Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately




discrimination of human movement

Mark Tristan Elliott
Engineering Systems and Management

ASTON UNIVERSITY

Doctor of Philosophy

April 2007

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise
that its copyright rests with its author and that no quotation from the thesis and no information derived from it

may be published without proper acknowledgement.



A smart sensing platform for the discrimination
of human movéfﬁéht

Mark Tristan Elliott

Engineering Systems and Management

ASTON UNIVERSITY

Doctor of Philosophy

April 2007

This thesis documents the design, implementation and testing of a smart sens-
ing platform that is able to discriminate between differences or small changes in
a person’s walking. The distributive tactile sensing method is used to monitor
the deflection of the platform surface using just a small number of sensors and,
through the use of neural networks, infer the characteristics of the object in con-
tact with the surface.

The thesis first describes the development of a mathematical model which uses a
novel method to track the position of a moving load as it passes over the smart

sensing surface.

Experimental methods are then described for using the platform to track the
position of swinging pendulum in three dimensions. It is demonstrated that the
method can be extended to that of real-time measurement of balance and sway

of a person during quiet standing.

Current classification methods are then investigated for use in the classification

of different gait patterns, in particular to identify individuals by their unique




gait pattern. Based on these observations, a novel algorithm is developed that is
able to discriminate between abnormal and affected gait. This algorithm, using
the distributive tactile sensing method, was found to have greater accuracy than
other methods investigated and was designed to be able to cope with any type of

gait variation.

The system developed in this thesis has applications in the area of medical diag-
nostics, either as an initial screening tool for detecting walking disorders or to be
able to automatically detect changes in gait overtime. The system could also be
used as a discrete biometric identification method, for example identifying office

workers as they pass over the surface.

Keywords: Gait Classification, Distributive Tactile Sensing, Pattern Recognition,

Smart Sensing.
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Chapter 1

Introduction

1.1 Force plates and their limitations

Gait analysis laboratories are essential for the detection of walking disorders in
people and the monitoring of their rehabilitation process post-operation. One of
the most important instruments present in a gait analysis laboratory is the force
plate. Force plates are rigid platforms, usually around 0.5m? that measure the
ground reaction force (GRF) created by the subject as they walk over the plate.
Most modern force plates can accurately measure the ground reaction force and
moments in all three dimensions. Force plates operate using four plezo-type force
transducers connected in each corner between the platform and the base-plate
(which is in contact with the floor). Each transducer measures the applied force
as the subject walks over the plate. The resultant forces are calculated as the
sum of the four sets of transducer forces. Force plates can provide very accurate
measures of the force and moment components generated as a person walks over
a surface and hence can be used as a tool for diagnosing walking disorders along
with changes in walking over time by analysing the data generated. However,

there are several limitations of force plates that still have not yet been resolved.
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1.1 Force plates and their limitations

Limited Dimensions. Force plates have limited dimensions and so can only
capture one foot strike. Also, their design means that even if a larger plate was
manufactured, then it wouldn’t be possible to separate the forces generated dur-
ing the double stance phase of walking. Therefore, for most walking applications
a pair of force plates must be used. To reduce noise, most force plates need to be
embedded or secured to the floor they are mounted on. This leads to the issue of
how should the plates be positioned relative to each other? People have different
stride lengths, yet the semi-permanent installation and limited plate dimensions
mean that only a narrow range of stride can be properly accommodated. In the
worst case this can cause the subject to shorten or lengthen their normal stride
and result in measurements being taken that are not representative of the sub-
ject’s natural gait. In a similar sense, it has been noted that the prominence of
two force plates embedded into the walkway can lead to the subject ‘aiming’ for
the plate or even stamping onto the plate to ‘ensure a reading is taken’. The
solution is to hide the plates, by covering the surface with carpet for example.
However, although this helps in achieving the measurement of natural gait, the
limited plate dimensions mean that multiple measurements are required to in-

crease the chance of capturing a direct hit of the foot onto the force plate.

Raw Data Output. The primary disadvantage with force plates however is that
they only produce raw measurement data, there is no intelligence in the system
to aid with the analysis. A lab analyst will have to compile and examine the
six sets of time series data (three dimensions of forces and moments) for each
capture. The captured data may then be compared to previous datasets, if say,
a pre and post operation analysis was being carried out. This could take several
hours to examine and report back on. The extra time taken to analyse the data
results in less time available for patients to use the gait analysis laboratory and

hence increased patient waiting times.



1.2 Overview of a novel gait analysis platform

1.2 Overview of a novel gait analysis platform

In this thesis, the development of a novel gait analysis platform is described.
The platform aims to resolve the identified issues relating to the current force
plate instruments. First, the design of the physical sensing platform addresses
the dimension problem with force plates. A large walkway type platform was
developed which could capture a full gait cycle (i.e a left and right foot strike)
on a single continuous plate with low levels of cross talk. This eliminated the

spacing problem by accommodating a much larger range of stride lengths.

Force plates, rely on their stiffness and high natural frequency to capture accurate
GRF measurements. Ideally, they are required to be embedded into the surface
of a solid floor to ensure they are not affected by external noise. This can make
installation of force plates complex and in some cases impractical. Therefore,
rather than develop the sensing platform using standard force plate technology,
the distributive tactile sensing method is investigated as an alternative. The dis-
tributive tactile sensing method utilises a small number of sensors to capture the
deflection of a continuous surface. The sensor data is then analysed, usually using
neural network algorithms to infer the characteristics of the object in contact with
the surface, causing the deflection. Note therefore, with this method a flexible
surface is required in contrast to a stiff surface used by force plates. The final
prototype developed was a self contained system and therefore was very resilient

to external movement or noise.

The majority of this thesis concentrates on the development of algorithms that
will take the sensor data from the platform and perform some form of intelligent
analysis. The algorithms developed are able to compare the captured gait pat-
terns created by a subject walking over the platform and compare them to a stored
databasc of templates. Small differences in the gait pattern are recognised and
can therefore be used to classify the pattern to one of two (e.g normal/abnormal)

or one of several (e.g person identification) classes.

The system developed means the identified class can be presented to the user
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1.2 Overview of a novel gait analysis platform

around three seconds after the subject has walked over the platform. Therefore,
the system has potential to greatly reduce analysis times and increase the num-
ber of patients tested in a gait analysis laboratory. It has applications as an
initial screening tool, where the system could identify and provide possible sug-
gestions to the cause of any deviation away from normal walking that the patient
is exhibiting. Alternatively, it could be used to compare a subject’s gait pattern
post-operation to that measured pre-operation and identify any differences. All
this would save the gait analyst large amounts of work and would direct them

towards a quicker diagnosis.

It should be noted that measurement of ground reaction forces and moments was
not one of the aims of the project, therefore although with detailed calibration
it would be possible to produce these measurements from the system developed,
it is not the intention to re-create or improve the measurements provided by the
force plate. Instead, the sensor outputs are used as abstract, dimensionless values
to take gait analysis a step further by being able to discriminate and classify gait

patterns rather than just provide raw measurements.
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1.3 Objectives

1.3 Objectives

The objectives of the work in this thesis may be summarised as follows:

. Establish the viability of the Distributive Tactile Sensing method when

applied to a large scale plate subjected to dynamic loads.

. Develop a sensing platform that overcomes the limitations of the force plate

caused by its physical dimensions and therefore be able to capture gait

patterns without restricting a person’s natural walking style.

. Investigate appropriate sensor methods and implement the required elec-

tronic hardware to capture accurate time series data for analysis.

. Develop algorithms that can discriminate and classify between different

gait patterns. In particular it must be able to discriminate between small
changes in a person’s gait and also be an algorithm that can be easily

generalised to different gait pattern classifications.



1.4 Structure of thesis

1.4 Structure of thesis

In Chapter 2 current literature relating to the research is reviewed. First, current
research into gait analysis instruments is investigated, with a particular focus on
research into overcoming the limitations of force plates. Next some of the previous
applications of the Distributive Tactile Sensing method are discussed, showing
how the method has developed over the last thirteen years. The remainder of the
chapter reviews the literature related to each of the experiments undertaken and
described in this thesis. This includes the areas of moving force identification,

balance and sway and finally gait discrimination.

The first task involved testing the potential viability of using the Distributive
Tactile Sensing method to infer the characteristics of an object or person ambu-
lating over the surface of a plate. In Chapter 3 a mathematical model is developed
that attempts to track a moving load as it passes over the surface of a plate. The
amplitude of the force applied varies harmonically. The model is split into two
parts, with the plate response first being modeled mathematically followed by a
technique which is developed that uses the captured deflection data to track the

load position as it moves across the surface.

Next, in Chapter 4 an experiment is developed that tests the ability to infer
the characteristics of an object through the deflection of a plate it was mounted
on. In this case the experiment was designed to be relatively controllable with
few variables such that the mechanical construction, electronics and algorithms
could all be developed and thoroughly tested. The set up consisted of a swing
construction, mounted on to a supported plate. The experiment investigates
whether the position of the swing can be tracked in real-time using the distributive
tactile sensing method. The results can be easily applied to the area of balance

and sway measurement of people during quiet standing.

In Chapter 5, the issues discovered in the swing experiment are identified and
improved upon where necessary. This experiment moves from measuring the po-

sition of an object to the classifying of a person’s gait. The experiment described
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1.4 Structure of thesis

in this chapter investigates the viability of using the measured gait pattern to
identify a person. A convenient sample of people are tested against, with two
different classification algorithms tested: Dynamic Time Warping and feature
extraction methods. Both algorithms are found to produce reasonable results.
However, it is found that certain types of walking present in the sample can

affect the accuracy of the whole system.

In Chapter 6, the findings from the previous experiments are used to work towards
the main aim of being able to discriminate between different gait patterns. In
this experiment a test is developed to determine whether small changes in gait
can be detected in a person’s walking. To do this, a volunteer’s walking is subtly
affected by making them carry a heavy tray or wear a heavy backpack. Two
classes are defined as normal walking (without tray/backpack) and abnormal
walking (with tray/backpack). Feature extraction algorithms are tested again
along with a normalised distance calculation algorithm. The distance algorithm
is found to achieve the best results and is also determined to be the most likely

to be the most generalisable algorithm to different scenarios.

Finally, conclusions are drawn from the research in Chapter 7 along with sugges-
tions on how the research could be developed further in the future to produce a

practical and commercially viable system.



Chapter 2

Literature Review

2.1 Introduction

The wide scope of the research in this thesis leads to several areas of the literature
being reviewed. The primary application of the system developed is in the area,
of gait analysis. In the first section of the literature review, instruments currently
used In a gait analysis laboratory are reviewed along with current research being
undertaken to improve them. The force plate is identified as the primary tool for
measuring ground reaction forces of a person. These ground reaction forces are
then used to analyse the patient’s gait and provide a diagnosis of any walking
disorder. Whereas force plates use a stiff plate, the platform developed in this
thesis uses a flexible surface and hence uses the distributive sensing method to
capture the gait profile through the plate deflection. In section 2.3 the previ-
ous applications of distributive tactile sensing are reviewed, showing how this

technique has developed over the last decade or so.

In Chapter 3, a mathematical model is developed that enables the tracking of a

moving force as it progresses over a plate. Section 2.4 investigates other research
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into the area of dynamic plate response due to a moving load. Several papers are
also discussed where the plate response is used to identify the applied force or
the force impact location. It’s interesting to note however, that there appears to
be no current literature regarding the tracking of the force location as it traverses

the surface of a plate.

Another potential application of the platform developed is in the measurement
of balance and sway during quiet standing (see Chapter 4). Therefore current
measurement techniques are reviewed in section 2.5, with most of the literature
stating the use of force plates or accelerometers to measure postural instability.
It appears there is much less research on balance and sway measurement than

galt measurement.

Finally, the area of gait classification is reviewed in section 2.6. The ultimate
project alm was to develop the platform based system such that it is able to
discriminate between normal and affected gait or to be able to detect a change
in gait, rather than just provide raw data measurements. There have been a
small number of attempts to do this using GRF data captured by force plates.
Most research has investigated the discrimination between normal gait and some
specific pathological gait, such as that caused by ankle arthrodesis or neurological
disorders such as cerebral palsy. The results presented are mixed and in some
cases ambiguous, suggesting further research into classification techniques are

required.

2.2 Gait Analysis

The ultimate application of this research is to provide a system that can be used
for gait analysis and which has several advantages and novel features over the
systems currently available. In this section, the current systems are evaluated

with examples of their use and any limitations they may have.
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One of the most widely used pieces of equipment for gait analysis is the Force
Plate. This is a well established technology such that there is minimal academic
research taking place to actually improve the measurement accuracy of a force
plate. There are two dominant companies that manufacture force plates for use
in a gait laboratory, AMTI (Virginia, USA) and Kistler (New York, USA). A
force plate consists of a stiff plate mounted onto a base using force transducers in
each corner. Using the force transducer data, three dimensional ground reaction
forces (GRF) and moments can be calculated. The main advantage of force plates
is that they are able to produce these measurements accurately and relatively
simply, with little extra data processing required on the user side. However, force
plates have some limitations. Each plate has limited dimensions (usually 0.5m?)
and can only measure the GRF of one foot strike. Therefore, a gait lab will
nearly always have at least a pair of force plates in use. This leads to a second
problem of spacing the force plates an acceptable distance apart, such that the
patient can strike each force plate correctly without inhibiting their natural gait.
Further to this, instances where the patient strikes the plate abnormally hard to
insure recording of the data would also create false readings [1]. For optimum
performance, a force plate is required to be embedded in the floor where they
are to be used, hence making it impractical for temporary installation or usage.
Despite these shortcomings however, virtually all gait laboratories will regularly

use force plates for accurate GREF measurement.

Some of the shortcomings of the force plate approach can be solved by combining
force plate technology with a treadmill. This has the advantage of being able to
capture repeated measures of the patients’ ground reaction force without having
to create an excessively long walkway or having the problem of requiring the
patient to strike the force plate correctly. There has been extensive research into
the production of an instrumented treadmill (ITM) and this has brought with it

a, whole new set of measurement issues.

One of the earliest attempts was produced by Kram and Powell [2] who mounted
a force plate onto a treadmill underneath the belt. This was able to successfully

measure the vertical GRF of the patient, but not the horizontal forces due to the
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effects of the moving belt. Kram et al [3] and a similar attempt by Dierick et al
[4] get around this problem by mounting the whole treadmill structure onto a set
of force transducers anchored to the floor. This enabled the forces and moments
to be measured in three dimensions. However, by using a single force plate it is
only possible to measure the combined GRF, it is not possible to get the GRF
of each individual foot during the periods when both feet are in contact with
the surface. A partial solution was suggested by Davis and Cavanagh [5], who
derived an algorithm to decompose the individual vertical GRFs. But it was not
possible to extend this to the horizontal components. Belli et al [6] provided a
novel solution to this problem, by building a treadmill isolated into two halves. A
separate belt was driven on each of the separate frames at an identical speed. The
two frames were both mounted on force transducers and were separated by just
7mm, in an attempt to minimise any gait altering effects. The isolated segments

meant that individual left and right GRFs and moments could be measured.

Another inherent issue with the ITM designs is that of the large mass and low
stiffness affecting the natural frequency of the device. Both Kram and Dierick
address this issue in detail in their papers, with Kram [3] building the treadmill
from scratch, while Dierick [4] attempted to modify a commercially available
model. Both claim to have achieved a natural frequency which does not affect

the force measurements.

The most recent and certainly the most extravagant attempt at producing an in-
strumented treadmill is that presented by Paolini et al [7]. This treadmill consists
of three independent {orce plates (and hence three individual, synchronised tread-
mill belts). The force plates are arranged such that the first force plate (FP1) is
positioned towards the front of the treadmill and is full width and half the total
length. FP2 and FP3 are placed side-by-side behind FP1, each one being half
width and half length. FP2 and FP3 are able to provide individual GRFs in the
same way as Belli’s treadmill [6]. The extra, full width, front force plate makes it
also possible to accurately measure the force when the patient’s foot crosses the
mid-line, stated to be a common occurrence in healthy subjects. This treadmill

was designed and manufactured professionally by AMTI. Therefore, the natural
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frequencies of the unit were found to be up to three times higher than the other
designs mentioned here. The design of the system could lead to some potential
issues however. For example it is questionable whether some patients, especially
the infirm or those running, would be confident with ambulating over a surface
made up of three independent belts with a gap of several millimetres between
each one. Also, it is not mentioned whether a strict fail safe system is in place
to ensure that the speed of each belt is kept within a matched tolerance at all

times.

A highly debated question regarding gait analysis using instrumented treadmills
is, whether treadmill locomotion is representative of overground walking. Many
experiments have been carried out to investigate whether treadmills do cause an
alteration of natural gait and what those changes are. Wank et al [8] claims that
when using a treadmill, subjects ‘favoured a type of running that provided them
with a higher level of security’. This caused a reduced swing amplitude of the leg
and lower vertical foot displacement on the treadmill in comparison to overground
walking. They also found that upper body forward lean was higher and foot
contact time was shorter. Several papers are found to be in agreement with
changes in time-distance parameters. These include higher cadence [9; 10; 11; 12],
shorter step length [10; 11] and shorter stance time [9; 12]. However, there are
contradictions. For example, Riley et. al [13] claim that they found no significant
differences between any time-distance parameters, while Schache et al [11] claim
that the stance phase was shorter for overground walking, which is an opposing
finding to Alton [9] and Warabi [12].

There have also been several investigations into whether significant changes occur
In various peak joint angles. Significant changes in the hip joint angle were found
[9; 13; 14], although again with contradictory findings such that Riley et al state
a significant decrease in hip flexion with treadmill walking, while Alton claims a
greater range of motion on the treadmill. Similarly, significant differences in knee
flexion angles were found, with Riley et al [13] stating that peak knee flexion angle
was reduced in treadmill walking. Matsas el al [10] notes significant differences

in knee flexion angles during the first minute of treadmill walking to that of
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overground walking. However, they observe that over time the difference reduces.
Along with Lavcanska et al [15], who carried out a very similar experiment, they
conclude that at least six minutes of treadmill familiarisation should be made
available to subjects before data is captured. It is claimed that most of the
aforementioned publications do not implement this familiarisation period and

therefore could be the reason for the observed differences in the majority of cases.

Savelberg el al offer an alternative explanation for the cause of the differences
between treadmill and overground gait. They claim that significant kinematic
variations were attributable to the variation of the treadmill’s belt speed during
locomotion. The mass of the subject, speed and power of the treadmill motor were
found to be the main factors affecting the variation in belt speed. They conclude
that belt speed variation needs to be minimised, possibly through the use of a high
powered motor, in order to mimic overground walking. Similarly, Schache et al
[11] suggest that a high powered treadmill, with a minimal belt speed fluctuation
Is capable of being used to obtain a representation of the typical 3D kinematic

pattern of the lumbo-pelvic-hip complex during running.

This overview suggests that it can be claimed with reasonable confidence that
treadmill locomotion does affect gait kinematics and kinetics in comparison to
overground walking. Despite, the numerous experiments undertaken however,
the literature does not offer a general agreement on what factors are affected.
Therefore, the differences cannot be suitably characterised in order to make ap-
propriate adjustments to measurements when a treadmill is used for gait analysis.
In addition to this, treadmill walking still presents a greater challenge to older

adults and those with balance instabilities.

Another instrument commonly found in a gait lab is the in-shoe pressure mea-
surement system. The two most common systems are the FSCAN (TekScan,
Massachusetts, USA) and Pedar (Novel, Munich, Germany). The instrument
consists of a flexible substrate containing a matrix of small thin-film force sensi-
tive resistive sensors. These are cut to size and inserted on top of the inner-sole of

the shoe. The main advantage of these systems are that they enable the sub ject
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to walk around freely without restriction (assuming a wireless logging module is
used). The output of the system provides a graphical pressure map applied by the
foot as the subject is in motion. Unfortunately, these devices and the FSCAN in
particular, have been found to have large inaccuracies. It has been reported that
non-linearities, high hysteresis and inconsistent calibration have severely impeded
the reliability of the devices. Nicolopoulos et al [16] gives a comprehensive review
of the current literature and concludes that although the ‘accuracy of the FSCAN
system was found to be strongly dependent on a variety of factors... information

such as pressure pattern recognition can still be obtained’.

2.3 Distributive Tactile Sensing

The experiments undertaken in this thesis have primarily used the principles
of distributive tactile sensing in attempt to identify the activity taking place
on the plate surface. Distributive tactile sensing is a method of tactile sensing
in which a small number of sensors are used to monitor the deformation of a
continuous surface which is in contact with the object being sensed. The resulting

deformation data is then used to infer the properties of the sensed object.

Distributive tactile sensing has been applied to several applications including,
robotic grippers [17] and minimally invasive medical tools [18; 19]. Ellis et al [17)
first suggested a distributive tactile sensing method to identify the shape and
mass of an object being held by a robotic gripper. The surface, described as a
skin, took the form of a pair of thin steel steel strips mounted on the gripper
tips. Four strain gauge sensors were mounted on each strip. Using standard thin
plate equations, Ellis derived the required formulas to determine the strain at
any point on the surface for a given force distribution. Through the use of an
inverse function, it was then possible to determine the force distribution from the
measured strain values. High accuracies were achieved, with a 1.6% mean mass

error and 3.8% length error.
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Brett and Stone [18] extended this research to the medical field, investigating
the use of distributive tactile sensing for providing force feedback in tele-surgery
applications. In a similar set up to Ellis et al , Brett and Stone measure the force
distribution and movement of an ob ject through the measurement of deformation
and slip occurring on a thin, 0.5mm thick aluminium plate. In this experiment,
the plate was fixed at one end with the other end supported by a spring to form
a cantilever. Eight strain gauges were placed equi-distant along the plate to
measure the deformation. Three methods of analysis were investigated: closed

form (as used by Ellis et al ), interpretive and the use of a neural network.

Both the interpretive and neural network methods produced an accuracy to within
0.IN, with reasonable force distribution profiles. However, the neural network
method was identified as the ouly viable option when non-linear measurenments
are required. This is demonstrated through a further experiment (in the same
paper) using a flexible digit. Fibre Bragg Gratings are used to measure the bend
of the digit, producing a non-linear output. A two hidden-layer back propagation
neural network was used. It is claimed that accurate results were achieved in
detecting the position and magnitude of the load applied along the digit after

applying 100 training data samples.

Brett and Li go on to further extend the distributive tactile sensing method to
two dimensions [20] by creating a membrane based keyboard. In this application
a polymer plate is used with dimensions of 332mm x 224mm. The plate surface
was segmented into 35 separate zones, each zone measuring 42mm x 38mm. The
strain gauges used in previous experiments [17; 18] are replaced with non-contact
infrared sensors. These sensors measure the intensity of the infrared light re-
flected off the underside of the plate surface and hence give an analogue voltage
output which is proportional to the distance between the plate surface and the
sensor. Five sensors were used, four near each corner and one in the centre. The
experiment investigated whether it was possible to discriminate which zone a load
was applied to using just the five sensors. As in previous experiments, a neural
network is used to predict the location. Very high accuracies were achieved, with

the exception of the presence of a dead zone between cach of the identified zones,
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where the neural network produced inaccurate predictions. Unfortunately, Brett
and Li only state the accuracy of the given set up and do not extend the exper-
mment to show how the accuracy varies with smaller zone areas or an increased

number of zones to identify a spatial resolution of this application.

Tongpadungrod et al [21] added a further aspect to the distributive tactile sensing
method, through the use of optimisation techniques . In their experiment, a one
dimensional beam, supported at both ends was used. Again, the application
was to identify the location of an applied force. However, their work proceeds
further by attempting to optimise the number of sensors used and their location
along the beam. Principal component analysis (PCA) was used to determine the
optimum number of sensors required. Starting with eight sensors originally, it
was found that only four were required to provide a significant contribution. A
Genetic Algorithm (GA) was then used to find the optimum locations using a
cost function that gave higher preference to those locations that equalised the

eigenvalues between the four eigenvectors.

Interesting results were achieved, indicating that when only a small number of
sensors are used (e.g. two), then optimisation of sensor location plays an impor-
tant role in increasing the accuracy (compared to an equi-spaced set up). This
difference in accuracy decreases rapidly as the number of sensors is Increased,
with five sensors providing virtually no difference in accuracy between optimised
and equally spaced positions. However, it could be inferred in this Instance, that
this decrease is related to the decrease in the space available between the sensors

as the number of sensors increases.

Using Tongpadungrod’s techniques, Ma et al [19] revisited the flexible digit ap-
plication first suggested by Brett et al [18]. Using sensor location optimisation
and cascaded neural networks, they were able to deduce many features of the

object applying the force, with an accuracy of 93% or greater.
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2.4 Moving Force Identification

So far, the distributive tactile sensing method has only been applied to identifying
the properties of a static object. In this thesis, it will be attempted to apply the
distributive tactile sensing method to identify the properties of an object moving
across the surface of a plate. To theoretically prove this concept is viable, a
mathematical model is developed and discussed in Chapter 3, that is able to

track the position of a moving force as it traverses a plate.

There has been large amounts of research into the dynamic response of plates
due to a moving force. The outcomes have important applications, particularly
in the form of bridge responses to vehicles traversing at speed. The literature can
be divided into three areas: Plate response due to a moving load, identification
of the applied moving load and the location of an impacting load. The most
fundamental research is into the dynamic responses of a plate to a moving load.

Plate dynamics are then used to identify and locate the applied force.

In some scenarios, the problem can be simplified to a one dimensional beam.
Hilal and Zibdeh [22] investigate the response of an Euler-Bernoulli beam with
general boundary conditions. They apply an analytical solution to determine
the response when a load of constant amplitude traverses the beam in an accel-
erating, constant velocity and decelerating form. Similarly, Pesterev el al [23]
looked at the response-velocity dependence of a simply supported and clamped
beam. Gbadeyan and Oni [24] investigate both beams and plates when subjected
to an arbitrary number of moving loads. Using analytical methods, they claim
to provide a very generalised solution for forces moving at varying speeds and
amplitudes for plates supported by any of the classic boundary conditions. Fur-
ther to this, they compare the results of a moving force problem to that of a
moving mass problem. However, Lin [25] argues that the latter part of the paper

is inconclusive and may be misleading.

Various methods are used to determine the plate response. For example, Wu et

al [26] use finite element analysis to determine the dynamic response of a plate
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subjected to various moving loads, with variations in eccentricity, acceleration
and initial velocity investigated. However, most papers use some form of ana-
lytical method. Zhu and Law [27] use the Lagrange equation along with modal
superposition. Sun [28] uses a method based on Green’s function to determine
the response of an infinite plate on an elastic foundation. Sun claims that this
model provides a suitable representation for use in analysis of vehicle-pavement
interaction. In another application based paper, Kwon et al [29] use analytical
methods to determine the vibration of bridges when subjected to moving loads
and then go on to investigate the effects of a tuned mass damper to suppress this

vibration.

Fryba [30] presents a comprehensive set of methods to analyse various forms of
beams and plates subjected to moving loads in his book. However, the plate re-
sponse equations derived require the use of the Laplace-Carson transform method
and includes an integral in the solution creating a computationally expensive cal-
culation. Szilard [31] provides an equally comprehensive but more generalised
approach to various plate analysis methods in his book. Due to the general and
hence extensible approach, the methods described in this book are used in the

model defined in Chapter 3.

The ability to accurately determine the plate response to a given moving load,
naturally leads to inverse methods being applied to identify the magnitude and/or
location of the applied force. The application of various methods of force iden-
tification has been heavily researched by Law et al in the form of vehicle-bridge
interactions. Initially, developing an interpretive method [32] using a beam model
acting as a bridge, they attempted to identify the axle loads of a two axle vehi-
cle. They found that errors of less than 5% were achievable, with the accuracy
dependent on factors such as axle separation. A similar experiment is also un-
dertaken using time-frequency domain methods [33]. Here they compare the use
of Singular Value Decomposition (SVD) with the pseudo-inverse (PI) method,
with results showing that while the P1 method produces erratic results, SVD can
be successfully used to identify the moving forces. However, it is concluded that

due to the computational overhead, a real-time implementation is unrealistic.
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Finally, the model is extended to a two dimensional plate, [34] where accurate re-
sults are achieved in a similar attempt to identify the individual forces applied by
each wheel of a four-wheeled vehicle traversing the surface. Chan et al helpfully

summarise the moving force identification findings in two papers [35; 36].

Research into damage detection of panels in aircraft have led to another area
of research to identify both the magnitude and location of an impacting force.
Wang [37] creates a theoretical model to predict the location and magnitude of
both impact and harmonically applied forces. Wang presents examples using both
the time and frequency domain. However, due to the computational overhead,
it would not be possible to use this method to track the location of a force
that moves along the surface. Choi and Changf [38] create a comparative model
using piezoelectric sensors distributed over the surface to predict the location
and magnitude of an impact force. However, again, this system only works for

an impact force, rather than one that traverses the surface.

High data sampling rates combined with multiple sensors to monitor the deflection
of the plate surface can result in impractically large amounts of time series data
to be analysed. In these situations a method of dimension reduction is required.
This is particularly important when using neural networks (NN) as a large number
ol input nodes can considerably increase the complexity of the network, reduce
efficiency and in some cases reduce the performance due to the extra ‘noise’ in
the system. Karhunen Loeve Decomposition (KLD, also referred to as Principal
Component Analysis; PCA) is a well used method of dimension reduction. KLD
can be used to reduce the spatiotemporal data into a set of optimal orthogonal
basis functions along with a numerical value indicating how much each function
contributes to the total energy of the system. This is optimal in the sense that the
truncated series representation of the data has a smaller mean square error than
a representation by any other basis of the same dimension [39]. A mathematical

description of KLD is provided in Chapter 3.

Examples of KLD used as dimension reduction technique in order to transform

the data into an efficient form, suitable for input to a neural network can be found
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in the literature. For example, Gallina [40] uses a neural network to classify the
quality of a painted surface using speckle interferometry as the input data. KLD
is used to reduce the high dimensionality of the data so it is suitable for input
to the NN. Both, Smaoui and Al-Enezi [41] and Ondimu and Murase [42] use
KLD to again optimise their data for use in a predictive neural network. Smaoui
found that using just a single eigenvector from two previous time samples gave
the best result when predicting the next time series value of the Kuramoto-
Sivashinsky equation. Ondimu concluded that reducing the dimensionality using
KLD ‘greatly increased the forecasting ability’ of the neural network. However,
it is also noted that overcompression can undermine the increase in the network
efficiency. O’Farrell et al [43] give a description of how they apply KLD in order
to reduce their large spectral dataset into just a three scalar value input to the
neural network. Although, this was an unrelated application their methodology

was very similar to that used in this thesis.

2.5 Balance and Sway

Measurement of postural stability is an important area of medical research, par-
ticularly in the elderly. For example, postural instability is a key characteristic
of Parkinsons disease [44] and can increase the frequency of falls. Adkin et al .
[45] produced results showing that trunk sway can be used to detect pathological
balance control problems in patients with Parkinsons Disease, with the possibility
of determining those at high risk of regular falls. Lord [46] has compiled evidence
from several studies showing that the common occurance of impaired vision in
the elderly can be a predictor of increased sway and hence an increased likelihood

of falling.

Research into instruments to measure a person’s balance and posture appears to
be less active than that into gait analysis. Due to the nature of the measurements,
the force plate, as used for gait analysis (sce section 2.2) can also be cffectively

used to determine the variability of balance and posture in a person. Paillex
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and So [47] use a 0.6m? force plate to investigate the changes in centre of pres-
sure (COP) of stroke patients at the beginning and end of their rehabilitation.
Similarly, Freitas et al [48] use a force plate to undertake a comparative test to
determine how prolonged standing affects healthy adults and older adults. Using
a force plate requires various algorithms to be introduced in order to convert the
force plate data into a centre of mass (COM) value. Therefore, various commer-
cial products are available such as the Biodex Balance System (Biodex Medical
Systems, Inc, NY, US) or the PRO Balance Master (NeuroCom International,
Inc., OR, US). These are based on a force plate, but are usually built around a
periphery of accessories, such as hand rails and more importantly are provided

with software that gives immediate balance related measurements.

Early testing of the reliability of force plates when used to measure balance,
indicated that force measures, rather than COP measures were more reliable and
sensitive in discriminating and measuring changes in steadiness [49]. Moe-Nilssen
and Helbostad [50] claim that the ‘ability of force plates to discriminate between
test conditions’ has been thoroughly studied but ‘results are inconsistent’. Betker
et al [51] also point out that force plates are expensive and not portable. Moe-
Nilssen [50] and Betker [51] both then go on to investigate an accelerometer
based solution. Accelerometers can provide an extremely compact solution. The
instrumentation usually consists of a single, triaxial accelerometer housed in a
small box and attached to the lower back area of the subject using a belt [50;
52]. Betker el al used two accelerometers, one placed at T2 on the spine and
the other on the shank below the knee joint. Mayagoitia et al [62] make an
attempt to compare the use of accelerometers against force plates to measure
balance. However, as they point out, the numerical outputs of the force plate
and accelerometer are different and therefore. they are only able to produce a

relatively inconclusive qualitative comparison.

As with force plates, algorithms must be developed to determine the COM when
using accelerometers. Betker et al [51] investigate the use of neural networks, an
adaptive fuzzy system and a sum-of-sines model to determine the COM. When

compared to the COM calculation generated by a motion capture system, all
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three methods gave similar results, with both the neural network and sum-of-

sines model achieving a normalised error of less than 10%.

For accelerometers to provide accurate data in relation to a subject’s balance
and posture, some fundamental issues need to be addressed. The main issue
identified with piezoresisitive accelerometers relates to the inherent measurement
of gravity and how to determine this component from an unknown or varying
tilt in the accelerometer axes. Mayagoitia et al [52] offer a solution that makes
the accelerometer calculations independent of inclination. However, this solution
relies on the accelerometer’s distance to ground remaining constant - a difficult
situation to achieve in reality. Moe-Nilssen produces a more robust solution using
trigonometric calculations based on time averaged sample values [53] to estimate
the tilt and remove it from the data. In a further paper, Moe-Nilssen and So
[50] use signal processing techniques to transform the raw accelerometer signal.
They identify that a secondary problem with accelerometer usage is the low and
medium frequency drift present in the data. Using quadratic curve fitting to
remove the low frequency drift and a moving average filter to remove the medium
frequency drift, they report that the transformed (high frequency) data can be
used to consistently discriminate between different balance control challenges. On
the other hand the non-transformed data was unable to differentiate between the

tasks.

In this thesis, Chapter 4 details the implementation and results of an experiment
that investigates the use of the platform along with distributive tactile sensing
techniques to track the position of a pendulum attached to an A-frame construc—
tion. The accurate real-time, three-dimensional tracking achieved indicates the
system could be applied to the measurement of postural stability and balance
during quiet standing. It is not proposed that the system developed provides
substantial advantages over the systems discussed above. However, the experi-
ment 1s used to demonstrate the flexibility and accuracy of the system developed,

in both the measurement and discrimination of motion.
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2.6 Gait Discrimination

Gait classification is currently an active area of research. A review of the literature
indicates that gait classification is divided into two main areas of research: person
identification and the discrimination between ‘normal’ gait and some form of

walking disorder.

Although there are many papers discussing discrimination between normal and
pathological gait, very few rely solely on kinetic, force plate data. Therefore, the
remaining literature relies on the more expensive and complex motion capture
video based equipment. The use of motion capture systems enables the capture
of many more gait variables than that provided by a force platform and therefore
1t can be seen why many researchers use the system to get robust classification
results. However, the ability to classify data using a platform based system (i.e.
the force plate, or the system described in this thesis) would provide a much more

accessible method for gait diagnosis.

A useful review into current gait classification research is provided by Scholl-
horn [54], who dedicates a section of the review to the use of neural networks for
the classification of gait and running data. Neural networks are a key tool for
classification and Schollhorn’s review reveals that neural networks consistently
outperform other statistical based methods when used in comparative experi-
ments. This also agrees with the results achieved in this research. Overall, the
results presented in the papers under review vary greatly, from approximately,

50% discrimination accuracy right up to 100% accuracy.

The review is heavily dominated by Kohle et al . They have investigated several
methods to discriminate between normal gait and various walking disorders. In
their most recent publication, Kohle and Merkl [55] present a promising paper
in which they use force plate ground reaction forces (GRF) along with a neural
network to try and identify different ‘gait malfunctions’. Unfortunately, much of
the presented information is either limited in scope or ambiguous. Using a gait

analysis laboratory database, data from 487 patients was extracted. Data from
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‘healthy persons’ was also included but it Is not stated how many were added to
the sample, nor is there any further breakdown of the sample with regard to the

number of subjects in each class.

The authors use a radial basis function (RBF) network with 100 centres (and later
200 centres) to predict the class the input GREF should be assigned to. The output
1s a 15 digit, three-state code, the three states being; ‘okay’, ‘injured’, ‘prosthesis’.
Each of the 15 digits represents a body region. Of the possible combinations, there
are 55 valid classes representing various ‘malfunctions’. However, as stated above,
it is not known what proportion of the test data belongs to each class. The GRF
data is fast fourier transformed and normalised to reduce it into a suitable format
for input into the RBF. It is claimed the “first few coefficients contain most of the
information’ to reproduce the GRF , however, again it is not stated how many

coefficients are used as an input to the RBF.

The authors present results showing the recognition accuracy for different GRF
component inputs using the test dataset and the training dataset (the latter be-
g superfluous, as the training datasct will always produce over-optimistic results
when used for testing). These results show a reasonable classification accuracy,
particularly when using 500 centers. What is not clear 1s whether these results
represent the overall classification accuracy of all the classes or are from a specific
class or group of classes. This ambiguity is raised by the concluding statement
that ‘some malfunction classes still show rather poor recognition accuracy’ and
only 15% ‘show a clear dislocation’. It would therefore have been useful to ac-
company the given results with a confusion matrix showing how the data was

being mis-classified.

Lafuente et al [56] provide a very indepth statistical analysis of galt classifica-
tion. They investigate the ability GRF data to classify between two groups of
subjects, one group with pathological gait problems, namely lower limb arthro-
sis and a control group with no known problems. The research also Investigates
the comparative performance of neural networks and Quadratic Discrimination

Analysis (see Chapter 5). Using feature extraction techniques they produce an
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optimised feature vector for use in both the neural network and QDA algorithms.
Comprehensive results show that an overall classification accuracy of 80% and
75% is achieved using the neural network and QDA methods respectively. How-
ever, both classifiers appear to be considerably unbalanced. For example, the
neural network correctly classified the control group 87% of the time, but the
Arthrosis group was classified correctly 73% of the time. A similar difference was
found in the QDA results. The work presented by the authors is similar to that
discussed in Chapter 6. Although, differences in the work do not allow direct
comparison, 1t 1s interesting to note that similar results are achieved in this the-
sis when using feature extraction and linear/quadratic discrimination analysis.
However, as discussed in Chapter 6, it was found that using a shape matching
algorithm provided better results than feature extraction when looking for small
changes in gait. This is due to the presence of certain features in one class not
being present in another - feature analysis relies on the features being present
in both classes. Also, the classifier discussed in Chapter 6, was found to be well

balanced, with fairly equal accuracies in each class.

A key arca of rescarch is into the identification and classification of various necu-
rological gait disorders. In particular, cerebral palsy (CP) classification is inves-
tigated by many publications as indicated by the review undertaken by Dobson
et al [57]. They state that this area is of interest due to the ‘diversity of gait
deviations observed in children with CP’ and that ‘gait classifications may enable
clinicians to differentiate gait patterns into clinically significant categories that
assist with clinical decision-making’. In their paper, eighteen studies are identified
and systematically reviewed, specifically investigating the reliability and validity
of the studies. Interestingly, of the studies identified, fifteen used kinematic data
for classification, with kinetic data used as a supplementary data source in five
rather than for exclusive capture. This, as discussed previously, shows the cur-
rent reliance on the more expensive motion capture systems to classify gait rather
than the use of a platform based (i.e. force plate) device. Dobson ef al go on
to conclude that none of the studies reviewed were able to ‘reliably and validly

describe the full range of gait deviations’ found in children with CP.
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Armand et al [58] also investigate neurological disorders to identify different pat-
tern classes within groups of people who are ‘toe-walkers’. They use data~-mining
of a large gait analysis database to carry out their research and identified three
groups of different sagittal ankle kinematic patterns using a fuzzy c-means al-
gorithm. This differs from other gait classification methods discussed as it uses
an unsupervised classification method. Here the data is presented to the fuzzy
algorithm and clustering is identified. The authors then relate the three identified
groups to various neurological disorders present in the patients. Their findings
showed a strong relation between a single group and the presence of particu-
lar conditions, although some conditions such as cerebral palsy were distributed
evenly across the three groups. In comparison, able-bodied subjects walking on
their toes were mostly unclassified, therefore providing some confirmation that

the classes were related to some change in gait due to the neurological disorders.

A possible area of future research is to extend the platform in this thesis to
an ‘active floor’. Alwan et al have carried out research along similar lines, by
determining human gait characteristics from floor vibrations [59]. In this paper,
they describe the use of optical fibre seusors to detect foot strikes along a floor.
Using fairly simple signal processing techniques, impulse like datastreams are
produced as a person ambulates over the floor. The authors claim that through
the analysis of the pulses, various gait characteristics can be derived such as
step count and cadence. They also classify types of galt into walking, limping
and shuffling classes, using the periodicity and amplitude of the captured pulses.
Finally, a fall detection method is also described, with a focus on the system being
used as a method of remote monitoring for the elderly at home. Unfortunately,
the paper appears to be more of a conceptual approach, with no details on the
methods used for identifying the different characteristics and no reporting of the
classification accuracy. No further literature has been identified to suggest that

this research has progressed further.

A more ambitious attempt is made by Addlesee et al . in the form of the ‘ORL
Active Floor’ [60]. They developed a floor consisting of nine steel tiles (arranged

as 3x3) supported by a 4x4 array of load cells. Using the load cell data it was
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possible to calculate the total weight of objects supported by the floor, positions
of particular statically located objects and the detection of object removal or
addition (from the change in supported weight). The authors then investigate
the use of the active floor for person identification. Using Hidden Markov Models
(HMM) they analyse the time series data in an attempt to correctly identify
a sample of fifteen people as they walk over the active floor (one at a time).
Optimising the HMM resulted in a claimed accuracy of over 90% when tested on
150 samples. However, once the data had been normalised such that weight was
no longer a factor, the accuracy dropped to just 50%. The research in this thesis
identifies both weight and shoe type as possible artificial factors that could falsely
improve recognition rates when small samples are used. Therefore, normalisation

methods are used to ensure weight is not a factor and subjects walked in stocking

feet to ensure no dominating artificial factors were present.

The latter paper, is one of very few papers that Imvestigates person identification
using a platform based measurement system. The majority of the literature uses
video based methods to identify individuals based on their galt kinematics. There
1s vast array of literature in this area, however, the subject of video based person
1dentification is not related to the research in this thesis and therefore will not be
reviewed in detail. For the interested reader, two recent publications are suggested
to provide an indication to the progression of this area of research. Zhang et al
[61] investigate the general identification of people in the sagittal plane against
a noisy background, while Bauckage et al [62] use the methods developed to

identify people using video to discriminate between normal and abnormal gait.

Classification of gait data rather than Just measurement required various pat-
tern recognition algorithms to be investigated such that they could be applied to
the sensor data. As the output from cach sensor was effectively one-dimensional
time series data, classification algorithms that had been developed for similar
applications were investigated. Hand writing or signature recognition is a well
researched area using various classification methods. The data used in the recog-
nition of hand writing was identified to have close similarities to that of the

Sensor outputs used in this research. The literature indicated that a popular
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method used in this area is Dynamic Time Warping (DTW). Chapter 5 gives a
full derivation and description of DTW, based on two very good overviews written
by Ratanamahatana and Keogh [63; 64]. Niels [65] presents an in-depth study
of DTW for hand writing recognition, claiming between 88% and 97% accuracy
during tests. Kholmatov and Yanikoglu present an award winning (SVC 2004:
First International Signature Verification Competition) method using DTW to
identify between genuine and forged signatures. Their approach uses DTW to
compare the test signature to the nearest, farthest and template reference signa-
tures. Bayes classifier and Principal Component Analysis methods are then used
to infer the resulting vector as an identification of a geniune or forged signature.
In a more closely related area, Boulgouris et al use DTW for gait recognition.
They describe, in a relatively vague sense, the use of DTW to compare the gait
cycles of people captured using a video based system. The algorithm is tested
using the Gait Challenge database (University of South Florida) and compared
against a baseline algorithm also developed by the University of South F lorida.
Results showed that it outperformed the baseline algorithm in the majority of
cases, but the authors conclude that the method ‘might not be used on its own for
the purpose of authentication without the use of additional biometrics or access

control mechanisms’.

In Chapter 5, feature extraction methods are investigated along with the use
of discrimination analysis techniques to classify those features. The well known
GRF shape resulting from a human walking over a force plate lends itself to easy
extraction of the main features. Su and Wu [66] extract nine force parameters and
their corresponding temporal occurances from the three force plate components,
resulting in an eighteen feature vector. Using a genetic algorithm neural network,
the features were used to discriminate between normal walking and that caused
by ankle arthrodesis. The use of the genetic algorithm enabled the authors to
determine the features that contributed most to the discrimination of the two
classes. This optimised the original eighteen feature vector down to three essential

features.

Hsiang and Chang [67] use GRF features, not for gait recognition, but to inves-
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tigate the variability and reliability of a gait pattern when subjected to various
speed and loading conditions. Using the vertical GREF component only, they in-
vestigate the peak amplitudes at heel-strike, mid-stance and toe-off, gradients of
heel-strike and toe-off and also centre of pressure velocity. Volunteers used an
instrumented treadmill, walking at three different speeds. They were asked to
carry loads which were either held in both hands or attached to the front, back or
both front and back. They also walked without carrying any load. The research
investigated whether the load-speed combinations affected the variability of the
person’s gait pattern in comparison to their natural walking. Results showed that
the mean value of the selected features differed significantly for each of the load-
ing positions. However, only the gradient measures had standard deviations that
differed significantly. Two hand carrying in particular produced large amounts of
variation in the gait pattern in comparison to other load positions. As suggested
by the authors, this is likely to be due to the body’s inability to ‘swing the arms
to produce necessary counter forces” when carrying the load in this way. It will
be seen in Chapter 6, that the results from this paper help define the classifica-
tion experiment undertaken in this thesis. The results in this paper suggest that
natural walking can be subtly perturbed through the use of various load carrying
tasks. This provided a suitable alternative in the gait classification experiments,

where volunteers with specific gait disorders were unavailable.

2.7 Summary

The review has investigated five key areas of research related to the develop-
ment of the system described in this thesis. It has been shown that there are
some well established instruments being used in the majority of gait analysis lab-
oratories. However, these instruments are not without their shortcomings and
therefore, much research has been carried out nto improving current instruments
or implementing novel solutions. Probably the most effective solution so far has

been the instrumented treadmill, which enables repeated gait measurements in a
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small area without the need for the subject to ‘aim’ for the force plate. Unfor-
tunately, the use of treadmills bring their own issues, particularly the suggestion
that treadmill locomotion is different to natural, overground gait and therefore
cannot provide valid data. The contradictory results presented in the literature
suggests that there is still further work to be done before a conclusive result can
be demonstrated. Other methods, such as the FSCAN in-shoe pressure measure-
ment system provide a useful solution in certain circumstances, but has serious

reliability issues.

The Distributive Tactile Sensing (DTS) method was then discussed. This is an
interesting and recent development whereby a small number of sensors are used
to measure the deformation of a continuous surface. Through the use of neural
networks, the data from the sensor outputs can be used to infer characteristics
of the object causing the surface deflection. The method has been used to deter-
mine object dimensions and force position and amplitude, on both one and two
dimensional surfaces. However, the method has only been applied to a small-
scale, static problems. In this thesis, the DTS method is used on a relatively
large surface to infer the characteristics of an object moving across that surface,

namely an ambulating person.

To ensure that DTS was a viable method for this application, Chapter 3 discusses
the development of a mathematical model that uses the DTS method to track
a moving load as it traverses a plate. A review of the literature found many
publications detailing the dynamic plate response due to a load moving across it.
Several papers then go on to use inverse methods to determine the amplitude of
the applied force as it passes over the surface. A few papers also used methods
to determine the location of an impacting force. However, no publications were
found that enable the tracking (in near real-time) of the load position as it passes
over the surface with varying amplitude. A key method used for reducing the
dimensionality of the data in the model developed is Karhunen Loeve decompo-
sition (KLD). Several papers were discussed to show how KLD is used to reduce

large time series datasets.
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The measurement of balance and postural instability is another potential appli-
cation of the platform developed. The review of the literature indicated that
research into devices for balance measurement is fairly limited and is generally
based around the use of a force plate or more recently accelerometers. The lack
of research suggests that these instruments provide a suitable means of measure-
ment, although various signal processing algorithms are needed to be applied to

accelerometers to avoid various inherent measurement problems.

Finally, the area of gait discrimination is investigated. The platform developed
in this thesis has been developed to aid with analysis of gait by being able to
discriminate between different gait patterns. Several authors have investigated
the classification of gait patterns, however, only a few have used an exclusively
platform based approach. The remaining authors use video based methods. The
results produced from the platform based approach are mixed with some being
presented in an ambiguous way. Only those that discriminate between normal

walking some specific gait disorder appear to have had some success.

In this thesis, a platform based walkway is designed and implemented. Taking
into account the limitations of the force plate, the platform has been designed
to accommodate a full gait cycle, i.e. one left foot and one right foot strike
and therefore does not require the subject to aim for such a small area, as is
the case for force plates. The platform is not designed to improve the accurate
measurements provided by the force plate, but instead aims to take analysis a
stage further by being able to discriminate between different gait patterns. To
do this the Distributive Sensing Method is used to measure the surface deflection
of the platform using a small number of sensors. The research in this thesis
develops both a novel design and also a discrimination algorithm that produces
results that are more robust and accurate than the majority of the platform based

classification attempts currently published.



Chapter 3

Tracking the position of a moving

load

3.1 Introduction

So far, the distributive tactile sensing (DTS) method has been used on static
applications [17; 18; 19]. In this thesis, DTS is used on a relatively large scale
platform and used to infer the dynamic characteristics of a person’s gait pattern
through the measurement of platform deformation. As this was a novel applica-
tion, an investigation into the viability of using this method was required before
equipment and prototypes were designed and manufactured. Therefore, a math-
ematical model was developed to investigate whether DTS could successfully be
used to track the location of an object as it traversed the surface of a plate. As
the process of walking causes a variation in the force applied to the surface, the

force applied in the model is designed to vary harmonically.

The model was implemented in Matlab and developed in two stages. First, a

mathematical simulation of dynamic plate response when subjected to a moving
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load was developed. As discussed in section 2.4, there are various solutions pub-
lished on this area. However, the solution provided by Szilard [31] was found to
be the neatest solution for the required application. The solution developed by
Szilard was implemented and extended to the application of a moving load vary-
ing harmonically with damping taken into account. This enabled the deflection

of the plate to be measured at any point as the load traversed the surface.

Secondly, a method was developed, based around the DTS technique, that en-
abled the load’s position to be tracked as it traversed the surface. The method
developed only had the plate deformation data available to infer this position.
The solution consisted of several steps as shown in Figure 3.1, each stage reduc-
ing the dimensionality of the data towards a single value indicating the location
of the load. The first stage investigated the use of genetic algorithms to opti-
mise the sensor locations and the number of sensors required. This immediately
reduces a very large three dimensional matrix containing the time-series plate
deflection data at every point on the plate, to just a small set of time series for
each of the required sensors. Next a moving-window method is combined with
Karhunen-Loeve decomposition to reduce the time series datasets into a single
vector containing a single value for each sensor. The vector relates to the position
of the load at a particular point in time. Finally, the vectors are used to train
and test a back propagation, multilayer perceptron neural network. The output
from the neural network provided a normalised, predicted position of the load at

that moment in time.

The results achieved show that a load can be accurately tracked with just a 2%
tracking error, with the accuracy dependent on the window size. The remainder
of this chapter discusses the development of the model and the results in more
detail.

The experiment described in this chapter has recently been published by Elliott
et al [68].
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Modelling of the dynamical responses of the plate.

Time senes data at any position
(Nx X Ny X Meampia) )

Optimisation of the sensing positions using genetic
aigorithm & application of DTS method.

|

( Time series data at chosen positions
\. (Peans X Namgio) /

l

Dimensionality reduction of the time series using KLD.

|

@rst K-L mode of moving window snapshot {Ngens X 1} )
Location tracking using a neural network

™
<One dimensionai, predicted location of force (1x1))

Figure 3.1: Operations required to reduce and format data to perform location

tracking using an artificial neural network

3.2 Plate Dynamics of a Moving Force

In this section, an analytical solution is developed that describes the dynamic
response of a plate as a load traverses the surface. The model developed below is
based on the solution developed by Szilard [31]. First, a solution is developed for
a load who's applied force varies in a simple harmonic way. It is then extended

to more complex harmonically varying loads described using the Fourler series.
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3.2.1 Simple Harmonic Moving Force

Figure 3.2 shows the theoretical set up and notations used, for a damped plate
traversed by a harmonically varying moving force at a fixed velocity. The equation

of motion for the plate is defined as:

2 n
DV*Vuw(z,y,t) + dw + mélg;?”ﬁ’é) = p(z,y,1) (3.1)

where: D is the flexural rigidity, 7 is the mass per unit area, d is the damping
coeflicient and p(z,y,t) is the external load function applied to the plate. The
plate under investigation is simply supported all round and has length, a, in the
direction of the x-axis and width, b, in the direction of the y-axis. The initial

conditions are:

ow(z,y,1
w(z,y, 0],y = 0, -—(—m—)l —0 (32)
t=0
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Figure 3.2: Plate model with moving force

Assuming the applied force is simple harmonic with angular frequency, w,, the

right hand side side of equation (3.1), i.e. the forcing function, can be represented

(@)
O
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as a double Fourier series in the form:

p(z,y,t) = sin(wpt) i i P, sin (m;rl) sin (%) (3.3)

m=1n=1

A possible solution to equation (3.1) is a double Fourier series in the form:

w(z,y,t) = i i Wonn Sin{wpt — ¢pn) sin (m;rx) sin <n7bry> (3.4)

m=1 n=1

The natural angular frequency for mode (m, n), wm, can be found by substituting,
equation (3.4) into the time invariant part of equation (3.1) and dividing by the

mass per unit area, m:

D_,_.
ViVAw(z,y,t) = =t

m m

Wmn — (35)

Dt {mg ng}

For a particular value of m and n, the equation of motion is rearranged in terms

of Wy, and reduced to a time dependent function:

O*w(t) Ow(t) p(t)
+ 2 mn- ~, mn L) = e .
EYE (w 5 + Wnnw(t) — (3.6)
where ( is the damping ratio and is given by:
d
= 3.7
¢ 2MWmn (3.7)

The value of d in the model was estimated through experimental measurement

of a real plate.
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Now assume a solution to equation (3.6) where

w(t) = Apn sin(wpt) + By, cos(wypt)

and

p(t) = Py sin(wpt)

(3.9)

Substituting into equation (3.6) and using Cramer’s Rule gives solutions for A,,,

and By, as

(P /) (@ = )
(w'?nn - w;%)Q + (QCW'mnwp)
- (Rnn/m) (QCL‘)Tnnwp)

2 ; 2
(w'?nn - WIQJ) + (zcwmnwp)

Amn =

2

B mn

Equation (3.8) is now condensed to the form W, sin(w,t 4 ¢) where

Pron,
TR ﬂl - (w;’)/wmn)Q]Q -+ {chp/wmn]Q

WTTL?L =

mw?

is the magnitude given by /A2  + BZ_ and

mmn mn

2
@mn — tan"l ______(U)p/wmn 5
1 — (wp/wWmn)

is the phase shift.

(3.10)

(3.11)

(3.12)

(3.13)
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Finally, to complete the solution, P,,, must be calculated. To find F,,, the
forcing function, p(z,y,t) needs to be defined. For this model a point force is
considered with a time related magnitude, P(t), moving in a straight line y = 7,

parallel to the x-axis with speed c:

p(w,y,t) =8 (x —ct) o (y —n) P(t) (3.14)

where § is the Dirac delta function. Assuming P(t) = Fysin(wpt), Pn, can now

be found using the following double integral

4P a rb i |
Pon = — / / d(x—ct)d(y—mn)sin ML 6in MY g dy
ab Jo Jo a b
4F t
= —agg sin mgc sin %ﬁ (3.15)

The deflection of the plate, w(xz,y,t), due to the defined moving force can now

be shown by:

4Py o e mmrN . [N
w(z,y,l) = 7)0 Z Z Win sin(wpl — ¢y ) Sin ( ”;” ) sin <%> (3.16)
m=1 n=1

where

sin (mmet/a) sin (nn/b)

Wmn -
mw?ﬂ,ﬂ, \/{1 - wp/w'rrm]z + [QQW’[J/wmn]Q

(3.17)

3.2.2 Non-Trivial Harmonic Forces

When the applied force is not simple harmonic it can be represented by a Fourier

series. This creates an additional summation term to the deflection equation (3.3)
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such that it is now defined as:

w(z,y,t) = 2 0r (1) 2 gwmm sin ("”;“”) sin (ﬁz—y) (3.18)

where 0,(t) are the individual terms of the Fourier series of the force. For the
remainder of the model, the load is assumed to vary in amplitude in the form of
a square wave with period, 1" and pulse width, 7 (Figure 3.3). 6,(¢) is therefore
defined as:

2F . wr 27rt
0,.(t) = —sin <T/'/—> cos ( T > = P, cos(w,, 1) (3.19)
4
Po
T

&

Figure 3.3: Square wave definition.
Wine is the amplitude of the mode(m,n), excited by the 7** harmonic and is

simply an extension of equation (3.12):

Prrnw'
T2y [1 = (@ /9n)?]” + 2CeipfSmnl?
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where

Pmm' = Pmn'Pr (321)
Similarly for the phase,
2 mn A mn
1- (‘*)pr/wmn)

The result is equation (3.23) which defines the dynamic response of a simply

supported plate, subjected to a moving load, whose contact force is non-trivial

harmonic.
S ML Ny
w(z,y,t) = Z Z Z W €08 (Wp, L — Granyr) SID ( § > sin (TJ> (3.23)
a
r=1 m=1 n=1

In the following sections, the model developed is tested using a square wave

periodic force as shown in Figure 3.3.

3.3 Methodology of Position Tracking

To test the model developed, a steel plate is defined that is simply supported on

all sides and has the following mechanical properties:

e Young's Modulus: 200GPa.
e Poisson’s Ratio: 0.3.

e Length: 0.90m.
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e Width: 0.53m.

e Thickness: 0.003m.

2

e Mass per Unit Area: 23.6kg m™2.

With the dynamic plate deflection model fully defined, a novel method of tracking
the position of a moving load is defined using the plate response. The applied
square wave force has a peak amplitude of Py = 500N, a period T = 0.1s and
pulse width 7 = 0.05s. The force traverses along the centre of the plate at a
range of speeds varying from 2.4ms™! to 3.4ms~!. Plate deflection is measured at
N = 6 chosen locations using data generated by the model. The resulting time
series data is formatted and reduced using the Karhunen-Loeve Decomposition
(KLD) method and the derived K-L modes are used to train a neural network to
determine the location of the force as it moves along the plate without knowing
the force characteristics. A genetic algorithm is developed in an attempt to
optimise the sensor locations and various parameters are modified to improve the

tracking capability of the system.

The mathematical model of the plate derived in section 3.2 was implemented
using the MATLAB suite of software (see Appendix B). The summations for the
two sine function terms of equation (3.23) were found to successfully converge for
m = n = 10, while the square wave force was formed by creating a Fourier series
with r = 30 terms. The deflection was measured over the area of the plate using
a 0.05m grid. A sampling rate of ten thousand samples per second (10kS/s) was

used.

3.3.1 Windowing

To be able to track the force as it moves along the simulated plate, a windowing
method is used. By using a windowing method a time history of samples can

be examined. In contrast to capturing just the current sample from each of the
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six sensors, this provides a larger amount of information to the neural network
regarding the plate response and object location. The window technique uses
a shifting method whereby a fixed width window, containing « samples, is pro-
gressed along a time series dataset by A samples each time. Figure 3.4 shows a
windowing method with a window size, v = 3 and a shift of A = 1, such that the
first window captures data samples, s1, 82, 83, the second captures data samples,

S, 83, 84 and so on.
S1 S2 83 S4 S35 Se 87 Sg 89 810 S118i12 S13 ... §

S1 82 83

S> S3 S4

S3 S4 Sz

Figure 3.4: Illustration of the moving window method, with a window size of 3

and shift size of 1.

3.3.2 Karhunen Loeve Decomposition

The high dimensionality of the data makes it inappropriate for input to a neural
network. Therefore, Karhunen Loeve Decomposition (KLD) was performed on
each window of data. KLD can be used to reduce a set of high dimensional data
down to a small set of orthogonal eigenfunctions known as KL Modes or Proper
Orthogonal Modes (POMs). The small number of resulting POMs are known to
account for more energy than any other set of orthogonal modes, with the as-
sociated eigenvalues or Proper Orthogonal Values (POVs) providing a numerical

estimate of the amount of energy captured by each POM.
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There are two methods of applying KLD; Direct and Snapshot. The Direct
method is used for data consisting of large time series and a low spatial resolution,
while the Snapshot method is useful for data sets with a high spatial resolution
[69]. In this application, large time series datasets are generated by a small

number of sensors. Therefore, the Direct method is the most appropriate choice.

Taking a general case and using the Direct method, Wolter et al [69] demonstrate
KLD applied to a dynamical system with the displacements being sampled at N
locations and labeled, wy (t), wa(t), ..., wn(t). Taking M samples over time results

in an M x N matrix:

[ wt) wslt) - wn(t) |
Wt e =] B T ) |,
hwl('l;M) walty) - wN(tM)_

The resulting data in the M x N ensemble matrix needs to be both strict-
sense time stationary and ergodic. This requirement is satisfied by taking cqua-
tion (3.24) and subtracting the column mean from each element in that column
as follows:

M , M , M
S (t)  doimywa(t) e s ww(t)

M M , M .
S wn(ta) Doy waltar) - Dimy wi(ta)

A spatial correlation matrix, R, can now be formed as

1.,
R = MV’V (3.26)
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where V7 is the transpose of V, defined in equation (3.25).

The POMs are now given by the eigenvectors of R which are orthogonal due to
R being real and symmetrical, while the eigenvalues are the proper orthogonal

values.

3.3.3 Optimisation of sensing positions

Tongpadungrod et. al. [21] have successfully used genetic algorithms to find the
optimum sensor locations along a beam for tactile sensing purposes. In this ex-
periment, genetic algorithms were used in an attempt to determine the optimum
sensor locations on the plate to ensure there was & minimum level of redundancy
in the data. Genetic Algorithms operate using the theory of evolution. By breed-
ing and mutating a set of chromosomes (the coordinates of the sensor positions
in this case) the chromosomes are evolved through several generations resulting

in a set of optimum coordinates.

The algorithm starts with a random set of coordinates, and converts the values to
binary strings (the chromosomes). A population is generated, initially consisting
of many sets of different chromosomes. A cost function (see section 3.3.3.1) is used
to assess each of the chromosomes with a lower score indicating a better suited
chromosome for the job. Each chromosome is tested against the cost function

and the best chromosome from the population is stored.

A ‘wheel of fortune’ is then constructed. Each chromosome in the population
has a segment on the wheel. The size of the segment is inversely proportional to
the score, so the lowest score has the largest segment and hence is most likely to
be chosen. The wheel is then ‘spun’ a number of times to select a chromosome.
Whichever segment is landed on results in that chromosome being added to the
new population. The resulting new population is most likely to be made up of

only the best fitting chromosomes (i.e. those with the lowest scores).
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The new population is then ‘bred’. A proportion of the chromosomes are selected
at random. The breeding process involves splitting pairs of chromosomes at a
random point into two parts. The first part of the first chromosome is joined to
the second part of the following chromosome, whilst the second part of the first
chromosome is joined to the first part of the second chromosome. Finally, muta-
tions are carried out. This involves inverting random bits of some chromosomes

in the population. Only a small proportion of chromosomes are mutated.

The new population is now complete, with the process repeating, starting with
a new sct of scores being calculated. After the final generation has been created,
the resulting chromosomes are converted back into coordinate values, indicating

the optimum sensor locations.

3.3.3.1 Cost function

A cost function is used to assess the fitness of the resulting population. Each
chromosome is assessed by evaluating a cost function against it. The lower the
cost, the better the chromosome is in achieving the required goal. Using the
‘survival of the fittest’ theory, the chromosomes with the lowest costs are then
given the highest chance of breeding, hopefully improving the fitness of the next

generation of populations.

In this case, the aim is to find the optimal sensor locations that will minimise the
error in predicting the force position by the neural network. Two cost functions
were devised, the first uses correlation of the time series data, the second uses

the variance of the eigenvectors. Each is discussed below.
Correlation Method

The initial idea was to use correlation as a cost function. Distributive tactile
sensing relies on each sensor providing time series data which is as different as

possible to that of the other sensors. Achieving this will provide the optimum
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Figure 3.5: Distribulion of sensor locations using genetic algorithm

amount of information about the plate surface to the neural network. A cost
function was therefore derived that measured the correlation of each set of time
series data. Those populations with the lowest correlation between all the sensors
were deemed to be the ‘fittest’ and assigned the lowest cost. A high correlation
indicates the time series data was similar between sensors, therefore, providing

redundant data.

The algorithm was run for eighty generations (1.e eighty breeding events occurred)
using plate deflection data generated from a moving load passing over the surface
at 3.2ms™! (the load had the same properties as those described at the beginning
of section 3.3). The fittest population of the eightieth generation was stored.
This was then repeated two hundred and fifty times, generating 250 optimum

populations. Each optimum sensor location is plotted in Figure 3.5. As can be
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seen, the populations cluster around various areas on the plate.

Figure 3.6: Chosen sensor locations, determined from GA results.
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Eigenvalue Distribution Method

Another hypothesis was that the best tracking accuracy could be achieved when
there was a large variation in the eigenvectors between each sampling window
representing a different load position. To quantify this, the variance of each
of the six components of the first eigenvector were measured from the set of
eigenvectors resulting from a load fully traversing the plate at 3.2ms™!. The ‘cost’
was then based on the resulting variance of the vectors, the aim being to achieve
the highest variance and therefore hopefully achieve the greatest spread with
easily distinguishable vectors. The cost function for each set of sensor locations
is therefore calculated as the mean of the variance of each of the eigenvector

values.

The algorithm was run for 200 generations, with a population of 100 sets of
locations, each set containing ten possible sensor locations. Although no grouping
was found with this method, the ten sensors locations tended to converge to six
valid sensor positions. Therefore, using the clustering identified from the first
method and the optimum number of sensors suggested by this method, a sensor

layout was devised as shown in Figure (3.6)

3.3.3.2 Comments

Genetic algorithms have been found to be very successful for various applica-
tions, where a clear cost function can be defined. However, their performance
is questionable in some applications such as this one, where a large number of
possible combinations are possible, along with an unclear definition of what the
cost function should be. It is suggested for this application, a logical distribution
of the sensors will yield equally as good results, but with a lower computational
overhead. However, on the otherhand by using the genetic algorithm, a gauge of

how many scensors arc likely to be required for this application has been identified.

63



3.3 Methodology of Position Tracking

3.3.4 Neural Network Implementation

The neural network was generated using the MATLAB Neural Network Toolbox
(v4.0). The network used was a multi-layer perceptron (MLP) with an error back
propagation training algorithm. The input data was in the form of the resulting
eigenvectors generated using the KLD method. Therefore, six input nodes were

implemented, one for each of the values in the vector.

The network was trained and tested using 4, 8, 12, 20 and 40 hidden nodes, to
see which gave the best performance. It was found that the number of hidden
nodes had very little effect on the network crror. However, twenty hidden nodes

were chosen as it produced the overall lowest mean error.

A single output node was used to provide the location prediction. The output
value was a normalised location along the length of the plate in the range [0,1]
(note, the position of the load along the width of the plate remained fixed as the

load moved across the length of the plate).

The hidden-node transfer function was a tan-sigmoid function, with a pure-linear
function applied to the output node, which is the standard architecture for re-

gression (as opposed to classification) networks such as this one.

3.3.4.1 Training

In an attempt to make the model resilient to speed variation, datasets were

generated for loads traversing the plate at speeds between 2.4ms™! and 3.4ms™!,

going up in steps of 0.2ms™!. The resulting plate deflection matrices were then
split into two groups. The first group was used for training the neural network

and contained the plate deflection matrices for speeds of 2.6, 3.0 and 3.4ms™!.

The second group was used for testing the neural network and contained the plate

1

deflection matrices for speeds of 2.4, 2.8 and 3.2ms™ . Each dataset was compiled

into windows of data using the method described in section 3.3.1. Gaussian noise
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was added to each window of data with a mean amplitude of 0.3 times the mean
data amplitude, which was found to provide a realistic level of distortion to the
signal. Ten separate noisy data windows were generated for each window position
within the time series, resulting in ten slightly different sets of data for the same

output value.

A KLD was then carried out on the data window, resulting in corresponding
POMs and POVs. Ordered by the magnitude of the corresponding POV, the
first, most significant POM resulting from each window was used and normalised.
Training data thercfore consisted of three (number of different speeds) by ten
(number of noisy variations of the sensor data) eigenvectors for each correspond-
ing location on the plate. The expected output vector had to be a location
corresponding to the input vector. The position of the load is defined to be its
location when the last window sample is captured. To make it dimensionless it
is divided by the plate length to give a relative position between zero and one.

For the model, the position, Y'(i) is calculated using:

_(ia+y)Te

[0

Y (4) (3.27)
where: i is the i*" data window, ~ is the window size, A is the shift size, c¢
represents the speed of the moving force, 7' is the sample period and a is the

length of the plate.

This equation also makes it clear that the tracking resolution is dependent on the
window shift size, 8. Therefore, for a given shift size, the delay between calculated

position readings is simply A - T seconds.

When training the neural network, it is important that the resulting architecture
fits the generalised underlying model of the data and is not overfitted, such that
it also follows the noise in the training data. Therefore, the Bayesian regularisa-
tion method was used to train the network. Bayesian regularisation [70] uses the
assumption that the weights and biases of the neural network are random vari-

ables with specified distributions. The regularisation performance parameters
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are related to these distributions, and can then be estimated through statistical
techniques. The main advantage of the Bayesian regularisation method is that
it does not require a separate set of validation data. The Bayesian method can
achieve a successful generalised result using a single set of data, thereby reducing

the quantity of training data required.

A summary of the neural network implementation is shown in Table 3.1.

Network type Multi-Layer Perceptron (MLP)

Training method Back Propagation with Bayesian Regularisa-
tion

Hidden node f(z) Tan-sigmoid

Output node f(z) Pure linear

No. of input nodes 6
No. of hidden nodes | 20

No. of output nodes | 1

Input data Single, six value eigenvector (see 3.3.1 and
3.3.2)
Output data Continuous value in the range [0,1], represent-

ing a location along the length of the plate (see

3.3.4.1)

Table 3.1: Summary of the neural network implementalion
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3.4 Results

3.4.1 Model Verification

A verification of the devised model was implemented using a transient test in
which the response of the real and theoretical plate was compared. A simply
supported steel plate with physical properties matching those described in section
3.3 was struck with a plastic tipped force hammer (location (0.14m,0.34m)). The
response of the plate was recorded using a scanning laser vibrometer (Polytec

PSV-400) to measure the vibration at a single location (0.26m, 0.26m).

The force created by the force hammer represented an impulse of approximate
duration of 1.2ms and a peak force of 90N. The velocity of the plate deflection
was measured by the scanning laser vibrometer. To simulate this scenario, the
model was run with a statically located force whose profile was generated using
a fourier series with a long duty cycle such that the impulse was just 1.2ms in
duration but had a period of 100ms. This enabled the simulated response due to

the single impact to be analysed for a duration of 100ms.

After substitution of an appropriate damping factor and differentiating the simu-
lated displacement to obtain the response velocity, the resulting comparison of the
experimental response against the simulated response shows a good resemblance

in both the time and frequency domains as shown in figures 3.7 and 3.8,

3.4.2 Optimum Window Dimensions

The window size and shift values can affect the resolution and accuracy of the
resulting predicted values. Three different window sizes and three different shift
sizes were tested in combination. The windows contained 500, 1000, and 1500
data samples, relating to a duration that was 0.5x, 1.0x and 1.5x the applied force

period, respectively. The window shifts were 20, 50 and 100 samples. Table 3.2
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Figure 3.7: Comparison of lime domain transient response (=) of a real plate

compared to the simulated response (- -) of a plate with similar properties.
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shows the resulting errors for the different window size-shift combinations over a

range of speeds.

Window Size (n) | Shift (m) Error (%)
2.4ms~! | 2.8ms~! | 3.2ms™' | Mean
500 100 6.2 3.8 3.4 4.5
500 50 11.8 3.6 3.9 6.3
200 20 5.8 3.6 4.9 4.8
1000 100 4.6 4.4 5.6 4.9
1000 50 4.8 4.6 5.4 4.9
1000 20 3.6 3.6 4.4 3.9
1500 100 5.5 1.5 1.8 2.9
1500 50 2.6 1.4 1.3 1.8
1500 20 1.5 0.9 1.2 1.2

Table 3.2: Mean tracking errors for different window and shift sizes.

The results in the table appear to show a general trend of a larger window size
giving better prediction results. Figures 3.9 to 3.11 show how the tracking varies
with different window sizes. Starting with the 500 sample window, it can be seen
that for the majority of the time the tracking is accurate. However, large glitches
in the prediction occur along the way, causing the overall mean error to be high.
The 1000 sample window appears to have the worst tracking performance, with
a periodic variation in its tracking. Finally, the 1500 sample window manages to
track the actual location very accurately, with less than two percent error, when

a fifty or twenty sample shift is used.

Further investigation indicates that the optimum window size is related to the
period of the harmonically varying amplitude of the applied load. Specifically,
results show the optimum window size (duration) is 1.5 times the period of the

applied load. Whilst the window size has a considerable effect on the accuracy,
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it was found that the shift size has very little effect. Ideally, the shift size should
be as small as possible however, to maximise the data resolution. In reality, this

will be limited by how fast the PC can process the data between captures.

3.4.3 Noise Tolerance

The overall system was tested to see how tolerant it was to noise present on the
input signal. The results of the test gave an indication of whether the algorithm
would still produce acceptable tracking results when real data is presented to the

system rather than simulated data.

The neural network was trained as defined in the previous sections, with Gaussian
noise added to the time series data from the six sensors. The neural network was
then tested using simulation data with increasing levels of noise added. The
input data was taken from the simulated response of the plate subjected to the
square wave moving force traversing the plate at 3.2ms™!. Noise was added with
an amplitude of between 0.3 and 2.0 times that of the mean time series data
amplitude. The resulting percentage error, calculated as the difference between
the actual and predicted location, divided by the plate length, is shown in Figure
3.12. The tracking algorithm continues to give robust results until the mean noise
magnitude is equal or greater than the mean data signal amplitude, after which

the error increases substantially.

3.5 Conclusion

In this section it has been shown that, using a mathematical model, the loca-
tion of a moving load with an unknown, harmonically varying amplitude can be
tracked along the length of a plate. Based on the Distributive Tactile Sensing

method, it was possible to track the location of the force over a range of speeds
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with an error of less than two percent. Initially, a model of the dynamic plate re-
sponse was implemented based on that developed by Szilard [31] and extended to
a damped response due to a moving force. The time series data was dimensionally
reduced using a windowing method along with the Karhunen-Loeve decomposi-
tion method. The method developed enabled tracking of the load position to a
high accuracy at a reasonable time resolution. Gaussian noise was applied to the
simulated sensor outputs in an attempt to recreate real operating imperfections.
The algorithm developed was found to be tolerant to the added Guassian noise

up to an amplitude equal to that of the mean signal amplitude.

Although it was found that the optimum window size is related to the frequency
of the amplitude of the applied load, having a ‘mismatched’ window only intro-
duces a small increase in error. This area would however, benefit from further
investigation when working with randomly varying loads. The results from this
section can also be used as an indicator of how to manage large amounts of
time series data from practical vibration related experiments. Karhunen-Loeve
decomposition along with a moving window method has been shown to be an
offective techmique in formatting and reducing data dimensionality for rcal-time

processing.
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Chapter 4

Tracking the position of a

pendulum in real-time

4.1 Introduction

In this section, the distributive tactile sensing method is applied in an experiment
that simulates the measurement of sway. The experiment was designed to exam-
ine the viability of using distributive tactile sensing for a relatively large scale,
dynamic, platform based application. As this was one of the initial experiments,
it was designed to be controllable with only a small number of variables such
that the required platform and signal processing circuits could be developed and
tested. To do this the experiment investigated the use of a platform along with
distributive tactile sensing methods to track the position of a swinging pendulum
supported by a frame mounted on the platform. This has relevant applications in
the area of balance and sway measurement of people during quiet standing and
also provided a practical proof of concept, where the techniques were able to be

further developed for the application of gait classification (Chapter 5).
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Postural stability is a key indicator of an increased risk of falls in the elderly
[44; 45; 46] and therefore is an important area of research. Common instruments
currently used in the measurement of balance during quiet standing are the force
plate [47; 48] and commercial products based around the force plate such as
the Biodex Balance System (Biodex Medical Systems, NY, US). However, these
are expensive devices that tend to be found only in professional gait analysis
laboratories [51]. Recently, much research has gone into the development of
accelerometer based balance measurement devices [50; 51]. However, these require
various corrective algorithms to overcome fundamental issues such as the presence
of an unknown gravity component and inherent drift [50]. Furthermore, the use of
accelerometers commonly requires a large belt [50; 52] that must be tightly fitted.
This could cause discomfort and tension in a person who is already unsteady in
long standing periods. The DTS method developed can provide a low cost solution
to the measurement of balance and sway, whilst causing a little restriction to the

subject in comparison to current methods.

4.2 Collaboration

The experiment described in this chapter was carried out jointly with Iskander
Petra, a PhD research student at Aston University, investigating the implementa-
tion of neural networks on electronic embedded devices (e.g. Field Programmable
Gate Arrays). Collaboration provided benefits to both parties, using the com-
bined skills and knowledge to produce an accurate method of tracking the pen-
dulum position in three dimensions and in real-time. Table 4.1 has been provided

to give an indication of the distribution of the work in this experiment.
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MTE P Joint

Sensor evaluation (4.3.3) Neural network Data analysis (4.5)
Platform and evaluation (4.3.6) Swing design (4.3.2)
base-plate design (4.3.1) Neural network Amplifier circuit (4.3.4)
Offset circuit evaluation implementation (4.3.6) Capture of results (4.4)
and design (4.3.4) Clipping circuit design (4.3.4)

Motion capture operation (4.3.5) | FPGA programming (4.3.6)

Plate deflection model (4.4.1)

Table 4.1: Breakdown of work distribution for this experiment

4.3 Experimental Setup

In this experiment, a supported steel plate is used as the contacting surface.
The motion of a pendulum mounted on the plate causes the surface to deform
i response. Three infra-red deflection sensors are located underncath the plate
to measure the corresponding plate deflection. The outputs from these sensors
along with the measured swing position captured by a motion capture system are
used to train a neural network to relate the sensory data to corresponding swing
positions. The trained neural network is then implemented onto an embedded
system and used to predict the pendulum position in three dimensions, in real

time.

A detailed description of the experimental setup is given in the following section.

4.3.1 Platform Design

A supported steel plate was designed which acted as the measurement platform.

The plate dimensions were 900mm x 530mm, with a thickness of 3mm. The plate
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was supported by a frame made of hollow rectangular steel tubing and could
be clamped on the long sides if required. The frame was used to support the
plate and raise it up to a suitable height to enable the sensors to be positioned
underneath. As shown in Figure 4.1, the coordinate system of the set up was
orientated such that the X-axis ran parallel to the short side of the plate, the
Y-axis ran parallel to the long side of the plate and the Z-axis pointed vertically
upwards. The origin of the coordinate system used was positioned at a corner of

the plate.

Figure 4.1: Photograph of the experimental setup.
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4.3.2 Swing Design

The swing consisted of a four legged ‘A’ frame which supported a centrally located
pendulum. The frame was a steel construction with legs of length 720mm. The
angle between the A-frame legs was adjustable if required. The feet were free
to rotate so that if the frame angle was altered the feet remained flush to the
surface of the plate. The width of the frame was fixed such that the feet of the
frame were set 45mm in from the inner edge of the plate clamps. The pendulum
consisted of a 500mm long, 9mm diameter threaded bar attached to a hub which
rotated around the top horizontal bar. The pendulum was able to hold standard,
stackable metric weights of 5kg or 10kg. A nut and large washer positioned above
and below the weights were used to hold them in position. A mechanical drawing
of the swing is shown in Figure 4.2. A photograph of the experimental setup is

shown in Figure 4.1.

Figure 4.2: Mechanical drawing of swing and platform
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4.3.3 Sensor Design

4.3.3.1 Sensor Types

Sensing devices were used to measure the response of the platform surface and
output a signal in an electrical form. Various sensor types were investigated to
find a device that was most appropriate for this application. Tests were carried

out on three different sensor types:

a). Accelerometers. These devices are commonly used for vibration measurement
experiments and have also been used as a measurement of sway [50; 51]. Two

different accelerometer devices were tested for their suitability.

b). Fibre Bragg Gratings. Optical fibres with an etched grating have been
successfully used by Cowie et al [71] in a static distributive tactile sensing ap-
plication. In the experiment, the gratings were found to have a better accuracy

than that provided by an electronic strain gauge.

c). Optical Displacement Sensors. Again, successfully used in previous static
distributive tactile sensing experiments [20; 21], these are low cost devices that
provide a sensitive analogue output related to the distance between the sensor

and the reflecting surface.

The outcomes from the evaluation of each device are discussed below.
Accelerometers

Accelerometers can accurately measure the acceleration of the surface they are
attached to. They are commonly used in vibration analysis experiments due to

their high sensitivity and bandwidth. Accelerometers primarily contain one of

two technologies: piezo-resistive or piezo-electric.

A piezo-resistive accelerometer works through the use of a wheatstone bridge net-

work that changes resistance in proportion to the applied seismic force [72]. This
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type of accelerometer can operate down to zero hertz and is therefore, commonly
used for low frequency applications such as motion detection. However, this type
of accelerometer has inherent issues when operated at low frequency, related to
drift and the unknown contribution of gravity when the axes are offset from the

normal.

A piezo-electric accelerometer does not have a frequency range down to zero hertz
and therefore can only detect changes in acceleration (such as that occurring in
vibration situations). The applied vibration causes the compression and expan-
sion of a piezo-electric crystal inside the device [72]. Due to the very small signals
produced, the device will usually include an internal amplifier (known as Inte-
grated Electronics Piezo-Electric: IEPE) that converts the charge produced by
the crystal into a voltage (in the millivolt range). Others will output the charge

direct in units of pico-Coulombs.

Accelerometers are either packaged in a low cost integrated-circuit (IC) form or
as a much more expensive, highly engineered form. Two accelerometer devices
were evaluated to assess their viability for both the experiment described in this
chapter and those in chapters 5 and 6. The first device was a Star APA300 triax-
ial piezo-ceramic accelerometer (piezo-ceramic uses a similar operating principle
as plezo-electric). This was a low cost, IC based design and therefore required
external electronic circuitry for correct operation. The device was passive and
hence had no internal pre-amplifiers. Therefore, the output signal was extremely
small, requiring a high impedance input to the external op-amps with a mini-
mum amount of track distance between the amplifier and the device to minimise
noise. A circuit was developed based on a recommended design described in the
assoclated design guide [73]. The schematic design, layout design and photo of

the final implementation can be seen in figures 4.3 to 4.5.

Unfortunately, testing presented very poor results. The output suffered severe
drift problems and the sensitivity to vibration was very low. This could be due to
the device being passive and therefore requiring strict tolerances on the external

circuitry. Although the printed circuit board (PCB) developed followed the rec-
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Figure 4.3: Schematic design for APA300 accelerometer device

ommended guidelines, high quality manufacturing equipment was not available
and as such the tracking quality may not have been to the required standard. It’s
possible that a shielded box may also have reduced external noise, although the
ideal solution would have been for the device to have had an internal amplifier.
The Star ACB302 device was introduced to the market approximately two years
after the evaluation of the APA300 took place. This was a new version of the
APA300 with a built in amplifier and a frequency range that included zero hertz.
Unfortunately. the project had progressed with a different sensor technology at

this stage and hence the device was not evaluated for use in this project.

Due to the low cost device having a poor sensit
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Figure 4.4: PCB Layout of APA300 Accelerometer design

Results from experimental tests of this accelerometer showed that although it
was highly sensitive, the low frequency of the swing application described in this
chapter and that of the walking experiments in chapters 5 and 6 meant that
meaningful data could not be retrieved. It is suggested that accelerometers could
be useful in applications where the subject is running over the surface due to
the increased impact and hence vibration amplitudes generated. However, due
to the low frequencies and small deflections involved in these experiments, it was
concluded that both the low cost Star APA300 accelerometers and the much
higher precision BK4506 accelerometers were not viable sensor devices for this

application.
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sensing elements can be embedded into the plate itself resulting in a self contained

unit.
Infra Red Deflection Sensors

Infra-red deflection sensors have been successfully used in previous distributive
tactile sensing applications [20; 21] and after weighing up the alternatives de-
scribed above it was decided that the simple operation, sensitive output and low

cost meant that these devices were the best sensor choice for this application.

The sensor devices (part number: SY-CR102, unbranded) consist of an infrared
LED and integrated phototransistor. The LED is shone onto a surface with the
reflection captured by the phototransistor. The intensity of the light captured by
the phototransistor relates to the distance between the sensor and the surface.
The sensor outputs a continuous analogue voltage, which when used with a high
resolution analogue-digital converter is very sensitive to small changes in plate
deflection. The output voltage is non-linear and is designed such that at very
close range a binary output is given such that the device can be used as a counter
or for measuring rotational speed. Between approximately Imm and Smm dis-
tance, the output increases non-linearly. After dmm, the output continues to
increase but asymptotically. A typical output characteristic is shown in Figure
4.7. The unshaded area indicates the optimum operating range as defined using

the mathematical model discussed in section 4.4.1.

4.3.3.2 Sensor Mountings

The sensors themselves are very small with a dimension of just 2.5mm x 1.5mm
and only require a small number of external passive components for correct op-
eration. The schematic and PCB layout are shown in Figure 4.8 and Iigure 4.9
respectively. Three connections were required to the PCB: 5V (power in), GND

(ground connection) and VOUT (signal output).
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Figure 4.8: Schematic for infra-red sensor PCB

Figure 4.9: Component layoul of infra-red sensor PCB

from steel, therefore enabling the magnets mounted to the sensor brackets to
clamp the sensor into any position on the plate. This enabled the effectiveness of

different sensor locations to be tested simply if required.

To ensure the sensor positions were fully flexible and to reduce the number of
wires emerging from the plate, power and ground rails were placed along the long
edges of the base plate. To construct the rails a bolt was positioned at each
corner of the plate. Exposed twisted copper wire was then mounted between the
bolts parallel to the long sides of the plate. A short length of wire terminated
with a crocodile clip was then all that was required to connect the power and
ground of each sensor regardless of its position on the plate. The sensors were
located directly under the swing frame such that one was positioned between the
two front feet, one between the two rear feet and the final one under the frame

centre point (see Figure 4.11). Notice that the sensors are slightly offset from




4.3 Experimental Setup

Figure 4.10: Design drawing of the adjustable sensor bracket.

cach other to avoid symmetry. The output from each sensor was connected to a

signal conditioning circuit, described in section 4.3.4.

4.3.4 Signal Conditioning

The output from the sensors when in a steady state, i.e with the swing mounted
onto the plate but not moving, produced a stable (d.c) voltage of between ap-
proximately four and five volts. With the swing in motion, a small dynamic plate
deflection was produced by the motion and detected by the sensors. This created
a variation in the original d.c voltage of a few millivolts (a.c voltage). Therefore,
the output signals consisted of two components: the d.c offset voltage, V, and
the much smaller a.c voltage representing the movement of the swing AV, ie.
Vour = V' + AV. Therefore, the sensor signals were required to be conditioned

using a circuit that removed the d.c component, V, such that the newly condi-
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Vies 18 a comparison voltage.

A voltage reference was supplied as the comparative mput to the sensor signal.
The d.c voltage from each sensor was measured when the swing was stationary on
the plate. Using a potentiometer, the reference voltage was set to the same value
as the d.c voltage from the sensor. From equation 4.1, it can be seen that this
causes the differential amplifier to output zero volts. The gain, G was set to ten.
By removing the d.c component only the small dynamic component caused by
the swing movement remains and is amplified by a factor of ten by the differential

amplifier.

This method turned out to be very fiddly to set up and was very susceptible
to drift. The d.c offset voltage from the sensors was unstable over time, such
that the reference voltage used to cancel the offset voltage was required to be
readjusted regularly to account for the drift. Secondly, the use of low precision
components in the system (i.e. the potentiometer for reference adjustment and
op-amps used for the differential amp) meant that getting the reference voltage
to exactly mateh the d.e offsot voltage was very difficult. For example, due to the
gain of ten amplification, a difference between the reference voltage and the offset
voltage of just 0.1V resulted in a 1V d.c offset still being present on the output.

This was unacceptable as the FPGA inputs had a maximum input voltage of 1V.

After several attempts it was decided that the circuit was unworkable and a new

design had to be considered.

4.3.4.2 Filtering Method

A second design was investigated that was based on an ECG monitor amplifier
and used a filter circuit to decouple the d.c voltage from the a.c component
[74]. The design is shown in Figure 4.12 and uses two op-amps. The first in the
upper left corner is a high accuracy instrumentation amplifier, which is used to

reduce any inherent drift and offset voltages in the circuit. The second op-amp
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over the range :1.25V and was fully synchronised with the sampling rate of the

cameras at 200Hz.
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Figure 4.15: 3D representalion of the swing in the motion capture soflware.

4.3.6 Field Programmable Gate Array

To enable the system to track the swing in real-time as a stand alone embedded
device (i.e no external processing provided by a PC or similar), the neural net-
work was implemented on a ficld programmable gate array (FPGA). An FPGA
1s a silicon chip based integrated circuit device consisting of a large matrix of
interconnected logic gates. The interconnections between the logic gates can be
made or broken and their configurations adjusted such that complex logic circuits

can be created. Algorithms are used to convert a high level, simple programming
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language (e.g ‘“VHDL’) into the mappings of the logic gates required to produce

the desired functions.

For this experiment, the methods derived by Petra et al [75] were used to generate,
synthesise and implement a neural network onto a Xilinx Xtreme FPGA-based
embedded system (Nallatech Ltd, Glasgow, UK). The embedded system consisted
of a high performance dual channel, 14-bit Analogue-to-Digital Convertor (ADC),
a corresponding Digital-to-Analogue Convertor (DAC) and a Xilinx Virtex-1I
FPGA XCE2V3000 (32,000 logic cell device). A further Virtex-1I XC2V80 FPGA
was used to provide clock management functions. The embedded system is shown

in Figure 4.16.

The system was fully compatible with the Xilinx Blockset and Xilinx System
Generator software toolboxes for Simulink (The Mathworks, Inc., MA) enabling
the neural network to be trained and constructed in the Matlab/Simulink envi-

ronment before being synthesised on to the FPGA.

4.4 Method

4.4.1 Mathematical Model

Before the platform and swing were constructed and the sensor circuits imple-
mented, an initial mathematical model of the pendulum and frame was produced
to determine the operating range of the sensors (see Figure 4.7) and the level of
amplification that may be required. Based on Figure 4.17, the following equations
give the resultant vertical force at each foot of the frame and was hence used to

determine the dynamic plate deflection when the swing was in motion.

From Figure 4.17 it can be seen that four forces are acting on the pendulum
mass, Fy., the radial component of the weight due to the mass itself, F,, the

tensile force on the pendulum, F,, the centrifugal force and F,,, the tangential
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Figure 4.17: Forces and moments due to the motion of the pendulum.

F, = mw?R (4.4)

where R is the rod length. To find w, conservation of energy principles can be

used:

1. 1
5Jw2 + 7hgh = 5]& (4.5)

- mor
where J is the moment of inertia about the mass and Winaz 18 the maximum

pendulum angular velocity. From figure 4.17 it can be seen that h = R — Rcos 6

SO:
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., 2mgR
W = I — cosh) (4.6)

mazr J

Defining 6y as the initial angle of release, then when 8 = 0o, w = 0 so:

; 2m
wfnal‘ = ng‘_@(i — COs 90) (47)

Substitute equation 4.7 into equation 4.6 to get:

e 2mgR
J

(cosf — cos by) (4.8)

As the force does not move in the plane of F. and Fy,, then as shown in Figure
4.17, the tensile force must be equal to the sum of the centrifugal force and the
gravitational force in the radial direction. Using equations 4.3, 4.4 and 4.8, the

tensile force, F), is given as:

Mg ; . .
F,= 71 [(J + 2mR?) cos § — (2mR? cos 6o)] (4.9)
Finally, the tangential force is created by the moment of inertia about the centre

of the mass. The equation of motion of the system is defined as:

d*0

Given a rectangular cross section of the mass with a width, ¢ and height, b, the

moment of inertia about the centre of the mass is:

Joom = (4.11)
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The torque due to the mass is:
'29 2
T = JcoMEﬁ (4.12)
From equation 4.10:
fracd*9dt* = imgRsin 6 (4.13)
so:
=02 |2\ = s
T:m(a +b°) mgRsing (4.14)

12 J
Finally, the tangential force is found by dividing the torque by the rod length to

get:

m*g(a? + b?) sin §
12J

nl
F m

(4.15)

The horizontal and vertical component forces acting on the frame bearing can

now simply be found as follows:

F,=F,sinb - F,, cosf (4.16)

F,=F,cos0 — F,, sinf (4.17)

Defining M = F,, R and using equations 4.16 to 4.17, then by summing the mo-
ments the resulting equations for the vertical force at each foot can be calculated

as follows:
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LF,sin¢g+ M — LF,cos o
/= Y el
No 2L sin ¢ (4.18)
LF,sing — M + LF, cos ¢
I y i
N, Lsnd (4.19)

where L is the length of the swing legs and ¢ is the angle between the legs.

This model assumes a two dimensional representation of the swing and therefore
requires the assumption that the resulting front (NV,;)and rear (Ny») forces are
split equally between the two feet on the front and rear of the swing. Note,

damping was not taken into account for this model.

By converting equations 4.18 and 4.19 to a series of summed sine terms it is
possible to apply it to Szilard’s dynamic plate model [31]. The resulting model
makes it possible to determine the plate deflection at any point, due to the motion

of the swing.

Implementing the conversion resulted in the following sine series:

o = ko+ (k1 + ko)sinf — kg sin (g— — 0)

+ (kg + ks)sin (g - 20) — (ke + k7) sin 20 (4.20)

Ny2 = ko — (]v] +]€2>Sin6—k3$in (g —9)

-4

(ks ~ k5) sin (g - 29) — (kg — k) sin 26 (4.21)

where:
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1 Mg _ m (a® + b?)
ky = — 2mR? 4+ ———— 7 4.22
" T Ttang { 7 (‘]+ R+ 5 (4.22)
R m*g (a® + b%)
ky = 2
! ?_Lsin(b{ 12.J } (4.23)
ko = mR*cosé, (4.24)
)
ky = M (4.25)
tan ¢
1 mg s
= = (J + 2mR? 2
ka mwb (7 +2mR?) | (4.26)
1 mQQ(a2+b2)
ks = : 4.2
° 4tan¢[ 12J (4.27)
ke = %(J+2m}22) (4.28)
=2 (2 | 72
m°g (a* + b?)
b 2
7 137 (4.29)

The deflection of a plate due to a harmonic force can be found using equation
3.23. Note, it is assumed the plate is simply supported, rather than clamped,
to avold excessively complicated equations. The result will provide a suitably

accurate approximation of the real plate deflection when the swing is in motion.

w(z,y,t) = Zsin (prt) Z Wi sin <*/,;r:1:> sin <i;’_u> (4.30)

r=1 i=1 j=1 * v

where p, is the frequency of the r sine term, 1, [, are the plate dimensions and
Wi describes the mode shape due to the applied force. The load is applied to the
plate through the rectangular feet of the frame. Assuming each foot has length ¢
and width d with the foot centre located at (e,7), the resulting mode shape, P;

for a simple harmonically varying force is given by:

16 "7?6 9 T 7 " T d
Py = sin (Z ) (zl_*f’> sin (22 sin (’g; ) (4.31)

110



4.4 Method

where pg is the force per unit area.

For a dynamically varying force made up of multiple sine terms we extend this to

calculate P, and substitute py (equation (4.31)) for py, , the force per unit area

> sin (T;ZC) sin <%i> (4.32)

Finally, defining wj; as the natural angular frequency of the plate for mode (,7)

of the 7" sine term.

16; TE )T
P = -—21).0.7‘ sin <z7r ) sin ('277?
217 Ly

Ly

and 7 as the mass per unit area of the plate, Wijr can now be defined as:

By .
Wijr = m (4.33)
In this case [our force distributions (area: 0.05m x 0.06m) are used to represent
the feet of the swing. Equation 4.30 is used to determine the plate deflection due
to each individual force with the resultant deflection given by the sum of these
deflections. The predicted deflection of the plate at the chosen sensor locations
(as defined in Figure 4.11) are shown in Figure 4.18. Note, that damping is not

taken in to consideration.

The results from the model show that the maximum deflection will be approxi-
mately 0.5mm and therefore, the sensors were required to be positioned so that
they operated in their most sensitive region (as shown in Figure 4.7). Addi-
tionally, to take advantage of the full ADC range, an amplifier gain of ten was

specified for the signal conditioning circuit.

4.4.2 Neural Network

To couple the sensor outputs and relate the plate deflection data to the pendulum
position, a multi-layer perceptron (MLP) neural network was used. A regression

network was implemented that consisted of three inputs (one for each sensor), a
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sponding X, Y and Z coordinates of the swing. For the input data, no further
pre-processing of the signals was necessary as the gain of the signal conditioning
amplifier stage (along with the clipping stage) was set to ensure the voltage range
was between £1.0V. Post processing was applied to the output data so that, for
example, the Y-coordinate range of between 200-300mm was normalised to give

a voltage between +1.0V.

The training data was captured using the motion capture system. This enabled
a fully synchronised training dataset to be produced which related the sensor
outputs to the corresponding three dimensional location of the pendulum at that
moment in time. Three, fifteen second captures of the pendulum in motion (one
launch per capture) were used to produce the training dataset. These samples
were then randomly permutated such that they were not presented to the neural

network in time order.

The back-propagation algorithm with a scaled conjugate gradient optimiser was
used to train the neural network whilst using the Early Stopping method. This
method requires the data captured for training to be split into three sets: training,
validation and test. The algorithm trains the network by a number of iterations
at a time using the training dataset. After each group of iterations the network’s
current state is tested against the validation dataset with the resulting error
compared to the previous validations. If the error converges or starts to rise again
then training is stopped. Finally, the fully trained neural network is presented
with the test data. This is data the network was not exposed to during training
or validation and so provides a benchmark as to how accurate the neural network

1s at producing the expected output.

The training data was therefore split into training, validation and test sets, with

the chosen proportions as follows: Training, 50%; Validation, 25%: Test, 25%.
Proj g ) )

The training was done offfine in MATLADB using the Netlab add-on package (I T.
Nabney, Aston University, 2004). By training offline, optimisation of the network
was possible in order to determine the optimum number of hidden nodes, hence

reducing the network complexity. By reducing complexity, generalisation to the















4.5 Results

Network type Multi-Layer Perceptron (MLP)
Training method Back Propagation with Early Stopping
Architectures Single, Multiple and Cascaded

Hidden node f(z) Tan-sigmoid

Output node f(z) Pure linear

No. of input nodes S:3, M:3,3,3, C:3,4,5
No. of hidden nodes | S:16, M:7,7,9, C:7,6,5
No. of output nodes | S:3, M:1,1,1, C:1,1,1

Input data Three sampled voltage amplitudes from condi-

tioned sensor signals

Output data Three, continuous values in the range [0,1], rep-
resenting a normalised pendulum position in x,

y and z coordinates

Table 4.2: Summary of the neural network implemenitation

4.5.2 Experimental Results

The three neural network architectures described in section 4.4.2 were tested using
the FPGA implementation. As indicated previously, the Y dimension represented
the location of the pendulum along the length of the plate. The Z dimension
represents the height of the swing (from its static vertical position) and has a
smaller range of up to approximately 60mm. The swing has no free movement in
the X dimension which represents the displacement along the width of the plate.
Therefore, any measured displacement in this dimension is down to instabilities
in the frame and pendulum when the swing is in motion. The displacement in

the X dimension is small with a range of approximately 0-10mm.

The following graphs (Figures 4.24 to 4.26) show the predicted location against

the actual location as measured by the motion capture system as well as the error
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Axis | Architecture % Error

Matlab Sim. | Xilinx Sim. | FPGA Real Time

Single 1.8 2.5 3.8

X Multi 1.2 2.2 1.5
Casc. 2.9 3.1 3.8

Single 1.3 1.9 2.9

Y Multi 1.1 2.0 1.9
Casc. 1.4 1.5 2.1

Single 4.1 6.6 7.1

Z Multi 3.8 4.1 4.1
Casc. 4.0 4.9 4.7

Table 4.3: Average percentage errors for each azis and architecture measured by

Matlab simulation, Xilinz simulalion and the real time hardware implementation

for each sample. Tables 4.4 to 4.6 shows the percentage error in each dimension
for each architecture. The percentage error is calculated as the mean absolute

error divided by the mean absolute displacement over the time of the capture.

The results show that the different neural network architectures cause only a
small difference in the tracking error; although a marginal improvement in ac-
curacy 1s achieved by having an independent neural network for each dimension.
Regardless of the network architecture, it was found that the back propagation
neural network was successfully able to track the position of the pendulum in
three dimensions. The best case results show that the swing position can be

predicted, in real time, with an error of less than 5%.
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Figure 4.23: Mathematical model validation results, showing actual measured de-

Deflection (m)

— == Simulated

Measured

Tirne (s)

flection (black solid) compared to predicted deflection (blue dashed).

Dimension Mean Mean Percentage
Error (mm) | Displacement (mm) Error

X 0.3 7.0 3.8%

Y 8.6 271.7 2.9%

Z 1.9 26.7 7.1%

Table 4.4: Tracking accuracy of the neural network when using o ‘single’ archi-

tecture
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4.5 Results
Dimension Mean Mean Percentage
Error (mm) | Displacement (mm) Error
X 0.1 6.7 1.5%
Y 5.2 251.7 1.9%
Z 0.9 20.6 4.1%

Table 4.5: Tracking accuracy of the neural nelwork when using a ‘multiple’ ar-

chiteclure
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Dimension Mean Mean Percentage
Error (mm) | Displacement (mm) Error

X 0.3 6.8 3.8%

Y 6.3 262.9 2.1%

Z 1.0 20.6 4.7%

Table 4.6: Tracking accuracy of the neural network when using a ‘cascaded’ ar-

chitecture

4.6 Discussion

In this section, a novel platform based instrument has been implemented that
could ultimately provide balance and sway measurements of a person during
quiet standing using relatively low cost sensors and components. An experiment
has been deseribed which enabled a detailed evaluation of the accuracy of the
system developed. Using a pendulum mounted on an A-frame to perform the
representation of a swaying person during quiet standing, the system achieved
>95% tracking accuracy in all three dimensions. An embedded hardware hased
neural network was implemented, based on the technique developed by Petra
et al [75] which enabled real-time output of the pendulum position without the

presence of a computer workstation.

Extending the system to measure Centre of Mass (COM) or Centre of Pressure
(COP), as is commonly the required output from current balance systems, would
require some relatively simple additional algorithms. However, the key outcome of
this experiment was that distributive tactile sensing has been shown to be a viable
method for tracking the motion of an object placed on a relatively large scale

surface. In the following chapters, the equipment, signal processing hardware




4.6 Discussion

and analysis methods developed in this experiment, are used as a foundation to

explore the possibility of discriminating different gait patterns in people.
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Chapter 5

Person identification through the

discrimination of gait profile

5.1 Introduction

Person identification, based on biometric data has recently become an important
area of research. UK passports are soon to start using biometric data captured
from a person’s finger print and iris for example. Whilst finger printing and
iris scans are now well developed technologies, person identification by their gait
profile is a more recent arca of rescarch. Most rescarch into identification through
gait examines the whole body posture ghrough the gait cycle using video capture

and filtering methods (for example, Zhang et al [61]).

In this section an experiment is undertaken, whereby it is hypothesised that a
small number of people can be individually identified by the deflection pattern
created as they walk over a sensing platform. Using a similar experimental setup
to that described in Chapter 4, the hypothesis is tested using five volunteers.

This experiment moves away from the measurement techniques discussed in the
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previous chapters and instead investigates two different classification methods to
identify a subject when compared to templates stored in the system. The results
show classification accuracies that were reasonable given the similarity of the
physical build and age of the volunteers. It is suggested that this method could
be used as a convenient and unintrusive identification system where only a small

number of people are required to be identified, such as an office or workplace.

This chapter first describes the improvements to the experimental setup imple-
mented due to issues found in the equipment used in the previous experiment
(Chapter 4). The first algorithm investigated is the Dynamic Time Warping al-
gorithm which is used to classify a captured gait pattern to one of five people.
Secondly, feature extraction along with linear discrimination analysis methods

are used 1 an attempt to improve the classification accuracy.

5.2 Instrumentation Design and Setup

A new platform design was implemented that was a similar, scaled up version of
that used in Chapter 4. Several new design features were included that overcame

the problems and weaknesses identified when using the original design.

One of the main issues identified when using the original platform was not having
the base-plate attached to the frame of the platform. The steel base-plate was
used to position the sensors under the platform using brackets with a magnetic
base. The original base-plate had dimensions such that the frame of the platform
sat around 1t. The base-plate itself sat flush to the floor of the laboratory and was
not connected in any way to the frame. This made the system very sensitive to
external movements. For example, if the platform was knocked or moved in any
way, the relative position of the platform to the sensors was changed, therefore
generating a different deflection profile when the swing was in motion. This effect

reduced the repeatability of the swing experiments.
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It was important to eliminate this issue in the new platform design. The solution
was to sandwich the base-plate between two frames. The lower frame was in
contact with the floor and supported the base-plate. The upper {rame was used
to clamp the base-plate and support the main sensing plate. The two frames
were welded to the base-plate to create a solid structure. The top plate was not
welded to the plate, but was clamped on the long sides using a rectangular steel
bar secured with bolts. To enable cable access to and from the sensor circuits,
30mm diameter holes were created in each side of the upper frame. The platform

design is shown in Figure 5.1.

Figure 5.1: Mechanical drawing of the platform with o sandwiched base plate.

By integrating the sensor base-plate to the frame of the platform, the sensors
were now only sensitive to the effects caused by deflection of the top plate with
respect to the whole frame, rather than any movement to the platform itself due
to arbitrary knocks. Also, only a displacement large enough to overcome the

magnetic holding force of the sensor brackets was able to knock the sensors out
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of their set location. This enabled more reliable and repeatable results to be

produced.

5.2.1 Platform Dimensions

The platform was designed such that it was able to record two foot strikes (i.e.
one left foot and one right foot strike) as the subject walked over the platform.
To calculate the required platform length, research data was used to determine
the mean step length of an adult male. Murray el al [77] found this to be
approximately 78cm from a sample of 120. This was effectively doubled to ensure
the plate would always capture at least one left and one right foot strike. It was
also important that the subject could walk naturally without the width of the
plate causing them to narrow their stride. In this case shoulder width was used
to give a reasonable estimate of adult stride width. Anthropometric data was
used to determine the 95th percentile width of 0.5m [78]. An extra 200mm was
added to account for the clamp width, variation of stride width in different people
and also to ensure the foot strikes did not occur too close to the platform edge,

reducing the plate deflection.

The resulting plate dimensions were 1.50m x 0.70m. The height of the plate
due to the double frame implementation was 0.13m. The height of the platform
from the floor would require the subject to step on to the platform and therefore,
would have significant effects on natural gait. To encourage natural walking as
much as possible, two further platforms were constructed and placed before and
after the sensing platform. These were referred to as the gait iniliation platform
and gait terminalion platform respectively. The platforms were simple wooden
constructions with adjustable feet to enable them to sit flush and level with the

sensing platform, eliminating any trip hazards.

The midgait protocol is a commonly used method to measure the natural gait of
a subject within a laboratory environment [79]. However, this method requires

an 8-10m walkway with the measurement taken at the midpoint of the walkway.
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Property Value
Length 1.42m
Width 0.62m
Thickness 0.003m
Material Steel
Element Type Shell93
Mesh (Elements per side) | 8

Table 5.1: Plate properties for FEA model. Note: length and width are adjusted

to assume plate is supported by the inner edge of the frame supports.

calculated for when an ‘average’ adult male walked over the platform. Ogden
et al [81] state that an average adult male has a weight of 86kg. Keller et al
[82] researched into the various ground reaction forces (GRF) generated during
walking, jogging and running at different speeds. Their work has shown that the
mean GRF generated by an adult male at 1.5ms~! is 1.23 times the subject’s body
weight. Therefore, using the above data and assuming 9.81m/s™% for gravity, a
1038N force was applied to the FEA model of the plate. The force was applied

In two areas:

1). The approximate location where the first heel strike will occur on the sensing

platform (0.23m, 0.26m) as indicated on Figure 5.2.

2). The centre of the plate to determine the maximum plate deflection.

From the simulation, location (1) returned a maximum deflection of 4.7mm. Lo-

cation (2) returned the overall maximum deflection as 6.0mm.

Therefore, whereas the experiment discussed in Chapter 4 generated only small
plate deflections and was required to use the most sensitive operating range of
the sensor response curve, the much larger deflections in this experiment required

the sensors to be positioned further from the plate surface (approximately 10mm)
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the original design was found to be fiddly and difficult to make small adjustments
with.

A new bracket was designed for this set of experiments. The design was based on
a two-picce flanged implementation (see Figure 5.4). The inner picce contained
a threaded hole through the shaft. The outer piece housed an Allen bolt. The
two pieces were connected via a dovetail type joint on three sides. The tolerance
between the joints was kept tight (0.15mm) to ensure there was virtually no free
movement except for the controlled height adjustment. The joints and interface
between the two pieces were greased to ensure smooth vertical adjustment was
possible. The height of the bracket could be adjusted by turning the bolt, which

drove the two pieces apart or together.

The brackets were constructed using Accura Sil0 photo-setting polymer resin
and manufactured using a 3D Systems (South Carolina, USA) Viper Si2 rapid
prototyping machine. Magnets were glued into a recession in the base so that the

bracket could be firmly positioned on the steel base-plate.

5.2.3 Sensor Offset Removal Circuit

As part of the redesign process, the sensor offset circuit design was revisited.
Although the high-pass filter circuit performed well in the previous experiment,
it did require a dynamic signal to operate correctly. A signal that remained at a

constant amplitude (for example static applications) was subject to droop.

A review of devices available that might improve the circuit design revealed a
prototype component available from Maxim Integrated Products Inc. (California,
USA). The component (DS4303) was a programmable voltage reference using
‘sample and infinite hold” technology. The unique feature of the device was the
ability to apply a voltage on the input which, by asserting the adjust pin, was

sampled and thereafter continuously output on the output pin. Non-volatile
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memory built in to the device stored the sample voltage level enabling the same

voltage to be output after a power-cycle.

The devices came mounted on an evaluation PCB, and hence no further design
was required for these devices. A specially designed panel was created using the
Viper Si2 rapid prototyping machine to hold upto four of the evaluation boards
along with cable routing paths and connectors that enabled the devices to be
easily interfaced to the original comparator PCB used for the manual adjustment
circuit (see section 4.3.4.1). The sensor offset voltages were sampled during the
steady state (i.c. no plate deflection) with the DS4305 devices to provide a con-
tinuous output to the reference inputs of the comparators. The sensor signal was
used for the other comparator input. During the steady state this would give
a theoretical comparator output of zero. Any plate deflections would result in
just the relative change in voltage between the sensor signal and the reference
signal being output from the comparator. Therefore, this circuit operated in a
similar way to the manual adjustment circuit described in section 4.3.4.1. How-
ever, rather than having the need to manually adjust potentiometers to zero the

comparator output, this device did it automatically, via a push of a button.

Tt was found however, that the DS4305 struggled to accurately remove the offset
voltage, with a steady state output of between zero and 0.2V for each device
after sampling the offset voltage. With a signal amplitude of around one volt,
this resulted in a significant offset. Also, with the errors varying between devices,
this led to problems with neural network training and repeatability of experiments

as found in earlier experiments.
After evaluating the above device and the high-pass filter based circuit, it was

decided that, for this application the high-pass filter circuit still provided the

most stable and accurate offset removal method.
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5.3 Dynamic Time Warping

5.3.1 Introduction

It has been shown that a person’s gait can be used as a means of biometric
identification [83; 84; 85]. However, these methods generally use motion capture
or standard video cameras to analyse the whole body movement of the subject.
In this experiment, an attempt is made to identify a small group of people using
just the deflection data captured by the sensors under the platform. In essence,
the experiment is examining the viability of identifying the person from their foot

profile as they walk.

To identify a person, the method devised required some form of reference dataset
to be able to compare the test data to. Each person would have their own ref-
erence dataset. A scoring technique would then be required to determine which
reference dataset had the closest match to the test dataset. Closely related appli-
cations were investigated. It was found that handwriting or signature recognition
had similar requircments for classification. A rescarch of the literature suggests

there are several proven techniques for hand writing recognition. These are:

e Dynamic Time Warping (DTW)
e Hidden Markov Models (HMM)

e Neural Networks

Traditionally, the DTW algorithm has successfully been used for handwriting and
optical character recognition [65; 86]. However, more recently it has been claimed
that generally HMM gives a better classification performance for patterns with
a lot of detail [87]. A HMM is a more complex algorithm to develop over DTW
Lhowever. For this application, the gait profile is of a simpler form than that of a
hand written word and therefore it was decided that the DTW algorithm would

be investigated as a tool for classifying the gait profile.
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Neural networks (NN) have also been found to be an effective classification tool,
but usually require the data to be pre-processed using further algorithms such as
feature extraction. Neural networks are therefore investigated further in Chap-
ter 6.

5.3.2 An overview of the DTW algorithm

Dynamic Time Warping is a distance measurement algorithm, similar to the
Euclidean distance method and can be used to classify a time series. However,
the Buclidean distance is known to be sensitive to distortion in the time axis
[63]. A time series that is more compressed or elongated in time, in comparison
to the template (due to the event happening faster or slower for example) could

therefore be misclassified using Euclidean distance.

DTW gets around this problem by enabling the time axis to be warped non-
linearly such that the similarity of two signals can be compared even if they are
out of phase, or one if signal is more compressed or elongated than the other.
The phase difference, compression or elongation can occur at local points on
the signal or to the signal as a whole. It can be seen therefore that DTW is
a potentially optimal method of classifying a gait profile, which is likely to be
subject to changes in width due to the subject walking at different speeds during
the test.

Two time series vectors are defined, one representing the template, T and the

other representing the test data to classify, R:

An nxm matrix can now be created where element (7, ) contains the squared

distance between r; and ¢;:
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d(ri,t;) = (ri = ;)°

We now define a path, P through the matrix that minimises the cumulative

distance between R and T. P is defined as:
P = {p1,p2, .. Pk -, PK} Where maz(n,m) <K <n+m-—1
The k' element of P, is a coordinate pair (4, ).

The minimum cost path is found using a dynamic programming algorithm. To

ensure efficiency of the algorithm, the following constraints must be applied:

1). The warping path must start at the first point of both time series and end
at the last point, i.e. P(1) = (1,1) and P(K) = (n,m)

2). The path must monotonically increase in time.

A local slope constraint is applied so that each element only has a limited range
ol predecessors. So, il element py 1s (4,7), then the possible predecessors n p-1)
are: (i —1,7), (i,j —1)or (i —1,5—1). Thisis shown in Figure 5.5.

o (i 5
(-1,}) @

® ®
(-1.-1 {1

Figure 5.5: Local slope conslraints applied Lo the DTW algorithm

In addition to this a global constraint is applied, in the form of the Sakoe-Chiba
band [88]. This constrains the path P, such that it remains within the grey area
shown in Figure 5.6 and therefore is limited in how far it can diverge from the
diagonal. This constraint increases the processing performance of the algorithm

and also stops excessive warping of the time scale.
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A person’s gait can vary widely [55] and therefore it would be unwise to take
a single capture and accept that as their gait template. A small stumble or
unusual weight shift could produce a profile that is not representative of that

person’s normal walking style.

To ensure a representative template was captured, each subject was asked to
walk over the platform fifteen times. DTW was then used to determine which
of the fifteen profiles was most representative of that person’s walking profile.
A pairwise comparison of each capture was implemented to produce a 15 x 15
matrix with element (i, j) containing the cumulative distance between capture ¢
and capture 5. The mean of each column was calculated to determine the profile
which was the most similar to all the other profiles captured for that person. The

column with the lowest mean distance indicated the most representative profile.

A graphical representation was also produced in the form of a colour-map which
helped spot any anomalies in the result, such as a single extreme result that may
disproportionately affect the mean value. An example of the colour map is shown
in Figure 5.7. Lighter values in the colour map indicate a closer match and in
the example shown it can be seen that capture seven is probably an anomalous

result due to it being a poor match to any of the other captures.

5.3.4 Method

For this experiment, four sensors were placed under the sensing plate to capture
the deflection as the person walked over. The sensors were positioned as shown
in Figure 5.2 and labelled using standard compass point notation: NW, NE,
SW, SE. The positioning meant that sensors SW and SE primarily captured the
first foot strike, while sensors NW and NE captured the sccond foot strike. It
was found that there was very little crosstalk in the sense of the south sensors
detecting the second foot strike and the north sensors detecting the first foot

strike.
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Volunteer | Age | Shoe Size (UK) | Height (m) | Weight (kg) | BMI
A 28 10 1.79 70.8 22.1
B 28 11 1.78 111.5 35.2
C 35 9 1.75 85.3 27.9
D 32 8 1.63 73.0 27.5
B 40 9 1.80 64.0 19.8

Table 5.2: Physical traits of the volunteers

tests found that this caused volunteers to slip on the sensing platform, producing
poor profiles and a potential safety hazard. The problem was rectified by using
a pair of Totes Toasties® ‘slipper socks’. These were worn over the volunteers
own socks and had non-slip grips on the soles. Crash mats were placed to form a
pathway from the platform end, back to the beginning, to provide a soft surface
for the comfort of the volunteer and also to bury any surrounding cables present

in the area.

For this experiment, a single sensor (SW) was used to capture and compare the
first foot strike only. No restriction was placed on whether the left or right foot
should strike the plate first, however, a record was kept for analysis if required.
The sensor data was captured using the NI data acquisition card and the Matlab
Data Acquisition Toolbox. A database was created in Matlab to store the cap-
tured profiles from each person. The database enabled easy retrieval of the large

amounts of data collected.

Before the DTW algorithm was applied, some conditioning of the captured signals
was required. First the signal was low pass filtered to remove any noise. Using
Matlab. a 3rd order Butterworth filter was applied with a cut-off frequency of
15Hz.

Secondly, any trailing zeros were removed from the captured data, leaving only

the data containing the plate deflection caused by the foot strike. Note, this
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Actual | Predicted Class

Class |A | B | C D | E
A 10004317
B 01222010
C 0041231110
D 0l01]4|11]9
E oo |0 | 71|17

Table 5.3: Confusion Matriz showing classification accuracies

meant the conditioned time series vectors were not of equal length. However, the

foatures of DTW allow the different length vectors to be directly compared.

The conditioned signals were then compared using DTW to determine the most
representative capture (as described in section 5.3.3). The chosen signal was

stored as the template for that person in the database.

5.3.5 Results

A total of 120 test captures were produced, with each volunteer walking over the
platform 24 times. The system recorded the prediction for each walk and had
an overall classification accuracy of 69.2%. Further investigation is warranted to

view the individual accuracies of classifying each volunteer.

Table 5.3 gives the confusion matrix showing the classification performance of the
system when tested with the five subjects discussed above. Figure 5.8 shows a

misclassification mapping which gives a clearer view of the relationships.

From the results it can be seen that Volunteer A had the worst classification per-
formance with the confusion matrix showing that the system correctly classified

A ten times. It falsely classified A as C four times, as D three times and as E
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Volunteer B had a high number of correct classifications. In addition to this, no
volunteers were falsely classified as B. One explanation for this level of accuracy

could be due to B’s weight being significantly higher than the other volunteers.

Figure 5.8 shows a misclassification loop between volunteers D and E (shown in
red). This indicates that these two volunteers have similar templates and walking
style. This similarity would not be expected upon examination of the physical
builds of volunteers D and E. Table 5.2 reveals that volunteer E is much taller

and lighter than volunteer D.

Finally, volunteer C shows yet another unexpected result. C has achieved the
highest number of correct classifications. However, looking at column C in Table
5.3 shows that three out of the four other volunteers have been misclassified as C
at least once. One possible suggestion is that C has many similar walking traits
to A, B and D, such that the variations in these volunteer’s walking styles has
caused misclassifications. This hypothesis would also mean that the high number
of correct classifications indicates that volunteer C has a very consistent walking
style. An alternative reason for these results is that C’s template is the most
representative of all the volunteers’ walking styles. This means that C has a very
generic gait pattern with few unique features, causing the generic shape of the
other volunteers’ profiles to outweigh the small local differences in the distance

calculations.

5.3.6 Discussion

Through a detailed analysis of the classification results it has been possible to
make several observations about the DTW algorithm when applied to the appli-
cation of human gait identification. Somce of these observations arce contradictory.
For example, it could be deduced from the results of volunteer B, that the al-
gorithm depends on the overall amplitude, rather than differences in foot profile
shape as the primary classifier. Further analysis showed that normalising the am-

plitude of the data reduced the classification performance and therefore backed
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up this hypothesis. However, the occurrence of the misclassification loop for vol-
unteers D and E in Figure 5.8 contradicts the suggestion due to the physical

differences between these subjects.

It has also been found that the method used here can have its accuracy severely
reduced if a person using the system has either a significantly variable or generic
walking style, as shown by A and C respectively. A variable walking style will limit
the classification errors to the person exhibiting those properties only. However,
a person exhibiting a generic walking style can cause widespread misclassification

errors across subjects.

A possible way to avoid the ‘generic walker’ problem is to only examine the impor-
tant localised arcas of the profile where differences are likely to occur rather than
the shape as a whole. Section 5.4 investigates this feature extraction method.
To improve the reliability of classification for volunteers with a variable walking
style, a more robust template needs to be generated. Chapter 6, revisits the dis-
tance algorithm method and aims to improve the shortcomings identified through

the experiments discussed here.
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5.4 Feature Extraction

5.4.1 Introduction

In the previous section, the Dynamic Time Warping method was used to compare
the overall shape of a person’s foot profile as they walked over the surface. The
results showed varying levels of success between volunteers. Of the volunteers
with high misclassification rates, one was identified as having a high variation in
their walking style, therefore being misclassified as several other volunteers. It
was suggested that another volunteer (C) had very few unique features in their
walking profile, resulting in a generic walking style. This caused other volunteers
to be misclassified as C, probably because their overall foot profile always closely
matched that of C, reducing the significance of any unique features that volunteer

exhibited.

To avoid the problems associated with the previous method, a feature based
approach was considered. Feature extraction and analysis involves picking out
particular features from a set of data that will aid discrimination of the two
classes. The features are combined making up a feature vector that is used for

classification.

Feature extraction techniques have applications in a great number of areas. Hand
writing recognition was identified in the previous section as an arca that has sim-
ilar datasets to that of the experiments discussed in this chapter. Feature extrac-
tion is used extensively in the application of hand writing recognition. Feature
sets vary between papers. For example, Huang and Yan use geometric features
[89], Verma el al used the stroke direction and contour [90], while Pervouchine
and Leedham found that examining the features in a grapheme such as ‘th’ was

more effective at identifying the writer than looking at individual letters [91].

In a more closely related application, Huang et al use feature extraction tech-

niques in an attempt to identify a person from video image data [92]. Using
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canonical space transforms, they reduce the dimensionality of the image data
and create classification templates based on a person’s gait. A 100% recognition

rate was achieved when tested on six volunteers (36 trials).

Feature extraction itself is more of a complimentary method used alongside other
common classification techniques such as neural networks. In this section, appro-
priate features of the foot profiles are investigated and techniques generated to
extract those features from the data. Linear discrimination techniques are then
used to classify the features extracted from a set of unknown foot profiles in an

attempt to identify the volunteer.

5.4.2 Identifying Features

The feature vector had to provide as much information about the gait profile as
possible without being overly long (and hence causing slow computation times).

The most significant characteristics of the gait profile were the two peaks caused

data from the SW sensor was used for analysis. From the data available, the
most likely differences occurring between volunteers would be in the size, shape

and ratios between the two peaks.

A Matlab based program was written to automatically extract the features from
each capture (see Appendix B). The original signal required a comprehensive
filtering technique to be applied, to remove noise and ensure that false peak
detections did not occur. A moving average (MA) filter was therefore applied to
smooth the curve without causing significant distortion to the overall shape. The
data was also normalised such that the amplitude was between zero and one. The
algorithm developed used peak detection techniques to identify the HS and T O
peaks as well as the resulting trough between. The points where the maximum
gradients occurred were then identified for each section of the curve joining the
peaks and troughs. These values were then used to construct the following feature

VEClor:
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5.4.3 Discrimination Analysis

The algorithm developed enabled fast extraction of the described features from
a captured dataset. The next stage was to identify an appropriate method that
would generate representative templates for each volunteer and also classify newly

captured data appropriately.

Simple but very effective algorithms for feature based classification are the Dis-
criminant Analysis methods. The Quadratic Discrimination rule was considered
first. This function assumes that the elements of the feature vector are normally
distributed and assigns a vector to a class using probability based decision rules

[93).

Assume there are C' classes defined as @ = {q1,...,¢j,.-.,qc}. The a priori
probability of class g; is defined as p(g;), where:

plg;) = Sy
J Tk

where n; is the number of training vectors in class ¢;.
Now define the observation vector x, where each element of x is a feature of the
captured dataset. The requirement is to assign x to class ¢; if the probability of

class g; given x, p(g;|x) is greatest out of all the possible classes.

The a posterior: probabilities, p(g;]x) can be found using Bayes rule:

p (xlg;) p(g;)

p(gjlx) = (5.3
Jl ) p(X) )
Since p(x) is independent of class, x is assigned to class g; if:

p(xlg)p(a;) > p(xlge)plae) k=12,....Cik#j (5.4)
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Each class, ¢; has an associated set of n; training vectors, X = {xl, N ST ,xnj}.
Assuming the class distributions are normal and taken from a sample with mean

X and covariance matrix ¥; where:

Ty

_ 1 ;
Xy = — E Xm ( .
U
Y m=1

[@a
Ut
p——

and

nj

Si=— Y (m = %) (m — %;)" (5.6)

7
7 m=1

then the ‘plug-in’ method is used to determine p(x|¢;) using the sample mean

and covariance vectors:

F4

1 1 T e _
poda) = — oo { S (x- %) F - )} 6
(2m)? |55

where p is the number of elements in x.

By substituting (5.7) in to (5.4) and taking logs, then feature vector x is assigned

to class ¢; if ¢; > ¢y, for all k # j, where:

%

1 T e B
) -5 x=%)" 57 (x - %) (5.8)

, 1
¢; = log(p(g;)) — 5log <

For the experiment, n; = 10 training sets were used for each class (volunteer).
On calculation of the sample covariances, it was found that the data from two
volunteers resulted in their covariance matrices being singular, possibly due to
the low sample sizes. To get round this an assumption was made that each class

had the same covariance matrix. Therefore, the individual covariance matrices
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were replaced by a single, pooled within-class covariance matrix. This is defined

as:

C
Ny &
Sw=)_ % (5.9)
j=1

From this, the discriminant function (5.8) is now simplified to a linear discrimi-

nant function, defined as:

1o )
¢;(x) = log(p(a;)) = 5%; S %; + X' Sy X, (5.10)

where n is the total number of training samples used. Again, x iIs assigned to

class g; if ¢; > ¢ for all k # 7.

5.4.4 Results

A total of thirty five captures were recorded for each volunteer. Ten randomly cho-
sen samples from each volunteer were used to generate the sample mean vectors
and the sample covariance matrices. The pooled within-group sample covariance
matrix was then generated using equation (5.9). These were stored and used
to classify the 125 test captures. To reduce the possibility of the ten randomly
samples used for training being misrepresentative, the test was run five times.
Fach time a new set of ten random training captures were used for each class.
The results for each volunteer are shown in Table 5.4, while the confusion matrix
for all the tests combined is shown in Table 5.5. Finally, the overall classification

accuracy for each volunteer is presented in Table 5.6.

The results show that using this method, the classification accuracy is fairly equal
between the volunteers. Only volunteer D has a noticeably lower classification

accuracy in comparison to the other volunteers. Overall, when compared to the
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Volunteer—Test | Test 1 | Test 2 | Test 3 | Test 4 | Test 5
A 23 23 22 23 20
B 22 17 20 21 15
C 18 15 19 24 23
D 14 15 14 13 17
E 21 23 22 20 18

Table 5.4: Number of correct classifications (out of 25) for each wvolunteer over

five tests.

Table 5.5: Confusion malriz showing classifications between volunteers

Volunteer | A | B | C | D | E
A 111, 0813} 3
B 5 195112113 0
C 4 10199122 0
D 23 110118179 1
E 7 11 113] 0 |104

Volunteer | Percentage Correct
A 88.8%
B 76.0%
C 79.2%
D 58.4%
E 83.2%
Overall 77.1%

Table 5.6: Percentage classification accuracy for each volunteer
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DTW method discussed in section 5.3, this method has yielded an 8% increase in
classification accuracy. Interestingly, volunteer A, who was identified as having a
highly variable walking style previously, now has the highest overall classification
accuracy, with consistently high scores across all five tests. Volunteer C, who was
identified as a possible generic walker with few unique features to his walking
style has scores which vary widely between tests. It therefore appears that A's
results are sensitive to which captures are used for the training data. Volunteer
C is still the second highest class to which false classifications have occurred, the

highest being D.

5.4.5 Discussion

The results show that using feature extraction with the linear discrimination
method has improved the classification accuracy of identifying a person in com-
parison to the Dynamic Time Warping method discussed in section 5.3. It was
hypothesised that less false classifications (due to Volunteer C) would occur
since specific features were being examined that should have reduced the ‘generic
walker’ factor. This wasn’t the case however and Volunteer C was still subject
to many misclassifications with all the other volunteers being misclassified as C
several times. On the otherhand, the feature extraction method has potentially
improved Volunteer A’s accuracy, with that class now showing the highest clas-
sification accuracy. Tt is difficult to say why that is the case, except that maybe
despite the variability, some ol the extracted features remain relatively constant

for this person.

5.5 Conclusion

In this chapter, two well established pattern recognition techniques, Dynamic

Time Warping (DTW) and Discrimination Analysis have been applied to the

—
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area of person identification through the measurement of gait. The techniques
used enabled classification through both shape matching (DTW) and feature
extraction. Reasonable results were achieved through both methods, with the
Linear Discrimination method used on extracted features producing a greater
classification accuracy of just under 78%. It is recognised however, that the
number of classes used in this experiment is small. It would be expected that
increasing the number of possible classes would rapidly reduce the accuracy of

the system.

It has been hypothesised that two walking styles have been identified which can
also have a negative effect on the classification accuracy. First, if a person has
a wide variation in their gait, then it is likely that person will achieve a low
classification rate, due to the difficulties in producing a representative template.
It appeared that linear discrimination was more able to cope with this variation,
with volunteer A achieving a much improved classification rate when tested using
this method. In this case, the problem is restricted only to those with a variable
walking style. The second identified problem style, labelled the Generic Walker
style can be present in only one person but affect thie classification rate of several
other volunteers. In this situation the person has a very generic walking style with
few unique features in comparison to other users of the system. This causes other
users to be commonly misclassified as the unique features of their own walking
template are outweighed by that of the generic walker’s. The feature extraction

method appeared to have little effect on nuproving this.

The experiments discussed here indicate further research is required for person
identification to be possible through the measurement of a foot profile. It is
recommended however, that this method could be successfully used as a com-
plimentary technique alongside one of the many other biometric measurement

systems available.

The experiments have also provided a very good foundation for the research to
he discussed in the following chapter. This chapter has shown that it is possible

to detect small differences in gait and successfully classify the data exclusively




5.5 Conclusion

through the measurement of these small differences. The following chapter con-
centrates on discriminating changes in gait of a single person, due to some ex-
ternal effect. The results and issues identified from the experiments discussed
in this chapter are taken into account and improvements to the algorithms are

implemented.




Chapter 6

Identifying changes in gait due to

some influencing factor

6.1 Introduction

In this chapter, the techniques originally discussed in Chapter 5 are investigated
further with the aim of developing a system that can detect a small change in a
single person’s gait when they are subjected to some influencing factor. In the
following experiments, the subject is first required to walk with and without a
heavy tray (as shown in Figure 6.1) and then, in the second experiment, with
and without a backpack style bag (as shown in Figure 6.2). Both these items are
expected to create small but detectable changes in a person’s gait due to changes
in stance and balance. Being able to detect these small changes provides the
basis of applying these methods to a medical environment, such as discriminating

hetween various walking conditions which inhibit a person’s normal gait.

Two experiments are undertaken. As in the previous chapter, one experiment uses

a feature extraction method to classify the data, whilst the second experiment
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6.3 Optimised Feature Extraction

6.3.1 Introduction

Promising results were achieved using feature extraction techniques along with
linear discrimination analysis as described in Chapter 5. In this section the feature
extraction method is used to identify a change in one person’s walking style due
to some causal event. In the experiment, the volunteer was required to walk with
a tea tray, loaded with a 10kg mass, held by both hands. The volunteer was
also requested to walk without the tray, in their natural style, resulting in two
possible classifications. It is hypothesised that by carrying the tray, the volunteer
was no longer able to swing their arms whilst walking, causing some instability

during walking and hence having an effect on the gait profile [67].

6.3.2 Methodology

In this experiment, rather than investigating individual sensor data, the features
are extracted from data calculated from the differences between sensors. This

results in two separate wavelorms for analysis:

{L - R} The difference between the left and right sensors.

{F - B} The difference between the front and hack! sensors .

A moving average filter is applied to the above waveforms to remove noise and
smooth the curve. In addition to this, after removing any trailing zeros before
and after the foot strike data, the resulting waveform was normalised in both

magnitude and time. Time normalisation was achieved, by generating a vector

Lihe back deflection magnitnde is taken as the mean of the left and right sensors
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Feature

Description

LRpk,, LRpks, LRpks

Normalised magnitudes of peaks/troughs

LRratio

Ratio between first and second peak

LRgrady, LRgrads,
LRgrads, LRgrad,

Peak gradients

LRpc90,, LRpcY0;

Occurance of 90% peak magnitude in normalised time

FBgrads, FBgrad,

LRpcl0y, LRpcl0y, | Occurance of 10% peak magnitude in normalised time
LRpcl0;

F Bpk,, F Bpks Normalised magnitudes of peaks/troughs

FBratio Ratio between first and sccond peak

FBgrad,, FBgrads, | Peak gradients

F Bpc90,, F Bpc0,

Occurance of 90% peak magnitude in normalised time

F Bpcl0y,
F BpclOs

F Bpcl0,,

Occurance of 10% peak magnitude in normalised time

Table 6.1: Exlracled fealures used lo classify data, prefiz LR indicales [ealure

eztracted from { L-R dala}, prefic FB indicates feature extracted from {F-B} dala

on the time interval [0,1] which had the same number of equally spaced elements

as the processed waveform.

The second stage involved extracting the features from the processed waveform.

The feature vector was made up of a combination of features from the two derived

waveforms. In addition, the features extracted were revised slightly from the

previous experiment.

The new feature vector consisted of twenty five feature

clements, listed in Table 6.1. Figures 6.4 and 6.5 show a typical {L-R} and

{F-B} waveform respectively, along with some of the associated features.
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Number of feature vectors
Class Training Test
Natural 43 27
With Tray 45 20

Table 6.2: Number of feature vectors used for each class in training and testing.

A total of 135 valid captures were taken, consisting of 70 natural walking captures
and 65 walking with a tray captures. The formatting and feature extraction
algorithms described above were applied to the captured datasets. A randomised
selection method was then used to split the dataset into training and test data.
Approximately 65% of the data was used for training, with the remaining 35%
used to test the resulting classifer. The number of vectors assigned to each group

1s shown in Table 6.2.

The linear discrimination algorithm discussed in Chapter 5, was used for this
experiment. Using the training vectors, a [eature means vector was calculated for
each class along with a pooled within-class covariance matrix. All the data was

stored as a database style structure using Matlab (see Appendix B).

A Matlab program was written with a GUI front-end to enable live tests to be
carried out (see Appendix A and Appendix B). The software was able to display
its classification decision to screen within 2-3 scconds of the volunteer walking
off the platform. A second script was also written that enabled batch testing of

previously captured data.

6.3.3 Optimisation

Afrer initial tests using all twenty five features to classify the captures, opti-
misation techniques were investigated in an attempt to discover which features

contributed most to the classification. Features that contribute little to the clas-
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sification decision effectively add noise to the system and therefore, by identifying

and removing these redundant features an increase in accuracy 1s possible.

To find which features made a significant contribution to the classification, the
SPPS software package (SPSS Inc., Chicago, Illinois, US) was used to calculate
the Wilk’s Lambda for each feature using the training dataset. Wilk’s Lambda
is a measure of the difference in the between-group means for each feature. The
smaller the lambda value for a given feature, the more that feature contributes
to the discrimination between the two classes. The Wilk’s lambda can be trans-
formed to approximate an F distribution to sce which features make a significant

contribution to the discrimination.

6.3.4 Results

6.3.4.1 Pre-Optimisation

In this experiment, the data can belong to one of two classes; natural walking
(class: Natural) or walking with a tray (class: Tray). As shown in Table 6.2,
a total of 47 test vectors were used o assess the performance of the classifier.
Because of the two possible classifications, binary classifier notation is introduced

and used to assess the perlormance of this system.

Table 6.3, identifies the two possible classes as positive and negative events and
relates these to the possible outcome of this experiment. The notation of positive
and negative events derives from the common usage of these measurements in
medical trials. In this experiment, the aim is to identify when the person is
carrying a tray. Therefore, for notation’s sake, the event where the person carries
the tray will be identified as positive, whilst the negative event is defined as the
person walking naturally. Hence, a True Negative event oceurs when the classifier

correctly identifies the person walking naturally.
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Outcome Label Event
True Positive TP Tray class correctly identified
True Negative | TN Natural class correctly identified
False Positive FP | Natural class incorrectly identified as Tray
False Negative | FN | Tray class incorrectly identified as Natural

Table 6.3: Possible outcomes using binary classifier notation as applied to this

experiment

Actual | Predicted Class
Class | Natural | Tray

Natural 22 5

Tray 3 17

Table 6.4: Contingency table showing classification accuracy

The classifier performance can now be presented as a contingency table shown n

Table 6.4.

Using this table, it is now possible to calculate the specificity and sensitivity of the
classifier. Specificity is a measure of how accurate the classifier is at identifying

a True Negative result and is calculated in equation 6.1.

TN

TN + FP (6.1)

Sp =

Sensitivity is a measure of how accurate the classifier s at identifying a True

Positive result and is calculated using equation 6.2.

Tr

9= TP L FN

(6.2)

The results achieved show that the sensitivity of this classifier is 0.85. The speci-
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ficity is 0.82. In this case, the classifier appears to be well balanced, with the
sensitivity and specificity both having similar and high values (the maximum
sensitivity /specificity is one, indicating perfect classification). Large variations
between the two values indicates the classifier is more biased to choosing a partic-
ular class. In certain situations this can be useful, for example where the classifier
is detecting an illness, it may be preferred that the system had a high sensitivity
over specificity in order to minimise the number of people who have the illness

being falsely classified as not ill.

Related measures of accuracy are the Positive Predictive Value (PPV) and Neg-
ative Predictive Value (NPV). In this experiment, PPV states the probability of
the person carrying the tray when the system states they are. Similarly, NPV
states the probability that the person is walking naturally when the system states
that is the case. PPV = TP/(TP + FP) and is found to be equal to 0.82 for
this experiment. NPV = TN/(T'N + FN) = 0.84. Note, that unlike sensitiv-
ity and specificity, PPV and NPV are affected by the number of vectors present
in each class. Therefore, despite the classifier being more sensitive, the NPV is
found to be higher than the PPV, A contributing factor to this result is the differ-
ence between the test data class sizes. A clear, graphical approach to sensitivity,

specificity and predictive values is provided by Loong [94].

The overall accuracy of the system (the number of correct classifications out of

the total number of tests) was found to be 83.0%.

6.3.4.2 Optimising the Feature Vector

Using the Wilks Lambda statistic transformed to the /7 distribution, each of
the 25 features were analysed using the training set to see which ones provide
a significant (p < 0.1) contribution to the classification. The Wilks Lambda, £

and confidence level for cach feature is shown in Table G.5.

The results show that of the original 25 features, ten have been found to make a
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Feature Wilk’s Lambda | F dfl | df2 | Significance
L Rpk, 0.994 0.505 1 86 | 0.479
L Rpk, 0.998 0.196 1 86 | 0.659
L Rpk; 1.000 0.010 1 86 | 0.920
LRratio | 0.999 0.091 1 86 | 0.764
LRgrad; | 0.996 0.360 1 86 | 0.550
LRgrady, | 1.000 0.004 1 86 | 0.949
LRgrads | 0.957 3.905 |1 86 | 0.051
LRgrads | 0.997 0.290 1 86 | 0.592
LRpc90; | 0.973 2.371 1 86 | 0.127
LRpc90, | 1.000 0.002 1 86 | 0.963
LRpcl0; | 0.985 1.329 1 86 | 0.252
LRpcl0y | 0.977 1.990 1 86 | 0.162
LRpcl0s | 0.999 0.094 1 86 | 0.759
FBpk; 0.895 10.066 | 1 86 | 0.002
F Bpks 1.000 0.026 1 86 | 0.871
FBratio | 0.894 10.201 | 1 86 | 0.002
FBgrad; | 0.923 7.214 |1 86 | 0.009
FBgrad, | 0.984 1.424 1 86 | 0.236
FBgrads | 0.908 8.715 |1 86 | 0.004
FBgrad, | 0.888 10.844 | 1 86 | 0.001
FBpc90, | 0.995 0.409 1 86 | 0.524
FBpc90, | 0.951 4.384 |1 86 | 0.039
FBpcl0, | 0.941 5.357 |1 86 | 0.023
FBpcl0, | 0.922 7.242 |1 86 | 0.009
FBpcl0; | 0.866 13.358 | 1 86 | 0.000

Table 6.5: Wilk’s Lambda, F statistic and significance for each feature. Embold-

ened entries show significant (p < 0.1) features.
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Actual | Predicted Class

Class | Natural | Tray

Natural 23 4

Tray ) 15

Table 6.6: Contingency table showing classification accuracy after optimisation

Sensitivity | 0.75

Specificity | 0.85
PPV 0.79
NPV 0.82

Overall 80.9%

Table 6.7: Classifier performance results for optimised feature set

significant contribution to the discriminatory power of the classifier. 1t’s interest-
mg to note that all but one of the significant features is taken from the {F-B}
curve. Therefore, it is suggested that while walking with a tray has little effect
on the side-to-side sway of the person, there are differences in the distribution of
weight when going from the heel strike towards the toe-off position, when com-
pared to natural walking. Closer examination shows the differences occurring in
the first peak magnitude, the ratio between the peaks, the gradients and the peak
widths (determined by the 10% and 90% values) in the {F-B} curve.

6.3.4.3 Post-Optimisation

Using the same data as previously for training and testing, the linear discrimina-
tion algorithm was run again using just the ten optimised features. The results
are displayed as a contingency table in Table 6.6. The sensitivity, specificity, PPV

and NPV values are presented in Table 6.7.

Contrary to the expected outcome, the optimisation process in this case has
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Actual | Predicted Class

Class | Natural | Tray

Natural 16 9

Tray 20 )

Table 6.8: Contingency table showing classification accuracy from live tests

reduced the performance of the classifier. Although there has been a slight im-
provement in the ability to classify natural walking, the sensitivity of the system
and hence the ability to identify the Tray class has reduced considerably. Sim-
ilarly, there has been a slight reduction in both the PPV and NPV. Therefore,
although statistically only the identified ten features made a significant contribu-
tion, the overall smaller contribution made by some or all of the other features

were important in discriminating the two classes.

6.3.4.4 Live Tests

The real-time software was also tested on live captures, with the volunteer walking
over the platform fifty times; twenty five times with the tray, twenty five without.
The live test used the same training data and hence, mean vector and covariance
matrix as that discussed in the results above. The tests used the full twenty five
element feature vector rather than the optimised vector as the results showed thig
provided better discrimination between the two classes. The results are shown in
Tables 6.8 and 6.9.

The live tests produced a considerably lower classification accuracy than that
shown in offine testing. As time was the only variable that differed from the
offfiine testing (the live test was carried out several days after the original data was
captured), then it may be assumed that lower accuracy is down to repeatability
problems in the system. However, it is equally possible that there may be a

psychological factor involved. The volunteer was aware that the system was being
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Sensitivity | 0.20

Specificity | 0.64

PPV 0.23
NPV 0.62
Overall 42%

Table 6.9: Classifier performance results for live tests

tested at this stage and therefore a willingness for the system to perform could

affect the natural gait of the person as they become conscious of their actions.

6.3.5 Discussion

This section has discussed the experiments undertaken in an attempt to detect
small differences in gait occurring when the volunteer is subjected to some ex-
ternal effect. In this case, the volunteer was requested to walk over the platform
whilst carrying a tea tray containing a 10kg mass. The volunteer was also asked to
walk naturally over the platform without the tray. IFeature extraction techniques
along with the linear discrimination method were used to classify the captured

gait profiles into either the Tray or Natural class.

The results indicate varying degrees of suceess. Initial offline testing using the full
twenty five feature vector was found to have a good overall performance, with it
correctly classifying 83% of the test data. Additionally, measuring sensitivity and
specificity indicated that the system was well balanced with both these values at

a similarly high level.

Optimisation techniques in the form of Wilk’s Lambda were then used in an at-
tempt to improve the classifier performance by removing features that weren’t
making a significant contribution to the classification. Wilk’s Lambda trans-

formed on to an £ distribution indicated that only ten of the features were making
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a significant (p < 0.1) contribution to the discriminatory power of the classifier,
with all but one of these being features of the {F - B} curve. Unfortunately,
the results of the optimisation technique were disappointing with the sensitivity
of the system dropping considerably, while the specificity only rose marginally.
This suggested that the overall effect of the features that made little individual
contribution made a significant contribution to the discriminatory power. Other
optimisation techniques that could be introduced in future experiments could in-
clude analysing the correlation between the features and removing any features
that are found to be highly correlated, hence providing no unique contribution

to the classification.

The final experiment involved carrying out a set of live tests. The full, twenty five
feature vector was used due to it producing the best performance in offline testing.
It was expected that the live test results would be similar to those achieved in
offline testing. However, although the set up was identical (the offline test data
was captured using the same setup and used the same training data), the results
achieved were considerably worse than those achieved in offline testing, with the
live tests only achieving an overall classification accuracy of 42%. This could
be due to repeatability problems. However, improvements made to the platform
for these experiments and a robust, low drift electronics design would malke this
unlikely. Therefore, it is suggested that problems may have occurred due to the
volunteer being aware of the testing process and become conscious of their walking
style. possibly trying to cnhance the difference between their natural walk and

that when carrying the tray, but on the contrary, making them worse.

Overall, the feature extraction used with linear discrimination, appeared to work
well.  Although, some experimental flaws were identified it would appear that
small improvements could provide a robust classification method. The LDA al-
gorithm itself was found to be a simple but effective method in discriminating the
features between classes. There are disadvantages with using LDA, namely that
it can only successfully classify data that is linearly separable. Ior the person
identification experiment. a pooled within-groups covariance matrix had to be

used due to some of the separate covariance matrices being singular. This can re-
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duce the classification performance slightly, although with this experiment, both

methods were compared with no significant difference found between the results.

The biggest challenge of this experiment was developing a flexible feature extrac-
tion algorithm. The algorithms developed used various methods to detect peaks
and troughs in the signal and measure specific gradients or points on the curve
related to those peaks. This system works fine if the overall shape of the curve
is the same for both classes with the differences appearing in the gradients, peak
amplitudes and widths etc. However, for the tray walk experiment, although the
features extracted did provide a good level of discrimination, it was noted that
generally the {L - R} curve produced when walking with a tray was a different
shape to that of natural walking and had an extra peak present just before the
heel strike peak occurred. The rigidity of feature extraction method meant that
this would either go unnoticed or even cause errors in the extraction algorithm.
This meant that unique features of the curve only present due to tray walking
were unable to be used, as the algorithm could only measure differences in the
features present in bolh classes. Although this could be remedied, one of the the-
sis aims is to develop a method that can be generalised to other (as yet unknown)
effects on a person’s gait. The feature extraction method is very much limited in
its generalisability as the developer needs to know which features to look for and

compare.
T the final chapter, the shape classification method is revisited. Using the results

and observations found in the previous experiments, a much more robust and

generalisable method is developed for detecting small changes in gait.
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6.4 Normalised Distance Method

6.4.1 Introduction

In the first Person Identification experiment (section 5.3) a distance measurement
algorithm was used in the form of Dynamic Time Warping (DTW). The DTW
algorithm provided an added feature, in that the time axis could be ‘warped’ and
therefore the data could be matched to a template regardless of local or global
differences in the width (i.e. time duration) of the profile. This method gave
promising results, but had flaws particularly in the technique used to define a
template for each person. The template was chosen from a training set by in-
dentifying the most representative template out of those available. This method
generated poor results for those people with widely varying walking styles. It was
also observed from the feature extraction methods applied, that an affected walk-
ing profile may cxhibit changes in the peak and trough widths. Using DTW would
effectively filter out those features due to the time warping principle, therefore
potentially losing important information from the captured profile.

[n this final experiment, the distance algorithm is revisited in an attempt to iden-
tify and classify small changes in gait based on the overall shape of the captured
gait profile, rather than the fixed features. To overcome previous flaws and lim-
itations, a more robust template generation method is suggested along with a
sinple, but cffective distance calculation. The capturced profile is normalised in
both time and amplitude to enable direct comparison of the overall shape, in-
cluding differences in peak and trough widths. Neural network methods are also
introduced in an attempt to couple the three sensor outputs which are likely to

have a non-linear relationship.
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6.4.2 Experimental Setup

In this experiment the hardware set up remained identical. However, in the
previous experiment, the volunteer found that carrying the tray for a long period
of time caused discomfort. Therefore, in this experiment the influencing factor
is changed to the wearing of a backpack containing a 10kg mass inside. The bag
was padded in the area which had contact with the person’s back and also had
padded straps. This was found to provide an acceptable level of comfort during
the trials. The volunteer was required to wear the bag using both straps and also
used a waist strap to provide a secure fit. The bag was put on and removed using
a table provided at waist height, to reduce the need for any excessive bending.
The two classes were redefined as Natural for natural walking and Backpack for

walking whilst wearing the backpack.

A new piece of software was written using MATLAB (see Appendix B). A GUI
was designed, this time enabling the user to select whether the capture was to be
used for training, validation (offline testing) or test. The data was then automat-
ically structured into a database ready for processing. Screenshots are shown in

Appendix A.

6.4.3 Method

6.4.3.1 Template

The main flaw with the original distance calculation algorithm was in the template
design. In the person identification experiment, the template was selected from a
sample of training data based on how representative it was to the other captures
within the training set. This was based on the mean DTW distance as described
in section 5.3. In this experiment a template is generated which is based on all
the captures within the training set. Also, a specific template was created for

each of the sensors, so a single training capture would consist of three vectors.
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6.4 Normalised Distance Method

Each vector was filtered using a moving average filter to remove noise and smooth
the curve. The amplitude was then normalised between zero and one for each
vector. Time was also normalised to a value between zero and one. However, this
time each vector had to be of equal length. Therefore, it was decided that each
capture would be mapped on to an m = 200 element vector over the time interval
[0,1]. Two hundred was chosen as it was found that the length of the extracted
foot profile would in the majority of cases be over 200 samples long (but usually
less than 300). Any captures found to be less than two hundred samples long in
the experiment were discarded. Given n training captures, the resulting dataset
was three sets of n x m matrices. Based on the n training captures, the mean of

each of the 200 elements was calculated to produce a mean vector:

where:

1 T
Ty = — (’/, o 64
Te =~ lik (6.4)

and, given the 5 training capture vector, Ty = {L;1, L2, bigy s bjm}  J =
1,2,...,n.

Similarly, a vector of standard deviations was also generated:

(}:{0']«,0'27-“101”;‘--;0'771} (60)

A mean (%) and standard deviation (&) vector was generated for each of the
three sensors. The mean vector was used as the template for that class and is
a representation of all the training captures. In addition to this, the standard
deviation (s.d) vector is added and subtracted from the mean vector to produce

a ‘soft” boundary above and below the template curve. Figures 6.6 to 6.8 show
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Figure 6.6: Typical Left sensor template. Solid line is mean of all samples. Dotted

line is mean +1 s.d of all samples.

typical Left, Right and Front sensor templates for when the volunteer is wearing
the backpack. These plots give a visual representation of how much variance
there is in the walking style for different parts of the profile (it should be noted
however, that normalisation distorts the s.d curves at the extreme points of the

plot).

6.4.4 Distance Calculation

It was decided that time warping was no longer required due to the normalisation

and mapping of the time axes to a fixed 200 sample vector between zero and one,
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Figure 6.7: Typical Right sensor lemplate. Solid line is mean of all samples.

Dolted line is mean +1 s.d of all samples.
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Figure 6.8: Typical Froni sensor lemplate. Solid line is mean of all samples.

Dotted line 1s mean +1 s.d of all samples.
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6.4 Normalised Distance Method

enabling direct sample to sample comparisons to be made.

The captured data used for test, R was processed the same way as that of the
template data. The absolute distance between each sample in the test data vector
and the corresponding sample in the template vector was calculated and divided
by the standard deviation for that sample, as shown in equation 6.6. By dividing
by the standard deviation, the variation in a person’s walking style is taken in to

account, hence weighting the distance score to that template appropriately.

T — 7_k|

dp = k=1,2,...,m. (6.6)

Ok

Each comparison of the test data to a template produces an overall cost value,

defined as the mean value of the distances defined in (6.6) as follows:

) 1 T
clh=—=-N"q, 6.7

Finally, the captured data and the mean vector are both differentiated. The two
resulting curves are compared in the same way as the time based data producing

another cost value, C#*, defined in 6.8.

; m—1]
1

O — 0T
m—1 Z o (6.8)

This effectively compares the gradients of the capture with that of the template
and was found to produce an increase in accuracy. The resulting overall cost C

18 calculated as:

c=ct. .o (6.9)
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The cost C, was calculated for each of the three sensors and originally, for each
class (Natural or Backpack) such that the data was assigned to the class which
had the lowest sum of three costs. However, disappointing results led to further
investigation. Kohle and Merkl [55] suggest that the number of degrees of freedom
is a direct cause of the variability in walking and therefore, unrestricted, natural
walking is likely to show the most variable profile in contrast to someone with
a walking disorder. This suggestion led to the Natural walking template to be
dropped as it would seem likely to prove hard to define a definitive template for
natural walking. Instead, only the affected walking class, i.e. the Backpack class,

had a template.

6.4.5 Neural Network

Using the above method meant the system then required some form of threshold
level between the classes. If the distance scores from the three sensors were found
to be less than the threshold, then they would be assigned to the Backpaclk class,
otherwise they would be assigned to the Natural class. 1t would be possible to
define a simple linear threshold for each sensor, however, this approach was too
simplistic. It was likely that the boundary between the classes would be non-
linear in this case and hence a neural network was introduced to the system.

Using a neural network provided the system with the ability to:

Define a non-linear boundary between the two classes. For this exper-
iment, it was likely that the relationship between the sensors and the distance
thresholds between the two classes was non-linear. Neural networks were able
to define non-linear relationships between the inputs and outputs and therefore

provided a better a classification accuracy than using a linear method.
Determine a coupled relationship between the three sensors. Rather

than investigate the sensor outputs individually, the distributive sensing method

was used in this experiment to consider the three sensor outputs together. Using
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a neural network, enabled the system to identify complex coupled relationships

between the sensors and relate them to the classes.

Remove the dependency on where the foot strikes. One of the non-linear
relationships mentioned above was likely to be due to the position of the foot
strike on the plate. Ideally, it was hoped that no further restriction was required
on where the foot landed within the strike zone. The neural network was therefore
used to identify how the cost values from the three sensor outputs changed with
respect to each other when the foot landed in different places within the strike

zone.

A feedforward multi-layer perceptron (MLP) using back propagation was identi-
ficd as the network architecture that produced the highest classification accuracy.
Radial Basis Function networks were also investigated, but gave inferior results
in comparison. The network architecture consisted of three input nodes, a single
hidden layer (number of nodes defined below) and a single output node. As this
was a classification network, a log-sigmoid transfer function was used both on the
hidden layer and output layer nodes.

.

A summary of the neural network implementation is shown in Table 6.10.

6.4.5.1 Training

Training data was generated by capturing repeated walking trials, both with and
without the backpack. First, 50 walking trials with a backpack were captured and
stored. This data was used purely to generate the ‘affected walking’ templates for
each sensor as described in section 6.4.3.1. Following this, another 100 walking
trials were captured, 50 with a backpack and 50 without. These captures were
each compared to the template to generate an associated set of three cost values
as described in section 6.4.4. This dataset was used to train the neural network,

with each training vector consisting of three cost values in the range [0,1] as inputs
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and a class value as the associated output (binary output: zero for natural, one

for backpack).

Both Bayesian Regularisation (BR) and Early Stopping (ES) training methods
were investigated for this experiment. The BR function in Matlab was stated to be
optimised for function fitting networks rather than those with pattern recognition
[95]. Therefore, both BR and ES methods were investigated to see which gave

the best results.

Using offline testing, ten trials were carried out. For this comparison, a total of
150 captures were used. Using the stored 100 neural network training vectors, 70
were used for training, 30 for validation (early stopping only). For testing, the 50
stored template vectors were used. The 50 test captures remained the same for
each trial, whilst the training and validation sets were picked randomly from the
group of 100 available vectors. Table 6.11 shows the number of misclassification
errors for each training method. The results clearly show that the BR method
was much more reliable and accurate than the ES method, which produced highly
variable results. The BR method produced less misclassification errors in all bhut
one of the tests and was therefore chosen as the training method for the network

implemented in this experiment.

6.4.5.2 Hidden Nodes

The final stage of the neural network design was to determine the optimum num-
ber of hidden nodes. As there is no specific way of determining this, the offfine
data was used to train and test a network with between 2 and 26 hidden nodes,
increasing in steps of two. The number of hidden nodes chosen is the one showing
the lowest number of misclassification errors. Figure 6.9 shows a bar chart with
the mean number of errors after ten trials against the number of hidden nodes

and indicates that two hidden nodes is the optimum number.
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Figure 6.9: Mean number of errors after ten trials vs number of hidden nodes
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Network type Multi-Layer Perceptron (MLP)

Training method Back Propagation with Bayesian Regularisa-
tlon

Hidden node [(z) log-sigmoid

Output node f(z) log-sigmoid

No. of input nodes 3
No. of hidden nodes | 2

No. of output nodes | 1

Input data Three ‘cost’ values calculated from distance be-
tween template and captured sensor data (see

6.4.4)

Output data Discrete value, representing the classification.

Natural: 0, Affected: 1

Table 6.10: Summary of lhe neural nelwork implementation

6.4.6 Results

With the neural network optimised, and a representative Backpack class template
generated, the system was tested. As indicated above, the offfine testing showed
very promising results with only two misclassifications out of a total of fifty
unseen trials. However, previous experiments tended to show that offline testing
produced more optimistic results than when tested live. Several live tests were
carried out for this experiment. It should be noted that due to the randomised
start weights of the neural network, the network was trained differently each
time. Therefore, several training attempts were required before a well balanced
network was produced. Initial results were unbalanced, with some showing good
classification for the Backpack class, but poor for the Natural (Backpack: 100%,
Natural:48%) and others vice-versa (Backpack: 57%, Natural: 88%). Hanson

and Salamon [96] originally stated that using multiple neural networks in parallel
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Trial | Early Stopping | Bayesian Regularisation
1 42 )
2 9 12
3 14 2
4 13 4
o 5 3
6 6 4
7 28 4
8 25 4
9 11 5
10 5 3

Table 6.11: Number of misclassification errors when using Early Stopping training

compared Lo Bayesian Regularisation

(referred to as a neural network ensemble) could increase the overall classification
accuracy of the system. However, experimentation with this suggestion did not
provide a significant improvement in results. The following results were produced
from the multi-layer perceptron neural network alter optimisation, using two

hidden nodes and Bayesian Regularisation training.

The results {rom the optimised neural network are shown in the contingency
table (Table 6.12) after 46 live trials; 23 natural walking and 23 walking with a
backpack. The associated classification performance is shown in Table 6.13 and
shows a good level of accuracy. Additionally, both classes are well balanced with

the specificity and sensitivity values very close together.
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Actual Predicted Class
Class Natural | Backpack

Natural 20 3

Backpack 2 21

Table 6.12: Contingency table showing classification accuracy

Sensitivity | 0.91
Specificity | 0.87
PPV 0.88
NPV 0.91
Overall 89%

Table 6.13: Classifier performance results for optimised feature set

6.4.7 Discussion

In this experiment, the issues identified in previous experiments have been taken
into account and a robust method has been implemented to discriminate small
changes i gait. Using siiple but effective methods, a distance algorithm was
developed that compared the data to a template generated as a mean vector from
fifty training samples. In addition a standard deviation vector was used to take
into account the variability of the person’s walking style. A neural network was
then used to couple the sensor data and cope with the non-linearities present
within the system. Promising results were achieved, with an overall accuracy of
just under 90% in live testing and 96% in offline testing. The results showed that
one of the main dependencies on accuracy was training and optimisation of the
neural network. Although the results presented were from an optimised network,
its possible that deeper analysis of the network architecture could improve results
further. In addition the training data used for both the template and neural
networks could be pruned to remove ‘outliers’ in the data. However, in this

case it was decided that only by including all the (valid) data, could a truly
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representive result be achieved.

It should also be pointed out at this stage that one of the disadvantages of this
method is the amount of training data required; in this case fifty trials to generate
the template and one hundred (separate) trials for the neural network. However,
the nature of the system means that live captures can continue to be stored during
use to provide further training data over time when accompanied with the correct

class, leading to an adaptive system that can learn gait patterns over time.

Another aim of this experiment was to produce a technique that could be gen-
eralised to various similar applications. As long as a change in gait occurs it is
proposed that this method can be applied to any application where a diversion
from natural walking occurs. It is suggested that one application of the system
is to provide a form of screening tool, to detect possible walking disorders at an
early stage. Research of the literature also suggests that variability in gait Is a
useful predictor of falls and fear of falls in older adults [97; 98]. Using the inbuilt
variability measure within this system, it could possibly be applied to this area

of research as well.

6.5 Conclusion

This final section has investigated the possibility of detecting and discriminating
small changes in a person’s gait. Initially, the feature extraction method de-
veloped in section 5.4 was extended. In this case the differences between three
sensors were calculated and the features extracted from the two resulting vec-
tors. Discrimination analysis was used again to classify between natural walking
and walking with a tray. Overall classification rates were high with an 83% ac-
curacy. However, it was hypothesised that the performance could be increased
further by removing redundant features. This was done by calculating the Wilk’s
Lambda for each feature to test it’s significance. Ten significant features were

found and used to run further tests. However, the resulting accuracy dropped
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to 81%. Therefore, the non-significant features, when combined were probably

making an important contribution to the discriminatory power of the function.

It was suggested that despite the high accuracy achieved, feature extraction meth-
ods weren’t generalisable to any scenario. Different walking disorders would po-
tentially affect different features of the gait pattern and hence would need to be
identified and somehow extracted for each different application. Therefore, a dis-
tance based algorithm was developed which relied on the overall shape of the gait
pattern and hence was potentially more generalisable. The algorithm developed
created templates on gait patterns that were fully normalised and mapped onto
a 200 element vector. The template was created by taking multiple captures and
calculating the mean and standard deviation of each of the two hundred elements.
The cost was calculated by the distance of the captured gait profile from the mean
template, weighted by the standard deviation. The same was done for the first
derivative of the captured profiles and the two costs multiplied together to give

an overall cost. This was done for each of the three sensors.

It was found that better results were achieved by only storing a template for
the ‘abnormal’ gait. Neural networks were then used to couple the sensor data
and define the cost threshold, hence using the distributive tactile sensing method
to discriminate between normal and abnormal gait. Accuracies of 89% were
achieved. This algorithm can also learn adaptively so [uture captures can be
nsed to tweak the gait templates. This makes the final algorithm a highly flexible

and accurate method that acheives the main aims of the project.
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Chapter 7

Conclusion and Summary

7.1 Concluding Remarks

In this thesis a system has been designed, developed and tested that is able to
discriminate between different gait patterns when a person walks over a sensing
platform. Using a small number of low cost sensing elements and the distributive
tactile method, the system provides a practical solution for gait analysis and
overcomes some of the limitations found in a force plate. Several experiments
and investigations were required to progressively develop the system and meet

the aims of the project.

In Chapter 3 a mathematical model was developed to test the viability of using
the distributive tactile sensing method on a large scale dynamic project. The
model was designed to test the possibility of being able to track a moving load
(object) as it passed across the surface ol the plate. The load was to be tracked
by analysing the deflection of the plate caused by the load using a small number
of sensing elements. The amplitude of the applied force was varied harmonically,

which for the experiment had a profile in the form of a square wave.

A method developed by Szilard [31] was taken and extended to that of a moving
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load and also to take into account damping. Using this data, a novel method
of analysis was developed that was able to use the deflection data from six loca-
tions under the plate to determine the location of the load at any point in time.
The method developed was primarily based around data reduction techniques
including sensor optimisation using genetic algorithms and Karhunen-Loeve de-
composition. Neural networks were used to relate the reduced data vectors to an
actual position on the plate. Results showed, that whilst being dependent on the
window size, it was possible to track the moving load with an accuracy of up to

98%. This relates to just 18mm positional error on the plate.

In Chapter 4, the first experimental setup was developed. This experiment was
designed to be controllable and hence have a minimum number of variables. How-
ever, it also had be relevant to the overall project and provide an extensible solu-
tion towards the main aims of the project. Following on from the mathematical
model, this experiment investigated whether the position of a pendulum could be
tracked using the deflection of the plate caused by the frame the pendulum was

mounted on.

Various sensor methods were investigated, with infra-red distance measuring sen-
sors being the chosen devices due to their high analogue resolution, simple con-
struction and previous use in distributive tactile sensing applications. The dis-
tributive tactile sensing method was used to capture and analyse the data. This
time a neural network was implemented on a field programmable array (FPGA)
device enabling real-time output of the swing location. To train the neural net-
work a Vicon MX13 motion capture system was used to capture the position
of the pendulum in three dimensions over time. Using this accurate training
method, it was found that real-time tracking of the pendulum was possible with
a minimum accuracy of 95%. This compares favourably with the results produced
by Betker et al [51], who achieved 90% accuracy when measuring Centre of Mass
using accelerometers. It would be relatively straight forward to extend the posi-
tion calculations in this experiment to provide centre of pressure or centre of mass
measurements. With the ability to output these measurements, the system could

then be applied to the measurement of sway in a person during guiet standing.




7.1 Concluding Remarks

In Chapter 5 the limitations of the equipment developed in the previous exper-
iment are identified and improved upon. In particular, the plate is scaled up to
a size that can comfortably accommodate a person’s stride, with the base plate
containing the sensing elements sandwiched in the frame, to reduce susceptibility
to external disturbances. A classification experiment is then developed, whereby

the gait pattern alone is used to identify one of five volunteers.

From this experiment, it was hypothesised that certain walking styles could affect
the accuracy of the system. In particular, a person with a widely varying walking
style could be misclassified as one of many different people. A walking style
identified as the ‘generic walker’ was found to be most destructive in terms of
affecting the system accuracy however. A generic walker has a very standard
walking style with few unique features. When using a shape matching algorithm
such as DTW, this can cause other members to be easily misclassified as the
generic walker. When applied to this novel application, feature extraction with
linear discrimination achieved the best results with a 78% overall classification
accuracy. In comparison DTW achieved a 70% accuracy. Both these results were
accomplished using a single sensor and therefore it is suggested that applying the

methods used in Chapter 6 would improve the accuracy further.

In Chapter 6, more subtle changes in gait were investigated by attempting to
discriminate a change in a person’s walking. The experiment involved a person
walking naturally and then walking with a backpack or heavy tray which caused
small changes in their gait pattern. Distributive tactile sensing was found to be a
successful technique in discriminating between the two types, while the use of a
neural network was found to be essential to cope with the non-linearities involved.
Two methods were investigated for this experiment: optimised feature extraction
and a normalised distance method combined with neural networks. The feature
extraction method produced an overall classification accuracy of 83%. However,
when the features were optimised using statistical methods, the accuracy was
reduced to 81%. Furthermore, live tests showed a dramatic decrease in accuracy
to just 42%. The normalised distance method on the otherhand performed well

in both offiine and live testing, achicving 96% and 89% respectively. In a similar
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experiment, Lafuente et al [56] achieved slightly lower accuracies (75%) when
using discrimination analysis for gait classification while their neural network
method had an accuracy of almost 10% lower than that accomplished with the

novel normalised distance method.

Based on captured results and published work, it was found the system accuracy
1s improved if normal walking is not ‘classified’; i.e. no template is stored for
normal walking. This is due to the high variability in normal walking due to
the unrestricted degrees of freedom. On the other hand affected walking will
usually be restricted, particularly when due to a pathological or neurological
1ssue. Therefore affected walking is less variable and more likely to match a

template when present.

7.2 Algorithms

In Chapter 3, Genetic algorithms were used to optimise the sensor locations.
Although, genetic algorithms are useful in various applications, it is a very sub-
jective method that relies on the researcher to correctly identify the appropriate
cost function to achieve effective results. Therefore, although it is an optimisa-
tion method, there is no guarantee that the results provide the most optimum
outcome. In the method described, the genetic algorithm results were used as a

guide as to where to place the sensors.

Karhunen-Loeve decomposition (KLD) was used as a data reduction technique
to convert large time series datasets into much smaller vectors. As well as the
method being used for generating proper orthogonal functions, it is also suitable
for producing small vectors that are appropriate for input to neural networks.
Along with the use of a windowing method, KLD was found to generate suitable
variation in the resulting vectors for a neural network to relate the vector to a

location on the plate.
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Dynamic time warping (DTW) has previously been used in handwriting and
signature identification applications. It works as a cost based function where the
distance between the captured data and a template is compared. DTW extends
this by being able to warp the time axes such that it can compare the distances
between adjacent samples as well. Because of this DTW was identified as a
potentially powerful algorithm that would be able to cope with people ambulating
over the surface at different walking speeds. DTW was also used to identify
the most representative template from a number of captures, although this was
found to be an ineffective method overall. The results showed that for person
identification, DTW achicved 70% overall accuracy but was found to be affected

by different walking styles.

Feature extraction is also a commonly used method in handwriting identification.
Feature extraction is not a classification algorithm in itself and is usually used
in combination with neural network or discrimination analysis. This method was
found to achieve a slightly higher overall accuracy in the person identification
experiment in comparison to DTW. In particular it appeared to be more effective
in correctly classifying the variable walker. Statistical methods were used to
optimise the feature vector in the experiment described in Chapter 6, such that
the features that contributed most to the classification were identified, enabling
redundant features to be discarded and hence reduce noise in the system. This
can improve classification accuracy. In this experiment however, the accuracy
was reduced, indicating that the combined contribution of the discarded features

was iImportant to the correct classification.

The main limitation of the feature extraction method was that it was a very
‘fixed” method whereby the features had to be present in all the classes (albeit
at different values) in order for it to be effective. This is especially the casce
with algorithms that automatically extract the features. The algorithm became
unreliable if a feature did not exist or if they occurred out of sequence. One of the
aims of the project was to develop a method that could be easily generalised to
any form of gait classification, this was not possible using the feature extraction

method.




7.2 Algorithms

In the final experiment a novel algorithm is implemented that is based on the
observations of the previous algorithms investigated. The algorithm had the

following features:

1). Used the distributive tactile sensing method - i.e three sensors were used to

provide plate deflection data from different locations on the surface.

2).  Used ashape matching/distance algorithm - enabling a generalisable method

to be developed.

3). Used neural networks to couple the sensor data, define the classification
threshold and cope with other non-linearities in the system, such as foot

strike location.

4). Templates based around mean values from multiple captures, enabling con-

tinuous ‘fine-tuning’ over time

To ensure walking speed and a person’s weight were not used in the classifica-
tion, the resulting data were fully normalised in time and amplitude. Unlike
DTW, this method did allow for differences in speed locally. For example a faster
heel strike duration and slower toe-off was able to be discriminated using this
algorithm, whereas DTW would have warped the time axis appropriately and
therefore removed a potentially important change. To account for variability in a
person’s walking, the algorithm used the standard deviation calculated from the
training captures as a weighting factor for the distance calculation. Finally, the
template for normal walking was discarded due to the expected high variability

normal walking is known to have in comparison to affected walking.

The developed algorithm produced higher accuracies than any ol the previous
tested methods, with an accuracy of just under 90% in live tests. By incorporating
the above features, the algorithm was found to be suitably sensitive to small
changes in the gait pattern. It also has the potential to be applied to clinical
applications by simply generating a different template for the affected gait pattern

required to be classified.
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7.3 Limitations

Due to the priorities of the research, it has not been possible to test the dis-
crimination methods on larger sample sizes. In particular, it is unlikely that the
person identification experiment could be successfully applied to a large number
of subjects. However, it is suggested that if some of the later methods developed
were applied to this experiment, then greater accuracies would be achievable with
a reasonably sized sample. It should also be noted that the volunteers involved
in the experiment were of a similar physical form and age. Larger samples would
bring greater variation and therefore provide to a certain extent more distinguish-

able gait patterns.

It would have been useful to test the final system on a real pathological or neu-
rological gait disorder. The long ethics process and low availability of volunteers
did not make this possible however. It is suggested that accuracies may even
improve when tested with real physical gait problems. The tests described in this
thesis only created a small change or restriction in a person’s walking, while there
was evidence that the results were affected by their awareness of the test being

carried out.

Although it may be possible to calibrate the system to provide force or moment
measurements, it is unlikely that the results attained would have the accuracy of
a force plate. However, the aims of the project were not to create a system that
improves upon the measurements provided by a force plate. Instead, the project
aimed to go a step further and be able to discriminate different gait patterns
rather than just provide raw measurements. Another aim was to attempt to
overcome some of the physical limitations of the force plate. Both of these aims

have heen achieved.
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7.4 Applications

The mathematical model describes a novel method of tracking an object as it
moves along a surface. This could be applied to tracking the motion of people
walking over a bridge for example or in an industrial setting, used to track objects
on a conveyor belt. The method developed eliminates the need for a camera based

system and instead uses low cost sensors to measure the surface deflection.

As described in Chapter 4, the pendulum tracking experiment could be very
easily extended to the measurement of balance of sway in people. By using a
larger platform, like the one used in the walk discrimination experiments and a
different set of training data that relates deflection to centre of mass or centre of
pressure, the system could be used to measure the sway in a person during quiet
standing. Similarly, it could also be used for sports training applications such as

the monitoring of stance during a golf swing or bowling a cricket ball.

Biometrics is an ever growing industry. However, most biometric measurement
systems are intrusive. Finger print and iris identification, currently require con-
scious interaction with the system. The experiment in Chapter 5 describes the
possibility of a platform based system that could be used to identily a person
from their gait pattern. This could be implemented in low population areas such
as an office. Instead of the person being required to consciously interact with
the system, they are identified by simply walking over the active surface as they

enter the building.

The completed system, described in Chapter 6 has applications in gait analysis
as stated in the main project aims. The ability to discriminate between different
types of gait pattern or small changes in a gait pattern mean that the system
could be used as an initial screening tool for identilying walking disorders or as
a system that is able to determine the change in a person’s walking over time be

it an improvement, degradation or pre and post operation.
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7.5 Suggested Further Work

Before the developed system can be applied as a medical tool, the following

suggestions should be implemented.

1).

Test the system with a real gait disorder in comparison to normal walking
or another gait disorder. This will enable the researcher to get a sense of

the real accuracies that can be achieved.

Extend the sensing data to capture a full stride (two foot strikes). This
could provide the system with a lot of extra data and hence improve dis-

crimination accuracy.

Investigate the physical size limitations of the platform. Can the platform
be extended to capture several strides? The ultimate aim would be to
have an active floor made up of multiple platforms that could measure gait
without limitation. This would dramatically improve accessibility to those
with severe walking disorders, the elderly with limited balance or young

children who would be able to move around freely.
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Appendix A

Photographs of the experimental

setup

A.1 Person Identification User Interface

Figure A.1 shows the graphical user interface developed for running the person
identification experiment. Key features of the user interface are numbered and

described below:

1). This gives the name of the identified person once a prediction has been

made along with numerical values for the score for diagnostic purposes.

2). For extra impact, a photo of the identified person is displayed, along with

an audio voice stating the person’s name.

3). To keep track of the results during testing, it was possible to record whether

the system had correctly identified the person.









A.2 Walk Discrimination User Interface

(2]
S

For training, the GUI was now able to fully format the captured data before

1t was stored, for example apply the moving average filter, normalise, etc.

When the feature extraction method was being used, this option would
automatically extract the features from the captured data. The invalid
window shows the captures that failed to have all the features successfully

extracted.

For live testing, the classification was shown in the prediction window along

with an audio voice stating the class.
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Appendix B

Matlab Scripts and Example

Databases

B.1 DVD Request

Appendix B is available on DVD/CD format only. Copies of the disc are available

through Dr. Xianghong Ma at Aston University. Please send requests to:

Dr. Xianghong Ma

Bio-Medical Engineering Research Group

School of Engineering and Applied Science

Aston University
Aston Street
Birmingham

UK

B4 7ET
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B.2 DVD Contents

Or email: x.ma@aston.ac.uk

B.2 DVD Contents

The DVD contains the following files:

Chapter 3 - Mathematical Model

gen_data_100706.m

Batch processing script for generating
plate deflection data for multiple load

speeds

szilard_damping10hz_100706.m

Generates plate deflection data based on
Szilard (1974). Uses a 0.05m grid. Takes

speed as input

con_Pmn_cxy_damped_100706.m

Creates the training data by extracting
data from chosen sensor locations and ap-

plying windowing and KLD methods

KL_funm

Karhunen-Loeve Decomposition algorithm

mNN_Fpos_damped.m

Neural Network training algorithm

mNN_F_Test_damped.m

Neural Network testing script

Table B.1: Index of Chapter 8 Maltlab scripts
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B.2 DVD Contents

Chapter 4 - Pendulum Tracking Experiment

szilard swing4.m

szilard _swing4.m

mNN_train.m

Offfine Neural Network training algorithm

mNN _test.m

Offline Neural Network testing algorithm

Table B.2: Index of Chapter 4 Matlab scripts

Chapter 5 - Dynamic Time Warping Experiment

whoami_gui_6.m

Main GUI control script for the person

identification experiment

whoami_gui_6.fig

Main GUI for the person identification ex-

periment

whoami_struct_multi.m

Main algorithm which calculates cost of
capture using DTW when compared to
each template in order to predict the per-

son that walked over the surface

gen_data.m

Loads all training captures for the persons
template, formats it, chooses the best and

then stores it in the DB

hest_template_auto.m

Compares training data using DTW to de-

termine most representative template

person_db.mat

Database for this experiment

Table B.3: Index of Chapter 5 (DTW) Mallab scripls
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B.2 DVD Contents

Chapter 5 - Feature Extraction Experiment

whoami FX_gul.m

Main controlling script for calling feature

extraction and interpreting the result

whoami FX_gui.fig

GUI for Feature Extraction experiment

whoami_fx.m

Main controlling script for calling feature

extraction and interpreting the result

feat_extrac3.m

Algorithm to extract the features of the

captured data

exti_vectors_live2.m

Run discrimination analysis to classify

captured features

whoami_{x_train.m

Captures training data, calls feature ex-
traction routine and stores them in the

database

daqcapture.m

Function to set up and control the N1 data

acquisition card. Returns captured data

person_FX_db.mat

Database for this experiment

Table B.4: Index of Chapler 5 (Fealure Eztraction) Mallab scripls




B.2 DVD Contents

Chapter 6 - Feature Extraction Experiment

tray_class_gui.m

Main GUI control script for the two class

feature extraction experiment

tray_class_gui.fig

Main GUI for the two class feature extrac-

tion experiment

tray_trial _capturel11006.m

Captures the data, runs the feature ex-
traction algorithm and then makes a clas-
sification using the linear discrimination

method

feature_vec_gen2.m

Extracts features from the waveform to

make a feature vector

feai_extrac_tray3.m

Extracts features from the waveform to

make a feature vector

dagcapture.m

Function to set up and control the N1 data

acquisition card. Returns captured data

train_data_compile.m

Collects together all the data stored in tri-
als and transfers it to a seperate training

data section

get_all_features111006.m

Takes all the features [rom the training
data section and computes the sample
mean, covariance and a-priori probability

for use with linear discrimination

person_tray_db111006.mat

Database [or this experiment

Table B.3: Index of Chapter 6 (Fealure Eziraction) Matlab scripts

N
[N
[}




B.2 DVD Contents

Chapter 6 - Normalised Distance Experiment

bkpk_capture6.m

Main GUI control script for the two class

normalised distance experiment

bkpk_capture6.fig

Main GUI for the two class normalised dis-

tance experiment

daqcapture.m

Function to set up and control the NI data

acquisition card. Returns captured data

bkpk _proc_signals.m

Separates right, left and front sensor sig-
nals from captured data set. Stores in

database

bkpk_normecurve.m

Removes leading and trailing zeroes, nor-

malises data in time and amplitude

md_templates.m

Calculate distance score between captured

data and template for each sensor

bkpk _NN_train.m

Neural network training routine

bkpk NN10_Golden.mat

Optimised neural network structure

bkpk_data_db191206.mat

Database for this experiment

Table B.6: Index of Chapter 6 (Normalised Distance) Matlab scripls
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