP Multilayer Perceptron
OLO Optimal Leaf Ordering
PCA Principal Component Analysis
PLS Partial Least Squares
PPCA Probabilistic Principal Component Analysis
QBCE  Quick Bayesian Correlation Estimation
RBF Radial Basis Function
RMSE  Root Mean Square Error
S-GTM  Spherical Generative Topographic Mapping
SCG Scaled Conjugate Gradient
SOM Self Organising Maps
SRI Sequential Multiple Regression Imputation
ST Structure (Standard Deviation around a Gaussian)
VSRMI  Visualisation Space Reverse Mapping
WMI Weighted Mean Imputation
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Chapter 2 GEOCHEMISTRY

Geochemistry (oldgreek % ge = Earth , y5@- geo- = concerning Earth, xnuei
chemeia = Chemistry ) addresses the material composition, distribution, stability
as well as the cycle of chemical elements and their isotopes in minerals, rocks,
soil, water and the atmosphere. This applied science combines geosciences as the
object of investigation with chemistry as the examination method.

2.1 Petroleum Generation and Entrapment

This thesis focuses on the application of visualisation algorithms to petroleum
geochemistry and thus enhance the existing analyses methodology.

The aim of this chapter is to give the reader a short introduction into the area
of petroleum geochemistry. The modern geochemist is faced with evermore data
due to the advances of technology. To help him to explore his data was the major
motivation of this research. This requires a basic understanding of the processes
involved in the generation and accumulation of petroleum to appreciate the ques-
tions a geochemist faces and wants to answer.

A precondition for the existence of o0il is the generation of hydrocarbons if one
neglects the possibility of abiological sourcing of oil and gas (Gold, 1985). In geo-
chemistry hydrocarbons refer to decomposed biological tissue, consisting mainly
of carbon, hydrogen and oxygen with often significant quantities of sulphur, ni-
trogen, trace metals, and other elements. They are generated within organic-rich
sediment, for example coal and bituminous shale. These sedimentary rocks are
called petroleum source rocks if they have the potential to generate significant quan-
tities of hydrocarbons. Many factors can affect the deposition of a potential source
rock. As illustrated in Figure 2.1, a suitable type and a sufficient quantity of or-
ganic matter needs to be produced, be transported, survive and be buried. The
mixture and types of organic chemical compounds in the source rock will, under
the right maturity conditions, result in the production of bitumen and kerogen.
The type of kerogen determines if it will release gas or oil. Kerogen based on
marine organic matter is more prone to oil generation than those of terrestrial
origins. A more detailed explanation can be found in Table 2.1.

After the accumulation of organic matter the next important step in the gen-
eration of petroleum is the thermal maturation of the kerogen as illustrated in
Figure 2.2. Three broad stages, called diagenesis, catagenesis and metagenesis
(Horsfield and Rullkotter, 1994), are involved in this processes.

The diagenesis or early maturation processes occur at low temperatures. The
alteration of the organic tissue is mediated primarily by biological rather than
thermal processes. Decomposer communities rapidly recycle amino acids, sim-
ple peptides and carbohydrates. Larger, insoluble proteins and polysaccharides
need to be broken down by bigger microorganisms first, before they can be assim-
ilated back into the biomass. In this way, degradation products from one group
of organism pass through as food for other groups and in the end anaerobic ar-
chaebacteria, the methanogens, digest simple organic compounds and produce
methane, biogenic gas. This results in the production and release of volatile prod-
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Kerogen Types

Type | Composition | Potential

alginite, ~amorphous organic matter,
I (Liptinite) | cyanobacteria, freshwater algae, and land | very oil prone
plant resins

pollen and spores, terrestrial plant cuticle,
terrestrial plant resins and animal decom-
position resins, terrestrial plant lipids and
marine algae

IT (Extinite) oil and gas prone

terrestrial plant matter that is lacking in

[ (Vitrini
111 (Vitrinite) lipids or waxy matter

gas prone, low oil potential

IV (Inertite) | decomposed organic matter no potential

Table 2.1: Summary of the different kerogen types.

ucts like water, carbon dioxide and lesser amounts of carbon monoxide. Another
product of this stage is kerogen. It is an insoluble residue and consists of resis-
tant biomacromolecules like cutan, algaenan and lignin and some of the simple
alteration products from biological degradation which escaped consumption to
undergo further maturation during diagenesis.

Catagenesis follows diagenesis, and in this phase kerogen is subject to high
temperatures over a long period of time. This maturation stage involves oil for-
mation and subsequently wet-gas generation, due to the breaking of chemical
bonds in kerogen which leads to the break off of smaller molecules from the bulk.
These small molecules eventually become petroleum and natural gas. Increas-
ing pressure and compaction also causes various physical changes of the kerogen
which accompany the chemical alterations. Some of these changes can be mea-
sured later on and allow the geochemist to judge the extent to which kerogen
maturation has proceeded.

Finally during metagenesis one observes gas production at high thermal stress.
As the kerogen is buried deeper in the Earth, temperature and pressure will rise
which results in the oil to gas condensate at 165°C, the remaining condensate is
converted to dry thermogenic gas at 175°C to 300°C, which is the theoretical top
of the thermodynamic stability field for methane.

From a petroleum explorers point of view, hopefully the oil never reaches the
stage of metagenesis but instead escapes from its source rock. This step is called
expulsion and is directly followed by migration where the oil travels from the
source rock to a reservoir or the surface. The migration can be broken down into
three sequential processes (Roberts and Cordell, 1980) as illustrated in Figure 2.3
(based on Mann et al. (1991)). During primary migration the hydrocarbons are
expelled from kerogen particles into silty or sandy liminae or fractures within the
source rock followed by the drainage of aggregated hydrocarbons into the carrier
beds. During secondary migration the hydrocarbons travel from the source rock
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Figure 2.1: The accumulation of organic material can only happen if it is not
decomposed and thus preserved. The material can originate from land plants,
aquatic plants or bacteria in the ground. With permission of IGI Ltd.
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Figure 2.2: The maturation of source rocks is a complex chemical and physical
reaction which is influenced by the depth and temperature of the rock. Depth
and temperature are highly related and thus can be plotted on the same axis.
Certain depth and temperature windows are associated with the formation of oil,
gas and graphite. With permission of IGI Ltd.
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unit via more porous carrier beds to the reservoir or surface seeps. During ter-
tiary migration the hydrocarbons again leave the reservoir by leakage through the
seal, or by spill or by displacement by subsequent hydrocarbon charges to other
reservoirs or to surface seeps. These reservoirs are usually made of sandstones
and fractured limestones in which hydrocarbons accumulate in commercially ex-
ploitable quantities, and which usually have no source-rock potential.

2.2 Petroleum Geochemistry

Petroleum geochemistry has a range of applications in the exploration for oil and
gas reserves. Some of the issues it helps to address are:

e Petroleum potential: Identifying source rock potentials and the type and
quantities of kerogen.

e Petroleum generation: Assessing the source rock maturity to narrow the
possible period of hydrocarbon generation.

e Petroleum expulsion: Estimating how much petroleum is expelled from
the source rock

e Petroleum migration: Predicting possible losses and alteration of hydrocar-
bons on route to the reservoir.

e Petroleum entrapment: Recreating the filling history of reservoirs and trap
formation in relation to the timing of petroleum generation.

e Petroleum survival: Analysing conditions to find out where hydrocarbons
were or were not preserved against the destructive forces of oxidation, crack-
ing and biodegradation.

To deal with these questions the petroleum geochemists are usually provided
with a range of data obtained through different sampling and screening tech-
niques. They then use bulk oil properties, such as total petroleum hydrocarbon
content, visual comparison of gas chromatography-mass spectrometry (GC-MS)
chromatograms, concentrations of source-specific markers, bar plots of the dis-
tributions of oil characteristic pentacyclic aromatic hydrocarbons and lists and
cross plots of diagnostic ratios like the hydrogen carbon index, to make deduc-
tions about the maturity, origin, composition and correlation of oils and source
rocks. In this thesis the main focus will be on biomarker data. Biomarkers are
obtained through GS-MS which is explained later in this chapter. In geochem-
istry, biomarkers are molecules which indicate the existence of past living organ-
isms. They are reported to give information on source, maturation, migration and
biodegradation (Seifert and Moldowan, 1981). This makes them a valuable tool
in oil-source-rock correlation which helps to link a petroleum family to a strati-
graphic unit, facies and /or locality containing the source kerogen (Curiale, 1994).
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Figure 2.3: Oil and gas movement in the subsurface occurs in various stages: (1)
A newly generated molecule moves away from a kerogen particle down a pres-
sure and /or concentration gradient into a micropore in the source rock. (2) The
molecules accumulate to an oil droplet and move through fracture or intergranu-
lar porosity or perhaps by diffusion through the kerogen network. (3) Following
carrier beds the oil moves to the surface as an oil seep or gets entrapped in a
basin. With permission of IGI Ltd.
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This correlation is an essential part of analysing a petroleum system and assists *
in the identification of undiscovered resources (Demaison and Murris, 1984).

There are a variety of different biomarkers, the most used being the steranes
and triterpanes. A discussion of these is beyond the scope of this thesis but the
standard reference is the biomarker guide by Peters and Moldowan (1993). A |
common way to analyse and look at them are key ratios. These ratios are based
on prior expert knowledge due to research and previous experience in the field.

These ratios are then used in cross plots or data tables. One example is the
use of sterane ratios to reveal differences in secondary migration (Seifert and
Moldowan, 1981) as shown in Figure 2.4b. Another example is the usage of key
variables in a ternary plot, such as Cy7, Cag, Co9 which can be used to resolve ter-
restrial, lacustrine and marine sources (Huang and Meinschein, 1979) as demon-
strated in Figure 2.4a.

Most of these ratios, cross plots and ternary plots are based on empirical ev-
idence and practical experience. Their use has proven to be successful and the
impracticality of doing cross plots for all the available variables tempts the prac-
titioner to neglect most of the other available variables. For example even if one
only measures 70 variables one ends up with (70x69)/2=2450 possible bi-plots
(cross plots). Another problem with bi-plots is the constraint to only two, or in
the case of ratios, 4 variables. Complex patterns might stretch across multiple
variables and it might not be possible to identify these when just using bi-plots.
This motivates most of the research in this thesis since the usage of the latest
multivariate methodologies in data exploration and visualisation might provide
benefits for practitioners in geochemistry who wish to explore their data more
thoroughly.

2.3 Gas Chromatography-Mass Spectrometry (GC-MS)

GC-MS is one of the most powerful and widespread analytical techniques avail-
able to identify biomarker components in hydrocarbon samples. The method
combines the features of gas-liquid chromatography and mass spectrometry to
extract and identify chemical components within a test sample. The GC-MS pro-
cedure is separated into two processes as illustrated in Figure 2.5. In the first
process, the gas chromatograph, the tested substance is mixed into a solubilis-
ing phase and then travels through the capillary column under constant heating.
One has to note that the set up, i.e. column dimensions (length, diameter, film
thickness), will influence the end result as well as the solubiliser properties (e.g.
5% phenyl polysiloxane). While travelling through the column the differences
in solubility and diffusivity of different molecules in the mixture will separate
the molecules over time. This time difference is measured when the different
molecules leave or elute from the gas chromatograph and is called the retention
time. In the second process a mass spectrometer captures, ionises, accelerates,
deflects, and detects the ionised molecules once they elute from the gas chro-
matograph. This is done by breaking each molecule into ionised fragments and
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Figure 2.4: In geochemistry cross and ternary plots are common to interpret the
geochemical compositions of samples and to help with the determination of their
origin and possible alteration processes. a) Ternary plot of sterane composition to
resolve terrestrial, lacustrine and marine sources. b) Cross plot of sterane ratios
to reveal differences in secondary migration. With permission of IGI Ltd.
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Figure 2.5: Schematic of the GC-MS: The GC-MS works by injecting the sample
into a carrier phase (usually an inert gas) which splits the molecules over time
by letting them travel through a column and by heating them up and thus elut-
ing them at different points in time. Attached to the end of the GC is a mass
spectrometer which is used to detect the different molecules. Source: Wikipedia
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Figure 2.6: Examples of typical GC-MS charts running over the retention
time of the analysis. The different spikes mark the detection of chemical
molecules which have been picked up with different levels of intensity. Source:
http://geology.gsapubs.org/content/37/10/875/F2.large.jpg
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detecting these fragments according to their mass:charge (m/z) ratio. The result
of this detector is amplified and fed either to a chart recorder or, more commonly,
to a computer for storage. A sample of this chart or chromatogram can be seen in
Figure 2.6.

Peak identification and quantification: Given identical GC conditions (i.e. col-
umn length, stationary-phase type and thickness, carrier gas type and flow rate,
oven temperature programme) and using a standard oil sample one can tenta-
tively identify the components in a chromatogram using standard oil samples
analysed under identical conditions. There are ways to automate this process
(Christensen et al., 2004) however processes like biodegradation may complicate
the analysis.

Once the components in the samples are matched with the peaks one can try
to quantify the relative amount of these components in the given sample. This
can be done in two ways: either by measuring the height of a peak or the area
underneath it. In general peak area measurement, as shown in Figure 2.8, pro-
vides the most accurate results if all components are fully resolved. Peak height
measurement may be preferred when resolution is relatively poor or when only
a chromatogram is available. In the case of partially resolved peaks IGI Ltd. takes
the height of each peak as the distance between the apex of the peak and a line
drawn half-way between the baseline on the fully-resolved side of the peak and
the valley between the two partially resolved peaks as demonstrated in Figure
2.7. In the case where absolute concentrations are required it is necessary to add
an internal standard to the sample; i.e. a known amount of a compound that
does not occur naturally in the sample and which is fully resolved from other
components in the chromatogram. However this has to be done before one starts
the GC-MS. Another issue is the baseline of a chromatogram which is usually not
flat throughout. This is illustrated in Figure 2.9. (A) First there is a gradual then
rapid increase in the baseline through column bleed of the liquid stationary phase
which gives a background signal. (B-C) The amount of bleed increases with in-
creasing temperature until maximum temperature programme is reached. (D)
Over the time of the programme the baseline stays stable, (E) it suddenly drops
until when the oven rapidly cools down at end of the temperature programme.

2.4 Chemometrics in Geochemistry

Analysis of geochemical data is an important part of the oil exploration pro-
cess. The science of extracting information from chemical systems by data-driven
means is called chemometrics. Chemometrics primarily involves the use of mul-
tivariate statistical methods for the analysis of analytical chemistry data (Brere-
ton, 2007). Multivariate statistical methodologies can help to deal with extensive
amounts of compound-specific data and might reveal interesting patterns to help
to spot anomalies which might be overseen if one relies only on key ratios and

known cross plots. With regards to geochemistry these methods are used ex-
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m/z 191

Figure 2.7: Measuring partially resolved peaks is done by drawing a baseline
between the baseline on the fully-resolved side of the peak and the valley of the
partially resolved peak. The distance is then measured from the apex of the peak
to the red dotted baseline. With permission of IGI Ltd.
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Figure 2.9: Baseline signature of a blank sample run: (A) Gradual then rapid
increase in the baseline through column bleed. (B-C) Increase of bleed with in-
creasing temperature until maximum temperature programme is reached. (D)
The baseline stays stable. (E) Sudden drop of baseline when the oven rapidly
cools down at end of the temperature programme. With permission of IGI Ltd.
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tensively in environmental sciences, where one regularly faces large data sets,
Kettaneh et al. (2005). i

Another advantage of multivariate methods is noise reduction. Noise reduc-
tion is obtained when more than one variable describes the same underlying pro-
cess (i.e. interrelated variables). Examples of correlated variables are diagnostic
ratios like heptadecane/pristane and octadecane/phytane, which describe the
same process, namely biodegradation. Likewise if several variables relate to the
same process (e.g., thermal maturity, depositional environment and in-reservoir
degradation) the combination of them will be less affected by noise, so long as
the noise on each is uncorrelated.

One of the main tools used for data visualisation is principal component anal-
ysis (PCA) (Jolliffe, 1986). PCA is based on multivariate theory (Kvalheim and
Karstang, 1987; Kvalheim, 1987a) and is very popular within the chemometrics
community (Kvalheim and Telnaes, 1986a; Kvalheim and Telnaes, 1986b). In gen-
eral PCA has three main applications. The first is the usage of PCA for the pre-
processing of data to reduce the dimensionality and consecutively analyse this
reduced data set. In a recent example PCA was used as a pre-processing step be-
fore clustering wells and springs for groundwater. This helped to showed similar
geographical trends in the trace element chemistry of the wells (Farnham et al.,
2000).

The second is the usage of PCA to identify trends and clusters in the corre-
lations of the used variables. An example is the work of Mead et al. (2005) who
tried to assess the sources of organic matter in sediments and soils of sub-tropical
wetland and estuarine systems, in Florida Coastal Everglades. They used PCA
loadings to obtain a better resolution of input changes regarding the organic mat-
ter along the landscape.

The third is the usage of PCA as a visualisation utility where cross plots be-
tween the different principal components are used to find patterns in the dis-
tribution of the samples. An example is the chemotaxonomic classification of
fossil leaves by Lockheart et al. (2000) where PCA was used to emphasise the dif-
ferences between genera and individual specimens. In another example Walker
et al. (2005) used PCA to differentiate between sources of polycyclic aromatic
hydrocarbons when investigating the contamination of coastal sediments in the
Elizabeth River, VA, USA.

These categories are not mutually exclusive. In a study about sources and dis-
tribution of organic mater, in sediments of the Atchafalaya river in the northern
gulf of Mexico, the loading plots of PCA were used to identify peculiar clusters of
biomarkers. Together with the score plots this helped to identify differences and
trends in the samples (Gordon and Gotii, 2003). In a source rock study Odden and
Kvalheim (2000) used PCA as pre-processing step to remove non-discriminating
variables. They then used score plots to identify and remove outliers in their
dataset. The loading plots then were used to identify the hydrocarbon compo-
nents which were most robust and significant when separating the two source
rocks.
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There is also research on the handling of missing data which can generally be
split between the treatment of genuinely missing unknown data and the treat-
ment of “zeros” in compositional data where concentration of measured quan-
tities could not be detected because they were below the detection limit of the
analytical machines (i.e. censored data).

Work on the latter problem has been performed by Farnham et al. (2002)
who looked at the treatment of non-detects in ground water data and imput-
ing zero, the detection limit or half the detection limit for missing values. Other
approaches dealing with rounded zeros include the use of Markov Chain Monte
Carlo Methods (MCMC) (Thié-Henestrosa and Martin-Fernandez, 2003). To pre-
vent the imputation of negative values Palarea-Albaladejo and Martin-Fernandez
(2008) used a log transform model and utilised the Expectation Maximisation
(EM) algorithm to estimate the undetected values.

To handle genuinely missing data a popular method of choice is the the non-
linear iterative partial least squares (NIPALS) algorithm. This algorithm was first
extended by Christoffersson (1970) to find the first two principal components in
PCA with missing data and the model was later generalised for arbitrary num-
bers of components (Grung and Manne, 1998). An example for its use is the
work by Dray et al. (2003) whoo utilised the NIPALS algorithm when mapping
data in geographic information systems. Other recent work by Dickson and Gib-
lin (2007) used a regression approach utilising self organising maps (SOM) and
a regularised EM algorithm to estimate missing trace elements in ground water
data.

In petroleum geochemistry, multivariate statistical methods are used more
rarely. Commonly oil and source rock correlation has been undertaken using
various comparisons of bulk, molecular and isotopic properties. Examples of
the approaches used by a number of laboratories on a common set of data are
reported in Magoon and Claypool (1985). These approaches range from semi-
quantitative comparisons of visual similarity (e.g. ++, +, +/-, -, =) and correlations
of molecular ratios together with matrices of correlation coefficients and deriva-
tive dendrograms. The first use of multivariate statistical methods can be dated
back to the late 1980s when, for example, PCA was used by Telnaes and Dahl
(1986), who anchored their statistical analysis to reality by cross-plotting the ex-
tracted PCA scores against molecular ratios dominantly controlled by a single
process (i.e. Cao/(Coptcay) Tri-Aromatic Sterane ratio as a measure of maturity).
Further PCA has been used extensively in different biomarker studies (Fernan-
des et al., 1999; Napitupulu et al., 2000; Niggemann and Schubert, 2006) where
the loadings were used to identify key biomarkers responsible for correlation or
separation. In one study Kvalheim (1987b) used PCA to identify source specific
parameters in a input matrix consisting of Cs and Cy saturates from a variety of
different sources including West Texas, New Mexico, Colorado, Montana, South
Dakota, the Texas Gulf Coast and the Los Angeles Basin. Other studies reflect
a dichotomy of approaches based on using all available data i.e. compounds or
ratios thereof (Justwan et al., 2006) versus using selected data focussing on one or
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a few geological processes such as organo-facies, maturation, fractionation and
bacterial degradation (Zumberge, 1987; Peters et al., 2007). Combined approaches - |
include the use of different sets of variables to create multiple PCA models which
helped Pasadakis et al. (2004) to study the Williston Basin to characterise different
petroleum families.

A word of warning is needed. There are many problems like non-normality
and noisy data which need special pre-processing treatments (Kvalheim et al.,
1994). Other problems especially with geochemical data are small sample sizes.

A good paper discussing these problems has been published by Reimann et al.
(2002). In the applied case study in chapter 7 some aspect of it will be discussed
in more detail.

2.5 Summary

Looking at the methodologies employed in geochemistry for petroleum explo-
ration and at the academic literature we can identify four major issues which will
be addressed in this thesis to further the knowledge in this area:

e There is only a limited use of multivariate statistical methods in the geo-
chemical community and the utility of other methods is still open to be ex-
plored.

e Until now no work has been done in the geochemical community with re-
gards to probabilistic or non-linear visualisation methods.

e Until now no work has been done to assess the performance of different
methods to treat missing data in petroleum geochemistry.

e There will be a problem when GC-MS data from different labs need to be
analysed together. The peak heights and thus measurements are dependent
on various factors like the amount of material injected into the specifications
of the used machine. This is especially problematic where no measurements
for a reference sample are available.
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In this thesis several data sets are used to for the demonstration or test of dif-
ferent algorithms. In this chapter these data sets are introduced. The S-shaped
and Swiss-roll toy data are used to demonstrate the fitting of the different visu-
alisation methods discussed in chapter 4. The multi phase oil flow data as well
as the 20D and 60D toy data sets are used to benchmark different extensions for
GTM in chapter 5 and to benchmark different imputation methods respectively
in chapter 6. The real data were supplied by IGI and are based on samples from
oils in the Barents Sea, North Sea and from a region in Africa. These data sets
will not be introduced in this chapter. They will be introduced and discussed in
chapter 7.

3.1 S-shaped data

This three dimensional dataset was created using two semi-circles in two dimen-
sions and a uniformly random distribution of points along the third dimension.
The shape of the data is S-like and is divided into three equally big classes over
the length of the manifold. This data set is used to illustrate how the different
models project higher dimensional data onto a lower dimensional manifold. Fig-
ure 3.1 shows the structure as well as a projection obtained by using the first two
principal components of PCA.

3.2 Swiss-roll data

This three dimensional data set is based on the Swiss-roll. It is highly non-linear
due to the inwards curving structure. It can be constructed by drawing a circle
with continuously growing radius over time which gives it a spiral like structure.
As with the S-shaped data the third dimension is given by a uniform random dis-
tribution. It is a data set used in the machine learning community to illustrate the
advantages of local embedding techniques (Roweis and Saul, 2000; Tenenbaum
et al., 2000; Harmeling, 2007; Belkin and Niyogi, 2003) as discussed in chapter
4. Figure 3.2 illustrates the structure and how PCA fits this data. As expected
PCA fails to pick up on the non-linear structure due to the inherent limitations
of the algorithm based on the restriction to a linear formulation of the mapping
function.

3.3 Muilti phase oil flow data

This is a twelve dimensional data set containing data from the oil flow in a pipeline
(Bishop and James, 1993). The data can be separated into three known classes cor-
responding to the phase of the oil, water and gas mixture as demonstrated in Fig-
ure 3.3(a). The data are collected from a non-invasive monitoring system based
on gamma rays. The data set arises from a set of three horizontal and three ver-
tical beam-lines along which gamma rays, at two different energies, are passed
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through the pipeline. By measuring the degree of attenuation of the gamma rays, -
the fractional path through the oil, water and gas mixture can be determined. The
data set was synthetically sampled by simulating the physical processes in the
pipe, including the presence of noise determined by photon statistics. The data
set is widely used in machine learning to demonstrate the capabilities of cluster-
ing and visualisation algorithms (Bishop et al., 1996; Lawrence, 2005; Haese and
Goodhill, 2001; Blanchard et al., 2006). It is therefore well understood and a good
benchmark for the purpose of this thesis. Further if one looks at the structure
of the covariance in Figure 3.3(b) one can see a chess board pattern. This comes
as no surprise since one would expect the three beams in one setting, as well as
the two energies to be correlated. Therefore one might be able to reorder the co-
variance into a block structure, which will be explored in chapter 5. Further the
structure seems to be non-linear as the first three principal components of PCA
can not fully capture it (Bishop ef al., 1996; Lawrence, 2005) as shown in Figure
3.4.

3.4 20 and 60 dimensional toy data

To simulate a high dimensional data set which has non-linear relations between
the variables and a pre-known block structure in the covariance matrix two toy
data sets were created. One is 20 and the other 60 dimensional. The data were
sampled from a GTM with an 8 x 8 grid in the latent space. This was done by
randomly choosing a Gaussian for each data point and sampling it individually
from this Gaussian. The grid was projected into a higher dimensional space us-
ing a radial basis function (RBF) network with 4 hidden units (2 x 2 grid). The
weights were randomly sampled from a normal distribution with zero mean and
unit variance. Since the RBF was chosen with random weights the restriction to
a 2 x 2 RBF ensured a non-linear but smooth mapping. The settings are sum-
marised in Table 3.1. The GTM used to generate the data had a block diagonal
covariance matrix and experiments were conducted with a relative high level of
variance and correlation as can be seen from Figure 3.5. In both cases several
GTMs were sampled until one fulfilled the criteria of generating data where the
underlying structure could not be picked up with PCA. To make the data visually
interpretable the 8 x 8 grid was split into 4 classes with the 16 Gaussians in one
corner of the grid being defined as one class. This makes it possible to assess if the
visualisation or classification methods manage to capture the large scale structure
of the data. As intended this is not the case with PCA as can be seen in figure 3.6
and 3.7.
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Parameters Value ‘
Base domain 8x8 Gaussian grid
Number of samples 100
Dimension of base data 2
Projection function 2x2 RBF
Dimension of the projected data 20 and 60

Table 3.1: Summary of the specifications for the GTM respectively generating the
20D and 60D toy data.
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Figure 3.1: (a) The S-shaped data in 3D. (b) The PCA projection or scores plot for
PC1 vs PC2. (c) The PCA projection or scores plot for PC1 vs PC3. (d) The load-
ings plots shows the contribution of each dimensions (labelled D1, D2, D3) to the
first two principal components. A very high or low value on the axes denoted by
the principal component translates to a high or low contribution. (e) Percentage
of the original variance in the data explained by principal components.
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Figure 3.2: (a) The Swiss-roll data in 3D. (b) The PCA projection or scores plot for
PC1 vs PC2. (c) The PCA projection or scores plot for PC1 vs PC3. (d) The PCA
projection or scores plot for PC2 vs PC3. (e) Percentage of the original variance in
the data explained by principal components.
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Figure 3.3: Description of the possible phases for the multi phase oil data by
Bishop as well as a plot of the correlation coefficients to visualise the covariance
structure in the data.
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Figure 3.4: The plots show the PCA analysis of the multi phase oil flow data.
(a) The PCA projection or scores plot for PC1 vs PC2. (b) The PCA projection
or scores plot for PC1 vs PC3. (c) The PCA projection or scores plot for PC2 vs
PC3. (d) Percentage of the original variance in the data explained by principal
components.
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Figure 3.5: Representation of the covariance structure by plotting the correlation
coefficients. (a) The 20D and (b) the 60D data set created by GTMs according to
the specifications in Table 3.1.
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Figure 3.6: The plots show the PCA analysis of 20D toy data set. (a) The PCA
projection or scores plot for the first two principal components. (b) The PCA
projection or scores plot for PC1 vs PC3. (c) The PCA projection or scores plot
for PC2 vs PC3. (d) Percentage of the original variance in the data explained by
principal components.
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Figure 3.7: The plots show the PCA analysis of 60D toy data set. (a) The PCA

projection or scores plot for the first two principal components.

(b) The PCA

projection or scores plot for PC1 vs PC3. (c) The PCA projection or scores plot
for PC2 vs PC3. (d) Percentage of the original variance in the data explained by
principal components.
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Chapter 4 DATA MODELLING AND EXPLORATION

Visualisation of high-dimensional data requires a method to map, or project,
the high-dimensional data onto a low-dimensional representation while preserv-
ing as much information about the structure in the high dimensional space as
is possible. This low-dimensional representation is usually two-dimensional to
be shown on screen or paper and will be referred to as the visualisation space.
Employing a two-dimensional visualisation space allows the human analyst to
explore the data and discern structure easily and naturally. There are many pos-
sible ways to obtain such a low-dimensional representation. Context will often
guide the approach, together with the manner in which the visualisation space
representation will be employed. In general the methods to obtain this lower-
dimensional representation are referred to as latent variable models. Some meth-
ods, such as Principal Component Analysis (PCA) and Factor Analysis (Chatfield
and Collins, 1980), linearly transform the data space and project the data onto the
visualisation space while retaining the maximum information 1. Other methods,
like Kohonen, or Self Organising, Maps (Kohonen, 1995) and the Generative To-
pographic Mapping (GTM) (Bishop et al., 1998; Bishop et al., 1996), try to capture
the topology? of the data. Geometry-preserving methods like Multi-Dimensional
Scaling (MDS) try to find a representation in visualisation space which preserves
the geometric distances between the data points. With the Neuroscale algorithm
the MDS approach has been extend to preserve the typological order of the data
as well (Lowe and Tipping, 1996). Other modifications of the MDS algorithm like
Locally Linear Embedding and the Isomap algorithm (Roweis and Saul, 2000;
Tenenbaum et al., 2000; Saul and Roweis, 2003) try not to preserve the euclidean
geometric distance between data points but instead try to preserve the distances
of a local metric which is based on a connected graph.

This chapter describes the main visualisation and modelling algorithms that
underpin our work or that are relevant to enhancements. First the EM algorithm
will be introduced in its general form. This is necessary since it is a key element of
the GTM algorithm and the extensions proposed to it in this thesis. Afterwards
there is a short introduction to mixture models and Gaussian mixture models,
which will aid the understanding of GTM. The following section focuses on GTM,
which can be described as a constrained Gaussian mixture model.

The next section will only give a very brief overview of additional visualisa-
tion algorithms and a more technical discussion can be found in the Appendix
B. First there is an explanation of PCA, which is a widely employed method and
generally provides a benchmark in this thesis. This is followed by an introduction
to PPCA, the probabilistic formulation of PCA, and which is important to explain
the theory behind the two further models: Kernel PCA (KPCA) and the Gaussian
Process Latent Variable Model (GPLVM). To complete the review a short intro-
duction to MDS and two methods, Neuroscale and Isomap, which are related to
MDS is given. The S-data and Swiss-roll data set are used throughout the chapter

IStrictly the 1st principal component explains the maximum variance, which in a Gaussian
setting equates to information in the Fisher entropic sense.

2 A topological mapping is one that seeks to preserve local neighbour relations; two points that
are neighbours in the data space should also be neighbours in the visualisation space.
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to illustrate the practical application of the methods described.

4.1 EM Algorithm

The EM algorithm (Dempster et al., 1977) is a general method to cope with incom-
plete data or missing values when finding the maximum likelihood estimates of
the parameters of an underlying distribution. This can be exploited when one
has to optimise a likelihood function that is analytically intractable but can be
simplified through the assumption of additional hidden or missing parameters.

In the general case we observe the data X generated by some distribution. We
call X the incomplete data and we assume that a complete data set Z = (X,Y) exists
with a joint density function, which depends on the parameter vector 6:

p(z]6) = p(x,y|0) = p(ylx 0)p(x|6) -

With this density function we can define a likelihood function

161z) = p(X,Y[6) = p(YIX,0)p(X|6) = p(Y|X, 6) ;P(XIYIB)

called the complete-data likelihood. Y is unknown, random and generated by an
underlying distribution. The EM algorithm finds the expectation for the complete-
data likelihood based on the current parameter estimates 8", the known data X
and the unknown data Y. This is done through an iteration in 2 steps: the E-step,
which estimates the expectation denoted as Q(6',6'~!) for the posterior p(Y|X)
and the M-step, which optimises the parameters of the expectation. This expec-
tation Q(6', 6'~1) is defined as:

Q6,61 = E[logp(Y|6)|X, 67"

These parameter estimates are used to evaluate the posterior as well as 8 and
they are are optimised to increase Q. In the M step we determine 6' by maximising
this expectation

6 = arg max Q(8, Bi_]) ,
b

which is repeated as often as necessary in combination with the E step. Each iter-
ation will increase the expectation as well as the log likelihood until the algorithm
converges. However there is no guarantee of obtaining the global maximum like-
lihood estimate and it is quite common to get stuck in a local maximum of the
likelihood function. Hence the initialisation of this method is very important. It
will be discussed in detail in the section about the GTM algorithm and one of our
novel extensions in chapter 5 is also dealing with this problem.
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4.2 Mixture Models

Mixture Models are generally used to model the probability density of data given
the assumption that the data is an accumulation of different components, each
with its own component density. Alternatively, they are used to approximate
more complex densities by using a combination of simpler densities. The as-
sumption is that the density of the data can be approximated by a linear combi-
nation of simple component densities p(y|6x) (Bishop, 1995):

p(yl6) = Z arp(y10k) (4.1)
k=1

with & being the mixing coefficients satisfying the conditions:

K

Yoap=1 0<a <1,

k=1
which guarantee that p(y|6) is a valid density function. Assuming that all com-
ponents have the same functional form, the parameters of the mixture model are
0 = (04,...,0x) and a;. Then each component density is specified by the param-
eter vector 8;. A mixture model with proper and sufficiently many components
is able to represent arbitrarily complex probability density functions when the
parameters are selected appropriately. To fit the model to the data one first com-
putes (8), the likelihood of 8 for the given data:

N N K
[1ryale) =11 {Zaw(ynwk)} =1(0) .

n=1 n=1 Lk=1
To determine the parameters of a mixture model from a set of data, we minimise
the objective function given by the negative log likelihood for the data set:

—L(8) = —Inl(6)

N k=1
- _ Z ln{ztxk}?(yﬂek)} /
n=1 K

This can be done with the EM Algorithm where we assume that the observed data
Y = (y1,...,yn) are incomplete. A set of discrete index variables z, is introduced
for each data point y,. The index variable will be z;, = 1 only if the the data
point y, was generated by the kth component of the mixture model, otherwise
kn = 0.
This implies a new negative log likelihood, the complete likelihood, which can
be written as

- comp = Z, ].I’IH {’X k"P Yn |9k kn} ’ (4.2)

~L(6) comp = Z szn In {ayp( Ynlak)} , (4.3)

n=1k=1
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SEsseeaeives

because the binary form of zy, implies that for any index k only one will be 1 and
all others will be 0. Therefore the sequence of products [ collapses to only one
element and thus we can move the logarithm inside the sum. This simplifies the
whole equation because the index variable zy, decouples the single component
densities. Having this complete log likelihood and treating zy, as the missing
data we can write the EM algorithm as follows:

e E-Step:
Compute the expectation of —L(8)comp with respect to the variables
Zin and fixed posterior p(6i|y,) given by

N K
(—L(0)comp)z = — ) Y p(6ilyn) {In(ar) + In(p(ynl6e))}

n=1k=1

and

ajep (yn|6)
6 n = . 44
plartyn) = o' e @)

This term is called posterior responsibility and this value is an esti-
mate on how likely it is that the density with the parameters given by
0 generated the data point y, given all the other possible K parameter
vectors.

e M-Step:

Update parameters by minimising the negative log likelihood with re-
spect to the parameters

grew — arg, mjn(—L(@)comp)Z .

4.3 Gaussian Mixture Models

Gaussian Mixture Models (GMM) are frequently used for density estimation as
well as clustering of data. They are a special case of mixture models with K Gaus-
sian components, where the distribution of each component is defined as

P(Y‘Qk) (Y'yklz‘k> |Z 11/2(127-[)D/2 exp{_%(y_”lk>TZJ<_1(y_yk>>} ’

where Iy is a D x D symmetric and positive-definite covariance matrix and py is
the mean vector of component k. As in the general mixture model the parameters
of the GMM can be determined via maximum likelihood estimate using the EM
algorithm.

e E-Step:

The posterior probability p(6¢|yn) or posterior responsibilities, given by
equation (4.4), needs to be computed for every component.

e M-Step:
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The parameters for the mean vector and the covariance matrix are ob-
tained through the minimisation of the negative log likelihood —~Leomp
with respect to these parameters. For the mean vector we obtain the
following equation:

_ ZTI;]:l P(9k|yn)yn
2111\7:1 P(Gk‘yn)

i.e. the usual equation for estimating the mean but modified to weight
every data point by the responsibility of the Gaussian centre.

The update equation of the covariance matrix depends on the type of
covariance structure.

Spherical covariance matrix, thus all variables are independent but
share the same level of noise:

(4.5)

2
o} 0o ... 0
2
T, = 0 of
0
0 0 o

() = 15000 POy lyn — el ® |
P Sn p(Belyn)

Diagonal covariance matrix, thus all variables are independent but
have different levels of noise:

2
07 k o ... 0
2
5, = |0 % i
2
0 0 TD

’

(01?2 = 1 50y P(6lyn) Wan — pax)®
’ D Snir p(6klyn)

where 14 , denotes the value of the n-th data point in the d-th dimen-
sion.

Full covariance matrix, thus there are dependencies or correlations be-
tween the variables and the levels vary:

2

(71/1 01,2 01,D

2

o (o

Y = 2,1 2,2
UD-1,D

2

Opl1 .-+ Up,D-1 UD,D
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1 21]1\7——1 p(ekl}'n)(yn ]‘k) (5’ n P‘k)T- |
2 = — . 4.6
( k) D 231\,——1 P(ekl Yn) *0

4.4 Generative Topographic Mapping
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Figure 4.1: The non-linear function Z(x, W) defines a manifold S embedded in
the data space given by the image of the latent variable space under the mapping
X —y.

The essence of GTM is to fit a density model to the data in the data space. The
GTM is constrained to lie on a two-dimensional manifold. This can be envis-
aged as a flexible “rubber sheet”, typically two-dimensional, which is bent and
stretched in the high-dimensional space to best fit the data density. This rubber
sheet consists of a grid of points in the data space which are connected via a non-
linear mapping function to a contorted grid of Gaussian centres in the data space.
Thus the GTM may be described as a mixture of Gaussians constrained to lie on
a two-dimensional manifold. To learn the intrinsic structure in the data, the rub-
ber sheet is distorted by learning the non-linear mapping function using an EM
algorithm so that the model best explains the data.

Latent variable models are usually defined as a mapping from data space to
visualisation space. In contrast to this obvious mapping direction the GTM al-
gorithm is defined as a mapping from visualisation to data space and applies
Bayes’ theorem to induce a posterior distribution in the visualisation space given
the data.

First one considers a function y = Z(x, W), where W is a weight matrix and
the exact form of & will be given later. This function maps points x in the L-
dimensional visualisation space onto the points y which lie on an L-dimensional
non-Euclidean manifold S embedded within the D-dimensional data space, shown
for L =2 and D = 3 in Figure 4.1.
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Defining a probability distribution p(x) for the data points in the visualisation
space will induce a corresponding distribution p(y|x, W) in the data space. Since
in reality the data will not sit directly on the manifold, it is reasonable to include
a noise model for the data y. The distribution of y is chosen to be a radially-
symmetric Gaussian centred on &(x, W) with variance p~1, for given x and W, so
that

w5 = (£) oo { £ 1w -y 17} 47)

The underlying assumption of the now spherical noise model is that all data di-
mensions are independent of each other and have the same amount of noise. Note
that it is possible to use other probability distributions p(y|x) (e.g. Bernoulli for
binary variables) or a combination of different distributions from the exponen-
tial family (i.e. see Clark and Thayer (2004) for examples and exact definition).
For a given matrix W, the distribution of y is obtained by integration over the
distribution of x,

p(yIW,B) = [ plylx W, B)p(x)dx . @8

For a given dataset Y = (y,...,yn) of N data points, the parameter matrix W and
the inverse variance f8 are estimated using the maximum likelihood principle.
This can be done via minimising the negative log likelihood, given by

—L(W,B) = —In I_Il p(yn|W,B)
n

After determining the prior distribution p(x) and the functional form of the map-
ping Z(x, W) it is in principle possible to determine f and W by minimising
—L(W, ). But the integral over x in (4.8) will, in general, be analytically in-
tractable. Therefore a specific form of p(x) is considered, where p(x) is given
by a sum of delta functions centred on the nodes of a regular grid in visualisation
space

1 K
= Y b x) 49
k=1

in this case the integral in (4.8) can be evaluated analytically. Now every point xi
is mapped to a corresponding point E(x;, W) in the data space, where it forms the
centre of a Gaussian density function. Combining (4.8) and (4.9) the distribution
function in the data space takes the form

K
p(y|W,B) = Z (ylxe W, B) (4.10) -

and the corresponding negative log likelihood becomes
N 1 K
LW, B) == Y Ind o Y plyabe W) ¢
n=1 k=1
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Since the model consists of a mixture of distributions it is possible to find the
optimal solution with an EM algorithm for g and W, after choosing a specific
functional form of Z(x, W). To derive the EM algorithm for the GTM model,
Z(x, W) is chosen to be a regression model, linear in parameters, of the form

E(x, W) = WD (x) , (4.11)

with the elements of ®(x) consisting of B fixed radial basis functions ®;(x) (Broom-
head and Lowe, 1988) and W being a D x B matrix.

In the case under consideration it is assumed that a hidden variable z, in
(4.10) indicates which component (indexed over k) generated the data point y.
Therefore the EM algorithm can be formulated as follows. Assuming that W,
and B,y are given one can use the E-step to evaluate the posterior responsibilities
of each Gaussian component k for every data point y, using Bayes’ theorem

Rkn(wold/ .Bold) = p(xk|yn/woldl ‘Bola‘) (4-12)

— p(}'zz lxkfwold'ﬁold) 4.13
Z}:] p(Y:xIX/'/woldf.Bo[d) ) ( ' )

Then the expectation of the complete data negative log likelihood has the form

(=Leomp(W, B)) Z Z Rin(Woia, Bota) In {p(ynlxe, W, B) } - (4.14)

n=1k=

Minimising (4.14) with respect to W and using (4.7) and (4.11) one obtains

N K
Z Z Rien(Woud, Bota) {Wiew®(xk) — yn} q-)T(xk) =0.

This can be written in matrix notation as
®G, ,®'W!, = ®RY, (4.15)

with @ a B x K matrix with elements ®;; = ®;(x), Y a N x D matrix with ele-
ments 1, R a K x N matrix with elements Ry, and G a K x K diagonal matrix
with elements

N
Gk = Y, Rin(Woia, Bota) -
n=1
Equation (4.15) can be solved for Wiy, using standard matrix inversion tech-
niques like the Cholesky or QR decomposition (Chapra, 2004). Similarly, to min-
imise (4.14) with respect to 8 one obtains the following formula

1
,B new

The EM algorithm alternates between the E-step, given by evaluating (4.12),
and the M-Step, evaluating W,y and PByew, until it converges to a (local) mini-
mum and can be written as:

E-Step:

ND Z Rign (Word, B) | Wiew® (xi) — YnH
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1: Set Wyyg = Wiew and Boig = Prew

2: Calculate Ry, (W4, Bord)
M-Step:

1: Calculate Wpyp, with Ry

2: Calculate Bjew with Ry,

An example of the result can be seen in Figure 4.2 where a GTM was fitted to
the S-shaped data.

4.4.1 Data Visualisation using GTM

The visualisation of data can be achieved using Bayes’ theorem to invert the trans-
formation from visualisation space to data space. Following the choice of the
prior distribution given by (4.9) one obtains a posterior distribution as a sum of
delta functions with coefficients given by the responsibilities Ry,. These can be
used to create a posterior responsibility map for single data points in the two-
dimensional visualisation space. In the case where one has only a small dataset
this might be a valuable way to look at the data if it is integrated in an interactive
view.

In practice, however, looking at the distribution of each data point individu-
ally is impossible and unreasonable for large data sets. It is often convenient to
summarise the posterior distribution by the mean, given by

(xly,, W, B") = [ p(xly,, W", B*)x dx (4.16)
= Yot RenXi (4.17)

and thus obtain a mapping for each data point in the visualisation space. Exam-
ples for this mapping can be seen for the S-shaped and Swiss-roll data in Figure
4.3.

However this can be very misleading if one deals with a posterior distribu-
tion which is multi-modal. A way to check this is to evaluate the mode of the
distribution

MY = arg max Riy » (4.18)
In the case where the mean and mode do not match further analysis is needed.
The mismatch could either indicate a bad model fit or could be a feature of the
data. Anindication could be obtained by looking at the single responsibility maps
given by plotting Ry, on the grid, running over k = (1,...,K). However this is
very tedious and not practicable for non-statistical experts. The recommendation
would therefore be to use the modes only as a diagnostic for a bad model fit.
Therefore if the modes and means are plotted and one can identify cases where
the mode and mean for the same data point do not match, given an appropriate
amount of tolerated variance, one should assume a bad model fit and discard the
actual visualisation or only use it very carefully.
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Figure 4.2: (a) The S-shaped 3D test data. (b) A 15x15 GTM with 16 RBF centres
which was fit to the S-shaped test data after 50 iterations with the EM algorithm
and initialisation with PCA. The GTM manifold has aligned itself to the structure
of the data and fits it nearly perfectly.
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(b) Swiss-roll data

Figure 4.3: Projection of simple data sets using the GTM algorithm which was
initialised with PCA. The structure of the S-shaped data in (a) is captured and
one can clearly see that the class structure is preserved. This is not the case with
the Swiss-roll data in (b) where GTM fails to preserve the structure of the classes.
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4.4.2 Initialising GTM

Initialisation is recognised to be a crucial issue in most non-linear data visualisa-
tion and clustering algorithms. To fit any kind of model one seeks to minimise
an error function in a typically multi dimensional space, which is always a non-
trivial task. The error functions are usually difficult to describe, have multiple
minima and plateaus and thus finding a good solution relies heavily on a good
initialisation. The GTM is no exception, especially since we use the iterative EM
algorithm which is prone to run into local minima.

To initialise the GTM the Gaussian centres need to be placed in the data space.
Thus the weights in equation (4.11) need to be set as well as the variance to be
able to start the EM algorithm and calculate the responsibilities. The initialisa-
tion is crucial because the EM algorithm will try to minimise the complete data
likelihood in (4.11) starting from that initial point. Thus the initial point should
be as close as possible to the global minimum because the EM algorithm will al-
ways decrease the likelihood and thus can not escape from local minima. The
initialisation could be done by just using random weights however practice has
shown (Nabney, 2002; Maniyar et al., 2006b) that a good initialisation for GTM
is along the first one or two principal components of the data with a sufficiently
large variance. One can imagine that the rubber sheet is the hyperplane spanned
by the first one or two principal components. If the data structure is mainly linear
this will lead to good results since most of the structure can already be captured
by PCA which is used to initialise GTM. Subsequently GTM simply fine-tunes
these results. Problems arise when PCA fails to capture the structure, for exam-
ple when the data are generated by a underlying non-linear function like in the
case of the Swiss-roll data or in the case of the toy data sets in chapter 3. This
will lead to a non-optimal initialisation and GTM will in most cases not be able to
fully capture the structure. In the worst case GTM will fail to capture any struc-
ture and produce misleading results, as can be seen with the Swiss-roll data in
Figure 4.3. Figure 4.4 demonstrates a quite simple problem in 2 dimensions on a
data set generated by a sine function. The initialisation with PCA is non-optimal
and leads to a very bad fit of GTM, which cannot identify the actual structure of
the data. However, an alternative initialisation in this case leads to a satisfying
result as can be seen in Figure 4.5. A novel extension of GTM to utilise alternative
initialisations will be presented and discussed in chapter 5.
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O Data
— PCA init
—GTM

Figure 4.4: GTM is initialised with PCA and fitted to a simple sine function. The
GTM fails to capture the structure of the data regardless of the number of iter-
ations of the EM algorithm. The green circles indicate the uncertainty/variance
around the GTM and their size indicates as well that the GTM has trouble to fit
the structure of the data. The green line visualises the actual position and struc-
ture of the GTM manifold and it is obvious that it is not fitting the data at all.
The black line indicates the initialisation which was used at the beginning of the
algorithm, which is the first principal component in this case.
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3.5

¢ Data
— Alternative Init}
—GTM

Figure 4.5: GTM is initialised with a beneficial random initialisation and man-
ages to fit the data with convergence of the EM algorithm after 15 iterations. The
green circles indicate the uncertainty/variance around the GTM and their size
indicates as well that the GTM fits the data very closely. The green circles indi-
cate the uncertainty/variance around the GTM and their size indicates that the
fit is very good. The green line visualises the actual position and structure of
the GTM manifold and it is perfectly aligned with the structure of the data. The
black line indicates the initialisation which was used at the beginning of the al-
gorithm, which in this case was chosen by tying random vectors until a good fit
was achieved.

70



Chapter 4 DATA MODELLING AND EXPLORATION

4.5 Other visualisation algorithms

The following visualisation algorithms are only described very briefly. A more
technical description together with visual demonstrations of their projection ca-
pabilities is given in the Appendix B.

45.1 PCA

Principal component analysis (Jolliffe, 1986) is the most widely used method for
dimension reduction, and thus visualisation. It transforms the data space into a
set of orthogonal principal components which are termed scores. The principal
components can be described as the directions along which the data set has the
biggest variance.

4.5.2 Probabilistic PCA

The probabilistic version of PCA, called PPCA, (Tipping and Bishop, 1999) ex-
tends conventional PCA to a probabilistic framework while not changing the
mapping. The maximum likelihood solution of PPCA has been shown to be
the same as the one obtained through conventional PCA. The model serves as
a building block for other algorithms and it can be extended to Kernel PCA, a
non-linear version of PCA, or to the Gaussian Process Latent Variable Model,
where one integrates over the mapping weights and optimises the positions in
the visualisation space directly.

4.5.3 Kernel PCA

Kernel PCA (Schoelkopf et al., 1998) is a method for using a linear algorithm to
solve a non-linear problem by using a non-linear function to map the original
observations into a higher-dimensional feature space, where the linear PCA al-
gorithm is subsequently used. The downside of transforming the data into a
higher dimensional feature space is that Kernel PCA loses the interpretability of
the loadings for the principal components. Additionally the inverse mapping is
not know most of the time and thus one loses the possibility of projecting the
points in the visualisation space back to the data space.

4.5.4 Gaussian Process Latent Variable Model (GPLVM)

To extend PPCA to GPLVM (Lawrence, 2005) one uses a linear Gaussian process
prior over the space of mapping functions (i.e. over the weights W). The re-
sult is a probabilistic visualisation algorithm which generates a space of possible
mapping functions with the associated probabilities for each mapping. Thus one
can quantify the actual statistics for the mapping of a data point (i.e. the mean
and variance). Like GTM the GPLVM is an generative model and needs to be
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initialised and consequently optimised. However the GPLVM optimises the loca-
tions of the projected data points in the visualisation space directly and thus one
can use an arbitrary projection to initialise the algorithm.

455 MDS

Multidimensional scaling (MDS) (Cox and Cox, 1994) describes a class of meth-
ods which provide insight into the underlying structure and relations of a data set
by providing a geometry-preserving representation of this data set. The under-
lying idea is to use a proximity measures in the data space and the visualisation
space. One then calculates the projection by preserving as much of the original
proximity /geometry as possible while optimising the positions of the data points
in the lower dimensional space.

4.5.6 Neuroscale

Neuroscale (Lowe and Tipping, 1996) is a dimension-reducing and topographic
transformation to visualise and analyse high-dimensional data. It is an MDS style
algorithm however instead of optimising the locations of the projected points
directly one uses and optimises an RBF network to predict the locations of the
data points in the visualisation space.

4.5.7 lIsomap

The Isomap algorithm (Tenenbaum et al., 2000) can be seen as a special type of
MDS where the distances in the proximity measure are chosen to be of a par-
ticular form. These distances are called geodesic and are computed by using a
neighbourhood graph over all the data. The idea is to only use local distances for
every point and compute the global distances along the distribution of the data.
Due to the geodesic distances the algorithm can fit highly non-linear data sets
like the Swiss-role.

4.6 Summary

All the methods described in this chapter have their individual strengths and
weaknesses and an overview of their characteristics can be seen in Table 4.1. The
most commonly used method is PCA. PCA is computationally very fast and easy
to use. For most practitioners it is easy to understand since it is based on under-
graduate mathematics. One can easily relate PCA to regression problems where
one also projects the data points onto a line or hyperplane. The interpretability
of both the loadings and scores is a big asset for many practitioners since they
can investigate the contribution of the variables to the final plots as well as their
relation to each other. Further through the use of cross validation (Krzanowski,
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Probabilistic | Missing | Y = X | X =Y | Non - Local
Data Linear | Structure
PCA E Y Y
BPCA Y Y Y Y
KPCA E Y Y
GPLVM Y E E Y Y Y
MDS Y
Neuroscale Y Y
Isomap Y Y
GTM Y Y E Y Y E

Table 4.1: Overview of the characteristics of the different algorithms. A "Y” indi-
cates the algorithms exhibits the quality, an 'E” indicates that there is an extension
or heuristic to the algorithm that exhibits the quality. The different characteris-
tics are: Probabilistic: Is the method based on a probabilistic framework? Missing
Data: Can the method deal with missing data? Y — X : Does the method provide
a mapping function from data to visualisation space? X — Y : Does the method
provide a mapping from the visualisation to the data space? Non-Linear: Does the
method allow for non-linear mappings? Local Structure: Does the method allow
to explore local structures based for example on a connected graph?

1987) once can identify problems or uncertainties with the projection. The down-
side of the standard PCA algorithm is the inability to directly cope with missing
data as well as the restriction to a linear model. However there are extensions
to the PCA algorithm which can handle missing data and these are discussed in
chapter 6. The probabilistic formulation of PCA called PPCA gives rise to the
non-linear Kernel PCA, GPLVM and can handle missing data. KPCA transforms
the original data space into a higher dimensional feature space using a non-linear
mapping. This way one can introduce non-linearity into the algorithm. How-
ever this transformation also causes a loss of the interpretability of the loadings.
The more principled probabilistic alternative to KPCA is GPLVM which utilises a
Gaussian process for the mapping. The advantages of GPLVM are that it allows
for non-linear mappings, can deal with missing data and exploiting the noise
model can inform the user about the certain and uncertain regions in the projec-
tion. The noise model however is restricted to the visualisation space and thus
one cannot use it to incorporate information one might have about noise in the
data space. Another big advantage of GPLVM is that it can be initialised with
any other mapping algorithm. This way GPLVM is, for example, able to utilise
the advantages of local linear embedding techniques like Isomap. The downsides
of the GPLVM are that there is no interpretability of loadings and the far bigger
computational costs for the algorithm which scales O(N?).

An alternative principled method is the GTM (Generative Topographic Map-
ping) which is based on SOM (Self Organising Maps). The model is probabilistic
and specifies a non-linear mapping from the visualisation space to data space,
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which can be inverted using Bayes’ theorem. In essence the GTM is a constrained
mixture of Gaussians which is fitted to the data using an EM algorithm. The
model can deal with missing data and has a noise model in data space. The noise
model provides evidence of the fit in the data space. Further one can extend
GTM to include expert knowledge and this novel extension will be explored in
chapter 5. Another novel extension developed in the scope of this thesis will deal
with alternative initialisations for GTM. It will enable GTM to be used more like
GPLVM and allow the model to utilise alternative initialisations like local linear
embeddings. These two extensions will also be discussed in chapter 5.

Geometric distance preserving methods based on MDS (Multi-Dimensional
Scaling) are an alternative approach. These methods try to find a projection by
minimising a loss function. Depending on the algorithm they can be computa-
tionally demanding. They have the advantage that one can easily include ad-
ditional knowledge about class labels in the case of Neuroscale or use different
distance measures in the case of local linear embedding techniques like Isomap.
With the exception of Neuroscale, MDS algorithms in general do not provide a
mapping function and thus one needs to recompute the mapping every time one
adds a new point. They further cannot deal with missing data and are susceptible
to noise in the data.
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The GTM algorithm is a well known and often used method within the visu-
alisation community. Multiple extensions have been proposed and developed to
improve the visualisation and extent or adapt it for specific problem scenarios.

The extensions may be separated into three classes: Analytical Extensions e.g.
the magnification factor (Svensén and Williams, 1997) to measure the stretching
of the manifold, Structural Extensions e.g. the hierarchical extension for GTM to
explore large scale data sets (Tino and Nabney, 2002) and Fundamental Extensions
e.g. the substitution of the Gaussian nodes by hidden Markov tree models (Gi-
anniotis and Tino, 2008). The first class consists of extensions providing addi-
tional analytics, typically focusing on gaining more knowledge from the actual
projection. They provide the practitioner with additional possibilities to explore
the data space by utilising the characteristics of the GTM. The second class con-
sists of single or structural alterations to the algorithm to deal with different data
types, non-Gaussian distributions or employ a full Bayesian treatment. All these
alterations do not change the algorithm in a major way. This allows them to be
combined with the analytical extensions and possibly amongst themselves. The
structural extensions consists of major changes to the algorithm to deal with dif-
ferent classes of problems, use different metrics or substitute the mixture com-
ponents with a different class of models. The effects of these alterations to the
GTM algorithm are not easily understood. Therefore it might be quite difficult or
in certain cases impossible to combine the structural extensions with any exten-
sions from the other two classes.

The two proposed novel extensions, block GTM (B-GTM) and GTM with vi-
sualisation space reverse mapping initialisation GTM-VSRMI both fall into the
second category. They can be combined with most extensions of the second cate-
gory and do not impede the usage of diagnostics from the first category.

The following paragraphs present a short review of known extensions for the
GTM algorithm. They are grouped by their class and presented in historical order
ranked by the date of the last paper with substantial contribution to the extension.

Analytical Extensions: One of the most widely used diagnostic is the magnifi-
cation factor (Svensén and Williams, 1997). It represents the extent to which an
area is magnified on the projection of the data space (i.e. it shows how strongly
the manifold was stretched in the specific area of the data space and reveals if
points are further apart than is implied by the two dimensional projection).

Another useful diagnostic is the local directional curvature of the projection
(Tino et al., 2001). It provides the user with a facility for monitoring the amount
of folding and neighbourhood preservation in the fitted data manifold.

Structural Extensions: Hierarchical GTM is a hierarchical visualisation system
which is based on active user interaction and allows the user to explore interest-
ing regions in more detail by manual selection (Tino and Nabney, 2002). This was
extended by Nabney et al. (2005) in a semi-supervised learning approach and by
Maniyar and Nabney (2005) to aid the development of effective local prediction
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models for regression.

Two extensions of GTM which deal with unsupervised feature selection or
feature relevance determination have been developed simultaneously and inde-
pendently of each other (Maniyar and Nabney, 2006a; Vellido, 2006a). They both
build on previous work related to modelling the background noise when fitting
Gaussian mixture models (Law et al., 2004). The extension allows the model to
account for less important and mainly noise dominated variables. This makes
it possible to quantify which variables have the most effect on the visualisation,
similarly to the loadings in PCA. In contrast to PCA the selection of the features
is not done after the model was fitted to the data. It is an integral part of the al-
gorithm which assigns a lesser weight to the noisy and uninformative variables.
However the weights in the GTM feature selection account for the contribution to
the complete model and can not be used to distinguish between the contribution
of data dimensions to certain axis in the projection.

Multiple extensions have been developed to deal with non-Gaussian distributed
data. Most of them concern the special case of discrete data and substitute the
Gaussian distribution of the nodes with a Bernoulli, multinomial or Poisson dis-
tribution(Girolami, 2001; Priam et al., 2008). An extension of GTM utilising a
mixture of Student t-distributions has been proposed (Vellido, 2006b) to make
the model more robust to outliers and non-Gaussian continuous data.

Other extensions propose a variational Bayesian treatment of GTM utilising
a Gaussian Process (Olier and Vellido, 2008b) instead of the normally employed
EM algorithm and the standard RBF mapping. This extension solves the problem
of choosing the number of RBF centres and the issue of over fitting the model, in
the case of too many RBF centres.

To capture the dynamics of multivariate time series through visualisation Bishop
et al. (1997) proposed the Generative Topographic Mapping Through Time. Sub-
sequently the algorithm has been extensively tested, combined with feature rel-
evance determination and put into a variational Bayesian framework (Olier and
Vellido, 2006; Olier and Vellido, 2008a).

To facilitate the usage of GTM in conjunction with clustering algorithms an
extension or better a special algorithm for fuzzy clustering has been proposed
which utilises the Gaussian centres as candidate seeds for the initialisation of the
algorithm (Bose and Chen, 2009). ‘

Fundamental Extensions: One of the attractive features of GTM is the grid
structure in the data space which is achieved through the mapping from a grid in
the visualisation space. This feature is exploited by several alterations to the al-
gorithm where the Gaussian nodes are substituted by some other kind of model.
One example is the usage of hidden Markov tree models (Gianniotis and Tino,
2008). Another example is the usage of independent probabilistic principal com-
ponent models termed locally linear generative topographic mapping (Verbeek
et al., 2002).

Using the grid structure of the algorithm but disregarding the idea of a strict
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probabilistic model one can modify GTM into a heuristic algorithm. One example
is the topographic neural gas algorithm which combines the harmonic mean with
the neural gas algorithm to fit the centres and substitutes the Gaussian covariance
by a tri-cubic kernel which is used to estimate the responsibilities (Pena and Fyfe,
2006).

Other possible approaches facilitate different metrics, such as the modification
of GTM to penalise divergences between the Euclidean distances from the data
points to the model prototypes and the corresponding geodesic distances along
the manifold (Cruz-Barbosa and Vellido, 2008).

Chapter Overview: The following chapter first introduces the block extension
of GTM, which improves the model by integrating prior knowledge about the
covariance structure. To acquire the knowledge about this structure two possi-
ble approaches are discussed. The first approach is based on the optimal leaf
ordering (OLO) algorithm (Bar-Joseph et al., 2003) which sorts the variables to
optimise their ordering for grouping of correlation coefficients. This requires fur-
ther post processing by an expert, which may be based on a heat-map of the
correlations. An alternative approach to acquire the knowledge is to us a more
automated approach based on a variable grouping algorithm. One possibility is
the Bayesian correlation estimation (BCE) based on an MCMC algorithm (Liechty
et al., 2004). The original algorithm was modified by us to improve mixing of the
chains and this novel version is called QuickBCE. However no extensive experi-
ments have been conducted with either of the algorithms (OLO and QuickBCE).
They are both introduced for the proof of concept and further research in this area
is needed.

In the second section a novel way to initialise the GTM called visualisation
space reverse mapping initialisation (VSRMI) is introduced. Before the develop-
ment of this extension GTM was either initialised randomly or along the axes of
the first two principal components of GTM. VSRMI allows to initialise GTM with
any 2D mapping of the data. This makes it possible to use non-linear algorithms
like Isomap for the initialisation of GTM, which greatly enhances the capabilities
of the model to pick up non-linear structures in the data.

In the third section the novel extensions (B-GTM and VSRMI) are assessed.
This is a difficult task since one normally works with unlabelled data in geochem-
istry and a priori does not know what a good visualisation should look like. To
help with this task a novel approach to assess visualisation models is proposed.
This approach is similar to leave-one-out cross validation. In short, we propose
to measure how well a model fitted to a complete data set can estimate known
values that are excluded for the purpose of validation. The resulting diagnostic
is similar to the likelihood. The likelihood has the disadvantage that one never
knows what the best likelihood is and one needs to compare different models
against each other. The new diagnostic based on missing data has the advan-
tage that one knows that no model can do better than have an error of zero when
estimating the missing values.
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5.1 Block Extension to GTM (B-GTM)

In Geochemistry one often has prior information about the correlations of vari-
ables. The distribution of the variables is highly depend on the underlying geo-
chemical processes. Thus one often can see blocks or clusters of variables when
looking at the ordered heat-maps of the correlation coefficients. A novel approach
to include prior information about the correlations of variables into GTM is to use
a full covariance matrix in the noise model and to enforce a block structure onto
it. This results in a reasonably sparse covariance matrix and keeps the number
of unknown parameters low. The additional flexibility of the model, introduced
through the more densely populated covariance matrix, allows the model to fit
the data more closely. After ordering the variables by their known or estimated
groups, the covariance matrix has the following structure:

1 0 ... 0

Y = 0 2 ,
. .0
0 ... 0 %,

with 1 to X, being the submatrices of correlated groups of variables. This im-
plies that the correlation between variables in distinct groups is negligible. The
extension of the learning algorithm is straightforward and the only changes oc-
cur in the computation of R in the E-step and of ¥ in the M-step. In the E-Step
the computation of the posterior probabilities of the kth Gaussian component
changes because of the change from a spherical to a block covariance matrix DI

Rin(Worg, Zota) = PXklYn Words Zotd) (6.1)

p(yn !X, Woid, Zota)
Z}(:] P(YH in‘, Woud, Zofd)
To define the modified M-step one first derives the update for the full covariance

matrix 2. Taking the derivative of the negative log likelihood with respect to Z]-
we get the updates for all the sub matrices:

aL(W }:A) N D-. 1 N K
—— = = Y R -2 Y Y R T A, Y
‘ ]k ’
aZ] n=1 27 2 n=1k=1 / R
where aj,;; = (O(x, W) — yy); is only calculated on the dimensions belonging to
Y;and D; is the number of dimensions. Setting the derivative to zero we obtain

1

N K T
] = , Z Z Rinaknjakn]‘ ’
ND] n=1k=1

z

which can be described as the average empirical covariance calculated over all
the Gaussians.
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5.1.1 Heuristics to stabilise the EM algorithm

A major problem with the practical application of the EM algorithm with both
block and full GTM, especially when working with high-dimensional data, is the
collapse of the variance to very small values. This collapse is partly due to numer-
ical problems when calculating the activation given by (5.1) and becomes espe-
cially problematic with high dimensional data sets. Another part of the problem
is the probabilistic nature of the algorithm which is having problems with singu-
larities because a variance close to zero will result in a very high likelihood. This
is most serious in the case of high dimensional data sets where one might obtain a
rank deficient covariance matrix due to dependencies of variables on each other.

Unfortunately this is the case in nearly any applied setting where one needs to
analyse data. The problem is caused by the determinant of the covariance matrix
which becomes very small. The reason is the direct relation of the magnitude of
the determinant of the positive definite covariance matrix with the number of di-
mensions. Because of the exponential nature of the Gaussian and limited machine
precision most activations get rounded to zero if the dimensionality becomes too
big. This results in a smaller estimate of the covariance matrix and after a few iter-
ations in the breakdown of the algorithm. Even if the algorithm does not directly
break down, possible consequences are points where the responsibility R;; is zero
for all Gaussians. This occurs when the covariance matrix is too small and points
which are too far away from the manifold get zero as responsibility for all Gaus-
sians because of the limited machine precision. To prevent this from happening
we use heuristics while calculating the activation as well as the covariance. These
heuristics prevent the responsibilities of a data point from going to zero for all
the Gaussian kernels and prevent the collapse of the variance.

The first heuristic is a simple check, where it is tested if the direct neighbour-
ing Gaussian nodes of every Gaussian node in the grid are still in the two-sigma
interval of the distribution of this node. If this is not the case the covariance ma-
trix is multiplied with a small number > 1 until the condition is fulfilled. This
provides a lower bound on the determinant of the covariance matrix which is
based on the distance of the nodes to each other in the data space. The second
heuristic checks if the responsibilities are all zero for one data point and substi-
tutes these with the inverse distance to the five nearest gird points if this is the
case.

However these heuristics just prevent the algorithm from producing com-
pletely meaningless results. In the case of very high-dimensional data the al-
gorithm still does not work. What one effectively observes is that the algorithm
stops after one or two iterations because the values in R in equation (5.1)are so
small that the effect of the update is negligible. In this case the model does not
move away from the initial state.

In the case of the full GTM one has an additional numerical problem. Because
of the large number of parameters in the full covariance matrix and the limited
sample size the EM algorithm starts to produce estimates of the covariance ma-
trices which are not positive semi-definite. This problem is not easily solved and
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the quick fix of adding Gaussian noise to the diagonal until the matrix is positive
definite might result in the breakdown of the algorithm. This happens because if
too much noise is added, the noise part in the diagonal will start to dominate the
structure of the covariance matrix. '

The described heuristics were successfully tested on datasets with a maximum
of 71 dimensions. However there is no guarantee that they will work with higher
dimensional data sets and future research in this area is needed. This should
include alternative approaches to the heuristics like placing a prior over the co-
variance matrix which will penalise too small values and should also keep the
algorithm from breaking down.

5.1.2 Variable Block Determination using Optimal Leaf Ordering
(OLO)

A simple and straightforward method to obtain the block structure for the co-
variance matrix is to visualise the correlation coefficients as a heat-map as shown
in Figure 3.3 in chapter 3. However for this method to be successful one needs
to order this heat-map so that highly correlated variables are close to each other
(i.e. forming blocks). The ordering of heat-maps is a typical problem faced in
combinatorial data analysis (Arabie and Hubert, 1996) and the process is called
ordination, sequencing or seriation (Hahsler et al., 2008) a term dating back to
1899 where it was first used in archaeology (Petrie, 1899).

One approach is to generate a dendrogram using hierarchical clustering com-
bined with heuristics to reorder the leaves to reflect their proximity (i.e. it re-
orders rows and columns in the heat-map with the aim of placing similar vari-
ables close together). To achieve this the tree is ordered in such a way that the
distance between the neighbouring leaves is minimised. Solving this problem is
akin to finding a solution for the travelling salesman problem. Following this
approach the absolute values of the correlation matrix are used to generate a
pairwise distance matrix where one wants to determine the ordering which min-
imises the sum of distances between consecutive elements. There are many ways
to approach the problem and a good review of methodologies can be found in
Hahsler et al. (2008): for example, simulated annealing (Morris et al., 2003) or
optimising the Hamilton path length by dynamical programming methods like
optimal leaf ordering (OLO) (Bar-Joseph et al., 2003) .

Hahsler et al. (2008) suggests that OLO is one of the best methods for seriation.
Further the algorithm is supplied in the Matlab Bioinformatics toolbox which
provides a fast and error-free implementation.

To give a short outline of the algorithm the following notation is used: A tree
T has n leaves denote by (z1,...,z,) and with n — 1 internal nodes denoted by
v1,...,Vy_1. Every node has a left and a right child node labelled v.l and v.r re-
spectively. The algorithm is recursive and thus works its way from the lowest
level to the top. At each step the algorithm checks if it minimises the distance
between the nodes if it flips the nodes over as illustrated in Figure 5.1. The al-
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gorithm only depends on the distance or utility matrix S, which in our case is
generated from the absolute values of the correlation coefficient matrix.

The OLO algorithm in outline is:
1: optOrdering(v,S)
2: if (v is a leaf) then
3 return v
4: else
5. v.l=optOdering(v.[,S) // Order the left tree of v
6. v.r=optOdering(v.r,S) // Order the right tree of v
7. end if
8: Flip node v.I to v.r and v.r to v.[ if it minimises the sum of the distance of all
adjacent nodes.
9: return v.

Figure 5.1: Changing the leaf order by an internal node flip. The node is marked
with a red ring.
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5.1.3 Variable Block Determination using Quick Bayesian Corre-
lation Estimation (QuickBCE)

Another approach to estimate the group structure in the model is a modified
version of the Bayesian Correlation Estimation based on the paper of Liechty et
al. (2004) which relates to Bernard et al. (2000).

For the grouping one is only interested in the off~diagonal elements of the
empirical data correlation coefficient matrix C. Assuming the simple case where
G;j ~ N(p, 0?) the estimation of the underlying parameters y and ¢ for the model
is straight forward. In the case of a full Bayesian treatment sensible priors would
be u ~ N(0,7%) and 0% ~ IG(x,B) (IG= Inverse Gamma), where « is a shape
parameters, and 2 and B are the scale parameter, which are treated as elicited
(i.e. known and fixed). Thus the full conditional posterior distributions are:

. Co— )2 )
f(],4|C,12,(72)ocl_Iexp{_(_]ZU;i}exp{—éi—z}, (5.2)

i<j T

F(?IC 0, B ) aHexp{—(%%y} (5 )1p{—%} 53)

2
i<j 4
The model can be extended to allow for groups of variables:

5 (Cij = ps,8,)°
f(Cly,0°,8) gexp {_T I{R e R/}
with 9; is the index variable for the groups and ¢; ~ multinomial(p). With re-
gards to B-GTM the estimates for the distribution of the groups p(¥;|—) together
with the estimates for p(yi, k,|—) can be used to pre-define a block structure,
where one groups the variables into different blocks. To explain the notation: the
estimate 11 1 is the mean for the first group,the estimate y1, = a1 is the mean
2 is assumed to be com-
mon for all groups. This keeps the number of free parameters to a minimum,
which helps with convergence and mixing of the parameters.

of the correlation between groups. The noise parameter o

Sampling the full conditional of ¢, ¥ and o? Evaluating the full conditional
densities may be done in an MCMC approach where the posterior for 9, is:

(Cij — pis;)

f(ﬁizk{C,%U)“Hexp{——z&a—j : (5.4)
i#]

The densities for iy, x, are still conjugate and the required posteriors for the Metropo-

lis algorithm is

1(8i=ky,0j=ka)||1(8;=ko,0;=k1)

(Cij — Ho,0.)° 5.0
f(ykl,kzlclal T) X 1_[ exp {—T exp { — 2:'[2
i<

(5.5)
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where I(9; = ki, 8 = k2)[|I(9; = k2, ¥; = k1) is an indicator function. Therefore
one only calculates the energy for py, x, by including those correlations where
one or both of the variables belong to the actual group k. The posterior f(0?|—)
is given by (5.3).

Algorithm for QuickBCE While doing small scale experiments with the BCE al-
gorithm it turned out that the mixing of the parameters was very slow. Since we
were only interested in the grouping and not in the estimation of C;; we designed
a simpler version of the algorithm called QuickBCE. The algorithm is based on
Gibbs Sampling and we initialise multiple chains and estimate all the model pa-
rameters in each chain iteratively.

The idea of the algorithm is to find the distributions p(8d; = k). These distri-
butions can then be used to quantify which variable 7 is in which group k. Since
related variables will be in the same group we could use this information to build
the variable blocks for the B-GTM.

The algorithm looks as follows:

e We sample each parameter by generating a random number h between 0
and 1. Then we generate a random number € ~ N(0, STD) and update the
state by Xuew = X, + € and accept this state if p(x014)/ P(Xnew) > h. STD
is the variable manipulating the step size and has to be chosen individually
for all the parameters.

Create N chains using the following algorithm:
(a) Initialise 9;, ) and 0y

e 1 ~ N(0,7) [Using randn(0, T), where randn is the command to sam-
ple from a normal distribution. ]

e 0 ~ IG(a,B) [Using 1./ gamrnd(x, %)], where « and f are chosen ap-
propriately and gamrnd is the command to sample from the gamma
distribution.]

e ; chosen empirically to maximise (5.4) on the initialised C;j, px and o

e Check that all initialised values, given the other values, have a proba-
bility bigger than 0 on their conditional density.

e Now we have sampled all variables for the model for the first time and
in the next steps, we use Gibbs sampling, where further sampling has to
satisfy the MCMC conditions to update the 9;,, , and 0.

(b) Sample 9; using (5.4).
- (c) Sample py, x, and o using (5.5) and (5.3) respectively.

(d) Check if converged, if not go to step (b).
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The last step was done by visual inspection of the plots to check for mixing of
the chains in our case. Some examples of the chains can be found in the appendix
in Figure A.1 and A.2. This algorithm is just a prototype to demonstrate that
there are semi-automated ways for obtaining the grouping of the variables. The

algorithm is not fully automated since one still needs to specify the number of
expected groups. Future research and experiments, which are out of the scope of
this thesis, are needed to validate the algorithm and compare it against possible
alternatives.

5.2 GTM Visualisation Space Reverse Mapping Initial-
isation (GTM-VSRMI)

This proposed novel approach to initialise GTM uses existing mappings of the
data points in the visualisation space to initialise the Gaussian centres. This has
the advantage of initialising the centres much closer to the data points than the
conventional approach which initialises the centres along the first two principal
components. In theory this should reduce the number of iterations needed to ob-
tain an acceptable fit of the model and thus reduce computational costs. Another
advantage is the possibility of using alternative mappings as demonstrated with
GPLVM in chapter 4. This should broaden the possible applications of GTM and
help to find better solutions. Especially in cases where PCA fails to capture the
structure, for example the Swiss-roll data set, the usage of alternative initialisa-
tion for example by using Isomap should improve the results of the visualisation.

The method works as follows: first the projection which is chosen as initiali-
sation is scaled to fit into the grid of nodes defined by (4.9), which normally lie
between -1 and 1 on both axes in the visualisation space. Then for every node
x; in the grid, one finds the k-nearest data points whose projection is nearest X;.
The mean in data space of these k-nearest data points is used as the centre of the
Gaussian y; corresponding to x;. An illustration on how this algorithm works is
shown in Figure 5.2 and 5.3, where the Isomap projection of the S-shaped data is
used together with the 5 nearest neighbours to initialise the node in the upper left
corner of the grid.

The algorithm is as follows:

Initialise the grid of the visualisation space for GTM.

Scale the projection to be inside the grid of GTM.

Find the k-nearest data points for each node in the grid.

Run over all K nodes and use the mean of the position of these k data points
to initialise every Gaussian y; in the data space.

5. Solve the equation Y = ®(X)W to compute W and fit the initialised Gaussians
as closely as possible.

The fit of the manifold with respect to the initialised positions for the Gaus-
sians depends highly on the number of RBFs. Since the number of RBFs controls
the flexibility of the manifold the initialisation might still be suboptimal if the
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Figure 5.2: Schematic showing the high level design of the VSRMI algorithm.

number is chosen too small. If the manifold is not flexible enough it will not be
possible to place all the Gaussians on their intended positions and one will end
up with a bad regression estimate for the positions. However if the number is
chosen too large one runs into the risk of over fitting the GTM to the data. This
is not a problem when initialising the model. However during the training with
the EM algorithm a too flexible GTM might overfit the data and the result will be
poor generalisation.
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Figure 5.3: Schematic showing the low level design of the VSRMI algorithm: a)
Active node and 5 closest points chosen for initialisation of the node. b) Placing of
the active node in the data space through an appropriate choice of closest points.
c) Overview for all nodes in the data space.

5.3 Assessing the novel Extensions

In this section the novel extensions B-GTM and VSRMI are evaluated. First the
methodology for assessing the GTM is discussed in this section. Then possible
advantages of B-GTM compared with a standard GTM (i.e. spherical GTM) are
assessed. Then a quick demonstration of the possible uses for OLO and Quick-
BCE is given. Finally the advantages of the VSRMI are demonstrated.

All algorithms based on GTM are examples of unsupervised learning and they
always give a result when applied to a particular dataset. Thus we cannot tell 4
priori what is the expected or desired outcome. This makes it very difficult to
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judge which method is the best (i.e. tells us the most about a certain dataset).
However in the simple case of artificial data one can use prior knowledge about
the structure of the data in the original space to quantify the error on the projec-
tion. This is exploited in some of the following measures for the quality of the
projection:

Negative Log Likelihood (NLL): The negative log likelihood is a measure of
the fit of a probabilistic model to a data set. In this thesis all quoted NLL values
are computed on a test data set. The likelihood can be described as measure to as-
sess the probability that the data were generated from the model given the actual
parameters. Then one takes the logarithm of this quantity and negates it. There-
fore the model which has the lowest negative likelihood fits the data best from a
probabilistic point of view. However the magnitude of the measure is directly in-
fluenced by the dimensionality of the data. Thus we can not directly compare the
performance of models with increasing or decreasing dimensionality of the data,
but can compare different models on the same data. Another problem with the
likelihood is the high dependence on the parameter for the covariance/variance
in Gaussian distributions. In cases where this parameter converges to zero, which
can happen because of singularities in the likelihood function or numerical errors,
the likelihood will become very large (or small in the case of the negative log like-
lihood). This will indicate a very good model fit and thus can lead to misleading
interpretations. It is therefore advisable to use the likelihood in conjunction with
other measures to assess the fit of a model.

Nearest-Neighbour Label Error (NNLE): The nearest-neighbour label error can
only be computed on labelled data, where we know the class of each data point.
The idea is to consider the projected data and calculate for each point how many
of the k nearest points are in the same class. Then we average the fraction of k-
nearest neighbours in the same class over all the points. Finally we average over
all the classes as well. Different values for k ranging from one to five were tried
on all datasets and no big difference was apparent. Choosing bigger values on the
small data sets that were used made no sense since this would result in looking at
all possible neighbours which would defy the purpose of this measure. Therefore
k was chosen to be k = 3.

Missing Data or Data Resampling (RMSE): Another evaluation method we
have developed is driven by the capabilities of the models to estimate missing
data. Re-estimating missing data can be seen as a re-sampling approach (Moeller
and Radke, 2006; Yu, 2003) when the missing data patterns are created artificially
and one retains the original value for comparison.

To benchmark the different methods against each other we are going to itera-
tively and component-wise delete every dimensiond = 1,..., D from every point
and see which estimates the model produce for the missing value. We then calcu-
late the average root mean square error (RMSE) over all the pointsn =1,..., N,
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Figure 5.4: General schematic of a boxplot according to McGillan 1978.

where y are the original values and ¥ are the estimates:

1N e (yia — ia)?
R = — =
MSE N 1; \/ 5

The behaviour of this measure is discussed in more detail in chapter 6. However
in this chapter the model is trained and fitted on the complete data set. After the
model is fitted to the data it is then used to estimate the missing values, using
the theory from chapter 6. Therefore methodology is similar to leave-one-out
cross-validation, but with the difference that the model is trained on the value
which is later missing as well. This is done because the resulting model is only
marginally different in the case where we have a complete data set and where one
dimension of one data point is missing. However the GTM algorithm is coded
and benchmarked in Matlab and the version of the algorithm which runs with
complete data is 50-100 times faster than the version of the algorithm which needs
to use indices to estimate the missing data.

To examine the results box plots are employed. A box plot (McGill et al.,
1978; MathWorks, 2009) (also known as a box-and-whisker diagram) is a con-
venient way of graphically depicting the distribution of numerical data through
five-number summaries: sample minimum; lower quartile (25%); median (50%);
upper quartile (75%); lower and upper outliers (Figure 5.4).

53.1 B-GTM

To evaluate the effectiveness of B-GTM we carried out comparative experiments
with spherical (i.e. standard) GTM (S-GTM), full GTM (F-GTM) (i.e see (4.6) ),
and PCA. The data were sampled from a GTM with an 8 x 8 grid in the visu-
alisation space. The grid was projected into a higher dimensional space using a
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2 x 2 RBF network. The weights were randomly sampled from a normal distri-
bution with zero mean and unit standard deviation. Since the RBF was chosen
with random weights the restriction to a 2 x 2 RBF ensured a smooth and not
overly erratic mapping. The GTM used to generate the data had a block diag-
onal covariance matrix and experiments were conducted with a range of levels
of variance and correlation. The overall variance of the data varied from 6.45 to
7.55, with covariances around the single Gaussians varying from 2 to 20, denoted
by ST, in Figures 5.5 to 5.11. The amount of ST controls the amount of structure in
the data (i.e. the strength of the clustering in the covariance matrix). A low value
for ST means no structure, while a high value means a lot of structure. In each
experiment 100 data points were sampled from this GTM and each experiment
was conducted 20 times, with a different randomly generated GTM each time.

Performance To calculate the NNLE the 8 x 8 grid was split into 4 classes with
the 16 Gaussians in each corner of the grid being defined as one class. The results
for this experiment, shown in Figure 5.5, indicate that in the case of little or no
structure in the data the B-GTM performs as well as or only slightly worse than S-
GTM or PCA, while F-GTM is clearly struggling with increasing dimensionality.
This happens because the covariance matrix becomes non positive semi-definite
as explained in section 5.1.1. In the case where more structure is present B-GTM
clearly outperforms S-GTM and PCA, albeit once dimensionality increases the
performance difference narrows. The difference in the number of blocks is sig-
nificant as well since more blocks mean fewer parameters for the B-GTM model.
The other models however benefit as well from more distinct blocks of variables.
S-GTM profits because an increasing number of distinct blocks is closer to the ini-
tial assumption of a spherical covariance matrix (which has D blocks all of which
share a common variance). The erratic behaviour of the measure seen in Figure
5.5(c) can be explained by the small sample size with different random RBF net-
work mappings. 20 repetitions are not sufficient to obtain a smooth graph: how-
ever, with 20 repetitions the whole simulation took 2 days to run, and since the
differences in model performance are quite big, the running of longer simulations
was found to be unnecessary.

The RMSE was calculated on the same 20 projections to compare how B-GTM
performs compared with S-GTM and F-GTM. To provide a baseline for compari-
son, mean imputation (MI) was also performed. This was done, not to benchmark
GTM against MI, but to give an upper bound from an imputation that does not
take account of any variable correlations or structure in the data. The results of
this experiment, shown in Figure 5.6, indicate that both block and full GTM al-
ways outperform the S-GTM regardless of the amount of block structure in the
data. However the amount by which the S-GTM is outperformed depends on the
amount of block structure. Further there is no significant difference between the
performance of block or the full version of GTM. This can be explained by the
nature of imputation as a model validation technique which only assesses the fit
of the model in the data space. For example, if the GTM is warped around itself
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and thus gives poor results in the projection space, it may still give good impu-
tation results if it properly covers the data cloud. This is also the reason why
the RMSE does not show the breakdown of the F-GTM algorithm when the data
dimensionality is large.

The problem of increasing dimensionality for B-GTM and F-GTM is also shown
when looking at the negative log likelihood (NLL) of the models. Figures 5.7 and
5.8 show the NLL as box plots for ST = 2 and ST = 20 respectively. The box
plots were carried out separately for 10, 40 and 70 dimensions because the NLL
is not comparable across different numbers of dimensions. The O-GTM stands
for the original GTM which generated the data and is intended as a comparison
for the performance of the other models since it should, in the limit of large num-
bers of experiments , have the lowest possible NLL. The results for low structure
(ST=2) show that F-GTM and B-GTM are always better than S-GTM in the case .
of lower dimensionality. However, for the 70-dimensional data set the spread of
NLL over different repetitions massively widens. This indicates that the models
find it harder to fit some of the generated datasets and thus indicates the break-
down of the algorithm of both B-GTM and F-GTM in the case of two blocks. In
the case of five blocks B-GTM seems to be more stable while only F-GTM breaks
down. The reason is likely to be the far more sparse nature of B-GTM in the case
of five blocks. In the case of strong block structure the F-GTM breaks down with
as few as 40 dimensions. This might happen because the stronger block structure
will result in far bigger off-diagonal elements in the EM algorithm, which leads
to poorly conditioned covariance matrices even in lower-dimensional spaces.
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(§T=20) and low (ST=2) structure for the GTM model with different covariance
structures. S=Spherical, B=Block, F=Full GTM. PCA=(blue, dotted line with big
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Figure 5.7: The negative log likelihood on the artificial test data with low (ST=2)
structure for the GTM model with different covariance structures. The box plots
show the variation of the negative log likelihood based on 100 different and ran-
domly created datasets respectively for each combination of parameters (blocks
and dimensions). S=Spherical, B=Block, F=Full and O=Original (thus creating)
GTM. The very large box plots in the cases (e) and (f) show that the B-GTM and
F-GTM, dependant on the number of blocks, are unstable and show incongruent

behaviour with 70 dimensions.




Chapter 5

EXTENSIONS TO GTM

x 10"

i o

S-GTM  B-GTM  F-GTM  O-GTM
Methods

(a) 2 Blocks and 10 Dimensions

S-GTM B-GTM F-GTM O-GTM
Methods

(c) 2 Blocks and 40 Dimensions

5
x 10

S-GTM B-GTM F-GTM O-GTM
Methods

(e) 2 Blocks and 70 Dimensions

.

2 w IR

S-GTM  B-GTM F-GTM O-GTM
Methods

(b) 5 Blocks and 10 Dimensions

x 10°

S-GTM  B-GTM F-GTM O-GTM
Methods

(d) 5 Blocks and 40 Dimensions

x10°

S-GTM  B-GTM F-GTM O-GTM
Methods

(f) 5 Blocks and 70 Dimensions

Figure 5.8: The negative log likelihood on the artificial test data with high
(ST=20) structure for the GTM model with different covariance structures. The
box plots show the variation of the negative log likelihood based on 100 different
and randomly created datasets respectively for each combination of parameters
(blocks and dimensions). S=Spherical, B=Block, F=Full GTM. The very large box
plots in the cases (c),(d),(e) and (f) show that the B-GTM and F-GTM, dependant
on the number of blocks and dimensions, are unstable and show incongruent
behaviour with 40 and 70 dimensions respectively.
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Block matrix dependency.  To test how the B-GTM performs when the block
structure is misspecified a shuffle experiment was conducted where a certain per-
centage of the variables were “shuffled” into another block. As in the previous
experiment the data was randomly generated from a GTM. This was done 20
times for each level of shuffled block structure. The fraction of shuffled variables
were selected to be 25%,50%, 75% and 100%. For simplicity the other block was
randomly selected. Therefore one has to keep in mind that variables of the same
group might end up in the same group after being shuffled; in the case of just
two groups this is always the case. Also in the case where 100% of two blocks are
shuffled, all elements are now in the opposite group and thus this is equivalent
to no shuffling, as can be seen from the results.

The shuffle experiment was conducted on a 30-dimensional highly structured
data set with ST = 20 for the blocks in the single Gaussian and a standard devi-
ation of 7.55 for the whole data set. Figures 5.9 to 5.11 show the results for two
and five blocks. To compare the results the performance of B-GTM was plotted
against the performance of S-GTM, which except for variations due to sampling
should be stable because it is not influenced by the misspecification of the block
structure. The performance of S-GTM stays constant as expected, only being al-
tered by the random effects due to the small number of repetitions when rerun-
ning the experiment with different random shuffle patterns.

The results on all three different measures NLL (Figure 5.9), NNL (Figure 5.10)
and RMSE (Figure 5.11) show that the performance deteriorates if the block struc-
ture is misspecified. The example with two blocks shows that the consequences
are quite severe if too much of the structure is misspecified. The NNL for B-GTM
with wrong block structure in the case of two blocks is far worse than the NNL
of the S-GTM. In the case of five blocks however the effect is not as strong. This
effect presumably is related to the difference in amount of misspecified correla-
tions. With two blocks there are more elements which can be misspecified and
have an effect on the result than with five blocks, which is already a quite sparse
matrix. The same effects can be seen when looking at the negative log likelihood
(NLL), where the performance deteriorates in both cases. The effect is different
when looking at the RMSE where the performance on only two blocks does not
deteriorate a lot while the performance for five blocks strongly deteriorates. This
is also corroborated when looking at the 75% confidence intervals of the perfor-
mance, which increase especially when looking at the reusults for five blocks. The
reason for this might be that the less sparse covariance matrix for B-GTM with
two blocks still gives enough benefit to the imputation because the conditional
mean is needed when calculating the missing values. A similar behaviour was
observed for the RMSE where F-GTM also performed well on the RMSE while
performing badly on the NLL and NNL.
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Figure 5.9: The negative log likelihood on the artificial test data with high
(ST=20) structure and 30 dimensions for the GTM model where different
amounts of variables were shuffled into wrong groups. S-GTM=(green, constant
line with X), B-GTM=(red, slashed line with diamond). 75% confidence intervall
areas are marked by light gray (B-GTM) and dark gray (S-GTM).
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Figure 5.10: The nearest neighbour label on the artificial test data with high
(ST=20) structure and 30 dimensions for the GTM model where different
amounts of variables were shuffled into wrong groups. S-GTM=(green, constant
line with X), B-GTM=(red, slashed line with diamond). 75% confidence intervall
areas are marked by light gray (B-GTM) and dark gray (S-GTM).
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Figure 5.11: The root mean square error on the artificial test data with high
(ST=20) structure and 30 dimensions for the GTM model where different
amounts of variables were shuffled into wrong groups. S-GTM=(green, constant
line with X), B-GTM=(red, slashed line with diamond). 75% confidence intervall
areas are marked by light gray (B-GTM) and dark gray (S-GTM).
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5.3.2 QuickBCE vs. OLO

Quantitative comparison of QuickBCE and OLO is complex since the algorithms
are designed to perform different tasks. In essence the difference between the al-
gorithms is that QuickBCE is trying to cluster the variables according to groups,
while OLO is trying to sort the variables in a way that minimises the difference
in correlations of neighbouring variables. Both algorithms can be used by the ed-
ucated practitioner to identify possible groups of variables. This information can
be used as means to get more insight about the data and/or as prior information
for the B-GTM algorithm. It is certainly possible to enhance these algorithms to
achieve both tasks however this is out of the scope of this thesis. Thus the com-
parison is done in a qualitative way and should be seen as an indicator for future
research and applicability in geochemical applications.

Since the QuickBCE algorithm is an MCMC sampling algorithm the results
were post processed to make them comparable to OLO. The QuickBCE algorithm
groups the variables but does not sort them. This requires post-processing of
the results for the visual inspection in heat-maps. It was found that the post-
processing of the results through PCA gave acceptable results. To do this a space
was constructed where the samples were the original variables, which we want
to sort. The values were the actual probabilities that the variable would fall into a
certain class given by (5.4). Simply using PCA on this space and sorting the vari-
ables by their values on the first principal component lead to rough but mean-
ingful and comparable heat-maps. However this was done only for the sake of
comparing QuickBCE against OLO and further research and experiments in this
area are needed. The QuickBCE algorithm was run for 31000 iterations, where
the first 1000 samples were discarded allowing for burn-in. To check the mixing
or convergence of the chains a visual inspection was undertaken (see Appendix
A). One downside of the QuickBCE algorithm is that one needs to pre-specify
the number of expected groups. In our case we only used the data sets with two
clearly distinguishable groups and thus fixed this prior to two groups over all
experiments.

To test the algorithms variables of the oil flow, 20D and 60D data sets from
chapter three were shuffled into a random order. The results for the different
data sets can be seen in Figure 5.12, 5.13 and 5.14 respectively. In all three cases
the OLO algorithm performs very well at sorting the variables in a way that con-
centrates the high correlation coefficients towards the diagonal of the heat-map.
This translates into an easy way to build groups based on obvious clusters of cor-
related variables. The QuickBCE algorithm is not producing such ordered heat-
maps but most of the time succeeds in ordering the variables into distinguishable
groups. In the first two heat-maps one can recognise two big clusters of vari-
ables which have very low correlations between each other and high correlations
within each block. However in the 60D the block structure is not visible.
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Figure 5.12: The heat-maps of the correlation coefficients for the oil flow data.
a) Sorting by the OLO algorithm. b) Sorting by using the grouping of the BCE
algorithm.
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Figure 5.13: The heat-maps of the correlation coefficients for the 20D data. a)
Sorting by the OLO algorithm. b) Sorting by using the grouping of the BCE algo-
rithm.
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Figure 5.14: The heat-maps of the correlation coefficients for the 60D data.a) Sort-
ing by the OLO algorithm. b) Sorting by using the grouping of the BCE algorithm.

160




Chapter 5 EXTENSIONS TO GTM

5.3.3 GTM-VSRMI

To evaluate the performance of VSRMI we used the test data sets introduced in
chapter 3. The experiment was conducted on all data sets and in all cases a spher-
ical GTM (S-GTM) was fitted to the data. For completeness the results for B-GTM
were included as well: however, this was just done to demonstrate that the results
for GTM and B-GTM are similar. In all cases the EM algorithm was terminated
after either 100 iterations or when the change log likelihood was less than 1073,
whichever happened first. This was done to test if there are any speed gains
through the usage of VSRMI. To measure the actual fit of the model the NLL,
NNL and RMSE were used.

The widely used standard method to initialise the GTM was labelled Old. This
method uses the axes of the first two principal components and initialises the
grid of the GTM along these axes. Visually this can be imagined as placing the
rubber sheet within the two dimensional hyperplane spanned by the first two
principal components in the data space. We compared this with two variations
of VSRMI in which PCA or Isomap were used to project the data to visualisation
space. The results of the experiment can be seen in Table 5.1. The best results
are highlighted in bold for GTM and B-GTM separately and it is apparent that
in all cases the initialisation using VSRMI leads to a lower or similar NLL, NNL
and RMSE. Additionally the runtime required to achieve these results is in most
cases less than the conventional approach. Based on these results VSRMI can be
recommended as the preferred way of initialising the GTM.

Using VSRMI and Isomap allows the user to compare a linear and non-linear
initialisation. To do this one could use the initialised GTM, without training it.
A possible approach would be to compare the likelihood, NNL and NLL of an
untrained GTM initialised with PCA against one initialised with Isomap. If GTM
performs radically differently with linear and non-linear initialisation one could
use this as diagnostic to the degree of non-linearity of the data set. However more
research and experiments in this area will be needed. The case of the D60 data in
this experiment is special. In this case all models aborted after the first iteration,
because there was no change when compared to the initial configuration. This
problem is due to the EM algorithm which has problems of fitting the model in
too high dimensional data. This problem will need to be investigated in further
research and is not addressed in this thesis.
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Data GTM | GTM | GTM B-GTM | B-GTM
Initialisation | PCA PCA | Isomap PCA Isomap
Method Old | VSRMI | VSRMI | VSRMI | VSRMI
S Data Runs 100 100 100 22 21
S Data Likelihood | 2264 2329 2235 2411 2408
S Data NNL Error | 0.068 | 0.082 0.064 0.019 0.018
S Data RMSE 5.25 5.46 5.22 5.61 5.61
Swiss Data Runs 100 100 100 22 21
Swiss Data Likelihood | 10207 | 10149 9374 10273 9912
Swiss Data NNL Error | 0.127 | 0.172 0.071 0.172 0.031
Swiss Data RMSE 9.87 9.99 9.67 9.73 9.72
Oil Flow Data Runs 100 100 100 100 26
Qil Flow Data | Likelihood | -4462 | -7495 -5427 -7365 -5045
Oil Flow Data | NNL Error | 0.026 0.020 0.031 0.01 0.013
QOil Flow Data RMSE 0.09 0.09 0.094 0.084 0.102
BGTM D20 Runs 100 100 21 1 23
BGTM D20 Likelihood | 3687 3800 3301 3604 2627
BGTM D20 NNL Error | 0.273 0.29 0.203 0.62 0.18
BGTM D20 RMSE 1.03 1.00 0.82 0.38 0.26
BGTM D60 Runs 1 1 1 1 1
BGTM D60 Likelihood Inf 15196 13963 3604 3604
BGTM D60 NNL Error | 0.223 0.26 0.18 0.693 0.76
BGTM D60 RMSE 2.17 1.51 1.39 0.23 0.23

Table 5.1: Results after training GTM with different initialisations. The best re-
sults for each model type are marked in bold. The results for the BGTM D60 data
are included just for completeness since all algorithms broke down when pro-
cessing them as can be seen by the number of iterations. The results indicate that
in all cases the VSRMI initialisation is superior to the old initialisation using the
first two principal components of the data. The difference in the results is very
relative and thus the important aspect of the table is the clear trend, which is in
favour of the VSRMI.
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5.4 Summary

The experiments show that B-GTM is very promising. Given the right block struc-
ture the algorithm performs equally well or better than S-GTM and F-GTM, de-
pending on how strongly the block structure is exhibited in the data. However,
if the block structure is misspecified then the B-GTM performance deteriorates
quite rapidly and thus special care should be taken when specifying it.

We also noted a limitation of GTM in that it did not perform well on data sets
in high-dimensional spaces (depending on the data set between 50 and 80 dimen-
sions), a problem that has not previously been reported. This problem is inherent
to the EM algorithm which apparently struggles with increasing amount of di-
mensions. However more research into the properties of the EM algorithm when
combined with GTM is needed to draw conclusions. Using additional heuristics
this limit can be extended as is demonstrated in the case of B-GTM where heuris-
tics are needed because additionally to the problems with the EM algorithm one
runs into numerical problems when using a Gaussian noise model. If one wants
to analyse higher dimensional data the issue with the EM algorithm may be fixed
by using alternative ways of minimising the likelihood. However in addition to
numerical problems and the singularities in the likelihood there is a general prob-
lem with employing density models in very high dimensional spaces since larger
sample sizes are needed to draw valid conclusions.

To specify the block structure one can either elicit the needed information from
experts or analyse the data with additional tools. Possible utilities to help with
the specification of the block structure are OLO and QuickBCE. OLO in general is
well suited for the guided splitting of variables into groups. Ideally this would be
done by an expert practitioner who could identify the groupings in the variables
based on his experience and the results produced by OLO. This would be the
ideal approach however if this cannot be done an algorithm similar to QuickBCE
could be developed for an automatic classification of groups of variables. The
QuickBCE algorithm is not fully automated, one needs to specify the number of
groups, and needs more development and validation. Further it is an MCMC
algorithm, which implies a long runtime before one reaches a decision. While
the OLO algorithm performed the needed calculations in a matter of seconds the
QuickBCE algorithm took more than 15 minutes on the tested data sets.

A very useful addition to the GTM algorithm is the VSRML. It allows GTM to
exploit the advantage of local methods like Isomap or other alternative initialisa-
tions. The results clearly show the benefits of this approach especially with more
complicated data sets where PCA is not sufficient to pick up all the structure in
the data. This extension will result in more flexibility for the practitioner and
might even make GTM a tool to test the non-linearity of a data set. To do this one
could use the initialised GTM, without training it. A possible approach would be
to compare the likelihood, NNL and NLL of an untrained GTM initialised with
PCA against one initialised with Isomap. The reasoning is that if the dataset is lin-
ear the difference between Isomap and PCA should be marginal, however if the
dataset is non-linear and Isomap can capture the structure the results produced
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by Isomap should show a considerable advantage on all measures.
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Chapter 6 MISSING DATA

Missing data represent a general problem in many scientific fields (Latini and
Passerini, 2004) and are critical in environments like geochemistry where one has
small data sets with valuable, and expensive to obtain, samples. Usually the
missing data should not be ignored but most analysis tools cannot cope with
them. Therefore the practitioner has either to delete the incomplete samples,
which might lead to a serious bias, delete the incomplete variables which might
greatly impair the analysis or use a data imputation approach to infer the missing
values.

In the case of geochemistry the main causes of missing data are:

e Different analysis methods for different kind of samples (gas / rock / oil)

e Absence of complete analysis for certain samples for financial reasons or
other constraints like time

e Flawed analysis of the sample (human or technical errors)
e Polluted or contaminated samples

e Missing entries while digitising or storing the data in the computer

In general we assume that the data set T = yj, ..., yn can be divided into an
observed component T? and a missing component T™. Every point y, = lyo, ym
can be split into an observed and a missing component. Assuming a missing
indicator matrix M = (Mj;), the missing-data mechanism can be characterised by
the conditional distribution of M given T, p(M|T, 8), with 0 being an unknown
parameter vector. Given this formulation one can distinguish between three types
of missing data (Latini and Passerini, 2004; Little and Rubin, 2002; Schafer, 1997;

Scheffer, 2002):
e Missing completely at random (MCAR)

p(M|T,0) = p(M|0),,

if the missing data depend only on the unknown set of parameters 0. This
is a very stringent condition since the missing-data mechanism does not de-
pend on the variable of interest or any other variable in the data set. Missing
data are very rarely MCAR however this condition is required in order for
case deletion to be valid (Rubin, 1976).

e Missing at random (MAR)
p(M|T, 0) = p(M|T®,6) .
The term missing at random is slightly misleading. The missing-data mech-

anism in this case is not conditional on the values that are missing however
it is conditional on other observed values in the data set.
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e Not missing at random (NMAR)

p(M|T,8) = p(M|T, 0) ,

in this case the missing-data mechanism is conditional on the observed and
missing data. This is the hardest condition to model and will not be dis-
cussed in this thesis.

Most existing imputation methods are based on statistical moments and esti-
mation equations and give unbiased results with MCAR data, while likelihood
methods also give unbiased estimates with MAR data (Little and Rubin, 2002).
Without sufficient knowledge, which would allow to model the missing data
mechanism, there is no possibility to engineer an unbiased approach to deal with
NMAR data.

There are different standard methods to deal with missing data:

e The simplest approach is called Complete-Case analysis (Rubin, 1976) and
confines attention to only those cases where all variables are available. The
advantage is that one can use all the standard statistical analyses without
modification. The disadvantage is that one wastes a lot of information and
in addition, if the MCAR assumption does not hold, a bias will be intro-
duced to subsequent analysis or parameter estimation.

e Another approach is the Available-Case (Little and Rubin, 2002) analysis
where every variable is treated differently and one uses all the information
for each variable to estimate, for example, statistical parameters. The ad-
vantage here is that one uses information from the incomplete cases but the
disadvantage is that there are now different sample sizes for each variable.
This makes analysis with more sophisticated methods quite complex and in
addition it also has problems with bias and comparability across variables
if the MCAR assumption does not hold.

There are many alternative approaches to deal with missing data. These utilise
a broad range of ideas and theories. They covera diverse field and are usually op-
timised to fit the needs and available information in a particular area. This makes
the classification of these algorithms quite complicated but generally it is possible
to differentiate between multivariate and univariate approaches. The univariate
approaches are very simple and do not take into account the relationship between
different variables. Algorithms in this class are:

Univariate:
e Mean Imputation (Little and Rubin, 2002).
e Hot deck imputation, which is the random drawing from observed values

(Ford, 1983; Song and Shepperd, 2007).
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The class of multivariate approaches can be split into 3 categories by looking at
the kind of information they take into account: Local, Regression and Structured.
Local algorithms estimate the missing data by using a local metric on the ob-
served dimensions to determine which data points are close to the data point
with the missing value. They then use the data points in close proximity to infer
the missing values. Regression algorithms treat the missing data points as target
values and restate the missing data problem as a regression problem. The struc-
tured class consists of a variety of more complex algorithms. These algorithms
take more information about the structure of the data into account. Examples of
the algorithms are:

Local
e Nearest neighbour imputation in genetics (Troyanskaya et al., 2001).
e Local least squares imputation in genetics and bioinformatics (Kim ef al.,
2005; Bras and Menezes, 2006).
Regression

e PCA or PLS utilising the EM or NIPALS algorithm in chemometrics. (Wold,
1987; Rannar et al., 1995; Nelson et al., 1996; Nguyen and Rocke, 2004; Ket-
taneh et al., 2005; Andersson and Bro, 2000).

¢ Sequential regression imputation in survey design (Raghunathan et al.,2001).
e Modification of kernel PCA algorithm to deal with missing data (Sanguinetti
and Lawrence, 2006).
Structured
e Conditional mean imputation in speech recognition (Cooke et al., 2001).
e Bayesian PCA in genetics (Oba et al., 2003).
e Structural equation modelling in social science (Olinsky et al., 2003).

e Neural networks in machine learning (Tresp et al., 1994; Lakshminarayan et
al., 1996)

The different algorithms are all based on different assumptions and work well
on different data sets. An algorithm relying on local information will do better in
densely populated data sets, while algorithms relying on the regression approach
will do well in very linear and highly correlated data sets. The structured class
of algorithms is harder to classify because they use a variety of information and
correct the estimates by structural information about the data. For example in the
case of Bayesian PCA or conditional mean imputation this is done by correcting
the regression or mean estimate respectively by including information about the
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sample covariance matrix, i.e. the distribution of the data. Generally this class of
algorithms can deal with more complex data sets. However the price is a higher
computational cost, which in some cases can be substantial.

In the following chapters only a fraction of these different methods for the
imputation of missing values will presented. The methods presented are cho-
sen to represent a broad class of frequently used imputation methods using local
weighting, regression and a Bayesian modelling approaches. These algorithms
will be compared with GTM. The GTM algorithm itself already has a proven track
record for the use with missing data and it has been benchmarked previously to
test its capabilities to deal with missing data (Sun, 2002; Vicente et al., 2004; Olier
and Vellido, 2005; Schroeder et al., 2008).

Each algorithm is introduced and motivated and the advantages and draw-
backs are discussed. At the end of this chapter there is a benchmark study to
compare how the block GTM extension performs against the other imputation
methods as well as spherical GTM.

6.1 Single Imputation

Single imputation methods (Little and Rubin, 2002) are the most common and
easy to use imputation methods. They calculate single estimates for the miss-
ing data without estimating the uncertainty that exists in these estimates (i.e. the
estimated variance). The imputation methods presented are thought to be repre-
sentative for most classes of imputation methods (mean, regression, likelihood)
while still giving stable results for data sets with up to 60 percent missing data.
Methods are defined as stable if they consistently perform better than Mean Im-
putation (the most simple imputation method).

6.1.1 Mean Imputation (Ml)

In this very simple approach (Little and Rubin, 2002) the missing values are re-
placed by the mean of the known values

1 N
Yn(m) = No }:;y;’(m) ,
]:

with N° the number of observed components for the variable in question and m
the index for the missing dimension for the point £;.

This method suffers from a number of drawbacks which can be illustrated with
the following MAR example:

Assume we have 4 patients whose height x we measure in cm and weight y in kg
if the patient is under 190 cm. This results in an incomplete data set (x,y]

x = [55,60,63, m] , where m = 90kg

y = [170,173,172,193]

Using the mean imputation we would impute m = 59.4 which gives rise to the
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following problems.

e A serious bias is introduced in the produced results since the MCAR as-
sumption does not hold true: E[x] = 59.4 while the true value is 67, given that
the true value for x4 = 90kg.

e Estimation of the covariance matrix is biased since we are reducing the corre-
lation between the variables.

e An estimate of the variance is too small since we are reducing the values which
deviate from the mean.

It can also be noted that the approach is clearly inappropriate for categorical vari-
ables, although here a median value might be the equivalent.

6.1.2 Weighted Mean Imputation (WMI)

The weighted mean imputation is motivated by HotDeck Imputation (Ford, 1983)
and KNN-based imputation in bioinformatics (Troyanskaya et al., 2001). It was
developed to have a benchmark for the performance of algorithms using the local
structure in the data space for imputation. Originally the KNN-based imputation
was intended as the method of choice however it proved to be very unstable with
large amounts of missing data and thus WMI was developed. The basic idea is to
use the Euclidean norm as an inverse weight and build a weighted mean for every
missing value based on the closest data points. The algorithm itself is therefore
relatively simple:

1: Perform a mean imputation to create the complete estimated data set Y.

2: Compute the Euclidean distance between all the data points in Y.

3: Impute the missing components of y, by calculating the average over all the
data points in Y which observed these components with the inverse distance
to y, as weight.

The algorithm exploits the local structure of the data space and works well in
densely populated areas of the data space while only doing as well as mean im-
putation in sparsely populated areas of the data space.

6.1.3 Sequential Multiple Regression Imputation (SRI)

Multiple Regression in general is used to approximate the linear relation between
multiple variables in a data set Y. The underlying assumptions is that the values
of one variable can be obtained through a linear combination of the others:

yi = ay+ ayy1 4 .+ ai_1yi-1 + aiyie1 + o+ ag_1Ya -

Sequential Multiple Regression Imputation (SRI) (Raghunathan et al., 2001)
was introduced for handling missing data in surveys. We tested a simplified ver-
sion using only linear multiple regression since the data we focus on are usually
continuous rather than discrete. The algorithm is:
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Part 1:

1: Order the variables y;.; by the number of missing values ¥1.4; least first.

2: Impute any missing values in §; with mean imputation.

3: Iteratively go over all variables with missing values (starting with the one
which has the least amount) and estimate the regression factors for the com-
plete variables. The use the regression factors to estimate the missing values
by treating them as target values y;. Once the values for one variable are
estimated treat this variable as complete and include it in the regression esti-
mation of the next variable.

Part 2:
1. Estimate the coefficients a/ = [a

{), ey aé_l] of the linear regression model for
all variables.
2: Use these to re-estimate the missing values.

3. Assess whether the algorithm has converged; if not go to step 1 (Part 2)

This algorithm exploits the linear structure in the data but in general is vulnerable
to outliers. Furthermore, the initialisation in Part 1 is relatively important since it
presumes a linear relationship between all the variables. However we found that
the algorithm became highly unstable once data were missing across most of the
variables and ultimately started to break down with large proportions of missing
data. Thus we modified the algorithm as will be explained in the next section.

6.1.4 Multiple Regression Imputation with Mean initialisation and
Correlation Cut (MRI)

The SRI algorithm was designed for data sets where only a minority of the columns
have missing data and all the variables have a linear relation. This assumption
may be true for surveys, where missing values are mostly due to people who do
not wish to answer certain questions, but in geochemistry one may experience
missing data in almost all the columns and the variables might not be related in a
linear sense or might have no relation at all. This led to problems on some of the
real data sets we have used.

To have a more stable linear imputation than the SRI we created a modified
multiple regression imputation. This method differers from the SRI because it
is initialised with mean imputation to use the complete data matrix and make it
more robust against outliers and we also use the correlation coefficient between
the dimensions as measure to indicate the strength linear relationships between
two dimensions. In the case of MRI this estimate was used to determine if two
dimensions are highly enough linearly related to be used for calculation in the
regression models.

The result is a combination of SRI and MI, which can deal even with large
amounts of missing data and only performs slightly worse than the original SRI
when small amounts are missing. At first one constructs a complete data set
C using mean imputation on the incomplete data set Y. Then one learns the
regression factors a/ on this data set and after this one uses these regression factors
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to re-estimate the missing values in T. Therefore the algorithm can be described
as follows:

1: Perform a mean imputation to create a complete data set C, keeping track of
the missing value locations.

2: Compute the correlation coefficient between the variables on the complete
data set C. A _

3: Estimate the regression factors al = [a{), o a{i_l] on the dimensions where the
correlation coefficient is sufficiently high for stability.

4: Use the regression model to recompute the missing values and create a new
complete data set C.

5. Check that none of the imputed values is outside the range of the known
values. (This sanity check restricts the prediction range but avoids the generation
of heavy outliers. It is required because even when only including well correlated
variables the linear multiple regression can become unstable when large numbers of
values are missing.).

6: Assess whether the algorithm has converged (we use a threshold on the sum
of absolute change across the complete data matrix); if not go to step 2.

This algorithm exploits the linear structures in the data while still being able
to cope with a large amount of missing data, though one would expect problems
and poor predictions if the proportion of missing data is too high (more than 50
percent missing) or the variables exhibit non-linear relationships between each
other.

6.1.5 Probabilistic PCA with Missing Data (Bayesian PCA or BPCA)

The probabilistic formulation of PCA means that it can be extended to deal with
missing data. It was extended as well as termed “Bayesian PCA” by Oba et al.
(2003) to help with the estimation of missing values in bioinformatics. The al-
gorithm performs similarly to or better than PCA with non-linear iterative par-
tial least squares (NIPALS) (Nelson et al., 1996; Wold, 1987; Andersson and Bro,
2000), which is an alternative approach to use PCA with missing values, and only
slightly worse than partial least squares imputation (Kettaneh et al., 2005) and lo-
cal least squares imputation (Kim ef al., 2005), according to a study of Bras and
Menezes (2006). The algorithm is therefore a good benchmark to summarise the
performance of this class of algorithms.

The model is the same as outlined in appendix B.2; however Oba employed
a variational Bayes (VB) algorithm (Attias and Ar, 1999) to optimise (B.4). A
schematic description of the algorithm is as follows:

1: The posterior distribution of the missing values is initialised by imputing the
dimension average (Mean Imputation).

2: The parameters for the likelihood in equation (B.4) are estimated given the
observed data and the posterior of the missing data (through the usage of VB
there are hyperparameters which are also estimated).

3: The posterior of the missing data is estimated given the parameters and hy-
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perparameters.
4. Assess whether the algorithm has converged; if not go to step 2.

In principle this algorithm should perform extremely well in data sets with
strong linear dependencies between the variables; however through the usage of
the conditional mean one would expect superior results to MRI since the method
also takes into account the covariance structure of the data.

Oba made the Matlab code for his algorithm freely available from his web-
site 1. There is also a Java version and an R-version available. This was greatly
appreciated by the author of this thesis and the code was used without major
modifications.

6.1.6 EM for Missing Data in Mixture Models

The EM algorithm can naturally be extended to deal with missing data and be in-
corporated into a mixture model (Ghahramani and Jordan, 1994). The algorithm
needs to be modified in the E-Step:

Q(6,61) = E[p(Z|T°, T, 6 1) Inp(T°|6)],

where the expected value is taken with respect to both sets of missing variables,
the missing values T and the missing indicators Z, where z, = 1if and only if
t, is generated by component k, otherwise z, = 0. An example of this is given
in the following paragraph where we use a mixture of K Gaussians in the case of
the GMM and the GTM.

6.1.7 EM for Missing Data in Gaussian Mixture Models

As in the general case we use the formulation of (Ghahramani and Jordan, 1994)
to deal with missing values by using the EM algorithm.
The expectation of the error function (—Lcom,,) given by (4.2) can be written as

N K N K ‘

_L(B)comp = - Z Z Zkn lnP(k) - Z Z kn ln{“kp Ynlak)} (6‘1)
n=1k=1 n=1k=1

Since we are only interested in maximising the posterior probability p(k|yn) given

by equation (4.4) we are going to neglect the first term in the following para-

graphs.

Full Covariance Matrix
For a GMM with a full covariance matrix we can expand the second term of
equation (6.1) to:

—L(e)comp — - ZQJ:] 2]15:] an {]_n 0Ck + %l_n [Zgl 'I" % 11127T ’ (62)

Thttp:/ /hawaii.aist-nara.acjp/~shige-o/tools/BPCAFill.html
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+30yn — m) TS (v - )
+(ys = 1) = = )
3 = T = )
where ) and Iy denote the means and covariance of the kth Gaussian respec-

tively. A more detailed derivation can be found in the work of Ghahramani and

Jordan (1994). Among the superscripts, for example, (—1,00) denotes inverse
00

followed by submatrix operations where L is divided into ( (’)( Z}f’”) corre-

0

sponding toy = (;,m> . Taking the expectation with respect to both sets of miss-

ing variables results in the three unknown terms z,, zx,yn' and zkny?yan. To
calculate these terms one has to introduce the variables ¥}

§i = (vilzin = Lyn 06) = (') + S5 (yh — ) (6.3)

which is the least-squares linear regression between y}/ andyj, predicted by the
kth Gaussian. The expectation of zy,, is (zx,|t9, 8k) = Rk, which is only measured
onyy.

e E-Step:

Computing these unknown expectations is done in the E-Step where we start
with z;, which is defined as:

_E e {50 — i) v — g
Szl 2 exp{ =3 (y5 — w0 Ty — 10}

For the second and third unknown terms, we obtain

Zkn

<Zkr7yxr:1’y(rjw 9k> = <an‘y(r)7/ 9k> <yglizkn =1, y;)w 9k> = RknyZ;I ’

and

T T .
(zinyn' i 1Yo 06) = (zknlyn, O (YR YR |2kn = L5, 0k) (6.4)
— T opr myT
= Ry, (T — pproz, - Loosomt g g 1y (6.5)

@ M—Step:
Now the estimates y} are used to substitute the missing values of y, and to re-
estimate the mean vector as in equation (4.5)

_ Z;T;le p(klyn)yn '
Ln=1 plklyn)
The covariance has to be estimated in the three steps. For the part of the ob-
served and observed/unobserved data we can directly use the equation for the
full covariance matrix from equation (4.6):

(20,0) _ lzyzl p(klyg)(yg - ]/li)(y% - Aui)T
£ D vl p(klys)

4

114



Chapter 6 “MISSING DATA

(Zo,m) o lzyzl P(HYZ)(Y% - Hi)(yw V,Zz)
8 =
D 251\]:1 p(kIYn)

In the case of the unobserved /unobserved part we have to substitute the whole
outer product matrix of equation (4.6) into equation (6.4):

l Zil‘l\lzl p(k’y%) ((szz)old (Zmo)old(er Oo)old (Zom )old + Y;;;)A’Z}q )
D Zn =1 p(k|Yn)

(2;11,717 ) —

Diagonal Covariance Matrix In the case of a diagonal matrix the estimate of
the missing data simplifies to the mean of the Gaussian center

oM

Yin = (Ffz) ’

and the covariance matrix for the observed part is

(09,)2 = 125:1 p(Kly5) (WS, — 1ox)?
’ D il p(klys)

7

and for the unobserved part is

(o )2 = 1 Zy:l P(le%)((ng)om +ydkn)
dk -7
D Z 1p(kIYn)

Spherical Covariance Matrix In the case of a spherical matrix the estimate of
the covariance has a known and an unknown part where ||y$ — u}|| represents
the known part and

iallyly = uP1P) = m (@) + 315)7 (5 = 2080 1+ ()T

represents the unknown part of the variance, where 7, represents the number of
missing values in the data point y,. Thus the estimate for the variance is

10 plklyn) (lys = #2117 + (Genllyn = 171%)
D Zn 1P(len)

(k) =

6.1.8 Extension of GTM for Missing Data Imputation using EM
(GTMI)

The algorithm using GTM to impute missing data will be called GTML To ini-
tialise this algorithm PCA will be used. However PCA can not deal with missing
data and thus we are using mean imputation to obtain the first two principal com-
ponents with PCA but not bias the result through the usage of a better alternative
imputation method.
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Further the EM algorithm with missing data can be extended to the GTM
model (Sun, 2002) based on a simplification of (Ghahramani and Jordan, 1994).
The error function given by the log-likelihood from (6.2) can be written as,

N K
_Lcomp = - Z Z Zkn 1nP(Yn|3k) :
n=1k=1

For the GTM model with a spherical covariance matrix this term can be expanded
to

—Leomp = _Z)I;]:l 21{( 1anll In Ly | + %anTI
o Ay )T - )
+ = - O
After taking the expectation with respect to both sets of missing variables, one
ends up with 2 unknown terms zy,t' and zy, £} t"T, so one must calculate the

expectation for these terms. To compute these expectations, variables ¥, are in-
troduced,

oW ¢ —

9= (Y2 = 1,5, 0k) = (u),

which are the linear least-squares regression between y}i' and yj, predicted by the
kth Gaussian, where the superscript “old” denotes the result from the last M-step:
() = (Wora® ()™
e E-step: The expectation of zy, is (2, |y5, 8k) = Rey, with
D/2 v
Rey = 21 P( =3Iy W) = ylP)
n D/
o5 £ exp{=Slly(es W) — yall)

measured only on the observed dimensions Y9 of yy.

, (6.6)

e M-step: The weights are updated to Wy, as in equation (4.15) for
complete training data:

®G, ;&' W!, = ®RY, 6.7)

where the missing data are given by the posterior means:

K
<y;1”|YIOn/ 601d> = Z Rkny;?n :
k=1

Then the inverse variance is updated as follows

L LSSy R (11— y2I + el — y2IR)
PN Y 11 k k - ’
ﬁ ND — = I n mn n n

where

<anHym YZZ|12> = nm( )OId (Ykn) ykmn - 2<Ykn) Yk (Yk )TYZ1 ’

and 71, is the number of missing values in data point t,. A more de-
tailed derivation can be found in (Sun, 2002).
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6.1.9 Extension of B-GTM for Missing Data Imputation using EM
(B-GTMI)

The algorithm using B-GTM to impute missing data will be called B-GTMI. The
changes one has to make to allow the B-GTM algorithm to deal with missing
data are straight forward. As with the spherical GTM one has to modify the E
and M-step.

e E-step: The expectation of R;, being (R;, |y}, 6%) is similar to (6.6),

Rin(Woia, Zota) = p(Xilyh Wotd, Zotd)
_ KP(Yani:WoId,Zozd)
):}':1 p(ygzlxjrwoldfz‘old) !

measured only on the observed dimensions y$, of y.

e M-step: The weights are updated to W, as in equation (6.7) for
complete training data:

®G,;® W', = ®RY,

where the missing data are given by the posterior means as for the
GMM in (6.3)
}A’ZY - Zszl Rip <YZ’|Y;UW 01d>
—_ (sz)old -}—Z"’OZ“]'OO(Y (Vm)old>
H

The covariance matrix has to be updated individually for every data

point with
N
s — ]\le Z Z Rm me old (21;10)<)Id(200 ~])0!d(zom F)o + yﬁtyzl T) )
n=1i=1
Zom o 1 AN :* o] n
~ ND Z Z *—' xkr Yn)(‘—'(xkr ) YH) ’
N K
20 = LY Y Ry (B, W) — 3 (B, W) — i)
~ ND in\—\ Rk~ Y I\ =Xk Yu)
n=1i=1
00 1 AN = o\ (= o\T
Y = "I\]—D Z Z Rin(‘:‘(xk/ W) - le)(‘:‘(xk/w) - YH>

0
i
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6.1.10 Performance Indicator

To compare the different imputation methods a measure of performance is needed.
The following commonly used error measure (Olier and Vellido, 2005; Cooke et
al., 2001; Bras and Menezes, 2006) accounts for the difference between the original
y; value and the imputed §; value and gives an idea how well the imputation has
performed.

Root Mean Square Error:

1 N 5 z
RMSE = | =Y lyi — 7]
Nizl

The RMSE is an estimate of the standard deviation of the residual errors from
the predictions. It can be sensitive to outliers since it is a second moment statis-
tic. However this measure is problematic because it will show a counter intuitive .
behaviour when plotted over an increasing number of missing data points N per
dimension. The division by N causes the measure to show a decreasing variance
or spread with an increase in the proportion of missing data. This causes the
pretence of a decrease in variability of the error with an increase in missing val-
ues. However we could not find a more suitable measure which allows for the
comparison of the error across different proportions of missing values.

In this thesis the RMSE is calculated for every data point and then averaged
over all the data points. Further this average is calculated over a number of ran-
dom missing data patterns and then averaged again. The results are therefore
presented as an average over the average of the RMSE (ARMSE) error. This is
done because different random missing data patterns will benefit or impair the
various imputation methods and a sufficient sample size is needed to draw valid
conclusions.

6.1.11 General behaviour of the performance indicator and the
imputation methods

Since the ARMSE error is used as the measure for the benchmark it is advisable
to take a closer look at its behaviour. For example it is important to know if unex-
pectedly high variances are occurring which render the average a less meaning-
ful indicator in the final results. Since the work explores different proportions of
missing data it is important to ensure comparability across this range.

To examine the behaviour of the RMSE and the imputation methods in combi-
nation with the random generation of missing variables box plots are employed.

The methods were tested on the oil flow data; however the results across other
data sets have been tested and found to be similar. To research this behaviour 50
random missing data patterns for each level of missing values, p;, were gener-
ated.

The results for MI, MRI and GTM can be seen in Figure 6.1. These methods
are chosen since they summarise the behaviour of the other methods as well.
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They show no unsurprising or unusual behaviour. The variability in the data is
due to the different random missing data patterns. In the case of MI the spread
around the error is quite small and thus the average is a good approximation of
the overall performance. As already explained the RMSE is showing a decrease
in variability with an increase in the proportion of missing values because of the
smoothing effect when dividing by large N.

In the case of MRI and GTM the results are roughly similar. There is a b1gger
spread around the median RMSE for MRL If one looks closer however one can
see that the spread between the mean and the worst result stays the same, while
the quantile pointing towards the better outcomes moves closer to the mean. This
makes sense because with higher proportions of missing data the ability to un-
dertake meaningful inference decreases and so does the performance of the im-
putation methods. If a point is not close to the density of the other points the
inference of missing values will be bad no matter how many values are missing.
Therefore one has to be aware that the imputation methods only perform well on
average since in some cases the imputed value might still be very far away from
the true value. However an increase in missing values makes it harder to infer
the right values even for points close to the centre of the data density.

A special discussion is needed for the result in Figure 6.1(e), when one looks
at the big jump or decrease in performance when going from p; = 0.5 to p; =
0.6. This decrease in performance will also show up in the next section. This
anomaly is due to the way the GTM algorithm is initialised. For this experiment
we initialised the GTM algorithm with PCA. The standard algorithm for PCA can
not deal with missing data and therefore we used MI as an pre-processing step
before using PCA to find the first two principal components on which GTM is
initialised. When the proportion of missing values increased from p; = 0.5 to
p; = 0.6 MI+PCA lost the ability to pick out the right principal components and
thus GTM was initialised in a suboptimal state.

To compensate for the smoothing of the RMSE we also looked at the distri-
bution of the maximum difference. This distribution is in essence looking at the
worst outliers in terms of accuracy, where the models predict very wrong values.
The results can also be seen in Figure 6.1. Here one can see that the increase in
missing values boosts the variance and the number of extremely bad predictions
for single values. As already mentioned this behaviour is smoothed out when
looking at the RMSE.

Finally if one looks at the general distribution of the imputed values in Figure
6.2 one can see that the imputation methods in general behave well. The MI is
centred around 0, which is expected since all data sets in this work have been nor-
malised and have zero mean. Further one sees no big differences between MRI
and GTM, which is reassuring and indicates that both methods do not tend to in-
troduce a systematic bias, exhibit spontaneous breakdowns or other unexpected
behaviour. The exception is again GTM when p; = 0.6 however this is due to the
already discussed problem when initialising GTM.
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Figure 6.1: Behaviour of the RMSE and the distribution of the maximal differ-
ences between the original and imputed values. The boxplots show the distribu-
tion of results for different proportions of missing data on the oil flow data. Each
boxplots describes an experiment with 50 different missing data patterns given
the proportion of missing data and the used imputation method. The RMSE be-
haves as expected with an decrease in average performance as well as variance
when the proportion of missing data increases. The distribution of the maximum
difference (i.e. worst result) also behaves as expected and the errors get worse the
more data are missing with a constant variance.
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Figure 6.2: Distribution of the imputed values: little bias is shown.
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6.1.12 Benchmark

To compare the different imputation methods the multi-dimensional oil flow data
and the toy 20D and 60D toy data sets, described in chapter 3, were used. The
performance of the imputation methods was measured on a range of proportions
p; = [0.1,..,0.6]. 50 random missing data patterns for each p; were generated to
average the results of the performance indicators and get a representative value.

The results of the benchmark experiment can be seen in Figure 6.3. In general
the ARMSE shows a similar trend when averaged over all the dimensions. The
most widely employed missing data imputation method, MI, always performs
the worst. WMI performs better than MI on all data sets. The more advanced
imputation methods like MRI, GTMI and B-GTMI always perform better than
WMI or ML MRI and GTMI show different performance on the different data
sets. GTMI outperforms MRI on the multi-flow oil data but is worse on the toy
data sets with low proportion of missing values (< 0.3). This might be explained
by the linear nature of the toy data sets. The 20Dim and 60Dim toy data sets were
generated by using a 2 x 2 RBF which does not allow for a highly non-linear
structure.

The B-GTMI and BPCA algorithm outperform all other tested imputation
methods on all the data sets. In the case of the multi-flow oil data B-GTMI is bet-
ter with lower amounts of missing values (< 0.5). However in the case of the two
test data set 20Dim and 60Dim BPCA clearly outperforms all other methods. The
advantage of BPCA and B-GTMI is because both use the full covariance structure
which clearly aids in the imputation. The superior performance of BPCA on the
20Dim and 60Dim toy data sets can again be explained by the near linear nature
of these data sets.

Another very interesting observation is the continuous decrease of the per-
formance of B-GTMI without any jumps or transitions like in the case of GTML
Especially in the case of oil flow data and p; = 0.6 we know that the GTMI per-
forms far worse because of the poor initialisation. However B-GTMI seems to be
more robust and manages to compensate for it in this case.

6.1.13 Projection Results

Measuring the RMSE for imputation algorithms gives an indication on how well
the model is able to infer the missing data. However we are also interested in
evidence about their use in data exploration. For the applied scientist it is impor-
tant to know when an imputation algorithm might still help to reveal the hidden
structure of the data and when it is unlikely to make much of a difference.

To get an indication about the usability of these algorithms we visually com-
pared the projections of PCA, GTMI and B-GTMI. The PCA projection on missing
data patterns was obtained by preprocessing the data either with MI or MRI. The
proportion of missing values were p; = 0.2 and p; = 0.6.

The projection results can be seen in Figures 6.4 and 6.5 for the oil flow data.
Further results can be found in appendix A. These results indicate that the pro-
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Figure 6.3: Performance of the imputation methods with different proportions of
missing data p; = [0.05,...,0.6] on different data sets. (a) In the case of the oil
flow data B-GTM is as good or better than all other methods for little to medium
amounts of missing data p; = [0.05,...,0.4]. (b-c) The GTM generated toy data
show a clear advantage for BPCA regardless of the proportion of missing data
with B-GTM being the second best method.

123



Chapter & MISSING DATA

jections obtained through the use of GTM and B-GTM are still meaningful when
one has a low proportion of missing data. However, as one would expect, the
results are less informative once the amount of missing data grows beyond a
certain threshold. The usage of PCA combined with MI or MRI provides only
projections of very limited significance, where it is still possible to distinguish
class 3 from class 1 and 2 in the case of a small amount of missing data. How-
ever the methods produce very uninformative projections with large amounts of
missing data where no distinction between classes can be made. B-GTMI and
GTMI produce meaningful results with low amounts of missing data and one
can still distinguish between classes in Figure 6.4. However both algorithms fail
when confronted with high proportions of missing data as can be seen in Figure
6.5, where no distinction between different classes is possible. The worst result is
given by GTM which due to the bad initialisation breaks down and projects all
data points onto a one-dimensional structure.

From the results it is apparent that the deterioration in performance is directly
related to the increasing proportions of missing data: the threshold, which ren-
ders a visualisation uninformative will depend on the data set, the missing data
pattern and the require accuracy from the practitioner.

6.2 Missing data as a way to assess the model fit in
unsupervised learning

In data exploration and visualisation most tasks are performed on unlabelled
data. This poses a big problem when one wants to evaluate the performance
of the model or to assess whether results are meaningful. Since the data are unla-
belled there is no possibility to assess directly whether the visual results or struc-
tures are meaningful.

The only way to assess the actual quality of the exploration or visualisation
is through the use of indirect measures. However common measures like the
Jikelihood might be misleading since they are relative and one has no a priori in-
formation about what value of the likelihood is good. The usage of the likelihood
permits the comparison of models against each other but cannot tell whether a
particular result is at all meaningful.

The use of multiple measures to help with the validation of model results
makes for a more robust assessment. An understanding of the restrictions of the
measures used is essential. Otherwise faulty conclusions might be reached if the
employed visualisation and exploration algorithms fail to capture the structure
of the data. For example, if one only relies on the likelihood and all the compared
models do not capture the structure of the data, even the model with the best
Jikelihood might not provide a good or meaningful visualisation.

One approach to help assess each method is based on re-sampling (Moeller
and Radke, 2006; Yu, 2003) and comparison of the moments of the data. The
general idea is that if one samples new data from the model these newly sampled
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Figure 6.4: Example projection on the multi-flow oil data, with p = 0.2. In the
PCA projections (a) and (b) it is not possible to distinguish between the classes.
In the GTM projections (c) and (d) the performance has deteriorated and the class
boundaries are not clear.
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Figure 6.5: Example projection on the multi-flow oil data, with p = 0.6. Itis
impossible to distinguish between the classes in all classes (a)-(d) and in the case
of of spherical GTM (c) the algorithm broke down completely.
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data should have similar statistics to the original data. However this is a very
general measure and no guarantee of a meaningful visualisation.

A similar approach would be to create missing data artificially and retain the
original value for comparison. Then the estimation of missing data can be seen
as a re-sampling approach. However in contrast to the overall statistics which
are a global measure the estimation of missing data is a local measure. It tells
the user how well the model is doing locally at a certain point in the data space.
The projections in Figure 6.4 and 6.5 support this idea since they show a relation
between the RMSE and the separability of the classes in the projection. For exam-
ple the collapse of the projection of GTM in Figure 6.5(c) happens simultaneously
with a large increase of the RMSE for GTMI at p = 0.6 in Figure 6.3. However a
better RMSE for one method is not imperative for a better visualisation as can be
seen for BPCA, GTM and B-GTM when looking at the results of the projections
in the appendix in Figures A3, A4, A5, A.6. Even though BPCA has the lowest
RMSE the visualisation of GTM and B-GTM are as good or better if one assesses
them on the basis of class separability in the projection. Hence this measure has
to be seen as providing a partial assessment of performance and should be used
in combination with other measures.

To use this measure, visualisation methods need to be able to deal with miss-
ing data. Probabilistic based methods can in most cases be modified to cope with
missing data. The estimates of the model can then be used as imputation esti-
mates for the missing data.

This fact is exploited in chapters 5 and 7 where the ARMSE is one of the key
measures to assess whether the extension of GTM to B-GTM enhances the visu-
alisation and model fit.

6.3 Conclusion

The GTM algorithm has in previous work proven to successfully cope with miss-
ing values in data sets (Vicente et al., 2004; Olier and Vellido, 2005; Sun, 2002).
However these studies were concerned with small test data sets and the general
ability of the algorithm to handle missing data. To the knowledge of the au-
thor no extensive comparative and systematic study has been performed until
Schroeder et al. (2008). The probabilistic formulation of the GTM algorithm al-
lows for the inclusion of partially missing data which maximises the amount of
available information when fitting the model to a given data set. In this chapter it
has been shown that GTM remains relatively robust on toy data even when a high
proportion of data is missing. The extension from GTM to B-GTM enhances the
capabilities of the algorithm when dealing with missing data if the information
provided about the block structure is correct.

To benchmark the imputation abilities of GTMI and B-GTMI two well known
imputation algorithms (WMI and MRI) were used. These algorithms have proven
to be stable and give reliable results on the toy data sets, which in the case of MRI
are as good or better than GTMI. WMI and MRI have far lower computational
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costs than GTMI, B-GTMI or BPCA. They might be good alternatives in certain
cases. In densely populated data sets WMI performs well. In data sets with high
linear relations between the variables MRI performs well. However the results
suggests that GTMI, B-GTMI and BPCA have a very useful role in the replace-
ment of missing values since they outperform WMI and MRI especially in the
case of high proportions of missing data.

The visualisation capabilities of GTMI and B-GTMI are subjectively superior
when compared against a two stage process of PCA and Ml and depending on the
case even over BPCA. The results indicate that GTMI, B-GTMI and BPCA will still
deliver meaningful results even when faced with moderate quantities of missing
data. However there is no guarantee that the visualisation will be meaningful
and the algorithms will ultimately fail and produce inappropriate projections if
the proportion of missing data is too great.

The use of artificial missing data itself might have application to the assess-
ment of the fit of the model: in data exploration and visualisation, where most
tasks are performed on unlabelled data, this measure could prove to be very help-
ful. Common measures like the likelihood might be misleading since they are
relative and one has no a priori information about what level of likelihood will
qualify as good. In the case where one is able to modify the model to deal with
missing data and get a viable estimate for the missing data the ARMSE might
be a good additional measure to quantify the performance of the model where a
performance close to zero will indicate a perfect fit of the model. A small ARMSE
alone will not ensure a good visualisation and thus ARMSE should be used in
conjunction with other measures to assess the quality of the visualisation on un-
labelled data.

Another application for the RMSE error and artificial data might be the as-
sessment of the non-linearity of a data set. If GTM or B-GTM is performing better
than BPCA like in the case of the oil flow data, it could be argued that this data
set must be of a non-linear nature which can not be picked up by BPCA. Possible
approaches to this idea will be discussed in the future work chapter at the end of
this thesis.
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Chapter 7

WORKING WITH REAL DATA

The aim of this Ph.D. is to explore the possibility of using non-linear and
probabilistic models in geochemistry. New methodologies were developed to
deal with particular properties of geochemical data, such as blocks of correlated
variables. The theoretical foundation and application of these methods were dis-
cussed and benchmarked on toy data sets in earlier chapters. In this chapter their
practical use will be highlighted in a small case study on real geochemical data.

First some general aspects of data pre-treatment and the difficulties this presents
are discussed. Then different diagnostics for the visualisation of GTM will be il-
lustrated on a simple three-dimensional toy data set. This is followed up by a
short introduction to the data visualisation tools we used and developed.

Finally different studies to demonstrate the performance of the algorithms on
real data are discussed. First case study on the Barents Sea data demonstrates
the use of non-linear techniques. Second, a benchmark study on two additional
geochemical data sets was carried out to benchmark the visualisation and impu-
tation algorithms. Finally a performance study is presented to show how long it
takes to run the different algorithms.

7.1 Data pre-treatment

Mixing major, minor and trace elements and overcoming differences in the
amount of variation. In multi-element analysis of geological materials one usu-
ally deals with elements occurring in very different concentrations. In rock geo-
chemistry the chemical elements are divided into “major”,”minor” and “trace”
elements. Major element concentrations are 3 % upward, minor element concen-
trations are about 1% and trace elements are measured in ppm (parts per milion)
or even ppb (parts per bilion). These can then be combined with data from more
complex analysing and screening techniques like GC-MS which might not give
concentrations at all but relative peak heights or areas. This becomes a problem
if one uses statistical methods and considers multiple variables simultaneously
since naturally the variables with the greatest magnitude will dominate the re-
sults. As a consequence one should not mix variables of different units in one
and the same multivariate analysis without prior treatment (Rock, 1988). Possi-
ble pre-treatment includes transformation and or standardisation techniques. A
good discussion of the topic can be found in Reimann et al. (2002) which dis-
cusses data pre-treatment and the application of factor analysis on geochemical
data. Another good reference is Kvalheim et al. (1994) which deals with the im-
plicit assumption in many models (e.g. spherical GTM and PCA) that all variables
are independent and have similar levels of noise.

In the following sections we pre-processed all real data sets in the same way.
First all GC-MS data are block normalised to a value of 100 for each sample. Then
the values are autoscaled (standardised) over the variables; subtraction of the
mean and division by the standard deviation. This was done to eliminate the in-
fluences or dominance of individual compound concentrations (Brereton, 2003).
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Different Labs and Sources. One major problem when analysing geochemical
data is the constrained set of samples. Many geochemical data sets feature less
than 100 samples while having 100 or more variables. If one wants to augment
these data sets by similar data from the same region (or with similar history and
constitution) one might run into the problem that not all samples are analysed by
the same laboratory. It is known that different laboratories will report different
results even if they all receive an identical sample (Blankenhorn et al., 1992; Isaacs,
2001; Kucklick et al., 2002). This laboratory difference is due to the state and
configuration of the GC-MS, the amount of sample matter injected into the GC-
MS and in unfortunate cases to the mal-handling of samples and bad practice
in some labs (i.e. samples were left open for too long and the lighter molecules
evaporated).

This difference introduces a bias into the analysis of the samples and is not
easily treated. In theory the use of ratios or autoscaling should reduce the bias
which is caused by different amounts of sample matter injected. Further one
would hope that for good labs the configurations of the GC-MS are standardised
and highly comparable. To the knowledge of the author no research has been
done on how to reduce or treat this laboratory bias. It is therefore unknown what
to do, except for autoscaling, if one needs to mix the results of different laborato-
ries for multivariate analysis. This problem has not been addressed in this work
and is in dire need of future research. The data set we used all came from multiple
labs where a difference between the laboratories could clearly be observed. Thus
a possible bias had to be accepted when benchmarking the different methods.

7.2 Exploring the non-linear mapping of GTM

The non-linear mapping and probabilistic formulation of GTM has many advan-
tages but since the mapping is non-linear a straight forward interpretation of the
mapping like that given by the loadings in PCA is not possible. However using
techniques for data exploration, namely parallel coordinate plotting (Inselberg et
al., 1990; Edsall, 2003), one can acquire a similar level of information about the
projection. The technique of parallel coordinates is very powerful and has been
applied in outlier detection and visualisation in earlier applications in geochem-
istry (Grunfeld, 2007). The technique, illustrated in Figure 7.1, itself is relatively
simple: The D dimensional data space is plotted in X/Y plot where one parti-
tions the X axis into D equidistant parallel parts and plots the samples as discrete
values for each part and connects them with a line. Instead of displaying all sam-
ples in parallel coordinates, which is impractical for larger data sets, we only plot
the samples which are selected in a certain part of the manifold. This technique
is called local parallel coordinates (Maniyar and Nabney, 2006b) and it allows
the user to study the properties of the points in the high-dimensional data space
while working with the lower dimensional representation.

However, the non-linear mapping of the GTM brings certain dangers. If the
GTM model is chosen to be too flexible it can happen that the manifold folds over
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Figure 7.1: Schematic illustrating the set-up of a parallel coordinate plot with 5
variables and 2 samples. The values of the samples for each variable are plotted
on the dotted line and joined by lines in their respective colours.
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or twists. As result this might cause points to get projected to different corners
of the manifold while in reality they are very close together in data space. This
can be checked by looking at the mode of the posterior distribution of each point.
The normal visualisation or projection is given by the mean, which is the average
of all nodes weighted by the inverse distance to the data point. If the manifold
is smooth the mode and the mean should be very close together. However if the
mode deviates considerably from the mean this is an indication that there are
problems with the model fit and one should consider reducing the flexibility of
the GTM and repeating the modelling.

Another characteristic of the GTM is that the distances in the visualisation
space can be misleading since the GTM behaves like a rubber sheet and will
stretch itself in the data space. Thus points close in the visualisation space may
not be close in the data space. This however can be checked by looking at the
magnification factors (Svensén and Williams, 1997) which give an indication of
how strongly the GTM is stretched in a certain area. |

To show the process of data exploration we will give a demonstration on a
modified version of the Swiss-roll data set in chapter 3. To demonstrate the di-
agnostics of GTM we include an additional outlier group in the data. The 2D
and 3D structure of the data set and the projection obtained through PCA can be
seen in Figure 7.2. In this example the first two principal components obtained by
PCA fail to capture correctly the non-linear structure of the data. This is shown
by the fact that the main classes overlap strongly in visualisation space but not
in data space. If this simple approach to PCA-based visualisation was the only
method employed in this case an incorrect judgement about the separability of
the classes would be made. Albeit if one looks at all possible cross plots between
the obtained principal components (in this case PC2 and PC3) one can distinguish
between the classes and identify the underlying structure. However in practise
with far higher dimensional data it can not be guaranteed that PCA will capture
the structure even when looking at more than the first two principal components.
The simple reason is that it quickly becomes unfeasible to look at all possible cross
plots if one goes beyond 4-5 principal components.

To demonstrate the advantages of non-linear data exploration we fitted a GTM
to the data with the following specifications: [8 x 8] RBF network, [25 x 25] grid
of latent space nodes and initialisation by the Isomap algorithm. After testing
multiple parameter combinations the likelihood of the model indicated that these
parameters yielded the best results. The results can be seen in Figure 7.3 and 7.4.
The visualisation of the GTM shows a perfect separation of the classes with the
outlier group on the left border of the manifold. Using the diagnostics for the
GTM one can now obtain additional information about the manifold. Looking
at the magnification factors in 7.4(a), one can see that these outliers are actually
in a highly stretched area. This indicates that they are much further away from
the rest of the data than is immediately apparent in the projection and one should
explore these groups in more detail. This canbe done by using the parallel coordi-
nate plots. To demonstrate how parallel coordinate plots can be used we selected
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Figure 7.2: a) 2D Structure of the Swiss-roll with outlier group. b) 3D Structure
of the Swiss-roll. c-e) Visualisation using PCA, where the structure is visible after
looking at cross plots of all possible combinations of available principal compo-
nents.
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3 groups of 10 points in different regions of the manifold. The parallel coordinate
plot in 7.3(b) shows clearly the different characteristics of data in the different
areas of the manifold. The outlier group, marked as class 1, is very different to
the other groups in all three variables, while the 2nd and 3rd group are mainly
separated because of differences in the first and second variable. Finally the plot
of the modes in 7.4(b) shows that there are no big differences between the means
and the modes, which is a safeguard to check that nothing unusual has happened
to the manifold.

In a similar fashion one can explore the non-linear visualisation of geochemi-
cal data which will be demonstrated on Barents Sea data in section 7.4.
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7.3 Integration of GTM and PCA with plGl for data
exploration \

To enable us to validate our methodologies on geochemical data it was necessary
to integrate software with a geochemical analysis toolkit. For the later we used
pIGI (IGI-Ltd., 2009), shown in Figure 7.5. pIGl is a powerful data analysis tool
which is developed and maintained by IGI, who were co-funders and collabo-
rators on this project. It is used by geochemists to use screening, molecular and
isotopic geochemistry for well, acreage, prospect and basinal evaluation.

The integration into pIGI was done as an additional module under the .NET
framework to ensure usability and easy maintenance in future pIGI develop-
ments. This was done by implementing the algorithms in managed C++ using
public Lapack/Blas' routines and wrapping this code ina .NET wrapper.

The tool is very basic at the moment featuring simple data manipulation tech-
niques (like autoscaling, block normalisation and mean imputation for missing
values). Further futures include simple plotting functions for PCA (scores and
Joadings). In the current version, the only visualisation model implemented are
PCA and spherical GTM. This tool is still a prototype. The layout can be seen in
Figure 7.6. In the future it will be fully integrated into the next version of pIGI to
interface with the advanced plotting and sample selection methods of pIGI. This
should make the program a very powerful tool for data exploration and analysis.

For academic use and as a prototype another tool , named DVMS (Data Visu-
alisation and Modeling System), was used and modified in Matlab. This tool is
based on modified code from the Netlab toolbox (Nabney, 2002), GPLVM toolbox
(Lawrence, 2005), BPCA toolbox (Oba et al., 2003) and earlier work by Maniyar
and Nabney (2006b). This tool does not feature any data pre-processing features.
The implemented algorithms are PCA, S-GTM, B-GTM, non-linear initialisation
for GTM with Isomap and BPCA.

7.4 Case Study: Barents Sea Data

In order to test the capability of GTM for visualising non-linear variation in geo-
chemical data, a suite of 33 oils and condensates from the Barents Sea was used as
input. This initial study was carried out to validate the method (i.e. show the ap-
plication of the model and the use of the diagnostics) rather than seeking to fully
interpret the data. A fundamental requirement of such a basic test of GTM was to
limit the range of artefacts that would introduce artificial variation in the dataset
e.g. missing data, wide discrepancies in analytical procedure,and oils with sig-
nificant variation in bulk physico-chemical characteristics. Due to the selection
of a number of condensates as samples, the primary data (i.e. integrated peak

IBLAS (Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra PACKage) and are
software libraries for numerical linear algebra. They provides routines for solving systems of
linear equations and linear least squares, eigenvalue problems, and singular value decomposition.
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heights and areas) for the saturated biomarkers were incomplete, hence a selec-
tion of 11 molecular ratios were used as variables for GTM testing. Several gaps
nonetheless remain in the input data matrix: these were filled by using Bayesian
PCA (Oba et al., 2003), because this method consistently performed as good or
better than all other tested methods.

The apparently random scatter of oils and condensates on the GTM plot (Fig-
ure 7.7(a)) belies the demonstrable coherence of sample distribution highlighted
by the use of colour and symbols. Condensates from the Snehvit and Askeladd
fields reservoired in Jurassic Ste Formation sands are clustered in the top left
quadrant of the plot. By comparison, samples found in Paleozoic intervals (Per-
mian Reye Formation) are clustered in the bottom left hand quadrant of the plot.
Triassic oils are grouped in the intermediate region and further to the right side
of the plot. These clusters are in agreement with published data describing oil
families identified in the Barents Sea petroleum province (Ohm et al., 2008). An
interesting anomaly was identified by using the magnification factors in Figure
7.7(b), which indicate that one oil in the upper middle right is a clear outlier. A
close inspection showed that the oil does not match the signature of the other oils.
As explanation for the mismatch we suspect some kind of contamination or error
in the lab analysing the oil. :

The GTM plot illustrates generic clustering and bulk physical character of the
fluids, but the roots of this 2-D visualisation of variation in the data lie in the input
variables which can be visualised using parallel coordinates. Figure 7.8 shows the
parallel coordinates for the 3 different groups. Within the scatter clear trends can
be identified. The three clusters of oils show large overlap for the majority of
analysed ratios with the exception of a few key variables. For example the ratio
of isoprenoids/n-alkanes (i.e. Pristane/nC17 and Phytane/nC18) clearly distin-
guishes the Permian-reservoired oils from the other two groups. The ratio of C24
tetracyclic terpane/C30 Hopane separates Triassic from Jurassic oils, probably
on the basis of lithofacies, since this ratio is source-sensitive (Peters ef al., 2005).
The isoprenoid /n-alkane ratios are not particularly diagnostic but GTM does al-
low distinction of oils groupings on the basis of non-diagnostic biomarkers and
therefore provides a basis for more detailed oil-source correlation studies.

Comparison to PCA: To highlight the supplementary character of GTM and al-
low for a comparison the same data were analysed with PCA. Before using PCA
the missing data were treated using BPCA because this method performed best
next to BGTM. The results shown in Figure 7.9a indicate that the visualisation of
PCA and GTM are quite similar. The score plot of the first two principal com-
ponents allows for a similar separation of classes as GTM. However the outlier
identified in the through the magnification factors in GTM and here labeled as
”’Uncategorised”’ is not as apparent as in GTM. When looking at the third princi-
pal component in Figure 7.9b it is apparent that this component does not describe
any effects useful for separating the classes. This is surprising since the third prin-
cipal component still accounts for roughly 12% of the overall variance as can be
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Figure 7.7: a) GTM visualisation for the Barents Sea oils. b) Corresponding mag-
nification factors for the GTM visualisation. In the GTM visualisation one can
clearly distinguish between the three classes of oils depending on their origin
(Jurassic, Permian, Triassic). When looking at the magnification factor plot it is
further apparent that the sample in the upper right of visualisation is a clear out-
lier.
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Figure 7.8: Parallel coordinates plot for the different clusters identified in the
GTM visualisation. In the plot one can identify that the Pristane (Pr) and Phitane
(Ph) ratios can be used to distinguish the Permian from the other two classes.
Similarly the sterane ratios St295/R and St291/R can be used to discriminate be-
tween the Jurassic and the other two classes.
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seen in 7.10b. It could be speculated that this component is mainly describing
intra class noise/variance. The loadings plot in Figure 7.10a shows similar re-
sults when compared to the prallel coordinate plot of GTM. The first principal
component is mainly distinguishing between the Permian and the Triassic and in
the parallel corrdinate plots one could identify the Pristane and Phitane ratios as
highly discriminative. This is mirrowed by the very high values of Pr/nC17 and
Ph/nC18 in the loadings plot. Similarly the sterane ratios St29S/R and St291/R
have the highest absolute value for the second principal component in the load-
ings plot. The second principal component discrimates between the Jurassic and
the other two classes. This is also mirrowed in the parallel coordiante plots where
the sterane ratios also showed that they can be used to distinguish between the
Jurassic samples from the others. In conclusion the results for PCA and GTM are
quite similar, with the exception that GTM allows for the better identification of
the outlier. The argument would therefore be to use GTM and PCA in conjunction
to cross check the obeservations and get a better understanding of the data.

7.5 Benchmark Study

To measure the performance of the visualisation and imputation algorithms on
real data sets we took two confidential but complete data sets from IGI Ltd. The
first data set is based on oils from the North Sea and the second data set is based
on oils from a basin in Africa. On both data sets we ran two experiments. The first
experiment was to calculate the RMSE following the cross-validation leave-one-
out framework described in chapter 5. In this experiment we tested the different
visualisation algorithms which can deal with missing data.

In the second experiment we deleted a certain proportion of the data to gen-
erate different missing data patterns like in chapter 6. To provide a robust result
with respect to the missing data pattern the results were averaged over the 20
random missing data patterns. The proportions of missing data p; are between
p; = 0.1and p; = 0.5.
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Figure 7.10: a) Histogram showing the contribution of each principal component
towards the variance. b) The loadings plot showing how much each variable
contributed towards the first two principal components relative to the other vari-
ables.
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7.5.1 African Data

This data set is based on samples of oils from a reservoir in Africa. The data
samples were analysed at two different laboratories: one analysed 36 samples and
the other 40 samples. The variables are peak height measurements from a GC-
MS including alkanes, steranes and hopanes. In total the data set comprises of 72
variables and 76 samples. The block structure of the data was defined by looking
at the heat-map of the absolute values of the correlation coefficients which were
ordered by the OLO algorithm.

The results of the first experiment can be seen in table 7.1 where S-GTM, B-
GTM and BPCA are compared with each other given different initialisations and
different numbers of retained principal components respectively. S-GTM per-
forms better with a non-linear initialisation while in the case of B-GTM there is
no difference between the initialisation with PCA and Isomap. Both S-GTM and
B-GTM perform better than BPCA in the case of two or three retained principal
components. It is therefore likely that they give a more accurate representation
of the data than PCA with two or even three principal components. In the case
where 71 of the 72 dimensions are retained for principal components analysis
only B-GTM performs better than BPCA but retaining so many components does
not support visualisation.

The mean results of the imputation experiment can be seen in Figure 7.11. The
results show that BPCA where 71 components are retained always outperforms
all other methods. Retaining 71 variables is done to maximise the imputation
performance of the model. BPCA, due to the limitation of the algorithm, can
only retain a maximum of D — 1 factors in the model, thus 71 in this case. In
the case where only two principal components are retained B-GTM which was
initialised with PCA outperforms BPCA (the case with three retained principal
components is not shown because it is very similar to the case with two principal
components). Following with a gap in performance are MRI and S-GTM. When
looking more closely at the results it can be seen that the non-linear initialisation
is actually not beneficial to the imputation with S-GTM or B-GTM. However this
could be due to the fact that the Isomap algorithm cannot deal with missing data
naturally. As with the PCA initialisation a mean-imputation was performed to
use the data with Isomap but not bias the results.

The results also show that in the case of only two retained principal com-
ponents BPCA deteriorates very rapidly, with more than 20% of missing data.
However BPCA, retaining D — 1 principal components, and B-GTM stay rela-
tively stable. The boxplots for the results of the different imputation methods for
different levels of missing data can be seen in Figure 7.12. The boxplots show in
essence the same results as summarised by the mean plots in Figure 7.11.
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Model | RMSE |
S-GTM (PCA) 0.2
S-GTM (Non-Linear) | 0.15
B-GTM (PCA) 0.09
B-GTM (Non-Linear) | 0.09
BPCA (2) 0.33
BPCA (3) 0.24
BPCA (D-1) 0.12

Table 7.1: RMSE for African data leave-one-out-cross-validation. The informa-
tion in brackets relates to the initialisation in case of GTM and to the number of
retained principal components in case of BPCA.
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Figure 7.11: African Data: (a)Average imputation results for different amounts of
missing data. (NL) stands for the initialisation with Isomap in case of the GTM.
BPCA is shown for the cases where two and 71 principal components are re-
tained. (b) Area of interest in plot (a). It is apparent that BPCA retaining all
principal components outperforms all other methods with B-GTM becoming sec-
ond. BPCA retaining two principal components becoming third at least in the
cases where less than 30% of the data are missing.
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Figure 7.12: African data: boxplots for different proportions of missing data p;
showing the spread of the RMSE for the different imputation methods. They ver-
ify that the results given by Figure 7.11 are not skewed due to unnatural outliers

in the average performance.
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7.5.2 North Sea Data

This data set is based on samples of oils from the North Sea. The data samples
were all analysed at a single laboratory. The variables are peak height measure-
ments from a GC-MS including alkanes, steranes and hopanes. In total the data
set comprises of 67 variables and 132 samples. The block structure of the data
was defined by looking at the heat-map of the absolute values of the correlation
coefficients which were ordered by the OLO algorithm.

The results of the first experiment can be seen in table 7.2 where S-GTM, B-
GTM and BPCA are compared with each other for different initialisations and
different numbers of retained principal components respectively. In this data set
S-GTM and B-GTM perform better with a non-linear initialisation using Isomap.
Again both S-GTM and B-GTM perform better than BPCA in the case of two or
three retained principal components. Also in the case where 66 principal compo-
nents are retained only B-GTM performs better than BPCA.

The mean results of the imputation experiment can be seen in Figure 7.13. The
results show that this time B-GTM, initialised with PCA, nearly always outper-
forms all other methods or in the case of only 10% of missing data performs as
well as BPCA, retaining 66 principal components. In this data set BPCA, retain-
ing only two principal components, even performs worse than MRI. However it
still performs better than S-GTM. When looking more closely at the results the
non-linear initialisation seems to have a negative effect. We suspect that this is
due to the mean imputation we perform to initialise Isomap. However this needs
to be confirmed by doing a series of experiments with different levels of miss-
ing data and different initialisation methods. Again the results show that BPCA
in the case of only two retained principal components deteriorates very rapidly.
The boxplots for the results of the different imputation methods for different lev-
els of missing data can be seen in Figure 7.14. Again the boxplots show in essence
the same results as summarised by the mean plots in Figure 7.13.

Model | RMSE |
S-GTM (PCA) 0.51
S-GTM (Non-Linear) | 0.31
B-GTM (PCA) 0.21
B-GTM (Non-Linear) | 0.18
BPCA (2) 0.45
BPCA (3) 0.40
BPCA (D-1) 0.22

Table 7.2: RMSE for North Sea data leave-one-out-cross-validation. The informa-
tion in brackets relates to the initialisation in case of GTM and to the number of
retained principal components in case of BPCA.
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Figure 7.13: North Sea Data: (a)Average imputation results for different amounts
of missind data. (NL) stands for the initialisation with Isomap in case of the GTM.
BPCA is shown for the cases where 2 and 66 principal components are retained.
(b) Area of interest in plot (a). It is apparent that BPCA retaining all principal
components and B-GTM perform equally well on this data set, with a slight ad-
vantage for B-GTM once higher amounts of data are missing. BPCA retaining
only two principal components performs even worse than MRI and deterioates
quickly once the amount of missing data goes beyond 30%.
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Figure 7.14: North Sea data: boxplots for different proportions of missing data p;
showing the spread of the RMSE for the different imputation methods. They ver-
ify that the results given by Figure 7.13 are not skewed due to unnatural outliers
in the average performance.
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7.6 Performance Study: Speed of the methods

To evaluate the difference in speed of the different methods a small performance
experiment was done. The benchmark environment was Windows Vista and
Matlab 7.9.0 on a Pentium Core 2 Duo P8600@2.40 GHz and 4GB. The differ-
ent methods had a limit of 100 iterations but would stop earlier if the respective
termination criterion was reached (commonly less change than 1073 in their re-
spective utility functions). The results of the experiment can be seen in Table 7.3.
The results are not surprising and show that the visualisation S-GTM and espe-
cially B-GTM always take the longest to run, except in the case of the toy data
sets with many samples where GPLVM takes the longest (because the inversion
of the matrix scales with the cube of number of samples). In the case of S-GTM
and B-GTM the algorithm scales with the number of dimensions and the num-
ber of internal Gaussian nodes in the grid (which was chosen to be 25 x 25). The
B-GTM algorithm takes much longer than the S-GTM because due to the block
structure one can not write the code as matrix and vector operations, which have
a significant speed gain in Matlab.

In the case of the imputation algorithms the results are similar. Here the S-
GTM and B-GTM algorithm both take far longer because due to the missing data
one needs to use indicators and even more loops, which is penalised in Matlab
with a longer runtime. However the iterative nature of the algorithm makes GTM
generally slow because the EM algorithms takes numerous (normally between
25 to 100) iterations to converge to a good solution. This process is drastically
prolonged by the implemented heuristics, which make the algorithm more stable
but also slower since the heuristics take considerable amounts of computer time.
Table 7.4 shows the average results for single steps in the algorithm on every data

set. The results show that depending on the dimensionality of the data set the
heuristics take 37% to 99% of the computer time. There is certainly much scope
for improving the speed of the heuristics. Either by tuning the current heuristics
or by using other ones, which run faster.

There is an anomaly with the African data set and to some extent the North
Sea data set, which have an enormous runtime. This was caused by a problem
with the Cholesky decomposition in one of the heuristics. In certain cases Matlab
runs out of memory and catching this error prolonged the process considerably.

The considerable difference in speed is an important point. One needs to keep
these results in mind when planning to implement the algorithms in any kind of
application since most user don’t want to wait many seconds or even minutes to
see a result after they have clicked a button. The very long runtime is also an issue
if one wants to do benchmark studies against other algorithms. Benchmarking
with many iterations and with different parameters is only possible with a cluster
computer and by distributing the experiment across different nodes.

Finally it is important to note that these experiments were conducted by using
Matlab, which is highly optimised for mathematical calculations involving ma-
trix operations. If one simply implements the algorithms in C++ without using
a highly optimised matrix library like BLAS in conjunction with an optimised li-
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Data set: Swiss Data Qil Data | BGTM D20 | Africa | North Sea
Samples: 1000 1000 100 76 132
Variables: 3 12 20 71 67

Method Time in Seconds
PCA 0 0 0 0 0
Isomap 31 33 0 0 0
GPLVM 69 237 3 7 16
GTM 71 158 767 4800 100
B-GTM 97 617 683 1393 960
Imp. Mean 0 0 0 0 0
Imp. WMI 0 1 0 0 0
Imp. MRI 0 0 0 2 1
Imp. BPCA 3 10 1 68 81
Imp. S-GTM 64 27 30 909 119
Imp. B-GTM 844 278 115 974 564

Table 7.3: Runtime until termination of the algorithm for the different methods in
seconds on the different data sets.

brary providing advanced matrix operations like LAPACK one might experience

even longer runtimes than presented in this benchmark.
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Data set: Swiss Data Qil Data | BGTM D20 | Africa | North Sea
Samples: 1000 1000 100 76 132
Variables: 3 12 20 71 67
S-GT™M Time in Seconds
EM-Step 0.25 0.27 0.03 0.04 0.08
Heuristic(H.) 0.15 0.68 5.53 36.4 15.8
% of step for H. 37 71 99 99 99
B-GTM Time in Seconds v
EM-Step 0.25 .56 0.12 1.55 1.04
Heuristic(H.) 0.28 3.1 4.74 39.8 40.0
% of step for H. 45 75 97 96 97

Table 7.4: Table showing the average runtime in a single step for two different
parts of the GTM algorithm. The analysed parts are the two most computation-
ally intense parts, namely the EM-Step and the added heuristic to stabilise the
algorithm. It is apparent that the heuristics take up most of the time when the
dimensionality of the data increases.

7.7 Summary

In this chapter we successfully applied the developed non-linear methods to real
data from geochemistry. It was demonstrated how one can explore and under-
stand the non-linear mappings by using plotting mechanism like the local parallel
coordinates and diagnostics like magnification factors. Integrated into tools like
DVMS these utilities can give users an interactive experience when exploring the
manifold and their data. The result is a better understanding of the data structure
and the underlying variables/processes. The local parallel coordinates technique
is a particularly useful feature because it will give the users a diagnostic akin to
the loadings plots in PCA.

The successful use of GTM to distinguish clusters in a data set based on oils
from the Barents Sea suggests that the method has great potential for the rapid
and accurate distinction of trends in large, complex datasets frequently encoun-
tered in petroleum geochemistry and further afield.

The novel methods B-GTM and VSRMI were further successfully benchmarked
on real geochemical data sets. The benchmark results are very similar to the re-
sults obtained on the toy data sets. They show that in the case of a strong block
structure B-GTM always outperforms S-GTM. This is the case for visualisation
and imputation. The second extension VSRMI improves the results of GTM on
the real data sets as well. On both real data sets, the initialisation with Isomap
gave better or similar results for the visualisation. However when one uses GT™M
for imputation VSRMI does not seem to make a big difference. The reason for
this is that one needs an initial mapping to utilise VSRMI. However to obtain
this mapping one needs to use either PCA, Isomap or another projection method.
Since we are dealing with missing data one now has to employ data imputation
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as a pre-processing step. In our experiments we used the mean imputation so as
not to degrade the results and this initial mapping.

In general the increase in performance of B-GTM and VSRMI comes at a higher
computational cost. The VSRMI algorithm needs to be initialised by a projection
which adds the cost of this algorithm to the overall computational cost. Where
implemented in Matlab the B-GTM algorithm itself is far slower than the S-GTM
algorithm because we have to utilise loops to evaluate the block structure. In
Matlab, loops are far slower than the equivalent operations written as matrix and
vector operations. Additionally we use heuristics to make the B-GTM more sta-
ble and robust, which also add to the computational overall cost. Depending on
the data set this makes the algorithm 5 to 10 times slower than S-GTM.
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8.1 Discussion

In this thesis we extended the well-known GTM algorithm with a novel method
to deal with the particular characteristics of geochemical data sets, namely the
block structure of highly correlated variables in the covariance matrix. Further
we proposed a new method for initialising GTM which makes it possible to use
any available projection of the data. Both methods were extensively tested and
validated in many experiments.

Novel extensions (chapter 5 and 7): In the first set of experiments we used toy
data sets where we could control the amount of block covariance structure and
the dimensionality of the data. The results of the experiments show that B-GTM
improves both the model fit and the visualisation. Given the right block structure
the algorithm performs as well as or better than spherical GTM or GTM with a
full covariance matrix. However if the block structure is misspecified the perfor-
mance of B-GTM deteriorates quite rapidly. The method of choice for finding the
block structure is the OLO algorithm in combination with an expert practitioner
who can identify sensible groupings in the variables.

Further the experiments showed a not broadly documented problem; the GTM
algorithm with a more complex covariance structure is limited to only a moderate
number of dimensions (less than 40). The problem is partly due to numerical er-
rors and partly due to singularities in the likelihood function. However this limit
could be extended by using additional heuristics to circumvent these problems
with the EM algorithm and it was successfully tested for data sets with up to 72
dimensions.

The experiments further show that VSRMI is a very useful addition to the
GTM algorithm. It allows GTM to exploit local methods like Isomap or other
alternative projections to act as initialisation. The results clearly show that this
approach is highly beneficial in cases where PCA is too restrictive to pick up the
structure in the data. Using alternative mappings like Isomap it was possible to
improve the model fit and in some cases decrease the time to fit the model as
well. The VSRMI might even open up the possibility to use GTM to assess how
non-linear a data set is. For this purpose one would need to initialise the GTM
with a linear and a non-linear mapping and directly calculate how well the GTM
is fitting the data without using the EM algorithm to increase the fit to the data.

Further both extensions of GTM were validated and successfully applied to
real data sets from geochemistry. It was demonstrated how this non-linear method
can be used to explore geochemical data and how one can draw inference about
the data. This was done by introducing advanced diagnostics like the local par-
allel coordinate plotting, magnification factors and plotting of the modes. It was
shown that the integration of these diagnostics into an interactive tool like DVMS
is a powerful utility that geochemists could use to explore the structure of their
data.
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Missing data imputation (chapter 6): The GTM algorithm also has the advan-
tage that it can deal with missing data. An extensive experiment with missing
data was conducted which showed that especially the extension to B-GTM has
very good imputation characteristics. Previous work has shown that GTM can
successfully cope with missing values (Vicente et al., 2004; Olier and Vellido, 2005;
Sun, 2002) but no extensive comparison to other methods has been conducted.
Motivated by incomplete data sets which are common in geochemistry, in this
thesis B-GTM was benchmarked against mean imputation, multiple regression
imputation and BPCA, which were chosen as representatives from different cat-
egories of imputation algorithms. The only method which performed as well as
B-GTM was BPCA. The experiments with missing data showed that GTM is not
only a good model for data visualisation but can also be used for imputing miss-
ing values. However from the results it is evident that missing values impair the
visualisation considerably. In the toy data sets GTM was able to pick up most of
the structure until 20% of the data was missing. This implies that the method can
be used on data sets with real levels of missing values and still identify interesting
and useful structure.

Further, the experiments with missing data helped to motivate a new method-
ology for assessing unsupervised learning algorithms for data visualisation which
can deal with missing data. Using a combination of the RMSE and leave-one-out-
cross-validation we created a measure which has similar characteristics to the
likelihood of a probabilistic model but which can be used with non-probabilistic
models (e.g. NIPLAS for PCA or missing data algorithm for kernel PCA). Further
the measure has the advantage of having a clearly defined optimal value, which
is zero, unlike the likelihood where the optimal value is often not known.

In conclusion we can claim to have achieved the main goals as defined in
chapter 1. However during the course of this thesis it become apparent that there
are many more questions which need to be answered in order to establish non-
linear methods like GTM or any of its extensions as standard tools for data visu-
alisation in geochemistry. A comprehensive overview over these possible areas
of research will be given in the next and final section.
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8.2 Future Work

To make non-linear methods easily usable and accessible for non-mathematical
application experts ,who want to explore their complex data, more work is still
needed. At the current stage of development the non-linear methods should be
used with guidance from an expert in the field of chemometrics or multivariate
analysis if they are applied to a geochemical data set. One still has to make many
critical choices about parameters like the number of RBF functions, the size of
the grid, the block structure of the covariance matrix or the method of choice for
the initialisation. Also the algorithms need to be extensively tested to determine
their limits, especially in regards to the maximum number of variables and the
minimum number of samples. Additionally there are many more small research
ideas, which could not be followed up because of the time constraint inherent in
a Ph.D. thesis.

In the opinion of the author these are the most interesting areas where some
research could be done:

e Future work can be done to integrate the prior knowledge about the co-
variance matrix in a more principled way into the algorithm. At the mo-
ment the enforcement of the block structure is very rigid and ad-hoc. One
could imagine an approach where priors are placed on the covariance ma-
trix and the procedure is integrated in a Bayesian way into the GTM model.
A downside of such an approach might be the significant time it would take
to fit such a model.

e To determine the block structure and the relation between the variables one
could try to develop an automated approach by using Bayesian graphical
models as an alternative to OLO.

e Another area of interest is the definition and assessment of metrics or mea-
sures to assign a value to the quality of the visualisation in general or the
goodness of the fit in case of the GTM and other probabilistic models. We
have done some work on this introducing the RMSE in combination with a
leave-one-out-cross-validation approach, however there are other possibili-
ties like using clustering algorithms and Kullback-Leibler divergence.

e As pointed out in the summary of chapter 5 the RMSE in combination with
leave-one-out-cross-validation might have an application as a measure of
how non-linear a data set is. However to validate this one needs to de-
sign sensible experiments and define non-linearity in a more principled and
measurable way.

e If the development for a measure of non-linearity is successful one could
look at the the possibly non-linear relations in various geochemical data sets
to further the understanding of geochemical processes and help in the de-
velopment of new classification boundaries considering oil-oil and source
rock-oil correlation studies.
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e Olier and Vellido (2008b) did some work on placing a Gaussian process
prior over the mapping function in GTM, which replaces the RBF network
and thus makes it unnecessary to specify the number of RBF functions. It
would be interesting to test this algorithm on his applicability on geochem-
ical data sets since this development potentially makes GTM more auto-
mated and easier to use.

Vellido (2006a) and Maniyar and Nabney (2006a) did work on variable se-
lection or feature saliency. This diagnostics identifies significant features
and thus provide similar information to the loadings in PCA. It would be
interesting to research the applicability of these methods to geochemical
data sets and compare them against each other.

During the research it has become apparent that the GTM algorithm is not
coping well with very high-dimensional data because of numerical prob-
lems and singularities in the likelihood function. An alternative approach
would be to use alternative heuristic models which are based on GTM.
By using or modifying these heuristics it might be possible to circumvent
these problems. However, an extensive benchmark study and more re-
search would be needed to compare GTM against heuristics like the topo-
graphic neural gas algorithm (Pena and Fyfe, 2006) to evaluate how these
perform in high dimensional data.

An important question is: how stable is the GTM algorithm on high dimen-
sional data? Research in this area should have the aim to determine and
specify the reasons for the breakdown of the algorithm. It is unlikely but
the optimal result would be a theoretical limit for the maximum dimension-
ality of the GTM algorithm. However, as first step an empirical study could
help to generate rough guidelines that assist the practitioner in choosing the
right parameters and in validating the model when using the algorithm.

With respect to missing data an interesting area of research is the ‘multiple
imputation’ approach. The multiple imputation framework is used to as-
sign a value for the uncertainty (variance) of the estimates for the missing
values. In the case of GTM it might be possible to use the Gaussian process
prior over the mapping function to directly calculate this estimate.

To use missing data as a measure for benchmarking visualisation methods
one would have to asses how other visualisation methods like Isomap and
Neuroscale could be extended to deal with missing data. In the case of
Neuroscale one possible approach is to ignore the dimensions which have
missing data on a case by case basis when calculating the distances. Simi-
larly one could modify the algorithm constructing the graph for Isomap to
just ignore the dimensions with missing data on a case by case basis. More
sophisticated approaches might include the integration of local imputation
techniques or imputation heuristics similar to local conditional densities.
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e Especially when looking at the imputation in geochemical data one should
consider looking at the log transform (Reimann et al., 2002). Currently the
imputation methods have no prior knowledge about the data structure, but
it is known that there are no negative values in geochemical data. How-
ever, the imputation methods will regularly produce negative values when
estimating missing data. Using the log transform one could circumvent this
problem. It would be interesting to see if this could improve the overall
imputation results.

e Another interesting area related to missing data is the treatment of zeros in
geochemical data sets. Normally a zero value is not really zero but was just
too small to be picked up by the measurement device. Modifying imputa-
tion methods to treat those missing values (implying a prior on the range
of the values will be crucial) and comparing the results against already
published approaches to treat zeros in compositional data (Farnham et al.,
2002; Thié-Henestrosa and Martin-Fernandez, 2003; Palarea-Albaladejo and
Martin-Fernandez, 2008) could be an area of possible research.

e Animportant area of research is the intra-laboratory difference when analysing
samples. The existence of the difference is well known and published (Blanken-
horn et al., 1992; Isaacs, 2001; Kucklick et al., 2002), however no research has
been done in regards to removing the bias computationally and on how this
bias is effecting multivariate analysis. This is especially important in geo-
chemistry where one has only small data sets and might want to augment
their own data set with publicly available data from the same or similar
regions.

e To address the problem of non positive definite covariance estimates in the
block and full GTM algorithm one could consider the parametrisation of the
matrix. Instead of estimating the covariance matrix directly one could try to
estimate directly the cholesky decomposition matrix C given that 2 = C c’.

8.3 Summary

In this thesis we have laid the foundation for the use of non-linear and prob-
abilistic methods in geochemistry. We have discussed the advantages of using
probabilistic models; namely the possibility to deal with missing data, the use of
artificial missing data as means to assess the model fit, the availability of a noise
model to deal with uncertainty and the possibility to tune this noise model to im-
prove the model fit. We have discussed the advantages of of using a non-linear
model; i.e. one can capture more complex data structures, which might stay hid-
den when only relying on linear models like PCA. Further we have demonstrated
how one can improve the initialisation of GTM by using other non-linear meth-
ods like Isomap.
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We have shown the need for more research to assess the the restrictions and
limitations of these models. It is unsatisfactory to not know when probabilistic
models like GTM become unstable when used with high-dimensional data. More
benchmarks on real data sets are needed to assess how well GTM is capturing
the structure and how much improvement can be achieved by using alternative
initialisations like [somap.

For practitioners who want to integrate these models into industrial work en-
vironments one has to work on the automatisation of the models. More work is
required on the performance of the heuristics, which is insufficient at the moment
because they take far too long.

However we are confident that non-linear and probabilistic models are a great
addition to the toolbox of the geochemical practitioner. We hope that in the future
they will be a regularly used tool to understand and explore geochemical data.
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Figure A.1: Plots used to test for the convergence of the QBCE algorithm. a) The
distribution of the mean. b) The plots show the energy of the distribution of the
mean and one can see that the MCMC algorithm converged for these parameters.
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Figure A.2: Plots used to test for the convergence of the QBCE algorithm. The
plots show the distribution and the energy of sigma and one can see the MCMC
algorithm converged for these parameters.
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of missing values. They show that only in the case of B-GTM (c) it is possible to

distinguish class boundaries in the projection.
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Figure A.4: Projection of the 20D toy data set data, with p = 0.6 as proportion
of missing values. They show that in no case it is possible to distinguish class
boundaries in the projection.
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Figure A.5: Projection of the 60D toy data set data, with p = 0.2 as proportion of
missing values. They show that the class boundaries a very smeared in all 4 cases
but that distinctions still can be made.
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Figure A.6: Projection of the 60D toy data set data, with p = 0.6 as proportion
of missing values. They show that in no case it is possible to distinguish class
boundaries in the projection.
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B.1 PCA

Principal component analysis (Jolliffe, 1986) is the most widely used method for
dimension reduction, and thus visualisation. The algorithm obtains a direct or-
thogonal projections of a point in a D-dimensional space onto a hyperplane in
L-dimensional space with L < D. PCA takes a data set Y =y, ..., yn and finds
a new orthonormal basis uj, ..., up with its axes ordered in such a way that the
first axis explains the largest variance in Y. The second axis is orthogonal to the
first and accounts for a maximum of the remaining variance in the data and the
subsequent axes follow this schema.

Given that the set of observations are centred, }:nN yn = 0, PCA finds the prin-
cipal components by diagonalising the covariance matrix,

1S
Cj::}J 2:'YHYHf

n=1

and then finding its eigen-structure
CU=UA.

Here U is a D x D matrix which has the unit length eigenvectors, uy, ..., up,
as its columns and A is a diagonal matrix with the corresponding eigenvalues,
Ay > A > ... > Ap, along the diagonal. The principal components are the
eigenvectors and the data can be projected onto these. The eigenvectors are also
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termed loadings because the single elements can be seen as weight (i.e. load-
ing) for every dimension when projecting the data onto the eigenvector. Thus the
loadings are used to interpret how much a certain variable contributes to a prin-
cipal component. The principal components can be described as the directions
along which the data set has the biggest variance. The eigenvalues are directly
related to the corresponding variances and therefore the bigger the eigenvalue the
more information is stored in the eigenvector. In general one discards principal
components if the eigenvalues fall beneath a certain variance threshold. However
other methods like cross-validation (Krzanowski, 1987) are also employed to de-
termine the choice of dimensionality. Calculating the projections (pcy, - - -, P<p)
onto the eigenvectors is straight forward :

pP¢ = Y“;r
P& = Y“%
pep = Yup
Y pc, u,’ pc, u;' E
i —
= + +...+

Figure B.1: Deconstruction of data space into subspaces (projections times load-
ings pc1 x 1) and in the case of pruning (i.e. the omitting of negligible eigenvec-
tors) with an error matrix E for the residuals.

PCA may be used to project higher-dimensional data onto a two-dimensional
hyperplane to visualise it on a screen. Another way to use PCA is to cut down or
prune the dimensionality to three or fewer dimensions as a pre-processing step
for other analyses. In the case of pruning one will not be able to recoup the origi-
nal positions of the data points in the data space and thus needs an error matrix E
to describe the residuals. A more graphical way to envisage this deconstruction
is illustrated in Figure B.1. The reasoning behind the pruning of variables is that
the eigenvectors with the highest eigenvalues preserve most of the original vari-
ance. Thus the remaining eigenvectors do not contribute any real information
about the data set and can be ignored. However this will only be true for highly
linear data structures.

Commonly the major principal components, attributing for most of the vari-
ance, are used for the projection. A simple example of how this works can be seen
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in Figure B.2 where the direction and the resulting hyperplane for the principal
components are demonstrated on two-dimensional and the S-shaped data.

The fact that PCA defines a linear transformation makes it fast to compute
but it is also the main drawback since non-linear structures in the data cannot
always be captured. This is demonstrated in Figure B.4 where PCA manages to
capture the general structure of the S-data set but fails to capture the structure of
the Swiss-roll. In the given example the classes were chosen manually along the
manifold of the Swill roll to highlight the difference in the model fit.

B.2 Probabilistic PCA

The probabilistic version of PCA (Tipping and Bishop, 1999) extends conven-
tional PCA to a probabilistic framework while not changing the mapping. The
maximum likelihood solution of PPCA has been shown to be the same as the
one obtained through conventional PCA. In this section the model serves as a
building block for other algorithms because it can easily be extended to Kernel
PCA using the kernel trick or to the Gaussian Process Latent Variable Model
using an appropriate covariance function. Assuming a D-dimensional data set
Y = [y1,.,yn] and associated L-dimensional latent variables x, the relationship
between them may be expressed through a linear model with additive Gaussian
noise,

Yn = Wx,, + 1,

with the projection matrix W € RP*4. The noise values 77, are taken to be in-
dependent samples from a spherical Gaussian distribution with mean zero and
covariance 71,

p(1n) = N(’?nm/ﬁ_]l)'

Therefore the likelihood of a data point can be expressed as

p(ynlxn, W, B) = N(y,,|Wx,,,ﬁ_]I).

Integrating over the latent variables gives rise to the marginal likelihood

plyalW,B) = [ A (alWn, B0 ploxe i (B.1)

Specifying the prior distribution over x, to be a unit covariance, zero mean Gaus-
sian distribution,

P(Xn) = N(an(),l), (B.2)

gives rise to an analytic solution for the marginal likelihood for each data point,

p(ynlW, B) = N (4]0, WWT 4+ g7'1). (B.3)
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Taking advantage of the independence of the errors of the data points in the noise
model, the full likelihood is given by

N
p(YIW,B) =[] plyaIW.B71). (B.4)

n=1
It can be shown that the maximum likelihood solution for the parameters W is
achieved when the matrix W spans the principal sub-space of the data (Tipping
and Bishop, 1999). Therefore the matrix W=(u, ...,up) and thus projects the vi-
sualisation space points onto the principal components of the data space.
In the next section an alternative approach will be introduced where one marginalises
over the parameters W and optimises with respect to the projected data points X.

B.3 Kernel PCA

Instead of placing a prior over X in (B.1) we can place a simple prior , such as a
spherical Gaussian, distribution over the weights W:

D
p(W) =T ]p(wilo,1),
=1

where w; is the ith row of the matrix W. Using this, the marginalisation of W is
straightforward and the resulting marginal likelihood takes the form

O

p(Y[X, B~ H y.iIX, B (B.5)

where y. ; represents the dth column of Y and the likelihood for a single column
1S
p(y.alX, B~1) = N(y.aXX", B70) .
The negative log-likelihood is used as the objective function and minimised with
respect to the latent variables
DN D 1

L=-—In2r—Zn K| = 5tr (K'Y, (B.6)

where
K=xx"+p"L

The gradients of (B.6) with respect to X may be computed (Magnus and Neudecker,

1999) as,
L _ k'yyTKIX - DKTIX.
o0X
Setting the gradient to zero, the fixed point is given by the well known eigende-

compositon for YY” which also solves the standard PCA problem:

X = ULV,
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with V being an arbitrary rotation matrix, U € RN*4 is a matrix whose columns
are the first g eigenvectors of YYT and L € R7*7 is a diagonal matrix with diag-
onal elements [; = (A; — %)% and A;, the jth eigenvalue associated with the jth

eigenvector of YY'. Solving this results in the well known PCA algorithm. Re-
placing YYT by a kernel (i.e. weighting function) (Shawe-Taylor and Cristianini,
2004) results in the Kernel PCA algorithm (Schoelkopf et al., 1998). In machine
learning this is known as the kernel trick, based on Mercer’s theorem (Ash, 1990).
It is a method for using a linear algorithm to solve a non-linear problem by map-
ping the original non-linear observations into a higher-dimensional space, where
the linear algorithm is subsequently used. However when utilising the kernel
trick the mapping is never done but instead the kernel is expressed as a dot prod-
uct which can be calculated directly.

The computational costs are the same as with PCA. To obtain the projection
one at has to map the data into the higher-dimensional space and then multiply
the data times the eigenvectors. Thus through KPCA a mapping function is ob-
tained which can be used for test data as well. The downside of transforming the
data into a higher dimensional feature space is that Kernel PCA loses the inter-
pretability of the loadings for the principal components. Additionally the inverse
mapping for most kernels is not know and thus one loses the possibility of pro-
jecting the points in the visualisation space back into the data space. A different
approach to extend PPCA into a non linear-model will be elaborated in the next
section.

B.4 Gaussian Process based data visualisation

B.4.1 Gaussian Processes

Gaussian processes (Rasmussen and Williams, 2006) are well known in the ma-
chine learning community and mainly used in regression problems. A Gaussian
process can be viewed as a probabilistic model which specifies a distribution over
a function space. We define a non-linear regression model with Gaussian noise

fx) =Wo(x),
y=f0)+7,
where x is the input vector, W is a vector of weights, ¢ is a fixed function to
a feature space, f(x) is the function value and y is the observed target value.
The noise 7 is assumed to be i.i.d. with zero mean and variance p~1; therefore
n ~ N(0,p71). Assuming a prior for the weights W with zero mean Gaussian
and covariance matrix ¥, W ~ N(0,¥) and using Bayes’ rule we are able to
express the posterior distribution for the weights given some known data X and
target values y:

_ pyIW, X)p(W)

p(Wly,X) ~ N(BA™ Xy, A™"),
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with ¢(x) = ® and A = f710®T + 5"~1. The mean of the distribution p(W|X,y)
is also its mode and is called the maximum a posterior (MAP) estimate of W. The
MAP estimate for W can now be used to make a prediction fy = f (x4) for a new
value x,. This can be done in two ways either by using Bayes to integrate out the
W as will be shown or by doing a plug in and just using the MAP as best estimate
for W to calculate f, directly. Using the MAP to integrate over W and to calculate
f+« for a given point x, one has:

Pl Xy) = [ pUflxe Wip(WIX, y)aw
where we obtain in the linear case
p(Falxe X, y) = N (x 0XT) Xy, X (B7XXT) 71,

Here the predictive variance is quadratic and thus grows with the magnitude
of the test input, as expected from a linear model. A simple way of extending
the model to the non-linear case and overcome the limited expressiveness of the
linear model is to first project the data into a higher dimensional space. This can
be done by defining our mapping function ® as a set of radial basis functions.
This results in an alternative expression for the predictive distribution

p(fulxe, X, y) = N (BT p(x ) A Dy, p(x AT p(x))

which can be rewritten (Rasmussen and Williams, 2006) in terms of kernel prod-
ucts

p(felxe, X, y) = N (K(x:, X)[K(X,X) + B~ 1]y,
K (X4, %) — K(x, X)[K(X, X) 4+ B~ TTK(X, x4,

with K(a,b) = (¢(a)d(b)). The function K(a,b) is called covariance function or
kernel. Possible choices for the kernel are the Gaussian kernel, which leads to
smooth functions that become zero in the regions where there is no data

Kgau(xi,Xj) = Orpf exp((%(x,- —x))(xi —x)")

and the MLP kernel, which can be seen as an multi-layer perceptron with an
infinite number of hidden units.

wxiTx},' +b

\/(wxiij +b+1)(wx]xj+b+1)

1

Kmlp(xix Xj) = 9771[;7 X sin”

The MLP kernel also leads to smooth functions but differs from the Gaussian
kernel in the case of regions where there is no data, since the function values do
not become zero but tend to converge to a low value.
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sz

B.4.2 Gaussian Process Latent Variable Model (GPLVM)

To extend PPCA to GPLVM (Lawrence, 2005) one considers a linear Gaussian
process prior over the space of mapping functions. Assuming a Gaussian noise
variance ﬁ“ll the covariance function, or kernel, is given by

K(X,‘,Xj) = X:-FX]' —{-‘5_15,']' ,

where x; and x; are vectors in the visualisation space and and §;; is the Kronecker
delta. In matrix form the kernel is written as

K=xx"+p7'T,

which is the same as in (B.3) and which is associated with the covariance of the
factors of the marginal likelihood in the case of probabilistic PCA in (B.1). Instead
of using a kernel in the data space to substitute YYT, as with KPCA, one can now
introduce non-linearity to the model using a non-linear covariance function in
the visualisation space instead. A possible choice would be the Gaussian kernel
with
(x; = x;) (x; — Xj)T

202 ’
with the hyperparameter 8 = (7, 6, f). Similarly to (B.5) the GPLVM likelihood
is then given by

k(xi,xj) = Oppr exp

D
P(Y|X,0) = [ [N(Y[0,K), (B.7)

I=1
which can be seen as a series of D Gaussian processes trying to predict the data
points on each of the D dimensions respectively (columns), given the kernel
based on the visualisation space. Thus the negative log-likelihood for the model

1s

DN D
—InP(Y|X, 0) = - In2m — 5
where tr(M) is defined as the trace of the matrix M. The gradient for the likeli-

In |K| — —lz—tr(K”lYYT) ,

hood can be found by first taking the gradient with respect to kernel K,

OL iy Tic—1 =

K KTYY'K™ — DK™ .
and then combining it with %’% through the chain rule. The term %I)% (e.g. the
derivative of the kernel with respect to the data points) depends on the choice
of kernel. Once ‘g—l; is obtained the likelihood can be determined. Since the cal-
culated objective function will be very complex, this will in general result in a
highly non-linear likelihood landscape with multiple local minima. An optimum
can then be found by using gradient based optimisation algorithms like scaled
conjugate gradient (SCG) descent (Meller, 1993). It is important to note that one
effectively optimises the positions of the points in the visualisation space. In the
two-dimensional case the resulting density model may be described as the space
of all possible hyperplanes running through the data points with the constraint
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of satisfying the properties of the chosen covariance function. In reference to the
explanation of the “rubber sheet”, used when explaining GTM, one can imagine
the two-dimensional case as a distribution over all the possible “rubber sheets”.
Another way of viewing the model with respect to (B.7) is as a constrained Gaus-
sian Process regression on multiple dimensions. The Gaussian Processes are con-
strained to share the same parameters and kernels and one optimises the position
of the points in the visualisation space to obtain the best prediction for the data
points in every single dimension.

In general GPLVM suffers from the same problem as GTM and indeed all
other probabilistic methods which need to be initialised. However since GPLVM
does not optimise the mapping function but the points in the visualisation space
directly one can use any available mapping for the visualisation space. This con-
fers an advantage on GPLVM; that it can be initialised via any other visualisation
method. This advantage can be seen in Figure B.5 where GPLVM is initialised by
PCA and Isomap respectively and manages to correctly identify the underlying
structure of the S-data set and the Swiss-roll data set. For example in the case
of the Swiss-roll data set the GPLVM algorithm does so well because the Isomap
algorithm is already capturing the structure correctly.

B.5 MDS

Multidimensional scaling (MDS) (Cox and Cox, 1994) describes a class of meth-
ods which provide insight into the underlying structure and relations of a data set
by providing a geometry-preserving representation of this data set. In this thesis
we refer to MDS as a method which uses proximity measures, or conversely dis-
similarity measures, to find an interpretable lower-dimensional representation of
the data set in question. In the simplest case the proximity measure between two
projected points x; and x; in an L-dimension Euclidean space is given by:

5 1/2
dij= | (xia — X;’b)z} , (B.8)
a=1

where for visualisation L = 2. Given a ¢;; which represents some sort of distance

in the original data space one then tries to move the data points x; so that djj
optimises the so called Stress or S-function:

. [z?’:] L (6 — d,-,-)T v

Lit Lji 4 '
where N is the number of data points. The following Neuroscale and Isomap
algorithms are derived from this basic idea.

It is important to note that the optimisation of standard MDS algorithms will
generally scale O(N?) (Cox and Cox, 1994) for N data points. In the case of very
large data sets this might make the direct application of the algorithm problem-
atic without using appropriate approximations (Tipping and Lowe, 1997; Morri-
son et al., 2003) to speed up the algorithm.

(B.9)
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B.6 Neuroscale

Neuroscale (Lowe and Tipping, 1996) is a dimension-reducing and topographic
transformation to visualise and analyse high-dimensional data. This is done by
setting up an RBF network to predict the locations of the data points in the visu-
alisation space. To integrate the topographic structure into the training process of
the neural network a suitable error measure has to be chosen. This error is then to
be minimised by optimising the network parameters which in the end determine
the transformation. Given i = 1 : N data points y; in the input space with the
corresponding inter-point distances 4;; and their transformation x; in the feature
space with the corresponding inter-point distances d;j, the error term E is defined
to be

N

E=Y (6;—dij)?, (B.10)

i<j
bij = \/(Yi =~y yi—yj) . (B.11)
dip = /(i = %) T(x = %)), (B.12)

(e.g. the summation of the squared differences between the inter-point distances
of the D-dimensional data space and the L-dimensional latent space).

In certain cases one may want to augment the information given by the dis-
tribution of the points with additional information (e.g. class labels) as well. In
this case one can introduce a subjective dissimilarity which may be exploited in
the transformation. This prior knowledge implies an alternative topology which
should influence the final mapping that results from the objective distribution of
the data.

One reasonable way to integrate the subjective information and allow a con-
trolled combination with the objective information is to replace the term 4;; in
equation (1) with the alternative §;; defined by:

ﬁ,‘j = (1 — 0() X 5,'}‘ +a X s, (B.13)
N

E=Y (By—dy), (B.14)
i<

where s;; describes the subjective dissimilarity between the two data points, for
example a class label. The parameter « (where 0 < a < 1) is now responsible for
controlling the ratio between objective and subjective information in the transfor-
mation. With & = 0 the transformation is purely objective and only depends on
the distribution of the data. With a« = 1 the transformation is purely subjective
and only depends on the prior knowledge.

To find the transformation that minimises the error term we have to optimise
the RBF network. Given the input data y; the transformation is given by the non-
linear function x; = f(y;; W), effected by an RBF with the weights W. Thus the
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distance in the visualisation space is given by:

dij =l fly) = flyp) I - (B.15)

The number of RBF functions are fixed and chosen at the beginning. Therefore
we have to optimise the error term with respect to the weights W of the network.
This may be done with one of the many well know iterative optimisation proce-
dures like conjugate gradients (Nabney, 2002).

A simple example of the algorithm which demonstrates how the choice of &
influences the projection can be found in the paper by Lowe and Tipping (1996).

Further there is an extension for Neuroscale called shadow targets to deal with
large data sets (Tipping and Lowe, 1997). Shadow targets takes advantage of the
form of the error function to create a more efficient optimisation algorithm by
learning only on a subset of the possible data points, which greatly reduces the
needed runtime and due to its implementation avoids local minima.

B.7 lIsomap

The Isomap algorithm (Tenenbaum et al., 2000) can be seen as a special type of
MDS where the distances é;; are chosen to be of a particular form. These distances
are called geodesic and are computed by using a neighbourhood graph over all
the data. The idea is to only use local distances for every point and compute
the global distances along the distribution of the data. A good way to envisage
this is by considering a connected graph given by the triangle with the vertices
(A, B,C) as in Figure B.6. The euclidean distance between AC is /TC) However
instead of calculating directly the distance between (AC) we first have to look for
the shortest distance given the connections in the graph. Given that the graph is
only made up by the edges AB and BC we have to calculate the distance between
(AC) by running over B thus R — Ab + BC. In general the algorithm can be
formulated in the following way:

1: Select randomly [ points (I < n), if the data set is huge to keep the measure-
ment of the pairwise distances tractable.

2. Connect neighbouring points. Either by using the k closest points (Shakhnaro-
vish et al., 2005) or by selecting points which lie closer than a certain threshold
€.

3. Compute the matrix D of all pairwise geodesic distances of the k nearest
points, construct a graph based on these distances and run Dijkstra’s (Tenen-
baum et al., 2000; Cormen et al., 1997) algorithm for each point to find the
shortest path to all other points (the runtime is cubic to the number of points).
Then store the pairwise distances between all points in the symmetric matrix
D with [ x [ entries.

4: Centre D and subtract the mean over all rows and all columns.

5. Compute the eigenvalues and eigenvectors of D and sort the eigenvectors in
descending order of the associated eigenvalues.
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6: Choose p such that the residual variance accumulated in the I — p last eigen-
vectors is sufficiently small.

The p retained eigenvectors give the coordinates of the mapped points in a p-
dimensional projection space. Due to the non-linear feature of the geodesic dis-
tance it is possible to capture non-linear data structures with Isomap. The re-
sults can be seen in Figure B.7 where the Isomap algorithm correctly captures the
structure of the S-data set and the Swiss-roll data set. However the algorithm is
error-prone in sparse data sets or data sets with large amounts of noise. In these
cases it might be hard to construct a meaningful distance graph. In the case of
sparse data sets a local measure like geodesic distances is generally problematic.
In the case of large noise the graph might construct short circuits between regions
which should be much further apart. For example in the case of the Swiss-roll if
one introduces enough noise the inner layer will be directly short-circuited to the
outer layer.
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(a) Data set with PC1 and PC2
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eim PC 1 Axis
s PC2 Axis

(b) S-shaped data

Figure B.2: a) The two principal components in a two dimensional data cloud. b)
The two principal components for the S-shaped data marked as red and yellow
bar.
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x Data
% rC1 and PC2 Plane

(a) S-shaped data

* Data
#2221 PC1 and PC2 Plane

(b) S-shaped data

Figure B.3: a-b) The plane which is spanned by the two principal components for
the S-shaped data from different angles.
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(b) Swiss-roll data

Figure B.4: Demonstration of the projection result of the PCA algorithm on simple
data. The structure of the S-shaped data in (a) is captured and one can clearly see
that the class structure is preserved. This is not the case with the Swiss-roll data
in (b) where PCA fails to preserve the sltélécture of the classes.
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(a) S-shaped data with PCA init.
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(b) Swiss-roll data with Isomap init.

Figure B.5: Demonstration of the projection result of the GPLVM algorithm on
simple data. The structure of the S-shaped data in (a) is captured and one can
clearly see how that the class structure is preserved. This is also the case with the
Swiss-roll data in (b) where GPLVM, thanks to the Isomap initialisation, manges
to capture the structure of the data correctly. As comparison the original Isomap
projection used to initialise GPLVM can be found in Figure B.7.
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Figure B.6: Triangle with points A,B,C and the distances between them marked by
(AB) and (BC). Given that in this connected graph there are only edges between
A,B and B,C the geodesic distance between A and C is given by (AB) + (BC).
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(b) Swiss roll déta

Figure B.7: Demonstration of the projection result of the Isomap algorithm on
simple data. The structure of the S-shaped data in (a) is captured and one can
clearly see how the class structure is preserved. This is also the case with the
Swiss roll data in (b) where Isomap manges to capture the structure of the data
correctly.
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