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Chapter 1

one time it is estimated that »an‘_éund 0
lifetime prevalence of epilepsy (i

epilepsy, have epilepsy or will

troencephalographer’s capabilities with objectlve data;m numerical or graph1cal form to

characterise EEG phenomena such as spikes, sharp waves and abnormal patterns. EEG

patterns to mimic the modus operandi of the electroencephalographer. By réprO&uéiﬁg"fh_
modus operandi of electroencephalographers instead of reproducing the modus Op,emnd'i':‘

of neurophysiologists (who might be able to interpret EEG recordings), cngiheeﬁs con-
sider epilepsy as a condition limited to the Brain. HoWeVé'rfepi/Ieps/y‘ 1S a condition pri-
marily affecting the Brain but also affecting the systems”afferent {0 the Brain via the
of

central autonomic network such as the cardxa and stems, The novelty

this Thesis is to consider epilepsy as a. global condmon erf'ce‘ﬁﬁraii'néﬁfal net-

work and its afferent systems: a blomedlcal case for the coupling oi the Brain- and Heart .

systems during temporal lobe epileptic seizures is the basis of the design of a fusmn-'
information framework towards the automated false-positives free detectlon of te

lobe epileptic events described in the Thesis. In this perspective, the epﬂeps.y- 1s=-n0_t"f'0 y \

observed through its clinical and EEG signs but also through the monitoring of autonomic

cardiac functions affected by epileptic events.

1.1 EEG analysis

EEG analysis methods have been developed not only,.ito, emulate electroencephalogra-
phers’ capabilities (quantification, extraction and classification of EEG phenomena in-
ferred from the observation of the amplitude, frequency, morphology: andfspatfi“al distribu-

tion of brain waves) but also to extend them by, for example, performing the qUaﬁ\\t:_i’t,\a\‘ti;y.‘e\,ff\_i:

analysis of long duration recordings, difficult to achieve by clinicians (Lopes da S_i_l-\,/fa,'."\’ .

1993). Since no biological or mathematical model has been able to fully ei(plair'x“the
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divers ltyOf ]

analysis, non-linear dynamics and embeddiﬁgi;'/‘ihféljli:gen;,sys ems. Time- and fjraequeney.—’

domain analysis methods are closely related as tlﬁey' deseribe the same p‘hendme'nonr they
rely on the statistical analysis of EEG events of interest and the computatlon of charac”” -
istics of the data either in the time-domain or once the signal has been decomposed into
different frequencies. This classical decomposition of EEG analysis approaches in time
and frequency-domain methods is sometimes opposed to the decomposition into péra’met—-
ric and non-parametric methods (Lopes da Silva, 1993)7.“:The}dis/t_ir/10tion into parametric
and non-parametric methods relies on two different appro‘a/c:hes/ tQjF;EG anagfysi,s. Non-

parametric methods considerthe statistieal/.prope; es Is as a realisation of

random processes, withouta specific generatmn mode 1] is hence clharaetérf'ifsed: .
by its distribution and moments (e.g. test of the Gau531an1ty of the EEG amphtude dis-
tributions), by the autocorrelation function or the power spectrum (e.g. f-d,escmb_mgﬁ-the *'

EEG signal in terms of frequency, Fourier analysis), or by distributions ef/,,<i§1te \

tween level crossings (e.g. distribution of zero-crossings of the ‘@figihai EEG) On
other hand parametric methods for EEG analysis are used when models of the ‘bi@p‘h}"ﬁ-Si‘:
cal processes underlying the generation of EEG phenomena /(isuch as alpha rhythm, spike |
and wave complex...) are available. EEG signals are then descnbed in terms of a math-,
ematical model characterised by a set of parameters (e g the EEG slgnal is assumed to
be generated by a statistical model with time-varying parameters) ofNon-llnear dynamles '
and embedding approaches rely on Takens’ theorem: (Takens 1981) They have been ap- k
plied to biomedical time series to characterise the behav10ur in the phase space of systems

too complex to be modelled (Litt & Echauz; 2002). Intelligent systems, fsuch as neural

networks, are trained to discriminate between different epochs of the EEG\V”s,ig\ri\z\l\l;_\(_e\;g:. "
pathological versus non-pathological epochs) (Litt & Echauz, 2002). .

The choice of an appropriate EEG analysis method: is application—oriented.i The au-
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undesirable consequences for the patlent The de31gn of methods for the automated detec-

tion of epileptic events should take into con51derat10n not only the sensitivity of the meth—

ods to epileptic events but also the number of false posmves mduced by the achlevement‘

of a high sensitivity. Saab and Gotman (Saab & Gotman, 2005) accurately summa sed
other challenges to overcome in the design of a system to detect epileptic events Ufromf”v'
surface EEG recordings: the design of a method to detect epileptic events can b_e. com-'
pared to the design of a pattern recognition algorithm for which no standard pre—deﬁned ‘
pattern is available due to the multiplicity of manifestations. taken by ep11eptlc events in

EEG recordings for a given patient and from patlent to patlent Further requlrements for

of the data with respect to typicality or quahty, data from a number of sources so that

the methods are not tailored to features of a smgle populatlon A further requlrement‘

false-positive rate to range from 0.3 to 3 detections per hour. One of t-he. aims o\f'\tihe.,

Thesis is to investigate methods to reduce the incidence of undesired f‘alse-‘pos’i‘tives on,
e.g., the patient and the clinician, by reducing their rate to zero the Thesis is the first
attempt to the automated false positives-free detectlon ot eplleptlc events by the fusion of
information extracted from simultaneously recorded electroencephalographlc and elec-
trocardiographic time-series. -

The next Section of the Thesis introduces a blomedlcal case for the couphng of the
Brain- and Heart systemsduring temporal lobe eplleptlc selzures The clinical-, EEG- and

neurovegetative manifestations of temporal lobe eplleptlc seizures allow for the de51gn of -

a method for the automated detection of eplleptlc events by the fuswn of multwanate .

information in a fusion-of-knowledge framework. Such a method allows for the use of

a generic EEG analysis method (as opposed to a highly specific one) whose. dlag_nosls is
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complemented byanother ological source of information.

1.2 Biomedical case for the co

i
i
;

i
1
]
1
i
i
!
|
!
i

etal., 1951) to characterise seizures arlsmg from the tem D ; ‘Temporal lobe epilep-
tic seizures are closely related to psychomotor (also called complex partial”’) seizures.
Nevertheless not all seizures originating from the tempqral Iob,e are Complex partial seizures;
psychomotor seizures may originate from the vicinity of the temporal lobe. Cqmpl\g{\pgp—,\ .

tial seizure manifestations comprise clinical ictal manifestations such as \automatism'sj,

autonomic and sensory symptoms. Vasomotor, cardiovascular, respiratory, urogenital and

other autonomic ictal dysfunctions during psychomotor seizures have been documented.

Autonomic (or “vegetative”) visceral ictal symptoms are frequently observed. Broglin et
al. (Broglin & Bancaud, 1991) produced an extensive report on ictal neurovegetative man-
ifestations induced by temporal lobe epileptic seizures, and described their visceromotor

and viscerosensitive manifestations.

Baumgartner et al. (Baumgartner ez al., 2001) compiled a short review on autonomic

symptoms during epileptic seizures, listed into cardiovascular changes, respiratory mani-

festations, gastrointestinal symptoms, cutaneous manifestations, pupillary symptgm‘s_’and

genital and sexual manifestations. The manifestations of the activation of the central au-

tonomic network provide clinical information on the localisation and lateralisation of the'

seizure onset zone. Reeves (Reeves, 1997) focuses the analysis of the disruption of the .
autonomic activity during epileptic seizures on the cardiqyasc;@g and respiratory per-
turbations (heart arrhythmias and irregular breathing pattém{é).’/])/d/é to the'ir severity thé

latter could overshadow the diagnosis of epilepsy. In a s1m11ar fashlon Devmsky et al.
(Devinsky et al., 1986) stress through six case reports the mlsdlagnosed treatable cardlo-

vascular perturbations induced by complex partial seizures. In a latter paper Devinsky
(Devinsky, 2004) lists the modifications induced by,s,eizurés, on auton,omic arlld‘ cardio-

vascular functions and describes the effects of epilepsy therapy on autbnomi’g function:
antiepileptic drugs and temporal lobe epilepsy surgery may help stabilise c_a\rdi\o.vésculaf ,y

control in epilepsy patients. Galimberti et al. (Galimberti er al., 1996) concluded from
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a study of 100 partial epileptic seizures recorded by ambulat

patients that an iearlfyx héaﬁt 'ra’t,\e; :.de.cyre,ase;;- (assessed from th

ictal EEG discharge) is more probable in te
origin. ’

The cardiovascular autonomic symp 6be f‘\e:piilep“sjseizures{‘ ,
mainly consist of tachycard1a often w1th’ an increase essﬁre; occaS,iona‘l‘ly‘ |

they consist of bradycardia, dramatlcedeerefase offghe lo and irregular pulse.

Blumhardt et al. (Blumhardt et al., 1986) refej'ericegi,,'thefelectr;ocardfiographic accom-
paniments of seventy-four spontaneous tempbral lobe;.ep‘;ilept/i/e seizures from twenty-six
patients. In 92% of the patients the seizures were associated with an increased heart rate

(tachycardia). Constantin et al. (Constantin et al., 1990) report five e{as,es of patients with

temporal lobe epilepsy in whom sinus bradyarrhythmias and syncope were prominent:\‘
manifestations of seizure activity. Reeves et al. (Reeves er al., 1996) review ‘twent‘y—three
cases of the ictal bradycardia syndrome. Twenty of the twenty-three patients (87%) whose
site of ictal onset could be localised had temporal lobe epilepisiy; / '

Figures 1.1 and 1.2 show the ECG recording during an interictal- and an ictal (tem-
poral lobe epilepsy) event, respectively. During the interictal epoch the cardiac rhythm .
1s about 90 beats per minute while during the ictal e\ieﬁf the cardiac rhyfhm is about 130
beats per minute, corresponding to tachycardia. R

The biomedical case for the coupling of the Brain- and Heart systems during temporal

lobe epileptic seizures is not the only coupling of this nature: changes i in the healt- and'f”,\\:\ .

respiration rates in neonates during epileptic seizures have been documented (Greeneu“
et al., 2006). The observation of a decrease of the order of 5.70% in the mean R-R interval
(time interval between consecutively detected R-peaks) during epileptic seizures led to
the design of an electrocardiogram-based method for ﬁeeﬁatal Seizure detection (Greene
et al., 2007b). The method classifies one minute- epochs as elther seizure” or "non-
seizure" by performing the linear discrimination of 41 heartbeat Ummg interval features.
Greene et al. report a sensitivity of the patient-independent classifier of the order of
78.4% and a specificity (percentage of non-seizure epochs correctly classified) of the
order of 51.6% (which gives a false detection rate of 48.4%). In clinical practice the false
detection rate (percentage of non-seizure epochs classified as seizure epochs) re,por,t,ed:is.
highly unacceptable. \ |

Kerem et al. (Kerem & Geva, 2005) designed a method for the prediction of epileptic
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Figure 1.1: ECG recording during an interictal epoch: no epileptic event is recorded on
the simultaneously recorded EEG (shown in Figure 2.1). The cardiac rhythm is about 90
beats per minute.

3000 T T

2500} 14

2000

1500

1000} -

Amplitude (V)

5001 g

-500

-10 . -
20 7325 7330 7335

Time index (s)

Figure 1.2: ECG recording during an ictal event (temporal lobe epllepsy) the eplleptlc
event starts on the simultaneously recorded EEG (shown in Figure 2.2) at 1 = 7330s. The
cardiac rhythm is about 130 beats per minute, corresponding to tachycardia.
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seizures from the ECG signal of human patients suffering from tem
of rats rendered epileptic with forecasting sensitivities of 86%

times ranging from 30 seconds to 10 minute

nensional feature space. The

5905 1023305): the preictal

the fuzzy clustering of the periods of R-R ir

human patients’ recordings cover a short preicta

activity could begin before the start ofthe recording. The method for the prediction
of epileptic seizures from the ECG sigﬁﬁl of humanpatlentssuffermg from temporal
epilepsy is difficult to realistically assess. Thé methodapf)hedtoshort—term recordings,
centered around a unique ictal event, is deemed to pefform well: on-short time scales
the ECG signal is not corrupted by heart arrhythmias due to the activity or to a condition
of the patient reducing the number of false-positives produced by the method to zero in

all but one case. The method would more appropriately be assessed against long-term

recordings.

1.3 Biomedical data fusion

In the 1980s the motivation behind the investigation of multisensor data fusion techniques

was the development of military applications such as 7targgtftgé/1/clg»1’1ig, automated identifi-
cation of targets by non-cooperative sensors. Data fusion techniques combine data from

multiple sensors to achieve "better" inferences than a single sensor would achieve. In

1986 the Joint Directors of Laboratories (JDL) data fusion working group proposed a
process model for data fusion (Figure 1.3) and a data fusion lexicon in an effort to codify
data fusion terminology (Hall & Llinas, 2001).

The backbone of the JDL process model for data fusion is a hierarchy of subprocesses
during which the information fusion can be achieved. Over the years the JDL process
model for data fusion has been revised and new process models have been proposed,
usually built around the intuitive hierarchical backbone initiallzy proposed by the JDL
process model (Steinberg & Bowman, 2001).

In a medical environment practitioners combine information collected from different
sources to form a diagnosis. Likewise biomedical data fusion combines data or_igliﬁat—
ing from multiple sources to improve a decision task such as classification (e.g. “healthy
patient”/“non-healthy patient”), prediction (e.g “patient likely to be affected by\Aizheiﬁler'

disease”) or estimation (e.g. “stage of the disease”). Despite the various levels of the fu-
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Figure 1.3: Joint Directors of Laboratories (JDL) process model for data fusion (from
(Hall & Llinas, 2001)).

sion hierarchy at which to perform biomedical data fusion, it has mainly been performed

at the low-level of sensors/observations (in order to exploit the superresolution capability
of fused observations in a multisensor environment: the finer resolution-of.a sensoris-used

to complete the properties of another one) or at the high-level of decisions (in order to ob-

tain a binary decision). The biomedical data fusion ofnon—EEGdat is mainly concerned
with image or sensor registration (low-level of the fusion hieiafehy); or decision making
(high-level of the decision hierarchy); whereas the biomedical data fusion of EEG data

emphasis is on the EEG inverse problem and on the detection of epileptic seizure events.

1.3.1 Biomedical data fusion for image registration

Image registration has been performed in different ways depending on the decision task
considered and on the sources of information available. For example a sequence of MRI
medical images, treated as though multiple sensors had generated the sequence, have been
combined to improve the performance of the detection of 3-D deformations of the scol-
iosis (Taleb-Ahmed & Gautier, 2002). Solaiman et al. (Solaiman et al., 1999) augmented
the information provided by a monosensor echo-endoscopic system with multisources of
knowledge (i.e. a new set of information data obtained by application of a priori knowl-
edge) towards oesophagus inner-wall detection. Sensor registration motivates the data
fusion at the low-level of the fusion hierarchy: Hernandez et al. (Hernandez et al., 1999)

investigated multisensor and multisource data fusion schemes to improve atrial and ven-
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tricular activity detection in critical care environments.

At the high-level of the fusion hierarchy the improvement of c u

through data fusion has been investigated. Azuaje et al. \(Afzfiiaj;e, ta11999) proposeda

framework for biomedical information fusxonbas Base\.\réasoni'ng- paradigm
(i.e. the retrieval of relevant cases fromja/;c,,ésig;fr’niéjn;é)r; i 1r adaptation to a'new’
problem or situation for the solving/interpreting of ’thé:léLtcr} ,téwié{rds the estimation of
the coronary heart disease risk of asymptotic patients: Rggoy:a@t;al;,;(Rogova,& Stomper,
2002) proposed a decision aid for the diagnosis of mammégrapflic microcalcifications
as benign or malignant based on the combination of decisions. of classifiers working on

different sources of information (image- and knowledge-based).

1.3.2 Biomedical data fusion and the inverse problem -

The inverse problem in electroencephalography/magnetoencephalography (MEG) con-
sists in finding the locations and strengths of the neuronal currents from discrete samples
of the potentials recorded at the surface of the volume conductor (the head) from twenty to
one hundred and twenty-eight locations. The bioelectric sources (EEG inverse problem)
are modelled as current dipoles (Nunez & Srinivasan, 2006)descr1bedby three spatial
parameters, two angular parameters and one moment parjalﬁetjé:r,/ The inverse prob’lém,
due to the small number of data samples available with respect to the large number of
parameters to be estimated, is ill-defined: the scalp electric field does not allow for-an
unequivocal estimation of the associated current generators. However the spatial accu-
racy of the EEG/MEG inverse problem can be improved by the introduction of spatial
priors to constrain the solution space assuming the bioelectric and metabolic activities
are coupled. Part of the brain metabolic activity can be inferred from functional mag-
netic resonance imaging (fMRI) through the blood oxygenation level dependent (BOLD)
response. EEG-EMG/fMRI fusion approaches have been based on this assumption. Ba-
biloni et al. (Babiloni et al., 2004) modelled the human cortical activity by combining
high-resolution EEG, MEG and fMRI. The relevance of this work to the Thesis is that
there is a strong biophysical reason which motivates the use of data fusion. Specifically,
neural activity generating EEG potentials and MEG fields increases glucose and oxygen
demands, leading to an increase of the hemodynamic response that can be measured by

the fMRI. The correlation between electrical and hemodynamic concomitants provides

10
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the basis fora spatial correspondance between fMRI responses a
activity. Hence the determination of the priors in the resolution of the li ear b-

lem was performed with the use of infOrmat‘ioniifrem'.ih@'fh;é,médy-ﬂamlé-fcs,an‘Sé;.Sf of the

cortical areas as revealed by block—desigﬁed/’MRfI.,

Sharon et al. (Sharon ez al., 2007) sshéssta theiloca'lﬂiiéiiﬁgj ‘ébﬁit\y of neuronal dyn'ami(:s ‘
within well-defined brain regions using separate and combinéd/MEG and EEG modalities
compared to the functional MRI localisation during early visual responses to focal Gabor
patches flashed during subject fixation experiments. Using three different source estima-
tion approaches, the authors found that the localisation accuracy of the combined MEG
and EEG solution outperformed that of either modality alone.

Gotman et al. (Gotman et al., 2006) reviewed the methodology involved in combining
EEG and functional MRI time series to uncover the regions of the brain showing changes
in the BOLD signal in response to epileptic spikes observed from the EEG. These regions
are presumably involved in the abnormal neuronal activity at the origin of epileptic dis-
charges. The integration of these data is not straightforward: the high temporal resolution
of EEG is balanced by its poor spatial resolution (i.e. uncertainty in source localisa-
tion) due to errors in head models and the ill-defined nature of the inverse problem; the
high spatial resolution of fMRI is balanced by its poor tempbral resolution and the partial
understanding of its link to neural activity. Integration of EEG and fMRI data can be
achieved by considering the spatial and temporal links between the two modalities.

Considering event-related (ER) EEG and fMRI as different measures of the neuronal
activity Daunizeau et al. (Daunizeau et al.,, 2007) proposed a symmetrical multimodal
EEG/fMRI information fusion approach designed to identify event-related bioelectric and
hemodynamic responses. The decomposition of the neuronal activity into the common
substrate that contributes to EEG and fMRI measurements and into subspaces of neuronal
activity detected only by one type of measurement that do not contribute to the other type
of measurement formalises the apparent coupling/uncoupling process occuring between
bioelectric and hemodynamic ER responses. The common substrate of bioelectric and
hemodynamic activities is defined as the spatial support of the EEG/fMRI common signal
generators. Hence the hierarchical EEG/fMRI generative model proposed accounts for the
separation of spatial and temporal characteristics of the brain. The common EEG/fMRI
sources were inferred from a joint EEG/fMRI dataset using a devoted variational Bayesian

learning scheme.
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as fMRI in the EEG/MEG inverse problem due to the pamal knowledge of the bioelec- .

tric/metabolic coupling. They proposed gn’éﬁprpach; quantify the é‘dé‘quacy'of the
fMRI-derived prior to the data compared to 'fﬁéb;go/gtéiriéd ; (;m‘using, a noninformative
prior in a Bayesian framework. = '
The works detailed above are examples of electromagnetic :ﬁ/\e/ld integration towards
enhanced spatial localisation of the generators of the brain. The aim of the Thesis is to

propose a biomedical data fusion framework towards enhanced epileptic seizure detection

from ECG and EEG time series.

1.3.3 Biomedical data fusion for epileptic seizures detection

To the author’s best knowledge, the only previous attempt to biomedical data fusion to-
wards epileptic seizure detection is the very recent data fusion of EEG and ECG time
series proposed by Greene et al. (Greene er al., 2007a) for neonatal seizure detection.
Following the initial constatation that heart- and respiration rates were altered in neonates
during epileptic seizures and a first attempt to the neonatal seizure detection from electgo-
cardiogram recordings, Greene et al. proposed a novel algorithm for neonatal seizure de-
tection from the combination of an ECG-based classifier with a multi-channel EEG-based
classifier (Greene et al., 2007a). For a patient-independent system Greene et al. achieved
a sensitivity of the order of 81.44% for a false detection rate of 28.57%. The features ‘
extracted from the ECG time series were based on R-R intervals for 60 second-epochs of
ECG: mean R-R interval, standard deviation of R-R intervals, spectral properties of R-R
intervals. Features (spectral features such as power ratio, dominant spectral peak) were
extracted for each channel of EEG, sorted and concatenated before being combined with
the features extracted from the ECG time series by simple aggregation or weighting and
being fed into a pattern classifier. This is the most similar published work that exists, to

this Thesis.
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1.4 Biopattern and bioprofiles

The Biopattern' Network of Excellence (NOE) was a pI‘O_]CCt (runnmg from J anuary 2004 .

to December 2007) that integrated key elements of European research to enable Europe

to become a world leader in eHealth. The Grand Vlsmn szas‘ to develop a pan-European,
coherent and intelligent analysis of a citizen’s bioprofile (i{e.’fthefpersona'lV“ﬁn‘g‘erpri’nt"’
that fuses together a person’s past and current medical history, biopatterns and prognoses;
and combines data, analysis and predications of susceptibility to diseases); to make the
analysis of this bioprofile remotely accessible to patients and clinicians; and to exploit
bioprofile to combat major diseases such as cancer and brain diseases.

A biopattern is the basic information (or pattern) that provides clues about underlying
clinical evidence for diagnosis and treatment of diseases. It is derived from specific data
types: genomics information or biosignals such as the EEG. Examples of biopatterns and
of their integration in a bioprofile include features extracted from the EEG time series of
patients towards the characterisation of Alzheimer’s disease (Zhao et al., 2007; Goh et al.,
2005) or microarrays for brain cancer classification (Kounelakis er al., 2005). Features
extracted from the EEG time series towards the detection, ehgraeterisation and prediction
of epileptic events have been investigated, by Biopattern NoE partners gathered in the
Brain Task Force, as possible biopatterns to be included in a patient’s bioprofile.

The dataset of Medial Temporal Lobe Epilepsy patients used in the Thesis (described
in Appendix A.1) was disseminated to Biopattern partners by collaborators from the
BIOMED team and from the department of Clinical and Experimental Neurology, both at
Katholieke Universiteit Leuven (KUL).

1.5 Thesis aims and objectives

As detailed above, the main aim of the Thesis is to perform a characterisation of the
Brain ictal state through multimodal information integration. To attain this aim the main

objectives of the Thesis are:

1. To present a biomedical case for the coupling of Brain and Heart systems dur-
ing temporal lobe epileptic seizures: The principles of generation of heart arrhyth-

mias during temporal lobe epileptic seizures are investigated. The clinical literature

'www.biopattern.org
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tic seizures as heart arrhythmias (bradycardia and tachycardla) developlng du
ictal events. The biomedical case motivates. the demgn of a method for the false,

positives-free automated detection of temporal :lgbeﬁeprl/epn:c events.

. To investigate measures for the charactelz'isatiioﬁr/(;fii;:tz;l; events from the EEG
time series: Ictal events are characterised by a l(')/ssrof cofnplexity of the state of
the brain, reported to be successfully monitored by nonlinear measures (such as the
correlation sum) or measures of information (such as the Shannon entropy). How-
ever such measures are either impractical in a clinical context or subject to caution:
the computation of the correlation sum is intensive and its interpretation is highly
subjective. The suitability of the Kullback-Leibler divergence for the characterisa-
tion of ictal events and its practical implementation in the context of a fusion-of-

knowledge framework are demonstrated in this Thesis in Chapter 4.

. To propose a method for the description of arrhythmias observed during tem-
poral lobe epileptic events from a probabilistic analysis perspective: A method
for the description of heart rate variability is mtloduced and tested on real patlent

data towards its integration in a fusion-of-information frdmework

4. To propose an architecture for the fusion of information extracted from the

EEG and ECG time series towards the automated detection of temporal lobe
epileptic events in a probabilistic framework: The description of arrhythmias,
from a probabilistic perspective, observed during temporal lobe epileptic events
and the description of the complexity of the state of the brain, from an information
theory perspective, are integrated in a fusion-of-information framework towards
temporal lobe epileptic seizure detection. Different fusion architectures (from low-
to high levels of fusion) are proposed, considering the trade-off between optimal
data conservation and practical implementation. The architectures are tested on
real patient data towards the automated false positives-free detection of epilep-
tic events by the fusion of information extracted from simultaneously recorded

electroencephalographic- and electrocardiographic time-series.
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1.6 Outline of.the Thesis

The Thesis is divided into five Chapters. A summary of each Chapt"er'fi‘s pteéan.t.éd. bélow;

Chapter 2: Complexity characterisation of huxﬁgp EEthme series. The focus éf the
Chapter is on the extraction of informatibn flomtheEEG time series for the detec-
tion of epileptic events, in a fusion of information /framework‘ The basic mech-
anisms involved in human epilepsy are described and motivate the measures- ex-
tracted from the EEG time series to estimate the changes observed in the complex-
ity of the state of the brain during epileptic events, their suitability to the novel
approach of this Thesis is assessed against their practical integration in a fusion of

knowledge framework.

Chapter 3: Characterisation of cardiac arrhythmias during temporal lobe epileptic
seizures. The extraction of information from the ECG time series is the object of
the Chapter. The brain structures and the mechanisms at the origin of the observa-
tion of heart arrhythmias during temporal lobe epileptic events are described and a
method for the description of heart rate variability is introduced and tested on real
patient data. The data interpretation of the arrhythmias bb/served during temporal
lobe epileptic events is performed from a probabilistic analysis perspective towards

its integration in a fusion-of-information framework.

Chapter 4: Information fusion for epileptic event detection. A case for biomedical data
fusion motivated the fusion of EEG and ECG time series towards temporal lobe
epileptic seizure detection. The levels at which the data fusion can be performed
are detailed in the Chapter. The performance of the data fusion approaches are
compared to the performance of the unimodal approaches on long-records of pa-

tient data.

Chapter 5: Conclusions and directions for future research. A summary of the results

obtained concludes the Thesis and directions for future research are discussed.

The Thesis is the work of the author but parts of it have appeared in the public domain

including:

e Thomas Bermudez, David Lowe, Anneleen Vergult, Maarten De Vos, Bart Vanrum-

ste, Sabine Van Huffel, Wim Van Paesschen and Anne-Marie Arlaud-Lamborelle.
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Preliminary Results on Feature Extraction for Fusion of ECG R-R interval
EEG Complexity for Epileptic Seizure Detection. Proceedings of The BIOPAT.
TERN Brain S.1.G Workshop 2006, Gotteborg. ‘ '

e Thomas Bermudez, David Lowe and Anne-Marie Arléua—i;amborelle. Multimodal
Model Fusion of EEG/ECG for Epileptic Seizure Detection. Proceedings of CIMED
2007.

e Thomas Bermudez, David Lowe and Anne-Marie Arlaud-Lamborelle. Schemes
for Fusion of EEG and ECG Towards Temporal Lobe Epilepsy Diagnostics. Pro-
ceedings of the 29th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society 2007, Lyon, pages 5132-5135.

e Thomas Bermudez, David Lowe, Anne-Marie Arlaud-Lamborelle. Improved Tem-
poral Lobe Epileptic Event Detection through Inclusion of Cardiac Fluctuations.

3rd International Workshop on Seizure prediction in Epilepsy 2007, Freiburg.

e Thomas Bermudez, David Lowe and Anne-Marie Arlaud-Lamborelle. Detecting
Brain Malfunction from EEG and ECG. Natural Computing Applications -Forum
2008, Birmingham.
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Chapter 2 COMPLEXITY CHARACTERI

A biomedical case for the coupling of the Brain and Heart systems during temporal "

lobe epileptic seizures, through the central autonomic network, was presented in hapter

1. The novel approach described in this Thesis relies on the integration of inf_ofmation ex-
tracted from multimodal biomedical time series: ECG and EEG The focus of the Cha_pterﬂ
is on the extraction of information from the EEG time series for the detection of epileptic
events, in a fusion of information framework. The basic mechanisms involved in human
epilepsy (hyperexcitability of regions of the brain, propagation, synchrony and loss of
complexity), with a focus at ictal onset, are described in Section 2.1. In this Thesis, the
measures extracted from the EEG time series estimate the changes observed in the com-
plexity of the state of the brain, defined from a neurophysiological- and an information
theoretical points of view, during epileptic events; their sensitivity to changes caused by
epileptic events is demonstrated on artificial and real patient data in Section 2.2. The suit-
ability of the measures of complexity of the state of the brain to the novel approach of this
Thesis is assessed against their practical integration in a fusion of knowledge framework

(Chapter 4).

2.1 Basic mechanisms of human epilepsy

The characterisation of the ictal state, which is the focus of this Thesis, relies on the iden-
tification of the transition from the interictal state to the ictal state: the ictal onset. The
interictal state is a period between ictal events during which the factors predisposing the
recurrence of spontaneous epileptic seizures (such as congenital malformation or brain in-
jury leading to the reorganisation of brain pathways) are silenced but interictal paroxysmal
patterns (such as spikes, sharp waves or the classical spike wave complex (Niedermeyer,
1993)) are observable on the EEG. The ictal onset, whose basic mechanisms are detailed
in the next Section, is a transition from the interictal- to the ictal state during which the
factors predisposing the recurrence of spontaneous epileptic seizures engage. The seizure
occurs and evolves during the ictal state. Readers interested in the basic mechanisms of
human epilepsy in the different components of the central nervous system are referred
to (Heinemann & Eder, 1997; Ditcher & Wilcox, 1997; Macdonald, 1997; Wasterlain &
Mazarati, 1997; Connors, 1997; Schwartzkroin & Mclntyre, 1997; Coulter, 1997; Proctor
& Gale, 1997; Engel Jr et al., 1997).
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Chapter 2 COMPLEXITY CHARACTERISATIO

2.1.1 Basic mechanisms at the onset of human epileb‘sy .

The ictal onset is the transition state from the interictal— to the ictal state; it comprlses fhe
processes leading to the occurrence of spontaneous seizures which vary with the form of
epilepsy. Most forms of partial epilepsy, such as tefhpofél lobe epi‘lepsy, involve areas of
hyperexcitability of the brain within which neurons undergo synchronous and paroxys-
mal depolarizations (Dichter, 1997). Under favourable conditions such as the weakening
of seizure-blocking mechanisms, the hypersynchronous activity is propagated tb both lo-
cal areas via synaptic pathways, and to distant areas via subcortical and contralateral
pathways. When a critical mass of neurons involved in the hypersynchronous activity is
reached, seizures result. The link between synchrony and complexity will be established

in the next Section.

2.1.2 Complexity as a measure of characterisation of the state of the

brain

The brain is organised in neural components functionally segregated at multiple spatial
scales (brain areas, neural networks or cortical columns). The sensory systems such as
the visual system are segregated in such a manner: neural groups are specialised by visual
attributes of perceived objects (shape, colour. . .). The segregated functionally specialised
neural components are activated when presented with a stimulus or when a cognitive
task is performed. The information triggered by a stimulus or action is integrated among
cooperative neural components according to two mechanisms: convergent connectivity
among functionally segregated neural components and reciprocal and parallel connectiv-
ity among functionally segregated neural components. The latter mechanism consists of
interactions among neural groups generating their short-term synchrony of firing, leading
to coherent perception and action.

The concept of complexity is defined with regards to the system whose complexity
is measured (i.e. the brain) and with regards to other concepts such as connectivity, in-
formation and synchrony: complexity captures functional segregation and integration of
information. Connected functionally segregated neural groups showing a synchronous
activity (e.g. synchronous firing pattern of neurons) do not exchange statistically novel
information: the complexity of the subsystem gets lower as its synchrony gets higher

(Elger et al., 2000a,b; Lehnertz & Elger, 1995). The loss of complexity of epileptogenic
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Chapter 2 COMPLEXITY CHARACTERISATION OF HUMAN EEG TIME SERIES

areas of the brain is indirectly characterised from the observanon of the hypersynchronousﬁf'
activity of such areas, recorded by the EEG time series. The activity of functlonally seg— ‘
regated neurons exhibiting a synchronous firing pattern is spatially and timely averaged:
the spatially disseminated epileptogenic area{siof the fb/raina‘ref successively recruited via '
the propagation of the recruiting rhythm and the summation of their activities is altered
by their propagation to the interface of the electrode.

The relationships between the concepts of complexity of the state of the brain, con-
nectivity, information and synchrony have been described in the paragraph above. The
complexity of the brain is a potential tool for the segregation between nominal states of
the brain and states of the brain affected by the performance of a cognitive task or altered
(on short- and long time scales) by a condition. The next Section is focused on the com-
plexity of the state of the brain during ictal events; it introduces measures to estimate the

complexity of the sate of the brain.

Complexity during the ictal state

Epileptic seizures are temporary manifestations of dramatically increased neuronal syn-
chrony (i.e. hypersynchronous activity of the neurons participating in the seizure dis-
charge). The synchronised rhythmic firing pattern of neurons requisitioned in the seizure
discharge generates a more ordered ictal EEG signal: the onset of a seizure represents
a transition from an interictal epoch to an ictal epoch of increased synchronous activity
(Iasemidis & Sackellares, 1996). In the previous Section it was established that neurons
showing a hypersynchronous activity did not exchange statistically novel information,
leading to a decrease in the complexity of the state of the brain. This observation points
to a decreased level of complexity in the neuronal groups involved in the ictal process,
observable from the ictal EEG signal.

The seizure termination can be accurately described by a transition from synchro-
nised neuronal activity of low complexity behaviour to an increasingly complex network
behaviour reflecting the progressive desynchronisation prior to the seizure termination
(Bergey & Franaszczuk, 2001).

Figures 2.1, 2.2 and 2.3 show the electrical activity of the brain as recorded from 21
electrodes disposed on the surface of the skull according to the 10-20 international system
during an interictal epoch, at the start of the seizure and further during the seizure. The

hypersynchronous activity across all channels of EEG can be observed in Figure 2.3 at
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Figure 2.1: EEG recording during an interictal epoch. The electrical activity of the brain
recorded at 21 electrodes disposed according to the 10-20 international system at the
surface of the skull is weakly correlated. The vertical scale unit is 75uV. No epileptic
events are present.

t = T7342s.

The observations above confirm the changes in the complexity of the state of the brain
during ictal events. The analysis of the changes in the complexity of the states of the brain
heavily rely on the definition given to complexity. In this Thesis two definitions of the
complexity of the state of the brain are given. In the next Section measures to estimate the
transitions between states of the brain towards ictal events and measures to estimate the

changes in the complexity of the state of the brain towards ictal events are investigated.
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Figure 2.2: EEG recording at the start of an epileptic event. The amplitude of the electrical
activity of the brain recorded is dramatically increased (the vertical scale unit is 150uV)

when compared to the electrical activity of Figure 2.1.
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Figure 2.3: EEG recording during an epileptic event (epoch following the start of the
seizure depicted in Figure 2.2). Note the hypersynchronous activity of the brain across all

channels starting at t = 7342s. The vertical scale unit is 150uV.
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2.1.3 Generators of the EEG

The surface electroencephalogram is the result of the summation, both in time and space,
of potentials generated by underlying sources of the brain, recorded at electrodes poéi-
tioned at the surface of the scalp. The aim of the forward problem is to find the distribution
of electrode potentials at the surface of the scalp from a given distribution of underlying

electrical sources (Hallez et al., 2007):
V=GD+e¢, (2.1)

where V is the matrix of data measurements (i.e. distribution of electrode potentials), G
is the gain matrix and D is the matrix of dipoles (underlying sources) at different time
instants; € is a noise perturbation.

Independent component analysis (ICA) is a blind source separation (BSS) technique
commonly used in biomedical signal processing to extract and separate statistically in-
dependent sources underlying biomedical signals. In the framework of EEG analysis,
ICA is used to extract the noise perturbation € in Equation 2.1 as one or multiples sta-
tistically independent sources from multi- or single channel (by the means of embedding
techniques such as time-delay embedding, Section 2.2.1) recordings. The statistically in-
dependent noise sources consist of ECG- or ballistocardiographic-contamination (James
& Gibson, 2003; Nakamura er al., 2006), time-frequency constrained signals such as the
50-60Hz contamination of EEG signals, patterns with particular spatial projections such
as eye blinks or bursts of muscle activity.

The observed data matrix x(1) = [x; (1), x2(1),. .., x,(t)]" with n mixtures and T sam-
ples is assumed to be a combination of m unknown underlying sources s(¢) = [s1(t),s2(t),
. .,s,,,(l)}T:

x(1) = As(1), 2.2)

where A is the n X m mixing matrix describing the mixing of the sources, generally as-
sumed to be linear; and the number of underlying sources is assumed to be less than or
equal to the number of measurement channels (m < n).

The goal of ICA is to estimate the original sources s(z) and a de-mixing matrix W
from the observations x(¢) only:

s(1) = Wx(1). (2.3)

The model in Equation 2.3 assumes a linear, noiseless mixing. The linear mixing of

23




Chapter 2 COMPLEXITY CHARACTERISATION OF HUMAN EEG TIME SERIES

sources assumed in this model is reasonable in a biomedical framework (e.g. the po\,tyen_t_i‘al_, .
recorded at the interface of the electrode and the skull is assumed to result from the linear .
summation of potentials generated by underlying sources in the brain). The linear mixing
assumption also implies an instantaneous mixing which does not necessarily stand: the
potential recorded at the interface electrode-skull results from the summation of potentials
generated by underlying generators spatially disseminated in the brain and transmitted in
a non-homogenous medium inducing lags between distant sources.

In order to make the de-mixing problem (Equation 2.3) more tractable, ICA assumes
the stationarity of the mixing and the statistical independence of sources. The stationarity
of the mixing is ensured by the assumption of the stationarity of the mixing matrix: the
statistical properties of the mixing matrix A do not change with time. In the framework of
brain signals, such an assumption comes down to considering the biophysical properties
of the brain fixed whereas the intensities of the sources distributed within this structure
vary. The fundamental property which allows for the estimation of the underlying sources
s(7) and of the de-mixing matrix W is the statistical independence of sources. A class of
ICA algorithms impose the assumption of statistical independence through high-order
statistics: statistical independence can be obtained by making the estimates of the under-
lying sources as non-Gaussian as possible (e.g. non-Gaussianity through kurtosis). The
search for statistically independent estimates of sources comes down to the search for
non-Gaussian sources.

When no information about the nature of the artifactual sources to be removed from
the original EEG measurement is available, signal processing of the original observations,
including artifact removal, can be performed by ICA methods and removal of sources of
corruption of the observations. Such sources are not restricted to artifactual sources but
also to noise sources. These components need to be identified either by manual inspection
or by automated inspection using methods such as Fourier transform (in order to estimate
their spectral content; e.g. components of frequency greater than 30Hz are not expected
to originate from brain processes) before being removed by setting the columns of the
mixing matrix to zero:

% = As(1), (2.4)

with A the mixing matrix whose columns corresponding to corrupting components have

been set to zero.
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Figure 2.4: Periodogram (left-hand plot) of an independent component (right-hand plot)
obtained from the ICA decomposition of an embedded single channel of 15s-EEG with:
T =1, the time delay; m = 83, the embedding dimension. The vertical lines denote one
second.

The lower plot in Figure 2.4 is a plot of the periodogram of the independent compo-
nent (IC) shown in the upper plot. The independent component was obtained from the
ICA decomposition of an embedded single channel of 15 seconds-EEG. The embedding
dimension m was chosen to be at least as large as the longest observable feature of inter-
est in the EEG time series, the 3Hz spike-wave complex, accounting for 83 samples (the
original signal was sampled at 250Hz). The FastICA algorithm (Hyvérinen & Oja, 2000)
is applied to the embedded single channel and the IC shown in the upper plot in Figure
2.4 is kept due to its biological relevance to the EEG signal.

The biological relevance of independent components to the EEG signal is difficult
to assess due to the ICA decomposition obtained from an embedded single channel of
EEG heavily relying on the choice of the embedding dimension m. In the framework
of the Thesis the artifact- and noise reductions by means of ICA decomposition are not
achievable: the stationarity of the mixing is violated for non-stationary signals such as

long-term EEG recordings.
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2.2 Measures of complexity

In this Thesis two definitions of the complexity of the state of the brain are given out
of the definitions possible (such as, e.g., the order of autoregressive models fitted to the
EEG signal on fixed-length windows or the spectral entropy of the EEG signal (Rezek

& Roberts, 1998)). The first definition refers to the complexity of the state of the brain

as the dimension of the object in the phase space on which the dynamics of the system
are embedded. The EEG signal is considered as the output of a deterministic system of
relatively low complexity, but containing highly non-linear elements (Lehnertz & Elger,
1995). The dynamics of such systems evolve in a region of the phase space: the attractor.
Changes in the dynamics of the system (due to the performance of a cognitive task or due
to a condition) lead to modifications in the shape of the attractor: its dimension. In this
Thesis the changes in the dimension of the attractor, due to the occurrence of ictal events,
will be estimated using the correlation dimension (Section 2.2.1).

The second definition refers to the complexity of the state of the brain as the informa-

tion content of the electroencephalographic signal. The estimation of the changes in the
complexity of the state of the brain relies on the estimation of the amount of novel infor-
mation conveyed by the electroencephalographic signal. The measures chosen to estimate

this quantity are measures of information (Section 2.2.2).

2.2.1 Nonlinear measures

The electromagnetic processes recorded at the surface of the skull (such as the EEG or
the magnetoencephalogram (MEG)) are considered to be timely and spatially smoothed
mixtures of underlying unknown source generators (or cortical processes) combined with
noise. The dynamics of such systems are embedded within an unobservable phase space
on an attractor whose properties can be estimated by nonlinear measures. The correlation
dimension D, (Grassberger & Procaccia, 1983b,a; Kantz & Schreiber, 2002) has been
applied to EEG time series to measure the number of degrees of freedom of the object
in the phase space on which the dynamics of the brain (as described by noisy obser-
vations) evolve (Elger er al., 2000a,b; Lehnertz & Elger, 1995). The measure has been
applied to the detection of epileptic seizures which are highly nonlinear events as opposed
to background activity. The correlation dimension is an indirect measure of the loss of

complexity of the state of the brain during ictal events through the characterisation of the
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timely and spatially summated hypersynchronous activities of epileptogénic areas of the
brain.

The nonlinear analysis of EEG time series relies on two steps: the reconstruction of the
system dynamics in the phase space and the characterisation of the reconstructed attractor.
In this Thesis the dynamics of the system are reconstructed from observations by the
method of delays (time-delay embedding) and the reconstructed attractor is characterised
by the correlation dimension. In nonlinear time series analysis a third step is usually
undertaken to check the validity of the analysis: surrogate data testing. The method
consists in performing the nonlinear analysis of a time series of interest and of a control
time series with similar linear properties but no nonlinear structure. If the estimates differ,
the nonlinear analysis of the original time series is valid (Stam, 2005). In this Thesis
surrogate data testing is not performed as the correlation dimension is used as an estimate

of different brain states.

Method of delays

The first step in the nonlinear analysis of EEG time series is the reconstruction of the
attractor in the phase space on which the dynamics of the system are embedded. Whitney
(Whitney, 1936) demonstrated that if the system from which the observations x;, i =
1,...,N, are taken has an attractor I" and if the embedding dimension m is greater than
twice the dimension of the system attractor (i.e. m > 2Dr + 1), the time series converted
to a series of vectors X;, X; = {x(i),x(i +1),x(i +21),...,x(i+ (m—1)1)}" € & ", where
Tis a time delay, in an m-dimensional embedding space constitute an equivalent attractor
. Takens (Takens, 1981) proved that the equivalent attractor I had the same dynamical
properties (such as the dimension) as the true attractor I'.

The delay vectors form an embedding matrix M that traces a trajectory on the attractor

[ generated by the Euclidean embedding:

M = [Xl\,Xi-Hv'--aXi—'r(N—m—H)T]

Xi Xitt oo X (Nem+1)1
_ Xit+1 Xit2t oo X (N-m)1
Xit(m=1)t  Xi+mr - Xi+Nt ]

The left-hand subplots in Figures 2.5 and 2.6 are plots of sixteen seconds of EEG dur-
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Figure 2.5: Left plot: EEG time series during an interictal state; Right plot: Attractor
corresponding to the EEG time series shown in the right plot. The attractor is high dimen-
sional and reflects a low level of synchronisation of the underlying neural networks.

ing interictal- and ictal events, respectively. The right-hand subplots are two-dimensional
phase portraits of the corresponding attractors. For visualisation purposes the embedding
dimension m was set to 2 and the time-delay T was set to 10. The recognisable structure in
Figure 2.6, right-hand subplot, denotes the high level of synchronisation in the underlying
neural networks during ictal events.

The next step in the nonlinear analysis of EEG time series is the characterisation of
the reconstructed attractor on which brain dynamics evolve in the phase space by the

correlation dimension D;.
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Figure 2.6: Left plot: EEG time series during an ictal state; Right plot: Attractor corre-
sponding to the EEG time series shown in the right plot. The attractor is low dimensional
and reflects a high level of synchronisation of the underlying neural networks, to be com-
pared to the attractor corresponding to an interictal state in Figure 2.5,
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Correlation dimension

One way to characterise the reconstructed attractor [ in a quantitative way is to compute
its correlation dimension D, (Grassberger & Procaccia, 1983b,a; Hegger et al., 1999).
The correlation integral Ce from which the correlation dimension is derived counts the
number of pairs of randomly chosen points on the attractor that are closer than a given

hypersphere radius €:

2 N—m+1IN-—m+1
Ce = o-IX-xl) @5
T IN-m+1-W)N-m-W) & J.};«W e
where || - || is an m-dimensionsal norm and © is the Heaviside step function. The Theiler

window of length W ensures that pairs close in time are not compared to reduce the in-
fluence of temporal correlations. D; is defined as Dy = limy—.e limeeo d(€) with d(g) =
dInCg/dIne: for a sufficiently high embedding dimension m, the correlation dimension
is approximated by the slope of a linear scaling region of InCg/Ine (Grassberger & Pro-
caccia, 1983b,a).

The correlation sum D, is estimated from a deteriorating sinusoidal signal (Figure
2.11, upper plot) in Figures 2.7 and 2.8 for a purely sinusoidal- and a deteriorated sinu-
soidal signal, respectively:

sin(or) forr <3000

(1 —1/T)sin(wt) + (1/T)n, fort > 3000,

with 7 = 6000, 1, is a zero-mean unit-variance Gaussian noise and the sampling fre-
quency is 100 Hz. The reconstructed attractor from a sinusoidal signal is a limit cycle,
a closed loop corresponding to a periodic system, whose correlation dimension is known
(Stam, 2005): D, = 1. The first plateau is difficult to observe and is subject to interpre-
tation. The correlation dimension of the deteriorating sinusoidal signal is impossible to
estimate since no plateau is observed. The estimation of the correlation dimension has
been reported as a difficult and delicate problem.

Figures 2.9 and 2.10 are plots of the local slopes of the logarithm of the correlation
sum during the interictal- and ictal events whose EEG recordings and attractors are plotted
in Figures 2.5 and 2.6, respectively. The loss of complexity of the state of the brain during
the ictal event is impossible to observe from the estimated values of the correlation sum
for interictal- and ictal events: since no plateau is observable, the correlation dimension

of the interictal- and ictal time-series is impossible to estimate.
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The correlation dimension is an indirect measure of the loss of complexity of the
state of the brain during ictal events through the characterisation of the hypersynchronous
activity of epileptogenic areas of the brain via noisy observations. The correlation dimen-
sion, estimated from the local slopes of the logarithm of the correlation sum for a range of
embedding dimensions, is prone to misinterpretation making its integration in a fusion-
of-information framework delicate. In this Thesis, the correlation dimension is discarded

due to its limitations and alternative measures of information are investigated.
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2.2.2 Information measures

The brain conveys information at different scales: at the microscopic scale, the informa-
tion is conveyed via action potentials or trains of spikes along the axone of neurons; at the
macroscopic scale, the information is conveyed within the brain (and the skull) via electri-
cal currents: the EEG waveform. The information to be conveyed is encoded by a sender
and is delivered via a communication channel to a receiver. The concepts of receiver,
sender, encoded information and communication channel are reminiscent of Shannon’s
theory of communication (Shannon, 1948).

At the microscopic scale, the understanding of the neural code is aimed at getting an
insight at the stimulus in the sensory world that generated the observed train of spikes.
The encoding of the original phenomenon into the observed pattern is rarely a one-to-one
representation: the same stimulus trigger responses (spikes trains) which vary from trial

to trial. The neural coding introduces an element of randomness: the neural responses are

not completely reproducible. Since no one-to-one mapping is achievable, gaining insight
in the stimulus at the origin of an observed pattern comes down to quantifying the degree
of randomness of the neural response. The degree of randomness is assessed from a time
series of discrete values (either O for the absence of spike or 1 for the presence of a spike).

At the macroscopic scale, the understanding of the neural code is aimed at getting an
insight at the phenomenon at the origin of the observed EEG pattern. The neural coding
takes continuous values: a one-to-one mapping of the observed pattern onto the original
stimulus is impossible to achieve.

For the second definition of the complexity of the state of the brain and with regards
to its estimation towards ictal events detection, the information content of the electroen-
cephalographic signal (which has been discussed to decrease during ictal events, in Sec-
tion 2.1.2) needs to be estimated. In a previous paragraph, a parallel was drawn between
the exchange of information in the brain and the concepts of receiver, sender, encoded
information and communication channel reminiscent of Shannon’s theory of communi-
cation (Shannon, 1948). The Shannon entropy is naturally motivated as one of the infor-
mation measures used in this Thesis to estimate the changes in the information content of

the electroencephalographic signal.
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Shannon entropy

Entropy measures have been given multiple interpretations. In this Thesis, we are inter-
ested in two related interpretations of the entropy: the entropy as a measure of disorder
| and the entropy as a measure of information content (Bishop, 1995). In the context of ic-
tal events detection the two interpretations are closely related since the hypersynchronous
activity of the brain (which is an ordered state) does not convey novel information (the
information content is poor).

For the first interpretation of the entropy consider a random variable x of probability
density function p(x), represented as a histogram: bins are labelled by an integer / and
they contain N; objects out of N identical discrete objects. The entropy gives a measure of
the number of arrangements of objects in the bins which can give rise to a given histogram
(or set of probabilities p;):

H=-Y pilnp;, 2.7)

!

where p; = N;/N as N — oo is the probability of the ith bin.

The second interpretation of entropy in this Thesis is as a measure of information
content or as a measure of the degree of novelty when a particular event has occurred.
If the event is certain to occur, p = 1 and the occurrence of the event is expected (no
surprise). Conversely, if the probability of the event to occur is low, the degree of surprise
is large when the event occurs. The entropy of a random variable x which takes values x;
with probabilities p(x;) is the average amount of information transmitted when the value
of x 1s observed:

H(x) == plx)inp(x), (2.8)

where the amount of information required to transmit the value of x is — In p(x;) (bits or
nats depending on the base of the logarithm: 2 or ¢, respectively) if the variable takes the
value x;.

The suitability of the Shannon entropy to the estimation of the complexity of a system
(such as the brain), is demonstrated on a deteriorating sinusoid (Figure 2.11, upper plot;
Equation 2.6). The Shannon entropy of the signal is computed on one-second windows
with no overlap. The distribution of the random variable X is estimated from histograms
with 101 bins linearly distributed on the interval [—2,2]. The deteriorating sinusoid and
the Shannon entropy estimated from the distribution of the signal are plotted in Figure

2.11 (upper and lower plots, respectively). The Shannon entropy of the signal increases
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Figure 2.11: Shannon entropy (lower plot) of a deteriorating sinusoid (upper plot). Note
the increase in H around ¢ = 30s coinciding with the deterioration of the sinusoid.

as the sinusoid deteriorates up to the point when the Gaussian term in Equation 2.6 pro-
gressively dominates the sinusoid and the Shannon entropy decreases.

The extracellular potential fields recorded at the surface of the scalp as measurements
of potential differences (i.e. the scalp EEG V) are generated by dipole sources of the brain

as solved by the forward problem:
V=GD +e, (2.9)

with V is the matrix of data measurements, G is the gain matrix, D is the matrix of dipole
magnitudes at different time instants and € is a noise matrix (Hallez er al., 2007). The for-
ward problem is uniquely solved by finding the potentials at the electrodes from a given
dipole source configuration. The inverse problem (i.e. the estimation of the distribution
of sources within the brain from EEG scalp measurements) is not uniquely defined and
requires the solving of the forward problem. Ideally the estimation of the changes in the
complexity of the state of the brain would have been performed by estimating the distri-
bution of the generators of the EEG waveform and then by estimating their information
content using information measures such as the Shannon entropy proposed in this Thesis.
However the complexity of the inverse problem makes the estimation of the distribution

of the dipole sources impractical and the changes in the complexity of the states of the
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Figure 2.12: Shannon entropy (lower plot) of a single channel of intracranial EEG (upper
plot). The entropy was computed from the distribution of the EEG data estimated with
histograms on one-second windows with no overlap. Note the drop in H around 1 = 262s
after the initial increase of the baseline at the start of the ictal event.

brain are rather estimated from the distribution of the electroencephalographic signal. The
changes in the complexity of the state of the brain estimated by the Shannon entropy are
computed in this Thesis on one-second windows with no overlap:

H(X)=— Z p(x)log p(x), (2.10)

XEX
where the distribution of the EEG waveform is estimated from histograms with 101 bins
linearly distributed on the interval [—2,2].

In this Thesis the changes of the complexity of the state of the brain during ictal events
are estimated by the computation of the Shannon entropy on two datasets of real patient
data: intracranial EEG and scalp EEG. The advantage of intracranial EEG over scalp
EEG is that the former are not contaminated by artifacts (such as muscle artifacts and eye
blinks). An ictal event occurring at time ¢ = 27 Is recorded by the 291 seconds-intracranial
EEG plotted in Figure 2.12 (upper plot) provokes the sudden drop of the Shannon entropy
(lower plot) at its climax. At the start of the event the baseline of the Shannon entropy in-
creases slightly whereas at the end of the event the information measure slowly decreases
back to its nominal level.

The Shannon entropy as computed from a single channel of scalp EEG, T3, of length
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intracranial EEG recordings is unambiguous, it seems impossible to achieve from the es-
timation of the information measure from noisy scalp EEG recordings due to the dramatic
number of false positives that would occur.

Assuming the electroencephalographic signal is a stationary process, it is possible to
approximate the latter as a filtered noise with a Gaussian distribution. The operation of
inverse autoregression filtering (Lopes da Silva, 1993) produces a zero-mean Gaussian
noise, e, with variance 6

»
ek:xk—Zajkaj, (2.11)
j=1
with e the residual; x the EEG signal; p the order of the autoregressive model estimated

using the Akaike information criterion (AIC) (the range of orders investigated is [2 — 12]).

In this Thesis autoregressive models have been fitted to the EEG signal on one-second
windows with no overlap (Figure 2.16) on which the EEG signal is deemed to be sta-
tionary (Lopes da Silva et al., 1975). As the changes in the complexity of the electroen-
cephalographic signal were estimated from the computation of the Shannon entropy, the
changes in the complexity of the residual time series are estimated from the computa-
tion of the Shannon entropy of its distribution estimated from histograms with 101 bins
linearly distributed on the interval [—2,2]. The Shannon entropy of the residual was es-
timated on the deteriorating sinusoid (Equation 2.6), on the intracranial EEG and on the
scalp EEG recordings.

The lower plot in Figure 2.17 is the plot of the Shannon entropy of the residual of
the inverse autoregressive filtering. When the signal is purely sinusoidal (upper plot,
epoch from 0 to 3,000 samples), the perfect fit of autoregressive models to sinusoidal
signals causes the residual and its Shannon entropy to be null. The Shannon entropy of
the residual increases (lower plot, epach from 30 to 90 seconds) with the deterioration of
the sinusoid. Theses observations are compatible with the interpretation of entrapy as a
measure of information content: non-informative signals have lower entropy than signals
containing novel information.

Similarly to the results obtained from the computation of the Shannon entropy from
the distribution of the EEG signal, the Shannon entropy computed from the distribuiion of
the residual of an inverse autoregressive filter exhibits a specific patiern during ictal events
(Figure 2.18 far the intracranial EEG and Figures 2.19, 2.20 and 2.21 for the whole sealp

EEG and around the a priori- and a posteriori labelled ictal evenis): increase at the start
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of the epileptic event, drop, return to the value before drop and slow decrease back to a
nominal level. The results on real patient data differ from the results on theoretical déta i
described in the previous paragraph: the expected decrease of the Shannon cﬁtl’opy dueto
the hypersynchronous activity observable at the start of ictal events is not abserved on real
patient data (except in Figure 2.21, before the start of the ictal event). The increase of the
Shannon entropy at the start of the ictal event is due to the noisy activity of the brain after
the onset of the epileptic event. The episodic high values of the Shannon entropy observed
after the end of the epileptic event are due to the residual epileptic activity observable at
the end of the ictal event.

The Shannon entropy estimated from the distribution of the residual of an inverse
autoregressive filter performs slightly better with regards to the discrimination of ictal
events from interictal events than the Shannon entropy estimated from the distribution
of the electroencephalographic signal. However the measure is not only sensitive to the
change of complexity of the residual during ictal events but also to the ones due to chewing
artifacts (Figure 2.19, epoch from 4000 {o 6000 seconds).

One problem with the entropy measure discussed in this Section is that it is not refer-
enced with respect to any state of normality. To perform the unambiguous estimation of
the complexity of the state of the brain with regards to ictal events a relative measure of

complexity is needed. The Kullback-Leibler divergence is introduced in the next Section.
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Kullback-Leibler divergence

In the previous Section the sensitivity of the distribution of the residual of inverse autore- \
gressive filters to the changes of the state of the brain, with regards to ictal events, was
established by the results provided by the computation of the Shannon entropy. However
the information measure is not referenced with respect to any state of’ normality, mak-
ing it sensitive to ictal events but also to artifacts (Figure 2.19, epoch from 4000 to 6000
seconds: the pattern of the Shannon entropy coincide with the observation of chewing
artifacts on the corresponding EEG signal).

During ictal events the assumption that the EEG signal is stationary on windows of
length up to 30 seconds is violated. Consequently the null hypothesis (i.e. the EEG sig-
nal follows the assumption of stationarity and can be expressed in terms of the properties
of the estimated noise resulting from the inverse autoregressive filtering (Lopes da Silva,
1993)) is violated. The null hypothesis is rejected if the noise resulting from the inverse
autoregressive filtering deviates at a certain probability level from a noise with a Gaussian
distribution (Lopes da Silva, 1993). In these conditions the siate of normality referred to
in the previous paragraph is chosen to be a Gaussian distribution to be compared to the
distribution of the residual of the inverse autoregressive filter estimated on one-second
windows with no overlap from histograms with 101 bins linearly distributed on the in-
terval [—2,2]. The Kullback-Leibler divergence is the measure chosen to compare the
distribution of the residual with the distribution of the normal state.

The Kullback-Leibler (KL) divergence or relative entropy D(p||g) is a measure of the
inefficiency of assuming that the distribution is ¢ when the true distribution is p (Cover &

Thomas, 2005):

(2.12)

D(pllg) = 3, plx PL)

XEX )

The measure was successfully applied for the detection of epileptic events: the distribu-
tion p of the data on a fixed-length window was estimated and compared to a reference
distribution of interictal EEG, ¢, identified before the analysis of the full-length EEG
recording (Quian Quiroga er al., 2000). This method requires a partial scrolling of the
EEG record before its analysis in order to identify nominal epachs not contaminated by
artifacts or by interictal patterns (spikes, spike-and-wave complexes).

In this Thesis the Kullback-Leibler divergence was applied to estimate the changes in

the distribution of the residual of inverse autoregressive filters (Equation 2,11 and Figure
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2.16), p., with respect to a reference Gaussian distribution g:

D(p.llg) = Y, pe(x) logPE(x), | (2.13)
“ex g(x)

where p, was estimated on one-second windows with no overlap from histograms with

101 bins linearly distributed on the interval [—2,2]; g is a zero-mean Gaussian with vari-
ance in the range [0.01,2.01]. Multiple variances for the reference distribution g were
investigated due to the variability of the variances of the distributions of the residual p,
on one-second windows.

Figure 2.22 shows the influence of the variance of the reference Gaussian distribution
g for a fixed Gaussian distribution p,, when the variance of ¢ is less than, equal to, and
greater than the variance of the fixed Gaussian distribution p,. The Kullback-Leibler
divergence, which is not a distance measure due to its asymmetry, dramatically decreases

when 0‘2 < 0’12) and G“ tends to G;) :

equals zero when p, = g, steadily increases with
G’ > G;,k

The influence of the variance of the reference Gaussian disiribution ¢ on the values
of the Kullback-Leibler divergence computed on a one second-window for an inferictal
epoch are shown in Figure 2.23. The top, left subfigure shows a steady increase of the
value of the Kullback-Leibler divergence with the increase of the variance 0(2/ of the ref-
erence Gaussian distribution g. The pattern observed in Figure 2.22 is not observed for
interictal epochs due to the fact that the distribution of the residuals is narrower than the
reference Gaussian distributions.

The influence of the variance of the reference Gaussian distribution ¢ on the values of
the Kullback-Leibler divergence computed on a one second-window for an ictal epoch are
shown in Figure 2.24. The top, left subfigure shows that for ictal episodes the values of
the Kullback-Leibler divergence follow the same pattern as in Figure 2.22: the Kullback-
Leibler divergence dramatically decreases when 0’ < 0 ,and 0 tends to o> e’ ; reaches a

minimum when 0‘ ~ o2 ; steadily increases with 0‘ > GI)P

Do

Following the observations made in Figures 2.22, 2.23 and 2.24, the variance of the
reference Gaussian distribution is chosen such that the Kullback-Leibler divergence for
ictal episades is maximised when compared to the Kullback-Leibler divergence for inter-
ictal episodes. Such a contrast in the measure is obtained for EY?I < ﬁ%e' The Kullback-
Leibler divergence will be computed on real patieni data with 62 = 0.0616.

The KL-divergence as computed from channel T3 for a cantinuous 13,630 seconds
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Figure 2.22: Computation of the Kullback-Leibler divergence between a Normal distri-
bution (referred to as p.) and a reference Normal distribution (g). The influence of the
variance of ¢, 0'3/, in the computation of the Kullback-Leibler divergence is investigated:
when 02 is less than the variance 0‘/2)11 of the fixed distribution (top, right); when Gfl = G,Z,ﬂ
(bottom, left); when CS{Z/ > Gf,k (bottom, right). Top, left: value of the Kullback-Leibler
divergence as a function of 0'2. The crosses denote the values of the Kullback-Leibler

divergence for the variances 0’2 investigated in the subfigures.
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Figure 2.23: Computation of the Kullback-Leibler divergence between the distribution of
the residual (referred to as p,) on a one second-window during an non-epileptic event and
a reference Normal distribution (g). The influence of the variance of g, 0‘3, in the computa-
tion of the Kullback-Leibler divergence is investigated (top, left) for a small, intermediate

and large values of O’?/ (top, right; bottom, left; and bottom, right respectively).



Chapter 2

c;i:o.om; KL=2.484

...-u_«pe

2 N = = = q=N(0,0.061)

o, i)

0 0.5 1 1.8

n

25

a§=0.445; KL=0.481 af1=1.495; Ki.=0.644

Ofp )

Figure 2.24: Computation of the Kullback-Leibler divergence between the distribution of
the residual (referred to as p,) on a one second-window during an epileptic event and a
reference Normal distribution (g). The influence of the variance of ¢, 0(2/, in the compu-
tation of the Kullback-Leibler divergence is investigated (top, left): when g is above p,
(small 62; top, right); when the distributions of ¢ and p, are close to each other (62 A~ 02

q Pe?
bottom, left); when ¢ is below p, (large 0(2]; bottom, right).
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TR

2.3 Conclusions

In this Chapter the extraction of information from the EEG time series for the detection
of epileptic events was investigated. The basic mechanisms of human epilepsy, with a
focus at the ictal onset, motivated complexity as a measure of characterisation of the state
of the brain with regards to ictal events. Two definitions of complexity were proposed:
first, the dimension of the object in phase space on which the dynamics of the highly
nonlinear system of low complexity evolve; then, the information content of the system.
Consequently, the changes in the complexity of the state of the brain with regards to ictal
events were monitored by a nonlinear measure (in accordance with the first definition of
complexity), the correlation dimension, and by information theory measures, the Shannon
entropy and the Kullback-Leibler divergence (in accordance with the second definition of
complexity). The correlation dimension allows for the discrimination of ictal events from
non-ictal events but fails as a measure for the estimation of the changes in the siate of
the brain integrated in an information fusion framework due (o its time-intensive com-
putation and its need for interpretation. The information measures are sensitive fo the
subtle changes in the complexity of the state of the brain estimated from the electroen-
cephalographic signal, are not computing-intensive and are easy to interpret. However
they are equally sensitive to artifacts: the information measures cannot be used as a deci-
sion support tool for the detection of ictal events since undesirable false positives corrupt
the epileptic seizure diagnosis.

In this Thesis, due to the observation that temporal labe epileptic seizures are coupled
with heart arrhythmias (namely tachycardia) through the central autonomic network, it
is next proposed to investigate the electrocardiogram during ictal events. In the next
Chapter the characterisation of the heart function during temporal lobe epileptic events is

investigated through the ECG time series.
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Chapter 3 CHARACTERISATION OF CARDIAC ARRHYTHWIAS

A biomedical case for the coupling of the Brain and Heart systems during temporal
lobe epileptic seizures, through the central autonomic network, was presented in Chapter |
1. The novel approach described in this Thesis relies on the integration of information
extracted from multimodal biomedical time series: ECG and EEG. The extraction of
information from the EEG time series for the detection of epileptic events in a fusion-of-
information framework was investigated in Chapter 2. The extraction of information from
the ECG time series is the focus of the Chapter. The alterations of the cardiac rhythm dur-
ing temporal lobe epileptic events has been documented in the clinical literature though
no exploitation of this phenomenon on adults has been pursued until this Thesis. The
brain structures and the mechanisms at the origin of the observation of heart arrhythmias
during temporal lobe epileptic events are described in Section 3.1. A method for the de-
scription of heart rate variability is introduced and tested on real patient data in Section
3.2. The focus of the Chapter is the daia interpretation of the arrhythmias observed dur-
ing temporal lobe epileptic events {rom a probabilisiic analysis perspective (Section 3.3)

towards its integration in a fusion-of-information framework.

3.1 Principles of generation of heart arrhythmias during
temporal lobe epileptic events

The biomedical case for the coupling of the Brain and Heart systems during temporal lobe
epileptic seizures, through the central autonomic network, was presented in Chapter 1.
The cardiovascular neurovegetative symptoms induced by temporal lobe epileptic events
primarily consist of alterations of the cardiac rhythm: tachycardia (increase of the cardiac
rhythm) and bradycardia (decrease of the cardiac rhythm). The principles of generation
of heart arrhythmias during temporal lobe epileptic events are investigated in the next
paragraph.

The role of epileptiform discharges localised to temporal lobe structures such as the
amygdala or parts of the hippocampus in the induction of neurovegetative heart arrhyth-
mias has been demonstrated on animal models. Applegate et al. (Applegate ef al., 1983)
demonstrated that short latency bradycardia responses could be elicited by electrical stim-
ulation of the amygdala central nucleus in awake rabbits: stimulation at eighteen of the

twenty-five central nucleus sites elicited bradycardia responses, stimulation al one site
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elicited a tachycardia response and stimulation at the the six remaining sites elicited no
significant arrhythmia. Gelsema et al. (Gelsema er al., 1993), relying on the experimental
evidence of the role of the amygdala in the coordination of behavioural and autonomic
responses to environmental stimuli, investigated the involvement of the bed nucleus of
the stria terminalis (BST) and the sublenticular innominata (S1) in cardiovascular control
in rats. The results of their investigations suggested the existence of a depressor area in
regions of the BST and SI. Heart arrhytmias were observed from the stimulation of human
insular cortex with evidence of the lateralisation of responses to stimulation site: Oppen-
heimer et al. (Oppenheimer er al., 1992) concluded from seventy stimulations (thirty-nine
right insular and thirty-one left insular; five patients) that on stimulation of the left insular
cortex bradycardia and depressor responses were more {requently obtained than tachycar-
dia and pressor effects whereas the converse applied for the right insular cortex. Kirchner
et al. (Kirchner er al., 2002) confirmed the right hemispheric lateralisation of sympa-
thetic cardiac control in male patients (six male patients with unilateral-right temporal
lobe epilepsy). Male and female patients with lefi temporal epileptic focus (five and four
respectively) showed no significant changes in heart rate during epileptic seizures. Lo-
catelli et al. (Locatelli et al., 1999) conclude from a three case study and a literature
review on fourteen patients that cardiac asystole or bradycardia is associated with left
temporal lobe epileptic activity.

The clinical literature describes the principles generating heart arrhythmias during
temporal lobe epileptic events. However the mechanisms responsible for the generation
of oppaosed heart arrhythmias (tachycardia and bradycardia) are unknown: the system-
atic description of the nature of the heart arrhythmia induced by temporal lobe epilepiic
events cannot be achieved. The lateralisation of ictal events has been evoked as a poten-
tial explanation for the observation of opposed heart responses but the assumption is not
supported by clinical studies. In this Thesis the data interpretation of the cardiac arrhyth-
mias (tachycardia or bradycardia) observed during temparal lobe epileptic events is made
from a probabilistic analysis perspective towards its integration in a fusion-of-information

framework.



Chapter 3 CHARACTERISATION OF CARDIAC ARRHYTHMIAS

3.2 Characterisation of cardiac arrhythmias

The novel approach described in this Thesis relies on the integration of information ex-
tracted from multimodal biomedical time series towards epileptic events detection. The
biomedical case for the coupling of the Brain and Heart systems during temporal lobe
epileptic seizures, presented in Chapter 1, establishes that the cardiovascular neurovege-
tative symptoms induced by temporal lobe epileptic events primarily consist of alterations
of the cardiac rhythm: tachycardia and bradycardia. Heart rate features and a method for
their extraction from the ECG time series are presented in Section 3.2.1. An approach for
the probabilistic analysis of cardiac arrhythmias from heart rate features is introduced and

tested on real patient data in Section 3.3.

3.2.1 Heart rate feature extraction

The focus of the Chapler is on the extraction of information from the ECG times series for
its integration in a fusion-of-information framework towards epileptic events deiection.
In this Thesis, following the assumption that temporal lobe epileptic evenis elicit cardiac
fluctuations, the information extracted from the ECG time series is the evolution of the

cardiac rhythm over time: the heart rate variability (HRV). The electrical activity within
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the heart during the ventricular contraction appears as a characteristic waveform, the QRS
complex, on the ECG (Figure 3.1). The R peak in particular is used for the automated
determination of the heart rate due to its relatively easy extraction from the ECG time
series.

Methods of automatic detection of peaks or complexes from the ECG waveform rely
on a two-steps analysis: a preprocessing or feature extraction stage; and a detection and
decision stage. In the next paragraphs we present a method for the extraction of R peaks

from the ECG time series by density estimation of the R peaks.

Feature extraction from the ECG time series

Derivative-based algorithms, such as the one used in this Thesis, use the characieristic

steep slope of the QRS complex to lifter the ECG waveform:

yi(t) = x(n)—-x(r—=1) (3.1
v2(1) = yi(n), (3.2)

with x(7) the ECG time series and 7 = 1,..., 7. R peaks locations are estimated from the
index of the maximum of the signal y; for each epoch where the signal y; is greater than
an amplitude threshold © (Figure 3.2). At this stage of the feature extraction of the ECG
time series two misdetected R peaks surrounding a genuine R peak (represented as red
lozenges O in Figure 3.2) are extracted as R peak candidates.

At the preprocessing stage the validity of the detected R peak candidates is not as-
sessed. It is assessed in a probabilistic framework at the next stage of the analysis: the

decision stage.

Decision logic

The probability p(x) of a feature vector x = x(1) extracted from the ECG waveform at
time 7 is estimated by a mixture model p(x) = }:‘}:, P(j)p(x|j). In this Thesis x is chosen
fo be a PCA-reduced version (Figure 3.5} of the 95 sample points of the QRS complex
centered around the R peak candidates detected in the preprocessing stage of the analysis
(Figure 3.3); the basis functions of the mixture model, p(x|/), are Gaussian compaonents
with diagonal covariance matrix Z; = diag(c7 |,...,0% ), d = 3:
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Figure 3.3: The QRS complexes of the genuine R peaks (denoted as green circles in
Figure 3.2) are plotted in the upper plot. The QRS complexes of the misdetected R peaks
(denoted as red lozenges in Figure 3.2) are plotted in the lower plot. The QRS complex
of the genuine R peak whose QRS complex is overlapped by misdetected R peaks is
truncated in the lower plot.

The QRS complexes of the genuine R peaks (denoted as green circles in Figure 3.2)
are plotted in the upper plot of Figure 3.3. The QRS complexes of the misdetected R
peaks (denoted as red lozenges in Figure 3.2) are plotted in the lower plot. Since two
misdetected R peaks overlap the QRS complex of the genuine R peak, the QRS complex
of the latter is truncated in the lower plot.

Three principal components (Figure 3.4) with three eigenvalues accounting for 84.32%
of the data are retained to reduce the dimensionality of the QRS complex candidates ex-
tracted from the ECG waveform. The projection of the 95 sample points of the QRS
complex candidates are plotted in Figure 3.5. The misdetected R peaks overlapping a
genuine R peak, represented as red lozenges (0), are outliers of the cluster of genuine R
peaks.

The Gaussian mixture model (Equation 3.3) is initially trained on a 60 seconds subset
of the ECG waveform. The feature extraction of R peaks from the ECG time series and the
estimation of the probability 5(x) of the PCA-reduced version of the QRS complex can-

didates is then performed on the whole ECG recording. A non-patient dependent a priori
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Figure 3.6: Logarithm of the estimated probability p(x) of a feature vector x = x(t) ex-
tracted from the ECG waveform at time 7. A threshold set at -50 (horizontal line) discrim-
inates the misdetected R peaks (and the genuine R peak overlapped) from the genuine R
peaks.

threshold is finally applied to the estimated probabilities p(x) to discriminate the genuine
R peaks from the misdetected R peaks (Figures 3.6 and 3.7). The choice of the threshold
is not sensitive. In Figure 3.7 the genuine R peak and the overlapping misdetected R peaks
have been discarded from the initial extraction of R peaks: the automated detection of R
peaks misses genuine R peaks when the latter are overlapped by misdetected R peaks.
The heart rate variability is estimated from the series of the time intervals between

consecutive detected R peaks.

3.3 R-R intervals

R-R intervals are derived from the series of detected R peaks. Figures 3.8 and 3.9 are
plots of the duration between detected consecutive R peaks (or R-R intervals) around
the a priori- and a posteriori-labelled epileptic seizures: the duration of R-R intervals
dramatically decreases towards and during the epileptic events.

The start and end of the a priori-labelled epileptic event have been derived from the

observation of the EEG recording by two clinicians who agreed on the start and end of
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Figure 3.7: R peaks extracted from the ECG waveform. The genuine R peak and the
overlapping misdetected R peaks have been discarded from the initial extraction of R
peaks.

the event. In Figure 3.8 the increase of the heart rhythm is observed before the start of the
temporal lobe epileptic seizure. The a posteriori-labelled epileptic seizure was confirmed
and annotated by a clinician from the observation of the EEG recording. The heart ar-
rhythmia (namely tachycardia) starts at the same time as the temporal lobe epileptic event
(Figure 3.9). The observation of the increase of the heart rhythm prior to the ictal event
in Figure 3.8 allows the possibility of the heart rhythm being used as a prediction (on
the scale of a few seconds) of temporal lobe epileptic events. However the hypothesis is
negated by the observation of the increase of the heart rhythm simultaneously to the start
of the a posteriori labelled ictal event (Figure 3.9).

The focus of the Chapter is the data interpretation of the arrhythmias observed dur-
ing temporal lobe epileptic events from a probabilistic analysis perspective towards its
integration in a fusion-of-information framework. The estimation of the distribution of
R-R intervals is introduced in Section 3.3.1; the density modelling of heart arrhythmias is

introduced in Section 3.3.2.
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Figure 3.8: Heart arrhythmia during the a priori labelled ictal event. The heart rhythm
increases before the start of the ictal event.
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Figure 3.9: Heart arrhythmia during the a posteriori labelled ictal event. The heart rhythm
increases simultaneously to the start of the ictal event.
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3.3.1 Distribution of R-R intervals

In order to obtain a probabilistic description of the heart rhythm during interictal and ictal
epochs, we assume that the difference between the time occurrence of the R peaks is a
stationary random process which needs to be estimated. The stationarity assumption is
reasonable from a physiological perspective since typical heart rates fluctuate around a
mean for uniform periods of activity. In this Thesis, for simplicity, the difference between
the time occurrence of the R peaks on successive five second windows with no overlap
1s assumed to be a Gaussian random variable whose (stationary) parameters (u,6%) are

estimated by a maximum likelihood approach:

=
I
Z|—
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=,
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with x"* the interval between two consecutive R peaks. In this manner the temporally
complex data stream is reduced to a simple pattern of activity of two random variables. If
this pattern departs from the stationary assumption we assume the state-changing driver
is the temporal lobe epileptic seizure feedback.

Figures 3.10 and 3.11 are plots of the maximum likelihood-estimated parameters of
the Gaussian distributions of R-R intervals on five second windows with no overlap ex-
tracted from the ECG of the reference patient suffering from temporal lobe epileptic
seizure, recorded at the same time as the electroencephalogram. As previously men-
tioned, the reference patient suffered a priori- and a posteriori-labelled temporal lobe

epileptic seizures. In both Figures:

e the parameters of the distributions of R-R intervals on five second windows with no

overlap during the nominal activity of the brain are plotted as green circles (o),

e the succession of values taken by the parameters during the a priori- and a posteriori-
labelled temporal lobe epileptic events are traced as trajectories of red lozenges ()

or squares (L), respectively,

e the start and end of the epileptic events are marked by black triangles pointing

towards the left (<) and the right (>>), respectively,

e the blue lozenges (O) or squares ([J) denote the values taken by the parameters
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during the a priori- and a posteriori-labelled temporal lobe epileptic events, respec-

tively, plotted for record.

The a posteriori-labelled epileptic seizure was discovered from the observation of the
values of the parameters of the distributions of the R-R intervals on five second windows
with no overlap: the second trajectory of lower mean and variance when compared to
the nominal activity was identified and a clinician was asked to interpret the correspond-
ing EEG epoch. The latter was identified as a fully-developed temporal lobe epileptic
seizure. This successful use of the process to allow prospective analysis leading to the
identification of a previously unlabelled seizure supports the basic approach to ECG char-
acterisation introduced in the Thesis.

The mean and variance of the distributions of R-R intervals on five seconds win-
dows with no overlap during temporal lobe epileptic events decrease. This observation
is consistent with the biomedical case for the coupling of the Brain-Heart systems during
temporal lobe epileptic events: tachycardia is characterised by shorter R-R intervals when
compared to the duration of R-R intervals during the nominal activity of the heart. The
two tachycardia trajectories plotted in Figures 3.10 and 3.11 start and end with the tempo-
ral lobe epileptic events. Tachycardia was systematically observed during temporal lobe
epileptic events on the real patient recordings used in the Thesis while bradycardia was
never observed. In the next Section an approach to density estimation of heart arrhythmias

1s introduced. The approach is demonstrated for the density estimation of tachycardia.

3.3.2 Density estimation of heart arrhythmias

In order to perform the automatic detection of temporal lobe epileptic events using the
heart rhythm, a Gaussian mixture model (GMM) was employed to model the probability
of tachycardia given the features extracted from the ECG time series (i.e. mean and
variance of the distribution of R-R intervals on five seconds windows).

The dataset of parameters of the distributions of the R-R intervals was partitioned into
three classes: the tachycardia class, the class of nominal activity and the class of outliers.
In a classification problem we are interested in the estimation of the posterior probabilities
of class-membership given a measurement: P(Cg|x). In the application considered, the
measurement is the vector of the parameters of the distributions of R-R intervals: x =

Fecg = (u,62). By fitting and training (on data of each class only) a mixture of Gaussians

69









Chapter 3 CHARACTERISATION OF CARDIAC ARRHYTHMIAS

class-membership of Fgcg to the remaining two classes. The classification of the features
extracted from the ECG time series is represented in Figure 3.12 by the following color
scheme: blue for the tachycardia class, green for the nominal activity class and red for
the outliers class. The posterior probability of class-membership to the tachycardia class
given the features extracted from the ECG time series is plotted in Figure 3.13.

Figure 3.12 shows that the decisions based on classifying by the suggested approach

is consistent with the known ground truth.

3.4 Conclusion

In this Chapter we investigated the manifestation of the Brain-Heart systems coupling
during temporal lobe epileptic events by introducing an approach to characterise ECG
using real ECG patient recordings. We concluded from this study that the patients studied
systematically suffered from tachycardia during temporal lobe epileptic seizures. In order
to exploit this information, we used an R peak detector which allowed for the character-
isation of R-R intervals. To integrate the information provided by the features extracted
from the ECG time series in a data fusion framework in the next Chapter, the distribu-
tion of R-R intervals was further described in a probabilistic framework using Gaussian
mixture models for density estimation and classification. The classification performance
of the tachycardia events proved accurate and coincided with the temporal lobe epileptic
events observed from the simultaneously recorded EEG.

Considerations on the suitability of the information extracted from the ECG time se-
ries towards temporal lobe epileptic seizure detection will be given in Chapter 4. Schemes
for the combination of information provided by the heterogenous modalities of data, ECG

and EEG, will also be introduced and investigated in the next Chapter.
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NOTATION
0 not affected by the condition
C — condition status =
1 affected by the condition
C,C — subscripts for presence and absence of the condition
p — prevalence of the condition: P(C = 1)
@ - combination operator

In the previous Chapters the EEG and ECG time series have been used to construct
independent models towards unsupervised epileptic seizure detection. The limitations of
the unimodal measurement approaches have been demonstrated: in the case of the EEG
time series, the unequivocal detection of epileptic events is difficult to achieve due to the
sensitivity of the measure of complexity of the state of the brain not only to epileptic
events but also to artifacts leading to undesirable false positives; in the case of the ECG
time series, the unequivocal detection of epileptic events is unreliable since the ECG time
series is not the primary tool for monitoring the state of the brain with regards to epileptic
events detection. Nevertheless a case for biomedical data fusion has been introduced
in Chapter I motivating the fusion of EEG and ECG time series towards temporal lobe
epileptic seizure detection. The levels at which the data fusion can be performed are
detailed in Section 4.1. The performance of the data fusion approaches to be compared to
the performance of the unimodal approaches on long-records of patient data are shown in

Section 4.2. Finally, concluding considerations are presented in Section 4.3.

4.1 Schemes for fusion of biomedical data

In a biomedical framework the raw output of a monitoring device (referred to as a “sensor”
in the rest of the Chapter) consists of a recording such as a biomedical time series (e.g.
EEG or ECG) or imaging instance (e.g. functional magnetic resonance imaging (fMRI)
or X-ray). In clinical practice clinicians extract relevant information (“features”) from
raw recordings to produce a decision (“diagnosis”) according to a certain degree of belief
in the occurrence of a condition or a phenomenon. The decision can be inferred through
the observation of one or more modalities of information. The way to combine such

modalities (“‘biomedical data fusion”) relies on:
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e the nature of the sources of information (e.g. biomedical time series, imaging in-

stance),

e the characteristics of the sources of information (e.g. sampling rate, time resolution,

spatial resolution),
e the level at which to combine modalities.

This Section is dedicated to the investigation of the different levels at which to perform the

biomedical data fusion (from low- to high-level: sensors/observations, features, degrees
of belief/probabilities, decisions and models). An analogy to clinical practice is drawn in

order to show the equivalent of biomedical fusion methods in real-world practice.

4.1.1 Fusion at the level of observations

In the fusion-of-observations scheme at the sensor level all the raw information (no data
reduction is performed) is transmitted up the fusion hierarchy to a common central fusion
cell (Figure 4.1): the fusion is optimal with respect to information integrity but impractical
due to the variability and redundancy of biomedical information. Hence each sensor
provides its full observation vector (denoted as x;(¢),i=1,...,N in Figure 4.1) to a central
forecaster whose output is a combined decision vector (“degree of belief”’) on the basis of
which a decision maker decides a course of action.

From a medical perspective such a scheme is equivalent to the collection and inter-
pretation of all raw data available for a particular patient by a unique multidisciplinary

clinician who will issue a diagnosis.

SENSOR
SENSOR 2 }\
Dip{x),x3,.. . xy))
‘ COLLATION {p{x1,% )}
DECISION DECISION
! x2(1) AND I
! MAKER SELECTOR
: FORECAST
I plxi. X2, . Xn)
|

SENSOR N

Figure 4.1: Fusion of observations scheme.
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4.1.2 Fusion at the level of features

In the fusion-of-features scheme, data reduction is performed by extracting relevant fea-
tures F(x;(r)),i =1,...,N from the state vectors x;(z),i = 1,...,N from sensors (Figure
4.2): the state vectors are reduced to feature vectors of lower data rate transmitted up the
hierarchy. The redundancy of biomedical data is considerably reduced since the analysis
i1s focused on the observation of markers of interest, making the approach more practical
than the previous fusion scheme.

From a medical perspective such a scheme is equivalent to the collection, observa-
tion and interpretation of markers, features and tests for a particular patient by a unique

multidisciplinary clinician who will issue a diagnosis.

l SENSOR 1 IX—IU)-'E’EATURE 1

[ SENSOR 2 ]—iﬂ{ FEATURE 2]

D{[)(F(X[),F(Xg),“. !F(XN))}

i | COLLATION
| " F(x2) DECISION DECISION
2 AND —
! ! MAKER SELECTOR
: : FORECAST
. | P(F(x1).F(x2).... . F(xn))
I I

[SENSOR N ]%EATURE N

Figure 4.2: Fusion of features scheme, equivalent to an expert multidisciplinary clinician.

4.1.3 Fusion at the level of probabilities

In the fusion-of-probabilities scheme (Figure 4.3) the information is gradually reduced as
it progresses up the hierarchy. The feature vectors F(x;(¢)),i=1,...,N provided by each
sensor are reduced to probability vectors of possibility p(F(x;(¢))),i=1,...,N which are
fused and transmitted to a central decision cell.

This scheme can be interpreted as a group of local experts providing a soft decision
based on the raw data available to them, to a grand expert who has to decide the way to

combine the evidence collected and to issue a diagnosis.
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Figure 4.3: Fusion of probabilities scheme, equivalent to a set of local experts providing a
soft decision based on the raw data available to them, to a grand expert who has to decide
the way to combine the evidence collected to issue a diagnosis. C. aND F.: Collation and
forecast.

4.1.4 Fusion at the level of decisions

In the fusion-of-decisions scheme (Figure 4.4) each sensor is dealt with independently:
cach observation vector is mapped to a probability vector p(F(x;(¢))),i=1,...,N upon
which a decision D{p(F(x,(1))),i=1,...,N} will be derived from an individual decision
maker. The partial decisions are then combined by a global decision maker D. In this
approach the data is reduced on a channel-by-channel basis: no recourse to global, cross-
channel information is performed.

The medical interpretation of this scheme is that of local experts giving a hard, un-
compromising decision to a Grand Clinician who will combine them to issue his final

verdict.
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Figure 4.4: Fusion of decisions scheme, equivalent to local very confident clinicians pass-
ing their hard decisions to a Grand Clinician. C. aND F.: Collation and forecast; D. M.:
Decision maker.
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4.1.5 Fusion at the level of models

The fusion-of-models scheme is not a level of the data fusion architecture but can be
performed at any level. Its aim is to reduce the estimation errors produced by models
unable to perfectly fit the underlying “true” phenomenon by combining them. The fusion
of models always guarantees to perform at least equally well as any single model on
average over a representative data set: for a given input biomedical vector x, let each
one of the M possible models produce an estimate y;(x),i = 1,...,M of an underlying
“true” (unknown) function A(x). Each model prediction can be considered to be the true
function plus an error, y; = h+¢;. The average sum of squares error for each model is thus
Ei=E [8,}2 where E[...] represents the expectation and corresponds to an average over
the input space, x. So, the average error made by the collection of models which operate

individually is given by
1M
Eqy = ﬁ ’; E [87] ’

Now if we consider a simple committee in which we combine the predictions of each

model or expert, so the predicted value of the underlying function is just

1 M
Yeommittee = 7 zyi(x) > 4.1)
M =]

the error about this committee prediction is just

2
1 M
E(.'ommiflee = E (szi(x)_h(x)> (42)
=1

| (n8e)

=1

In the case of correlated errors (Perrone, 1994), E [8,‘8}] #0,(i # j), we find from the

Cauchy inequality,
setting v; = 1,1,
Averaging over the data gives

1 u o\’ ! &
ME <28,~> < ME {MZ&;]/ 4.3)

Ecommi!fec >~ EuV‘

A
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Designing a fusion scheme in which the committee members whose predictions are
“better” would be assigned a heavier weight would always generate a regression error as
low or lower than the committee error (Perrone & Cooper, 1994). Let E,y commiree be the

average weighted committe error

M
Ev commitiee = E (Z O(,,‘y,‘(X) - h(X))
i=1

2

M 2
= E (Z OC,'E,‘) s
=1

o; = 1. It follows that minimising E,, commiree reduces to min-

M

under the constraint 3,7 |
imising 3, 2’,‘-”:1 0;a;C;; where C is the covariance matrix between the model errors:
Cij=E [Eieb,»]. Using the Lagrange multipliers method to solve for o; we find (Perrone &

Cooper, 1994)
—1
=15

=M <M 1
iz e i

Since this is potentially a major reduction in the error of a prediction, the fusion of

(4.4)

o5

models should always be undertaken when possible. The fusion-of-models scheme will

be further described in Section 4.2.

4.2 Characterisation of epileptic events from real data

The schemes for biomedical data fusion have been introduced in the previous Section. We
propose to compare their performances with respect to the performances of the unimodal
models for epileptic seizure detection investigated in the previous chapter. The perfor-
mance of the biomedical fusion schemes is evaluated on real patient data. We compare
the performance of the different fusion schemes by plotting the receiver operating charac-
teristics (ROC) graphs of the classifiers and by comparing their area under the ROC curve

(AUC).

4.2.1 Characterisation of epileptic events from unimodal data

Epileptic events have been characterised using a variety of methods based on EEG anal-
ysis (Chapter 2). Recently, following the observation that epileptic seizures affected the
heart through the central autonomic network, epileptic events detection has been per-

formed using the ECG time series (Kerem & Geva, 2005). In the following paragraphs
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Figure 4.6 is the ROC graph of the classifier based on the Kullback-Leibler diver-
gence only. The performance of the classifier based on the measure of complexity only is

reasonable: the area under the curve is 0.5638.
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Figure 4.6: Receiver operating characteristic (ROC) curve of the Kullback-Leibler
divergence-based epileptic events classifier. Its area under the curve (AUC) is 0.5638:
the classifier performs slightly better than random guessing (AUC: 0.5).

ECG data

The biological mechanisms underlying the alteration of the heart rhythm during epileptic
events have been identified but not fully described. Due to the uncertainty around the-
systematic observation of heart arrhythmias (tachycardia or bradycardia) the ECG time
series cannot be used as the primary tool for epileptic seizure events detection.

Figure 3.13 gave the plot of the posterior probability of the tachycardia class-membership
given the features extracted from the distribution of R-R intervals Freo = (u,0%).

The choice of an appropriate threshold would lead to a sensitivity close to 100% and
to a reduced number of false positives. The exemplar recording used to compute the
occurrence of a tachycardia episode shown in Figure 3.13 seems (o flag various episodes:
the patient suffered tachycardia episodes not only due to epileptic events but also to non-
epileptic factors. The unimodal approach towards epileptic events detection using the

ECG raised undesirable false positives.
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We suggest that the electrocardiogram should not be used as the primary tool for
epileptic events detection but that the complementary information provided by the ECG
time series should be combined with the probabilistic information content provided by the
EEG time series in a fusion scheme towards an improved diagnosis model for epileptic

event detection.

4.2.2 Characterisation of epileptic events from multimodal data

The methods for combining multimodal data at the different levels of the fusion hierarchy
towards temporal lobe epileptic seizure detection will be described in the next paragraph.
The results and discussion of the results will then be presented in the following para-

graphs.

Methods

We propose to flag an epoch as an epileptic event based on the posterior probability of
epileptic seizure given the information available (observations or features) at this epoch.
The posterior probability was referred to as p(x,x2,...,Xy) or p(F(x1),F(x2),...,F(xy))
in the figures of Section 4.1. The estimation of the posterior probability of epileptic
seizure given information available, common to all schemes of fusion (except the fusion-
of-models scheme) presented in the previous Section, will be detailed in the reminder
of this Section and referred to and augmented in the next paragraphs, focussing on each
scheme of biomedical data fusion.

The goal of our work is to combine observations (x;(¢)), features (F(x;(¢))), probabil-
ities (p(F(x;(1)))) or decisions (D { p(F(x;(r)))}) towards temporal lobe epileptic seizure
detection. We would like to combine the above-mentioned items towards the classification
of the epoch they belong to into one of the two distinct classes: temporal lobe epileptic
event and non-temporal lobe epileptic event. The goal of a classification problem 1s to
model the posterior probabilities P(Cy|x) of classes Cy.

In this work the posterior probabilities of class-membership are estimated through a
machine learning approach: one radial basis function (RBF) network, whose inputs de-
pend on the fusion scheme (fusion of observations, features, probabilities or decisions), is
used to derive the posterior probabilities of class-membership given a new measurement

(observations or features). The number of outputs of the networks is set to two: the two
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exclusive classes Epileptic seizure (Cg) and non-Epileptic seizure (Cg). If the targets of
the RBF network are appropriately chosen (e.g. class 1: [1,0]; class 2: [0,1]) and an ad-
equate optimisation scheme used, the optimum network outputs approximate conditional
probabilities (Nabney, 2004). The number of hidden units of the RBF network to be
chosen for the network to have the best performance on new data is estimated by a cross-
validation approach (Bishop, 1995): a training set is divided into ten distinct segments;
nine of them are used to train the network while the tenth is used to test its performance
(by evaluating the error function). The process is repeated over the ten possible choices of
test segments. The test errors are then averaged over the ten sets and the performance of
models with different numbers of hidden units (the number of hidden units ranges from 2
to 25) compared. The network with the lowest average test error is retained as the “best”
model.

To obtain the posterior probabilities for a given recording, the latter is kept aside
for testing. An RBF network is trained on a balanced training set constructed from the
concatenation of the same number of observations or features characteristic of epileptic
events and of randomly chosen epochs characteristic of non-epileptic events of a selected
training recording. The corresponding outputs are set to zero or one according to the
class membership of the measurement. The separate recording used as an independent
test set is forward-propagated to obtain the estimates of the posterior distributions given

the observations or features.

Fusion of observations

In the fusion-of-observations scheme the raw unprocessed information is transmitted up
the hierarchy: the inputs of the RBF network used to estimate the posterior probability
of epileptic seizure given observations, P(Cg|X) with X = xgcg @ Xggg, are the ECG and
EEG time series. Due to the high level of noise and the redundancy of biomedical time

series the model is expected to perform poorly.

Fusion of features

In the fusion-of-features scheme the features extracted from the biomedical time series
(the measure of class-membership to the tachycardia class for the ECG, P(Cr|Fgcg) with

Feeg = (,u,csz), and the Kullback-Leibler divergence for the EEG, D) are combined
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through an RBF network to estimate the posterior probability of epileptic seizure given

multimodal data, P(Cg|X) with X = Fgcg @ Fgeg (Figure 4.7).
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Figure 4.7: Fusion of features towards TLE seizure detection. Dgp: Kullback-Leibler
divergence; Frcg = Dky: vector of features extracted from the EEG time series; Freg =
(u,06%): vector of features extracted from the ECG R-R intervals distribution.

The results of the approach on real patient data are presented in Figure 4.8: the two
genuine (a priori- and a posteriori-labelled) epileptic events can possibly be flagged as
epileptic events once an appropriate threshold has been chosen. A dramatically reduced
number of false positives (with comparison to the number of those obtained in the fusion-

of-observations scheme) would be flagged if a sensitivity of 100% was to be achieved.
Figure 4.9 is the ROC graph of the classifier obtained from the fusion-of-features

scheme applied on a single model. The classifier performs exceedingly well: its AUC is

0.9659. The results for the committees of models will be discussed in a next Section.
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Fusion of probabilities

For the fusion-of-probabilities scheme, an RBF network is used to estimate the posterior
probability of epileptic seizure given unimodal EEG data which means that the input of the
RBF network are the features extracted from the EEG times series (the Kullback-Leibler
divergence); the posterior probability of epileptic seizure given unimodal ECG data,
P(Cg|Fgcg), is derived from the posterior probability of tachycardia class-membership
given features extracted from the ECG R-R intervals distribution; and the posterior prob-
ability of epileptic seizure given multimodal data is derived from the posterior probabili-
ties of epileptic seizure given unimodal data: P(Cg|X) = P(Cg|Fgcg) ® P(Ce|Feeg) with
X =Fec © Feec.
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Figure 4.10: Fusion of probabilities towards TLE seizure detection.

P(CE]FECG) 1s derived from P(CT!I“Ecg)I

P(Ci,Fecg)
P(Fecq)
7 P(Cr,Feco, Cr)
P(Fecg)

21 P(Ce,Fecg|Cr)P(Cr)

P(Fgca) '
By conditional independence: P(Cr,Fecg|Cr) = P(Cr|Cr)P(Fecg|Cr). Hence

_ 27 P(Ce|Cr)P(Fecg|Cr)P(Cr)

P(Cg|Feco) = P(Frco) .

P(CglFecg) =

Using Bayes’ theorem

P(Cy|x) = M@7 (4.5)

p(x)

87




+

Chapter 4 FUSION FOR EPILEPTIC EVENT DETECTION

P(CE‘FECG) = ZP(CEICT)P(CT|FECG)
T

= P(Ce|Cr)P(Cr|Fecg) + P(Cg|Cr)P(Cr|Frcg) . (4.6)

Since the population studied suffers from temporal lobe epilepsy, tachycardia episodes
are systematically expected to be observed during seizures. The converse is that if no
tachycardia episode is observed, no temporal lobe epileptic seizures occurs: in (4.6) the

term P(Cg|Cr) is set to zero:
P(Cg|Fecg) = P(Ce|Cr)P(Cr|FEcq) .

The conditions of acquisition of the biomedical recordings discard tachycardia episodes
caused by activity and exercise. Moreover the prevalence of tachycardia induced by a
condition is low in the general population. Due to these two factors we set P(Ce|CT) =1
(i.e. the occurrence of a tachycardia episode is due to the occurrence of a temporal lobe
epileptic seizure). Hence
P(Cg|FecG) = P(Cr|Feca). 4.7
The posterior probability of epileptic seizure given multimodal data is obtained from
the separate posterior probabilities of epileptic seizure given unimodal data. Using Bayes’

theorem (4.5)
P(¥ecg, Feeg|Cr) P(Cr)
P(Feco, Feec)
Considering the influence of the epileptic activity on the complexity of the state of the

P(Cr|Fece, Freg) =

brain conditionally independent from the influence of the epileptic activity on the heart
rhythm, the posterior probability of epileptic seizure given a multimodal observation is
wrilten as:
P(Fecq|Cr ) P(FepG|Cr) P(Cr)
P(Feca, FeeG)
I P(Feceo)P(Fegg)

= 3 - P(CrFE P(Cr|Fy . (4.8
P(Cr) P(Fecq, Feec) (Ce[Feco)P(Cr[Feea) . (48)

P(Ce|Feco,Fegg) =

P(Fecg, Feec) = P(Feco, Feeg|Cr) P(Cr) + P(Fece, Feeo|CE ) P(CE) -
By conditional independence
P(Fecq, Feeg|Cr) = P(Feco|Cr)P(Feeg|Cr)
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moreover -
P(Ce|Fecc)P(Feco)

P(Feco|Cr) = P(Cy)

Hence

P(Feco, Feeg)  P(Ce|FecG)P(Ce|FeeG) + P(CE) (1 — P(Ce|Fecc) — P(Ce|FEEG))

P(Fece)P(FEEG) P(Cg)P(CE)
4.9)

Finally using (4.9) in (4.8)

(1 =P(Cg)) P(Cg|Fecc)P(Ce|FeEG)

(Ce|FecG)P(Ce|FeEG) + P(Ck) (1 — P(CE|FEcG) — P(CE[FEEG%)) ‘
4.1

P(Ce|Fecq, Feeg) = 2

Note that P(Cg) = 1 — P(Cg).

The prior term, P(Cg), appearing in the expression of the posterior probability of
epileptic seizure given multimodal data, P(Cg|Fgcg,Feeg), should be interpreted care-
fully. P(Cg) stands for the prevalence of the epileptic condition, pg, in a sample of
population: if the latter is the global population, P(Cg) is set to a low value; if the sample
is a group of epileptic patients the prevalence term should be taken to be a high value.

The results of the fusion-of-probabilities scheme on real patient data are presented in
Figure 4.13 (P(Cg) = pr = 0.05, low prevalence of epilepsy in the population studied)
and Figure 4.14 (pr = 0.95, high prevalence of epilepsy in the population studied). The
data redundancy is reduced and all relevant information is encoded by probability vectors:
the EEG biomarker through its posterior probability of TLE seizure (Figure 4.12) imposes
its veto to the ECG biomarker when the latter is sensitive to non-TLE induced arrhythmia.
Likewise the ECG biomarker imposes its veto through its posterior probability of epileptic
seizure (Figure 4.11) to the EEG biomarker when the latter is sensitive to non-epileptic
phenomena such as artifacts. The number of false positives is considerably reduced.

Figure 4.15 is the ROC graph for the classifier obtained from the fusion-of-probabilities
scheme on a single model. The classifier perform well: its AUC is 0.9809. The results

obtained for committees of models are discussed in a next Section.
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Figure 4.15: ROC curve of classifiers in a fusion-of-probabilities scheme with pr = 0.05.
The AUCs for a single model and a committee of models with equal weights and with
weights inversely proportional to their prediction errors are 0.9809, 0.9806 and 0.9834
respectively: the classifiers provide excellent diagnostics. The classifiers in a fusion-
of-probabilities scheme outperform the classifiers in a fusion-of-features scheme (Figure
4.9).
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Fusion of decisions

In the fusion-of-decisions scheme independent models for estimating the posterior prob-
abilities of epileptic seizure given unimodal data are built (in the same way as described
in the previous paragraph) and binary decisions based on these posterior probabilities are
inferred: D(Cg|X) =D {P(Ce|Fecc)} @D {P(Cg|FEgG)} with X = Fecg @ Feeg. The
decisions are then combined by multiplication (Figure 4.16) using an assumption of inde-

pendence of models.
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Figure 4.16: Fusion of decisions towards TLE seizure detection. D: Decision.

The results of the fusion-of-decisions scheme on real patient data are presented in
Figure 4.19. To issue a positive diagnostic of TLE seizure the fusion-of-decisions scheme
requires the binary decisions derived from both the ECG and EEG biomarkers to agree
(Figure 4.17 and 4.18). The degree of belief of the occurrence of a temporal lobe epileptic
seizure as derived from the EEG biomarker is lost when the binary partial decision is
taken: the hard, uncompromising decisions passed up to the global fusion centre eliminate
a lot of medically-relevant knowledge. Due to this fact, a sensitivity of 100% cannot be

achieved: the genuine epileptic seizures are partially flagged.
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The performance of a committee of models combined with weights inversely propor-
tional to their prediction errors presented in Figure 4.21 is slightly better than the perfor-
mance of the classifier based on a committee of models with equal weights presented in
Figure 4.20. There are no dramatic difference between the outputs Qf the models mak-
ing the committee (except for the output of the second model where no false positive is
flagged): the weights assigned to the outputs of the models are hence close to 0.2 (equal
weights) except for the second component whose contribution is significantly less (Figure

4.22).
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Figure 4.22: Posterior probability of epileptic seizure given features extracted from ECG
and EEG times series, P(Cr|Fgcg, Feeg), obtained in a fusion-of-features scheme from
five models. The outputs of the models were combined in a committee with equal weights
(Figure 4.20) or with weights inversely proportional to the prediction errors of the models
(o, =1,...,5; Figure 4.21). h is the underlying true output.

The fusion-of-models on fusion-of-probabilities scheme is presented in Figure 4.23
and 4.24 for two different values of P(Cg): 0.05 (low prevalence of the condition in
the population) and 0.95 (high prevalence of the condition in the population). The false
positive rate is reduced with increasing values of P(Cr).

The committees of classifiers combined with weights inversely proportional to their
prediction errors outperform the classifier based on a single model as denoted by their

respective AUCs (Table 4.1).
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The fusion-of-models scheme consisting of combining the outputs of models by as-
signing them equal weights or weights inversely proportional to their prediction errors
provided mixed results. The detection of temporal lobe epileptic seizures benefited from
the combination of the outputs of the models obtained in a fusion-of-features framework.
This is due to the fact that the performances of the outputs of the models combined differ
from each other (meaning one of the classifiers performs “petter” than the rest of them)
whereas the outputs of the models obtained in a fusion-of-probabilities framework are
similar. Contrarily to the result expected from the demonstration in Section 4.1.5 the
combination of the outputs of models obtained from the fusion-of-probabilities scheme
gave results not as good as, on average, those obtained from a single model on the dataset

used in the Thesis.
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4.2.3 Discussion

In this Section we investigated the detection of epileptic events from multimodal data and
from features extracted from the latter (i.e. the EEG-derived Kullback-Leibler divergence
as a measure of complexity of the state of the brain and the ECG-derived distribution of
R-R intervals). Firstly we assessed the performance of classifiers based on one feature
only. The classifier relying on the EEG feature accurately classified the genuine epileptic
events but suffered from many false positives due to the sensitivity of the measure of
complexity to artifacts. The classifier relying on the ECG feature accurately classified
the genuine epileptic events and suffered from a few false positives only. However in
this approach the detection of epileptic events relies on the observation of a side effect of
temporal lobe epileptic seizures: tachycardia. The latter being induced by factors such as
exercise, malformation or condition we concluded that the alterations of the heart rhythm
could not possibly be used as the primary tool for the detection of temporal lobe epileptic
events. We then combined the information provided by both modalities of data in a data
fusion framework to exploit the complementarity of the two sources of information.

The performances of the classifiers derived from unimodal EEG data and from the
combination of multimodal data at different levels of the hierarchy are summarised in
Table 4.1 (the results obtained from the fusion-of-observations and the fusion-of-decisions
schemes are not shown due to the poor performance of the former and the rigidity of the
latter as explained in Section 4.2.2). The fusion approaches outperformed the classifier
based on the EEG feature only and provided excellent results. The ROC curves for the
classifier based on the EEG feature only and the best fusion-of-features and fusion-of-

probabilities schemes are shown in Figure 4.25.
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4.3 Conclusion

In Chapter 1 a biomedical case for the coupling of the Brain and Heart systems through
the activation of the central autonomic network during temporal lobe epileptic seizures
was introduced. Such a coupling motivated us to design a framework for the combination
of disparate biomedical information towards the improvement of epileptic seizures detec-
tion. In this Chapter we introduced the data fusion architecture for the characterisation of
epileptic events through the inclusion of cardiac fluctuations. We critically analysed the
different levels at which to combine biomedical information from low- to high levels of
abstraction (i.e. from sensors to decisions).

The organisation of the different levels of fusion, in a hierarchy, evokes the concession
to be made between the optimal conservation of information (low levels of fusion) and
the practical exploitation of such information by redundancy reduction (high levels of
fusion). At low levels of fusion (fusion-of-observation scheme) the information integrity
is optimal but the exploitation of information is impractical due to its highly redundant
content. At high levels of fusion (fusion-of-decisions scheme) the information rate of
the data is condensed to the point that valuable information extracted from one modality
of data is discarded for not being supported by information extracted from the second
modality of data. The intermediary levels of data fusion (fusion-of-features and fusion-of-
probabilities schemes) provide an optimal balance between information condensation and
information integrity. Such schemes for information fusion were proven (o dramatically
improve the detection of temporal lobe epileptic events when compared with the detection
obtained from the measure of complexity of the state of the brain only.

The results obtained from the integration of multimodal data towards temporal lobe
epileptic seizure detection on real patient data confirm that the intermediary levels of fu-
sion schemes provide the most relevant results: the genuine epileptic events were flagged
whereas the number of false positives was minimal. Furthermore the two schemes as-
sociate each alarm with a degree of belief in the occurrence of a temporal lobe epileptic

event as a practitioner would.
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Chapter 5 CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

The aim of the Thesis was given in the Introduction as "the first-attempt to the auto-
mated false positives-free detection of epileptic events by the fusion of information ex-
tracted from simultaneously recorded electroencephalographic- and electrocardiographic
time-series”. Methods for the automated detection of epileptic events deal with the con-
cepts of sensitivity and specificity (and the related concept of false-positive rate) in a serial
manner: a method is designed to achieve the highestrsensitivity possible and is then tuned
to achieve the lowest false-positive rate. The method proposed in the Thesis integrates a
low false-positive rate (tending to zero) as a constraint in the design of the automated de-
tection of epileptic events method, effectively dealing with the concepts of high sensitivity

and low false-positive rates in a parallel manner.

5.1 Summary of the Thesis

To achieve the false-positive free automated detection of temporal lobe epileptic events,
the main contribution of the Thesis included the introduction of a biomedical case for
the coupling of the Brain and Heart systems during temporal lobe epileptic seizures. The
biomedical case is partially reported in the clinical literature (partially due to the fact that
the nature of the brain arrhythmias, bradycardia or tachycardia, systematically triggered
by temporal lobe epileptic events is unknown). This Thesis is, to the author’s best knowl-
edge, the first reported use of the biomedical case for the coupling of the Brain and Heart
systems for the false-positive free automated detection of temporal lobe epileptic events.

The investigation of measures for the characterisation of ictal events from the EEG
time series towards their integration in a fusion-of-knowledge framework was the second
step of the analysis. The basic mechanisms of human epilepsy, with a focus at the ic-
tal onset, motivates complexity as a measure of characterisation of the state of the brain.
The changes in the complexity of the state of the brain with regards to ictal events are
monitored by a nonlinear measure, the correlation dimension, and by information theory
measures, the Shannon entropy and the Kullback-Leibler divergence. The correlation di-
mension was demonstrated to be impractical in a clinical context due to its time-intensive
computation and the need for its subjective interpretation. The Kullback-Leibler diver-
gence between the distribution of the amplitudes of the EEG time-series on one-second
windows and a reference Gaussian distribution was demonstrated to be sensitive to ictal

events and to artifacts: the measure was suitable to the characterisation of ictal events but
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needed to be completed in a fusion-of-information framework by a measure not'sensitive
to artifacts.

To achieve this goal a method for the probabilistic description of arrhythmias observed
during temporal lobe epileptic events was designed in the Thesis. The probabilistic de-
scription of heart arrhythmias led to the accurate detection of epileptic events and to the
discovery of previously unlabelled temporal lobe epileptic seizures. The patients studied
systematically suffered from tachycardia during temporal lobe epileptic seizures. The in-
formation extracted from the ECG time-series was demonstrated to be suitable, but not
by itself, to the detection of temporal lobe epileptic events.

Once appropriate measures for the extraction of information from the EEG and ECG
time-series were chosen, the final stage of the analysis consisted in investigating the dif-
ferent levels of the fusion-of-information architecture at which to perform the combina-
tion of information extracted from unimodal biomedical time-series in order to “gain”
information with regards to the detection of temporal lobe epileptic events. The schemes
that provided the best results in terms of the detection of temporal lobe epileptic events
were intermediate schemes, particularly the fusion-of-probabilities scheme, for which the
degrees of belief in the occurrence of ictal events, extracted from unimodal biomedical
time-series, are combined in a Bayesian framework. The approach is similar to clinical
practice.

The performance of the method designed in the Thesis for the false-positive free au-
tomated detection of epileptic events was assessed by receiver operating characteristic
(ROC) curves. The area under the curve (AUC) for the exemplar recording was in the
best case of the order of 0.98; the false-positive rates was reduced to zero. The method

performed well on the dataset of long-term recordings used in the Thesis.

5.2 Directions for future research

The aim of the directions for future research proposed in the Thesis is to validate the

approach introduced in the Thesis and to generalise the approach by:

e Testing the approach on an extended dataset of temporal lobe epileptic pa-
tients: The dataset of long-term recordings of temporal lobe epileptic patients used
in the Thesis is a relatively modest dataset (in terms of recordings, not in terms of

samples) and the approach would benefit from being tested on a wider dataset.
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e Extending the fusion of information approach to non-Bayesian frameworks: In
the Thesis the fusion of information was performed in a Bayesian framework since
the concepts of “probability” and of “degree of belief” used in clinical practice
are related. The fusion of information could be extended to a framework, such as
the Dempster-Shafer’s framework, for which the concept of probability is replaced
by the concepts of probability intervals and uncertainty intervals to determine the

likelihood of hypotheses based on multiple evidence (Hall & McMullen, 2004).

Constructing probabilistic and machine-learning frameworks for integration
of non-cortical biosignals, along with brain-state recordings for improving au-
tomated epilepsy characterisation: Neurovegetative manifestations triggered by
activation of the central autonomic network that could be tracked and monitored
during ictal events would have to be identified and studied. Fusion models would
have to be constructed to integrate the information provided by the neurovegetative
manifestations triggered by the ictal events towards the characterisation and diag-
nosis of epileptic seizures. The overall aim of the proposed research is to integrate
information provided from different modalities of biomedical data to reinforce the
diagnosis obtained from EEG recordings only. The outcome of the research would
be assessed against the ability (o establish identifiable relationships between epilep-
tic seizures and the activation of the central autonomic network; and the ability to
exploit these relationships in a biomedical data fusion framework to improve the

epileptic seizures diagnosis.

Integrating the measures of the complexity of the state of the brain and the
probabilistic description of heart arrhythmias to a patient’s bioprofile: The
measures investigated and the measure resulting from the fusion of the latter could
be integrated 1o a patient’s bioprofile as biopatterns for the diagnosis of temporal

lobe epilepsy.

Evaluating the incidence of a range of artifacts on the method automated for
the false-positive free detection of epileptic events: The main artifacts corrupting
the EEG signal were mentioned in Section 2.1.3: eye blinks and bursts of muscle
activity. The real patient data used in the Thesis was corrupted by typical muscle ar-

tifacts, sometimes induced by epileptic activity: chewing artifacts. The measure of
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complexity used in the Thesis was sensitive to chewing artifacts leading to numer-
ous false positives (Section 2.2.2). The method proposed in the Thesis discarded the
false positives induced by chewing artifact by augmenting the ‘measure of complex-
ity computed from the EEG signal by a measure derived from the ECG signal, not
affected by such artifacts. It is likely that the EEG was further corrupted by bursts
of muscle activity or by eye blinks but their effects on the measure of complexity

or on the method proposed were not investigated.
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Dataset

A.1 Dataset of Medial Temporal Lobe Epilepsy patients for
Biopattern

Collaborators from the BIOMED! team and from the department of Clinical and Experi-
mental Neurology?, both at Katholieke Universiteit Leuven (KUL)? have given access to
Biopattern partners to a dataset of long-term EEG recordings from patients suffering from
Mesial Temporal Lobe Epilepsy (De Clercq er al., 2006; Vergult et al., 2007).

The video-EEGs were recorded on 21-channel OSG EEG recorders (Rumst, Bel-
gium). Electrodes were placed according to the International 10-20 System (Nuwer et al.,
1998) with additional sphenoidal electrodes. Sampling frequency was 250Hz. An average
reference montage was used: the raw EEG was referenced with respect to G19, the Gold-
man reference, which is the average of all electrodes of the International 10-20 System
except for Fpl, Fp2, Al and A2 (channels that capture artifacts). The EEG was digitally
filtered by a band pass filter (0.3-35Hz). A notch filter was applied to suppress the 5S0Hz
power-line interference.

The ECG for each patient was simultaneously acquired and is available on channel 22

"nttp://homes.esat.kuleuven.be/~biomed
2 .
“http://www.neurology-kuleuven.be
“http://www. kuleuven.be
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of each recording.

Figure A.1 is a plot of a long-term EEG recording (twenty one EEG channels) and

simultaneously recorded ECG (one ECG channel) from the dataset of Medial Temporal

Lobe Epilepsy patients for Biopattern.
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Figure A.1: Long-term EEG recording and simultaneously recorded ECG from the dataset
of Medial Temporal Lobe Epilepsy patients for Biopattern. Note that the ECG has been

scaled by a factor of 0.1 for plotting purposes.
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Performance evaluation

B.1 Sensitivity and specificity

The concepts of sensitivity and specificity are defined as:

o number of True Positives v
sensitivity = - — - ‘ (B.1)
number of True Positives + number of False Negatives

. number of True Negatives .
specificity = - . - —, (B.2)
number of True Negatives 4+ number of False Positives

where a false-negative or “Type II error” is the error of failing to reject an hypothesis
(such as “A patient is free of a disease”) when it is actually not true (i.e. unhealthy people
wrongly identified as healthy); a false-positive or “Type I error” is the error of reject-
ing a null hypothesis when it is actually true (i.e. healthy people wrongly identified as

unhealthy). In medicine false-negatives and false-positives have dramatic consequences:

e in the case of medical screening, which consists in testing, with non-invasive tests,
large populations of whom none manifest any clinical indication of disease, nega-
tives are nol investigated further whereas positives are investigated by more precise
tests to confirm if a positive patient is a true-positive. The false-positives are likely

to be discovered at the stage of the medical testing

e in the case of medical testing, which consist in testing population who manifest

clinical indication of disease, false-positives may lead to patients undertaking un-
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necessary treatment with consequences depending on the invasiveness of the treat-
ment; false-negatives may lead clinicians to thinking that a patient is disease-free
whereas the patient is not with consequences depending on a combination of factors
such as the invasiveness of the disease or the effectiveness of the delayed treatment

on the disease

A sensitivity of 100% means that the test recognises all unhealthy people as such; a speci-
ficity of 100% means that the test recognises all healthy people as such. In medical
screening and testing a tradeoff between sensitivity and specificity, usually in favour of
the sensitivity, has to be achieved. The tradeoff to be conceded between specificity and
sensitivity is evaluated with regards to the consequences of a misdiagnosis: is it preferable
to recognise all unhealthy people as such (i.e. usually the consequences of not diagnosing
the disease are far more dramatic on the patient health than administrating unnecessary
treatment) or is it preferable to recognise all healthy patients (i.e. the administration of
the unnecessary treatment to a healthy patient has far more dramatic consequences on
the patient health than not administrating the treatment to an unhealthy patient)? In au-
tomated seizure detection applications the former solution is privileged as false-positives
(i.e. detecting an epileptic event when none actually occurs) are easily discarded by visual
inspection by trained clinicians whereas false-negatives prevent access (o crucial informa-
tion such as epileptic foci, type of epilepsy and frequency of seizures. However in recent
years much work has been done in order to achieve a high sensitivity while achieving a
high specificity too (in order to reduce the number of false-positives that can dramatically
slow down the analysis of long-term recordings). The same objective has been pursued in
the Thesis: the false-positive free automated detection of epileptic events from long-term
recordings. For more information on the consequences of the misdiagnosis of epilepsy,
refer to (Smith er al., 1998).

In this Thesis the detection accuracy of the methods investigated was evaluated on
a sample basis (e.g. a sample algorithm detection matching a sample expert detection
is a true-positive; a sample algorithm detection matching a sample expert non-detection
is a false-positive) as opposed to on an event basis for which an algorithm that overlaps
any part of an event expert detection is a match; otherwise the algorithm detection is a

false-positive, accounted only once per event expert detection (Gotman, 1982).
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The detection accuracy of the method was evaluated by plotting receiver operating ”\”,’;\ﬁi

characteristic (ROC) curves (Machin et al., 2007), which is a plot of the sensitiv-ity versus ’

(1 - specificity), for the classification of samples in epileptic or non-epileptic classes as
a discriminant threshold on the probability of epileptic seizure given the obsérvations,
features, probabilities or decisions was varied. The best possible classification would lead
to a sensitivity of 100% and to a specificity of 100% which corresponds to the upper left
corner of the ROC space of coordinates (0,1): the point of perfect classification. The ROC
curve of an effective classification method would rapidly tend towards the point of perfect
classification. A way to compare the classification accuracy of different methods is to
quantify how rapidly they tend towards the point of perfect classification by comparing
their areas under the ROC curve (AUC) as the bigger the AUC, the closer the ROC to the

point of perfect classification.
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