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Thesis Summary

This thesis addresses data assimilation, which typically refers to the estimation of the state of a

physical system given a model and observations, and its application to short-term precipitation

forecasting. A general introduction to data assimilation is given, both from a‘deterministic and .

stochastic point of view. Data assimilation algorithms are reviewed, in the static case (when no
dynamics are involved), then in the dynamic case. A double experiment on two non-linear models,
the Lorenz 63 and the Lorenz 96 models, is run and the comparative performance of the methods
is discussed in terms of quality of the assimilation, robustness’in the non-linear regime and com-
putational time.

Following the general review and analysis, data assimilation is discussed in the particular
context of very short-term rainfall forecasting (nowcasting) using radar images. An extended
Bayesian precipitation nowcasting model is introduced. The model is stochastic in nature and
relies on the spatial decomposition of the rainfall field into rain “cells”. Radar observations are
assimilated using a Variational Bayesian method in which the true posterior distribution of the
parameters is approximated by a more tractable distribution. The motion of the cells is captured
by a 2D Gaussian process. The model is tested on two precipitation events, the first dominated
by convective showers, the second by precipitation fronts. Several deterministic and probabilistic
~validation methods are applied and the model is shown to retain reasonable prediction skill at up
to 3 hours lead time. Extensions to the mode] are discussed.

Keywords: Data assimilation, Bayesian, precipitation, nowcasting, validation
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Chapter 1

1.1 Data assimilaiion

1.1.1 Historical context

Records of scientific observations of the physical phenomenons sufrofundivnig us. ng_ a ;
origins of civilisation. Several centuries B.C., Babylonians, Egyptians, Ancient Greéks were all
active observers of astronomical phenomena and kept 'rcéqrdS‘of the movement of the sun and
moon. These were used to design lunar-solar calendars and:to pfédjct the occurrence of eclipses
(Evans, 1998). The prediction of eclipses is probably one of the earliest examples of the use of
observations with a model (the periodicity of eclipses) for prediction purposes:

Data assimilation, the tracking of a physical process using a model and observations, had:to
wait until the 18th century to be given its first sound theoretical bases. The introduction of the
telescope in the 17&1 century was a major breakthrough in astronomy, and brought a whole new
dimension to the observation of planets and asteroids. It allowed for objects never before seen
to be discovered and new accuracies of locations to be reached. With improved observa\ti'ons,
Kepler was able to formulate his laws on the motion of celestﬁal objects, and Galileo. confirmed
Copernicus’ theoretical assumption that the Earth orbited around the Sun, not the opposite.

In the 18th century, the asteroid Ceres was spotted for the first time, soon before it disappeared

in the vicinity of the Sun. Due to the small number of observations collected, the trajectory of
the asteroid could not be extrapolated through traditional methods available at the tirlne. However,
Gauss was able to predict with astonishing accuracy the position and date of the feapparitién of the
asteroid, by applying a brand new method now commonly known as least square estimation (Lewis
et al., 2006). Based on this concept of least square estimation, a whole field would soon grow
to become one of the most widespread areas of science today, with applications in electronics,
astronomy, engineering, aeronautics, environmental modelling, the automotive industry, and many

more.

1.1.2 General overview of data assimilation

Data assimilation involves two basic components: a model, which is responsible for reproducing as
well as possible the process of interest, and observations, which can be used to estimate the model
parameters (the state) in space and, often too, in time. Both the model and the observations are
known to be imperfect, due to numerical approximations, incomplete formulation of the physical
reality, limitations inherent to measurement devices, etc. As a consequence, any estimate obtained
through a data.assimilation method is bound to be inaccurate and knowledge about how confident
in this estimate we are is critical. Data assimilation, at the end of the day, is about finding the

optimal trade-off between a model and observations which are both inevitably wrong.

12




Chapter 1

Two major approaches to data assimilatio !
addresses the problem in-a deterministic fashion, seeking a s_ihgl‘é,,‘Qp,timaltji.es‘t::i?mate;’Qf the true
process, while the second seeks a stochastic solution which also Capturcé"t S e
ciated with the estimate. Stochastic data assimilation is typica‘lly" formulated within aB yeSIan A_
framework, in which the probability distribution of the es“t‘ima’tc‘is» tracked rather than the estiméte
alone. TR ‘ | ‘

Data assimilation is a wide and active research field, /and é plethora of methods have been
developed in various contexts to address the same problem. The first aim of this thesis is to present
an up-to-date review of the most commonly used methods in déta assimilation and discuss their
respective advantages and drawbacks. The methods are compared on two non-linear toy models

widely used in the meteorological community: the Lorenz 63 and the Lorenz 96 models.

1.1.3 Application to precipitation nowcasting

The second aspect of this thesis is the application of data assirﬁilation to the particular problem
of very short-term precipitation forecasting (nowcasting). A new advection-based model for pre-
cipitation nowcasting is introduced. The spatial model relies on a decomposition of radar rainfall
fields into small entities of predefined shape (rain “cells”). The parameters of these cells are esti- .
mated in a fully probabilistic manner. The motion (or advection) of the cells is modelled by a two
dimensional Gaussian process, with parameters inferred from the cells’ displacement. The model
is tested on real data and both deterministic and probabilistic forecast validation téchniques are

used in the analysis of its performance.

1.2 Scientific contribution

This thesis looks at data assimilation and its application to meteorological problems with the par-

ticular example of precipitation forecasting.

The contribution of this thesis to the scientific community, and especially to the data assimila-

tion field, can be summarised by the following points:

® Tﬁe first, relatively minor, contribution of this work is the synthesis of knowledge about
data assimilation gathered from various domains and its organisation in a logical manner, so
as to provide an up-to-date, extensive overview of the field. Although many textbooks exist
on the subject, most of them provide a thorough treatment of one or two data assimilation

methods, at the expense of others, which are often simply omitted. We have tried to take

13




Chapter:1

the opposite approach and provide an extensi w of data assimilation methods, and _

relate them in a meaningful way.

e Although several of the methods discussed in this work have been:,sep;a;r;,a'teil’”,’\; ompar

with another, the lack of a common benchmark in the data aésim’ila,fiﬁo_n_.cjor;lmun‘ity* m‘ake_s; 1t
very difficult to assess the relative strengths and weaknesses of each meth(jd. By pr.ov:idin’g_:‘
two experiments in which all currently deployéd data assimilatipn methods are corhpared
on two well established non-linear models, we are able to provide a general comparative
overview of current data assimilation methods. More importaritly perhaps, it is hoped that
this piece of research will help the community towards a common benchmark against which
future data assimilation methods can be compared to existing ones. To that effect, atten-
tion has been paid to providing all necessary parameters for each experiment to be fully

reproducible.

e Having covered data assimilation from a general point of view, a new method is introduced
for the particular problem of precipitation forecasting at very short lead times (nowcasting).
The new data assimilation method is tailored for this specific problem but could also be
easily generalised to other domains. The method relies on a technique called variational
Bayesian inference in which the posterior distribution of the state is estimated through min-
imisation of a cost function: the distance between the exact posterior distribution (as given
by Bayes rule) and a user-defined approximating distribution is minimised. It is shown how
the model is able to capture the spatial structure of precipitation fields from radar images
and estimate its motion in a fully probabilistic manner. The model shows very promising

probabilistic forecast skill up to 2h ahead in time, which is good for a nowcasting system.

e A last contribution is the development of a numerical data assimilation framework which
has been designed for extendability and ease of use. The framework has been developed
in the C++ programming language, which is one of the standard languages used in indus-
trial applications. Support is provided for most data assimilation methods discussed in this
work (and a few additional ones) and custom experiments are easily set up. Attention has
been paid to keep the framework modular so that users can add their own models and new
assimilation methods in a simple manner. Because most data assimilation systems involve
large amounts of high-dimensional data, efficiency has been a priority when implementing

the framework.

14




Chapter 1

1.3 Outline of the thesis

Chapter 1 s this introduction.

Chapter 2 introduces the general concepts providing the basis for data assimilation. Models and
observations are discussed and their mathematical formulation}i/s“given,?bbth-in-a deterministic and

stochastic context. The data assimilation problem is then defined.

Chapter 3 discusses datla assimilation in the static context, where no dynarriics are taken into
account. It is shown how data assimilation in this context can be motivated by a natural least
squares formulation. An “optimal” solution to the least squares estimation problem is given for the
case where the observations are related linearly to the state. The non-linear case is also discussed.
An alternative approach based on variational techniques (3D VAR) is reviewed. The discussion is
initialy exposited from the deterministic point of view. The (more Bayesian) stochastic viewpoint

is subsequently discussed.

Chapter 4 takes data assimilation one step further by adding the system dynamics that were
omitted thus far. Changes in the formulation are discussed, here again both from the deterministic
and stochastic points of view. The deterministic formulation gives rise to a dynamic least squares
algorithm, which can be approximated using variational techniques (4D VAR). The stochastic :
approach leads to filtering algorithms such as the well-known Kalman filter, which is optimal in

the linear case. Several extension of the Kalman filter to address non-linear models are discussed:

Chapter 5 presents two experiments in which the data assimilation methods introduced in the
previous chapter are run on two non-linear models using a perfect model setting (the model is
assumed known). The quality of the assimilation is evaluated for each method and a comparison

of the results is carried out. The software implementation is briefly discussed.

Chapter 6 takes us from general data assimilation to the particular problem of precipitation as-
similation and forecasting with radar observations. A Bayesian framework is introduced, which
relies on a decomposition of the observed precipitation field into Gaussian-shaped rain cells. Dy-
namics are provided by an advection (or motion) field modelled using a two-dimensional Gaussian

process. The novel variational Bayesian data assimilation method is described.

Chapter 7 applies the precipitation model discussed in Chapter 6 to two large scale experiments
on real data. The performance of the model is assessed using both deterministic and probabilistic

validation methods.
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Chapter 8 summarises the work presented oters and gives future d’iriectii‘é‘ns; .

of research.

1.4 Disclaimer

The work presented in this thesis is original and has not been published anywhere else. Parts of

the work, however, have been presented in the following conferences and papers:

e Preliminary work on Particle Filters with the Lorenz 96 system was presented at the An-
nual Meeting of the Royal Meteorological Society, 2005 (oral presentation) (Barillec and
Cornford, 2005)

e The comparison of data assimilation methods on the two Lorenz models (Chapter 5) was
presented at the European Geosciences Union conference, 2006 (poster presentation) (Bar-

illec and Cornford, 2006)

e The precipitation nowcasting model was presented at the Weather Radar and Hydrology

conference, 2008 (oral presentation) (Barillec and Cornford, 2008b)

e A paper on the precipitation nowcasting model has been accepted for publication in Ad-

vances in Weather Resources (Barillec and Cornford, 2008a)

e The work in this thesis has been presented and discussed at several departmental seminars

in the NCRG, Aston University

e Several experiments using the data assimilation framework (Section 5.2) were provided for

Shen et al. (2007)
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Chapter 2

2.1 Chapter outline

Given observations of a physical process and a model, what is the ‘o ti'mal?’ estimate of the | roces
physicaip P _ 0, P

one can achieve? How is that estimate computed in practice? The aim of this chapte
following is to discuss the answers to these two questions, ‘ “ ‘

The chapter is organised as follows. Section 2.2 outlines the general concepts and gives the
necessary background for the rest of the discussion. Mddels/an/d observations-are discussed, both
from a deterministic and stochastic point of view. The data assimilation problem is posed-in
Section 2.3 and the bases for its treatment in a Bayesian framework are laid down. |

There are a large number of books and pape.rs on data assimilation and filtering theory in which
the reader will find excellent introductions to the topic. Lewis et al. (2006) provide a particularly
thorough coverage of data assimilation methods, in a consistent, extensive, well illustrated manner.
Stochastic data assimilation is discussed at great length in Jazwinski (1970), another personal
favourite for its rigorous and exhaustive treatment of data assimilation with stochastic models. The
reader will find many other introductions in the literature, some of those we found useful include
Rhodes (1971); Maybeck (1979); Cohn (1997); Bouttier and Courtier (1999); Holm (2003). For
more meteorology-oriented approaches, the reader is referred to Daley (1991); Kalnay (2003) and

references in the review paper by Dance (2004).

2.2 Models and observations: general notions

2.2.1 The state-space framework
Dynamical system

There is én infinity of physical processes one might be interested in modelling: the movement of
planets, the interaction of atoms, the development of precipitation in the atmosphere, the propa-
gation of some disease in some animal population, etc. Because dafa assimilation is interested in
tracking and predicting the state of processes which in most applications are time-dependent, a
model is necessary which expresses the temporal changes of the process. Such a time-dependeﬂt
model is referred to as a dynamical system or dynamical model.

According to Weisstein (2002), a dynamical system can be defined as “a means of describing

E3]

how one state develops into another state over the course of time” A dynamical system is thus
a mathematical formulation of the various factors we assume are responsible for the dynamics of
the process. When dynamical systems are designed to understand and reproduce the evolution of
phenomena observed in the real world, they are also referred to as dynamical models or simulators.

In this work, the terms “system” and “model” are considered equivalent and used interchangeably.
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Figure 2.1: An example of deterministic system: the Lorenz 63 dynamical system, system is plotted here in
the (x,z) plane. The trajectory of the state orbits around two attractors, giving the well-known

“Lorenz butterfly”.

The term “process” is used to refer to the “true” physical phenomenon observed. The system is

thus a conceptual representation of the process.

State space

In order for the system to be manageable, we need to assume that there exists a finite set of
variables sufficient to fully describe its state at any given time. This set of variable is referred to
as the state vector (or simply state) and denoted x throughout this work. A

The state of the system depends very much on the use one wants to make of the system. For
example, the state of a ball on an inclined plane can be described by its position in space, identified
as a set of coordinates relative to some predefined origin: x = (x,y). We here assume that the ball
is observed in a two-dimensional region orthogonal to the plane it is rolling on, indexed using the
usual (x,y) cartesian system.

However, if one is interested in the trajectory
of the ball, this set of variables is inadequate. One
could imagine two different situations where the
ball lies at the same position, but with different ve-
locities. It is easy to see how these two situations

would give rise to two different trajectories. As

such, the position of the ball is not a sufficient set

Figure 2.2: A ball on a plane
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of variables, and one needs to consider the augme:

the x- and y-velocities of the ball respectively (Figure ‘
The mathematical space spanned by the state vector is called state spafc_.e\,', dco

all possible values x can take (e.g. all the positions and velocities the ball could take).

2.2.2 Systems
Deterministic system

A dynamical system is deterministic in nature, which means that for a given ’initial cqndition X0,
the future evolution of the system is fully determined (as opposed to stochastic sYstems where the
same initial condition can lead to different outcomes). Figure 2.1 shows an example of one such
deterministic system commonly found in the literature: the Lorenz system (Lorenz, 1963). This
system, although deterministic, presents the interesting peculiarity of being extremely sensitive to
initial conditions and helped develop the theory of chaotic systems.

The evolution of a deterministic system can be expressed as a rule relating the state of the
system at a given instant to its state at a later time. This rule is generally expressed in terms of a
differential equation:

X = m(x,1), @D

where m is the system operator responsible for propagating the state forward in time.

Stochastic system

Because deterministic systems obey a fixed rule, if one knew the operator m precisely and the
initial state xg, one would be able to predict the state of the system at any future time. In practice,
however, any physical pheriomenon we observe is the result of so many causes that only the most
important of these can be identified.
For instance, the ball from our previous example slides down the plane with increasing velocity
because of the gravitational force. A simple model can be devised which relates the position and
~velocity of the ball to that force through the application of Newton’s laws of motion. Although
such a model would provide a reasonable represéntation of the dynamics responsible for the ball’s
motion, there are many minor factors it does not take into account, such as the fact that the plane
is not a perfect mathematical plane but presents some irregularities, that it is not perfectly smooth
either and the ball is subject to a friction force, the fact that the room where the experiment takes
place has open windows and air currents affect (albeit to a very small extent) the ball’s velocity. ..
We just illustrated the fact that, despite our best efforts, any phenomenon we observe can only

be approximated by an incomplete system. The imperfection of the system needs to be included
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in its formulation:“To.that effect, a stochastic te

1) ,tj,oﬁ; ‘ac,.,céuﬁ.t'ﬂ_ .

for the discrepancy between the system and the true process:

dx :
T m(x,t) +n(x,1t).

n(x,t) represents the influences of all the missing factors in the model and is usually referred to as
system noise or model error. The resulting model is no more -deterministic, due to the Stdchgstic '
nature of the model error term.

Typically, system noise is a consequence of one or more of the following factors:

e Formalisation errors, resulting from an invalid or incomplete physical understanding of the

U‘UC process.

e Discretisation errors: most physical processes we observe are continuous in space and time.
However, computer models and data storage require the infinite continuous domain to be

projected onto a finite discrete domain.

e Numerical errors: round-off errors, approximations in numerical solvers, linearisation. ..

2.2.3 Observations
Deterministic observation

An immediate consequence of the system’s imperfection is that our ability to deterministically-
predict the evolution of the true process is limited. Fairly soon, the factors that havé not been
correctly accounted for will make the model diverge from the process. How far ahead that limit
lies depends essentially on how close our system is to the true underlying process intially, and how
sensitive to small changes the process in question is.

In order to overcome the limitation of our models, information about the true state of the
process is needed to correct the state of the system before the system diverges. However, in most
cases, the state cannot be observed directly. Instead, some other quantity y is measu;‘ed and related

to the state through some function 4:
y(0) = h(x,1). | 2.3)

h is called the observation operator and is a mapping from state space to observation space. y is
simply called the observation. Depending on the problem, the relation between the measurements
and the state can be linear (including direct, i.e. A(x) = X) or non-linear (satellite radiance, radar
reflectivity...).

Figure 2.3 illustrates the concepts of model divergence and estimation of the state in the case

of direct, noise-free observations. In that case, 4 is assumed to be the identity, so that y(t) = x(t).
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The evolution of the true process is represented e, "w:it*hzt:imé'ﬁowifng, from lféftjté; fi

right. The evolution of the state through the model is ;repr,esen,tefd. by a 'solid line, 'whiChrqui
diverges from the process. A perfect observation of the process, denoted by a;@t&y,’:i&é

time t and used to update the estimate of the state.

D ‘
‘true process

m X(t)

Figure 2.3: Schematic illustration of dynamic data assimilation (basic). The model is corrected using noise-

free, direct observations (denoted by a star)

Stochastic observation

We mentioned how our models inevitably suffer from being inaccurate. A similar issue occurs
with observations. Observations are obtained from measurement devices which suffer from their
own limitations. Similarly to model error; observation error needs to be accounted for in Equation
(2.3):

y(t) = h(x,t) +e(x,t), ‘ (2.4)

where e(x,t) represents the discrepancy from a perfect observation (as would be provided by a
flawless measurement device). The stochastic term € is called observation error or-measurement
error.

Observation error arises for the following reasons:

e Measurement devices are imperfect, they have limited accuracy, need to be calibrated by
error-prone experts and rely on the exploitation of physical properties which are not always

completely understood.

e Post-processing such as interpolation (to increase the resolution) and smoothing (to get rid

of noise) can degrade the quality of the observation.

e Projection: often, measurements are converted into quantities that are more tractable. The
relation between raw measurements and the projected quantities is a model -in itself and

suffers from the errors associated with models.

e Relation to the state: the operator & which relates the state to the observation is also a model

subject to error.

22




Chapter 2

e Numerical errors-found in models also apply ations (discretisation, approxima-

tions, etc.)

2.2.4 Further considerations
Discrete formulation

. Because computers can only handle a finite representation of numbers (limited to a fixed-number
of bits), it is convenient to work in discrete time and space. The discrete equivalent of Equations

(2.2) and (2.4) is:

X = my (%) + 1, (2.5)

yi = h(x) +&. (2.6)

where my is the (integral) operator that maps the state from time t — 1 to time t.

Error assumptions

We have made the assumption, in Equations (2.5) and (2.6), that the stochastic terms 1, and g do
not depend on the state. Although common in the data assimilation literature, such an assumption
is not always justified as often the errors in the model vary in different regions of the state space.
For instance, a model estimating the speed and-location of an object is likely to be more accurate
a lower speeds than at higher speeds. Similarly, observation error is often related to the state. For
example, when measuring a signal’s intensity, it is likely that noise will vary with changes in the
signal properties (amplitude, wavelength). When such cases are identified, it is important to model
the error as an additional pfocess itself.

Furthermore, it is very often assumed that the errors are uncorrelated in time and cancel out
when averaged (white noise). In mathematical terms, this means that the errors are drawn from
a zero-mean distribution with diagonal covariance matrix. The realism of such an assumption
will depend heavily on the causes for model/observation error listed above. A strong motivation
for the use of white noise (in particular Gaussian white noise) is the simplicity of the associated

computations.

2.3 Formulation of the data assimilation problem

2.3.1 Deterministic formulation

Sections 2.2.2 and 2.2.3 gave a mathematical formulation of the two components of data assimila-

tion: models and observations. Figure 2.4 summarises the elements involved in data assimilation:
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Prediction: a model m; propagates the st

predicted estimate x[f

e Assimilation: obselvanons y; of the true process are conflonted agams ]
mate in order to generate an updated estimate x? closer to the true, unknown process (dashed

circle)
e The observation operator 4 is a mapping from state space to observation space.
e Both the model and the observation operator are subject to errors.

The question in data assimilation is then the following: how do we use imperfect observations to
correct an imperfect model, so that the model remains consistent with the true process? Answers

to that question are the object of Chapters 3 and 4.

Real world

Observation space

State space /. x(t)

x* (1) $\

¥ time

Figure 2.4: Schematic illustration of dynamic data assimilation (detailed). The state x is propagated forward
in time using the model m (prediction). The observation y is then used to correct the predicted
state x/, giving an updated state x“ (assimilation). The state is related to the observation through

the observation operator A.

2.3.2 Stochastic formulation

The presence of noise both in the evolution and assimilation steps leads naturally to a probabilistic
formulation of the problem, where the interest focuses not only on the state x alone,‘but also on
the uncertainty associated with its estimate. In other words, one tries to infer the state’s joint
probability density function at all times, given the observations: p(X,|Y:), where X, = {xo,...,x}

and Y, = {y1,...., i }.
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If one is only interested in the state at the curre  often the case for real tlme process .
tracking applications, then the marginal distribution of the curlent state, p(xtlY) 1s esti:
rather than the full joint probability density functlon ThlS dlsmbutxon is known a

distribution.

Propagation of the state

We assume here that the state’s probability density function p/(X/,ﬁ/]‘|Yt,1) is known and look at
the effect of propagating the state through the model. When the state is propagated forward to the
next time of interest (t), the joint probability density function is augmented with the new estimate
of the state, so that we are now interested in p(X|Y-1) = p(x¢, X;—1]Y,—). This distribution is
known as the joint predicted distribution of the state.

Clearly, this distribution depends on the previous estimate p(X;-;|Y,—;) and the nature of the

model, expressed by the transition distribution p(x|X;-1,Y-1):
P(Xi|Yi-1) = p(xi, Xi1]Yi-1) 2.7)

= p(x| X1 JYior) p(Xi—1]Y—1). . (2.8)

Markov models

We have implicitly assumed that the evolution of the state is entirely determined by-the model
and the initial value of the state. This assumption is common for deterministic models;andis-a
result of the first-order differential equation (2.1). When Equation (2.1) is discretised into (2.5),t -
becomes clear that x, only depends on x,_;.

A direct consequence of this assumption is that the distribution of the state is conditioned on
the last estimate only: p(x(|Xi-1,Y—1) = p(x|%—1,Y=1). A system exhibiting this property is

called a Markov system. Such a system gives a simplified predicted distribution:
P(X|Yi—1) = p(xexe—1, Yio1) p(Xim | Y1), (2.9)

[tis common in data assimilation to make the assumption that the system is Markov, for the reasons

given above,

Update of the state: Bayesian inference (static)

Consider the simple case where our initial belief in the state is quantified by a probability distribu-
tion p(x), and our estimate of the observation’s accuracy given the state is given by a distribution
p(y|x). By writing the joint probability density function of the state and the observation in two

different ways:

p(x,y) = p(x]y) p(y) = p(yIx) p(x), (2.10)
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we obtain Bayes’ rule (Bishop, 1996; Bernardo and

p(xly) =

In Bayesian language, p(x) is called the prior (it expresses our uncertainty m the \s\:tfajt\ > prior o
seeing observations), p(y:|x,) is referred to as the likelihood (it expresses how likely the okbser\{.a—
tion is given the current state) and the normalisation factér p(y) = [ply|x) p(x) dx is called the
evidence. In practice, the expression of the likelihood will depend on the assumptions made on A,

and €, in Equation (2.6).

Update of the state: Bayesian inference (dynamic)

In a dynamic context, the prior is usually provided by a forecast and is thus equivalent to the
predicted distribution of the state as given by Equation (2.8). The joint posterior, computed using

Bayes rule, thus becomes:
p(Yi|Xy) p(Xi|Yi-1)

XY = (2.12)
p(X([Yy) p(Y0)
A recursive formulation can be obtained by substituting (2.8) into (2.12):
Y X)) p(x| Xi-1, Y-
p(x, v = POUX) PO X1 Xoo) g 1y, (2.13)

p(Y)

The posterior distribution can be derived exactly when both the model m and the observation
operator & are linear and the various errors are Gaussian. Unfortunately, either or both operators
are non-linear in most problems of interest. The exact posterior distribution cannot generally be

derived directly in such cases, and one has to resort to approximation techniques.

Conditionally uncorrelated observations

When the observations are uncorrelated, i.e. each observation only depends on the state at the

same time, then the joint likelihood factorises as follows:

t
p(YiXy) = [T p(yelxi) (2.14)
k=1

This is a common assumption in data assimilation, the realism of which will depend essentially on

the nature of the measurement procedure used.

2.4 Summary of this chapter

2.4.1 Summary of this chapter

This chapter discussed the overall concept of data assimilation. The historical context was briefly
highlighted, showing how data assimilation evolved from a computational tool used by 18th cen-

tury astronomers to become the full branch of science with ubiquitous applications as we know
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it today. The key notions of model, .staz‘e‘and/b/b;ve :

data assimilation community, namely the hypothesis of Gaussian noise and Markov models were.
discussed. The formulation of the data assimilation problem was given, both from a deterministic
and a stochastic point of view. | A

This aim of this chapter was to give the reader a general overview of the basic notions in data
assimilation. We have tried to keep this chapter concise while providing a sufficient, though by
no means complete, account of data assimilation. This means that some points could only be
addressed briefly. Several references have been given in introduction for the interested reader to
find more thorough discussions on the different concepts introduced in this chapter.

The following two chapters discuss the practical application of data assimilation to the static

context (no model) and dynamic context (with model) respectively.

2.4.2 Summary of notations

Notations used in this chapter and the following are summarised in Table 2.1. These notations are

provided at this stage for future reference and will be introduced in the relevant sections.
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Notation Meaning

X State of the system
x? Background, i.e. prior estimate of state
x/ Predicted state (forecast)
x4 Analysis, i.e. updated state after observétion has been assimilated
% Mean state (possibly indexed: %2, %/, x%)
P State covariance matrix (possibly indexed: B = P?, P/, P%)
m Model/System operator
m Model/System error
Model/System error covariance matrix
h Observation operator
€ * Observation error
R Model/System error covariance matrix
t Time
X, State estimates up to and including time t: X; = {xo, ..., X}
Y, Observations up to and including time t: Y, = {yo,....¥:}

Table 2.1: Summary of notations used in this chapter
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3.1 Foreword

Static data assimilation tackles the problem of finding the best ésti'matfc‘, of the stétéf’fs,i.di\é;trib:"" (©)
when no dynamics are involved, i.e.: ‘ _ . ‘ .
| m(x) = X;. R - . ('31.1)
In this case, the model is the identity and can effectively be dis,carded\. T:he‘data assimilation
problem thus reduces to estimating the state given one (or possibly several) Qbservatio,ns;

We first discuss the deterministic approach to the problem in Section-3.2.. Two cases are
considered. In the first, it is assumed that no prior estimate of the state is available. The notion
of Least Squares Estimate is introduced and a solution derived. In the second case, some a priori
information about the state is available and an extended formulation of the Least Squares solution
is given. An alternative solution based on variational methods, known in data assimilation as 3D
VAR, is then considered. Most of the derivations in this chapter apply to the case where the state
is related linearly to the observation. Application to the non-linear case is discussed.

The stochastic approach to the problem is the object of Section 3.3. It is assumed in that section
that a priori information about the state is available, and that the probability density function of
the observation error is known too, so that a Bayesian treatment of the problem can be applied.
An optimal solution can be derived in the case of a linear observation operator and Gaussian
distributions. Extensions to the non-linear/non-Gaussian case are mentionned. \

Note that, since there is no dynamics involved in this chapter, time indexing is dropped in

order to keep the notation as light as possible.

3.2 Deterministic approach

In this section, we consider the case where the relation between the state and the observations is
completely deterministic. Although we know that the observations are imperfect, we assume we
have no knowledge about the nature of the observation error.

3.2.1 No background information

Linear Least Squares Estimate - Single observation

We consider first the case where the state is related linearly to the observation:
y = Hx. (3.2)

If a single observation y is available, and we have no a priori knowledge of the state, what is the

“best” estimate of the state that can be achieved? Clearly, the notion of “best” estimate is relative
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to some criterion against which the quality of the estimate is o e assessed. 'IﬂiuiﬁfV¢1Yg we want .
to get the projection of the state into observation spacé as “close” 'as‘..-po_ss_ibl_f;r to the observation,
i.e. we want to minimise the residual y —Hx. ‘ ‘ . ’ .

Several definitions of the distance between two vectors exist. For instance, the\diéténéé"‘bé; .

tween y and Hx could be expressed as the absolute value between the two quantities ly — Hx|

(L-1 norm). It could also be expressed as the Euclidean distance (or L-2 norm), i.e. ||y — Hx|| =

/(y = Hx)T(y — Hx) or using the L-inf norm, i.e. max |y; — h{x| (where i denotes the i-th com-
ponent of the vector, and h; is the i-th row of the matrix H). The choice preferred in most situation
is the square of the Euclidean distance, since it is differentiable everywhere.

The estimate of x which minimises the squared Euclidean distance (or misfit) is known as
the Least Squares Estimate, as it minimises the square distance to the observation. For a single

observation, the misfit to the observation is given by:

(y —Hx)"(y — Hx), (3.3)
N

Y (i —hix)?, (4
where N is the dimension of the observation space, y; the observation along the i-th dimension and
hiT the i-th row of H. The factor % is introduced for convenience, in order to cancel the factor 2

which appears when differentiating the quadratic form.

The minimum of J(x) is obtained by setting the gradient of J(x) to 0:
VJ(x) = -H'(y - Hx) =0, (3.5)

giving the optimal estimate (in a least squares sense):

x“ = (H™H) 'HTy : (3.6)

Note that if H is invertible, this expression reduces to the expected result x? = Hly.

Linear Least Squares Estimate - Multiple observations

If several observations are available, i.e. yi,...,yu, the least square estimate becomes the one that

minimises the distance to all observations. Equation (3.3) becomes:

1 M
J(x) =3} (v - Hx)" (y — Hx) 3.7)
k=1
and its gradient is given by:
M - .
VJ(x) =}, ~H'(y: — Hx), , (3.8)
k=1
M
= MHTHx — HT Vi |- (3.9)
k=1
31




Chapter 3

Setting the gradient to zero leads to the least squa e for multiple observations;

o Ligipee T M
X' = — (H'H)"'H ) e

k=1

Note how, in the case where H is the identity (i.e. we are observing the state directly), the result
reduces to the average of the observed values. This confirms: the intuition that if one has no
knowledge about the nature of the observation error, the best estimate (in a least square sense) is

obtained by averaging the observations.

Generalised Linear Least Squares Estimate

A more general expression of the least square estimate can be obtained by using the energy norm
(Lewis et al., 2006) rather than the L-2 norm in the definition of J(x). For a symmetric positive

definite matrix W, the squared energy norm is defined, for any x, by:
1% ly=x"Wx. (3.11)

Note that in the case where the W matrix is diagonal, this expression reduces to a weighted sum
of squares.

Using the energy norm, we can rewrite J(x) as:
1
Jx) =3 (y- Hx)"W(y — Hx) (3.12)

and compute its gradient:

VJ(x) = —H'W(y — Hx). | (3.13)

Setting the gradient to 0 yields the generalised least squares estimate of x:

x*=(H'WH) 'H'Wy (3.14)

Typically, the matrix W provides a means to give more or less weight to the observation,

depending on how confident we are in the quality of the observation procedure.

Non-linear Least Squares Estimate

So far, we have assumed that the observation operator was linear, i.e. # = H . However, many

applications require the use of a non-linear 4. The optimal estimate is then expressed as:

1

J(x) = 3 (y = h()) TW(y = h(x). (.15)

Generally, a close form expression of the least square estimate cannot be obtained in the case

of a non-linear A. A possible alternative approach consists in minimising J(x) with respect to the
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state, using standard optimisation techniques. How ooth in the -n\ei'ghbour?hg’o’d?-ofia, ,

reference state x,, it is more efficient to use a first-order Taylor expansion about x;:

J(x) ~ % (y — h(x,) — L (x = %)) "W(y — h(xe) — i, (x — ,)) (3.17)

and the gradient:

VJ(x) ~ —HIW (y — h(x;) — Hi (x —x/)) , (3.18)

~ —HTW (y — h(x,)) + BT WH, (x — x,). (3.19)

Setting the gradient to zero yields the approximated non-linear least square estimate:

—1 A

x4~ x,+ (AT WH,) ™~ HW (y —h(x,)) - (3.20)

Note that in the case of a linear A = ﬁr = H, this result reduces to the result obtained in the linear

case.

3.2.2 With background information

We extend the case of a linear, deterministic observation operator # = H by considering that some
background information avbout the state is available. The estimation problem becomes the search
for the optimal state estimate which minimises the departure both from the observation and the
background (in a least square sense), as illustrated on Figure 3.1. The background estimate is
denoted x” throughout this chapter.

y
L S —
Esnmllatlon

h(x) :}
Observation space /
State space Qdé

xb

Figure 3.]: Deterministic data assimilation in a static context. The observation y is used to correct the

background state x?, giving an updated state x4 (assimilation).
g giving P
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Linear Least Squares Estimate

It is clear that the optimal estimate will depend on our relative confidence in ?,tsh.éxb.a'ckgrf(j;u,\n n
the observation. In the least squares formulation, the relative confidence in thé observatlonandthe
prior is expressed by appropriate choice of weighting matrices. Instead of using the notation W for
the weight matrix (as was done-in the previous section), we introduce new nofations. First, rather
than characterising the weight using a symmetric positive definite matrix, we will use inverse mé,—
trices with the same properties (we know that the inverse of a symmetric positive definite matrix is
also a symmetric positive definite matrix). This is to make the notation consistent with the section
dealing with the stochastic approach, as we will see that in the case of Gaussian distributions, the
weight matrix is then equivalent to the covariance matrix.

We denote R the inverse weight matrix for the observations and B the inverse weight matrix
for the background. The least squares estimation problem is thus written as the sum of two parallel

estimation problems:

J(x) = Jp(X) + Jo(x) (3.21)
I

1
=5 (x= VB (x—x") + 5 - Hx)"R™!(y — Hx) (3.22)
Note how the relative influences of the observation and the background are controlled by the
relative values of the matrices R and B. For instance, high confidence in the background will be
expressed by choosing B smaller than R, thus putting a heavier penalty on departures from the
background (J,) than on departures from the observation (J,).

The optimal estimate is obtained by setting the gradient of J(x) to 0:

VJ(x) = VJy(x) + VJo(x) (3.23)
=B~ (x—x")-H'"R™(y - Hx) (3.24)
=B +HR'H)x— (H'R 'y +B'x"), (3.25)

yielding the least square estimate:
x=B"+H'R'H) T H R y+B7'x"). (3.26)

A clearer expression of x“ can be obtained by rewriting it as a displacement from x”. This is
easily done by adding HTR™'Hx” — H'R™'Hx’ to the right hand side term in the product and

factorising:

x*=x"+ B +H'R'H)"'"H'R ' (y — Hx"). (3.27)
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Non-linear Least Squares Estimate

If the observation operator is non-linear, an approximate solution can be derived, fc

derivations given in Section 3.2.1. The cost function for the non-linear case is given'b

) = 5 (= x*)TB (e x) 4 2 (3~ h() TR (y = h(x) (3.28)

By using a Taylor expansion about a reference state X;, we can apply the result from Equation

(3.19) to obtain the linearised VJ,(x). The gradient of J(x) is then given by:

VI(x)~ B~ (x = x?) —HIR™ (y — A(x,)) + ATR ™', (x — x,) (3.29)

~(ATRA, +B ) (x—x,) —H'R™ (y - h(x)) + B (x, — x%). (3.30)

Setting VJ(x) to zero gives the linearised least square estimate:

x~ x4+ (H'R'A +B71)™! [ﬁIR—‘ (y = h(x:)) =B~ (x, — x?) (3.31)

Here again, if 4 is linear, the result reduces to the linear least square estimate.

3.2.3 Variational approach: 3D VAR

The variational method consist in replacing the problem of finding the exact minimum of the cost

function (3.22):
J(x) == (x—x")"B™ ' (x— x’) + % (y—Hx)"TR™!(y - Hx) (3.32)

with an optimisation problem. Rather than looking for a stationary point by setting the gradient
to zero and computing the exact estimate, in a variational context, one looks for an approximate
solution which provides a close enough approximation to the actual minimum. This solution is
obtained by applying standard optimisation algorithms such as gradient descent or quasi-Newton
to (3.22). Introductions to 3D variational methods can be found in Bouttier and Courtier (1999,
Kalnay (2003); Lewis et al. (2006).

In the meteorological community, the variational problem is referred to as three dimensional
variational (3D VAR) method, the three dimensions being that of the usual Euclidean space. 3D
VAR is used operationally in several weather forecasting centres, including the ECMWF (Courtier
et al., 1998; Andersson et al., 1998; Rabier et al., 2000), the. UK Meteorological Office (Lorenc
et al., 2000) and the Canadian Meteorological Centre (Gauthier et al., 1999; Laroche et al., 1999),

although it is now being superseded by its successor, 4D VAR (see Section 4.2.3).
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Non-linear case

be approximated by (3.30) and be used, for instance, in a gradient ~desceﬁt algorlthm

the linear approximation will only be relevant if 4 is smooth at the scales considered.

3.3 Stochastic approach

We consider here the stochastic approach to the static assimilation problem described in the previ-
ous sections and discuss its treatment in the Bayesian framework from Section 2.3.2. Remember -
that in a stochastic context, the state is represented by a probability density function p(x), possibly
conditioned oh‘the observation. Initially, we assume that some background information about the
state is available and is represented by the prior distribution p(x”).

The observation is related to the state according to Equation (2.4):
y = h(x) +&(x). ’ (3.33)

The stochastic nature of the error term € induces a probability distribution (likelihood) for the
observation, conditioned on the state: p(y|x”). We are thus looking, in this context, for an updated
estimate which takes into account the information provided by the prior and the likelihood, while

characterising the resulting uncertainty, as illustrated on Figure 3.2. '

ply|x®)

e
e(x,t)! Assimilation
h(x) l:}
Observation space / N

State space k%;p(xaly)

p(x%)

Figure 3.2: Stochastic data assimilation in a static context. The likelihood p(y|x?) is used to correct the

prior p(x?), giving an updated distribution p(x“]y).

As explained in Section 2.3.2, we can use Bayes’ rule to update our estimate of x:

p(yIx*) p(x")

, 3.34
p(y) G

p(x‘ly) =

where p(x?|y) is the posterior (i.e. updated) probability density function of the state given y and
our background estimate x?. That is data assimilation is essentially classical Bayesian inference

for regression models.
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3.3.1 Optimal solution in the linear case

Just as there was several possible “best” estimates in the deterministic case (depending on the

notion of distance/norm chosen), there are several possible “optimum” distributions of the stat
given the observation. A traditional Bayesian treatment might either look for an estimate which
maximises the likelihood of the observation (maximum likelihood estimate) or for an estimate with
maximum probability given both the observation and the prior (maximum a posteriori estimate).
In the following, we focus on the maximum a posteriori (MAP) approach and show that in some
circumstances it provides a stochastic solution equivalent to least square approach discussed in the

deterministic case.

Linear Gaussian case

We start by considering the simple case where the observation operator is linear, 2(x) = Hx, and

probability density functions are assumed Gaussian:

x? ~ A(%°,B), (3.35)

g(x) =y — Hx ~ AL(O,R). (3.36)

The background has mean %” and covariance B. The observation error is assumed to be Gaussian
white noise with covariance matrix R.

We know already that for a Gaussian likelihood, a Gaussian prior leads, through Bayes’ rule,
to a Gaussian posterior (Bernardo and Smith, 1994), with mean X“ and covariance matrix P“ to be
determined: -r

X A(X4PY). (337

We note that the estimate which maximises the posterior distribution also minimises the neg-
ative logarithm of that distribution, the two problems being equivalent due to the monotonicity of
the logarithm function. The minimisation of the negative log-posterior, however, is made easier
by involving computations with quadratic forms rather than exponentials. We will thus pursue
this approach (see also Jazwinski (1970); Lorenc (1986); Lewis et al. (2006) for equivalent deriva-
tions).

Taking the negative logarithm of the posterior, and substituting using Bayes rule, we get:

—Inp(x]y) = —Inp(x) —Inp(y[x) +Inp(y). (3.38)

The term in y is a constant with respect to x, and can be discarded since it does not affect the

minimisation. If we now recall that the expression of the Gaussian distribution is given by:

N((x | %,P) = ——— ¢~ HEPT6Y (3.39)
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where % denotes the mean, P the covariance matri

e dimension of the state, we can

expand (3.38) and we obtain, after the constant terms hé_ivé been discarded:

~Inp(xly) o 5 (x~2)B (x~ %) + 2 (y~ Hx) TR (y— Hix).

. G
The expression on the right hand side is identical to the Linear Least Squares formulation '
(3.22) which is also the cost function in the variational approach. In other words, Bayesian infer--

ence in the particular case of a linear H and Gaussian distributions is the stochastic equivalent of

the Linear Least Squares Estimate.
It follows, by application of the result in (3.27), that the best estimate is g_iven by: -
=x"+B ' +H'R'H)TH'R™ (y - Hx"). (3.41)
The covariance matrix P¢ is easily obtained from (3.41):
P'=B—(B~'+H'"R'H)"'H'R"'HB. (3.42)

A more tractable expression for X% and P% makes use of the Kalman gain matrix (Kalman,
1960): K= (B~' + H'R™'H)"'H'R~!. Multiplying K on the right hand side by the identity
matrix I = (HBHT +R)(HBHT +R)~! leads, after simplification, to the standard set of equations
for the optimal estimator:

X¢ o (%%, P9, (3.43)

with:

% = %" + K(y — Hx"),
P’ = (I-KH)B, (3.44)

K =BHT(HBH" +R)™".

Non-linear case

If & is non-linear, the gain matrix K can be approximated by a linearised K computed using the

Taylor expansion in (3.16). K is then used in the update equations for the mean and covariance:

% =" + K(y — Hx"),
P’ = (I1-KH,)B, (3.45)

K =BAT(ABH! +R)"".

3.3.2 Further considerations
Specification of the B matrix
A common difficulty is the specification of a good background covariance B. There are two major

methods to estimate the background covariance: the first is based on the correlation between two
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forecasts from different lead times, the second is ba nsemble methods (see Sieétiog', 434

for a description of ensemble methods).

All these methods are discussed in the context of dynamic data assimilation and mlghtma
use of notions which will be explicited in the next cha})ter.v The reader on‘ly‘needs 0 know thatm
the dynamic case, the background is usually a forecast from some previous estimate of the state.

In the first method, proposed by Parrish and Derber (1992), the B métrix is estimated by the
correlation between two forecasts from different past origins, e.g. B = ((x7 48k — x7 T (x4
x;'?")). This method, referred to as NMC (after the Canadian National Meteorological Centre),
has been used in many operational weather forecasting centres and is the favourite choice in data
assimilation, because of its simplicity.

The NMC method, however, presents several drawbacks. As mentionned in (Fisher, 2003),
poorly observed regions might have very similar forecasts, and see their background covariance
underestimated as a result. Another issue is the use of forecasts at much longer lead times (12h
and 48h) than those used to generate the background estimate (Fisher, 2003), leading to potential
inconsistencies.

An alternative approach is the use of ensemble methods. Ensemble methods rely on prop-
agating an ensemble of estimates (rather than a single state) and use this predicted ensemble to
derive approximate statistics (mean and covariance) of the background. The ensemble is usually
generated by perturbating the state using noise drawn from the béckground error’s estimated dis-
tribution (i.e. in the deterministic case, Gaussian white noise with covariance P“). This approach
is used operationally in the ECMWF variational assimilation system (Fisher, 2003).

The use of ensemble methods is an ad-hoc solution to estimate the propagation of the state’s
disfribution. A more robust framework in which the state’s distribution is sequentially estimated is
the one provided by filtering methods (see Section 4.3). Because filtering methods are stochastic
and thus track the temporal evolution of the state’s probability density function, they can easily
be used to provide an estimate of the background covariance. Applications of filtering methods
can be found in Hamill and Snyder (2000), where a blend of the NMC method and an Ensemble
Kalman Filter (see Section 4.3.4) are used to generate the B matrix. Buehner (2005); Buehner
et al. (2005) also use an Ensemble Kalman Filter, this time in replacement of the NMC method.

Other alternative background covariance representation models have been proposed, most as
extensions to the existing NMC method (Dee and Gaspari, 1996; Desroziers, 1997; Fisher, 2003,

2006). Further detail on error specification in data assimilation can be found in Lindskog (2007).
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3.4 Summary of this chapter

This chapter presented several methods to address the data assimilation problem in the case wh \'

no dynamics (i.e. no model) are involved. Least Squares Estilnation.'was_ intfo:c\ihé\éd:\\és an optimal
solution (minimising the variance of the departures to the observations) in the case where the ob-
servation is related linearly to the state. The solution is the minimum of a coét function expressing
the trade off between the background estimate and the observations.

An approximation in the non-linear case was given, which relies on a Taylor expansion of
the observation operator about the state estimate. An alternative approach based on variational
methods was presented. This method (3D VAR) replaces the computation of the optimal estimate
with a minimisation problem. Namely, an approximation to the minimum of the cost function
is obtained through some optimisation method (gradient-descent, quasi-Newton, etc.). The non-
linear case is discussed.

The transposition of the Least Squares Estimate to the stochastic context leads, in the Gaussian
case, to a set of equations for the update of the state’s mean and covariance. Static data assim-
ilation provides the basic methods used in conjunction with a dynamic model in standard data
assimilation. Extensions to the non-Gaussian case have been omitted, as they will be discussed in
the context of dynamic data assimilation.

The next chapter builds upon the methods introduced and discusses their application to the

problem of estimating the state no only in state (or observation) space but also in time.
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4.1 Foreword

Chapter 3 discussed several mechanisms to estimate the state gi-ven static o.bservat"i‘oﬁsrFb.’o.thzf

a deterministic and stochastic contexts. This chapter places the Stdth estimation problem intoa
dynamic context, where the state is propagated forward in time and observations become avallable
at given time intervals.

The observations can be assimilated in two ways. Either one at a time, to update the latést
estimate of the state, or several at a time, in which case a best trajectory of the state over a given
time window is sought. The first approach is called filtering while the second is referred to as
smoothing. Figure 4.1 illustrates the filtering principle. In that case, dynamic data assimilation can
be seen as a succession of static data assimilation steps in between which the state is propagated

using the model. Figure 4.2 illustrates the smoothing approach.

Figure 4.1: Dynamic data assimilation, filtering approach — The state is propagated forward in time (predié-
tion step) using the model (thick arrow). When an observation y is available (star), the predicted
state x/ is updated as in static data assimilation (assimilation step) giving a new analysis x (thin

arrows). The process is then repeated.

Figure 4.2: Dynamic data assimilation, smoothing approach — The state is propagated forward in time (pre-
diction step) using the model (thick arrow). The optimal estimate is sought by computing the
trajectory of the state which minimises the distances to all observations (stars) within a given

time window (the window covers 3 observations in this example).

Both the dynamic model m and the observation operator / are assumed known. If any model
parameter needs to be estimated in time, it is incorporated in the state vector X, without other
changes to the formulation required.

Notations

In order to distinguish between the predicted state and the assimilated (or updated) state, we de-

note them by x/ and x% respectively (the ‘f” and ‘a’ superscripts come from the meteorological
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literature, where the predicted state is called‘tkiéff/‘fo'régiasj and the updated state is called the

“analysis™).

Chapter outline

We follow a pattern similar to that of the previous chapter. Section 4.2 looks at the application of
the Least Square and variational methods introduced in Chapter 3 to the dynamic case. Section

4.3 extends the discussion to the problem of stochastic state estimation.

4.2 Deterministic approach

In this section, the model and the observation operator are related to the state as follows:
Xy = nl[(xl_]) (41)
Yo = hi(x(). ‘ (4.2)

Model error is assumed constant in time and represented by a background covariance matrix B.

Similarly, observation errors are represented by the covariance matrix R.

4.2.1 Dynamic Least Square
If the observation operator is linear: A, = H, and one observation is used at a time:to update
the (time-evolving) state, the problem of deterministic data assimilation reduces to the following
lterative approach:
0. Initialise the state to some background estimate:
X:’ = Xp (43)
1. Prediction step: Propagate the state forward in time using (4.1):

x| = m(x%,) ' (4.4)

2. Assimilation step: Once an observation becomes available, use (3.27) to update the state:
x* =x/ + (B~ +HIR'H,) 'HIR™ (y, + Hx/). (4.5)

Steps 1 and 2 are applied iteratively as the state is propagated in time. This method ensures
the model remains consistent with the true process, and is optimal (in a least square sense) in the
case where 4 is linear.

In the case of a non-linear h, the first-order Taylor expansion discussed in the previous chapter

can be applied, and the approximate optimal state is given by (3.27), where the background state
b f

X L.

1s replaced by the predicted state x
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Observation space

State space K

Figure 4.3: Deterministic data assimilation in a dynamic context. The state estimate is propagated forward

» time

in time and updated given an observation.

4.2.2 3D variational assimilation

Dynamic 3D VAR follows essentially the same procedure as Dynamic Least Squares, except the
update step (step 2) is performed using the static 3D VAR algorithm (Section 3.2.3). In the case

of a linear H, the updated state minimises the cost function:

| s | B
J(x) = 5 (% _X{)TBwl(Xt “‘Xf) + > 2 “Htxt)TR I(Yt - Hx,) 4.6)

which is identical to (3.22) except the background has been replaced by the predicted state x/.
In the case of a non linear A, a first order Taylor approximation can be applied to compute the

gradient of J(x).

4.2.3 4D variational assimilation
Overview

The 3D variational algorithm allows us to update the state at time intervals where observations are
available. However, the optimisation does not directly involve the model, other than through the
predicted state x/. 4D variational assimilation (4D VAR) extends 3D VAR in a way that allows
the dynamic nature of the problem to be better addressed.

Rather than estimate the state at a single point in time, in 4D VAR the estimation problem is
reformulated as a smoothing problem. Namely, one looks for the best (in a least square sense)
trajectory of the state given the last N observations. The addition of the dynamic component into
the 3D algorithm, as will be described below, resulted in the method being called 4D VAR (time

being the 4th dimension).
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Figure 4.4: 4D VAR (strong constraint) — The optimal trajectory is conditioned on the background xg, the

model and the observations (stars). Full circle denote the intermediate forecast states Xj.

Strong constraint 4D VAR

In its sti‘ong constraint formulation, 4D VAR does not take model error into account. The model
is assumed perfect and the trajectory of the state over the time window is not perturbed. In other
words, the model acts as a strong constraint in the minimisation problem. Applications of strong
constraint 4D VAR to weather forecasting problems can be found in (Lewis and Derber, 1985;
Cram and Kaplan, 1985; Le Dimet and Talagrand, 1986; Zupémski, 1993; Courtier et al., 1994; Ide
et al., 1997; Rabier et al., 2000; Mahfouf and Rabier, 2000; Klinker et al.,.2000; Rawlins et al.,
2007). '

Recall from 3D VAR that variational assimilation is based on the minimisation of a cost func-

tion expressing a trade-off between a background estimate and an observation:
! NTp-1 S ! Tp-|
J(x) = 2 (x—x{)'B (xt—xx)“l‘i (yo—Hpx) R™ (y — Hix,) 4.7)

4D VAR, in a similar fashion, seeks the value of the state that minimises the departure from
the background term not given a single obsel'vatioﬁ, but given a set of sequential observations. To
make explicit these notions, consider a syslexﬁ with measurements occurring at times 1,2,...,t~—
It The assimilation is performed over a time window of length L, spanning from time t— L
to current time t. To simplify the indexing, we will index (discrete) time from the start of the
time window in the following, so that xo = X\—,X| = X{—/+1,.--,X. = X;. The 4D variational cost

function can then be written:

J(x0.) = Jp(x0) +Jo(X0:L) (4.8)
with:
|
Jp(x0) = i(xo —x0)"B ™ (x0 — xg) (4.9)
1 L
Jo(Xo0.L) = 3 Y (v —h(x)) R™ (yx — A(x0)) - (4.10)
k=0

The J,(x,) term minimises the departure from the background term x5 at the beginning of the
p 0

time window (obtained from our previous estimation of the state). The J,(X,) term minimises the
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departure of the trajectory from the observations over the consi ered time window. The Xl o0

are obtained by propagating xq forward in time through the non-linear model. Remember that
no model error is taken into account while propagating the state (strong constraint). Fi‘gufie‘\4

illustrates this process.

Minimising J(xo...)

In order to minimise J(x,), one wants to be able to apply some optimisation method. Newton
methods or gradient descent methods require the gradient of J(x;). The gradient of Jp(x¢) 1s
straightforward to compute:

VJy(x0) = B7! (x0 — x5) 4.11)

The gradient of J,(xo.. ), however, can be problematic in that for a non-linear model and a non-
linear observation operator, J,(xo..) is no longer a quadratic function in x. To overcome this
problem, one can resort to linearisation. |

Let us denote my,, the model operator propagating x from t; to tg,'and assume by definition
that my. is the identity operator. Note that the notations m and m;_ 1. are equivalent. The model

can be applied sequentially, so that:

Xy, = mllilz(xll) (4-12)

:mlz(mlz_l(.'..m.l|+1(xl,)...)). . (413)

For a given time & in the time window, the departure from the observation can be approximated

using a Taylor expansion about the background state:

Vi = h(xx) = yx — h(mox(xo)) (4.14)
~ yi — h(mo(x3)) — Ao (%0 = x0), (4.15)
where ﬁk and I\A/Io;;< = MkMk_; .,.1\711 are respectively the tangent linear observation operator

evaluated about x; and the tangent linear model, evaluated about every observation time in the
window.

An estimate of the gradient of J, can be derived from (4.15):

Vi, (x0.0) = — ¥ Mo HR™ (yx = h(x)) (4.16)
k=0
L ~ A ~ A
=~ Y M. MIATR™ (v — h(xe)) 4.17)
k=0

This expression can be factorised into a more computationally efficient form as follows, where we

use the notation d;, = R™! (y;, — h(xx)):
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VJ,(xor) =3 do+ NI [ATd, + M.
R MI—Z [I:I{_]dL_l +Mz_1ﬁzdL] H .

Equation (4.18) can also be expressed as a backward recursive problem:

_VJ()(XO:L) = v]o(XO:L) (4~19)
Vi, (xp.) 2 A d; (4.20)
VI,(Xeer) 2 AL dg + MV 5 (X1 @21

where the symbol £ means “is deﬁnéd as”.

Once the optimal trajectory has been obtained through minimisation of J(x) the model is
propagated forward until a new observation becomes available at time L + 1. The optimisation
procedure is then applied again, this tfme with a shifted time window covering the time range

[1,L+1].

Outer/Inner loops

The optimisation step typically involves an outer loop inside which the tangent linear model is
computed about the state and the state is optimised using an inner loop. The outer loop ensures

the tangent linear is updated as the state is optimised. Figure 4.5 details this optimisation step.

0. Initialise the state to its current estimate: X = xg (% denotes the state being optimised)
1. Outer loop:

(a) Compute the tangent linear model about X: MO;L

(b) Inner Loop:

Minimise J(X) using M.,

2. Set x4 =X.

Figure 4.5: 4D VAR optimisation algorithm

Weak constraint 4D VAR

The weak constraint formulation of 4D VAR (Gustafsson, 1992; Zupanski, 1997; Tremolet, 2006,

2007) addresses the lack of model error in strong constraint 4D VAR. Assuming an imperfect
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model with model error as introduced in Secﬁbh 222 .
Xy = my(Xe—1) +Me,

the augmented cost function is written:

J(%0.,My-) = b (%0) +Jo (X0:L,M1:) +Im(M1:L) (4.23)
with:

Jp(xg) = %(xo —x5TB ! (x0 — x§) (4.24)

N _
Jo(Xo:L, M) = 3 Y, (v — h(x)) R (yi — h(xi)) (4.25)

k=0
1 &

Jn(M1.L) = 2 Z M QM- (4.26)

x~
i}

The propagation of the state from time 0 to time k, previously given by (4.13), is now given
by:

X = mk(mkM; ( . .m;(X()) +Mn;-. ) +T]k_]) + Ny 4.27)

The propagation of the state can be expressed using the tangent linear model (for a non-linear

model):

Xk = mox(Xo) (4.28)
~ k ~
~ mog (X) + Mo (%o — x0) + Y My, (4.29)

i=]

Using this expression in (4.10) allows us to derive the gradient of J, with respect to X:

T
L k
Vido(XoL, ML) = — 3 (MO:k + ZMx:m,) H; d;

i=1

0 (4.30)
L ~ ~ L . L ~T ST
== Z M(gzkHde - Zn[i ZM?:ka dy.
k=0 k=1 =k
Similarly, the gradient of J with respect to M evaluates to:
VTI‘](XOIL»T]}:L) = VT]‘IO(X():L)TII:L) + VT]Jm (T]i:L) ‘(4.31)
L L . . L L
— - Y Y ML A+ Y Qg 4.32)
k=1i=k k=1

Stochastic extension: Path sampling

(Apte et al., 2008) recently proposed a stochastic extension to 4D VAR based on path sampling
techniques (Hairer et al., 2005; Apte et al., 2007). The method involves sampling from the pos-

terior by solving a Langevin equation or using a Hybrid Markov Chain Monte Carlo approach.
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Yy . .

Y. -

X £, o ;/;L
i TN B ﬁ
x§ Y

Figure 4.6: 4D VAR (weak constraint) — The optimal trajectory is conditioned on the background x(b), the
model, the model error and the observations (stars). Full circle denote the intermediate forecast

states xg, while dotted segments represent the model error terms 1.

The framework provided allows to estimate the smoothing distribution in a fully stochastic, non-
Gaussian fashion. The method provides a promising alternative to standard 4D VAR and Kalman
filters (next section) in cases where the Gaussian assumption is poor. The computational burden

of the method, however, might be a limit to its application in high dimension.

Relationship with Kalman filters

It has long been know that for a linear model and a linear observation operator, the variational
approach and the Kalman filter provide equivalent formulations of the same problem (Jazwinski,
1970) and thus yield equivalent results. More recently, Kalman filters and VAR methods have been
compared on non-linear models. Li and Navon (2001); Fisher et al. (2005) discuss the equivalence
of weak constraint 4D VAR with the Kalman smoother, and show that 4D VAR outperforms the

Extended Kalman Filter when used with a sufficient long time window.

4.3 Stochastic approach

In this section, we look at the stochastic treatment of data assimilation in the dynamic context.

The model and observation are related to the state according to:

Xy :m[(X[~])+n(, (433)

yi = h(x) +e (4.34)

The generic formulation of the problem has been outlined in Section 2.3.2. Basically, one is
interested in evaluating the joint probability density function of the state given all observations up
to and including a given time t: p(X(|Yy).

For many applications, however, knowing the marginal probability density function of the state

at time t is sufficient, and one does not actually need the full joint distribution of x. The marginal
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PO (1)

elxt)i |Assimilation

hooty 1
Observation space /

State space
p((t-1)]y(t-1))

p(x3(t)|y(t))

Prediction

mix,t) p(x' (t)|y(t)

- time

Figure 4.7: Stochastic data assimilation (filtering) in a dynamic context. The state’s distribution is propa-

gated forward in time and updated given the observation’s likelihood.
distribution can be obtained by integrating the joint distribution over all but the last state estimates:

p(x|Y,) =/p(thY[)dX(_1. | (4.35)

The marginal distribution can be estimated in two ways. If one is only interested in the
marginal distribution of the state conditioned on the latest observation, i.e. p(x|y) the data assim-
ilation problem becomes known as filtering. If on the other hand, one wants to estimate the state
given all (or a subset of all) previous observations, i.e. p(de{), then the problem is known as
smoothing. Figures 4.1 and 4.2 give a simple overview of the filtering and smoothing approaches
respectively. Figure 4.7 illustrates the filtering principle in more detail.

If the mode] and the observation operator are linear, and if all distributions are Gaussian, then
the Kalman filter (Kalman, 1960) provides an optimal (variance minimising) solution to the filter-

_ing problem. If the operators are non-linear, sub-optimal methods can be derived. The Extended
Kalman Filter (Jazwinski, 1970; Maybeck, 1979) and the Ensemble Kalman Filter (Evensen, 1994)
provide respectively a linearised and a Monte Carlo approximations to the Kalman Filter. Another
Monte-Carlo approach, the Particle Filter (Doucet et al., 2001), allows the Gaussian assumption
to be relaxed. These filtering methods are discussed in the remaining of this section. Smoothing

methods are not addressed in this work.

4.3.1 Bayesian formulation: the filtering case

We discuss here the formulation of the Bayesian framework (Section 2.3.2) for the particular case

of filtering. The model is assumed Markovian and the observations conditionally uncorrelated in

time.
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Propagation of the state

If p(x¢|Xi—1, Yi=1) = p(X([%;—1) and the distribution of the state is known at time t — 1 p(xe 1Y ;\{)\1\,}( .

then the predicted distribution of the state is given by:

ORI Yim) = [ o) ot [ Yeos) dtecr (436)

~ The state’s predicted distribution is obtained by integrating out the uncertainty in X;—i. The ex-

pression of p(x;|x,_1) depends on the model (Equation 2.5) and the assumptions on model error.

Update of the state

Given an observation y, with likelihood p(y:|x,), the posterior distribution of the state is obtained
by applying Bayes’ rule (2.11):

_ p(yi|x) p(x|Yi-1)
P =

In the case of Gaussian distributions and linear model and observation operator, the filtering pos-

(4.37)

terior can be derived exactly, leading the the Kalman Filter algorithm. If either the distributions
are non-Gaussian or the operators are non-linear, various approximations can be used, which lead

to several filtering algorithms. These algorithms are detailed in the remaining of this chapter.

4.3.2 Kalman Filter

The Kalman Filter (Kalman, 1960; Jazwinski, 1970; Maybeck, 1979; Rhodes, 1971) is a filtering
algorithm which, under certain assumptions given below, provides an optimal least square solution
to the problem of dynamic state estimation. The approach is merely a probabilistic formulation of
the least square method discussed in Sections 4.2.1 and 3.3.1.

"The solution given by the Kalman Filter (KF) is optimal in the case where:

1. .the model M, and observation operator H; are linear,
2. the errors can be represented by Gaussian white noise: 1, ~ A (0,Qy); & ~ A0, Ry),

3. the state has a Gaussian distribution: x ~ A_(X,P), where X denotes the mean state and

P = ((x —%)(x —X)T) is the covariance matrix.

The filter is initialised by setting p(x4) = p(x0) = N[(x | X0, Pp). The initial distribution is
defined so as to reflect our initial knowledge (or lack of knowledge) about the system of interest,
before any observation has been assimilated.

Once initialised, the KF follows the sequential two-step procedure described in 4.2.1. The
prediction step propagates the state’s distribution forward in time, while the assimilation step

updates the state’s distribution given a new observation. These two steps are detailed below.
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Prediction step

The discrete evolution equation (4.33) becomes, in the linear case:

Xy = Mx—1 +1,.

Using the fact that 11, ~ A(0,Qy), the predicted state’s distribution can be written:

p(x{) = N(x | x{,P), (4.39)
where

%/ =M, (4.40)

P/ = MPL M[ + Q. | (4.41)

Assimilation step

Given a new observation, the state’s distribution is updated following the derivations from Section

3.3.1, giving:

p(x¢lx/,y0) = (% | &, PF), (4.42)
' =x/ +K (y —H'Y)), (4.43)
P¢ = (1- KH)P/ (4.44)
K =P/HTHP/H"+R)"". (4.45)

Because of the linearity assumption, the above computations maintain the Gaussian nature of

the state’s distribution.

Square root formulation

Short after its introduction, the Kalman Filter was reported to suffer from filter divergence — i.e.
the filter would lose track of the true process — in certain situations where the covariance matrix.
P becomes ill-conditioned. The most acknowledged causes of filter divergence include the pro-
cessing of very accurate observations, observations with great variations in accuracy across the
observed domain (some regions having high accuracy while others are hardly observable), the fact
that the linear/Gaussian assumption is unrealistic for the process considered, and ‘numerical erTors
due to the limited precision of the model (Kaminski et al., 1971; Fitzgerald, 1971). A mathemat-
ical analysis of filter divergence and conditions under which the distance of the model to the true
process remains bounded can be found in (Price, 1968; Fitzgerald, 1971).

In order to increase the numerical stability of the algorithm, a square root formulation was de-

rived based on Cholesky decomposition of the P matrix (Potter (1964); Andrews (1968); Bierman
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(1977), see also Kaminski et al. (1971); Maybeck (197_)) IfSisa mangular matrix resultmg

from the Cholesky decomposition of P, so that P.= SS?, then a formulation of the Kalman Fllter-

equations based on S can be derived (i.e. S is estimated rather than P). This increases numerlcal‘\ \

stability, in particular since the effective numerical precision is doubled (Kaminski et al., 1971).
Even though these errors might still affect the estimate of S (to a lesser extend than in the standard
formulation of the KF), P is guaranteed to remain positive definite. It is to be noted that the Square
Root formulation only addresses filter divergence if the divergence is due to numerical issues.
Several “Square Root Kalman Filters” have been devised, but their derivations are not repro-
duced here. The interested reader can find these derivations in Kaminski et al. (1971); Bierman

(1977) and other references therein.

4.3.3 Extended Kalman Filter

If the model m is non-linear, the prediction equations (4.40) and (4.41) for the linear case do
not hold anymore. A common solution to the problem is to resort to using a linearised model to
compute the predicted covariancé. The resulting filter is known as the Extended Kalman Filter
(Jazwinski, 1970; Maybeck, 1979; Evensen, 2007).

The derivation requires applying a Taylor expansion to (4.33):

x{ =m(x{_;)+"n, (4.46)

~m(& ) + M () —X,) +1y, (4.47)

LR EICES RS M (4.48)

where M_| = d’" (x() is the tangent linear model, i.e. the Jacobian of m, computed about the

current state estimate. Second and higher order terms in the Taylor expansion have been discarded,
but could be incorporated for greater accuracy.

The covariance of the predicted state can then be computed using the approximation (4.48):

I%z@%»ﬁﬂ%~%ﬂ> (4.49)
~ (¥ (6, = %)+ (Mo (6 =% ) +m] ) (4.50)
~M_ P2 M, +Q, (4.51)

Notice how the result looks similar to the standard Kalman Filter’s predicted covariance (Eq.
(4.41)), only the model has been replaced by its tangent linear estimate. The mean is still prop-

agated using the full non-linear model. This gives the following prediction equations for the
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Extended Kalman Filter:

p(x{) = 2= | %/ ,P]) - @)
%/ =m(x")) A : (4._5.3)\ \
P/ ~M_ P M_+Q (4.54)

The update step is left unchanged, although in the case of a non-linear observation operator A,

a similar linearisation procedure can be applied to obtain A

The Extended Kalman Filter (EKF) maintains a Gaussian approximation to the true propagated
distribution of the state, which only holds if the requirements for the linearisation are met (smooth
model at the integration time considered). If the model is strongly non-linear at the time step
of interest, linearisation errors will cease to be negligible, which can lead to filter divergence
(Evensen, 1992). Note that since the model is non-linear, there is no guarantee that the predicted
distribution will still be Gaussian (it is more likely not to be). The Gaussian estimate might thus
give a very poor representation of the actual posterior distribution.

In order to overcome the linearisation issues found in the EKF, alternative ensemble-based
methods have been devised, which allow for the covariance to be propagated using the full non-
linear model. These perform approximations on the distributions rather than on the model. Typi-
cally, the state’s distribution is represented by an ensemble of particles, from which the real statis-
tics can be inferred. The two main resulting filters, the Ensemble Kalman Filter and the Particle

Filter, will be discussed in the following sections.

4.3.4 Ensemble Kalman Filter

Ensemble filters use the intuition that it is easier to approximate a probability distribution than it is
to approximate a non-linear operator. Instead of trying to propagate the exact distribution through
a linearised model (as does the EKF), ensemble methods use a Monte Carlo approximation to the
distribution and propagate it through the exact model. Three main methods can be found in the
literature: the Ensemble Kalman Filter (this section), the Unscented Kalman Filter (Section 4.3.5)
and the Particle Filter (Section 4.3.6).

In the Ensemble Kalman Filter (EnKF), the state’s distribution is represented by an ensemble L
of particles (typically of order 100), the mean and covariance of which approximate these of the
real distribution, assumed to remain Gaussian (Evensen, 1994, 2007). The initial ensemble is
constructed by sampling from the initial distribution p(xg). Each ensemble member X; is then

propagated using the (non-linear) model, giving a predicted ensemble. The predicted mean and
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covariance are estimated from the predicted ensemble, as follows:

N ,
Plm e ¥ (il %) (bl )
N-1 & ‘ .
where N is the ensemble size and [x;] denotes the i-th ensemble member.
y(t)

e(>,t) Assimilation
h(x,t) X%

Observation space /
State space

el mxd | %,

N

Figure 4.8: Ensemble Kalman Filter. The state’s distribution is represented by an ensemble of realisations
. (sample) which is propagated through the full non-linear model. Each ensemble member is

updated given the observation.

The update step consists in updating each ensemble member given the observations y;. Ideally,
one would need to use an ensemble of observations, so that to each particle corresponds a different
observation. This would ensure the covariance structure of the ensemble is maintained in agree-
ment with the observation’s error covariance. However, generating an ensemble of observations in
practice would be too costly, and only a single measurement y, is usually available.

In its originél formulation (Evensen, 1992), the EnKF used the observations y, to update all
ensemble members. (Burgers et al., 1998) showed that using the same observations to update all
ensemble members resulted in the state’s covariance matrix being underestimated. Namely, the

correct covariance is given by:
P = (1-KH)P/(I-KH)" + KRK" (4.55)
= (I-KH)P/. ' (4.56)
but the effect of using a single observation gives the following estimate of P* (Whitaker and

Hamill, 2002):
’ P=(I-KH)P/ (I-KH)". (4.57)

To address the issue of the missing term, they suggested an ensemble of observations was
generated by sampling from a Gaussian distribution with mean y, and covariance to be specified

(usually set to R) (Burgers et al., 1998; Houtekamer and Mitchell, 1998).
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However, Whitaker and Hamill (2002) showedithat; e effect of perturbing the obsef-vrations

resulted in increased sampling error, leading to an underestimation of the covariance in the as-. .

similation step. They provided a square-root formulation of the EnKF in which that covanance 1s .

correctly estimated, by seeking a matrix K satisfying:
(4.58)

which led to the solution:

~ T ~1

K=pPH (HPfHT+R)‘%] [(HPfHTJrR)% +RI| (4.59)
where A2 denotes the square root of a matrix A (obtained, for instance, by Cholesky decomposi-
tion). That formulation does not require the use of perturbed observations and provides a correct

estimate of P, Several other square root formulations have been provided, a review of which can

be found in (Tippet et al., 2003).

4.3.5 Unscented Kalman Filter

Another alternative to the Extended Kalman Filter which relies on approximating the state’s dis-
tribution using an ensemble is the Unscented Kalman Filter (Julier et al., 1995; Wan and Van Der
Merwe, 2000; Julier et al., 2004). In the Unscented Kalman Filter (UKF), an ensemble of “sigma
points™ is generated which has the correct mean and variance. Unlike the EnKF;, this ensemble is
not a random sample from the state’s distribution, but a set of points designed to capture the exact
first two moments. .

A set of 2N + 1 sigma points, N being the state vector’s dimension, is generated by selecting
the mean and 2N points on’covariance contours. For instance, if N = 2, the mean and 4 points on
the axis of an elliptic covariance contour are selected. The points are weighted in such a way as
to allow the covariance contour to be more or less close to the mean, while retaining the correct

_covariance. The sigma points and their weights are denoted respectively x' and w', for i = 1..N.

The selection of the sigma points, as described in.(Julier et al., 2004), is illustrated in Figure

4.9. The ensemble {xi, wi} allows the mean and covariance to be computed using:

2N

x=) wx (4.62)
i=0 -
2N )

P=) wix -2 -x" (4.63)

i=0

The choice of w° controls the spread of the sigma-point. Positive values of w” gather the sigma

points around the mean, while negative values move them away from it. (Note that a negative w? is
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—

1. Select the mean as the first sigma point; X% = % and choose its weight w0 ,

2. Compute a square root matrix S of the weighted covariance matrix:

ssT— N p C(4.60)

—l—wo

3. Select 2N sigma points as perturbations from the mean state by plus or minus the i-th

column of S:

X =X+8;
XN =g S;
and weight them according to:
. o 1l—w .
L S 0 . 4.61
w=w TR (4.61)

Figure 4.9: Unscented Kalman Filter: algorithm for the selection of sigma points

not inconsistent, since the weighted sigma points are only a means to approximate the state’s first

and second moments, but do not provide a representation of the state’s probability density function
(Julier et al., 2004), unlike the EnKF and other Monte Carlo approximations). For instance, if the
model is strongly non-linear, errors due to sampling “non-local sampling effects” can lead to
“significant difficulties” (Van der Merwe et al., 2000) and one might want to keep the sigma points
close to the mean. Further discussion on the scaling of the ensemble spread can be found in (Julier,

2002).

4.3.6 Sequential Monte-Carlo (Particle Filter)

The Particle Filter (see for example Doucet et al. (2001); Arulampalam et al. (2002)) is a filter
based on Monte Carlo methods. Its main advantage over Kalman-based filters is thét it does not
restrict the state’s probability density function to be Gaussian.

Monte Carlo methods provide a means to approximate continuous distributions with a (dis-
crete) set of samples {x;}i=).y called “particles”. Assuming N independent and identically dis-
tributed (i.i.d.) realisations {Xi}i=1-n can be drawn from some probability distribution p, then the
probability of the random variable x lying within the interval dx can be approximated by:

{xieds}] 1 ¢ ,
Pu(dx) = =T Ly (4.64)
v (dx) N N;’ )
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where [{x; € dx}| denotes the number of realisations
falling .within dx, and dy,(dx) is the delta: Dirac mass
located in x; (taking value 1 if x; lies within dx and 0

otherwise). Figure 4.10 illustrate this principle using

10 samples (spheres) from a distribution with 4 possible

outcomes. Here, Py(dx) =4/10=0.4. Figure 4.10: Binned samples from an un-
This representation of distributions allows expecta- known distribution.

tions, on which most common statistical indicators rely,

to be easily derived. Recall the definition of the expectation of some quantity f(x) over some

distribution p: V

EIf()] = [ f(0p(x)éx. (4.6

From (4.64), it results that E [f(x)] accepts the following Monte Carlo estimate:

N
Enf(0) = [ 70 Pux)ax = Y 7). (.66)
' i=1

Particle Filters address the general problem of estimating the full posterior distribution of the
state, p(X;]Y,), from which the usual marginal filtering distribution p(x;|Y,) can easily be inferred.
If one were able to represent the posterior distribution using a Monte-Carlo approximation, one
would be able to propagate it through the full non-linear model and obtain an estimate of the pre-
dicted distribution p(X,;1|Y,) which relies neither on linearisation nor Gaussian approximation.
Unfortunately, most posterior distributions resulting from the propagation of some prior through a-
non-linear model are intractable and the Monte-Carlo approach cannot be applied directly. A so-

lution is provided by a method called importance sampling, which is described in the next section.

Importance sampling

The principle of importance sampling is the following: for distributions which cannot be sampled
from directly, a set of particles can still be obtained by sampling from another, more tractable
distribution, and weighting the particles appropriately when computing expectations.

If we consider an (arbitrary) importance distribution q(X,|Y,) which can easily be sampled

from, the expectation with respect to the posterior p(X|Y) can be written:

ELF(X)) = [ FX)p(Xi|¥) ¢, (.67
= / f(X)gg—j;{%q(XllYl) dX ' (4.68)
=y /100 p(Y[p;&?l(;(:)lYl_‘) 4(X,[Y,) dX, (4.69)
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where the posterior has been substituted using‘Béy;eé??:rulcjelni(4.i/69).y By defining the im’;ﬁ‘o:ft,an'ce

weight: .
iy - PVEORKIYec) BN
‘ q(X([Y,) q(X(JYy)
and noting that:
p(Y) = [ p(YX) (X Yio1)dX, @7
= [w(X)a(X(¥)aX, @72)
E[f(X)] can be rewritten:
JfX)w(X)q (XY dX,
U= T ax v ax 473
E[W( ) f(Xlg ,
Efw(Xly “m

where the q index indicates that the expectation is carried over the distribution g, not p. Applying

(4.66) to (4.74) leads to the Monte Carlo estimate:

N Z Cow(XD (X))
N Z?-]:l W(X{)

N
=Y W £(X)) (476)

En[f(X)] = (4.75)

where w! = w(X!)/ Z[j‘-/:l w(X/) are the normalised importance weights. Applying this result to the
delta function gives the following expression for the posterior éstimate, which is the importance

sampling equivalent of (4.64):

Py(dX |Y)) =

Mz

W By (dX,). : (4.77)

i

Choosing the importance distribution

Choosing the importance distribution to have certain properties can simplify the computations con-
siderably. In particular, it is convenient for sequential filtering to chose an importance distribution
which factorises as:

q(Xi|Yy) :(](thxt—hYl) q(Xi-1]Y 1) 4.78)

Using the fact that the process is assumed Markov:
p(x X1, Y1) = p(xef¥e-1) 4.79)
and that the observations are conditionally uncorrelated:

p(YiX0) = [ [ p(yelxx), (4.80)
k=1
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a recursive formulation of the weights (4.70) can b’é derived (see. Arhlampalam et al. (2002j~ for

full derivation):

MIC DATA ASSIMILATION

. p(yi/x}) p(X{'IXLI)
Lo W .
(XY

t—12

asy

This formulation allows for the updated set of weights to be computed by simply scaling the
weights according to the 1'ight hand-side ratio, and normalising them. -

The choice of the importance distribution will depend mostly on the problem addressed, and
has a strong impact on the quality of the assimilation. Doucet (1998) shows that, for the filtering
density, the distribution q(x|x/_,,y:) = p(x¢/x_,¥) is optimal, in that it maximises the variance
of the weight. Furthermore, the resulting weight is shown to be independent of the sample x_,.
However, as noted in Arulampalam et al. (2002), this distribution is usually not a practical choice,
as one needs to be able to sample from it and it yields an expression of the weight involving an
integral which is not easily corﬁpufed. As can easily See from (4.81), a particularly convenient al-
ternative is to choose q(xtht_; ,Y,) to be the transition prior p(x|X;— ), in which case the weights

simply need to be multiplied by the likelihood of th¢ corresponding particle:

Wwhoc wi_y p(yi/x) (4.82)

Implementation of the filter

The filter is initialised by sampling {X; ¢ }i=1:x from the prior p(Xo) and setting the corresponding
weights {wj} to 1/N.

Prediction step: Given a weighted sample {wf_,,X{_,}, the particles are propagated forward to
time t according to (2.5), using the full non-linear model, while the weights remain unchanged.
This gives an ensemble of weighted particles {w{~l,X{} which approximates the predictive distri-

bution IJ(XL‘X[_ 1 )

Assimilation step The weights are updated according to (4.82) and normalised, with the par-
ticles left unchanged. The weighted sample {w!, X{} provides an approximation to the posterior
p(Xi]y:), which then becomes the prior for the following time step.

Figure 4.11 shows the filter in action on the 1D double-well system. The filter uses 50 weighted
particleé. 4.11 (a) shows the initial prediction/update using the prior (t=0) while Figure 4.11 (b)

and (c) show similar information at subsequent time steps.
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Figure 4.11: Prediction and update of weighted particles on a simple 1-d model at three different times.
The plot shows, from the top, the particles and weights of the prior (first and second rows), the
propagated particles (third row) and the updated weights (fourth row). The observation (third

row) is plotted as a cross with dotted grid line.

Degeneracy issue

One can see from Figures 4.11 (b) and (c) that the total particle weight, initially shared amongst
all particles equally, tends to gather over fewer and fewer particles as observations are assimilated.

The evolution of the weights is conditioned on

the likelihood of the observations. The weights , o
of particles which lie in regions of low like- . e st 2
lihood tend to decrease, while the weights of o
] 0.2 0.4 0.6 0.8 1 1.2
particle lying in regions of high likelihood in- -
0.6
crease. Since there is no creation of new par- 0.4
0.2
ticles nor relocation of existing ones, the set T 0 0a o6 o8 1T
“ (propagated particles)
of “effective particles” (i.e. particles with a 2
.« . . . . C . 1 + ~EH-HH
non negligible weight) is likely to shrink and T
0 0 0.2 0.4 0.6 ¢.8 1 1.2

collapse as even the best particle will eventu- w, (updated weights)

ally diverge from the true process. This phe- 0.8
0.4
nomenon is known as filter degeneracy and 02 ,
0 0 0.2 0.4 0.6 0.8 1 1.2
would eventually lead to filter divergence.
To prevent the collapse of the set of par- ®)
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ticles, a resampling step is usually introduced
after updating the weights, in order to introduce more diversity amongst ‘the particles. This step is
triggered when the number of “effective particles” falls below a predefined threshold. An estlmatef .

of the number of “effective particle” is given by Bergman-etal. (1999); Arulampalam et al. (2002);

. 1 '
Nepr(t) = ————. (4.83)

When Neff(t) goes below a specified thresﬁold, a new set of weights and particles is generatéd in
agreement with the estimated posterior distribution. This step is called resampling. There are sev-
eral algorithms available to achieve resampling: multinomial resampling, systematic resampling,
stratified resampling, residual resampling, branching methods, etc. A review of the most common
of these resampling methods is given below. See also Douc et al. (2005); Hol et al. (2006) for

similar reviews.

Resampling vmethods’

Resampling consists in having particles with high weights duplicated while particles with very
small weights are discarded, in order to generate a new set of equally likely particles. The new set
of weighted particles {W', %'} should satisfy W' = 1/N and ¥, 8,(%') /N = w;, where §(x') = 1

and 8(x # x') = 0. In other words, the particle i is replicated n times so that n/N = w;.

e Multinomial Resampling
The Multinomial Resampling algorithm (Gordon et al., 1993) consists in generating an en-
semble of N points {u'};=|_, in the interval [0, 1| by sampling from the uniform distribution
U[0,1]. The new particles are obtained by selection (possibly more than once) and rejection
of the existing particles, based on the inverse cumulative posterior distribution. In other

words, if w/ < u' < w/*! particle j is selected. The algorithm is illustrated in Figure 4.12.

e Systematic Resampling
Systematic Resampling (Kitagawa, 1996; Arulampalam et al., 2002) functions in very much
the same way as Multinomial Resampling, except the u' are spread homogeneously in the
interval [0,1[. Namely, «' is drawn from U[0,+ [, and /™' = u/ + 4. The rest of the

algorithm is identical. Figure 4.13 illustrates this algorithm.

e Stratified Resampling Stratified Resampling (Kitagawa, 1996) is a variant of Multinomial
Resampling where the interval [0, 1] is split into N identical segments and the u' are sampled
uniformly from segment i. That is to say, u' is drawn from U[5}, L[, A summary of the

algorithm is given in Figure 4.12.
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e Residual Resampling In Residual Resamplin’o/i(lz;;iﬁ{ and Chen, 1998), each particle X' is .

selected n' times, where n' = | Nw' | is the number of particles corresponding to a proportlon \

w' of the total population (rounded down to the closest integer). It is clear that, because of the
round off, this method might only select M < N particles from the initial set. The remaining
N — M particles are selected as follows. Each particle is given a “residual weight” wi equal
to the amount of w' lost in the round off, i.e. w\ = Nw' —n'. The w. are then normalised:
wi = wi/Ywl. N—M particles are then selected from the set {x,w.} using one of the

previous resampling methods. An illustrative example is given on Figure 4.12.

Multinomial Resampling

1. Sample {u;}i=1. n from the uniform distribu- 1
tion U[0,1/N[. Seti=1, j=1. |
. . . 5
2. While C(x') < u/, increment i. 7
75
3. Set &/ =x'. C(x)
]
4. Increment j and go back to 2.
. . Wk
5. Once done, set w/ = % for all j. 4 |
0 '
<4 2 2 ¥ 0

Figure 4.12: Multinomial Resampling — In this example, the algorithm selects particle 1, duplicates par-

ticle 2, discards particle 3, selects particles 4 and 5, resulting in the new set of particles

{xi} = {x',x%,x%,x* x°}. The weights are then reinitialised.

Systematic Resampling
1. Sample a starting point u; from the uniform

distribution U[0,1/N|[. Set j = 1. 1l
] :

u . :
2. While C(x') < u/, increment i. A

U b e e e e e m e e e e = -
3. Set &/ =x'. 5

Cx) “r-—m""777"71

4, SC[L(_/‘_H:M_/‘%-%. 2l
5. Increment j and go back to 2. .

U o o e
6. Once done, set w/ = 4 forall j. ’ 0 [

x' X xr X

Figure 4.13: Systematic Resampling — In this example, the algorithm discards particle 1, duplicates par-

ticle 2, keeps particle 3, discards particle 4 and duplicates particle 5, resulting in the new set

of particles {%'} = {x?,x%,x3,x%,x°}. The weights are then reinitialised.
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Stratified Resampling
1. Sample a starting point u; from the uniform

distribution U[0, 1/N[. Set j = 1. 1] -
. . W :
2. While C(x') < u/, increment i. JL T TR AR Y
Uk o m e m e e i e o e i
3. Set&/ =\ |
o cw
4. Sample ujy from U[SH, &1 e
5. Increment j and go back to 2. u;: '''''''
70 A
6. Once done, set w/ = £ forall j. 0 |
x' ¥ X x X

Figure 4.14: Stratified Resampling — In this example, the algorithm discards particle 1, duplicates particle

2, selects particle 3, discards particle 4 and duplicates particle 5, resulting in the new set of

particles {&'} = {x?,x*,x?,x°,x>}. The weights are then reinitialised.

Residual Resampling C(x)
i wh | nl = [Nw'] wi=Nw —n [ Wi=wl/Twl| | ]
1 .0.11 0 0.55 0.18 3
2 030 1 0.50 oa7 | [T
31019 0 0.95 032 | 2l
4 0.11 0 0.55 0.18 1
5 0.29 1 0.45 0.15 L

Total | 1.00 2 3.00 1.00 S ) Y SR B

Figure 4.15: Residual Resampling — In this example, N = 5. The algorithm selects particles 2 and 5 once
each according to n'. The residual weights Wi, are then computed and Stratified Resampling

is used to select the 3 remaining particles (in this case particles 1, 3 and 5). The new set of

particles is thus {&'} = {x,x?,x*,x>,x%}. The weights are then reinitialised.

In all the resampling methods listed above, the new set of particles generated contains exact
duplicates. These are expected to become distinct particles with distinct trajectories once the
particles are propagated through the stochastic model. A good estimation of model error is thus

critical to the filter’s performance.

Further resampling schemes

The main issue with particle filters is that no particles are created in regions of high likelihood.

It might happen that all particles drift away from the true process (as a result of an incorrect
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description of model error). In such circumstances, there is no chance of bringing them back in

line with the process using the above resampling methods since these methods rely on duphcatmg .

existing particles, not actually creating new particles (or moving the existing ones) closer to the
process.

Some new resampling methods have been devised in order to address this issue. Kotecha
and Djuric (2003a); Xiong and Navon (2006) propose a resampling method based on a Gaussian
approximation to the posterior. The new set of particles is generated by sampling from a Gaussian
distribution with mean and covariance estimated from the current particles and weights. Although
the methods is less prone to filter degeneracy, using a Gaussian resampling step means losing the
main advantage of Particle Filters over other filtering methods which is the absence of the Gaussian
constraint. A further extension proposed by Kotecha and Djuric (2003b) is the replacement of the
set of weighted particles by a mixture of Gaussians, each Gaussian being independently managed
as a separate Extended Kalman Filter. The Unscented Particle Filter (Van der Merwe et al., 2000;
van der Merwe et al., 2001) provides a similar approach except each Gaussian in the mixture is

treated as an Unscented Kalman Filter.

4.4 Summary of this chapter

Building up on the previous chapter, data assimilation methods for the dynamic estimation prob-
lem have been introduced. Dynamic least square estimation and dynamic 3D VAR have been
shown to be straightforward extensions.of their static counterparts, with the only difference being
that the background estimate is provided by a previous forecast. An extension to 3D VAR, 4D
VAR, has been introduced. 4D VAR provides a smoothing approach in which the trajectory of the
state is estimated over a fixed time window. The optimal estimate minimises the departures of the
trajectory to several sequential observations rather than a single observation. .

Moving to a stochastic viewpoint, a review ﬁci\fering methods was provided. The Kalman
Filter was derived as an intuitive extension of the linear Gaussian optimum from Section 3.3.1
to the dynamic context. Approximation in the non-linear case based on linearisation (Extended
Kalman Filter) or Monte-Carlo representation of the state’s distribution. (Ensemble Kalman Filter,
Unscented Kalman Filter) were discussed. A Monte-Carlo based approach for the non-Gaussian
case (Particle Filter) was also introduced.

In the following chapter, we look at two experiments in which several of the methods discussed

in this chapter are applied to two toy models.
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5.1 Foreword

Although several studies exist in which some of the data assimilation methods introduced in Chap-

ter 4 are compared on non-linear models, there is a lack of a standard experimentél setting‘allc\)Win\g
a fair comparison of data assimilation methods. It is important, in order to assess progress in the
field, to be able to test new assimilation methods against old ones, and to do so, a set of experi-
ments with transparent settings must be agreed on. This set of experiments should ideally allow
for various factors to be evaluated, including performance in linear and non-linear regimes, ro-
bustness and computational cost. Along with the set of experiments, a set of validation methods
should be agreed on, which would allow to assess the performance of each method according to
various criteria. It is our hope that this chapter will provide a starting point for the development of

a common benchmark in the data assimilation community.

Choice of models

The data assimilation methods selected in this experiment include the Extended Kalman Filter, the
Ensemble Kalman Filter, the Particle Filter and 4D VAR, both in its strong and weak constraint
formulation. Two non-linear models have been selected on which the selected data assimilation
methods are to be evaluated. These models, the Lorenz 63 and Lorenz 96 models, were chosen for

the following reasons:

e They are both widely used in the data assimilation literature,

They are non-linear,

They are of low and medium dimension (3 dimensions for Lorenz 63, 40 dimensions for

Lorenz 96),

They are simple to implement,

They can be given a meteorological interpretation.

Related studies

Several similar studies involving some of the methods tested here can be found in the literature:
Miller et al. (1994) implemented an Extended Kalman Filter on the Lorenz 63 system; Evensen
(1997) ran an Ensemble Kalman Filter on the Lorenz 63 system, Harlim and Hunt (2007) tested
variants of the Ensemble Kalman Filter on both the Lorenz 63 and Lorenz 96 systems; a compari-
son of 4D VAR and the Ensemble Kalman Filter on the Lorenz 63 system is given in Kalnay et al.
(2007); 4D VAR is also compared on the Lorenz 96 system with a hybrid 4D Ensemble Kalman

Filter in Fertig et al. (2007); a Particle Filter is tested on the Lorenz 63 system by Pham (2001).
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Chapter outline

This chapter is organised as follows. First, both models are introduced and details on how observa- "

tions are generated are given. Then, the experiment set-up, which is similar for both experiments,
is discussed. Various parameters, across all methods, play a part on the way data assimilation is
performed. These parameters are listed and choices for their values justified. Results are presented

and the comparative performances of the methods discussed.

Notations

Several abbreviations are used in this section to identify the different assimilation methods. They

are summarised in Table 5.1.

Abbreviation | Method’s full name

KF Kalman Filter

EKF Extended Kalman Filter
EnKF Ensemble Kalman Filter
PF Particle Filter

4DVAR-S Strong constraint 4D-VAR
4DVAR-W Weak constraint 4D-VAR

Table 5.1: Summary of abbreviations used for data assimilation methods

5.1.1 The Lorenz 63 system

The Lorenz 63 system (Lorenz, 1963) is a simple 3-dimensional system often used in data as-
similation research and development to test the robustness of a given data assimilation method to
non-linearity. The Lorenz 63 system models turbulent hydrodynamic flow such as those observed
in the atmosphere. It exhibits chaotic behaviour arising from strong sensitivity to initial conditions.

The state of the system, x = (x,y,z), is governed by the following set of equations:

dx

@ =0y

dy :

L =rx—y-xz (5.1)
dz

5 =-—bztxy

where o, r and b are constants. The physical interpretation of these constants is the following:
x represents the intensity of convective motion, y the temperature difference between ascending

and descending currents and z the distortion of the vertical temperature profile from linearity.
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Parameter values are set as in Lorenz (1963): © ::IOOr: 28.0 and b = 8/3, which is the

standard used in most experiments reported in the literature.

Tangent Linear Model

Propagation of the state is done using a Runge-Kutta scheme to solve the system of equations.
EKF and 4DVAR need the tangent linear model to be derived. This is achieved by using a Euler

approximation:

X, =m (X)) =x-; —AtX0 (X1 —y-1)
o =m(Xe1) =yo1 HAUX (e — Yt — X2 1) (5.2)

a4 = mz(xt_l) = yi—1 T At x (”‘bZI—X +Xt—l}’1—l)

where the model is denoted m = (m*,m” ,m*). The tangent linear modelabout x, is easily derived

from (5.2):
(k) W (x) B (%) 5 6 0
M= | 22(x) Wx) BE(x) | =I+AL r—z -1 —x |- (5.3)
%Q;‘Z(Xt) %”;TZ(Xt) a%(Xt) W x —b

Observed data

The “true trajectory” of the state is generated by propagating the full model forward in time with
a time step At = 0.01 following Lorenz (1963). We map to an arbitrary time scale of 15 min per
At (i.e. 1h corresponds to 4 time steps) to mimic time scales typically found in the atmosphere.
A total of 10000 points (104 days) are generated. Figure 5.1 shows the trajectory of the true state
both in space (top row) and time (bottom row) for the first 3000 steps.

Observations are then obtained by taking corrupted measurements of the true state at regular
intervals. The true state is observed directly, i.e. the observation operator / is the identity: & =
H = 1. A range of observation intervals is considered in order to measure the effect of observation
frequency on the quality of the assimilation. The time intervals between observations are listed
further in Section 5.1.3. Gaussian additive white noise (i.e. uncorrelated) is added to the observed
“true state” to simulate noisy observations. The black dots on Figure 5.1 correspond to 6-hourly

noisy observations with covariance 0.04 of the system’s amplitude.

5.1.2 The Lorenz 96 system

The Lorenz 96 system was introduced by Lorenz (1996) and provides a relevant representation for
some aspects of atmospheric dynamics (non-linearity, chaotic behaviour). It is a commonly used

model for testing state-space models under non-linear conditions, in a data assimilation context.
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-30 -30 0
o 1000 2000 3000 o] 1000 2000 3000 0 1000 2000 3000
t t t

Figure 5.1: Lorenz 63 system: exact trajectory and observations (first 3000 time steps). Top row shows the
spatial trajectory in each of the 3 planes. Bottom row shows the temporal evolution along each

of the system’s dimensions. Black dots represent the 6-hourly noisy observed values.

The Lorenz 96 system, in its original version, involves a set of N variables x;, whose evolution

is governed by N differential equations, as follows:
dx;
i (Xig1 —Xiz2) Xic1 —x;i + F. (5.4)
The i index is cyclic, i.e. Xi, = Xj—, = x;. The number of variables is set to 40, so that
x = (x1,...,xa0). The x; can be thought of as representing a weather variable at locations situated
around the equator. The F term acts as a forcing term. A value of F = 8.0 is chosen, according to

Lorenz and Emanuel (1998).

Tangent Linear Model

Like for the Lorenz 63 model, propagation of the state is achieved through a Runge-Kutta solver.
The tangent linear model, required by 4D VAR and the EKF, is computed after application of

Euler’s method:

m,-(x) :Xi+At[ (X,‘+1 —X,'_z) Xiey — X+ F }, (5.5)
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where m; denotes the i-th component of the model. Th ftéhg,é:n,t linear model is band diagonal,

with: ‘

Xi—1 At ifj=i+1,

1 —At it =1,
~ om; : .
Mi,j = g—l(x) = ()CH_[ ——x,~_2) At ifj=i—1, (5:6)

Xj
—x;i_1 At lf]=l~2,
L 0 otherwise.

* where the time index has been dropped to keep the notations clearer.

Observed data

The Lorenz 96 system was set-up as in Lorenz and Emanuel (1998). The time unit is assumed to
be 5 days, and a short integration time-step of 1 hour (At = 0.0083) was used in order to minimise -
linearisation errors (for comparison, Lorenz and Emanuel (1998) use a time step of 0.05 (6h);
Orrell (2003) uses a time step of 0.005 (36 minutes)).

Observations are generated in a similar fashion to the Lorenz 63 system, except the total dura-
tion of the experiment is 4800 time steps (200 days).

A preliminary study on the Lorenz 96 system involved running the different assimilation meth-
ods with (proportional) observation errors corresponding to low noise (02 = 0.01), medium noise
(6* = 0.05), and strong noise (o2 = 0.2). Figure 5.2 shows the Root Mean Square Error (see
Section 5.1.4) averaged over the assimilation period (200 days) for all selected methods. All these
methods show a decrease in performance as observation noise increases, but all noise levels give
similar results as far as comparative performance is concerned. As a consequence, a single noise

value of 0.01 is considered, in order to keep the number of assimilation runs to a minimum.

5.1.3 Experiment set-up

The experiment looked at how the different parameters involved in the assimilation (noise level,
assimilation frequency, method parameters) affect each method’s performance. The parameters
involved are summarised in Table 5.2. Details about the specific choices for each parameter are

given below.

“Burn-in” phase

In order to obtain a coherent first guess estimate for the state’s distribution and get rid of initial
convergence issues, a “burn-in” phase is applied prior to the assimilation. During this “burn-in”

phase, an EKF is run for a certain duration, chosen identical to that of the assimilation phase. The
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No correlation across dimensions is taken into account, so that Q is a diagonal matrix.

Note that no model error is taken into account in the strong constraint formulation of 4D VAR, .

THE LORENZ SYSTEMS

which in consequence can be expected to perform better than other methods as long as linearisation

errors remain negligible.

Assimilation frequency

The impact of assimilation frequency (i.e. how often observations are assimilated), is the most
important parameter in this study. Chosen frequencies are: every 15min and every 1, 3,6,12,24

and 48h.

Sample size

In the EnKF and the PF, the size parameter controls how accurately the state’s probability density
function is estimated. For the EnKF, retained sizes were: 3, 10, 20, and an additional 2000 for the
higher-dimension Lorenz 96. |

Particle Filters with 50, 200 and 2,000 particles were run on the Lorenz 63 system. The initial
runs of the PF on the Lorenz 96 system showed that filter divergence would occur systematically
for less than 500 particles. Since the PF is expensive to run with large number of particles, we

restricted the study to 2,000 and 20,000 particles.

Time-window

In 4DVAR, the time window controls the method’s behaviour. Fitting over a small time window
will provide better results locally, whereas fitting over a large time window will provide better
tracking of the system. In order to be able to measure the balance between those two opposite
factors, several window lengths were considered: ] hour (single observation), 6 hours, 12 hours,

24 hours and 48 hours.

Resampling rate

The Particle Filter uses a Systematic Resampling step. Resampling is triggered when fhe pro-
portion of effective particles, as estimated by Equation (4.83), reaches below a certain threshold.
Several thresholds were tested: 10%, 50%, 90% and 100% (systematic resampling) of the total
number of particles but no clear pattern emerged which could have suggested an influence of this
parameter on the filter’s performance. As a consequence, all Particle Filters in the results discussed

below were run with a resampling rate of 50%.
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Lorenz 63 : . Lorenz 96
Time step 0.01 . Gooss
Time step interpretation 15min | lh" \ ‘
Burn-in phase 10000 stéps (104 days) 4800 steps (200 days)
Assimilation phase Same as burn-in phase
Observation error 0.01 of the system’s covariance
Assimilation frequency 15min, 1h, 3h, 6h, 12h, 24h, 48h
Ensemble size (EnKF) 3, 10, 20 20, 50, 200, 2000
Number of particles (PF) 50, 200, 2000 . 2000, 20000
Resampling rate (PF) 10%, 50%. 90% and 100% of the population
Window length (4D VAR) 6h, 12h, 24h, 48h

Table 5.2: Summary of parameters choice for the Lorenz 63 and Lorenz 96 systems

5.1.4 Lorenz 63 Results
Performance measure

As a measure of each method’s performance for a given set of parameters, we use the Root Mean

Square Error (RMSE) between the true state x' and the estimated state x:

N
RMSE(x,x") = 4 /% Y (i—xf)? (5.7)
k=1

where N is the dimension of the state. The RMSE is averaged over the whole experiment and,
for filters relying on sampling (EnKF, PF), over 5 runs of the filter, in order to minimise sampling
error.

Although it was initially intended to compare the methods’ forecasting skill (measured using
the RMSE over a post-assimilation single forecast), it became clear that the quality of the forecast
depended entirely on how close the state’s estimate at the end of the assimilation phase was to the
true state. A good measure of forecast skill would have needed averaging over many forecasts,
however this wasn’t done in the current experiment. Furthermore, it is well acknowledged that
the RMSE isn’t an optimal measure of forecast skill for probabilistic forecasts. Another more
appropriate method, based on Receiver Operating Characteristics curves, will be introduced and
applied later in this work (Section 7.3.2).

Figure 5.4 summarises the different methods’ performance on the Lorenz 63 experiment. The

RMSE is plotted against the assimilation frequency (in log-scale).
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Figure 5.3: Autocorrelation of Lorenz 63 system

Assimilation performace

e About model error — The inclusion of model error in a perfect model setting is clearly

unrealistic. The only source of error in this setting is the incorrect specification of the initial
state. As a result, model error effectively acts as an additional forcing, and can be respon-
sible for taking the state away from the true process, rather than providing the necessary
flexibility to bring it closer to the process, as would be the case with an imperfect model. In
consequence, some reserve must be shown with regard to the conclusions drawn from this

experiment,

Effect of assimilation frequency — The first general comment to be made when analysing
the results shown on Figure 5.4 is that, as one would expect, the quality of the assimilation
decreases as observations are assimilated at larger and larger time intervals, regardless of
which assimilation method is used. This is due to the fact that, for a fixed duration, fewer
assimilation steps mean fewer updates of the state to compensate for model divergence. All
methods perform well when observations are assimilated frequently, with a slight, almost
linear increase in the error up to 3h time intervals. In the range 3h to 12h, the error growth
increases in a quadratic fashion (in log scale) but seems to go back to a more linear growth
rate in the range 12h to 48h. We can expect the error to eventually converge to a maximum

value for assimilation frequencies higher than 48h (since the process is bounded in spabe).

Linearity regimes — Figure 5.3 shows the autocorrelation plots for each of the 3 dimensions.
If we discard the z dimension, which Qhows a pseudo periodical regime, 3 regimes can be
observed. Strong autocorrelation in the Iag region 15min — 3 suggests a smooth, linear
regime. A sharp decrease in autocorrelation for lags between 3h — 12h corresponds to an
increasingly non-linear regime. For lags above 12h, the process reaches a non-linear regime
in which the autocorrelation fluctuates about zero (no correlation). These 3 regimes explain

the 3 phases observed on the error plots on Figure 5.4.
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e Linear regime

— For lags below 3h, where the process behaves sméothly, variational methods (4DVAR) .

generally outperform filtering methods. The smooth behaviour of theprocessmeans
that the approximations used to compute the tangent linear model are negligible. In~
such éircumstances, 4D VAR has a clear advantage over filters in that it finds an op-
timal path rather than an optimal point estimate. Because the observation error is
_unbiased (zero mean) and the model is known, by considering several observations at
a time, 4D VAR is able to “average out” the effect of observation error. The variational
solution is thus expected to be very close to the true process, in particular in the strong
constraint formulation of 4D VAR (4DVAR-S) in which no model error is taken into
account. Although we did not consider smoothing assimilation methods, it is worth
mentioning that since they also look for optimal paths, they could be expected to give

results equivalent to those observed with 4D VAR.

- In this regime, the PF provides similar results to the EKF and the EnKF, with a slight
advantage at very frequent assimilation frequency (15min), possibly due to the fact
that it handles non-Gaussianity in the distribution (however, at short time scalés, the
process is expected to behave linearly, hence the state’s distribution, chosen Gaussian,

is expected to remain such.)

e Increasingly non-linear regime — Overall, a quadratic rate of the growth in RMSE is ob-
served for all methods. HoWever, this rate is slightly more pronounced for variational meth-
ods and the EKF than it is for the EnKF and the PF. This is most certainly due to the linear
approximation involved in both 4D VAR and the EKF, which only holds as long as the pro-
cess remains smooth. The PF and the EnKF seem overall more resistant to the effects of

non-linearity.
e Non-linear regime

— In the non-linear regime, the EKF shows a decrease in the growth of the RMSE and
seems to converge to a stable value (RMSE = 16). However, this would need to be
confirmed with experiments at higher assimilation frequencies. The EnKF and PF
both reach a linear RMSE growth rate, which seems a little stronger for the EnKF. A
possible reason for that is the Gaussian assumption on which relies the EnKF. A Monte
‘Carlo experiment would show that samples part to orbit around one attractor or the
othér, eventually leading to a multimodal posterior distribution. Hence the Gaussian

assumption is not realistic in the non-linear regime and the EnKF can be expected to
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show more sensitivity to non-linearity than the PE.

— For assimilation every 12h and beyond, 4D VAR still shows a steep increase 'inRMSHEz
reaching the highest error of all methods (RMSE >"17). This is most prob:clbly due tc; .
the fact that the linearisation errors occurring in the computation of the tangent linear
model add up as the length of the window increases. Thus, the optimisation of the
cost funetion is performed using an incorrect gradient, leading to a solution which no

longer approximates the minima of the cost function.
e Effect of parameters

— Ensemble Kalman Filter — 3 ensemble sizes were considered: 3 (the dimension of
the system), 10 and 20.- A clear improvement can be observed with 10 ensemble
members over 3 ensemble members, especially as the process becomes non-linear.
However, there is little gain in taking the ensemble size to 20, which suggests that 10
ensemble members are sufficient to capture the first and second moments of the state’s
distribution.

— Particle Filter — A similar observation can be made for the PF. The filter was tested
with 50, 200 and 2000 particles. There is a slight improvemen‘t when using 200 par-
ticles over 50 particles, mostly in the transition regime between linear and non-linear,

but no significant change is observed when taking the number of particles to 2000.

— 4D VAR - 4D VAR was run with 4 different lengths of time-window: 6h, 12h, 24h and
48h. In the linear regime, as one would expect, increasing the time-window improves
the quality of the assimilation, as more observations are assimilated. However, this
phenomenon is reverted when the process becomes non-linear. Longer time windows
imply larger errors in the tangent linear model (since linearisation errors add up in
time) and the best time-window in the linear regime become the worst in the non-
linear regime. This is particularly noticeable for 4DVAR-W, for which the order is
reversed between 1h and 3h assimilation frequencies. The change is less marked for
4DVAR-S, although for frequencies beyond 12h, the 48h time-window provides the
highest RMSE.

Computation time

Figure 5.5 shows the experiment’s computation time for each method/choice of parameter. Filters
show almost constant run time which increases with the size of the ensemble/number of particles

for EnKF/PF. This suggests that on this example, the assimilation phase has a negligible compu-
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Figure 5.6: Autocorrelation of Lorenz 96 system (first 3 dimensions)

tational cost compared to the prediction phase. Only at assimilation frequencies below 3h can a
slight rise in computation time be observed for the EnKF.

Variational methods, on the other hand, have their computation time strongly influenced by the
number of observations assimilated, along with the size of the assimilation window. As expected,
for a fixed assimilation frequency, longer assimilation windows mean more observations to be
assimilated, with linear increase in the computation cost. For a fixed window length, an increase
in assimilation frequency effectively means fewer observations to be fitted, resulting in a decrease
of computation time. A quick evaluation suggests the relationship between computation time and
assimilation frequency is inversely proportional but no rigorous analysis was performed to confirm

this hypothesis.

5.1.5 Lorenz 96 Resulis

This section discusses the results of the experiment with the Lorenz 96 system. Figure 5.7 shows
the assimilation performance of the different methods on the Lorenz 96 system, as measured by

the RMSE to the true state. Figure 5.8 shows the corresponding computation times.

Assimilation performance

e Linearity of the process — Figure 5.6 shows autocorrelation plots for the first 3 dimensions
of the Lorenz 96 system. Although a decrease in autocorrelation is observed, which can
be related to an increase in non-linearity, the change is much slower at the time scales
considered than it was for the Lorenz 63 system. Thus, the effects of non-linearity are

expected to start being felt at the highest assimilation frequency only (every 48h).

e Particle Filter issue — The most noticeable feature here is the failure of the Particle Filter to
keep track of the true system as soon as observations become too scarce. This is due to the

dimension of the state (40) and the discrete nature of the PF, which in its original formulation

80










doesn’t have the ability to add particles in régioné.o high likelihood. Increasing the number
of particles in the filter improves its performance, but the number of particles needed, which -
is exponential with respect to the state space dimension, becomes so large that computation

time is unmanageable.

e 4D VAR - The other filters (EKF, EnKF) and variational methods (4D-VAR) show overall
comparable performances. 4DVAR-S outperforms all other methods at high assimilation
frequencies, but this is related to the use of the perfect model without added noise. Its weak
constraint cdunterpart (4DVAR-W) shows similar though slightly worse results for all time-
windows. 4D VAR methods also show a greater sensibility to the decrease in observations,
with a steeper increase in error than the Kalman Filters (EKF, EnKF). This could suggest a

greater effect of linearisation issues, which only seem to affect the EKF at 48h frequency.

No result could be obtained with 4D VAR for the 48h frequency, due to numerical issues
causing the method to break. This is most certainly due to the effect of non-linearity and
the errors in the tangent linear model causing the minimisation of the cost function to fail.
These numerical issues could be addressed, however, by improving the way in which the
tangent linear model is computed. For instance, a midpoint Euler method could be used to
discretise the system of differential equations rather than a.standard Euler method. Also,
second and higher order terms could be taken into account in the Taylor expansion when

linearising.

e EKF and EnKF - In the range 15min — 24h, the EKF and the EnKF show almost similar
performance, also equivalent to that observed for 4D VAR with a 48h time window. The
RMSE shows a strong increase when observations are only assimilated every 48h, which

corresponds to the process reaching a non-linear regime.
o Effect of parameters

— The EnKF was run with 50, 200 and 200 ensemble members. A slight increase in
performance, in the linear and non-linear regimes, can be observed when going from
50 to 200 ensemble members. Increasing that number further does not give any visible

improvement.

— The PF was run with 200, 2000 and 20000 particles. Although increasing the number
of particles makes the filter more resistant to filter divergence, even 20000 particles are
not sufficient to prevent filter divergence unless observations are assimilated frequently

enough.
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Computation time .

As far as running time is concerned, the results are extremely similar to those obfained 'w:i_t’h' the
Lorenz 63 system, except for the scaling due to the higher dimension. Filters show almostcon "
stant run times, with a linear increase in the number of particles/ensemble members. 4D VAR
computation times are affected by the number of observations taken into account in the cost func-

tion, which is proportional both to the length of the assimilation window and the assimilation
frequency. Overall, the assimilation methods offering the best performance in terms of both ac-
curacy and associated computation time seem to be the EnKF with 200 ensemble members and

the EKF. However, as was mentionned earlier, the perfect model setting does not give a realistic
account of the ability of data assimilation methods to capture a process in the presence of model

error. The conclusions drawn here are thus to be taken with caution.

5.2 Implementation: a data-assimilation framework

As part of the work presented in this chapter, a data assimilation framework was developed in the
C++ programming languége. This section gives a brief description of the framework. More detail

is provided in Appendix B.

5.2.1 Motivation

The data assimilation methods presented in this work were initially implemented in MATLAB®.
However, this implementation suffered from two major drawbacks. First, although MATLAB®
is particularly adapted to quick development and testing of algorithms (made easy by powerful
visualisation tools), computation time does not scale well with problem complexity. Experiments
involving large amounts of high-dimensional data can take up to weeks to run.

Second, there is very limited support in MATLAB® for Object Oriented Programming (OOP)!.
OOP organises the code around meaningful entities (objects), putting together the data and tasks
associated to it. For instance, in OOP, a probability density function object would consist in the
distribution’s parameters (e.g. mean, covariance if 1t Gaussian) and usual tasks performed with
the distribution (setting the parameters to some value, sampling from the distribution...j. O0OP
also benefits from the ability to have objects “extend” other objects by “inheriting” some of their
features. For instance, consider one has written the code for a rectangle object. This includes two
parameters (length and height) and a function to draw the rectangle on the screen. If one wanted to

use a separate square object, and were to write it separately, much of the code would be duplicated.

''The version of MATLAB® used at the time of development was 6.5 Release 13. At the time of writing, version 7

has been released, which provides improved support for OOP.

84




Chapter 5

Instead, one could implement the square as a partiéifléfé se. ﬂ‘xé rectangle where the lengthr:éné
the height are equal. By treating the square as a specific rectangle, one would then -automatvigajlly
inherit from the ability to draw the square without having to rewrite it. Inheritance in OOP is a
very powerful mechanism which reduces the amount of code to be written (and the associated fis_k
of error), alloWs reusability, and facilitates maintenance of the code.

In data assimilation, most proBlems deal with long series of high—dimensioﬁal data. For exam-
ple, the model discussed in Chapter 6 deals with series of about 700 radar images of dimension
100 x 100 = 10* pixels. Typical meteorological applications can easily require up to 10° inputs.
For this reason, computation speed is a critical issue. The data assimilation problem is also par-
ticularly suited to the object-oriented approach, with clear distinct entities (systems, assimilation
methods, probability density function...), some of which sharing very similar functionalities.

These considerations have motivated the translation (or, rather, rewriting) of the initial, MATLAB®

based, data assimilation framework to the fast, object-oriented, C++ programming language.

5.2.2 Design considerations

The aim 6f the framework is to provide a set of tools to automate data assimilation experiments.
Attention has been paid to reusability, and the framework was implemerited in a modular fashion,
so that end users can develop their own data assimilation methods as “plug-ins” and use them
within the framework in a transparent way. Basically, the framework provides the skeleton (in-
terface) for data assimilation experiments, and implements some of the data assimilation methods

discussed in Chapter 4.

5.2.3 Features
The framework provvides the basic interface and implementation for the following components:
e Dynamical models: Lorenz 63, Lorenz 96, autoregressive model.

e Observations include support for simulation, saving to and reading from files, accessing

observations by index.

e Data assimilation methods: Extended Kalman Filter, Ensemble Kalman Filter, Particle
Filter (with Systematic Resampling), 4D VAR strong constraint, 4D VAR weak constraint,

and a couple of Kalman smoothers which were not discussed in this work.

e Probability distributions: Support for Gaussian and diagonal Gaussian distributions has
been implemented. Further support for Gamma and Inverse-Gamma distribution was added

later on.
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e Optimisation: A single optimisation method has been implemented, namely the Scaled
Conjugate Gradient algorithm. However, further support for additional optimisation meth-

ods would be an interesting extension.

The framework uses the Matpack library (Gammel, 2005) interfaced with the BLAS library

for matrix computations. Further detail is provided in Appendix B for the interested reader.

5.3 Conclusions

Several data assimilation methods have been presented and implemented on two benchmark mod-
els: the 3-dimension Lorenz 63 and the 40-dimension Lorenz 96 systems. Results confirmed the
intuition that frequent assimilation leads to better results, independent of what assimilation method
is used.

At high assimilation frequency, variational methods perform slightly better than their filtering
counterparts, because of their smoother-like approach (they look for an optimal trajectory of the
state over a fixed time window rather than a single optimal state, like filters do). However, at lower
assimilation frequencies, they suffer from linearisation issues due to the use of the model’s tangent
linear in the cost function. The Extended Kalman Filter is also sensitive to similar issues, though
these seemed less pronounced on the models selected in this study. Although outperformed by
variational methods at high assimilation frequencies, Ensemble Kalman Filters are the most robust
at low assimilation frequencies and offer the best trade-off between accuracy and computation

time.
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6.1 Introducing precipitation nowcasting

6.1.1 Definition and motivation

Short term forecasts of precipitation fields (nowcasts) are of critical importance to hydrologists |
who rely on them to prevent floods (Sun et al., 2000; Moore et al., 2005; Smith et al., 2007)
or manage sewage systems in real time (Reed et al., 2007; Pfister and Cassar, 1999; Vieux and
Vieux, 2005). Forecasting models for flooding need to have sufficient resolution to resolve the
local, fast developing processes involved in the development of convective storms. According

~ to Golding (2000); Einfalt et al. (2004); Berne et al. (2004), precipitation run-off models could
require forecasts down to 0.5-3 km spatial resolution and 1-5 min temporal resolution.

Traditional numerical weather prediction (NWP) models rely on complex systems of equa-
tions replicating the physics of the atmosphere and are usually run at resolutions too coarse to
pl‘opeI'ly capture precipitafion patterns. For instance, Golding (2000) reports that “the Met. Office
mesoscale model” runs at “a minimal scale of 50 km”. However, with the advances in computer
power, resolution might not be an issue for long. The recent developments discussed in Lean et al.
(2008) show that the UK Unified Model can already be run at resolutions down to 1-4km, with an
improvement in the forecasting of precipitation events.

Yet, there are two more important issues encountered when trying apply NWP to short term
precipitation forecasting. The first is the existence of a spin up phase during which the model’s
performance is generally poor, due to an incomplete representation of the state of the atmosphere
at initial time, particularly at the scales of interest for precipitation nowcasting. It is thus di_fﬁcﬁlt
to obtain good NWP forecasts at the times that are most relevant to hydrological applications. A
second issue with the application of NWP to the prediption of convective precipitation is our lim-
ited understanding, and hence formulation, of the physical processes involved in the development
of convective showers. Efforts are being invested to better understand these processes (Browning
et al., 20075 and will hopefully lead to a better formulation of precipitation processes in NWP
models.

For the reasons mentionned above, it is usually well acknowledged that NWP models are not
optimal for precipitation forecasting below 3h (Golding, 1998, 2000), where they are outperformed
by simpler, data driven nowcasting methods (a review of such methods is given later). Figure 6.1 is
taken from Golding (1998) and provides a qualitative illustration of the comparative performance
of NWP models (dashed line) and nowcasting models (dotted line) as forecast lead time increases.
The theoretical limit of predictability is indicated by a solid line. In the range 0-3h, nowcasting
methods provide better forecasts that NWP models, but their forecasting skill decreases much

faster with time. This fact is also illustrated for a particular example in a recent study by (Lin
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et al., 2004), where the operational mesoscale Canadaion model GEM (CotAl et al., 1998) is
compared with the radar nowcasting method from Germann and Zawadzki (2002). The authors
show that the radar nowcast presented better forecasting skill for up to 7h forecasts. ' \

Information
Content

1-0 7

Forecast lead time

Figure 6.1: “Schematic representation of the loss of information content in forecasts as a function of lead
time. The solid line represents the theoretical limit of predictability. The dashed line represents

NWP models and the dotted line nowcasting methods.” (Golding, 1998)

Therefore, alternative approaches have been developed over the last couple of decades. Con-
strained to run fast and at high resolution, such models cannot rely on physics in the same way
NWP models do. The physical equations driving the processes of interest have to be approxi-
mated in some way. There are many different ways to model rainfall, ranging from image pro-
cessing techniques to stochastic modelling approaches. A short reQiew of some models found in
the literature is given in Section 6.1.2.

An immediate consequence of the approximations performed in nowcasting models is their
limited forecast skill. Precipitation nowcasts typically become very poor beyond lead times of
order 30-60 min, when the characteristic features of the rainfall generating process take over. To
prevent nowcasts models from diverging, as they would if used in a purely generative way, some
control has to be performed to ensure they remain consistent with the real process. This is achieved
by using observations of the rainfall field to recalibrate the model (i.e. assimilation of the state) n
real time. |

With the advent of weather radar, frequent measurements (every 5-15 minutes) with high spa-
tial resolution (1-5 km) have become available to the forecasting community (Collinge, 1987).
Such characteristics have quickly made radar data the favourite source of control for nowcasting
models, greatly influencing the range of techniques developed. Although there are other sources

of precipitation measurement available (rain gauges, airborne sensors, satellites), this chapter only
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discusses radar-based precipitation nowcasting.

6.1.2 A review of radar nowcasting methods

There have been two main trends in the development of nowcasting methodé. On'the one hénd,
extrapolation methods predict the evolution of the observed rainfall field using object tracking ahd
advection-based techniques, while on the other hand, storm generating methods focus on the birth,
growth and dissipation of storms. Both approaches are equally valid, énd often complementary. As
a result, most recent nowcasting systems tend to operated a blend of both methods. We present a
quick review of such methods. The reader is referred to Wilson et al. (1998), Burton and O’Connell

(2003) and Pierce et al. (2004) for more extensive reviews of nowcasting models.

Extrapolation methods

Extrapolation-based nowcasting methods rely on the fact that at the prediction time of interest,
the evolution of the rainfall field is largely governed by flow conservation laws. In other words,
changes in the observed rainfall field can be attributed to motion only (internal dynamics are as-
sumed negligible or following simple patterns). Motion fields are often inferred from consecutive
radar scans using cross-correlation techniques. Additional wind-field forecasts from NWP models
may be blended in for improved motion estimates. We proceed belo%»v to a short review of the most

representative advection-based nowcasting systems in the literature.

NIMROD The NIMROD system in the UK (Golding, 1998, 2000) is a hybrid system merging
a nowcasting model with a mesoscale numerical model. NIMROD provides a range of products
including forecasts of precipitation, clouds and visibility. Composite radar data at Skm resolution
is incorporated every 15 min after having undergone an automatic correction and enhancement
procedure. Note that past records of this radar data have been made available by the British
Atmospheric Data Centre and are used in the current work (see chapter 7).

Precipitation forecasts are based on advection of pre-identified rain objects. These rain objects
are identified as series of contiguous rainy pixels of intensity above a given threshold. Motion
vectors are updated for each object so that the correlation between the object and the resulting
propagated estimate of the previous rainfall field is maximised. For longer term forecasts (>
. 1h), wind field estimates from the NWP model are also computed and compared with the motion
vectors. The best estimate of the two is selected based on a maximum correlation critefion.

The propagation algorithm uses the updated motion vectors estimate to generate a trajectory

for each pixel. A weighted average of the propagated pixels falling within the same grid location is
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computed. The resulting nowcast is then corrected using the NWP corresponding forecast. Greater

importance is given to the advection nowcast at shorter lead times through appropriate weighting. .

TITAN The TITAN (Thunderstorm Identification, Tracking, Analysis, and Nowcasting) system
(Dixon and Wiener, 1993) is an object tracking system in which precipitation objects are detected
using 3-dimensional radar volume scans. Storms are identified as sets of adjacent rainy pixels-and
approximated by elliptic centroids. To match the centroids from one observation to the next, a
cost function is devised as a weighted sum of the distance between current and previous storms
and the difference in volume for the same cells. Combinatorial optimisation is used to find the
best match. The TITAN system handles merging and splitting of cells based on overlapping of
forecast previous storms and new estimates. If several small storms have forecasts lying within
the boundm"ies of a newly identified larger storm, a merging is detected. Similarly, if several
newly detected small storms lie within the boundaries of a larger forecast storm, then a splitting
has occurred. |

Forecasting storms is done in two ways. Storms that are newly detected and have no past
trajectory are considered unchanged. Storms which have been tracked over several time steps
have their parameters (position, volume, ...) propagated linearly according to the trend. The
trend is identified using linear regression over the parameter’s\history. Further detail about the

handling of mergers and splitters in the forecast are provided in (Dixon and Wiener, 1993).

GANDOLF Bringing further the concept of identifying physical components of the rain field,
such models as Gandolf (Pierce et al., 2000; Golding, 2000) consider individual rain cells with
associated life cycles. The rain objects grow and decay according to a conceptual life cycle model
(Hand and Conway, 1995), while being advected by wind fields estimated by an NWP model.
Nimrod, Titan, Gandolf and other operational nowcasting systems are discussed into more detail

in the context of the Sydney 2000 forecasting project in Pierce et al. (2004).

TREC/COTREC The TREC (Tracking Radar Echoes by Correlation) algorithm (Rinehart and
Garvey, 1978) uses correlation methods to determine motion vectors from two consecutive radar
scans y; and y,. Rather than identifying rain objects and matching them on both radar scans to
compute their velocity, the TREC method splits each scan into a series of fixed size “boxes” and
matchés the boxes from y; with the boxes from y, according to a maximum correlation criterion.
Li et al. (1995) reported issues with the original TREC method due to ground clutter or incorrect
tracking of reflectivity patterns, resulting in unrealistic, non smooth velocity fields. To address this
issue, they devised the COTREC (Continuity of TREC) algorithm which addresses the problem

in two steps. First, unrealistic vectors (zero velocity or divergent direction) are replaced with
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an average of the neighbouring vectors. Second, smoothness of the vector field is enforced by
minimising the divergence between neighbouring vectors. The minimisation is achieved usinga =

variational approach (minimisation of a cost function).

NCAR Auto-Nowcaster The NCAR Auto-Nowcast system is a complex nowc‘asting system
incorporating a variety of datasets including: radar, lightning and satellite data, wind profiles
~and NWP model outputs (Mueller et al., 2003). The Auto-Nowcast system makes use of sev-
eral algorithms to process these datasets into “predictor fields” (e.g. fields of reflectivity, storm
growth/decay, accumulated precipitation. .. ). Amongst the algorithms involved, the TREC method
is applied to wind field retrieval from radar data and the TITAN algorithm is used to detect storms
and estimate trends in their evolution. A boundary detection algorithm, coupled with a cloud de-
tection system, allow for convergence lines, where storms are expected to occur, to be identified.
A physically-based model using fuzzy logic algorithms merges the various predictor fields into a

dimensionless likelihood field which is then post-processed to obtain a final prediction estimate. .

Cascade and fractal-based modeils

In the 1980s, empirical studies have shown that rainfall fields exhibit statistical invariance with re-
spect to the scale at which they are observed (Lovejoy and Mandelbrot, 1985; Gupta and Waymire,
1990) and, as such, could be modelled using random cascade models. In such models, the field
at a given scale (i.e. spatial or temporal resolution) can be decomposed into a field at lower scale
(higher resolution) by splitting unit regions into equal subregions. The intensity of the field at
these subregions is determined through a random scaling which conserves the overall statistical
characteristics of the field. Various options for the distribution of the scaling are given in Tessier
etal. (1993).

The cascade methodology is naturally expressed using multifractal theory(Tessier et al., 1993;
Lovejoy and Schertzer, 1995) and presents several advantages over object tracking methods: it
models the rainfall field at different scales, allows seemless incorporation of data at various res-
olutions (fine for radar, coarser for NWP estimates) and in the universal multifractal framework
described in Tessier et al. (1993), only requires a very small number of parameters. Dynamics
in these models can be modelled by including time (along with space) in the cascade (Deidda,
2000; Bocchiola and Rosso, 2006) or using advection based propagation as in systems like S-
PROG(Seed, 2003) and STEPS(Bowler et al., 2006).

However, a study by Veneziano et al. (2006) underlines the limitations of multifractal models
and showis, using several datasets, that the common assumption of scale invariance (the character-

istics of the rainfall field show similar properties at all observed scales) often leads to unrealistic
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simulation results. The authors conclude that “rainfall does not behave like a multifractal process”

and that “multifractal models (...) are inadequate”, and suggest directions for a new generation of

multifractal models.

Point process methods

Point process methods focus on reproducing the internal dynamics of storms and provide models
for the occurrence and life of precipitation cells and storms.

LeCam (1961) introduced a formalism for precipitation models in which the rainfall field is
treated as a probabilistic process. In this work and studies that followed, the occurrence in time
of simple precipitating objects (cells) is governed by a point-process, namely a Poisson process.
Rodriguez-Iturbe et al. (1987) discussed the characteristics of such a model in which each point
generated is associated with a rectangular pulse of random duration and constant precipitation
intensity (i.e. each precipitation object generates a constant amount of rain for a fixed duration).
The total rainfall field at a given time is obtained by summing up the contribution of all active
points at that time. Simi}arly, Cox and Isham (1988) discussed a 2-dimensional model in which
storms are generated at locations following a temporal and spatial Poisson process. Each storm is
represented by a circular area of fixed radius moving with constant random velocity. Each storm
lives for a given duration during which it precipitates with constant intensity over the area it covers.
Storms contributions are summed up at each location. Statistics can be computed analytically
using these models and fitted to existing records of precipitation data in order to estimate the
parameters of the different distributions (method of moments). A model similar to that of Cox and
Isham (1988) can be found in Smith and Krajewski (1987).

The main limitation of such models is their inability to represent the different time scales
involved in real precipitation processes. To overcome this issue, Rodriguez-Iturbe et al. (1987)
replaced the single point process with a clustered point process in which several point processes
are used to generate clusters of precipitation objects. A process is responsible for setting the storm
origins, another process decides the number of cells for each cluster, and a third gives the origins
of each cell within the storm. Two candidates for the cell generating process are suggested: the
Neyman-Scott process and the Bartlett-Lewis process. '

In the Neyman-Scott process, storm origins are generated from a Poisson process. Each storm
is given a random number of precipitation cells. Cells are displaced from the storm’s origin (in
time) by a delay drawn from an exponential distribution. In the Bartlett—Lewis process, storm
origins are also specified using a Poisson process, but a second Poisson process dictates, for each
storm, the time at which cells are initiated. This cell-generating process is terminated after a

sample duration drawn from an exponential distribution.
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Point-process precipitation models have given/n'/sev to a léx'ée amount of research. Forinstance, |
Cox and Isham (1988) added some dynamics to their model by having storms propagated with
constant random velocity shared by all their constituting cells. Cowpertwait et al. (1996) applie\d\\
a Neyman-Scott process to single-site precipitation forecasting, Northrop (1997) took the model
of Cox and Isham (1988) further by adding support for cells that are elliptic rather than circular.
Two alternative methods are suggested to initialise cells locations. The first consists in moving
cells away from the storm’s centre by a displacement drawn from a bivariate zero-mean Gaussian
distribution (similarly to the Neyman-Scott process approach). The second assigns random (uni-
form) locétions to cells within an ellipse around the storm’s centre. Onof and Wheater (1993);
Koutsoyiannis and Onof (2001); Smithers et al. (2002) are few of the many applications of the
Bartlett-Lewis process to rainfall modelling. A comparative review of some of these models can
be found in Wheater et al. (2000).

In a recent report, Cowpertwait et al. (2007) introduced more flexibility in a point-process
model by discarding the assumption that rain cells precipitate have constant precipitation intensity
over their lifetime. In their model, during the life cycle of the cell, precipitation pulses occur
according to another Poisson point-process.

Point-process models focus largely on the nature of the rainfall field and the characteristics of

storms and thus are mostly used as descriptive models rather than prediction models.

Other approaches

Xu et al. (2005) apply the probabilistic framework of integro-differential equations developed by
Wikle (2002) to precipitation nowcasting. In this framework, a redistribution kernel specifies how
each pixel’s intensity evolves in time as a linear combination of the previous pixels’ intensities.
The study is restricted to elliptic kernels. This method is able to model complicated features of
rain such as translation (motion) and diffusion (growth/decay). Parameter estimation is performed
using Markov Chain Monte Carlo, after projection onto the spectral domain (using Fourier de-
composition), and dimension reduction (often, most of the high-frequency Fourier coefficients are
negligible and can be discarded).

Neural networks are being applied increasingly to precipitation forecasting. Grecu and Kra-
jewski (2000) modelled the evolution of the rain field using a back-propagation neural network
trained on real data, but showed that this method had little advantage over the more traditional
advection schemes. Liu et al. (2001) obtained good results using a Radial Basis Function network.
Kuligowski and Barros (1998) use a neural network with a single hidden layer for nowcasting of
point (i.e. unidimensional) precipitation. There are too many examples of such applications in the

literature to give more than an overview here, but a descriptive review of 43 such examples can be
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found in Maier and Dandy (2000).

6.2 A stochastic rainfall prediction model'

The motivation for stochastic models in the context of precipitation forecasting arises from the
fact that neither the data (radar) nor the models provide an exact representation of the true process.
They are both subject to errors or approximations of various types.

Radar observations are effectively reflectivity measurements, i.e. they measure intensities of a
reflected electro-magnetic beam of specified wavelength. Unfortunately, the beam is not reflected
by precipitation only. Buildings, flying objects, as well as anomalous propagations, can corrupt
the reflectivity field. Dense showers can shield further precipitation thus leaving them undetected.
Rain can either form or disappear below the beam, leading to further incorrect measurements.
Numerical approximation in the conversion from reflectivity fields to rainfall rates degrades the
data further.

Nowecasting models often provide a crude representation of the rainfall field and its evolution
process. As a consequence, the forecast itself can only be imperfect. It is thus important to be able
not only to predict the evolution of precipitation events, but also to quantify how uncertain about
this evolution we are. Smith and Austin (2000) indicate that “forecast products, particularly those
for hydrological applications, need to be statistical in nature, giving (for example) a range and a
likelihood for falling within that range rather than just a best estimate of the value.” Further details
on the motivation for probabilistic forecasts in hydrology can also be found in (Krzysthfowicz,
2001).

In the following sections, we introduce a radar-based rainfall model which provides a fully
probabilistic framework for precipitation nowcasting and extends the work of Cornford (2004).
Section 6.2 describes the model and discusses its application to data assimilation. Chapter 7

discusses results on synthetic and real data.

6.2.1 Nature of the data

The observed rainfall comes as a sequence of radar images, available in real-time. Each image is
defined over a spatial domain Q, in this case a grid with resolution 5x5 km, and total dimensions
of about 100 km. Figure 6.2 shows one of these radar images. We denote M the number of pixels
in Q and s the input vector made of all pixel locations:, so that s = (S],.,.,SJ‘,...,SM). We also
denote by sﬁ’. and s’ respectively the horizontal and vertical components of the coordinate s, so
that s; = (s’],s‘]) For a given observation y, each pixel s; has the associated observed rainfall
intensity y;, so thaty = (y1,...,yj,...,ya)-
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Figure 6.2: A sample radar image

Observation error

It has been stated that most measurements are imperfect, which motivates the use of a probabilistic

assimilation framework. Radar data suffer from many sources of errors resulting, potentially, in

an incorrect rainfall field estimate. The most common error sources usually associated with radar

data are (Alberoni et al., 2003; Golz et al., 2005):

Blocking and clutter: the radar beam can be obstructed by hills or mountains (blocking) or
detect ground objects (buildings, trees...) or flying objects (insect clouds, migrating birds)

which will be identified as precipitation

Attenuation: the beam’s intensity is weakened beyond stormy areas as these absorb much

of t.he beam’s energy.

Overshooting: Due to the angle between the beam and the ground, measurements at a
large distance from the radar sometimes capture precipitation aloft which does not reach
the ground (evaporation) and sometimes fail to capture precipitation from low clouds (over-

shooting).

Anomalous propagation: in some particular situations, the radar beam can be refracted to-
wards the ground by a layer of air, resulting in precipitation being (wrongly) detected. This

is most common at early hours, when a layer of warm air lies above a layer of cooler air.

Bright band: snow melting into rain in the atmosphere has higher reflectivity than rain and

can be misinterpreted as heavy rain.
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e Incorrect conversion model from observed I’Bﬂ/CCthlt‘y{(il) to rain intensity (y). Nimrod uses

the Marshall-Palmer relationship z = 200 y!'® (Gibson, 2001).

The NIMROD radar data undergoes intensive processing prior to being released, in order fo\\\
correct for noise, clutter, occultation, anomalous propagation, attenuation, range, bright band and
orographic enhancement (UK Meteorological Office, 2003/)4. Itis worth pointing out that, although
the resulting products are much more accurate that the raw data, they are still prone to error (for
instance, errors due to overshooting can hardly be estimated without the use of ground-based rain

gages, which are not available at every location).

Preprocessing

To accommodate the smooth nature of the spatial model used (discussed in Section 6.2.2), a
Gaussian filter (Gonzalez and Woods, 2008) is applied to the data. Each pixel in the radar
image is replaced with a weighted average of the surrounding pixels (including itself). For a
given pixel s = (s",s"), the neighbouring pixels within a radius r are defined as @(s, r) = {s; =

(sp,sy) | max([s) —s"|,|s¥ —s*|) < r}, e.g. with a radius of 1, the 1-nearest neighbours are:

S1152 |53
O(s,1) =54 | s |56 6.1
57 | S8 1 So

The rain intensity at pixel sis then given by the weighted sum of the surrounding pixels:
ys)= Y wiy(se), (6.2)
St EO(s,r)
where the weights wy are provided by a normalised discrete Gaussian kernel centred on s. A radius
of 2 pixels (i.e. 10 km) and a variance 62 = 2.0 are chosen for the kernel, giving the following

weights:
0.012 0.026 0.033 0.026 0.012

0.026 0.055 0.071 0.055 0.026
0.033 0.071 0.092 0.071 0.033 (6.3)
0.026 0.055 0.071 0.055 0.026
0.012 0.026 0.033 0.026 0.012

Figure 6.3 shows the original radar image and the resulting smooth precipitation field (right).

6.2.2 Spatial representation

This section describes the operator A used to map the 2-dimensional spatial domain  to the pre-

cipitation intensity space. In our case, Q is a grid with resolution 5x5 km, and total dimensions

97




Chapter 6

Raw image

K . ﬁ‘ ok
N W ~.
100% S g g % '
e ; .
e . ‘.
200 , 200}

soot*% ol gl 0]
el

400 _?*J' ta a0} gl
h‘ﬁ " ;;A" " ¢ :‘;‘
500 [+ *Qil N 500 p#
-

100 200 300 400 500 100 200 300 400 500

Figure 6.3: A sample radar image (left) and the resulting smoothed image (right). In this example, the

domain is 480x480 km at 5x5 km resolution.

500x 500 km? (100x 100 square pixels).

The rainfall field is modelled by a set of K 2-dimensional unnormalised Gaussian basis func-
tions with state vector x; = (¢x, wk, 7% ), Where ¢, is the k& cell’s centre, wy its width and r, the
rainfall intensity at the centre.
| Thus, the modelled rainfall intensity at pixel s;

for cell & is:
2Wk

2
h(xk,8;) = ryexp <w> (6.4)

The total rainfall intensity at a given pixel is the sum

of the intensities from all cells:

K
h(x,s;) =Y h(sj, %), (6.5)
k=1

where x = (x1,...,Xg) is the parameter vector for all
cells.

We define similarly the rainfall field over the

space domain Q for a given cell:
/1(Xk,S) = (h(xx,s1), e h (X, 801))s (6.6) Figure 6.4: A Gaussian-shaped rain cell

and the total rainfall field over the image is the vec-
tor:

K
h(x,s) = Z h(xg,s). 6.7)
k=1

The basis functions considered are continuous in space with infinite support, and thus dif-

ferentiable. Although this makes gradient computations (and thus gradient-based optimisation)
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possible, it is an unrealistic feature for rain cells, which are known to cover a limited spatial area
only. In order to localise the intensity of a rain cells, thresholding is applied and pixels with a f;g.t%l,.
rain rate 2 below a certain limit (0.5mm.h™") are discarded. The same threshold is applied to the

the observations for consistency.

Obs - Model v

30
100

150

Figure 6.5: A radar observation of the rainfall field (left) and the model’s corresponding representation
(centre), with K = 200 cells. The principal cells’ contours and advection vectors are plotted on

the right.

The model described above provides a visually satisfying static approximation to the observed

rain field (see Figure 6.5).

6.2.3 Dynamics

The rain field is evolved in time and space according to the advection equation:

dh
— Vh=0 6.8
m +u ) (6.8)

where u denotes the advection (i.e. vellocity) of the rain field. The equation relates the evolution
of the rainfall in time and space as follows: assuming the rain field remains fixed while being
advected, we can write its conservation equation.

The advection is specified at each cell’s location (see Figure 6.5, right-hand plot), so that
u = (uy,...,uxg) with spatial vector u, denoting the advection at cell k. We will also use the
notation u = (u,v) when it is necessary to distinguish the (multivariate) spatial components u

(horizontal) and v (vertical). u; and v then denote the similar scalar components for the kheell .

6.2.4 Overview 6f the data assimilation process

The adaptation of the Bayesian formalism discussed in Section 2.3.2 to the Basis Functions model

is introduced in this section and discussed in the following.

The data assimilation scheme involves the following sequence of steps:
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1. Initiélisation of the model

Using the first two observations, the cell’s centres, widths and intensities are estimated. .

From the two resulting sets of model parameters, the advection is initialised. “

2. Propagation (forecast)

The cell’s centres are propagated using the current estimate of the advection. The widths,
intensities and advection components are assumed constant. Model error is added to all the

distributions to account for the model uncertainties.

3. Assimilation of new observation

(a) The rain cells that have collapsed/disappeared are removed from the model

(b) The posterior is computed, given the predicted distribution (step 2) and the observa-

tions
(c) New cells are detected and added to the model

(d) The advection is updated given the cells new locations

Once the model has been initialised (step 1), the propagation of the model (step 2) and assimi-
lation of new observations (step 3) are repeated for each time increment. Details about these steps

are presented in Sections 6.3 and 6.4.
6.2.5 Priors and likelihood
In order to be able to perform Bayesian assimilation in this model, suitable priors on the parameters
and observations (likelihood) are chosen. This section describes the choice of priors for the model.
Likelihood of the data

The observation’s likelihood is chosen to have a Gaussian distribution:

1

p(ylx) = ———— e—%(y—h(x))TR_'(Y—h(x)) (6.9)
(2m) % |R|? -

where y is the observed rainfall field, A(x) is the predicted rainfall field given the state x, and R is

the covariance matrix for the observation error (as specified in Section 2.2.3).

Prior over the rainfall field’s parameters

There exist some families of prior distributions which are conjugate for a particular likelihood, i.e.

the posterior distribution belongs to the same family of distributions as the prior. Very often in the
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Bayesian paradigm, the normalising.constant p(Y[) caﬁndfft:)é{eval_uated aﬁd one has to resort to

approximations. Conjugate priors then ensure the nature of the po‘sterior is known and one only

needs to estimate its parameters. -
The priors dver the parameters have been chosen as follows. The widths are defined to have

an Inverse-Gamma distribution:

p(wi) = 1Ga(oy, Br), (6.10)

the centres follow a Bivariate Normal distribution conditioned on the widths, up to a scaling factor

Ex (so that centres and widths jointly follow a Normal-Gamma distribution):

p(ex|wi) = N (k, Exwr), 6.11)

and the intensities are Gamma distributed:

p(r) = Ga(vi, &) (6.12)
This choice of prior is motivated by the following considerations:
e The priors over the intensities and widths should ideally have strictly positive support,

e The larger the cell, the less confident one is about its exact centre’s position, hence the

conditioning on the width,

e For the Gaussian likelihood, the Normal-Gamma prior on the centres and inverse-widths
(which is equivalent to a Normal-Inverse Gamma prior on the centres and widths) is conju-

gate (Bernardo and Smith, 1994).

The distributions are assumed uncorrelated between cells and groups of parameters, so that the
state’s distribution factorises as:

K
= [ I p(exlwe) p(wi) p(ri) (6.13)

k=1

Advection prior

The advection u follows a bivariate Gaussian process with polynomial exponential correlation
function. The Gaussian process has been designed to include both a divergent and a rotational
component, in order to display the type of behaviour one would expect from an advection field.
Realisations from this Gaussian process are smooth and rotational in character. The advection is
estimated at each cell’s centre (see Figure 6.5, right-hand plot).

The following paragraphs reproduce the work carried out by Cornford et al. in the two techni-

cal reports (Cornford, 1998b,a) and the paper (Cornford et al., 2002). This work is largely based
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on Daley (1991) and leads to the particular choicé/ of co’va’riancé function used for the advection ’
prior. k _

Daley (1991) showed that, using the Helmoltz theorem, the vector flow field for the a\dvéc\tiqn‘”
can be related to a rotational potential ¥ and a divergent potential ®. These relate to the vector

components as follows:

0¥ od
U= —=—+=—
v h
8‘38 adaDS (0.14)
YT s o

where u and v denote the usual horizontal and vertical component of the vector field and (s”,s") are
the spatial coordinates over the domain. The following demonstration shows how the specification
of an appropriate correlation function for ¥ and & leads to a convenient covariance function for
u which only depends on the distance between cells. This covariance function will be denoted as
K(e,c'), so that &, = K(c,c¢).

One can convert from (u,v) to (W, ®) and back as de-
tailed below. Given two advection vectors u; = (uy,v;)
and uy = (uy,v,) at locations ¢; and ¢;, we define r =
¢; —¢;. The longitudinal component (along the direc-

tion r) and the transverse component (across r) of the

advection can then be expressed as:

= ucos() + vsin(9)

t = —usin(¢) +vcos(¢)

(6.15) Figure 6.6: Conversion from u = (u,v) to
. (L,1) coordinates
where ¢ is the angle between the x-axis and the vector r

(Figure 6.6, after Cornford (1998a)). Following from (6.15), the covariances can be expressed:

C” C[, _ COS(q)) sm(d)) Cuu Cuv C()S(q)) -—Sil](q)) ) (616)

Cy Cy —sin(¢) cos () Cou Cyy sin(0) cos(0)

These can be related to the covariances for the stream function W and velocity potential & in radial

coordinates:
10 02
C][(I‘) :—;a—rC\yl{J(l’)—-—éﬁCq;q)(l’) (617)
C = i C Lo Coo 6.18
r/(”)——a7 \V‘P(”)—;E v (r) (6.18)
Clt(”) =C,1(i’)=0 (6.19)

Thus, given some suitably defined covariances Cyy and Cgqp, it is possible to compute the covari-

ances Cyy, Cy, Cy, and C,, in a way which guarantees the joint covariance of u and v is positive
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on Daley (1991) and leads to the particular choice of covariance function used for thé advection

prior. ”
Daley (1991) showed that, using the Helmoltz theorem; the vector flow field for the advection '

can be related to a rotational potential ¥ and a divergent potential ®. These relate to the vector

components as follows:

v
ds’  dsh
0¥ 0P

V= —"

osh | OsY

u=

(6.14)

where « and v denote the usual horizontal and vertical component of the vector field and (s”,s") are
the spatial coordinates over the domain. The following demonstration shows how the specification
of an appropriate correlation function for ¥ and ® leads to a convenient covariance function for
u which only depends on the distance between cells. This covariance function will be denoted as
K(e,¢'), so that T, = K(c,¢).

One can convert from (u,v) to (¥, ®) and back as de-
tailed below. Given two advection vectors u; = (uj,v;)
and uy = (uz,v7) at locations ¢ and ¢;, we define r =
¢; —¢;. The longitudinal component (along the direc-

tion r) and the transverse component (across r) of the

advection can then be expressed as:

[ = ucos()+ vsin(¢)
. (6.15)  Figure 6.6: Conversion from u = (u,v) to
= —usin(9) +veos(o) (1,1) coordinates

where ¢ is the angle between the x-axis and the vector r

(Figure 6.6, after Cornford (1998a)). Following from (6.15), the covariances can be expressed:

C” C[, _ COS(¢) sin(d)) Cuu Cuv COS((D) —Sin(¢) . (616)

Cy Cy —sin(¢) cos(0) Cyu Cyy sin(o) cos(0)

These can be related to the covariances for the stream function ¥ and velocity potential @ in radial

coordinates:
190 0?
Cu(r) = “;é;c‘w(f)—é?C@qa(r) (6.17)
Colr) = 0? c 10 c 618
r/(f)——a? \W(r)ﬁ;'; oo (r) (6.18)
Cu(r)=Cu(r)=0 (6.19)

Thus, given some suitably defined covariances Cyy and Cgq, it is possible to compute the covari-

ances Cyy, Ci, Cyy, and C,, in a way which guarantees the joint covariance of u and v is positive

102



Chapter 6 GTHERY .

definite:

. CIHI Cu\; 3 G . . . ) \\
Coe  Cw : ‘ 620

cos(p)  —sin(d)\ {Cy  Cy cos(¢) - sin(0) |
sin(0) cos(0) Ci Gy —sin(¢)  cos(0)

The covariance functions Cyy and Ceg are usually expressed using correlation functions p,
the conversion from one to the other being given by the identity: Cyy = E?;, py, where E&, is the:
variance of the rotational component ¥ (i.e. its covariance at » = 0). Equation (6.19) can then be

rewritten:

19 92
Cu(r) = —Ey Ly PEPUES E§ L%y 5,2 Poo

92 19
Cu(r)=—E3L%, 5,2 Py — E{ L2, PR

(6.21)

This formulation provides a flexible way to balance the influences of the divergent and rotational
fields in u, by choosing the ratio between Eé and Egy.
The L. terms result from the change of coordinate system and are called the effective length

scales of the parameters (W and @). They are defined as:

_ 2 ‘ |
L, = Vip| . (6.22)
7 with
19 9 10

v? (6.23)

=——r—+ .
ror or  r?o¢?
The same correlation function is chosen in this work for both the rotational and divergent compo-
nent, albeit with different parameters. It is derived from a Matérn covariance function (Rasmussen
and Williams, 2006) with a smoothness parameter v = 2.5, which then simplifies to a polynomial-

exponential covariance function of the form:

= (14242 (-7) (6.24)
r)= ol - :

P L a2 )P

where L denotes the length-scale of the process. The value of v has been determined using several
years of wind field data as detailed in Cornford et al. (2002).

It is straightforward to show that p accepts the following derivatives:

200=—ss (oo )

(6.25)
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It is easily proved using (6.25) and (6.23) that, for this choice of p(r), the effective ler,ig,th_’
scales evaluates for r — O to: '

L* == —3—L'§‘

(6.25) and (6.26) can then be plugged back into (6.21) to compute Cy;-and C;,. Substituting them

-in turn into (6.20) gives the joint covariance for u and v.

6.3 Initialisation of the model

The first step in the data assimilation scheme consists in providing an initial estimate of the pa-
rameters for the priors discussed in section 6.2.5. The initialisation of the model is two-fold: first,
two rainfall field estimates are computed using the first and second observation fields available,

then the advection is initialised from these two consecutive rainfall fields.

6.3.1 Initialisation of the rainfall field

The rainfall field is initialised by sequentially adding new cells until a goodness of fit criterion is
achieved. This criterion involves minimising the relative error between the observed field and the
estimated field:

The overall algorithm is described in Figure 6.7. The algorithm starts with an empty rainfall

(6.27)

field estimate, meaning the misfit y’ is equal to the observed rainfall field y. The pixel s with
highest intensity y'(s) is located. s and y'(s) will be used as initial estimates for the new cell’s
centre and intensity respectively.

By analysing the gradient of the intensity along the vertical and horizontal directions, an es-
timate of the cell’s radius d is computed (starting from d = 1, d is increased by 1 pixel until
the gradient becomes positive along one of the directions). A new cell with parameters x; =
(ci, Wi, 7 ) = (8,Y'(s),d) is added to the estimate of the rainfall ﬁe]d.

The updated rainfall field is then optimised by minimising its negative log-likelihood with
respect to the observation. Given a Gaussian likelihood for the observation with fixed covariance

matrix R, the negative log-likelihood is given by:
| ) :
~In(p(x]y)) o i(y—h(X))TR 'y —h(x)) (6.28)

The new misfit is computed by subtracting the estimated rainfall field from the observed rain-
fall field, giving y' =y — h(x;). The procedure is repeated until the error reaches a predefined

minimum value, unless the maximum number of cells is reached before.
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e Compute initial misfit: y/ =y

e While E(X,Y) < Emin

— Find location s with maximal intensity y’(s)
- Setcell’scentre: ¢ =s
— Set cell’s height: r = y/(s)

— Find maximal radius d for which the slope along the vertical and horizontal direc-

tions remains negative
- Set cell’s width: w = 2 X d x As, where As is the spatial resolution in km
— Add cell to rainfall field (increment state): x = (x, ¢, w, r)
. — Optimise fit to data by minimising 6.28

— Compute new misfit: y' =y — h(x)

Figure 6.7: Initialisation of the rainfall model

Covariances The covariances for the cells parameters are set to some user-defined default value.

In the experiment setting, all covariances are assumed diagonal initially.

6.3.2 Initialisation of the advection field

Two rainfall field objects are initialised using the first and second observations by applying the
steps described in section 6.3.1. It is not possible at this stage to match the cells from the first
rainfall field with these from the second rainfall field, as these have been initialised independently.
Thus, the initial advection cannot be computed at each cell’s location and one has to resort to

finding a “best” overall initial estimate.

dh

Going back to the advection equation (6.8), the It term can be obtained from the two initial

rainfall fields:
dhh(t) —h(to)

TR — (6.29)
while the g'radient term Vh is derived from the first rainfall field (equation 6.7), so that for each
pixel j:

SOTED M I PIC (6.30)
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A pseudo-inversion is then applied to equation (6.8) to find the best estimate ug (in a least-
square sense), which is then used to set the initial advection of all the cells in the first rainfall
field: e

wo=— VAt ‘ (6.31)

where V™ is the Moore-Penrose pseudo-inverse of V.

Covariance The covariance matrix for the Gaussian process is computed by applying the co-
variance function described in 6.2.5 over the set of cells locations. The rotational component is
characterised by a variance Eé, = 40m.s~! and a length-scale Ly = 200km. The divergent com-
ponent uses Eé =0.5m.s"! and Ly = 200km. These values have been chosen according to expert

judgement following meteorologists advice.

6.4 Data assimilation in the BF model

Once initialised, the rainfall field model can be run in an assimilation setting by simply alternating
between the prediction (propagation to the next time step) and the assimilation (update given a
new observation) steps. Changes in the cells population due to birth of new cells and death of
existing ones are handled with simple detection/deletion schemes. These steps are described in

the following section.

6.4.1 Propagation of the rainfall field

The rainfall field is propagated forward in time in a linear fashion, following the advection equation
(6.8). This translates effectively to each cell being advected by the corresponding estimate of the
advection.

The cell centres are evolved according to their associated advection:

(t+1)=¢()+Ata, (6.32)

L4 1) = Z8(0) + (AD2 Iy (1) + At Qc (1), (6.33)

where the f and « indexes have been used for the predicted and assimilated values respectively.
Note that in the experimental settings used here, the model error covariance matrix Q. is assumed
diagonal and time-invariant.

The widths and heights are assumed constant during prediction, which is a reasonable assump-

tion at the time scales this model is targetting (15 min ahead prediction). This gives the following
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predicted estimates for the widths:

W (t+1) = wl (1),

Sh(t+1) = Z2(1) + At Q, (1), 639
and similarly, for the cells’ intensities:

Ft+1) =), (6.36)

S (t4+1) = 29(1) + At Q, (). (6.37)

Model error is added to the predicted parameters to reflect the increased uncertainty due to the
model’s imperfections. Model error is assumed Gaussian with zero-mean for all parameters (i.e.
there is no bias).

In the model, the cells are assumed to have no dynamics other than motion. This is an un-
realistic feature, as we know that rain cells also undergo modifications due to internal dynamics,
resulting in growth and decay phenomena. However, Wilson et al. (1998) conducted an experi-
ment in which they compared the performace of the TITAN nowcasting system with and without
capturing (and forecasting) the evolution of cells size and intensity. They found no significant
difference between the performance of the two methods. This confirms a similar study by Tsonis
and Austin (1981) and the assumption that at short scales, motion is the main observable cause of
change for rainfall fields. |

The reader will notice that the model’s noise is -assumed Gaussian while the widths and in-
tensities have Gamma distributions. It is thus necessary to convert the effect of the propagation
from (mean, variance) to (o, ) space. Because for Gamma distributions the mode (most probable
value) is often more meaningful than the mean (for a skewed Gamma, the mode can be fairly
distant from the mean), the mode is used to set the new parameters, rather than the mean.

For a Gamma distribution with parameters (o, ), the mode m and variance o2 are related to

the parameters according to:
me= —— (6.38)
S (6.39)
Expressing o and B as functions of m and 6% merely requires solving a quadratic equation in

one of the parameters. Solving for instance the equation in 3, and noting that only one of the roots

is positive, the values for o and B are given by:

m++/m? +4c?
p="0,

o=1+pm. (6.41)

(6.40)
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A similar conversion can be done with an Inverse-Gamma distribution, however, the relation-

ships between the parameters are more complicated:

= 6.42
m= o : (6.42)

2

2 . :
o= (a—1)2(o—2)" : (643)

and require solving a cubic equation in the

Relation amf{m?c?)

parameters:

—05
06
—07

08
— 0.9

o — (4 +5)0? + (5—2s)ot— (245) =0
(6.44)

o 1
—_—12
—13
14
15

2
where s = ’—é%

It has been observed numerically that there

is a single value of s for which equation (6.44)

accepts two real roots (Figure 6.8). This value, T N
which lies in the range [0.5,1.5], has however Figure 6.8: Plot of polynomial in (6.44) for different
never been met in experimental settings, for values of 62

which equation (6.44) has always shown a single real root. This root is computed numerically

in practice.

6.4.2 Propagation of the advection field

The advection field is assumed constant at the propagation time-scales considered. To account for
model error, a fraction cslzJ of the initial covariance matrix is added to the predicted estimate, while

the mean remains unchanged:

@/ (14 1) = a*(1), (6.45)

S+ 1) =240 + At o? £,(0) (6.46)

6.4.3 Removal of obsolete cells

The disappearance of cells is a phenomenon that needs to be taken into account in the model. The
causes for this phenomenon are similar to those for the creation of new cells: existing cells are
advected outside the observable area, and cells dissipate as a results of internal dynamics (they
“rain-out” through precipitation, or merge with existing cells). Collapsing cells are automatically
deleted when their width or intensity become lower than a certain threshold. This threshold is set
to 10km for the width (twice the spatial resolution) and 0.8 mm.h~! for the intensity.

It is known that radar observations are usually good at detecting the location of precipitation

fields. It is thus further assumed in the model that cells having little or no corresponding support
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(i.e. rainy pixels) in the observed rainfall field can be‘:di/st:a;dedi As a consequence, cells for _whi‘ch .
the supported precipitating mass is below a certain threshold are removed ier:m' the .,mod"_e.lf.- The
supported precipitating mass is obtained by summing up the cell’s effect (intensities) \at"f()ése:r\v\ed’\':
rainy pixels only. The proportion of precipitation obtained (with respect to the cell’s total precip-
itation) is compared against a threshold and the cell is discarded if the proportion is below that
threshold. Several thresholds were tested in the range 30 to 80%. The best resulté (i.e. those
providing the most visually satisfactory approximation to the observed rainfall field) are obtained

for the 80% threshold.

6.4.4 Assimilation of the rainfall field

When a new observation becomes available, the state can be updated given the new information, in
the so called assimilation step. This is done within the Bayesian framework discussed in Section
2.3.2.

Recall that the posterior distribution over the parameters is obtained, in theory, by applying

Bayes rule:
p(Yer1 X)) p(Xe1 [Y0)
p(yir1|Ye)

Unfortunately, most of the time, the normalising constant p(y;;|Y;) cannot be evaluated. We thus

p(Xi41 |Y1+1) = (6.47)

need to resort to approximation methods.

Previous work (Cornford, 2004) had focused on a maximum a posteriori approach, whereby
the optimal mean parameters were computed through minimisation of the negative log-likelihood
with respect to the observation. A Laplace approximation was then applied about the 0ptimu1ﬁ in
order to obtain an estimate of the covariance. However, in order to obtain a reasonable estimate
of the covariance, the mean optimum had to be computed with great accuracy, resulting in a
computationally expensive optimisation phase.

One of the aims of the present work was to improve the assimilation scheme, in particular
by providing a more reliable — and possibly faster — estimation of the state’s second moments.
An attractive framework to address this problem is the one intgoduced by Hinton and van Camp
(1993), in which the posterior distribution is approximated by another, tractable distribution q. The
optimal parameters for this g distribution are chosen such that they minimise the Kullback-Leibler

(KL) divergence to the posterior:

p(Xes1Yig1)
Cl(Xn+r le! )

Because conjugate distributions were chosen for the priors, we know that the posterior has a

KL(pllq) = —/lq(valIYm) In dxy4 (6.48)

similar structure. This allows us to derive the expression of the KL divergence in close form. This

derivation is presented in Appendix A. The outline of the computation is given below.

109




Chapter 6 IOWCASTING: THEORY

The q distribution is chosen to have the same structure as the prior, to exploit the conjugate

nature of the priors chosen. Given the prior (Equation 6.13) and the likelihood (Equation 6.9), the .

expression for p(X.+1]Y4+1) can be obtained, up to a constant, by applying Bayes’ rule (Eq. 2.11), -

leading to:

p(Yl+l|xt+l)p(xH-1[Yt)
KL o< —/ Y | dx i 6:49)
(rllq) q(xi1]Y41) In a(x|Yor1) ‘t—H (

Expanding this yields:

KL(p|lq) e — <ln P(Yis1 |x[+x)> (6.50)
Qx| Yigr)

where the cross-entropy of p with respect to q is defined as:

<1n p(x)>q(x) = —/q(x) In p(x) dx (6.51)

The likelihood term arising from the new radar image being assimilated expands, after com-

putation, and omitting the time index for readability, to:

N

| M LI N
- <p(Y|X)> = 55 Y Eej=yi| =3 (Brj) + ) Fr (6.52)
q(x|Y) Jj=1 k=1 k=1 k=1

with
e (€ —5;)" (& —s;) ) o
E, = 1+ 6.53
T E= Gk 03
and s
= et D) (H— (ék“SJ)T(Ek—Sj)) ' 6.54)
8 (1428) Pr(1+2&)
Further computation leads to the following results for the prior term:
P(XIY)> ; { o Tn)
—(In = YeIn&y — ¥, Ind, — In
< q(xY) /gy i S N ()
8/
+ (=) 190 =3 e (1= £
+ oy InPBy — oy In B, ——In%(—o—t—if—)
(o) (6.55)

+ (ock —(1;() [‘I’(ak) — lan] — Ol (1'— —;‘>

B
i _E»_k _1_%( —&Te, —¢
{;k_i_&;(—*_z&;(ﬁk(k k)(k k)
N

2

+1In

in which the prime is used to distinguish the prior parameters from the equivalent parameters in
the posterior.
The full derivation of these results, which requires a series of non-trivial integrals, is provided

in Appendix A. The main point to note is that the use of the variational Bayes framework allows
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us to repose the estimation of the posterior distribxijti’dn/ by a mmuhisati_ori of Equvaii',on 6.48. The
minimisation is achieved using a scaled conjugate gradient algorithm (Bishop, 1996; Nabney,
2001). Since the q distribution is an approximation to the full posterior‘ distribution (rather than -
just the mean), we hoped that fewer optimisation steps would be required to obtain a good overali :
estimate of the true posterior. However, this assumption proved to be wrong, most probably due to

the complexity of the error function and the large number of parameters to optimise. In experiment

setting, 200 optimisation steps are necessary to reach a good estimate of the state.

6.4.5 Detection of new cells

When the new observations become available, the model must be able to adjust the presence of new
cells. These new cells result mainly from two sources: the spatial motion of the rainfall field while
the observed area remains static, which means new cells get advected into the spatial window, and
the creation of new cells as a result 6f the rainfall field’s internal dynamics (condensation, splitting
of existing cells...).

In order to detect these new cells, an algorithm similar to the one described in Section 6.3.1
is applied, whereby new cells are added until either the misfit is reduced below a threshold or the
maximum number of cells is reached. Note that only the new cells are optimised, keeping all other

cells parameters fixed.
6.4.6 Assimilation of the advection field

Update of previously existing cells

The advection is updated using the displacement between the updated centre ¢..; and its previous

estimate ¢, as a pseudo-observation, having mean and covariance:
AC(t+1)=c(t+1)—c(1) (6.56)
Zac(t+ 1) =Zc(t+ 1)+ 2 (1) (6.57)
Since both the predicted estimate of the advection and the pseudo-observation follow Gaussian
distributions, the posterior (i.e. updated) advection estimate is also Gaussian-distributed, with

mean and covariance:

u(t+ 1) =+ )7 A% X S (14 1) (6.58)
e+ 1) = Zu(t4 1) [A Zac(t+ 1) AC(t+ 1) + 2 1+ 1) u(0)] (6.59)

The dependencies between the different parameters during the propagation/assimilation step are

illustrated on Figure 6.9.
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Figure 6.9: Dependencies between the advection and centres during the assimilation phase. The updated
centres (blue, solid arrows) depend on their previous location and advection (through the pre-
dicted state) and on the new observation (lhroﬁgh the assimilation) as illustrated by the blue
arrows. The updated advection vectors (red, dotted arrows) depend on their previous estimates
and the assimilated centres at the previous and current time step (the temporal variation between

these two acting as an “observed” advection vector) as illustrated by the red arrows

Absence of cells

It might happen, particularly during summer, that no precipitation is observed over the spatial
domain. This results in an empty rainfall field (no cells left in the model). The last estimate of the
mean advection is kept so that, when new precipitation is observed, it can be used as a prior for

the mean advection of new cells. The advection’s covariance is reset to its original prior.

Advection of new celis

When new cells are detected, their advection’s mean and covariance need to be specified. The
predicted advection estimate at the new cells locations is computed using the Gaussian process.
Considering a new cell with advection u, = (u.,v,), we can write the augmented vector u,.

and 1ts associated mean and covariance:
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where u and v denote the horizontal and vertical components of the previous advection esti-

mate. For computational purposes, it is however more convenient to reorganise these by blocks,

so that:
u _ u 2y Ky,
u+ - > u+ = ) ZU+ =
u. i, ki, | Zu

with u = (u,v), uy = (4, vs) and:

Cau Cuv Cu.u,
z:u = ) ):u,, =

ct c, ol}

uy v,

~
Cll* V.
Cuk Vi

(6.60)

In a static context, the covariances would be determined using the covariance function K and *

the distances between cells:

Ly =K(e,¢), Zy, = K(es, ¢ ), Kau, = K(e,c4) (6.61)

However, this cannot be done here, as the first equality does not hold anymore in the case of a
Gaussian process which has been sequentially updated: X, # K(c¢,¢). This is due to the fact that,
although Xy was initialised as K(c,¢), it has then been modified in time as the model got updated.
Typically, the prior covariance is chosen to have a large magnitude to reflect our initial uncertainty
about the advection. HoWever, as the model gets confronted to observations and learns from them,
our uncertainty decreases, resulting in a decrease in magnitude of .

Using the prior covariance function K to initialise the new cells covariance results in the up-
dated matrix L, becoming singular. This is most probably due to the variances of the new/old
cells having different orders of magnitude.

To overcome this issue, a scaled normalised covariance function K is introduced, which is

similar to K but provides a variance of order 1. This is achieved by replacing in equation (6.21)
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Ey
Ep+Ey?

the variance terms Eg and Fy by their normalised counterparts Efq’ and

o S0 as to keep

the same ratio between the variances for the divergent and rotational components. The variance .
for u, is then scaled by the average variance of u (i.e. the average of the diagonal terms in Zy).

The (marginal) covariance for the new cells is thus set to:

o i

Ly = N Tr(Zy) K(cs, i) ' (6.62)

To improve numerical stability, the correlations between the new and the old cells are ignored,

i.e. kyy, = 0. This might seem a rather crude approximation, however, one should note that these
correlations will be induced by the model within only a few assimilation steps.

As for the mean of the new cells advection, it is set to:
0, = K(c,c,)K(c,c) " 'a (6.63)

which corresponds to the standard mean prediction for a static Gaussian process.

6.5 Forecast

Once data has been assimilated and the model has converged to a steady state, it can be used to
generate forecasts. The forecasting scheme used is fairly crude and simply consists in propagat-
ing the cells forward in a linear manner, as described in Sections 6.4.1 and 6.4.2. Each cell is
propagated independently, according to its advection at initial time. This advection is assumed to
remain constant over the duration of the forecast. It is clear that this assumption is only relevant
for forecasts at very short lead times.

The main drawback of this method is that it does not maintain the smoothness of the advection
field. Cells might become neighbours as a result of their respective propagation but have very
different advection estimates. Figure 6.10 illustrates this problem: two cells with initial advection
from a smooth field (left) have been propa-
gated forward in time, resulting in an unreal- \
istic, non-smooth, advection field (right)

s

'Y

A better forecasting scheme would involve /

projecting the advection field onto a fixed grid

t t+n

and propagate the cells advection to the esti-
mated advection at their location. This would Figure 6.10: Forecast abnormality illustrated
maintain the smoothness of the advection field

in time. Although better than a linear forecast, this method also has its limitation in the fact that

the field is still assumed constant through time.




Chapter 6 NOWCASTING: THEORY -

Probabilistic forecast

Because the model keeps track of the uncertainty in the parameters, a probabilistic 'forec;ast can
easily be generated. This can be done in two ways. The first option consists in propagating t\he

full stochastic model forward in time. One then obtains a fﬁ]l probabilistic forecast. The problém

with this method is that it is difficult in practice to correctly model the propagation of the variance,
especially as forecast lead time increases.

An alternative option is to make use of Monte Carlo approximations. One can generate a
sample from the parameters distributions at time t and forecast each sémple to time t+ n using
deterministic dynamics. An ensemble of forecasts is thus obtained, which provides an approxima-
tion to the actual forecast distribution. First and second moments of the forecast distribution can
then be estimated from the sample.

In this particular problem, the dynamics are effectively linear, so both methods could be ap-
plied. Cornford (2004) chose to apply the first method. In this work, we prefer to apply the second

method as it is the one used operationally in most hydrological forecasting systems.

6.6 Discussion

A model has been introduced in this chapter which is able to reproduce the main characteristic
of a dynamic rainfall field. The model is decomposed as a set of Gaussian-shaped rain cells with
parameters for the cell’s location, its width and height (intensity at the centre). Suitable priors
have been chosen for these parameters. As seen from Figure 6.5, the model provides a reasonable
approximation to the real observed rainfall field.

Dynamics are modelled by an advection field. A Gaussian process prior on this advection field
ensures it is spatially smooth and has a realistic behaviour. The advection is specified at each cell’s
centre and used to propagate the cells linearly.

Variational inference is used to compute the posterior distribution for the cells parameters :
hyperparameters are determined which minimise the KL-divergence between the true posterior
distribution and a suitable approximating distribution. This results in an updated rainfall field, from
which obsolete cells (i.e. cells that are not matched in the observed rainfall field) are removed.

From the updated cells locations, the cells displacement is computed and used to update the
advection field. If new cells appear on the observation, they are detected and incorporated into
the model. A suitable prior is used to initialise their advection while ensuring the model remains

numerically stable.

In the following chapter, this model is run on synthetic data for validation before being applied
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to real data. Details about these experiments are provided and the results are analysed using state

of the art verification methods.
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7.1 Preliminary experiment: synthetic data

A stochastic rainfall prediction model has been introduced in Chapter 6. The current chapter
presents results obtained with this model. Simple validation experiments are considered first, m
which the model is tested on synthetic data involving a single cell and sc%/eral cells ‘with linear
advection. The model is then tested on réal radar data in two contexts: a frontal event and a

convective event. Validation methods are applied to the results and results discussed.

7.1.1  Single cell experiment

As a sanity check, we first test the ability of the model to correctly locate a single precipitation cell,
on simulated data. The data is generated by propagating a single precipitation cell with constant,
horizontal advection of 6 m.s~! (Figure 7.1). The cell is 42 km wide and its central intensity is 33

mm.h~!,

Single cell experiment

tJ
(@]

Lkm,
o o
T T
)] )

20 40 60 %0 100 120 140 160 180 200
km

Figure 7.1: Single cell experiment: experiment setting

Noise models Observations are taken every 900 s and corrupted with additive Gaussian white
noise with variance 4.0 mm2.h~2. The noise is applied locally, i.e. only to those pixels where the

precipitation rate exceeds a threshold y,,;, = 0.8 mm.h™!.

Yroisy = Yorue € Yirue 2 Ymin oD
Yirue i Yirue < Ymin
This is believed to be a realistic noise model for simulated radar-like data, since it is empirically
observed that radar 1s usually well able to identify geographical regions without precipitation, with
the errors occurring mainly in the regions where precipitation is detected (Meischner, 2004).
The following other two noise models were also tested. Global additive noise (applied to the
lwhole radar field):
Ynoisy = Yirue € (7.2)

and global multiplicative noise (also applied to the whole radar field):

Ynoisy = Yirue X (1 + E) (7.3)
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¥

These did not lead to any significant difference in the resuilts,/‘so the first noise model (local addi— -

tive) is retained for this synthetic experiments.

The cell parameters are estimated over 180 15-minute time steps (equating fo 45 hours); and
then forecast over 12 steps (3 hours). The initial variances over the centres, widths and heights are
set respectively to 10.0 km?h™!, 10.0 km?h~'and 10 mm?h~3, representing weak knowledge of
the initial state at the start of the assimilation. The propagation error variance (also known as the
model error component) is set to 25 km2h~!for the centres, 0.1 mm?h~>for the central intensity,
0.1 km?h~!for the cell widths and 1.6 m>s~%h~!for the advection field. These priors are chosen to
be characteristic of the typical model errors we might expect for real data, and have been derived
by analysis of radar image sequences.

Figure 7.2 shows the predicted, observed and assimilated cells from the idealised model at
3 different times. At the end of the assimilation period, the cell is propagated forward in time
using the last estimate of the parameters. There is no noticeable difference between the cell’s
characteristics at the end of the forecast and the observed cell, which confirms the model managed
to track the “true” cell on this very simple validation example.

Figure 7.3 shows the evolution of the parameter error during the experiment (i.e. the differ-

ence between the estimated parameter and the true value). The top row plots the error for the
cell’s coordinates (horizontal on the left, vertical on the right). The 3rd row shows the error for the
advection components (horizontal on the left, vertical on the right). It is clear that these 4 parame-
ters converge within a few assimilation steps and then oscillate about the true value. The 2nd row
displays the error for the width (w) and rain intensity (r), which are more difficult to learn, which
seems to be related to the noise added to the observation and discretisation issues. On the bottom
row, the & scale factor is plotted (left), showing a stable behaviour during the assimilation phase
and growth during the forecast phase (which is to be related to the increase in uncertainty about the
centres). The Root Mean Square Error (RMSE) is plotted in the bottom right corner (Section 7.3.1
provides details on the computation of the RMSE). The RMSE is kept down to a very small value
on average during the whole assimilation phase, and grows almost linearly during the forecast due
to small errors in the parameters (especially advection) leading to the cells trajectory diverging

slightly from the truth.

7.1.2 Multiple cells experiment

A similar experiment to the one described previously is carried out, this time with a set of several

1

cells. The advection is set to 6 m.s™" in the horizontal direction for all cells, but is perturbed with

Gaussian noise so that cells have slightly different velocities. Observations are corrupted with
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Figure 7.2: Single cell experiment: assimilation and prediction results. This plot shows the predicted pre-

cipitation cell (left), the observed precipitation cell (centre) and the assimilated ‘precipitation
cell (right) at different time intervals. The initial guess is displayed on the top row, followed by
three assimilation steps on rows 2-4, and the end of the forecast is shown on the bottom row.

Note that the x-axis is translated to follow the cell.
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Figure 7.3: Single cell experiment: parameter estimation. This figure shows the error for the parame-
ters, with from left to right, starting from the top: centre error, horizontal (A} and vertical
(AC),); width (A,); central rain rate (A,); advection component, horizontal (A,) and vertical
(A,); width/centre correlation scale factor (£); Root Mean Square Error (RMSE) between true

cell and model’s estimate/prediction.
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local additive Gaussian white noise with variance 4.0 mm2.h™ %
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Figure 7.4: Multiple cells experiment: experiment setting

The true cells are propagated 100 time steps. The model’s parameters are determined using
the first 88 steps and forecast during the 12 remaining steps. Figure 7.5 shows, in the upper part,
the evolution of the synthetic observed rainfall field (left) and that of the corresponding estimated
rainfall field (right). In the lower part, the root mean square error between the observed and
estimated/predicted rainfall field is plotted. The model is able to capture the rainfall field and
track it throughout the experiment. It is also able provide a reasonable forecast of the rainfall field,

* which has become a set of separated cells due to the different velocities of the cells.
These two trivial experiments on synthetic data have confirmed the ability of the model to

track very simple rainfall fields. The next challenge is to test the model on real radar data.

7.2 Real data experiment

Having validated the model on two very simple examples, we move on to applying it to the realistic
problem of real precipitation nowcasting. |
There are two main types of precipitation than can be observed in the UK: convective (or
convectional) and frontal. Convective precipitation results from the evaporation of ambient air
due to heat at ground level. This creates
a current of warm rising air, which cools
Cold air

down as it travels through higher, colder air

masses. Condensation occurs, resulting in

clouds and showers. Convective precipita-

Warm air

&

tion in temperate areas is typically charac-

terised by local, heavy showers of relatively
short duration occurring during the summer

(Barry and Chorley, 2003; Jennings, 2005).

Figure 7.6: Convective precipitation
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Figure 7.5: Multiple cells experiment: assimilation and prediction. The observed precipitation field (left)
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and the assimilated / predicted precipitation field (right) at different time intervals (note the
change of location on the x-axis). The initial guess is displayed on the top row, followed by

two assimilation steps on rows 2-3 and one prediction step on row 4. The end of the forecast is

Time

shown on row 5. The bottom plot shows the Root Mean Square Error.
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Frontal precipitation, also referred to “as

stratiform or cyclonic precipitation, happens
Warm air
when a mass of cold air encounters a mass

of warm air, causing condensation and pre-

cipitation to happen. The meeting boundary

Cold air Cold air

of the two air masses is called a front and

is identified as a cold front if the cold mass

of air pushes into the warm mass, and warm Figure 7.7 Frontal precipitation

front in the opposite case. Frontal rain is typ-

ically lighter and longer lasting than convective precipitation and much more spread spatially.
Two datasets have been selected to test the performance of the model on both types of pre-

cipitation. The first dataset consists in a weeks worth of radar observations for a convective event

in July 2006, while the second dataset looks at a frontal event over the same duration in January

2005. Details on the experimental design are provided in the following paragraphs.

7.2.1 Experimental design
Nature of the data

The data used in this experiment has been provided free of charge by the British Atmospheric Data
Centre (UK Meteorological Office, 2003). The data consists in composite radar scans Obtained’
from the NIMROD radar network (Golding, 1998). These scans havea 5 x 5 km? grid resolution,

| for a total size of 1725 x 2175 km? (345 x 435 pixels) and the time between two consecutive scans
1s 15 minutes. The observations were pre-processed using a Gaussian filter with radius 10 km to
improve the estimation of the model precipitation field, as detailed in Section 6.2.1.

In the following experiments, we restrict ourselves to an area of 500 x 500 km2, 1.e. 100 x 100
pixels, which is wide enough for the rainfall field to present interesting structure, but small enough
for the computations to be handled by a standard single core desktop'computer (3GHz CPU with
1GB RAM).

The assimilation is carried out over a sequence of 672 observations, corresponding to a weeks

work of data (168 hohrs).

Observation error

Estimating observation error is a difficult task, mostly due the variety of factors responsible for the
inaccuracies in such measurements.

A very simple error model is used in these experiments : observation error is assumed to
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be Gaussian with zero mean. Variance values in the range 0.1 to 10 mm?.h~2 have been tested.

Values in the lower end of the range resulted in the model providing a very close fit to the data

but less smoothness in the parameters evolution, while values in the higher end Les‘ulte’d in the .
observations being discarded by the model. A value of 4 mm?.h~2 has shown the best balance
between the observations and the model.

It is convenient to further assume that the observation error is spatially uncorrelated, i.e. the
covariance matrix R is diagonal, for reduced computational complexity. However, this is an un-
realistic assumption, as the causes of radar error are likely to induce spatial correlations. For
instance, ground clutter and insect clouds are responsible for spatially structured errors. Errors
in the formulation of the observation operator 4 are also space-dependent and likely to introduce
spatially correlated errors. The specification of radar observation covariance matrix is still very

much an active area of research (see Keeler and Ellis (2000) and references therein).

Number of cells

In order to specify the (maximum) number of cells to be used in the model, a quick experiment is
set in which a sample observation is fitted with an increasing number of cells. The fitting is done
according to the procedure described in Section 6.3.1, with a minimum error E,;;, = 0.03. Figure
7.8 shows how the Root Mean Square Error (dashed line) decreases as more and more cells are
allowed into the model. However, this comes at the cost of (l:omputation time (solid line), Which
increases almost linearly with the number of cells. A limit of 250 cells is sufficient to discard
more than 90% of the misfit while keeping initialisation time below 30 seconds. This is the limit
retained in the following experiments.

The sample rainfall field for this experiment has been chosen complex enough to provide an
estimate of the required number of cells likely to remain valid for most observed rainfall fields.
Figure 7.9 shows how the estimated rainfall field evolves as the number of cells increases. A
reasonable fit is obtain for about 200 cells, with the main features being accurately reproduced.
However, it takes up to 400 cells for the lower precipitation areas to be included in the estimate.
This is a consequence of the model putting priority on accurately_'tracking high precipitation areas:
additional cells are used to improve the fit in such areas rather than to improve the quality of the
overall spatial field.

The initialisation process takes 480 cells to reach the minimal error chosen (3%). A closer fit
to the data could be obtained by simply lowering this minimal error convergence criteria, at the
expense of even more cells. However, the computation cost implied makes very large numbers of

cells prohibitive in practice.
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Figure 7.8: Trade off between number of cells and optimisation speed. This plot shows the effect of the
number of cells used on the quality of the fit and computation time. The dashed curve (left
y-axis) is the root mean square error between the observation and the model’s estimated rainfall

field. The solid curve (left y-axis) is the initialisation time in seconds.

7.2.2 A convective event: July 2006

The data for the convective event spans from July 6, 2006 at 3:15 am UTC to July 13, 2006 same
time (672 observations).

Figure 7.10 shows the state of the model for the convective event, after about 67 hours of data
(268 observations) have been assimilated. 4 hourly estimates are shown. This corresponds to a
peak in the complexity of the precipitation field, and thus to a peak in the Root Mean Square Error
with respect to the mean of the posterior distribution, as shown in Figure 7.12. Reading from left
to right, Figure 7.10 shows: the radar observations of precipitation, the corresponding estimated
precipitation after assimilation of the observed radar, the cell contours along with their advection
vectors (only the major cells are displayed for clarity) and the KL convergence curves for each of
the 4 time steps considered.

Note that the choice of showing the model 67 hours into the assimilation process is based on
no particular reason, in particular the model does not need to assimilate that much data to provide
a good estimate of the rainfall field. In fact, a good estimate is normally reached within 5 time
steps of the initial guess.

Figure 7.10 shows that after seeing 67 hours of data the model is able to assimilate the radar

data to estimate the precipitation field while also jointly estimate advection vectors for the precip-
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Figure 7.9: Effect of increasing the number of cells on the quality of the modelled rainfall field. This plot
shows the model’s realisation as the number of cells increases. The actual observation is shown

in the top left corner.

itation field. It can be noticed that the image appears somewhat “gréiny” in some parts. This is
possibly related to the partial optimisation of the KL-divergence; as can be seen from the bottom
line of the figure, the KL-divergence has not converged fully in'the optimisation, much like the
3D VAR cost function is only partially optimised in classical data assimilation. This might also be
related to the convective nature of the event, with the birth / death processes of the ‘precipitation
cells’ making it very difficult for the model to track specific precipitation features, and resulting
in cells being frequently added and removed. The advection vectors show a clear storm motion
from south-west to north-east, but []ﬂere are small variations in the advection over space, which are

likely to reflect differential development and possibly steering of the precipitation field.

7.2.3 A frontal event: January 2005

The data for the frontal event spans from January 4, 2005 10:00 am UTC to January 11, 2005 same
time (672 observations).

Figure 7.11, shows the same information as Figure 7.10 but for the January 2005 frontal rain-
fall event, starting this time after 60 hours of data (240 observations) have been assimilated. We
again see a good fit of the assimilated precipitation field, but again note a problem with some rather

“grainy” behaviour in the assimilated estimate of precipitation. This problem appears to be most
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Figure 7.10: Estimation of convective precipitation (July 2006). This plot shows, from top to bottom, 4

consecutive hourly snapshots of the frontal rainfall field. Columns show, from left to right:

the observed rainfall field, the modeled rainfall field, the principal cells with corresponding

advection, the optimisation of the KL divergence over 200 optimisation steps.
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Figure 7.11: Estimation of frontal precipitation (January 2005). This plot shows, from top to bottom, 4

consecutive hourly snapshots of the frontal rainfall field. Columns show, from left to right:

the observed rainfall field, the modeled rainfall ficld, the principal cells with corresponding

advection, the optimisation of the KL divergence over 200 optimisation steps.

severe in region with strong dynamic changes to the advected precipitation field. The advection

vectors from this example show rather complex structure. Initially this was felt to be a problem

with the model, however it appears that there is strong apparent differential advection in this storm,

probably related to embedded precipitation elements within the frontal zone, particularly early in

the time window show here. At the later times the advection seems more uniform across the do-

main considered. We note that for computational reasons we truncated the optimisation of the

KL-divergence at 200 iterations, however it is clear that the system has not fully converged.
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7.3 Valid_ation

In order to assess the quality of the model, verification methods need to be applied. Many méfhbds .
have been developed to that effect, a review of which can be found in (Casati et al., 2008). Further
details on the actﬁal computation of the most common of these are gathered in:(Nurmi, 2003).
For the purpose of validating the current model, three validation methods were retained: the Root

Mean Square Error, ROC curves and variograms. These are discussed in the following sections.

7.3.1 Root Mean Square Error

A common measure of quality for a deterministic model is given by the Root Mean Square Error
between the model’s estimate and the “true” value. Most of the time, this true value is not available
and one has to resort to using the observations as the best estimate to the truth.

If z and y denote the estimate and the truth respectively, then the RMSE is given by:

1 N
RMSE(z,y) = 4 /ﬁ Y (zi—yi)? (7.4)
i=1

It should be noted that the RMSE is particularly sensible to large errors due to the square in the
difference (Nurmi, 2003). |

For precipitation fields, the RMSE measures the average distance (over the spatial domain)
between the model’s estimate and the “true” field as measured by the radar. Figures 7.12 (top) and
7.14 (top) show the evolution of the RMSE in time over the assimilation period. The variability of
the RMSE is to be related to that of the rainfall field’s complexity. Total precipitation is plotted on
Figures 7.12 (bottom) and 7.14 (bottom) for comparison.

The assimilation appears to give better results for the convective event (Figure 7.12) than
for the frontal event (Figure 7.14). This is to be related to the overall spatial complexity of the
precipitation field, which greater in the winter event, probably due to the higher overall rain rates,
and the greater part of the domain covered by precipitation compared to the summer event.

Figures 7.13 and 7.15 show scatter plots of the RMSE against the total observed precipitation
(summed over the spatial domain) for the convective and frontal cases respectively. This confirms,
in both cases, the correlation between the complexity of the precipitation field and the quality of
the corresponding estimate.

For both cases the same, limited, number of cells (250) was used which is probably not overly
realistic. In practice it would be very desirable to be able to estimate an appropriate complexity for
the model, which could adapt to the complexity of the observations. This was not implemented in
this version of the code but we believe that it might be possible to incorporate a ‘sparsity’ prior in

the model, in a similar manner to the treatment of the relevance vector machine (Tipping, 2001).
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Figure 7.12: RMSE and total precipitation for a convective event (July 2006)
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Figure 7.13: Scatter plot RMSE / Total precipitation for a convective event (July 2006)
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Figure 7.14: RMSE and total precipitation for a frontal event (January 2005)
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Figure 7.15: Scatter plot RMSE / Total precipitation for a frontal event (January 2005)
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The model is thus better able to represent-the simple, localised precipi_’tafion, patterns which make
up most of the convective data compared to the complex, diffuse precipitation patterns frxom.\t'h'e\., .
winter data. This also explains the considerable variations in the RMSE for each event, where

quiet, dry(er) periods alternate with stormy phases.

7.3.2 Receiver Operating Characteristic (ROC) curves

The RMSE presented above provides a good first estimate of the quality of the assimilation, but
doesn’t take into account the probabilistic nature of the estimate. ROC curves, a validation method
for probabilistic forecasts traditionally used in signal detection, medical and psychological appli-
cations, is now commonly applied to weather forecasting too. Examples of its application can be
found in Harvey et al. (1992); Zhang and Casey (1999); Buizza et al. (1999).

ROC curves provide a way to estimate the “skill” of a model, i.e. its ability to correctly detect
whether an event occurs or not in a dataset (a disease amongst a group of patients, rainy pixels on
a radar image...). A clear and thorough introduction to the ROC éurve is provided by (Fawcett,
2005). We wili now detail the basics of ROC curve estimation using a simple-example taken from
an hypothetical medical domain situation, before moving on to their application to precipitation

forecasts.

Introduction using an example

Let us assume we want (o assess the quality of a medical model for detecting a disease X. We have
at our disposition a set of patients presenting various blood concentrations in a given protein we
think is linked to the presence of the disease. We assume this concentration varies between 0 and
| for the purpose of this example. A simple model is devised by assuming that there is a given
threshold T of that concentration above which a patient is X-positive (i.e. carries the disease). We
can then classify patients in two sets: “X-positive” and “X-negative”, which we will simply denote
by “positive” and “negative”. Table 7.1 illustrates the result of such classification on a set of 1000

patients.

Number of patients

Positive 30

Negative 970

Tuble 7.1: Contaminated patients (predicted)

Let us assume we can then perform a second medical test and determine accurately whether
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patients are actually infected or not. We can now validate our prediction against the test, and split
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our positive and negative categories each into two sub-categories, depending whether they have

been classified correctly or not. ;

Patients that were predicted “positive” are called “true positives” (TP) if the test also detected
them positive, “false positive” (FP) otherwise. Similarly, patients detected “negative” by both the
model and the test are called “true negative” (TN) while those incorrectly detected “negative” are

called “false negatives” (FN). Table 7.2 summarises these denominations.

TEST
Positive | Negative
Positive TP FP
PREDICTION
Negative FN TN

Table 7.2: Classification of correct prediction against test

Assuming 27 of our patients were incorrectly detective positive and 3 incorrectly negative, we

obtain the classification presented in Table 7.3.

TEST
Positive | Negative
Positive 27 3
PREDICTION
Negative 199 771

Table 7.3: Classification of prediction results against test

In order for these values to be plotted on a graph, two additional measures are computed:

e the Hit Rate (or true prediction rate):

TP
HR= ———, (7.5)
TP+FN
e and the Fulse Alarm Rate (or false prediction rate):
FP
FAR= —. (7.6)
FP+TN

Points on the ROC curve are obtained by plotting the value of 4R against that of FAR. For our
example, HR = 0.1195 and FAR = 0.0039. Figure 7.16 shows the ROC curve obtained for this
example. The arrow indicate the location of our point. (

The other points on the curve are obtained by varying the decision criterion. In our case,

the threshold T controls whether patients are detected positive or not. Different values of T give
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different points. Table 7.4 shows how the values of FAR and HR evolve as T is increased and |

Figure 7.16 shows the resulting curve.

t | TP FN TN FP||FAR HR |
000965 35 0 0 1.00 100
0.10 || 866 53 57 241 030 094
020l 756 75 148 21|l 0.12 091
030 || 623 115 242 20| 0.08 0.84
040 || 476 142 362 20 || 0.05 0.7

0.50 || 306 201 482 11 |} 0.02 0.60

0.60 || 131 238 624 7001 036

—  0.70 27 199 771 39 0.00 0.12
080 3 62 935 0] 000 005
090 0 0 1000 0] 0.00 000
100 0 0 1000 0000 000

Table 7.4: Computation of the points on the ROC curve

Note that a threshold concentration T = 0 corresponds to the extreme case where 100% of the
patients are detected positive, while T = | corresponds to the opposite case where all patients are
tested negative.

The strong dashed line on Figure 7.16 corresponds to a random classifier, i.e. a model which
diagnoses patients positive and negative with eqﬁal probability. As T increases, the number of true
positives decreases the points slides up the diagonal line (Fawcett, 2005). Figure 7.17 shows the
ROC curve for a random classifier applied to the same problem. A perfect model (i.e. a model in
perfect agreement with the test), on the other hand, would have a ROC curve corresponding to the
upper left triangle with, for all values of 1, (FAR,HR) = (0,1). The ROC curve for a reasonable
classifier lies between the diagonal (random model) and the upper left triangle (perfect model).
A measure of the skill, determined from the ROC curve, is the area under the curve (AUC). The

closer that area is to 1, the more skillful the model.

Application to probabilistic forecasts

This section details the application of ROC curves to the forecast scheme described in 6.5, fol-
lowing (Atger, 2001). In order to obtain a probabilistic forecast, an ensemble of model states are
generated from the distribution at an initial time t and propagated forward to the lead time of in-

terest. We restricted ourselves to an ensemble size of a 100 forecasts. For a chosen precipitation
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Figure 7.16: ROC curve for disease detection model
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Figure 7.17: ROC curve for a random model
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threshold R, (e.g. 5 mm.h™ b, -each forecast 1S converted into a seues of posmve and negatlve
pixels, indicating whether precipitation is detected or not by that f01ecast at each locatlon

observation field is also converted to binary using the same threshold (Flgure 7.18).

200 200 400 300 40

h(xf) ;3(xf) > Rmin

60 80 100
Figure 7.18: Rainfall field converted to a binary field

Given the ensemble of binary forecasts, a unique composite forecast is computed by assigning
each pixel a positive value if at least T = N of the ensemble forecasts detected rain at this pixel,

and a negative value otherwise (Figure 7.19).

o

2
2

@j

Figure 7.19: Delection of rainy pixels based on ensemble forecast: rainy pixels are selected based on the

3 =2

—

number of ensemble forecasts detecting them having greater precipitation intensity than <

(T =2 in this example)

The composite binary forecast is matched to the observed binary rainfall field to determine
the hit rate and false prediction rate. The number T plays a similar role as in the disease detection
example, and the ROC curve for the probabilistic forecast is obtained by having it vary between 0

(all pixels positive) and N+1 (all pixels negative). An example of such a ROC curve is shown on
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Figure 7.25: Evolution of the rainfall field during the frontal event (January 2003, 10h snapshots).

utive hourly estimates of the rainfield as in Figure 7.11 are displayed. The three rain thresholds
considered are plotted from left to right. Each plot displays the ROC curve for the 3 forecast lead
times: 30 min (solid red), 60 min (dashed green) and 180 min (dash-dotted blue). In the frontal
case, the model is able to retain respectable forecasting skill for up to 3h lead time, as might be
expected in the more strongly dynamically forced, larger scale processes typical in frontal precip-
itation.

Figure 7.23 shows the evolution of the area under the ROC curve for the convective event,
computed for thr; 3 different thresholds (from top to bottom) and three different forecast lead
times (for each plot, the top curve corresponds to the 30 min forecast, the middle curve to 60 min
and the bottom curve to 180 min). The variability in prediction skill can be related to the nature of
the rainfall field which undergoes rapid developments (stormé). However, the area under the ROC
curve rarely goes below 0.5, even at 180min lead time, which is believed to be a consequence of the
simpler structure in the rainfall field (localised stdrms). However, it is important to mention that
the ROC skill score also takes into account the ability of the model to detect dry areas. Because
such areas are usually larger in the summer, the model is more likely to perform better with respect
to this score.

Note that the abéence of rain (or heavy rain) during some periods can result in erroneous ROC
curves. If no rain is observed, the Hit Rate cannot be computed (division by zero). This results
in missing points on the curve as can be seen on the bottom plot around t = 130h. In the case
where no rain cell 1s left in the model (as a result from a dry observation being assimilated), all of
the model’s realisations will predict a dry forecast, hence all points will coincide with the bottom
left corner (HR = FAR = 0), resulting in a curve aligned with the diagonal and an area of exactly
0.5. Several such cases can be observed in the two lower plots, where the detection thresholds
is higher. These cases should ideally be discarded as they do not give a correct account of the
model’s prediction skill.

Figure 7.24 shows similar information to Figure 7.23 for the frontal event. It can be observed

that the prediction skill varies more smoothly that in the convective case, due to the larger scale
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and slower nature of precipitative developments. Two l'egiﬁ/les can be identified, one in which the
prediction skill decreases quickly (t=0-40, t=100-120; t=140-160) and one where the pn‘ed;‘chﬁo\n- .
skill is retained much longer, to the point that even 180min forecasts still show some good skill .
(t=60-90, t=120-140).

Qualitative analysis as shown that these two regimes can be related to the nature of the ob-
served rainfall field. Figure 7.254displays the observed rainfall field at 10h intervals. Heavily
clustered fields of high precipitation intensity seem to result in good forecasts while sparse, lo-
calised precipitation fronts correspond to poor forecasts. This could be due to the linear forecasting .
scheme, which is likely to perform better when the rain cells are clustered as this ensures their ad-
vection fleld is smooth. Another possible .explanation is the assumption, in advection-based fore-
casts, that motion is the primary factor of change, and that internal developlhent (growth/decay)
can be neglected. It is clear that dissipation phenomena are less noticeable, in proportion, for large
areas of intense precipitation than for smaller isolated cells.

Figures 7.26 and 7.27 summarise the diAstribu[ions, for the whole experiment, of the area.s
under the ROC curve for the 3 forecast lead times and the 3 precipitation intensity thresholds. As
expected, the model skill decreases on average as the forecast lead time increases, with very little
skill in any of the forecasts after 3 hours. This is due partly to the simplicity of the precipitation
field representation, and partly to the linear nature of the forecast scheme applied. Each cell is
advected linearly given the advection at its centre, an assumption which remains relevant only‘for
shorter forecast lead times. At short time scales, particular at t+30 min the model has more skill
when forecasting heavy precipitation (>10 mm.h~") than light precipitation (1 mm.h™"). This is
a useful feature, since for most flood forecasting applications the heavy precipitation is the most
important to predict well. This is a common feature of many advection models, since the heavier

precipitation tends to be more temporally persistent.

7.3.3 Variogram

The variogram (Cressie, 1992; Marzban, 2007) is a tool commonly used in geostatistics to quan-
tify the structure of a spatial field. The variogram is defined as the variance of the difference
in intensity at any two points, as function of the distance (lag) separating these points. Given a
two-dimensional field y, if the set of diétinct point pairs separated by a lag [ is defined as S(/) =
{(si,s))icj | Isi—s;j = 1} and the difference in intensity at any such two points as AY(/) =
{Y(si) = Y(s;) | (si,8;) € S(Z)}, then the variogram can then be expressed a the following func-
tion of the lag:

2Y(si —s;) = var[AY(/)]. (7.7)
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Figure 7.26: Statistics of the area under the ROC curve for a convective event (July 2005)
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Figure 7.27: Statistics of the area under the ROC curve for a frontal event (January 2005)
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An estimator of the variogram for discrete data‘is given by (Cressie, 1992):

!
[S(R)|

29(si =) = rery O (¥(s1) = ¥(5)))? - . 0y

S(h)
However, this estimator is sensitive to large differences in y and can perform poorly if the data is

not consistent. A more robust estimator is provided in Cressie (1992):

2(si—s;) = {E(-lm%)tym —y(s,->|‘/2} (7.9)

and 1is the one used in this work.

Figure 7.28 shows, on left, the variogram computed, from the top, for the observation and
30min, 60min and 180min forecasts. The corresponding rainfield is plotted on the right. 4 sample
realisations are plotted for each forecast. All forecasts are able to retain the spatial structure at
small scales (lag < 100), but the larger scale structure is only retained until up to 30min on that

example.

7.4 Discussion and future work

This chapter and the previous one presented a new probabilistic data assimilation algorithm which
can be applied to nowcasting using a simple advection based precipitatioﬁ forecasting model. The
algorithm has several desirable features, in particular the ability to estimate the posterior distribu-
tion of the model state using optimisation methods, which provides control over the computational
complexity. While the initial derivation is quite mathematically demanding, the implementation
can be employed within any optimisation framework, which forms the basis for most traditional
variational assimilation methods.

The new method is extensively tested on two large events characterised by convective and
frontal dominated rainfall. The results show the model is robust, and could be applied opera-
tionally. The ROC curves show probabilistic skill at all forecast horizons, but.it is clear that skill is
lost rapidly, which is typical of such advection / extrapolation based systems. Future work should
ideally compare the results of the variational Bayes methods with other approaches. This would
be greatly facilitated by a suit of standard test cases and diagnostics that could be agreed by the
nowcasting community to allow model and method comparison.

There are several areas in which the algorithm could be improved:

e Parallelisation would allow the algorithm to be optimised for more cycles resulting in an
optimal KL-divergence based fit, and the number of cells used in the approximation to the
precipitation field could also be increased. For instance, the space could be split into smaller

sections processed independently. Parts of the minimisation of the KL divergence could
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Figure 7.28: Variograms of the observed and forecast precipitation fields (July 2006, t=70h). Variograms

2y

and rainfall fields correspond, from top, to observed, 30min, 60min and 180min forecasts.
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also be performed on several processors since cells are assumed uncorrelated factorisation

assumption the computation .

e [sotropic Gaussian cells do not provide a realistic representation of the true rain cells, which
would often be better approximated by ellipses. However, there is a trade-off between the
number of cells needed (fewer in the case of elliptic cells) and the computational costs of
the assimilation (heavier in the case of elliptic cells due to the need for a full 2 x 2 matrix for
the width parameter). Ideally, when using elliptic cells, one would also want to estimate the
rotational velocity of the cell’s axes in addition to the advection of it’s centre, which again

increases the computational cost.

e The inclusion of an automatic method to select the complexity of the model, using methods
similar to those used in the relevance vector machine (Tipping, 2001) would further improve

the robustness and scaleability of the algorithm.

e The advection process representation is also rather crude and could be improved with a
“better representation of the advection field based on a fixed grid and non-linear forecasting

methods.

e At the moment, the advection uses the cell’s displacement as a "pseudo-observation" in the
assimilation step. A further interesting extension to the model is the incorporation of real-

time observations of the wind field (froDopplerer sounders) to update the advection field.

e It must also be stated that the model, or propagation, error parameters have been set with
reference to other studies and tuning on short data sequences and these are almost certainly
not optimised. It would be possible to use the marginal likelihood approximation, derived
from the variational Bayes analysis to optimise these barameters as part of the data assim-
ilation method, indeed these could be made adaptive since it is likely that the model error

will be state dependent in this application.

More speculatively it would be interesting to attempt to include satellite imagery to track the
evolution of the cloud field to better estimate the advection field where precipitation has yet to
begin, but where clouds are present. Assimilation of other observation types, includinDopplerer
lidar and other more direct measurements of advection would further improve the estimation in
the model. Further work could consider a hybrid approach that combines the knowledge of the
physical system embodied in high resolution numerical models (Done et al., 2006) but is suffi-
ciently simple to be run on the short assimilation cycles required for short range forecasts. Since

the model formulation is probabilistic and the uncertainty represents the model uncertainty rea-
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sonably well, Bayesian model averaging could be applied to inerge smoothly into a more physics

based forecast at longer lead times, so long as the uncertainty on both were well characterised. .
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Chapter 8 CONCL USIONS ’

8.1 Thesis summary

8.1.1 A comparison of state of the art data assimilation methods

Chapter 2 discussed models and observations as the two key components of a data assimilation
system. The existence of error in both models and observations was underlined and its causes
discussed. The data assimilation problem was formulated both from a deterministic point of view,
where a single best estimate of the state is sought, and from a stochastic point of view, where the
uncertainty associated with the best estimate is also quantified (through estimation of the proba-
bility distribution of the state). .

In Chapter 3, data assimilation methods were first introduced in a static context, where no
model is taken into account and the data assimilation problem reduces to estimating the state given
observations. It was shown how the problem boiled down to a least squares estimation problemAin
the case of observations related linearly to the state. 3D VAR, an alternative, variational approach
based on minimising the least squares cost function rather than solving it exactly was described.
In the case of a non-linear observation operator, it was shown that a sub-optimal solution could be
derfved provided the operator could be linearised using a Taylor approximation. The least squares
estimation method was then derived in a stochastic context, yielding a set of equations for the
optimal Gaussian estimate.

Chapter 4 extended the discussion to dynamic data assimilation. It was shown that when one
observation is assimilated at a time, dynamic data assimilation was easily derived from the static
case. This lead to deterministic methods such as dynamic least squares and dynamic 3D VAR,
and stochastic filtering methods such as the Kalman Filter. Several extensions of the Kalman
Filter for non-linear models and non-Gaussian distributions were discussed: the Extended Kalman
Filter uses a linear approximation to the model in the computation of the Kalman Filter prediction
equations; the Ensemble Kalman Filter propagates an ensemble of state realisations from which
the first moments of the (Gaussian) state’s distribution are approximated, each ensemble member
being updated using the Kalman Filter update equation; the Particle Filter uses a full Monte-Carlo
approach which can be applied to non-linear models and non-Gaussian distributions.

In the case where several sequential observations are used in the assimilation, dynamic data
assimilation leads to the deterministic 4D VAR method (the standard for weather forecasting in
the UK and France) and to stochastic smoothing methods, which were only briefly mentioned in
this work.

Two experiments were then set up in order to compare these data assimilation methods and try
and determine the’ir strengths and weaknesses. The methods were run on two non-linear systems

often used in the atmospheric science literature: the Lorenz 63 (low dimension) and the Lorenz 96
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systems (medium dimension). The effects of dimension, Vnon~linefc‘1ri.t;y and method’s parameters
were discussed for each method. The 4D VAR algorithm was shown to outperform the o',t-h;
ods when the effects of non-linearity remain limited, provided a sufficiently long time.~wi’r;dow was.
considered. The Particle Filter showed some very good skill in low dimensions, and seemed to
be, of all methods, the more robust to non-linearity. However, it was also demo‘nstﬁrated that the
Particle Filter suffers from filter divergence issues in higher dimensions and would need an unre-
alistic number of particles to achieve satisfactory results. The Ensemble Kalman Filter was able
to provide a good assimilation in linear and non-linear regimes, at low and high dimensions, while
keeping computation time to a minimum. The limitations of 4D VAR and the Extended Kalman
Filter, which both rely on linearisation approximations, became apparent in a strongly non-linear

regime.

8.1.2 Application to precipitation forecasting

Moving from the general to the particular, a new data assimilation method is then developed
and applied to the problem of very short-term precipitation forecasting. Chapter 6 presents a
new probabilistic data assimilation algorithm which can be applied to nowcasting using a simple
advection based precipitation forecasting model. The algorithm has several desirable features, in
particular the ability to estimate the posterior distribution of the model state using optimisation
methods, which provides control over the computational complexity. While the initial derivation
is quite mathematically demanding, the implementation can be employed within any optimisation
framework, which forms the basis for most traditional variational assimilation methods.

In Chapter 7, the new method is tested on two large events characterised by convective and
frontal dominated rainfall. The results show the model is robust, although further testing is neces-
sary to assess its applicability to operational nowcasting. The ROC curves show probabilistic skill
at all forecast horizons, but it is clear that skill is lost rapidly, which is typical of such advection /

extrapolation based systems.

8.2 Directions for future research

8.2.1 Towards a benchmark for data assimilation methods

The comparison of data assimilation methods which has been undertaken in this thesis is a first step
towards a unified benchmark to be used both as a reference and testbed for new data assimilation
methods. Much work remains to be done to achieve this objective. Some the directions in which

this work could be taken forward are listed below:
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e Further methods — The presented work only focuséd on 4 keyf-'data,,assfimirf’%lli'on, methods:

the Extended Kalman Filter, the Ensemble Kalman Filter, the Particle F.il'ter;\\gn‘d?gZL‘
(strong and weak constraint). Several methods have been omitted, which ought to be add_ed\' ‘
for the sake of completeness. Such methods would include, for instance: 3D VAR, the Un-

scented Kalman Filter and path sampling techniques: Variations ona given method should
also be taken into account, e.g. Particle Filter with different resampling schemes or various

‘implementations of the Ensemble Kalman Filter.

e Further models — Two classical non-linear deterministic models were considered. The ad-
dition of more models would certainly help provide a better understanding of each methods
abilities in different situations. In particular, stochastic models like the double-well model
would provide a new dimension to the test bench (so far, all models considered were deter-

ministic).

o Imperfect model setting — The assimilation methods were tested in a perfect model set-
ting, which does not provide a true account of the method’s capabilities when the model is
unknown, as is the case in almost all real applications. Further experiments are thus needed

in an imperfect model setting.

e Error models — Model and observation errors are very often assumed Gaussian to keep the
computations simple. However, this assumption is often unrealistic. Better, more realistic
error models should be investigated, with the aim to move towards on-line estimation of

error parameters (the error being estimated directly from the model and the data).

e Computational aspects — Although often considered less important, the computational as-
pects of data assimilation still need to be taken into account. In particular in the case of
short-term forecasting, computation time becomes critical as data assimilation needs to be
completed witihn strong time constraints. The applicatidn of dimensionality reduction tech-
niques and the emulator setting to data assimilation could lead to new assimilation methods

and reduce the limitations of existing methods.

8.2.2 Precipitation nowcasting model

Several extensions to the precipitation nowcasting model presented in Chapters 6 and 7 have been

mentioned already. They include:

e Improved forecasting — A better forecasting scheme in which the advection of the cells is

computed based on their forecast location rather than being assumed constant.
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e Other cell shapes — Other shapes could be cpnsidered_’fof the rair;.ic.e'l;l_. For ijns.tahce;, elliptic

Gaussian cells or plateau-shaped cells might lead to a better representation of ‘th‘e,_yr;al,n‘fall‘x
field. The question of the computational burden would however arise as more p_aramcteté- ‘
would possibly be needed. It is assumed that by allowihg more flexibility in the rain cells,

fewer cells would be needed to capture the rainfall field.

Scale decomposition — At the moment, the model treats the rainfall field as a whole. How-
ever, it is known than 2D precipitation fields are a projection of precipitation occurring
at different scales in the atmosphere. Estimating precipitation at different spatial scales is

likely to lead to an improved and more flexible estimate of the advection field.

Parallelisation of the algorithm could improve computational speed significantly. With
the current assumptions in the update step that cells are conditionally uncorrelated, the cost
function can be factorised. This factorisation could easily be exploited to run the optimisa-

tion on several concurrent Processors.

Comparison with existing methods — Future work should ideally compare the results of the
variational Bayes methods with other approaches. This would be greatly facilitated by a suit
of standard test cases and diagnostics that could be agreed up by the nowcasting community

to allow model and method comparison.
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Computation of the KL

divergence

This appendix details the derivation of the KL divergence for the rainfall model from Chapter 6.
Recall from Equation (6.48) the expression of the KL divergence between the posterior and the

approximating distribution:

L(pllq) /q X,) "‘;‘) X;. (A1)

Using Bayes rule (Eq. (2.11)), the negative logarithm of the posterior can be expanded:
—Inp(x|Y)) = —Inp(yix)) = Inp(xi|x,=1) +Inp(Yy). (A.2)

Substituting (A.2) into (A.1) yields:

Lipllg)=- <1np(y‘|xt)>q(x‘) - <1n &‘ng)_—i)>q(m + <1np(Y1)>q(x‘) (A3)

The three terms are computed separately in the rest of this appendix. The first term is the KL
divergence of the likelihood (with respect to g) and the second term is the KL divergence of the
predicted distribution (acting here as a prior). The last term is a constant with respect to x, and can
be discarded since we are only interested in minimising (A.3).

To ease the notation, the time index is dropped in the developments below. The conditioning
of the prior on X, is not indicated anymore (i.e. p(x|x.-1) is simply denoted p(x)) but is ‘still

taken into account in the derivations.
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Appendix A

A.1 Negative log likelihood term: — (Inp(y|x)),

Let us first expand the negative log- llkehhood Under the assumption that yisa vector of len‘
M (the number of pixels in the radar image) and that there is no spatial conelatmn ie R= o I

we can write:

—Inp(y|x) = —In <(27t)"/"’/2}R|_l/7 e~ 2(H0O=¥) R~ y)> (A.4)

~ 5 (h(x —y)"R™ (h(x) ~y) (A.5)
~ )Af, (h(x,8/) — ;)" (A.6)
202 = () 7 .

1 . 2 2
~ 5y ) (h(s)" = 2h(x,8))y;+)) (A7)
j=1

under the assumption that the observations are uncorrelated in space, and after dropping the con-

stant term.

Taking the expectation with respect to q(x) thus yields:

1 M
— <lnp(y1x)> iy ): Kh X,S; > —2y; <h(x,s}-)> +y3 (A.8)
q(x) j=1 q(x) q(x)
Note that this can be rewritten as follow:
1 M ’
— ( Inp(y|x) iy }: h(x,s;) — ( h(x,s;)
q(x) j=1 q(x) q(%)
(A9)

+ (<h(x»51)>q(x) —)’f) 2

where the first term in the sum is the variance of the rainfield and the second is the square deviation
of the expected rainfield from the observation. However, we'll focus on the formulation from

Equation (A.8) in the following sections.

A.1.1 Computation of <h(x,sj)>q )
The rainfield at a given location s; is by definition the sum of the contributions of all rain cells at
this location:
1(X,S,) ):h(xk,sj (A.10)

s (e (A.11)

[ [V}z
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Since we assumed earlier that cells’ parameters were uncorrelated, i.e. q(x) :'H'ﬁ‘:'l'q(’xk), the

expectation of the rainfield can be factorised as the sum of the expectations for each cell:

<h("vsf>> —E< "k’sf> .
q(x) q(xk)

For computation purposes, we can thus consider the case of a single-celled rainfield, and drop

the k index for improved readability.
h(x,s;) = re (e (¢=3) (A.13)

Let us then compute the expectation. We note that the cell’s height & can be integrated separately
as it does not depend on the other two parameters, whereas the centre , conditionned on the width

w, requires that we first integrate out one of the parameters (the centre, for computational ease).

<h X,S; > /q rdr//q clw)g(w) =3 (e=5,)"(e=57) dedw (A.14)
:<r> /q(w) {/q(dw)e‘ﬁ(““s;‘) (=) ge| dw (A.15)
g(r)

:% <f1 (W)> (A.16)
q(w)
where we used the notation ‘
fi(w) = / q(ClW)e“*("’sf)T(“”"‘f’ de (A17)
_— /e (6701 e=8) - gi(es))(e=9) ge (A.18)
2nEw

The product of exponentials in Equation (A.18) can be reformulated so that parameter ¢ appears
in only one of them (see for example Petersen and Pedersen (2006)). Such manipulation leaves us

now with the following integral:

g liE,» . C4Es;
PG SRR T (A.19)

! c—cV(c—g:
eﬂz\vm{)(‘"*’l} (€-s)

filw) :2n§W

The Gaussian integral in ¢ integrates out to the constant 2%’:‘1’ thus leaving:

f‘} (W) = (f_ Zu‘(lli-g) (E«sj)'r(é,_sj) (Azo)

1+€
We now only need to compute the expectation of f (w) to solve Equation (A.16). To that effect,

let us consider the following expectation, where E is some constant factor and q{w) an Inverse
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Gamma distribution:

<e“$5> = /q(w) e wE dw
q(w)
Ba

-7 / Wl h o=k dw s (A22)
- .f'% [rete P e an | (A.23'>
_ F%; [reteBrena (A24)
- s pretre (A25)
.::<L+%>_a (A26)

Applying this result to Equation (A.20) and substituting in Equation (A.16) leads to the following

~ expression, after restoring the k index:

%l 1 s (e s T
<h(Xk’Sj)>q(xk) R <1 RETR +E..k)( =) (& S")> (.27

A.1.2 Computation of <h(x,s_/)2>q

X

We first expand </z(x,sj)2> ) to separate the square term and the double products.
q(x

2
N
h(x,s;) = <Eh(xk,sj)> (A.28)
k=1
N
=Y h(xe,si)?+2 Y h(xi,si)h(x:,85) (A.29)
k=1 | <k<I<N

Using our assumption that cells’ parameters are uncorrelated, i.e. q(x) =q(x1,..,xy) = 0, q(xz),

the expectation becomes:

N .
</7,(X,Sj)2> = E <h(xk,sj)2>
qx) k=1 4(x)

+2 E <h(xk,sj)> <h(X[,S/')>
| <k<I<N q(xx) q(x)

The double product is evaluated using the result from Equation (A.27). The computation of

the <h(xk,sj)2>
q(xx)

the same reasoning, we can restrict ourselves to the case of a single-celled rainfield and drop the k

(A.30)

term is very similar to that of <h(x,sj)> ) (see paragraph A.1.1). Following
q(x
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index for readability. Expanding <h(x,sj)2> & gives:
q(x

<h (x,s/) > ///q q(clw)q ))ze'%«(c“SI)T(C“Sf) dhdedw
< > //q clw) q(w) e~ B e=si) (=) dedw
q(r)

Y(Y6+ 1) < £ >>q(w)

2 W) :/q(c|w) e_%(c_sj)'r(c'sj) de
_ 1
T 2nEw

with

' e—i!;(c—é)w‘(c—é) e~ & (e=s;)(c=s;) de

Equation (A.35) can be rewritten so that ¢ appears in only one of the exponentials:

S428s;
folw) = e T [ RO g

2nEw

The integral evaluates to the constant zné‘% leaving:

e ey (€s))" (8-s;)

falw) = T (A.37)

Applying the result from Equation (A.26) to f>(w), and substituting in Equation (A.33) gives

the following expression for </7(X,Sj)2> ( )':
q(x

2 AV C@ems) (@ —s) T
<h(xk,s,) >q(m R (1 1 50 T2 (A.38)

Substituting (A.27) and (A.38) into (A.8) gives the complete expression for the likelihood term

in the KL divergence.

A.1.3 Gradient of (h(x,s;))

q. Xk
We let By ; = (‘TEZ—L—%—S—’ in the following expressions for better readability.
o h(xy,s;
< ( k ‘/)>q(xk) _ 'le (xk( S])( ,)—O‘«k—l (A.39)
¢y S B (T8
o & —s; <
T h(xk,s-)> (A40)
B (1+Ex)Ex,, 7/ %)
o h(xg,s;
< ( k j)>f-I(Xk) — ﬁ% ((ak . ]>(Ek.j_ l) _ 1) (Ek)j)—ak-—l (A41)
oEx Sk (14 &)
1 1
= — ({0 = 1)(Eyj—1)— 1) =— <k(xk,s~)> (A.42)
E ' & " g
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a<h(xk,sj)>
30, & (14&)

= —In(Ex ) <1’?(xk’51‘)>

q(x¢)

a<h(xk’8")>q(xk) YO (& =) (G —s))
3B TS B2 2(1+Ek)?

(Ex,j

oy (& —s) (& —s)) <h(x,\,,sj)> (
q(xe)

T B2 2(1+E&)Ek,

q(xx) L1 %
- — By j) *
a'\{k 6k 1 ‘1‘&,1\ ( ¢ j)

+
= — ll(x,i\»)s'j)>
Yk q(xx)

o (h(xk,s;
<1(XA Sj)>q(xk) _ _,}l_k__lﬁ( . _)—a;-
a'Yk 8% 1+E,;J\ 7

(
= e — h(xk,S')>
Ok ’ q(xx)

A1.4 Gradient of [qh(xg,s;)? dx,

(ék—sj')‘r(i‘k—sj)
2&;)

Welet Fy j =1+ RO in the following expressions for better readability.
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A.2 KL divergence of the prior: — <In ?i(ﬁ>
q.x

Using the assumption that parameters are uncorrelated between cells, we can write:

p(x) _ pUrp(clw)p(w)

q(x) q(h)a(elw)q(w)
p(h)p(ex|wi)p(w)
(

In

:ZIn

q(h)q(exwi)q(wr)
3 hk P(Ck|Wk)P(Wk)
“L < () (ckiwk)q(wk)> (A73)

and

()= R O B R A

Considering a single cell, and dropping the k index, we compute separately the KL divergences

for h and (¢, w).

_ _ [1n P(R)
A.2.1 Computation of <1n q(h)>q,h

As stated in Penny (2001), we have the following result for the KL divergence between the Gamma

distributions p(r) and q(r) with respective parameters ', & and v, &:

_< _E_> /q ln—~——d/ (A75)

') . sl
FD s - -ma-y(1-5) 40

=yInd—vYInd —In

A.2.2 Computation of — <1n g%%%>
q,c,w

~/, plelw)p(e e Rl
<‘ q(ciw)q(w> =~ [ ateb)atw)n GELEEES ded

——/q(w) lnq(w) dw
+/q(w) (—/q(c|w) In Zézix; dc) dw

The first term in the sum is the KL divergence between two Inverse Gamma distributions with

(A7)

respective parameters o', B’ and o, B. The following shows that the KL divergence between

the two Inverse Gamma distributions is equivalent to the KL divergence between two Gamma
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distributions with identical parameters.

1Ga(wlo,B)
/IGB W|Q B m dw

_/ - W lem In B’O‘ Lo >w
(o) ' oI ()

B* a-1,-p B T(0) . oo (1 |
A In <—-—B°‘I’(a’) A% di (A.80)

(e ,a)e_@) dw ‘ \(A.79)'

()

Ga(KIOL B
/Ga Ga(\a, B) dw (A81)
—alnB—a'Inp —In 11:((;)) 4 (a— o) [¥(a) — InB] — <1 - %) (A.82)

The integral in ¢ is the KL divergence over the centre. Given that p(c{w) = N(c | ¢, Ewi)
and similarly q(c|w) = Al(c | €,Exwy), we can apply the result from Penny (2001) on the KL ;

divergence between two normal distribution, which yields, after simplification: g

—/q(clw) lng% <1n€ 24—@ c—a)t (é—é')—l) (A.83)

Computing the expectation of the above with respect to q(w) is straightforward and only re-

quires showing the following:

<£> /IGL‘ wla, B)~ dw

1
/F _al'»ﬁ;dw

— L (14-12—[57»)0\’—-2 )y
/ r(a))” ¢ d

_ /Gama,ﬁ)xdw

0]

p

Putting Equations (A.82), (A.83) and (A.88) back into Equation (A.77) gives:

/plebop(n)\ _
<1 q<c1w>q<w>>q<csw)

A.2.3 Result

After restoring the k index and substituting (A.76) and (A.89) into (A.74), we obtain the final

result:
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A.2.4 Gradient

Following are the partial derivatives of the previous expression with respect to each parameters.
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Data assimilation framework

This appendix details some of the technical aspects associated with the implementation of the
data assimilation framework. Note that the framework described provides support for general data
assimilation as discussed in Chapters 2 to 5. The particular implementation of the rainfall model

discussed in Chapters 6 and 7 is not covered here.

B.1 General overview

The data assimilation framework comes as a set of libraries which can be used to create custom
data assimilation experiments. In total the framework amounts to about 5600 lines of code in its
original version, which is reasonably small for a library (as a comparison, the extension to the
rainfall model of the framework to the rainfall nowcasting problem involves about 16000 lines of

code). The organisation of the libraries is discussed below.

B.1.1 Overview of libraries

The data assimilation framework relies on the Matpack library (Gammel, 2005) to provide the
numerical foundations such as linear algebra, differential equations solvers, random number gen-

erators, etc. Although Matpack is a very extensive library and provides support for a great number
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of numerical applications, the support for linearalge‘bravremains fairly limited. In cens_eZqu'ef‘n,ce;,
we developed an extension to Matpack (MPEXT) aimed atvimproving. support for linear alg
Note that Matpack can be interfaced with the BLAS library, which is considered to be the standard

for vector and matrix computation. The overall architecture of the framework is summarised on.

Figure B.1.

DATA ASSIMILATION FRAMEWORK: _]
3 ]

EXTENSION LIBRARY (MPEXT)

Figure B.1: Dala assimilation framework — Software architecture

B.1.2 The extension library

When writing the extension library (MPEXT), care was taken to provide a syntax and function-
alities which would be close enough to those found in MATLAB®. The following features were

implemented as part of the MPEXT library.

Matrix/Vector generation
e methods to generate matrices and vectors filled with zeros, ones, or a custom number

e methods to generate diagonal matrices

e methods to generate uniform and Gaussian random matrices/vectors

General Matrix/Vector functions

e element-wise absolute value, element-wise modulus

e minimum/maximum of matrix elements (for each row or column)
e Cholesky decomposition of matrix

e mean and autocovariance of vector elements

¢ sum, weighted sum and mean of rows/columns of matrix

e weighted covariance and covariance of rows/columns in matrix
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e cumulative sum of vector elements, distance matrix between two vectors of scalars, -squaned..

error between two matrices

e length of vector, size of matrices, number of rows/columns in matrix -

Product functions

e Vector x Vector — scalar (inner product)

Vector x Vector — Matrix (outer product)

Matrix x Vector — Vector

Vector x Vector — Vector, element-wise product

Matrix x Matrix — Matrix, element-wise (Schur) product

Vector — Vector — Vector, element-wise division

e Matrix — Matrix — Matrix, element-wise division

Element functions

e Range extraction from vector/matrix (subvector/submatrix)

Replication of vector into matrix

Reshaping of vector into matrix

Aggregation of two vectors into a vector, aggregation of two matrices into a matrix (by rows

or columns)

Setting matrix row/column from vector

Extract diagonal of matrix as a vector, create diagonal matrix from a vector

Input/Output functions

e Print matrix/vector on screen
e Write matrix/vector to binary file, read matrix/vector from binary file

e Write matrix/vector to CSV file, read matrix/vector from CSV file I
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¢ Model

# Name : char*
# NameShort : char*
# Dim: int

+ Model()

+ ~ Model()

+ SetName( : char*)

+ SetNameShort( : char*)

+ SetDimy( : int)

+ GetName() : char*

+ GetNameShort() : char*

+ GetDimy) : int )

+ Evolve(x : Vector&, dt : double)

+ EvolveRK2(x : Vector&, dt : double, nsteps : int)
+ TangentLinear(x : Vector, dt : double, nsteps : int) : Matrix

# Obsn - Matrx
# ObsErrType : int
# ObsErr: PDF*
+ Op : ObsOperator*

Ve
—=

+ TangentLinear(X : Vector, dX : Vector, dt : double, nsteps : int) : Vector

+ Observation()
+ ~ Observation()

+ SetObsErr( : PDF*, ErrType.: bool)

+ SetOperator( : ObsOperator*)
+ GetObsTrue( : int) : Vector

+ GetObsNoisy( : int) : Vector

+ GetObsTrueM() : Matrix

+ GetObsNoisyM() : Matrix

DA_Method

# Name : char*
# FileNameSuffix : char*

+ ~ DA_Method()

+ Update(S : State*, z : Vector)

+ Evolve(S : State*, M : Model*, dt : double, : bool)

+ GetPDF(i : int) : PDF*

+ GetObsErr() : PDF*
+ GetDim(i : int) : int_

+ GetModelErr(i : int) : PDF*

+ GetObsErr() : PDF*
+ GetNObs() : int
+ GetAmplitude() : Vector

+ Load( : char*, : char*)
 + Save( : char*, :char¥)

+ Simulate( : Model*, : const-Vector, :\iﬁt, : double)

+ GetName() : char* POE (/\ +Ob5/ 0..1 <>
+ GetFileNameSuffix() : char* | / ‘
+ SetName( : char¥) ¥ POF() / /,/ +0p | 0..1
+ Reset(X : State*) + PDF(: PDF¥) / / ObsOperator
+ Print + ~ PDFi /
. + GetMe(a)n() : Vector / + ObsOperator()
N/ 0..1) + GetCov() : Matrix / 0.1 / + ~ ObsOperator()
State + SetMean( ::Vector) +0b5E”/ Ls--Apply(:3: Vector) . Vector.

# NComponents : int / +P + SetCov(: Matrix)

# P : PDF** // + Eval( : Vector) : double

# ModelError : PDF** Ve + Sample(: int).: Matrix /

# ObsError : PDF* 7 + Save( : char*) /

+ State() + Print() 5 (}

+ ~

+ Sef;iact:r(r)\p( int) OptErr

e # St State*

+ SetPOF( : POF%, I:.mt.) # Obs : Observation*

+ SetModelErr( : PDF*, i: int) ) .

+ SetObSErr( : PDF¥) At — L #obs Vedtor

: 0..1 + OptErr()

+ ~ OptErr()

+ Err(params : Vector) : double

+ ErrGrad(params : Vector) ; Vector
/’l\

Optimizer

1 - errlog : Vector

- niter : int
- precision : double
- fchange : double

+ Optimizer(_niter : int, _precision : double, _fchange : double)
+ ~ Optimizer()

+ GradCheck(x : Vector, OE : OptErr*)

+ Apply(x : Vector&, OE : OptErr*, FlagDisplay : int)

+ SetNIter(n : int)

+ GetErrLog() : Vector

Figure B.2: Data assimilation framework — Top level class diagram
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B.2 Components of the data assimilation-ffam'ewO'tk, | ‘

B.2.1 Overview

The data assimilation framework contains the following components:

Dynamical models

Observations

State

e Data assimilation methods

Probability distributions

Optimisation and error functions

Figure B.2 shows the class diagram for these components. Model, DA_Method (data assimila-
tion method), PDF (probability density function), ObsOperator (observation operator) and OptErr
(error function for use in optimisation method) are interfaces. The State, Observation and

Optimizer classes are standard classes?.

B.2.2 State

The State has been written so as to allow multiple variables to be handled by a single class. In
particular, it supports mu]ti]ﬂ@ “components”, i.e. sets of variables having a common (multivariate)
distribution. This is useful for models in which the state incorporates different types of variables, -
some of which have a Gaussian distribution, some others of which have Gamma distributions, etc.

The State also handles observation error and model error. Although one would argue that
these belong to the Model and Observation interfaces respectively, two reasons motivate their
implementation in the State class. First, one might want to estimate the paramelters of errors
along with the state. In such situation, errors can effectively be treated as additional state variables.
A second reason for keeping the errors in the state even when they are not estimated (i.e. they are
fixed) is that it is more practical to pass a reference to a single object (the state) to models and
observation operators rather than having to also include separate objects for the model error and

the observation error.

Ithe CSV (comma separated values) file format is supported by many application including Microsoft Excel and

Matlab.
2The Opt imizer ought to be rewritten as an interface to allow different optimisation methods to be used within the

framework. At the moment, the Opt imizer class implements the Scaled Conjugate Gradient algorithm
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"% Name : char*
#/NameShort : char*
# Dim: int

+ Model()

+ ~ Model()

+ SetName( : char*)
+ SetNameShort(:: char®)

+ SetDim{ : int)

+ GetName() : char*

+ GetNameShort() : char*®

+ GetDim{} : int

+ Evolve(x : Vectorg, dt : double)
+ EvolveRK2(x : Vector&, dt : double, nsteps : int)

+ TangentLinear(x : Vector, dt : double, nsteps : int) : Matrix

\ + Tangentlinear(X : Vector, dX : Vector, dt : double, nsteps : int) : Vector

A / N
e e
“ - MD_AR - F : double
| ~A: Matrix - DiffEq(t : double, x : const Vector®, xdot : Vector®)
‘ - eps : Vector . ' + MD_L96()
‘ + MD_AR(_A : Matrix, _eps : Vector) + MD_L96( : double)
| +~ MD_AR() + ~ MD_L96()
| +Evorve(x Vectorg, dt : double) + Evolve(x : Vector&, dt : double)
: | + EvolveRK2(x : Vectors, dt : double, nsteps : int) + EvolveRK2(x : Vectorg, dt : double, nsteps - int)
L TangentLinear(x : Vector, dt : double, nsteps : int) : Matrix + TangentLinear(x : Vector, dt : double, nsteps : int) s Matrix:
MD_L63
- r : double
- 5 : double
- b : double
- DiffEq(t : double, x : const Vector&, xdot : Vector&)
+ MD_L63()
+ MD_L63( : double, : double, : double)
+ ~ MD_L63() y
+ Evolve(x : Vectorg, dt : double) .
+ EvolveRK2(x : Vector, dt : double, nsteps : int)
+ TangentLinear(X : Vector, dt : double, nsteps : int) :-Matrix

Figure B.3: Data assimilation framework — Dynamical models class diagram

B.2.3 Dynamic models

A model needs to provide methods which propagate the state forward in time and compute the
tangent linear operator about a given state when necessary. Three models have been implemented
within the framework: the Lorenz-63 system, the Lorenz-96 system and an simple autoregressive
model used for testing purposes. There is no model error involved in the Model (it is handled
by the data assimilation method DA_Method). Figure B.3 provides a class diagram of the models

implemented.

B.2.4 Data assimil'ation methods

Data assimilation methods typically need to be able Lo propagate the state forward in time using the
Model and update the State given the Observation. Methods implemented include the Extended
Kalman Filter, the Ensemble Kalman Filter, the Particle Filter and 4D VAR (both strong and weak

constraint). Two methods which are not listed here nor discussed in this work have also been
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DA_EKF

+ DA_EKF()

+ DA_EKF( : Vector)

+ Evolve(S : State*, M : Model*, dt.: double,
¢ + Update(S : State*, z : Vector)

1 + Reset(X : State*)

i+ Print()

: bool)

" DA_EnKF

-Ns:int
- Ens : Matrix

T+ DA_EnKF( : State®, : int)

. + DA_ENnKF( : State*, : Vector)

"+ Evolve(X : State*, M : Modet*, dt : double,
i + Update(X : State, z: Vector)

: + GetEns() : Matrix

|+ Reset(X : State*)

.+ Print()

/
: bool)

DAPF

-Ns:int

- ResRate : double
| - Ens : Matrix
{ - EnsHist : Matrix
! - WHist : Matrix
[-lens :int
.- W Vector

* - Resample()
‘ + DA_PF( : State*,
|+ DA_PF( : State*,
|+~ DA_PF()

L+ Evolve(X : State*, M : Model®, dt double,
| + Update(X : State, z : Vector)

© + GetEns() : Matrix
| + GetWeights() : Vector
| + Reset(X : State*}
LAt

:int, : double)
: Vector)

Figure B.4: Data assimilation framework — Data assimilation class diagram

added later on: the Extended Kalman Smoother and the Ensemble Kalman Smoother.

The EKF and 4DVAR rely on the Mode for the computation of the tangent linear model. Both
the strong and weak constraints of 4D VAR are handled within a single class. A better design
would propably separate these two classes and have one inherit (in an object-oriented sense) 1’1‘6m

the other. The Particle Filter uses Systematic Resampling, however it should be extended to allow

boof)

DA_Mathod

# Name ; char®
# FileNameSuffix : char¥
< DA Method()

] + EvoNe(S : State*, M: Model*, dt: double,
+ Update(S : State* z: Vector)
+ GetName() : char®
+GetFxleNameSuﬂ‘x() char*
+ SetName( :char®)
+Reset(X: State¥)
+ Print() ;

bool)}

\

DA_4DVar

- dtu : double

- inner : int

- outer : int

- cstr_type : int
-wii i int
-afi:int

- nobsl : int

- nobss : int

- Xb : Vector

- Xb0 : Vector

- B : Matrix

- ObsH : Matrix
- ErrH @ Matrix
- Md : Model*
+ DA_4DVar(Md : Modei*, dtu : double, afi: double, Xb : Vector, B: Matrix, wli : double, type : int)
+ ~ DA_4DVar()

+ Evolve(S : State*, M : Model*, dt : double, ModelErr : bool)

+ Update(S : State*, z : const Vector)

+ Reset(X : State*)

+ Print()

other resampling schemes to be used.

Figure B.4 provides a class diagram of the data assimilation methods implemented (restricted

to those discussed in this work).

.2.5 Observations

The Observation class is responsible for handling the observations. The tasks provided include

simulating observations (using a given Model), saving to and loading from files, accessing a par-

ticular observation (“true” or “noisy”), etc. The observation operator (ObsOperator) maps the

State to observation space. As shown on the class diagram on Figure B.5, only the simplest ob-

servation operator has been implemented in the framework, i.e. the direct (or identity) operator

(0p_Identity) for use when the state is observed directly.
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Obseryation

]

;% Dim: int

# dt : double

# n0Obs : int

# Obst : Matrix

# Obsn : Matrix:

# ObsErrType :'int
# ObsErr : PDF*

i + Op : ObsOperator*

¢ + Observation() . f’f,;,obsope"r‘atof,
| + ~ Observation() . +Ope
| 4 SetObsEr( : PDF¥, ErrType : bool) o |+ OSOpeTator()

0.1+~ ObsOperator()

| + SetOperator( : ObsOperator*) R App&(" Vector) : Vector
AN

+ GetObsTrue( : int) : Vector
+ GetObsNoisy( : int) : Vector
+ GetObsTrueM() : Matrix
+ GetObsNoisyM() : Matrix
. + GetObsErr() : PDF*
+ GetNObs() : int
| + GetAmplitude() : Vector . + ~ OP_Identity()
+ Simulate( : Model*, : const Vector, :int, : double} + Apply( : Vector) : VectorJ
| + Load( : char*, :char*)
! + Save( : char*, :char*)

Figure B.5: Data assimilation framework — Observation and observation operators class diagram

B.2.6 Probability density functions

A probability density function (PDF) must allow for probabilities to be evaluated, mean and covari-
ance to be computed and samples to be drawn. Only Gaussian distributions have been considered,
both generic (PDF_Gauss) and diagonal (PDF_GaussDiag). Further non-Gaussian distributions
have been implemented which are not shown here (namely the Gamma and Inverse-Gamma dis-

tributions). Figure B.6 gives the class diagram for the probability density functions.

B.2.7 Optimisation and error functions

The Optimizer class implements a Scaled Conjugate Gradient algorithm. It has been adapted
from Netlab’s implementation of scg () (Nabney, 2001). Typically, this class requires an error
class (OptErr) to provide the error function and its gradient. It also provides the ability to test
the gradient validity by comparison with a finite difference approximation (adapted from Netlab’s
gradchek ()). Two error functions have been implemented, which correspond to the cost functions
in 4D VAR strong constraint and weak constraint. The class diagram for the Optimizer and error

functions is given on Figure B.7.
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Figure B.6: Dala assimilation framework — Probability density functions class diagram

t PDF

+ PDF()

+ PDF( : PDF*)

+ ~ PDF()

+ GetMean() : Vector
| + GetCov() : Matrix —

| + SetMean( : Vector) M

| + SetCov( : Matrix)
. +Eval(: Vector) : double
| + Sample( : int) : Matrix

| + Save( : char¥)
I+ Print()

PDF_GaussDiag

7# vCov : Vector
. # vCovlnv : Vector

+ PDF_GaussDiag()

{ + ~ PDF_GaussDiag()
+ GetMean() : Vector
. + GetCov() : Matrix
i + GetCovlInv() : Matrix
| + GetCovDiag() : Vector
‘ + SetMean( : Vector)

+ SetCov( : Matrix)
' + SetCovDiag( : Vector)
| + Eval( : Vector) : double
| + Sample( : int) : Matrix
i + Save( : char*)
+ Load( : char*)
+ Print()

. + PDF_GaussDiag( : Vector, :Vector)
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PDF:Gauss

# vMean : Vector
# mCov : Matrix

# mCovlInv : Matrix
# fnorm : double

+ PDF_Gauss()

.| + PDF_Gauss( : PDF_Gauss*)

+ PDF_Gauss( : Vector, : Matrix)
+ ~ PDF_Gauss()

+ GetMean() : Vector

+ GetCov() : Matrix

+ GetCovInv() : Matrix

+ SetMean( : Vector)

+ SetCov(::-Matrix)
4+ GetFNorm() : double
+ Bval(: Vector) ; double
+ Sanple(: int): Matrix
+Gave(: chart)

+ Load(.: char¥)

+ Print() /
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- . Optimizer OptErr
" niter : int # St : State*
- precision : double # Obs : Observation*
: - fchange : double | # obs : Vector .
i - errlog : Vector ) 7] + OptErr()
i + Optimizer(_niter : int, _precision : double, _fchange : double) - + ~ OptErr()
+ ~ Optimizer() + Err(params : Vector) : double
+ GradCheck(x : Vector, OE : OptErr*) + ErrGrad(params ;- Vector) : Vector.
+ Apply(x : Vector&, OE : OptErr*, FlagDisplay : int) o /l\ R
t SetNIter(n : int)
 + GetErrlog() : Vector
!
OptErr) P
# Xb : Vector
# Binv : Vector
# Rinv : Vector
# Obs : Matrix
# Xhist : Matrix
# Md : Model*
# X : State*
# dtu : double
# afi :int .

'+ OptErmI(_Xb : Vector, _B: Malrix, X State¥, Obs ! Mal
+ ~ OptErr}() s
+ Err(params : Vector) : double
+ ErrGrad(params :Vector) :Vector
+ GetXHist() : Matrix
+ GetX() : Vector
+ GetObs() : Matrix
+ GetXb() : Vector
+ SetXb( : Vector)
+ ComputeXTraj( : const Vector)

A Al e A e S B e i i e e

OptErrIWeak L s
- Qinv : Vector -
SErrbst:Matrk e
"+ OptErrIWeak(_Xb : Vector, _B: Matrix, _X : State*, _Obs : Matri, _Md : Model*, dtu : double; afi { int)
+ ~ OptErrIWeak() z

+ Err(params : Vector) : double

+ ErrGrad(params : Vector) : Vector

+ ComputeXTraj( : const Vector)

Figure B.7: Data assimilation framework — Optimisation and error functions class diagram
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