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The unmitigated transmission of undesirable vibration can result in problems by way of
causing human discomfort, machinery and equipment failure, and affecting the quality of
a manufacturing process. When identifiable transmission paths are discernible, vibrations
from the source can be isolated from the rest of the system and thus prevents or minimises
the problems. The approach proposed here for vibration isolation is active force
cancellation at points close to the vibration source. It uses force feedback for multiple-
input and multiple-output control at the mounting locations. This is particularly attractive
for rigid mounting of machine on relative flexible base where machine alignment and
motions are to be restricted.

The force transfer function matrix is used as a disturbance rejection performance
specification for the design of MIMO controllers. For machine sofi-mounted via flexible
isolators, a model for this mairix has been derived. Under certain condition, a simple
multiplicative uncertainty model is obtained that shows the amount of perturbation a
flexible base has on the machine-isolator-rigid base transmissibility mairix. Such a mode]
is very suitable for use with robust control design paradigm. A different model is derived
for the machine on hard-mounts without the flexible isolators. With this model, the level
of force transmitted from a machine to a final mounting structure using the measurements
for the machine running on another mounting structure can be determined. The two
mounting structures have dissimilar dynamic characteristics. Experiments have verified
the usefulness of the expression. The model compares well with other methods in the
literature. The disadvantage lies with the large amount of data that have to be collected.

Active force cancellation is demonstrated on an experimental rig using an AC industrial
motor hard-mounted onto a relative flexible structure. The force transfer function matrix,

determined from measurements, is used to design ., and Static Output Feedback
controllers. Both types of controllers are stable and robust to modelling errors within the
identified frequency range. They reduce the RMS of transmitted force by between
30~80% at all mounting locations for machine running at 1340 rpm. At the rated speed of
1440 rpm only the static gain controller is able to provide 30~55 % reduction at all

locations. The #., controllers on the other hand could only give a small reduction at one
mount location. This is due in part io the deficient of the model used in the design. Higher
frequency dynamics has been ignored in the model. This can be resolved by the use of 4
higher order model that can result in a high order controller. A low order static gain
controller, with some tuning, performs better. But it lacks the analytical framewark for
analysis and design.
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NOMENCLATURE

The list summarises the notations used through out the thesis. In some chapters, typically
Chapter Three and Chapter Four some notations are redefined to best represent their
meanings. Alternative definitions are given in brackets. In general, symbols in CAPITAL
BOLD letters denote matrices and vectors. In some cases, small letters with underscore
and in italic are used to represent vectors. This is to conform to the standard notations

found 1n the respective vibration, modal analysis and control literature.

A State matrix of a state space model realisation (A,B,C,I¥) of G.
B Input matrix
C Damping matrix (Output matrix)
D Dynamic stiffness matrix (Direct input matrix)
G Transfer function or Force transmissibility matrix
I Identity Matrix (dimension to be defined)
J Mass inertia mairix
zx Controller matrix
K Stiffness matrix
M Mass matrix
P Matrix containing the location of isolators
7 Generalised plant model
R Receptance matrix equals to the inverse of [D]
S Sensitivity Function matrix
L Loop transfer function matrix
F Return difference matrix
T Closed loop transfer function matrix
Y Mobility maitrix
A Error or perturbation mairix
\ Q Vector of force and moments
X Vector of linear displacements

%Vi




m Mass of a rigid body

c Damping factor

d Vector of disturbances

y Vector of outputs of a system

Z Vector of outputs of a system

7 Controller's output

f frequency, Hz

j Imaginary number = J-1

k Spring (dissipative) stiffness

n Isolator loss factor

q Vector of displacements and rotations

§ Laplace variable

t Time variable, sec

= Vector of angular displacements

V,TT, 0 Angular velocities in the x-, y- and z-directions respectively
O Angular frequency, rad/sec

o Mass normalised mode shapes

g Modal damping factor or damping factor
ATand A" Transpose and complex conjugate transpose of A
A(A) Eigenvalues of matrix A

p(A) Spectral radius of A

K(A) Condition number of A

o (A) & 6 (A) Largest and smallest singular values of A
A5 Spectral norm of a matrix A: [\Aﬂszzg (A)
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CHAPTER ONE

INTRODUCTION




1.1 Vibration Control Problems

In some instances vibration is intentionally generated to move and orientates machine
parts in a vibratory bowl and to rock a bucking horse in a shopping mall for example. In
most cases, vibration is a problem when as an undesirable or unintended motion, it causes
human discomfort, machinery and equipment failure, poor yield in a manufacturing
process, and possibly loss of lives, for example if a submarine fails to evade detection
because it 1s has undesirable vibratory motions. In these cases it 1S necessary to control
vibratory motion. It is almost impossible to stop vibraiory responses in some cases, as the
causes of vibration are usually a by-product of a primary process. A machine in operation
generates a continuous disturbance that causes undesirable vibratory responses in other
parts of the system. It can only be completely reduced to zeroc when the machine is
stopped. Vibration control is then applied to reduce the undesirable vibratory responses to

some acceptable levels. A space structure is manoeuvred 1nto position by finng selected

U

rocket thrusters. The desired rigid body response is accompanied by undesirable flexible
mode responses because the space structure has to be designed to be relatively light using
trusses and beams. The vibration control problem here is to decide how to effect a rapid
reduction of vibratory responses in the shortest time possible. Unlike the former example,

the disturbance normally occurs as discrete events.

The case of continuous disturbances can be regarded as a steady-state vibration control
problem whereas the case of discrete event disturbances is very much a transient or
impulse response problem. The amount of reduction and the speed of reduction depend
very much on the cost of implementing the control versus the cost of failing to implement
the control that can result in the loss of equipment and lives. Control techniques for

continuous time disturbance may not be suitable for discrete event type disturbance.

For continuous time disturbance, the primary cause of vibration produced by machines
can be traced to inertia forces produced by reciprocating or unbalanced rotating masses.
Vibration control can be implemented by attaching counter weights in the machine or
inertia actuators to the machine body o generate farces apposiie to those inertia forces
causing vibration. In many practical problems, the source of the disturbance is
inaccessible, or the suppression of the disturbance at source is impractical. For vibyation

arising from vehicle manoeuvres, suppressing the disturbance af source is (o suppress the

2



excitation needed to execute a manoeuvre. Vibration control means dissipating the energy
injected into the system or injecting energy into the system to counter the disturbance. In
dissipation of energy, it can be done by the addition of damping material or dampers to
the parts of the vehicle or system. The idea is to absorb and dissipate the energy
associated with the vibration motion and to prevent the propagation of the energy. The
system natural frequencies and mode shapes can also be modified by the addition of mass
and stiffness elements at selected locations to shift the system natural frequencies away
from the frequency of the external disturbances. These are typical control methods for
vibration control associated with space structures or vehicle structures such as cars, ships,

and aeroplanes. In the literature, these are also called vibration suppression techniques.

Another way to control vibration is to isolate vibration from one part of the system, where
vibration is to be small, from another, typically the source. This is referred to as vibration
isolation. 1t involves reducing the ftransmission of the vibration along known or
identifiable paths in which energy is passed along. The characieristic of the paihs is
madified. Its (mechanical) impedance can be reduced. The most commonly used isolation
technique is to install flexible spring and damper elements in the transmission paths from
disturbance to regions of vibration control. The ubiquitous car suspensions comprising a
shock absorber tube in parallel with a coil spring or layers of leaf springs for heavy-duty

vehicles are relevant examples.

In both cases of vibration control - either suppression or isolation - the examples
mentioned above are regarded as passive control. The term passive is taken to mean that
the design or the solution is based on some pertinent assumptions made about the systems
where vibration control is needed. The effectiveness of the design is very much dependent
on the getting the assumpiions right. By and large many of such passive vibration control
solutions are robust enough to accommodate the errors or the differences between the
model or assumptions and the actual system behaviour. This is of the course the result of
having a better understanding and experience in using passive vibration control and the
inherent robustness of some passive vibration control elements (whose designs are again

the result of experience and knowledge) used in passive conirol.

Examinations of some of these passive fechniques will however reveal arens in whicl

impraved and perhaps maore cost effective (with respect o the cost of the system heing



protected) solutions can be found. For example in passive vibration suppression, a simple
solution is to modify the affected part of the structure, accepting some comprises between
weights and stiffness. Once the design is built, any subsequent modifications may be
expensive. Dampers may be tuned and the mounting locations identified. However, when
the vehicle has been launched and is beyond reach as in a space structure, it would not be

possible to re-tune the damper.

Passive isolation in a car suspension system is a compromise between providing for
passengers' comfort when designed to be "soft" and providing for good road handling
characteristic when designed to be "hard". As a machine mounting, passive isolation is a
compromise between having a higher frequency range for which the transmissibility is
sufficiently reduced and keeping the static deflection acceptably small. For a given mass,
m, it means properly selecting the stiffness, k, and the damping, ¢, of the isolation
element. If & is small, then reduction in the transmissibility is achieved for a wider
frequency range. This means that there will be a larger siatic deflection, and it may nof be
acceplable. Increasing ¢ will reduce the amplitude al resonant frequency but increases

(compared with smaller ¢) the transmissibility for frequencies beyond \/2 kjm .

A general term to describe the limitations imposed or the constraints of passive vibration
control 1s inflexibility to meet conflicting requirements or to effectively adjust to actual
operating conditions. In describing some passive techniques as being robust, it is usually
taken to mean that robustness is achieved at the reduction of effectiveness in the sense
that if the model used to design the passive vibration control has no errors, then it will
have the optimal performance. With errors, the performance will deviaie from being
optimal. With rapid development in high precision manufacturing, high performance cars
and spaceships and structures, and the like, there is less tolerance to errors and deviatian
from desired performance. The term active vibration control (AVC) begins to take on a
life of its own. It may yet be the aliernative solution but it definitely is a complementary

solution to passive vibration control.

Active vibration control can be characterised by the use of exiernally supplied energy 1o
achieve the same objectives as passive vibration control and in same cases ohjectives fhai

cannot be achieved by the use of passive vibration contral. It can be applied in liew of



passive control at the same locations. More importantly it can use measurements from
other parts of the system to enhance the suppression or isolation of vibration at those parts
where it replaces or complements passive methods. The actuation can either be effected
as a force or as a displacement to counter the undesirable vibratory motions. A controller
is normal complement of an AVC system. It treats the vibration measurements as error
signals and drives the actuators to reduce the measured vibrations until they reach a
specified acceptable level. With a digital computer, the AVC is in a sense truly flexible
compared with passive vibration control. Even if the arrangements of actuators and
sensors are designed and already in place, it will still be possible to change or optimise
the control system in response (o actual operating conditions, and with advances made in
signal telemetry, this can be done remotely and on the fly. Of course, nothing is gained
without having to pay a price. AVC is firsily more expensive and more importantly less
forgiving than passive methods. If it is poorly designed or wrongly implemented, it can
cause far more harm than if it is not in use or when passive iechnique is used. This is
because energy is added into the system instead of being removed from it, and this energy
wrongly directed can make vibration more severe. As a compromise (again) AVC is
sometimes used in conjunction with passive elements. This partnership can also give a
more cost-effective solution when optimal combinations of passive and active vibration
control techniques exist. There is a great performance potential in using AVC either by

itself or in combination with passive vibration control.

A brief review of the literature on AVC in Chapter Two will provide some insights and
possible answers on how to exploit this potential and a better understanding of the use of
AVC so that desired results can be achieved. As in the passive case, active vibration
control can be either active vibration suppression or active vibration isolation. In active
vibration suppression, models of the plant become more important in understanding and
determining the location of sensors and actuators. Using ideal beam and plaie models and
newer developments in control theory, different configurations and conirol algorithms are
obtained. Most of these works are driven in part by the surge in funding and interest in
flexible space structures control and active siructural confrol o suppress noise
propagation. Current work in these areas involves finding the hest controlier algorithm (o
achieve the desired results. The control archiiecture varies very little: global feedback
using muliiple-input-multiple-output (MIMQ) controller or local Teedhack with Tncal

control authority. As always simple configurations and algorithms provide usefi
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solutions and insights to the design and implementation of active vibration suppression.
Not all these methods and configurations are necessarily appropriate for vibration

isolation, which is the focus of this thesis.

In the area of active vibration isolation, low frequency active control is used (o
complement passive mount high frequency attenuation. This has been very successful to
the extent that active mounts (a self-contained unit of actuator, sensor and inierface fo
external controller) have been commercialised. Developments of active vibration isolation
components or equipment are already in an advanced stage, but there is still room for
advancing both the theory and the application of control theory to active vibration
isolation. For in most of this equipment, classical controllers and filters designed using
single-input-single-output (SISO) control concepts are still very much the order of the day
with a few exceptions. Several suggestions and studies have been done 1o use MIMO
control and multi-channel filtering theory in active vibration isolation although few relate
directly to recent developmenis in robust conirol design methods. Adaptive feedforward
and feedback controllers are robust, but they do not admit a formal and quantifiable

model to deal with modelling errors or perturbations.

Another interesting outcome of the review is the use of piezo-ceramic material in active
isolation. It is inherently very stiff (comparable to aluminium) and is very much a hard-
mount. Active vibration isolation using hard-mounis has limited literature and is certainly
worthy of exploration. When compared with active vibration in conjunction with soft-
mounts, machine motion during controlled actuation is limited or restraint for a machine

on hard mounts.

The basic configuration of the complete dynamic system for AVC design is the same as
that used in the design of a passive vibration control system. The addition of active
elements only serves to provide greater flexibility and potential in controlling undesirable
vibration. A greater part of the improvement is obtained from the applicaiion of
appropriate control to the active elements. For example in active dampers, the damping
and the stiffness are continuously adjusted according to some coniral law to minimise the
sensed vibration. There is already a substaniial body of knowledge in contral theory thai
can and has been used in active vibration control. Tt is nol proposed to make any more

contribution to the already vast amount of literature pertaining o aciive vibration conira]

f



and especially to the body of control theory that can be applied. Instead focus shall be on
two aspects of active vibration isolation from a control engineer's perspective. In the area
of soft-mounts, to derive a multiple degree of freedom model for active force cancellation
at the feet of machine in the presence of base flexibility and to demonstrate how actijve
vibration isolation can be put into a framework of MIMO robust control design. The
resulting model separates the base flexibility dynamics from the machine on rigid base
dynamics, treating the former as a kind of modelling error or perturbation. The maodel fits
very well into the robust control design and ., optimal control theory framework
providing a quantifiable error model. The other aspect is related to an area not intensively
researched into, where active vibration isolation is proposed for a machine hard-mounted
onto a base structure. Such a situation is most ideal for the implementation of active force
cancellation at the feet of the machine. As a preliminary work, a method for determining
the force transmitied from a machine hard-mounted to its base siructure using another fest
structure  with dissimilar characteristic is given. Next, the effectiveness and
implementation of active force cancellation using conirol systems designed by . optimal
control theory is investigated. The control system is robust anly to maodelling errors. This
is compared with a Static Output Feedback (SOF) control system design. In the case

studied, the SOF controller is robust to modelling errors and neglected dynamics.

In summary, from the perspective of vibration control, vibration control can be classified
as passive, semi-active (where the system passive properties are actively modified) and
active (where real-time actuation is provided). Active control can be divided into
feedback, feedforward and combined feed-forward & feedback. Most of the feedforward
control schemes reviewed are necessarily adaptive control. From another perspeciive,
active feedback control can be further divided by whether sensors and actuaiors are
collocated or not. Collocation has certain properties that can be exploited to simplify the
design of the controllers. Examples of uses of non-collocation in adaptive vibration

control and model based feedback control are also given in the review.

1.2 Active force cancellation for soft-mounied machine

Active vibration isolation is most appropriate for the case of machine mounied onio 4

base structure. If the machine disturbance is transmitied o the base structure, it may he



propagated to other part of the systems and possibly cause some damage or
inconvenience. The idea of generating an opposing force to cancel the disturbance forces
is much the same as that of using anti-noise to cancel the disturbing noise. Instead of
applying cancellation at the machine body itself, active force cancellation can be applied
at the point where the disturbance goes into the mounts and thence into the other paris of
the systems. Instead of changing the characteristic of the transmission paths, those parts
of the disturbance that will be transmitted into the base will be minimised via the isolators

before they have the opportunity to be transmitted i.e. at the feet of the machine.

For a machine soft-mounted to a flexible structure it will be shown that a proper selection
of k can result in a model with the base dynamics appearing as a decoupled term in the
machine-isolator-base model. To a control engineer engaged o design a AVC sysiem, it
is most useful to have such "decoupled” model or better still to be able to design and fest a

control system that is robust to the modelling error introduced by the base flexibility.

In Chapter Three, an induced matrix norm condition for the base structure dynamics o he
decoupled from the local measurements of the force transmitted for a machine sofi-
mounted at multiple points is introduced. The desired model is a force transmissibility
matrix that is a product of a multiplicative error term and the force transmissibility matrix
of the machine soft-mounted on a rigid ground. The matrix norm of the multiplicative

error term gives the bound on the error against which a control system can be designed.

The multiplicative error model fits very well into a robust control design framework.
Controllers can be designed to be robust to modelling errors. This means that a control
engineer can design and test a controller with the machine soft-mounted onto a rigid tesi-
bed that is not the actual base structure for the machine. The stability of the control
system can be evaluated using the small gain theorem (Appendix D). A great benefit of

this decoupling is that the actual base structure dynamics need not be known in detail.

1.3 Determining the force transmitted from a machine on hard-mounts

The problem of multi-point mountings for a machine that is hard mounted insiead of
using flexible isolators is considered next. Such is the case when machine alignment i&

critical or any machine mation has o he limited.



Unlike the case of active vibration suppression, machine disturbance is continuously
generated. As there are no flexible elements to isolate or reduce the amount of disturbance
transmitted, it is very important, from a control perspective, to have some knowledge of
this disturbance. With no soft mounts to decouple the dynamics of the structure from the
mounting, it is incorrect to use machine free vibration as a disturbance spectrum for the
design of a controller. It is then necessary to determine the force that will be transmitted
to the final mounting structure and use this as the disturbance spectrum. There will be
instances when it is not possible or convenient to measure the force that will he
transmitted by the machine on the final mounting structure. Mounting struciures with
dissimilar characteristic from that of the final mounting structure, on the other hand, may

be available for used in estimating this force spectrum.

Hence in Chapter Four, the equations to determine the level of force that will he
fransmitted to a final base structure using measurements of the vibrating machine on
another test-bed structure with dissimilar characterisiics are derived. This analysis gives
us an expression that requires data on the receptance or dynamic stiffness matrices of the
machine on test-bed, machine on the final base structure (if possible to have) and the final
base structure. No information is actually required of the test-bed. Experiments have been
conducted to verify the usefulness of the derived expression. The results when compared

with that obtained by other experimental methods are found to be more favourable.

From this experience it can be concluded that a machine disturbance spectrum under free
vibration can be modified by the dynamics of the base structure. The installed force
spectrum can be obtained from the force transmissibility matrix. A control engineer can
then use this to specify the amount of attenuation in the frequency domain to be provided

by the control system.

1.4 An experimental demonstration of active force cancellation using hard-mounts

The use of the force transmissibility matrix to define a disturbance rejection performance
specification with the . optimal control method is demonsirated in Chapter Six. A rig
comprising of a 5.5 kW AC industrial mator is hard-mounied on a siructure. Four foree

actuators are located near its feet and four force sensors are located hetween the batfom of
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each hard-mount and the base structure. Since the free vibration machine disturbance
comprises of (typically time-invariant) spectral peaks, feedforward adaptive filtering as
suggested in some literature could be used. However as the result of machine-structure
dynamics interaction, the spectrum is modified, and feedback control is more appropriate.
This situation provides a good test case to study active force cancellation using #.,

optimal control method.

The (disturbance) force transmissibility matrix is estimated using a frequency domain
identification method and compared with that obtained from modal analysis method. This
is described in detail in Chapter Five. The identified model is expressed as a 4x4 matrix
of transfer functions and subsequently converted (o a suitable staie space model. Model
reduction technique is used to obtain a model that is compatible with the physical system
and the results obtained from madal analysis. The reduced model is the force
transmissibility matrix that is wsed in Chapter Six as definition for the disturbance
rejection performance specification. To demonstrate the robustness of the control loop 1o
modelling errors, the identified models of the actuators’ dynamics are noft used. Insiead a
diagonal matrix of 2" order transfer functions is used to represent all the four actuators.
Various weighting functions are used as the performance specification and the results are
compared. For comparison, the full order force transmissibility matrix is used in the

design of a controller. The model of the controller is then reduced a smaller order.

All results and discussions on the implementation of the controllers in the experiment are
given in Chapter Six. The controllers are found to be robust to modelling errors but not to
unmodelled dynamics. This is the fault of the estimated model used in the design and not
a flaw with the %, optimal control method. If the unmodelled disturbances are modelled
by some frequency dependent functions, the % optimal control method will design a
controller that is robust to these higher frequency disturbances. For comparison, an
alternative method, Static Output Feedback, for the design of MIMO coniroller using
output feedback is given in the same chapier. A performance specification that is a
function of the force transmissibility matrix is used to design a gain coniroller. The static
gain controller has fewer parameters and is therefore easier to fune during. Hence it can
be adjusted for modelling errars. In this study, it performs better than that designed wsing

the % optimal control methad. In general this may not always be (rue.
P
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The conclusion that active force cancellation as an active vibration isolation method is
feasible is given in Chapter Seven. The robust control design theory is a suitable method
and could be used in active vibration isolation. It is suggested that the insertion of
thermoplastic material between the hard-mounts and the machine may have the potential
for greater benefits and could be investigated further. This material with a loss factor of

about 0.9 at 24 Hz (1440 rpm) at a temperature of 30 °C can be used to provide damping.



CHAPTER TWO

A REVIEW OF SELECTED ACTIVE VIBRATION

CONTROL TOPICS AND RESULTS OF PRELIMINARY

EXPERIMENTS



2.1 Introduction

This review covers previous research work done in areas related to active vibration
control of machines mounted onto flexible structures. It summarises the work into three
categories basing on how the problem was modelled and studied. Except for the control of
flexible space structures, which has been researched zealously, much of the examples of
complex analysis and experiments to demonstrate the control of machine vibration
transmission have been done using 1-degree of freedom (DoF) systems. In most of the
work reviewed and described here, only a few examples using physical machines of
engines as external disturbances in experiments are given (Watters er al., 1988 and
Jenkins et al., 1990). More often than not, a controlled exciter e.g. an electro-magnetic
shaker is used as the disturbance source, and the machine is assumed to be a rigid mass.

Ta some degree this simplifies the modelling and the execution of the experiments.

A review of the types of actuators and sensors in active vibration contral is also given in
this review. The selection of the sensors and the actuators is influenced by ihe
performance metrics and the dynamic range used for specifying the effectiveness of
disturbance rejection. It also affects the transfer functions used in the design active
vibration control. The different arrangements of active and semi-active dampers are also
discussed. At the end of the chapter, in consideration of existing methods of control and

availability of sensors and actuators, a set-up of actuators and sensors is proposed.

Finally examples of preliminary work done on active vibration control are also given.
These are performed to get an understanding of the principles and the experimental

methods for active damping and active vibration control.
For the purpose of discussion, the term soft-mount shall refer to the case where (flexible)
isolators are used, and the term hard-mount shall refer to case where the machine is

rigidly mounted to the structure without the use of flexible isolators.

2.2. Active vibration control (AVC)

The basic reasons for the need of active vibration contral have been highlighied. There

are many solutions that have heen around and more are being sought afier sither in



specific areas or as improvements of existing solutions. Most solutions are primarily
based on the basic understanding of the principle that vibratory responses in a machine or
a structure can be reduced or amplified by controller driven actuators acting on responses
to measurements made in the machine or the structure. Elements of active vibration
control are similar to those found in any simple single loop control system, regardless of
whether it is feedback or a feedforward loop: the barest requirements call for a sensor, an
actuator and a controller or filter or an equaliser. The types of sensors and the actuators
found in an AVC system will be discussed. The types of controllers used will also be
included in the survey as control algorithms and controller design approaches as more and
more implementations are done using a micro-processor (p-p) or a Digital Signal

Processor (DSP).

Firstly, a brief survey of the methods of AVC will be presented. The scope will be limited
to different design approaches that have been taken o solve the problem of reducing
vibralory responses of some pre-identified targets. To assist in the presentation of fhe
survey, the general AVC problem is subdivided into caiegories following a scheme
proposed by. McKinnell (1989). He identified three possible regions in which vibration

can be controlled. These connected regions or subsystems are shown in the Figure 2.1.

Transmission paths

Receiver
region

Disturbance
source

Transmission paths

Figure 2.1 Region for which vibration control can be implemented

Region (a) is represented by disturbance sources. It can be a single piece of machinery
that generates the vibration or it could he a combination of many machines and
equipment. Transmission paths would form region (b). Tn the simplest case, it would he
represented by isolators or mounting locations. These are discreie paihs, In some cases, i

could be a continuous path such as a flexible afruciure connecting one poini of
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disturbance to other areas where vibration sensitive equipment has to be protected, for
example, laser interferometers. In more complicated systems such as in submarines or
ships, transmission paths are more difficult to describe. The seawater would form short-
circuit paths for vibration from part of the submarine to be transmitted to another. The last
region, (c), the receiver region, could be any component or structure that vibration should
not be allowed to propagate or persist, or a place or equipment where vibration is to be
limited. It is sometimes also referred to as vibration sensitive region. In some cases, il
may be hard to distinguish between the transmission paths and the vibration sensitive

region. Controlling the vibration in region (¢) may be the goal itself.
Any of these or all of these can be targets for active vibration conirol. The selection will
depend, amongst many other factors, on the cost of design and implementation and the

accessibility of the region for design, modification and location of sensors and actuatars.

2.2.1 Active vibration control of the disturbance source

Although the thrust of the survey is focused more on the region (b) and region (c), it is
worthwhile mentioning something about AVC of the region of disturbance source. Nelson
(1991) and (Fuller et al., 1996) used the term vibration control at source to mean
cancellation of the primary vibration, -f,(w), by applying a control force feon(w) = -f(w)
on the body of the vibrating machine. It is very much the same concept as applying a
blocked force Qp (Lyon, 1987) to the machine to stop it from vibrating. Inertia mass
actuators can be used, and the actuation can be externally or internally applied (if
possible). With a more complex machine system, for example, a machine driving a
generator or a propeller via a long (compared with the diameter) shaft, the term will mean
something different. It will involve using active rotor-bearing control or active magnetic
bearings to reduce the unbalanced forces that exist in the rotor or the shaft. Staie variable
feedback control (Stanway and O'Reilly, 1984) and non-linear control (Smith and
Weldon, 1994) are some of the methods used for magnetic bearing systems. In mosi of
such systems, oil-filled bearings are often used to complement the active magnefic

bearing systems.

To limit the scope of the survey, it is assumed that the disturhance source region has @

well designed but not necessarily a perfect machine. For example, using a motor with a-
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skewed armature that reduces the fluctuating forces. Undesirable forces can be generated
and transmitted as the results of any imperfections and the interaction between a vibratory
machine and the supporting structure. It has been shown that the dynamics of the
supporting structure can in some cases caused a reduction in the attenuation of the force
transmissibility ratio (Plunkett, 1958). One would therefore like to survey the work done
in the area of vibration control of the receiver region and examine solutions that suppress

vibration in this region.

2.2.2 Active vibration control of the receiver region

A conceptual model of the forces and momenis generated and (ransmitted o the vibration
sensitive region is proposed in Figure 2.2. Identifiable transmission path(s) may or may
not necessarily exist. Only one arrow is drawn (o typify this disturbance. AVC can he
applied in this region to maintain some form of global response for example having 4
specified displacements field in a certain region of interest. It can also be used to control
ihe behaviour at selected sensors' location (called controlled points) in response (o

transmitted forces and moments applied at some other locations.

The control of vibration in this area as represented by Figure 2.2 is characterised by the
use of numerous sensors and displacement type actuators spread around or along the
structure or distributed sensors and actuators. Another term that is commonly used to

describe this situation is vibration suppression.

Transmitied forces & moments
Collocated actuator

Controlled Force Actuator & sensor

P B
ﬁ Sensor ﬂ Control%

Figure 2.2 Vibration conftrol at the receiver region

Many researchers in the area of control of vibration of flexible structures favour the use of
such an arrangement. Perhaps some lessons could be learnt from the research in the field
of vibration control of large space structures and also in the study of flexible rohois. They
do have certain characieristics in common. They are in general subjected (o disturbances

at one or more discrete poinis. These disturbances are iypically ireated as individial
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events rather than continuous excitations. For example thrusters are fired intermittently to
align the space structure or a robot is being slewed to a desired orientation. The nature of
the disturbances could then be impulsive in nature, pulse-like or regarded in some cases

as white Gaussian noise.

The model of the region is often described by Partial Differential equations or modelled
using Finite Element models. FE models typically produce many modes but not all are
used in practice. In the literature, the FE models typically have well-defined boundaries
(e.g. clamped-free cantilever) and consist of trusses, beams and plates. Solutions to (Euler
or Timoshenko) beam equation have been used in the study of control of flexible roboi
(Cannon and Schmitz, 1984) and space structure (Larson & Likins, 1977 and Martin &
Bryson, 1980). Solutions to plate equations are used in the conirol of sound radiation
(Junger & Feit, 1986 and Cremer et al., 1988). The availability of closed form solutions
for simple geometrical shapes is one of the reasons why they are used in the firsi place as
models of physical systems. Nicholson and Bergman (1986a, 1986h) using the Green's
functions obtained the characteristic equation for natural frequencies of free vibration of
beam and plate coupled to harmonic oscillators or dampers attached to structure at
discrete points. In effect Nicholson and Bergman have provided a solution for open loop
control of plate vibration by proper selection of attachment locations. Simple geometrical
shapes also provide for the basis of the understanding of the mechanics of active vibration
control. For example, Gervater (1970) used a model of a beam to show how important the
relative position of actuator and the sensor is in determining closed stability using
velocity feedback. If the actuator and the sensor are collocated, the compliance transfer
function of an undamped system has alternating poles and zeros along the imaginary axis.
This becomes important in gain feedback - in terms of root locus feedback gain will cause
the Tocus to move from the open loop pole to the zero in the left hand half plane thus
ensuring closed loop stability. Wei and Bryson (1981) developed models of space
structure using different boundary conditions for a beam and showed that maodel
truncation of collocated systems creates no serious modelling errors, whereas model
truncation of non-collocaied sensors and actuators pairs create spillover problems. When
the system gets more complex, some of these physical insights are lost, and the analylical
approach to determine the model of the system loses its appeal. However the hasic

advantage of collacation over non-collocation still apply even to complex strictires.
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Different insights can be obtained when a general PDE is transformed into a modal
equation or modal state equation. This transformation is also necessary for feedback
control as no algorithm exists to determine suitable Linear Operators for the
displacements and velocity feedback (Meirovitch, 1987) for use with the PDE. With
modal equations, the concepts of eigenvalues and eigenfunctions are used to convey the
response in terms of natural frequencies and displacements at the modal coordinates.
When the displacement and velocity feedback gain operators satisfy the eigenvalue
problem, an independent set of modal equations (decoupled equations of natural
coordinates) is obtained. Hence the term Independent Modal-Space Control (Meirovitch
& Baruh, 1982). In this set of equations, the eigenfunctions or mode shapes are nof
affected by the feedback. The control problem then becomes one of relocating the open
loop eigenvalues using the pole allocation method or linear optimal control method
(Meirovitch, 1987). The eigenvalues can be shifted without changing the eigenfrequency
i.e. the algorithm seeks to increase damping, and increases the raie of convergence 1o
stability. IMSC approach provides for a glabal coniral of the region and il needs the use
of distributed actuators and sensors. However one very often has to work with finite

number of actuators and sensors at discrete locations.

One can independently control a limited number of modes successfully. A careful
selection must be made as to which modes are directly controlied. This means that modal
truncation or selection of modal modes becomes necessary. Very often the lower modes
or mode shapes is selected basing on the modal participation factor. Hughes (1982)
advocates modal selection by some error criteria rather than modal truncation of higher
modes. Sensors are to be placed at positions corresponding to the selected modes.
However it is neither possible nor economical to measure all the modal staies
corresponding to all the selected modes. Then state observers, either the Luenberger
(1971) observer or the Kalman-Bucy filter can be used to construct the missing siates
from the limited output measurements. With state feedback, poles allocation or pole
assignments methods are known to waork very well (Kailath, 1980). The point is that ihe
resulting truncated modal equations are no longer decoupled, and for a large number of
selected modes, a correspondingly large number of sensors will be needed. From Wei and
Bryson (1981), it is known that modal truncation will result in model inaccuracy. For
example, sensors located to measure the selecied modes will also pick up displacemens

from those modes that are not selected for control. This gives rise 1o abservaiion
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spillover. The controller will respond to both selected and non-selected (residual) modes.
Actuators under command of the controllers to suppress the controlled modes may end up
exciting the residual modes as well. This gives rise to the control spillover problem. As
control spillover does not affect the closed loop eigenvalues, it cannot destabilise the
system (Meirovitch 1987). Observation spillover, on the other hand, can produce

instability in the residual modes especially if actuators and the sensors are not collocated.

Observation spillover can be avoided using collocation of sensors and actuators and local
feedback schemes or some filters to remove responses from unwanted modes. For
example, using direct velocity feedback (Balas, 1979) and direct displacement feedback
(Meirovitch, 1987), observation spillover can be avoided as there is no need to estimate
any modal states. Meirovitch (1987) called this Static Ouiput Feedback. The designed
controller is a diagonal gain controller. There are however no equivalent pole allocation
or optimal control algorithms o determine these gain values. When the modal coordinates
are transformed to balanced coordinates, Gawronski (1996) showed that with collocation
of sepsors and actuators sfatic gain matrix couid be determined analyiically. This
controller is no longer diagonal. In fact the general use of the term Static Output
Feedback does not necessarily imply that controller is restricted to being diagonal. As
long as no modes need to be estimated in the design of the controller whether diagonal or

otherwise, observation spillover can be avoided.

One of the way of minimising observation spillover is to filter the sensors' output for
uncontrolled modes, but the filter usually distorts the signal thereby affecting closed loop
eigenvalues. Chait and Radcliff (1989) developed a "modern modal control design" using
an augmented observer to compensate for the distortion introduced by the filter. Other
attempts to avoid the spillover problem take a circuitous route. Proper selection and using
large number of sensors and actuators have been proposed. Auburn (1980) had fried to
limit the gain of the controlier so that the actuators are limited in output and hence do nol
excite uncontrolled residual modes. He called this "low authority” coniral. Raju and Sup
(1989) used relatively large numbers of non-collocated actuators and sensors with respect
to the number of modes to cantrol, to limit the output and avoid exciting the uncantrofied
residual modes. Similarly, Guigou er al. (1991) employed distributed sensors and

actuators - effectively increasing the area of actuation and sensing - o provide acijve



vibration suppression of the base structure supporting a large simulated machine mounted

via spring coils.

Collocation with local and direct feedback is still more appealing than central feedback as
the latter is difficult and expensive. The control architecture is simple: measure, condition
and output to actuator. Hence there is collocated positive position feedback by Goh and
Caughey (1985). They showed that direct velocity feedback (Balas, 1979) for a madel
truncated to slow modes will result in an unstable system when the actuators' dynamics
are neglected. Instead conditional global stability of large space structures can be
achieved using positive position feedback (PPF) if actuators’ dynamics are present.
Agrawal and Band (1993) has also implemented PPF using piezoelectric sensors and
actuators on a flexible spacecraft simulator, and more recently Sciulli and Inman (1997)
used it in active vibration isolation. In 1990, Goh and Yan proposed the use of
acceleration feedback to provide robusiness in feedback vibration control. An
experimental demonstration of this concept is given by Preumoni and Loix (1994) using 4
B&K shaker and accelerometer in response o a disturbance on a heam. In summary, all
of them use motion feedback - position, velocity and acceleration - to provide for closed
loop damping or basically to move the open loop poles near the jw-axis to a location
further away from it. The controllers used are typically filters - 2" order low pass or

notch filters, and the plant is invariably a beam or a plate.

In more recent work conducted on the control of complex flexible structures, models are
identified from experiments (Balas & Doyle 1990, Balas er al., 1992 and Lublin &
Athans, 1994). Balas & Doyle (1990) working on the Caltech Experimental Flexible
Structure and Lublin & Athans (1994) on the M.I.T. Space Engineering Research Cenire's
Interferometer test bed started with FE models but eventually resorted to experimental
identification to obtain more accurate multivariable descriptions of the structure for
control design. These models are obtained first as transfer functions description and then
converted into general state space forms. The identified models also include the actuators
and sensors' dynamics. Typically the states are not necessarily associated with any maodal
or balanced coordinates. This mixed use of frequency domain identified madel and
converted state-space model quite fit into the framewark of current control literaiure of

robust control design and . optimal conirol method.
I

20



The survey of AVC for this region brings out some important aspects: (a) the nature of
the region is typically modelled by PDE and model truncation is inevitable and (b) the
proper location of sensors to avoid the more serious observation spillover is very
necessary. To avoid spillover, collocation of sensors and actuators is often used, and in
this case there are many control schemes, all which are designed to provide closed loop
stability (and some in the presence of actuator dynamics) and improved damping. When
models are experimentally identified, the internal states that are measurable and
controllable are present in the measuremenis used to determine the model. In those works,
the problem of spillover is seldom mentioned even if actuators and sensors are non-
collocated. Robust control design can be robust to spillover. More importantly robust
controllers can be designed for the spillovers if the error between the model and the "real"
system are given as frequency domain uncertainty descriptions and incorporated into the

model identified.

2.2.3 Active vibration control of transmission paths

When a discernible transmission path can be identified, a logical AVC scheme is to
"block" or "annihilate" the disturbance along the paths before they reach the vibration
sensitive region. Such discernible and discrete paths are "bottle-necks” of vibration
transmission. Sensors can be positioned at the mounting locations as well as at other
locations where it is necessary to minimise the vibration level e.g. at passengers' seats in a

car.

Transmitied forces & moments

Collocated actuaior &
SENSOT

ﬁ Sensor

Controlled Forc W?

e

Figure 2.3 Vibration control along the transmission paths

o5,
@-Actuator B Controliedpoint

Figure 2.3 is one possible conceptual model of AVC along the fransmission paths.
Another model is shown in Figure 2.5. In the case of machines mounted onio a structire,
these paths are the isolators. Figure 2.3 and 2.5 are examples of active vibration isalation
(McKinnell, 1989 and Nelson, 1991).



Feedforward control for active vibration isolation is one approach that uses the model
shown in Figure 2.3. It employs many sensors on the receiver plate as well along the
isolators. Some of these sensors, placed at appropriate positions on the receiver plate, are
used to monitor the effectiveness of the control action. Actuators are very often placed in
parallel to passive isolators i.e. placed between the disturbance source, e.g. a machine and
the receiver-plate e.g. the supporting structure. This 1s characteristic of the works of
Nelson et al., (1987) and Jenkins et al., (1990) at the Institute of Sound and Vibration
Research (ISVR), University of Southampton, UK. Another arrangement has no sensors
on the receiver plate. Instead it has a reference sensor at the disturbance source to provide
a signature of the disturbance. The actuators are either in-line or attached to opposite end
of the bottom of the mounts on the receiver plaie side. Chaplin (1987) and Eghiesadi &
Chaplin (1987) used this method to actively cancel the disturbances. Tt is similar in
concept to that of active noise cancellation proposed by Ffowcs-Williams (cited in
Sievers and von Flotow, 1988). An introduction to synchronisation vibration cancellation

using inertia force is given by Swinbanks (1984).

The approach of Chaplin (1987) is simple and direct. It converts the time domain
reference signal containing the machine speed and its harmonics into a spectrum, and
anti-phase every spectra peak of the harmonics in the spectrum. This modified spectrum
is then Inverse Fourier Transform back into a fime domain signal and applied to the
actuators. The actuators do not respond to any disturbance coming from other parts of the
receiver region, and in essence, the method disregards the dynamics of the receiver
region. The concept is the same as anti-noise cancellation. Control is local and the
controller is basically a waveform synthesiser. There is no requirement for real-time
signal processing if the signal is stationary and periodic. In such case, the time delay in
computation is not important. This constraint on the signals containing only harmanically
related components is limited by the state of microprocessor speed prevailing at that time.

With current processor capability this is no longer a constraint.

On the other hand, the method of Nelson er al. (1987) is an attempt to produce a global

L

reduction in the vibration in the receiver region. The disturhance signal of the machine is

used as a reference signal to an array of filters. A multi-channel filiered-x LMS (Eiliof

. § (317,

and Nelson, 1986) algorithm is used to adaptively adjust the coefficienis of these filisrs (o
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produce the outputs to drive the actuators. These coefficients are adjusted until the sum of
the square of the signals from the accelerometers distributed on the receiver region reach
some specified or desired level or some minimum value. The method does not need an
explicit model of the transfer characteristics of the transmission path or the flexible base
structure characteristics as the filter is adaptively tuned to match these characteristics. The
method worked well at some positions of a plate especially at plate resonant frequencies,

but did not quite achieve the global reduction for the range of frequencies as intended.

Feedforward control works relatively well when the disturbances are deterministic and
especially well if the spectrum comprises narrow band resonance. With fast DSPs, the
transfer characteristics of the path and the plant can also be time varying. This is of course
a significant advantage. Such methods are also found in ANC (anti noise cancellation)

literature (Kuo & Morgan, 1996 and Fuller er al., 1996).

An application of such methods can be found in anti-vibration and noise in some car

models. A schematic is shown in Figure 2.4.
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Figure 2.4 Active vibration conirol in a car maodel

In an experimental test-rig modelling a car body, Yang er al. (1996) used filiered-x LMS
to achieve a very good reduction at a single point for the simulaied engine speed of 33-
Hz. Shoureshi and Knurek, (1996) demonstrated the effectiveness of noise coniral in the
cabin of a passenger car. On the Volkswagen GTI (Fuller er al., 1996), accelerameters
placed on the chassis side of the (Freudenberg's) active engine mounis and on either side

of the front sides provide the error signals for the multiple error LMS algorithm fo

[
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produce up to 20 dB attenuation at the driver's footwell. The attenuation is most

significant at the engine speed.

The adaptive filters approach is similar to an on-line system identification of unknown
plant. This normally works as long as the plant (and other electronics) is linear though not
necessarily time-invariant. With disturbances that are periodic or predictable, anti-phase
harmonic cancellation is possible. In fact with such schemes, the amplitude and phase
characteristic of the controller is very important. However, when the disturbance is no
longer deterministic or is hard to predict, such a feedforward control sirategy is hard o

implement. The phase between input and the output is likely to be random.

A variant of the model of Figure 2.3 is shown in Figure 2.5. Unlike the model shown in
Figure 2.3 and that proposed by Chaplin (1987), this is completely a local contral scheme.
There is no reference sensor at the disturbance source and conirolled poinis (sensor
locations) are primarily at the feet of the isolators and not on the receiver (Figure 2.3).
The actuators and sensors need not be collocated even though the figure appears o show
that they are. For example, the sensor could be at the bottom of the isolator where the

level of transmitted vibration is to be reduced and the actuator could be located at the top

Transmitied f‘orcc?

vpg: v?é:': Control for
Actuator & " Controlled point

/Sen.sor

of the isolator.

Figure 2.5 Active vibration isolation: local feedback

Pan et al. (1993a, 1993b) adopted another form of feedforward control using this
arrangement. However models of the isolators and the receiver structure are needed wiih
the additional assumption that the machine behaves as a single rigid mass. These models
are used to determine the optimal conirol force needed io reduce the power flow from
machine to the base of the isolators. The actuators are in parallel (o the isolators and the
power flaw reduction has been demonsirated from a simulated machine (a shaker) (o a

heam (Pan er al., 1993a) and via twao isolators fo a plate (Pan er al, 1993p), However (he
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method is dependent on the ability to get analytical model of structure and the assumption
of rigid machine. It is unlikely to be robust to modelling inaccuracies.

Figure 2.5 is also very suitable for local feedback control. It is a classic 1-DoF example of
active vibration isolation for machine on a rigid base using active and semi-active
dampers, and active car suspension systems. And naturally a suitable model in the control
of machine vibration to flexible structures (Watters er al., 1988 and Scribner ef ¢l., 1993)
as well isolation of vibration-sensitive equipment (Schubert, 1991, Beard er al., 1994,
Preumont & Loix, 1994 and Anderson ef al., 1996) on a resonant base structure. The
literature of such active vibration isolation model is plentiful especially for an actuator in
parallel with passive isolator, and is still relatively current: for example in (Sciulli &
Inman, 1997 and Su, 1997). It is not possible to provide an exhaustive survey of these in

this brief review, and so attention will be focused on two groups of research effort.

These two groups of research are particularly relevant fo us. One group using isolaiors
with hard and soft-mounts is centred about von Flotow and his colleagues. The ather
group of Tanaka and Kikushima use only hard-mounts to solve the problem of active
vibration isolation. It is not that other works are irrelevant. These works have a
particularly strong bearing on the development of the design methodologies presented in

the thesis.

Von Flotow in 1988 presented an expository overview of active control of machinery
mounts. Some of what has been discussed above is briefly mentioned in this exposition
but the introduction and survey of modern control techniques e.g. state-space methods in
active vibration isolation are of special interest. Sievers and von Flotow (1988, 1989, and
1990) provided more reviews of state feedback approach e.g. Linear Quadratic Regulator
(LQR) and Linear Quadratic Gaussian (LQG) in conjunction with disturbance modelling.
The machine harmonic disturbance is modelled as states of 2™ order mass-spring sysiem.
These are augmented with the plant model and the augmented sysiem is solved by the
LOR or the LQG method depending on the availability of states for measuremenis for
disturbance rejection. In particular, a comparison of modern, classical and adaptive
feedforward control methods is given in (Sievers and von Flotow, 1990). The discussions

were mainly on SISO problems although suggestions of extension fo MIMO were given.
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The issue of resonant base structures affecting active vibration isolation was addressed
later by Sievers et al, (1989), Garcia et al., (1990), Scribner er al, (1990), and
(Blackwood and von Flotow, 1992). Such resonant structures pose a problem in robust
stability since not very accurate information can be obtained of real physical structures
when designing the controller. At this time, the use of piezoelectric actuator unit has
become popular and the fact that it can be controlled to be very stiff at low frequency and
relatively more compliant at higher frequency makes it an ideal isolator. However, the
stiffness of a piezoelectric is almost equivalent to a hard-mount, and Scribner et al. (1990)
showed that a soft-mount in series with such a hard-mount is required for closed loop
stability. Similarly von Flotow and Vos (1991) demonstrated that a necessary condition
for robust stability of real structures, especially with non-collocation of actuators and
sensors is the presence of sufficient passive damping. Without it, robust stability is not
possible with linear time invariant controllers. Such a condition seems (o be commaon
sense, but the use of the term "contral of lightly damped flexihle struciures" was so

pervasive at that time that it appears that a simple practical solution is often forgotien.

Much discussion on robust control in the presence of uncertainty associated with flexible
base structures is given using SISO control systems. Robust stability criteria and
compensator designs are based on plant transfer functions and the Root-locus techniques.
Robustness 1s given in these cases as suitable gain and phase margins assuming large

modal overlaps. Effective control was demonstrated only for narrow band disturbances.

The developments presented above do not quite seem to fit into the more recent conirol
methodologies of robust control design paradigm and the %, optimal control framework
developed specifically to handle model uncertainty. Part of the motivation for such
developments and research is the lack of success in implementing LQR and LQG
methodologies in the industries, other than in the space and aeronautical indusiries. In the
early '90s the structural contro] community has begun to use the "newer"” control methads
for active isolation of structures against earthquakes. The standard model is a multiple-
storey truss structure controlled at the base by a servo-hydraulic actuator linked to the
structure by tendons or a servomotor linked to the structure. Examples of the use of %

optimal control can be found in (Dyke er al., 1995) and p-synihesis conirol design in



(Nishimura and Kojima, 1997) for active vibration isolation of structure with

uncertainties in its base.

In 1992, Blackwood and von Flotow used the machine mobility FRF with blocked force
(Lyons, 1987)) as the machine model to determine the effect of base flexibility on active
control. Both soft-mount and hard-mount 1-DoF system transfer functions (i.e. using one
mounting location) of the active isolation system were derived, and the effect of base
flexibility is given as a multiplicative perturbation of the rigid base model. With the soft-
mount arrangement, a combination of active and passive isolator in parallel was shown (o
be effective for broadband disturbance. This is the beginning of an interesting
development. The model formulation for soft-mount seems very appropriate for ihe
robust control design paradigm and the %, optimal control framework. It becomes the
starting point of a MIMO model formulation in chapier three using soft-mounts bui with
active control at the base of the machine instead of on the opposite side of the receiver

plaie ai the bottom of the soft-mount.

Another aspect of this thesis related to the subject of hard-mounts will be considered next.
The advantages of active-passive isolation have, in a way, eclipsed the usefulness of hard
mounting machines. However, there are situations that will need machine to be hard-
mounted and the application of active vibration i1solation techniques for these cases have
attracted limited attention so far. Hence a review of the work of Tanaka and Kikushima

on active vibration control of machine on hard mounts will be presented.

Tanaka and Kikushima's works (1985, 1988, and 1988) have being cited for example in
(McKinnell, 1989) and (Fuller er al., 1996), but very little is developed from where they

have stopped. Briefly, the arrangement used can be represented as shown in Figure 2.6

Machine

hance force

Controller & } Actuator

[

g ] Load cells ai contralled poinis

Figure 2.6 Principle of aciive force cancellation
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A servo hydraulic actuator reacting against inertia mass is attached to the foot of a
simulated machine representing a forge hammer. Only the dynamics of this actuator is
used in the design of the compensator. The dynamics of the foundation are not modelied.
The signal from the load cell is directly fed to the compensator that controls the
“collocated" actuator. In addition the displacement of the inertia mass is used as an inner
loop feedback signal to stabilise the actuator response. The difference in the works
presented lies in the use of different compensators: Notch filters (1985), pole-zero
compensators (1988) and Optimal design (1988). Once again this is very much a single
local feedback loop approach. For MIMO, one can possibly adopt the method of clasing
one loop at a time. As each loop is closed, it is incorporated into the dynamics of the next
loop to be closed (Sievers and von Flotow, 1990). Such an approach is rather an ad hoc
way of implementing MIMO controller design using the method of classical coniral

theory.

A similar arrangement of active force cancellation but using soft-mounis could be Tound
in Lewis and Aflaire's simulation study (1985). They had also used force actuation at the
base of the machine to attenuate the force transmitted from an unbalanced machine rotor.
The machine was soft-mounted and the measured variable was the relative motion
between machine base and rotor, and not force. Classical controllers such as the PID
controller and the Lead-Lag compensator were used in this simulation. One would have
thought that since transmitted force is to the controlled variable, the measured variable
should be the force measured at the bottom of the isolators. Active force cancellation
using actuator in parallel with soft-mount had been realised on a diesel engine at one
mounting location by Watters ez al. (1988). In these cases, the actuator effectively adds to
the stiffness of the isolators modifying the dynamic characterisiic in response ta some
controlled signals. Tt is still possible that the active isolators may cause the machine fo

move under controlled actions.

An arrangement of the sort shown in Figure 2.6 may not need to have elastic supporis or
isolators. The disturbance forces that cause the ground vibration must pass through the
contact parts between the machine and the supporting structure. It makes sense then that if
the flow of the primary disturbances is blocked befare it reaches the support, the support
is no lopger excited and so ground vibration should not exist. Furthermore ihe aciuaior

forces are applied only in response fo these measured disfurbances. In order that the



actuators' forces are not attenuated by the compliance of the isolators during their
operations in response to the primary disturbances, it would be beiter to have rigid
connections between the actuators and the points of measurements. These will allow for
the forces to be transmitted to cancel the primary disturbances. In this sense active force
cancellation works better with hard-mounts than with soft-mounts. This is the case with
the Freudenberg's active engine mount design for high performance engines (Fuller et al.,
1996). Below 25-Hz, the hydraulic fluid in the mount provides the necessary damping.
Above 25-Hz, the fluid effectively provides the rigid link between the in-line
electromagnetic actuator and the car body allowing the actuator force to cancel out the

excitation caused by the engine.

This principle advocated by Tanaka and Kikushima appears to be sound. However, if is
not possible to reduce the transmitied force io zero nor to perfectly cancel the primary
disturbance. Some residual disturbance of magnitude less than the specified amount may
persist. If the support structure were (o be relatively siiff and well damped, ihen for this
small magnitude, the dynamic stiffness of the structure would not allow for displacemenis
of significant magnitude to occur. However if there exist parts on the supporting structure
such as rails or panels that are relatively compliant, then no matter how small or bounded
this residual may be, unacceptable motion may occur at these parts of the structure. A
double mounting arrangement seems to be quite appealing to overcome such problem.
The (upper) raft can be rigid and has machine-equipment on hard-mounts with active

force cancellation. The rigid raft can then be soft mounted onto the superstructure.

2.3 A review of sensors and control devices in active vibration control

In this section, an examination of the various types of sensors and aciuators in use in
active vibration control is given. The selection of these componenis will affect the model

of the system and the performance index used to evaluate the effectiveness of AVC.

2.3.1 Dynamic Vibration Absorbers

Dampers or dynamic vibration absarbers (DVA) or tuned vibration absorbers (TVA) have
been used to control vibration of mechanical systems. A simple classification of (he

various types of DVA given by Seto & Furuishi (1991) is reproduced as Figure 2.7,
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Figure 2.7 Types of dampers

A passive damper or DVA uses a pre-selected auxiliary mass and spring sysiem (o keep 4
vibrating system stationary at a designed frequency when the auxiliary inertia force or the
spring force balances the disturbing force acting on the system. For fime-invariant system,
the use of passive dampers of DVA has proven o be quite satisfaciory. Different designs
of DVAs for translational or rotational vibraiion absorption are discussed in greai deiails
in Korenev and Reznikov (1993). Swinbanks (1984) gave a short history dating hack o
1892 of TVAs used on board ships and a description of the Lancaster damper, a torsion
type passive dampers used on marine diesel engines for many years. Semi-active dampers
are shown in Figure 2.7b. They have the means to vary the auxiliary damper spring and
damping elements to produce a reaction force to counter the disturbance force at more
than one frequency. In an active damper, Figure 2.7¢c, a sensor senses either the effect of
the disturbing force (Abu-Akeel, 1967) or the relative motion between the controlled and
the auxiliary system (Seto & Furuishi 1991). An actuator is then activated to produce the
reaction force. Typically, the sensors are built into the system. DV As (passive and active)
are typically actuators for vibration control for the model shown in Figure 2.2. Far
example Lords Corporation (Southward et al., 1997) has installed and flight-tested aciive
vibration absorbers on Cessna aeroplanes. Due (o FAA certification requirements these 2-
DoF active vibration isolators are installed on the fuselage and naot as engine mounts. A§

they are attached via soft-mounts to the fuselage, they can be considered as TVAs.

2.3.2 Proof-mass actuators

For a more massive sysiem like a flexible space siructure, proof-mass actusiors

(Zimmerman et al., 1988, 90) have been developed 0 conirol iis vibration. Like aciive
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DVA, they apply a force on the structure by reacting against a translating or rotating
proof-mass. They typically do not have a mechanical spring to support the proof mass
except for the presence of coil that provides support and damping. Electronic stiffness is
provided to centre the mass. They are designed primarily to replace the heavy and
difficult to mount electro-dynamic shaker for use in space structures. It is also limited in
its displacement stroke. Zimmerman et al. (1990) actuators have built-in sensor and a
microprocessor to act as stand-alone closed loop unit. For smaller system, a simple design
of a proof-mass actuator uses an electro-magnetic shaker with an inertia mass e.g. a B&K
4810 with 500g weight as suggested by Preumont and Loix (1994). Such actuators are of
course not optimal in terms of power to force generated but they are useful substitutes in
the Taboratory. The 1-DoF commercial inertia actuators built by Lords Corporation
(Southward er al., 1997) are tuned to resonaie at or near engine cruise frequency in order
to significantly improve the power efficiency of the aciuators. These unlike the 2-DoF

TV As mentioned above are rigidly attached 1o fhe siructure.

2.3.3 Actuaiors used in active vibration isolation

There is a difference between active mounts and the actuators used in AVC. An active
mount has, in addition to conventional passive element, in-built actuator and sensor in a
unit, e.g. Barry Controls STACIS 2000. The piezoelectric stack is both actuator and
sensor and is another example of an active hard-mount. For majority of the cases,
actuators and sensors are added to enhance the existing mounting systems. These are the

subjects of review. An actuator used in active vibration control can be classified into:

a. Force generators

b. Displacement type actuators

An actuator behaves like a force generator when its internal mechanical impedance is
much smaller than the mechanical impedance of the environment or the exiernal struciure
against which it is acting. Conversely it behaves like a displacement type actuator wher

the external structure has relatively lower mechanical impedance.

Force generators used in active machine isolation are similar in design, and have similar

response characteristics to the proof-mass actuators. The laboraiory fypes proof~mass
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actuators are close to ideal force generators. A typical frequency response of a 2™

order
ideal force generator is shown in Figure 2.8. Only the first natural frequency due to the
flexible spring support of the moving element of the shaker and the inertia mass is
modelled. The specified resonant frequency of the shaker is typically higher, and between
these two resonant frequencies the force generator has a constant magnitude, and very

importantly almost a constant phase. Below the first inertia mass-spring frequency, the

actuator has a positive phase that is phase stabilising for the system.
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Figure 2.8. Dynamic response of an ideal proof mass actuator

A larger force generator can be realised using seyvo-hydraulic actuator (Tanaka &
Kikushima 1985, 88, 89) acting on a rigid mount. Another type of force actuaior is ihe
active electromagnetic damper. They have a moving coil or a moving-armature. A
modified loud speaker used by Shubert (1991) of Barry Controls has the moving coil of a
speaker attached to the system. In order to generate a large dynamic force range, the coil

1s bonded to a heat sink, and the current is controlled to prevent overheating.

For higher frequencies, a lightweight piezoelectric inertia actuator (70 gm) is available
from PCB Piezotronics, Inc. Its response shape is similar to Figure 2.8, but with a
dynamic range of 200-5000 Hz. It has a peak force is 100 Ibf and a constant force of | Ibf.
Sometimes these are used as TVA attached to the inside cabin of an aeroplane to suppress

vibration arising from the engines.

The more conventional displacement actuators used servomotors or servo hydraulic
actuators to move structures or the machine. For example, Miller of Lard Corporation
(Miller et al., 1992) has designed a fluid filled displacement actuator. Displacement type
actuators of high bandwidth can be obtained from piezoelectric or rare earth permaneni
magnet actuators (Scribner er al., 1990, and Blackwood & von Flotow, 1992), The
piezoelectric stacks have relatively small amplitudes in the arder of fraction of milli-

inches and stiffness comparable to that of aluminium. They are capable of supporiing



large machines with small static deflection. It can be controlled to respond to high
frequency input and hence behaves like the ideal machine mount: very high stiffness at
low frequency and low stiffness at high frequencies. For practical purpose, it is used with

a soft-mount in series to provide system stability (Scribner er al 1990).

For both types of actuators, there are in general three ways to mount them as shown in

Figure 2.9.
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Figure 2.9 Actuators arrangements

An actuator that is placed in parallel to a soft-mount shares the siatic load with the passive
element. It has to overcome the stiffness of the passive element before it can react against
the mass of the machine or move the machine. In Figure 2.9b, an actuator in series with a
passive element has to bear the entire load of the machine. It needs only to overcome its
own stiffness. This is a suitable arrangement for a compact active mount design. Figure
2.9c¢ shows the actuator mounted on the opposite on the receiver plate to the passive
elements. Displacement type actuators are unlikely to be used in this configuration. They
need a reference position to generate the required displacement. For force actuators the
choice is between Figure 2.9a and 2.9c. Nelson et al. (1987) showed that the paralle]
arrangement of Figure 2.9a requires less force at mass-spring frequency to be effeciive
compared with that of Figure 2.9c. The parallel arrangement may have some practical
advantage, being compact in design. However the actuator dynamics is coupled into the

system model equation, and may not be easily separated out.

2.4 Sensed variables and the plant model

Sensors are selected depending on whether motion - relative motion between machine and
the base siructure or absolute motion of the base structure - or net transmitted force (o ihe

base structure is chosen as a measured variable in the conirol scheme. The mosi ofien
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used sensors are force transducers and accelerometers. Absolute velocity sensor or a geo-
phone can also be used for the isolation of sensitive equipment from a vibrating base
structure. The direct feedback of velocity measurements is equivalent to providing

damping electronically.

A plant or system model can be determined by the measured transmitted force or base
acceleration in response to a disturbance at the machine. For a free running or unloaded
machine, the disturbance acceleration is actually the machine free vibration which is
related to the disturbance force (blocked force) by the machine output mobility. The
choice of sensor and actuator determines the plant model used in the design of a
controller. For a 1-DoF case, the various inpuis and ouipuis used are tabulated below in

Table 2.1.

Authors input variable output variable (feedback)
Watters ef al., (1988) disturbance force iransmitted force
Shubert (1991) actuator force equipment velocily
Scribner et al., (1993) (a) disturbance acceleration | transmitted force

(b) disturbance force transmitted force
Blackwood and von Flotow | (a) actuator force relative acceleration
(1992) (b) actuator force transmitted force

(c) actuator force structure acceleration

(d) actuator displacement transmitted force

(e) actuator displacement relative acceleration
Preumaont and Loix (1994) actuator force structure acceleration

Table 2.1 Various combinations of input variables and output variables

Some of the combinations given in Table 2.1 can be represented by the various set ups of
actuators, sensors and mounts shown i Figure 2.10. For example, Figure 2.10a shows &
machine that is hard-mounted to a flexible base. The actuator force and the measured base
motion are the input and output variable respectively. The force feedback is optional for
the contro] of the actuator force. If the force sensor is at the foal of the machine mouni,
then disturbance force can be the input variable. Instead of an actuaior, an active PVA

can be used to absorb the energy causing the motion.
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Figure 2.10 Arrangemeni of actuators, sensors and mounis

With the other arrangements, there is a choice between motion or force sensors for the
output variable, but seldom both. With Figure 2.10b or Figure 2.10c the output variable is
either the base acceleration or transmitted force and the input variable is the actuator
force. The difference between Figure 2.10b and Figure 2.10c is that the former needs a
reacting mass, but does not need to overcome the static stiffness of the passive mount. A
variation of Figure 2.10c has no spring, and if a second force sensor is attached at the base
of the machine, then the input variable can either be disturbance force or actuator force.
This case is very similar to an active mount design. The actuator alone has to bear hoth
the static and dynamic loading of the machine vibratory motion. Figure 2.10d has the
same input and output variables as Figure 2.10c without spring. It has a machine and the
actuator mounted on a common connection fo the base. Machine alignment can be
maintained even when the controlled force is applied to cancel the disturbance force. This
arrangement to reduce the transmission of vibration is analogous (o generating an anti-

noise to cancel the noise.

Either transmitted force or base acceleration or relative acceleration between base and

machine can be used as output variable. When the (open loop) transfer function malrix or
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force transmissibility matrix (in the case of MIMO) is to be modified, it is less obvious
which of these is more appropriate especially when the base is flexible. Watters er al.
(1988) observed that resonant dynamics of a flexible supporting structure can couple into
the system measured transfer function if measured base acceleration is used. On the other
hand if measured net force transmitted is used, the transmissibility function using
commanded actuation force to measured net transmitted force is not significantly
influenced by the base structure dynamics. Models and simulation studies by (Burke &

Abelhamid 1991) and (Blackwood & von Flotow 1992) also confirmed this observation.

Hence in this thesis it is decided to use net transmitted force measurement in response (o
commanded force actuation. Laboratory type electro-magnetic shakers can be used to
provide actuation force. If the isolator paths are short, and machine disturbance not too
large, the proposed arrangement is given in Figure 2.11. A 2-dimensional view is given in

provide a clearer picture.

] Machine Reaction 1Mass
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Figure 2.11 Active torce cancellation at the feet of a machine

Both soft-mounts and hard-mounts model are detailed and analysed. The models are
easier to obtain compared with the parallel connection arrangement shown in Figure
2.10c. The actuators' dynamics can be separated from the machine disturbance to net
transmitted force and hence actuators' dynamics can be determined separately on a rigid
ground. The open loop force transmissibility matrix can then be used as a disturbance
rejection performance specification. Unlike the opposite arrangement of Figure 2.9¢, the
active force cancellation is provided nearer to the source of the disturbance. The
configuration of Figure 2.11 works as long as there is relatively little phase change
between the force at the top of the mount and that at the bottom of the mount. From the
experience described below, the arrangement works better with hard-mounis. With soft-
mounts the conirolled forces when activated cause the machine to mave. This would noi

be appropriate in sifuations where machine alignment is critical.,
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2.5 Preliminary works

Two examples of preliminary work on active damping and active vibration are given.
They are used to show the concepts highlighted and provided some necessary experience.
A simple active DVA was built to cancel the vibration due to unbalanced roior in

experimental rig shown in Figure 2.12. It is based on the simple pendulum damper.

' - Mass 9,1 8 TOLOT jom
Pendulum
I I: 1

3 | Control Motor with
Polentiomeler

Figure 2.12 Active pendulum DVA for unbalanced rotor

The motor can be operaied between 700 and 1140 rpm. A rotating imbalance mass creales
a vibrating frequency corresponding to the motor speed. A control motor drives a
pendulum up and down and this movement is measured by a potentiometer. The length of
the pendulum, x,, to absorb the vibration due to an unbalanced mass on the rotor is

calibrated against a narrow range of disturbance frequency as shown in Figure 2.13.

Length of rod, cm i ———————————— B o

10 12 14 16 18 20 22
Frequency, Hz
Figure 2.13 Calibration for rod length versus frequency

The calibrated curve of x, is programmed as a look-up table. The conirol action is done in
a repeated-loop comprising twa steps: (a) course mofions (o drive the pendulum o 4

distance, x, correspanding the deiecied resonant frequency and (b) fine adjusiments of ihe
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motion about X,. In step (a) the controller performs a FFT on the accelerometer signal to
determine the spectral peak corresponding to the disturbance frequency. The desired
pendulum length is interpolated from values in the look-up table and the motor servoed
the pendulum to this desired length. The controller then computes the RMS value of the
accelerometer signal and micro-adjusts the length of the pendulum until the RMS reading

is the smallest within a fixed period of time.

Photo 2.1 Machine vibrating at poini indicaied

When the pendulum control is inactive, Photo 2.1 shows the reference point (indicated by
an arrow) vibrating rigorously. It is a blurred image. When the pendulum is adjusted to

the right length, Photo 2.2 shows the same point to be stationary. The image is clearer.

Photo 2.2 Effect of the active DVA on the vibrating machine

This active DVA is able to reduce the vibration for some frequencies within the calibrated
range. The result of an experiment for the motor running at 1000 rpm is shown in Figire

2.14 below. A reduction of about 92% in RMS values has been achieved.

38



d |
1.2 ~—= :

. | ' With control; —@#——
Displacement 0.8 -I T i | Without control: —&—
RMS, mm - i | | ] i i

] | |
04 Py
i | | | i
i | | I
0 | | | |
0 i 2 3 4 5 6
Time, sec

Figure 2.14 The effect of active DVA on measured RMS

A potential problem with this DVA design is that it can fail during operation. A pair of
friction rollers is used to drive the pendulum up and down in a servo operation. With
constant operation, the pendulum is cold worked over time and it becomes brittle. When
the pendulum is at the desired length for effective absorption, it vibrates very vigorously.

On one occasion, the pendulum sheared off at the rollers contact points.

A second piece of work relates fo the use of force actuation in response (o measured

acceleration. The experimental rig is shown in Figure 2.15.

O Y -
Shaker

I Force sensor

— —

Actuator
—=—1 Filter

[ — ]

L |

Accelerometer »
WW/%

Figure 2.15 A rig for 1-DoF AVC using motion feedback and force actuation

Four coil springs are used to try to confine the motion ta [-DoF. The resonant frequency
, is about 9.5 Hz. A low pass 2" order filter is tuned to have a natural frequency of
a,=19 Hz and damping {=0.3. The machine is excited at its resonant frequency. The time
record of the experiment shown in Figure 2.16 shows (1) when excitation is OFF, and
then turned ON at (2), and the filter turned ON ai (3). A sharp drop in ihe motion of ihe

mass is recorded.
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Figure 2.16 Time response of a 1-DoF active vibration experiment

Another experiment using two sets of collocated force actuators and accelerometers on a
rigid block spring mounted onto a flexible beam at two points gave a reasonable reduction
for vertical motion. A small rocking motion is also induced. This is not unexpected as the
springs are not identical and the system c.g. is not symmetrically located with respect o
the actuators. Equations of motion can be obtained for a rigid mass on a flexible beam and

a LQ controller can be designed to de-couple the two motions (Chen and Batta, 1991).

The experiment on the active DVA confirms that if the disturbance is relatively
predictable, the use of feedforward control is simple to use. FFT can be used to determine
the disturbance frequency and the appropriate length of the pendulum can then controlled
by the servo-system. However given the uncertainty in the estimation of the length of the
pendulum using a potentiometer, a feedback loop is still necessary to ensure that the RMS
displacement is reduced. Some form of robust control is required. With adaptive filtering,
the controller is continuously monitoring and estimating and updating the model of the
plant. This provides some robustness. So feedforward control must be used with

complementary schemes to ensure some degree of robustness.
P y

The experiments using force actuation show that local direct feedback requires a little
more atiention. Although a local controlled variable like vertical motion can be reduced
there will some interaction between neighbouring actuators and sensors o produce
rocking motion. Basing on this observation, using direct local feedback i.e. a dingonal
controller for a machine mounted at four points may not necessarily reduce all vibratory

motions. For the rocking motion, the use of hard-mounts may provide some degres of
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constraint for this degree of motion. This makes the idea of active hard-mounting

attractive especially for applications where the machine has to follow the vehicle in body

manoeuvres at relatively low frequency but vibration must be prevented from exciting the

vehicle body at machine operating frequencies.

2.6 Summary

The following points emerging from the vibration control literature review are relevant to

active vibration isolation:

i

iii.

The control of vibration in the receiver region has been widely researched into.
Vibratory responses to exiernal disturbances may be reduced by the use of feedback
and model based control methods. These models are mostly based on beams, plates
and trusses. Much has been learnt from the control of flexible structures especially
the relationship of the location of sensors and actuators to model based control.
Direct local feedback using collocated sensors and actuators is one of the solutions

examined. Such a problem is also known as vibration suppression.

il. When the geometry of the problem provides for discrete and identifiable

transmission paths, active vibration control of the disturbance along these paths can
be used to cancel the disturbance before it reaches the vibration sensitive region.
Problem of this nature is sometimes referred to as vibration isolation.

In active vibration isolation, when more information is available about the
disturbances, feedforward control can be applied to enhance disturbance rejection.
Adaptive feedforward or feedback control methods can be used when disturbance is

not easily predictable.

v.In active vibration isolation, many arrangements of actuators and sensors are

possible depending on the machine, the space availability and the dynamics of the
receiver region. If the actuator is not in parallel with the isolator, the dynamics of
the actuator may be excluded from the open loop transfer function. This provides

some degree of simplification in model derivation.

. Machine disturbances caused by inertia forces and synchronisation cancellation

were demonstrated in 1892 (according to Swinbanks, 1984) by Sir Alfred Yarrow,
So long as the disturbance can be identified and there is insignificant time delay

hetween identifying the disturbance and generating an equal and opporiie inerin
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force, synchronisation cancellation using feedforward control is a good choice.
When neither of the two requirements is satisfied, feedback control can be used.

vi. Active force cancellation is a viable solution and the use of current robust control
theory and the %, optimal control method have not been sufficiently explored in
active vibration isolation. Indeed active vibration as a MIMO control problem is
also not sufficiently examined, although as a m-DoF problem it is very well studied

especially in the area of vibration suppression.

It is proposed to investigate the active vibration isolation problem from a MIMO control
viewpoint. The use of %, optimal control method and any other relevant MIMO methods

will be explored. The objectives of these control design methods are

(a) to achieve a RMS reduction in the level of ransmitted force to some accepiable
level defined as a function of frequency;
(b) to be robust to some system uncertainties within some limits; and

(c) to use the minimum amount of control “effort” in atiaining (a).

The final point is extremely important since solutions that require large amounts of

control effort will involve physically large actuators or it may result in actuator saturation.

The principle of force cancellation basing on the measurements of the net transmitted
force in response to actuator force will be used. It is the same principle as anti-noise
cancellation. It is proposed that active force cancellation be placed as close to the
disturbance as possible i.e. at the base of the machine. To achieve a short time delay
between sensing, conditioning and actuation, the mounts must be short, and the
controller-actuator pair must be have sufficient bandwidth. In view of these, the set-up of
Figure 2.11 is proposed, and laboratory electro-magnetic shakers of sufficient force
capability and bandwidth are available and can be used as force actuators. L.oad cells or
quartz force sensors are possible force sensors but since the latter has higher bandwidh it
is a better choice. Analogue controllers would not be capable of implementing MIMO
and power will be used. The two types of mounis shown in Figure 2.11 will also be

examined fram a control design perspective. These are detailed in the later chapiers.
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CHAPTER THREE

MODELLING AND CONTROL OF ACTIVE VIBRATION

ISOLATION OF A MACHINE SOFT-MOUNTED ON A

FLEXIBLE BASE STRUCTURE AT MULTIPLE POINTS
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3.1 Introduction

One of the most studied areas of active vibration control is the use of active control to
enhance the performance of passive isolators. This approach is prudent. Most users are
not only familiar with the successful use of resilient mounts but are also comfortable with
the fact that in the event of a failure of the active isolation system, there is still a passive

system to act as a back up.

Ideally the development of an active isolation stage should, as far as possible, be
independent of the eventual supporting base or structure of the equipment or machinery.
In the case where passive isolators are used, the machine and the isolation system should
be tested as a sub-sysiem, disconnected and independent of the final supporting structure.

The selected measure of performance is transmissibility: either force or motion.

The main contribution of this chapter is the development of a mathematical model al 4
machine mounied on multiple isoclators on a flexible base or structure. 1t is given as a
force transmissibility matrix function in equation (3.26) as (I+Am)-Go, a product of two
terms that can be obtained independently. This model will enable the design and the
testing of machine and the active isolation system on a base (e.g. machine vendor’s site)
that is not necessarily the same as the final base. The active vibration system is based on
force cancellation applied at the machine feet-mounts interface. The derivation of the
model is simpler compared with the case of actuators in parallel with passive isolators
used for example in Watters er al (1989). The force transmissibility function matrix can

also provide a force disturbance curve for the design of a local control system.

This chapter is organised to show the development of the model from 1-DoF to m-DoF

and the implications on control of active vibration. It is arranged as follows:

i) 1-DoF analysis leading to a force transmissibility function for a machine on a

rigid and a flexible base or structure.

i) m-DoF analysis leading to a force transmissibility mairix function for a machine

on rigid base, with forces and motions taken w.r.l. machine's centre of gravity.



111)m-DoF analysis leading to a force transmissibility matrix function for a machine

on a flexible base, with forces and motions taken at the machine-base interface.

iv)Discussions of the implications of the system model on control using the robust

control framework.

In all the analyses, the main assumptions are that the machine is rigid, the mass of the
isolators are negligible having only relative stiffness and the flexible base has potentially

unknown dynamics.

Although symbols used in the thesis have already been defined, the subscripts relevant 1o

the development of the model are re-stated here for clarity.
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Figure 3.1 System definition and symbols

The letter "R" shall be used to represent receptance function and "D" its reciprocal, the
dynamic stiffness function. In addition, the subscript "c", shall be used with "D" i.e. "D."
to represent the combined or summation of stiffness of the machine-isolator on a rigid
supporting structure for all forces and motions taken with respect to the c.g. of the rigid

machirne.

3.2 Motivation

There are many reasons why it is necessary to design active isolation system to improve
upen the rejection of the disturbance into structures where machinery or equipmeni is
installed. Firstly, it has to do with human comfart. Secondly, it is to proteet the machinery
and equipment. Thirdly, in some cases it is for survival as in avoiding detection of 4

13

submarine by its predators, And lastly, to overcome the limitations imposed by the use of
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passive isolation alone, as a proper selection of flexible isolators may not be enough to
prevent the transmission of vibration from a machine to its base. Soft or flexible isolators
suffer from internal high frequency resonance (metal springs) and may have static

deflections that are too large for sufficient positional control of a machine.

With active vibration isolation, active isolators are used in parallel or in series with the
passive isolators to supplement the deficiencies of the passive isolators. This arrangement
has many advantages. Many engineers are familiar with the design of passive isolators as
the main vibration suppression sysiem. And they act as a fail-safe device as well as a
complementary device. Under certain conditions given here, they will effectively de-
couple the flexible base modes from the measured force transmitted and hence permit the

possible design of robust active vibration isolation.

Most active vibration isolation systems are designed typically using feedforward
controllers with fixed reference signals and feedforward anti-noise cancellation iechnique
for muitiple mounting locations. They have been successfully demonsiraied when ihe
disturbance signals or the disturbance path characteristics are deterministic or relatively
invariant in nature. For example, in the works of Chaplin (1983), Eghtesadi and Chaplin
(1987), Jenkins, et al. (1990), and Pan et al. (1993a,1993b). In Fuller er al. (1996) there is
a description of the Freudenberg active engine mount. Lotus Engineering successfully

tested it on a Volkswagen Golf GTI. These methods do not need the model of the system

as much as knowledge of the disturbance or the disturbance paths.

When disturbance signals are not known with a relatively high degree of accuracy, or
when knowledge of some part of the system is uncertain, feedback controllers are
required. This is the strength of feedback systems: protection against some degree of
uncertainty. However they do need a model based on some predefined performance
metric. Some successful simulation and experimental resulis of feedback active isolation
have been reported. For example: using notch filters with actuators in parallel with
isolators (Watters er al., 1988), active damping (Chen and Batta, 1991) with actuators in
series with isolators, and active vibration absorbers (Rider and Hodson, 1991), Yeong
(1992) using a combination of digital notch and inverse filiers for one axis has also
successfully demonstrated active force control of narrow band rejection at Hoghes

Aireraft (the company's name in 1992).
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The primary excitation of a machine on flexible isolators on a relatively rigid support will
be one of well-separated narrow frequency lines and one could easily adopt the use of
feedforward control. As shown by Plunkett (1958) amongst others, if the machine were to
be mounted on a flexible base instead, there will be interaction between the vibrating
machine and the dynamics of the flexible base. Such interactions will modify the primary
excitation acting as a disturbance. So it would be desirable to determine what will be
modified, and the kind of model that will be available to a control engineer to design an

active vibration isolation system. This is the objective of this chapter:

To derive a suitable m-DoF model of a machine mounted via flexible isolators on ¢
flexible base that can be used to determine the transmitted disiurbance spectrum io the
flexible base and the effect of the base flexibility on the machine disturbance spectriuin

measured on a rigid base.

Focus will be placed only on machine disturbance instead of the case where ihe
disturbance comes from the supporting structure. To begin with, it is assumed that the
disturbance acts at the machine centre of gravity (c.g.) and that the moments are taken
about the c.g. By means of a transformation matrix, the location of forces and moments
can be transferred to the mounting locations. The machine (a general term) can be
regarded to be rigid in comparison with the supporting structure. Such structures include
the hulls of ships and submarines, and the fuselages of helicopters and aeroplanes. They
are relatively more flexible than the machinery and engines. The base structure
considered here is arbitrary or has undefined geometry and hence is not confined (o
beams or plates. However for the purpose of illustration, an example using a beam will be

shown. The assumption of rigid machine is quite appropriate when

i) the machine is massive and dense in comparison with the structure, which is light

and flexible, e.g. diesel engine on ship's hull, jet engines mounted on wings of

aeroplanes, internal combustion engines in land vehicles;

ii) in the frequency of interest, the first few modes of the base struciure are below fhe

first mode of the machine (Scribner ei a/., 1993).
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With these assumptions, the model will be derived starting from a 1-DoF model. This

gives the motivation for the extension to the required m-DoF model.

What will eventually emerge is a model that will suit the framework of current control
interest and methods of robust control theory and ., optimal control. It will also permit
the design and testing to be done using a test-bed totally dissimilar from the final base
structure. This will be beneficial to control engineers engaged in the design of active
vibration isolation. However, it still requires the proper selection of soft mounts'

properties vis-a-vis the mounting locations and flexible base modal properties.

3.3 The classical 1-DoF model

A single mass, m, mounted via a spring and damper on either a rigid or a flexible base is
the most commonly used model. These can be found for instance in Den Hartog (1965).
The rigid and flexible base case studies are good examples of how an engineer Can assess
the suitability of an isolator for use with a machine on a flexible base but being tested on
a rigid base. Without viscous damping, the force transmissibility of the two cases are

given respectively as

P+m¥@mﬂ4am[umm%Rm+RJT] 3.1)

In (3.1) the term R, =1/k is the reciprocal of the dynamic stiffness of the isolator. The

second equation can be written as

k mk SZRf‘ 3 k -1 )
Q_——3)1+————? ~ﬂ——ﬁ7}h«xj (3.2)

k+ms k+ms

If X in (3.2) is small (in a sense that will be defined in the later part of the chapter), then

the force transmissibility due to base flexibility can be expressed approximaiely as

k | ’ 1 ) .
{;«M’HSQ)[HX]:GG[HX] (3.3)
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The term X in (3.3) is dependent on the mass m, isolator stiffness k and the base modal
property given by Ry and G, is the force transmissibility function of the rigid mass
mounted on a rigid base. A detailed discussion for this 1-DoF case is given in
(Blackwood and von Flotow, 1992). The advantage of the concept put forward by this
expression is obvious: it shows that the effect of base flexibility is equivalent to a
perturbation of G,. By plotting (3.3) and comparing it with G,, the peak magnitudes of
IR(joo)l, at various flexible base resonant frequencies, ay, that are coupled onto G, can be
determined. The degree of coupling of G, as shown by Blackwood and von Flotow (1992)
is affected by IX(jw)l and can be reduced by the judicious selection of k. The actual final
base mounting affecting X is not physically needed as long as the design or engineering
data (in the form of modal properties) is available. Similarly when active vibration control
system is intended, one can choose those frequencies where the couplings are large and
design suitable compensators (o attenuate them e.g. noich filters or generalised filters

(Wei and Byun, 1989).

The term X in (3.3) 1s like a perturbation term and a perturbed transmissibility function is
similar to those expressions used in literature on robust controller design. In §3.8, it will
be shown how the m-DoF model developed in this chapter fits naturally into the
framework of robust controller design. In this framework, under certain conditions,
optimal or sub-optimal controllers can be designed using the ., control method. The
complete information on X(jw) (or a similar term A used in the later part of the chapter) is
not normally needed as a general class of perturbation can be used and the actual base

structure dynamics stiffness can be selected from this class.

Alternatively, when the full information is available, the use of (3.3) will provide the
force transmissibility function as input disturbance spectrum. Suitable controllers for the
active vibration control can then be designed. This is more desirable than using the

machine free vibration as a disturbance spectrum (§4.4).
Although robust control is very important, the intention of developing the periurbed
model can also be for the purpose of abtaining a disturbance spectrum. This will be the

main issue that will be addressed in another chapter.
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3.4 Extension to m-DoF

3.4.1 Machine model mounted on n-isolators on a rigid base

There is then a motivation to extend the concept to the general case of a rigid machine on
n number of isolators. The derivation is quite straightforward but the extension of the
perturbation model requires manipulation and refinement of some definitions. The
perturbed model for multiple isolators can be simplified and compared with the 1-DoF

model.

A rigid machine has 6-DoF and is mounted via resilient isolators on a rigid base. The

machine properties are:

m 0 0 Ty Iy

ml 0 I LR At
M = 0 ] swhereml =10 wm OlandJ =T, I, Ty, (3.4)
- ) 6 0 m jzx ‘Tyl 1 Zz

I is a 3x3 identity matrix. Each isolator has 6 degrees of freedom. A model of a 6-DoF
isolator can be represented by a 6x6 k; complex stiffness matrix (see Appendix A). The
vector of displacements, X, :{xc,yc,zc}rr and rotations, Z; = {&, Yo, QC}T of the machine

Tg T

c.g. can be given by g, = {X.', E, = {xc,yc,zc,ic,\pc,QC}T. Assume that the disturbance

forces and moments Qq act at the c.g. of the machine.

qcl
an '
L8N, AR N ARSI IR A RN A AN R AR R

Figure 3.2 Forces and displacements on a rigid machine

The i'" isolator is located at a position i = {ry. itz from the c.g. At each isalator, there

will be both displacements and rotations, and the displacement vector is:



P

X=X+ B xri=X, -1 xE, (3.5)

Replacing the cross vector operation by a skew-symmetric matrix gives,

0 —I Ty
= 0 i
Iy Ty 0
Xei=Xe- k- Ee=[I -rilsxe g = Pi -qe (3.6)

The rotation at the i" isolator, Z; = Z. and complete motion is given by Gei = (Xei Ee' 1

In terms of the c.g. motion,

i —i‘i
ay = - . . :]—ﬁ; . . 3‘7
Uei [0 i } G i e .7

At the i isolator, there will be forces and moments acting on the system. This is given by
Qi =-kiqe=-ki-‘Pirqc (3.8)

The total restoring force at, and moment about the c.g. is given by,

n n
2Qci = - Z(PiT"_Ei P; )'qc=-PT!£'l" qe (3.9)
i=1 i=1
r [T 00 0 o _
P = o and K = diagonal (lg/...k o),
E] I | o En I

Each ki has been defined in Appendix A and it includes a loss factor term. For simplicity
only resistive spring rates are considered and K = diagonal(i,...Ilc ;) with a dimension of
6n x 6n. Assuming harmonic disturbance at the machine c.g., the equation of mation is

given as,
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M-g.+PT K-P-q. =0Qy (3.10)

qc =[-0°M+PT . K-P1".Qu=D."" Q4 =R, - Qq

Some literature (Rao, 1995) uses the term mechanical impedance for | —sz+PT‘K-W.
Here it is referred to as the dynamic stiffness, D.. For brevity R. is used for its inverse. It
relates the motion at the c.g. in response to applied forces at the machine c.g. Examples
of rigid body motion would be the heaving in the vertical direction, rocking, and coupled
lateral motions. Corresponding to each of the rigid body modes, there is a natural
frequency associated with motion in that direction. If a viscous damping term is used then

C = diagonal (¢y,..., ¢;) and

M- +P'-C-Pg.+PT K- Pq. =Q G0

q. =[~0’M+PT K -P+joPT-C- P17 Q= R, -Qy
Using equation (3.10) the vector of transmitted force to the rigid base is given by

Qrt gigiey = K-qe = K-P -q. = K-P-R.-Qq (3.12)
Hence the force transmissibility matrix function is given by

G, =KPR, (3.13)

3.4.2. Effect of base flexibility when disturbance is applied at the machine c.g.

Let the base be flexible with receptance matrix, Ry or its inverse the dynamic stiffness

matrix Py At each isolator location

Relative motions L e

Force/moment CQn =k {geirgn ) = - Qe

The restoring force at the feet of the machine is given by:

Ly
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Q.=-PK(I-[Di+K|"K)-P-q.=P"Q;=-P"Q, (3.14)

The identity matrix, I, is of dimension 6x6. The equation of motion is therefore given by
M, +PT K -(0-[D; +K]'K)-Pq. =0, (3.15)

qc =[(-o’M+PT.K-P)-PT K -[p; +K['K -PT" Q,

=D, -AI""Qy

Where
A=P K D+ K KP
The term A represents the interaction between the base flexibility motions with the rigid

machine motions. The transmiited force and the force transmissibility function are

respectively:
Q= [ - KD+ K)™) KP-(D. - 4)']-Q (3.16)
Gr ey = [(1- KDy + K)™)-KP-(D, - )]

The term Gy (rex) is the force transmissibility for a flexible base for the case where the

disturbance is applied at the machine c.g. It is possible to simplify the force

transmissibility Gr (ex). Using equation (3.14) and equation (3.15) to evaluate P'-Qy gives

Qe=-PLQr=-P[(1- KD+ K) ) KP(De - A)']-Qq (3.17)
Let
Ge=P [T-KOMi+K HYKP®D-A)"]

=P I-KM+ K HYKPRA - AR

Ror= D+ K1, D' =Reand X = ARe= PT (10 Ry KPR



Then (3.17) can be written as
Q. =G Qu=P" [(I- KRy KPR (I-X)']-Qy (3.17a)

From (Wilkinson, 1965)

M-X1'=[+ X- ...X] o LimX) 50 < pX)=p(AR)<l.

f—o0
If p(X)<<1, and neglecting terms (X)2 and higher, then
G~ P (I - KRy (KPR + KPRX)
=PTKPRAPKPRAX-PKRy KPR - PRy KPRAX)
=PTKPRAPIEPRX-X-X)

~ (PP KPR, + P KPR.X-X)

and,

Ge=P I+KPRP KRp-K Ry (KPR

Q. =PI+ (KPRAP -1)KR,] - (KPR Qq (3.18)
The term A represents the equivalent coupled dynamic stiffness of the flexible base and
isolator and De=R." represents the dynamic stiffness of the machine and isolator on a
rigid base. (A-R.) can be regarded qualitatively as some "ratio” of stiffness. If the base is
more rigid i.e. A= 0 then (I - AR — 1. The higher order terms (A-R.)* and above can
be neglected under the condition that p(A-Ro)<<].
Comparing equation (3.16a) and (3.18) results in

Q=T+ KPR = ERui] - P RDQq (3.19)
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For forces applied and responses measured at the c.g. of the machine, the force

transmissibility under the condition that p(A-R.)<<1, can be expressed as

Gy (11exy = (I + Ay) - (K-P-Ro) = (I+Aw) G, (3.20)
Where
Ay = (K- PRPT - DK(Df + K) (3.21)

It is now possible to determine the transmitted force from an operating machine (o its base
if the base flexibility and the force transmissibility of the machine on a rigid base are

known. Typically this will allow machine testing on dissimilar bases (o be carried ouf.

3.4.3. A more useful mode]

Equation (3.20) is rather limited in application as forces are usually not applied at the ¢.g.,
and measurements at the c.g. are not practical. Instead forces and measurements are
usually applied and measured at the feet of a machine. When the machine is operating
there would be a set of equivalent forces given by Qe = [Qe ... Qe ... Qen] which appears
at the feet of the machine. If Q. is vectorised into a column order, then it will be a column
vector of forces and moments. Similarly the same can be done for motion at the feet of

the machine, g.. Hence

Qd = PTQL and G. = P(]L
(3.22)

g, =P [~o’M+PT K. PI7'PT .. =P R, P" Q,

Let Ren = [P-ReP']. This is the receptance matrix of a rigid machine mounied an a
number of isolators onto a rigid base. It is an input-output transfer function relating
force/moment to displacement/rotation at the feet of the machine. When control forces are

applied at the feet of the machine, the forces fransmitted to a rigid base are given hy:
Qf': K'qﬁ = K"R‘fm 'Qcom = ”Ji ‘Rc ‘Bﬂ] 'Qmm
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The force transmissibility matrix function for machine on rigid base is given by
Go=KRuy=KPRP". (3.23)
Using the example of mxX + kx = F+ ky, an equation of motion can be written as

3" (inertia terms) + ¥ (spring force with g = 0)
= ¥ (external forces )+ " (spring force with q,, = 0)

Hence the equation of motion for the flexible base can be given by
Ren " qe = Kegr + Qeon = K- (DK K-ge + Qoo

Let & represents the term K-(D+K) K, then
Ron g — K - (D) K-ge = (Do — 8)-¢e = Qeom

The transmitted force in this case is given by

Qf = (I -K '(Df +K)_] ) K ( Dem _8)..1 Qcont,
(3.24)

= (I ~-K '(Df + K)_] ) K 'Rcm ( -5 Rcm )_] Qcom
Where

§Rep = K- (DK KPR = (KRyo) - (KPRAPH (3.25)

Using the same argument as before: when p(8-Ren) <<1, the force transmissibility mairix

for a machine on a flexible case can be given by
Gr e = (1 - K- (DK - K- (D = 8

(0 + Aw) - (KPRPD = (I+Aw) G (3.36)
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where
Anm = (Go-1)- KRy, the same expression as given by equation (3.21).

Equation (3.26) together with (3.21) relates to force and motion at the feet of the machine.
Compared with equation (3.20), the difference is in the additional term P"in the
expression G,. This is consistent as G, in equation (3.20) is defined for disturbance acting

: T
on the machine c.g. and Qg =P -Qeon.

In summary, under the condition that p(6-R.n)<<l, a simplified m-DoF model of a
machine mounted via flexible isolators on a flexible base is obtained and it is given by
(3.21) and (3.26). The equations can be used fo determine the forces transmitted by a
when the machine is mounted on rigid base, and knowledge of Ry The coupled base
flexibility receptance matrix R (=[D+K]") can be regarded as a perturbation ta the
force transmissibility function matrix, G,. The degree of perturbation is determined by the

An. If Ay is small (see §3.5.3) then the interaction between R,y and G, is minimal.

The definitions of the magnitude of Ay and 8-R.,, and the constraints imposed on them
and the conditions for which p(8Ren)<<1 leading to the simplification of the force
transmissibility will be discussed further below. These constraints and conditions will be
given in terms of the physical properties of the system.

3.5 Discussion

3.5.1 The spectral norm as a measure of magnitude of force transmissibility maltrix

In a 1-DoF model, the magnitude of the force transmissibility ratio is often used is to
determine the maximum force transmitied from a vibrating machine to its base. Similarly,
a suitable norm can be found as a measure of magnitude for the force transmissibility
matrix for m-DoF cases. One candidate is the Hilberi or spectral norm Gl of a matrix

defined in most literature as

8%
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|G| . = 6(G) = the maximum singular value of G. (3.27)

In this thesis, the symbol o () rather than llell is used for the spectral norm. If G is not a
constant matrix but is G(s=jw), then the spectral norm is a function of frequency . The
spectral norm as a function of ® and the #. (operator) norm Il e ll., are particularly usefu]

in the design of a control system. The #., norm is related to the spectral norm by

“G(S)”OO A max E(G(jco)) (3.28)
T wm

For a stable scalar function g(jw), it is simply the peak value of Ig(jw)li.e.

leCio)|,, A max|g(jo)
)

If 5(8-Rem)<<1, then p(&-Rep)<<1l (Wilkinson, 1965). Hence (3.26) and (3.20) are valid
if and only if

o (0-Rem)<<1 and o (A-R.)<<1, respectively (3.29)

3.5.2 The effect of the coupled stiffness term (D+K) on Am

The isolator stiffness matrix K as defined does not include its mass or inertia i.e. the

isolators are massless. Since (D + K)'= D/ I + K- l)f”’]‘l and if p(k-Dy He<l, then

O+ =D T+K D" = D [1-KD + . 1= Dy

This would the case if the stiffness of each spring is much less than the respective local

stiffness of the base structure. The perturbation term in (3.21) is simplified 1o

Avi= [KPRP -11KDf! (3.214)
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This perturbed term comprises a number of identifiable sub-system response matrices.
For example, in the 1-DoF case, the first term is equal to (1-transmissibility), and for
transmissibility less than one it is a measure of isolator effectiveness for a machine on
isolator on a rigid base. K is the isolator dynamic stiffness and Dy is the dynamic stiffness
of the flexible base. The above expression is valid even if the base dynamic stiffness
matrix contains mass or inertia elements. This is an advantage in using control force at the

feet of the machine instead of between the machine and the base.

If the control force is applied between machine and the base, then the actuator becomes
part of the isolator, and the effective mounts will have a mass or inertia term. In this case,
the measured or derived coupled dynamic stiffness matrix (Iy + K) and the uncoupled

base dynamic stiffness matrix Dy must include the mass of the actuators (Pan ef al., 1993).

3.5.3 The spectral norm of the perturbation ferm Am

From (3.26), it can be observed that the inferactions beiween the resonant peaks al ihe
resonant frequencies, oy, of the flexible base modes and G,(jo) depend on the magnitude
of Ay(joy). Since Am(Jo,) 1s a function of frequency, a suitable measure of the magnitude
of (Am) 1s the spectral normc (Au(jo)). The smaller 6 (Am(jw)) 1s, the smaller is the
effect of the flexible base modes being coupled to the rigid base G,(jo) measurements.
Then the dominant peaks in the force transmissibility will exist primarily at the rigid
machine-spring frequencies, and not near the resonant frequencies of flexible base modes.
Let {w,} represents a set of rigid machine-spring frequencies. The resulting magnitude of

Gy (fexy 18 a function of G (Am(jo,)) and the relative closeness of o, to {m,}. The

condition for how small & (Ay(jm)) is and the terms affecting it will be discussed next.

Using the multiplicative property of matrix norm,

& (Aw) < & (KPR -1) -5 (KR

If & (Am(jo)) < 1 is required, Yo, then the sysiem must be designed to have

FEPRAP -1 FEKRep <1, YV (3.3



And since

SEKPRP -D<SKPRPHY+TM) =5 KPRP)+1.

If

5 (K PR.PY <l and 5 (K-Ryy) <0.5, then (

IR
3%
=

(A< ICPRAPT-DT KRy <l Vo or | Ay Nl <1

The term (K-P-Re-PY) is the force transmissibility maltrix for machine and isolators on 4
rigid base. The value of & (IK-P-R.-P") approaches the value of unity at low frequencies,
and is possibly Targer than unity for ® € R(w,), where N(w,) is the neighbourhoods of
than unity for low frequencies and tends fo unity al higher frequencies. Ii is possibly more
than unity in for ® € {®,}. In most cases, for ® € {w,}, the behaviour of the system is
very much determined by the parameters of the machine and the values of K. If K
contains some form of damping the magnitude of the force transmitted at these rigid body
frequencies can be reduced. The proper selection of values of K has always been

important.

The term K-Ryy; represents the coupling of base flexibility modes with resonant
frequencies @, r =1...n., where & (K-R,,{(jo,)) becomes significant. Typically one would
not design for w; anywhere near {w,}. When one has to, one should design a system such
that & (K-Ru(jo,))<0.5, for w, € N(w,). In this case, it is still possible to have
T (Am(jo))<1. Such requirements may result in isolators being too soft and causing a
large static deflection. If & (K-Runjoy)) is large, then it must be at frequencies where
Go(jm) has high roll-off; for example in the case of a 2™ order sysiem where Go(jm) roll-
off with a -40 dB/decade slope. At these frequencies, the magnitude of Gy(jm) is small for
o further away from {@,}. The multiplication of 1+ (Ay(jm)) into Go(jo) will result in a

small perturbed magnitude and a corresponding small measured transmitted force.

a0



So whether & (Am)<1, Vo or not it should not be important for approximating the mode]
measured response by (3.26). It is essential though that it be small for ® € R (w,). On the
other hand, for a design of active vibration control system llAymll, being small is important.

It will affect the stability of a feedback control system as discussed in §3.8.

Note that the requirement that & (Au(jo)) be small does not imply that & (8-Re.)<<1 at

all frequencies. Since

Ay = (KPRAPT-T) KRy and 8 Repy = KRy P RAPT

For o <min {®,}, 6 (6:Repn)> T (Am), and for o > min{m, ]}, & (0 Rew)< & (Anm).

3.5.4 The implication of the term &-R.,

Recall that the primary condition for equation (3.20) and (3.25) to bhe valid is
p(&-Rew)<<l. It permiis the simplification of the above expressions and the determination
of the function from its parts. In Blackwood and von Flotow's (1992) example of control
force between machine and base, since Ay is a scalar quantity, the magnitude 1Ayl is used
to determine the validity of the approximation of the force transmissibility by the
expression (1+Anm)-G,. In the case presented for control force at the source i.e. feet of the
machine, it had been shown that G (&-R.(j®)) must be very much less than 1. In §3.7 this
difference in the requirement for the validity of (3.26) will be discussed in greater detail
using the 1-DoF model example. For both cases Ayl determines the magnitude of the
peaks of the flexible base modes that are coupled to G,. In particular, when & (Ay(jo,))

are small then the coupled peaks of the flexible base to G, will be small. Since

G (8 Rem) <6 (K-Ryp) - & (K-P-RPY

If (3.31) is satisfied, then

p(bRun) <6 (6 Rep)<<l, Vo or 115 Replle<<].



As ® — 0, the term & (K-P-R-P") > 1 and & (0 Rem(j0)—= o (K-Ry(jw)).

At each frequency, as both & (8-Ren) and © (Ay) are partly determined by & (K-R..), it
will useful to have IIK-Rydle<<l for all frequencies. This can also imply that
o (K-Ryp)<0.5 especially if the "much less than means" an order of one-tenth and

smaller.

All the conditions discussed above are rather conservative, for example, equation (3.31)
is. They imposed an upper bound on the magnitudes of & (IK-P-R.P") and o (KR
The highest resonant peak of the coupled base structure should be very small. Particularly
these peaks should not coincide with those of K-P-R.P'. Tt would be helpful if the
structure has adequate damping as discussed in (von Flotow and Vos, 1991). The spectra
norm of each function indicates only the largest magnitude amongst its different modes al
each frequency. For example, the peak of & (K-Ryy) at a frequency m, corresponds (o
peak of one of the modes of K-Ry(jw,). Hence the multiplication of the spectral narms of
two functions ignores the interaction amongst the various individual mode shapes of each
of the function. It may be such that even though & (K-P-RCPT) and o (K-R,y) are large at
a frequency , there may be some mode shapes mis-matched, and the resulting coupling

small.

In practice, one can avoid being too conservative. For (3.26) to be an acceptable
representation of the actual force transmissibility, I8-Reylle<<1 is not really needed. It is

possible to have 16-Repll<l and & (K-Rp (jo))<<1 for any o, € X(w,).

If one were to examine K-R,,r and KPR P, something similar to a "ratio" of stiffness
can be observed: the isolator stiffness, K, to coupled base receptance, Ry, and isolator
stiffness, K, to machine mounted on rigid base receptance Rey, respectively. They are
therefore dimensionless. The terms Ren=P RP" and Ry suggest how they can he
determined. Figure 3.3 shows the machine being tested on isolators on rigid ground
(Figure 3.3a), and (if physically possible) the base structure being tested on isolators
against a rigid ground (Figure 3.3b). The magnitudes of the flexible base modes that will
be coupled to G, can be minimised by proper selection of the isolators’ siiffness and

damping properties i.e. K vis-a-vis the base siructure property Ry
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Figure 3.3 Interpretations of Rey, and Ry

3.6 Example of a machine on a flexible beam

A model of a 3.7 kg machine mounted via two flexible isolators on a 1.5 m flexible mild
steel beam (details in Appendix B) is used an example to illustrale some of the poinis

discussed. The system actual model is given by the force transmissibility function matrix:

(1K (DO KR (I- 6 Re)' (NN)
Figure 3.4 and 3.5 show the effect of K (k=K. (1+jn,)), where k., is the spring stiffness
or the stiffness coefficient and n, is the isolator loss factor, on the perturbed model given

in (3.26), i.e.
(I + Ap)- (K- P-RPTY  (N/N)

In this example, the loss factor for damping is used instead of viscous damping and it
implies that the results are valid only for steady state or cyclic operations. When k,,=1000
(N m™) and n,=0.07, Figure 3.4a shows that I6-R.ll<1 for the given frequency range,

and Figure 3.4b shows the comparison between the actual model and the perturbed model.

The match is almost perfect. The perturbed model plots are shifted slightly for clarity. As
o increases, © (Am(jo,))<<I. At the flexible base mode resonant frequency, m; =68 Hz,
G (Am(jor) =1 but coupled with the magnitude of the rigid base transmissibility function
at that frequency, the discrepancy between the magnitude of the actual and periurhed
model is quite small. Hence even if o (Aw(joy) is not small, if @y are far into the roll-off

portion of G, the magnitude of the perturbation is still small.
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Figure 3.4b Perturbed model versus the actual plant model for sofi isolators
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When the stiffness coefficient, ko, 1S increased 5 times, it can be seen from Figure 3.5a
G (5-Rep)>1 between 40 ~ 80 Hz. From Figure 3.5b, it 1s observed that the two equations
are very different in the same range. Withs (Au(jo,))>1 at o, close to the maximum @y,

the magnitude of the perturbation is higher than that of the actual response.

This simple model reiterates the importance of & (&-Re.n(jo)) as a condition for the
validity of (3.26), and & (Am(jw,)) in determining the magnitude of the perturbation. [i

should be small for ; € W ().

3.7 Reduction to 1-DoF and comparison with Blackwood and von Flotow's work

The work of Blackwood and von Flotow (1992) will be briefly presented. A force -Qy
will cause machine vibration at the machine-isolator interface, and using the combined

receptance (Garvey, 1996) approach, the transmitted force (o the base is given by

-1
R R

—Qp (3.32)
m R, +R

¢ m

R.+R, +Ry R, +R

¢
The second term on the right hand side of the equation is the case when Ri=0. Tt 1s the
force transmissibility of the case of a machine on flexible isolator on a rigid base.

Immediately one could see the terms relating to k-R., being separated out from the

flexible base receptance matrix.

To be consistent with the approach used to develop the m-DoF model, the combined

stiffness of each component (see Chapter 4) should be used and form

R R--]‘ R_l R'i ﬁi . R“] R_} _R"‘i —-I
(Qf - { “ RERATT m e Tipy

(3.33)

) -
R I
xql=| Ry ‘(Rf +Rm) 1 Rm '(Rc "‘ij J Qp
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Equation (3.33) appears more complex but it is consistent with the use of the inverse of
combined dynamic stiffness matrix. When Ry—0, the term kR, is again the term

remaining on the right hand side.

One would like to see how much of the base flexible modes affect the control loop. In the
case where the control force is located at the feet of the machine, the transmitted force has
the same expression as that given above except that term Q. replaces Qp. Although this
differs from that of Blackwood and von Flotow's, (where the control force is between
machine and base) a comparison is still appropriate. Hence for the |-DoF models the

definitions are as follows:

. I T k
s an :‘:; P :P:i;]C'Rem =
ms” k ms” -k

With m as the mass ol the rigid machine and k the spring stiffness. For a flexible hase

with fow modal overlap, the dynamic stiffness can be approximated as

2
L 07
Dy o (92 +2§,.o),.s+m,2.)

!
M=

with {;, and o, representing the damping and the resonant frequency of the " mode and Oy

th

is the mass normalised r mode shape at the mounting point. Blackwood and von Flotow

(1992), assumed that Ry << (R¢ + R,,,), and (3.32) becomes

R R
Qp =[1-— = Qcon (3.34)
R€+Rﬂ] RC+RIT]
Qf‘ ~ h+/‘ Df un - J‘ Rcm “eont (3.35)

Garcia er al. (1990) showed that, ;mbf, the ratio of machine mass to effective modal mass
is important in determining the degree of interaction of flexible modes with a confral

loop. Blackwood and von Flotow (1992) showed that if
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m? << 20, (3.36)
Then

Ry <<(Re+R.), and

Qr = (14+A) k- Rem Qeont (3.37)

Where A = k-Df“l-(k-Rem—l), and A(jo,) appears as resonant peaks along the curve of
kRem(jo), the force transmissibility of machine on rigid seating. The value of A(jmy,) al
each frequency, o, governs the size of the peak and these can be used to design suitable
lead-lag compensators to minimise the peaks of Qp. Blackwood and von Flotow (1992)

provided only 1-DoF examples.

When the relevant substitutions are made in (3.21) and (3.26) or (3.33) and assuming tha

R,,>>R;, an equation same as (3.37) is obtained. Furthermore (3.21) and (3.25) become

N k> k
6'Rem = 2 2 ' ‘ 5 2
r=l" + 20,0, + o) | msT +k

Ay = (k ‘Rem _1)'k'Rf
With w, as the spring-mass natural frequency, and at o= oy, base eigenfrequencies

2 2 2

. ® mor | o
6 Rem(]mr): > . 5 ( . I ) —g
(— W + o);,) Jj2C, O

~

2 o2
~ My, m;

Ay (o, )= .
—co,z. + m% J2C,
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The term Am(jo,) 1s identical to A(jo,) derived by Blackwood and von Flotow (1992) for

force sensors. In addition, Ay can be compared with 6-Rey, and kRp and these are

tabulated in Table 3.1.

jm({)?“. [&T
26 )\ o,

) 2
Jme; [ o,
(2(;1' ) (mr ]

(

Frequency range S Rem(jor) Av(jo ) kRi(jo )
2 L2 2
@y << O B jm(h?‘. w, _Jmés Jn ;_zﬁ ,
(ZCJ r ) W, (ZQ") (2@ r ) Q.
Wy >> O /'777({);2. :

20, o,

Table 3.1 Comparison of &R, Am and kR,

The condition p(6-Ren)<<I arises only when the stiffness of individual components are

combined to form the receptance matrix for 4 machine on isolator on a base and (o derive

(3.21) and (3.26). Blackwood and von Flotow (1992) used combined receplance

(mobility) to derive (3.32). Hence for the 1-DoF it is shown that both (3.32) and (3.33)

represent the same model. The simplification of these two equations takes different paths,

and results in two different conditions, Ay and dR.,,. In both cases, Ay determines the

magnitude of the coupling.

When m¢,.2<<2Cr, then Ay << 1 or Ri<<(Re+R,,). However for the approach used here to

develop the model it is required that

2 2
3 m 0]
(‘5'Rem)(]mr): ¢r[ ,0] <<
JSr \ o)

And this gives

0y

1 AM(jmr” <<

ol
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This reduces the requirement on (m¢3+2<;r)<<1 for w>> w, since the least upper bound
can be greater than 1. However, it tightens the requirement for << w, since the least

upper bound must be less than 1. On examining Table 3.1 again, it is observed that

i)  For wp << @, k'Ry=8-Repm and 1Ayl <16-Reyl. Hence 16-Repl<<l = 1Aml <<1.

i) For o >> 0, k-Rr= Ayl and 1Ayl > 18-Renl. Hence IAyl <1 =5 16-Rey | <<1.

From this it appears that if lk-Ril <<1, then the desired condition and a small perturbation
can be realised. It may appear strange but since Ry <R;= R<(Re+Ry), it is not an
unreasonable choice. More often than not in practice engineers will choose a suitable

spring rate that is smaller than the local stiffness of a support with sufficient damping.

The difference in the condition for the approximation of (3.26) to be valid therefore stems
from the use of combined mobility function by Blackwood and von Flotow insiead of
combined dynamic stiffness function. From a simple example (3.7) and the copsisiency
applied in the derivation for 1-DoF and m-DoF, it is to be concluded that the primary

condition is 8-Rep.

3.8 Implication on control design

It may be possible in Blackwood and von Flotow's formulation to replace mobility
function with mobility response matrix to get a multiple-input-multiple-output (MIMO)
model. To extend their concept of designing compensators basing on A(jo)ll (undefined
norm) may be difficult. One of the problems associated with using classical frequency
response (to design compensators) for mxm MIMO systems is the m(m-1) interactions
amongst the various input-output channels. This makes designing controller using closing
one loop at a time difficult. Nevertheless there have been atiempts by MacFarlane (1970)
and Rosenbrook (1974) amongst others to extend frequency response methads to MIMO
problems. For 2x2 plant, these methods are quite applicable. Unfortunately, the gain and
phase margin obtained from the characieristics (eigenvalues) loci are only valid for
simultaneous changes in all the loops. They would not be useful indicators [or rabisi

stahility.
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The extension of Blackwood and von Flotow's 1-DoF model to an m-DoF model using
combined dynamic stiffness given here is original. It results in a MIMO model that fits
nicely into the framework of robust control design or the %, control method. Two aspects
that will be useful for this problem will be presented. These are used subsequently in the

design of active control of vibration when the mount is rigid.

Firstly, for the proposed method of active force control at the feet of the machine the
disturbance, -Qp and the control force, Qo are taken as inputs to the system. This is on
the assumption that the controlled forces of the actuators are applied at the machine feei-
mount interface, the same locations where Qg forces are measured. This will result in 4
standard block diagram of a system with output plant uncertainty. More importantly,
Figure 3.6 is also suitable for active control at the source when flexible isolators are not

used whether Ay=0 or not. This is pursued in chapter 5.

z

Controller  Actuator

Sensor

G,

Figure 3.6 A control block diagram for a system given by equation (3.26)

Secondly, ignoring the dynamics of the actuator and the sensor for the present, and
defining a weighting function W, (chapter 6) the diagram can be redrawn into the

standard Linear Fractional Transformation form as shown in Figure 3.7 below.

Avi [
d Ay Am lAu A A
oz L } G, J‘ W ~ii = c/m’@@_% O NN
_ U 4 h T e
Y oz T
i X 9 v

Figure 3.7 Equivalent LFT block diagram for Figure 3.6
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Standard symbols used in control literature are used e.g. -Qp being replaced by d, and Q¢
is replaced by some desired results z. This is in recognition that although it is desired to
have O =0, it is unrealistic in general. Acceptable force transmitted levels are usually set

vis-a-vis the cost of achieving them.

2 1s the so-called generalised system representation defined as:

0 G, | G,

> Wy WG, 1 WhG, :F?ﬂ @2} (3.39)
— -— = - Pz Pop
I G, G,

It is a generalised model that incorporates a performance function into the model of the

machine on flexible isolators on rigid base. It is a mapping defined as:

Ay Au
y u

When Ay=0, the diagram on the right side of Figure 3.7 defines a standard %, optimal
control problem of finding a X that stabilises the system and meeting the requirements of
set on z through W5, When d=0, it defines the standard robust stability analysis problem.
If Anm is a single-block unstructured uncertainty the two problems are equivalent by small
gain theorem. In practice, details of Ay need not be known except that I{AwIl, <1, and is

a full complex block. The Ay given by (3.21) can be chosen to satisfy these requirements.

For the model derived here using flexible isolators, it is quite meaningless to discuss the
case for Aum=0. This will leave us with a problem of a machine on flexible isalators
mounted onto a rigid base. The appeal for the model developed then is the use of robusi
control theory to design % that meets the desired level of transmitied force to a final
mounting in the presence of Am. In brief, it means finding a & through an iteraiive

process that satisfies the requirements of rabust performance.



Applying Linear Fractional Transformation to the blocks on the right side of Figure 3.7

gives:
¥ Ny Npp
N=F@ R =P +PZX-Pn %) Py =
Ny No

M = N»x»

T = Fu(N, Ay) = Nyj + Nio- AT - Noo- Ay ' -Noy
The right side of Figure 3.7 reduces to Figure 3.8. The problem becomes that of designing
Z that internally stabilises N and checking that ITll.<l v admissible Am, I(Awll <T, for

robust performance.

Can be reduced to

—‘bg

Figure 3.8 The M-A block problem

This is very involved, requiring the use of structured singular value approach (Stein &
Doyle, 1991) and (Packard & Doyle, 1993). For a possible set of Ay with o (Au(jw)) <I
it is quite sufficient to find a X that internally stabilises N and satisfying p(M-Au(jo)) <1
YV Ap in the set, Vo of interest. This ensures that the closed loop system is (robust) stabie
to this given set but with no definite knowledge in advance as to whether the desired

performance is achieved for all the Awm.

Ultimately, it depends on the selection of the passive isolators with respect fo ihe
supporting structure and the definition of suitable weighting functions that is of relevani
to a given problem. In fact, for a given problem, ii is not essential that Ay be known
exactly but the values of o (Aq(jw)) for a range of @ must be given. If the design of an

active control for vibration for a given set of design parameters is all that is required, then



a design with nominal stability and performance with the same framework can be

achieved.

For the problem of machine on hard mounts, the design effort to include Ay can be quite
significant even to check for robust stability. The order of the controller, & is at least as
high as the system, not counting the actuators dynamics currently ignored in the

discussion above. An alternative solution has been found which will be discussed.

3.9 Summary

In this chapter, a m-DoF model for a machine mounted via fiexible isolators on to 4
flexible supporting base structure that fits neatly into the robust stability framewaork or 4
standard %, optimal control problem has been developed. The resulting model is based on
the selection of transmitted force as a performance metric and the application of contiol
force at the feet of the machine instead of between the machine and the base. Hence the

resulting model is the force transmissibility matrix of the form (3.26):

Gf(ﬂex) = (I+AM)'G0~

Where G, is force transmissibility matrix of a machine mounted via isolators on a rigid
base. Ay is the associated perturbation or uncertainty due to the use of a flexible base

instead of a rigid base.

The model is derived using combined dynamic stiffness matrix of a machine on rigid
base, and the inverse of the combined dynamic stiffness matrix of the coupled isolator and
flexible base structure. It is an original extension of the 1-DoF models presenied by

Blackwood and von Flotow in 1992 who used combined receptance function instead.

The difference and the similarity of the m-DoF model have been discussed. Principally,
the condition for the above equation to be valid is shown to be dependent on the product
of two force transmissibility matrices: K-Ry and K-Re, and not on Ay, Tn both cases, the
magnitude of the base flexible modes coupled into G, is dependent on & (Ay). The

spectral norm and the related #., norm are used as measures of magnitude because of (a)
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they are induced norms and hence possess the sub-multiplicative property and (b) they are
also principal gains relating input magnitude and directions to output magnitude and

directions as used in %, control problem.

The advantage of having such a model and the standard %, control method is that it is
possible to design a suitable feedback control system without having to know in detail the
flexible base dynamics. This lack of knowledge or uncertainty can be formulated as
suitable frequency weighting (performance specification) function. One can then analyse
if the controller provides a stable closed loop system and whether it is able to meet the
desired performance requirements set for the level of transmitted force or not. Such an
approach has been actively applied in flexible space structures hosting sensilive
equipment and machines. In later chapters it is shown how (3.26) in its original form can
be used as a design performance specification in the standard ., framework. This will be
applied to the case where the machine is dirvectly rigidly mounted o the supporting base

structure.



CHAPTER FOUR

THE DETERMINATION OF TRANSMITTED FORCE OF

A MACHINE HARD-MOUNTED ONTO A FINAL

STRUCTURE USING A DISSIMILAR TEST STRUCTURE



4.1 Introduction

Much study has been done on machine mounting via flexible mounts (previous chapters)
and the interaction between the foundation and a vibratory machine (Plunkett, 1958, and
Dejong, 1983). These early works were concerned with the how the dynamics of the
foundation or the supporting structure and the mounted machine interact. To some extent,
depending on k, the use of flexible isolators de-couples the two components. However,
there are situations where flexible isolators cannot be used and mounting structures are
not rigid. In such cases, it would useful to a control engineer to know in advance how this
will affect transmission of vibration so that he can design a suitable active vibration
control. To a manufacturer of machines, the answers to such problems would be useful

too in providing solutions to their customers.

In this chapter, answers to some of these problems would be investigated. The theoretical
and practical aspects of testing machines to determine the level of force transmitted [rom
the machines to the final foundations using test-beds whose dynamic characierisiics are
different to those of the final foundations would be examined. Such a scenario will be
useful to a machine manufacturer as a form of acceptance test at the manufacturer's test-
bed, and as a performance specification for the control engineer if there is a requirement
to build an active vibration control system for the contracted machine. In both situations,

it is often the case that the test-bed is not necessarily the same as the actual final

mounting. The summary of this work is given in Lau er al. (1997).

The testing method developed in the chapter will be called Method 1. It involves the
determination of the relevant receptance matrices and requires the measurements of
acceleration at the feet of the machine. Two other methods will also be presented: Method
2 is based on the work of Dejong (1983) using free vibration measurements, and Methad
3, a modification of Method 2, is based on the measurement of blocked force responses

(Lyon, 1987).

With regards to notations used in the chapter, as there will be no flexible isolators,
subscript "f" replaces "mf" and subscript "ef"" replaces "emf". Subscripts will he used
only when necessary and for clarity. Any additional symbols will be defined in the text. In

addition, the numeral subscripts "1", and "2" shall refer o lacations e.g.
i
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Ry : Receptance matrix of the mounting at manufacturer's works.

Rep : Receptance matrix of machine on the mounting at final site.

4.2 The need for machine to be hard-mounted

It is not always practical to mount machines flexibly, particularly when the rigidity of the
mounting is needed to maintain shaft alignment. When low vibration is a consideration,
the system engineer will frequently wish to specify the maximum level of force a machine
would transmit to its supporting structure, referred in this chapter as the mounting. Tt is in

the interests of both the system engineer and the machine manufacturer

i If vibration acceptance tests can be performed in the manufacturer's own works
so that any problems can be detecied and addressed at an early siage.
ii. The actual (transmitted) machine disturbance is available for the design at the

early stage of any active control vibration system il needed.

There are two difficulties associated with these propositions. Firstly, the transmitted
vibration characteristics of the machine are dependent on the characteristics of its
mounting. And so the transmitted forces determined at the manufacturer's works might be
quite different to those transmitted when the machine is commissioned, unless the two
mountings have similar dynamic characteristics as stipulated in BS 4675 Ptl (1976).
Secondly, it is significantly easier and cheaper for the machine manufacturer to measure
acceleration; velocity or displacement at the machine feet than it is for him to measure the

force transmitted by the feet to the mounting.

To the control engineer, engaged in the design of active vibration isolation or control,
knowledge of the disturbance spectrum and the siructural dynamics of the supporting
structure (Scribner ef al., 1993) is very important. The work described here shows that the
transmitted machine disturbance spectrum is modified by the machine-siruciure

interaction and shows how this resultant force transmissibility can be determined.

This would not be the case if a machine were to be mounted on (flexibie) isolatar. The

manufacturer can test the machine on flexible isolators an the works {loor and he
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confident that the machine will behave in a similar way on the same flexible isolators on a
floor elsewhere. It has been shown (in the previous chapter) that such flexible mounts
isolate the dynamics of the supporting structure from the machine disturbance. Also, the
characteristics of the isolators are normally sufficiently simple to be represented as a
spring-damper combination and so forces can be calculated by hand from displacement

values.

4.3 The Set of equivalent forces at the feet

Suppose that a very detailed Finite-Element model of the machine has been created and
the m DoFs (degrees of freedom) of this model have been ordered in such a way that the
first n DoFs relate to the points where the feet will be in contact with the mounting. The
displacements vector of the machine is g and this can be partitioned into two components
. and q; as below where g is the vector of displacements at the feel extremities and ¢ is

ithe vector of other (internal) displacements.

{qe} 4.1)
q;

Here it is assumed that the connection between the machine and the mounting are point

=
Il

contacts, and that rotational stiftness in each of the three directions i1s negligible. The
assumption is subjective but is quite valid at low frequencies where transmission by
vertical translation is the most significant. Transmissions via bending moments become

relatively important only at higher frequencies (Moorhouse and Gibbs, 1993).

There are potentially 3 DoF at each point of a machine and one might consider that
movements at each foot of a machine can be defined by the movements of several poinis
on that foot. Usually, it is legitimate to consider only one point for each foot of a machine
and hence 3 DoF per foot. Sometimes, it is clear that the stiffness of the tesi-bed and final
mounting is much less than that of the machine itself in one or two directions. This will
obviously have very little impact on vibration levels in the two flexible directions. Tn this

case, only | Dol would be assigned at each fooi corresponding to the vertical mavemeni.



Let the vector of forces acting on the machine as a result of its operation be Y and this
can be partitioned into Q. and Q; as in (4.2). There is some suitably partitioned dynamic
stiffness matrix D which is determined from the stiffness, damping and mass matrices (K,
C and M respectively) and the angular frequency o according to (4.3). This matrix relates

Q to q according to (4.4).

JQ?
= 4.2
¢ lQi 42

i):_Dee Dei
Die Dy

_ —[K ee Kei] . {Cee Cei} 2 [Mce Mei
= ; + jo -7,
L Kie K G G i

ie

Mie Fviii_}
Q Dee Dy e :
Q:Jw}:{ ‘]'{q }:H-q (4.4)
o] D by la

The receptance of the machine denoted by R is simply the inverse of the dynamic

stiffness matrix as in (4.5). Matrix R is defined and partitioned as in equation (4.6) below.

Rec Rei Dec Dci - -1
R = - =D 4.5)
R Rj Di. D
QCI Ree Rci} [Qc}
q= — : =R-Q (4.6)
{Qi[ {Rie R; | |0

The set g; of displacements is never of any interest in this context and can be ignored.
Expanding in terms of g. and pre-multiplying by R..' produces equation (4.7) for {J. in

terms of (J; and ge.

Q. =R; -q.-R R -Q (4.7)
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The vector of forces, Q., acting at the feet of the machine is the algebraic sum of two
components. The first of these components is a matrix multiplied by the vector of
displacements at the machine feet. The second is a matrix multiplied by the vector of

internal forces in the machine when it is operating.

As long as the machine 1s operating, the same internal forces, (J;, would be expected fo
exist whatever the machine mounting. So the rightmost term [RCC"‘ Rei Q] of (4.7) can
be regarded as a constant vector for any given frequency. To stop the machine from
vibrating an external force given by (4.8) has to be applied to balance this internal force
causing vibration. In the absence of any other forces, this would give g.=0, and from

4.7y,
Qp =Rz Ry -Q; (4.8)

This set of forces is also known as the blocked force (Lyon, 1987). The force @y is
numerically the same as (Jeo which is the set of forces applied by the machine feet 0 4
mounting that is infinitely stiff 1.e. with displacement at the feet, q. = 0. In this extreme

case, the force equal in value to the blocked force would be transmitted to the mounting.
Alternatively in (4.7), if Q.=0, then
0
ge = Rei - Qi (4.9)
The vector, qco, of displacements is called the free vibration (Dejong, 1983) and is caused
by a set of internal forces of the machine in operation. This vector could be obtained from
a set of measurements taken at the feet of the machine freely suspended or suspended by

very flexible cord. From (4.8) and (4.9), it is shown that the blocked force and the free

vibration are related by (4.10)

‘QB = Rﬁﬁn} ' qu() (4.10)
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Qp and qco, are 1deal quantities. The word 1deal is used in the same sense as the electrical
circuit concepts of short-circuit current (Norton's equivalent) and open-circuit voltage

(Thevenin's equivalent).

The term R.. is therefore analogous to the source impedance (electrical, not mechanical
impedance which is the reciprocal of mobility) of the equivalent circuit. In the event that
the machine is not attached to any mounting and is not operating, R.. would represent the
machine (external) point receptance matrix relating displacement at the machine feet to
external force applied at these points. As the internal receptance is of no more interest in
the later part, Re. shall be abbreviated to R.. Equation (4.7) can be written as (4.7a), with

the subscript 'e' referring to the machine element. Hence

Q.=R. " qe + Qp. (4.7a)

In theory it is possible to measure Qp or qﬁ“ and use either one of them o determine fhe
force that will be transmitted from a machine to the mounting. This is shown below using
(4.12). In practice it is quite difficult to measure Qg or qcU. For Qp a mounting with
theoretically infinite stiffness will be needed, and for qco the machine has to vibrate

naturally in air as if freely suspended on a wire.

Using the above set of equations, a method of determining the force transmitted to the
final mounting without using Qg or qco is proposed. This will use instead a set of
measurements obtained for the machine mounted on the manufacturer's test bed and
whose dynamic characteristics is not the same as that of the final mounting. The proposed
method will be compared with that using qc0 as proposed by Dejong (1983) and another

method based on the block force measurement.

4.4 The force transmitled to the mounting

The case where the machine is rigidly attached to the mounting will be considered. Tn this
case, the displacements at the machine feet are equal to those of the mounting al the
points of connection. The connection forces acting on the machine feet are the apposiie of

the forces acting on the mounting. The mounting has some measurable dynamic stiffness



D¢ and relates Q. to q. directly by (4.11). Since it much easier to apply a force and to
measure the displacement, rather than the reverse, it is preferred to use the mount

receptance matrix Ry in the equations.
Q.=-Di q.=-Ri" - q. (“.11)

Combining (4.7a) and (4.11) gives a closed expression for the forces between machine

and mounting as in (4.12).
Qe=R/" R +RT Q. (4.12)

The formula is most easily understood for a single-point mounting in which case all of the
quantities in (4.12) are simply scalars. If R, becomes very large compared with Ry ' then
Q. approaches zero. If R, becomes very small compared with R¢" then Q. approaches

Q. Both of these limiting cases are consistent with our expectation.

Equation (4.12) can be used to deduce expression (4.13) that relates the vector Q. of
forces transmitted by the machine feet to the final mounting to the vector Q. of forces

transmitted by the feet to the test-bed mounting.
Qe =Ro R + RS [Ry ' + R R Qu (4.13)

In this case Ry represents the receptance matrix of the manufacturer's test-bed mounting
and Ry represents the receptance matrix of the final mounting. Equation (4.13) would not
normally be used in the form given since the vector of forces Q. is not measured directly
in the method proposed here but is deduced from the vector of displacements g using
(4.11). Equation (4.14) is the most concise expression for the predicted vector of forces
which will be exerted on the final mounting by the machine feet in ferms of the
displacements (accelerations) measured at the machine feet when the machine is on he

test-bed mounting,
Q2= - D Rep Dy e (4.14)

Where



Dp = Dynamic stiffness matrix of final mounting (without machine).
Rip = [RD'l + Rgl] 1o Receptance matrix of machine on final mounting.

Den=[R; '+ R, ']=Combined Dynamic stiffness matrix of machine on test-bed mounting.

The method being proposed can now be stated clearly as follows: To discover the set of
forces which will be transmitied by the machine to the final mounting, the quantities Dp,
R.p and Dy must first be established for all frequencies of interest. Then the machine is
run on the test-bed and the vector of displacements at the machine feet is measured.
Equation (4.14) is applied for each frequency component being examined. This method
does not use Qg or qc“. For the purpose of comparative study, this method will be
explicitly called Method 1. Note that with this approach, the characteristics of the tesi-bed
mounting alone are never actually required. There is no necessity to ensure that the lesi-

bed is very stiff.

Two other methods involving the use of (Jy or qe” will also be presented and discussed (o
provide additional motivation for the development of the proposed method. These will be
called Method 2 and Method 3.

Method 2 is given by (Dejong, 1983). The machine is freely suspended and a set of
measurements at the feet of the machine (possibly taken at the manufacturer's location).
This corresponds to qco. With the same notation, the force transmitted to the final
mounting is given by (4.15).

Qo= [Re + Rp] ' g (4.15)

Method 3 uses (4.12), which can be rewritten as (4.16).

Qu=Rp" Ry +R.'T" Qp
=Rp" Den’" Qp (4.16)

The blocked force can be measured at the manufacturer's works using a very stiff base or

mounting.
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4.5 The combined dynamic stiffness and the combined receptance matrices

In (4.14) and (4.16), the term D.p = [Rp_'l + Rc'l] 1s referred to here as a combined
dynamic stiffness to indicate that the individual components are dynamic stiffness
quantities. The measurements or the determination of D.p as a matrix is done with the
machine rigidly attached onto the mounting. Such an arrangement and derivation of the

equations result from using a force source, (3 as input to the equation.

Equation (4.15) on the other hand involves the term [R. + Rp], which is the combined
receptance matrix. It is derived from the using a displacement source . as input. Note

that this term is not the inverse of the combined dynamics stiffness matrix.

The two quantities Qy or g.” are sources of disturbances. As to which equation or model
to use to determine the transmitted force will depend on whether the disturbance is besi
modelled by a force source, Qp or a displacement source .. I the struetural (driving
point) impedance is significant compared fo that of the machine, then a force souice and
hence the combined dynamics stiffness matrix [R{I + R '] and its inverse [ﬁ’{f‘ + RS
should be used. It will result in a model that resembles physical reality. The fact that the
plant dynamics is non-trivial implies that structural driving point impedance (at the mount

locations) is significant and that force source should be used.

In this case it is expected that (4.14) and (4.16) would give a better estimation of the
transmitted force. The reservation with using (4.16) lies in how accurate (Jgcan be
measured. Equation (4.14) does not need the use of a theoretically infinitely stiff

mounting at the manufacturer works.

Furthermore in relation to our stated intention of using force feedback and force
actuation, the use of combined dynamic stiffness and its inverse is more appropriate.
When displacement actuation is used or actuation amplitude is important - for example,
piezo-actuators between base and machine (Scribner ef al., 1993) and hydraulic actuators
(Dyke et al., 1994) in active damping using position, velocity or acceleration feedback -

then combined receptance or mobility (Blackwood and von Flatow, 1992) is used.



4.6 An Example: A single DoF mounting using (4.14)

The proposed method will be applied to a case example. It has a "machine" that comprises
three masses and two spring-damper connections as shown in Figure 4.1. When the
machine "operates”, a 1N force is applied to the top mass at all frequencies. The test-bed
mount (Figure 4.1) is a single mass connected to ground by a spring-damper connection
and with another spring-damper connection to which the "machine” will be fixed. The
final mounting (Figure 4.2) arrangement is to be similar to the test-bed mount except that
the both the spring and the damper in the connection to ground are doubled and another

mass is to be fixed to the existing one via a spring and damper.

The Depy and D can be found using (4.17) and (4.18) respectively, as suggested by Liao
and Tse (1993). These transformations will result in the addition of the required elements

of the component dynamic stiffness matrices.

ijcﬁ = UIT o ) BF @47
Dep = Uy" - Dy Uy (4.18)
Where
D, = P 0 (4.19)
mt O D“ .
p - Y (4.20)
mf — 0 D(Q .

And U; (i=1,2) 1s a non-square matrix transforming the independent co-ordinaies of the
composite system (for example, machine-test mount) o that of the co-ordinates of the
components (i.e. machine and test mount subsystems). It consists of rows that are zeros
everywhere except for locations corresponding to the independent co-ordinates. Af these
locations it is a one. In this example, qe; is a scalar corresponding fo the displacement of
mass3. The terms of equation (4.14) are also scalar, obtained from the respeciive mairices

in (4.17) and (4.18) and the final mount receptance matrix.
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Figure 4.2. Model of the final mounting

Nm’ Nm's kg

Springl =1.0e6 | Damperl =1.0e2 Mass1 =5.0

Spring2 =3.0e6 | Damper2 = 1.0e2 Mass2 =2.0

Mass3 =3.0

Table 4.1. Machine parameters

Nm' Nm's kg
Spring3 =4.0e6 | Damper3 =1.0e2 Mass4 =5.0
Spring4 =5.0e6 | Damper4 =2.0e2
Spring5 =2.0e6 | Damper5 =1.0e2 Mass5 =4.0

Table 4.2. Test-bed and final mount parameters



The forces Q. and Q.», and displacements q.; and e, at the machine foot on both
mounting arrangements are computed for 1000 frequency steps for angular frequency @
between 0 and 5000 rads/sec. These are plotted in Figure 4.3 and Figure 4.4 respectively.
They show differences in the vibration level on two different mounts up to about 2500
rads/sec. At higher frequencies, the two mounts have the same vibration levels. By
examining (4.13), it will be clear that this will indeed be the case whenever IR.l becomes

much greater than IRpl and IRl as the frequency of the disturbance increases.

The "measurements” in this example were computed values and so no measurement errors
could be present. Hence in Figure 4.5, the amplitude of the ratio between Qo and g is
identical to the ratio of the dynamic stiffness of the lefi-hand side of equation (4.14) - the
two lines coincide. However, the potential for errors exists when an accelerometer is used
for measurements of q.,. In Figure 4.5, the amplitude of the receptance of the iest-bed
mount Ry at the machine-mount interface is also plotied since this will affect the
measurements of ge;. At about 1670 rad ', Ry has an anti-resonance (i.e. Ry ™' is large),
and the displacement qe; at the machine fool aitached (o the test-bed mount reaches 4
substantial local minimum. From (4.14), if Ry, is large, any noise in the measurements
may be "amplified" by the use of (4.14) to give an impression of large Q. On the other
hand, at about 1410 rad s Ry has a peak (Rn"l is small) and the force transmitted

approaches a local minimum value.

4.7 Experimental Set-up to determine the foice transmitted

While it might be possible to use a Finite Element Analysis package to determine some of
the dynamic stiffness and receptance malrices, it is almost cerfain that direct
measurements would be required if only for confirmation. Hence an experiment is set up
to mimic the procedures and measurements a manufacturer and customer will have (o
make. This will include measurements of D and R. at the works whilst a cusiomer
would have the data representing Dp over the specified range of frequencies.
Measurements must also be made for q.’, g, and Qp. Only the experiment periaining (o
the use of (4.14) will be discussed in detail but results will compared with that obtained

using Method 2 and Method 3.
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The equipment, which a machine manufacturer is most likely to have and be conversant
with, is used in an experiment to determine how well equation (4.14) will predict the
magnitude of the transmitted force to the final mounting. Some tests conducted in the
experiment would however not be feasible or necessary in machine acceptance tests. For
example, in the experiment a pair of strain gauge load cells (a block of aluminium with
"dumb-bell" shape machined out) is used as part of both the final and the test-bed
mounting. This acts as the rigid attachment, and is used to measure {J.» the (vertical) force
transmitted. The load cells circuit has a dynamic range (-3dB) of 10-1000Hz and an
internal resonant frequency at about 800Hz. The measurements will enable us to compare

the values computed using equation (4.14) and that physically measured by the Toad cells.

In most cases, the manufacturer and the customer will be concerned with the tatal farce
transmitted, and would like to limit such the magnitude of the transmitted force. 1t will be
the responsibility of the manufacturer to perform the necessary trouble shooting if the
machine fails the test. Hence in this part of the discussion, the verification process is
limited to comparing the total force measured and the iotal force that will be predicied by

the proposed method using (4.14).

The procedures are as follows:

i. Measurements at the works: To mimic factory measurements, a set up similar to
Figure 4.6 and 4.7 can be used. To measure R. and q.’ the machine has to be
suspended flexibly so that the natural frequencies of the six "rigid-body-modes" are
well below the lowest frequency at which dynamic flexibility will be measured. The
test-bed mounting consists of a solid stainless steel modular (pallet) fixture block
and the pair of load cells. The set-up shown in Figure 4.7 is used for the
measurement of R, the combination of the machine on the test-bed mounting, and
the displacement g, at four feet of the machine. The load cell outpul gives the
value of (g provided the flexibility of the load cells and the test-bed mounting are

both negligible.

ii. Measurements at the site: To mimic 'site’ measurements, a mild steel frame stricture
and the load cell described abave are used as a final mounting. Figure 4.8 can he

used for the measurement of Rp, receptance matrix of the final mounting and Rep
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the receptance of the machine on the final mounting. Where the machine cannot be

mounted onto the final mounting, R.p can be estimated from Rcmz[Rm"Jr Re"]“.
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Figure 4.8 Set up for measurement of Rp and Rep



1ii. Testing: Impact hammer testing method (BS 6897 Pt 5 1995) can be used to obtain
the receptance matrices. The resulting vibration of the structure should be sufficient
to generate measurable signals (greater than the 'floor' signal level of the
accelerometer and the impact hammer under free running conditions). The
resolution and frequency range has to be properly selected and it is important to
maintain the same resolution (discrete frequency points) for all the tests. This

allows for subsequent mathematical operation on the data points.

iv. Verification: The motor was operated at its rated speed of 1440 rpm (24 Hz). For
the site measurements, the strain gauges on the load cells were connected to a D.C.
Wheatstone bridge circuit that was connected (o a strain meter with high pass cut-
off frequency at 10 Hz. The experimental measurements are therefore restricted 1o
10-400 Hz, and only data between 10-200 Hz were used (a quarier of the dynamic
range). If the specified range of frequencies extends (o 4 kHz and the machine or
the mounting was expected to have damping as low as 2% of critical, then using «
spectrum analyser with 801 frequency "lines" would be inadequate. Tt would be
necessary to examine the range 10 Hz - 400 Hz separately {rom the range 400 Hz -

4.0 kHz in order to reduce the effect of amplitude ambiguity.

Each receptance matrix in (4.14) 1s computed and stored as stacks of 4x4 complex
matrices. Each stack of 4x4 matrix contains values of the elements of the matrix at a
discrete frequency in Hz, and each value of the element in the stack is an average of
ten "acceptable” recordings. The computed Q.; of (4.14) is a stacked matrix of 4x1
vectors of 801 poinis. In this experiment, for comparison with the load cells
measurements of overall vertical force transmitted, the absolute values of the

elements of (e, are algebraically summed together at each discrete frequency point.

4.8 Results of an experiment using the proposed Method One

The vector q.; of displacements at the feet of the machine mounted on the tesi-hed is

given in Figure 4.9a and Figure 4.9b. The points marked "X" indicate the component af
the disturbance spectrum corresponding (o the speed of 1440 rpm or 24 Hz. The poinis
marked "Y" indicate the component with frequency of 33 Hz, which appear (o be of some

significance since they are of comparable magnitude to thase of the 24 He.
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Element (1) ge; for motor running at 1440 rpm on test-bed
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Element (3) of q., for motor running at 1440 rpm on test-bed

-40
50}

-60F
Magnitude
dBV 70t Y
(ref 1V rms)

-80

-90

_'1 20 i i i i i i i
0 50 100 150 200 250 300 350 400
Frequency, Hz

Element (4) of g.; for motor running at 1440 rpm on tesi-bed

-60 T

-70T
Magnitude
dBV
(ref 1 V rms)'BO i

-90

-100} f

-110f W LY A

_ i 20 ) i i i i i
0 50 100 150 200 250 300 3560 400

Frequency, Hz

Figure 4.9b Measurements of element (3) and (4) of vector g of
displacements at the works for motor running at 1440 rpm

95



The load cell measures the force transmitted to the final mounting. This is shown in
Figure 4.10. The two components corresponding to 24 and 33 Hz are observed in this
spectrum and are more dominant than the others. The plot of the calculated Qe using
(4.14) with the measured inverse of the combined dynamic stiffness R.p for the machine
on the final mounting is shown in Figure 4.11. The same peaks at 24 and 33 Hz are
predicted although very slightly higher in magnitude than that measured. Their values are

given below.

24 Hz 33 Hz
Measured 25 dB 20 dB
Predicted 25 dB 22.dB

Table 4.3 Comparison between measured and calculated Qe at selected peaks

It is observed that (4.14) does indeed provides a means (o determine al the least the
dominant components of the transmitted force. The additional component so close o 24
Hz is a characteristic peculiar to this AC motor. In later discussion on active control, this
transmitted force spectrum will become the disturbance spectrum for design. The
effectiveness of the control system to attenuate a band-limited disturbance with two

dominant frequencies will be demonstrated.

When the spectrum plots are normalised by their respective peak magnitude at the
operating speed of 24 Hz, it is observed that in both cases, the transmitted 33 Hz
component is about 0.55~0.7 times that of the 24 Hz component. These are shown in
Figure 4.12 and Figure 4.13. They represent the relative magnitude distribution of the
measured and calculated transmitted force respectively. These two plots distinctly show
the presence of the higher harmonics. However the relative magnitudes of the higher

harmonics for Method 1 tend to be slightly higher in comparison with that measured.

If the individual measurements of Rp' and R.' in [F%gz't + F@g']" ta estimate the
receptance matrix of machine on final mounting were used instead, then the caleulated
Q.> shown in Figure 4.14 tends to "over-predict” the two dominant peaks at 24 and 33 Ha.

They also "under-predict” above 70-200 Hz.
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The relative magnitude distribution of the calculated transmitted force is shown in Figure
4.15. The second peak at 33 Hz is much smaller than that of the peak at 24 Hz in
comparison with that measured plot shown in Figure 4.12. Only a few peaks are

recognisable in as that of the measured transmitted force.

In both cases discussed above, it 1s shown that the proposed method provides indication
of the presence of the major components of the transmitted force. If the final mounting is
accessible, then using the inverse of the combined dynamic stiffness Rep in (4.14) gives a
reasonable estimate of Q.» for the 24 Hz and 33 Hz components. This is not the case
though if the individual measurements of Ry and R in [Rp' + R were used. The
estimates tend to be higher than that measured. So more conservative values are obtained

in the event that it is not possible to use R.p.

4.9 Results using Method 2 and Method 3

The vecior g.” of free vibration displacements at the feei of the machine is given in Figure
4.16(a) and Figure 4.16(b). The calculated Q.. using Method 2 and 3 are shown in
Figures 4.17 and 4.18 respectively. In comparison with the measured Q.,, it is observed
that both methods under-estimated the 24 Hz component, especially Method 3, which is
off by a large margin. The 33 Hz component is quite well estimated by the two methods.
These two methods could only estimate the 24 and the 33 Hz components. Higher
components, for example, the ones close to 50 and 60 Hz are not estimated well enough.

In contrast, Method 1 is able to compute and display these two spikes.

In terms of relative magnitudes, Method 1 gives the closest match for 33 Hz with respect
to 24 Hz component. In conclusion, the proposed method is more accurate than these
other two methods. In addition, the proposed method does not require additional test rig
other than the usual tesi-beds for motors. In fact the individual receptance matrix of the
motor and the test-bed is not required. Only the receptance matrix of the motor on the
test-bed and the accelerometers' measurements at the feet of the machine are needed. The
greatest difficulty associated with Methods 2 and 3 are the measurements of free vibration

and blocked force response. These are hard to obtain accurately.
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In fact if they are easy to obtain, then Method 2 1s preferred. It requires the least amount

of measurements. R, and qco can be measured using the same rig for free vibration, and

Rp is needed anyway. Addition of R, and Ry, is frequency point-wise. This of course is

itself a source of potential errors. In comparison Method | requires more measurements

of the machine on the mountings, and hence is able to provide more accurate estimaies.

4.10 General comments on the proposed method (Method 1)

There are three facts that need to be stated with regards to the proposed method.

a.

b.

When the effect of rotations at each mounting location was ignored, the
matrices of (4.14) should in general be a 12x12 matrix and not a 4x4 malrix. In
using a 4x4 matrix it is assumed that the horizontal DoFs are not at all

constrained by the load cells. This may not be strictly frue.

Method | including the other two methods would depend on linearity. Some

non-linear effects may occur.

For method 3, the measurements of blocked force assume that the mounting
structure at the manufacturer's works is much stiffer than the machine feet. They
may not be. It would be incumbent upon the manufacturer to ensure that such a

stiff test-bed is avaitable.

Even if the above three points are taken into consideration, there are at least three main

difficulties with the whole proposition presented here.

a.

Firstly, the acquisition of complete sets of data representing the receptance of
the machine and the combination of machine-on-test-bed-mounting requires a

relatively large number of tests.

Secondly, the use of conversion formulae (4.11) and (4.14) to deduce reaction
forces from accelerations and to predict reaction forces on the final mounting
from data obtained on the test-bed mounting can augment errors as shown in the

experiment.
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c. Finally, even if the manufacturer does spend the time and money to acquire
accurate information for the receptance matrices for the machine feet and the
test-bed mounting, it is possible that measurements of final mounting R will

not be available at the time the machine is being tested.

Addressing the last issue first. The data for Ry is very likely to come from some finite
element design. Experimentally obtained Ry will be useful to have at least for
confirmation. Computing R.p from Ry and R, and using them in equation (4.14) would
require some correction to give reasonable estimation of Qg. If a combination of
machine-on-final-mounting is available, some improvement in the results is achieved.
Though this may seem to be no longer a factory acceptance test situation, (4.14)
nevertheless offers an advantage of not using in-line force transducers at the site to
ascertain acceptable force transmission to the supporting structure. The machine can be

installed as specified, and measurements easily albeit tediously obtained.

With regards to the first concern, the number of measurements can be reduced if all of the
DoFs at the machine feet are independent or if there are weak coupling between them.
Then the off-diagonal terms of the receptance matrix can be neglected. Normally, a strong
coupling between the three directions at any one of the machine feet at all frequencies is
expected, but at higher frequencies, only a weak coupling between them - assuming that
the feet are some distance apart - 1s expected. At the higher frequencies most of the
energy is concentrated in the higher modes for which the phase and amplitude
relationship between two degrees of freedom at some distance becomes quite random. For
the mounting, the relative weakness of the coupling between degrees of freedom at
different foot seating is even more pronounced by virtue of its geometry. It would be
prudent to first verify if off-diagonal elements are indeed negligible, which take only a
small number of measurements. More importantly, it 1s prudent to check that there is
dynamic reciprocity, so that the number of measurements (lower or upper part of the
matrix) can be halved even if the matrix is not nearly diagonal. This is the case especially

for Rep; and the Regy, the inverse of D.r; where the reciprocity can be applied.

Since the terms Rp, Dep, and Rep of (4.14) involves the inversions of the matrices, a

check on their respective condition numbers k(Ry), k(Desn), and k(Rer) is needed. These
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matrices become ill conditioned with respect to inversion in some frequency ranges. For a
given (e;(®), using the algorithms provided for by Matlab to compute Qc,(w), there is a
loss of accuracy in the last (log10(8.4*105)) = 6 digits using the IEEE double precision
format with 16 decimal digits of accuracy in the region of 60-70 Hz. The difference in
accuracy in using D.p, and Rm’l and R, in [RQ'1 + Rc“]" 1s a factor of 1000 in the same
region (in favour of D). However, in both cases, the loss of accuracy due to inversion in

the more critical region between 20-40 Hz, is smaller than 0.01% for both cases.

The use of (4.14) with accelerometers has its own set of problems. At those frequencies
where the norm of D.p is low, very little force is needed to produce large displacements.
These are near the resonant frequencies. Near the anti-resonant frequencies the norm of
D¢p is high, and a very large force is necessary to produce a small displacement.
Consequently, if a small displacement is measured at one of these anti-resonant
frequencies, it suggests that a large force is present. Unfortunately, accelerometers are
typically "noisy"”, giving some finite signal at every frequency though the actual
accelerations involved are infinitesimal. At such anti-resonant frequencies, as the
calculation of Qe; in (4.14) depends on the norm of Dy, the noise in an accelerator signal
can suggest that much larger forces are present than actually exist. One way round this
problem is to artificially reduce the norm of D, at anti-resonant frequencies so that the

potential for amplifying noise to unacceptable levels 1s removed.

Another issue relating to the use of accelerometers is the effect of the dynamics of the
mounting coupled with the measurements of q.; to give the predicted transmitted force

Q.>. The spectral-norm of equation (4.14) is given by (4.21),

Qea| < IPsaf - [Rega| [Pt [aer] (4.21)

The product of the individual norms i1s shown in Figure 4.19. The magnitudes are large
because the condition numbers of the matrices are used and multiplied together. These
have no particular meaning. The left-hand side of equation (4.21) which 1s the computed
norm of Q. i1s shown in Figure 4.20. The regions of the "valleys" and the "peaks" of the
calculated Q.> closely followed that of the product of the norms of receptance and

dynamic stiffness matrices of the right hand side of (4.21).
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In comparison, the measured Q. does not show this coupled effect. This difference is in

shown Figure 4.10 and Figure 4.11 where there is backbone profile for the calculated Q.».

The effects of structure flexibility coupled onto acceleration measurements have been
observed by (Watters er al., 1988) and subsequently discussed in (Blackwood and v.
Flotow, 1992). If one is primarily interested in predicting transmitted force on a dissimilar
mounting from that of the test-bed, the proposed method is all right. However if the
primarily intention is active control, then one would like as little of this coupling as
possible in the control loop. Hence in the next chapter the use of force sensors rather than

accelerometers in determining the transmitted force will be discussed.

The alternative to what is proposed here is to ensure that the test-bed mounting has
similar dynamic characteristics as the final mounting as specified in BS 4675 Pt 1 (1976).

This option can be rather costly if implemented for every application.

4.11 Summary

In this chapter, the case of a machine that is to be rigidly attached to a mounting has been
examined. In particular investigated the case where the level of force that can be
transmitted by a machine to its final mounting is being determined on another mounting
with dissimilar dynamic characteristics has been investigated. This will be of interest to a
machine manufacturer especially if the testing can be done at the factory or if necessary at
the site using accelerometers rather than force sensors. A method has been proposed that

will enable a manufacturer to perform such a test.

The theoretical and practical aspects of the proposed method have been discussed. A
simulated model and an experiment are described to demonstrate the workability of the
proposed method that could be implemented on a microcomputer system and a spectrum
analyser. The principal difficulties in using the proposed method are the cost of collecting
the data and performing the calculations, and the accuracy of the proposed method. If
there were small coupling between the various degree of freedoms, the test effort can be
minimised. Otherwise, the principle of dynamic reciprocity can help to reduce the number

of measurements needed. Adjustments for differences in the test-bed and final mount
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dynamics may be necessary and artificial "clipping" of the characteristics at certain

frequencies to ensure that false large values of Q. are not computed.

The level of force calculated is higher than that measured. In comparison with the use of
the blocked force or the free vibration, the proposed method gives a more accurate
prediction. Furthermore, it is more difficult to set up the test rig to measure either the
blocked force or the free vibration accurately. Nevertheless attempts had been made to

obtain these measurements.

In addition, the proposed method allows a control engineer to determine in advance the
likely disturbance that can be transmitted from machine to the final mounting. The
machine free vibration q.” spectrum by itself is not suitable for use as a disturbance
performance specification for the design of active vibration cancellation. For unlike the
case of the use of flexible isolators, the dynamics of the final mounting cannot be de-
coupled, and the interaction with the machine disturbance spectrum will inevitably
modify it. In the case presented it is observed that only the two critical spectral lines are
dominant in the force transmitted spectrum. For such situations, the use of feedforward
control loop may be sufficient for active force cancellation. Hence the knowledge of the
resulting modified disturbance spectrum will enable the control engineer (a) to specify a
performance requirement and (b) and decide the type of control loop for the design of an
active control system to attenuate the transmission of the force disturbance to the final

mounting.

In the method proposed, once all the relevant receptance matrices are available, only
accelerometers are required to measure the motions at the feet of the machine in order to
determine the force that will be transmitted in the final mounting. These are easier to use
by comparison with in-line force sensors. However the coupling of the accelerometers’
signals with the dynamics of the structure is not an ideal combination for the performance
of the control loop. In this respect, the use of force sensors may be inevitable. The
objective will be to obtain the force transmissibility function or matrix in form similar to

(4.12) rather than (4.14).
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CHAPTER FIVE

IDENTIFICATION OF THE FORCE TRANSMISSIBILITY

MATRIX OF A MACHINE HARD-MOUNTED ONTO THE

STRUCTURE
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5.1 Introduction

The model for a force transmissibility matrix of two cases of a machine mounted onto a
flexible support base structure: (a) using isolators ("soft-mount") and (b) direct rigid
mounting ("hard-mount”) have been presented in the previous chapters. For both cases,
the methods of determination of the force transmissibility function matrix using a test-bed
that is not necessarily the same as the final base support structure have been given. In
chapter three, it was demonstrated how in principle, the force transmissibility function
matrix can be used for the design of active vibration isolation system. In chapter six, it
will be shown how in practice this can be done but only for the case of a hard-mounted
machine. In this chapter, an experimental case study is presented. The reasons for such a
study will be given followed by discussions on the determination of the force

transmissibility matrix for a machine hard-mounted onto a flexible structure.

Unlike a majority of the literature cited in the thesis, the case studied involves a 5.5 kW
variable speed industrial AC motor rather than a simulated disturbance using a shaker.
The motor is hard mounted onto a flexible structure. Four Electro-magnetic actuators
mounted at the machine feet are used to provide the active force to cancel the disturbance.
They are mounted on top of, rather than being in parallel with, the mounts. A force sensor
is installed at the bottom of each of the four mounts to measure the transmitted force, and

the outputs of these sensors are used as controlled variables.

A frequency domain identification method is used to determine the force transmissibility
or transfer function matrix. As a hard mount separates each actuator and sensor, the
transfer function matrix obtained is non-minimum phase, modally dense and proper. Each
transfer function element in the 4x4 matrix has an order between six to ten. To enable an
efficient design of a controller, the transfer function matrix 1s transformed to a state space
model. This is done using zero-pole to state space transformation to avoid the problem of
ill-condition matrix. The resulting state space model has 154 states. The order of the

model is reduced by a method of balanced residualisation to 12 states.

The original and the reduced order force transmissibility matrix will be used as a

performance objective for the design of controller to provide active force cancellation.
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5.2. Active control of machine hard-mounted onto a foundation

There are some issues that have to be highlighted. Firstly, the reasons for a case study for
machine hard mounted; secondly, the use of feedback rather than feedforward active
vibration control and lastly, the reasons why force measurement and actuation are used. In
discussions, the rationale behind the design of the experiment presented here will made be

clearer.

There are a number of situations where soft mounting is neither a preferred nor a suitable
solution. For example when accurate alignment of equipment or when limited machine
motion is required. In the Freudenberg's active engine mount (Fuller er al., 1996) a rigid
connection between the actuator and the car body is needed to provide effective force
cancellation of the primary excitation caused by the engine vibration. This last example
shows that when active force cancellation 1s used in vibration isolation, hard mounting of
the machine is desirable. Another arrangement that is possible or effective with hard
mounts 1s when a set of equipment is to be rigidly mounted onto a raft to meet some
alignment requirement and the raft is in turn mounted via isolators onto a foundation.
Such a configuration is quite common for diesel engine driven pumps that come mounted
on a skid made of C-channels. The skid is normally rubber mounted onto the
superstructure such as an off shore structure. This is like the double mounting
arrangement discussed in (Sommerfelt and Tichy, 1988) and (Ross, 1988). There is a
difference though in that the method suggested here have only one spring-mass
frequency. The objective remains the same: reduce the force transmitted to the raft or the

final base structure.

Without the presence of soft mounts, the dynamics of the structure will be coupled to the
disturbance measurements. With hard mounts and if the structure is relatively stiff, the
transmitted vibration spectrum arising from the machine operation may still have well-
separated narrow spectral peaks as shown in the previous chapter. A feedforward control
strategy may be applied. When the structure is less stiff, the spectrum gets adulterated,
and the transmitted force spectrum may have fewer resonant peaks due to the machine
disturbance and may include some coupled base flexible modes. In this case, feedback

control is preferred. For this reason Watters et al. (1988) used a feedback control in the
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experiment on a single active isolation mount of a 590 kg (1300 Ib), 140 BHP diesel

engine mounted on a grillage of 2.4 m x 2.4 m I-beam.

The specific measure of performance for disturbance rejection or the performance metric
can either be a reduction in the force transmissibility or the transfer function relating
applied force to measured motion (Scribner et al., 1993) or applied motion to motion.
Power flow as a measure of disturbance rejection had also been used in vibration control.
Goyder and White (1980) had argued that reducing vibration in a structure by reducing
either the motion (displacement, velocity or acceleration) or force amplitude without
considering the relative phase angle may not always be successful. Furthermore, the use
of power in vibration control is valuable in that it combines both force and velocity into a
single concept. Pan et al. (1992) and Pan and Hansen (1993) had demonstrated the use of
active feed forward control of power flow for multiple isolators. In their case, the number
of sensors used 1s increased e.g. a impedance head to measure input power, and a pair of

force sensor and accelerometer to measure output power at each mounting location.

If the base effective modal mass is significant in comparison with the machine mass, then
the machine disturbance can be viewed as a force source. Otherwise it 1s viewed as
motion source. If the base is relatively stiff then a reduction in transmitted force in
response to a force disturbance source is a meaningful specification, for if it is more
compliant, a reduction in the transmitted force may well cause an increase in acceleration
measured at some parts in the structure. As observed by Watters et al., (1988), if
acceleration measurements at the machine mounts are to be used as feedback signals,
much of the effect of the base flexibility gets coupled into the signals in spite of the use of
flexible isolators. This coupling was not observed in the transmitted force signals
measured. With the system shown in Figure 5.1, a force disturbance model is appropriate
and under the certain conditions stipulated, and to avoid "corruption” of the feedback

signal the force transmissibility function is adopted as a performance metric.

Also from a control perspective, such a function can be used as a design specification in
shaping the loop transfer function for disturbance rejection. The resulting closed loop
transmissibility function can then be compared with the open loop transmissibility

function to provide a measure of the effectiveness of active isolation.
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Force actuation is used in closed loop control to provide the force transmissibility
function. If motion actuation is used, the resulting closed loop system may result in the

machine disturbance appearing as a motion source to the system (Scribner et al., 1990).

Watters er al. (1998) located the force actuator between the machine and the base. In the
case of hard mounting, this actuator will double up as a rigid mount (Chaplin, 1983).
Compact actuators capable of supporting the mass of the machine will be needed. Control
signals must inevitably be superimposed on a DC signal and a variation in the total signal
strength in response to the controller will cause the machine to move. This will affect
equipment alignment. Furthermore the actuators must be supplied continuously energised
to keep the actuators rigid and stiff if machine alignment is essential. It may be possible

that the net power supplied is zero.

To provide for force actuation and to maintain machine alignment, the proposed location
of the force actuators is at the feet of the machine. This i1s in part motivated by Tanaka
and Kikushima (1985, 1988, 1988). They have designed active force cancellation of an
impulsive force generated from a simulated forge hammer rigidly mounted to the ground.
Two servo-hydraulic actuators mounted at the feet of the machine provide the force
actuation to actively cancel the impulse measured at the feet of the machine. In this
configuration, each actuator has to react against its own inertia mass and no DC signal 1s
needed, as there is no need for static force actuation. Different types of SISO controllers
were tried out with (a) a lead-lag compensator (1985, 1988), (b) a pole-zero controller or
notch-filter (1988) and (c) an Optimal Linear Quadratic Regulator design (1988). In all
these cases, only the dynamics of the servo-hydraulics actuator was considered and the
dynamics of the ground was ignored. Apparently it is the only work done of this sort
reported (Fuller et al. 1996). The exception is in the control of tlexible space structures
where they have been successfully deployed on space structures but they may appear
hazardous in vehicles and ships. With a proper housing design, the real constraint is space

and the inertia force that can be generated.

From our discussion presented, it appears that there is currently a vast amount of literature
on active vibration isolation with soft mounts, and a relatively sparse amount of work
done using hard mounted machines. It is our intention to contribute to the latter part using

MIMO controller design for four inputs and four outputs. The rig and the investigation
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that will be presented in this chapter may not necessary be an end by itself but may well
be useful for a double mounting arrangement with rigid mounting on a raft and soft
mounting onto the foundation. Instead of wusing (4.12) to determine the force

transmissibility matrix, a frequency domain identification method will be used to obtain

this matrix.

5.3. Expennmental Model

5.3.1 The Hardware description

The system comprises an industrial 5.5 kW 50 Hz AC machine rigidly mounted to an
aluminium plate via four force aluminium mounts. The plate is in turn mounted onto a
mild steel base structure. This plate is added to artificially provide some perturbation for
the controller design e.g. to mess up the machine force disturbance spectrum. In practice,
the support must be stiffer and well damped. The side and front view of the rig are given

in Photo 5.1 and Photo 5.2. Figure 5.1 gives the location number of the hard-mounts.

Motor

[\

Mount #3 O Hard mount

Steel base structure

Actuator

Mount #2
Flexible Plate

Figure 5.1 Side View of the plant or system used in the experiment

When the machine is operating, there will be horizontal and vertical forces and moments
of forces acting at the points of support. In most cases, the primary concern in active
isolation has always been the vertical component. The horizontal plane forces can be
reduced using additional shear damping material. To restrict the system responses to
vertical forces, an 'ideal' mount design should be stiff in the vertical direction and more

mobile in the other directions. One suitable design i1s shown Figure 5.2a

Strain gauges could be attached to the mid-section of each mount, and the mounts could

then be used as force sensors for measuring the vertical forces transmitted.
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Photo 5.1 Side view of the motor on the plate

Photo 5.2 Front view of the motor on the plate
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Figure 5.2 Hard mount design

As a compromise between design and manufacturing, a simple ring type load cell design
is used for the mount design as shown in Figure 5.2b. Each piece is machined from a
block of aluminium. It is relatively rigid in the vertical direction, and flexible in the other.
It was tested as a force transducer using strain gauges measuring direct strain at four
points at the mid-section of the mount. The gauges are connected for full bridge
configuration. With one side bolted down to a rigid base and other side to a shaker via a

stinger, the frequency response is shown Figure 5.3.

0
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Figure 5.3 Frequency response of rigid mount, measured at its centre

The internal resonant frequency is between 700 and 800 Hz, with a relatively flat

response down to 3 Hz. It would be quite appropriate for the system operating at 1440
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rpm (24 Hz). However when all four load-cells-cum-mounts were used, the measurements
were swamped by noise induced by ground loops. Another configuration using a quartz
force ring sensor (PCB 201A02) at the foot of each aluminium mount was adopted. It has
a sensitivity of 89 NV and a dynamic range up to about 400 N. The bandwidth of this
measurement system is higher and the signals are less noisy. Fewer lead wires are needed.
These quartz sensors need pre-tensioning to sense both compressive and tensile forces.
Such adjustments have to be made during the set-up. They are used in preference to
quartz force link sensors, as they are relatively shorter. Link type sensors are factory set

with a specified pre-compressive force and hence are easier to set up.

5.3.2 Plant identification

With active force cancellation through the transmission path, the resultant transmitted
force is the algebraic sum of the control force and the disturbance. If this sum is small
enough, then the transmitted force is reduced. This situation can be represented by Figure
5.4a. The symbol G, is used to represent the force transmissibility matrix relating an input
force vector at the top of the hard mounts to the vector of forces transmitted to the base
structure at the bottom of the mounts. The symbol G represents the transfer function
matrix between the input command vector, u, to the actuators and the output force vector
transmitted into the structure at the same point as the transmitted force from the

disturbance. Qg 1s the net transmitted force vector.

I

G,

j Qr Qr

u
G —>»(O)—> —» G, G, >

N

— P
u
—P

(a) (b)

Figure 5.4 Block diagram of the target system.

Each actuator 1s rigidly attached to the top of a hard-mount. Let the actuators’ dynamics
relating the command input & to an output force, @, be given by G,. Assuming that the
effect of impedance loading is small, the matrix G=G,-G,. Figure 5.4a can be represented
by the block diagram in Figure 5.4b, and adopt the latter as an approximate model of the

set-up in Figure 5.1.
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From a control system perspective, the desired closed loop objective is to design a
controller that will provide the signals to a set of actuators to cancel or reduce the
disturbance produced by the machine. Similar to the case presented in §3.8, the desired

closed loop system model can be represented by Figure 5.5.

Disturbance, d
Gy {e— v}

;O‘ Controller Actuator ;@; Plant || Sensors - .
X G:\

)

Figure 5.5 A system model for the control of the rig shown in Figure 5.1

The dynamics of the sensors and any effect of noise measurements can be incorporated
into G,. The output disturbance problem then becomes an input disturbance problem.

Hence

G, £y (5.h

The elements G and G, or G, and G, in Figure 5.4 will have to be determined and used in
Figure 5.5. It is recommended that G, and G, be chosen because the disturbance matrix
G, can be determined separately from G, which can be based on a transfer function of a
typical actuator. This is saves time and effort. In this case only 16 transfer functions for
G, and | for G, have to be determined. In anticipation of experimental model
identification each transfer function element may need many tests runs to achieve
reasonable resolutions and accuracy. However estimating G, and G, will incur some

errors. The %, controller provides some degree of robustness to errors so long as the

disturbance is within the frequency range for which the model is valid.

There are several ways in which the model of the system can be obtained. One way is to
analytically derive the system input/output characteristics by physically modelling the
structure, the motor, the mountings and the connections. Often this method can result in
models with a set of complex partial differential equations that may not necessarily

correlate well with the observed response of the physical system. The Finite Element
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modelling technique could also be used, especially if modal parameters are of interest. In
most cases, the supporting structure of the machine is inevitably coupled to some other
super-structure, and these connections are a source of uncertainty (Dejong and
Quartaroaro, 1987) in the boundary conditions. Hence experimental measurements or
model updating are inevitable. Lastly, the model can be constructed by measuring the
input-output relationship of the actual physical system in situ. This approach is adopted
because (a) it has been used to determine the force transmissibility of hard-mounted
machine using dissimilar base structures and (b) the main interest s in the input-output
relationship rather than the modal parameters. Moreover the choice of locations of sensors
and actuators for the machine to affect certain modes of the system is limited. Recall that
what 1s needed is information relating to the external rather than the internal behaviour of

the system.

The purpose of model identification is to obtain the force transmissibility matrix that can
be used as a performance specification for the design of active vibration isolation using
the technique of active force cancellation. The choice now is the method of model

identification.

5.3.3. The Maximum Likelihood Estimator (MLE)

There are basically two approaches to system identification: time domain and frequency
domain techniques. Time domain techniques are based mainly on discrete time equations,
which may not be a good approximation of a continuous time system (e.g. a system with
mode shapes). As there is no intention to design on-line adaptive algorithms for the real-
time control, a time domain technique is not necessary. Since experiments performed for
the hard mount case were done in the frequency domain, in the sense that swept-sine
testing was performed, it is natural to continue the system identification in the frequency
domain. Furthermore, a continuous time system can be Laplace transformed into the s-
domain. If the system is stable (in the sense that it has no right half plane poles), its
transfer function defined over the s-plane can be determined from the measured frequency
response (s=jm). A frequency domain identification technique is selected to determine the
system poles and zeros such that the transfer function evaluated at s=jo matches the

measured response within certain confidence level.
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The basic concept in frequency domain identification is to minimise the error between the

measured transfer function and an assumed model structure with unknown parameters i.e.

=3 W(jo,) (5.2)

Gm(jcok)—%

There are a variety of least square algorithms or weighted least square methods —
(Sanathanan and Koerner, 1963) and (Whithead and Williams, 1988). The curve-fitting
algorithm in the Hewlett Packard (HP) Dynamic Signal Analyser uses a combination of
frequency dependent weighting function and coherence function (Adcock and Potter,
1985). Such methods are quite useful when additive noise is assumed only at the output

measurements.

When sensors are used in the input (to the system) and output measurements,
contamination by noise at both channels and cross channels is inevitable. A suitable
candidate to handle this is an algorithm developed by Schoukens, Pintelon and
Renneboog (1988) that is based on the Maximum Likelihood Estimator (MLE). For the
brevity, the algorithm is called the MLE (for linear systems). The measurements are first
recorded in the time domain, and Fourier transformed into the frequency domain. The
poles and zeros of the transfer functions are then estimated in the frequency domain. Most
estimation algorithms require a priori noise analysis of the measurement system to obtain
the probability distribution function (PDF) of the noise measurements. Also the PDF of
the (time domain) noise measurements has to be white and Gaussian. Since the DFT of
noise measurement leads to approximately Gaussian frequency domain noise (Schoukens
and Renneboog, 1986), the frequency domain MLE is robust with respect to noise PDF
(time domain) that is not exactly white and Gaussian (Pintelon and Schoukens, 1990). To
improve upon the estimates, a few periods or time records are needed by the MLE

algorithm to perform a noise analysis and estimation can be done on the averaged data.

5.3.4. Input signal for excitation

For frequency domain technique where the Discrete Fourier Transformation (DFT) is

used, the choice of excitation signals should be restricted to those signals whose DFT
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spectra do not suffer from leakage errors. Suitable excitation signals include (a) stepped-
sine i.e. using a single frequency at a time, (b) periodic chirp, and (c¢) multi-sine or
harmonic summation of sine waves. Present day Frequency Response Analyser and
Spectrum Analyser are quite capable of generating excitation signals of types (a) and (b).
The stepped sine is quite time consuming, and FFT algorithm 1s quite efficient to generate
frequency response using the broad band signals of (b) and (c¢). Both of these allowed us

to design a frequency band limited signal of interest.

There is an advantage of using the multi-sine over the periodic chirp. The former can be
designed to give a desired band width and amplitude distribution n the frequency

domain. The signal is given by:

N
x(t) = S Ay cos(2mfyt +dy )i fy =

n . :
k. T, is measurement period (5.3)
k=1 T,

An example of the spectra of a multi-sine excitation is shown in Figure 5.6 for

comparison with that of the periodic-chirp excitation.

Multi-sine spectra Periodic-chirp spectra
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Figure 5.6 Spectrum of the multi-sine and periodic chirp

Although continuous spectra are shown, they actually are discrete in frequency. Each
discrete frequency is a harmonic of the fundamental frequency, f;. The number of
harmonics, N, can be selected to give f,.,,=N x f;. Both signals have a span of 2500 Hz.
The multi-sine excitation signal has an almost flat spectrum because the amplitudes
distribution has been intentionally designed that way. The design can be done by setting

Ay to be the same and using the Schroeder formula (Schroeder, 1970) to calculate the
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phase of each component in the signal x(t). The phase affects the shape of a single time
record signal of period, T, and “limits” the energy injected into the system. If this single
time record signal contains integer number of cycles of every periodic component in the
excitation, there will be no leakage during conversion from time to frequency domain.
This is assured by the formula generating the multi-sine signal and by selecting the

Analyser frequency resolution to be equal f; divided by an integer.

With multi-sine excitation and the use of MLE for linear systems, the number of
harmonics (and hence the frequency resolution) and frequency span needed to define the
model accurately can be controlled. Multi-sine signals can easily be generated using an
arbitrary waveform generator. The recorded responses can be then analysed with the

coded version of the MLE for linear system algorithm (Kollar, 1994).

A choice of f,,=50 Hz for the span is made after conducting a series of preliminary tests.
Firstly, although the motor disturbance spectrum is much higher than 50 Hz, the order of
the system model estimated for the range of this spectrum turns out to be exceedingly
high for any single input-output transfer function. As discussed below, even at fy,,,=50
Hz, the model has 154 states. The average order of each transfer function 1s about 8, and
that is after some adjustments in the model obtained. Secondly, from a test on a structure
described in the previous chapter, at the rated speed of 1440 rpm or 24 Hz, the measured
principle components of the transmitted force are found at 24 Hz and 33 Hz. A span of 50
Hz should be sufficient. This will place the operating frequency at mid-range of the band-

limited signal.

The fundamental frequency of the excitation signal used is f; = 0.125 Hz and N=400 so
that fg,un = 50 Hz. The machine operating speed of 1440 rpm corresponds to 24 Hz or the
192™ harmonic. The power amplifier of the shaker is adjusted to give a measured
excitation signal of about 100 mV (100 N) peak to peak or £50 N force amplitude at each
mount. Hence a constant input for each set of measurements is maintained. The excitation
signal amplitude corresponds to about 50% of the average transmitted force when the
machine is operating. Each record or period is 8 seconds and a sample of one period of
the waveform is shown in Figure 5.7. A total of ten periods of the excitation signal and
the corresponding response signals are captured. Sampling of all signals is synchronised

to the excitation signal.
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Figure 5.7. One period of the mutli-sine excitation signal

5.3.5 Estimation of the System disturbance transfer function matrix

The system disturbance transfer function matrix, Gy, is the map of input excitation by
forces at the feet of the machine to forces measured by the sensors at the bottom of the
mount. A multi-sine excitation at each actuator location represents the harmonics of the
machine disturbing the system at each foot. Each time measurement at each of the four
sensors' locations comprises ten (10) periods of the response. Every measurement period

is synchronised with a period of the multi-sine excitation.

A shaker via a stinger to is attached to the top of a mount, j=1, as shown in Figure 5.8 and
excitation force is applied. The responses, gjj-1, are measured at the bottom of each of the
four mounts i=1,2,3, and 4. This is repeated for the other three mount locations j=2,3, and
4. With four inputs and four outputs, a total of sixteen transfer functions, g, have to be
obtained. The subscripts i and j are used to refer only to the mounting locations and gj; is
to be read as response at mount #i due to input at mount #j. Unlike modal analysis, the
subscripts i=j here does not mean that excitation and response are at the same point.

Hence gj; # gji, and the resulting transfer function matrix of responses is not symmetric.
For the actuators, as they are rigidly bolted to the mount, their transfer function matrix is

a 4x4 diagonal matrix, G,. The goal of control is to reduce the disturbance transmitted to

the base support using the actuators.

124



Shaker

Sensor O Mount #1

Mount #2

Figure 5.8 System Identification Set-up

There are a few methods of obtaining the system matrix transfer function G. For

example,
(a) Modal analysis method.

(b) Identifying, for each input j, a SIMO model using the Chebyshev curve fitting
method, and then combining the resulting four SIMO models into a single

MIMO system transfer function matrix.

(c) Identifying each g;; and then combining them into a single 4x4 transfer function

matrix.

A modal analysis using global or multi-curve fitting method could be used on the four
columns of G,(jw). Such an approach takes into account of the fact that the properties of
the individual g;(jo) are related. They are after all representing the system as seen from
different locations. There is a difference however in the case presented here from that of a
typical modal analysis method. The latter automatically assumes symmetry in the system
matrix since it is typical to excite and measure at least at one common point, but as
mentioned earlier, there is no symmetry in the resulting transfer function matrix. For this
reason, the global curve fitting is applied to all four columns instead of any single column
or row. The results of a typical column (input at mount #2) frequency response using the

Imperial College Analysis, Testing and Software, (ICATS) are shown in Figure 5.9a and
Figure 5.9b.
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There are four sets of natural frequencies from analysis of each of the column. Taking the

greatest common factor gives the set of (averaged) natural frequencies as:

[12.9,15.9,21.5,21.6, 24.3,33.8, 38,46.7] Hz

The curve fitting of responses at mount location #1 and mount location #2 (Figure 5.9a)
are typically not as good as that for mount #3 and mount #4 (Figure 5.9b). This 1s also the
case for all the other inputs j=1,3 and 4. It 1s likely that mount locations #1 and #2 are not
ideal for identifying the modal parameters of the system. If this were to be the objective,
then the sensors at such locations have to be relocated. However the primary interest here
is to identify the transfer functions of the response matrix for the force transmitted from

machine to a fixed mounting locations.

The Chebyshev polynomial curve fitting method (Balas and Doyle, 1989) can be
extended on each column of the desired G, to obtain four SIMO models. It is based on the
Chebyshev polynomial curve-fitting algorithm of Adcock and Potter (1985) for SISO
systems and is available on some signal analysers. One problem with this is that the
method does not guarantee that a stable transfer function will be fit to the raw data. Like
the method adopted below, putting four SIMO model together to form the MIMO model

will result in an excess number of states or poles, and model reduction 1s needed.

Instead of a two-step approach of finding SIMO models and then an MIMO model, each
gij can be identified as a SISO model and then assembled into a MIMO model. This is
also necessary because the responses of the mounts due to an excitation are not measured
simultaneously but sequentially. With either approach, due to measurement errors, a
system pole may take different values in some of the SISO (or SIMO) models and in
combining them, it may result in more poles than there really are. Hence model reduction

1s needed get the right number of poles that represent the physical system.

Each transfer function, g, is estimated using the input excitation and the MLE for Linear
Systems approach discussed previously. The algorithm (Kolldr, 1994) typically results in
high order numerator and denominator polynomial (and sometimes additional poles and
zeros are intentionally added to achieve a good fit). Some adjustments can be done to get

suitable order for gj;; that matches the measured data. These are as follows:
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1. As g represents the dynamic force transmissibility for input j to output i, matching
pair of poles and zeros at the origin are removed.

1. For any given amount of data corruption, it is easier to make accurate estimates of
poles and zeros closer to the imaginary axis. Hence cluster of poles and zeros far
away from the imaginary axis can be dropped as long the gain constant of the
transfer function is appropriately adjusted.

ii1. Similarly for pairs of pole and zero very close to each other, it 1s hard to resolve
their effects on the system. They too can be eliminated so long as a good fit is

obtained. It does not matter even if they are on the right half plane.

The results of the estimation and fitting exercise are shown in Appendix C. The estimated
transfer functions are given by solid lines whilst the measured ones are in dashed lines.
The plots are in general reasonably good with a couple of exceptions. For example, the
first estimated plot for the transfer function g3, is shown in Figure 5.10. The transfer

. 16 . . .
function needs term of order s . The equation is given as
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Figure 5.10 Bode plot of element g,3 before reduction to lower order
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This Bode plot shows that relatively good fit is possible. To keep the order of the model
small, complex poles and zeros that are closed to each other have been removed, and it is
fitted up to about 40 Hz instead of 50 Hz. The highest order of g5 is s'° in both numerator

and denominator, and this reduced plot is shown in Appendix C.

From modal analysis, the system should not have more than 8~9 modes. When the
transfer functions are combined into a MIMO model, due to measurement errors, there
will be more than 8 or 9 system poles. An ad-hoc approach of identifying a set of
common poles and the greatest common denominator for [g;] has been done. The number
of such poles and frequencies match those obtained from ICATS reasonable well. Instead
of this ad-hoc approach of trying to get a Smith-McMillan form, a state-space model

reduction method is preferred and is more efficient.

5.3.6. Conversion to State-space model {A.B.C.D}

A typical estimated transfer function, g; 1s given by a set of zeros and poles and the
corresponding expanded numerator and denominator polynomials. The average order of
the polynomial is about eight and coefficients of these polynomials are very small but the
variation in the polynomial coefficients is very large. As the roots of the polynomials are
sensitive to the coefficients, any the perturbations in these coefficients will affect different
roots differently. Hence representing g;; as a transfer function will give rise to an ill-
conditioned state space model representation with a condition number for A matrix,

k(A)=10*". Analysis and design using such ill-conditioned matrix can be problematic.

Each gj is subsequently represented as a zero-pole (roots of the polynomials) model and
[gij] 1s converted to {A,B,C,D} using zero-pole to state space representation resulting in a
condition number k(A)=53. The dimension of A i1s 154x154, and D has full rank of four.
This model is labelled as Giss, and has very large number of excess states. It does not

represent the physical system that has at about 8 to 9 modes according to ICATS analysis.

5.4 Model Reduction

There are a variety of ways to reduce the model and two principal routes can be identified

(a) using modal analysis and model updating and (b) using state space model reduction
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method. A brief discussion on the differences between these two approaches can be found
in (Mottershead and Friswell, 1993). If the ICATS modal model were to be used, then
modal truncation can be applied to reduce the number of modes. Since identifying
structural parameters is not the principal objective, the modal model is not used. The state
space method adopted here eventually gives a better fit with measured responses. The
G54 state space model is transformed into a balanced realisation and Hankel singular

values are used to determine the most important states affecting input-output responses.

The motivation in state space domain is very simple. Any system G={A,B,C,D} with
state vector x can be transformed by x = T-x to give a Kalman Canonical Decomposition

of the form given in (5.4):

—&co Aco 0 A13 0 Xco B—co
X |_|A2 A A Ay X |, |Bes | (5.4)
360 0 0 AEO 0 X%o 0
Xto 0 0 0 Aglxs 0

XCO

] Xeo

y=1C, 0 C; O . + Du

=CO

Xto

The vector x., is controllable and observable, x.; is controllable but not observable,

Co
X5, 1s observable but not controllable, and x5 is uncontrollable and unobservable. In
terms of input-output behaviour, the original system {A,B,C.D} and the reduced order
system given by {Aco.Bco,Ceo.Dplare the same although their internal behaviour are not.
Hence if the system can be partitioned into the above form, a reduced model that is both

controllable and observable can be obtained and which i1s similar in response to the

transfer function matrix G. The dimension of x . is the minimal realisation order of the

system. In practice it i1s neither computationally efficient nor useful to transform into the

Kalman Canonical Decomposition form and determine the vector x . and the associated

matrices. Due to computation errors, states which are weakly controllable or observable

may end up otherwise.
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The practical goal is to find a low approximation G of G such that
IIG -Gl 1s small (5.5)

In principle, there are three ways to reduce the model of the system or the controller:
truncation, residualisation and Hankel norm approximation. When the state-space model
is transformed to the Jordan form, truncation basically means removing the higher
frequency modes. An appropriate alternative is to transform to balanced realisation

(Moore 1981) instead of using the Jordan form.

Any G = {A,B,C,D} which has a minimal realisation can be transformed by x, = T-x, (T
non-singular) to give a Gp={Ap,By,Cp.Dyp} representation such that the controllability
Grammian, Py, = Qy, the observability Grammian = X, where

Y= diagonal (o151, o2ls,... Gunln) (5.6)

and 6,2 0,> ....> 0o, The Iy are identity matrices of appropriate dimension and the

decreasingly ordered o; are called the Hankel singular values of the system defined by

Gi:wn\-[ipb'Qbi ,i:1,2,...,n (57)

The respective Grammians of G satisfy the following Lyapunov equations:
AP+PA"+BB ' =0and A"Q+QA +C"-C=0 (5.8)
and
P,=T-P-T* and Qy=(T")*-Q-T"

If G is not of minimal realisation, it is still possible to find a T such that

2

P, -Qp = h g} (5.9)
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Such a representation Gp={Ap.By.Cy.Dp} 1s called a balanced realisation of G. After the
process of balancing, each state x; is just as controllable as it is observable. The measure
of a state's joint controllability and observability is given by its associated Hankel singular
value o; i.e. with balanced realisation, the size of o; is a relative measure of the
contribution that x; makes to the input-output behaviour of the system. Hence the
objective of model reduction can now be rephrased as finding a model, G,, with fewer
states such that input-output behaviour is almost similar to G by removing those states
that contribute little to the input-output behaviour of the system. This can be done using

the equivalent balanced realisation system Gy,

Let { Ap,Bp,Cp,Dyp} and the corresponding Z be partitioned compatibly as

Ay Ap B X
Ab = , Bb = ) Cb :[Cl Cz]; Xp = (510)
Ay Ap B, X
s 0
5 —
0 I,

Where

%= diagonal ((c}, 63,... ox) and £,= diagonal (Gy..1, Oks2,... On)

In balanced truncation (Moore, 1981), k is determined by selecting those Hankel singular
values o; which are small. The reduced model is then obtained by removing the least
observable and controllable state x, associated with Z,. This leaves D matrix unchanged.
Since G(®) = Gy(0) = D, the reduced order system matches the original system at infinite

frequency.

In balanced residualisation (Fernando & Nicholson, 1982), the same principle 1s used to
select k. However, instead of removing the state x,, set x, = 0and solve for x, in terms of

x; and u and back substitute into the original equation. If A,, is non-singular, then
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X2 =0 = X9 :“AE%[AZIXI —B2U]

X =[A)] ~ApAPA X +[B] - ApALBu

!
il
O
@]

N
>
D
D
>
)

X +[D-CyA5 B, Ju (5.11)

By setting x, =0, the process of balanced residualisation retains the same steady state
gain of the original system, since X; =0 andx, = 01in the steady state. Liu and Anderson
(1989) showed that the balanced truncation and residualisation have the same error bound

that is given by:

I G—Gp oo L 2(Ck41+ Ok +...+ Gp) (512)

Balanced residualisation is selected here because the behaviour of the system at infinite
frequency using a band limited excitation signal is not known. It is more meaningful to
try to retain the model accuracy at low frequency. Once the model is expressed as a
balanced realisation, a bar chart of its Hankel singular values in descending order can be

plotted. The plot of the balanced realisation equivalent of G54 is shown in Figure 5.11.
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Number of Hankel singular values

Figure 5.11 Bar graph of the Hankel singular values in descending order

By examining the bar chart, one can choose k= 2 since the 1* and the 2™ Hankel singular
values are much larger than the others are. One can also choose k=8 or k=12 where there
is a drastic change in the values of o;. The selection of k can be based on the residual

errors given by (5.12), by comparing the maximum singular values of the resulting
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reduced model with that of G54 and also with the sum of magnitudes of the 16 measured

frequency responses, and comparing the frequency response with gj;.

Matching & (G)») with (magnitude scaled) cumulative magnitude plot of the measured

FRF and © (Gis4) is a useful indicator for selecting k. These are shown in Figure 5.12.

Maximum singular values of G|, and G54

20
Magnitude
dB
0+
-20
Sum of magnitudes of 16 FRF versus max sv of G,
20
Magnitude ———— Sum of IFRFI
dB G2

Frequency, Hz

Figure 5.12 Plots of G (G12),  (Gyss) and (factor- 3} ;| measured gj| )

With k=2, & (G,) matches only one peak of & (G)s4) at 21.5 Hz. With k=12, as seen in
Figure 5.12,G (G),) matches most of the peaks of the measured ZIFRFl and 6 (Gs4) well.
The higher mode at about 46.5 Hz is missing in Gjsg4, although it is found as a relatively
(to other modes) small peak in the cumulative amplitude plot of the measured FRF. Hence

it would also be absent in G, model.

The frequency response of the state space model Gy is also compared with each of the
measured frequency response functions (FRF). Figure 5.13 to Figure 5.16 show the
magnitude plots of g of Gj> and the measured g;;. The complete set of Bode plots is given

in Appendix C.
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Figure 5.13 Magnitude plots of measured gi; (---) and g;; of G2 (—).
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Figure 5.14 Magnitude plots of measured gj, (---) and g of G2 (—).
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Figure 5.15 Magnitude plots of measured gj3 (---) and giz of G, (—).
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The mode corresponding to the 46.5 Hz, prominent amongst measured g;4 and gj3, i=1,2,
plots is not given by the corresponding gis and gi3 of Gy». A reason for this poor fit is that
in an attempt to reduce the order of the estimated transfer functions for g4, 44, 31, g23 0
G54 the pole at about 46 Hz was neglected. Hence it is unlikely that G, would have it in
those gi;. The model from ICATS also fails to show this peak in all the gjs, but fitted it for
g3, 1=1,2. As the primary excitations of the motor is at 24 Hz and 32 Hz (Chapter 4), the
error at this frequency is tolerable. One can conclude that the fit is quite acceptable up till

40 Hz.

The resulting system matrices {A,B,C,D} for G, is given by:

A=
2,67 | -135.03 ] -1.50 023 216 -0.19 2.13 1.39 009 -3.18 039 071
134.97 | -2.16 | 066 052 2,14  -0.08 171 1.01 008  -3.02 002 048
122 -097| -394 9395| -2835 207 511 3814  -431  -819  -358  -0.79
0.58  -0.96 | -94.01 | -1.45 131 39.04 -1740 042  -1.54 010 205  -0.27
-0.24 066 2864 070 | -7.25] 20494 | 9150 -24.63 6.16 3381 722 -11.54
026 -038 749  -39.64 | -203.69 | -4.01 | 372 77.07 -15.14  -7.07 -12.38  1.84

-1.02 -0.22 -0.53 1691 -91.87 1.84 -4.93 | -201.53 | -15.15 996 -11.21 -0.09
-0.92 -0.15 -3841 -4.67 2492 -76.37 | 203.16 -6.82 501 -11.17 4.40 -9.64
0.12 0.16 5.06 2.39 -2.19 14.89 14.47 -1.42 -1.32 | 107.29 -8.44 17.89
0.64 1.23 8.66 2.00 33.18 12.82 -1.95 13.94 | -108.05 -6.27 | 67.79 2493
-1.04 1.20 4.92 3.06 -2.67 12.10 9.85 -0.74 6.02  -68.63 -1.92 | 87.59

-0.55 0.66 186 1.05  12.03 2.04 3.48 844  -17.70 2853 | -87.56 | -1.82
B=

14 183 205 1.66 |
-1.84 -1.64 -1.34 -1.34
-1.06 -1.57 0.33 112
-0.66 -0.96 0.10 0.61
-1.54 1.72 1.31 -1.10
-1.40 -0.58 1.32 0.65
-1.00 1.54 0.76 -1.01
-0.63 -1.49 111 1.71
0.89 -0.16 -0.23 -0.51
1.80 -0.09 -1.39 0.15
0.96 0.59 -0.34 0.31
1.06 -0.06 -0.41 0.26
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0.00 0.06 -1.16 0.73 -0.88 -0.17 0.98 0.67 0.11 -0.27 0.15 -0.32
0.31 0.41 -1.38 0.97 -0.82 -0.37 1.10 1.01 0.18 -0.22 0.31 -0.48
2.70 2.40 0.08 -0.03 2.53 -1.16 -1.67 0.67 -0.73 2.17 -0.87 0.31
2.23 1.93 1.31 -0.50 -0.65 1.72 -0.12 -2.20 0.74 0.59 0.78 -0.96
D=

0.07 -0.02 0.00 -0.01

-0.02 0.08 0.00 0.01

0.00 -0.01 0.06 0.01

-0.01 0.00 0.02 0.04

The A matrix is almost block diagonal dominant and has the form that looks like:

A :{—Qimi @i }; A =~ diagonal (A)).
0~

However, the block diagonal ; value and {; value are not the modal frequency and

damping factor respectively. These are given by the eigenvalues of A in Table 5.1

Mode i | 2 3 4 S 6
Modal frequency, w; (Hz) 1295 | 16.02 | 21.47 | 21.59 | 3391 | 38.20
Modal damping, ; 0.037 | 0.024 | 0.020 | 0.011 | 0.027 | 0.028

Table 5.1 Modal frequencies and damping factors of G .

Only some "w;" of A; match the eigenvalues of A e.g. the first block diagonal has w;=135
rad s or 21.48 Hz and ¢;=0.02. This is because A is not truly block diagonal matrix and

in general the states of a state space model has no physical meaning.

The set of modal frequencies given in Table 5.1 almost matches six (underlined) of the

eight ICATS model given by {12.9, 15.9, 21.5, 21.6, 24.3, 33.8, 38, 46.7} Hz. However,

the damping values obtained from both methods are different. ICATS give values of
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structural damping factor, n, whereas those of Gj, are viscous damping factor, {. A

typical set of values is given for illustration.

ICATS MLE model, G
Modal frequency, Hz 21.5 21.47
Modal Damping n=0.025 £=0.02

Table 5.2 Comparison of a damping value of the ICATS and MLE model

The transfer function G»(jo) = C(jcoI—A)'lB, would almost be of the same form that
obtained using ICATS, with Gicats=U*-Dy,(jw)-U, where D,,,(jw) 1s the modal matrix and

U is the modal participation vector.

From the evidence provided above, it is observed that the balanced system G>(jw) is a

reasonable model of the system under investigation because:

a. Its transfer functions g;; matched quite closely the measured gj; at least up to 40 Hz.

b. The error using (5.12) in choosing k=12 1s reasonably small and it is given by:

154
0.16 <l Gysa- Giall, =0.1635 <5294 = 2 } o,

13

c. The G (G2(jw)) plot matches the measured ZIFRF| and ¢ (G)s4(jo)) at various modal

frequencies except at 24.1 and 27.9 Hz.

5.5. Comparing G;» model time responses with measured time responses.

Referring to Figure 5.1, mount #1 (right side as view from the shaft end) and mount #2
(left side) are at the front (shaft end) of the motor, and mount #4 (behind mount #1) and

mount #3 are to the rear of the motor.

The sinusoidal response of the G2 model to a 24 Hz 1s shown in Figure 5.17. The input 1s
scaled to give an output of about 0.5-mV peak to peak for the response at mount location

#3. This corresponds to the measured signal at the same location.

140




0.002V 0.04V
0.001 0.02
) | L |
-0.001 20.02 l
-O.OO2V3 ) s -0.04V 4 5
Mount #1 Mount #2
0.4V 0.4V
0.2 0.2
0 | } 0 ! |
-0.2 -0.2
-0.4V 3 4 P -04V 3 1 3
Mount #3 Time. seconds Mount #4

Figure 5.17 Time response G5 to sine input of 1440 rpm
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Figure 5.18 Time response of G, to sine input of 1320 rpm
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The sinusoidal responses at all mount locations to 22.33 Hz (1340 rpm) are shown in
Figure 5.18. As seen in these figures, the responses are quite periodic. They do not quite
match with the observed waveform shown in Figure 5.20 and Figure 5.22 respectively.
The amplitude of the response at mount location #1 is definitely too small. It is about 0.05
that of mount location #2. And mount location #2 is itself slightly smaller than that

measured.

From the magnitude plots of Figure 5.13-Figure 5.16, it is observed that gj; in the region
of the operating speeds between 22 and 24 Hz are not so well estimated. This is
particularly so for g;3 and g;4. There are many small peaks and troughs and the estimated
transfer function is an average value. The responses of mount location #2 given by g; are
just as difficult to estimate. In general gs; and g4 have better estimation in the region of

interest.

There are three other main issues that can contribute to the anomalies identified above:

a. The presence of noise in the measurements

b. The spatial distribution of the disturbance existing at the feet of the machine

c. The spectral distribution of the disturbance at each mount location.

Band limited white noise can be added to the sine excitation representing the noisy
measurement and operation. Figure 5.19 and Figure 5.21 show the model responses when
random noise is uniformly added to the excitations corresponding to 1440 and 1340 rpm
respectively. For 1440 rpm, the effect of the noise on the model mount #1 is the most
pronounced. The peak is increased by an order of about 100 times, but it is still 50%
smaller than the measured amplitude of the response at mount location as shown in Figure
5.20. Amplitude wise, model responses for mount location #3 and #4 are quite compatible

with the measured response.

Measured responses for 1340 rpm shown in Figure 5.22 for comparison with the model
response to sine plus band limited noise shown in Figure 5.21. The measurements showed

that mounts #3 and #4 have a stronger harmonic content than mount #1 and mount #2.
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Figure 5.19 Time response of G, to a 1440 rpm sine wave with band limited noise
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Figure 5.20 Measured response of the system at 1440 rpm. Time base is 500 ms/div
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Figure 5.21 Time response of Gj; to a 1340 rpm sine wave with band limited noise
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Figure 5.22 Measured responses of system at 1340 rpm. Time base is 500 ms/div
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This observation is used to adjust the noise level for the input to the system model. As
seen in the figures, the adjusted model response correspondingly shows a stronger
harmonic content for mount #3 and mount #4. Also the relative amplitude amongst the
various mounts are quite similar to that measured. Mount #3 and #4 are less influenced by

the presence of band limited white noise.

For both excitations, the predicted magnitudes at mount #1 and to some extent mount #2
are consistently smaller than that measured. In fact both of these mount locations are also
relatively difficult to control compared with mount #3 and mount #4 when model based

control 1s apphed.

The second issue relates to spatial amplitude distribution of the disturbance amongst the
four mounts. In simulating the model responses, the input excitations for all the four
mount locations are given the same amplitude. The motor centre of gravity is not exactly
at the geometrical centre of the mounting plate (between the motor and the four mounts).
In fact it is located closer to mount location #3 and mount #4. When the motor is
operating, the force will not be evenly distributed among the four mount locations. The
actual excitations at the mount locations are not replicated due to the lack of information

about the spatial distribution of the disturbance existing at the feet of the machine.

The third issue relates to the spectral content at each mount locations. When the motor is
running, the spectral distribution at each mount location needs not be the same, and even

if they are the same, the magnitudes are not necessarily the same at all the four feet.

An example of a free vibration acceleration spectrum is shown in chapter four. Typically,
its harmonics content is higher than the band limited multi-sine excitation used to
determine the model. For the case of the more rigid structure discussed in chapter four the
transmitted spectrum is dominated only by two spectral lines. For example when the
motor is running at 1320 rpm and 1440 rpm the measured transmitted force has a 22 Hz
and 33, and 24 and 33 Hz spectral lines respectively. These are also observed at all four
mounts' locations when the flexible plate i1s added, but higher spectral frequency at about
80 and 90 Hz respectively are also present. At 1460 rpm, these higher spectral lines
become more pronounced especially at mount #1 and mount #2. A spectral plot of the

force measurement at mount #2 for motor running at 1460 rpm is given in Figure 5.23.
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Since the model determined here is band-limited to 50 Hz, such spectral lines will create

some problem in the model based controller design discussed in the next chapter.

Motor running at 1460 Hz
20 ,

0 F 34 Hz
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Figure 5.23 Spectral plot of mount #2 sensor at 1460 rpm.

To get a better simulation results, another set of four sensors will be needed. They should
to be located at the top of the hard-mounts to determine &i(jo) for i=1,2,3,4. These will
give information on the relative magnitude of the forces transmitted and the spectral
content at each foot to the system at each rated speed of 1440 rpm or any other operating
speed. These di(jo) can then be used as inputs to the estimated model. The model outputs
can then be compared with the measured y;(jow) at the bottom of each of the four mounts.
Hence the use of single input/multiple output measurements with a shaker at each location
at a time 1s a good representation only if the excitations are independent. If the system is
sufficiently linear, then the responses will be a super-position of the responses to the
various sinusoids found in the disturbance, d. The problem is that the spatial distribution

is not exactly known and four additional sensors at the top of the mounts may be needed.

The effects of these uncertainties can be made worse by the presence of non-linearity. The
use of low amplitude excitation signals 1s to minimise the non-linear effects.
Notwithstanding these problems, the use of this model in the design of a controller is not
disastrous as the model based designed controller did perform relatively well in some
range of machine operation. Any machine disturbance larger than 50 Hz that will excite

the plate significantly will create problems for the model based controller designed since
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the model was not defined beyond 50 Hz. It is therefore more a problem of lack of
robustness in the model being formulated than the failure of the model to represent the

system response in the range of frequency of interest.

5.6 Actuator model

A Gearing and Watson GWV4 electro-dynamic shaker is used as the actuator. It has a
sinusoidal peak force of 17.8 N or a peak acceleration of 892 m s7. A frequency response
test 1s done with a mass of 0.25 kg attached to the actuator that is mounted onto a rigid
base via a force sensor and excited by a power amplifier. Two mounting configurations
were tried: (a) via a trunion and (b) direct mounting to the system. The directly mounted

actuator has a larger bandwidth, although a smaller magnitude.

For this thesis, the direct mounting arrangement is used. The input voltage used for Figure
5.24is 1 V peak. Since the gain near the 1* peak frequency of 20 Hz is 0.008, the sensor
output is about 8 mV. With the measurement system sensitivity of 1 N (mV)"', the
corresponding force is about 8 N. The actuator force magnitude tapered off to about 5 N

until the frequency approaches a resonance at about 2000 Hz.
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Figure 5.24 Frequency response plot of the GWV4 shaker with 0.25 kg mass

The resonance close to 20 Hz is due to the 0.25 kg mass and the moving table of the
shaker. The suspension axial stiffness is 0.45 kgf mm™ or 4414.5 N m™', and the moving
mass is 0.02 kg. Together with the attached inertia mass of 0.25 kg, the actuator first

resonant frequency is calculated to be
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f,=— =20.35Hz (5.13)

The actuator (and its power amplifier) transfer function is given by the measured voltage
from the force sensor to the input voltage to the power amplifier. A model for the

measured Bode plot using either a multi-sine or a chirp is given as

s1 2140053 +2.8¢85'2 +2.9¢125M —5.10165'0 .+ 9.3¢47 5 + 7.9049
s1 11515513 +3.4e85'2 +3.7¢125' + 45016510 4110475 +1.2049

G,(s)=k

This fits every kink, peak and trough, but is too cumbersome to use. Instead of identifying
such a transfer function for each actuator, it was decided for simplicity to approximate the

transfer function with a simple 2" order transfer function of the form

kv, 52
L—k— . (5.14)
v, s7+2(0.7 Yo, )s + o

mn

Guls) =

The k is variable of the amplifier. This is similar to the ideal force generator. Stmilar form
of transfer function was obtained using a B & K 4810 mini-shaker. Although (5.14) does
not quite match exactly the measured Bode plot, it is appropriate enough for the actuator
in operating range. The positive phases of the actuators in this range provide the
necessary phase stabilisation (Wei and Byun, 1989). It is robust enough to tolerate the
difference between the actual actuator dynamics and the approximation given by (5.14).
This is demonstrated by the ability to provide stable feedback and force attenuation using
a model based designed controller for frequencies below 1320 rpm, and the Static Output

Feedback designed controller for 1440 rpm.

5.7 Summary

In this chapter the physical system to be investigated has been presented. The rig is
chosen to provide a platform to study the use of active force cancellation to limit the

transmitted force for machine that is to be hard-mounted onto a base structure. If the
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structure is relatively rigid, the reduction in the transmitted force that can be achieved will
be quite a meaningful measure of effectiveness. A hard mount is quite ideal also for force
actuators attached to the top or bottom of the mount. The dynamics of the actuators can
then be separately identified from the transfer function matrix relating the input to the top
of the mount and the force transmitted into the base structure. To provide some degree of
uncertainty and base structure dynamics, a flexible plate is added between the hard

mounts and the supporting structure. This would not be done usually in practice.

The model of the physical system to be investigated is determined using a frequency
domain technique. A frequency range and resolution have been identified after some trial
tests. The resulting model is also the force transmissibility matrix. Two methods of
estimating the model have been presented: modal extraction method using ICATS and the
Maximum Likelihood Estimator for linear systems. The former gives a model that is
physically meaningful with a set of modal frequencies, (structural) damping and
eigenvectors or the modal participation factors. Modal truncation would have been used
to reduce the model order had the modal model been selected. The latter method gives a
set of poles-zeros model that when converted to a state space representation contains
more poles than the physical system would have. It has 154 states! Most of the poles are
in fact approximately close to each other and differ as a result of measurement errors.
Taking this into account, a set of system poles is obtained. These poles have the same
modal frequencies as that obtained from modal extraction method. Instead of an ad-hoc
manner of adjusting the state space model to give a model that has the same number of
poles as that obtained from ICATS, the approach of residualising the system that is
internally balanced has been adopted. Using a combination of selecting appropriate
Hankel singular values, error criterion and matching the maximum singular values of the

th

reduced model with the sum of magnitudes of measured FRF, a 12" order model, G, has

been obtained.

Comparing the two methods of model matching, it is found that the state space, G
model gives a reasonably good fit with the most of the measured frequency response up

till 40 Hz.

Time responses simulation results of the G, model however do not exactly match the

corresponding measured responses especially at mount location #1 and to some extent
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mount location #2. The match is more acceptable for the other two mount locations. The
causes for this imperfect match have been discussed. In part it is because it is hard to
emulate the input disturbance spatial and spectral distribution that exists at the time of
machine operation. The use of a shaker at each location to excite the responses at all
locations for measurements will only provide measurements for the determination of a
model. However, without the knowledge of the disturbance spectrum at the machine feet
when the machine is operating, it would be difficult for the simulated mounts' responses

to match the actual measured responses accurately.

The 1dentified model 1s a force transmissibility matrix. It will be used as a performance

specification for the design of an active vibration isolation system in the next chapter.
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CHAPTER SIX

ACTIVE VIBRATION CONTROL OF A MACHINE

HARD-MOUNTED TO THE STRUCTURE USING FORCE

CANCELLATION AND FORCE TRANSMISSIBILITY

MATRIX AS A PERFORMANCE SPECIFICATION
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6.1 Introduction

The objectives of controller designs and the reasons for the choice of control strateg

using the %, approach and the static output feedback (SOF) method will be presented. Of
the two, the %, controller has a relatively high order than the SOF controller, which is
essentially a static gain controller. Both types of controllers did not destabilise the system.
All controllers are implemented on a PC. The use of force transmissibility matrix function
as a (disturbance) performance specification in the design of these controllers in active
force cancellation will be shown. The results of simulations and experiments using these
controllers are given. For the machine running at 1340 rpm and below, simultaneous
reduction of force transmission at all four feet of the mount has been achieved using
controllers designed by both methods. Reduction in RMS values ranges from 30% to
80%. When the machine is operating at 1440 rpm, the 7., controller is not effective in
attenuating disturbance at two locations, and a little effective at the other two. The poor
performance at 1440 compared with that at 1340 rpm of the 7, controller is expected
from simulation results. The SOF controller on the other hand is able to attenuate
disturbance for the machine operating up to 1700 rpm. The results obtained from
simulation and implementation are better. RMS reduction varies from 30% to 54%.
However in general a SOF controller will not always result in a stable system. The

summary of the work is given in Lau ef al. (1998).

There are some differences between the work presented here and those discussed in the
Literature. Active force cancellation is applied at the feet of the machine that is hard
mounted to a flexible base structure. Nelson (1991) referred to this as active vibration
control to the source (the term “source” was used to mean the machine), and actuation 1s
applied to the machine. The control strategy studied here is considered as control of
disturbance through the transmission path. This is also different from Watters' er al.
(1988) work where the actuator is placed between machine and base. The advantages and

disadvantages of these arrangements had been addressed in chapter two.

6.2 Controller Design Objectives

A practical objective for the design of the controllers in the case studied is the rejection of

disturbances entering the support structure. This can be achieved by two design goals:



i. To minimise the RMS of measured transmitted forces at all mount locations
ii. To maintain stability in the presence of neglected high frequency dynamics of the

structure and the actuator.

It would be desirable to specify independently the amount for RMS reduction in
transmitted force at each location. However, this would be difficult especially if
interaction exists between the actuator action at one location with another location
preventing the independent control of attenuation at each mount location. Attempts to
cancel the force at one location may result in the actuator exciting the other mounts via
the structure. The overall reduction in the RMS values of the transmitted force is more
practical and realisable. A suitable design goal can then be a reduction in the system RMS

gain, defined as

|G - ulgps (6.12)

G o = Sup
H "RMS_&JI“ |u|#0 “unRMS

For a given magnitude of vector of input disturbances, reduction in the RMS gain means
reduction in the magnitude of vector of transmitted disturbances at all mount locations.
This design goal is appropriate when the interaction discussed above exists, and when the
disturbance is not known exactly except that it is bounded. By transforming the signals

into the frequency domain, it can be shown that the RMS gain 1s also the %, norm i.e.

G.
G, = sup 16 tlpys _ 5(G(jo)) (6.1b)
ju|#0 “uHRMS

Minimising this norm also means minimisingc (G(jo)) or the "worst case" overall

"amplification" of the disturbances.

6.3 Force transmissibility function as a performance objective

Since the disturbance transfer function or the force transmissibility matrix from machine

to the supporting structure, given by G, identified in chapter five, is also the system itself,



design goal #1 can be attained by reducing ||Gp(s)|l» by means of passive design or active
control system. The proposed approach of this thesis is to use active force cancellation
with force feedback signals from the force sensors at the interface of the hard-mounts and
a controller, &, in series with the actuators, modelled as G,(s). It uses the system model
G,(s) and indirectly ||Gy(s)|l as a cost function or performance specification to design

various types of controllers, %

The configuration is represented in Figure 6.1, which is similar to Figure 3.6 with Ay=0,

and G,=Go..

d
) =0 e(l) u(t) a(t) W)
£t —POE z G. G, >

Figure 6.1 Block diagram of the target system

Let
Ty=S G,=(I+L)" Gy; with r(t) =0

And
L is the Loop gain matrix = G, G, X (6.2)

1

S+ 1) ©2

S is the (input) sensitivity matrix; o(S) =

In the classical loop shaping approach, the controller % is designed such that magnitude
plot of g ([I + L(jw)]) is larger than the disturbance spectrum over some frequency range.
Unfortunately, the free vibration machine spectrum is not an appropriate choice for a
disturbance spectrum because the resulting installed disturbance spectrum will include the

coupled effect of the dynamics of the supporting structure.

As G,: d — y; @ = 0 represents the disturbance spectrum, a (internal) stabilising controller

% can be designed such that

5(8)-5(G,)<1;or



o(l+L)> E(Gp) Vo el0,0.]; o= closed loop bandwidth (6.4)

Hence G,, the force transmissibility matrix, is a suitable (disturbance) performance

specification for . A more intuitive requirement 1s to design a X such that
o (Ty(jo)) < o ((Gy(jo)) for © < o, (6.5)
Where o, is some specified closed loop bandwidth, and Ty is a function of %

Equation (6.5) provides two points for discussion. Firstly, it is not necessary to design a X
such that Ty is smaller than G, for the entire given frequency range. For instance, there
will be frequencies in the range that the machine will not likely to be operating, and at
other frequencies, the disturbance transmitted may be small. In the latter case, if the
supporting structure is sufficiently stiff, the transmitted force may not cause any motion
vibration in the support. Secondly and more importantly, o ((G,(jo)) can be a rather
complicated function. It may be easier to select some simple frequency-weighted function
W, or more precisely, W, as a performance weighting function. Such a function can be

selected basing on the spectral norm of Gy,

20

Magnitude
dB 0

220 \ . ‘
101 102 103 104 105 rad s”

Figure 6.2 W, as a disturbance rejection performance specification

For example, Figure 6.2 shows the (magnitude) Bode plot of the maximum singular
values of Gp(jo). It has many resonance peaks in a narrow band. Basing on this plot, one
can a select a Wy' comprising 2™ order lead compensator transfer functions with gain
smaller than 8((Gp(j(o)) in the range of 10 to 300 rad s, Then admissible controllers &

are to be designed such that Tyq 15 smaller than W, in a sense of (6.6), i.e.



G (Ty(jo)) <7 -c (W2 (j0)), Yo & [01,00] (6.6)

Where v is ideally equal to 1. If (6.6) is satisfied in the range shown in Figure 6.2, then
(6.5) will be satisfied for ® < 300 rad s. Beyond 300 rad s, the open loop transmitted
force is sufficiently small. The controller frequency response can roll off to some small

values after this frequency so that the open and closed loop response could be the same.

Using (6.6) it can be shown that the controller design problem can be treated as an

optimisation problem. Furthermore, the condition given in (6.6) can be further refined.

For each © in the interval, with o (W2 ")=1/0 (W5),

8(Tyd (J 0)))

et G(W5 (j0))3(Tyq (j0)) < ¥ 67)
(0] 2 J®

= 6(Wy(jo)- Tyg(Jo)) <v

Hence the problem is to find all admissible controllers Z and a bound y such that

sup(E(Wz(jco)-Tyd(joa)):HWZ -Tyd“wis bounded by y or having |[Wa Tydllw=Ymin<y,
()

Ymin>0. This is then the minimisation problem related to minimising ||Gy|le.

On the other hand, assuming that a set of admissible controllers &, can be found that

gives [[Wo Tydlle=vmin<y, then using the property that ¢ (W2) 6 (Tys) = 6 (W2 Tys) would

give

N o(Tyq(jo))
S(W) (j0)o(Tya (j0)) < Vi = —— <y,
S(W," ' (j0))
= o(Ty(j0)) < Ymino(W2 ™ (j0)  (68)



For the special case where Wo=w-I, o (W;')=c (W;"), the specification given by (6.6)
and consequently (6.5) can be met provided the optimal controllers, &y, exist. Otherwise

v or w has to be defined.

2y

Where W, = w-l, it is often sufficient to define it as a diagonal matrix (wy), 1=1,2,3,4
especially if the g;; of the G, are more dominant than the other off-diagonal elements g.
Although this is not case here (the g; as shown in Appendix C are not necessarily much
smaller than the g;), defining W5 as a full matrix will increase the order of the controller.
As a compromise between using W, = w-I and Wy=[w;;], W= diagonal (w;;), 1=1,2,3 and

4 is chosen, with o (W;") > o (W,). Both plots are shown in Figure 6.2.

For the general case, (6.8) suggests that if a set of admissible optimal controllers & can be

found then
(Tyq (jo)) < yo(W, ™' (j0)) (6.62)

This means that (6.6a) could be used instead of (6.6) i.e. specify E(Tyd(jco)) in terms of
o (W5 instead of o(W,"'). This is less demanding and places less effort on the
requirement on the design of admissible controllers. Furthermore, there are computational

methods to find X that minimises |[W2 Tyq

«, the %, norm of the weighted function.

6.4 The H-infinity (#. ) Design approach

The #., optimal controller design paradigm is one method to solve the above minimisation
problem. A weighted closed loop function is used as a cost function in the design. The
suitability of the %, control framework for MIMO systems was also shown in chapter
three. There, it was mentioned that certain amount of robust stability could be achieved in
the presence of uncertainty either as neglected or unmodelled dynamics. Indeed in chapter
five, the high frequency dynamics of the actuator and the plate in the structure was
neglected and not modelled. These two features meet the two design goals. Consequently

the #.. control paradigm is used to design a controller to minimise the system RMS gain.



To use the #., method, the block diagram is redrawn as Figure 6.3. The effect of sensor

noise will not be shown explicitly as this has already been taken that into consideration.

d
: f —»

i

Figure 6.3 Block diagram of the weighted system model

The desired level of force that can be transmitted is defined by the weighting function

W,. Considering that d — v, then
v=(Wy:S-Gp)- d=(Wy - Tyq) d=Ty -d

This is exactly the minimisation problem discussed above. A weighting function W to
limit the controller output by limiting inputs to the actuators can be added. This will

prevent the actuators' outputs from saturating.

These specification and constraint functions can be incorporated into system that is now

represented by the components within the dotted line shown in Figure 6.3. Let 2

represents this generalised system model. Here 2: w — v where

{Q} {Z} {Q}
w= Y = ,and z = . (6.9)
u Y i

The closed loop system transfer function relating the input (disturbance) d to the output z

1s given by

WarSGp g 6.10
SRR e (6.10)



The transfer function T,q is also given by the lower linear fractional transformation of 2

and % defined as

Tw=F@ %) =2,+2xZ(1+ P22 P,

WG, WG,G,

P P
D= - 0 W, (6.11)
P P
G, G,G,
W,G W,G G,
11 = 0 p:l;pjz = WIID ]} 21 =Gpi P2 = GGy,

Defining T,q in terms of Fi(?, %) helps to emphasise the dependence of T,q4 on % as it is
obtained by using X to close a lower feedback loop around 2. In state space form, 2 can

be defined as:

x A Bl B2 X
z2,=1Cy Dy Dy d (6.12)
Y| €y Dy Dy

Where the state vector x includes the states of G,, G, and W, (since W, is a diagonal

matrix of real numbers, it contributes no additional states to 2). For the system under
investigation, considering only diagonal G, and W5, x has a dimension of 170x1. The

model given by (6.11) can be also to be used to test whether Z provides robust stability
and performance for a prescribed set of uncertainty, A with ||A]l.<1. The tests given in
terms of the upper linear fractional transformation of (6.11), T = F,(/«(P, %), A) can be
found in (Skogestad and Postlethwaite, 1996) for example. Designing % to meet robust

performance will result in the higher order of X compared with that obtained for (6.11).

For the present, A i1s ignored, and the objective is limited to finding all admissible

controllers, %, such that
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W,SG,,

<
WKSG,| (6.13)

IF(@R e = Tsal,, = “

0

Where ideally y=1. In control literature, (6.13) with y=1 is considered as a standard 7.
control problem or an %, small gain problem (Chiang and Safonov, 1992). In a more
general case, the ., (optimal) control approach allows us to find all admissible
controllers & that minimises ||T.d|l, where "admissible” means that /(2,%) is to be
internally stable, and the minimum of ||T.ql- is not necessarily 1. Such controllers if they
exist are in general not unique for MIMO systems. In addition, the optimisation problem

is theoretically and numerically complicated. In practice, sub-optimal controllers can be

equally desirable and very likely to be sufficient in most applications.

Given a ¥ > Ymm > 0, the sub-optimal #. control strategy is to find all admissible
controllers, &, if there are any, such that ||T.ll» < y. Such problems can be solved
efficiently by the bisection algorithm developed by Doyle er a/ (1989) and implemented
by function labelled here as Ainfsyn (Balas er al, 1991). In practice, the desired vy is not
specified but is calculated by the function. Instead an interval [y, y2] is specified for the
function to search for a y € [y1, y2] for which admissible controllers ® may exist. The

conditions or assumptions that have to be satisfied for the existence of a sub-optimal

solution can be found in (Doyle ef al., 1989) or in (Skogestad and Postlethwaite, 1996).

Chang and Safonov developed an alternative y-iteration, which will be called the function

hinfopt (Robust Control Toolbox, 1992). In this case, the problem is formulated as

17 Tea e < 1 (6.14)

The function finds a ¥' and a set of % that solve this #. small gain control problem (see
Appendix D). Typically y' is almost the reciprocal of y. What y and v " tell us is that if a X

can be found then

c (Ty(jo)) < v o (W2 o)) V o € [0,02]
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As long as v+ o (W (jo)) is sufficiently smaller than S(Gp(jco)), for ® € [60,300] rad 5™,
the desired goal is achieved. Hence with y-E(Wz']Qco)) and Figure 6.2, the largest value
of v for which the corresponding admissible controller is acceptable or not can be found.

If not, W>(jo) has to be redefined again.

The disturbance rejection specification, W, can be simply defined in a form discussed in

§6.2 and given by (6.15):

W11 0 0 0
0 w 0 0 $Tj, +1

W, = > Wi iy +1) =1234
0 0wy O o’ (st +1

(6.15)

Ti1~ Tiz.

Each w;; is a low pass filter such that its inverse (elements of Wz"l) is a high pass filter. As
shown in Figure 6.2, the high pass filter attempts to limit the maximum singular value of
the force transmissibility in the desired operating frequency range of the motor. At those
frequencies where the model has small maximum singular value, W, can have a higher
value. To keep the design process simple, all w;; is designed to be equal, and different w;;
values can obtained by varying o, T, and T,. Alternatively, one can also specify the
weighting functions, w;; for every element in Wo, but this is not used eventually as it will

increase the dimension of x without a considerable return in benefit.

For a properly scaled system, W, can be defined as a 4x4 identity matrix: W; = lsxa. The
scale factors are chosen to represent the maximum outputs of the actuators in response to
the full-scale voltages of the controller. Such values can be obtained from the actuators'

and the controller data sheets.

6.5 The design of a R,s controller using the G, model

Two ways to find & using the #.. approach will be demonstrated and their implementation

will be discussed. This design method will result in a set of controllers with at least the
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same dimension as the generalised plant 2. The first set of X is designed using the G,
model in 2, and the second set of X is designed using G;s4 model in 2 but the order of the

model! of this set of controllers is subsequently reduced.

With G,= G, as the plant model, a set of controllers that will be easier to implement can
be designed. The Ainfsyn and hinfopt algorithms are used for this purpose. The first set of
disturbance specification used is given by W, = w-I. In this case, each actuator is in a

local feedback loop and directly attenuate the disturbance measured at its own sensor

location. After some trial and error, a=+/0.3 is selected to give the desired attenuation

and the "best" w 1s given as:

‘ 2
( s, lj
MO0 S (6.16)

\ 2
0_3[ : +1j
400

The state vector x of 2 corresponding to G, is of dimension 28x1. Hence the resulting

w =

controller is labelled as Z3s. Since this controller is to be implemented on the actual

system, it must be tested for closed loop stability on the original plant model Gjs4, which

though contains excess poles nevertheless, has some relevant poles neglected in G2,

In brief, the design procedure involves:

a) Finding a suitable W to give a stable Rag
b) Checking that the s must stabilised the closed loop system using Gisa.

¢) Verifying that the resulting || Tyall.. (Without W5 and W1) <] Gisa ||e.

Due to the difference in the Ainfopt and hinfsyn algorithms, it is found that a stable Ry

designed using the method of Ainfopt often fails step (b), whereas those designed with the
hinfsyn more often than not pass step (b). Subsequently, all the design is done using the

hinfsyn algorithm.
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Using W, with w given by (6.16), the resulting maximum singular value plot of the stable

closed loop system using the g controller is given by Figure 6.4.

1440 rpm
v=1.845 -
Magnitude C (G p )
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101 102 rad s’ 1()3

Figure 6.4 Maximum singular values of G, and Ty

It is observed that the selected W, results in E(Tyd(jm)) <8(Gp(jm)) between 70 rad s”
and 280 rad 5. With y>1, E(Tyd(ja))) <y-0 (W7 (jo)) for some values of ©. At about
110rads”, © (Ty) = v-o (W7''). Higher attenuation is achieved at 140 rad s (1340 rpm)
than at 150.8 rad s (1440 rpm). As shown later, the designed %33 is quite effective when

used on the actual system for frequencies below 140 rad s (1340 rpm).

The single weighting function is simple, but when plotted against the g;; of Gy, it turns out
to be a poor weighting function for g;; and gz;. Hence as a next step, different weighting
function w; are selected for each g; - only diagonal elements of G, have w;; specified. The
weighting functions for these two design cases, called case I and case Il are shown in
Figures 6.5 and Figure 6.7. The resulting controllers are %z 1 and s 1 respectively and
the closed loop performance as measured by the maximum singular values of Ty are
shown on Figure 6.6 and Figure 6.8 respectively. In comparison with G, and that of Tyq
using the Zyg, no improvements were observed. Similarly experimental results using these
%55 1 and Rag 11 do not show any substantial improvements over the Rz in the operating

speed of 1440 rpm (150.8 rad s). Furthermore compared with that using
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equal w;; for all the diagonal elements of W, case I and case II are more involved. Hence

only the experimental results of the s will be discussed subsequently.

6.6 The design of a X' controller using the Gs4 model

One of the key objections to the approach adopted above is that a low order controller
designed using G, as a plant model may not stabilise a full order system model which
has an order greater than 12. As the error between the reduced model and the full model
that is not embedded in the %, optimal problem formulation such situation can arise. So
even if an internally stabilising controller Z can be found using G5, there 1s no guarantee
that this is a solution for the actual system. In a report on the control design for Large
Space Structure, Balas, Young and Doyle (1992) used the sub-optimal %, method on a
reduced order model of the Minimast Facility at Caltech to design a (low order)
controller. When applied to the full order model, this controller resulted in an unstable
closed loop system. Nevertheless this low order controller provided them with an upper
limit on the (disturbance) performance level. The p-synthesis (structured singular value)
approach was used to design the controller for eventual implementation. The use of the 2+
synthesis method will improve the robust stability and the robust performance of the
system. However, it is also a more complicated method involving an iterative procedure

called the D-K iteration.

Instead of using the more involved p-synthesis, a simpler approach is adopted. What has
been done and presented is an iterative search for a design and test for a low order ¥
designed using a reduced order system model but which also stabilises the full order
system model. This has proved to be successful in simulation and in physical operation of
the motor in some operating speed. Hence there is no need to use of u-synthesis method.
Alternatively, a % can be designed using the full order Gis4 to represent the full order in 2
and then a model reduction on the controller model is done next. This will provide some
of the other poles or modes neglected in the G,; model. The resulting high order X can be
reduced by the method discussed above of residualising the balanced realisation of the

controller. This will facilitate implementation.
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With G,=Gis4, G, and W3 in 2, the resulting controller has a state vector of dimension
170x1. Two cases of %70 1 and &7 2 using different W, are presented here. For X7 o,
W has the same diagonal elements as that used to design the 5. For %170 1, the wi; are
given in Table 6.1. The wy are selected through trial and error. The orders of both
controllers are subsequently reduced, and are respectively labelled as Xy and %;,. These
are the lowest order that give reasonably good disturbance rejection using the %, norm as

the criteria.

i’ 1/t (rad s) 1/t (rad ™)
i=1 0.1 300 1000
i=2 0.12 300 1000
i=3 0.19 300 3000
i=4 0.185 300 3000

Table 6.1 Values of w;; defined for W,

The resulting maximum singular value plots of G, and Tyq (using g and &), respectively)
are shown in Figure 6.9 and Figure 6.10. The figures indicate that the Ry has a better
disturbance attenuation performance than the %,, but with a higher value of y. The
controller % also appears to give a better attenuation than the controller Ry for
frequencies of ®e[70, 250] rad s, Since %g is derived from % 170 1 which is designed

using G, = Gys4 with wj; specifically selected for the respective gj, a better simulation
result is expected. This is very likely due to the fact that more information about the
system is available to the design algorithm. The additional effort of selecting w;; for each

g;; 1s justified.

Subsequently, only the %y will be implemented and the experimental results compared

with that of the %,z discussed above.
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6.7. Static Output Feedback design

The most direct approach to the design of controllers for large-order systems such as this
flexible system is to implement direct proportional gain between the input and the output.
The design of such static output feedback (SOF) controller is stated as follows: given a
linear time-invariant system, find a static gain feedback controller so that the closed loop
system has certain characteristics, such as providing internal stability and satistying some
desired specifications. Although many approaches and numerical methods exist to design
such controllers, the problems (Syrmos ef al, 1997) with static output feedback designs

are that:

i. there are no testable efficient necessary and sufficient conditions to check for
stability;

ii. numerical algorithms do not in general converge;

Furthermore, with the given system, improvement in performance is achieved with a
reduction in the stability margin. Nevertheless, the case for such a controller is quite
strong. Firstly, as a 4x4-static gain controller it is easier to implement compared with the
full 170x170-state controller or even the 28x28-state controller. Secondly in the presence
of modelling error, there will be a need to perform some degree of manual tuning. With a
smaller number of elements in the controller, such manual tuning is quite feasible. The

stated primary purpose is to find a way to design such a controller specific to the system.

If the actuator dynamics is ignored for the present time, the control problem can be posed

as a simple output feedback problem. Given the plant, G,={A,,B,,C,,D,} defined by

x:Apx+Bpu

(6.17)
y=Cpx+Dpu

The objective is to find a controller X such that

(a) (I-% -D;) is non-singular

(b) the closed loop system is stable and possesses certain desirable characteristics
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For disturbance rejection, the controller equation can take the form
u =%y + v ; where v is the disturbance entering the system.

Substituting for the output, the controller equation becomes
u=%-Cx+%-Dyu+v

~(-z-0,) " (x-Cpx+v) (6.18)

=E-%-C,x+Ev
Where E=(I-% -D,)". Consequently, the system equation becomes

X:(Ap+Bp~E~K-Cp)-x+Bp-E-v:Acl-x+Bp-v
(6.19)
y=(Cp+D, -E-Z-Cp)x+Dy E-v=Cp-x+Dp-v

-E, D,=D

Where Bp =B P D

p

Ap=(Apt ﬁp %-C,) represents the closed loop system A-matrix.

A stabilising controller % is one that give Re(Ai( Xp)) <0 for all eigenvalues of Kp .

Assuming that D, is non-singular, a possible design choice is to select X' = —Dp'l. This will
make E=0.5-1, and ﬁp =0.5-B,, and (NZP=O,5-CP. The consequence is that the input and

output matrix directions are unchanged but the magnitudes are scaled by a factor of 0.5. 1f
this is stabilising, then the amount of disturbance is reduced at the input to the system by
closing the loop, and the amount of output is correspondingly reduced by the same factor.

The controller gain, % can be parameterised as follows:
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Z=-aD,,0<a<® (6.20)

Where o is the maximum value of o that will not destabilise the system when X' is given

by (6.20). Then

1 ~ | ~ | ~
E=——1, B= B, C=—+-C, ,6, andD=—D
1+ a l+o F l+a P l+a *
~ I 1
A,=|A,-——B, D, "C, 6.21)
l+a

For the given model Gp, X :(—Dp'l) exists and results in Ap having two eigenvalues on

the right half plane. This is due the dj; values of Dp'l being relatively high. The bisection

method is used to find o such that Re(A,( Kp ))<0 for all i. For given G, a=0.7235.

Any a < o will reduce the loop-gain of the system, and hence increase the relative
stability of the system. Similar to the SISO case, the larger X'is, the faster is the response.
Hence there has to be a balance between stability and response. For 0=0.72 a stable
closed loop system is obtained with responses at the four mounts as shown by Figure

6.11. Like in the actual experiment, disturbance at location #1 is hard to reduce whereas

mount location #3 has the largest reduction.

0.15V " 0.4
0.1
0.05

05t ™ Teonoller ON

-1V

3s 35 4 4.5 Ss 3s 35 4 4.5 5s

Figure 6.11 Responses at 1440 rpm with K:—OA72DP‘l w/o actuators’ dynamics
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When the actuators' dynamics are included, a higher upper limit can found. This is based
on the observation that the actuators are force actuators with positive phase over the
frequency range of interest (Figure 5.24). In a manner similar to the analysis of a SISO
system, larger gain values can be used when lead compensators are added around the
region of the cross over frequency since they provide phase stabilisation. Using the same

bisection method it is found that o =1.034.
The dynamics of the actuators can be coupled to the static gain controller and what
appears to be a dynamic feedback system can be brought back to the static output

feedback case as follows. Let G, = {A,,B,C,D,} represents the actuators transfer

function matrix. The coupled transfer function matrix {G,& :y — u} is given as

A; Bg
(;a - = . Af: Aa, Bf: Bﬂ"z, Cf: C;. and Df: Da' z. (622)
Cr Dy

Define new states: ur=x¢ and y; = xy¢.
X Ar B Ar B ~lyr
ur _ Xf _ f | Xf _ f f1Yr =7 Y (6.23)
u u Cr Dply Cr Dpjly y

Then the gain % matrix is given by (6.22). Its elements are real numbers and hence it is

an equivalent static gain controller. An augmented system matrix given by (6.24) can then

be constructed comprising the system G, and the static gain controller zZ

MR M S o
HERI M

Define input and output variables: u=1{u; u} andy ={y; y}'. The static output

(6.24)

feedback control law becomes U =% -y +v where v=[0 I} v. Now substituting the
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controller =D, would give a stable closed loop system unlike the previous case. The

maximum singular value plot for closed loop and open loop is in Figure 6.12.

20

Magnitude A
dB j \
|
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\
\

-20

10’ 102 rad s’ 10’

Figure 6.12 Maximum singular values of G, and T4 using 2=-D,"

The closed loop system without the weighting function W, is now given by Tyg. The
transmitted disturbance is small over a range of frequency. However the peak of ¢ (Tyq) in
Figure 6.12 means that at this frequency the disturbance is increased. This is undesirable.
Such peaks are less likely to occur using the #., method. The simulated time responses at
all the mount locations for 1440 rpm are about the same as that without actuator

dynamics. Selecting o<1 can reduce the sharp peak at around 300 rad s

The limit on the magnitude of % is due to the presence of some unstable transmission
zeros of the system G,. The further these are from the origin of the s-plane, the lower is
the upper limit of the gain for the system to remain stable. This is obvious from a root
locus plots of these two SISO systems with unity feedback. The first system is stable for

all values of & whilst the second has an upper limit on 4.

s+1 s—1
’ versus G(s) =k >

S+2 s+2

G(s)y=k

Although a pair of actuator-sensor is located at each mount location, they are not
collocated because a hard mount separates them. This has three implications: (a) as

discussed in chapter five, the Reciprocity theorem would not be applicable; (b) it gives
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rise to a non-minimum phase system and (c) the system is not strictly proper. The farthest
unstable pair of zeros of G, = Gz 1s at 23.14j290.85. The zeros are as far from the

imaginary axis as the complex poles of G,. Hence this limits the magnitude of %

The use of a system D matrix for the design of % can be explained by observing that its
input is directly available on its output. In this case, the machine disturbance entering via
the hard mount into the support structure is measured directly by the sensors. In addition,
the sensors also measure the response of the system to the disturbance, and this part of the
measurement is given by the dynamics of the system. If the closed loop system is able to
make use of such information, and reduce or attenuate the direct disturbance the

transmitted disturbance can be reduced.

In general, the use of inverse of D is not appropriate for strictly proper systems, i.e. for
systems with D=0, or for systems with D that is not square nor is singular. Even if D is
square and non-singular this method does not provide an idea about how good the
disturbance rejection performance will be in terms of the % increase in damping of some
selected closed loop eigenvalues or poles. The most commonly used analytical methods in
the literature addressing such an issue are pole placements/assignment (Kimura, 1975)
and  (Srinathkumar, 1978), and eigenstructure assignment (Alexandrisdis &

Paaraskevopoulos, 1996)

For example, in Independent Modal-Space Control, (Meirovitch, 1987), the pole
assignment method is used on a set of equation in natural co-ordinates, {q,}, in order to
change a selected set of eigenvalues but not the eigenfunctions. Closed loop gains can be
found by a set of equations to improve the damping or the response decay rates of the
selected eigenvalues. Gawronski (1996) defined another set of co-ordinates called the
balanced co-ordinates. Under the special case of collocation of sensors and actuators,

shows that desired closed loop poles can be achieved using a diagonal controller Z with

the diagonal elements given by the vector £ = [4, 4>,. ”7@]’1" The controller gain 1s

4=H"8p (6.25)
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Where H is the matrix of the system's Hankel singular values for each actuator and sensor
location and H' is the pseudo-inverse. The vector 843 is the desired amount of poles'

shifting.

Syrmos, Abdallad, Dorato and Grigoriadis (1997) provided a brief survey and description
of these and other analytical methods. They concluded that except for systems with
special properties, the output feedback problem is hard to solve analytically and "thai
exploitarion of the special structure of the particular problem seems 1o be the only
promising approach", (Syrmos ef al., 1997). Some of these special properties include (a)
minimum phase system, (b) collocated sensor and actuator i.e. B=C" and (¢) strictly

proper system i.e. D=0.

Lacking any special structure, a possible approach is to use non-linear optimisation
programmes. Syrmos ef al. (1997) cited the work of Davison (1965) who used such a
method to minimise the real part of the dominant eigenvalues of the closed system. As G,
was used in a performance function in the #. control design method, it again be used fo
find a static gain controller % using static output feedback. A cost function can be defined
basing on Ty = $*G, or on the sensitivity function § = (I+G,-G,-%)". A search is done to
find some ||| € [4min.émax] that gives a stable closed loop system and minimises the cost

function or satisfies (6.5) 1.e.G (Tya(jo)) < & (G(jo)) for we[w;,02].

Given G,, whether (6.5) can be realised or not depends on G (S(jo)). Any peaks in
G (S(jw)) will be reflected in & (Tyu(jw)). Unlike the ., control design case, ® can be
limited to [80, 300] rad s as & (Gp(jw)) is relatively small outside this range. Non-linear
optimisation algorithm can be applied to design %, using [|S|l. < o as the cost function.
The problem is formulated as follows:

Find % such that || S

w <A
Subject to
o € [80, 300]

Re (M(A ) <0
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It is not possible to have a =1 because % either de-stabilises the system or & =0 in the
defined interval. Furthermore as the magnitude of the actuator dynamics is very small for
o —> 0, and the band limited identified G, becomes small as © — 50 Hz, the singular
values of S approach 1 at these two extremes. So solutions are sought for o arbitrary close

to 1 for o e [80, 300] rad s™".

The approach involves defining the sensitivity function $=(I+G,G,%)" for each choice of
%, and then the closed loop system eigenvalues are calculated to determine if the selected
% gives a stable closed loop system or not. If it does, then the %, norm of § is computed.
From the set of candidates that produces a stable closed loop system, the candidate that

gives the smallest || S || < a within the specified frequency band is selected.

A constraint optimisation algorithm is used to find such a set of &. Due to the different
possible values of a and the range of [0, 02] used, no unique solutions can be found.

Different sets of 2 are obtained and tested. One of the candidates Z with a=1.5 is given

as.

44631 23507 1.4059 2.4793
1.6284 28443 1.5641 0.3236
0.0782 0.5509 2.4353 0.8430
0.0943 0.0376 03506 2.2472

2/opliml =

The resulting sensitivity function § is shown on Figure 6.13 followed by a plot of the
maximum singular values of Tys and G, in Figure 6.14. It can be observed that G (S(jo))
is smaller than 1.5, and is almost flat. The resulting maximum singular value of the closed
loop force transmissibility matrix, Tyq is lower than the open loop plot over the frequency

range specified.

Such an approach will result in a set of & for actual cantroller design. For the physical
system, some manual adjustments of k;; are required to fine-tune the controller againsi

modelling errors.
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6.8 Controller Implementation

The controllers designed above were implemented on a DSP PC-AT bus board. The DSP
board has a Texas Instrument's floating point TMS320C32 Digital Signal Processor and 4
Burr Brown 16-bit 100 kHz Analogue to Digital Converters and 4 16-bit 200 kHz Digital
to Analogue Converters. The TMS runs on 50 MHz clock cycles. All controllers were

implemented with C-routines.

Three type controller designs were implemented on the DSP and will be discussed here.

These are listed below.

a) %ag is the 28-state controller designed using Gy model and the . method.

b) 2k is the 8-state controller designed using G sq model and the #. method and

subsequently reduce to 8 states.

¢) Zyisa 4x4 static gain controller derived from Zpim that is designed using the

constraint optimisation method.

Both the %55 and the %z controllers were designed in the continuous time domain and
subsequently discretised by Tustin's transformation to the equivalent discrete time state
space controller. Tustin's transformation retains the stability characteristics in both
domains and is frequency invariant. Since the controllers were designed using frequency-
weighted functions, the frequency invariant property is important to retain the response in
the frequency domain (as least for ratio of sampling frequency to bandwidth frequency
greater than 10 times). From the frequency plots of the weighting functions used, the
system bandwidth is no greater than 50 Hz. Any sampling frequency greater than 500 Hz

would preserve frequency invariance of the transformation.

In any discrete implementation of a controller, delay in the control loop invariably exis(s.
This could be due to time for data conversion, computation and memory access fime and
processor latency. The overall time delay can be minimised and estimated so that a

sufficiently high sampling frequency can be maintained. With the & and %k controller,
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matrix access and operations are done using pointers to reduce the time of computation.

For the %53 controller which potentially has the longest computation time, a simple
clocking function is used in a routine to estimate the delay. The total time for the interrupt
routine to read the inputs, scale them as 16-bit data, update the state matrix, compute and
scale the outputs, and write the output data is about 750 ps. This includes the Analogue to
Digital conversion of about 10 s per channel. The reciprocal of this delay of 750 ps is

1330 Hz. A sampling frequency of 1 kHz was selected and found to be suitable.

Similar tests were done on the g and % For the ®%, a sampling frequency of 8 klHz was
used, and since the computation associated with implementing & static gain controller is

much shorter, a sampling frequency of 50 kHz was used.
In addition to the digital controllers, another set of tests was done using analogue
controllers. These are phase shifters that can be tuned and were used in a local loop ie.

output from a sensor is fed back only to the actuator at its mount lacation.

6.9 Experimental Results

The experimental rig used to test the effectiveness of each controller is shown in Photo
5.1 and Photo 5.2. For each controller, the motor was operated at two speeds of the motor:

1340 and 1440 rpm. The control schematic is given in Figure 6.15.

DSP board
in [:]
PC Power Amp.
I Typical OFF 53

AgCore J Actualor ]
SCreenc <
Cable Switches ggg?&:ctor g

7% Mount Q

*\g Sensor:

?g D o 4-channel 1 mouni typical

¢ signal
conditioner

Board with

. ain =|
Low-pass filters 4-channel Scope (& )

Figure 6.15 Control Loop schematic
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Measurements were taken with controller turned OFF and then with controller turned ON.
This was done using a bank of 4 toggle switches as shown in Figure 6.15. The controller
outputs to each of the four power amplifier driving the respective actuators, and all the
quartz force sensors are conditioned with unity gain before being converted and
transmitted to the controller. A 4-channel oscilloscope simultaneously records
measurements of all channels. However the 4-channel scope makes a sweep using 2
channels at a time. Most of the measurements on the oscilloscope is transmitted to a PC as

HP Bench Link files and converted either to bit map files or to data image files.

6.9.1 Experimental results using the 3¢ controller.

The results are shown in Figures 6.16 and 6.17. Figure 6.16 shows that the %z controller
is very effective in attenuating disturbances at all mount locations for motor operating at
1340 rpm. At 1440 rpm, from Figure 6.17, a small degree of attenuation is observed af
only two locations. This better performance at 1340 rpm is predicted by the simulation
result of Figure 6.4 where the difference between & (G(jo)) of the open loop sysiem and
o (Tu(jo)) of the controlled closed loop system is greater at 1340 rpm than at 1440 rpm.
For 1340 rpm, this reduction is from 1.8 to 0.4 i.e. about 78% and is reflected at all four
mount locations. At 1440 rpm, it is from about 0.7 to 0.3 i.e. 50%, but this is not reflected

at all the mount locations except at mount #3, and very little at mount #2.

On examination of the measured signals (with control action turned OFF), it is observed
that for the motor running at 1320 rpm, for example, the principal motor disturbance
components at 22 Hz and 33 Hz are dominant; at 1340 rpm, only the 22.3 Hz is dominant.
Since Zag is designed for the plant up to 50 Hz, it is quite effective in attenuating these
disturbances. With the motor running at 1440 rpm, the plate on the supporting structure
responds much more than at 1340 rpm. Frequencies higher than 50 Hz have amplitudes
larger than that measured when it was running at 1340 rpm. The G, model neglects
resonant frequency beyond 40 Hz. The %u controller is not effective to disturbance
beyond 40 Hz. More significantly is the fact the system model was not identified with the
motor running at 1440 rpm, in which case the entire disturbance specira will be identified.
Instead the system model was identified with the motor shaft stationary and a simulated

spectrum of the machine disturbance was injected at each mount location.
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Hence the weakness is in the model representation of the system for the case when the
motor is operating at 1440 rpm rather than in the design method itself. Nevertheless, this

same model gives a R3g controller that is effective for motor running at 1340 rpm.

Robust controllers can be designed to take into account the effect of the neglected
dynamics by including a model of higher frequency dynamics as unstructured uncertainty.
Including the model of the uncertainty will result in a higher order controller model, and

reduce the sampling frequency. This is discussed in detail below.

6.9.2 Experimental results using the % controller

The controller routine is essentially the same, but sampling frequency can be increased fo
8000 Hz with fewer states to compute. Figures 6.18 and 6.19 respeciively show rhe
responses for motor speed at 1300 and 1340 rpm. These are no better than obtained using
the %3¢ Performance or disturbances rejection when the motor is running at 1440 rpm is
not betier than that of Zag. As Gss, which is used in the design of %z, itself is poorly fitied
beyond 40 Hz, it may be unrealistic to expect X to work better. The main advantage of
using the ®g lies only in the reduction in computational time allowing for a higher

sampling speed.

6.9.3 Experimental Results using the Zoim1_and the %y controller

The controller routine for Zopimi is much simpler than the %ag. One can ignore the use of
pointers, and input and output scaling, and use a higher sampling frequency. The value of

Roptim1 18 glven again below as:

44631 23507 14059 24793
16284 28443 15641 03236
Roptiml =| 0 1787 0.5500 24353 0.8430
0.0043 0.0376 03506 2.2472

The ky; values or the first row are relatively "higher" as the model underestimated the

magnitude of the response of mount #1, and to some exient mount #2.
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Hence on implementing this controller, the response at mount #1 is much higher than
required and the system becomes unstable. Subsequently, the values of row 1 are

modified, with k; and k3 set to zero. The other ki values are set to nearest integer values.

After a series of manual tuning, the resulting %4 controller is given by:

500 3
1330
470 005 0
0 0 3

The diagonal values are quite close to the yuimi. On analysing the closed loop
performance, the maximum singular value plot is much betier than that obtained using &z

and is about as good as Zopimi a8 shown in Figure 6.20 below.
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Figure 6.20 Maximum singular values of G, and Tyq using &4

The time for computation is further reduced with some zeros in . The sampling
frequency could be as high as 50 kHz. The results for the two operating speeds are given
in Figure 6.21. As with the other controllers, the %4 is more effective for motor operating
at 1340 rpm than at 1440 rpm. Unlike the %, it is able to attenuate disturbance for motor

running at 1440 rpm.
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When tested at motor speed of 1700 rpm, there is still attenuation although less effective.
It is slightly more robust than the others are. Hence it is observed that the &4 (indirectly)
designed from static output feedback gives better results than that designed from the %

method. It has a much lower order too.

6.10 Discussions

It should be noted that the model G, used for the controller designs is valid only for a
frequency range up to 40 Hz and with the motor not operating. Beyond that frequency, the
model is not representative of the real system. Furthermore, G, is itself an element of a
set of possible representation & of the true system. And it therefore has degree of
uncertainly even within the frequency range for which the estimation is made. This
uncertainty can be reduced but not totally removed. For example, using a stiffer and more
damped structure and removing the plate that was artificially introduced in the
experiment. The uncertainty can also be quantified by means of some function bound and
be included in the model. Of the two methods described above, the #. methad has a
formal structure that can include a model of the uncertainty in the design of a robust
controller. To account for neglected higher frequency dynamics, model identification
using an input with an upper frequency limit of 1000 Hz (beyond this value, the response
of the plant starts to roll off) has to be done. The neglected dynamics can then be
modelled by frequency response function covering the part of the plant response being
ignored. An example of such approach is given by Balas e al (1992). The reason for not
attempting to use such an approach is that the resulting uncertainty model A will be a full
4x4 complex block adding at least 64 states (assuming at least 4 states that will added by
each &; of A) to the nominal generalised plant 2. The use of the D-K iteration to solve the
resulting structure singular value problem can be quite involved for practical applications.

The order of the controller will be higher.

The selection of weights for the design of the #.. controllers requires much effort. It
weighting functions are applied to all of the 16 transfer functions, the order of the
controller will be very high. Hence in spite of the fact that G, = Gz or Gisq is noi
diagonal dominance, the first step involves the use of a single weighting function hased

on & (Gy(jo)). The best that was attempted was o apply weighting functions (o gi of Gy,
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In the end, it is found that the simplest case of selecting a single weighting function based
on G (G,(jo)) is more effective. However, the one selected may not be the best as there is

no way to test this except to search over a large set of w;; for Wa.

Numerical results for the ., designed controllers Z»g and % are given in Table 6.2

Mount #1 Mount #2 Mount #3 Mouni #4
RMS values RMS values RMS values RMS values
Conirol | Control | Control | Control | Control | Conirel | Controi | Conirol
OFF ON OFF ON OFF ON OFF ON
258 0.065 0.033 0.046 0.038 0.179 0.058 0.101 0.050
49.7% 17.1% 67.8% 50.2%
2 0.034 0.026 0.039 0.036 0.144 0.068 0.074 0.044
21.0% 7.7% 52.9% 35.3%

Table 6.2 Results of %,z and &5 at the four mounts for motor speed of 1340 rpm

These values are taken over a time interval of the measured signals. The % reduction
from uncontrolled to controlled are all shown as positive numbers. Between Ry and Rs,
the latter provides higher overall attenuation at all locations at motor speed of between
1320 and 1340 rpm. An average reduction of 50% is achieved for all locations. At 1440

rpm the . designed controllers are not so effective as already explained in §6.9.1.

On the other hand, the static output feedback provides a more direct and less involved
solution although there is no way to prove or ascertain robustness analytically. It also is
easier to tune the elements of Zupimi using some knowledge about the respanse of the

model in relation to the actual responses.

Results for the static output feedback controller %y are shown in Table 6.3. A more
uniform performance with about 50% attenuation achieved in terms of RMS values af
1440 rpm is observed. This is in spite of having signals higher than 50 Hz in the measured
disturbance spectrum. At about 1340 rpm, &y is as good as & at three locations but has

higher attenuation at location #3.
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Mount #1 Mount #2 Mount #3 Mount #4

RMS values RMS values RMS values RMS values
Control | Control | Control | Control | Conirol | Control | Conirol | Control
OFF ON OFF ON OFF ON OFF ON
1340 0.0331 | 0.0227 | 0.0285 | 0.0196 | 0.1347 | 0.0241 | 0.0772 | 0.043]
31.5% 31.3% 82.1% 44.2%
1440 0.162 0.075 0.178 0.102 0.284 0.143 0.206 0.139
34 1% 42.5% 49 4% 32.5%

Table 6.3 Results of &4 at two speeds for the four mounting locations.

The better performance of the Static Output Feedback controller &y at 1440 rpm

compared with the %5 is also shown by the simulation resulis.
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Figure 6.22 Maximum singular values of Gy, (Tya)a for &y and (Tya)as for Zag

Figure 6.22 shows plots of & (Tya(jo)) of % and %4 against & (Gp(jo)). 1t shows that
there is a greater reduction using the &y compared with the %y controller at both 1340 and
1440 rpm. However, the predicted better performance by %4 is ohserved only for 1440

rpm. At 1340 rpm both controllers have an average RMS reduction of about 46%.



It is assumed, here, that the actuators are rigidly attached and hence the disturbance model
and the plant model can be the same. The actuator model is then identified separately.
Otherwise it would be necessary to determine G as the transfer function matrix from
actuator command to measured output and G, as the transfer function matrix from
machine disturbance to measured output. As discussed in chapter five, with G = Gy'G, G,
and G, can be determined separately. This requires less data collection and processing. 1t
also suits the use of static output feedback design. A suitable set of static gain controllers
can be found using some search optimisation routine basing on G,. The « (S(jw)) plot
obtained is flatter than that obtained using the %% or the %33 over the selected interval and
hence the resulting o (Tya(jo)) has fewer and smaller peaks. The hard work is in the
tuning the controller. However once it is tuned, the % controller is able to function quite

consistently even with the motor running intermittently daily.

Although the results show that % is the preferred controller, i is not the intention of this
thesis to conclude that all static gain controllers using static outpul feedback are beiter
than . controllers are. There are no theorefical justifications to support such a
conclusion. It could that the performance weighting functions used in the &, design is not

ideal.

The performance of all the controllers presented here can be compared with the results
obtained by others in similar type of applications. For example, Dyke ef al. (1994), using
acceleration feedback control strategies for an m-DoF, [0-state structure, achieved an
average of 60% reduction in RMS values for band limited white noise excitation. This is
higher than what is currently achieved. However, tower-like truss structures typically
have well defined poles-zeros pattern and hence well separated resonant and anti-resonant

peaks.

In other studies, effectiveness is given in terms of peak reduction of chosen natural
frequencies. Consider the spectrum of the signals at mount #3 for controller OFF and ON
shown on Figure 6.23 for %, Figure 6.24 for %y and Figure 6.25 and Figure 6.26 for .
An average of 10 to 15 dB reductions can be achieved for frequencies below 50 Hz. From
Figure 6.25, the %4 gives the largest attenuation of 30 dB at the peak frequency of about

22 Ha.
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This is better than that achieved by Tanaka and Kikushima (1988) who managed a 10 dB
reduction in the transmitted force over a frequency range of 2 to 20 Hz on a forge
hammer. For machine vibration, Watters er a/., (1988) using force feedback achieved a 20
dB uniform broadband reduction for a single active mount of a ship diesel engine. Spanos
et al. (1993) managed a good 40 dB improvement (at the natural frequencies) on a
flexible structure using nine second-order filters. In both works by Watters and Spanos,
the actuator is installed in parallel with a passive isolator to control a single output. In
comparison with motion feedback, the results are quite compatible with that achieved at a
single location on the car body frame (15 to 30 dB) by Shoureshi and Knurek, (1996)

using active engine mounts.

One of the limiting factors in getting performance from the controllers discussed here is
the available actuator force. The inertia mass that can be added is a compromise between
the inertia force to be provided and the stroke length of the movable mass in the actuator.
The higher the inertia mass used, the greater is the static deflection and the shorter is the
available stroke length. This means that the high acceleration specified for the actuator
cannof be aftained, and the maximum force generated is still limited. The highest force
obtained is 10 N compared with the specified maximum of 18 N. The experiment was
performed without any load attached to the motor. If a pulley were to be attached to the
shaft, the magnitude of the disturbance force to be cancelled will be higher. Obviously a

larger actuator will be needed.

6.11 Analogue controllers

It is useful to compare the performance of the digital implementation of the controller
with that of analogue controllers. Four phase shifters were built and each is used as a
SISO controller for each mount sensor and actuator pair. At motor operating speed of
1340 rpm and below, they perform better than the digital controllers do. This is because
the phase of each circuit has been adjusted to drive the actuator in anti-phase to the

respective measured signal at 1340 rpm. At this speed, only the 22.3 Hz is dominant.

When the motor speed is increased to 1440 rpm and if the phase shift of each controller
was not adjusted, the attenuation is marginal - hardly perceptible except when viewed in

the frequency domain. As with previous experiments with the @y and the %, the
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transmitted spectrum contains other frequency components with different phase angles.

The circuit and the results are shown in Appendix E.

The analogue controllers provided only narrow band vibration isolation unless it is re-
tuned. So phase readjustment of each controller was necessary, but with the forces at each
mount affecting the other mounts, tuning of all the controllers was relatively difficuif.
Figure 6.27 shows the result of mount location #4 with only controller at location #4 re-
tuned. When the controller is turned ON, there is about 50 % reduction in the peak

amplitude. However, the attenuation at other mount locations did not increase.
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Figure 6.27 Active (analogue controller) at mount #4 for motor at 1440 rpm

6.12 "Hybrid" implementation - the use of thermoplastic material as a passive element

By combining active control with a (passive) damping material - hybrid control - a higher
degree of vibration isolation should be achievable (Beard er al., 1994). In addition it had
been shown by Sievers ef al. (1990) that closed loop relative stability could be improved

using soft mounts (with damping) in series with hard mounts.

A hybrid approach was attempted for motor speed of 1440 rpm at mount location #4. A 3
mm piece of damping material (ISODAMP C-1000 series) was sandwiched between the
motor base plate and hard mount #4. This material composed of energy absorbing

thermoplastic alloys with a loss factor of about 0.9 at 24 Hz and 30 °C.
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Figure 6.27 shows an average amplitude value of about 160 mV with the controller turned
OFF. With the thermoplastic material inserted, this is reduced to about 80 mV as shown
in Figure 6.28 giving a reduction of 50% in the vibration measured even without active
control. When the controller is activated, another 50% reduction is further achieved.
Hence the hybrid system comprising the thermoplastic material and the active controller

achieved about 75 % reduction in the peak amplitude.
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Figure 6.28 Active plus passive element al mount #4 for motor at 1440 rpm

The thermoplastic material provides some element of soft "spring" in series with a hard

mount. It can also be used to reduce shear force transmission onto the mount.

6.13 Summary

The methods and their theory for the design of suitable controllers have been briefly
presented. The results of the implementation of three selected controllers were given and
the effectiveness of each was discussed. The static gain controller turned out to be more
effective in general than the two types of #. controllers designed. It is able to attenuate
(between 32 and 54%) the force measured at the base when the motor is running at its
rated speed of 1440 rpm. The . controllers were less effective. Between 1300 and 1340
rpm, all three types of controllers are very effective and the order of effectiveness is: &,

% and %z, And for all cases, mount location #3 is the most (output) contrallable.

One outcome of the experiment is the demonstration that simple design such as a gain

controller using static output feedback is quite as effective. However, it lacks any formal
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structure to analyse for stability. It has been showed that instead of using eigenvalues as
performance specifications, it is possible to use frequency dependent function as a cost
function in an optimisation routine to obtain a controller design. In both cases, a model of
the system is needed and "brute force" approach is used to determine if the controller is
stabilising or not by checking the eigenvalues of the closed loop system. The
implementation is simpler and avoids the limitation imposed by sampling limit on the
performance of the %, controllers on a DSP board. Different static gain values have been
also tried. As long as the structure of the controller remains similar to the %y presented
above (but with different values) the results are about the same. They differ only in the
improvements at different mount locations. However, no formal proof has been given nor
attempted to show that the static output feedback approach in general gives a betier

performance in rejecting disturbance than that of the #. method.

The . method has a very formal structure for analysis of stability and performance. The
design goal of reducing the system RMS gain can be related to the goal of reducing the
RMS values of the transmitted disturbance at each mouni location and has been shown (o
be a minimisation problem that can solved using the #., method. The disturbances need
not be well defined except that the RMS of the vector of disturbances at all mount
locations is to be bounded. The framework also provides the means to predict if an
internally stabilising controller can be found that will minimise the system RMS gain
value. The simulation result is able to predict quite well the relative overall performance
at various motor speeds but not the performance at individual mount location. The
existence of the formal structure and analytical framework are the primary reasons for

experimenting with the #.. controllers.

In all cases considered, there is, however, a limitation imposed by the actuator. The small
travel range and the mass of the inertia element will limit the amount of active force

~

cancellation. Once again this constraint can be formulated in the design of the @

controllers, something which the SOF method discussed in this chapter cannot.



CHAPTER SEVEN

CONCLUSION AND RECOMMENDATIONS
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7.1 Conclusion

The test results in Chapter six show that vibration control of transmitted vibration from
machine hard-mounted to a supporting structure is possible using active force cancellation
at the feet of the machine. This involves measuring the net transmitted force between the
bottom of a mount and the structure and applying inertia forces opposite to the disturbing
forces. With the responses at each of the mount location being coupled to one another,
direct local feedback to the actuator from the same mount sensor location itself” is not
effective. So non-diagonal controllers are needed. Two types of non-diagonal controliers
are used: (a) dynamic compensators, Zss, and & designed from #. method and (b) static
gain controller, &, using Static Output Feedback. Bath types are implemented on a

digital signal processor.

Between these two types of controllers, it is found that the static gain controller
performed better than the . controller at the machine rated speed of 1440 rpm. Baoih
controllers are equally effective at speeds at and below 1340 rpm. For the %, starling
from 1340 rpm, the effectiveness of the attenuation deteriorates in varying degree
amongst the various mounting locations until at 1440 rpm there is no attenuation of the
disturbances at all mounting locations. This can be attributed to the presence of
disturbances with frequencies higher than the frequency range used to estimate the model.
Since the uncertainty pertaining to disturbances beyond the range is not incorporated in
the model, it is not expected that #., method will be capable of providing a design that is
robust to the higher frequency disturbances. A possible alternative is to incorporate
frequency-weighted functions to model the higher frequency response and use the -
synthesis method. The order of the generalised model is already relatively high - 12 states
plus 8 states due to the actuators and 8 states due to the performance weighting function

W.. The use of pi-synthesis method will result in controller model of even higher order.

There are two ways in which the . controller design method can be used. A set of
internally stabilising controllers, Zj7us, can be designed using the full Gy = Gisq and a
suitable %70 can be reduced by for example balanced residualisation method 1o a %
controller. The design of &7 should be done using different weighting functions, wij for
the respective transfer functions, g, of the system. More apprapriately, the Gz modsl
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should be used in the controller design to obtain a set of &g controllers. It is prudent to
check that a selected, Z»5, controller obtained from a suitable W, function also stabilises
the Gis4 model. With G, = G2, there is no advantage in trying to select different
weighting functions, wj; for the respective transfer functions, gj, of the system as some of
the designed ®ag, may not stabilise Gis4 model. Tt would simpler and more efficient o
design using a single w (i.e. Wy = w-l) as a specification basing on the & (Gp(jo)) plot.
Although the %% is of lower order than the %ag, it does not give a better performance than
the % Also there is no substantial saving in computation speed using the %.
Considering that the design cycle time is faster using the G2 model, it is adequate o use

to use Rag designed basing on G, = Gya.

There is an advantage using Static Output Feedback design method. The controller, in this
case, is 4x4 regardless of the order of the model of the plant. It is also easier (o fune the
gain parameters to accommodate any modelling error. Analytical solution to compiite
static gain controller is available only for certain classes of system models, but the model
studied does not fit into any of these classes. A solution was proposed that uses the
Sensitivity function, S(jo), as a cost function over a selected frequency range in an
iterative search routine to find a controller that minimises ||S(jo)|l~ and at the same
stabilises the plant model. The proposed method seeks to keep the closed loop response
i.e. the closed loop (net) force transmissibility matrix small. With a 4x4 controller, and an
understanding of the estimated model responses, fine-tuning to improve the measured
responses is easier than using the #., controller. The static gain controller turns out to be
more effective at motor operating speed of 1440 rpm only after the controller has been
tuned. In fact it still provides some degree of attenuation for the machine operating at
1700 rpm. It has already been demonstrated in §6.7 that a higher gain matrix is possible
with Static Output Feedback when the actuators' dynamics are included. The actuators
provide a near constant amplitude and a near zero or relatively small positive phase over a
range of frequency higher than that used to estimate the model. This coupled with the
constant gain values has some positive effect on attenuating the disturbances. The Zag(jo)
on the other hand starts to roll off at around 50 Hz as the identified model has very littie
dynamics beyond this range. So although the actuators have constant gain, the controller
itself does not. However this in no way suggests that the Static Output Feedhack method

5%

is more superior to the #. method in controller design for disturbance rejection. There is
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insufficient data and a lack of experiment results to support such a suggestion. However
the &4 is preferred in this case over the &»g at machine operating at rated speed and for its

simplicity.

Although the g is not effective at motor speed of 1440 rpm, the control loops for both
%y and Zg are robust to modelling errors within the frequency range of G,,. The issue of
robustness is important, as more often than not errors of some sort are present in the
models that are used in the design of a control system. In Chapter Three, a model suitable
for the design of an active control system when little is known about the base flexibility
i.e. the ability to design robust controller despite the presence of base resonance had been
discussed. The uncertainty associated with base flexibility has been derived for the case
of machine soft-mounted onto a structure and is embedded into the force transmissibility
matrix. In Chapter Four a method is presented to estimate (a variant) of the force
transmissibility function matrix for a machine hard-mounted onto a structure. Such a
force transmissibility function matrix was identified for an experimental rig presented in
Chapter Five. This matrix can be used to formulate a disturbance rejection performance
specification for the purpose of controller design for both methods and was demonstrated
in Chapter Six. Hence (both) the controllers designed, have in a sense, been shown to be
robust to the modelling errors within the frequency range. They are also robust to the
modelling errors in the actuators' dynamics as only a nominal model of one actuator has
been determined and that is used to model all the actuators in the design of the controllers.
However when disturbances beyond the frequency range are excessively dominant, the
controller may or may not be robust to such neglected dynamics. In the case of % it is
not robust in the presence frequencies beyond 40 Hz. Without any representation of the

high frequency dynamics, the . algorithm will not be able to design a robust controller.

One notable benefit arising from the use of the #. method is the use of the @.-norm. It
permits the specification of a cost function that is suitable for the iterative design of a
Static Output Feedback static gain controller. The use of singular values is quile
established in modal analysis, and placing a penalty on the maximum singular values over

a frequency range is a useful performance metric in controller design.
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Although models for active force cancellation have been developed for both soft and
hard-mounts, active control is implemented only for the case of a machine hard-mounted
to a structure. These represent situations where machine alignment and dimensional
accuracy are needed. The use of hard-mounts minimises any vibratory motion that may
arise if soft-mounts are used instead and avoids machine motion in response to the
actuators in active vibration isolation. Such motion has been observed in preliminary
investigations where it is found that coil springs tend to cause the machine to vibrate and
rock in response to any control effort. So a demonstration of active force cancellation is

better served using hard-mounts.

When soft-mounts are preferred or necessary, a suitable model for active force
cancellation for a machine on multiple mounting locations is given in Chapter Three. This
model fits quite well into the current robust control theory and . optimal control theory
framework. The effects of base flexibility modes are given as a multiplicative uncerfainty
to the nominal maodel of a machine soft-mounted onto a rigid base. This means that a
control engineer can design and test a control system on a test-rig that is dissimilar to the
actual structure that has some flexibility. The performance of the control system can then
be evaluated against the multiplicative error introduced by the flexible modes of the base

structure.

This decoupling of base flexibility from machine-on rigid base characteristics using soft
mounts is a general knowledge and is known qualitatively. In Chapter Three a norm or
magnitude condition of the product of two coupled dynamics has been presented (o serve
as a quantitative check on when decoupling is effective and useful. A simple simulation
was given to demonstrate an instance of the validity of the model. Although the multiple-
DoF model is motivated from the 1-DoF model of Blackwood and von Flotow (1992), the
derivation and condition for decoupling are not the same. Using combined dynamic
stiffness, a condition for decoupling for a 1-DoF case (for comparison) was obtained. This
differs from that given by Blackwood and von Flotow (1992) by a multiplication factor.
The method proposed is more consistent with the derivation of mass-spring-damper
equation than that of combined Receptance (or Mobility) used by Blackwood and von

Flotow.
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7.2 Recommendations and suggestions for future work

For continuous or persistent excitation in the presence of uncertainty due to base
flexibility, feedback control scheme is recommended. With current robust control design
methods, the active vibration control system can be designed to be robust to high
frequency dynamics. In most practical applications, the base structure is relatively stiffer
than that used in the experiment. The force transmissibility matrix of some order can then
incorporate unmodelled higher frequency dynamics as part of the generalised plant
model. With a little more effort the %, control design method can be used to give a
controller that is rpbust to both modelling errors in the frequency range of the estimation
and errors to higher frequencies disturbance. Such control paradigms are useful for
MIMO problems and can be applied to a machine mounted at multiple poinis on a

structure.

Since singular values are commonly used in vibration analysis, they are a useful link
between robust controller design methods and vibration control techniques. For % design
method, the frequency plot of the maximum singular values of the force transmissibility
matrix can be used to define a disturbance rejection performance function W If a
reduced plant order is used in the design, it is simpler and more efficient to define W, =
w-l, and to select w as a specification for the desired attenuation of the force
transmissibility matrix. For the Static Output Feedback method, it is preferred to use
G (S(jo)) as a cost function in an iterative search for a stabilising controller. The full

order plant model should be used since Re(Ai(Au))<0 Vi=1..n is a necessary

constraint function.

Attenuation basing on the suggested performance weighting functions discussed above is
limited by the output of the actuators. One may specify a W or G (S(jo)) that cannot be
achieved using the present set of actuators. Higher inertia masses can be added ta the
actuators but that will limit its dynamic travel stroke and results in actuators' saturafion.
Larger actuators with higher inertia masses can be used but this will increase the weighis
of the actuators relative to the weight of the machine. A practical alternative as
demonstrated in §6.12 is to use thermoplastic damping material inserts at the fop of the

hard-mounts between the mounts and the actuators. This would provide shear sfiffness




while reducing the vertical stiffness, and would provide a better attenuation of the
disturbances as demonstrated. It means also a lower requirement for secondary force
actuation. Such a hybrid approach preserves the primary purpose of using hard-mounts to
limit the motion of the machine and to maintain the necessary alignment and yet at the
same time introduce some passive isolation elements. As to how much an increase in
damping and a reduction in vertical stiffness are provided by the thermoplastic material

can be investigated.

It is proposed that for the purpose of design, the thermoplastic inserts should be not used
during the identification process of the force transmissibility matrix. A controller is to be
designed subject to the weighting function W, to prevent actuators' saturation. The inserts
should then be introduced when the control system is implemented. Further work can be
done to investigate how much improvement can be achieved from implementing this
suggestion, and the amount of trade-off that is necessary between actuators' requirement
and thickness of the thermoplastic or any other suitable material.

Whether the Static Output Feedback or active foree cancellation af the feet of the machine
is effective or not when soft-mounts are used remains to be investigated. The assumption
used to develop the equations in Chapter Three is that a force is applied as if'a shaker is
hung in the air and is not coupled to the system. The mass of the actuators may not be too
much of a problem to the model as they can be included into the mass of the machine. It
is the coupling between the actuators and the soft-mounts that is of concern. In this case it
is very likely that the (disturbance) force transmissibility matrix has to be separately
identified from the command input to actuators to base structure transfer function matrix.
Since improvements for soft-mounts active vibration isolation are always sort after, it is

certainly worth an experimental investigation.

For this particular case, the use of the Static Output Feedback method has provided us
with a simple static gain controller that is relatively effective. It is recommended for use
in active vibration isolation using hard-mounts. It is a low order controller and has simple
codes and hence the controller can be implemented on a lower cost processor rather than a

digital signal processor.
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APPENDIX A

MODEL OF A PASSIVE ISOLATOR
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A.1 Introduction

When a machine or an engine is soft-mounted onto a base structure, the isolators
determine the amount of force transmitted to the base structure. The isolator effectiveness
is dependent upon its stiffness or mobility function. This is typically given by its 4-pole
parameters. Under certain circumstances, the 4-pole parameters can be approximated by
blocked-transfer impedance, and an isolator can be approximately modelled as a stiffness

element.

A.2 A mount 4-pole parameters

A.2. 1 General Case

The forces and velocities of an isolator are shown in Figure A. 1.

Machine
Ve = Vini /‘T

Isolator

T /m2
Vi= Vm2

Foundation

Figure A.1 Forces and displacements of an isolator

The four pole parameters {A,B,C,D} relate the pairs {vy, finr} With {vio, fin] by

i'fml}:[A B}‘:fnﬁ} (A1)
Vml C Dllvin

with fu1= Afpz + By and vigi= Cf o + Dvga - The constraint is that AD-RC=1. Hence,



A = fml B= fml
. )
f m2 |, =0 \ m2 S n2=0
C= Vi D Vinl
./ml v =0 Vin F =0

(A2)

A and C are called the blocked parameters, vy = 0; and B and D are called the free

parameters, fno=0. Experimental determination of A, B, C,

(Norwood, 1989).

A.2.2 Special cases

a. If the isolator is symmetric, then

A:;LDL

/ in2

= D::———'m—

v =0 m2

=0

and D can be found in

(A3)

b. If the isolator is massless or very light weight, A=D=1 and B=0. This is true at low

frequencies below the mount internal resonant frequency. In this case,

,ﬁnl:fm;’ and vy, = Cf;n2 + Vin2

giving,

. 1
‘/Jm2 =C (sz = Vi)

Alternatively, the pairs {viy,Vm2 ] and {fm1./m2) are related b
y p y

{Vm] 1 _y [fml } _ [Y; |
v2d " L fmo Yo

Yio } » [.fml _
Yool Lfm2.

(A4)



where Y, is the mount mobility function. The transfer function or the blocked transfer

impedance of the mount can be defined as

(A.5)

’

=0

At frequencies below the mount internal resonance, and assuming that the mount is

almost massless, the mount equation is given by

) .,
jnﬁ =C (Vp-Vinl) = 221(\’1112 - Viml) (A.6)
or

j;ﬂQ =k (Xm2-¥mt)

Where £ is the stiffness of the isolator. This will be the model for the isolators used

through-out the thesis.

A3 A general model of a mount or isolator with 6-Dol

A 6-DoF isolator with linear and angular displacements can be modelled as a cylinder
with its longitudinal axis along the z-axis. The translational displacements and angular

. Y . . T
displacements are indicated in Figure A.2. For each i" mount, g,1i=¢ei, and gum2i=gs.

thanl
gm1 = {Xm1s Yml, Zmls E;ml,\}lmh (;m] }T Yt Yt
Xl &
ZW:»QIHZ
Rotation + in CCW Ym2:Wm2
< R TR A

Figure A.2 Displacements and angular displacements of an isolator
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The general stiffness matrix, with respect to the principal axis of the cylinder is given as

kg O 0 0 0
0 ky; O 0 0 O
S B k, 0 0 O A
: 0 G, 0 0
0 0 0 G, O
I 0 0 0 0 Gy

t

The diagonal elements are the complex elastic constants of a mount where kg = kyi + jky
where ky and ky' are the resistive and dissipative spring rates respectively. For an
isotropic mount, the resistive components kyi=ky;, and G=Gy;.

The stiffness coefficients for a cylindrical isolator of radius, «a, and length [ are given in

the following Table A.1 (v is the Poisson ratio, and E the Young's Modulus).

ky k, ky Gy G, Gy

3nEa +(413) | nEa? <1 | 3nEa% +(413) | nEa* =(4l) | nEa* +{4(14+v)l} | nEa* +(4])

Table A.1 Values of stiffness of an isotropic i1solator

A.4 Model of a 3 DoF isolator

A 3-DoF model of the isolator considers only the linear displacements. The complex

stiffness matrix is given by a 3x3 matrix of the form,

kg 0 0
ki=| 0 ky O (A-8)
0 0 k,

Without dissipative stiffness, the stiffness and damping matrix of cach isolator is given

by,
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kg O
0 0 ky,

A.5 Summary

A simple model of the isolator is a cylinder, and its property is given in terms of the

spring stiffness when the frequency of excitation is below its internal resonant frequency.

3]
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APPENDIX B

MODEL OF A MACHINE MOUNTED ON A FLEXIBLE

BEAM AT TWO POINTS



B.1 Example model

The condition shown below can be modelled as a rigid machine on a flexible beam at two

points:
<=
-Tx1 '
Motor
< — Al
é Mount
[ © Flexible base
/% ................ I e s 4 e ¢ e o e o bl b i b G § ken
/;/x '}/ //x -’-:// ,/ g :{/:-'.5/" ;’// /‘i:r/ /// /’//,-///.’// /Z.I/:‘ir, )// /;{:
L

Figure B.1 A model of a machine mounted at two points on a flexible beam

B.2 Model Parameters

Machine and mount parameters Mild steel beam paramelers
Mass, m= 3.7 kg Density, p=7800 kg m™

Moment of inertia Jyy =0.53 kg-m” | Elastic modulus E=220%10° N m™
L, length =1.5 m

h, height of the beam =0.01 m

Ay, cross-section area = 0.0015 m*

Ibyy=1.25* 10" m*

Machine c.g. location Mount locations
rag=-023m;r;=0.23m #1 Xp1=(L4re)/2 m

=-0.08 m;r, =-0.08m #2 Kp2=(L+142)/2 m
Mount property: mode shapes loss factor, nb=0.05

Loss factor, nz = 0.07
Stiffness coefficients, ko
Case (1): k=1 kN m’
Case (2): ko= S kN m"

Table B.1 Model parameters
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B.3 Model Equations

The mount can be considered to be capable of transmitting three types of forces and
moments as shown in Figure B.1. At each mount location, i, the mount location matrix,

P;, mount complex stiffness matrix, K; and the machine mass matrix, M are given by

0 1y ky O 0 m 0 0
Po={0o 1 -rg| Ki=|0 k; 0 M={0 m 0 (B.1)
0 0 ! 0 0 gy 0 0 Iy,

Where k =k, o(1+/nz) and ky=ko( 1+inx) where k,, and ky, are spring constants and nz

and nx are the loss factors. The machine sub-system matrix can be written as

s [P co[® 0] -
- - 5 - o, 3 (‘%;ﬁ)
P, 0 Ky

For disturbance, Qu=(F,, F,, T,)" applied ai the feet and the displacements measured also

at the feet (assuming that the mounts are at the feet), the receptance matrix is given by
T ) T -l
PR. P =P-o"M+P KP| P (B.3)
The flexible beam, assuming the Euler-Bernoulli model is given by

s OB(X X )
] M ﬂ_ 't M [ S .
jhx: byi j D

22w 04w h
p-Ap

+ E.Ib = Z/j,~8(x—x;~)+ =
or? Yoot i I\ 2

(B.4)

Where the force al a given location, x-xp;, is given by delia function 6(c-xy,;) and T denotes

the moment.

The boundary conditions for simply supported beam are used. By solving the equation
using the mairix of eigenfunctions, ‘P, and assuming the modal complex amplitude 1o he
given by the vector {w], we have
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w=eTlw} wT={y )= {sm(%}} (B.5)

- . . ot . - . .
I'he base coupling matrix at i location, Py, for N modes is given by

o . - . -
_m ¢ (\l’L ) Sm(,_._mﬂ,) = cos(g—\u )

I)hirl — coe see een (‘36)
— Q_TE C (’)S( N x bi ) ( Nn Vpi ) __‘:;E C()S(‘{\{I[;\"[i

h

Defining the modal mass, r'" modal frequency and the ™ modal damping respectively

with the usual notations (and adding the structure loss factor nb) as

, + v |EIb, o o
my, = %*vah.L; W, = (ﬂ*)\/—y—y Ky = my, (nr?“)l + jnb}; (R.7)

The base structure system matrices are given as
M, = diag(m...), Ky = diag(kpr..kon) and Py," =[Py " 1 Py ") (B.8)

From the system equation matrix, the uncoupled base receptance matrix for the coupled

force at the mounting points to displacements at those points is found to be
-1 2 e T
Df‘ :ph“ﬂ) Mb +Kh Ih (HQ)
The coupled base receptance matrix is taken to be
3 -1 2 : y | 3 WI'} T ‘
Dy + K| =P oM, + K, Py KPP (B.10)

In this case the two matrices differ only by the stiffness term, and does not include the

mass inertia effects of the mounts, and it can be shown that [De+I =0y 'K D '] "

[\
(3]



To simplify further for the case where the mounts transmit only a vertical force, although
the machine is itself capable of 2-DoF disturbance {F,, T),}T, we can write the respective

coupling matrices as

X N
— sn(Reny by |
P :|:I M;\ ]; ph = T[XLj Nnﬁ ') BN
'x2 sirl('~f'[—h' Y o sin(—bZ

The base coupling matrix is now basically a matrix of the eigenfunctions evaluated at the
two mounting points xp; and xp for the first N modes. For control of a self-adjoint
system, Py is the modal measurement matrix of sensed motion that relates the complex
modal amplitudes to the actual motions and is a function of the location of the sensors.
For a collocated actuator-sensor pair, P, is the modal control mairix (and is a function of

the location of the actuator).

The results shown in Chapter 3 uses the I and P, matrices given by (B.11)

B.3 Summary

A simple beam equation is used in the model of the example given in §3.6 of chapter
three. The results of the simulation are shown in Figure 3.4 and 3.5. They have been used

to demonstrate the relevance of the model equation developed in chapter three.
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APPENDIX C

TRANSFER FUNCTIONS FREQUENCY REPONSE

PLOTS OF ESTIMATED AND MEASURED Gy

(Estimated plots given by solid lines)
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Figure C.1a Bode plots of g1y and g2y of measured and ICATS fii




ICATS fitted vs measured for g31
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ICATS fitted vs measured for g12
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ICATS fitted vs measured for g32
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Figure C.2b Bode plots of gy and g4a of measured and ICATS fii
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ICATS fitted vs measured for g13
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ICATS fitted vs measured for g33
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ICATS fitted vs measured for g14
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ICATS fitted vs measured for g34
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g33 of Measured, G154 & G12
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g14 of Measured, G154 & G12
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APPENDIX D

SMALL GAIN THEOREM
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D.1 Introduction

The General Nyquist (Stability) Theorem and the Small Gain Theorem are included for
completeness. The former is needed in the proof of the latter and the latter to show the
common framework relating "classical" %, (Tgffner-Clausen, 1996) robust control theory
and the more current pi-synthesis robust control theory. Its use in vibration will also be

highlighted.

The MIMO Nyquist theorem is an extension of the classical Nyquist stability theorem.

Let L(s) represent the Loop transfer function as shown in Figure D. 1.

-—%O*w L(s) >
+ T“

Figure D.1 A unity feedback sysiem

The Return Difference is given in (ID.1) and its determinant is given by MacFarlane

(1970) in (D.2).

F(s) = I+ L(s)) (OD.1)

closed loop characteristic polynomial

IF(s)l = (D.2)

open loop characteristic polynomial

As s traverses clockwise along the closed D-contour in the closed Right-Half s-plane, the

Nyquist plot of IF(s)l can be generated.

D.2. Theorem D.1 Generalised (MIMO) Nvquist Theorem

Let Py represents the number of open loop unstable poles of 1.(s). The closed loop sysiem

given in Figure D.1 is stable if and only if the Nyquist plot of [F(s)l

i) makes P anti-clockwise encirclements of the origin, and

i1) does not pass through the origin.
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In the simple case of Py = 0, if the Nyquist plot of IF(s)l does not encircle or pass through
the origin means that RHP of the s-plane enclosed by D-contour does not contain zeros of

the closed loop characteristic polynomial. And hence from (D.2), IF(s)l # 0.

The Small Gain Theorem is a very general theorem that gives sufficient conditions for
which a bounded input will give a bounded output (Desoer and Vidyasagar, 1975).
However it is used very often to derive robust stability tests for different uncertainty
models. The most basic (small gain) theorem is given in terms of the spectral radius
p(L(w)), which is defined for each frequency as the maximum magnitude of the

eigenvalue

PL(jw)) = max 1A;(L(jw)) (D.3)

D.3 Theorem P.2 The Small Gain Theorem (one version)

Assume that a system given by L(s) is stable. Then the closed loop system is stable if
p(Ljw)) < 1 Yo (D.4)

Proof. Let the closed loop system be unstable and (D.4) be true. From Theorem D.1, an

unstable closed loop system will have [F(s)l encircling the origin. Then there exists a gain

¢ € (0,1], and a frequency w* such that

I+ e Lo+l =0.
< IT AT+ e L(jw*))=0

< 1+ e A(L(jo*)) =0 for some 1.

. | .
< M(L(Gow*)) = - - for some 1.
= I A(LGo*x) 1= 1 for some i.

The last statement contradicts the condition given in (X.4). So the spectral radius less

than one is a sufficient condition. It is quite intuitive when one cansiders that if all the

fi)
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eigenvalues are less than one for all frequencies, then any signal perturbation will

eventually die off and the system will be stable.

A more general requirement can be obtained from the relationship

p(L) <L Il for any matrix norm llell satisfying the HA-BI < IAI-IBH

Hence for any stable system L(s), the closed loop system is stable if

NLi<1 Vo (D.5)

Since any induced norm also satisfies the above two conditions, it can be used in lieu of

the spectral radius.

D.4 Equivalence of robust siability and %, control problem

We can examine the struciure shown in Figure 3.8 and how see the robust stahility
problem and the #, control problem are equivalent through the use of the Small Gain

Theorem. Part of the figure 1s redrawn here as Figure D.2, without the subscript 'M' for A.

Au Ay

Figure D.2 The M-A block problem
The loop transfer function L = M-A. A version of the Small Gain Theorem can be applied

to the system shown in Figure D.2.

Let M(s) be a stable system and y>0. Then the system given in Figure D.2 is physically

realisable and internally stable for the set of all stable complex matrices A(s) with

i. lAll, < Uy if and only if IMll, <y
ii. HAll, <1y if and only if IMll, < v

o2
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Both norms of A and M cannot be equal to | at the same time as this violates (D.5). So if
the product lIMll-llAll, <1, the closed loop system will be stable. In a sense the above
theorem gives a margin of stability. In most cases, A(s) is normally scaled so that llAll.< 1,

and the necessary and sufficient condition for closed loop stability is IMll,< 1.

The general LFT framework given by Figure 3.7 can be redrawn as Figure E.3.

A o
Au Ay Al A @/\y
SN — ] . . _——
a— P e d—p P |y o, N
— B ] Fb‘ j = — Z
T x ﬂ-r T e .
il h c

Figure D.3 General LFT framework

In Figure D.3(a) if A=0, we have the standard #., control problem as shown in Figure
D.3(b). In Figure D.3(a), let N = F\(?2,X), and hence in Figure D.3(c), if ¢=0 we have the
standard robust stability problem. If A(s) is a full complex block, the two problems are
equivalent as far as the Small Gain Theorem is concerned. Thus a solution to the #e

control problem is the key to robust stability problem.

D.5 Application to the vibration problem of Chapter Three

For the model derived in chapter three and represented by Figure 3.7, the closed system

with controller X, is given by
IVI('S‘):(I-}_G(J'?\/)J.GO'%
It is possible to evaluate the stability of the closed loop system for a set of designed

controllers against the uncertainty introduced by the flexible dynamics of ithe base

structure. This uncertainty can be regarded as a perturbation to the nominal system M(s).



The perturbation is given by Ay = (Go-I)-K-R,;, where llAull, <vy. Applying the small

gain theorem the closed loop system given by M(s) will stable if and only if lIMlle< 1/y.

Since the machine on the test bed dynamics, Gy, is known, the condition llApmlle <y can be
translated to finding a bound on IIK-Rydle or IRy dle. For example, if 1G,-Tllo < f3, then

KR il < y/B, subject to an upper bound of 0.5 as discussed in chapter 3.

D.6 Summary

The thesis considers the #., control problem as part and parcel of robust control theory.
With this framework it will be difficult, though, to efficiently test for robust stability
using the Small Gain Theorem in the form given. One would have to search through an
infinite set of allowable A. On the other hand, for the model discussed in chapier three,
one could check the design of the flexible base structure and ascertain the value of HAmllke

and then determine if the designed controller has robust stability or not.

For the general case, recent developments in p-synthesis had made available testable
methods using the structured singular value (Stein and Doyle, 1991). This approach is not
adopted in the thesis as a simpler and more direct approach was used to design the

required controller.
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APPENDIX E

ANALOGUE CONTROLLER CIRCUIT AND THE

RESPONSES AT 1330 AND 1440 RPM
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