Aston University

if you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please

read our Take

Meta Level Component-Based Framework for
Distributed Computing Applications

ANDY SHUI-YU LAI
Doctor of Philosophy

ASTON UNIVERSITY

April 2008

This copy of the thesis has been supplied on condition that anyone
who consults it is understood to recognize that its copyright rests with
its author and that no quotation from the thesis and no information
derived from it may be published without proper acknowledgement.

THESIS SUMMARY

ASTON UNIVERSITY

Meta Level Component-Based Framework for
Distributed Computing Applications

ANDY SHUI-YU LAI

Doctor of Philosophy
April 2008

Adaptability for distributed object-oriented enterprise frameworks is a critical
mission for system evolution. Today, building adaptive services is a complex
task due to lack of adequate framework support in the distributed computing
environment. In this thesis, we propose a Meta Level Component-Based
Framework (MELC) which uses distributed computing design patterns as
components to develop an adaptable pattern-oriented framework for distributed
computing applications. We describe our novel approach of combining a meta
architecture with a pattern-oriented framework, resulting in an adaptable
framework which provides a mechanism to facilitate system evolution.

The critical nature of distributed technologies requires frameworks to be
adaptable. Our framework employs a meta architecture. It supports dynamic
adaptation of feasible design decisions in the framework design space by
specifying and coordinating meta-objects that represent various aspects within
the distributed environment. The meta architecture in MELC framework can
provide the adaptability for system evolution. This approach resolves the
problem of dynamic adaptation in the framework, which is encountered in most
distributed applications. The concept of using a meta architecture to produce an
adaptable pattern-oriented framework for distributed computing applications is
new and has not previously been explored in research.

As the framework is adaptable, the proposed architecture of the pattern-oriented
framework has the abilities to dynamically adapt new design patterns to address
technical system issues in the domain of distributed computing and they can be

woven together to shape the framework in future. We show how MELC can be
used effectively to enable dynamic component integration and to separate
system functionality from business functionality. We demonstrate how MELC
provides an adaptable and dynamic run time environment using our system
configuration and management utility. We also highlight how MELC will impose
significant adaptability in system evolution through a prototype E-Bookshop
application to assemble its business functions with distributed computing
components at the meta level in MELC architecture. Our performance tests show
that MELC does not entail prohibitive performance tradeoffs. The work to
develop the MELC framework for distributed computing applications has
emerged as a promising way to meet current and future challenges in the
distributed environment.

Keywords:
Component-based software, frameworks, distributed computing, design patterns,
meta architecture.

Acknowledgements

This is to declare that the work of this PhD thesis was done by me and the work
has not been submitted for any other academic award.

My thesis supervisor, Dr A J Beaumont, and his colleagues, Dr E F Elsworth and
Mr B S Doherty, have provided invaluable advice and comments on the work
shown in thesis. I would especially like to thank my supervisor for providing
encouragement throughout the past six years. I would like to give a special
mention to my examiners, Dr D Cornford and Dr B Bordbar, for their comments
and supports to my work.

In particular, I wish to extend special thanks to my External Supervisor, Dr Y K
Leung, Head of the Department of Information and Communications
Technology, Hong Kong Institute of Vocational Education, to provide me with
valuable ideas and allowing me sufficient time to write up the thesis. Mr. Jacob
Chu also deserves special mention for his help in editing and compiling the
manuscript.

I also thank my students, Marco Chan, Harry Lee, and many anonymous
students, who help to prepare the program coding and conduct testing in the
feasibility study on the proposed adaptable MELC framework.

And finally, T would like to thank my wife Esther and my son David for their
love and continued support throughout the years.

Last but not least, I would like to thank the Hong Kong Vocational Training
Council for providing me Staff Development Fund (#SD5000163) to complete my
PhD study at Aston University.

Table of Contents

Chapter Page
PARTI INTRODUCTION

1. Introductlon ... 11

2. Requirements of Adaptable Framework Architecture:-----r--eoeeeeeeees 16
2.1 Frameworks
2.1.1 Our Definition of a Framework
2.1.2 Other Definitions of Frameworks
2.1.3 Benefits of Using Frameworks
2.2 Applying Design Patterns for Framework Development
2.2.1 Template Method Pattern for Generic Framework
2.2.2 Implementation of Generic Framework
2.3 Properties of Adaptable Distributed Computing Framework

24 Summary

PART II TECHNICAL ASPECTS AND RELATED WORKS OF MELC

3. Components and Component-Based Development:+--««-rerreerreeeeees 33
3.1 Components
3.1.1 Our Definition of a Component
3.1.2 Other Definitions of Components
3.2 Objects and Components
3.3 Components in Distributed Applications
34 Concerns, Design Patterns and Components
3.4.1 Separation of Concerns

3.4.2 Design Patterns and Components

3.5

Pattern-Oriented Frameworks

4.1
4.2
4.3
4.4
4.5

Theoretical Works on Adaptability in Meta Architecture

51
52
53

5.4

Practical Works on Adaptability in Meta Architecture

6.1
6.2
6.3

6.4
6.5
6.6
6.7

Component-Based Framework Development

Introduction

Pattern Diagrams

Pattern-Oriented Frameworks and Other Frameworks
Pattern-Oriented Framework Development

Summary

Reflection in Meta Architectures

Meta Architecture in A Simple Drawing Pad
Related Works in Reflection

5.3.1 Object Dependencies in Reflection
5.3.2 Interface Realization for Reflection
5.3.3 Object Interactions for Reflection
534 Roles Management for Reflection

Summary of Reflective Models

Adaptable Frameworks for Systems Evolution
Reflective Languages — Iguana

Adaptable Models

6.3.1 Adaptive Object Model

6.3.2 Dynamic Hyperslics Model

Reflective Middleware for System Evolution - RAMSES

Hot Deployment and Hot Evolution in Application Servers — J2EE

Reflective Model Driven Architecture — OpenCOM

Summary of Reflective Frameworks

PART III ADAPTABLE ARCHITECTURE OF MELC

7. MELC — Adaptable Meta-Based Framework Architecture:------=-+--reeeeees

7.1 Conceptual MELC - Adaptable Meta-Based Framework

7.2 Physical MELC - Adaptable Meta-Based Framework

73 Reflective Kernel Design in MELC
7.3.1 Meta Objects and Meta Space
7.3.2 Reification Management
7.3.3 Reflection Management
7.3.4 Separation of Controls Between Two Levels

7.4 MELC Programming Model
7.4.1 Instantiation of Meta Objects — Meta Level Programming
742 Instantiation of Base Objects — Base Level Programming
743 Reification of Meta Objects - Meta Space Programming
7.4.4 Application Level Controls — Base Level Programming
745 System Level Controls — Meta Level Programming

7.5 Summary

8. MELC Distributed Computing Patterns:-««------orerrererrernemeoereaeenes 128
8.1 MELC - Distributed Computing Patterns

9' MELC - Bulldlng App]_lcatlons With MELC
91 MELC - A Simple E-Bookshop Application

10. MELC Meta Components Installation and Integration:---«----ssxreereeee
10.1 MELC - Meta Components Installation
10.2 MELC — Meta Components Integration

10.3 MELC — Meta Components Reification
104 MELC - ORB Middleware for Object Distribution
10.5 Summary

11, MELC Adaptability «-«e-eeesressesssssssismrsnsiiii i 168
11.1 MELC Adaptability
11.2 MELC Design for Objects Communication with Crosscutting
11.3 MELC Design for Adaptability at Runtime
114 MELC Implementation for Adaptability at Runtime
11.5 Summary

12, MELC Performance Fvaltiation «-««--««--«rssssrreseemmmrrmmemmemi... 182
12.1 MELC Performance Evaluation
12.2 Test Suite Design
12.3 Benchmarking

12.4 Conclusion

13, CONCIUSION «-v#vrrrrrrrrmrrennnrrssnsessi et ettt e et et et e s st e e 197
BIDLIOGIApIy -+« vrssrsrrssere et sttt 202
Appendix A - MELC Configuration and Management:---««--=ssreerrerreereeeeees 211
Appendix B - JAVA Classes and Methods in MELC -+ -reeereerereemsrrmrreenees 215
Appendix C — JAVA Coding in MELC:++++-+esvssreersseramssssssssi e 217
Appendix D — Distributed Computing Technologies:««-------reeererrerereeeenenee 228

List of Figures and Tables

Figure

Figure 2.1
Figure 2.2
Figure 2.3

Figure 3.1
Figure 3.2

Figure 3.3

Figure 3.4
Figure 4.1
Figure 4.2
Figure 4.3
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 6.1
Figure 7.1

Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10

Figure 7.11

Description

Framework Aspects and Quality Measures

Class Diagram for Template Method Design Pattern
ThreadPooling as Generic Class and FixedThreadpool
and GrowthableThreadPool as Concrete Classes

Calling a Worker in a Thread Pool in a Single Module
Crosscutting Concern — Redundancy code fragment of
Authorization found in many other operations and classes

A Comparison of Waterfall and Adaptable Component-Based
Framework Development

Pattern Instantiation in Framework Development

Flements in a Pattern Diagram

Pattern Instantiation of Closed-Loop Application System
Development Process in Pattern-Oriented Framework

Meta level and Base level in a typical Meta Architecture

Meta Architecture Approach with Drawing Pad

Structure of meta classes at meta level

Scribble pad screen with meta object Scribble2Meta
Scribble2Meta extends ScribbleMeta at the Meta Level
Structure of Drawing Pad — A Base Object

Sequence diagram of the constructor method in Drawing Pad
Composition of Meta Objects in Meta Architecture

Mapping performed at the Meta Level

Roles Management for Reflective Software Architecture
RAMSES Architecture

Pattern-Oriented Framework provides Pattern Level (Framework
Design Level) and Class Level (Framework Class Level)
Adaptable level introduced in MELC Framework

Meta Level Component-Based Framework Architecture

Kernel Design in MELC Framework

Internal Architecture in MELC Architecture

Class diagram for Meta Objects and Meta Space Management
modeling with Mediator Pattern

Class diagram for Reification Management modeling with Visitor
Pattern

Class diagram for Reflection Management modeling with Observer
Pattern

Class diagram for Separation of Controls modeling with Proxy
Pattern

A Proxy Meta Object as a local representative of meta object at
Base Level

Collaboration Diagram for Meta Object created by MELC Kernel
Manager

Page

19
21
26

39
40

43

44
48
51
56
62
64
65
67
68
69
71
76
77
79
90
99

101
103
104
105
106
108
110
112
112

116

Figure 7.12
Figure 7.13

Figure 7.14

Figure 7.15
Figure 8.1
Figure 9.1

Figure 9.2
Figure 9.3
Figure 9.4
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6

Figure 10.7

Figure 10.8
Figure 10.9

Figure 11.1

Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 12.1
Figure 12.2
Figure 12.3

Table 5.1
Table 6.1
Table 7.1
Table 8.1
Table 11.1

Table 12.1
Table 12.2
Table 12.3

Table 12.4

Collaboration Diagram for Base Object created by Kernel Manager
Collaboration Diagram for Base Object Reification of a Meta
Object

Collaboration Diagram for Start/Stop operations at the application
level

Collaboration Diagram for Start/Stop operations at the system level
Distributed Computing Patterns in MELC Framework

Distributed Computing Design Patterns and E-Bookshop
Application

Conformation of components from selected pattermns

E-Bookshop reifies components in MELC Framework

Meta Space Kernel Manager - Utility for Replacing Meta Objects
Patterns Installation at Meta level

Pattern Components deployed to Meta Level

Integration happens when Thread Pool is reified by base objects
Roles deal with components integration in MELC architecture
ORB Proxy and HTTP Proxy for applications at Base Level
Sequence Diagram for Meta Object Reification (ORB) at Base
Level

Meta Object Reification (ORB) at base level with MELC Kerne]
Manager

ORB Meta Component at the Meta Level in MELC

Operational flow for serving a remote request at the Base Level and
Meta Level

Composition Connector in crosscutting design to decouple Base
Level and Meta Level in MELC

Composition Connector - ORB Target Object in Meta Repository
Meta Objects: Fixed Thread Pool and Growth Enabled Thread Pool
Adaptability of Meta Objects in MELC

Collaboration diagram for meta objects replacement at Runtime
ART for looking up Remote Business Components

Execution Time for Remote Business Components in Server

(a) Performance Analysis on Mail Box Services; (b) Performance
Analysis on Heart Beat Services; (¢) Performance Analysis on
Publisher Services

Related Works for Reflective Models with Meta Architecture
Related Works for Reflective Frameworks for software evolution
MELC Reflection Categories and Meta Object Classes
Distributed Computing Patterns

Summary of the accomplishment in Adaptable MELC Framework
for system evolution

ART for looking up Remote Business Components

ART for Execution of the Remote Business Components

MELC overhead costs for Look-up and Execution of Remote
Business Components

Performance Analysis of MELC Framework

.9

118
120

123

124
138
144

145
148
151
154
155
156
159
160
162

162

164
165

169

170
173
173
175
186
189
191

82
96
114
137
181

187
189
190

194

PARTI

INTRODUCTION

-10 -

Chapter 1 Introduction

1.1 Introduction

Many application designers aim to create reusable components in their
applications to reduce the effort and time required for software development.
Reusable components range from simple classes and libraries to reusable

patterns and frameworks.

The level of component reuse in the development life cycle depends on the
nature and granularity of the component and the decisions made by the
component designer on behalf of the component user. A simple design decision,
like the reuse of a library class or an AP], is the most common and represents

reusability at the class level.

Design patterns operate at a higher level of abstraction than classes and provide
a successful way of describing communication between classes. In fact,
application designers probably don’t write any code until they can build a
picture in their mind of what code does and how the pieces of the code interact.
The more they can picture this organic whole, the more likely they are to feel
comfortable that they have developed the best solution to the problem. In one
sense, the more elegant solution will be more reusable and more easily
maintainable. Design patterns satisfy this need for good, simple, and reusable

solutions.

A design pattern is a convenient way of reusing object-oriented code between
projects and between application developers. The idea behind design patterns is
simple: to catalog common interactions between objects that application

developers have often found useful.

-11 -

Patterns support a problem-solving discipline with acceptance in the software
architecture and design community. Patterns represent recurring solutions to
software development problems within a particular context. A pattern is a
structured document that describes a solution. It captures the key design
constructs, practices, and mechanisms of core competence in object-oriented

development.

Recently, design patterns were introduced to document good OO designs [1, 2].
In general, a pattern describes a problem that frequently occurs in software
application, and then describes its solution in such a way that it can be reused.
Design patterns help designers reuse successful designs by basing new designs

on prior experience.

In building design frameworks, we focus on reusing design patterns. It is clear
that less emphasis has been placed on systematically deploying these reusable
designs than on documenting them. Reusing software in practical applications is
a difficult task, yet it is required to reduce development effort and assure high
software quality. Reusable designs and frameworks are less frequently used due
to the complexity and difficulty of constructing generic designs for common

application domains.

There are framework developers in more complex domains (such as multimedia
networking framework [3], adaptive web server framework [4], E-commerce
framework [5] and Grid-based Flood Monitoring Framework [105]). As a result,
developers in these domains largely build, validate, and maintain software
systems from scratch. In an era of deregulation and stiff global competition,
however, it has become prohibitively costly and time consuming to develop
applications entirely in-house from the ground up. The construction of a generic

framework using design patterns for developing distributed computing

S12-

applications has hitherto received insufficient emphasis in research.

The approach of using design patterns in constructing a framework makes its
design easier to understand. In addition, the framework thus generated contains
better software quality [6]. However, the discussion of pattern-oriented
framework construction shows that building frameworks based only on patterns
has not received much research attention, because of difficulty in maintaining the
integrated coding after the instantiation of design patterns, though benefits of
patterns such as reusability and modularity are well known and understood [6].
However, it has been observed that pattern-oriented frameworks lack the

adaptability to enable system evolution [85].

But our work in this thesis demonstrates the use of reflection with a meta
architecture to resolve the adaptability problem in a pattern-oriented approach.
On one hand, we aim to apply the concepts of a meta architecture to a
pattern-oriented framework to resolve the difficulty in maintaining the
integrated coding after the instantiation of design patterns and, on the other
hand, treat instances of patterns as components that will accommodate and
adapt to the ever-changing system evolution. We have observed that the
components in distributed applications require runtime replacement to meet the

system evolution in a distributed setting.

In this thesis, we introduce a new architecture for the pattern-oriented
framework that has the ability to dynamically adapt new design patterns to
address issues particularly in the domain of distributed computing. In effect, we
augment the adaptability of current reflective frameworks in order to support

runtime component replacement that is required in system evolution.

In particular, we view the system functionalities of a distributed architecture as

encapsulated collections of components. We employ distributed computing

-13 -

patterns as building blocks for meta components as part of our meta-based

architecture.

The remainder of this thesis is organized as follows.

Part I - Introduction

Our meta-based framework will rely heavily on object-oriented (OO) design
features like abstraction and dynamic binding to achieve extensibility and
adaptability. Chapter 2 discusses the relationship between Design Patterns and
Framework and presents the key properties of an adaptable framework for

distributed computing applications.

Part II — Technical Aspects and Related Works

Chapter 3 discusses recent works on the use of components. Chapter 4
introduces a pattern-oriented framework, which uses design patterns as building
blocks. The pattern-oriented framework satisfies the need for a good and reusable
solution but is not able to provide adaptability for system evolution. In Chapter 5
and Chapter 6, we show the related works (theoretical works and practical works)

of adaptability in meta architecture.

Part III — Adaptable Architecture of MELC

Chapter 7 describes the architecture of our Meta Level Component-Based
Framework (MELC). We describe our design and implementation which
combines a meta architecture with a pattern-oriented framework. The result is an
adaptable framework which provides a mechanism to facilitate system evolution.
An adaptable layer is put into a pattern-oriented framework by using a meta
architecture creating a higher level of abstraction. The MELC Programming
Model is also introduced. Chapter 8 summarizes the common issues in
distributed computing and provides resolution for them with their relevant

design patterns. Chapter 9 shows how to build an application with MELC.

- 14 -

Chapter 10 describes how MELC instantiates design patterns into meta
components. Chapter 11 describes, in detail, the implementation of adaptability
in MELC. It covers the replacement of meta objects at runtime and their

implementation with the programming model.

To demonstrate that the MELC framework can be implemented efficiently,
Chapter 12 conducts an analysis of the framework performance. Finally, Chapter
13 provides a conclusion, highlighting MELC" s principal contributions to

distributed computing.

- 15 -

Chapter 2 Requirements for Adaptable Framework

2.1 Frameworks

Our aim is to develop a component-based framework which uses distributed
computing patterns as components in that framework. The advantages of using
design patterns and a framework is that design patterns and frameworks both
facilitate reuse by capturing successful software development strategies [15]. The
primary difference is that frameworks focus on reuse of concrete designs,
algorithms, and implementations in a particular programming language. In
contrast, design patterns focus on reuse of abstract design and software

micro-architectures [20].

Frameworks are an object-oriented reuse technique [11]. A framework is a
reusable design of a system that describes how the system is decomposed into a
set of interacting objects. Sometimes the system is an entire application;
sometimes it is just a subsystem. The framework describes both the objects and
how these objects interact. It describes the interface of each object and the flow of
control between them. It describes how the system’s responsibilities are mapped
onto its objects [21]. Frameworks take advantage of all three of the distinguishing
characteristics of object-oriented programming languages: data abstraction,

polymorphism, and inheritance [7][8].

2.1.1 Our Definition of a Framework

Yacoub [6] described framework using a pattern-oriented approach. He views a
framework as a concrete realization of families of design patterns that are
targeted for a particular application-domain. When patterns are used to structure

and document frameworks, nearly every class in the framework plays a

_16 -

well-defined role and collaborates effectively with other classes in the framework.

We adopt his definition and apply it in this thesis.

2.1.2 Other Definitions of Frameworks

Many authors have different interpretations of what constitutes a framework.
These definitions are not conflicting, rather, they describe several aspects of
frameworks such as structure (how it is constructed), instantiation (how it is
used), and classification of frameworks (black box / white box or application /
domain-specific). Generally, a framework is a frame on which something will be

built.

Fayad et al. [20] present a comprehensive discussion on OO frameworks in
which they classify application frameworks and discuss their general strengths

and weaknesses.

Johnson et al. [22] describe a framework as a reusable “semi-complete”

application that can be specialized to produce custom applications. They discuss
classifications of white-box and black-box frameworks. In black-box frameworks,
the source code of the original framework cannot be modified, only extended
[23], while white-box frameworks require understanding of the frameworks

structure and the hot spots to which application-specific functions are hooked.

D’Sonza [24] refers to framework as “a pattern of model or code that can be
applied to different problems” and further refers to OO frameworks as

“collaborations with a default, skeletal implementation.”

Schmid [25] classifies frameworks as being either application- or domain-specific.

Application-specific frameworks provide the basic functionalities of a working

-17 -

application, but the specific contents that model the application domain have to
be added for each particular application. Domain-specific frameworks are less
commonly used; they model the domain-specific functionality using common
objects and generic application logic that can be found in a particular domain.
Configuring these objects and binding the generic application logic to the

configuration builds an application.

Rogers [26] describes a framework as “A class library that captures patterns of
interaction between objects, ... Consists of a suite of concrete and abstract classes,
explicitly designed to be used together. Applications are developed from a

framework by completion and implementation of abstract classes.”

Bushmann et al. [2] define frameworks in an architectural context as: “A
partially complete software system that is intended to be instantiated. It defines
the architecture for a family of systems and provides the basic building blocks to
create them. It also specifies the places where adoptions for specific functionality
should be made. In an object oriented environment a framework consists of

abstract and concrete classes.”

- 18-

2.1.3 Benefits of Using Frameworks

It has been observed that the primary benefits of object-oriented frameworks
stem from the modularity, reusability, extensibility, and inversion of control they
provide to software developers [12]. The architectural level, instantiated level
and applicable level of different stages in framework development cycle
provides many different software qualities to a framework, as illustrated in

Figure 2.1 and described in the following:

Architecture I Design Domain Specific
. nstantiation .
(Design Level) (Class Level) (Applicable Level)
S < L =
2 ~ ~ ~
> <
a Framework Framework Framework
Construction Instantiation Application
: ; \/’ \/ C t\/ t-
z s ustomization
S Modulari Extensibili o
o : y vy & Reusability

Figure 2.1 Framework Aspects and Quality Measures

Modularity — Framework construction with object-oriented approaches enhances
modularity by encapsulating volatile implementation details behind stable
interfaces. Framework modularity helps improve software quality by localizing
the impact of design and implementation changes [16]. The localization reduces

the effort required to understand and maintain existing software.

Reusability - The stable interfaces provided by frameworks enhance reusability
by defining generic components that can be reapplied to create new applications
[20]. Framework reusability leverages the domain knowledge and prior effort of

experienced developers in order to avoid recreating and revalidating common

- 19 -

solutions to recurring application requirements and software design challenges.
Reuse of framework components can offer ease of use to programmers, as well as

enhancing quality.

Extensibility — A framework enhances extensibility by providing explicit hook
methods (further discussed in the next section) that allow applications to extend
its stable interfaces [27]. Hook methods systematically decouple the stable
interfaces and behaviors of an application domain from the variation required by
instantiations of an application in a particular context. Framework extensibility is

essential to ensure timely customization of new application services and features.

Inversion of Control — The runtime architecture of a framework is characterized
by an inversion of control. Inversion of control allows the framework (rather than
each application) to determine which set of application-specific methods to

invoke in response to external events.

2.2 Applying Design Patterns for Framework Development

Design patterns can be applied to framework design as well as other software
development. In this section, we illustrate the benefits of using design patterns to
build a framework and, in fact, we apply the same technique as the fundamental
groundwork to build our framework. The concept of abstraction in
object-oriented software development is described in the books at various levels
of detail, such as Eriksson [10]; Jacobson, Booch, and Rumbaugh [11]; and Pooley
[12]. The use of abstraction in object-oriented software development separates
interfaces from classes. It is common to have both an interface and an abstract
class defined in the same package. In addition to providing an interface, an

abstract class provides part of the implementation of its subclasses.

220 -

Patterns apply to framework design just as to any other software solution. For
example, a template method design pattern defines the skeleton of an algorithm in
an abstract class, deferring some of the steps to subclasses [16]. Each step is
defined as a separate method that can be redefined by a subclass, so a subclass
can redefine individual steps of the algorithm without changing its structure.
The abstract class can either leave the individual steps unimplemented or
provide a default implementation. The class diagram of the structure of template

method design pattern is depicted in the Figure 2.2.

GenericClass
templateMethod() O -+~
hookMethod1() hookMethod1()
hookMethod2()
hookMethod2()
ConcreteClass

hockMethod1 ()
hookMethod2()

Figure 2.2 Class Diagram for Template Method Design Pattern

The participants in the Template Method design pattern are the

1 GenericClass, which defines abstract hook methods that concrete
subclasses override to implement steps of an algorithm and implements a
template method that defines the skeleton of an algorithm which calls the

hook methods;

2 ConcreteClass, which implements the hook methods to carry out

subclass specific steps of the algorithm defined in the template method.

-21 -

In the Template Method design pattern, hook methods do not have to be abstract.
The generic class may provide default implementations for the hook methods.
Thus the subclasses have the option of overriding the hook methods or using the

default implementation.

2.2.1 Use of Template Method Design Pattern for Framework Development

The following section tries to illustrate the use of abstract classes and the
Template Method design pattern to implement domain specific frameworks and
demonstrates that Template Method is reasonable solution to construct a

framework.

In this example, we design and implement a generic function plotter applet,
Plotter, for plotting arbitrary single-variable functions on a two-dimensional
canvas [13]. The generic plotter should factorize all the behavior related to
drawing and leave only the definition of the function to be plotted to its

subclasses.

A concrete plotter P1lot Sine will be implemented to plot the function

y=sinx

The template method pattern offers a reasonable solution. The single-variable
function to be plotted can be represented as a hook method in the generic plotter

class.

-2 .

The function plotting method can then be defined in the generic plotter classes as

a template method. The generic plotter class is outlined in the following Java

program.

public abstract class Plotter ({

//the hook method
public abstract double func (double x) ;

//the template method
protected void plotFunction (Graphics g) {

func(double x);

The concrete plotter will only need to extend the generic plotter and define the

function to be plotted by overriding the hook method. The program structure is

shown below:

A SN
ppiet l< F Plotter

func()

paint()

plotFunction()

drawCoordinates()

T
[]
’ PlotSine PlotCosine

i func() funcy()

Figure 2.2 Plotter as Generic Class and PlotSine and PlotCosine as Concrete Classes

-23 .

2.2.2 Implementation of a Generic Framework

The method plotFunction is the template method in the Template Design

Pattern.

protected void plotFunction (Graphics g) {//the template method
for (int px = 0; px < d.width; px++) {

try {
double x = (double) (px - xorigin) / (double)xratio;
double vy = func(x);
int py = yorigin - (int) (y * yratio);

g.fillOval(px - 1, py - 1, 3, 3);
} catch (Exception e) ({}

PlotSine and PlotCosine are concrete classes of Plotter class. They simply

extend the Plot ter class and implement the hook method func ().

public class PlotSine extends Plotter ({
public double func (double x) {
return Math.sin(x);

}

and

public class PlotCosine extends Plotter {
public double func (double x) {
return Math.cos (x) ;

}

This pattern solves a specific design problem for graphical plotting and makes
object-oriented designs in framework architecture more flexible, elegant, and
ultimately reusable. A designer who is familiar with this pattern can apply it

immediately to design problems without having to rediscover them.

Framework applications described in the previous section consist of framework

layer and application layer. The generic Plotter class is part of a framework

-4 -

layer that can be used for creating different versions of a graphical display for a
java applet, whereas the PlotSine and PlotCosine classes are in the

application layer and are used in specific applications.

In the program Plotter.java, the plotFunction method is a template
method, a frozen spot in the framework layer, and the func method is the hook
method (a hot spot) for a concrete subclass in the application layer [16]. The
frozen spots (template methods) stay hidden in the classes of a framework layer
and are implemented with fixed operation, whereas the hot spots (hook methods)
are implemented in concrete subclasses in the application layer, an example
being the implementation of the func method in the subclasses PlotSine or

PlotCosine of class Plotter.

In the Plotter example given above, the operational flow for class PlotSine is
controlled by class Plotter in the framework layer. The operational flow is
controlled by the framework layer and the application layer provides the
functions called by the framework. The framework will inversely control

applications in the application layer.

It has been observed that this plotting example is particularly important. The
instances of PlotSine and PlotCosine in the framework are interchangeable
at the object level. Both PlotSine and PlotCosine are subclass of Plotter.
Every instance of PlotSine or PlotCosine is an instance of Plotter, and
everything that applies to Plotter also applies to instances of PlotSine or
PlotCosine. The hook method, func, causes the functionality in PlotSine
and PlotCosine to behave differently when they are used for plotting. We
adopt this design pattern, Template Method, as fundamental groundwork for

developing our framework.

-5

Consider a system function in distributed computing environment, Thread
Pooling, shown in Figure 2.3. The inheritance hierarchy shows different levels of
abstraction of the abstract class, ThreadPooling, whereas its subclasses represent
various specialized abstractions, in our cases, they are Fixed Thread Pool and
Growthable Thread Pool. They can be interchangeable as they are implementation

of the same abstraction, ThreadPooling, in the framework.

ThreadPooling

startService()
stopService()

art()
Fot)

|

FixedThreadPool GrowthableThreadPoal
start() start()
stop() stop()

Figure 2.3 ThreadPooling as Generic Class and FixedThreadPool
and GrowthableThreadPool as Concrete Classes

The Template Method design pattern is the most commonly used pattern to
develop framework [16]. We adopt this design pattern, Template Method, as a
basis for developing our framework. However, applying Template Method design
pattern for framework development has limited the framework to the template
methods in a class in the framework layer. It is only good for developing
interchangeable objects of an inheritance hierarchy in simple framework
architecture. But for a reflective and adaptable component-based framework like
the one we proposed, it will be extremely difficult to manage the objects
integration and coordination in a complicated component-based framework

architecture, and has difficulties in providing runtime adaptability for object

226 -

replacement in the distributed computing environment for system evolution. In
this thesis, we adopt Template Method as the fundamental groundwork to build
our framework and apply other software techniques on top to overcome the

difficulties identified.

2.3 Properties of Adaptable Distributed Computing Framework

The accelerating pace of change in distributed computing technology confronts
software developers and compels them to make their systems more configurable,
flexible, and adaptive [85]. The unavailability of adaptation of critical systems in
the real world, such as web services, telecommunication switches and banking
systems could have unacceptable consequences for the institution’s environment.
These systems can not be easily taken offline for maintenance due to high costs of
their down time (telephone and banking), environment safety (nuclear plants) or
loss of human life (life support systems). These systems are difficult to upgrade
[103]. An increasingly important requirement of software systems is adaptability
to continuous evolution. For the mission-critical systems, adaptability is

essential.

Software systems with contemporary distributed computing technology evolve
to face unexpected situations or just for self-improvement. On the other hand,
software engineering disciplines of current object-orientation can not cope with

all situations, particularly with regard to evolving, non-stopping systems.

It has been observed that distributed applications essentially require a software
framework architecture that will enforce five important properties [85]: separation
of concerns, adaptability, transparency, extensibility and portability. Such an
architecture we call as “adaptable” distributed computing framework because
its implementation is required to support adaptation for system evolution.

Further, it provides flexibility such as incremental development in the

_27 -

implementation of software components.

Each property of such adaptable framework architecture for distributed

computing applications is listed below:

Separation of Concerns

Separation of Concern is a software design tool for software modularization. The
underlying philosophy is to break down a problem into smaller parts. If the
framework architecture adopts this principle for architectural decomposition,
then each module solves or implements some distinct set of concerns in their
applications. Such a module is used in our framework as a component.
Separation of Concern enables the framework architecture to start design from
high-level abstraction in the development process and partition the functions
into framework components. The use of separation of concern technology
provides benefits of innovative composition and consequent maintenance to

framework architecture.

Adaptability

Adaptability in the framework architecture refers to the ability to which the
architecture can dynamically adapt to new user requirements or newly invented
technologies. This is achieved through inserting or replacing software modules
or system functions at runtime while the rest of the system is still running and
the behavior of the framework reflects the changes. Such reflective framework
architecture should be flexible enough to meet a wide range of requirements on
demand; not only will the framework allow the insertion of modules; it should
provide opportunities for the replacement of the established modules after
instantiation. The modules in the framework have no cohesive dependency, so
that they are not firmly bound together while allowing themselves to evolve

independently

_28 -

Transparency

Frameworks aim at providing services for distributed enterprise applications. It
embraces lightweight technology (such as ORB for Object Request Broker) which
transparently hides distribution and other non-functional concerns from
software developers. Software developers usually prefer not to write the coding
for communication between computers but rather, between objects, as happens
in object-oriented programming. In the distributed object environment, the
communication from clients and servers is designed through distributed objects.

An object broker is an intermediary in interactions between clients and servers.

Currently, distributed applications are run on several computers at different
locations with all communication between computers in different environments
restricted to messages. The gap between the representation of data at the
programming level and at the physical level is closed by protocols, a kind of
linguistic convention between the individual devices involved in data
transmission. The framework architecture should be transparent to software
developers in distributing objects between computers, with both middleware

and applications being built under the lightweight component model [29].

Extensibility

One of the major requirements of framework architecture is to be open-ended for
extension, whereby it opens up the infrastructure (internal machinery) with all
system components residing inside. For example, the object broker in lightweight
component technology is one of the system components, which in turn is the
middleware for the object distribution in the framework. Software developers
will be able to engineer the component and its configuration in the framework
without altering a language’s compiler or extending interpreter. The architecture

will expose its components to software developers and allow the software

-29.

components to be plugged and integrated without restarting application servers.
In addition, the framework architecture should possess the ability not simply to
support the anticipated adaptive requirements but also unanticipated

requirements of system evolution in the future as well.

Portability

Framework architectures should not be bound to a particular language. The
design of framework architecture is portable and is independent of
programming language and platform. Furthermore distributed services in the
framework should be provided via data communication, with independent
interfaces and network transport protocols. Thus, the portability is one of
requirements in the adaptable framework architecture to support the
independence in the implementation of the architecture and the data

transmission in network transport.

Portable framework architectures should not be built in such a way as to add
adaptability to a compiled language such as C++ and Java, by extending the
language interpreter. If indeed the language interpreter was extended, these
framework architectures would have strong cohesion with implementing
languages, and their own flexibility decreased, such as the version changes of the
compiled language (e.g. JSDK 1.3 to JSDK 1.4) required the extension of the
language interpreter accordingly. The adaptability of distributed services in the
framework architecture should be transferable between versions in software

evolution [82].

-30 -

24 Summary

Framework architectures strive to accelerate the building of distributed
components by providing extensive sets of services and a runtime adaptable

framework to manage the services for software evolution.

In this chapter, we have identified mission-critical applications that are in need
of adaptability for continuous system evolution and also identified five
important properties of an adaptable distributed computing framework. They

are: separation of concerns, adaptability, transparency, extensibility, and portability.

This thesis aims to provide an adaptable distributed computing
component-based framework. In Chapters 3 through 6, the properties in the
adaptable distributed computing framework and their aspects will be used to
facilitate further discussion of their related works and applications to the

architecture of our adaptable framework.

Chapters 7 to 13 will thoroughly illustrate the architecture design and evaluation
of our proposed framework. They will demonstrate how our adaptable
framework proposed in this thesis can meet the challenges of supporting
adaptability in distributed computing framework while covering the five

important properties identified in this chapter.

We show that the organization and structure of the thesis logically presents
conceptual modeling and the physical implementation of our framework. It
demonstrates how our framework can make significant contributions towards

adaptable architecture for distributed computing systems.

-31 -

PART I1

TECHNICAL ASPECTS AND RELATED
WORKS OF MELC

-32 -

Chapter 3 Components and Component-Based Development

Our work in this thesis aims to develop components which are well separated
from their environment and other components, and are functionally
self-contained. Such that components can be developed each in isolation. We
apply the Separation of Concerns (SOC) technology for component development
for architectural decomposition as well as concern modularization, and
Separation of Concerns is one of the key properties of our adaptable framework.
The domain specific classes and groups of these classes with a defined interface
can constitute a domain specific component. The concerns of system functions
and groups of such concerns can also constitute a component. The framework we
proposed in this thesis adopts a new development process which differs from the
traditional waterfall model. The task of building a system by writing code in the
traditional model has been replaced with building an application system by
developing good quality and reusable software components, and assembling and

integrating existing software components.

31 Components

Components are defined in various ways from similar and different points of
view. But to come up with a precise and well-understood definition of a
component, which everybody agrees upon, is not an easy task. In this section, a
compilation of definitions regarding components is given, which clarifies the

differences in the relation between objects and components.

3.1.1 Our Definition of a Component

Alexander [43] gives the most desired properties of components and we adopt his

-33-

definition and apply it in this thesis. Alexander defines component as “A
component should be able to plug and play with other components so that it can
be composed at run-time without re-compilation. Moreover, components should
separate their interface from their implementation. Furthermore, components
should be able to inter-operate on a pre-defined architecture. Finally, component

interfaces should be standardized so that they can be widely reused.”

According to Alexander’s definition, software developers are able to cleanly
separate the different concerns in components of some kind and develop each in
isolation. They are separation of concerns in conceptual modeling. However,
some challenges are inevitable in a component-based software development.
They are components interaction/communication with client, component
co-operation in a framework architecture, and the co-ordination embodied with

other components in a component framework.

3.1.2 Other Definitions of Components

Some other definitions of the component have emerged in the literature:

In a COM technical review from Microsoft [41], a component is a piece of
compiled software, which offers services. This property is obviously true for
components, but is too weak for a definition. It is even applicable to compiled
libraries. This means that a component is the minimal piece of functionality.
According to this definition, components have to be minimal. A composition of

components is not acceptable.
Gamma [1] describes a component as a unit of independent deployment, which

is a unit of third-party composition, with no persistent state. This means that a

component is well separated from its environment and other components, and is

_34 .

sufficiently self-contained. It should come with clear specifications of what
rationale and intent is and what problem it addresses. The specific features like

component integration and component Co—operation are not covered.

Eden [42] defines a component as a collection of co-operating objects, with a
clearly defined boundary separating them from other objects or components.
Objects inside a component typically are intertwined tightly, while the

interaction across the component boundary is relatively weak.

3.2 Objects and Components

Objects provide the basic elements for a component. Typically, a component
comes to life through objects and thus would normally contain one or more
classes. Objects and classes have a number of properties in common with
components. Most of the ideas developed in traditional and object-oriented
programming theory will be usable in component-based software development
as well. They are inheritance, aggregation and interface. In addition, objects are
reusable entities that could be connected together into programs. We know,

however, a number of properties more relevant to components:

1 A component does not have to be an object. It can be a domain specific
function, or even an executable program but that cannot be treated as an

object [44].

2 A component'’s access to implementation from outside of the component is
prevented. Objects within a single component may access each other’s
implementation, but not accessing implementation of other components

[45].

3 A component may be distributed and used from within different

-35.

programming environments [46]. Object-orientation binds the
implementation to a particular class library and language. Components
are not bound to a particular language and they communicate through

independent interfaces and network transport protocols [44].

4 A component may be constructed by a third-party vendor known as
commercial off the shelf (COTS) and its source code may not be available

for evaluation. [46].

A component is not an object. The life cycle of the component software
development process is different to object-orientation, whereas the component
depends on the component framework architecture. Components are often
large-grained and have complex actions at their interfaces. It is particularly
important that the component-based framework establishes environmental
conditions for the component instance and regulates the interaction between

component instances.

3.3 Components in Distributed Applications

Distributed computing applications execute on geographically distributed nodes
supported by a local or wide area network. Client/server applications,
distributed real-time data collection applications, and distributed real-time

control applications are all examples of distributed applications.

A distributed application is structured into distributed subsystems. Each
subsystem is designed as a configurable component and corresponds to a logical
node. Thus, a subsystem component is defined as a collection of concurrent tasks
executing on one logical node [106]. However, because more than one subsystem

component (logical node) may execute on the same physical node (workstation),

-36 -

the same application could be configured to have each subsystem component
allocated to its own separate physical node (workstation) or to have all or some

of its subsystem components allocated to the same physical node (workstation).

The design of message communication interfaces includes asynchronous
communication, synchronous communication, client/server communication and
brokered communication. They are the common message-based design for
subsystem components in distributed computing and their technical details are

explained in Appendix D.

An important goal in the design of software architecture for a distributed
application is to provide a concurrent message-based design that is highly
configurable on one logical node. In other words, the objective is that the same
software architecture should be capable of being mapped to many different
system configurations. A component-based development approach, in which
each subsystem is designed as a distributed self-contained component type,
helps achieve the goal of developing a distributed framework to have a

distributed, highly configurable, message-based design.

A distributed component has a well-defined interface. A component is usually a
composite object composed of other objects. A component type is self-contained
and thus can be compiled separately, stored in a library or a package, and then
subsequently instantiated and linked into an application [29]. A well-defined
component type is capable of being reused and instantiated in different
applications from that for which it was originally developed [107]. As a matter of
tact, the system-specific distributed computing design patterns (e.g., Thread
Pooling, Heart Beat, --- etc) are candidates to be selected to be the component
types in a distributed computing environment. They can be realized in classes
stored in packages that are the self-contained domain specific component types

that can be reused and instantiated in different distributed applications. The

-37-

component types implemented in MELC are system-specific distributed
computing design patterns [111] and they are the building blocks for the

construction of the framework.

3.4 Concerns, Design Patterns and Components

3.4.1 Separation of Concerns (SOC)

A software design concern can be basically any cognitive element that can be
considered while building a program (e.g., a protocol, a feature, a requirement
etc.) [47]. In the process of decomposition of an application into program units,
typically some concerns remain scattered across the decomposed program units.
For example, if a client and a server unit communicate using some form of
protocol, it might prove very difficult to cleanly factor out the code that

implements the protocol as a separate program unit.

The scattering of concerns also implies their tangling together in a common
module. Scattering and tangling of concerns tend to make programs difficult to
evolve, maintain, and reuse. They also tend to complicate the software
development process by introducing source control problems when different
teams working on different concerns require access to a common module. In the
case of components, the tangling of concerns can also introduce configuration

management problems.

The philosophy underlying separation of concern technology is to break down a
problem into smaller parts. Ideally we want to be able to cleanly separate the
different concerns into modules of some kind and explore and develop each in
isolation, one at a time. Thereafter, software developers compose these software
modules to yield the complete system. Thus, the concept of separation of
concerns and the concept of modularity are two sides of a coin — you separate

concerns into modules, and each module solves or implements some distinct set

_38-

of concerns. Generally, the construction of a framework may adopt the

“separation of concern” technology to achieve concern modularization.

We apply the separation of concern technology into our MELC framework for
architectural decomposition as well as concern modularization. We show that,
just as domain specific classes and groups of these classes with a defined
interface, can constitute a domain specific component (distributed computing
component), concerns and groups of such concerns can also constitute a
component. Our framework is in line with the philosophy underlying separation

of concern technology.

Recent research has investigated technologies supporting separation of concerns
[48, 49, 50]. Aspect-Oriented Programming (AOP) [49] is one of the most popular
aspect technologies today [52]. AOP provides a means to encapsulate the
implementation of aspects that are scattered across modules (crosscut other
modules) [53]. The goal of AOP is to regroup all the elements of a specific concern
in a single module. To compose aspects, it is necessary to distribute the elements
of the aspect where they are needed. Let’s consider the example of a Distributed
System [52] in Figure 3.1. The functionality of thread pooling service: the thread
pool workers availability is checked, and if a worker is available, it is called upon

to perform the task for the server.

239

CallThreadPool /

@
@
Worker [N] "No Worker
Available? [°© }"@
(Y]

{Call Worker}_»@

Figure 3.1 Calling a Worker in a Thread Pool in a single module

However, in developing a distributed thread pooling server, a sizable portion of
an operation has been found nothing directly related to the functionality of
thread pooling, such like start or stop operations in thread pool server,
component logging, checking authorization, exception handling, and other such
tasks [52] (see Figure 3.2). The redundancy code fragment of Authorization may

be found in many other operations and classes.

CallThreadPool /

A & °
Access Puthorization
Granted? Error
Worker | [N]

‘ Work
Available [NO orker ' ’@
[Y]

[Call Workerj_}

Figure 3.2 Crosscutting Concern — the redundancy code fragment of
Authorization found in many other operations and classes

_40 -

AOP refers to such redundancy as crosscutting concerns because you find these
code fragments in many operations and classes in the system — they cut across
operations and classes. Crosscutting concerns are not limited to the technical
concerns such as authorization and persistence. They include system and
application functionality, and you find that a change in functionality often also

results in changes in many code fragments in the system.

Current support for AOP from Xerorx PARC is in the form of an aspect language
for Java called aAspectd [54]. Crosscuts declare points (join points) in the code
where crosscut actions can take effect. The capability of AspectJ from Xerorx
PARC to transparently insert modifications (technical concern such as
authorization in our example Thread Pooling Service) in a program is extremely

powerful.

Our work adopts the separation of concern technology for concern
modularization for conceptual modeling. The concept of crosscutting and join
points in aspect-oriented programming (AOP) is adopted to help in designing the
framework for managing controls within a component so that the scattering of

aspects can be minimized and centralized for maintenance [56].

3.4.2 Design Patterns and Components

The separation of concerns (SOC) technique described in the previous section can
serve as the decomposition mechanism to identify concerns in terms of
components. Localizing all program elements related to a particular concern
prevents scattering of these elements across the program code base, making
program understanding, evolution, and maintenance easier and less prone to

catastrophic disasters. It can also facilitate reuse of the abstract components.

There is a problem that relates directly to the composition of concerns. It is to

_41 -

find a way to clearly express the semantic resolution in the presence of
overlapping concerns. The way of integrating separation of concerns into a
component-based software into a more seamless one is to extract the concerns
using separation of concerns (SOC) technique, and to realize the concerns
themselves into components whose domain specific design patterns are applied

in this thesis.

Furthermore, some of the concerns cross-cutting multiple components in a
distributed computing environment, such as thread pooling or retransmission,
have to be factored out separately into different components. Thread pooling
saves the server the work of creating brand new threads for every short-lived
task and it also minimizes the overhead associated with getting a thread started.
By creating a pool of threads, a single thread from the pool can be recycled over

and over for different tasks.

On a system design level in MELC, the components, such as thread pooling or
retransmission, are the distributed computing design patterns we applied, and
they can be realized and implemented with a programming language and
compiled separately. The components integrate with other components to
perform thread pooling or retransmission services at the application level in the

framework [57].

3.5 Components-Based Framework Development

Component frameworks are the most important step to lift the component
software off the ground. A component framework is a software entity that
supports components conforming to certain standards and allows instances of
these components to be plugged into the component framework. The component
framework establishes environmental conditions for the component instance and

regulates the interaction between component instances [44].

-4 -

We are proposing an evolutionary methodology appropriate for adaptable
component based frameworks such as MELC, which evolves from the
component-based framework development process [44]. We enhance the process
so that the methodology can be used to develop frameworks which employ and
provide adaptability for domain specific components instantiated from the
patterns. We call it Adaptable Component-Based Framework Development
Methodology. The new component-based framework development methodology
differs from the traditional waterfall model. As mentioned before, the task of
building a system by writing code has been replaced by the process of putting
together an application system from reusable software components. The main
software development task becomes the creation of the components. Figure 3.3
shows a comparison of methodologies between Waterfall and Adaptable
Component-Based Framework Development. Note that the components in
MELC framework are domain specific and are the instantiation of distributed

computing patterns.

T T e e e e T T e s e e 1
I !
i 1
E Requirements Design Implementation Test Release E
| T b b - |
i i
I i
b e o |
/’K\ 3 Create _‘/\‘\
4 h h
1 Find 2 Select 4 Adapt S Deploy 6 Replace
(7= (7= SN (30 (7=
cu| o | e e
m T Ll L
> > — x: s

Figure 3.3 A comparison of Waterfall (upper) and
Adaptable Component-Based Framework Development

The six steps in the adaptable component—based development methodology are:

1. Finding the requirements of the components that may be used in the
domain specific applications. ~Component qualification in the
methodology is a process of determining the fitness for use of components
that are being applied in the system context [58]. In a component-based
approach, the high quality and reusable components can be domain

specific design patterns.

2. Selection of proper components that fit the requirements of the
applications. For a distributed computing application, the proper
components in terms of design patterns may be: Object Request Broker,

Thread Pooling, Publisher/Subscriber or Mailbox Services.

3. Creation of proprietary components in the framework. The components
are instantiated with the selected patterns. The instantiation of a design
pattern at the design level in a framework will transform itself to classes
which in turn transforms into instances at the lower level, where language
independency is changed to language dependency. The mapping is shown
in Figure 3.4. Classes generated from patterns will be stored in the form of

libraries or packages.

_44 -

ifig Pattern to

Design Patierns Patterns
(Design Level) Impiementation
(Class Level)
Language
Independent Language Specific
Framework Framework
Construction instantiation

Figure 3.4 Pattern Instantiation in Framework Development

4. Conformation of components to adapt to framework standards. The
selected components will be conformed so that the framework establishes
environmental conditions for the component instance and regulates the
interaction between component instances. The component-based
framework is a partial enforcement of architectural principles, by forcing
component instances to perform certain tasks through mechanisms under

control of the framework.

5. Deployment of the components. The component configuration
management can be done with a framework configuration manager. Once
the components are deployed, they become part of the services In
framework and are managed by configuration manager. The
configuration management is the discipline that takes care of component

assembly, component configuration and components integration.

6. Replacing old version of the component with new ones. This is also called
maintaining the components. There might be bugs that have been fixed.
More importantly, the replaced component with new functionality is
added as the system evolves and this could happen in a runtime

environment.

_45 -

Chapter 4 Pattern-Oriented Frameworks

4.1 Introduction

The advantage of using design patterns in a framework is that design patterns
and frameworks both facilitate reuse by capturing successful software
development strategies. A pattern-oriented framework is specified using patterns
as building components [6]. Our framework adopts the pattern-oriented
approach which uses instances of distributed computing patterns as components
in the framework. The pattern-oriented approach offers not only separation of
concerns but it also adds extensibility to the framework. The separation of concerns
and extendibility are the two major properties of our adaptable distributed

framework.

There are two categories of patterns: Generic design patterns and Domain
specific design patterns. A generic design pattern provides a schema for refining
the subsystems or components of a software system or the relationship between
them. The Strategy, State, and Proxy patterns are examples from this category. A
domain specific design pattern describes a commonly recurring structure that
solves a domain specific problem with a particular context [59]. The heartbeat,
subscriber/publisher, and mailbox are examples from the distributed computing
pattern category and they can be instantiated as components in a distributed

computing framework [14].
The use of patterns in the framework construction improves maintainability.
Moreover, using well-established design patterns as components can contribute

separation of concerns to the constructed framework.

Yacoub et al. [6] first illustrated a pattern-oriented design framework with an

46 -

engineering example of a closed-loop control system. In their research, the
feedback control framework was presented as a generic architecture based on
design patterns. A generic design for such a common problem serves many
control system designers in the engineering discipline. It is a small-scale
pattern-oriented framework that illustrates the feasibility of the approach for

feedback control system.

Pattern-oriented frameworks are white-box frameworks [6]. The framework user
has to understand the interface design of the framework in order to adapt the
framework in his application. Pattern-oriented frameworks are also
domain-specific frameworks [20], as they provide the basic functionality and

architecture of applications in a given problem domain.

A pattern-oriented framework introduces two distinct levels, known as the

pattern level and the class level.

The pattern level is constructed on well-known or newly invented design
patterns and is a design level in a pattern-oriented framework. The pattern level
is usually presented in a Pattern Diagram. The class level is based on the design

of a pattern level and is realized by classes and presented in a Class Diagram.

A pattern-oriented framework uses a pattern level as a higher, more abstract
design layer above the class level. As described in Chapter 3, the Plotter
framework adapts the Template Design Pattern for framework design. The
approach of using design patterns in constructing a framework architecture not
only makes it independent of any specific programming language, but also

improves its design quality and portability.

_47 -

4.2 Pattern Diagrams

A pattern-oriented framework is specified by patterns as building components
and their manner of collaboration [6]. The current support for patterns in UML
shows how classes in a class diagram are related to a pattern using a
collaboration, which is indicated by a dotted ellipse pointing to participant
classes. This is a bottom-up approach, because it marks the classes representing a

pattern in the design, but doesn’t show it as a design component.

A pattern-oriented framework uses a top-down approach so that the framework
designer can start analysis from high-level abstraction in the development
process where the framework is partitioned into subsystems and patterns, and
then the patterns are exploded into classes. A pattern diagram is used to describe

the framework in terms of subsystems, design patterns, and associations.

The elements used in the pattern diagram are shown as below:

Design Pattern Pattern Name : Type
Eﬁtbe;ﬁém Subsystem Name
Subsystem Name
internal (”" T
Subsystem S -

.. iati ame
Pattern association Association N

. Association Name
Subsystems association = —e—-XoSl ool

Actor /— ;

Actor Name

Figure 4.1 Elements in a Pattern Diagram

_48 -

The terms used in the construction of a framework are defined as:

Pattern-oriented framework: a construct of subsystems and design patterns

that collaborate to describe the generic architecture of a design framework.

Design Pattern: a design component composed of collaborating classes that

are customized to solve a design problem in a particular context.

Internal subsystem: an independent group of patterns that collaborate to
fulfill a set of responsibilities in the framework. The architecture and
behavior of a design framework is realized by means of subsystems
interacting with each other and with external subsystems. Modularity plays

an important role in decomposing a system into subsystems.

External subsystem: a subsystem that is not part of the framework under
development, it can be a part of the real-world environment or other

frameworks or applications.

Actors: external entities interacting with the framework.

Class associations: relationships between classes, such as aggregation,

composition, generalization, and dependency as specified in UML.

Dependency: in general, implies that the complete functioning of an
element requires the presence of another, which exists in the same level of

abstraction or realization.
Pattern associations: relationships between patterns in a pattern diagram.

Currently, dependencies are defined as one type of pattern relationship. A

pattern dependency indicates a semantic relationship between two patterns;

_49 -

a situation in which a change to the source pattern may require a change to
the target pattern, or a pattern delegates the processing of a certain
functions to the other. This relationship is further refined in later design
phases to indicate the exact nature of the dependency by translating it into

class associations between classes of two communicating patterns.

e Subsystem associations: a general dependency relationship between
subsystems in which the change in one subsystem affects the other. A
dependency between two internal subsystems implies that one or more
dependencies among their patterns exist. The relation is stereotyped further
to indicate the exact nature of the dependency, such as calling operation of

one pattern to the other, usage of one pattern of the other, etc.

The following example is intended to show how to construct a patter-oriented
framework along with a common computerized engineering application, namely
Closed-loop Application System [6]. The system is subdivided into subsystems based
on functionally and behaviorally independent responsibilities. The three
subsystems are: Feedforward Subsystem, FeedBack Subsystem and Error Monitoring
Subsystem. The three patterns have been identified and will be used to implement
the subsystems, and they are the Strategy [1], Observer [1], and Blackboard
Patterns [14]. The way to compile the application requirement and present it as
design pattern is called Pattern-Level Instantiation. The resulting diagram is
Pattern Diagram. The Pattern Diagram is used to describe the application system
in terms of subsystems, design patterns and associations. In the Figure 4.2, each

subsystem is represented in the form of design patterns.

-50 -

Feedforward Subsystem

) Error Subsystern LTI S~
Provide Reference A - R A Apply control .
O Input ot . Calss | FeedforwardStrategy ol :
A mmmmmmee 5},’ N . % : Strategy X -~
User / ErrorChserver : \ R [
J Observer v TTTTT Physical Plart
]
' Uses *
' Provides .*
Y ErrorBlackboard ; Measurements
| : Blackboard -

Figure 4.2 Pattern Instantiation of Closed-Loop Application System [6]

The associations referred to in Figure 4.2 represent relationships between
patterns and relationships between subsystems. An association between patterns
is represented by a solid line joining the patterns and is labeled with an
association name. A relationship between subsystems is represented by a dotted
line joining the subsystems and is labeled with the association name.
Arrowheads in an association are used to show the association direction when

applicable.

-51 -

4.3 Pattern-Oriented Frameworks with Other Frameworks

Most of the work refers to frameworks as collaborative classes and presents them
as class participants whenever patterns are used. The differences between

pattern-oriented frameworks and other frameworks are identified as follows.

® Pattern-Oriented Frameworks have Pattern Level views

Beck and Johnson [60] show how to use patterns to document a framework, and
show how patterns can be used to derive the framework HotDraw. It eases
understanding of the final system, but does not explicitly discuss how the
patterns interact and collaborate together. However, a pattern-oriented
framework not only documents the framework, but also it can be used to design
the frameworks defined by the architecture of communicating design patterns in
pattern-level view, which describes the interaction and collaboration of the
patterns. The patterns are further extended to classes and objects in a class-level
view. Framework construction in terms of design patterns adds to the reusability
and descriptive capability of the design framework because patterns can coexist
and may depend on one another. Moreover, using well-established design
patterns as components can contribute to the design quality of the constructed
framework. Pattern-Oriented Frameworks use Pattern Level views to show how

patterns interact and collaborate.

e Pattern-Oriented Frameworks are White-Box Frameworks

Johnson [61] describes how patterns can be thought of as micro-architecture
elements. Hence a single framework contains many patterns. Pattern-oriented
frameworks are closely related to his definition. A pattern-oriented framework
introduces a pattern-level architecture description of a framework in terms of a
pattern diagram that we perceive as an approach to solve the design of
components, and addresses reuse at the component-based design level, which

differs from code fragment reuse.

-52-

e Pattern-Oriented Framework adopts Top-down design approach

Castellani & Liao [62] and Jia [13] propose an application development process
that focuses on the reuse of OO application design. Their work presents
processes that can be used by a system designer to create generic applications
and reuse them in other application designs in the same problem domain. Their
approach starts with an existing application and then abstracts design
macro-components through application specifics. However, the authors use a
general definition of macro-components (frameworks or patterns) that allows
any group of related classes to be considered a pattern. This property is
obviously true for a package or library in programming, but it seems too weak
for a definition of a pattern. An application, in the context of their development
process, is split into macro-components, which are filled later on with classes. A
pattern-oriented framework adopts the top-down design approach. It tackles the
problems found at the design level from the perspective of constructing design

frameworks with appropriate patterns in the related problem domain.

The top-down design approach for building a pattern-oriented framework starts
from an architectural design based on a pattern diagram, proceeds with
expansion of patterns into their predefined class diagrams, and further refines
the class diagram through reduction and grouping phases to reach a final class

diagram of the framework.

e Pattern-Oriented Framework uses patterns to build system architecture

Odenthal and Quibeldey-Cirkel [63] describe the benefits of using design
patterns as an intermediate level of systems description between the analysis and
design levels. They address two important issues: deploying patterns in designs,
including the identification of candidate patterns, and the addition of a

documentation level based on patterns.

-53 -

The pattern level in a pattern-oriented framework reduces the descriptive

complexity by covering the design with pattern instances. Identifying candidate
patterns is closely related to pattern-oriented framework construction; however,
the authors do not show how the selected patterns are put together to construct
the overall system. The patterns will be instantiated and integrated in a
framework. Their collaboration must be documented and, lately, they can be
implemented accordingly. In the construction of a pattern-oriented framework,
candidate design patterns are identified, thereby describing the overall system in

terms of patterns.

e Pattern-Oriented Framework uses patterns as building blocks

Schmid [64] discusses the architecture for manufacturing systems. He starts from
an existing OO analysis and targets a more general and flexible architecture for
automated manufacturing systems like assembly lines. Although successive
transformation steps from requirements analysis to system design are guided in
identifying the pattern candidates to create an overall architecture, patterns are
not used as design building blocks for the construction of the framework.
Pattern-Oriented Framework uses patterns as building blocks. Patterns are

considered and put in place in architecture design.

_54 .

4.4 Pattern-Oriented Framework Development

The development of a framework is like the development of most reusable
software. It starts with domain analysis, which collects a number of same domain
specific examples. One of the most common observations about framework
design is that it takes place over a series of iterations. Versions of the framework
are designed to implement the examples which initially create a white-box
framework. Each example that is considered makes the framework more general
and reusable. When it is complete, the framework can be used to build

applications. Experience leads to improvements in the framework.

Figure 4.3 [6] shows the first step in a requirements analysis which is the analysis
phase. This step is necessary because understanding the system can pose a
problem even for experts unless the domain is well-defined. Hidden mistakes in
a domain analysis can be discovered when a system analysis is being

undertaken.

A framework is structured into subsystems in Figure 4.3, which contain objects
that are functionally dependent on each other. The goal is for objects with high
coupling among each other to be in the same subsystem, and objects that are
weakly coupled to be in different subsystems. A subsystem can be considered a
composite or aggregate object composed of individual objects. Packages can be
used to represent subsystems. Thus, one package representing the whole
framework may be decomposed into subsystems, where the subsystems are

shown as nested packages within the framework package.

-55-

System
Analysis

Subsystem
{dentification

Subsystem
Analysis
Patterns
Pattern J
instantiation
\
Classes

Reduction
and Grouping

>
Class Diagram
J

Analysis
Phase

Pattern Level
Design,
Pattem Diagram

High Level
Design,
(Class Diagram

Figure 4.3 Development Process in Pattern-Oriented Framework

Figure 4.3 illustrates the steps involved in the development of a pattern-oriented

framework. The rectangular boxes show the activities, and the ellipses show the

inputs and outputs of each activity. The development process involves the

construction of a pattern diagram which is eventually reduced to a final class

diagram.

With more than 100 design patterns in the catalogs for general purposes and

domain specific like distributed computing applications, it might be hard to find

appropriate design patterns for a particular design problem. Several different

approaches to selecting a design pattern have been suggested by Gamma and el.

[1] and Grand[14]:

e Scan intents of design patterns. Read through each pattern’s intent to find

one or more that sound relevant to our problem.

56 -

e Study how patterns interrelate. Instantiate the patterns into classes and
study the interrelationships between them. The contradiction issue
identified between patterns could be analyzed and resolved at the stage of
implementation at the class level by software developers. For example,
although the single and multiple thread ThreadPool patterns contradict
each other in functionality, they can both exist in the framework at the
same time and can be used by software developers at different places in

an application created using the framework.

o Consider how design patterns solve design problems. Find appropriate
objects, determine object granularity, specify object interfaces, and ways in

which design patterns solve design problems.

4.5 Summary

This chapter presented the pattern-oriented approach to design frameworks with
generic patterns and briefly outlined the elements in pattern diagrams and the
flow for framework development process. Employing a pattern-oriented
approach has lots of advantages: it tackles the problems found at the design level
from the perspective of constructing design frameworks with appropriate
patterns in the related problem domain, and it addresses portability at pattern

level.

The pattern-oriented approach for the framework construction is a top-down
design. The pattern level in a pattern-oriented framework is used as a higher
design layer than class diagrams. Framework users can start with the
pattern-oriented framework at the pattern level, which reduces development

time and effort to start up from architecture and class diagrams.

-57 -

Our framework adopts a pattern-oriented approach. The conceptual modeling in
designing a framework in terms of design patterns adds extensibility and
maintainability to our framework. Moreover, using domain specific design
patterns (i.e., distributed computing patterns) as components not only
contributes to the design quality of the constructed framework, but it also
provides separation of concerns in framework. Note that Separation of Concern
and Extensibility are two key properties required in an adaptable framework
architecture identified in the Chapter 2. The related works in adaptability for
components in system evolution at runtime will be illustrated and addressed in

the next two chapters.

_58 -

Chapter 5 Theoretical work on Adaptability in Meta Architecture

Adaptability is an increasingly important requirement of software systems. An
adaptable architecture is intended to provide flexibility by providing an
architecture that allows requirement changes to be performed and immediately
reflected at run time. Minimizing downtime is critical in distributed computing
environments, such as web services, telecommunication, banking systems,
military missions systems, and life support systems. It is particularly important
that a reflective architecture should be able to change an object’s behavior to
fulfill user requirements to adapt at run time. In mission critical cases, the
framework architecture can not be taken offline for maintenance. There is a
strong argument to support the need for reflection in a framework architecture in
order to provide adaptability in object behavior at runtime. Adaptability is an
indispensable and key property for the framework which we will present in this

thesis.

In Chapter 4, we presented a pattern-oriented approach to designing frameworks
based on design patterns. The resulting frameworks are called pattern-oriented
frameworks. However, the pattern-oriented approach has some drawbacks

related to adaptability:

e The patterns chosen in the framework may be good for now but not for
tomorrow. Replacing a pattern in an implemented pattern-oriented

framework may be costly.
e The methodology is not applicable to all application-specific frameworks in

general. For example, loop-back systems are common engineering

applications, and they are commonly described in block diagrams. Most

-59 .

distributed business applications may not have a clear system architecture at
the start. Always, errors can be made when choosing appropriate,

good-fitting patterns.

e Users have to know the class-level details of the pattern-oriented frameworks
before maintaining them. This makes pattern-oriented frameworks less
user-friendly for framework developers because they seem to be designed

only for computer programmers.

The adaptable framework architecture is designed to dynamically adapt to new
user requirements by replacing software components at run time while the rest
of the system is still running. To add such adaptability to a framework requires a
Reflective Architecture which we call a Meta Architecture. The terms, Reflective

Architecture and Meta Architecture, go hand in hand and are interchangeable

[2].

Adding a meta architecture to a pattern-oriented framework helps to resolve the
problems of adaptability encountered in pattern-oriented frameworks and keep
the advantages, separation of concerns and extensibility, provided by the

pattern-oriented approach.

The following sections discuss the use of Reflection in Meta Architecture and
briefly discuss adaptability in recent research work on the reflective models. At
the end of the chapter, we provide a table to summarize the features, which
compares each of the presented models against the common assessment

attributes [100] required by the academe and industry.

- 60 -

5.1 Reflection in Meta Architectures

The adaptability of a framework is determined by how well the framework faces
software evolution because of the newly invented techniques or the
improvement of existing features in distributed computing. Meta Architecture
can provide adaptability and also be flexible enough to meet a wide range of
requirements on demand. Most domain-oriented frameworks, unfortunately, are
monolithic and provide a fixed and limited set of capabilities. It is typical to take
the scrape-and-build approach for a given requirement, where the software is
rewritten from scratch because that approach is often determined to be more
economic. On the other hand, a dynamically adaptable meta-architecture based
framework is an attractive alternative for extensive and intrusive changes in

distributed computing.

Suzuki and Yamamoto [4] pioneered the application of meta architecture to
design a web server which supports the dynamic adaptation of flexible design
decisions in the web server design space. Their framework is intended for web
servers only, with no consideration of a generic component-based approach. It
does not provide a Configuration Management utility for managing the
components nor does it support dynamic changes in the runtime environment.
However, it demonstrates the possibility of applying a meta architecture to

attack the problem of framework adaptation.

A meta architecture differentiates between meta objects and base objects. A meta
object is an object that contains information about the internal structure and/or
behavior of one or more base objects. A base object has application logic and
behavior of method invocations sent by the clients. Its implementation builds on
the meta object. Changes to information kept in the meta object affect subsequent
base object behavior. Meta objects can be used to track and control certain

aspects, such as structure and/or behavior, of base objects.

_61 -

Meta objects are grouped into a meta-space which we will call the meta level, and
base objects are grouped into a base level. Figure 5.1 below illustrates the

relationships between the meta level and the base level.

An important aspect that determines the applicability and performance of a meta
architecture is the way the connection between meta level code and base level
code is established and how control and information flows between the two

levels.

Metalevel

Metalevel:
objects

Reification
Reflection

Baseleve

Figure 5.1 Meta level and Base level in a typical meta architecture

Figure 5.1 shows that a meta architecture has two functions in a reflective
framework, Reflection and Reification. They are different in the way the two levels

are accessed.

Reflection is the ability of a meta object to manipulate data that represents the
state of a base object and to adjust itself to changing requirements. Another way
to describe reflection is by means of Causal Connection [74]. Causal connection is

related to the connection between Description and Described Object. In a

-62 -

reflective system employing a meta architecture, each meta object represents or
describes certain aspects of the implementation of a base object [4]. Changes in
the meta objects (descriptions) result in changes to how the base objects
(described objects) are implemented. Reflection means that a system can

manipulate a causally connected description of itself [65].

The causal connection is established when the base object (described object)
receives the message which is interpreted at the meta level. The meta level
decides what to do with the message. In other words, the meta level can describe
what the message is supposed to do. Causal connection implies that changes to
the description have an immediate effect on the described object. A good
example to demonstrate reflection is the relationship between a subject and its
observers. Once the subjects state changes, all its observers will immediately be

notified.

In contrast to reflection, reification makes it possible for meta data, hidden from
the application developer [4], to be available at the base level process. A meta
architecture allows a base object, through accessing meta objects, to reason about
its own execution state. The relationship between a subject and its observers can
also serve as an example to demonstrate reification. Each observer can alter its
behavior based on the current state of the subject to which the observer

corresponds.

Meta objects may be thought of as objects, which logically belong to the
underlying run-time system. For example, a meta object might control the
message lookup schema that maps incoming messages to operations in the base
object. Another meta object may modify how values are read from memory. This

yields a potentially customizable run-time system within a framework [65].

A Meta Architecture supports a layered structure within its meta level. Meta

_63 -

objects can be associated with their meta objects. Each meta object may be
defined separately or be composed of other meta objects. Thus the latter provides

a 1ayered structure supporting reuse and incremental construction.

To supervise the execution of a base object, it has to be explicitly reified into the
corresponding meta level. A set of interfaces with which a base-level object

accesses its meta level constitutes Meta-Object Protocols.

52 An Example of The Meta-Architecture Approach - A Simple Drawing
Pad

A simple drawing pad application [13] is used to demonstrate the reification and

reflection in meta level in meta architecture. A screenshot of the simple drawing

pad is shown in Figure 5.2. The drawing pad supports multiple tools which are

scribbling tool, eraser tool and line tool.

Figure 5.2 Drawing Pad

- 64 -

Meta Level Objects

The structure of the meta level objects is shown in Figure 5.3. The classes are

summarized in the following table.

Class Description

ScribbleMeta The initial controller class

ScribbleCanvas The double-buffered drawing canvas
ScribbleCanvasListener The event listener that listens to mouse events in the

drawing canvas

Figure 5.3 Structure of meta classes at meta level

ScribbleMeta is a meta level class because it contains information about the
internal structure and behavior of base level object. It provides drawing canvas
and mouse event listeners for the drawing pad. We can create a base level class,

DrawingPad, by extending the meta level class ScribbleMeta.

65 -

The fields and methods of the ScribbleMeta class are summarized in the

following table.

Member Description

canvas Drawing canvas

listener Mouse event listener of the drawing canvas

1sApplet Whether the scribe pad is invoked as an applet (It could be
an application)

makeCanvas() Factory method that creates the drawing canvas

makeCanvasListener() Factory method that creates the mouse event listener

main() Public method for the scribble pad to be invoked as an
application

As ScribbleMeta is developed at the meta level it provides only minimal
functionality of a scribble pad. The canvas instance has only a blank canvas for
drawing, which does not have either a tool bar or menu bar on it. The listener
instance created by can only listen to events like mousePressed,

mouseDragged and mouseReleased.

In this application, adaptability at the meta level is demonstrated by dynamically
adding a new meta level class on demand. Scribble2Meta extends and
enhances ScribbleMeta to create a control panel that contains a clear button to

clear the canvas and a choice control to choose a new pen color.

Scribble2Meta contains an extra method that creates the control panel
containing a Clear button to clear the canvas and a choice control to choose a
new pen color. The screen shot of the enhanced scribble pad, Scribble2Meta,
is shown in the Figure 5.4, and the structure of the enhanced scribble pad is

shown in Figure 5.5.

66 -

luClear,

Pen color

TTmE

Figure 5.4 Scribble pad screen of meta object Scribble2Meta

We can say that the meta level class in meta architecture allows unlimited
adaptability of meta level classes. Scribble2Meta is an enhanced version of
ScribbleMeta. Most of the current classes in meta level in meta architecture
can be reused for future upgrades. However, they are limited to the class level in

object-oriented software development.

When there are any changes in meta level classes because of system evolution,
the classes are required to recompile and have all their objects instantiation to
stop for system upgrades in system server. We know that it is unacceptable
solution for most mission critical systems such as E-banking and Life Support
systems. This yields a potentially customizable run-time issue within a

framework [65].

_67 -

Figure 5.5 Scribble2Meta extends ScribbleMeta at the meta level

To resolve this issue, the Meta-Level Component-based Framework, MELC,
developed in this thesis, will show the solution of applying the meta architecture
to provide adaptability at the object level in the runtime environment (not class
level). Such a reflective framework architecture is flexible enough to meet a wide
range of requirements on demand; not only will the framework allow the
insertion of meta level objects; it should provide opportunities for the
replacement of the established meta level objects after instantiation in the

framework server.

We believe software systems require an adaptable framework architecture to be
designed that will dynamically adapt to new user requirements by upgrading
their software components at runtime, leaving the rest of the system intact. With
this drawing pad application, we try to emphasize that MELC - a dynamically
adaptable meta architecture based framework in the run time environment is an
attractive alternative for extensive and intrusive changes, which provides

adaptability for objects at the meta level in the meta architecture.

_68 -

Base Level Objects

The drawing pad supports multiple tools which are scribbling tool, eraser tool
and line tool. The fields and methods of the DrawingPad — a base object are
summarized in the following table. The structure of the drawing pad’s base

object is illustrated in the class diagram shown in Figure 5.6.

Member Description

CurrentTool Current tool being selected

makeToolBar () Auxiliary method that creates the tool bar
makeMenuBar () Auxiliary method that creates the menu bar
makeCanvasListener () Factory method that creates the mouse event listener

MetaSpace Metaokj

Scrib

Meta objects

Base objects

Figure 5.6 Structure of Drawing Pad — A Base Object

The drawing pad as shown in Figure 5.2 has a tool bar at the left, which is used

_69 -

to select the current tool. Each button represents a different tool.

The base object DrawingPad extends the meta object Scribble2Meta. The
DrawingPad has two methods. One method is used to construct the tool bar at
the left, which creates a button with image and an action for each tool. Another
method is used to construct the menu bar at the top, which creates a menu item

for each tool.

In the DrawingPad class, the creation and registration of the ToolListener
object can be used to demonstrate the Reflection and Reification in meta
architecture model. As we have mentioned, reflection means changing the states
in meta level will result in changing states in base level. In contrast to reflection,
reification is the process of making states at the meta level to be accessible to base

level. They are two different directions for processing.

Reification in Drawing Pad

The control is from the meta level, which is not normally available in the base
level in a programming environment, and is hidden from users. DrawingPad
extends Scribble2Meta which in turn extends ScribbleMeta. Reification in
meta architecture happens here. During the instantiation of the base class
DrawingPad, the construction of DrawingPad will instantiate meta object
Scribble2Meta, and then also will instantiate meta object ScribbleMeta

dynamically.

The constructor method in the base object reifies the meta object,
Scribble2Meta, in meta level. After the process of reification, the meta object

Scribble2Meta will be accessed by the base object DrawingPad.

-70 -

s

DrawingPadQ

e

_

Base Level Meta Level

Figure 5.7 Sequence diagram of the constructor method in DrawingPad

At the meta level, the constructor of ScribbleMeta calls the method
makeCanvasListener to create a listener object, CanvasListener. The
Listener object is one of the data members belonging to the meta object
ScribbleMeta. However, the base object DrawingPad overrides the method
makeCanvasListener. The meta object ScribbleMeta will call the method

makeCanvasListener in base object DrawingPad to create the listener object.

The sequence diagram of invocations of constructors of the superclasses is
illustrated in Figure 5.7. In the implementation, the constructors of the
superclasses ScribbleMeta and Scribble2Meta are invoked by the
constructor of DrawingPad class. The meta object ScribbleMeta will call the

base object DrawingPad to create listener object as we have described earlier.

-71 -

Reflection in Drawing Pad

Reflection is the ability of a meta object to manipulate as data that represents the

state of the base object and adjust itself to changing requirements.

The Listener object is one of the data members belonging to the meta object
scribbleMeta and represents the state of the base object DrawingPad.
Reflection in meta architecture happens here. Changing the listener will affect the

behavior of the system when handling events encountered on canvas.

The listener object will be different depending on the class that constructed it,
scribbleMeta or its subclass DrawingPad. The listener object could be a
simple EventListener as provided by ScribbleMeta or it could be an
enhanced listener that also listens for events related to the tool bar that
DrawingPad class has created. Creating an enhanced listener requires the

DrawingPad class to override the makeCanvasListener method.

In the base level, reflection allows the base object DrawingPad to have its own
listener and, consequently to have its own state and behavior during execution.
The sequence of invocation involved in using the factory method is illustrated in

Figure 5.7.
In the constructor of the superclass ScribbleMeta, the makeCanvasListener

method creates an instance of the EventListener object and registers it as the

mouse listener of the drawing canvas.

-7 -

Method of class ScribbleMeta: makeCanvasListener

protected EventlListener makeCanvasListener (ScribbleCanvas canvas)
{
return new ScribbleCanvasListener (canvas);

}

The relevant methods of the ScribbleCanvasListener class are summarized

in the following table:

Methods Description

mousePressed Handles the mouse button pressed event
mouseReleased Handles the mouse button released event
mouseDragged Handles the mouse dragged event

However, the method makeCanvasListener() in subclass DrawingPad
overrides the method in ScribbleMeta and creates a different instance of an
EventListener object. The mouse event listener associated with the drawing
canvas simply delegates the handling of mouse button presses and releases and

mouse dragging to the current tool.

Method of class DrawingPad: makeCanvasListener

protected EventListener makeCanvasListener (ScribbleCanvas canvas)

{

return new ToolListener (this, canvas);

-73 -

As mentioned before, the Listener object is one of the data members belonging
to the meta object ScribbleMeta and represents the state of the base object
DrawingPad. Reflection in meta architecture happens here. Changing the listener
in meta level will affect the behavior of the base object DrawingPad when

handling events encountered on canvas.

We can say that the creation and registration of the ToolListener object in the
drawing pad application demonstrate the Reflection and Reification in a meta
architecture model. However, the implementation of the drawing pad application

is limited to the non-distributed system environment.

The Meta-Level Component-based Framework, MELC, in this thesis, aims at
providing adaptability for distributed system environment. It embraces
lightweight technology such as Object Request Broker (ORB) which
transparently hides distribution and other non-functional concerns from
software developers. Thus, our MELC is a component-based framework which is

enabled to make distributed systems configurable, flexible, and adaptable [85].

- 74 -

5.3 Related Works in Reflective Models

Recent work has concentrated on reflective architecture for adaptation concerns.
They have proposed quite a few theoretical approaches to build reflective
systems to meet the changes of objects for adaptation during runtime. Their
approaches focus on the dependencies between objects [66, 67], the interfaces of
objects [68], the interactions between objects [69, 70], or the changes of the
behavior of objects [71]. However, the approaches still can not come up a feasible
framework architecture to meet the demand for runtime adaptation for system

evolution. We summarize their works in this section.

5.3.1 Object Dependencies in Reflection

Dependencies, which specify relations between objects, can be changed during
run time to achieve adaptation. Lunau [67] has proposed a reflective architecture
for process control applications that handles dependencies by using a system
meta object. In process control applications, several independent aspects of
behavior need to be monitored simultaneously, such as fault detection, logging
of values, and reconfiguration of the process. The monitoring can be performed
by having a large set of meta objects which contain the different aspects to be
monitored. The system meta object administrates the composed meta objects,

and invokes them in turn. The architecture is shown in Figure 5.8.

- 75 -

S
OO

Figure 5.8 Composition of Meta Objects in Meta Architecture

pre list

post list

The system meta object handles two lists. On the pre list are all meta objects that
should be notified before the operation in the base object is performed in the base
object. The post list contains the meta objects that need to be notified after the
performance of the operation in the base object. The meta objects are supposed to
be dynamically added and removed from the lists for system evolution.
Unfortunately, it is very difficult to replace the meta objects in the lists due to
cohesive dependency between system meta object and its meta objects in the lists
at run time environment. We consider an adaptable framework should provide
adaptability that does not require meta objects (functions) to possess cohesive

dependency so that they can evolve independently.

5.3.2 Interfaces Realization for Reflection

Walker et al. [68] have proposed adjusting the parameters passed to an object
during run time to implement contextual reflection. Contextual reflection
consists of a meta level which intercepts method invocations and inserts the
parameters that the object expects, or performs a mapping between interfaces.
The meta level can inspect objects and holds the history of method calls to

objects.

~76 -

15

[
3

C

Figure 5.9 Mapping performed at the Meta Level

The architecture is shown in Figure 5.9. An outgoing message is intercepted at
the boundary of mapping component A in the meta level. The message contents
can be manipulated and the message rerouted to a new recipient C, all based on
the mapping at the meta level. The mapping component A plays the role of an
adapter (see adapter design pattern) in the architecture, which depends on the
predetermined path (history) of the method calls to the object. In this approach,
the intercepted messages (methods) are not aware of the adaptation of their

interfaces.

The adapter in this approach provides a fixed mapping between interfaces. The
mapping is system-determined and cannot be changed during run time. Such
dynamic adaptation is limited to the anticipated environment only. According to
our requirements for an adaptable framework mentioned in Chapter 2, the
framework architecture should have extensibility required to support both
adaptation in the anticipated environment and also to handle unanticipated

adaptation during run time.

-77 -

5.3.3 Objects Interactions for Reflection

Lead [69] proposed the control flow between components, to controls the
interaction between components. The control flow can be changed during run
time depending on the computation described by strategy objects which intercept
method calls and use the information on the actual environment of the
application to control the interaction between components. Lemos et al. [70] have
proposed another approach, a reflective software architecture which changes a
set of interactions between objects and is called cooperation during run time. It
uses cooperation managers, implemented as meta objects, to select the way objects
interact with each other during run time. Both the reflective approaches [69,70]
achieve separation of objects and the adaptation of their interactions. However,
meta objects in these reflective approaches cannot be replaced at runtime [70].
Their reflective approaches fail to meet the requirements of an adaptable

framework in the aspect of adaptability at runtime.

5.3.4 Roles Management for Reflection

Tramontana [71] has proposed a behavioral reflective architecture that is able to
adapt its components by addressing the problem of changing the behavior of
objects during run time using roles. Reflective systems separate functionality and
adaptation strategy. Roles are modeling abstractions able to capture specific
views of the object. Let’s consider the example of a Hotel Reservation System [52].
Making a room reservation: first check the room availability, make the room
reservation, and update the room information. The role of a customer is different
from that of a hotel supervisor. The role of a customer is to request a reservation.
The hotel supervisor role has privileges necessary to execute all functions related
to making room reservations. Some rules are embedded in the role objects, which

make the behaviors of customer object and hotel supervisor perform differently.

A role manager expresses the adaptation strategy of its associated object by some

rules that establish when the object can change its behavior using roles. A

_78 -

cooperation manager is used to coordinate the request for accessing a group of
objects and participating roles. The relationship between objects and roles are

associated with performing component functions at the meta level.

3 scivate ﬂl_ﬂ--“":.f‘j \\"‘"--, 49
T e
'1 [= 9 relesse
~— '‘DbiManager | | :RoleManager)
A { ! 28 5: collab
Ltsp | A\
COMITIERCY
eanirod
,,, anid edgiation
!
! :COactlonA
L
metrieve] T .,
beselovel 678 . t!,«"‘(\\\ N3
& A
‘ e F o7 dheck pre .
l: coal) Y 7. mvoke
—» | - iChssl | Rolal | 8: check post
K_,m__,____m v,\‘ /‘.f

Figure 5.10 Roles Management for Reflective Software Architecture [71]

The architecture and the sequence of invocations for changing object behavior
using roles are shown in Figure 5.10. The invocation (1) of the method of an
object at base level is trapped to its object manager (2) which gives control to a
cooperation manager (3). The cooperation manager selects, during run time, the
role object to participate in the associated cooperation. If the rules for adaptation
are satisfied, the role manager (4) attaches the role object to the base object at
base level. When objects and roles at the base level have been acquired, the
cooperation manager activates the cooperation (5) which coordinates and

operates on the selected objects and roles (6,7,8). When the invocation has been

-79 -

completed, the objects and roles are released by the cooperation manager (9).

However, the role objects in the relation cannot be easily changed or evolved
dynamically at runtime environment when they are associated with the object in
the relation. The relation of the objects and their roles are closely coupled and
are firmly bound together in the run time environment and they cannot evolve
independently. Tramontana’s approach fails to meet the property — adaptability of

an adaptable framework.

- 80 -

54 Summary of Reflective Models

Reflection is a technique that provides the basic mechanism to build an adaptable
software model for managing system evolution. It combines aspects in

adaptability for system development to aid the evolution of running systems.

In Table 5.1, we categorize the related work on reflective models according to the
assessment attributes [100]: meta object co-ordination, meta object integration,
meta object adaptation, and communication linkage between base level and meta
level. We also evaluate each reflective model included in the table against the

properties of adaptable framework.

In the table, we briefly describe the approach of each reflective model and
illustrate the co-ordination, integration and adaptation of meta objects. The
reflective models in Table 5.1 attempt to perform reflection with different design
technology in an object-oriented approach. However, they fail to allow
adaptability to support the evolution of mission critical systems. They suffer
from either the cohesion of objects dependency (highly coupling) between
system meta objects and role objects (Lunan [67], Lemos et al [70] and
Tramontana [71]), or are limited to anticipated requirements (Walker et al. [68]),

making them unable to perform an adaptation for system evolution.

Software evolution and adaptation offer stimulating challenges. The recent
research work in reflective models cannot successfully change the objects’
behavior in a runtime environment and they fail to address adaptability in system

evolution.

_81-

Related Works in
Reflective models

Lunan [67]

Walker et al. [68]

Lead++[69]/
Lemos et al [70]

Tramontana [71]

(meta space)

method invocations and
performs a mapping

computation to
cooperate the

Description System meta object Contextual reflection Components are Roles are adapted to
monitors a large set of consists of a meta level. activated depending change the behavior
meta objects. on computation. in reflection

Interfaces realization
Use the dynamic for reflection. Base on objects Use roles
adding and removing interactions and management to
meta objects to and Use parameters in meta associations for construct dynamic
from the list for object to perform adaptation. roles for adaptation.
adaptation. adaptation.

Meta Object System meta object at Contextual reflection as Strategy object Cooperation

Coordination meta level an adaptor intercepts performs the manager coordinates

the request for
accessing a group of

Integration

list of meta objects

meta level adjusts the
parameters to pass to a
meta object

cooperation manager

between interfaces at interaction. objects and roles
meta level. participated.
Meta Object Use pre list and post Contextual reflection at Strategy object as nil

Meta Object

Add or remove meta

Add or remove meta

Information in

Role manager

linkage between
Meta Level and
Base Level

attaches to a base
object at base level —
simple attachment

interfaces.

Adaptation object to or from the object to or from the Strategy object can expresses the
strategy lists mapping. be changed at run adaptation strategy.
time.

Adaptor performs

operation depending on Objects interaction

the previous history of depends on the

method calls to the computation with

object. strategy object.
Communication One system meta Adaptor maps meta Nil Intercepts method

invocation at meta
level.

Evaluation on
properties of
adaptable
framework

Cohesive dependency
with system meta
objects.

Can’t make changing
to the established
meta objects at run

Static mapping.

Dynamic adaptation is
limited to the

anticipated requirement.

Can’t change the meta

Can’t perform
replacement of the
meta objects at run
time.

Computation in
strategy object is

Objects and roles are
closely coupled at
run time.

Roles can’t evolve
dynamically at run
time after they have

time. interface mapping predefined. associated with the
(adaptor) at run time. meta objects.

It lacks of It lacks of

adaptability. It lacks of extensibility adaptability. It lacks of
and adaptability. adaptability.

Table 5.1 Related Works for Reflective Models with Meta Architecture

_82 -

Chapter 6 Practical Works on Adaptability in Meta Architecture

6.1 Adaptable Frameworks for Systems Evolution

In this chapter, we review the recent work in building an adaptable framework.
In the earlier stage of the research for developing frameworks, many researchers
focused on building application specific frameworks. Fayad et al. [20] presented
a comprehensive discussion of OO frameworks in which they classified
application frameworks. Johnson et al [22] described a framework as a reusable
semi-complete application that can be specialized to produce custom
applications. Schmid [25] classified frameworks as application- or
domain-specific. Yacoub et al. [6][59] using design patterns as building blocks,
described pattern-oriented frameworks as containing two distinct levels
mentioned in Chapter 4: the pattern level and the class level. His approach
addressed reuse at the design level and considered patterns thought as
micro-architecture elements and not components viewed at the macro level.
However, in practice, it was very difficult to maintain the patterns after they

have been realized and regrouped at the class level [59].

Buschmann et al. [2] described the Reflection architectural pattern as providing a
mechanism for supporting class modification and affecting subsequent
functionality in the application. He presented the reading and writing objects in a
file but had not described how the adaptation could be carried out in the runtime
environment. Grand [14] collected a set of enterprise design patterns but had no
further description on relating these patterns as components in an adaptable

framework architecture.

More recent research work has focused on providing component—based

frameworks [108]. The primary reasons for component production and

283 -

deployment are: separability of components from their context, independent
component development, testing, configuration and later reuse, upgrade and
replacement in running systems. Assmann [72] presented component models of
invasive composition. The techniques in invasive composition help components
to adapt to reuse requirements. Assmann et al [73] went further and initiated the
development of automated component-based software engineering which has
since emerged as a field of study in software engineering. Automated
component-based software engineering aimed at studying the adaptation of
component-based frameworks. Assmann’s study identified adaptability for
components to allow system evolution at runtime as a critical issue which should
be resolved before a component-based approach can make a significant impact

on mission-critical software automation.

The unrelenting pace of change that confronts software developers compels them
to make their component-based frameworks more adaptable. The following
sections show the current trends in framework research which investigate the
benefits that the use of the reflective and aspect-oriented mechanisms for

managing could gradually bring to system evolution.

6.2 Reflective Languages - Iguana

Iguana [74] is a programming language which is an extension of C++ or Java
with Meta-Object Protocol (MOP) features. A Meta-Object Protocol is an
interpreter of the semantics of a program that is open and extensible. A MOP
determines what a program means and what its behavior is, but it is extensible in
that a programmer can alter the behavior by changing pieces of the MOP. The
MOP exposes the internal structures of the program to the programmer. MOPs
are implemented as object-oriented programs where all objects are meta objects.
The Meta-Object Protocol (MOP) of a programming language is an exemplary

model for providing fully functional reflective support in language.

-84 -

In general, MOP can happen at runtime or compile time. The meta objects of
runtime MOPs exist while the program itself is executed. The meta objects of
compile-time MOPs, however, exist only when the program is compiled. A
compile time MOP is a pre-compiler and acts as an interpreter for the program
and interprets the program via modifications of the meta-level information in the
program before the program compilation. They alter or extend the compilation

process.

Iguana aims at generating runtime reflective software instead of being a
reflective compiler itself. Iguana [74] uses reflection as a mechanism for
implementing dynamically adaptable system components and MOP in Iguana is
used to specify the implementation of a reflective object-model as a consequence

of reification.

Iguana has been designed to explicitly facilitate dynamically adaptable objects,

i.e., objects whose behavior can be adapted at runtime [75].

In an interpreted language of MOP, an interpreter must construct a lot of
behavioral information about a program to be interpreted. This information is
not used directly by the program; instead it serves as the behavioral information
needed by the interpreter to execute the program. In reflective programming,
however, reflection occurs in the reflective computation that involves how the
program is interpreted. The reflective program can adapt its own interpretation

via modifications of the meta-level information.

Iguana adds reflection to a compiled language such as C++ and Java. As an
interpreter has already constructed a significant amount of meta-level
information, extending the interpreter to be reflective only involves adding

support for exposing the meta level information to the base-level program,

_85.-

allowing the program to influence the decision making process of the interpreter

and effect its own behavior through modification of the meta-level information.

Iguana has a utility called Reification Categories in an attempt to provide a simple
configuration tool to minimize execution overhead by offering developers the
opportunity to selectively choose which meta objects need to be reified.
Iguana/C++ and Iguana/] extend C++ and Java programming languages with

MOP features respectively [74] [75].

Iguana is implemented as a pre-processor which reads in the Iguana source,
digests the meta level extensions, makes the appropriate meta level
modifications, and then outputs modified codes. Iguana/C++ and Iguana/J have
different pre-processors. After the preprocessing has completed, Iguana will
invoke the compiler (C++ or Java) accordingly to Iguana/C++ or Iguana/]

coding.

As a result, Iguana architecture has strong cohesion with the implementing
language. Their implementations of dynamic adaptation are dependent on the
infrastructure of the language environment, such as Iguana/]J which is closely
integrated into the JVM [74]. The architecture is bound to a language and its
reflective ability, which, in fact, decreases its flexibility. Apparently, the
architecture of Iguana does not support the concept of independence of run time
platforms and the semantic integrity of components in a framework. The tool,
Reification Categories in Iguana, offers reification in framework and does not
support the system operations, such as start/stop, on meta objects for system
administration. The framework architecture of Iguana is language dependent
and fails to address Separation of Concerns and Portability, the two indispensable

properties of an adaptable framework.

- 86 -

6.3 Adaptable Models
6.3.1 Adaptive Object Models

Adaptive Object Model (AOM) [76][77] is an architecture intended to provide a
meta architecture that allows requirement changes to be performed and
immediately reflected at runtime. AOM architectures are usually made up of
several smaller design patterns, such as Composite, Interpreter, Builder, and
Strategy [1], along with other dynamic patterns such as Type Object, Property,
and Rule Objects [78]. By organizing an application using these patterns, we can
represent application features, attributes and rules as metadata that can be
interpreted in a running system. After this organization, a requirement change
can be performed, for example, by replacing the interpreted metadata, which can

be stored on the database or in an XML file.

The maintainability problems with AOM’s code happen because the adaptive
behavior is often mixed with the business logic and GUI code of the application.
AOM systems’ code is usually very difficult to understand and maintain. The
internal structures of AOM are difficult to extend and maintain as agreed by
AOM architecture developers [77]. In this case, AOM architecture is not
adaptable because it is not easy to include unanticipated adaptive requirements
on them and it is not even able to reflect immediately the change requirements at

run time.

Aspect-Oriented Programming (AOP) described in Section 54.1 has been
proposed to make AOM systems simpler to evolve, regarding the inclusion of
new adaptive requirements [76]. AOP is used to identify the cutting points in the
execution flow of a program. The cutting points are the places in a program where
behavior changes happen. For implementing these adaptive cutting points, the
concept of dynamic properties dictionary is introduced in Adaptability Aspects

Pattern [77] to define and store those adaptive cutting points. The dynamic

-87 -

properties dictionary is also responsible for verifying whether an adaptation
should be performed, followed by performing the necessary changes consistently.
The use of the Adaptability Aspects Pattern is proposed to avoid code tangling
and scattering while implementing adaptability, which can isolate the
adaptability actions from the application business logic and GUI code. However,
business cases are lacking to illustrate how the concepts of these adaptive aspects

can be constructed and applied to the AOM architecture to achieve adaptability.

6.3.2 Dynamic Hyperslices Model

The Dynamic Hyperslices Model [79] is intended to support the dynamic
evolution of non-stop systems which can not be easily taken offline for
maintenance due to high costs of their down time (telephone and banking), or
environment safety (nuclear plants) or loss of human life (life support systems),
etc. The Dynamic Hyperslices Model is proposed. It uses the Hyperspaces
approach [80] to decompose the software system into single aspect modules
(Hyperslices), and then apply the reflection (meta architecture) along with
architectural connectors, to achieve dynamic unit composition and runtime

manipulation.

The Dynamic Hyperslices Model is currently under development. The
architectural designers have the initial ideas for its implementation. The link
between the base and the meta levels is established at load time via Aspectd
which introduces and initializes the corresponding reference variables at the base

and meta levels. Aspectd is an extension to the Java programming language.

1 A composed slice is represented by a proxy class at the base level and a
composite meta class at the meta level. Instantiation of a composed slice
results in instantiations of its components;

2 All calls to the base-level objects are passed to their meta objects. The meta

_88 -

objects resolve each call in accordance with the composition strategy used
and filter it down the composition chain to the resolved primary slice which

executes the call.

After the composite classes are instantiated at the meta level, the links between
composite objects and proxies are established. Therefore, the composite objects
(meta obijects) in the model cannot be easily replaced with new objects (evolving
version) at run time. Currently, the proposed Dynamic Hyperslices Model only
shows the layout of a meta architecture on top of a Hyperspace Model with
Hyperslices as components at the meta level and is still not able to support
dynamic adaptation for mission critical systems for evolution [79]. The problem
for handling new definition of a hyperslice in hyperspace has not been resolved
in connection with the evolving schema [79]. Besides, some very important issues
for system evolution, such as dynamic integration and management of
Hyperslices, have not been addressed in the model. The architecture of our
adaptable framework in this thesis aims to resolve the issues for the dynamic

integration and management of meta objects for system evolution.

6.4 RAMSES - Reflective Middleware for Software Evolution

Reflective and Adaptive Middleware for Software Evolution of Systems
(RAMSES) [81] is a reflective middleware whose aim consists of consistently
evolving software systems against runtime changes. This middleware performs

two phases in carrying out adaptation.

In the first phase, the RAMSES’s meta-level extracts the design information as
XMI schemas from the base application and it reifies them at the meta level to
constitute the meta-data. In the second phase, the RAMSES’s meta-level plans the
dynamic adaptation of the base-level system, gets the runtime events, evolves the

meta-data against the detected event, checks the consistency, and finally reflects

_89 -

the modified data to the base level [81].

Mypta—Leoel

Emohifionary

—p Consisiency Checker

Mueia—Object Meta—-Object

MOP Reification
Categories
MOP
reflect
Base—Level
System
Base—] evel

Figure 6.1 RAMSES Architecture [81]

This infrastructure is considered to be dynamically adaptive because changes in
the execution environment causes objects, attributes and collaborations to be
constructed and modified at runtime to achieve new behaviors not previously
defined and instantiated. Figure 6.1 shows the two-layers reflective architecture.
The base level is the system that renders self-adapting whereas the meta level is a
second software system which reifies the base-level design information and

plans its evolution when particular events occur.

RAMSES is starting to work on its prototyping and design XMI schemas for
base-level attributes from design information [81]. RAMSES is in the
development stage and it has not overcome the problems which arise from the
functional domain to infrastructure, such as coordination and integration during
evolution, time constraints for meta objects instantiation at the meta level, and
configurative administration at the meta level at run time to support adaptability

issue.

_90 -

6.5 Hot Deployment and Hot Evolution in Application Server - J2EE

Most of application servers including both commercial (Websphere, Weblogic)
and open-source (JBoss, Tomcat) provide the hot deployment functionality [82],
which enables software components (EJB-JAR, EAR, or WAR package) [36] to be
plugged and unplugged without restarting application servers. This dramatically
improves the productivity of the software development. To be separately
deployed and undeployed at runtime, each component is loaded by a distinct
class loader. Thus a J2EE application can be dynamically customized per
component at run time. Sato et al [82] define J2EE application server as providing

“Hot Deployment” .

However, if a new version of a component is deployed for software evolution,
instances of the new version cannot be exchanged for concerned instances (such as
caches, cookies, session objects) of the old version of that component because of
the version barrier of current application servers. Such concerned instances in EJB
objects should be passed to the new component through the shared container of
the application server. This is remarkably inconvenient in practice. That is to say,
J2EE application servers provide hot deployment but not “hot evolution” . The
version barrier makes it difficult to include a copy of a shared class in every
component. JBoss [83] provides the UCL (Unified Class Loader) architecture but
this architecture prevents different components from including different classes
with the same name. As the result, J2EE and JBoss both lack required portability

as defined in Chapter 2 in their framework architectures for system evolution.

Middleware technologies such as Sun Microsystem’s J2EE are slowly moving
into the domain of automated component-based software engineering. Their
emphasis is typically on generation, such as glue code generation or
user-interface generation; support for automated testing, adaptability and quality

control is only nascent.

_91 -

6.6 Reflective Model Driven Architecture - OpenCOM

OpenORB [84] is a pilot implementation of a reflective meta-model OpenCOM.
OpenORB is a reflective dynamically reconfigurable ORB middleware platform
built on top of OpenCOM. The Object Request Broker (ORB) acts as a central
object bus over which each CORBA object interacts transparently with other

CORBA objects located either locally or remotely.

CORBA is the middleware that relies on a protocol called the Internet Inter-ORB
Protocol (IIOP) for invoking remote objects. Everything in the CORBA
architecture depends on an Object Request Broker (ORB). Currently, the
lightweight component technology is applied only at the application level on top
of middleware infrastructures, which hide distribution and other non-functional

concerns from component developers.

In order to address the need for adaptability, the middleware, OpenORB, is built
according to a component-based architecture. Furthermore, it is proposed that
the middleware is reflective in helping to facilitate and manage run-time changes
in component configurations. In other words, it should incorporate structures
representing framework aspects of itself and offer meta-interfaces for inspecting
and adapting the reified aspects (meta objects). The architecture shows that both
middleware and applications should be built from components following the

lightweight component model (Object Request Broker).

At this stage, OpenORB supports dynamic composition for distributed
applications, but does not provide adaptability of meta objects for system
evolution at run time. Recently, OpenCOM has proposed further development
for the design of reflective middleware architecture [84, 109]. As challenging new

requirements [109] emerge when working with a distributed architecture, these

~97 -

include decisions in software design, component development, integration,
deployment and adaptation at run time. To address these issues, OpenCOM is
currently investigating the use of Model Driven Software Development (MDSD)
[84]. OMG Model Driven Architecture (MDA) is about using modeling
languages as programming language. Programming with modeling languages
can improve software productivity, quality and longevity [102]. OMG Model
Driven Architecture (MDA) will be adapted in OpenCOM, and currently the
main focus of applying MDA is on the design of distributed applications and
ways to map them to middleware technology (OpenORB) [84].

A key issue of OpenCOM is to investigate ways to maintain the UML models at
runtime and to keep them causally connected with the underlying running
system in order to support reconfiguration and reflection [110]. Applying MDA
for OpenCOM reflective component framework is now at a primitive stage. More
work has to be done to completely identify the variability among configurations

of middleware families to support an efficient generation of configurations in the

Model Driven Architecture (MDA) [84].

-93 -

6.7 Summary of the Reflective Frameworks

Recently, framework researchers have identified that adaptability of components
in systems evolution at runtime as a critical issue. It should be resolved before
any component-based approach can make a significant impact on mission-critical
software automation. The software adapation combines aspects in adaptability for
system development with Separation of Concerns and Portability to aid the

evolution of running systems.

Separation of Concerns provides the innovative composition and consequent
maintenance of components in the framework architecture. Portability adds
flexibility to the framework architecture. This allows it to be independent of
programming language and its platform, enhancing the transfer of concerned

instances between versions of distributed services in computing.

We have briefly reviewed the recent reflective frameworks and summarize them
in Table 6.1. In this section, we categorize the related works in reflective
frameworks according to same assessment attributes used in previous chapter:
meta objects co-ordination, meta objects integration, meta objects adaptation, and
communication linkage between base level and meta level. We also evaluate each
reflective framework included in the table against the properties of adaptable

framework.

The drawbacks we identified in the recent research framework architectures
include: Customization JVM for Java in order to meet dynamic adaptation with
Java runtime environment (Iguana [74]) and Complication in extending and

maintaining framework internal structure for new user requirements (AOM [76]).

Customization JVM for Java makes the architecture impractical for implementing

adaptable framework with independence of programming language.

- 04 -

Complication in extending and maintaining framework internal structure causes the
architecture to be difficult of managing the unanticipated requirements in system
evolution. Furthermore, the barrier for the transfer of the concerned instances
(caches, sessions) between versions of the framework component (J2EE [82]) also

causes failure in portability for the distributed services in software evolution.

Both academic and industrial researchers are aware of the importance of having
component adaptation for distributed object-oriented enterprise framework.
Reflective frameworks, Dynamic Hyperslices Model (IBM) [79, 80] and RAMSE
[81] in Table 6.1, are currently under development to meet the demand of

adaptability for software evolution in component-based applications.

Currently, no adaptable framework takes successfully into account the changing
of components” behavior for the dynamic reflection at run time. Our thesis aims
at providing a reflective framework which can resolve the runtime critical issue
of adaptability of components in systems evolution in a distributed computing

environment.

_95 .

Related works in Iguana [74)] Adaptive Object Models Dynamic Hyperslices RAMSES {81]
Reflective Reflective Language (AOM) [76] Model {79,80]
Frameworks
Brief Description | MOP Programming Generic design patterns ~ Decomposition of Reflective
language extends and dynamic patterns software system into middleware consists
C++ or Java are used in building simple aspects of evolving software
reflective model. (Hyperslices) systems against
Pre-processor reads in runtime changes.
Iguana source and Dynamic properties Software system can
digests them to the dictionary in be decomposed into Two layers reflective
meta level extensions. Adaptability single aspect architecture: base
aspects pattern modules. level is the system
stores the adaptive renders self-adapting
cutting points and meta level plans
its evolution.
Meta Object Interpreter in MOP The grouping of objects Hyperspace is top (First Phase) Meta
Coordination has a significant in patterns provides level of Hyperslics. level extracts design

(meta space)

amount of meta level

immediately reflection

information and

information. at run time. Composed slice constitutes the
coordinates and metadata. (Second
consists of a Phase) Metadata
collection of single against the detected
Hyperslics. event to reflect the
modified data to the
base level.
Meta Object nil Objects integration Dynamic unit nil
Integration specified in cutting composition with

points in execution flow
of program.

Composition Strategy

Meta Object

Dynamic adaptation

Adaptation defined in

Dynamic adaptation

Meta level plans the

Adaptation by customized JVM cutting points of the under development adaptation and 1s
Strategy program flow. under development
Communication [guana exposes the Cutting points where Architectural nil
linkage between meta level behavior changes connectors - the link
Meta Level and information to the happen. established at Joad
Base Level base-level program time via Aspect)
Configuration Reification categories Features, attributes and ~ nil nil
Management to allow developers to rules are represented as
choose meta objects metadata.
to be reified.
Evaluation on Custom JVM for Java. Limited to anticipated Architecture is not Architecture 1s work

properties of
adaptable
framework

Reflection is added to
the compiled
language and has
dependency on the
infrastructure of the
language [74].

Lack of portability.

runtime requirements -
Internal structures are

difficult to extend and

maintain [76].

Lack of extensibility and

portability.

capable to handle to
support the evolving
schema in current
stage [80].

Framework is under
development. Lack of
adaptability.

on prototyping and
design XMI schemas
for base-level
attributes for runtime
adaptability [81].

Lack of adaptability.

Table 6.1 Reflective Frameworks for Software Evolution

_96 -

PART IIl

ADAPTABLE ARCHITECTURE OF MELC

_97.

Chapter 7 An Adaptable Meta-Based Framework Architecture

In this chapter, we propose the conceptual and physical design of our Meta-Level
Component-Based Framework (MELC) architecture which uses distributed
computing design patterns as components to develop an adaptable
pattern-oriented framework for distributed computing applications. We describe
our novel approach of combining a meta architecture with a pattern-oriented
framework, resulting in an adaptable framework which provides a mechanism to
facilitate system evolution [85, 86]. It is particularly important that our
framework possess the five major properties mentioned in Chapter 2: separation
of concerns, adaptability, transparency, extensibility, and portability. They are the
criteria for assessing the attributes of our framework. The concept of using a
meta architecture to produce an adaptable pattern-oriented framework for

distributed computing is new and has not so far been explored elsewhere [86].

This chapter presents the key concept and the internal kernel design of MELC
architecture. We will address the several major features in the implementation of
the architecture. How does MELC coordinate the meta objects to reduce their
interconnection at the meta level (regarding management in meta architecture)?
How do base objects get to know about which meta objects they are connected
with (regarding reification in meta architecture)? How do meta objects get to
know which base objects they are connected with (regarding reflection in meta
architecture)? How does MELC handle operations (start/stop) between two
levels (regarding separation of controls between two levels)? Can the design of
MELC framework be feasibly implemented in an object-oriented programming
language such as JAVA (regarding the programming model)? Such questions

will be dealt with thoroughly in order in the following sections.

Issues that will be addressed: the identification of distributed computing patterns

98 -

for meta components in Chapter 8, the development cycle of an application with
MELC in Chapter 9, the installation of meta components and the integration of
meta components in Chapter 10, and the adaptability of components in MELC in
Chapter 11. They are the technical and core parts in MELC, which will be
described step-by-step in full detail.

71 Conceptual Architecture of Adaptable Meta-Based Framework

Conceptually, we apply meta architecture to construct an adaptable layer to the
pattern-oriented framework in order to make the framework adaptable. In
revisiting the three stages in the construction of the framework described in
Chapter 2, they are framework construction, framework instantiation and
framework application, and we find that the pattern-oriented framework

approach can be aligned with them consecutively, as in Figure 7.1.

Framework Construction
(Pattern Level)

Mapping B !

Framework Instantiation
(Class Level)

Pattern

Using I I

<

Framework Application
(Applicable Level)

Framework-based
Applications

Figure 7.1 Pattern-oriented Framework provides Pattern Level
(Framework Design Level) and Class Level (Framework Class Level)

- 99 -

The figure shows that a pattern-oriented framework uses a pattern level which
serves as a design layer above the class level. On the left side of Figure 7.1, the
rectangles show the levels, and the arrows on the left show the mapping between
the framework design level (Framework Construction) to the framework class
level (Framework Instantiation). The rounded rectangle on the right side shows
the components that have been instantiated by the design patterns, and the
arrow on the right shows the usage of components in the framework-based
application. For the software quality perspective, the instantiation of
well-established design patterns as components in the framework can contribute

to the design quality of the constructed framework [59].

Pattern-oriented frameworks have some drawbacks related to adaptability as
described in Chapter 5. We introduce an adaptable layer into pattern-oriented
frameworks by using a meta architecture that creates a higher level of abstraction.
The meta level in our framework has (system) components which are based on
the well-defined and proven domain specific design patterns. The meta level is
designed with a pattern-oriented approach. The components at the meta level are
the instantiation of distributed computing enterprise patterns. The base level of
meta architecture in our framework contains the application (business)
components. The framework architecture separates system functional concerns
from business application concerns. Such architecture design adds Separation of

Concerns, Extensibility and Portability to our framework.

- 100 -

Framework Construction O O
(Pattern Level) @

O Pattern-Oriented
Meta-Level

2 I

\ Meta- /

Architecture

Framework Instantiation @

{Class Level}

Reflegtion

ifigation

=]}
b

Framework Adaptation
I {Adaptable Level)

Framework Application Framework-based
{Applicable Level} Applications

Framework-based
Applications

Pattern-Oriented Framework Meta Component-Based Framework

Figure 7.2 Adaptable level introduced in MELC Framework

It is particularly important that, by adding an adaptable layer to the
pattern-oriented framework, we will be able to provide a means for adaptability,
as shown in Figure 7.2. The dotted rectangle in the figure illustrates our
proposed new Framework Adaptation Layer, superimposed upon the existing
framework architecture. The adaptability in MELC is provided by the meta
architecture described in Section 5.1. The meta architecture based framework
shown on the right side of the figure, which has two arrows: one points from
base level to meta level to illustrate the function of reification in meta
architecture, which allows meta objects to be accessible by base objects; and the
other from meta level to base level to show reflection which illustrates that a

change in the meta object can result in changes of behavior in base objects.

MELC supports dynamic adaptation of feasible design decisions in the
framework design space by specifying and coordinating meta objects that

represent various functional components within the distributed environment.

- 101 -

Our approach resolves the problem of how to allow for dynamic adaptation to

enable system evolution which is encountered in most distributed applications.
The adaptability in the framework architecture will be further illustrated in next
sections and succeeding chapters. The work to develop a meta-based
pattern-oriented framework for distributed computing applications in this thesis
has emerged as a promising way to meet current and future challenges in a

distributed environment.

7.2 Internal Kernel Design of Adaptable Meta-Based Framework

An application can be split into two parts: system behavior and business
application. The meta level provides information about system properties and
behaviors, and the base level consists of business application logic. The
implementation of system functionality is built at the meta level. Any changes in
the state at the meta level affect subsequent base level behavior. Figure 7.3 shows
the framework architecture where the meta level contains distributed computing

patterns and the base level contains base objects (application servers).

-102 -

Pattern-Oriented Meta-Architecture Framework

Meta Level - Meta patterns identified by MetalD, for example: orbRegistry

@ : ORB Mailbox Thread Http
il Registry Services Pooling Server

O o
(@ Rl e
o O

Meta- . .
Archfezture! ! Kernel

Kernei and Configuration Administration

ramework

Framework-based

Thread Mailbox Thread Pooling § 3
Pod! Services | | [Ty sener | |

__

&
&

Framework-based

Applications Applications

Figure 7.3 Meta Level Component—Based Framework Architecture

Figure 7.3 shows our framework flanked by conceptual architecture on the left
and physical architecture on the right. The rectangle on the left of the figure
represents conceptual architecture which contains two levels: the Pattern-Oriented
Meta Level and the Base Level. The top-down arrow and bottom-up arrow
shows the reflection and reification respectively happened in the meta
architecture. The rectangle on the right of the figure represents the physical
architecture which has a Kernel to coordinate the interaction of meta level and
base level. The figure shows the meta level contains distributed computing
components (ORB Registry, MailBox Services, Thread Pooling and Http Server),
and the base level has the business servers that have reified the components at

the meta level.
The Kernel of the Meta Level Component-Based Framework (MELC), shown in

more detail in Figure 7.4, provides the core functions for the adaptation between

meta level and base level. It includes: Meta objects and Meta Space Management

- 103 -

which handles meta level configuration, Reflection Management which provides

dynamic reflection from the meta level to the base level, and Reification
Management which provides dynamic reification from the base level to the meta

level.

Thread Mailbox
Pooling |4 Services

‘7 Meta Level

Meta Objects
and Meta Space
Management

Kernel and Configuration Administration

Configuration

KernéT

wesvunne

Reflection
Management
(Meta Level to Base
Level)

Reification
Management
(Base Level to Meta

Level)

Base Level

Figure 7.4. Kernel Design in MELC Framework

In our distributed computing framework environment, meta objects are the
pattern components, which include ORB Registry object, Mailbox Services object,
Thread Pooling object, Http Server object, etc. The meta space in MELC
references every meta object and coordinates the interaction between the meta

objects to meet user’s requests.

Meta objects can be created and added to the meta space after the kernel has been
started by the MELC administrator using the management tool which will be
further illustrated in Chapter 9. The administrator uses the Kernel Configuration
Manager to save the framework configuration, which records the set of meta
objects currently running in the system, into a configuration file. Every time
MELC is re-started or restructured, it can be initialized by choosing one of the

saved configuration files.

104 -

Base objects do not have to be attached (reified) to the meta level at the time

when the server is started up. They can be attached later by the administrator (on
demand). Once a base object is attached to the meta level, it becomes aware of
the meta level. For example, if a particular base object is created and reified with
a corresponding meta object that provides an implementation of a thread pool,
that base object will then be able to provide the functionality of the thread pool to
the user’s requests. Reflection in our framework allows a base object to perform
the functions according to the reifying meta objects in the meta space. As another
example, a single base object can be reified with meta objects providing, say, a
thread pooling component and a ORB component. The base object will

dynamically be reflected to have the behavior of a thread pooling ORB server.

7.3 Reflective Kernel Design in MELC

The kernel in MELC provides the core functions for the adaptation between meta
level and base level. Figure 7.5 shows the core functions for the reflective kernel
in our framework architecture, which are Meta Objects and Meta Space
Management, Reification Management and Reflection Management. They are

described and illustrated in the following sections.

Meta Chjects and Meta Space
Menagement by
Mediator Pattem

e N

g T

Reification Maragerment Reflection Menagerrent
(Bese Level to Meta Level) by (Meta Level to Base Level) by
Visitor Pattem Observer Pattem

Figure 7.5 Internal Architecture in Meta Architecture

- 105 -

7.3.1 Meta Objects and Meta Space Management

This section deals with the question of how MELC coordinates the meta objects
to reduce their interconnection in meta space. The Mediator Pattern provides a
way of implementing a director which coordinates meta objects. The meta objects
are the meta components in MELC. The director in mediator pattern receives the
base object requests and redirects them to the appropriate meta objects. We
model the kernel function, Meta Objects and Meta Space Management, with an
implementation of the Mediator Pattern. Figure 7.6 shows the class diagram and
the sequence diagram of the function, which are placed on the left and the right
respectively in the figure. The class called MetaSpace acts as a director which
manages a pattern repository to store the instantiation of distributed computing
patterns, and coordinates the interaction, reflection and reification of meta
components. Meta components are the available meta objects, which we will
refer to as its colleagues. In addition, the mediator pattern is employed in such a
way that the meta components can be added at runtime (plugged in) to
MetaSpace, or updated (replaced) with the new version of the components in
the MetaSpace when system evolution happens, or can be removed (unplugged)

from the MetaSpace.

| |
| DigplaytetaObject()

Figure 7.6 Meta Objects and Meta Space Management with Mediator Pattern

- 106 -

The mediator in the MELC kernel architecture is responsible for controlling and
coordinating the interactions of meta objects. The MetaSpace class functions as
a mediator and serves as an intermediary, promoting loose coupling by keeping
meta objects in the group from referring to each other explicitly. A mediator
replaces many-to-many interactions with one-to-many interactions between the
mediator and its colleagues. The one-to-many relationships are easier to maintain
and extend. Meta objects only know about the mediator, thereby reducing the
number of interconnections at the meta level. Individual objects communicate via
the kernel, which serves as their mediator. This prevents them from
communicating directly with each other. That is how meta objects interact in the
framework. Thus, mediator adds Separation of Concerns and Portability to our

frammework architecture.

The sequence diagram on the right of Figure 7.6 illustrates how the objects
cooperate to handle a request to display a list of all the meta objects residing in
meta space. Such an operation occurs in our administration tool, for example,
when the user wishes to select a meta object to reify a base object with. At that
point, the tool will present the user with a list of available meta objects to select
from. Note how the mediator mediates between the meta objects. Meta objects
don’t have to know about each other in the kernel; all they know is the mediator,
MetaSpace. Furthermore, because the behavior of coordination is localized in

MetaSpace, the interconnections of meta objects are reduced.

The mediator in the framework architecture can decouple colleagues (meta
objects), which provides the capability for our framework to update or replace

meta components. It makes MELC extensible, adaptable and configurable.

- 107 -

7.3.2 Reification Management

This section deals with the question of how a base object establishes its links with
meta objects. Reification is the process of making a meta object accessible to a
base object. We model the kernel function, Reification, with an implementation of
the Visitor Pattern. Visitor pattern provides a way of implementing meta object
as visitor. Once a base object accepts the visitor (meta object), the base object then
may access the reifying meta object. A base object may reify a number of visitors
(meta objects). The meta space (the mediator described previously in Section 7.3.1)
maintains a collection of the reifying meta objects of a base object so that the base
object could access them whenever the user request for services of the meta
object reaches. For example, a base object, Drawing Pad in Section 5.2, can reify
meta objects (ScribbleMeta and ScribbleMeta2) and the Drawing Pad can then
listen to events like mousePressed, mouseDragged and mouseReleased for

drawing and the choice control to choose a new pen color.

Figure 7.7 Class diagram for Reification Management Modeling with Visitor Pattern

The class diagram of a visitor pattern 1s shown in Figure 7.7. The visitor pattern

in MELC performs Reification by providing visitors (meta objects) to be reified by

- 108 -

the accept operation of the base object. Once the visitor has been accepted by
the base object, the meta space (the class MetaSpace shown in the class diagram
in Figure 7.6) stores the link between the base object and the meta object. The
base object can then access the reifying meta object via meta space whenever its
services are requested by a client. For instance, in an E-Bookshop application, the
base object E-bookshop reifies the meta component Subscriber atmeta level

and E-bookshop can perform the business function, Customer Subscription, with

the meta space in MELC.

Meta space keeps track of the links between base object and its reifying meta
objects. Each meta object has an identifier that is used to uniquely identify the
meta object in meta space. The process of identification helps to identify the
reifying meta objects of the base object. For example, when a user’s request for
customer subscription reaches the base object E-bookshop, the base object
searches for the identifier of the meta object, Subscriber, in the repository of
the base object E-bookshop In meta space. If the identifier is found, the base
object will issue a request to the meta object with that identifier and
E-bookshop can perform the functions of the meta object, Subscriber,

accordingly.

Visitor pattern in Figure 7.7 provides a design structure that allows adding new
visitors (meta objects), simply by having a new subclass in visitor class
hierarchy — a subclass of MetaObject. In other words, we can define a new
distributed computing component (meta component) with the kernel
architecture which has no effect on existing base objects and meta objects in
system. For example, the meta object reified by E-bookshop, Subscriber, is a
subclass of MetaObject. We also can add a new meta component, say
ThreadPool, by extending MetaObject. Thus, the kernel of MELC allows

extensibility at the meta level.

- 109 -

7.3.3 Reflection Management

This section deals with the question of how the changes of a meta object reflects
its connected base objects. The meta architecture in MELC provides the
adaptability for system evolution. MELC has the ability to replace meta objects
when system evolution happens. Reflection in MELC provides a mechanism to
account for changes in the description at the meta level which affect the behavior
of described objects at the base level. This approach resolves the problem of
adaptation in the framework and we will describe how the mechanism is

implemented as following.

We employ the Observer Pattern in the MELC kernel to resolve the interactions

resulting from the need to implement reflection between the two levels.

Hrethod notifyBaseObjectd
forall haseObjectin MetaSet{
haseOhjectupdateAndRuUng:

3
i

0.n

ohservers

Figure 7.8 Class diagram for Reflection Management Modeling with Observer Pattern

The key classes in the Observer Pattern shown in the Figure 7.8 are Subject and
Observer. Observer Pattern has Subject which knows its Observers and notifies its

Observers whenever there is any change in its state. The class diagram in Figure

-110 -

7.8 illustrates that the observers are the base objects and the subject is the meta

space which has a repository (a hash table) to keep track of the reference of each

meta object. The subject, MetaSpace, is considered as a change manager which
maintains and updates the association between the identifier of a meta object
with the reference to the meta object itself whenever it receives a request for a
change. The changes in the set of meta objects also trigger updates (update

actions) of the links between base objects (observers) and their reifying meta
objects. Using the observer pattern to implement our reflective framework, all
base objects (observers) can access and perform the functions of the meta objects

stored in the meta space (subject).

MELC employs the observer pattern to provide adaptability, the dynamic
behavior changes (the reflection) at run time, for the framework application

whenever meta objects are updated (replaced) for system evolution.

7.3.4 Separation of Controls between two levels

This section deals with the question of how MELC addresses the separation of
controls between application level (base level) and system level (meta level).
MELC provides start and stop controls at both the base and meta levels and
we call them application level operations and system level operations respectively. The
former allows the MELC to start or stop the operation of a reified meta object in a
specific base object, whereas the latter allows MELC to start or stop operation of
a meta object and affects all those base objects which have reified the meta object.
The application level operations and system level operations perform separately on

two levels.

The Proxy Pattern implements proxy which serves as a surrogate for access to an

object and is applicable whenever there is a need for a sophisticated reference to

-111 -

the object [1]. Figure 7.9 shows the class diagram of Proxy Pattern in MELC

Kernel.

Figure 7.9 Class diagram for Separation of Controls with Proxy Pattern

In Figure 7.9, MetaObjectImpl is the real subject and MetaObjectProxy is
the proxy subject. A user sends a request to a proxy subject which hides the fact
that the real subject exists. The proxy object is responsible for encoding a request
and its arguments and for sending the encoded request to the real subject. A

proxy meta object at the base level controls access to the real meta object at the

Meta Proxy . HTTP Web Server

Object (Http) HitpServer

meta level.
s e meememeeeeecneeeeeeaeeeeeeeeescesesesocececesone
H
; Meta Proxy
: Object (ORB)
E Base Object
e Meta Proxy
: . ’
: Object (Hite) , Tkjrrhreasggg?
5 3
: Mail_Box ;
E Mailbox Service 2
: s
; Meta Proxy Server Heart B
i Object (ORB) Heartbeat Service
: Base Object
L

Base Level Application Servers

Figure 7.10 A proxy meta object is a local representative of meta object at base level

-112 -

Figure 7.10 illustrates the use of the proxy pattern in our framework. Using the
proxy pattern, we avoid direct references between a meta object and base objects.
Each base object talks to a reifying meta object via the unique proxy associated
with the latter. The proxy meta object is a local representative at base level of a
real meta object. In MELC, associating a base object with meta proxy objects at
the base level allows instances of the meta objects to be accessed by the base
object. The association is constructed at the time when the base object reified the
meta objects. Figure 7.10 shows that a base object can associate with many meta
proxy objects and each meta proxy object is a local representative of a meta

object.

By using the proxy meta object, the start/stop operation of a reified meta
object at base level (application level) in the meta space only affects the base
object involved and the meta object at the meta level (system level) still provides
services to other base objects in the system. Using the proxy pattern in the MELC
architecture provides flexibility in adding or removing the association of meta

objects and decoupling base objects from the meta objects.

-113 -

7.4 MELC Programming Model

This section addresses the feasibility of implementing our MELC framework
using an object-oriented programming language. In this section we implement
the design of our reflective kernel described in previous sections. We have
illustrated our kernel modeled with patterns, Mediator, Visitor, Observer and
Proxy, which allows our framework to be derived from the

language-independent reflective architecture [85].

The challenges involved in implementing MELC are: a) the decoupling of base
objects and meta objects, which is able to add adaptability to the framework in
order to allow meta objects to evolve individually; b) no cohesive dependency
exists among meta objects and base objects, which allows the meta objects (meta
components) to evolve while maintaining compatibility with the base level; ¢) the
kernel has the full operational controls on meta objects and base objects, such
that the operational controls can be carried out at system level (meta level) and at

application level (base level) separately at run time.

Structural Categories Class

base object interface melc.lib.kernel.BaseObject

base object implementation melc.lib.kernel.BaseObjectImpl
meta object interface melc.lib.kernel.MetaObject

meta object implementation melc.lib.kernel .MetaObjectImpl
meta object protocol melc.lib.kernel.MetaObjectProxy

Meta Space Management Class

meta space melc.lib.kernel . MetaSpace
meta space manager melc.lib.kernel .Modules
Distributed Class

Communication

Handoff target object melc.lib.kernel.TargetObject
socket wrapper object melc.lib.kernel .BTargetObject

Table 7.1 MELC Reflection Categories and Meta Object Classes

114 -

The programming model for MELC kernel management is concerned with the
creation of meta objects and base objects, and the reification and de-reification of
meta objects in meta space. Our MELC architecture provides programming
interface classes (API) for meta components structure and management. The

main API classes are listed in Table 7.1.

7.4.1 Instantiation of Meta Objects — Meta Level Programming

The key challenge in MELC is the decoupling issue between the base and meta
levels in the framework. A meta component in MELC is developed by
implementing the abstract class, MetaObjectImpl from the package
melc.lib.kernel. The instantiation of a meta component is a meta object in

meta Space.

MetaObjectImpl has two methods: runwork () and getMetaProxy () .The
method runwork ()is invoked by the internal thread in the meta object at the
time of the meta object instantiation. The method continues to accept new
requests and processes the requests according to the process defined by the meta
component. As long as no stop operation of the internal thread has been issued
in meta object, the method runwWork () continues to accept and processes the
requests. The method getMetaProxy ()is invoked when meta object is reified
by a base object. It constructs the meta object proxy at the base level as local
representative of the meta object. As we have mentioned in Section 7.3.4, meta
object is the real subject and its meta proxy object is the proxy subject. The meta
proxy object provides a local representative at base level of a meta object. A user
sends a request to a proxy subject which hides the fact that the real subject exists.
Each base object has the proxy for every reifying meta object to talk to. Meta
proxy object at the base level controls access to the real meta object at the meta

level.

- 115 -

MetaSpace

3. attachObject(metaObject)
3.2 putMetaTargetObject

3.1. newTargetObject : :TargetObject 1
i

P
KernelManager —_— ‘MetaObject

1. newinstance
2. setDetails

MetaLevel

Figure 7.11 Collaboration Diagram for Meta Object created by MELC Kernel Manager

Figure 7.11 illustrates the collaboration between KernelManager, MetaObject
and MetaSpace. The following coding is just an example to show how Kernel
Manager can easily construct a meta object and the hard coded details of meta

object in the coding are input by the user on the user interface of the Kernel

Manager.
MetaName = “HttpServer.class”;
MetaType = “httpserver”;

MetaObjectImpl mobj =

MetaObjectImpl)Class.forName (MetaName) .newInstance() ;
mobj.putClassType (MetaType) ;
MetaSpace.attachObject (mobj, MetaType)

KernelManager in Figure 7.11 instantiates the meta objects and attaches them
to the meta object repository in meta space. For example, to create a meta object,
HttpServer, KernelManager firstly instantiates the meta object with
newInstance () by using the given meta object name MetaName, and then sets
the meta type MetaType such as httpserver for HttpServer and attaches it

to meta space.

The MetaName and MetaType are two character strings and the combination of

these two forms the meta object identifier (MetaID). The meta object identifier

-116 -

can uniquely identify the meta objects residing in the meta object repository

which is implemented by using a hash table.

New requirements can be implemented by extension of the existing meta object
and overriding the existing methods within the original system (we may
override the calling methods in runwWork()of the meta object). The meta
components at meta level are open-ended for extension. Thus, our reflective
architecture enables the framework to maintain information about itself and use

this information to remain extensible.

The target object in Figure 7.11, TargetObject, is the connector to pass requests
(Runnable objects) from base level to meta level. Kernel Manager constructs the
target object at the time the meta object attaches to meta space. The
TargetObject acts as a handoff box for data (object) passing. The requests
being sent to a HttpServer, for example, are the HTTP Requests from clients.
When a client sends a HTTP request to HTTP server, the request will firstly be
intercepted by the HTTP server’s meta object proxy at the base level. The meta
object proxy then transforms the request to a runnable object and places it in the
handoff box of the TargetObject for the HTTP server. When the meta object,
HTTP server, is available for processing, the request in the handoff box will be
removed by the thread of the runwork () method of HttpServer and the HTTP
server will process the request. The meta object proxy and its target object
provide a means of separating the base level from the meta level in MELC. Using

the proxy pattern in this way to solve the key challenge of decoupling the two

levels provides a mechanism for adaptability within the MELC framework.

S117 -

7.4.2 Instantiation of Base Objects — Base Level Programming

Another key challenge in MELC architecture is to provide a simple and uniform
way to construct a base object (for example a business server) in the framework.
In Java coding, a base object is an instance of the class BaseObjectImpl from
the package melc.lib.kernel, which have functionalities like accepting meta
objects while reification, finding the corresponding meta proxy objects, and

checking the status of reifying meta objects.

Figure 7.12 illustrates the collaboration between KernelManager, BaseObject

and MetaSpace.

3. attachObject(baseObject)

KernelManager MetaSpace

Metalevel

Basel evel

1. newlnstance
2. setDetails

:BaseObject

Figure 7.12 Collaboration Diagram for Base Object created by Kernel Manager

The following coding is just an example to show how Kernel Manager can easily
construct a base object and the hard coded details of base object in the coding are

input by the user on the user interface of the Kernel Manager.

BaseName = “E-Bookshop”;
BaseObject bobj = (BaseObject)
Class.forName ("kernel .BaseObjectImpl") .newInstance();
bobj .putObjectName (BaseName) ;
MetaSpace.attachObject (bobj) ;

-118 -

For example, to create a base object E-Bookshop in meta space, KernelManager

firstly instantiates the base object with newInstance()of the class
BaseObjectImpl. It sets the base object name with E-Bookshop which is input
by user and is supposed to be unique in the framework, and then informs meta
space the existence of the base object In framework by the method,

attachObject () of meta space.

After the execution of the coding, the object of the business server, E-Bookshop,
has been constructed and registered in meta space. It meets the requirements of
simplicity and ease of construction of the business server at the base level in
MELC. You may note that, so far, no meta objects (distributed computing
components) have been reified by the base object E-Bookshop yet. Nevertheless,
they may be required by the business application. The reification of meta objects

will be described in next section.

7.4.3 Reification of Meta Objects - Meta Space Programming

In the process of reification of our MELC framework, the base object
(E-Bookshop) can easily reify the meta objects stored in the repository of meta
space. The process of reification of a meta object in MELC is shown in Figure 7.13.
The challenge for the implementation of the reification process in our framework

is to avoid having any object reference dependencies within the meta space, so as
to let meta objects evolve independently. We are doing this because referring to
objects directly means we cannot replace them in the runtime. Removing direct
references means adding indirect references so a second challenge is to avoid

adding too much overhead in the implementation of those indirect references.

-119 -

MetaSpace

Registry ‘

1. findMetaObject

2. findBaseObject 8. bind(metaObject)

6. getTargetObject

7. checklfSystemObj r— =77

i
/‘ :TargetObject |
v
KernelM
ernelManager —p :MetaObject
4. getProxyObject

Metalevel

Baselevel

3. isMetaObjectExists 5. setDetails
9. acceptMetaObject

:BaseObject l

Figure 7.13 Collaboration Diagram for Base Object Reification of a Meta Object

:MetaProxyObject

In the process of reification, KernelManager in Figure 7.13 firstly verifies the
existence of the base object and the required meta object. It also verifies the
existence of the required meta object as to whether it has already been reified in
the base object. After that, meta object generates its MetaObjectProxy as a
localized agent (interface protocol) which is used to redirect requests received by
an object at the base level to its corresponding meta object at the meta level. The
meta object information, MetaType and MetaName, are used as meta identifier
and assigned by the developers. They are stored in the meta proxy object. Meta
type is the type of a meta component and meta name is the name of a meta
component. MetaType and MetaName are strictly for identification of a meta
object and are not used to as a means of implementing inheritance. For example,
FixedThreadPool and FlexibleThreadPool are two meta names of two
different thread pooling components in distributed computing, and they both
belong to a meta type called Pooling. The base object (E-Bookshop) can refer
to the meta object (fixed thread pooling) using Pool ing and

FixedThreadPool, the MetaType and MetaName pair, and does not refer to

- 120 -

the object reference of the meta component. At this moment, the proxy object is

ready to provide references to both the base object and the meta object.

Instead of using meta object references, the MetaType and MetaName
information kept in the base object are used to refer to a meta object in meta
space. The advantage of not using object references for referring meta objects
allows the replacement of meta objects in meta space in a run time environment
without system reference bounding in some programming language such as C++
and JAVA. The design provides one of the key functionalities, adaptability, to the
MELC architecture.

In order to have object distribution previously mentioned in Chapter 3,
KernelManager binds the meta object to the Object Request Broker Registry
(ORB) with its meta identifier as binding key for the meta object for remote
accesses. The distributed objects in the ORB Register can be accessed seamlessly
and transparently by a remote client. The implementation of the Object Request

Broker will be described in details in Chapter 10.

In fact, meta objects can be de-reified after they have been reified to a base object.
The JAVA code is almost the same as the reification process mentioned except

the meta objects are de-registered from the base object.

Table B2 in Appendix B presents the essential methods for MetaObject,
BaseObject, MetaObjectProxy and Registry, and they are used by the

Kernel Manager for the meta reification management.
The program coding for implementation of meta reification management is

extracted in Section C.11 in Appendix C for reference.

7.4.4 Application Level Control Operation - Base Level Programming

-121 -

The MELC framework is designed to address a challenge which is Separation of

Concerns in the framework between application level and system level. The
framework provides start and stop controls at both the base and meta levels.
start and stop at the base level are application level operations and at the meta
level are system level operations. Control at the application level allows the
KernelManager to start or stop the operation of a reified meta object in a
specific base object. Control at the system level allows KernelManager to start
or stop operation of a meta object which then affects all those base objects which
have reified that meta object. We will now give an example of application and

system level control using in e-bookshop system.

In MELC, each base object owns its own collection of system functions (meta
objects) by reifying those meta objects. For example, the base objects,
E-Bookshop and E-Banking, are two separate business servers and they both
have reified the meta object HttpServer because each server needs to receive
HTTP requests. The HttpServer of E-Bookshop can be started or stopped at
the application level without affecting the operation of the HttpServer used by

E-Banking.

-122 -

MetaSpace

T1 . findBaseObject(baseName)

KernelManager

3. startRequest / stopRequest
4. releaseResource (if stopRequest)

MetaLevel

BaseLevel

2. findMetaObjectProxy l

:MetaObjectProxy

:BaseObject

Figure 7.14 Collaboration Diagram for Start/Stop operations at the application level

A collaboration diagram showing start / stop operations at the application level
is shown in Figure 7.14. The following coding shows how the KernelManager

can easily trigger the start / stop operation at the application level:

// Start a Meta Proxy Object
BaseObject bobj = MetaSpace.findBaseObject (bobjName) ;
MetaObjectProxy bpobj = bobj . findMetaObjectProxy (mobjType, mobjName) ;

bpobj.startRequest () ;

// Stop a Meta Proxy Object

BaseObject bobj = MetaSpace.findBaseObject (bobjName) ;
MetaObjectProxy bpobj = bobj . findMetaObjectProxy (mobjType, mobjName) ;
bpobj .stopRequest () ;

bpobj.releaseResource() ;

The KernelManager in Figure 7.14 firstly finds the base object registered in
MetaSpace using its base name (eg. E-Bookshop). Then it retrieves the
MetaObjectProxy which is the localized representative of the meta object at

the base level. KernelManager issues the start request or the stop request to

-123 -

the proxy object. In addition, for a stop request, KernelManager will also
release the resources occupied by the MetaObjectProxy and stop the threads

running in the proxy object.

By using the MetaObjectProxy, the start/stop operation at the application
level only affects one base object and the meta object at the meta level continues

to provide services to other base objects in the system.

7.4.5 System Level Control Operation - Meta Level Programming

In MELC, the start or stop meta operations at the Meta Level are very
different from that at Base Level. Each meta object is a meta component which
may be providing services to many different base objects running concurrently in
MELC. For example, HttpServer provides services to both E-Bookshop and
E-Banking. The KernelManager can start or stop a meta object at the system
level (meta level), which will affect all base objects that have been reified with it
and are therefore using its services. However, the operation will not affect other
meta objects such as MailBox and Retransmission because they are
completely separate from HttpServer and would need to be stopped or started in

their own right.

MetaSpace
1. findMetaObject T
KernelManager —_— .
Metal evel 9 :MetaObject
2. startRequest / stopRequest

Figure 7.15 Collaboration Diagram for Start/Stop operations at the system level

- 124 -

A collaboration diagram showing the start / stop operations at the system
level is shown in Figure 7.15. The following coding shows how the Kernel

Manager can easily trigger the start / stop operation at the system level:

// Start Mete Object
MetaObject mobj = MetaSpace.findMetaObject(mobjType, mobjName) ;

mobj . startRequest () ;

// Stop Mete Object
MetaObject mobj = MetaSpace.findMetaObject(mobjType, mobjName) ;
mobj . stopRequest () ;

mobij .releaseResourcel() ;

The KernelManager in Figure 7.15 firstly finds the meta object in MetaSpace
using its meta type (MetaType) and meta name (MetaName). Then it issues the
start or stop request to the meta object. In addition, for a stop request,
KernelManager will also release the resources occupied by the meta object and

stop the threads currently running in that meta object.

7.5 Summary

Our reflective architecture in MELC enables the framework to maintain
information about itself and use this information to remain changeable and
extensible. This chapter shows how we model the reflective kernel in our MELC
with generic patterns (mediator pattern, observer pattern and visitor pattern). It
also describes the implementation of meta objects and base objects with the

libraries which we have developed in MELC framework.

Meta space provides the reflection in the architecture. In order to maintain and

manage semantic integrity, the MELC framework constructs the components in

- 125 -

the first place and maintains them at the meta level over time as the components

in the framework evolve.

The design and implementation of MELC meets the key challenges of a reflective
framework described in the Chapter 2. They are Portability, Extensibility,

Separation of Concerns and Adaptability. We summarize them as follows:

1. Portability in Framework Architecture: The reflective architecture in MELC is
modeled with patterns. We apply the mediator pattern for coordinating meta
objects in meta space, the visitor pattern for reification of meta objects at base
level, and the observer pattern for reflection of base objects at base level. Thus, the
implementation of MELC architecture can be independent of platform and
programming language. MELC can be implemented with basic Java classes and
have no native code library for low-level support to interact with Java Virtual
Machine (JVM) operations nor intercession mechanisms to alter the contents of

internal data structure in JVM.

2. Extensibility at the Meta Level: MELC Reflective Architecture provides base
objects the decoupling with meta objects in meta space. We applied the proxy
pattern implicitly to decouple the association of base level and meta level. This
indirection reduces the constraints on both, so the levels can be developed

independently‘

3. Adaptability for Meta objects: No cohesive dependency exists among meta
objects and base objects. This allows the meta objects (meta components) to

evolve while maintaining compatibility with the base level.

4. Separation of Concerns at levels: The Kernel of MELC has the full operational
controls on meta objects and base objects. The operational controls can be carried

out at system level (meta level) and at application level (base level) separately at

- 126 -

run time.

Our kernel design and implementation of MELC meets the challenges of the
reflective framework. The installation, integration and reification of distributed
computing patterns at meta level will be discussed thoroughly in succeeding

chapters.

-127 -

Chapter 8 MELC - Distributed Computing Patterns

81 MELC - Distributed Computing Patterns

The meta components at the meta level in MELC are the distributed computing
patterns and they are the domain specific functions in MELC. In this chapter, we
try to identify patterns for distributed computing services by looking for typical
events or constructs found during the development of distributed computing

applications.

In general, design patterns can exist at many levels, from very high-level
business solutions to technical system issues. We focus on the distributed
computing patterns proposed by Grand [14]. The instantiation of those

distributed computing patterns are the meta components in MELC.

We identified 9 common and recurring problems in developing distributed
computing applications such as E-Bookshop and E-Banking [88, 89, 90]. The
problems occur in a distributed server such as thread pooling, retransmission,

heart beat, mail box, object request broker and registry for object distribution.

We identified the patterns by reading the catalogs of patterns [1,14,111] — design
community and literature, to find appropriate patterns that are applicable to the
problems that we have identified. These may not be a complete list of all the
problems and their solutions pertaining to the patterns. In time, more distributed
computing problems will be encountered in development. The solutions to the

problems will be the raw materials for hatching new patterns for our framework.

The patterns we found in this section will be put into the context of MELC. The

following are the problems encountered and the recommended pattern solutions:

- 128 -

(1)

Global Object Identifier Problem

If an object is common to multiple environments, we need a specific way to
uniquely (globally) identify the object in each of these environments. We
must be able to distinguish objects even if their attributes have identical
values. For example, personal computer workstations in offices may be
identical in model, amount of memory, CPU type, and all other attributes.
However, it is important that each personal computer workstation has its

global identifier in a company.

Most environments that manage objects use the physical location of an
object as its unique identifier. A physical location is not in general unique
between different environments. Over time, an environment may reuse the
same location to store different objects. If an object is common to multiple
environments, then we need a common way to uniquely identify the object

in all of those environments.

Pattern Solution: Object Identifier Pattern

A solution to the above problem has been proposed [91] and the pattern is
called “The Object Identifier Pattern” . This pattern can uniquely identify
an object that exists in multiple environments. The method is to assign a
globally unique identifier to the object, allowing it to have a unique identity
when it is shared between programs or databases. Each shareable object has
a globally unique identifier that can be used to unambiguously determine

the object’s identity.

- 129 -

(2)

(3)

Objects for trusted and un-trusted clients Problem

An object will have trusted and un-trusted clients. An un-trusted client
should satisfy a security check before the object answers a request from it.
The object should not burden trusted clients with the expense of security

checks.

We may have a class that is part of a trusted protection domain that offers
access to highly sensitive services. Before an instance of the class satisfies a
request from one of its un-trusted clients that will cause it to access one of
those sensitive services, the un-trusted client which makes the request must

satisfy a security check.

Pattern Solution: Protection Proxy

A solution to the above problem has been proposed [1] and the pattern is
called “The Protection Proxy Pattern” . Malicious objects are objects that
keep trying to discover and call methods of the environment object, and
services they are not supposed to access. In order to forestall malicious
objects attempting to violate the integrity of other objects by using reflection
or other means to access restricted methods or variables, the pattern
requires other objects to access sensitive objects through a proxy that limits

access based on security considerations.

Server/Client Communication Problem

Programs that communicate with each other through socket-based
connections play one of two roles in the establishment of a connection: a

client application initiates socket connections with a server, and a server

- 130 -

(4)

application waits for clients to initiate connections with it.

We expect the programming code should follow a consistent way to apply

server socket in their communications.

Pattern Solution: Server Socket

A solution to the above problem has been proposed [96] and the pattern is
called “Server Socket Pattern” . This pattern provides a connection that
constructs a server socket which is bound to a given port number, and

requests that the operating system queue up connections on the program’s

behalf.

After a connection is established, programs in both the client and server
roles interact with the connection in much the same way. For example, File
Server and HTTP Server can be implemented with the pattern. The basic
logic that server programs use to manage the establishment of connections
is consistent from one server program to the next because they all need to

solve the same set of problems.

Location Changes of Shared Service Problem

Objects need to find a way to contact other objects which are known only by

name or by the service it provides.

Instances of a class exist to provide a service to other objects. From time to
time, we may need to change the location of shared-service-providing
objects. On the other hand, we want such configuration changes to be

transparent to the clients of the service-providing objects.

- 131 -

(5)

Pattern Solution: ORB Registry

A solution to the above problem has been proposed [94] and the pattern is
called the “"ORB Registry Pattern” . This pattern provides a service that
takes the name of an object, service, or role and returns a remote proxy that

encapsulates the knowledge of knowing how to contact the named object.

Clients share services of the service objects. Service objects register
themselves with a registry object. The registration consists of the service
object passing its name and a remote proxy object to the registry object’s
bind method. The remote proxy encapsulates the knowledge of knowing
how to contact the named service object. The registration remains in effect
until the name of the service object is passed to the registry object’s un-bind
method. While the registration is in effect, the client can use the object's
name to activate the registration object's lookup method, which in turn

returns the proxy to the client.

This pattern provides a layer of indirections that determines which service
object a client object can use. Client objects are able to access service objects
without having any prior knowledge of where the service objects are. That
means it is possible to change the location of service objects without having
to make any changes to the client classes. However, client and service

objects are required to have prior knowledge of where the registry is.

Server Multi-tasking Problem

Many servers are often presented with a steady stream of tasks that must be
performed in their own thread. Creating a thread is a relatively expensive
operation, both in terms of time and memory. We generally want to avoid

the expense of creating a thread for each task by reusing threads.

- 132 -

(6)

We expect there is an optimal number of threads that a server should be
running at one time to efficiently provide supports for multiple tasking and,
on the other hand, to cut down the expensive operation of creating new

threads.

Pattern Solution: Thread Pool

A solution to the above problem has been proposed [95] and the pattern is
called “Thread Pool Pattern” . This pattern provides a service that keeps a
pool of idle threads. When a thread finishes a task, it is added to the pool of
idle threads. The next time a thread is needed to run a task, if there are any
threads in the pool, one of those threads is used instead of a new one. If
there are no idle threads in the pool, create a new thread unless the number
of threads managed by the thread pool equals a predetermined maximum.
If the thread pool has already created its maximum number of threads, then
tasks that need threads to run will wait until an existing thread managed by

the thread pool becomes idle.

Mailbox Messages Delivery Problem

It is not always possible to establish a connection with the intended
recipient of a message at the time of messaging. Asynchronous delivery of

messages is therefore desirable.

However, it is possible and acceptable for messages to be delivered without

a pre-defined time frame after they have been sent.

Pattern Solution: Mailbox

-133 -

(7)

A solution to the above problem has been proposed [14] and the pattern is

called “The Mailbox Pattern” . This pattern provides reliable delivery of
messages to objects. It facilitates the delivery of messages by storing

messages to be later retrieved by each recipient.

Message sources send messages to a mailbox server along with a tag
indicating the message’s intended recipient. Potential message recipients
poll the mailbox server for messages. When recipient objects poll for
messages, they may receive more than one message. By making recipient
objects receive multiple messages using a single connection, the user

network bandwidth is reduced.

Transmission Messages Problem

In transmission, messages must be reliably delivered to their recipients as
soon as possible. The message sources and recipients are two parties

involved in transmission. There are problems on both sides.

Messages must be reliably delivered to their remote recipients as soon as
possible and, as is usually the case, they are sent at irregular intervals so

that when a recipient polls for message none will be found most of the time.

Pattern Solution: Publish/Subscribe

A solution to the above problem has been proposed [92] and the pattern is
called “The Publish/Subscribe Pattern” . This pattern has publisher object
and subscriber object. Subscriber objects register their interest in receiving

messages with publisher objects.

134 -

(8)

(9)

When a publisher object receives a message from a message source, it tries

to deliver it to all of the subscriber objects that have registered with the
publisher object to receive messages. Subscriber objects are responsible for
receiving messages from publisher objects on behalf of receivers. Receivers
tell the subscriber objects that they are interested in receiving a certain type

of message.

This pattern may provide timely delivery of messages to one or more
objects. Messages are delivered to subscribed recipient objects by
transmitting each message to each recipient. Delivery is ensured by

repeating the transmission until successful.

Remote Object Status Problem

The amount of time that a remote operation takes to complete is highly

variable, and we have no idea how long it will take.

The client needs a way of determining whether or not a remote operation 1s

still continuing after a period of time.

Pattern Solution: Heartbeat

A solution to the above problem has been proposed [14] and the pattern is
called “The Heartbeat Pattern” . This pattern allows a server to send a
message periodically back to a client indicating that the remote object is still

alive and performing an operation on behalf of the client.

Server’s Failure in Message Delivery Problem

Server attempts to deliver a message sometimes fail, although an object is

required to reliably deliver a message to another object. This is crucial for an
Object Request Broker (ORB). The only kind of call that ORB supports is a
synchronous call. A reliable acknowledgement message is required in object

request broker architecture.

Using a server to ensure reliable delivery by repeating delivery attempts
means that it is possible for having an agent (representing a server) to
deliver a message. It is particularly helpful to keep delivering a message to
client by the agent even when the server (message source) has stopped

running.

Pattern Solution: Retransmission

A solution to the above problem has been proposed [93] and the pattern is
called “The Retransmission Pattern” . The Delivery Agent object bears the
responsibility for ensuring the reliable delivery of messages. This pattern
makes message delivery the responsibility of an object dedicated to message
delivery rather the responsibility of the message source. To be able to
deliver a message after a crash, messages waiting to be delivered must be

stored on disk or other non-volatile medium.

This pattern ensures that an object can reliably send a message to a remote
object. The delivery agent object designed in the pattern has the ability to
handle a failure to send a message by making the object to try sending

repeatedly until the message is sent successfully.

We classified the identified patterns according to the object functional natures

into the Table 8.1:

-136 -

Purpose Patterns

Object Sharing Object Identifier Pattern
Protection Proxy Pattern
Thread Pooling Pattern
Messaging Heartbeat Pattern

Publish / Subscribe Pattern
Retransmission Pattern
Mailbox Pattern
Distributed Connection ORB Registry Pattern
Server Socket Pattern

Table 8.1 Distributed Computing Patterns

Patterns related to the distributed computing issues are depicted in Figure 8.1
and the patterns will be instantiated to be meta components in MELC framework
in order to support the distributed applications. As our framework is adaptable,
the proposed architecture of the pattern-oriented framework has the abilities to
dynamically adapt new design patterns to address issues in the domain of
distributed computing as an evolutionary extension of the framework and they

can be woven together to shape the framework in future.

-137 -

Application Distrhuted Framewerk

Publish § -
Subscre Maihox Protection
Pattern Pattern - Proxy
Pattem
Mes;agesir;ds Proxy
Stub Public Skeleton
Intermet o
% ﬂ) u Thread
| S fe| pocl
 Server/Client Socket 321 Object
A==} | pool
Heartbeat Retransraission Object Registry
Pattern Pattern Identifier Pattern
Pattern

Figure 8.1 Distributed Computing Patterns in MELC Framework

The patterns for distributed computing will be instantiated as classes and
registered as meta objects in the meta space. The technical details of the
implementation, instantiation, and interaction of meta objects in MELC will be

further discussed in the following chapters.

- 138 -

Chapter 9 MELC - Building Applications with MELC

91 MELC - A Simple E-Bookshop Application

This chapter presents the MELC framework from the point of view of an
application developer, one who develops distributed computing applications. A
detailed description of the development of a distributed computing application,
E-Bookshop, forms the backbone of the following sections in this chapter.
Although the example application given here is relatively simple, it is useful to
illustrate many typical problems encountered in the development of distributed
computing application. The system can be extended into a useable realistic
application given further development of the application. We use this
E-Bookshop to demonstrate how the MELC framework architecture helps

developers solve the distributed computing problems encountered.

We follow the six steps proposed in our Adaptable Component-Based
Framework Methodology described in Section 55 for the E-Bookshop
Application.

Step One: Finding the requirements of the components in framework that may be

used in the domain specific applications.

Here are the problems encountered in E-Bookshop, which are common in most
distributed computing applications and have been identified in Section 8.1. We
have consolidated them to produce the requirements and translate them into

conditions that determine the components which meet the needs of the system.

a. Remote Object Status Problem in E-Bookshop: The problem identified in

E-Bookshop is that the amount of time a remote operation in the

- 139 -

application takes is highly variable; in other words, the client has no idea

how long it will take. Thus the requirement of having a component in the
system provides a way of determining whether or not a remote operation

is still continuing.

Publishing / Subscription Messages Problem in E-Bookshop: When delivering
messages, the message sources and recipients are two parties involved in
transmission. The problem identified is that messages are sent, as usually
the case, at irregular intervals so that when a recipient polls for message
none will be found most of the time. Thus the requirement of having a
component in the system employs publisher object and subscriber object,
in which the subscriber objects register their interest in receiving messages
from publisher objects. So, every time, the subscriber pools for the

subscribed messages sent by publishers.

Server’s Failure in Message Delivery Problem in E-Bookshop: The problem
identified is that, although an object is required to reliably deliver a
message to another object, this is hampered by the fact that server
attempts at delivery sometimes fail. Thus the requirement of having a
component in the system provides that, after the message source has
stopped running, the task can be relegated to an agent which makes

repeated message delivery and acts as an intermediary.

Mailbox Messages Delivery Problem in E-Bookshop: The problem is that it is
not always possible to establish a connection with the intended recipient
of a message at the time of messaging. Asynchronous delivery of
messages is desirable. Thus the requirement of having a component
provides the services like mailbox which is possible and acceptable for
messages to be delivered without a pre-defined time frame after they have

been sent.

- 140 -

Multi-Threads Resource Constraint Problem in E-Bookshop: The problem
identified is that, by nature, servers are presented with a steady stream of
tasks that must each be performed in their own thread. Creating a thread
is a relatively expensive operation, both in terms of time and memory. If
too many threads are running at the same time, the overall throughput
will go down. Thus the requirement of having a component in the system
provides a way of optimizing number of threads that a server should be

running at one time.

System Evolution Problem in E-Bookshop: The explosive growth of
distributed technologies requires servers to be adaptive and configurable
at Tun time to meet the diverse requirements of distributed computing

systems.

- 141 -

Step Two: Selection of proper patterns in framework that fit the requirements of

the application.

According to the requirements identified in E-Bookshop in Step 1, we propose, in

MELC, the solutions with appropriate domain specific design patterns.

a. Remote Object Status Problem in E-Bookshop: In MELC, Heartbeat pattern [14]
fits the requirements of the problem. This pattern allows a server to send a
message periodically back to a client indicating that the remote object is

still alive while it is performing an operation on behalf of the client.

b. Publishing / Subscription Messages Problem in E-Bookshop: In MELC, Publish /
Subscribe pattern [92] fits the requirements of the problem. This pattern has
publisher object and subscriber object. Subscriber objects register their
interest in receiving messages from publisher objects. When a publisher
object receives a message from a message source, it tries to deliver it to all
of the subscriber objects that have registered with the publisher object to

recelve messages.

c. Server’s Failure in Message Delivery Problem in E-Bookshop: In MELC,
Retransmission pattern [93] fits the requirements of the problem. This
pattern has the Delivery Agent object bear the responsibility for ensuring
reliable delivery of messages. The pattern makes message delivery the
responsibility of an object dedicated to message delivery rather than the
responsibility of the message source. The delivery agent object designed in
the pattern has the ability to handle a failure to send a message by making

the object to try sending again until the sending is successful.

142 -

d. Mailbox Messages Delivery Problem in E-Bookshop: In MELC, the Mailbox
pattern [14] fits the requirements of the problem. This pattern provides
reliable delivery of messages to objects. It facilitates the delivery of
messages by storing messages for later retrieval by each recipient in
E-Bookshop application. A message source sends messages to a mailbox

server along with a tag indicating the message’s intended recipient.

e Multi-Threads Resource Constraint Problem in E-Bookshop: In MELC, the
Thread Pool pattern [95] fits the requirements of the problem. This pattern
avoids the expense of creating a thread for each task by reusing threads.
The threads can be managed in a way which ensures that the total number

of threads never exceeds a predetermined maximum.

f. System Evolution Problem in E-Bookshop: In MELC, it employs a meta
architecture [2] as a means of making the framework easily adaptable. The
meta architecture supports dynamic adaptation of feasible design
decisions in the framework design space by specifying and coordinating
meta objects that represent the building blocks within the distributed
system environment. The proposed meta-based framework has the
adaptability that allows for the system evolution that is required in

distributed computing technology.

- 143 -

Step Three: Creation of proprietary components in the framework. The

components are instantiated with the selected patterns.

The E-Bookshop in our example is intended to provide the business services of a
bookshop. We construct the proprietary components for the business services in
the framework. Figure 9.1 shows that the distributed computing services like
mailbox, publish/subscribe, retransmission, heartbeat, object request broker, http
server and thread pool are being used to integrate and perform Server Heartbeat
Checking (to check the distributed server running), Web Business Application (to
provide the e-commerce services), Message Communication Retransmission (to
retransmit messages for data transmission error because of cable accidental
disconnection), Business Ordering Functions (to allow customers placing orders),
Sales Promotion (to advertise sales to customers) and Customer Mailing (to
provide mail box services to customers). In addition, administrators can use the

system to maintain book stock and customer information.

Distributed
Computing Patterns

Server Message
Checking Communication

Sales
Promotion

Customers
Mailing

Web usiness

Ordering
plicatio

E-Bookshop

Applications

Business Application

Figure 9.1 Distributed Computing Design Patterns and E-Bookshop Application

- 144 -

Step Four: Conformation of components to adapt to framework standards.

The selected components will be conformed so that the framework establishes
environmental conditions for the component instance and regulates the

interaction between component instances.

The component-based framework is a partial enforcement of architectural
principles, by forcing component instances to perform certain tasks through
mechanisms under control of the framework. The kernel architecture of the
pattern-oriented meta-based MELC framework provides the mechanism to
conform the components in MELC framework. Figure 9.2 shows the

conformation of meta components from selected patterns in MELC.

Class structure (partial) in
“Thread Pooling FPatterns

Class structure (partial) in
: HTTP Server Paltern

Kernel: Core Meta Objects Component Patterns

Figure 9.2 Conformation of components from selected patterns

- 145 -

The technical details will be further described later and here shows the simplistic

way that the MELC architecture to conform meta components from selected
patterns. At the class level, the class instantiation of a domain specific pattern,
such as Thread Pooling patterns and HTTP Server pattern, can simply extend a
class called MetaObjectImpl from the kernel package (in the left of the figure)
to form a meta component, and, on the object level, once a meta component has
been constructed, it is ready to deploy to meta space. The meta objects
(components) in the meta space in the framework provide the system functions
for the base objects (applications). We will further describe the technical details
of the conformation of components for the adaptability in the framework in

succeeding chapter.

- 146 -

Step Five: Deployment of the components.

The deployment of the components is done with a framework configuration
manager. Once the components are deployed, they become part of the services in
framework and are managed by configuration manager. The configuration
management is the discipline that takes care of component assembly, component

conﬁguration and component integration.

MELC provides a utility called the Meta Space Kernel Manager to deploy the
relevant components and to manage applications such as E-Bookshop in the
framework. The utility has been developed for configuring and managing meta
space. The tool allows the administrator to instantiate meta objects, and then

registers them in the meta object repository.

The kernel manager has a GUI which allows the software developer control over
the application they are developing. The utility allows the software developer to
easily reify the distributed computing components (class instantiation of patterns)
as meta objects in the application. The meta objects for distributed computing
applications can be Heartbeat, Retransmission, ORB, Http Server, Mailbox,

Thread Pool and Publisher /Subscriber.

Figure 9.3 shows the snapshot and procedure for the E-Bookshop Application to
reify meta object, ThreadPool, in MELC Framework Server. The administrator
uses the kernel manager firstly to select the base object E-Bookshop (Step 1) and
the kernel manager will display the list of all reified meta objects list of
E-Bookshop in the middle of the panel (Step 2). If Thread Pooling is not in the list
and we want to include it as one of the reified meta objects for E-Bookshop
application, we can select the deployed meta object ThreadPool in the available
meta object list on the right of the panel and press the reify button (Step 3,4). The

Kernel Manager will automatically include the meta object ThreadPool into the

- 147 -

list of all reified meta objects for E-Bookshop (Step 5). From now on, E-Bookshop
has the thread pooling function which can efficiently provide supports for

multiple tasking for the application server (E-Bookshop).

EBookShop
©-] heartbeat
©- (@] Retransm
©- 5] ORB

©- = httpServer
display list of all reifie © E mailbox
metaiobjects of E-Bookshop,| © £ publish
(Pooling is not found in list.) [

1. Select base objec

10 [Meta Object
©- 77 heartbeat
Retransmission
ORE

httpServer

ilbox

IRetranmission ready ...
ORBRegister ready to receive requests
JORBRegister waiting for TargetObject
HtipServer ready to receive requests

HitpServer waiting for TargetObject..

5. Pooling is fourid T the Tist of al
reified meta objects of E-Bookshop

Figure 9.3 E-Bookshop reifies components in MELC Framework

Figure 9.3 shows the snapshot of Kernel Manager running with the E-Bookshop
which shows all reified meta objects in E-Bookshop, such as Heartbeat,
Retransmission, ORB, Http Server, Mailbox, Thread Pooling and
Publisher/Subscriber. They are components (identified in Step Two of Adaptable
Component-based Framework Methodology in this section) to resolve the
problems encountered in most distributed applications. The application server

E-Bookshop in MELC fulfills the requirements of distributed applications and

- 148 -

provides the essential business services of a bookshop in a distributed computing

environment.

The E-Bookshop in Kernel Manager is a base object in MELC, which is an
application server and provides business functions and system behavior to serve
the remote clients in a distributed computing environment. The remote clients
are the bookshop applications and have the graphical user interfaces (GUI)
developed by the application programmers and used by application users (e.g.
bookshop customers and business administrators). Each bookshop application
has its own user interfaces and functions, which meet the needs of their

application users.

In the object distribution environment, the bookshop applications are the remote
clients. They access the remote server E-Bookshop (a base object in MELC) to
invoke the meta objects in meta space to perform the functions of meta
components. The seamless and transparent method invocation technology, ORB
mentioned in Chapter 3, is adopted as a way of communication between remote
clients and their remote server on internet platform. The ORB plays a key role in
performing the remote method invocation between bookshop applications
(remote clients) and bookshop server (remote server). The bookshop application
(remote client) looks up the remote objects (reified meta objects) in the base
object E-Bookshop via ORB and invokes the remote methods of the remote
objects to carry out the system and business functions on behalf of the remote

client in the application server.

The functions of the bookshop wuser applications (remote clients) are
implemented by accessing the remote meta objects (meta components) in MELC

framework.

Application developers can develop subsystems which integrate with meta

- 149 -

objects in the meta space in MELC. The following are the subsystems that could
be implemented in bookshop application with remote services provided by the

meta components:

e Sales Promotion Subsystem is implemented with meta objects -
Publisher /Subscriber and Retransmission

e Customers Mailing Subsystem is implemented with meta object - Mailbox

e Shopping Cart Ordering Subsystem, Items Searching Subsystem, and Item
Details Maintenance Subsystem are implemented with meta objects — ORB

and Thread Pooling.
The reified meta objects of the base object E-Bookshop in Kernel Manager

dynamically and transparently provide the services to remote clients in runtime

environment.

- 150 -

Step Six: Replacing components (if applicable) as system evolves

In addition, MELC framework has the ability to provide runtime replacement of

meta objects for system evolution, which adds adaptability to MELC.

gtd Space Kernel Manage) - . SE e
Systetn Base Meta Task

511 Base Object . Running Meta Object- — -, - StoppedMeta Object
‘:- SBo0KS ¢ =1 e-BookShop : o =] e-BookShap
! o [heartheat . i
B ¢ =3 pooling !
2. Input the new:Meta Object ' Qyoreadpoot i
H o ORB |

3. Choose the new Meta Object

¢ (3 Meta Ohject
o (=] hearbeat §

Look In: Ethread _pooi

: ORi ThreadPool.class
-1 MalHnox
= ThreadPool100.class [ixThieadPo

ThreadPoolProxy.ciass E) XThreadPoolProxy.ciass |

o [retransmission 1. Select an existing
r meta objeCt for Update ; ThreadPoolProxyi00.class

) :
| } Update _ ThreadPooRNVorker $1.class

do .

File Name: l)(rhreadPool,clase

f}keifyf!)e-reify l Objects l,‘VSjad;S!‘

eadPoocireplaced successiully
Changing meta object in meta space------ Finished
Extended Thread Pool ready

ORERegister ready to receive requests

gister waiting for TargetObject.........
Lo ol «M

! Files of Type: Just class

4. Changing Meta Object
successfully.

kerlDs “r 4 : 5. Kernel stops all idle workers
rker[D=4, st el : of old meta object and starts
workers of the new one.

Figure 9.4 Meta Space Kernel Manager - Utility for Replacing Meta Objects

The utility, Meta Space Kernel Manager, also allows configuring and managing
meta space. The tool allows the administrator to instantiate meta objects,
registers them into the meta object repository, which, once created, also allows

run time replacement of meta objects.

-151-

Now lets imagine the E-Bookshop needs a better implementation of thread pool
and see how a new thread pool can be added without taking the application
down. Figure 9.4 shows the screenshot and the procedures for replacing an
existing meta component, ThreadPool, with the one called XThreadPool

which is an extension of the meta object ThreadPool.

In Figure 9.4, the administrator uses the kernel manager firstly to select the
existing meta object, ThreadPool, in the meta level and then presses the Update
button on bottom left of the panel (Step 1). The Kernel Manager will guide the
administrator to choose the new meta object XThreadPool stored in the file
directory (Step 2, 3). During the process of replacing the meta objects, system
will stop all idle workers (idle threads) of existing meta object and immediately
install the new meta object (Step 4). All new threads (workers) are started from
the new thread pool to continue providing the services in the system. As soon as
all active threads (active workers) of existing (old) meta object finish their works,
the old meta object will be removed (Step 5). This arrangement would make the

replace operation quick and efficient.

The screenshot of the system console in Figure 9.4 shows the output messages
while executing the stopRequest () method of the threads in workers of the
existing (old) meta object. In the period of changeover of meta objects, it has been
observed that the application server, E-Bookshop, is still running. Thus, the
adaptability of replacing meta objects takes place at runtime. This feature is
particularly important for software evolution in component-based frameworks
as discussed in Chapter 2. We will further discuss the technical details of
architectural design and implementation of such adaptability in our framework in

succeeding chapters.

-152 -

Chapter 10 MELC — Meta Components Installation and Integration

In MELC, domain specific patterns work as meta components [97]. In order to
work as a meta component, the domain specific patterns must be conformed so
that the framework establishes environmental conditions for component instance
and regulates the interaction between component instances. A framework with
meta components is a meta-based component framework and could be described
as a set of collaborating pattern components [85, 86]. The meta-based component
framework is a partial enforcement of architectural principles, by forcing
component instances to perform certain tasks through mechanisms under control

of the framework.

This chapter discusses the technical issues involved in developing instances of
distributed computing patterns identified in Chapter 9 and shows how they can

be integrated into MELC.

10.1 MELC - Meta Components Installation in Meta Space

Kernel classes in MELC are the core kernel objects. The kernel class shown in the
top left corner of Figure 10.1 present the core meta classes in kernel architecture,
which is used to conform distributed computing patterns to meta objects (meta
components) in MELC. In this section, we use Thread Pool Pattern as an
example to illustrate the implementation of meta components in meta space. The
class instantiation of the Thread Pool Pattern [14], shown in the top right corner of
the Figure 10.1, has thread pool workers defined to handle tasks assigned by the

system.

The kernel architecture of the pattern-oriented meta-based MELC framework has

- 153 -

been described in Chapter 7. Figure 10.1 shows how the MELC architecture can

provide a simple and uniform way to construct meta components.

Thread Pool Pattern

Kernel: Core Meta Objects

Meta Core Thread Pool
Objects Patt

Meta Thread Pool

e

Figure 10.1 Patterns Installation at Meta level

At the class level, the class instantiation of a distributed computing pattern can
simply extend a class called MetaObjectImpl from the kernel package (in the
top left corner of the figure) to form a meta component, and, on the object level,
once a meta components has been constructed, it is ready to deploy to meta
space. The meta objects (components) of MELC provide the system functions and

directly reflect the behaviors of the base objects (applications). The Kernel

- 154 -

Manager and its programming model described in Sections 7.4 help to manage
the creation and start/stop operation of the meta objects. Thus, the meta

components can be easily plugged in with MELC.

There may be similar approach to be made to conform other meta patterns to
meta components into MELC. In Chapter 8, we have identified number of
distributed computing patterns required to resolve problems encountered during
development of distributed applications. For example our E-Bookshop example
as described in Chapter 9, application requires different remote services of
remote objects such as Mailbox, Publish/Subscribe, Heartbeat and
Retransmission in order to implement Mailbox Subsystem, Sales Promotion
Subsystem, Server Heartbeat Checking and Reliable Transmission supports.
Distributed computing patterns such as Http Server, ORB Registry and
Publisher/Subscriber can also be easily deployed as meta components (see

Figure 10.2).

4

Meta Thread Meta Http Meta ORB Mgta
Pool | Server M Registry [,Fublisher
00 egisiry / Subscriber
Meta Level

Meta Entities registered with Meta Space at Meta Level

Figure 10.2 Pattern Components deployed to Meta level

After deployment, MELC consists of the technological and engineering details in
the repository of meta objects. Base objects store the application-oriented details.
The base level may have many application servers (i.e. E-Bookshop and
E-Banking) and each application server may share technological and engineering

system functions (meta components) provided at the meta level.

-155-

10.2 MELC — Meta Components Integration in Meta Space

MELC supports dynamic integration of meta objects at run-time. For example, in
our E-Bookshop example, the Thread Pooling Pattern and Http Server Pattern are
the two distributed computing patterns and they can be dynamically integrated
together. The installation of the patterns at the class level in the way described in
Section 10.1 shows the conformation of meta components in MELC. For example,
in our E-Bookshop example, Thread Pooling and Http Server are two meta
components deployed in MELC. The situation is illustrated by Figure 10.3. In
Figure 10.3, HTTP Server can make use of HTTP Workers for the retrieval of
HTML files, and Thread Pool can make use of Thread Pool Workers for

multi-tasking processing.

Kernel

HttpServer - ThreadP‘fJoI -
Meta Object Meta Object

Integrating

Figure 10.3 Integration happens when Thread Pool is reified by base objects

- 156 -

In the context of our bookshop example, the E-Bookshop base object is able to
reify any number of meta objects, If the HTTPServer and ThreadPool objects
are reified, it will have the functionality of both. If only the HTTPServer is reified,

it will not have the ThreadPool functionality.

Every time a HTTP request comes to the base object, the meta space acting as a
mediator in the way described in Chapter 7 will handle the request by checking
whether the base object has reified the ThreadPool. If it has reified
ThreadPool, MetaSpace will let HTTPServer pass its HTTPWorker to the
thread pool workers to continue the process. The integration of meta objects,
ThreadPool and HttpSexrver provides a Thread Pooling HTTP Server for our

E-Bookshop application at the base level.

In our design, we have the connector object called Target Object in ThreadPool,
which accepts tasks from outside and passes them to the thread pool workers to
continue the process. The Target Object is the compositional connector between

meta components in MELC.

The pseudo code and JAVA source code for meta component integration in

MELC are presented in Section C12 in Appendix C for reference.

In the example of the Thread Pooling Http Server, the meta component name is
embedded in coding, such as the word “ThreadPool” is hard coded in the
JAVA source code for the Http Server (refer to Section C12 in Appendix C). It
reduces the flexibility of the framework. In order to provide dynamic integration
of components such as Thread Pool we employ the Role Based approach

proposed by Tramontana [71] described in Section 5.2.4.

- 157 -

The Role Based approach requires a role manager which expresses the
integration strategy of its components by establishing strategies that allow

different components to change their integration behavior.

A role manager is associated with a meta object to generate a Role Object which
contains the integration strategy. For example, the RoleObject of Ht tpServer has
the name of the integration partner such as ThreadPool, and the RoleObject of
Publisher/Subscriber has the integration partners ThreadPool and
Retransmission. They depend on the strategy provided by the MetaSpace in

the framework.

Figure 10.4 shows the collaboration diagram which illustrates use of roles in the
MELC architecture for the dynamic integration of components at run time. The
meta space acts as a Role Manager and contains the strategy details for
component integration. The step numbers indicated in the collaboration diagram

presents the sequence n processing.

In Figure 10.4, HttpServer requests MetaSpace to generate a role object (Step
1). After that, HttpServer asks the role object to identify the integration
partners (Step 2) and checks whether it can collaborate with them in meta space
(Step 3). As we mentioned before, for Ht tpServer, the integration partner could

be ThreadPool in meta space of MELC framework.

- 158 -

MetaSpace
{RoleManager)

1. makeRole&() 2. getMetaParner()

7
% 4.1 getTargetObject{pattern)

P 1 A |

| 3.isintegrated() __ | 4.2 add (worker)

; \(e N B —_— T i
} i
: T \ | TargetObject
]
|

| MetaObject

. : i 3.3 isStarted() (Handoff Box}
: (HttpServer) :RoleObject .
‘ . P g
; \ ~ 1 \ :MetaObject "

! (Partner)

4. coarporate{worker

Baselevel 3.2 isStarted()

3.1 findMetaProxy(partner} l MetaObjectP
‘Meta JeCirroxy

(Partner)

:BaseObject

Figure 104 Roles deal with components integration in MELC architecture

It is important to ensure that the integration partner (such as Thread Pooling) in
MELC has been started before the integration can take place. In this application,
the role object will check with the base object E-Bookshop to ensure that the
partner (Thread Pooling) has been reified and the partner’s proxy object (Steps 3.1,
3.2, 3.3 in Figure 10.4) has been started and ready for collaboration with
HttpServer. Finally, to cooperate with the partner component (Step 4), the
meta object (Ht tpServer) passes one of its workers to the role object which in
turn finds the connector (TargetObject) of its partner component (Thread
Pooling) from the meta space repository and passes the worker (Ht tpWorker) to
the connector (Steps 4.1, 4.2) so that the HTTP worker may be collected by the

thread pool object.

- 159 -

The implementation of the role-base approach for components integration in

JAVA is shown in Section C13 in Appendix C.

10.3 MELC - Meta Component Reification

This section shows the implementation of meta objects reification at the base
level. We use ORBRegister (Object Request Broker) to illustrate how the
reification happens in the E-Bookshop application. According to the MELC
design described in Section 7.3.4, access to a meta object can be gained via its
proxy and is applicable whenever there is a need for a sophisticated reference to

the meta object [18].

(0] :
(Listener e o . ‘
’ #10000) /= Mallt?ox
= - Service
. Http Proxy .
S !
(Listener
#80)
icati ’ Heartbeat
Mients ThreadPool Service
Clients

ORB Proxy
(Listener
#12000) i Publish/

HitpServer Subscribe

Http Proxy ‘
(Listener

Base Level Application Servers

Figure 10.5 ORB Proxy and HTTP Proxy for applications at Base Level

In MELC, MetaObjectProxy provides a local representative at base level for

each meta object that is being used by the base level application. Figure 10.5
presents the ORB Proxy and Http Server Proxy for E-Bookshop and E-Banking

applications. The ORB Proxy and Http Proxy are remote meta object proxies,

each having a listener with a port number and, on behalf of the meta object,

- 160 -

accept network connections (sockets) from remote clients. Those connections are
then passed to the real meta objects, ORB Register and HTTP Server. The proxy
listeners act as proxy actors and masquerade as having the functions of meta

objects to accept and decide whether to send the requests to the meta level.

The sequence diagram in Figure 10.6 shows the sequence of constructing the
proxy for ORB at the base level for the meta object ORB. This reification process

is done using the MELC Kernel Manager.

Figure 10.7 shows a screenshot of the reification of a meta object using the MELC

Kernel Manager. The screenshot shows how the software developer uses the
MELC Kernel Manager to reify the meta object ORB Register for our E-Bookshop
example and hence producing ORB Proxy at the base level. The developer simply

selects a base object, E-Bookshop, and a meta object ORB Register with the GUI
(Steps 1, 2). Once the Reify Button is clicked, the Kernel Manager begins to
retrieve the ORB Register from the meta repository and uses it to create the
meta object proxy, ORB Proxy (Step 3). After that, the Kernel Manager notifies
the base object E-Bookshop that ORB Register is one of its reified meta objects,
and from that time on ORB Proxy will be the ORB’s local representative at the

base level (Step 4).
The use of proxy objects adds Separation of Concerns at two levels to the

framework. The operational controls can be carried out at system level (meta

level) and at application level (base level) separately at runtime.

- 161 -

I Reify() !

<+Select BaseObjed
“1, E-Bookshop <

Select MetaObjed |

dBaseObject{name

dMetaObject{nam

I
l
|
l
|
b

I
|
|
|
|
|
|
|

createProxy()

accepttetaObject(ORB)

<create>

I
!
|
|
I
|
|

&~ [Meta Object

mailbox

& & Pooli

Call i R0
2. Select M

ng

STET
eta Object

onfiguration Inaded %
ORBRegisterProxy ready to receive reguests
HitpServerProxy ready to receive requests .‘
ORBRegisterProxy is running... portno 10000 4
R, {HIIPSErverProxy is running... port no 81

ready to receive reg)

4. ORB accepted and
started in E-Bookshop

Figure 10.7 Meta Object Reification (ORB) at base level with

- 162 -

MELC Kemel Manager

10.4 MELC - ORB Middleware for Object Distribution

Both academic and industrial researchers have agreed that Object Request Broker
(ORB) is one of most common and important technologies in contemporary
object distribution we mentioned in Chapter 3 and presented the technical details
of Distributed Computing Technologies in Appendix D. Object Request Brokers
(ORBs) are at the heart of distributed object computing and automate many

tedious and error-prone distributed programming tasks [29].

An object broker is an intermediary in interactions between clients and servers. It
is transparent and frees clients from having to maintain information about where
a particular service is provided and how to obtain that service. It provides
location transparency, so that if the server object is moved to a different location,
only the object broker needs to be notified. We consider transparency in object
distribution is one of important properties for distributed computing application

development.

In this section, we present the class instantiation of the meta component of our
Object Request Broker and describe how we use it to implement the object

distribution process in MELC and add transparency and portability to MELC.

Clients of MELC in a distributed environment need to invoke methods of the
remote objects in the framework. For example, the E-Bookshop described in
Section 9.1 requires remote services of remote objects such as Mailbox,
Publish/Subscribe, Heartbeat and Retransmission in MELC framework to
implement Mailbox Subsystem, Sales Promotion Subsystem, Server Heartbeat

Checking and Reliable Transmission supports.

- 163 -

Remote ORB
in MELC

hinding ¥ lockup

calls sgrvices

AN

transmis calls passeg calls

gets stub/skejeton
i

elivers call

—

1

f

Figure 10.8 ORB Meta Component at the meta level in MELC

Figure 10.8 presents the class diagram of an ORB component [14] at the meta
level in MELC. TCPConnection is responsible for the transport of messages
between the environment of a remote caller and the environment of the callee.
The ORB Proxy of base object E-Bookshop acts as a server at the base level and
listens for requests. The ORB Proxy checks that the call has access permission
and also that the required remote objects in MELC have been installed and are
ready for access. ORB Proxy then passes the requests to the ORBRegister at the

meta level.

In the application E-Bookshop, the callers may be the E-Bookshop Mailbox
Subsystem or E-Bookshop Sales Promotion Subsystem, and the callees are the meta
objects such as Mailbox or Publisher/Subscriber respectively in the MELC

Framework.

- 164 -

3. Dispatches requests to remote objects
(Mail box or Publisher/subscriber).

2. ORB Proxy validates
and passes the remote
operation to ORB at
meta level

ORB MetaObject

1
1
1
!
1
1

1. ORB Proxy receives
requests

:
T
I
I
i

Remote

- Lj

Remote E-Bookshop

Clients

4. Mail box processes
operation requests

Figure 10.9 Operational flow for serving a remote request
at the base level and meta level

Figure 10.9 shows the flow of remote services between the base level and the

meta level in MELC. In this application, the reified meta objects in MELC,
Mailbox or Publisher/Subscriber, of the base object E-Bookshop have been
started and ready to be accessed. In Figure 10.9, the ORB Proxy at the base level
acts as an ORB Server that receives ORB requests from the remote E-Bookshop
clients, and constructs an ORB Operation (Step 1), which is passed to ORB
Register at the meta level (Step 2). The ORB Register passes the requests received

from remote clients to the ORB Dispatcher (Step 3). The latter depends on the
invocation operation to invoke the remote services of remote objects like Mailbox

Services or Publisher/Subscriber Service in MELC respectively (Step 4).

- 165 -

In Figure 10.9, the invocation operation, Operation object, is embedded in the
connector, Target Object. The Target Object is a composition connector at the meta
level, which has been discussed in Section 7.4.1. The operation object embedded
in Target Object is transported to meta object ORB Register and allows the ORB
Dispatcher to dispatch to the meta objects, Mailbox or
Publisher/Subscriber, depending on the invocation operation for the
required services processing. The design and implementation of meta component
Object Request Broker in MELC adds the transparency of object distribution to our

framework.

Note that the implementation of ORB Proxy for serving the remote requests in

JAVA coding is presented in Section C14 in Appendix C for reference.

- 166 -

10.5 Summary

Our reflective MELC framework uses distributed computing design patterns as
building blocks at the meta level. In this chapter, we illustrate the installation of
patterns, the integration of components, the reification of components, and the
interaction of components between meta level and base level with object
distribution technology (ORB). We summarize the accomplishment in this

chapter as follows:

1. With the kernel classes provided by the framework, class instantiation of a
pattern can easily form meta components, which in turn can be plugged into the
meta space. The construction and the reification of meta components in MELC

adds Extensibility and Separation of Concerns to the framework respectively.

2. We adopt a Role Based Approach in our framework and store the integration
partners in the Role Object which is generated at runtime by the role manager in
meta space to support adaptation in framework. MELC provides the Dynamic
Integration between components at meta level. This adds flexibility to our

framework for components integration in the meta space.

3. MELC provides Transparency for object distribution. MELC provides object
distribution middleware with Object Request Broker (ORB) (one of our meta
components in meta space). The functionality of object distribution in MELC is

fully transparent to users.

Hence, MELC meets the challenges of Extensibility and Separation of Concerns in
framework and also provides dynamic integration and interaction for
components. The object distribution middleware (ORB) for remote accesses enables
the framework for distributed computing. In the next chapter, we will further

describe the design and implementation of Adaptability in MELC.

- 167 -

Chapter 11 MELC - Adaptability

11.1 MELC Adaptability

The critical nature of distributed technologies requires frameworks to have
adaptability which allows meta objects replaced at runtime for system evolution.
In this chapter we describe technically how the design and implementation of
adaptability in MELC framework. It covers the technical aspects: the
communication between meta objects, the design of adaptability for meta objects at
runtime, and the implementation of adaptability for meta objects at runtime in MELC

framework.

11.2 MELC Objects Communication — Crosscutting

Cross cutting provides aspect separation in modularity [53]. The crosscutting
teature in the MELC architecture provides decoupling between the base level
and the meta level, which allows meta objects to be replaced at runtime for

system evolution.

As we have described in Section 10.3, each Meta Object Proxy at the base level
controls access to its meta object at the meta level in MELC. In order to support
replacement of meta objects while the rest of the system stays intact, the
architecture of MELC provides separation of aspects which simplifies the
structure of meta components and allows objects at the base level and meta level
to be described separately and exchanged independently without disturbing the
modular structure of the distributed computing pattern with the framework. The
Composition Connector [73] provides the communication connection between
aspects (base level and meta level) after crosscutting in the MELC as shown in

Figure 11.1.

- 168 -

Composition
Connector

Meta Space

Meta Proxy Meta Object
Base Level — Meta Level —
Business Aspects Core

Figure 11.1 Composition Connector in crosscutting design to decouple
base level and meta level in MELC

Since each meta object has a separate proxy representative at the base level, the
algorithms (functional specifications) of the meta object proxy and the real meta
object can be described without unnecessary entanglement. The functional
requirements of Meta Object Proxy and its Meta Object in the framework are
defined independently. The connection (communication link) between the Meta
Object Proxy and the Meta Object we use is via the Composition Connector called
Target Object in MELC. Composition of the crosscutting components depends
on this connection. A composition connector allows manipulation of aspects of

co-operation and co-ordination [98].

It is particularly important to note that the crosscutting feature in MELC
provides decoupling between the base level and the meta level. This decoupling
avoids meta object referencing at base level by meta object proxy, and allows

replacement of the real meta objects at runtime for system evolution.

Before requests issued by remote clients reach the meta objects in MELC, they are

initially received by meta object proxy at the base level. The meta object proxy

- 169 -

validates the message and checks the corresponding meta object has been started
and is ready for serving before passing the message to the connector, Target
Object, of the meta object. There is one target object for each meta object in meta
space. The connector is a handoff box where the messages are picked up by the

corresponding meta object for processing when the meta object is ready for

serving.
Meta Space
/ Meta Repository \
| Target Object of each Meta Object |
: goﬂ;fs?izg%gtggc?g sbaestween : ORB)
O\ LBaselovelond MetaLevel | TergetOvject
.

Composition

Connector
Meta Space

1. Adds Target Object to
ORB Target Object in
Meta Repository.

2. Removes Target Object
| from Meta Repository.

Meta Proxy MetaObject

Figure 11.2 Composition Connector - ORB Target Object in Meta Repository

Figure 11.2 describes how the ORB Proxy at the base level receives the request
from client. The Object Request Broker (ORB) contains an Operation class
which is a wrapper class of the remote methods of the meta objects (such as
Mailbox or Publisher/Subscriber). The instance of Operation class is

constructed by the client, which bundles the name of the meta object and its

- 170 -

method that the client wants to invoke, together with its parameters, the data
types of return values and exceptions. The ORB Proxy puts the Operation
object into the ORB target object in Meta Repository (Step 1). As described in the
previous section, the ORB target object in MELC architecture plays the
composition connector role (handoff box) between meta object proxy and meta
object. On the other hand, the ORB Meta Object will then remove the

Operation fromits target object (Step 2).

Note the object of the invocation operation of ORB is embedded in the connector
(Target Object). Whenever ORB Meta Proxy puts the Operation object to ORB
target object in Meta Repository, the ORB Meta Object immediately removes its
target object from Meta Repository in the meta space and processes the
embedded Operation, and ORB meta object dispatches it to the relevant meta

object (such as Mailbox or Publisher/Subscriber) for processing.

In the meta space, the ORB meta object locates and retrieves its connector, target
object, from the meta repository in meta space. Inside the target object, the ORB
meta object can extract the information of the remote request: the base object, the
request’s socket, and most important the operation for processing. After that,
the ORB meta object assigns its work to ORB Dispatcher to process the
operation obtained from the target object, where the ORB Dispatcher
dispatches the operation to one of the meta (system) components like Mailbox

or Publisher/Subscriber in E-Bookshop for processing.

The detailed JAVA codes for the ORB meta object to dispatch the remote requests

at meta level have been extracted in Section C15 in Appendix C for reference.

-171 -

11.3 MELC - Design for Adaptability of Meta Objects at Runtime

MELC architecture is designed to adapt to new user requirements by replacing
software components at run time while the rest of the system is still running. In
this section, we describe the design of MELC to adapt to changing requirements.
For example, if MELC contained a component implementing a basic thread pool
with a fixed number of threads which will call a Fixed-threaded Thread
Pool to support multi-tasking processing in a server, through system evolution,
that component could be replaced in MELC by a thread pool with a variable

number of threads which we will call a Growth Enabled Thread Pool [99].

It has been observed that the advantages of using the crosscutting feature and
the composition connector (Target Object) described in the previous section
can avoid the cohesive dependency between components, and that mechanism
facilitates adaptability in the MELC framework. As discussed in Section 7.4, we
proposed that each meta object should have its own internal identifier which we
call meta object identifier and which is private in meta object. The Fixed Thread
Pool Pattern and the Growth Enabled Thread Pool Pattern are two typical
examples of pooling patterns [14]. The class instantiation of both are depicted in

Figure 11.3.

Each meta object used in implementing these two patterns will have its own
internal identifier. However, for the two thread pool patterns, the contents of the
two meta object identifiers are identical, which indicate that they both provide
the same functionality and they are interchangeable. The meta object identifier is
set by the meta component designer and it can be changed or overridden by its
subclasses whenever necessary. However, non-identical meta object identifiers in
meta objects represent different meta components in MELC and they can not be
interchangeable for each other. The meta object identifiers of meta objects will be

verified while replacing in MELC at runtime.

2172 -

MitaCore | Fixed Thread Pool Pettem & Growth Enebed
l | Thread Podl are Pooling. |

Figure 11.3 Meta Objects: Fixed Thread Pool and Growth Enabled Thread Pool

MELC Kernel Manager has the ability to replace meta objects at runtime by
verifying their internal identifiers. One meta object can replace another if they
are of the same type and have the same internal identifier. Therefore a fixed
thread pool could be replaced with a growth enabled thread pool as described

below. Figure 11.4 illustrates the adaptability in meta objects.

Meta Growable

—> Thread Pool

=
'S ,/ Meta
(E | Configuration
{ %‘1. Management
W b Console
LN
N {Runtime
qoTSmmommssmssosmseooes Adaptation)
Meta Fixed
Thread Pool

Meta Space at Run Time

Meta ;
Publisher/ ==t Moo OR® i MeLa HIIP
Subscriber i gistry i

Figure 11.4 Adaptability of Meta Objects in MELC

173 -

The procedure for replacing meta objects is listed as follows:

1.

MetaSpace has constructed and instantiated metaFixedThreadPool
which, while belonging to a Type called Pooling, possesses an internal
identifier =~ with the wvalue ThreadPool. The meta object,
metaFixedThreadPool, has been registered in the meta object

repository.

Meta object metaGrowableThreadPool is constructed and instantiated
and since it belongs to a type called Pooling, it also has an internal
identifier with the value ThreadPool. However, it has not been registered
in the meta object repository. Since it has the same meta type and internal

identifier as metaFixedThreadPool, it can each be replaced by the other.

Our configuration and management utility controls the replacement of
meta objects. The changes will reflect the system behavior at the meta
level and also immediately affect those base objects which have reified the

meta objects possessing the internal meta identifier ThreadPool.

11.4 MELC Implementation for Adaptability at Runtime

The key challenge in MELC is to adapt to new user requirements by replacing

software components concerned at runtime while the rest of the system is still

running.

In MELC, after meta objects have been constructed and reified by base objects,

they can be replaced at run time as system evolves. The process of replacing meta

objects in framework is shown in the collaboration diagram in Figure 11.5.

S174 -

MetaSpace

:TargetObject

2. findMetaObject A f
4. getTargetObject(old) / 'MetaObJeCt
6. detachObject(old) 5. getDetails (Old)

7. attachObject(new)

8. getTargetObject(new)

14. notifyBaseObject =
3. compare
¥ :TargetObject
9. setDetails
KernelManager —— :MetaObject
1. newlnstance (new)
3. compare
| 10. setDetails
11. bind(new) ¢
\ 12. getSkeletonHashtable
Registry :ORBRegister

:skeletonHashtable

13. setSharable(new)
Metalevel

Baselevel
l 15. updateAndRun - Reflection took place

:BaseObject

Figure 11.5 Collaboration diagram for meta objects replacement at runtime

Figure 11.5 shows how the replacement of meta objects in MELC take places at

runtime. The procedure can be described as follows:

1. Kernel Manager first instantiates the new meta object by using a given meta
object name and the new meta object is then stored in meta objects repository in
meta space. At the same time, Kernel Manager constructs the Target Object of the
meta object, which is the connector (a handoff box) mentioned in Sections 11.2

and 11.3 when the meta object is stored in the meta objects repository. Using the

2175 -

Target Object in meta space is to avoid the cohesive dependency between meta

objects. (Step 1)

2. Kernel Manager then verifies existence of the old meta object in meta space and
uses the meta object type and meta object identifier of the two meta objects to
compare and ensure that the two meta objects are identical. For example, the
meta objects, metaFixedThreadPool and metaGrowthThreadPool, have
the same identity ThreadPool and belong to the same meta type Pooling.
(Steps 2, 3).

3. Before the new meta object replaces the old meta object, the Kernel Manager
transfers the information in the target object such as system table or port no of

the old meta object to the target object of the new meta object. (Steps 4, 5, 8, 9, 10).

4. In between the replacement of meta objects, Kernel Manager removes the old
meta object from the meta repository and releases all its resources, and stores the
new meta object in the meta repository and claims all necessary resources if

applicable. (Steps 6, 7).

5. For object distribution, Kernel Manager rebinds the new meta object in the

registry in the Object Request Broker. (Step 11).

6. The registry in the Object Request Broker (ORB) has a hash table which
contains all skeletons of meta objects in meta space. A Skeleton in ORB is

responsible for calling methods of Callee objects (meta objects in MELC) on behalf
of remote clients. Kernel Manager refreshes the skeleton hash table in the registry

with the skeleton of new meta object. (Steps 12, 13).

7. At the end, Kernel Manager notifies the base objects that have reified the

-176 -

replaced (old) meta object to accept the new meta object for performing object

reflection in the architecture. (Steps 14, 15).

The detail Java coding for the implementation of replacing meta objects at

runtime has been extracted in Section C16 in Appendix C for reference.

Kernel Manager instantiates a new meta object with the method
newInstance (), where the variable newClassName stores the class name of
the new meta object. For example, the new meta object Growth Enabled Thread
Pool has the Java class name metaGrowableThreadPool.class to replace the
old meta object Fixed Thread Pool which has the Java class name
metaFixedThreadPool.class. To meet the requirements of meta objects
replacement, they both must have same meta object type and meta object
identifier. In this case, they both are Pooling and ThreadPool respectively.

The old meta object is removed from meta repository before the new one stored.

The object references in meta objects are instances such as the skeleton table

stored in the ORB meta object and the port numbers used in meta objects. They
are called Concerned Instances in distributed environment [82]. Note a skeleton

in ORB is responsible for calling methods of Callee objects (meta objects in MELC)

on behalf of remote clients.

In MELC, the skeleton table and port number are the concerned instances of the
old meta objects and the new ones in the process of replacement in distributed
computing. While replacing the meta objects, the concerned instances of the old
meta object are transferred to the new one. As described in the Section 6.5 of
Chapter 6, it has been noted by academic and industrial researchers [82] that
distributed enterprise application servers like J2EE and JBoss, the concerned

instances in EJB objects (caches, cookies, session objects and session beans) can

- 177 -

not be passed to the new component as system evolves. As a consequence of
version barrier of current application servers, it is difficult to perform adaptation
at runtime with distributed servers. That is to say, the current distributed

application servers (J2EE) can not provide Hot Evolution [82].
Our MELC framework takes care of the concerned instances of meta components

while replacing them at runtime, which allows MELC to be adaptable as system

evolves. It means MELC supports hot evolution to distributed servers.

- 178 -

11.5 Summary

Both academic and industrial researchers are aware of the importance of having
component adaptation for distributed object-oriented enterprise framework [81].
In order to achieve this, software designs must provide flexible architectures that
can more quickly adapt to changing requirements. In an attempt to address the
concerns of adaptation, the reflective models and frameworks described in
Chapters 5 and 6 have designed and implemented reflective architectures (meta
architecture), although they failed to address the problem of system evolution in

the runtime environment.

The design of MELC uses Composition Connector in Crosscutting to support
adaptability for the meta components and allow object distribution with the

middleware of Object Request Broker (ORB).

This chapter technically illustrates the design and implementation of adaptability
in distributed computing environment. The implementation shows how MELC
replaces meta objects at runtime and resolves the problem of concerned instances
encountered in enterprise servers in dynamic adaptation at runtime. We

summarize the accomplishment in this chapter as follows:

1. The design of composition connector avoids object referencing between the base
level and the meta level. With the Composition Connector in Crosscutting, the
remote requests can be received and handled by ORBRegister (Object Request
Broker), which in turn dispatches the requests to the appropriate meta

components for processing at the meta level.
2. MELC framework is adaptable at runtime. The architecture has the abilities to

dynamically replace meta components for mission critical applications for

software evolution or adapt new design patterns to address issues in the domain

-179 -

of distributed computing. They can be woven together to shape the framework in

future.

3. It is important that concerned instance be passed between the old and new
versions of the component. Such concerned instances in a lightweight component
model of ORB architecture are caches and skeleton tables. MELC resolves the
problem of concerned instances encountered in recent distributed enterprise

servers.

In Table 11.1, we summarize the accomplishment and apply the same assessment

attributes used in Chapters 5 and 6 to the MELC Framework.
Thus far the techniques involved in developing MELC framework have emerged

as a promising way to meet current and future challenges in adaptability in the

distributed environment.

- 180 -

Adaptable

MELC [85,86]

Frameworks

Brief Meta level Component-based Framework with pattern-oriented

Description approach to provide adaptability for runtime replacement of meta
objects at meta level.
Domain specific patterns are used as building blocks, and are
instantiated to be meta objects in framework. Those meta objects are
meta components of MELC. Patterns are meta components that
provide high software quality. Meta components in MELC can be
easily installed into the framework in a uniform way and
dynamically integrated with each other in the framework.
MELC has online utility for managing meta components in
framework.

Meta Objects Meta space is a mediator to coordinate base objects and meta

Coordination objects. It has the repository for base objects and meta objects. It 1S

(meta space) the kernel of the framework.

Meta Objects Role manager in framework generates a role for each meta object.

Integration Role manager checks with existence of meta objects in meta space.
Role consists of information and performs dynamic objects
integration.

Meta Object Dynamic object adaptation (objects adding, changing and replacing)

Adaptation for system evolution at run time.

Communication
linkage between
Meta Level and

Causal connection is used in framework. Meta proxy at base level
intercepts the method invocation and connector helps to build the
interface between base level and meta level and passes the requests

Base Level between two levels.
Configuration MELC has Kernel Manager for resources and configuration
Management management.

Evaluation on
properties of

Meta objects are the instantiation of distributed computing patterns
are the system components and they can be easily adapted at

adaptable runtime.

framework
The architecture of MELC is platform independence and language
independence. It performs run time adaptation for meta objects at
meta level for system evolution for distributed computing
applications or applications of critical missions which do not allow
offline for system upgrades.

Object ORB is one of meta components and conducts the function of object

Distribution request broker (ORB) in framework for distributed computing

Middleware applications.

Table 11.1 Adaptable MELC Framework for System Evolution

- 181 -

Chapter 12 MELC Performance Evaluation

12.1 MELC Performance Evaluation

The unrelenting pace of change in distributed computing that confronts
contemporary software developers compels them to make their applications
more configurable, flexible, and adaptable. In this thesis, we have proposed a
Meta Level Component-Based Framework (MELC) which uses distributed
computing design patterns as components to develop an adaptable

pattern-oriented framework for distributed computing applications.

While distributed component-based technologies provide an infrastructure
solution for distributed computing applications, it is difficult to accurately
measure the effect of the framework implementation on eventual performance of
an application built using that framework. In fact, component technologies
(DCOM, J2EE and JBoss) make the problem even more difficult, as each
component technology may have a different infrastructure and implementation,
and thus exhibit different performance characteristics [100]. Considerable work
on software performance modeling has been done in the academic community.
However, most existing models are either too complex to use or do not take the
underlying infrastructure into account, making them impractical for performance
prediction of component-based applications in industrial software engineering

projects.

Recognizing these issues, in this thesis we investigate the feasibility of our
proposed solution by evaluating the performance of MELC. An empirical
approach is proposed to determine the performance characteristics of MELC

framework. A benchmark is used to exercise components and measure their

- 182 -

behavior. Deeper observations on meta components and application components

in MELC have been conducted from these empirical results.

12.2 Test Suite Design

In order to obtain a performance profile solely underlying MELC framework and
minimize the effects of application behavior, an application of an E-Bookshop,
has been designed and implemented as our basic benchmark (see Chapter 9). The
benchmark has several important characteristics that make it appropriate to use
for examining and evaluating the costs of implementing an application within
the MELC framework in comparison with an application which employs
distributed middleware Object Request Broker (ORB) for distributing computing.
For comparison purposes, two versions of the e-bookshop application have been
implemented. One was implemented using the MELC framework and the other
using traditional ORB technology. Both versions of the e-bookshop application

have:

= exactly the same distributed computing services (system components): ORB
Registry, Heartbeat, Mailbox, Publisher/Subscribe, Retransmission and
HttpServer.

= exactly the same user interfaces and business functions (application
components) for administration and sales: Customer/ Book/ CD Searching,
Shopping Cart, Order Maintenance, Items Maintenance, Mailbox Service,
Subscription, and etc.

* the same testing sample data in databases

The key differences between two applications are:
= One is an adaptable component-based application (E-Bookshop integrated
with MELC Framework) implemented with reflective meta-architecture.

= The other is a non-adaptable component-based application (E-Bookshop

- 183 -

without MELC Framework) and is non-reflective for runtime adaptability

The test focuses on the capturing of the response times of the system components
(system services) and application components (business services) in the
application server. The transmission time for data communications via
networking with sockets is not taken into account because we want the data
captured to reflect the performance of the components in the server and not be
influenced by the speed of the network communications. The measurements we
have taken are measuring the overhead caused by the reflective

meta-architecture for providing the adaptability to the system.

12.3 Benchmarking

In distributed object broker communication mentioned in Chapter 3, two key

performance measures are:

1. Response time for client to look up remote brokers resided in distributed
server;
2. Response time for distributed server to execute the remote requests from

client.

As an example of the effectiveness of the benchmark application, Figure 12.1
shows the average response time (ART) breakdown for looking up business
components (Customer Service, Book Service, Ordering Service and etc) through
ORB infrastructure. The test platform comprised Windows XP machines. A 100
Mbps network connected the machines. A JAVA profiling tool, Performance
Measurer, was developed by the author for this project and used to obtain the
performance metrics, such as response time of components and the number of
invocations. Because the components under test are treated as black boxes in
borh frameworks, whenever a request calls a component, the operations of the

associated objects involved are hidden. We capture the runtime response time

- 184 -

and aggregate them to find the average response time (ART).

To efficiently support large numbers of simultaneous access from clients,
multi-threaded servers must be used to increase the processing capacity of an
application. Thread pooling is one of essential services in most of distributed
application servers [100]. MELC provides the capability for adapting the Thread
Pool component by plugging it in the framework, which creates a pool of threads
and can dynamically integrate with components in the server to perform a

multi-threaded distributed computing server to handle requests concurrently.

We assume the concurrency is an indispensable feature and investigate how
much is the difference in performance in application with MELC framework in
comparison with traditional component-based approach. The benchmark
application, E-Bookshop, is evaluated through three different approaches under

different infrastructures:

e A component-based development (CBD) approach which does not use
MELC but has ORB infrastructure for object distribution (non
adaptable application);

e An adaptable component-based approach which uses MELC in which
ORB component is reified for object distribution;

e An adaptable component-based approach which uses MELC and in
which ORB and thread pool components are reified for object

distribution and concurrent accesses respectively.

These three approaches have the same distributed computing services (same
system services), same implementation for user interfaces and business functions
for administration and sales for E-bookshop, and same testing sample data in

database. Technically, the key difference in implementation is that the adaptable

- 185 -

approach has system components (distributed computing components)
integrated with reflective MELC framework for providing the adaptability to the
components at runtime. However, the non-adaptable approach has system
components integrated with applications directly and the components can not be

replaced for system evolution at runtime.

CBD(with ORB)

MELC Framework without Thread Pooling

OMELC Framework with ThreadPool Integration

300 T
£ 250
(53
g
£ 200 -
2
g 150
8
S 100 A
en
&
s 50
<

O i

Comparison of time required to to look up components in Server

Figure 12.1 ART for looking up Remote Business Components

In E-bookshop, we conduct the performance evaluation on the looking up operation

of the following remote business services from server:

e Customer Service — Customer maintenance

e Order Service — Placing orders

e Book Service — Book Searching and maintenance

e (D Service — CD Searching and maintenance

e Subscriber Service — Customer subscription for sales and

o Mail Box Service — Mail box for mails reception and send.

- 186 -

Figure 12.1 presents the comparison of time required to look up remote business
services in server. Table 12.1 summarizes the actual values of the Average
Response Time (ART) for the Look-Up operation of remote business

components via ORB.

Remote Components CBD BAELC -no Thread |MELC with Thr_ead

Look-Up Pooling Pooling Integration

Customer Service 203 225 205
Order Service 157 213 187
Book Service 172 265 203
BookOrderLine Service 172 266 204
CD Service 156 206 172
CD Order Line Service 157 203 204
Subscriber Service 172 224 203
MailBox Service 172 187 204
ART (ms) 170.125 223.625 197.75

Table 12.1 ART for Looking up Remote Business Components

Table 12.1 can be further explained as follows. The business services in
E-bookshop reside in Object Request Broker (ORB) Registry in a distributed
computing environment and are ready for clients to invocate a remote lookup
operation. The average response time for looking up an object in a platform
using Component-Based Development (without MELC) with ORB [ORB Only]
for remote object invocation is 171 milliseconds (ms). In comparison with using
MELC, the framework may employ thread pooling component. As the number
of threads available in the MELC framework increases, more processing capacity
is available to read requests from the sockets and simultaneously process the
requests. The Thread Pool component reduces the queue length to access the
server process and consequently the average response time for looking up an

object dynamically decreases from 223 milliseconds to 197 milliseconds.

- 187 -

In E-bookshop, we also conduct the performance evaluation on the execution

operation of the following core remote business services in remote server:

e (Customer Service — Search customers
e CD Order Service — Search and maintain CD order details

e Book Order Service — Search and maintain book order details

Figure 12.2 presents the Average Response Time (ART) for execution of the
remote business components to be executed in between Component-Based

Development (without MELC) - we call CBD in short and MELC Framework.

The ART for CBD, MELC without Thread Pooling and MELC with Thread
Pooling are 203, 223 and 209 milliseconds (ms) accordingly in Table 12.2. The
overhead for adopting the adaptable MELC is relatively very minimal (6 ms) for

business components processing.

The analysis of the benchmark results leads to the observation that the level of
threading in the container is a key factor for determining the overall contention
level in the application. This observation has been empirically validated in both
J2EE technologies and CORBA technologies [100]. This means thread pooling
must be taken to determine the performance of concurrency in an application. In
addition, it shows that the overhead is relatively very minimal (6 ms). The key
factors contributed to overhead in the benchmark results are: the kernel
architecture in MELC for providing the reflection described in Section 7.3, and
the integration of meta components described in Section 10.2, ORB and Thread
Pool, at the meta level for providing concurrency in the server. We consider the
overhead cost (6 ms) is acceptable in view of having the reflective architecture

and concurrency in server.

- 188 -

7 CBD(with ORB)

B MELC Framework without Thread Pooling

O MELC Framework with ThreadP ool Integration

350 ¢

300

200

150

100

Average Response Time(ms)

E-Bookshop - Application components

Figure 12.2 Execution Time for remote business components in Server

Execution Business MELC - no Thread |MELC with Thread

Components CBD Pooling Pooling Integration

Customer Search All 203 297 235
CD OrderLine - search 204 203 203
CD OrderLine - add 201 219 203
CD Service - change 203 203 218
Book OrderLine - add 204 218 203
Book Service - change 188 204 203
Book Service - seach 218 218 203
ART (ms) 203 223.14 209.71

Table 12.2 ART for Execution of the Remote Business Components

Object Request Broker is the primary mechanism for connecting objects between

remote address spaces in framework. The summary for the ART of Remote

- 189 -

Business Object Look-Up and Remote Business Object Execution in the ORB
infrastructure is listed in Table 12.3. In the table, we compare the performance of
Component-Based Development (without MELC) and the one with the adaptable
MELC, and illustrate the average overhead costs of MELC 14% and 3% for
look-up and execution of business objects respectively. The key factor contributed
to overhead in the benchmark results is the ORB infrastructure in MELC
described in Section 10.4: the ORB Proxy at the base level acts as an ORB Server
that receives ORB requests from remote clients, and constructs an ORB operation
which is passed to ORB register (meta component) at the meta level. The cost of
overhead provides the ORB infrastructure in MELC for transparency for objects

distribution and we consider that is reasonable tradeoff.

Remote Business|CBD (a) MELC (b) Overhead Percentage
Components b -@ b-a)/@
Look up 171 ms 197 ms 24 ms 14%
Execution 203 ms 209.71 ms 6.71 ms 3%

Table 12.3 MELC overhead costs for Look-up and Execution
of Remote Business Components

In addition to remote business components for business services in the E-Bookshop
application, there are three common system components that provide system
services in a distributed computing environment and which we have adopted in
the implementation of our E-Bookshop application. These components are the
Mail Box Service, the Heart Beat Service and the Subscriber/Publisher Service.
We have measured the performance of these three key system components in

detail and we will now go on to discuss the results.

- 190 -

iy CBD

woufpee MELC Framework with ThreadPool Integration

250

> Ty
&

N
200

150

Response time(ms)

2 4 6 8 10 2 14 16
(a) No of Recipients registered in Server for MailBox Services

Figure 12.3 (a) Performance Analysis on Mail Box Services

450

Response time(ms)

o
IS
o
2

16 12 1a 16
(b) No ofclients logged on the Server for Heartbeat Services

Figure 12.3(b) Performance Analysis on Heart Beat Services

200

Response time(ms)

100

2 4 o % 10 2 14 16

(c) No of subscribers in Server for Publisher Services

Figure 12.3(c) Performance Analysis on Publisher Services

- 191 -

Mail Box Component: In Figure 12.3(a), as more concurrent recipients are
registered in the Mail Box Server, more contention is incurred for the server
threads to process the mail requests. Consequently the sender request queue will
grow as requests wait for service. From 2 to 16 mail box recipients, the Response
Time (RT) for CBD and MELC change from 156 to 218 ms and 172 to 235 ms
respectively. An increase in the recipient load on the Mail Box Servers causes
decline in the overall throughput of sending and receiving services in the
frameworks (CBD and MELC). The difference in Average Response Times (ART)
of two frameworks is 16 ms which means the overhead cost of having adaptable
MELC for Mail Box Server is approximately 8.2% in terms of response time. The
key factors contributed to the overhead in the benchmark results are: the
conformation of meta components for adaptability described in Section 10.1 and
the separation of concerns of application level and system level described in
Section 7.4 and 7.5. In order to work as an adaptable meta component in MELC,
the domain specific patterns such as Mail Box must be conformed so that the
framework establishes environmental conditions for component instance and
regulates the interaction between component instances. In addition, the start
and stop controls at both the base and meta levels provide the separation of
concerns between application level and system level in MELC framework. The
overhead cost is acceptable (8.2%) in terms of tradeoff for providing separation

of concerns in the adaptable layer.

Heart Beat Component: We conduct the test with the same approach as Mail Box
Service. In Figure 12.3(b), the application server has from 2 to 16 clients and its
heart beat is set at 10-second interval. The clients concurrently receive the heart
beat messages sent by their application server. As more concurrent clients log on
the server and more tasks run in server and client workstations, more contention
is incurred for the clients and the server to process the heart beat messages. With

between 2 to 16 clients logged on the server, the Response Times (RT) for CBD

-192 -

and MELC are recorded to be from 203 to 391 ms and 234 to 406 ms respectively.
It has been observed that the overall throughput of heart beat services for the
two framework architectures declines by increasing the additional workload and
clients to the framework server. The difference in Average Response Times (ART)
of two frameworks is 27 ms which means the overhead cost of having adaptable
MELC for heart beat service is approximately 9.3% in terms of response time. The
factors contributed to the overhead of Heart Beat in the benchmark results are
more or less same as Mail Box. The primary difference in the functionalities of
Hear Beat in comparison with Mail Box is that the heart beat function is a remote
service and performs regularly in a pre-defined interval (say 10-second interval).
It has been observed that the time for sending the server heart beat messages to
the remote clients triggers the processor of the server into a busy state. We
consider the overhead (9.3%) is acceptable in view of the invocation of remote

services in an adaptable server.

Subscribe /Publish Component: We conduct the test with the same approach as
Mail Box and Heart Beat Services in the framework servers (CBD and MELC). In
Figure 12.3(c), as more concurrent subscribers register for the Publisher Services,
more contention is incurred for the server. With between 2 to 16 subscribers, the
Response Times (RT) for CBD and MELC obviously change from 310 to 459 ms
and 328 to 502 ms respectively. The difference in Average Response Times (ART)
of two frameworks (CBD and MELC) is 27 ms which means the overhead cost of
having adaptable MELC for Subscribe /Publisher Services is approximately 7.1%
in terms of response time. The factors contributed to the overhead of
Subscribe /Publish in the benchmark results are more or less same as Mail Box
and Heart Beat. The association of subscriber and publisher are two dynamic and
interactive partnerships. The primary difference is that Subscribe/Publish has
the storage for storing the subscribers registered with their interests for publisher
services. Messages are delivered to the subscribed recipient objects by

transmitting each message to each recipient. Delivery is ensured by repeating the

-193 -

transmission until successful. As described in Section 11.4, the subscriber details
are the Concerned Instances of the old component and the new component in the
process of replacement in distributed computing environment at runtime. In
addition, the integration of meta components, Publish/Subscriber and
Retransmission, at the meta level to ensure delivery of messages to subscribers.
We consider the overhead (7.1%) is acceptable in view of having the adaptable
server to maintain the concerned instances of the components for version
upgrading as system evolves, and supporting the integration of meta

components at the meta level.

The differences in Average Response Times (ART) of the system services

between CBD and MELC with Thread Pooling are summarized in Table 12 4.

System (meta) CBD (a) MELC (b) Overhead Percentage
Components O -@ (b-2a) /(@)
Mail Box 195 ms 211 ms 16 ms 8.2%
Heart Beat 290 ms 317 ms 27 ms 9.3%
Publisher 385 ms 412 ms 27 ms T71%

Table 12.4 Performance Analysis of MELC Framework

The overheads for adopting the adaptable MELC for Mail Box Service, Heart
Beat Service and Subscriber/Publisher are 8.2%, 9.3% and 7.1% respectively,
which averages to be approximately 8.2%. We consider the cost of 8.2% (less than
10%) average response time is acceptable [100] in terms of tradeoff for having a
remote adaptable framework - MELC to provide adaptability for system

evolution at runtime.

-194 -

Nonetheless, certain applications may involve large numbers of clients, such as
over 100 recipients registering in the server for Mailbox Services in our
E-Bookshop application. The overhead for adopting the MELC approach may be
different in comparison with the data collected in Figure 12.3. The solution to the
problem could be the raw materials for hatching new patterns to replace the
existing thread pooling component with kernel manager provided in adaptable
MELC framework. Still, other performance improvements are possible and are
worth studying, such as improving the architecture design by using

model-driven approach and re-factoring the source code.

- 195 -

12.4 Summary

To demonstrate that the MELC framework is implemented efficiently, we have
conducted a test and performance analysis for our framework. In the test suite,
we compare the performance of two different versions of an E-Bookshop
application. One version was implemented using component-based development
(CBD) approach which does not use MELC but goes through ORB infrastructure
for object distribution — a non adaptable approach, and the other one was
implemented using our MELC Framework approach which had reified ORB
component at the meta level of meta architecture for object distribution — an

adaptable approach.

Our performance tests show the MELC can be implemented with minimal
overhead (less than 10%). The study of the results leads to the observation that
certain applications may require tighter performance bounds. To this end, we
may provide alternative implementations by increasing the workers in thread
pool up to the limit of server processor. Still, other performance improvements
are possible. We can conclude that, using our adaptable MELC framework,
developers can concentrate on creating business logic without being distracted
by having to address issues in the domain of distributed computing in system
evolution. The adaptable MELC provides a mechanism to facilitate system

evolution in the runtime environment.

- 196 -

Chapter 13 Conclusion

In this thesis, we present a new adaptable framework for runtime evolutionary
software. While traditional reflective architecture can allow adaptation for
selected functional behaviours, we place particular emphasis on the dynamic
replacement of system functional behaviours associated with distributed

applications, with the aim of allowing for dynamic evolution of running systems.

Our Meta Level Component-Based Framework (MELC) combines a meta
architecture with a pattern-oriented framework, resulting in the introduction of
an adaptable and configurable layer in the framework which we use to provide a
mechanism that facilitates system evolution. This use of a meta architecture with
a pattern-oriented framework for distributed computing applications is new and

has not previously been explored in research.

Our use of a meta architecture in MELC provides adaptation by way of two key
properties: separation of concerns and extensibility. There is separation of
concerns in the sense that the base-level objects (i.e. business applications) do not
possess any prior knowledge of the identity of the meta-level objects which serve
them. Similarly, meta-level objects need not be aware of the base-level objects
they serve. Communications between the base level and the meta level in MELC
are implemented by the composition connectors in crosscutting. The meta
architecture of MELC framework is extensible in the sense that new meta objects
can be separately installed, constructed and dynamically integrated by the MELC
runtime environment to perform services for requests. This particular

architecture represents a new approach to the facilitation of system evolution.

-197 -

The “reflective” architecture used in other approaches [4, 74, 76, 79] also
incorporated a meta architecture but the distributed computing components were
hard coded solutions which were interwoven within the architectural elements.
Our approach separates the distributed computing elements from the architecture

and hence significantly improves the scope for adaptability and extensibility.

Although we have presented our framework using an object-oriented approach,
we have illustrated that the architecture may be modularized as components in
order to address more specific distributed computing services. For example, an
appropriate selection and implementation of distributed computing components
may be used to address retransmission issue, object request broker, thread

pooling, mailbox, and real-time heart-beat services.

In this thesis, we have described how the architecture of MELC can meet diverse
requirements in distributed computing systems, and how the MELC kernel can
simply and uniformly create the adaptable components using patterns, and also
how those components can be replaced from the framework at runtime in order
to provide the adaptability that is most critical in most distributed computing

frameworks today.

In addition, MELC provides software decoupling of the system functionality from
the business functionality. The system functionality is provided at the meta level
and the business functionality at the base level. This makes the system’s
technological features open-ended for extension, and allows system functions to
continually evolve. Our work presented in this thesis has emerged as a promising
way to meet challenges of adaptability in the distributed environment currently

and in the future.

- 198 -

To demonstrate utility of the framework, we have defined a MELC Programming
Model: a programming model that may be used to easily conform the
object-oriented classes for a design pattern into a meta component (meta object)
that can be incorporated into the meta space of MELC. The computational
behaviour of the architecture is defined by the meta space of MELC. In particular,
the MELC Programming Model may be used to efficiently implement the
operations of reification and de-reification, and of starting and stopping meta
objects. The base level manages the individual business application and meta
level manages the components at the system level. The operations of a meta object
affect the behaviour of all business applications at the base level of the system.
The MELC Programming Model provides adaptability of meta objects, which can

be replaced at runtime for mission-critical applications.

To demonstrate that the model may be implemented efficiently, we have
proposed and implemented a prototype of a typical distributed computing
application, E-Bookshop, which forms the backbone of this thesis in explaining
MELC from the point of view of the application developer. Although we have
based MELC on a simplistic view of resources, we have illustrated that MELC
may be enhanced in order to address more specific distributed computing issues.
A key concern is the overhead entailed by the component-based adaptability of
the MELC framework. Our performance tests show that MELC may be
implemented with minimal overhead (less than 10%) which we consider to be
acceptable in terms of trade off for providing adaptability at runtime. Still, other
performance improvements are possible and are worth studying, such as
improving the architecture design with a model-driven approach and applying

re-factorization to source codes.

- 199 -

While the specification and implementation of the MELC framework are
important issues, it is perhaps more important to derive configuration and
management tools which can be used to define the initial configuration and
facilitate dynamic coordination and integration of distributed computing

components for software applications. Several features are of interest:

e Does the tool verify the existence and property (status) of the meta
components at meta space before they are reified by a base object?

e Does the tool transfer the internal structure (concerned instance) of a meta
object to a new meta object while processing the attached operation of a
meta object for adaptability at runtime?

e Can one meta component be viewed under the base object after the latter

has been reified?

As a basis for answering such questions, we have developed a Meta Kernel
Configuration Manager. By using aspect-oriented methodology and role-based
software engineering, MELC can resolve the meta-level distributed computing
components integration. Each component performs a specific distributed
computing task and can dynamically interact with other components to have
meta object integration to support the specific requests. The design of dynamic
integration of meta objects is new and is one of the main features in MELC. In
addition, the Meta Kernel Configuration Manager efficiently monitors and
administers the component services in the framework. Distributed computing
components can be easily built, verified and replaced in the runtime environment
for distributed computing applications to access single service or multiple

services. The Meta Kernel Configuration Manager provides dynamic services

- 200 -

adaptation and integration in the framework.

We believe that adaptability issues are significant obstacles in the development of
distributed computing framework. In particular, current reflective models rely on
either cohesive dependency with system objects which obscure too much of the
underlying system behaviour, or are limited to anticipated requirements making
them unable to perform dynamic adaptation for system evolution. Moreover,
such models tend to adapt to anticipated requirements, making it difficult to
respond to the unanticipated dynamic evolution of mission critical systems which
cannot be taken offline. We believe the MELC framework described in this thesis
makes a significant contribution towards adaptable architecture for distributed
computing systems. Specifically, the notion of adaptability, transparency,
separation of concerns, extensibility and portability preserving pattern-oriented
meta-architecture affords the protection of current abstraction boundaries of
system behaviour in distributed computing while allowing for graceful

integration between components to support system features.

Nonetheless, significant work remains to be done to expand MELC’s component
base. The types of pattern-based components that we think should be included
are: Fault Tolerance, Connection Multiplexing, Heavyweight/Lightweight, and
new design patterns, with the latter used to address new issues in the domain of
distributed computing. We view such distributed computing components as an

evolutionary extension of the MELC described in this work.

- 201 -

Bibliography

[1]

[2]

E. Gamma, R. Helm, R.Johnson, J. Vissides: Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Welsey, Reading, MA, 1995

F. Buschmann, D. Schmidt, M. Stal, H. Rohnert: Pattern-Oriented Software
Architecture — A System of Patterns, Volume 1, John Wiley, April 2001

J. A. Broecke, J. O Coplien: Using Design Patterns to Build a Framework for
Multimedia Networking, Design patterns in Communication Software, SIGS,

Cambridge University Press 2002

J. Suzuki, Y. Yamamoto: OpenWebServer: an Adaptive Web Server using
Software Patterns. IEEE Communications Magazine, April 1999.

L. Fuentes, JJM. Troya: A JAVA Framework for Web-Based Multimedia and
Collaborative Applications. Internet Computing, March-April 1999

S.M. Yacoub, H. H. Ammar: Toward Patter-Oriented Frameworks. Journal of
Object-Oriented Programming, January 2000

G. Booch, J. Rumbaugh, 1. Jacobson: The Unified Modeling Language User
Guide. Addison-Wesley, 1999.

M. Fowler: UML Distilled. 3™ Edition. Reading, Mass., Addison-Wesley, 2004.

G. Booch, J. Rumbaugh, 1. Jacobson: The Unified Modeling Language Reference
Manual. Addison-Wesley, 1999.

H.E. Eriksson, M. Penker: UML Toolkit. New York, John Wiley & Sons, 1998.

G. Booch, J. Rumbaugh, 1. Jacobson: The Unified Modeling Development
Process. Addison-Wesley, 1999.

R. Pooley, P. Stevens: Using UML. Reading, Mass., Addison-Wesley, 1999.

X. Jia: Object-Oriented Software Development Using Java - Principles, Patterns,
and Frameworks, 2™ Edition, Addison-Wesley, 2003.

M. Grand: Java Enterprise Design Patterns, John Wiley, 2002
C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, 1. Fiksdahl-King, S.
Angel: A Pattern Language — Towns, Building, Construction. Oxford University

Press, New York, 1977.

W. Pree: Design Patterns for Object-Oriented Software Development, Reading,

-202 -

[20]

[21]

[22]

[24]

[25]

[31]

Mass., Addison-Wesley, 1995.

Alpert, Sherman, K. Brown, B. Woolf: The Design Patterns Smalltalk Companion.
Reading, Mass.: Addison-Wesley, 1998.

Buschmann, Frank, R. Meunier, et al: Pattern Oriented Software Architecture: A
System of Patterns. New York, John Wiley, 1996.

0.J. Coplien, D. Schmidt: Pattern Languages of Program Design. Reading, Mass.,
Addison-Wesley, 1995.

M.E. Fayad, D.C. Schmidt: Object-Oriented Application Frameworks,
Communicatons of the ACM, October 1997.

R.E. Johnson, B. Foote: Designing Reusable Classes. Journal of Object-Oriented
Programming, January-February, 1988.

R.E. Johnson, B. Foote: Designing Reusable Classes, Journal of Object-Oriented
Programming, June-July 1988.

H. A. Schmid, F. Mueller: Patterns for Extending Back-Box Frameworks, Journal
of Object-Oriented Programming, June 1998.

D. D’Souza: Interface Specification, Refinement, and Design with
UML/Catalysis, Journal of Object-Oriented Programming, June 1998.

H. A. Schmid: Creating Applications from Components: Manufacturing
Framework Design, IEEE Software, Nov 1996

G.F. Rogers: Framework-Based Software Development in C++, Prentice Hall,
Englewood Cliffs, NJ, 1997.

M.E. Fayad, D.C. Schmidt,Ralph E. Johnson: Building Application Framework,
John Wiley, 1999.

M. Boger: Java in Distributed Systems, John Wiley, 2001

Hassen Gomaa: Designing Concurrent, Distributed, and Real-Time Applications
with UML, Addison Wesley, 2000.

M.L. Liu: Distributed Computing Principles and Applications, Pearson
Addison-Wesley, 2003

R.Orfali, D. Harkey, J.Edwards: Client/Server Survival Guide, 3™ Ed., New York,
John Wiley & Sons, 1999.

-203 -

[37]

[38]

[39]

[40]

[43]

[44]

[45]

[46]

J. Zukowski: Mastering Java 2, SYBEX Inc, 1998.
M. Wutka: Using Java 2 Enterprise Edition, Special Edition, QUE, 2001.
D. Box: Essential COM. Reading, Mass., Addison-Wesley, 1998.

Y.P. Shan, R.H. Earle: Enterprise Computing with Objects. Reading, Mass.,
Addison-Wesley, 1998

Sun Microsystems, Enterprise JavaBeans Specification Version 3.0,
http:/ /java.sun.com/products/ejb/, Last Updated: May 2005

Microsoft, http:/ /www.microsoft.com/com/ default.mspx, COM Home
Page, Last Updated: 2005

Jordi Alvarez Canal: Parametric Aspects: A Proposal, ECCOOP
Workshop on Reflection, AOP and Meta-Data for Software Evolution,
2004.

Nikos Parlavantzas, Geoff Coulson, Mike Clarke, and Gordon Blair: Towards a
Reflective Component Based Middleware Architecture, ECCOQOP Workshop
on Reflection and Metalevel Architectures, 2000

Object Management Group, CORBA Components V 3 Full Specification,
http://www.omg.org/technoIogy/documents/fonnal/components.htm, Last

updated: May 26, 2005

O. Ciupke, R. Schmidt: Components as Context-independent Units of Software. In
Processing of ECOOP, 1996.

A.H. Eden, J. Gil, A Yedudai: A Formal Language for Desing Patterns. In
Processing of the 3" Annual Conference on the Pattern Languages of Programs,
1996.

C. Alexander: The timeless way of Building, Oxford University Press, New York,
1979.

Magnus Larsson: The Different Aspects of Component Based Systems, The
Component-based Software Engineering, State of the Art Report, Vasteras,
Sweden, 2000

Z. Kiziltan, T. Jonsson, B. Hnich: On the definition of Concepts in Component
Based Software Development, The Component-based Software Engineering, State
of the Art Report, Vasteras, Sweden, 2000

M. Blom, E.J. Nordby: Semantic Integrity in Component Based Development,

- 204 -

(48]

[49]

[50]

[51]

[57]

The Component-based Software Engineering, State of the Art Report,
Vasteras, Sweden, 2000

Martin P. Robillard: Separation of Concerns and Software Components, Report of
The Component-based Software Engineering — State of the Art, pages 54-68,
Malardalen University, Department of Computer Engineering, Vasteras, Sweden,
March 2000

William Harrison and Harold Ossher: Subject-oriented programming (a critique of
pure objects). In Proceedings of the conference on Object-Oriented Programming
Systems, Languages, and Applications (OOSPLA ’93), pages 411-428. ACM
SIGPLAN, 1993.

Gregor Kiczales, John Lamping, Anurag Mendhekar et al: Aspect-oriented
programming. Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), volume 1241 of Lecture Notes in Computer Science,
pages 220-242, Springer-Verlag, June 1997.

Mehmet Aksit and Bedir Tekinerdogan: Solving the modeling problems of
object-oriented languages by composing multiple aspects using composition
filters. ECOOP’98 Workshop Reader, volume 1543 of Lecture Notes in Computer
Science, Springer-Verlag, July 1998

Harold Ossher, William Harrison, Frank Budinsky, and lan Simmonds:
Subject-oriented programming: Supporting decentralized development of objects.
In proceedins fo the 7" IBM Conference on Object-oriented Technology, IBM,
July 1994,

Ivar Jacobson and Pan-Wei Ng: Aspect-Oriented Software Development with Use
Cases, Addison-Wesley, 2005

Kiczales, G., Hilsdale, E. Hugunin, J., Kersen, M. Palm, J., Giswold. W.: Getting
Started with Aspect]). Communications of the ACM 59-65, 2001.

Aspect] Team: Aspect) Programming Guide Http://www.eclipse.org/Aspectj,
Last Updated 2005.

Mehmet Aksit and Bedir Tekinerdogan, TRESE Project, University of
Twente,Centre for Telematics and Information Technology, 2001

Mik A. Kersten and Gail C. Murphy. Atlas: A case study in building a web-based
learning environment using aspect-oriented programming. In Proceedings of the
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 1999.

M. P. Robillard: Separation of Concerns and Software Components, The

- 205 -

[63]

[65]

[66]

[68]

Component-based Software Engineering, State of the Art Report, Vasteras,
Sweden, 2000

Carnegie Melon - Software Engineering Institute, CBSD Integration,
http://www.sel.cmu.edu/str/descriptions/cbsd_body.html

S.M. Yacoub, H. H. Ammar: Pattern-Oriented Analysis and Design: Composing
Patterns to Design Software Systems, Addison Wesley Professional, August 2003.

K. Beck, R. Johnson: Patterns Generate Architectures, ECOOP ‘94

R.E. Johnson: Frameworks = Components + Patterns, Communications of the
ACM, October 1997.

X. Castellani, S.X.Liao: Development Process for the Creation and Reuse of
Object-Oriented Generic Applications and Components, Journal of
Object-Oriented Programming, June 1998.

G. Odenthal, K. Quibeldey-Cirkel: Using Patterns for Design and Documentation,

Proceedings of the 1" European Conference of Object-Oriented Programming,
1997

H. A. Schmid: Creating the Architecture of a Manufacturing Framework by
Design Patterns, Proceedings of Object-Oriented Programming Systems,
Lanuages and Applications, OOPSLA’95, 1995

G. Agha, D.C. Sturman: A Methodology for Adapting to Patterns of Faults,
Foundation of Ultradependability, Vol 1, Kluwer Adademic 1994.

S. Duncasse and T.Richner. Executable Connectors: Towards Reusable Design
Elements. In Proceedings of the European Software Engineering Conference
(ESEC’97), volume 1310 of Lecture Notes in Computer Science, pages 484-500,
September 1997, Springer-Verlag.

C.P. Lunau: A Reflective Architecture for Process Control Applications.
Proceedings of the 11" European Conference on Object Oriented Programming

(ECOOP’97), volume 1241 of Lecture Notes in Computer Science, Berlin
Germany, June 1997. Springer-Verlag.

R.J. Walker and G.C. Murphy. Dynamic Contextual Reflection: A Mechanism for
Software Evolution and Reuse. In Proceedings of the OOPSLA Workshop on
Object Oriented Reflection and Software Engineering (OORaSE’99), Denver,
November 1999.

N. Amano and T. Watanabe. An Approach for Constructing Dynamically
Adaptable Component-based Software Systems using LEAD++. In Proceedings

- 206 -

of the OOPSLA Workshop on Object Oriented Reflection and Software
Engineering (OORaSE’99), Denver, CO, November 1999.

[70] R. de Lemos and E. Tramontana: A Reflective Implementation of Software
Architectures for Adaptive Systems. In Proceedings of the Second Nordic
Workshop on Software Architectures (NOSA’99), Ronneby, Sweden, 1999.

[71] Emiliano Tramontana: Reflective Architecture for Changing Objects, Proceedings
of the Conference on Object Oriented Programming (ECOOP’00), volume 1964
of Lecture Notes in Computer Science, June 2000. Springer-Verlag.

[72] U. Assmann: Invasive Software Composition, Springer-Verlag, 2003

[73] U. Assmann et al.: Automated Component-Based Software Engineering, Journal
of Systems and Software 74 1-3, Elsevier, 2005

[74] Barry Redmond, Vinny Cahill: Iguana/J:Towards a Dynamic and Efficient
Reflective Architecture for Java, ECCOOP Workshop on Reflection and
Metalevel Architectures, 2000

[75] Brendan Gowing, Vinny Cahill: Meta-Object Protocols for C++: The Iguana
Approach, Reflection’96 , 1996

[76] Ayla Dantas, Paulo Borba, Joseph Yoder and Ralph Johnson: Using Aspects to
Make Adaptable Object-Models Adaptable, ECCOOP Workshop on Reflection,
AOP and Meta-Data for Software Evolution, 2004.

[77] Yoder, J.W., Johnson, R.: The Adaptive Object-Model Architectural Style. In
Working IEEE/IFIP Conference on Software Architecture 2002(WICSA),
Montreal, Quebec, Canada (2002)

[78] Yoder, J.W. Balaguer, F., Johnson, R.: Architecture and Design of Adaptive
Object-Models. ACM SIGPLAN Notices 36 (2001) 50-60

[79] Ruzanna Chitchyan and Ian Sommerville: AOP and Reflection for Dynamic

Hyperslices, ECCOOP Workshop on Reflection, AOP and Meta-Data for
Software Evolution, 2004.

[80] H. Ossher and P. Tarr: Multi-Dimensional Separation of Concerns using
Hyperspaces and Hyper/J User and Installation Manual, IBM Research, 2000

[81] Walter Cassola, Ahmed Ghoneim, Gunter Saake: RAMSES: a Reflective
Middleware for Software Evolution, ECCOOP Workshop on Reflection, AOP and
Meta-Data for Software Evolution, 2004.

[82] Yoshiki Sato and Shigeru Chiba: Negligent Class Loaders for Software

-207 -

[88]

[92]

(93]

[94]

Evolution,, ECCOOP Workshop on Reflection, AOP and Meta-Data for
Software Evolution, 2004.

JBoss Open Source, UCL Class Specification, http://wiki.jboss.org web link, Last
Updated: July 2005

Nelly Bencomo, Gordon Blair, Geoff Coulson and Thais Batista: Towards a
Meta-Modelling Approach to Configurable Middleware, RAM-SE'05 2nd
ECOOP Workshop on Reflection, AOP and Meta-Data for Software Evolution,
Glasgow, Scotland, 25th of July 2005.

Andy S.Y. Lai, A.J. Beaumont: Meta-based Distributed Computing Framework,

Lecture Notes of Computer Science, Parallel and Distributed Processing and
Applications, ISPA2004, LNCS 3358, pp85-90, Springer-Verlag, December
2004.

Andy S.Y. Lai, A.J. Beaumont: A Metalevel Component-Based Framework for
Distributed Computing Applications, Fourth Annual ACIS International
Conference on Compute and Information Science (ICIS’05), IEEE, Journal of
Computer Society, p268-273, April 2005.

lan Welch, Robert Stroud: From Dalang to Kava — the Evolution of a Reflective
Java Extension, Second International Conference, Reflection '99, LNCS 1616,
pp2-21, Springer-Verlag, July 1999.

Andy S.Y. Lai, A.J. Beaumont: Development of Enterprise WAP E-Banking,
Conference of International Telecommunications Society (ITS2002), 14th
Biennial Conference, Seoul, Korea, August 2002.

Andy S.Y. Lai: An Object-Oriented Approach for Building Distance Learning
System on Internet, The 6" Asia Pacific Regional Conference of International

Telecommunications Society, Hong Kong, July 2001

Andy S.Y. Lai: Building Web Time-Series Forecasting Systems on Stocks with
UML, Fifth ICSA International Conference, Hong Kong, August 2001.

K. Brown, B Whitenack: Crossing Chasms: A Pattern Language for
Object-RDMS Integration ‘The Static Patterns’, 1998.

F. Buschmann et al.: A System of Patterns, John Wiley, 1996

W. Doeringer et al.: A Survey of Light-Weight Transport Protocols for
High-Speed Networks, IEEE Transaction on Communication, Volume 3, 1990.

P. Sommerlad, M. Ruedi: Do-it-yourself Reflection Patterns, EuroPLoP, 1998.

- 208 -

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Doug Lea: PooledExecutor —
http://gee.cs/oswego.edu/dl/classes/EDU/oswego/cs/util/concurrent/

M. Grand: Patterns in JAVA, Volume 2, John Wiley, 1999

T. Larsson, M. Sandberg: Building Flexible Components Based on Design
Patterns, The Component-based Software Engineering, State of the Art
Report, Vasteras, Sweden, 2000

D’Souza D. F and Wills A.C.: Objects, Components and Framework with UML.
The Catalysis Approach, Addison-Wesley, 1999

Paul Hyde: Java Thread Programming — The Authoritative Solution, SAMS, 1999

S. Chen, Y. Liu, I. Gorton, A Liu: Performance Prediction of Component-Based
Applications, Elsevier, The Journal of Systems and Software 74(2005) 35-43

T. Gu, HK. Pung, D.Q. Shang: A service-oriented middleware for building
context-aware services, Journal of Network and Computer Applications 20 1-18,
Elsevier, 2005

David S. Frandel: Model Driven Architecture — Applying MDA to Enterprise
Computing, OMG Press, John Wiley, 2003

Peter Ebraert and Tom Tourwe: A Reflective Approach to Dynamic Software
Evolution, , ECCOOP Workshop on Reflection, AOP and Meta-Data for
Software Evolution, 2004.

Graham Hamilton, Ricj Cattell and Maydene Fisher: JDBC Database Access with
Data, http://java.sun.com/docs/books/tutorial/jdbc/TOC.html, web link, last
Updated: 2007 Sun Microsystems, Inc

D. Hughes, P. Greenwood, G.S. Blair, G. Coulson, P. Grace, F. Pappenberger, P.
Smith, K. Beven: An Experiment with Reflective Middleware to Support
Grid-based Flood Monitoring, Concurrency and Computation: Practice and
Experience, 2007.

Kevin Lee, Geoffrey Coulson: Supporting Runtime Reconfiguration on Network
Processors”, Journal of Interconnection Networks, Vol 7, No 4, , Special Issue on
Information Networking and P2P Systems, World Scientific Publishing Co., pp
475-492, 2006.

P. Costa, G. Coulson, C. Mascolo, L. Mottola, G.P. Picco, S. Zachariadis: A
Reconfigurable Component-based Middleware for Networked Embedded

Systems”, International Journal of Wireless Information Networks, Vol 14, No 2,
pp 149-162, June 2007.

-209 -

[108]

[109]

[110]

[111]

Nikos Parlavantzas, Geoff Coulson: Designing and Constructing Modifiable
Middleware using Component Frameworks”, IET Software, Vol 1, No 4, pp
113-126, Aug 2007.

Petros Pissias, G. Coulson, A. Joolia: Supporting Dynamic Reconfiguration in
Multithreaded Component-based Systems, IET Software, 2008.

Gordon Blair, Paul Grace, Francois Taiani, Ackbar Joolia, Kevin Lee, Jo Ueyama,
T. Sivaharan: A Generic Component Model for Building Systems Software, ACM
Transactions on Computer Systems, Vol. 26, No. 1, Feb 2008.

Frank Buschmann, Kevlin Henney, Douglas C. Schmidt: Pattern Oriented

Software Architecture: A Pattern Language for Distributed Computing, New
York, John Wiley, 2007.

-210 -

Appendix A - MELC Configuration and Management

A1 MELC Configuration and Management Utility

This section shows the utility we have developed for configurating and
managing meta space. The tool allows the administrator to instantiate meta
objects, registers them into the meta object repository, which, once created, also
allows run time replacement of meta objects. As for the base level, the
configuration and management utility lets the administrator create base objects,
attach them to the meta space, and to reify or de-reify meta objects existing in the
meta object repository. That interface controls base objects with resume and stop
operations. Figure A.4 shows the GUI of the configuration and management

utility.

The utility allows the administrator to select and load an existing configuration
file, and thereby to re-construct the meta space configuration to the status
specified in that configuration file. The utility also allows the current status of
MELC to be saved, thereby creating a new configuration file. We have tested the
configuration of the minimum set of functionalities for execution environments
like the E-Bookshop Thread Pooling Http Server. In such an environment, the
E-Bookshop Server (a base object) is small and has limited distributed computing
components. The MELC allows the web server to be configured with a minimal
set of functionalities, which includes processing HTTP requests without Thread
Pool components. During the testing, the utility properly demonstrates

administration functions in the kernel.

-211 -

1. Load a configuration file
2. File chooser for choosing

configuration files

abe.cfg

D

) cemo.crg

©- [E] Pooling

o] Meta Object
©- (77 WebServer
®- [Pooling

ace updated...
HitpServer ready to receive requests
HitpServer successfully starled in E-BookShop ...
MetaSpace updated. .

IThreadPool successfully staried in E-BookShop
read Pool ready ...

3. Configuration loaded and
dynamically re-constructed

when they can be easily recycled. 4. Thread Pooling Http Server started
up and testing with Browser

@ Thread pooling reduces response timne since the worker FurCaTyCTCnTey;

started, and running, It is only waiting for the signal to gel

Thread pooling holds resource usage to a predeterrnined, upper lirnit. Instead of
starting a new thread for every request received by an HTTP server, a set of
workers 15 available to service requests. When this set1s being completely used by
other requests, the server does not increase its load, but rejects requests until a
worker becomes avalable.

Figure A.1 MELC Kernel Manager - Utility for Configuration Management

-212 -

Figure A.1 illustrates how a MELC administrator can easily reconstruct the meta
space configuration to the status saved in a configuration file. First of all, the
framework administrator selects the submenu Load Configuration under System
Menu Bar of the Kernel Manager, and the configuration file chooser will pop up
and show all existing configuration files in the system for the administrator to
select. After the administrator has selected one of them, MELC Kernel Manager
dynamically loads the designated file and re-constructs the meta space
configuration to the status specified in that configuration file. In our case, an
E-Banking Thread Pooling Http Server has been started up in MELC and is ready

for handling requests.

Our meta-based framework supports multiple applications. The framework can be
applied to different distributed object-requestor applications such as E-Bookshop,
E-Banking. The separation of system functionality and business functionality
means that business functions of an application are published to base objects (or

base servers) at the base level.

E-BookShop
Server
=== 3
P OWRB ¥

E Registry!
H

»
je
3
=g

Mela Space
Thread
Publisher/ ~
E-Banking

Server
e —
H H
¢ WRB 3
$ Registry(s
R 3

[]

Remote E-Banking Remote E-Bookshop
Clients Clients

Figure A.2 Meta-based framework supports Multi-Applications

-213 -

Figure A.2 shows a typical example of the Application Objects of E-Bookshop. The
remote objects published by a remote workstation via the network to a base object
(which we have called E-Bookshop Server) might include; E-bookshop Customer
Entity, E-Bookshop Mail Services, E-Bookshop Ordering and E-Bookshop
Book/CD Administration. For an E-Banking Application, those objects will be
different, possibly including E-Banking Payment, E-Banking-Saving and would be
sent to the base object called E-Banking Server. Meta space provides system

functionality to such applications.

2214 -

Appendix B - Java Classes and their Methods in MELC

B.1 Java Classes and Methods in Kernel

Kernel Manager Method

Functions

add base object Modules.addBaseObject (..)

add meta object Modules.addMetaObject (. .)
replace meta object Modules.changeMetaObject(..)
reify meta Object by base Modules.reifyByBaseObject (. .)
object

dereify meta Object by Modules.deReifyByBaseObject (..)

base object

start base object running | Modules.startBaseObject (. .)
stop base object running | Modules.stopBaseObject (. .)
start meta object running Modules.startMetaObject (. .)
stop meta object running | Modules.stopMetaObject (. .)

Meta Space Management | Method

find base Object MetaSpace.findBaseObject(..)
find meta object MetaSpace. findMetaObject (. .)
attach meta object MetaSpace.attachObject (..)
detach meta object MetaSpace.detachObject (. .)
notify base object MetaSpace.notifyBaseObject(..)

check meta Object started | MetaSpace.isMetaObjectStarted(..)
check meta Object reified | MetaSpace.isMetaObjectInAnyBaseObject (. .)

in base objects
get role partnership MetaSpace.getRolePartner(..)
make role object for meta | MetaSpace.makeRoleObject (. .)
objects integration
retrieve handoff target MetaSpace.getTargetObject (. .)
box

Table B.1 Kernel Manager Functions and Meta Space Management

-215-

B.2 Java Classes and Methods at Meta level and Base Level

Meta Object Method

start meta object metaObject.startRequest ()

stop meta object metaObject.stopRequest ()

make meta proxy metaObject .makeMetaObjectProxy
Meta Object Proxy Method

start meta object at baselevel metaObjectProxy.startRequest ()

stop meta object at baselevel metaObjectProxy . stopRequest ()

release resource metaObjectProxy.releaseResource ()
set meta type metaObjectProxy.setMetaType(. .)

set meta name metaObjectProxy.setMetaName (. .)

set base Object metaObjectProxy.setBaseObject(..)
Base Object Method

accept meta object baseObject.acceptMetaObject (. .)
withdraw meta object baseObject.refuseMetaObject (. .)
check meta object reified baseObject.isMetaObjectExisted (. .)
retrieve meta object proxy baseObject. findMetaObjectProxy(..)
synchronize actions baseObject.updateAndRun (. .)

ORB Handler Method

bind orb object Registy.bind(..)

unbind orb object Registy.unbind (. .)

get skeleton table ORBRegister.getSkeletonHashtable(. .)
set orb object to a skeleton skeletonHashTable.setSharable(..)

Table B.2 Essential Methods - Meta Object, Base Object and ORB Handler

-216 -

Appendix C - Java Coding in MELC

C. 11 Process of reification - Base Object Reification of a Meta Object

The following coding shows how the Kernel Manager reifies a meta object for the

base object at the base level:

//validate if meta components in base object
MetaObject mobj = MetaSpace.findMetaObject (mobjType, mobjName) ;
BaseObject bobj = MetaSpace.findBaseObject (bobjName) ;

if (bobj.isMetaObjectExisted(mobjType, mobj.toString())) {
// "Error: Meta type found in baseObject " + bobj.toString()

//assign cache instances in its meta proxy object resided at base level
MetaObjectProxy bpobj = mobj.getProxyObject();

bpobj.setMetaType (mobjType) ;

bpobj.setMetaName (mobjName) ;

bpobj.setBaseObject (bobj) ;

//bind the meta object in case it was unbinded

Registry.getRegistry () .bind(mobj.toString(), (Sharable)mobj);

//notify the base object to accept it

bobj.acceptMetaObject (mobjType, mobj.toString(), bpobj);

-217 -

C. 12 Integration between HTTPServer and ThreadPool

In this way, handling tasks depend on the number of workers in ThreadPool.
The integration between HTTPServer and ThreadPool has been implemented

with Java. The pseudo codes and sources are presented as following.

The HTTP Server manages the requests in the following sequence:

1. Http Server accepts socket requests.

2. Check with the base object to see if Thread Pool having been reified by base
object.

3. If Thread Pool being reified, Http Server assigns Http Worker to the Target
Object (Connector) of Thread Pool in Meta Space, where Target Object is the

compositional connector.

The HTTP Server has the following program fragment for components integration in
MELC:

while (noStopRequested) ({
try |

//Http Server accepts socket and creates worker for it
Socket s = ss.accept();
HttpWork worker = new HttpWork (docRoot, s);

//Check Base object (bobj) to see if Thread Pool reified
if (bobj.findTargetObject ("ThreadPool")) {

// Now, ThreadPool integrates with HTTPServer ..
// Get the ThreadPool connector (target object)
TargetObject targetObject =
metaspace.getTargetObject ("ThreadPool") ;

//Assigns HttpWorker to ThreadPool connector
targetObject.objectType = "HttpWork";
try({
targetObject.targets.add(worker) ;
} catch (InterruptedException ix) {}

}
else {
//HttpWorker processes requests itself

-218 -

worker.runWork () ;

3

3

catch (IOException iox) {}

The Thread Pooling integrates with Http Server in the following sequence:

1. Thread Pool associates with its Target Object in meta space.
2. Thread Pool removes the requests from Target Object if there is one.
3. Thread Pool assigns a Thread Pool worker to execute the request on the behalf

of the Http Server.

The Thread Pooling has the following program fragment for components

integration in MELC:

//the method following is embedded in a Thread
private void runWork () {

//Firstly, Thread Pool retrieves the connector object
targetObject = metaspace.getTargetObject ("ThreadPool");

// Thread Pool is ready ..
while (noStopRequested) ({
try {
// Removes and executes the requests from connector object
RunObject o = RunObject) targetObject.targets.remove();
execute (o) ;
}

catch (Exception iox) {1}

3

//the method is used to execute the requests with a thread pool worker
public void execute(RunObject target) throws InterruptedException {

// block until a thread pool worker is available
ThreadPoolWorker worker = ThreadPoolWorker)idleWorkers.remove() ;

// let the workers handle the regquests
worker.process(target) ;

-219 -

C. 13 The Role-Based Approach for Components Integration

The following Java coding shows the role object handling the integration

between meta object and its partner components in meta space at runtime:

//Http Server accepts socket and creates worker for it
HttpWork worker = new HttpWork (docRoot, s);

/*
Let the Role Manager (MetaSpace) to make a role object
where Base Object (bobj) in our example will be E-BookShop.

It has all its reified meta objects.
*/

RoleObject roleObject = MetaSpace.makeRoleObject(bobj,this);

//Check if there is any partners for HttpServer

if (roleobject.isIntegrated()){
//yes. Then let the role object to cooperate with them
roleobject.cooperate(worker);

}

else {
//no. execute by itself
worker . runWork () ;

}

-220 -

C. 14 The Remote Method Invocation in Object Request Brokers

The following is the Java program in ORB Proxy for method invocation in ORB:

protected void runWork() {

try(

//start a new server
ServerSocket ss = new ServerSocket (portNo);

while

(noStopRequested) {

//accept a networking socket
Socket s = ss.accept();

//read the socket to extract an remote request operation
ObjectInputStream clientIn =

new ObjectInputStream(s.getInputStream());

Object object = clientIn.readObject();
operation = (Operation)object;

//check if the request operation is valid
if (isvalidRequest (operation)) {

}
}

//valid. Retrieve connector TargetObject of ORB

TargetObject targetObject =
MetaSpace.getTargetObject (metaName) ;

BTargetObject bTargetObject = new BTargetObject();

//prepare details (socket, operation, base object)
bTargetObject.socket = s;

bTargetObject.objectType = "Operation®;
bTargetObject.bobj = bobj;

//pass operation to the connector of ORBRegister
try({
bTargetObject.targets.add(operation) ;
targetObject.targets.add (bTargetObject) ;
} catch (InterruptedException ix) ({}

}catch (Exception ix) {}

}//end of runWork

-221 -

In the Java source code, the invocation operation, Operation object, is

embedded in the connector, TargetObject, and is transported to
ORBRegister at meta level and allows the ORBDispatcher to dispatch to the
meta objects, Mailbox or Publisher/Subscriber, for the required services
processing. Note that the TargetObject in the source code above is a
composition connector between base level and meta level, which has been
discussed in section 9.4.1. The design and implementation of meta component
Object Request Broker in MELC adds the transparency of object distribution to our

framework.

-222 -

C.15 Dispatching Remote Requests in Object Request Brokers

The Java source codes for the meta object ORBRegister to dispatch the remote

requests at meta level have been extracted as following:

Protected void runWork () ({
while (noStopReguested) {
try {
//Meta Space has ORB TargetObject
TargetObject targetObject =
MetaSpace.getTargetObject (this.toString());
//Remove whenever there is Target Object available
BTargetObject bTargetObject = (BTargetObject)

targetobject.targets.remove();

//Retrieve base object (E-Bookshop)
BaseObject bobj = bTargetObject.bobj;

//Retrieve socket for returning result
Socket clientSocket = bTargetObject.socket;

//Retrieve the operation - remote message

Operation clientOperation = (Operation)

bTargetObject.targets.remove();

//Pass the Operation to ORBDispatcher for dispatching

//to the proper meta objects at the Meta Level.

ORBDispatcher worker = new ORBDispatcher
(registryHost, registryPort, skeletonHashtable,
clientSocket, clientOperation);

worker . runwWork () ;

} catch (Exception ix) {}

-223 -

Note the object of the invocation operation of ORB is embedded in the connector
(Target Object). Whenever ORB Meta Proxy puts the Operation object to ORB
target object in Meta Repository, the ORB Meta Object immediately removes its
target object from Meta Repository in the meta space and processes the
embedded Operation, and ORB meta object dispatches it to the relevant meta

object (such as Mailbox or Publisher/Subscriber) for processing.

In the meta space, ORBRegister locates and retrieves its connector
TargetObject from the meta repository in meta space. Inside the
TargetObject, the ORBRegister can extract the information of the remote
request: the base object (ie. E-Bookshop), the request’s socket, and most
important the Operation (remote request) for processing. After that, the
ORBRegister assigns its work to ORBDispatcher to process the Operation
obtained from the TargetObject, where ORBDispatcher dispatches the
Operation to one of the meta (system) components like Mailbox or

Publisher/Subscriber in E-Bookshop for processing.

2224 -

C.16 Replacement of Meta Objects at Runtime

The following Java source codes show the implementation of replacing meta

objects at runtime:

//construct new meta object
MetaObjectImpl mobj =
(MetaObjectImpl) Class. forName (newClassName) .newInstance () ;

//find old meta object in meta space
MetaObject 01dMO = MetaSpace. findMetaObject (classType, className) ;

//check if same Meta Type and Meta ID
if ('mobj.toString().equals(0ldMO.toString())) {
return;}

//***** 01d Meta Object *****

// Get concerned instances - skeleton hashtable and port #
TargetObject targetObject =

MetaSpace.getTargetObject (01dMO. toString());
HashMap skeletonHashtable = targetObject.skeletonHashtable;
int lastPortNoUsed = targetObject.lastPortNoUsed;

//detach old metaobject in Meta Repository
MetaSpace.detachObject (className, classType))

//****x% New Meta Object *****

//attach New meta object in Meta Repository
MetaSpace.attachObject (mobj, classType))

// Set concerned instances - skeleton hashtable and port #
targetObject = MetaSpace.getTargetObject (mobj.toString());
targetObject.lastPortNoUsed = lastPortNoUsed;
targetObject.skeletonHashtable = skeletonHashtable;

//‘k*‘k*"k ORB Rengter * k k k k ok ok
//rebind the meta object in ORB Registry
Registry.getRegistry () .bind(mobj.tosString(), (Sharable)mobj) ;

//retrieve ORBRegister

TargetObject orbTargetObject =
MetaSpace.getTargetObject("ORBRegister");

HashMap orbSkeletonHashtable = orbTargetObject.skeletonHashtable;

//update ORB Skeleton Hash table with new meta object in ORB

if (0ldMO.toString().equals (metalD)){
skeleton.setSharable (mobj) ;

}

// Notify the base objects at base level

MetaSpace.notifyBaseObject();

-225 -

In replacing meta objects at runtime, the procedure is as follows:

1. Kernel Manager first instantiates the new meta object with newInstance ()
by using a given meta object name MetaName which is then attached to meta
space. At the same time, Kernel Manager constructs the TargetObject, which
is the connector (a handoff box) mentioned in Sections 11.2 and 11.3 when the
meta object is attached to meta space. Using TargetObject in meta space 1s to

avoid the cohesive dependency between meta objects. (Step 1)

2. Kernel Manager verifies existence of the old meta object in meta space and
uses MetalD and MetaType of the two meta objects to compare and ensure that
they have the same meta type. For example, metaFixedThreadPool and
metaGrowthThreadPool have the same identity ThreadPool and belong to

the same meta type Pooling. (Steps 2, 3).

3. Before the new meta object replaces the old meta object, the Kernel Manager
transfers the information in TargetObject such as system table or port no of
the old meta object to the TargetObiject of the new meta object. (Steps 4,5, 8,9,
10).

4. In between the replacement of meta objects, Kernel Manager detaches the old
meta object from the meta repository and releases all its resources (stops
threads), and attaches the new meta object to the meta repository and claims all

needed resources (starts threads) . (Steps 6,7).

5. For ORB object distribution, Kernel Manager rebinds the new meta object in

(ORB) Registry. (Step 11).

6. ORBRegister has a hash table which contains all skeletons of meta objects in

meta space. A Skeleton in ORB is responsible for calling methods of Callee

- 226 -

objects (meta objects in MELC) on behalf of remote clients. Kernel Manager

refreshes the skeleton hash table in the ORBRegister with the skeleton of

new meta object. (Steps 12, 13).

7. At the end, Kernel Manager notifies the base objects (E-Bookshop) that have
reified the replaced (old) meta object to accept the new meta object for

performing object reflection in the architecture. (Steps 14, 15).

Kernel Manager instantiates a new meta object with the method
newInstance (), where newClassName stores the class name of the new meta
object. For example, the new meta object Growth Enabled Thread Pool has the Java
class name metaGrowableThreadPool.class to replace the old meta object
Fixed Thread Pool which has the Java class name
metaFixedThreadPool.class. For meeting the requirements of meta objects
replacement, they both must have same MetalD and MetaType. In this case, they
both are ThreadPool and Pooling respectively. The old meta object is
detached from meta repository before the new one attached. Meanwhile, the
concerned instances (skeleton table and port number) of the old meta object are
transferred to the new one. After that, the new meta object
(metaGrowableThreadPool) registers in ORBReglstry and updates ORB
skeleton table respectively. Lastly, kernel manager informs the base objects
(E-Bookshop, E-Banking) that had reified the meta object (ThreadPool)
about the changes. Henceforth, the metaGrowableThreadPool can continue to
serve E-Bookshop and E-Banking on behalf of the old meta object

metaFixedThreadPool.

-227 -

Appendix D — Distributed Computing Technologies

D.1 Distributed Computing Applications

Our framework aims at providing services for distributed enterprise applications.
A distributed system is a combination of several computers with separate
memories linked over a network, on which it is possible to run a distributed
application. A distributed application is an application which consists of several
parts of a program communicating with each other, and cooperating to carry out
a common task [29]. Typically, but not necessarily, the parts of the application are
distributed across several computers. The distribution can also be simulated on
one computer. In this case, however, information is not transmitted via a common
memory or address space, but with the aid of the techniques of remote

communication.

On the lowest level, we find the mechanism of transmitting data streams via

sockets. Data is transferred from one computer to another.

From the programmer’s point of view, it is preferable not to have to
communicate between computers, but between objects, as happens in
object-oriented programming. The enabling mechanism is RMI, the Remote
Method Invocation. However, it works only when JAVA is used on both sides,
which means that both objects must be expressed in the same language. Further,

each object must know the other's location.

If one abstracts further and wants to conceal the location and language of a
remote object, one arrives at CORBA, the Common Object Request Broker

Architecture. Here, the programmer can communicate with the remote object

-228 -

without knowing where it is and in which language it has been implemented

[30].

D.2 Network Services - Transmission Protocols

The basic prerequisite for programming in distributed systems is the ability to
transfer data from one part of a system to another. From the programmer’s point
of view, such data is provided as bits and bytes, as ASCII characters, or even as
objects and should be transferred from one computer to another. For the
transmission, physical media such as copper wires Or fiber optic cables are

available over which electrical signals are sent and received.

The gap between the representation of data at the programming level and at the
physical level is closed by protocols, a kind of linguistic convention between the
:ndividual devices involved in data transmission. The protocol family which is
used on the Internet and which combines the different protocols of the

sub-networks it consists of is UDP and TCP /1P.

User Datagram Protocol (UDP) [28] is a connectionless transport protocol, which
means that it doesn’t guarantee packet delivery nor packet arrival in sequential
order. Rather than reading from, and writing to, an ordered sequence of bytes,
bytes of data are grouped together in discrete packets, which are sent over the
network. The packets may travel along different paths, as selected by the various
network routers that distribute traffic flow are generally unpredictable, which are

depending on factors such as network congestion and priority of routes.

Transmission Control Protocol (TCP) [28] is a stream-based method of network
communication. TCP provides an interface to network communications that is
radically different from the User Datagram Protocol. TCP uses a lower-level

communications protocol, the Internet Protocol (IP), to establish connection

-229 -

between machines. This connection provides an interface that allows streams of

bytes to be sent and received, and transparently converts the data into IP
datagram packets. The virtual connection between two machines is represented

by a socket.

Sockets [30] allow data to be sent and received; there are substantial differences
between a UDP socket and a TCP socket. First, TCP sockets are connected to a
single machine, whereas UDP sockets may transmit or receive data from
multiple machines. Second, UDP sockets only send and receive packets of data,
whereas TCP allows transmission of data through byte streams represented as an

InputStream and OutputStream in JAVA.

Data transmission over TCP streams is said to be reliable [27]. UDP is not reliable.
Delivery of data is guaranteed by the TCP: data packets lost in transit are
retransmitted. Each datagram packet of a TCP socket contains a sequenced
number that is used to order data. Packets arriving before earlier packets will be

held in a queue until an ordered sequence of data is available.

TCP guarantees that the data packets actually arrive, and even do so in the right
sequence. As the administrative effort that is required for TCP is not required for
UDP, the latter gains a bit of speed, yet the process is less suitable for

transmitting files, as then every bit matters.

D.3 Distributed Communication

All communication between subsystems in a distributed environment must be
restricted to messages. Tasks in different subsystems may communicate with
each other using several different types of message communication described as

follows:

-230 -

Asynchronous Message Communication

Asynchronous (loosely coupled) message communication is by means of
message queues. In distributed environments, loosely coupled message
communication is used wherever possible for greater flexibility. The producer
task sends a message to the consumer task and does not wait for a reply. The two
tasks proceed asynchronously, and a message queue might build up between
them. Group communication, where the same message is sent from a source task

to all destination tasks that are members of the group, is also supported.

Synchronous Message Communication

Synchronous (tightly coupled) message communication is in the form of either
single-client/server communication or multiple-client/server communication. In
both cases, a client sends a message to the server and waits for a response; in the
latter case, a queue might build up at the server. The producer task sends a
message to the consumer task and then waits for a reply from the consumer. The
response might be a negative acknowledgement, indicating that the destination

node did not receive the message.

D.4 Distributed Object Broker Communication

In a distributed object environment, ients and servers are designed as
distributed objects. An object broker is an intermediary in interactions between
clients and servers. It is transparent and frees clients from having to maintain
information about where a particular service is provided and how to obtain that
service. It provides location transparency, o that if the server object is moved to
a different location, only the object broker needs to be notified. We consider
transparency in object distribution is one of important properties for distributed

computing application development.

-231-

The interaction is shown in Figure D.4[29] in which the dialogue is typically:

1. Client sends a request to the Broker.

2 The Broker looks up the location of the server and returns a service handle
to the Client.

3 The client uses the service handle to request the service from the
appropriate Server.

4. The Server services the request and sends the reply directly to the Client.

Figure D.4 Interaction for Object Broker Architecture

Common Object Request Broker Architecture (CORBA) uses this approach which
s efficient if the client and server are likely to have a dialog that results in the
exchange of several messages. With this approach, it is the responsibility of the
client to discard the handle after the dialog is over. CORBA is a distributed
framework designed for support of heterogeneous architectures [31]. While
Java's RMI provides support for homogeneous architecture, with Java at both
ends and wiring in the middle, CORBA allows for connection between two
different and therefore heterogeneous systems [32]. Such systems may differ not
only by the hardware they use, but also by their operating system and

programming language.

-232 -

D5 Remote Method Invocation (RMI)

Remote Method invocation (RMI) [33] is one of the cornerstones of Enterprise
JavaBeans and is an extremely handy way to make distributed Java applications.
Instead of invoking a method on another Java object running in the same Java
Virtual Machine, you invoke a method in a Java object in another JVM on the

same computer or a different one.

RMI is virtually seamless. Users don’t have to do much to enable a class for RMIL
RMI revolves around the use of Remote interface that defines all the remote
methods for an object. RMI creates an object called a stub that implements the
Remote interface and runs in the client’s JVM. When the client invokes a remote
method, the stub’s implementation of the method results in transmitting the
method invocation over to the server’s JVM where another special object called a
skeleton interprets the request and invokes the correct method. When the server’s
method returns a value or throws an exception, the skeleton packages the
resulting information and sends it back to the stub. The stub then returns the

information to the client. RMI Architecture is shown in Figure D.5.

-233 -

Cliant appears to call T
.- method of local object

T (e N
@nt v \impl‘ementaﬁcn/‘
L Object appears to have \T/

¥ mathod invoked locally
J Swb e s b
¥ Code generated by .- " “‘xﬁetat?ﬁw"
j RMI compiler ¥
é Remote Refersnca Layer ‘ ' E
Transport o S
SPO P/j_:,.;;_f_,__-;z;._’d—*"’ Transport

Figure D.5 The RMI Architecture

The nice thing about the stub is that the client does not know that it is talking to a
stub. The client thinks it is just invoking a method through an interface. Likewise,
the server doesn’t know about the skeleton at all. As far as the server 1is

concerned, the skeleton is just like any other class that uses the server class [13].

D.6 Common Object Request Broker Architecture (CORBA)

CORBA is a distributed framework designed for support of heterogeneous
architectures, which allows for connection between two different and therefore
heterogeneous systems [31]. Java IDL provides an implementation of the CORBA

2.0 specification.

CORBA Components

A CORBA implementation consists of several pieces, Object Request Broker
(ORB), Interface Definition Language (IDL) compiler, one of more
implementations of Common Object Services (COS), also known as

CORBAServices and Common Frameworks, also known as CORBAFacilities.

234 -

programming language, which is neutral to any other programming language

but can transform itself with IDL compiler into any other computer language in

defining the provision of a remote service.

Internet Inter-ORB Protocol

The Internet Inter-ORB Protocol is a TCP/IP implementation of the General
InterORB Protocol (GIOP). With CORBA it is possible to build a client
application using one vendor’s ORB and IDL compiler, build a server or object
implementation with a second vendor’s ORB and IDL compiler, and create a set
of common services for both client and server with yet a third vendor’s ORB and
IDL compiler. IIOP allows each of the three different vendor’s products to

communicate with each other using a standard set of protocol semantics.

' Object
[Client J ' [Implementation }

Class declaration Class declaration
or header ' or header
Stub

' : ‘Skeleton]
Vendor A’s ORB < loP > Vendor B's ORB
LR] LR |

Figure D.6 The CORBA Architecture

And, when users consider that all three of these ORBs could be using different
programming languages and running on different hardware and operating
system platforms, the architecture that CORBA has is rather flexible in

implementation.

-236 -

D.7 Summary

In distributed computing, application developers design the communications.
between the client and server, which decide how a client actually sends a
message to a remote object. The three most popular solutions are the Common
Object Request Broker Architecture (CORBA), Remote Method Invocation (RMI),

and custom sockets.

The advantage of CORBA is that it defines a number of services that users
frequently need in a distributed object system. CORBA has standards for naming
and events. CORBA is language-neutral. A client written in Java can
communicate with a remote object written in C++. Custom socket solutions are
popular because systems such as CORBA are often overkills for small
applications. RMI is a Java-only solution. Because it is Java-only solution, RMI
can take advantage of all Java’s features and ORB (Object Request Broken), and it
hides the object distribution, which is transparent for developing object
distribution for Java developers. Because of transparency, simplicity and
popularity of RMI, Sun chose RMI (Internet Inter-ORB Protocol) as the
framework for communicating with Enterprise JavaBeans and is the cornerstone
of Enterprise JavaBeans (EJB). RMI has gradually been edging out CORBA as the
preferred technology for distributed object development [33]. In fact, we employ
RMI' (ORB Protocol) as middleware in our framework for distributed objects
communication also because of its transparency in object distribution, which

meets one of major properties in our adaptable distributed framework.

-237 -

