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SYNOPSIS

This thesis addresses the kineto-elastodynamic analysis of a four-bar mechanism
running at high-speed where all links are assumed to be flexible. First, the
mechanism, at static configurations, is considered as structure. Two methods are
used to model the system, namely the finite element method (FEM) and the dynamic
stiffness method. The natural frequencies and mode shapes at different positions
from both methods are calculated and compared.

The FEM is used to model the mechanism running at high-speed. The governing
equations of motion are derived using Hamilton's principle. The equations obtained
are a set of stiff ordinary differential equations with periodic coefficients. A model is
developed whereby the FEM and the dynamic stiffness method are used conjointly
to provide high-precision results with only one element per link.

The principal concern of the mechanism designer is the behaviour of the mechanism
at steady-state. Few algorithms have been developed to deliver the steady-state
solution without resorting to costly time marching simulation. In this study two
algorithms are developed to overcome the limitations of the existing algorithms. The
superiority of the new algorithms is demonstrated.

The notion of critical speeds is clarified and a distinction is drawn between "critical
speeds", where stresses are at a local maximum, and "unstable bands" where the
mechanism deflections will grow boundlessly. Floquet theory is used to assess the
stability of the system. A simple method to locate the critical speeds is derived. It is
shown that the critical speeds of the mechanism coincide with the local maxima of
the eigenvalues of the transition matrix with respect to the rotational speed of the
mechanism.

Every mechanism has some limiting critical speeds at which the stresses will
become unacceptable. A method is proposed whereby the mechanism can be run
above one or more limiting critical speeds by changing a geometrical parameter of
the mechanism.

The experimental work is carried out in two parts. In the first part the mechanism at
different static configurations is considered. Modal testing method is used to extract
the natural frequencies, mode shapes of the mechanism and the damping ratios. In
the sccond part, the mechanism is run at different speeds. The strains and stresses at
different locations of the mechanism are measured. The effect of the distance
between the ground pivots is demonstrated.
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Chapter 1

INTRODUCTION

1.1. INTRODUCTION

Reuleaux (1875), a German kinematician, defined a machine as "a combination of
resistant bodies so arranged that by their means the mechanical forces of nature can
be compelled to do work accompanied by certain determinate motions". Further, he
defined a mechanism as "an assemblage of resistant bodies, connected by movable
joints, to form a closed kinematic chain with one link fixed and having the purpose
of transforming motion". For the 90 years which followed, this definition has been
the core of almost all investigations of the dynamics of mechanisms. Stresses in the
members were assumed to be only due to inertia and external forces. Based on these
stress calculations, the mechanism was designed, built and tested. As mechanisms
were made of relatively stiff components and the running speed was relatively low
and quite below their fundamental frequency, the assumptions that mechanisms parts

behave as rigid bodies have not been challenged.

The competition in the international marketplace prompted the development of
machines and mechanisms which run at even higher speeds. However, the higher
operating speeds gcncfalcd larger inertial forces and the mechanism members
suffered considerable deformation. Under these circumstances the rigid body
assumption was no longer valid. A new approach was needed where the members
were allowed to deflect when loaded. A new discipline was born: the clastodynamic

analysis of mechanisms,
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When the operational speed increascs, inertia forces, being proportional to the square
of the speed, could rise drastically. Hence the nced for light-mass links in
applications involving high speeds. This brought about a new challenge for the
designer. The flexibility of such links increased and high precision motion could no
longer be guaranteed. In applications where high-precision is required, mechanisms
such as robot manipulators are made very stiff which means with high inertia if the
components are made of commercial materials such as steel. This limits their use to
relatively low operating spceds due to the torques and forces required for their
operation. The other alternative is to use high stiffness-to-density ratio materials

such as fibre-reinforced composite materials.

1.2. AIM OF THIS RESEARCH

The purpose of this research is to model a flexible four-bar mechanism running at
high-speed. The model used was derived from the finite element method (FEM). The

main objectives of the study are outlined in the following:

1- In the FEM the accuracy of the solution increases with the number of elements
used to model the system. However, this leads to a bigger equation system and the
central processing unit (CPU) time required for the solution to converge becomes a
limiting factor, Hence, the first objective of this study is to develop an efficient

model with the minimum number of elements per link.

2- The literature review shows that there is a lack of algorithms to yield the steady-
state solution of the mechanism quickly and efficiently. The few algorithms which
exist all suffer from some defects. The situation should be addressed by developing

new algorithms to calculate the steady-state solution of the mechanism running at

high-speed.
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3- When the mechanism is running at high-speed, the stresses in the links exhibit a
scrics of local maxima with respect to speed. The speeds at which the stresses are
bigger than at neighbouring speeds are called critical speeds and, in the past, they
have been found theoretically and verified experimentally. Some of these critical
specds, called here limiting critical speeds, cannot be exceeded because the stress in
one or more of the linkages will exceed the safe working stress. However, above
some limiting critical speeds there may be a safe speed band, or quiet speed band,
where the mechanism could be run without the mechanism being over stressed. The
problem of running the mechanism over some limiting critical speeds is addressed in

this study.

4- The localisation of the critical speeds of a mechanism is an important issue for the
designer. If such information is not available, the designer would have to run a
costly simulation at different speeds with small step size in the range of speeds for
which the mechanism was designed. The result of this simulation would be a graph
of the maximum stresses endured by the linkages against speed. Once this achieved,
the designer would locate the critical speeds, determine which link suffers most and
finally locate the first limiting critical speed. One of the purposes of this study is to
develop a simple method to locate the critical speeds of the mechanism. Once this
information is made available, the designer would run the simulation at only a

limited number of speeds thus saving valuable CPU time.

5- The experimental work aims mainly at verifying the theoretical findings. Broadly
it can be divided into two parts. The first part deals with the mechanism as a

structure at static configurations and in the second part, the mechanism is run at

different speeds.
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1.3. OUTLINE OF TIHE THESIS

This thesis is organised into nine chapters. The present chapter serves as an
introduction to the subject and outlines the overall rescarch programme. The rest of

the chapters are as follows:

Chapter 2 critically reviews the literature relevant to the subject being investigated.
Since there are different aspects to the subject, the review is not limited to papers on

the elastodynamics of four-bar mechanisms.

Chapter 3 deals with the kineto-dynamic analysis of the four-bar mechanism. In this
part the links are assumed to be rigid. First, kinematic characteristics, such as
velocities and accelerations, are derived. The effect of the transmission angle on
these characteristics is discussed. The inertia forces and the torque required to drive
the mechanism are presented. Speed is assumed constant and the only forces being
applied to the mechanism are inertia forces. Finally, a classification of four-bar

mechanisms is given with the help of the solution space concept.

Chapter 4 gives a detailed presentation of the application of the FEM to the analysis
of the four-bar mechanism. The links of the mechanism are modelled as beam
elements in axial and bending vibration modes. The equations of motion are
obtained by means of Hamilton's principle. In the derivation of these equations, the
effects of the rigid-body motion on the elastic deflections are included. Also the

stiffening effect is discussed. The two versions of the FEM are considered, namcly

the h-version and the p-version.

The dynamic stiffness method is described and developed in Chapter 5. The
expressions of the system matrices are derived in terms of transcendental functions

which are frequency-dependent. The advantage of this method over the conventional
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FEM is that the interpolation functions are based on the exact solution of the
differential cquation governing the vibration of a beam in the mode considered
(bending or axial). Thercfore very accurate natural frequencies and mode shapes are
determined and the accuracy does not depend on the number of "elements" used.
However, this method leads to a non-linear eigenvalue problem and the classical
algorithms are not suitable to solve the problem. A special algorithm is discussed.
The dynamic stiffness method is compared to the conventional FEM for two cases: a

portal frame and the four-bar mechanism.

The solution of the equations of motion is developed in Chapter 6. An overview of
the existing methods to calculate the steady-state solution is discussed. Two new

algorithms are derived to overcome the shortcomings of the existing algorithms.

Chapter 7 deals with the critical speeds of a four-bar mechanism and it proposes a
method to run the mechanism above several of these. The stability of the system is
investigated using Floquet theory from which the monodromy matrix (called also the
transition matrix) is defined. The critical speeds are related to the maximum of the
real part of the eigenvalue of the monodromy matrix. The effect of the distance
between the ground pivots of the mechanism on the maximum stresses is also
investigated. The notion that increasing the damping to reduce stresses so that the
mechanism could be run at a maximum higher speed is discussed. Finally a proposed

design method is derived.

The experimental work is presented in Chapter 8. First a practical method is given
for measuring the gencrated path by any point of the coupler. Modal characteristics
of the mechanism at static configurations are presented. Then, the mechanism is run
at different constant spceds and different distances between the ground pivots., The
experimentally obtained stresses are compared to the model. The effect of the

transmission anglc on the maximum stresses is also shown. The transmission angle
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is defined as the angle between the follower and the coupler, the performance of the

mechanism depends very much on it.

Chapter 9 draws the conclusions and provides some recommendations for further

rescarch in this area.
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Chapter 2

LITERATURE REVIEW

2.1. INTRODUCTION

Since the dawn of civilisation, man invented many mechanisms and basic machines
to carry out simple operations in his struggle for survival. The machines were
operated by either human or animal power. After the industrial revolution and the
invention of the steam engine, a new source of energy became available. This
prompted the invention of many new mechanisms and machines to respond to the
increasing demand of the expanding industry for increase of production. Initially,
mechanisms and machine theory was random in growth characterised by inventions
and the establishment of a basic form of machines rather than by design and
development. Steadily a theory emerged where the analysis and synthesis of
mechanisms were based on principles of physics, kinematics and dynamics

assuming that mechanism elements were rigid.

However, as a consequence of the need for increased productivity, mechanisms were
run at ever higher speeds. The design engincers were faced with a dilemma, on one
hand to increase productivity, the machines had to be operated at higher speeds
which generated new problems not encountered when mechanisms run at lower
speeds, such as noise radiation, carly failure due to fatigue and vibration excess. On
the other hand the precision requirements mcant that the body parts of the machine
have to be stiff, which meant more power was needed to operate these machines.
Therefore the problem they were facing was how to run machines at higher speeds

with a lower power consumption. New methods to understand the clastic behaviour
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of mechanisms were needed. The assumptions that machine parts are rigid can no

longer be made since they do deflect when the speed is high enough.

This chapter deals with the literature review rclevant to high-speed flexible
mechanisms and the four-bar mechanism in particular. There have been many survey
papers published in the past. Erdman and Sandor (1972), and Lowen and Jandarists
(1972) published one of the pionecr research surveys in this field. As computers
became more and more powerful and accessible, less assumptions were made.
Erdman and Sandor (1972) rightly reported that many simplifying assumptions
made in order to yield solvable equations tend unfortunately to make the model and
solution unrealistic. For example, at the beginning only one of the linkages of the
four-bar mechanism was assumed flexible. An analytical solution was derived after
many simplifications and assumptions. As the system became more difficult to
solve, the use of numerical techniques was inevitable. Two widely used approaches
exist. These are the lumped parameter approach and the Finite Element Method. The
FE theory of structural analysis has been applied to the modelling of an elastic
linkage using both the force (flexibility) method (Erdman et al., 1972) as well as
displacement (stiffness) method (Winfrey 1971, 1972). However, in general the
stiffness matrix approach is more popular among researchers, as it is in many fields
of structural design, than the flexibility method in the analysis of high-speed

mechanisms.

Two of the most recent reviews in the arca of dynamics of flexible mechanisms have
been presented by Lowen and Chassapis (1986) and Thompson and Sung (1986¢). In
the first one, the reviewed publications have been grouped according to their basic
premises: analytical methods, FE methods, optimisation schemes and general
experimentation. Where appropriate, each of these categories was subjected to a
further division of topics in order to be able to differentiate between publications

which dcal with vibration responses, quasi-static deflections or stability.
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Throughout, special attention was paid to the derivation of the governing equations
of motion, the methods of their solutions and, when possible, to the correlation of
numerical results with experimental ones. In the sccond review paper, limited
exclusively to the FE method, the authors presented a complete list of references on
FEM for the design of planar mechanisms. In the latter paper, the literature was
reviewed, by highlighting the phenomena being studied, the design function being
undertaken and the different aspects of FE analyses such as element selection,
formulation strategy and procedure employed to solve the equations of motion. Peng
and Liou (1992), later presented a comprehensive study of the experimental studies
achieved on flexible mechanisms. The authors carried out the investigation from a
designer point of view. They started by exposing the parameters which affect the
dynamic response of a flexible mechanism. They then discussed the common
assumptions made in the analysis of such systems together with the experimental
works whenever available to prove or disprove the assumptions. The subjects treated
included the variation of stress along the cycle, the effect of non-linear terms, critical
speeds, damping measurements, experimental set-up, etc. The authors concluded
their review by suggesting more experimental work should be done in order to shed

some light on the discrepancies between the model and the experimental results.

2.2. FINITE ELEMENT METHOD

Onc of the characteristics of the FEM is its ability to represent a continuous system
which theoretically has an infinite number of degrees of freedom, by an approximate
multi-degree of freedom system. Hence, it provides an casy and systematic
technique for modelling complex structures and in particular it lays the groundwork
for a general approach to the modelling of clastic mechanisms. As the size of the
problem becomes bigger, the computational difficulty and the cost risc. This is

where approximations in the methods of solution to reduce the computation time are
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most nceded. In the case of four-bar mechanisms the basic sct of equations at any
instant of time during the cycle is of low order; this is because the number of
clements needed for the solution to converge is quite low. However, solving the
system of cquations corresponding to the steady-state solution can still be a time- or
resource-consuming process. This problem is discussed later in more detail in

chapter 6.

Winfrey (1971) was the first to apply FEM to analyse planar and spatial mechanisms
with elastic links. It was shown that the FE solutions could systematically and easily
be obtained as some or all of the links were considered to be elastic. Erdman et al.
(1972) proposed a general method for kineto-elastodynamic analyses based on the
flexibility approach of structural analysis. Bahgat and Willmert (1976) developed a
computer program to analyse a variety of different planar elastic mechanisms with
turning and sliding pairs. Their technique was based upon the FEM and utilised
beam-type elements with four coordinates per node: 2 translations, 1 rotation and 1
curvature. In consequence, the shape functions chosen are high order polynomials of

order 5; both transverse and longitudinal effects were taken into account,

There are two beam theories on which the FE models have been based, namely
Euler-Bernoulli and Timoshenko theory. In the former, a plane section is assumed to
remain plane and normal to the neutral axis after deformation. The Euler-Bernoulli
theory is therefore limited to slender beams vibrating at lower modes. In order to
model thick beams or a beams in higher modes, Timoshenko beam theory must be
invoked since it accounts for the shear deformation and the rotatory inertia.
Gamache and Thompson (1981) presented a comparative study of both theories
applied to a four-bar mechanism. The first comparison concerned the cffect of the
number of elements used to model a beam on the accuracy of the maximum
deflection. It was found that for slender links modelled with 1 clement per link the

crror was 26.9% for the follower and 80.8% for the coupler when Euler-Bernoulli
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beam theory was used. These errors dropped to 8.1% for the follower and 12.9% for
the coupler when a model of 4 elements per link was used. When Timoshenko
theory was used, the errors were 17.2% and 80.7% for 1 element per link and 0.95%
and 10.9% for 4 elements per link. The errors were calculated with respect to a
model of 10 elements per link. Gamache and Thompson also indicated that a two
element model was adequate to represent the response of the follower but was
inaccurate for the coupler. No explanation for this was given. The second
comparison was made between the two theories for the same number of elements in
the model. A small error was found between the two as was expected since the links
were vibrating mainly in the first mode where the difference between the two
theories is known to be negligible. Finally, link members with large thickness over
length ratios were analysed. The authors demonstrated that Euler-Bernoulli theory
predicts slightly larger deflections than Timoshenko theory for slender links, and for

rcalistically proportioned linkages, Timoshenko model should be used.

2.2.1. Equations of motion

There are many ways of developing the equations of motion. The difference between
the different methods used is purely procedural, they all lead to the same equations.
Lagrange's equations arc a popular choice among researchers (Bahgat and Willmert,
1976; Midha et al., 1978; Nath and Ghosh, 1980; Cleghom et al., 1981; Turcic and
Midha, 1984a; Chang and Chen, 1987; Nagarajan and Turcic ,1990a, 1990b). This is
due to the case and the systematic way with which the equations of motion can be
established; the kinetic and potential energy are expressed in terms of a set of
generalised coordinates (in this case the displacements and rotations at the nodes of
the FE model). Then the equations of motion are derived from a set of cquations
rclating the kinetic and potential energy to the generalised forces. Another approach
favoured by others is a variational formulation (Thompson and Barr, 1975; Sung and

Thompson, 1982; Thompson et al., 1983; Thompson and Sung, 1984, 1986a). This
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formulation consists of expressing the ficld equations and the boundary cquations as
a functional. The vanishing of the first variation of this provides the cquations of
motion. Any spccial relation between the coordinates is taken into account in the
functional through Lagrange multipliers. Finally, some researchers established the
cquations of motion by means of the virtual work principle (Liou and Erdman,
1989). When a body is in cquilibrium state and subjected to any compatible virtual
displacement, the total external virtual work must be compensated by the total
internal virtual work. As was mentioned earlier, the difference between the different
methods is purely procedural; for example, and in general, Hamilton's principle is an
integral form of the principle of virtual work. Also, Lagrange's equations can be

derived from Hamilton's principle.

The equations of motion are developed for each link in the local coordinate system.
The element matrices are then transformed into a global coordinate system common
to all links. In order to obtain the global equations of motion, compatibility of
displacements at nodes shared by two elements is considered. The global equations

of motion take the form:
.. P _ .. 2.1
Mi+ (M +C)q+(K+M,) q = p-Mi,

where: M, K and C are the mass, stiffness and the damping matrix,
M, the mass matrix associated with Coriolis effect,

M, the mass matrix duc to normal and tangential accelerations,

p is the external forces vector applied at the nodes

q is the elastic deflections vector

q,: the displacements vector due to the rigid-body motion.

The dots denote differentiation with respect to time.
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When the equations of motion are solved for the global displacements, the other
characteristics such as stresses and strains could be obtained from the strain-
displacement relationship and by Hooke's law. Many researchers neglected the effect
of Coriolis, normal and tangential accelerations (Winfrey, 1971; Alexander and
Lawrence, 1974; Midha et al., 1978; Chang and Chen, 1987). This is referred to as
the instantaneous structure formulation, the mechanism while rotating is considered
as a series of structures upon which are applied the inertial forces and any other
external forces. During the assemblage process of the matrices the rigid body
degrees of freedom should be eliminated. This is because the stiffness matrix for a
system which admits a rigid body motion is singular. The commonly made
assumption is to consider the input link as a cantilever beam (Midha ef al.,, 1978;
Cleghorn et al., 1981). This suppresses any possible rigid body motion of the whole
mechanism and therefore the stiffness matrix is no longer singular. The assumption
is quite valid when the input link is attached to a large flywheel, which is the case in
most papers investigating the elastodynamic of four-bar mechanisms. Others simply
assumed that the input link was rigid (Sung and Thompson, 1982, 1984; Sung et al.,
1986). Winfrey (1971) took a different approach. He applied the principle of

conservation of momentum to the whole mechanism.
2.2.2 Solution of the equations of motion

There are two aspects to the solution of the equations of motion. The first aspect
deals with the solution of the basic differential equations during one step size. The

second concerns the establishment of the steady-state solution. For the solution of
the basic equation, the Newmark method is the most widely used because of its
simplicity and, more importantly, for certain values of the method's parameters it
provides an unconditionally stable solution. The Newmark method has gained
widespread use in other areas of FE analysis and many commercial FE codes use it

in their solution. ANSYS and PAFEC are just two examples. Another reason for the
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popularity of this method is that the equations of motion in dealing with flexible
mechanisms are stiff; methods such as Runge-Kutta would require a very small step
size. The literature search reveals that much effort has been put in the establishment
of the equations of motion in order to model the system accurately. Surprisingly, this
effort has not been matched by a similar effort to solve these equations to yield the
steady-state solution. There are many methods by which one can obtain the steady-
state solution, the most straightforward one being time marching simulation. In this
method the simulation is started from an arbitrary initial condition (usually from
zero state vector). The transient associated with the initial conditions dies away
naturally for stable systems, leaving the steady-state solution after a certain number
of cycles. Yang and Sadler (1990) suggested to start the simulation from zero
displacement and non-zero velocity conditions to accelerate the convergence.
Alternatively, artificial damping could be added to damp out the transient response
quickly. This damping decreases exponentially with time so that after a few cycles,
its effect vanishes completely. Researchers who used time marching simulation in
their analysis are, for example, Midha et al. (1979), Liou and Erdman (1989).
Convergence to the steady-state solution can be very slow indeed for some input
speeds, especially those near one of the critical speeds, or in general when there is
relatively low damping in the system. In fact, if the effect of the damping is not
taken into account in the model, the solution never converges. Sung and Thompson
(1984) for example neglected the damping effect and were forced to assume that the
steady-state solution was obtained just after the first cycle. This could be very

misleading indeed as the solution could change drastically over the cycles.

Some methods inherently provide the steady-state solution. One of these methods
uses the property that the steady-state vector, as well as the system matrices, are time
periodic for a constant operational speed. The system matrices, the force vector and
the state vector are developed into truncated Fourier series, then substituted into the

equations of motion and the coefficients corresponding to the same harmonic terms
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are equated. The system obtained is a large linear algebraic system which can be
solved easily using the Gaussian elimination technique for example. The main
advantage of this approach is that the time taken to obtain the steady-state solution is
not affected by the rotational speed nor by the damping present in the system.
Against this, however, is that (i) only the steady-state solution is obtained, the
method does not allow the calculation of the transient response of the system; and
(ii) the system can become extremely large depending on the number of terms in the
truncated series and the number of degrees of freedom in the system. Cleghorn ef al.
(1984) suggested using 11 terms for the system matrices and 23 terms for the
unknown displacements. Bahgat and Willmert (1976) used a similar approach.
However, the solutions obtained corresponded only to the quasi-static response
which could have been obtained by simpler means with less computation
requirement. This came about because in their development the mass, stiffness and
the damping matrices were not expressed as truncated Fourier series, only the
forcing terms and the displacements were. A numerical problem arose using this
method. The derived expressions contained the term (K — j202M)~1, where j is an
integer used as an index of summation in the truncated Fourier series, o is the
rotational speed and M and K are the mass and stiffness matrices. The natural
frequencies of the system depend on the input angle of the mechanism. It is possible
that one or more of the eigenvalues of K and M will attain the value j202 somewhere
in the cycle. When this is the case the expression above becomes indeterminate and
there is no solution for the deflections. This problem can happen for any mechanism,
even if the links are stiff. In the latter case this only happens for large values of j.
Nath and Ghosh (1980a) employed different harmonic analysis. The truncated
Fourier series were introduced at the element level before the assemblage process.
The boundary conditions at the joints were introduced in the form of a set of
compatibility equations. An elimination of these constraints in the end leads to a

non-banded matrix in the final system. This disadvantage could have been avoided if
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the system matrices and vectors were developed once the assemblage process had

been achieved. In this case the system obtained is banded.

An approach to the solution of differential equations with time periodic coefficients,
which resulted from analysis of elastic mechanisms, has been presented by Midha et
al. (1979). The closed form numerical algorithm they developed is capable of
calculating both the transient and steady-state response of any linear second order
differential equations with time periodic coefficients. The numerical algorithm is
based upon dividing the fundamental time period into discrete time sub-intervals;
during each subinterval, the time-dependent coefficients are assumed to be constant.
Modal analysis was carried out to uncouple the set of equations and each mode was
then considered separately. The basic equations are then solved analytically during
each sub-interval. Constraint equations, which require both displacement and
velocity continuity, are applied at the boundaries of each time sub-interval. The
algebraic set of constraint equations are then solved using Gaussian elimination
technique. The equation system obtained is a large sparse system, except for two
leading diagonals and the left bottom comer due to the periodicity of the state
vector. The shortcoming of this method is that, unlike structures where modal
analysis perfectly uncouples the equations, for mechanisms the modal matrix does
change with time, and therefore its derivatives should be considered when the
change of variable is conducted. Unfortunately this reduces the benefit of
performing the modal analysis and leads to a set of coupled equations even in the
natural coordinates. However, the method does give an accurate result for some
generalised coordinates. When this is the case, the algorithm could still be improved.
The unknowns of the problem chosen by Midha et al. (1979) were the constants
obtained from the integration of the basic equations during the sub-interval. If the
unknowns are chosen to be the actual displacements and velocities at the beginning
of each sub-interval, then the equation system becomes simpler, the second diagonal

is composed of blocks of the identity matrix (of order 2). Therefore only the leading
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diagonal needs to be stored. A more general algorithm is proposed in this study,
which takes fully advantage of the latter property especially when memory storage is
a problem, and also, unlike the previous study, the modal analysis is not required to
solve the original system. Yang and Sadler (1993) used a different algorithm to
calculate the steady-state solution. At each of the N sub-intervals, a new state vector
was defined by adding two extra entries to the original one so that the matrix which
links the N modal state vectors to the N modal forces has an almost block form.
They argued that although the size of the system rose from 2N to 4(N+1), the
solution of such a system is computationally less expensive than the Gaussian
elimination method. The algorithm used to yield the steady-state solution was

originally developed by Diaz et al. (1983).

2.3. STABILITY

The problem of stability became of concern at an early stage in the investigation of
flexible high-speed mechanisms. Most early' papers dealt with the dynamic stability
of linkage mechanism systems where one link was flexible and the other links were
assumed to be rigid. The flexible link was modelled as a pinned-pinned Euler-
Bernoulli beam in flexure. The two typical mechanisms investigated were the slider
crank mechanism and the four-bar mechanism (Jasinski ef al., 1971; Chu and Pan,
1975; Jandrasits and Lowen, 1979; Badlani and Klieinhenz, 1979; Badlani and
Midha, 1982; Tadjbakhsh, 1982; Tadjbakhsh and Younes, 1986; Masurekar and
Gupta, 1988a, 1988b). Jasinski et al. (1971) derived the equations of motion for the
elastic response of the flexible connecting rod in a slider crank mechanism, and
based the dynamic stability characteristics on the existence of algebraic steady-state
solutions. Chu and Pan (1975) derived the equations of motion for the flexible
connecting rod and the response was obtained by numerical methods. Stability

criteria were derived based on Floquet theory. Jandrasits and Lowen (1979)
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investigated the elastodynamics of a counter-weighted rocker link of a four-bar
mechanism with an overhanging end-mass. After expressing the equations of motion
in Hill's equation form, Floquet theory was used to investigate the stability of the
system. A 2n periodic Fourier series solution form was assumed to calculate the
steady-state solution. Computational results showed that when even the slightest
viscous damping was included in the model, there were no instability regions in the
operating speed range. However, when the mechanism was run at a speed which
coincided with one of the resonance positions, the coefficient of the Fourier term,
whose frequency was equal to the natural frequency of the link, was considerably
amplified. The experiment generally verified the above. No instability was found in
the test speed range of between 100 and 200 rpm and when the mechanism was run
at speeds corresponding to a ratio between 1/10 and 1/6 of the natural frequency of
the link, the predicted higher amplitude at the natural frequency could be clearly
seen. At off-resonance speeds a very good agreement was found both in amplitude
and phase between the experimental and analytical results for a wide range of
damping ratios. In contrast, while there was a good phase agreemerllt at the observed
on-resonance speeds, the amplitude of the computational results was found to be
very sensitive to the assumed damping ratio. Badlani and Klieinhenz (1979)
modelled the connecting rod of a crank slider mechanism using the Euler-Bernoulli
theory and the Timoshenko beam theory. Using the model based on the second
theory which includes rotary inertia and shear deformation effects, additional regions
of instability were found to exist. Badlani and Midha (1982) analysed an initially
curved flexible rod and showed that a slider crank with curved connecting rod was
less dynamically stable when compared to a slider crank with straight connecting
rod. The equations of motion were expressed in the form of Hill's equation and
solved by assuming trigonometric series solutions. Badlani and Midha (1982) have
simplified the equation of motion into a Mathieu's type equation. The stability
analysis was then investigated for a slider crank mechanism without taking the

damping into account. Later, Badlani and Midha (1983) presented a study showing
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the effect of internal material damping on the dynamic response of the mechanism.
The connecting rod was assumed to be made of a linear viscoelastic material. They
concluded that the inclusion of damping is not always beneficial in attenuating the
vibration response of the connecting rod. Damping had a little effect and in some
cases was even counterproductive when the speed was in a stable region, and had a
big effect on the response when the speed was in an unstable region. Tadjbakhsh and
Younes (1986) analysed the flexible connecting rod of a slider crank mechanism for
dynamic stability and applied Floquet theory to the equations of motion represented

in the form of Hill's equation.

Masurekar and Gupta (1988a, 1988b) investigated the stability of a four-bar
mechanism with a flexible coupler. An Euler-Bernoulli beam element was used to
model the coupler. After simplifications, a second order linear differential equation
was obtained. In order to assess the stability, the homogenous part of the equation of
motion was expressed in Hill's equation form. Floquet solution was considered. The
stability boundaries were calculated by expressing the solution as 2n-periodic and
4n-periodic and therefore expressed as truncated Fourier series. Two infinite systems
were obtained for each instability type by equating the expressions corresponding to
the same cosine and sine terms. It was found that, as the speed increased, unstable
regions became wider. Also the 2zn-periodic unstable regions were larger than nearby
4n-periodic regions. An illustrative example revealed that when the mechanism was
run at a speed in one of the 4n-periodic unstable zones the transient deflection
increased every two cycles, and increased every cycle when the mechanism was
operated at speeds in the 2m-periodic instability zone. Also the critical speeds

corresponding to the 2m-periodic instability regions are centred around integer

divisions of the natural frequency of the link.

When all links were considered to be flexible, in general the FEM was used to model

the mechanism. The common assumption made is that the rotational speed was
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constant, the equations of motion were linear differential equations with periodic
coefficients. Many other engineering systems are governed by this type of equations.
Some typical examples include rotating systems such as wind turbines and
helicopter rotor blades (Peters and Hohenemser, 1971), parametricaly excited elastic
structures (Bolotin, 1964) and spin stabilised satellites (Tyc et al., 1990). The
stability of such systems has been the subject of investigation for many years. In
general, the methods used could be cast into three categories:

(i) Perturbation methods: these are based on the assumption that the periodic
coefficients could be expressed in terms of some small parameter. The stability
boundaries are approximated by closed form expressions in the parameter space. The
main limitation of the perturbation method is the small parameter assumption.

(i1) Infinite determinant method: The parameter space is divided into stable and
unstable regions. At the boundaries between the two regions, one of the solutions of
the homogenous part of the equations of motion is either 2% or 4n-periodic. In the
infinite determinant method the boundaries of the stability regions are determined by
expressing the solution and the coefficients of the equations of motion into Fourier
series. In order that the system has no trivial solution, the determinant of the system
obtained by replacing the Fourier series into the homogenous part of the equations of
motion is set to zero. Initially the system obtained is infinite. An approximate
solution is obtained by truncating the Fourier series and solving the resulting
truncated determinant. Bolotin (1964) used Hill's method of infinite determinant
extensively for scalar equations. He also provided an extension for multiple degree
of freedom systems with certain restrictions placed on the damping matrix. He found
that, for such systems, the equations became too cumbersome and impractical.

(i1i) Floquet numerical integration method: This method, based on Floquet theory, is
the most widely used as it does not suffer from the limitations of the above methods.
The method is based on the evaluation of the called transition matrix over one
period. The stability is assessed from the eigenvalues of the transition matrix. In the

past, this method was avoided because of the high computational demands. Hsu and
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Cheng (1973) and Friedmann et al. (1977) developed numerically efficient schemes

that significantly reduce the number of required numerical integrations.

Kalaycioglu and Bagci (1979), investigated a four-bar mechanism with all links
flexible. Critical speeds for a particular mode of vibration were defined as the lower
bound values of the natural frequency for that mode. This was not a complete
analysis because critical speeds have been shown to occur at speeds much lower than
the lowest bounds of the natural frequencies both experimentally and theoretically.
Cleghom et al. (1984) used Fourier series analysis to investigate the stability of a
flexible four-bar mechanism. The known periodic coefficients of the equations of
motion and the unknown elastic steady-state response were expressed as truncated
Fourier series and the steady-state response was determined. Also by using the
criterion that at critical speeds the homogenous part of the equations of motion has
non-trivial periodic solutions, critical speed ranges were determined by calculating
speeds which provide non-trivial solutions. By comparing harmonic terms, the
problem of determining critical speeds was reduced to that of solving an EVP. When
damping was neglected it was shown that there was an infinite number of critical

operating speeds.

The first attempt to develop a simple method to determine the critical speeds of
mechanisms with all links considered flexible was made by Nagarajan and Turcic
(1990c). They provided a simple approximate theoretical method to locate the
critical speeds of a four-bar mechanism based on Floquet theory. First, the cycle was
divided into a number of sub-intervals during which the coefficients of the equations
of motion were assumed to be constant. The modal analysis technique was then used
to uncouple the equations of motion and each mode was considered separately. An
analytical solution was derived and the state vectors at the start and at the end of
each sub-interval were linked. Using this elementary transformation, the state vector

at the end of the cycle was expressed as a function of the state vector at the
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beginning. By definition, these two state vectors are linked via the monodromy
matrix. An alternative to computing the monodromy matrix is to integrate
numerically the original equations of motion. Nagarajan and Turcic argued that their
method was more efficient and was about 50 times faster than the method which
involved integrating the equations of motion using Runge-Kutta for example. Once
the monodromy matrix was obtained, stability of the system could be assessed. First
the eigenvalues of the monodromy matrix, called characteristic multipliers, were
calculated. It was shown that the system is stable if both characteristic multipliers
were less than 1 in magnitude, marginally stable if one or both of them are equal to 1
in magnitude and finally unstable if the magnitude of at least one of them exceeds 1.
In a second part, Nagarajan and Turcic (1990d) experimentally verified the critical
speed ranges found by the method exposed in the first part. The critical speeds were
located by examining three strain characteristics. The first characteristic was the
maximum experimental strain amplitude. This characteristic shows the contribution
of both the quasi-static and the dynamic responses. Since critical speeds are mainly
due to the dynamic response being amplified, two extra characteristics were
considered to show more of the dynamic contribution to the total response. A typical
Fourier transform of the strain at any location on the link would exhibit two main
peaks, the first corresponds to the rotational speed (quasi-static strain response) and
the other occurring at higher frequency is related to the dynamic response. The
second characteristic was therefore the amplitude at the second peak of the Fourier
transform of strain. Finally the third characteristic was the vibration strain energy
density which is proportional to the square value of vibration strain (difference of the
total strain and the quasi-static strain). For the verification purpose only the first two
modes of vibration were considered. It was shown that these two modes contributed
most to the total response. It was also shown that the dynamic response peaked at the
predicted critical speeds using the method of the monodromy matrix. The main
disadvantage of this method, however, is that in one hand in some circumstances the

modal analysis does not uncouple the equations of motion in case of mechanisms.
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On the other hand when damping is included, the system ceases to be numerically
unstable at some low speeds but these remain critical speeds in that the strains are
bigger than at neighbouring speeds. To overcome the first difficulty, a method was
developed in this study where uncoupling the equations of motion is not required.
Further the critical speeds are not linked to the values of the characteristic multiplier

modules but rather to their local maxima against speed.

2.4. EXPERIMENTAL STUDIES

Many experiments have been conducted to verify the theoretical results of
displacements, strain and stresses. Lawrence and Alexander (1974, 1975) conducted
one of the first experiments on a flexible four-bar mechanism and their experimental
results latter became a reference among researchers. In their mechanism, the links
were constructed of aluminium, and ball bearings were used to connect the coupler
to the crank and the follower. The mechanism investigated was of quick-return type.
The input link was driven by an electric motor through two belts placed on either
side of the plane of motion so as to ensure symmetry of the input loading. Flywheels
were used to minimise the crank speed fluctuation. Strain gauges were attached on
both sides of the links and the strain were measured at 6 different locations on the
coupler and the follower. Different crank length and different thicknesses of the
links were tested. A good agreement in amplitude was found between the experiment
and the model. Lawrence and Alexander linked the resonance frequencies (critical
speeds) to the natural frequencies of the individual links, but Stamps and Bagci
(1983) suggested that the critical speeds are linked to the average values of the
natural frequencies of the whole mechanism. In fact, Fig. 7 of Lawrence and
Alexander (1975) shows a contradiction . In that figure the results of the input link
flexibility effect were presented. Two mechanisms were compared, and apart from

the input links which were different, all other geometrical properties were identical.
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Although the coupler and the follower in both mechanisms were identical the strain-
speed curves showed different critical speeds for each mechanism. Stamp and Bagci
investigated a spatial four-bar mechanism with out-of plane offset. They showed that
the mechanism experienced critical speeds at integer divisions of the average value
of its natural frequency. They recommended then that the mechanism should be run
at speeds, which they called in-between efficiency speeds, between two integer

divisions of the average natural frequency of the mechanism.

Liao et al. (1986) found that when the mechanism was run at various crank speeds,
the links developed one of three modes: quasi-static, dynamic or resonance regimes.
They also showed that while the main response is of the dynamic type over a wide
range of speeds, the other responses may occur at any speed. Liao et al. (1986)
reported from an experimental study that a quasi-static response could develop in
one of the links while the other could be in a state of resonance. This phenomenon
has never been predicted by existing models and no other experimental work
conducted has shown this type of behaviour. Thompson and Ashworth (1976)
investigated the response of a four-bar mechanism mounted on a vibrating
foundation. They found that the resonance phenomenon occur whenever the sum or
difference of the foundation's excitation frequency and the rotational speed of the
mechanism, or their harmonics, were equal or near the natural frequency of

transverse vibration of that member.

Unlike mass and stiffness distribution, it is difficult to model damping based on the
geometry of the link, the properties of the material and the type of joints. In order to
determine experimentally a damping factor, maﬂy researchers obtained an
approximate damping ratio by fixing the mechanism at a series of static
configurations and conducted the amplitude decay tests. An average value of the
damping ratio over the cycle was calculated and used in the theoretical model

(Alexander and Lawrence, 1973; Stamps and Bagci, 1983; Turcic et al., 1983; Sung
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et al., 1986). Karkoub and Erdman (1992) used a different technique, the mechanism
was fixed at a given configuration and excited using a shock hammer; the response
was recorded on a structural dynamic analyser. The displacements, at different
locations of the links were measured using displacement transducers. The modal
characteristics were then extracted by the windowing signal processing technique.
The tests were carried out at increments of 20 degree intervals. Each link was
modelled by six degrees of freedom elements and the damping matrix was assumed
to be diagonal; each entry on the diagonal was measured by placing the transducer at
the right location and direction. The experimental damping matrix was then added to
the FE model. When compared to the model which used Rayleigh damping
formulation, Karkoub and Erdman found that the coupler curves were improved
compared to the coupler curves obtained experimentally by Liou and Erdman (1987,

1989) using the photogrammetry technique.

The photogrammetry technique analyses the motion of a four-bar mechanism
without affecting any characteristic of the mechanism. Special reflectors were placed
at different locations of the mechanism. The motion of the mechanism was captured
by a high-speed movie camera capable of delivering high quality pictures at frame
rates between 16 and 500 frames per second. The pictures were then digitised and
processed on the computer to determine the path described by any point of the
mechanism. Also the deflection of the entire mechanism could be reconstructed in
slow motion and compared to the theoretical one. This method proved to be superior
to the method where strain gauges were used to monitor the mechanisms deflections
(Alexander and Lawrence, 1975). In the latter method, the wires used with the strain
gauges do have an effect on the response. To account for this effect, Alexander and
Lawrence recommended that the mass densities of the coupler and output links
should be increased by 8% to account for the additional mass of the wires and strain

gauges attached to theses links in the experimental set-up.
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From the equations of motion of a four-bar mechanism it can be seen that the
elastodynamic response is substantially influenced by the stiffness-to-weight ratio of
the links. In order to reduce the deflections and stresses in the links, two methods
have been used in the past. First, for a given material, the stiffness was improved by
optimising the cross sections of the links (Cleghorn et al., 1981; Imam and Sandor,
1975; Khan et al., 1978). Second, composite materials were used for their higher
stiffness-to-weight ratio compared to carbon steel and aluminium alloy (Sung et al.,
1986). It is believed that Thompson was the first to have considered the vibration
problem of mechanism components made from fibre reinforced composite materials
(Thompson and Barr, 1975; Sung and Thompson, 1982; Thompson ef al., 1983;
Thompson and Sung, 1984, 1986). The advantage of using composite materials is
not limited to their high stiffness-to-weight ratio; they also possess other interesting
properties such as a good fatigue life and high material damping (Sung and

Thompson, 1984).

2.5. OTHER METHODS

The lumped parameter approach has also been successfully implemented in the
analysis of elastic mechanisms. The lumped parameter method consists of modelling
the continuous mass distribution of a linkage by placing a number of lumped masses
at discrete locations along the linkage. Sadler and Sandor (1973, 1975) developed a
lumped parameter method for elastic mechanism analysis. The method applies Euler
beam theory and finite difference approximations to yield a system of ordinary non-
linear differential equations. These equations of motion were numerically integrated
to yield the system response. The numerical results for an elastic four-bar
mechanism are favourably compared with the experimental results of Alexander and
Lawrence (1974). The only advantage of the lumped parameter method is that it

leads to a diagonal mass matrix. Gao et al. (1989) combined the two methods (i.e.
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the FEM and the lumped parameter approach) to make full use of the advantages of
both methods. They developed a hybrid element whereby the mass was lumped and
the distributed stiffness was considered. They argued that their model was more

efficient than the conventional ones.

2.6. CONCLUSION

A literature survey has been carried out on the modelling of high-speed mechanisms.
Although high-speed mechanisms have been the subject of investigation for more
than twenty years, there are still areas where some improvements could be made. To
date, the only way to improve the accuracy of the FE model has been achieved by
increasing the number of elements in the model. Also only a few algorithms exist to
yield the steady-state solution quickly and efficiently. Critical speeds have been
known to exist for a long time, but no previous study has addressed the problem of
running the mechanism over the highest of these where the stress in one of the links
becomes unacceptable. These issues are developed in this study and an answer is

provided for each one.
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Chapter 3

KINETO-DYNAMIC ANALYSIS

3.1. INTRODUCTION

The study of mechanical systems has two distinct aspects: synthesis and analysis.
The synthesis involves the prescription of sizes, shapes, materials, etc. so that the
mechanism performs the functions for which it was designed. The analysis is the
collection of scientific tools at the designer's disposal to analyse the suitability of the
design. In this chapter, the analysis of a four-bar mechanism is undertaken. The

geometrical data of the mechanism are assumed to be known a priori.

In the analysis and design of mechanisms, kinematic quantities such as velocities
and accelerations are of great engineering importance. Velocities and displacements
give an insight into the functional behaviour of the mechanism. The accelerations,
on the other hand, are related to forces by Newton's principle which themselves are
related to stresses and deformations in the mechanism's components. In the

kinematic analysis, the mechanism is assumed to be made up of rigid bodies.

In order to determine velocities and accelerations in mechanisms, many methods of

analysis have long been established. These include:

» Analysis using vector mathematics to express velocities and accelerations of
bodies with respect to a set of coordinate systems.

o Analysis by use of complex numbers. The vector velocities and accelerations are
represented by complex numbers.

» Analysis using graphical means. The equations of relative motion are solved

graphically using polygons at every position of the mechanism. This method is
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now rarely used today due to the wide-spread availability of computers and
software tools which offer substantial improved flexibility, precision and speed

in solving the problems of kinematics.

Fig. 3.1 shows a schematic of a four-bar mechanism. If the input link is free to rotate
completely and the follower oscillates, this mechanism is called a Crank-Rocker. For
a mechanism to be of this type a theorem by Grashof (1883) states that the sum of
the longest link and the shortest should be less than the sum of the two other lengths.
In the rest of this chapter, the four-bar mechanism analysed is assumed to be of this
type. The four bar mechanism is widely used in machines to transmit motion or to
provide mechanical advantage. It is also the most basic and fundamental linkage
mechanism (three-bar linkage is a structure). Many more complex linkage
mechanisms contain the four-bar linkage as elements. There are three main
applications of the four-bar mechanism: path generation, function generation and
motion generation. In the first application the path generated by a tracer point is the
main concern. In the function generation application, the angle of the output link is a
function of the input link position. Finally, in the motion generation application (or
rigid body guidance) an entire body is guided through a prescribed motion

sequences.

Coupler
Input link

Fig. 3.1: Schematic of the four-bar mechanism.
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Referring to Fig. 3.1, y is the transmission angle, t; is the input angle and the

distance between the two fix points, O and C, is always denoted by L.

3.2. MOBILITY

Every mechanism has a number of degrees of freedom also called mobility. This
defines the number of inputs that can be given to the mechanism so that it has a
constrained motion. If a planar mechanism is made up of k rigid links, before
assembly and counting the ground as a link, the system has 3(k — 1) degrees of
freedom. Let j; be the number of single-degrees-of-freedom pairs (revolute joints for
example) and j, be the number of two degrees of freedom pairs (cylinder pairs).
Then the mobility m of the mechanism is given by Kutzbach's criterion (Shigley,
1969): m = 3(k — 1) = 2 j; = j,. In the particular case where m = 0 the system is not
deformable and becomes a structure. If m < 0, the system is over-constrained and
some constraints are redundant. In case of planar four-bar mechanism with revolute
joints: k =4, j; =4 and j, = 0; therefore the mobility of such a mechanism is 1. The
input angle is usually chosen as the reference parameter. Therefore all kinematic

quantities are derived with respect to this reference.

A special case is considered for planar mechanisms with only revolute joints. The
Griibler criterion (Shigley, 1969) gives the condition for this type of mechanisms to
have 1 degree of freedom. For this to be satisfied, the following must hold: m=1 =
3(k=1)=2j; and hence 3 k-2 j; — 4 = 0. From this, it is seen for example that a

mechanism with odd number of links cannot have mobility equal to 1.

3.3. TRANSMISSION ANGLE

While the mechanism is rotating, some difficulties may arise if the angle between

the coupler and the follower is too big or too small. This angle, ¥, is called the
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transmission angle. The quality of motion of the mechanism is dependent upon the
minimum value of y. The force transmission from the coupler to the output link is
most effective when ¥y is 90°. As the input link rotates, the value of the transmission
angle changes. It is desirable that the transmission angle does not deviate too much
from the ideal value of 90° and it is recommended that y should lie between 40° and
140°. If y is too small high accelerations occur during the cycle and objectionable
noise is generated at high speeds. Also, the accuracy of the output motion becomes
very sensitive to the manufacturing tolerances of the link lengths and clearances
between joints. On the other hand, if y is too large uncertainty of movement arises
and the two links, the coupler and the follower, may lock. However, the latter
problem may be overcome by the presence of a large flywheel at the input link. The
flywheel, by virtue of its high inertia, forces the mechanism to rotate in a prescribed
way. Since the extreme values of y are critical values in the design of a four-bar
mechanism, it is essential for the designer to compute these values and the positions
at which they occur. It is shown later in this chapter that the transmission angle is
critical (i.e. maximum or minimum) at the two values of the input angle of 0° and

180° (Soni, 1974). Fig. 3.2 shows such extreme cases.

¥ small

Input angle = 0° Input angle = 180°

Fig. 3.2: Two extreme cases of the transmission angle.

There are many indexes which give an assessment of the performance of the

mechanism. One of them is the ratio of input and output speeds, in this case the
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index of merit is linked simply to the geometry of the mechanism. Another
definition would be the mechanical advantage which is the ratio of input and output
torques. In fact these two definitions are related if the joints are assumed frictionless

and if the inertia forces are neglected. It can be shown that (Shigley, 1969):

T, o, Lssin(y)

T, "o, Lesin(p) Gl

where T, and Tj are the torques at the input and the follower, ¥ and B are shown in
Fig. 3.1 and ; and w5 are the corresponding speeds.

From (3.1) it is concluded that:

o The mechanical advantage is .inﬁnite when B = 0° or 180°. In this case, the
mechanism is said to be in toggle. The output torque is infinite for a finite input
torque, such a propriety is used in clamping mechanisms for example such as the
pair of locking toggle pliers shown in Fig. 3.3.

« The transmission angle affects the mechanical advantage. If its is too small or
too big, the mechanical advantage becomes very small, and the presence of even

small friction torques in the joints may lock the links.

Aston University

lustration removed for copyright restrictions

Fig. 3.3: Locking toggle plier (Sandor and Erdman, 1984).
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3.4. CLASSIFICATION OF FOUR-BAR MECHANISMS

It is believed that the first attempt to classify the four-bar mechanisms was made by
Grashof (1883). In his book, he classified the four-bar mechanisms into three types;
namely double-cranks, rocker-cranks and double rockers. In one of his theorems, he
stated that a four-bar mechanism has at least one revolving link (a crank) if
s +1<p + q and all links will be rockers if s + 1 > p + q; where s = length of the
shortest link, 1 = length of the longest link and, p and q lengths of the intermediate
links.

Barker (1985) was the first to introduce the solution space concept. He used a set of
dimensionless parameters A,, A3 and A4 defined by A, = L,/L;, A3 = L3/L; and
Ay = Ly/L,. The solution space is a volume in the (A,,A3,A4) space where four-bar
mechanisms can exist. Since all lengths must be positive, the solution space was
included in the positive octant corresponding to the values of A's all positive. Also,
the solution space was delimited by four planes which corresponded to mechanisms

with zero mobility. These planes, called zero mobility planes, are defined by:

Kg=d4 ek ks
1=%y+h3+ 2y
(3.2)
?L3=1,2+1+?L4
?&.4=7b2+’u3+1

and represented graphically on Fig. 3.4 by:
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A g

Fig. 3.4: Zero mobility plane and base plane.

Barker then considered a plane which he called base plane, at a distance A from the
origin and normal to the line A, = A3 = A, in order to focus on a two dimensional

portion of the solution space. Different base planes can be investigated by varying A

. Ay +A;+A, o .
given by —'T— Each base plane was then subdivided into regions, each of

which corresponded to one type of the 14 mechanism classes he defined (see Table
3.1). In his classification system, a fully rotating link is called a crank whereas an
oscillatory one is called a rocker. From Table 3.1 it can be seen that mechanisms of
Grashof type are included in Barker's classification. In the latter case the symbol

begins with the letter "G".
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< Characteristic
IS+1=>p+q Category bar length Class| Proposed name Symbol
1| < |Grashof frame,Ly=s | 1 |Grashof crank-crank-crank |GCCC
2| < |Grashof input,L; =s 2 | Grashof crank-rocker-crank | GCRR
3| < |Grashof coupler, L,=s| 3 |Grashof rocker-crank-rocker| GRCR
4 | < |Grashof output, Ly=s | 4 |Grashofrocker-rocker-crank| GRRC
5| > |non-Grashof |frame, L,=1 1 |Class 1 rocker-rocker-|RRR1
rocker
6 | > |non-Grashof |input,L;=1 2 |Class 2  rocker-rocker-|RRR2
rocker
7| > |non-Grashof |coupler,L,=1| 3 |Class 3 rocker-rocker-| RRR3
rocker
8 | > |non-Grashof joutput,L;=1 | 4 |Class 4 rocker-rocker-|RRR4
rocker
9| = |change point |frame,Ls=s 1 |Change point crank-crank-|CPCCC
| crank
10| = |change point |input,L;=s 2 |Change point crank-rocker-| CPCRR]
rocker
11| = [change point |coupler,L,=s| 3 |Change point rocker-crank-| CPRCR
rocker
12| = |change point |output, Ly=s | 4 |Change point rocker-rocker- CPRRC
crank
13| =. |change point |two equal pairs| 5 |Double change point CpP2X
14| = |change point |L,=L,=L;=L, | 6 |Triple change point CP3X

Table 3.1: Classification of four-bar mechanisms by Barker (1985).

Fig. 3.5 shows the base plane for three typical cases with the corresponding

mechanism types in each region.
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RRR1
s A Aéx

GRRC GRCR
'GRRC GRCR GCRR
RRR2 RRR3 RRR4

RRR3 RRR4
GCCC E j

V33 < 2 <3 A=13 A>3

Fig. 3.5: Base plane for typical values of A.

3.5. KINEMATIC ANALYSIS

Encyclopaedia Britanni.ca (1980) defines kinematics as: "Branch of physics and
subdivision of classical mechanics, concerns the description of the motion of objects
without considering the forces that cause or result from the motion. It is an abstract
study of motion that aims to provide a description of the spatial position of points in
moving bodies, the rate at which the points are moving (velocity), and the rate at
which their velocity is changing (acceleration). When the causative forces are
disregarded, motion descriptions are possible only for points having constrained
motion; i.e., moving on determinate paths. In unconstrained or free motion the

forces determine the shape of the main path."

In the following, the complex number approach is used to carry out the kinematic
analysis (Smith and Maunder, 1967; Erdman and Sandor, 1984). A linkage is
represented by a complex number whereby the module is the link's length and the
argument is the angle between the linkage and a certain reference, here the

horizontal axis. From Fig. 3.1, the loop closure equation gives:
Le" +L,e" =Le"+L, 3.3)

separating the real parts and the imaginary parts in (3.3):
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L,cos(t,) + L,cos(t,) = Lycos(t;) =L,
L,sin(t,) + L,sin(t,) — L,sin(t;) =0

(3.4)

From (3.4) an expression for t; is derived with respect to t; by eliminating t, from
the two equations in (3.4). The equation obtained is called Freudenstein's equation
and can be used to synthesise a four-bar mechanism for three specified positions of

the input link and three positions of the output link (Freudenstein, 1955).

K,cos(t;)—K,cos(t,) + K, = cos(t, — t,)
Ay -4+ + 4 (3.5)

whereK, =1,,K, = . o,

andK; =

Equation (3.5) can be simplified to yield an explicit expression of t; with respect to

;.

B _,| 2sin(t,) £ ‘/4sin’(t, )—-4[(1-K,)cos(t,) + K, =K, ][K, +K; =(1+ K, )cos(t, )]
by (=K, )oos(t,)+ K, —K,]

(3.6)
Similarly an expression for the coupler angle t, is derived:
K,cos(t,)-K,cos(t,) + K, = cos(t, —t,)
-2 -1-2 (3.7)

A
where K, = f andK, = o=
2 2

o | 2sin(,) £ V4sin® (t,) - 4[(1+ K, eos(t,) + K, — K, ][K, + (K, —Deos(t,) +K;]
t, =2tan 2[K, —K, +(1+ K, )cos(t,)]

(3.8)
In (3.6) and (3.8) two solutions are obtained for a given input angle which
correspond to two different configurations of the mechanism. Fig. 3.6 shows the two

solutions at a given configuration of the input link.
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configuration 1

configuration 2

Fig. 3.6: The two mechanisms solution for a given input angle.

An expression for the transmission angle can also be derived from Fig. 3.1 by
considering the two triangles OAC and ABC and expressing the distance AC in
terms of the lengths of the links and the angles y and t;.

L2 +L% +2L,L,cos(t,)- L2 -L%
T

cos(y) = (3.9

Two values of y are of particular interest. These are the maximum and minimum
values of the transmission angle and correspond to cos(t;) = ~1 and cos(t;) = 1
respectively. The designer should ensure that they are within an acceptable range.

They are given by:

2 +12+2LL, 2 -13

COS(Y iy ) = ILL,
p_— (3.10)
cos(y. ) = 12 +1%-2L,L, -1} -12

4L
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The angular velocities and accelerations of different links are obtained by
differentiating (3.3) once to yield angular velocities, ®, and twice to give angular

accelerations, o.

®,  Ljsin(t, -t,)
o, L,sin(t; -t,)
o;  Lysin(t, -t,)
o, L,sin(t, -t,)
L wjcos(t; ~ t,)+Lywjcos(ty = t,) - Lyw; (3.11)
2= L,sin(t, —t,)
L,oXcos(t, —t,) - L,wicos(t, —t,) + Lo}
- L,sin(t, —t,)

s

These expressions will be used later in the derivation of inertia forces developed by

the mechanism.

The characteristics of the mechanism investigated in this chapter are listed in Table
3.2. Relative angular velocities and accelerations over one cycle are given in figures
3.7 and 3.8 for the coupler and the follower respectively. The relative angular
velocity is defined as the ratio of the angular speed of the link to the input speed, and
the relative acceleration is defined by the ratio of the acceleration of the link
considered to the square of the input speed. The variation of the acceleration over the
cycle is important because the dynamic loads are proportional to these accelerations.
Moreover, the deflections and stresses in the elements exhibit the same variation
over the cycle as will be seen later. In Fig. 3.9 the variation of the transmission angle
through one cycle is given. From this figure it is noticed that the maximum value of
the transmission angle occurs at t; = 180° and the minimum at t; = 0°. It is also seen

that the mechanism being studied has a good transmission angle as it lies in the

recommended band.
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Table 3.2: Characteristics of the mechanism.
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Fig. 3.9: Transmission angle versus input angle.

3.6. COUPLER CURVES

One application of the four-bar mechanism is to generate a prescribed path. The
points on the coupler generate different paths with respect to the fixed link, these
paths are called coupler curves. Two of these are obvious, the curves generated by
the pins are either circles or arcs depending on the type of the mechanism. However,
other points on the coupler generate much more complex curves. In this case it
would be interesting to visualise the path generated by any point on the coupler. This
can be used to validate the data of the mechanism synthesised by other means, or as
part of a trial and error process. Fig. 3.10 shows a four-bar mechanism at different
positions during one revolution and the path generated by some points on the

coupler.

Hrones and Nelson (1951) produced an atlas of over 7000 coupler curves for
different combinations of links in a four-bar mechanism. The book has been a
valuable reference for decades to the designer who needs a specific mechanism for a

specific path.
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Fig. 3.10: Path generated by some points on the coupler.

3.7. DYNAMIC ANALYSIS

The forces in the linkages, by virtue of Newton's law, are proportional to the masses
and accelerations of the linkages. The mechanism will now be analysed by
considering the bars individually whereby the forces acting upon the linkages are the
inertial forces due to the tangent and normal accelerations at the centre of gravity of
each bar and the forces transmitted from the adjacent linkages by the joints. For each
link three scalar equations are obtained: XF, = 0, F, = 0 and 2M,; = J a. ZF, and
XF, are the sum of forces of a system of forces acting on the link in the plane of
motion and along the x axis and y axis respectively. The forces comprise the
external forces as well as the inertial forces F;, and Fyy (i = 1 to 3). XMq is the sum
of moments of forces, and torque about an axis through the mass centre normal to
the plane of motion; J is the moment of inertia of the bar about the same axis.
Finally o is the angular acceleration of the link in the plane of motion. In the

following F; is the force applied on link j by link i.
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F,, +E,+F,=0

Fy, +5,, +F,=0

C# (Fyyy = F,,,)%sin(:,)»,a:z,, -F,,,,)%cos(t,) =0
C is the torque being applied to the
crank. |

N.B. The input angular speed is

assumed to be constant in this analysis.

Fig. 3.11.a: Free-body diagramme of the input link

Flzx + F32x + sz =0
Fuy + Fm +EF, =0

L, . L
(Fax—Fil) TIS!n(t!)"'(FJIy - szy)71009(t2) =J,a,

>x

FZ]: + FOJx + st =0
Fﬂy + F03y + FJ,, =0

L, . L
(Fise = B, )57 si0(t,) + (B, ~Fi,) - c0s(t) = J 1,

Fig. 3.11.c: Free-body diagramme of the follower
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Grouping the previous equations and noting that F;; = -F;; at all joints, a system of 9
equations with 9 unknowns is obtained. The unknowns of the problem are the forces
in the joints (8 components) and the torque at the input link necessary to drive the

mechanism. Thus

~1 0 1 0

0 0 0 1] or r b
Fﬂ]l-] Fll
5 0 L—l L 0 L 1 0 0 0 0 0 F E
. . oly Iy
2 sin(t,) -—chos(tl) —2'-sm(t,) -—2"cos(t,) 0 0 0 0 g, 0
0 0 -1 0 1 0 0 o o|lg ||E
12y 1x
0 0o 0 L0 . 0 o o|g, |E
0 0 2sini{tz) -Tms(t,) ?sin(t,) —-iloos(l,) 0 0 O|Ey, | |1,
0 0 0 0 -1 0 -1 o  o|E,||F,
0 0 0 0 0 -1 0 -1 0|R, | |F
L . L, L. L, ¢ Y
L 0 0 0 0 -?sm(t,) —2-005(13) ?sm(t,) -?oos(t,) 0__ CJ la,l
(.12)

Once the solution of (3.12) is found, a preliminary check is carried out to ensure that
the mechanism will withstand the forces due to the rigid body inertia forces. This is
done by calculating the stresses sustained by each member as a result of the forces
applied to the joints. If no flywheels are used, the torque of the motor is calculated as
the maximum torque required during the cycle. If flywheels are used, however, the
torque of the motor could be chosen to be lower. This is because the torque required
to drive the mechanism fluctuates during the cycle and can even become negative.
When this is the case the energy is stored by the ﬂywheeis and then restored when
the torque becomes positive again. Therefore it is not required that the torque

delivered by the motor be larger than the maximum torque needed during the cycle.

3.8. GENERALISED RIGID-BODY ACCELERATIONS

When the mechanism is rotating at a constant speed it deflects due to the inertia
forces it is subjected to. In Chapter 4, the finite element method will be used to
establish the equations of motion. It will be seen that the inertia forces acting upon

the mechanism are expressed as M,, where M is the mass matrix and §, is the
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generalised rigid-body acceleration. The latter is derived from purely kinematic

quantities.

In this section, the rigid-body accelerations of the mechanism are presented. The
schematic of the mechanism is given in Fig. 3.1. The acceleration of a point X is
derived by differentiating the vector OX twice with respect to time. The
accelerations of interest are the angular accelerations of the links and the

accelerations of the joints A and B. They are given by:

qt,=0

G, =—L,0}cos(t,)

i, =-L,oisin(t,)
qt, =y

dpx = _lefcos(tl )~ Lzmgcos(tz ) —L,a,sin(t,) (3.13)

dp, =-L,0jsin(t,) - L,0}sin(t,) + L,a,cos(t,)

qy, =0,

3.9. CONCLUSION

In this chapter kinematic analysis was carried out in order to find the speeds and
accelerations of the links of a four-bar mechanism running at a constant speed. The
role of the transmission angle in the performance of the mechanism was discussed.
The dynamic analysis provided the forces being applied at the joints of the links as

well as the torque necessary to drive the mechanism at a constant speed.
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Chapter 4

FINITE ELEMENT METHOD IN THE ANALYSIS OF A
FOUR-BAR MECHANISM

4.1. INTRODUCTION

In this study it was decided not to use a commercial FE package but to develop the
necessary routines as part of the research. The justification of this is:

(i) that none of the packages readily available allows for rotating members

(ii) developing the routines would allow a greater in-sight into the subject.

As a consequence of this it is appropriate to describe FE analysis in the context of
this work. However, it is not intended that it should be an exhaustive treatment of
the finite element method. Consistent with the scope of this chapter, the cases treated

are limited to beam elements in bending and tension modes.

Basically, the FEM involves imagining the body to be an assembly of regular
discrete pieces called elements with simple geometry and connected together at a

finite number of points called nodes.

The FEM has been developed over many decades before it reached the level of
sophistication of today. A brief outline of its history is presented herein to show the
major steps in the development of this method. In the early 1940's, Courant (a
mathematician) suggested a piece-wise Rayleigh-Ritz approach where the 2D
structure investigated was divided into triangular sub-regions defined by polynomial
interpolation to approximate a numerical solution. However the method was
discarded due to the lack of digital computers capable of solving large systems of
equations. The availability of computers and the need of the acrospace industry were

largely responsible for the development of the matrix method in structural dynamics
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between 1950 and 1960. Interest in the FEM increased a great deal in 1956 with a
paper by Turner ef al.. They defined a continuous 2D elastic body by an assembly of
triangular elements in which the displacements are assumed to vary linearly. By the
mid 1970's, the FEM was well established on solid theoretical grounds; the only
limitation was the hardware available at that time. Computer resources were very
limited in speed but most importantly in memory; programs developed were batch
oriented and therefore tedious and time-consuming. In the late 1970's the 32-bit
minicomputer was introduced and graphics terminals became available. The FEM
was one of the biggest beneficiaries of this new technology. Also these changes in
technology brought about new concepts in programming techniques. New programs
were written to make use of the new interactive environment especially in pre- and
post-processing of data. The programs were no longer batch oriented, the data was
often introduced interactively in graphics mode using pointing devices such as mice
and digitisers. Also the user had a wider choice of analysis tools enabling him to
process the results (e.g. visualisation of the mode shapes, contour plotting, colour
coded stress distribution, etc.). Today, powerful FE programs are no longer limited
to mainframe computers, they are available on many platforms including desktop

and personal computers.

The FEM may be viewed as a piece-wise Rayleigh-Ritz method. Some fundamental
differences between the two methods exist, however. In the Rayleigh-Ritz method
the admissible functions are global functions (i.e. defined over the entire domain of
the system); they tend to be complicated and hard to work with. The use of global
admissible functions makes the use of this method more suitable for systems with
simple boundary geometry and easily specified mass and stiffness distributions. The
coefficients of the series are generally abstract in nature, and they merely represent
the contribution of a particular admissible function to the displacement distribution.
In contrast, in the FEM the admissible functions are local (i.e. defined over small

sub-domains of the system); they are very simple and easy to work with and
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generally low-degree polynomials are chosen. Also, they are all the same for every
element and because they overlap over consecutive elements only, the mass and
stiffness matrices are banded. On the other hand, since the admissible functions are
local this makes the FEM better able to handle systems with abrupt variations in
mass or stiffness distributions. The coefficients of the series are nodal coordinates;
therefore they have physical significance (displacements, slopes and curvatures) and
can be easily interpreted. Finally in order to improve the accuracy of the computed
solution of the eigenvalue problem (EVP) two approaches are possible: the mesh
could be refined by reducing the size of the elements; or the degree of the
polynomials over the elements could be increased. The first procedure is known as
the h-version of the FEM and the second as the p-version. The latter version is
similar to the Rayleigh-Ritz method in that the accuracy is improved by increasing
the number of admissible functions. However, the differences between the two
methods referred to earlier remain. The p-version provides a higher rate of

convergence than the Rayleigh-Ritz method or the h-version.

Advantages of the FEM include the ability to deal with structures with arbitrary
loading, including support conditions, and also the ability to model structures of
arbitrary geometry. A further advantage of this method is the possibility of

modelling composite structures comprising different structural components.

However, for the purpose of dynamic analysis, an alternative is to use the exact
displacement functions arising from the solution of the governing differential
equations for beam vibration. As will be seen in the next chapter, this approach
offers certain advantages but has the disadvantage of leading to a non-linear EVP

when computing the natural frequencies.

When the FEM is employed, two stages must be considered. The first requires study

of the individual elements into which the system is divided, while the second
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involves studying the assemblage of elements which represent the entire system.

Thus, the outline of the FE process may be summarised into five essential steps

which are as follows (Richards, 1977):

1 Definition of the finite element mesh: The first step involves the process of

discretising the structure into appropriate sub-regions.

2 Selection of displacement models: In this process, a suitable displacement function
must be selected for a typical element which would lead to a finite number of
degrees of freedom and would satisfy the boundary conditions of the system. In
order to retain the bounding and convergence properties inherent in the Ritz
procedure, it is necessary that the element interpolation functions should include the
rigid body displacements and uniform strain states, and that they maintain

displacement compatibility along the inter element and exterior boundaries.

3 Formulating the discrete stiffness equation or equation of motion: The strains at
any point within the element may be expressed in terms of the element nodal
displacements. The static equations of equilibrium can be obtained by using the
principle of stationary total potential energy whereas the dynamic equations of

motion are obtained by using Hamilton's principle.

4 Solution of the stiffness equation or the equations of motion: The solution of
stiffness equations lead to a set of simultaneous equations whereas the equations of

motion in the free vibration case lead to an EVP,

5 Determination of the desired properties: Once the nodal displacements have been
determined, strain and stress can be calculated from the strain-displacement

relationship and by Hooke's law, respectively.
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4.2. APPLICATION OF THE FEM TO THE ANALYSIS OF
FOUR-BAR MECHANISMS

The application of the FEM in the analysis of four-bar mechanisms involves
imagining the bars of the mechanism to be actually divided into a finite number of
regular elements of finite (but not necessarily equal) length, and connected with each
other through nodal points. The elements are in this case beam elements. At each
instantaneous position, the mechanism is viewed as a structure upon which external
loads and inertial forces are acting. The versatility of the method means that
variations in the mechanism geometry can be taken into account easily without any

additional difficulty.

4.2.1 Shape functions for a Beam Element.

In the analysis of the mechanism at a given position, it is assumed that it is a
structure composed of discrete members, as shown in Fig. 4.1. In this respect, each
of the constituent members is regarded as a beam, and so the beam theories of

bending apply. The effects of shear deformation and rotary inertia are neglected.

element e

Follower
Input link Coupler

Fig. 4.1: Mechanism at a given position.

The simplest one-dimensional element is a uniform, straight beam. Such an element

has been used when analysing the four-bar mechanism as shown in Fig. 4.2. For the
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convenience of computation, the local coordinate axes are chosen to be coincident

with the principal axes of the beam.

q3 q5 Ye

] q4 I\.’ A
]
! N [ .
== ——~ e
node 1 —/ ""'qﬁnodeZ

Fig. 4.2: Beam element with its nodal coordinates

When the mechanism vibrates mainly in one plane, two types of vibration must be
considered: the flexural vibration and the longitudinal vibration. This is true in the
mechanism considered because the links are flexible in the plane of motion and
relatively stiffer in the plane perpendicular to the latter. The torsion effect is
neglected. Thus, it is possible to construct stiffness and mass matrices for the beam
element from the sub-matrices arising from the longitudinal and flexural vibration
equations. In order to define the motion of the structure it is necessary to establish
the nodal displacements associated with all these elements. The total number of
these nodal displacements represents the number of degrees of freedom of the beam
element which comprises two axial displacements, two transversal displacements
and two rotations. The stiffness and mass matrices are therefore of order 6 by 6 for
each element of the beam. Suitable polynomial displacement function for a one-
dimensional element is of the form given by:

)= 3 ax | @1

where a; are arbitrary constant coefficients and n the number of degrees of freedom

of the element associated with the mode considered.
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The procedure involved in finding the beam element stiffness and mass matrices in

tension and bending is as follows:
1 Beam element in tension:

From (4.1), since the beam element in tension has two degrees of freedom, so the

approximating function for the element displacement is represented by:
u(x)=a, +a,x 4.2)

By substituting the boundary conditions, x=0 for node 1 and x = L for node 2 in

turn, into (4.2), u(x) becomes:

X X X X
u(x)=(1—qu, +fq2 =[I_E E]{Cll ‘Iz}T 4.3)
=[1-& ¢&]q, =N1(x)ql

X
where & = L is a non dimensional parameter varying from 0 to 1.

N, (x) is called the shape function. q, is a vector of element nodal displacements.

The strain at any point within the element may be expressed in terms of the nodal

displacements and can be found by a suitable differentiation of the displacements

defined by (4.3), so that :

e=[0]N,(x)q, =Bgq, 4.4
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where € is the element strain vector. In general, [0] is a matrix of differential

operators and in the present case B, contains the derivative of N;(x) and is given by:

[-1 1].

=]~

B, =

2- Beam element in bending mode

In this mode, the nodal displacements can undergo both transverse and rotational
displacements at both ends. The element must therefore have four degrees of
freedom, (see Fig. 4.2). Since the number of terms in the chosen displacement model

must equal the total number of degrees of freedom a suitable function is :

v(x)=a, +a,x+a,x* +a,x’ 4.5)
Proceeding as before, v(x) is given by:

v(x) =N, (x)q, (4.6)

where qiT=[q3 44 95 9] and Ny(x) is the shape function for beams in bending mode
givenby: N, (x) =[1-36" +28’ L(E-28"+8") 3 -28' L(=E +&))]

The interpolation functions in N,(x) are known as Hermite cubics. These functions
are not unique and other choices are possible. They are chosen simply because they

represent the lowest degree polynomials which describe a fourth-order problem.

4.2.2 The equations of motion of the mechanism

The equations of motion can be derived by several different methods. The most

popular among researchers are Lagrange equations and Hamilton's principle. Both
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methods lead to the same set of equations. In fact, it can be shown that the two
methods are mathematically equivalent. Hamilton's principle stipulates that for a

conservative system the real trajectory is the one which corresponds to a stationary

value of the integral I(T—U)dt with respect to any arbitrary compatible

t
displacement 8q between two instants t; and t, and in such a way that 8q = 0 at t,

and t,. Hence, the problem is formulated as:

Bt]-(T— U)dt=0 @7

&q(ty) = ‘SQ(tz) =0

where T is the kinetic energy and U the total potential energy (the potential energy

of external forces + internal strain energy due to elastic deformations, U,,).

Note that in the special case of a static loading, Hamilton's principle becomes the

well known principle of minimum energy.

The strain energy due to the flexural and bending deformations is given by:

1 (au)’ 1 [azv]’
Uim—ngA ™ dx+2}‘EIz Pw dx (4.8)
which leads to:
U __1 Tl]' T 1 T'] T
int “5‘1: OEABl B, dx ‘h"'a‘h OEIz B, B,dx|q, (4.9)
o’v(x) d*N,(x)
where - ol q2 =B,q, (4.10)

A is the cross section area and E is Young's modulus of elasticity,

EA and EI, are called the extentional and the flexural rigidity respectively.
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The element stiffness matrices associated with the axial and transversal vibrations

are therefore defined by:

K, = 'IEA B,"B, dx and K, = ’IEIZ B,”B, dx (4.11)
0 0

Replacing B, and B, by their expressions and integrating yields:

EA|l 1 -1
K, = T[— 11 ] (4.12)
and
12 6L -12 6L
EI, 412 -6L 212
=T ym 12 -6L (4.13)
41?

The displacement models, the stiffness matrices associated with axial and bending
loading of an element, have been presented separately. In plane motion analysis, the
beam element will have 6 degrees of freedom as shown in Fig. 4.2. Consequently,
the element stiffness matrix in a local coordinate system will be denoted by
assembling the element sub-matrices K, and K,. The element stiffness matrix K is

given by:

©
K= K, (4.14)

In order to derive the mass matrices, the kinetic energy needs to be considered. To
do this we must consider its expression with respect to the nodal coordinates. Fig.
4.3 shows an elemental mass in an element of the link and the coordinate systems
used in the development of the equations of motion. The coordinate system (x,,y,) is

fixed at a general point of the undeformed link, its origin is located by vector ry. The
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reference coordinate system (X,Y) is attached to the ground. Vector d represents the
displacement due to the elastic deformation of the link and it is measured in the
(XesYe) system. The general displacement of any point on the link in the reference

coordinate system is measured by vector r and can be expressed as:

r=r+Td (4.15)

where matrix T is the transformation matrix between the local and the global

coordinate system.

Ye X

Fig. 4.3: Elemental mass displacement in local and global coordinate system.

1., :
The kinetic energy of the elemental mass dm is given by Ei'TPBm. The velocity

vector I is obtained by differentiation of (4.15).

i=i+Td+Td (4.16)
The displacement d and its derivative are related to the generalised nodal

displacements by:

d=Ngq

: 4.17)
d=Ngq
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Recalling that the shape functions must allow for rigid body displacement of the

element, the expression of ¥, is similar to (4.17):

i =TNgq, (4.18)

where q, is the generalised rigid-body velocity vector.

Now, the kinetic energy of the element is given by:

1
= —-IIpA i rdx

25 (4.19)
Replacing the velocity vector by its expression in (4.19) gives:
T=1TpA(q TNTN@q,+24, " NTT"TNq+

5 : . : ' (4.20)
24, "N"NG+q"N"T"TNq+
2q" NTTT TN ¢+ NN ¢ ix

After substituting the expressions of T, U;, and the potential energy due to external
forces into (4.7) and after some manipulations, the equations of motion of one

element are obtained.
Mg+2M.q+(M,+K)q=p-Mgq, (4.21)
where the different matrices are defined by:

M= ']pA NTNdx
0
M, = LIpANT TT TN dx (4.22)

M, =l]pANTTTTNdx
0
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The external forces applied at the nodes and the one transmitted from adjacent
elements or links are represented by the force vector p, and M, is the force vector
due to the rigid-body motion. Furthermore, 2M_ q represents the Coriolis type
forces and M, q is the contribution of forces generated by normal and tangential

accelerations. The matrix M is given by:

where the mass matrices M; and M, are associated with the axial and the transversal

modes respectively and given by:

_ pAL|2 1]
M, = 6{1 2

156 22L 54 -13L (4.24.2)
pAL 41} 13L -3L2
M. =420 sym 156 —22L
412
[0 0 21 -3L -9 2L]
0 -9 2L -21 3L
M wpAL 0 0 0 0
T 60 0 0 0 (4.24.b)
0 0
i 0

M, =aM-0’M
4.2.3 Transformation to global coordinates

The matrices developed in the previous section are expressed in the local or element
coordinate system (X,,y,). In practice, the mechanism, and structures in general, are

made up of elements with different orientations. Therefore, expressing the
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displacements in a coordinate system particular to each element will create
difficulties in matching the displacements at a given node during the assembling
process. The solution would be to express all matrices and vectors in the unified
reference coordinate system (X,Y). The transformation matrix between the two

coordinate systems is depicted in Fig. 4.4 and given by:

{x,}_[cos(e) sin(6) x} - 12
y.) L-sin(6) cos(®)JlY (4.25)

This transformation holds for displacements at both ends. If the displacements in the
reference coordinate system are denoted qg, they are related to the nodal

displacements q by:

(q,] [cos® 0 sin®) 0 0 0]fq,

q, 0 cos(0) 0 0 sin(0) 0|9,

G| _[-sin® 0 cos® 0 0 Ollay|

la, [T o 0 0 1 0 ofqu[ 4 (4.26)
qs 0 —sin(0) 0 0 cos(®) 09,

q¢) L 0 0 0 0 0 1Jlq,

Fig. 4.4: Transformation between local and reference coordinate system.
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In order to determine the stiffness and mass matrices in the reference coordinate
system, equation (4.26) is differentiated twice and substituted into (4.21), after pre-
multiplying by RT the equations of motion in a global coordinate system are

obtained as:
M, i, +K.q, = p,~ M, —M,q,—-M,q, 4.27)

The system matrices are as follows:

M, =R'MR

K, =R'KR (4.28)
M, =2(R"™M,R+R"MR)

M,, =R"™M,R+2R"M_ R+R"MR

The equations of motion are arranged in the form given by (4.27) because matrices
M, and K, are symmetrical, a property which can be taken advantage of during the
solution of the equations. The matrices My, and Mg, are not symmetrical and

therefore they should be separated from M, and K.

4.2.4 Assembly of the overall matrices.

So far the element matrices have been developed for each element in a local
coordinate system and then transformed into a global system. The question to be
answered in this section is how to extend the results obtained for the elements to the
complete system. The next stage is therefore to assemble the stiffness and mass
matrices and the generalised forces vector of the individual elements to form the
overall matrices for the entire system. This is achieved by ensuring that the
geometric compatibility is satisfied at all nodes i.e. the displacements at the nodes

shared by many elements must be the same for each of these elements.
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The quantities pertaining to individual elements will be identified by the subscript e.
For convenience and since all matrices and vectors will be expressed in the reference
coordinate system, the subscript g will be dropped in the remainder of this chapter.
Then let q be the vector of nodal displacements for the complete system. Introducing
the matrix L, which relates the local nodal element displacements to the global ones,

this relation can be written in the form:
q.=L.q (4.29)

L, consists of a matrix of zeros and ones. In each row there is at most one element
equal to one. If all entries of a given row are zero, this would mean that the
corresponding displacement is physically constrained. By replacing (4.29) and its
derivatives in the equations of motion, the matrices corresponding to the whole

system are identified. They are given by:

M= HZLGTMGLG
e=1

K= {ZL,TK,L,
e=1

n (4.30)
M, =X LML,
e=1
M, = 2LM,L,
e=l]
where n, is the number of elements
The equations of motion corresponding to the whole mechanism are:
Mij+Kq = po,— Mij, - M4~ M,q 4.31)
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In the assembly process, the forces transmitted from one element or link to the other
become internal and they cancel each other. Therefore in (4.31), p,; is the force

vector containing the external forces being applied to the whole mechanism.

Example: Fig. 4.5 shows a four bar mechanism modelled with one element per link.

Fig. 4.5: Four bar mechanism modelled with 1 element per link.

In this example the matrices L, are:

000000000 001000000
001000000 000001000
0000O0GO0GOGOO 010000000

L=loooo0o00000f™ooo0100000
010000000 000000100
1 000000 0 0O 000010000
[0 000010 0 0]

0000O0O0OGOO
000000100
and =15 6000001 0
000000OO0 O
0 0000O0GO0 O 1]
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It should be noted that the structural stiffness and mass matrices are symmetric,
square and positive definite of an order equal to the number of degrees of freedom of
the system. However, if the system is not constrained and possesses any rigid body

degrees of freedom, the stiffness matrix becomes semi-definite.

4.2.5 Damping effect

In real mechanisms some energy dissipation is always present. Measurement and
modelling of the material damping of a system generally proves to be a difficult
problem that requires further research. It is therefore necessary to assume an
approximate form for the material damping. A proportional viscous damping form is
customarily assumed due to the ease in which it can be incorporated into the
equations of motion, and also to ensure that the equations of motion can be
uncoupled. If the system possesses viscous damping i.e. the damping forces are

proportional to the generalised velocities, the equations of motion become:

MG+Cq+Kq=1' (4.32)

where all terms on the r.h.s of (4.31) have been grouped in the vector forces f.

For the uncoupling procedure, the following coordinate transformation is made

q=>n (4.33)

where n represents the modal amplitude vector and @ is the modal transformation

matrix.

Also g =®1 and 4 = O (4.34)
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Substituting (4.33) and (4.34) into (4.32), and pre-multiplying by ®T, the following

equations hold when the eigenvectors are mass normalised:
fi+®" COR+[0’In=0" ' (4.35)
where [®?] is a diagonal matrix containing the square of the natural frequencies.

In order that the orthogonality of the damping forces is secured, the following must

be true;

O"CH =0 n¥m
OTCD =qa, (4.36)

A simplified damping form is often used. This is obtained by defining o, in (4.36)

as 2L, m,,, where &, is the damping ratio for the nth mode and ,, is its frequency.

4.2.6 Stiffening effect

The strain was assumed to be a linear function of the displacement in (4.4). When
the deformations are large, this relation becomes non-linear and rewritten in the

form:

1
e=B,q+ EqTBnTBnq 4.37)

where B, is the non-linear strain-displacement matrix.

This leads to the definition of the non-linear stiffness matrix K|, as:
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K, = 'Ir, B,"B, dx

0

(4.38)

where f, is the axial force in the beam element.

The non-linear stiffness matrix accounts for the fact that a beam deflects more when
an axial compression is added but less when a tension is added. The axial forces can
be approximately obtained either by quasi-static analysis or when the time marching
simulation is used in order to solve the equations of motion, it is derived from the

deflections at the previous time step. For a beam element, K|, is given by:

0O 0 0 0 0 0
0 0 0 0 0
6 L 6 L
5 10 5 10
k - EA@:-q) 2 L I
- L 15 10 30 (4.39)
6 _L
SO 5 10
o
i 15 .

4.3. NATURAL FREQUENCIES AND MODE SHAPES IN A
STATIONARY MECHANISM

When the generalised forces vector f is set to zero and the damping is neglected in
(4.32), the harmonic free vibratory motion is described by:
(K-o*M)q=0 (4.40)

The natural frequencies ®; are found from the following equation called the

characteristic equation:
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det| K-> M| =0 (4.41)

If the structure is not constrained some solutions of (4.41) are zero. These
frequencies correspond to the rigid body modes. In this case the stiffness matrix is
singular. For a particular natural frequency w; the associated modal vector q; can be
found from (4.40). If the system is of order n, i.e. n degrees of freedom, n natural
frequencies can be obtained from (4.41). Although these frequencies can be obtained
to any desired accuracy from standard computer programs for solving the EVP, one
must remember that they are the frequencies of the approximate system. With a
reasonable number of appropriate elements some lower fraction of these n
frequencies should be. good approximations of the frequencies of the real structure.

In general the higher frequencies found from (4.41) have no physical significance.

Several methods of computing natural frequencies and modal vectors from (4.40)

exist. They can be grouped in the following categories:

e Methods based on the expansion of the characteristic equation (4.41).

e Methods based on the evaluation of d(w?2)= det|K-02M|.

¢ Methods based on the application of successive transformations leading to a tri-
diagonal form or upper (lower) Heissenberg form (for non symmetrical
matrices).

e Iterative methods on the eigenvalues.

o Iterative methods on the eigenvectors.

» Subspace iteration methods.

The following factors affect their suitability and efficiency:

1. The size of the problem: It depends on the number of degrees of freedom

included in the model.
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2. The number of eigenvalues required: This depends on the application and the

nature of analysis to be carried out on the model. In the vibration problems the
lowest modes contribute most to the steady-state solution and therefore only the
lowest natural frequencies are of interest. In contrast, the frequency band
required might be wider in acoustic problems.

In most cases a limited number of frequencies is sufficient but in some cases the
frequency range might be wider. This could be the case for structures with high
modal density i.e. many natural frequencies are present in a certain range of
frequencies; or when the calculated modes are used in a transient response
analysis with high frequency content in the excitation using modal superposition
technique.

3. The required frequency range: In many cases, the methods of solution of the
EVP give the eigenvalues in a certain order. However, some methods enable the
calculation of eigenvalues in a given interval without having to calculate the
lower frequencies first.

4. Ability to calculate close eigenvalues: The problem of finding two eigenvalues
close to each other is a delicate numerical problem. Close natural frequencies
appear in structures, for example, with many symmetries or when a basic
element is repeated many times in the structure. In such a situation the method of
solution should be able to distinguish between the different frequencies.

5. Convergence ratio: This factor is linked to the previous one. The convergence of
the method is affected a great deal by the existence of close solutions.

6. The cost: the cost of the solution includes the CPU time required to solve the
problem, the programming cost which is a function of the complexity of the

method and the computer resources available.

The mechanism was modelled with beam elements developed in this chapter. A
computer program was written using Matlab to solve the EVP for a particular

mechanism. First the number of elements per link was varied (h-version) and then
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the degree of the polynomials used in the shape functions was increased (p-version).
The latter could be achieved either by adding internal nodes or by increasing the
number of nodal generalised coordinates in the model which, in this case was
performed by adding curvatures as variables at both ends of one element. The shape
functions are given in Appendix A as well as the different matrices used in the p-

version of the FEM.

The data of the mechanism studied are given in Table 4.1.

Input Link | Coupler | Follower | Ground

Length [m] L,=0.170 | L,=0.328 | L;=0.525 | L,=0.547

Cross Section Area [m?]*10-6 157.5 85.5 78.75

Second Moment of Area [m?#]*10-12 | 520.47 83.34 65.12

The lumped masses of the joints : 0.174 kg

Material: Steel, Density: 7.85 103 kg/m3, Modulus of elasticity: 210 10° N/m?

Table 4.1; Mechanism data.

Figs. 4.6.a to 4.6.d show a comparison between the h-version and the p-version of
the FEM for the first four natural frequencies. They also show the influence of the
number of elements per link on these frequencies. In these figures the p-version 1
corresponds to the element with an internal node whereas in the p-version 2, two

curvatures have been added as nodal coordinates (see Fig. 4.7).
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Fig. 4.6.a: First natural frequency.
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Fig. 4.6.b: Second natural frequency.
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Fig. 4.6.d: Fourth natural frequency.

From these figures it can be concluded that:

o The model with 1 element per link over-estimates the natural frequencies. A

mean difference of 10% for the first natural frequency and 26% for the fourth
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one have been calculated with respect to the model with 3 elements per link.

Therefore, multi-element idealisation should be used to model the mechanism.

« In the h-version the rate of convergence is quite high. A three elements model

predicts the frequencies up to the fourth frequency accurately.

o In all cases, the p-version 2 gives better results. With only one element per link,
the p-version 2 gives almost the same result as the h-version with 3 elements per
link. Furthermore, the number of degrees of freedom in the latter case is 27

compared to 10 in the former.

qlﬂ 9, (?lsJ
%G 1\ i
Ry i ,
p-version 1
q, ] q,
L i /’F
— ) [ e e e i e —
T s

p-version 2

Fig. 4.7: Nodal coordinates in the p-version of the FEM.

4.4. CONCLUSION

The FEM has been presented and applied to investigate the elastodynamic vibration
a four-bar mechanism. The equations of motion have been derived where all the
effects of the rigid body motion on the elastic response have been taken into

account. The stiffening effect due to the axial forces has also been included.
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Moreover, the two classical versions of the FEM have been considered in order to
solve the EVP, namely the h-version and the p-version. It has been shown that in

general the latter is more accurate than the former for the same computing effort.
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Chapter S

DYNAMIC STIFFNESS METHOD

5.1. INTRODUCTION

The previous chapter was devoted exclusively to the vibration ahalysis of a four-bar
mechanism using the FEM. The free undamped vibration of the mechanism led to a
linear EVP. In this chapter a method of analysis based on the dynamic stiffness
method will be presented. The dynamic stiffness matrix is usually a linear function
of the frequency squared. This ceases to be true in the case of large systems which
have been condensed or when exact rather than polynomial displacement functions
are chosen. In the latter cases, usual methods of solution of the EVP are no longer
valid and special algorithms are needed to solve the "non-linear" EVP which
governs the free undamped vibration of the system. The success of the dynamic
stiffness method resides in the fact that it can model beam elements very accurately
based on the exact solutions of the elements in the modes considered. This makes
the dynamic stiffness method impossibly difficult to use for general structures

comprising elements other than beams.

An important requirement in the dynamic analysis of structures, and mechanisms in
general, is to employ an adequate accuracy of computation to ensure that the natural
frequencies and mode shapes are obtained with reasonable finite element
discretisation, even for the higher modes. The size of the basic matrices depends on
the number of unknown coefficients in the assumed deformation functions, and the
size of the system matrices depends on the number of elements in the FE model. For
reasons of economy, a desirable objective is the smallest overall system matrices
with a given solution accuracy. The proper choice of the deformation functions is

therefore the key to meeting this objective. This may be accomplished by the use of
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exact rather than approximate displacement functions for the elements, obtained
from the solution of the differential equations governing the free vibrational
behaviour of structural components. A finite set of displacements of suitably
localised joints of the structure is used to describe the total displacement. When
applied to a structure, the resulting non-linear EVP is solved by a straightforward
and infallible method which converges on as many of the natural frequencies as may

be required.

The method was originally developed for rigidly jointed plane or space frames.
Members of the structure are treated as being continuous and uniform rather than an
approximately equivalent lumped mass system. It follows that each member of the
structure, and hence the structure itself, has an infinite number of degrees of freedom
so that there are an infinite number of natural frequencies for the structure. With this
method it is possible to calculate the number of natural frequencies which lie below
any chosen frequency without determining them and hence to converge on any

required natural frequency to any specific accuracy.

The matrices for an exact solution are frequency~dependent and form a non-linear
EVP. As the methods of solution which are presented for a linear eigen-system are
inapplicable, the determinant method must be invoked. With the property of the
Sturm sequence and the treatment of asymptotic poles, the determinant method has
been proved to be efficient and reliable. The differential equation and general
solution for the flexural and extensional vibrations of a uniform straight beam have
been presented by many investigators, for example Wittrick and Williams (1970,
1971) and Richards and Leung (1977). Basci et al (1979) also reported that the
influence of rotatory inertia on the frequencies of vibration is rather small, even for
higher frequencies. In their application the effects of shear deformation and rotatory
inertia were ignored. A comparison of the dynamic stiffness method, the FEM and
the lumped mass approach was given by Henshell and Warburton (1969); the
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examples treated were a free-free beam with one attached mass and a single storey
two bay portal frame. In all cases, it was shown that the lumped mass method
underestimated the natural frequencies, whereas the FEM overestimated them. When
the computational time required was investigated it was found that the lumped mass
required the least time; the exact method, in contrast, needed a long computational
time. An important advance in the use of the dynamic stiffness method was made
through the algorithm of Wittrick and Williams (1970) to automatically calculate
natural frequencies to any degree of accuracy. Akesson (1976) developed a computer
program for vibration analysis of planar frames by the dynamic stiffness method.
Recently, a formulation of dynamic stiffness method was extended by Liu and Lin
(1993) to the analysis of forced vibration of flexible body systems. In their paper,
three applications were considered, namely a cantilever beam, a rotating beam and a

slider crank mechanism.

3.2. APPLICATION OF THE DYNAMIC STIFFNESS METHOD
TO THE ANALYSIS OF FOUR-BAR MECHANISMS

5.2.1 Exact displacement functions

Any link of the mechanism exhibits two basic modes of vibration: flexural and
extensional modes. First, consider a beam in a flexural mode. The transverse
displacement at any point x is a function of x and time t, denoted by v(x,t). The
governing differential equation of motion for a transverse vibration of a prismatic
beam in the general form is given by:

o'v o’v

EI'é'xT"'pA?:O 5.1)
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where p is the material density, A is the cross section area, E is Young's modulus of

elasticity and I the moment of inertia. Rotary inertia and shear have been ignored

and the assumption that plane sections remain plane is implicitly made. Let

v(x,t) = V(X)sin(ot + @)

(5.2)

where ¢ is the phase angle, V(x) is a function of x only and © is the angular

frequency of harmonic motion.

Combining (5.1) and (5.2):

d'vix) .,
I A V(x)=0
«_PA
where A’ = T

It can be shown that the solution of (5.3) is in the form:

V(x)= ¢, sin(Ax)+c, cos(Ax)+c, sinh(Ax)+c, cosh(Ax)

(5.3)

(5.4)

(55

Now, consider the beam in axial vibration mode; assuming that the axial

displacement is u(x,t), then the governing differential equation of motion for a

uniform beam in this mode is given by:

o’u o'u
BAaa =P
As before, letting
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u(x,t)= U(x)sin(ot +¢) 5.7

and using separation of variables method, (5.6) reduces to:

U

+p*U=0
dxz B (5.8)
where B? = 2o’ (5.9)

E
The general solution of (5.8) gives:

U(x)= ¢, sin(Bx)+c, cos(Bx) (5.10)

In (5.5) and (5.10), c; (i = 1 to 6) are arbitrary constants determined from boundary
conditions. These equations represent the exact displacement functions in flexural
and axial modes. One advantage of using such functions is that the results obtained
from them will be independent of element subdivision. On the other hand, the shape
functions satisfy both the boundary conditions and the equation of motion. An
attempt to choose a displacement function which satisfies the equation of motion
was made by Cohen and McCallion (1969). In their paper, the usual displacement
polynomial functions were corrected so that they satisfy the equation of motion for a
beam in bending. They found that this method leads to better results; a maximum
error of 0.76% for the 12th eigenvalue was obtained compared to 11% for a beam
modelled with 12 elements. It is therefore anticipated that the natural frequencies
and mode shapes will be more accurate than the ones calculated from the FEM when

exact functions are used.

Summarising, with the use of exact functions the displacement at any point x is

evaluated in terms of circular and hyperbolic expressions. It may also be noted that

90



the transverse and longitudinal displacements are mutually independent of each

other, but the relationship between the two frequency parameters is given by:

=iyl (5.11)

5.2.2 Stiffness and mass matrices

The procedure used for obtaining the stiffness and mass matrices in bending and in
tension for a beam element using exact displacement functions is exactly the same as
in the case of the displacement polynomial functions, already discussed in the
previous chapter. The equations which link the nodal deflections q; and the
unknowns c; are obtained using (5.5) and (5.10) and by substituting the boundary
conditions respectively. Using the notations given in Fig. 4.2, the vector of element

nodal displacements q is given by:

(q,] [ © 1 0 0 0 0 Jfc,
q, sin(BL) cos(BL) 0 0 0 0 Cy
ICH 0 0 0 1 0 1 IC
q4 0 0 A 0 A 0 Cs
qs 0 0 sin(AL)  cos(AL)  sinh(AL) cosh(AL) |{cs
q¢) L O 0 Acos(AL) -Asin(AL) Acosh(AL) Asinh(AL)](c)
(5.12)

This may be written more concisely as:

q=Ac (5.13)

In computing the mass and stiffness matrices, the methodology exposed in the
previous chapter is still applicable. For structures, or more generally mechanisms for

which instantaneous structure formulation have been adopted (i.e. the matrices due
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to Coriolis forces, normal and tangential acceleration effects are neglected), it is
more convenient to work with the dynamic stiffness matrix. In this case and noting
D the dynamic stiffness matrix, the equations of harmonic vibratory motion are

simply:

Dgq=f (5.14)

~ whereD=K-0ZM

The generalised forces vector f associated with the nodal displacements vector q for

free-free beam element is given by:

r_d,d00  du@) dV©O) &’V dV@L) d'V({L)
f _E[A & & Tad T T D a ] (5.15)

A theorem by Richards and Leung (1977) states that the mass matrix is obtained by
differentiating the dynamic stiffness matrix with respect to the square of the

frequency. Therefore:

M="§_ml:" (5.16)
and
K=D+o’M (5.17)

Developing (5.15) and rearranging in the form of (5.14), the dynamic stiffness

matrix is identified as:
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e o w &
. A[ ’ s]
F, F
Ffb -F, F F
D= ; F, -F F (5.18)
sym ¥, F,
i E ]
The mass matrix is then obtained by applying (5.16).
[ [G, G ;
]
G, G,
G, -G, G, G,
M= . G, -G, G, (5.19)
P sym G, G,
i G, ]

where the functions F; and G; are given in Appendix B.

Note that the displacement functions chosen in the FEM are solutions of (5.3) when
A and P are equal to zero. Therefore, one should expect that when o is set to zero in
(5.16) and (5.17), the same matrices given by the FEM are obtained. The difference
between the two set of matrices can be considered as a correction to the matrices
given by the FEM. Developing M and K as power series with respect to ®?, it is

found:
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5.3. WITTRICK-WILLIAMS ALGORITHM

Once the stiffness and mass matrices have been obtained, the procedure of
transformation from local to global coordinate system and assemblage is carried out
to yield the overall éystem matrices. This is done in a similar manner as in the
conventional FEM. However, the matrices obtained are frequency dependent due to
the presence of A and P in the expressions of these matrices. Therefore, the free

undamped vibration leads to the following non-linear EVP:
D(@)q=0 (5.20)

In some exceptional circumstances, for some frequencies, (5.20) admits the solution
q = 0; at these frequencies q is a vector of displacements at nodes of the
corresponding natural modes of the system. One of the main advantages of the
algorithm of Wittrick and Williams is that it accounts for these solutions as well as

the solutions of the usual EVP, det(D) = 0.

Despite the fact that the exact displacement method for frames was developed in the
early 1940's by Kolousek (1973), no reliable method of sélution of the EVP was
developed before 1970, the date of publication of the algorithm by Wittrick and
Williams. Up till then, the natural frequencies had been calculated by a simple
frequency scanning, where the determinant of the dynamic stiffness matrices was
evaluated for various frequencies with constant step size. Once a sign change has
been detected, the programme then activates a subroutine which calculates the
trapped natural frequency using bisection or some other suitable algorithms. This
procedure has some disadvantages, firstly the solutions of (5.20) corresponding to
q = 0 are not calculated with this method. Secondly if two or more natural

frequencies are very close, some solutions may be missed by the programme. To
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overcome the latter problem a very small step size is chosen in order to account for

all solutions. However, a great deal of CPU time is unnecessarily consumed.

The algorithm developed by Wittrick and Williams is based on a theorem by
Rayleigh which states that: "If one constraint is imposed upon a linearly elastic
structure, whose natural frequencies of vibration, arranged in ascending order of
magnitude, are ©,, the natural frequencies ®', of the constrained structure are such
that ©, <, <0,,,, r =1, 2, 3..". A corollary to this theorem would be: "If one
constraint is removed from a structure, the number of natural frequencies which lie
below some fixed chosen frequency either remains unchanged or increases by one".
From this corollary it can be verified that, by extension, if k constraints are removed
from a structure the number of natural frequencies which lie below a chosen
frequency increases by a number s where (0 <s<k. This represents the core of

Wittrick-Williams algorithm.

The algorithm is valid for any linear finite or infinite elastic system with a dynamic
stiffness matrix D(®). An infinite system is defined as a system which possesses an
infinite number of natural frequencies through the use of exact shape functions. The
algorithm calculates the number of natural frequencies which are less than some

fixed chosen frequency o denoted by J(®,) and given by:

J(@g) = Jo(@g) + s{D(w0)} (5:21)

where Jy(®,) is the number of natural frequencies which would still be exceeded by
oo if n constraints were imposed so as to make all displacements q zero, and
s{D(wg)} is the sign-count of D(w,) defined as the number of negative characteristic
values of D(wy). It is also equal to the number of negative elements on the diagonal
of its upper triangular form as was suggested by the authors of the algorithm. In the

present study, it has been evaluated as the number of negative eigenvalues of
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D(wg). This came about because the package used for the development of the

programs, Matlab, has a built-in function to calculate the eigenvalues.

Basically, the algorithm locates a frequency interval containing a root by an
incremental method. The search is carried out in constant frequency steps supplied
by the user of the program. At every step, the dynamic stiffness matrix is calculated
and the number of its negative eigenvalues counted. Also, the sign count is corrected
for the number of poles below the trial frequency. Hence the program needs to start
by calculating and sorting all natural frequencies of the clamped-clamped beams of
the structure in a given range. When the corrected sign count changes by one, the
program activates a procedure which locates the root in the current interval between
the present and the last trial frequencies. For reason of economy, the frequency step
size should be quite large in order to avoid unnecessary calculations. However, if the
step size is too large the program would "jump over" more than one natural
frequency in one step and the corrected sign count would increase by the number of
roots in the trial interval. The program scans backwards in order to locate an interval
containing one root only. Once this is done, many methods are available to locate
the root, the bisection procedure does this starting from an initial interval [ay,by] by
reducing the width of the interval; after p iterations the interval is [a,by] of width
(by — 29)2P. Therefore the procedure converges upon the root to any required

accuracy.

5.4. APPLICATIONS

In this section two applications are examined to show the superiority of the dynamic
stiffness matrix method over the conventional FEM. The first application is a simple
portal frame with its bars rigidly connected together, and clamped to the ground. The
second application is the four-bar mechanism already treated in the previous chapter.

In fact, the dynamic stiffness method was applied to investigate different structures
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(portal frame with pinned joints, structures with inclined members, etc.); the reason
for not considering the other applications is, first for brevity and second because in

all cases the latter method gives better results.

5.4.1 Portal frame

The portal frame has been investigated by many researchers. Rieger and McCallions
(1965) tabulated the first two eigenvalues of portal frames having identical members
for two cases, namely for clamped and pinned footings. The entries in the tables are
two dimensionless numbers. A linear interpolation was proposed when these
numbers for a particular portal frame did not coincide with the entries given in the
tables. The tabulated natural frequencies are calculated using the dynamic stiffness
method. Chang (1978) considered more general frames with inclined members. He
showed that the axial vibration in a portal frame could be neglected but for frames
with inclined members this would lead to erroneous results. He also confirmed the
results of previous studies in that the natural frequencies of frames may be close
together or even coincident for some angles of inclination. Recently Jara-Almonte
and Mitchell (1988a, 1988b) combined the dynamic stiffness method and the FEM
in order to improve the extraction of high eigen-frequencies. The method was then
formulated and applied to a portal frame and a Vierendeel truss. They showed, as
expected, that the exact element model provides better results even for high
frequencies than the standard FE model. They also showed that incorporating an
exact element into a FE formulation reduces the number of finite elements required
to obtain the same number of acceptable natural frequencies. In contrast with the
papers by Rieger and McCallions (1965) and Chang (1978), Jara-Almonte and
Mitchell accounted for all natural frequencies including the ones leading to q = 0 in
(5.20). Such frequencies exist in the case of the portal frame considered by Chang
but he missed it due to the method of solution he used to obtain the EVP.
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The solution proposed to overcome this problem is to add at least one fictitious joint
in the middle of the bars (i.e. to model the bars with at least two "elements"). This
would prevent the aforementioned frequencies becoming poles of the dynamic
stiffness matrix, rather it would make its determinant vanish. Fig. 5.1 shows the
variation of the determinant of the dynamic stiffness matrix against frequency for the
portal frame considered for one and two elements per bar. It is seen that the fourth
frequency missed by Chang which is a pole when the frame is modelled with one
element per bar becomes an ordinary natural frequency for two elements per bar.
The same problem occurs when the conventional FEM is applied; at least two
elements per bar are needed to account for such frequencies. However a fundamental
difference exists between the two methods, the natural frequencies do not change
when the multi-element model combined with the dynamic stiffness method are

considered whereas in the FEM they decrease when the number of finite elements

increases.
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Fig. 5.1: Logarithm of the determinant of D for one and two elements/bar models.
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The schematic and the data of the portal frame studied here are given in Fig. 5.2.
The natural frequencies are given in Table 5.1.a and the relative error in Table 5.1.b.
The mode shapes corresponding to different models are then given. The results
obtained are in accordance with the results published by Chang (1978) except for the
fourth frequency which leads to q = 0 as pointed out earlier and corresponds to one
of the natural frequencies of clamped-clamped beam. From Table 5.1.b it is seen that
the relative error is quite low for the first set of natural frequencies corresponding to
half the number of frequencies provided by the model. The relative error for the
higher modes shows that they are significantly inaccurate (relative error of up to
50%). Therefore a rule of thumb can be proposed in that if k frequencies are required
it is necessary to model the system with a number of equal elements which provides
at least 2k frequencies. This is only true for the h-version. For the p-version more

calculations are needed to draw a similar conclusion.

E=10.3e6
I=2.08e-5

p=1
L=1.817
A=0.063

Fig. 5.2: Schematic of square portal frame and its data.
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Exact 4 elements |3 elements |2 elements | 1 element | p-version 1
solution |/bar /bar /bar /bar
21 dof 15 dof 9 dof 3 dof 9 dof
56.603 56.603 56.605 56.612 56.706 56.603
223.405 223.500 223,701 | 224.8331 267.346 223.529
364.376 364.717 365.411 368.517 577.263 365.388
394.637 395.709 396.801 401.590 396.538
798.420 802.477 810.153 908.950 806.043
974.976 982.323 994.177 | 1186.629 994.282
1128.133 1138.522 | 1148.601 | 1490.239 1155.056
1713.310 1748.834 | 1919.682 | 2385.624 2724.169
2021.214 2065.320 | 2343.157 | 3195.329 3974.050
2135.532 2181.153 | 2584211
2984.904 3328.206 | 3670.536
3321.571 3777.526 | 4431.450
3572.354 | 4166.017 | 5172.888
4596.701 5381.377 | 6614.060
5067.413 6243.021 | 7635.244
5273.455 6824.710
6565.820 8597.032
7062.693 9864.527
7409.042 11024.125
8874.718 | 12746.505
9506.991 13849.266
Table 5.1.a: Natural frequencies of portal frame.
4 elements | 3 elements |2 elements |1 element | p-version 1
/bar /bar /bar /bar
0.001 0.003 0.016 0.182 0.000
0.042 0.132 0.638 19.668 0.055
0.093 0.284 1.136 58.425 0.277
0.271 0.548 1.761 0.481
0.508 1.469 13.843 0.954
0.753 1.969 21,708 1,980
0.920 1.814 32.097 2.386
2.07 12.045 39.240 59.000
2.18 15.928 58.089 96.616
2.13 21.010
11.50 22.969
13.72 33414
16.61 44.803
17.070 43,887
23.199 50.673
29416
30.936
39.670
48.792
43.627
45.674

Table 5.1.b: Relative error in %.
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Exact solution 4 elements/bar 3 elements/bar

p-version 1

3 elements/bar

2 elements/bar p-version 1

3 elements/bar

2 elements/bar p-version 1
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4 elements/bar 3 elements/bar

Exact solution

p-version 1

2 elements/bar

4 elements/bar 3 elements/bar

Exact solution

p-version 1
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Exact solution

p-version 1
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3 elements/bar

Exact solution 4 elements/bar 3 elements/bar

Exact solution 4 elements/bar

3 elements/bar
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Exact solution 4 elements/bar 3 elements/bar

Exact solution

Exact solution 4 elements/bar
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Exact solution

Exact solution 4 elements/bar

5.4.2 Four-bar mechanism

The use of the dynamic stiffness method to investigate the modal characteristics of
the four-bar mechanism serves two purposes. The first one is that it gives a practical
answer on how many elements in conventional FE analysis are required to model the
mechanism satisfactorily. The second, as will be seen in the next chapter, is that by a
combination of this method and the conventional FEM the running four-bar
mechanism can be modelled with relatively small number of elements, thus saving a
great deal of CPU time. Since exact solutions are used in this method to solve the
EVP, the natural frequencies do not change when the number of elements increases.
Therefore only one element per link is used in the model. The results are compared
to the FEM with 3 elements per link and are given in figures 5.3.a to 5.3.d. From
these figures it can be concluded that, in this particular case, a model using 3
conventional elements per link is adequate up to the fourth mode with a maximum
relative error of 1.18%. It has also been shown that this number of modes is enough
to reconstruct the behaviour of a four-bar mechanism running at high-speed in the

steady-state; The mode shapes from both methods, conventional FEM and the
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dynamic stiffness method, were also investigated and compared. They are presented

in chapter 8 where they are compared with the experimental results.
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5.5. CONCLUSION

In this chapter the dynamic stiffness method has been developed. It has been shown
that for frame structures this method is superior to the FEM. It has also been shown
that in the case of the four-bar mechanism investigated, three elements per link were
needed using the conventional FEM to deliver the same order of accuracy and up to
the third mode when compared to the dynamic stiffness method. The main

disadvantage, however, is that this method leads to a non-linear EVP and special
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algorithms, such as the one developed by Wittrick and Williams, are needed to solve
this EVP. Finally, it was shown that although the natural frequencies delivered by
the dynamic stiffness method are independent of the number of subdivisions of the
elements, in structures with rigid joints more than one element per bar might be

needed to account for all natural frequencies.
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Chapter 6

SOLUTION OF THE EQUATIONS OF MOTION FOR
STEADY STATE

6.1. INTRODUCTION

The purpose of this chapter is to present some effective algorithms for solving the
equations of motion of a four-bar mechanism to yield the steady-state solution. In
the past, many methods have been applied successfully. However, even though the
analysis of four-bar mechanism running at high-speed has been the subject of
investigation for more than thirty years, little emphasis has been put on finding the
steady-state solution directly. Apart from the methods which implicitly give the
steady-state solution, such as the Fourier series analysis, most researchers used direct
integration methods and kept on running the simulation until the steady-state
solution was obtained. In this chapter, some established methods for solving the
equations of motion will be discussed together with two efficient and new

algorithms which give the steady-state solution very rapidly.

The methods most used thus far by researchers can be grouped as follows:
¢ Direct Integration methods.

e modal analysis,

¢ Fourier series analysis,

When the first method is used, a limited number of algorithms exist to provide the
steady-state solution. The last two methods have the advantage of providing the

steady-state'solution without iteration.
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6.2. DIRECT INTEGRATION METHOD

The problem of finding a solution which approaches the real solution is as important
as deriving the governing equations of motion. Conceptually, the most
straightforward method to obtain the steady-state solution is to use time marching
simulation starting from any arbitrary initial conditions. The transients associated
with the initial conditions die away naturally for stable systems leaving the steady-
state solution after a number of cycles. This has been used in the past, but little
emphasis has been placed on how to reach the steady-state solution quickly and
efficiently. In many papers, the simulation is started from an arbitrary initial
conditions (usually a zero state vector) and the steady-state solution is assumed to be
obtained after the first cycle, this approach was taken for example by Liou and
Erdman (1989b). In other papers, the solution was taken after a large number of
cycles in order to be certain that the transient has died out completely (Midha et al.,
1979). Convergence to the steady-state can be very slow indeed for some input
speeds, especially those near one of the critical speeds or when there is relatively

low damping in the system.

The method described in this section as the "direct integration method" consists of
integrating the equations of motion numerically. Unlike the modal analysis method,
it is not limited to linear systems. However, there are potential problems with the
direct integration method. Not least among them is the possibility that the step size

could be chosen unwisely.

In general, multi-step methods are expressed as: y, ,, = ia Vicry— Atib iV ikaiej
= j

j=0

where At = t,,; —t, is the time step size.
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Yis1 is the state vector [q,,; @,,;]" at t = t,,; calculated from m previous state
vectors and their derivatives. When by # 0, the scheme is said to be implicit, in that
in order to evaluate the state vector at t = t,,, its derivative is needed, whereas when
by = 0 the state vector yy,; is readily calculated from the results already obtained
from previous steps, and the scheme in this case is explicit. Finally when a; and b,
are equal to zero for j>1 the scheme becomes a one step scheme. The one step
algorithm most used by researchers is the Newmark method. In general, any multi-
step method of order m could be transformed into a one step method. This is done by
creating a new vector containing the m state vectors at m successive time steps. The

main disadvantage of this is that the size of the system is multiplied by m.

6.2.1 Newmark method

The Newmark method belongs to the family of one step methods when the state
vector is considered. The state of the system at an instant t.,; = t, + At could be
determined with respect to the state at the instant t, using Taylor expansion. For any

function f(t), Taylor's expansion gives:

At?
2

ft, +At) = f(t,) + Atf(t, ) + f”(tk)+...+%f“)(tk)+R, 6.1)

i
where R, = 3 If‘“”(‘c)[tk +At—t]'dt
e

Applying (6.1) to the displacement and velocity vectors, qand q, yields:

t
G =, + Ji(R)dT 62.)
ty

oy = £ AU+ It~ a0 (6.2.b)
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Then the integral in (6.2.a) is approximated by expressing the accelerations att =1

as functions of the accelerations at instants t =t and t = t;,; using (6.1). This gives:

@ (t, -":)2
2

@ (e -1)’
2

qy =q(7)+q(3)(tk—1)+q +oee

(6.3)

Ay = ('i(t)-!—qm(tm -1)+q +aee

Multiplying both sides of the first equation by (1 — y) and the second by y and

summing, the integral in (6.2.a) is approximated by:

Jii(o)dr = 1-y)Ati, + 78t + 1, (6:4.2)

tx

The integral in (6.2.b) is evaluated as before by expressing the velocities at t =t as
functions of the accelerations at instants t =t and t = t,, ;. Then using P instead of y,
the integral in (6.2.b) is approximated by:

T 1
I (te —7)4(t)dT = (5 - B]At’tik +BA Gy, + 1 (6.4.b)

In (6.4.3) and (6.4.b):
1
i =(1- L Jsa@ @ +0a0g®) 1, <s<t,,

1
K =[B—'6-)At’q"’ (9+0(at'q®)

The constants y and f are the parameters of the interpolation. For example the choice

of y = 1/2 and B = 1/6 leads to a linear interpolation of accelerations within the

interval of expression éi(.c):iik"'i(i‘iku_iik); and, y = 1/2 and B = 1/4 is

equivalent to considering a mean value of the acceleration during the interval

, 1. .
(1) =5 (@ +i)
By replacing (6.4) in (6.2), Newmark's scheme is obtained:
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iy = q, +(1-7)ALG, +7Atq,
and (6.5)

. 1 " ;
9y =9, +Atq, +At2("2"_ B]‘Jk + Atzﬁqm

. Combining (6.5) with the equations of motion and using straightforward algebra, the
recurrence relation for the displacement q,; at an instant t, ., is obtained (Chan et

al., 1962):

1
Dq,,, =Bq,~-Fq,_+ BAtz[fm"{E = z)fk'l' f, -1]

At
where D = M+ 5 C+BAt* K, (6.6.2)
B=2M-(1-2p)At* K,

At
F=M-—-C+BAt K.

The recurrence equation uses the displacements q at t, and t,_; in order to find the
displacement at t; .. In vibration problems, the initial state vector as well as the time
history of applied forces are usually known. It is convenient to express another
displacement equation in terms of initial displacement and initial velocity in order to

start the procedure. In a similar manner as before, (6.6.b) is obtained:

Dq, =Pq,+Qq,+ BAtz f,+Rf,
_ﬁi
2

Q= (M--}(l —4B)At> CM'C)At, (6.6.b)

1
where P = M+ —C- 5(1 -2pB)At? K—%(l -4B)At’ CM 'K,

1 1
R= (5(1-2B)I+Z(1f4|3)ﬁt CM™HAt?.
6.2.2 Consistency of a scheme

The state vector y, describes completely the state of the system at an instant t,. If the

speed and the displacement are given, the acceleration could be calculated from the
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equations of motion. A scheme is said to be consistent if fim Zliil—_li-:_‘,'f(t).
At—>0 At

This is a necessary condition for the convergence of the scheme and it means that for
a small step size, the solution given by the scheme converges towards the exact

solution. Applying this condition to Newmark method proves that it is a consistent

scheme.
lim y,, -y, lim (;—v)«'ikw('im [fik] _
A0 AU At->0f Gy +| 5~ BJAtd, +PAtdL, L4, =Yk (6.7)

6.2.3 Stability of a scheme

A scheme of integration is said to be stable if there exists a step size Aty>0 so that
for all Ate[0,Aty], a finite perturbation of the state vector y, at the instant t, leads to
only a bounded modification of the state vector y,; at later instant ty4j. The scheme

is unconditionally stable if the former property applies irrespective of the step size.

To check the stability of the Newmark method the state vectors at two consecutive
instants are written in the form: y; . ;=B(At)y, + g;4+,(At), where B(At) is the matrix
amplification of the scheme. Now, consider a perturbation of the initial conditions
8Y0=Y'0-Yo- The solutions at t =t corresponding to y, and y', are respectively

k+l

Yen = Bk+lYo + Zﬂkﬂjﬂg;

i=0
) kel (6.8)
Yia =B“yo+ ZBk_'H]gj

j=0

Therefore the solution at t = t,,, varies with Bk+]6y0. Hence, the stability of the

system is conditioned by the eigenvalues of the matrix B. If one of its eigenvalues
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has a modulus greater than one, the solution will be unbounded and the scheme
unstable.

In order to assess the stability of the method for various parameters y and P, the
equation of an undamped vibration of a single degree of freedom is considered. The
same reasoning applies for multi-degree-of-freedom systems when uncoupling via

modal analysis is possible. The equation is then: fj + @’n = ¢

The state vector is y, =[n, 7,]". The amplification matrix B in this case can be

shown to be: -
1 o’At At
2 1+Bo’At? 1+[30)2A12 (6.9)
Y oAt o2 At?

B(A) =
—mzAt[l———] L
21+po’At) | 1+po’At

The EVP leads to the following characteristic equation:

1 1
kz '{2-[”5]“2)”"(7—5]”2 =6 (6.10)

, At
where p° = m

This equation admits two conjugate eigenvalues if the following relation holds:

( +1)2—4|3<-—‘L— 6.11)
L T o?At? )

The solutions are then written in the form A = pe*®

1 1Y
i "\/l"z(ﬂﬂ W

where p= 1—(7—5}12 and 6 =tan™’ 1 :
‘"5[“ )“’

2
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The scheme is stable if p<I, this is verified if y=1/2. Furthermore, from (6.11) it is

2
Y + %) the stability is unconditional. The different regions of

e

verified that if > .i_

stability are plotted in Fig. 6.1 in (y,) space. Therefore, in the rest of the chapter the
parameters y and [ are respectively chosen equal to 1/2 and 1/4. These values

provide an unconditional stability to the scheme.

Unconditional stability

B N
= s 70+

Conditional stability

1]: 4
- -4p = 3
(" 2) #sonp

N\ DTS

4

; e

Fig. 6.1: Limits of stability of Newmark method.

Finally, it can be shown that structural damping has a stabilising effect on the
method providing that the damping ratio is below a critical value (Géradin and

Rixen, 1993).

6.3. MODAL ANALYSIS

Another technique determines a closed form steady-state solution of the equations of
motion (Midha er al., 1979 and, Yang and Sadler, 1993). This method utilises modal
analysis to uncouple the equations of motion. The advantage of the modal analysis
approach is that it allows modes thought not to contribute significantly to the
solution to be discarded. Ordinarily, the size of the problem is dictated by the

number of intervals and the number of degrees of freedom in the model. The use of
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modal analysis enables a substantial reduction in the size of the problem by using a
limited number of "degrees of freedom" to completely represent the system state at
any instant. The cycle is divided into N intervals and the equations are uncoupled in
each interval, assuming that the coefficients of the equations remain constant during
the interval. A solution is found analytically for every mode and by imposing
continuity constraints between two consecutive intervals and using the periodicity of
the modal coordinates a matrix P of order 2Nx2N is obtained. The matrix P links the
N modal vector states and the corresponding modal forces. Midha ef al. (1979) used
a Gaussian elimination method to solve the problem whereas a rather different
approach was used by Yang and Sadler (1993). In the latter reference, a new state
vector was defined with two extra elements so that P is transformed into (4Nx4N)
matrix having an almost block diagonal form. They argued that their method is

computationally less expensive to solve than the Gaussian elimination technique.

Xiaochun et al. (1988) developed an algorithm based on multi-step methods. Since
the authors used second order differential equations of motion with the
displacements as unknowns, the Newmark method was applied and in this case it
can be cast into a two step method because the displacement at any instant is related
to the displacements at the two previous instants. Then in dealing with the steady-
state solution the periodicity of the displacement is considered. A large algebraic
system is obtained which relates the N vector displacements to their equivalent
forces. However, the system is highly sparse, only three diagonals are non zero (the
leading diagonal and two diagonals below it) and a block in the upper right corner as
shown in Fig. 6.2. The latter is due to the periodicity condition on the vector
displacement. Xiaochun et al. proposed to solve the system by elimination and the
back-substitution method. Some examples were given to show the efficiency of the
algorithm. In their comparison, the authors used the Fourier series method to show
the superiority of their method. However, the Fourier series method they used to

generate graphs was not the same as the method referred to in their text. When this
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Fourier series method is correctly used it provides identical solution to the method
they proposed. It is thought that the method by which they obtained the graphs is the
same as the method published by Bahgat and Willmert (1976) whereby the force and
displacement vectors were developed in Fourier series but the system matrices K, M
and C were assumed to be independent of the input angle. This limitation had a

repercussion on the solution obtained, in that only the quasi-static response was

predicted by this method.
[X X X
X X X
X X X
X X .
X X X
X X X
X X X

Fig. 6.2: Formof theequation system obtained by Xiaochun et al. (1988)

The modal analysis method is based on the results of linear modal analysis and
consists of expressing the dynamic response in the form of mode series in order to
uncouple the equations of motion. The method is very efficient provided that the
fundamental modes are dominant in the response. In cases where the frequency
content of the excitation is such that many modes have to be included before the
problem converges adequately, the direct integration is preferred to the modal
analysis. Such cases are encountered when the excitation is in the form of a shock
for example. Another limitation is that the modal analysis is limited to linear

systems.
For any angular position of the input link, a coordinate transformation can be

effected in order to obtain a set of uncoupled equations which leads to a system of

second order ordinary differential equations. The modal transformation matrix is a
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function of the angular position of the input link and this substantially reduces the

benefits of the uncoupling.

The matrices are written in the modal coordinate system :

K=0T[A]D™!
M= 1™

(6.12)
C=d[5)D"

where [A] and [8] are diagonal matrices.

Because the matrices K, M and C are functions of the input angle t;, the matrix @
(the modal matrix) and [A] (the spectral matrix) also depend on t;. In many cases,
the eigenvectors (columns of ®) are only weakly dependent on t;. Under these
circumstances, ® may be calculated at a specific position and the same ® used for
all other positions. The equations are then no longer uncoupled and the following

conditions apply for the general t;.

®" K(t,)® non diagonal
@ M(t,)® # Identity
®" C(t,)P non diagonal

However the off-diagonal entries may be relatively small. If the off-diagonal entries
are ignored completely then the equations of motion reduce to a system of
uncoupled equations which can be solved independently. A numerical integration
procedure must still be used to solve these equations but the requisite computation

time is dramatically reduced.

If the off-diagonal entries cannot be ignored, it may still be advantageous to carry
out the coordinate transformation. The advantage is that solution of the set of

simultaneous equations necessary at each step of the time marching simulation may
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be more efficient if it becomes possible to use iterative solution methods in place of

direct methods. _

In the present study, an approach similar to the one developed by Midha et al.
(1979) was taken to obtain the large system P described earlier. A different method
of solution was developed, however. One of the new algorithms developed in this
chapter was combined with the modal analysis concept in order to obtain the steady-
state solution. In figures 6.3.a and 6.3.b a comparison is made between the latter
method and a method where no uncoupling of the equations of motion is performed.
The two methods are compared by calculating the deflection at the midpoint of the
coupler and the follower at a specific speed. It is noticed that while the method
which uses the modal analysis technique yields a good result for the follower, it is
quite inaccurate when calculating the deflection of the coupler midpoint. In figures
6.4.a and 6.4.b, the contribution of each mode to the global deflection of the coupler
and the follower midpoints are presented up to the fourth mode. From these figures
it can be seen that these contributions vary along the cycle and that the first mode is
dominant in the follower case, but more modes contribute to the deflection of the

coupler.

——®— Closed form

Deflection [m]

—C— Modal analysis

Input angle [deg]

Fig. 6.3.a: Displacement of the coupler midpoint for ®=35 rad/s and £=0.02.
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Fig. 6.3.b: Displacement of the follower midpoint for ®=35 rad/s and £=0.02.
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Fig. 6.4.a: Contributions of different modes to the global deflection at the coupler

mid-point for ®=35 rad/s and £=0.02.
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Fig. 6.4.b: Contributions of different modes to the global deflection at the follower

mid-point for ®=35 rad/s and £=0.02.

6.4. FOURIER SERIES METHOD

An alternative approach is to develop the system matrices, the force vector and the
displacement vector into truncated Fourier series (Nath and Ghosh, 1980b, and
Cleghorn er al.. 1984a). By substituting these into the equations of motion, a system
of linear algebraic equations is obtained. It must be remembered that this was
possible because the above entities are periodic with respect to angle, and for a
constant speed of rotation they become periodic with respect to time also. This
method has the advantage of addressing the computation of the steady-state solution
directly and the rotational speed of the mechanism has no effect on the amount of
computation required. Against this, however, is the fact that the system of equations
produced can be extremely large. depending on the number of terms retained in the

series and the number of degrees of freedom in the model.
The Fourier series analysis is only valid for the steady-state solution. The system

matrices in the equations of motion are position-dependent, and therefore are

periodic functions of time for a constant rotational speed. The period of these
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functions is the time taken by the input link to perform one revolution. Hence in this
method the matrices are approximated by a truncated Fourier series and the
equations of motion are transformed into a larger set of linear equations which are
independent of time. First the force vector f is approximated by a harmonic series of

the form:

f(t)= i( cos(]mt))+i( f sin(jot)) (6.13)

where f;and f; are constants, o is the angular speed of the input link and N is the
number of equal time intervals per revolution of the same link. The coefficients
f;and f; can be calculated by expressing f for N instants of time and solving the set

of N linear algebraic equations in which the unknowns are f;and f;.

Bahgat and Willmert (1976) used Fourier series analysis of the force vector to
predict the behaviour of the mechanism. Since the displacement vector q is also a
periodic function of time once the steady-state has been achieved, it too can be

approximated by a harmonic series:

NI
q(t) = _ﬁ;(ch cos(jot)) + Zj(qu sin(jot)) (6.14)

Bahgat and Willmert assumed initially that the system matrices K, M and C are

independent of the input link angle, t;, and derived an expression relating q;and q
to K, M, C, f,;and f;. The dependence of the system matrices on t, is then partially
restored by evaluating q(t) at each instant in the cycle using the instantaneous values
of K, M and C. Their method is computationally efficient but quite inaccurate at
high-speeds where the inertial forces associated with elastic deflections are

significant.
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For an accurate analysis, all the periodic terms in the equations of motion including
K, M and C should be expressed in a Fourier series. In other words, the mass, the
stiffness and the damping matrices are all approximated by a series as in (6.13) and
substituted together with the expressions for q and f into the equations of motion.
This leads to a system of (N + 1)n linear equations in terms of the unknown
deflection vector coefficient components, n being the number of elastic degrees of
freedom of the mechanism. Cleghorn ef al. (1984a) used the latter method which
gave better results in predicting the behaviour of the mechanism than those given in

the former reference.

6.5. NEW ALGORITHM 1: USING THE TRANSITION MATRIX
TO CALCULATE THE STEADY-STATE SOLUTION

A method is now presented for calculating the steady-state after just two cycles. The
response of a linear dynamic system is the sum of two components: the steady-state
response and the transient response which, for stable systems, vanishes after a
certain number of cycles. If the simulation is started from a state vector
corresponding to the steady-state solution then the transient solution should never
appear. Therefore in the method presented here, the response after one cycle is
separated into the transient and the steady-state contributions. The latter is then used
as the starting point for a new cycle. The solution within the second cycle is the

periodic steady-state solution.

First, the equations of motion are transformed into a set of first order differential

equations expressed as:

y(® =A®)y(t)+h(®) (6.15)

In this equation
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A[ 0 I ] anl®
“I-MK -me) T |,

In (6.15), Coriolis and other acceleration effects are either assumed to be negligible
or the matrices corresponding to these effects are combined with C and K. If the
stiffening effect is taken into account, the axial forces in the links should be
calculated from the quasi-static deflections otherwise the problem becomes non-

linear.

The transition matrix, R, is defined as the system of solutions, Y(7), of the .
homogeneous part of (6.15) where Y(0) = I. Hence a column k of R is obtained by
integrating (6.15) without the forcing term for the initial vector y(0) in which all
elements are zero except the kth element which is equal to 1. The transition matrix
will be studied in more detail in the next chapter, and in particular its role in

assessing the stability of the system will be explored.

If the simulation starts from the zero state vector, y(0) = 0, and y(7) is the total

response after the first cycle then:

at t=0 0 =y,(0) +y,(0) (6.16)
and at t=T ¥eD) = y(D) +y(D) 6.17)

Here, y((t) is the transient response and y(t) is the steady-state response. Since y(t)
is periodic, the following relation is obtained by use of the transition matrix R and

(6.16):

YD) =Ry (0) +ys(0) =y(T)=-Ry0)+yy(0)

= y,0)= A -R)! y(D) ©6.18)
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If the simulation is begun with a non-zero state vector, y;, the steady-state solution

can be computed according to (6.19).

ys(0)=(I-R)!(y.(D)-RYy) (6.19)

Note that since all the eigenvalues of R are less than 1 in magnitude (for a stable
system), all of the eigenvalues of (I - R) are greater than 0. It is possible that the
condition number of (I - R) could be very poor in the case of a system which is very
marginally stable. This could affect the accuracy of y(0) but has no effect on the
speed of computation. Moreover, many cases of marginally stable systems will
nevertheless produce a well-conditioned (I - R) since two complex eigenvalues (in a
conjugate pair) may each have modulus ~1 but the size of the imaginary parts might

not be small.

Thus, one procedure for determining the steady-state solution is as follows:

o Calculate the transition matrix by integrating the homogeneous part of (6.15)
over one period of time starting from the identity matrix.

¢ Run the simulation with a zero initial state vector. The simulation is carried out
by integrating either (6.15) or its initial form whichever is suitable.

e Run the simulation with an initial state vector given by (6.18). The result of this

simulation during this cycle is the steady-state solution.

6.6. NEW ALGORITHM 2: VARIATION ON THE
ESTABLISHED "CLOSED-FORM'" ALGORITHMS

As an alternative to the procedure given in the preceding section, a method is
presented which has some similarities to the "closed-form" procedure described in
section 6.3. In the following development, modal analysis is not used because this

would limit the applicability to systems with proportional damping. Where
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proportional damping can be assumed, modal analysis can be combined with the

algorithm presented here to achieve some additional economy.

If the equations of motion are integrated over one time-step using the Newmark

method, then:
Yia +G Y, =1, k=1to N (6.20)

where y is the state vector, k denotes the time step and, G(2nx2n) and f emerge from
Newmark integration scheme.

Because qand q are both periodic functions of time, y must satisfy (6.21):

Y +1=Y1 (6.21)

Grouping (6.20) for all intervals and using (6.21), the following system is obtained:

G 1 : Y1 f,
G, I Y2 f,
=| (6.22)

Gy I [¥wa fy

The unknowns of the problem are the N state vectors y,.

From (6.22) it is clear that if the initial state vector (i.e. y,) is known then all others
can readily be determined. Therefore finding y, is the key to solving the problem.

The following general formula allows any y; to be calculated in terms of Gy, fi and

Yi-

129



< N s
yN-k=[_):(—1)“'{ G;')fn-,-}(—D‘”‘[HGL'-,-]YI (6.23)

i=N ~k =k

k=0toN -1

Substituting k = N — 1 in (6.23) and rearranging gives the following equation:

Y, =[1-(- I)NLHG;,'_J] [2(— 1)**”“( i G;‘)fu-,-] (6.24)

=N -1 i=1

The following recursive formula can then be used to determine y,, y3,...yy

Y= G;vl-k By = Ynsa)

k=0toN -2 (629

Some difficulties may arise when computing y, from (6.24) if the matrix

[1- - ) [ f[G.;iJ

FN-1

is ill-conditioned. Since this matrix equals [I — R](-R-!) the

comments made earlier about the condition of [I - R] also hold.

If the model includes many degrees of freedom, then using even a modest number of
intervals causes the square matrix in (6.22) to become large and difficulties may
arise in handling the matrix in memory unless the sparse nature of this matrix is

recognised.

In (6.24) the sequence of operations is of extreme importance. If the solution is
evaluated as (6.24) implies the number of operations involved is considerable. In
contrast if the summation is carried out in reverse order the computation is much

more efficient.
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6.7. EQUIVALENCE BETWEEN THE TWO ALGORITHMS

It will now be shown that the two approaches presented in sections 6.5 and 6.6 are
mathematically equivalent. Using the definition of the transition matrix R, and

assuming that all of the forcing terms, f,, in (6.22) are all zero, it can be shown that:

R= (—1)"‘Ir IL[Gk and hence R™! = (—l)N lN—_[G;l (6.26)

k=N k=1

Combining (6.20) (with k = N) and (6.23), proves that if y; = 0, then yj,, is given
by:

N-] k+1
Yva = Z(—I)HN [I—[ Gk) fk + f,\r (627)

k=1 k=N

Using the transition matrix, y, is given by:

n=l-Ryy, a5
=[I-RTT"(-R7)yy,
replacing (6.27) and (6.26) into (6.28) gives:
N-1 N k+1 N
yi=[1- R“]"[Z(—l)**‘HG;‘HGim(—1)”"‘HG;’f~ }
k=l "l Q=N i1 (6.29)
y, =[I-R" ]"[Z(—l)"*‘l_‘[cz‘fk]

Comparing (6.24) and (6.29) it can be concluded that the two algorithms are

mathematically equivalent.

6.8. COMPARISON OF EFFICIENCY OF DIFFERENT
ALGORITHMS

In this section a comparison is made between different algorithms in terms of the

number of flops required to obtain a steady-state solution. Since the matrices M, C,
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K and f depend on the problem being treated, it is assumed that they are calculated
separately and stored and therefore in the following formula the number of flops
required to determine these matrices was not taken into account. The storage of the
intermediate matrices G;'s and f's allows substantial saving in terms of time and
flops, but in some situations this is not possible and therefore the above matrices are
calculated whenever they are needed. The limitation of computer memory, number
of intervals, N, and number of degrees of freedom, n, are the major causes for these
situations. The algorithm which uses the transition matrix will be referred to as
algorithm 1, and algorithm 2 is the algorithm which solves the problem in closed
form. TMS is the method which uses the time marching simulation. In the following

table, comparison between different algorithms is made for the two cases.

Storage No storage

TMS N(22n3+(29+4n_)n2+(3+2n)n) | Nn(22n*+33n2+5n)

Algorithm 1 | N(38n34+37n2+7n)+16n3+8n? N(78n3+77n2+10n)-14n3-21n2-3n
Algorithm 2 | N(62n3+37n24+9n)+8n3+8n2+2n | N(102n3+87n2+10n)-14n3-21n2-n

Table 6.1: Number of Flops for different algorithms.

In the time-marching simulation n, is the number of cycles necessary for the solution
to converge. This obviously depends on the rotational speed and the damping ratio in
the case of mechanisms. A general formula which gives the initial state vector after
m cycles can be derived easily: y, =[I-R™]"[I- R“‘*‘][i(—l)"“lﬁ[GﬂJ. This
formula shows again that if the modulus of all eigenvalues of R is less than one, y,

converges towards the value given by algorithm 1.

The method based on the transition matrix involves the inversion of the products of
N matrices whereas the method based on the closed form involves the product of the
inverses of the same N matrices, it is clear that using the transition matrix will

always be computationally more efficient. The time marching simulation is more
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advantageous when the storage is considered for n, below a critical value. This drops

if n decreases. If no storage is adopted the critical value is very low and in this case

the time marching simulation is to be avoided.

Storage No storage
N|n| n, | TMS |Algorithm 1|Algorithm 2| TM S |Algorithm 1 {Algorithm 2
90110 5 | 2.43 3.78 593 11.4 il 9.96
90110|100| 6.02 3.78 5.93 228 7.71 9.96
90150| 5 259 438 707 1270 893 1170
90 [50|100| 345 438 707 25500 893 1170
720(10| 5 19.5 30.1 474 91.3 61.8 79.8
720{10[100| 48.2 30.1 47.4 1830 61.8 79.8
720(50} 5 | 2070 3490 5650 10200 7160 9340
720|50{100| 2760 3490 5650 204000 7160 9340

Table 6.2: Comparison of number of flops (in million) between different algorithms.

The number of flops required using the Fourier series expansion method is:

N,3(8n3+32n2)+N,2(12n3 -120n2 + 8n + 32) + N,(6n3+270n2+10n+4nNy+n?-135n2+4n

where N, is the number of harmonics.

In Table 6.3, a comparison is made between the Fourier series analysis method and

Algorithm 1 when the intermediate matrices are stored. It can be seen that a critical

number of harmonics exists below which the Fourier series analysis is better. This

changes with the number of intervals, it increases when the latter increases.

N | N, | n |Fourier Series Analysis| Algorithm 1
9| 6 |10 2.50 3.78
9 | 6 |50 277 438
90 | 10 | 10 11.6 3.78
90 | 10 | 50 1200 438
720( 6 |10 299 30.1
720 6 |50 277 3490
720| 10 | 10 11.8 30.1
720| 10 | 50 1200 3490
720| 15 | 10 39.7 30.1
720| 15 | 50 3920 3490

Table 6.3: Comparison between algorithm 1 and the Fourier Series analysis.
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Various speeds and numbers of intervals were used to compare the two new
algorithms in the analysis of four-bar mechanism modelled with one finite element
per link and whose data is given in Table 4.1. Both algorithms deliver the maximum
computational advantage near one of the critical speeds where the time taken by the
transient solution to vanish is quite large. A method which will be discussed in the
next chapter shows that @ = 62 rad/s is one of these critical speeds for the
mechanism considered modelled with 1 element per link. In Fig. 6.5 the
convergence of the solution is shown starting from a zero state vector. It was found
that 31 cycles were necessary for the solution to converge with a relative error of
104 and a damping ratio of 2%, whereas the same result is obtained using algorithm

1 after just two cycles.

Deflection

Fig. 6.5: Convergence of the deflection at the midpoint of the follower, ©=62 rad/s.

Further comparison was made between the two algorithms. One of the important
features of an algorithm is the CPU time consumed or the number of floating point
operations. In Fig. 6.6 a comparison between algorithm 1 and 2 is made with regard
to the number of floating point operations involved. The difference between the two
algorithms is due to the extra operations needed in algorithm 2 to evaluate the

inverse of matrices Gy. Finally the CPU time is linear with respect to the number of
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intervals. The results from the straightforward method in which the simulation is
started from an arbitrary initial condition and the transient solution is let to die out
over the cycles have been included in Fig. 6.6. at a speed of 62 rad/s and for two

damping ratios.
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Fig. 6.6: Comparison of the number of flops between different algorithms.

6.9. CONCLUSION

In this chapter an outline of the methods available to calculate the steady-state
solution of a four-bar mechanism running at constant high-speeds has been
presented. Two new algorithms have been discussed which give the steady-state
solution quickly and efficiently. It has been shown that the difference between the
two algorithms is purely procedural and that one of them is always more
advantageous than the other. In many situations the new algorithms have been
proven to be superior to the existing algorithms. The algorithms developed could be
used to solve the steady-state of any second order equations with periodic
coefficients and therefore they could be applied to many other mechanisms and to

manipulators performing repetitive tasks.
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Chapter 7

A METHOD OF RUNNING THE MECHANISM ABOVE
SEVERAL CRITICAL SPEEDS

7.1. INTRODUCTION

The response of a mechanism running at high-speed is made up of two components,
namely the quasi-static and the dynamic response. Both responses depend on the
rotational speed. However, when the quasi-static response is plotted versus speed, no
peaks are encountered. In contrast, when the "responsiveness” of the system is at a
local maximum for a given speed, the dynamic response peaks at this speed called a
critical speed. Dynamic analysis of a four-bar mechanism showé that it has many
critical speeds where the response of the system is large compared to the response at
neighbouring speeds. In the literature these critical speeds have been linked by some
researchers to the natural frequencies of the individual links (Lawrence and
Alexander, 1975; Sanders and Tesar, 1978; Turcic et al., 1984; and Liao et al., 1985)
and to the mean value of the natural frequencies of the mechanism by others (Stamps
and Bagci, 1983). In this study critical speeds are related to the mean value of the
natural frequencies over the cycle. Some of these speeds are limiting critical speeds
defined as speeds which cannot be exceeded because stresses in one of the links
would become greater than the safe working stress. This chapter deals with the
location of the critical speeds, assesses the stability of the system and proposes a
method of running the mechanism safely above one or more limiting critical speeds.
The role of damping in governing the vibration levels of the mechanism is also

discussed.
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The equations of motion of a four-bar mechanism rotating at a constant speed form a
system of ordinary differential equations with periodic coefficients. Such systems
are encountered in many fields of engineering, for example helicopter rotor blades
(Peters and Hohenemser, 1971), wind turbines (Friedmann and Silverthorn, 1974),
rotor dynamics and elastic structures under parametric excitation (Bolotin, 1964).
For such systems, stability is an important issue. Instability exists, under certain
conditions, for excitation frequencies significantly lower than the first natural
frequency. For many years the stability of mechanisms has been a subject of
thorough investigation. The studies have concentrated on two basic mechanisms,
namely the four-bar mechanism and the slider crank mechanism. Initially only one
link was considered to be flexible (Smith and Maunder, 1971; Jasinski er al., 1971;
Masurekard and Gupta, 1988a; Lee and Beale, 1992). The resulting equation of
motion was then transformed into a Mathieu-Hill type for which stability charts exist
and methods of solution are readily available. In the sections that follow the stability

of a four-bar mechanism with all links flexible will be studied.

7.2. TRANSITION MATRIX AND STABILITY ANALYSIS

Time domain simulation of a four-bar mechanism can absorb a significant amount of
computer time. In particular, near a critical speed or when the damping in the system
is low, the time needed for the solution to converge may become quite long. In order
to reduce the time required for simulations it is essential to use a method to predict
the critical speeds over the range of speeds of interest. Nagarajan and Turcic (1990c)
developed an approximate theoretical method to predict what they referred to as
~ critical speeds for elastic linkage systems without performing time marching
simulations. Their method predicts only the critical speeds for one "mode" at a time
and implicitly, they assume that there is no transfer of energy between different

modes of vibration throughout the cycle. This is not true in general. However, it
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does suggest an accurate approach for the computation of critical speeds and

unstable bands which is not based purely on numerical integration.

The equations of motion for a mechanism, when instantaneous structure formulation

is adopted, are of the form:
Mg+ Cq+Kgq=-Mg, (7.1)

The behaviour of a system governed by (7.1) is determined by its transient response
starting from any set of initial conditions. For stability analysis purposes only the
homogeneous part of the equations of motion is considered. The system is unstable
if the transient response is unbounded, marginally stable if the transient part is
neither decaying nor growing, and finally it is stable if the transient response is
bounded and tends towards zero. One way of checking if the transient response is
bounded is by calculating the transition matrix which will now be defined. First the

homogeneous part of (7.1) is transformed into a first order differential form as:

y(®) =A@®y(®) (7.2)

0 I
In this equation y is the state vector and A = -1 -1
-M"'K -M"C

Since the operating speed is held constant and since all matrices are periodic, then
the matrix A(t) is time periodic with a period 7. Equation (7.2) is therefore a linear
differential equation with periodic coefficients. A paper by Floquet (1883) was a
landmark in the study of this type of problems. In fact Floquet presented two
separate theorems; one dealt with the form of the solution, and the other gave a

practical method to assess the stability of the system.
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7.2.1 Floquet Theorem for Analysing Periodic Systems

A theorem by Floquet (1883) states that the fundamental system of solutions of (7.2)

is of the form:

Y(t) = &(t)exp(Bt) (7.3)

Where ®(t) is a periodic matrix with period T and B is a constant matrix. Y(t) is a

square matrix where each column represents one possible solution of (7.2).

Although Floquet's theorem does not yield the exact solution to the problem, it
yields valuable information regarding the form and the properties of the solution. It

is interesting to learn under what circumstances (7.1) has a stable solution.

If y(f) is a solution of (7.2) then it is always possible to find a vector z so that
y(t) = Y(f) z, i.e. y is a linear combination of the fundamental solutions. Then using
(7.3) it is found that y(t) = ®(t)exp(Bt)z. In particular, when z is an eigenvector of
exp(B7) it is found that:

yt+T)=py(t) (7.4)

where p is the corresponding eigenvalue of exp(BT), and is called a characteristic

multiplier.

From (7.4) it can be concluded that the system will be stable if all the eigenvalues of
exp(BT) have a modulus less than or equal to 1 and will be unstable if any of the
eigenvalues have modulus greater than 1. The stable ranges are each bounded by two
speeds. One corresponds to p = 1 and the other corresponds to p = -1 (the solutions

of (7.2) in this case are periodic with period T and 2T respectively). Some methods
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for assessing stability of the system are based on the latter property. Such methods
include the infinite determinant method. Since the regions of stability and instability
are separated by boundaries corresponding to the solution being T periodic or 27T
periodic, in the infinite determinant method the state vector is expanded as Fourier
series for both cases and replaced in the equations of motion. Then, by equating to
zero the total coefficient of linearly independent trigonometric functions, a set of
linear, homogenous algebraic equations is obtained where the unknowns are the
coefficients of the Fourier series. For the system to have non-trivial solutions, the
determinant of the system is set equal to zero. Strictly, the size of the matrix whose
determinant is sought is initially infinite. However by truncating the Fourier series
an approximate solution is found for the parameter which makes the determinant
zero. In the present case the independent parameter is rotational speed. Usually the
level of truncation is varied starting from a small number of terms and continuing

until the solution adequately converges.
7.2.2 Definition of the Transition Matrix and its use for Assessing Stability.
The transition matrix R (also called the monodromy matrix) is defined by:
R = Y(7) when Y(0)=I (7.5)
I is the identity matrix.
There are two main methods by which the transition matrix can be obtained
numerically.
Method 1: a column k is obtained by integrating (7.2) for the initial conditions where

the kth element of y(0) equals 1 and all remaining elements are zero. Therefore it

follows from the definition that the transition matrix is R = exp(BT).
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Method 2 was first presented by Pipes (1953) and later refined by Hsu (1974). Hsu
divided the fundamental period into N sub-intervals over which A(f) is approximated
by some set of simple continuous functions for which a closed form analytical
solution is known. Pipes (1953) and Hsu (1974) presented several functions which
can be used to form a piece-wise continuous approximation of A(f), each of which
resulted in a different form of the solution. The simplest of these was the constant
step function where the matrix A is considered constant over each sub-interval. The
latter approach was used by Nagarajan and Turcic (1990c), the difference being that

they used the original second order differential equation (the homogenous part of

(7.1)).

Let y(t,ty) be a fundamental solution, t, indicates the time at which the matrix was
initialised (usually t, = 0). Let z(t) be defined by: z(t) = w(t,ty)) y(t;). Since

W(toto) = L, z(tg) = ¥(tp). Also, z satisfies (7.2): Z=y(t,) = AMWY(t,) = AD)z.
Clearly, z is the solution to the problem described by (7.2).

Some interesting relations hold for y (group properties):

Yltssty) = wtsty) Wtpty) Yi,,t,,t, € [0,7] (7.6)
W(ta,t) = vty ty)

In the particular case where matrix A is constant, y(t,ty) is given by exp(A(t — ty)).
Meirovitch (1986) gave some alternative recursive algorithms to compute y based

on the series development of the exponential function of a matrix.

When the non-homogenous term h(t) is considered (in this case h(t)=[0 §,]"), the

general solution is given by:

YO =t 1) ¥(ts)+ Jw(t, 1) h(x)de a7

fo
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If the integration is started from t, = 0, the steady-state solution would be obtained
for a particular value of y(0). This value is found by expressing the periodicity of the

system i.e. y(7) = y(0). This leads to the expression:

T |
v = [[-y@ O ofw(r,r) h(z)de 7.8)

y(7,0) is the transition matrix R introduced in the previous section. Furthermore it
can be shown that (7.8) leads to the same initial state vector given by algorithm 2

from the previous chapter.
7.2.3 Use of the Transition Matrix to Compute Critical Speeds.

Instability is more of an academic concern than a practical one for mechanism
designers. This is because the stresses in the links generally will exceed safe
working levels at speeds well below those where unstable speed bands are
encountered. Fig. 7.1 shows that critical speeds as defined in this chapter are a real
concern for the mechanism designer and efficient computation of these is therefore
important. It is proposed here that an efficient computation method for finding

critical speeds is possible based only on the eigenvalues of the transition matrix.

It is intuitively obvious that the "responsiveness" of the mechanism is characterised
by the values of the eigenvalues of the transition matrix. Thus, it is to be expected
that since the forcing pattern (the r.h.s. of the equations of motion) has no local
maxima with respect to speed, a local maximum of displacements can arise when the
"responsiveness” of the mechanism is at, or near, a local maximum. Fig. 7.1 shows
clearly that every critical speed coincides, or nearly coincides, with a local
maximum of the real part of one of the eigenvalues of the transition matrix. This
observation can account for very substantial savings in computational effort for

finding critical speeds because in the region of most critical speeds, the transient
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vibrations in the numerical integration for the mechanism takes many cycles to
decay. The same trend was obtained for the solution of an equation similar to (7.2)
where y is: (i) a scalar and (ii) a two elements vector with arbitrary periodic

coefficients.

Nagarajan and Turcic (1990c) proposed an approximate method whereby the ranges
of speeds where instability occurs can be determined. Their method involved the
determination of the monodromy matrix at each speed. The eigenvalues of this
matrix indicated whether the mechanism was stable or unstable at each speed. The
presence of one or more eigenvalues of the monodromy matrix which exceeded 1 in
magnitude indicated that the mechanism was unstable at that speed. A variation of
their method has been used in the present study to find those speeds which are
defined in this study as "critical speeds" (i.e. local maxima in the plots of r.m.s.
stress or displacement versus rotational speed). In their method, if damping is
considered some critical speeds "disappear" in that no numerical instability occurs at
those speeds. However as witnessed by Fig. 7.1, despite this there are still local

maxima in the strain curves at these speeds.
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Stress Eigenvalue of the transition matrix

Fig. 7.1: Local maxima of stress and the real part of the maximum eigenvalue of

transition matrix (The vertical axis is different for the two graphs)

When modal analysis is employed and each mode is treated separately as Nagarajan
and Turcic (1990c) did, it is shown that the critical speeds coincide with the maxima
of the real part of one of the eigenvalues of the transition matrix. Furthermore these
critical speeds occur at integer divisions of the mean value of the eigenvalue over
one cycle. This has also been verified using the data published by Nagarajan and
Turcic. In fact, this can be proven analytically if the natural frequencies of the

mechanism are assumed to be constant over one cycle.

If the natural frequencies during the cycle are approximated by their average value

. the basic transition matrix during the time At is (Nagarajan and Turcic, 1990c¢):
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1
_| cos(wAt) —sin(wAt)
2 "[ w9 } (7.9)

-wsin(wAt)  cos(wAt)

The damping was not included because zero damping corresponds to the worst case

with regard to stability.

When the cycle is divided into N equally spaced intervals, A becomes constant for

all sub-intervals. After two intervals A2 is given by:

i 1
cos’ (wAt) - sin’ (wAt) P sin’ (wAt)
| —2wcos(wAt)sin(wmAt)  cos® (wAt) — sin® (wAt)

Al=

[ 1
_| cos(2wAt) ;sin(ZmAt)}
| ~wsin(2wAt)  cos(2wAt)

and after N intervals (NAt = T) the monodromy matrix is:

AN =[ cos(NwAt) ésin(NmAt)}z[ cos(wT) ésin(mT}}
—wsin(NwAt) cos(NwAt) | |-osin(w?) cos(wT)

The eigenvalues of the monodromy matrix are solutions of the characteristic

@ . (0]
equation: A? —2A.cos(®T )+1=0. The solutions are A = cos(2x —O;)i isin(2n -u;) where

o =2n/T.

When the speed is an integer division of the mean natural frequency the eigenvalues
become real and the transient solution is periodic with period 7. Although the natural
frequencies are not constant, the eigenvalues of the transition matrix exhibit the
same variation as when the natural frequency was assumed constant, and for the

mechanism considered the above approximate equation holds.
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Stability of systems governed by differential equations with periodic coefficients has
been the subject of investigation for a long time. Meissner (1918) investigated the

Hill type equation:

d2
S+ T a@y=0 .10

where q(0) assumes a finite number of different values in the interval [0,27] and is

periodic with period 27.

Meissner divided the interval into N parts of length 6;,i =1 to N with 8, + + 6,,= 2x.

He then assumed that q(B) = v? /4n? during the ith interval; he also assumed that the

. : .. ve . (Tv®
solution, y(8), during this interval was of the form: a,co o +a,si o ) where

a; and a, are different for each interval and are unknowns. A system of equations
was obtained by ensuring the continuity of the state vector solution across the sub-
intervals. Moreover, at the end of one complete cycle, the state vector must be A
times the state vector at the start of the cycle thereby providing an extra two
equations. The condition for these equations to give non-trivial solutions led to an
algebraic system. Meissner then derived a procedure to assess the stability of (7.10).
First he defined C, =c0{%}, s, =sm[%) and V, = %(-;f:ﬁ"r—':]
(i,k=1toN)

In the cases where the interval was divided into 2 and 3 sub-intervals, Meissner

defined J, and J; respectively by:

JZ=C1C2—V128182, and (7.11)
J3=CCC3 = V13515,C5 = V35,5;C, = V38,55C,
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A 5 ; T v, Tv,
In the two interval case, by drawing J, in the plane | x, = > %=y ) the
author drew the curves J, = 1 and found that they consisted of infinitely many
separate branches bounding the regions of stability as shown in Fig. 7.2. Therefore,

given 7T, v, and v, the stability of the system governed by (7.10) could be assessed.

Fig. 7.2: Instability regions corresponding to J, = 1.

A closer examination of the procedure reveals that it is equivalent to calculating the
eigenvalues of the monodromy matrix as developed by Nagarajan and Turcic. The
advantage of the Nagarajan and Turcic method is its compact form. As the number
of sub-intervals grows., Meissner's method becomes cumbersome as it leads to a
bigger system (of order 2N). Also, in the latter case, an analytical method is
necessary to assess the stability of the system. Surprisingly, however the method
converges quite rapidly. On the other hand the natural frequencies used in the

functions J could be obtained experimentally.

When modal analysis is used, the homogenous part of (7.1) is transformed into a set

s 2 (0
of uncoupled equations of form (7.10). d—; - 0)':)'72))1 =0,0 € [0,2n], where o ; is
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the instantaneous natural frequency of mode m and  is the rotational speed of the
input link. From this, it is seen that o is analogous to 2n/T and o; is analogous to v;

in (7.10).

In Fig. 7.3. the functions J for N =2, 3 and 4 are compared to the real part of one of
the eigenvalues of the monodromy matrix for different speeds. The monodromy
matrix was obtained for 180 sub-intervals. As can be seen from this figure, the
functions J correspond to the real part of the eigenvalues of the monodromy matrix,

and they can give a good approximation of the critical speeds.

-1.5 ' : - :
20 30 40 50 60 70 80

Speed |rad/s|

L 13 .I4 — Monodromy

Fig. 7.3: Comparison between the functions J and the real part of one of the

eigenvalues of the monodromy matrix.

Another equation which gained considerable attention and which appears in many
engineering applications is Mathieu's equation: ¥+ (d+g&cos(2t))y =0. Mathieu

(1886) himself derived this equation while dealing with vibrational modes of a
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stretched membrane having an elliptical boundary. There are many similarities
between the problem in hand and the stability charts resulting from the solution of
the Mathieu equation. When € = 0, there is an infinite number of values of d where
the solution is unstable. These values are d = i2 where i is an integer. In the same
way the parameter d corresponds to (@, /®)? and therefore when the speed © is an
integer division of the mean value of the natural frequency @, corresponding to
mode m, the system becomes unstable. Furthermore when the parameter d increases
(for a constant value of €) the regions of instability become narrower. When the
speed decreases the regions of instability also become narrower. Finally the damping
has greater effect when d is bigger. In the case of the four-bar mechanism, damping
has more effect when the speed is low. In fact this is why when the mechanism
rotates at low speeds no critical speed appears, and many experimental
investigations failed to observe any critical speed below a certain rotational speed
(Lawrence and Alexander, 1975; Turcic et dl., 1984; Hao et al., 1986). The stability
chart of Mathieu's equation could be obtained using the monodromy matrix. For
each value of d and ¢, the eigenvalues of the monodromy matrix are calculated. If
either one exceeds unity in modulus, the system is unstable. Results of this analysis
are shown in Appendix E. Figures E.1 and E.2 shows the variation of the real part of
the first and second eigenvalue of the monodromy matrix versus d and €. In Fig. E.3,
the stability of the system is derived from the absolute values of the eigenvalues;

dark areas correspond to unstable system.

7.3. CRITICAL SPEEDS

The simulation of the four-bar mechanism was run for a variety of different angular
speeds and lengths L, (distance between the ground pivots). The mechanism was
modelled using instantaneous structure formulation with one finite element per link.
The steady-state deflection of the follower midpoint was calculated at different

speeds and Fig. 7.4 shows its r.m.s. value plotted against operating speed. Fig. 7.5
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shows the maximum stress in the input link for different values of speed and L, and
Fig. 7.6 shows the peak strain energy for the input speed and for various values of
the geometrical parameter L,. Clearly, the plots exhibit some local maxima with
respect to speed where the r.m.s. steady-state deflection of the follower midpoint, the
maximum stress on the input link and the stored energy of the complete mechanism
is larger than at neighbouring speeds. These speeds are called critical speeds and
have been verified experimentally by many authors especially for higher speed
mechanisms; For example Alexander and Lawrence (1974), Cleghorn ef al. (1984),
and Nagarajan and Turcic (1990d). It is interesting to note that the critical speeds
themselves are only very weakly dependent on L,. The natural frequencies of the
mechanism were equally verified to be very weakly dependent on L4. By contrast,
the peak displacements and stresses at the critical speeds depend very strongly on

Ls:

After a certain number of critical speeds the mechanism begins to have unstable
bands where the equations of motion have one or more unstable solutions. That is to
say, at least one mode of the transient solution keeps growing indefinitely. The
width of these unstable regions increases when the speed is increased. In general it is
found that these unstable regions occur at higher speeds than those at which the

mechanism can operate due to the level of stress induced.

The deflections, stresses and strain energy depend strongly on L,4. Fig. 7.4, 7.5 and
7.6 show plots for six different values of L,. In this particular case, it transpires that
when L, decreases, the deflections are greater and the peaks are more pronounced.
The usefulness of knowing the relationship between Lg4, the input speed and the

maximum stress is demonstrated in section 7.4.

150



- LADE-0

1,20E-01

1,00E-01

8,00E-02

6,00E-02

|w] (Sl wonsayaq

4,00E-02

L 200E-02

0.00E+00

Input speed |rad/s]

Fig. 7.4: Predicted response of follower midpoint.
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Fig. 7.6: Predicted strain energy of the system.
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7.4. MAXIMUM STRESS AS A FUNCTION OF RUNNING
SPEED

In Chapter 6, methods were discussed by which a mechanism could be represented
in matrix form and its steady-state solution found. A FE model of a mechanism uses
displacements as the fundamental variables - along with the corresponding velocities
in some cases. The most direct result of a simulation (whether for transient or
steady-state behaviour) is that a complete vector of elastic displacements and
velocities is obtained for each one of many steps taken during the simulation. The
displacements computed are relative to the instantaneous undeformed (rigid-body)
position of the mechanism. Compared with the rigid-body displacements, the elastic
displacements tend to be very small. However, the stresses associated with these
displacements can nevertheless be substantial. For any given running speed, it is
sensible to examine the complete state of stress of the mechanism at each step
through one cycle and to plot the maximum stress in the mechanism at each step. If
several different materials are used in the mechanism, then the maximum ratio of

stress to allowable stress can be computed.

Because, in general, stresses are ultimately the most important result of the
simulation, it is sometimes necessary to use more finite elements in the model than
might be considered necessary for determining displacements alone. In the past,
some authors (Midha et al., 1979) have used a modal analysis method to accelerate
the determination of the steady-state solution. This method discards all natural
modes except the lowest frequency modes and though the nodal displacements may
be computed sufficiently accurately for all practical purposes, cases can arise where

the computed stresses are significantly inaccurate.

Fig. 7.7 shows the maximum stresses in each of the three moving links in a typical

four-bar mechanism as a function of speed. The stresses in this figure have been

152



determined for a mechanism whose data are given in table 4.1 from a simulation in

which 3 beam elements were used for each link in order that the stresses would be

determined accurately.

x 10
4

Input Link
_____ Coupler

__ _ Follower

Stress [Pa]

20 30 40 50 60 70 80
Speed [rad/s]

Fig. 7.7: Maximum stress for a damping ratio of 0.02.

7.4.1 Influence of the number of elements

When the FEM is used to model a system, the natural frequencies decrease when the
number of elements is increased. Since the critical speeds are related to the natural
frequencies, one expects to obtain a decreasing estimations for these critical speeds
as the number of elements is increased. Consistent with this, Fig. 7.8 shows the
maximum stress versus speed for different numbers of elements per link. From this
figure, it is seen that one element per link overestimates the critical speeds
noticeably. However, the solution converges quite rapidly as the number of elements

increases.
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Fig. 7.8: Influence of the number of elements.

Also Fig. 7.9 shows the variation of the stress at the midpoint of the follower for a

single speed and for various conditions.

As the number of elements grows, the size of the problem and the CPU time
required to solve the problem increases. However, one can achieve an accurate
solution by using just one finite element per link and the dynamic stiffness method.
Liu and Lin (1993) used the dynamic stiffness method to find the solution of forced
flexible systems. They used the principle of virtual work to establish the equations of
motion. In their analysis were included: the stiffening effect due to the axial
deformation, the effect of Coriolis and the effect of normal accelerations. Then the
authors used modal analysis to uncouple the equations of motion. Because these are
non-linear, the Wittrick and Williams algorithm (1971) could not be used in order to

obtain the natural frequencies and mode shapes needed to uncouple the equations of



motion, instead they used Newton-Raphson method to solve the EVP iteratively, and
solved the problem. In the present study a different approach has been taken; the
procedure starts by solving the EVP using the matrices given by the conventional
FEM. Then by an iterative process, the lowest natural frequency is used to improve
the matrices of the system: at every iteration this natural frequency is calculated and
then used to calculate the matrices M and K given by the dynamic stiffness method.
This is repeated until the change on the first natural frequency is within a certain
band. The number of iterations was quite low (a maximum of 5 iterations for a
relative error of 10~ was needed). This method was labelled exact in figures. 7.8 and
7.9. Fig. 7.9 shows that apart from the model with one element per link there is a
good phase agreement between the different models. Also, consistent with Fig. 7.8

the maximum amplitude decreases as the number of elements increases.
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Fig. 7.9: Stress at the follower midpoint for different models at ® = 30 rad/s

7.4.2 The role of damping

The simulation was run for a range of speeds and different damping ratios. For each

speed, the steady-state stress was computed over one cycle of rotation. The
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maximum stress was then recorded. Figures. 7.10 and 7.11 give a comparison of the

maximum stress on the linkages against the rotational speed for different damping

ratios.
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Fig. 7.10: Maximum stress versus speed for a damping ratio of 0.03.
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Fig. 7.11: Maximum stress versus speed for a damping ratio of 0.06.

From figures. 7.7, 7.10 and 7.11 it can be concluded that at the critical speeds the
damping has a substantial and desirable effect by reducing the maximum stress.
However, for the "quiet" speeds it is counterproductive for some links. Therefore, in

order to run the mechanism above certain critical speeds, adding more damping to
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the system might not be the appropriate solution. A similar result was found by
Badlani and Midha (1983) for a different situation. The problem treated then was the
effect of internal material damping on the dynamics of a slider-crank mechanism.
The connecting rod was assumed to be made of a linear viscoelastic material which
they model by Kelvin-Voigt material (a dash pot in parallel with a spring). At the
end of their study they concluded that the inclusion of damping is not always
beneficial in attenuating the vibration response of the connecting rod. When the
speed was in a stable region, damping had little effect and in some cases it was
counterproductive, in contrast damping had a most desirable effect on the response

when the speed was in an unstable region.

7.5. PROPOSED DESIGN METHOD FOR HIGH-SPEED
OPERATION

Most mechanisms run normally above several "critical" speeds in the sense that their
normal operating speed may lie above several local maxima in the curve which
expresses highest stress in the mechanism as a function of speed. Recall the
definition of critical speeds as speeds where the response of the mechanism reaches
a local maximum but the deflections and stresses may remain tolerable. At some
point in the speed range, there is a "limiting" critical speed which causes stresses to
become higher than acceptable if the mechanism is run continuously at or near this
speed. In many cases, however, there is a "quiet" speed above the limiting critical
speed at which the stresses in the mechanism may be within acceptable limits if this
speed can be achieved. This phenomenon is not limited to planar four-bar
mechanism, it has been reported by Stamps and Bagci (1983) while investigating a
high-speed mechanism with 3 dimensional offsets. The authors reported the
existence for these mechanisms of critical speeds and quite speeds which they called
in-between efficiency speeds. Stamps and Bagci linked the critical speeds to the

average values of the natural frequencies of the mechanism and concluded that this
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effect exists in planar mechanisms also and that it is evident from the experimental

work carried out by Alexander and Lawrence (1974).

To reach a "quiet" speed above a limiting critical speed, one approach is to ensure
that the system runs for an absolute minimum of time at or near any limiting critical
speed. Thus the mechanism is accelerated to its operating speed as quickly as
possible by using a high torque driving motor. This is not a practical solution

because the torque required to run the mechanism is quite low.

An alternative approach is suggested in this study. From figures. 7.4 to 7.6, it is seen
that the amplitude of the stresses induced in a four-bar mechanism reduces if Ly is
increased. By making this distance adjustable, it is possible to run the mechanism up
to speed with a large distance between the ground pivots, thereby minimising the
amplitude of the induced stresses. Once the operating speed is reached the follower
pivot is returned to its original positioﬂ in order that the mechanism can perform its
designed function. It is recognised that the context of some mechanisms is such that
changing L4 would be impractical. In these circumstances it may be possible to
achieve the same effect by changing another attribute of the mechanism dynamics -
such as the support stiffness for the follower pivot but such a solution has not been

pursued.

Increasing L, by too much causes the transmission angle to increase beyond the
acceptable range, thus affecting the behaviour of the mechanism. Recall that the
response of the mechanism is made up of two respoﬁses; namely the quasi-static and
the dynamic response. The former depends very much on the accelerations of the
links. Any change to these accelerations during the cycle, is reflected on the full
vibration response of the mechanism. The acceleration curve in Fig. 3.8 is a typical
one for a normally proportioned four-bar mechanism; once during each cycle, at a

certain angle, the mechanism is subjected to a sudden variation of the inertial forces.
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At this angle, the stress becomes maximum. However when L, is increased, a
second inertia pulse appears at another angle of the cycle: its effect increases with L
progressively until the stress at the latter angle becomes dominant. This is shown
clearly in Fig. 7.12 and 7.13. This also has been proven experimentally and the
results will be presented in the following chapter. Therefore, L, should be increased
only in a certain range in order to run the mechanism above certain critical speeds.
The criterion to determine this range would be the transmission angle below a
certain value. Beyond certain value of L, the transmission angle becomes too big

and the maximum stress begins to increase again.

L4 [m] 065 400 Input angle [deg]

Fig. 7.12: Acceleration of the follower for various transmission angles at ®=30 rad/s.
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Fig. 7.13: Stress at the follower midpoint for various values of L4 at

o = 30 rad/s.

From the above discussions it becomes evident that the highest steady speed for any

given mechanism can be improved the most as follows :

k-

[RS]

2

Run dynamic simulations for the mechanism to determine the highest ratio

between stress in the mechanism and the acceptable stress of the corresponding

mechanism element at a large number of speeds over a sensible range assuming

low damping. It is not necessary to use equal intervals of speed. Instead,

investigate only those speeds which are integer divisions of the average natural

frequencies corresponding to the dominant modes.

From 1., identify the first limiting critical speed and determine whether there is a

"quiet" speed above this at which the stresses could be acceptable.

If the answer to 2 is "yes", run the dynamic simulation for the selected "quiet"

speed for a slightly increased level of damping to determine whether increasing

the damping from the initial low value has the effect of reducing the maximum
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stress in the mechanism. (Experience suggests that in some cases at least, the
maximum stress in one link reduces while that in another link increases).

4. If increasing the damping appears to be beneficial at the "quiet" speed in terms
of reducing the maximum stress in the mechanism, determine the optimum value
for the damping by multiple simulations. So long as this value is small, the
damping can be introduced without substantially influencing the stiffness of the
mechanism elements.

5. Having determined the damping and the desired "quiet" running speed, the
minimum change in the mechanism attributes is determined such that the
mechanism can be run up to the "quiet" speed without disintegrating. This
change of attributes will usually be a change in the distance between the ground

pivots.

7.6. CONCLUSION

In this chapter a method to locate critical speeds has been presented based on the
mean values of the natural frequencies of the mechanism. Also the stability of the
mechanism at certain speeds has been assessed. It has been shown that the response
curve presents many critical speeds where the response of the mechanism reaches a
local maximum. Some of these speeds are limiting critical speeds. Furthermore,
above certain of these speeds there might be a range of speeds where the mechanism
can be run safely. In the latter case a method has been presented whereby one of the
characteristics of the mechanism is changed temporarily so that, during the run-up,
the stresses at the previously limiting critical speeds become acceptable. One
characteristic which has been shown to permit this is the distance between the
ground pivots. The effect of damping was also discussed and it was shown that
increasing damping invariably reduces stresses in links at the critical speeds but that
it can have the effect of increasing stresses in some links at quiet speeds. In these

cases, the addition of damping can be counterproductive.
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Chapter 8

EXPERIMENTAL INVESTIGATION

8.1. INTRODUCTION

In engineering analysis, complex systems are modelled and approximated using
simplified mathematical models. These models are based on the physical data of the
system (geometrical data and its properties) and a set of rules and principles
governed by theoretical models (strength of material, heat transfer, CFD, etc.). Once
the mathematical model has been built, results are obtained. These results however
are of little value unless corroborated by experimental data or compared to other
results obtained from other models which have been validated for a similar problem.
Discrepancies are then interpreted, and corrections are made to the model in order to

improve its validity. The process is repeated until a satisfactory model is obtained.

In this chapter, the experimental work is conducted in order to validate the
theoretical model. The results reported include the path generated by the mid-point
of the coupler, the natural frequencies and mode shapes at static configurations and

finally the dynamic behaviour of the mechanism running at high-speed.

8.2. DESIGN OF THE TEST RIG

A photograph of the four-bar mechanism used in the present study is presented in
Fig. 8.1. The mechanism was designed to have certain characteristics including:
« A good transmission angle throughout the cycle,

« Flexibility at relatively low speed,
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e« The facility to test different combinations of linkages (length ratios and

thicknesses).

The data of the selected mechanism is given in Table 8.1. A split crank and follower

design was adopted to ensure that motion would be predominantly in-plane.

Input Link Coupler Follower Ground
Length [m] L;=0.170 | L,=0.328 | L3;=0.525 |L,=0.547
Width [mm] 24.8 25 25
Thickness [mm] 6.35 3.42 3.15

The lumped masses of the joints : 0.174 kg

Material : Steel, Density : 7.85 103 kg/m3, Modulus of elasticity : 210 10° N/m?

Table 8.1: Dimensions of the mechanism.

As in any model, some assumptions were made. In order to be able to compare
objectively the experimental and the theoretical results, the assumptions made in the
model must be reasonably valid in the experimental set-up. One of the assumptions
is zero clearance in the joints. The presence of clearance in the joints leads to a
discontinuous response, due to the loss of contact which is difficult to model. To
ensure smooth power transmission through the joints, the use of small ball bearings
was preferred to journal bearings where the clearance is inherent. Also the bearings
used had twin races and were pre-loaded. Another assumption made by most
researchers relates to the speed of operation. This was assumed to remain constant so
that the coefficients of the equations of motion are time periodic. This has been
achieved by some researchers using a motor driving the mechanism fitted with a
controller. In the present study speed was held constant simply by using two large
flywheels at the input shaft, one on each side of the split input links. The flywheels,

by virtue of their large inertia, keep the angular speed constant. In reality the angular

163



speed at the input link will fluctuate due to the dynamic response of the mechanism.
In the model, however, the input link was assumed to be a cantilever beam and

therefore no dynamic deflection was allowed at the end connected to the flywheel.

Fig. 8.1 Photograph of the test-rig.

The mechanism was driven by an 0.75 hp DC motor. The speed was adjusted by
varying the voltage applied to the motor. An optical tachometer was used to provide
an accurate location of the start of the cycle and to calculate the rotational speed.
One of the flywheels was fitted with a stripe (the stripe is visible on the flywheel
painted in black in Fig. 8.1). At the start of every cycle, a beam of light is reflected
from the stripe to a detector and an output spike is generated which could be used to
trigger a data acquisition device, or to check if the average speed over the cycles is
constant by taking averaged sweeps and checking that the spikes occur at the same
position during the sweeps. Finally, the mechanism was mounted on a large cast-iron
test bed which isolates the mechanism from any external vibration source. Strain

gauges were mounted on the upper and lower surfaces of the coupler, the follower
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and the input link. Measuring strain in the input link presented some difficulties. The
mechanism being investigated is of a crank rocker type, and therefore unlike the
other links which oscillate between two extreme angles, the input link rotates
completely. In order to transmit the signal in and out the strain gauges, slip rings

were used (these are clearly visible on the right in Fig. 8.1).

8.3. PATH GENERATED BY THE COUPLER MID-POINT

One application of the four-bar mechanism is to generate a certain path which serves
some specific purpose. The set of equations developed in Chapter 3 enables the path
generated by any point on the coupler to be determined. The paths generated by the
input link of the mechanism considered here are circles and those generated by the
follower are either circles or arcs depending on the type of the mechanism ( see the

classification of four-bar mechanisms in Chapter 3).

The purpose of visualising the path generated by any point of the coupler is first to
check the validity of the model for various operation speeds and then to see the
effect of rotational speed on the path generated. A literature search revealed that only
a few researchers have experimentally verified the paths predicted by the model. In a
series of papers by Liou and Erdman (1987, 1989), the authors used a
photogrammetry technique to analyse the motion of a four-bar mechanism running
at high-speed. To achieve this, the background of the experimental set-up was
painted in black and special reflectors (precision reflector targets shaped as solid
circles) were attached to different points of the linkages. The high-speed camera
used was capable of delivering high quality pictures at frame rates between 16 and
500 frames per second. The pictures were then digitised and processed on the
computer. The result of this operation could either be a printout of the deflection

state at any configuration, or an animation showing the mechanism in motion. The
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system could also give the path followed by any point of the mechanism, in
particular the coupler. Although the paths generated by the input link were circles
this method enabled Liou and Erdman to show that use of a controller to keep the
speed constant was not successful. The points on the circle generated by a point of
the input link were not equally spaced and therefore it can be concluded that
although the average speed over the cycles could be constant, the speed during the

cycle did change.

The advantage of the photogrammetry technique in giving the exact deflection shape
compared to the method where a series of strain gauges are mounted to the link of
interest lies in its accuracy. Also photogrammetry does not cause any change of the
characteristics of the system unlike the use of strain gauges. The many wires used
with the strain gauges could have an effect on the response of the system. Alexander
and Lawrence (1975) recommended that the mass densities of the coupler and output
links should be increased by 8% to account for the additional mass of the wires and
strain gauges attached to theses links in the experimental set-up. The main
disadvantages of the photogrammetry method are that the technique is expensive and
that the speeds up to which the mechanism could be analysed depend on the speed of

the camera. The digitising process is tedious and time-consuming.

Zou et al. (1992) used a different technique; a fibre optic cable was attached to the
coupler and a laser beam was used as a source of light to generate the path followed
by the point where the tip of the fibre optic cable was attached. The speed was kept
constant while the pictures were taken. The shutter was kept open long enough for
the mechanism to perform some cycles. The path generated was clearly visible from

the dark background.

In this study a similar technique was employed but using more accessible devices.

The same results were achieved using a LED and a camera. The LED was attached

166



to the coupler and powered by an external power supply. Different colours were
tested and it was found that a green LED had the best effect. The LED was powered
then the mechanism was run at a constant speed. A standard manual camera was
mounted on its tripod in order to avoid any movement while the pictures were taken.
['he speed of the shutter was chosen so that several cycles were captured while the
shutter was open. Graph paper was placed in the background of the test rig to
facilitate digitising the pictures. The following figures show the paths generated for
two speeds. a low speed which corresponds to a quasi-static motion and a relatively
high speed where the dynamic vibration starts to appear. The high-speed trace is
superimposed on the quasi-static one. Also, these figures show that the movement of

the mechanism is periodic.

Fig. 8.2.a: Path generated at a low speed.

[n the present study the pictures were digitised manually and the results are shown in
figures 8.3 and 8.4, whereby the experimental and the theoretical paths are given.
[he process of digitising was tedious and could have been improved by writing

software to facilitate calculating the coordinates of the points on the curve. In figures
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8.3 and 8.4 the path obtained experimentally is incomplete because the flywheel

seen in Fig 8.2.a masks the lower part of the path.
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Fig. 8.3: Comparison between the path generated experimentally and theoretically.
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Fig 8.4: Comparison between the path generated experimentally at a low speed (---)

and at a higher speed(——).

8.4. NATURAL FREQUENCIES AND MODE SHAPES AT
STATIC CONFIGURATIONS

There are many reasons for studying the variation of the natural frequencies and
mode shapes at different configurations. The natural frequencies provide
approximate information to the designer on the values of critical speeds. As was
seen in the previous chapter, the critical speeds occur near integer divisions of the
average value of the natural frequencies. Also, some of the speeds are limiting
critical speeds. Thus the designer has only a limited number of speeds at which to
run the costly simulation to check if a given speed is a limiting critical speed,
thereby saving a great deal of CPU time. On the other hand, the mode shapes at the
natural frequencies provide an insight into the deformation shapes when the
mechanism is excited at those frequencies. The designer visualises which linkage

undergoes the worst deformation for a given mode.

169



In Chapter 5, the dynamic stiffness method was presented and compared to the
conventional FEM for computing the natural frequencies at any one configuration.
In this chapter, a comparison is made between predicted natural frequencies and
mode shapes and corresponding measured results at static configurations. The
predictions were based on the dynamic stiffness method since it was proven that the

results given by this method are most accurate.

The cycle was divided into 10 equal angles of the input link. The mechanism was
held at each of the ten positions in turn and impulse tests using an accelerometer and
a hammer were conducted to determine the frequency response functions (FRF). For
each position of the mechanism, the excitation point was varied along the links and
the measurement point was kept fixed for each set of tests. Once all data had been
collected from the measurement and excitation points, the natural frequencies,
damping ratios and mode shapes were extracted using modal analysis software

(SMS-STAR). Fig. 8.5 shows a schematic of the experimental set-up.

accelerometer

hammer

Charge amplifiers
Four-bar mechanism

g cooocoo

PC Spectrum analyser

Fig. 8.5: Experimental modal analysis using a hammer and an accelerometer.

The SMS-STAR modules are shown in Fig. 8.6. The structure is described as a

series of numbered points. The points are linked with lines so that a wire frame
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representation can be created. The coordinates are expressed with respect to a
Cartesian frame. A wire frame representation of four-bar mechanism at a given
configuration is shown in Fig. 8.7. The module labelled "acquire measurements" in
Fig. 8.6 deals with the acquisition of data. Once enough measurements are taken on
the spectrum analyser i.e. no change is noticed on the average spectrum, the user
activates this module and measurements are downloaded from the analyser to the PC
as transfer functions between two points, the excitation and the measurement points.
The PC and the spectrum analyser are linked via a GPIB card. This is done for every
set of measurements where the position of the accelerometer is kept unchanged and
the excitation point is varied along the links. Once all the FRF's are stored in the PC,
the identification of modes procedure is started. The natural frequencies, the mode
shapes and the damping ratios are determined from the set of measurements. Prior to
proceeding with the identification process, a module in the package calculates the
modal peaks and helps to locate the natural frequencies. Then, bands are specified
together with the number of modes contained in each band and a choice of curve
fitting method is made. The curve fitting routine chooses the best possible modal
parameter estimate from the FRFs. Different accelerometer locations had to be
chosen because the quality of the response depends on the mode being investigated.
The response at a point may be at maximum for some modes and at a node for
others. An example of an FRF corresponding to the accelerometer placed at the

midpoint of the follower is given in Fig. 8.8.
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Fig. 8.7: Wire frame representation of the mechanism at t,=0°.
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Fig. 8.8: FRF corresponding to the accelerometer at the midpoint of the follower.
The frequency range was chosen so that three distinct modes were captured. The

measured frequencies, the damping ratios and mode shapes are presented in the

following figures where they are compared to the theoretical ones.
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Experimental

Model

Mode 1
2499 Hz, 5.38 % 26.08 Hz
Mode 2
42.63 Hz
43,59 Hz, 2.53 %
Mode 3

75.18 Hz, 2.74 %

78.55 Hz

Fig. 8.9: Mode shapes and frequencies for t;=0°.
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Experimental

Mode 1

26.52 Hz, 5.54% 27.04 Hz
Mode 2

55.85Hz,2.0% 57.67 Hz
Mode 3

68.99 Hz, 2.95 %

77.27 Hz

Fig. 8.10: Mode shapes and frequencies for t;=36°.
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Experimental

Mode 1

27.68 Hz, 4.62 % 27.26 Hz
Mode 2

56.11 Hz, 0.46 % 60.10 Hz
Mode 3

91.18 Hz, 1.36 %

90.20 Hz

Fig. 8.11: Mode shapes and frequencies for t,=72°.
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Experimental

Model

Mode 1
'\.
27.30 Hz, 4.36 % 26.82 Hz
Mode 2
49.18 Hz, 1.65 % 51.08 Hz
Mode 3

78.40 Hz, 1.24 %

76.36 Hz

Fig. 8.12: Mode shapes and frequencies for t,;=108°.
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Experimental

Mode 1

28.07 Hz, 4.79 % 26.70 Hz
Mode 2

47.00 Hz. 1.36 % 48.59 Hz
Mode 3

75.31 Hz, 2.65 %

17.92 8z

Fig. 8.13: Mode shapes and frequencies for t;=144°.
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Experimental Model
Mode 1
28.83 Hz,5.2 % 27.04 Hz
Mode 2
51.61 Hz, 1.37 % 53.70 Hz
Mode 3
77.36 Hz, 1.98 % 84.57 Hz

Fig. 8.14: Mode shapes and frequencies for t,=180°,
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Experimental

Model

Mode 1

28.91 Hz. 4.76 % 27.28 Hz
Mode 2

58.79 Hz, 1.28 % 60.56 Hz
Mode 3

82.55 Hz, 1.91 %

92.20 Hz

Fig. 8.15: Mode shapes and frequencies for t;=216°.
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Experimental Model
Mode 1
28.66 Hz, 4.25 % 27.32 Hz
Mode 2
60.26 Hz, 1.67 % 62.78 Hz
Mode 3
86.95 Hz, 1.14 % 94.27 Hz

Fig. 8.16: Mode shapes and frequencies for t;=252°.
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Experimental

Model

Mode 1
27.72 Hz, 4.67 % 27.26 Hz

Mode 2
57Hz 1.27 % 60.23 Hz

Mode 3

87.97 Hz, 1.62 %

90.45 Hz

Fig. 8.17: Mode shapes and frequencies for t,=288°.
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Experimental

Mode 1

26.66 Hz, 4.52 % 2691 Hz
Mode 2

48.50 Hz, 245 % 50.82 Hz
Mode 3

82.70 Hz, 1.75 %

83.84 Hz

Fig. 8.18: Mode shapes and frequencies for t;=316°.
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From these figures it is evident that there is a good agreement between the
theoretical and the experimental results. Nevertheless such discrepancies as there are
can be explained since there are many potential sources of error. The input link was
assumed to be a cantilever beam in the model; however this link is attached to a
flywheel with a finite stiffness. The length of the links in the numerical model are
bigger than those in the physical model, in reality a part of the theoretical length
pertain to the joint blocks which are stiffer and also, short length leads to higher
natural frequencies. This explains the fact that the experimental frequencies are
higher than the computed ones. In order to minimise the effect of the length of the
joints. the linkages were chosen long enough so that the length of joints are

negligible compared to the beam proper.

8.5. MECHANISM RUNNING AT HIGH-SPEED

When the mechanism was run at a high-speed the strain responses were measured.
The measurements were taken using strain gauges placed at the midpoint of the
coupler and the follower and at the end of the input link connected to the flywheel.
The gauges were then calibrated in order that voltages provided by the strain gauge
amplifiers to be related to the measured stresses and thereby furnish response data
for comparison with the predictions from the model. This was accomplished by
supporting the coupler and the follower at their ends and deflecting them by
suspending different loads and recording the voltages delivered by the amplifiers.
The same procedure was applied to the input link with one end clamped. The
relation between the voltage and the weights was linear for a wide range of loads.
The data acquisition device used was the CED 1401+ manufactured by Cambridge
Electronic Design Ltd. The device has 16 ADC input channels, 4 output channels
and a series of control inputs which include 5 event channels for external triggers.

The CED 1401+ was controlled from a PC using interactive menu driven software.
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The signal from the optical tachometer mentioned earlier on was used to trigger the
measurements and was also fed to one of the analogue input channels. The data were
acquired in sweeps whose duration were set such that two cycles of rotation were
captured in every case. The purpose of this was to provide a visual means for
verifying that the rotational speed was constant during the test. Once the speed was
stabilised. the different signals were sampled at a rate of 1 kHz (which is well above
the highest expected frequency) and were averaged over 10 samples. Data for each
test were saved into individual files. These files were then processed. First the speed
was calculated from the duration between the two spikes captured from the optical
tachometer. Then for each test, a file which contains the values of the voltage

provided by the strain gauge amplifiers, was generated.

The model was then run at the same speed and the results were compared. The
comparisons between the experimental stresses and the stresses given by the model
are given for different speeds in Appendix C. The method used in the model was the

method introduced earlier in section 7.4.1 and labelled the "exact" solution.

8.5.1. Effect of L,

The mechanism was tested for different values of L (see Fig. 3.1) in order to show
the effect of this parameter on the maximum stresses in the mechanism. The plate on
which the two ground pivots were bolted was extended by adding an extension with
two oblong holes in which the output pivot could slide. Once the desired value of L,
was reached. the output pivot was secured at this position by tightening two pairs of
bolts. The following figure shows the variation of the maximum stress against speed

for different values of L.
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Fig. 8.19: Maximum stress at follower midpoint for L, = 0.547 m.
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Fig. 8.20: Maximum stress at follower midpoint for L, = 0.632 m.

186




Stress [Pa)

| 40E+08

1. 20E+

| DOE

08 [ d

0% /m

B OOE+O7 j
8 00E [ 4 | % Modl

6.00E+

4 MOE+07

2 GOE+0

0 00E+00

experiment

Speed [rad/s]

Fig. 8.21: Maximum stress at follower midpoint for L= 0.642 m.

Stress |Pa)

1 20E+0

1 DOE+

8 00E+

6 D0E+

4 MOE+07

2 0DE+D

0 ME+

|2 B # - Model

A » . o Experiment

- "
om0

Speed [rad/s|

Fig. 8.22: Maximum stress at follower midpoint for L, = 0.652 m.

187




Model

Stress |Pa]

Experiment

Fig. 8.23: Maximum stress at follower midpoint for L, = 0.662 m.

From the above figures and the figures in Appendix C, it can be seen that:

The experimental stress exhibits as many critical speeds as predicted. These do
vary when L, is changed.

There 1s a good agreement between the model and the experimental results.
However the critical speeds on the experimental graphs occur at higher speeds
than those on the theoretical graphs. This is consistent with the fact that the
numerical model gives slightly lower natural frequencies than the experimental
ones.

When L, increases, the maximum stresses experienced by the links decrease.
However above a certain limit (Ly = 0.66 m) the trend is reversed, when L, is
increased. the stresses start increasing again. The effect of the transmission angle
is clearly visible in the next figure where the stress becomes maximum for an
input angle of 1807, the angle at which the maximum transmission angle occurs.

When the speed was low, the measured stress on the input link shows
unexpected response at a fixed frequency (13.67 Hz) with relatively high
amplitude superimposed on the original response. It was found that the

frequency of this signal was independent of L, and L,. Initially, it was suspected
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that the friction in the slip rings was responsible. To test this possibility, a low
voltage battery was mounted on the input link. It was found that the measured
output voltage from the slip rings was not affected by the rotational speed. The
likely explanation of this phenomenon was that the input link with the flywheel
constituted an oscillating system. The theoretical natural frequency of this

system was calculated to be 11.31 Hz.
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Fig. 8.24: Stress at the midpoint of the follower for ®=17 rad/s and L4 = 0.662 m.

8.5.2. Effect of L,

In the previous set of tests, the follower was the most flexible element of the
mechanism. and the other links were relatively stiff. A new set of measurements was
carried out on a mechanism where both the coupler and the follower were flexible
elements. This was done by replacing the initially short coupler with a longer one
(636 mm in place of 328 mm). The experimental results are presented in Appendix
D . The maximum stresses at the coupler and the follower midpoints are presented in

figures 8.25 and 8.26.
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8.6. CONCLUSION

In this chapter, results have been reported from a series of experimental tests carried
out on a four-bar mechanism. Firstly, a very simple method was presented for
investigating the experimental path generated by any point of the coupler. Then,
modal tests were carried out to determine the natural frequencies and mode shapes of
the mechanism where it has been considered as a structure at different static

configurations. Finally. the mechanism was run at different speeds and the results
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were compared with the results from model. In the last test series, different values of
L, (the distance between the ground pivots) were tested in order to confirm the
prediction from the model that the maximum stresses in the mechanism do change
with L,. Also two different couplers were tested, the parameter changed was the

length of the latter which leads to a stiff or flexible coupler.
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Chapter 9

CONCLUSIONS AND SUGGESTIONS FOR FURTHER
WORK

9.1. CONCLUSIONS

The main goal of this study has been the modelling of a flexible four-bar mechanism
running at high-speed. Although this problem has been addressed for many years,

there were. and indeed are still, areas where more research is needed.

The first purpose of this study was to develop a set of routines to deliver the steady-
state solution quickly and efficiently. The first problem addressed was how to obtain
an accurate result using the FEM with the minimum number of elements per link.
An iterative method was then developed whereby the conventional FEM was used
conjointly with the dynamic stiffness method to provide the same results as a model
using the conventional FEM with many elements per link. This resulted in a drastic
saving in CPU time. Two new algorithms have been developed to determine the
steady-state solution and in many situations these have proved to be superior to the
existing algorithms. It has also been shown that these two algorithms are
mathematically equivalent but conceptually different and also it was demonstrated

that one of them is more advantageous than the other.

It is known that the mechanism exhibits many critical speeds where the stresses in
the links are greater than those at neighbouring speeds. Some of these critical speeds,
called limiting critical speeds, cannot be exceeded without damaging the
mechanism. However. above certain limiting critical speeds there might be a speed

band where the mechanism could run safely and there is a need for a method to



allow a mechanism to accelerate up to this speed band. The problem addressed was
therefore how to run the mechanism up to that safe speed without damaging it. The
dynamic response of the mechanism depends on many geometrical parameters, the
only one which could be varied while the mechanism is rotating is the distance
between the ground pivots L. Hence, the variation of the maximum stresses in the
linkages against speed for different values of L, has been investigated. It was found
that when L, increases within a certain interval, the maximum stresses decrease.
Furthermore, the critical speeds are not affected by L. The solution to drive the
mechanism above a limiting critical speed, if there is a safe speed band above it, is
therefore to start the mechanism with a large value of L, and then, once the safe
speed is reached. return the ground pivot to its normal position. The effect of
changing L has been confirmed experimentally. However, above a certain value of
L4, the transmission angle becomes unsatisfactory and the maximum stresses during
the cycle start increasing again. The maximum stresses occur at an input angle of
1807, the angle at which the maximum transmission angle occurs. This effect has

also been proven experimentally.

A possibility which might be considered is to add more damping in the mechanism
in order to reduce the amplitude of the stresses and to run the mechanism through
the critical speeds up to the target safe speed band. When the effect of the damping
on the maximum stresses against speed was considered, it was found that the
amplitudes of the stresses are indeed reduced at the critical speeds. However, at
speeds between critical speeds, increasing damping is counterproductive; instead of
being reduced, the amplitudes of the maximum stresses are increased. Therefore,
adding more damping to run the mechanism above several critical speeds, in general,

may not be a solution.

A system excited at a certain frequency is said to be unstable if its response grows

indefinitely. For mechanisms, the source of excitation is due to the rigid-body
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motion. Unlike static structures, resonance occurs in mechanisms at excitation
frequencies (speeds) quite below the fundamental natural frequency at any position
of the mechanism. At these speeds, if no damping is included in the model, the
stresses and deflections become unbounded. In reality the physical system has
always some damping present. Also, when the deflections are large the linkages start
behaving in a non-linear manner. The deflections, in this case, become bounded but
still they are larger than at neighbouring speeds. These speeds are called critical
speeds. In the past, a method to locate these was developed based on the eigenvalues
of the monodromy matrix. The critical speeds correspond to these eigenvalues
greater than unity. However, it has been shown that when the damping was included,
at many low speeds the system became stable but nevertheless these speeds
remained critical. Also it was found that by calculating the monodromy matrix for
each mode the critical speeds occur at integer divisions of the mean value of the
natural frequencies. In this study, a method has been developed based on the
transition matrix without performing the modal uncoupling. It has been found that
the critical speeds coincide with the maximum of one of the real parts of the
eigenvalues of the transition matrix and the predominant ones still occur near integer

divisions of the mean values of the corresponding natural frequency over the cycle.

The experimental work achieved three main objectives. First, a practical method has
been used to show the coupler curves. To do this, a LED was placed at the desired
point and the mechanism was run at a series of constant speeds. Photographs were
then taken at different speeds. digitised and the coupler curves were compared to the
theoretical ones. The second objective was to carry out the modal analysis of the
mechanism at static configurations. The natural frequencies, the mode shapes and
the damping ratios were determined experimentally for ten positions of the
mechanism. It was found that the measured characteristics were in good agreement
with the predicted ones. The third objective was to run the mechanism at different

speeds and to measure the stresses on the linkages. It was found that there was a
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good agreement between the experimental results and the theoretical predictions for
both amplitude and phase. The effect of L, was also experimentally investigated.
The results from the model were confirmed in that the stresses were reduced when
[, was increased. Also it was confirmed that when the transmission angle was
beyond a certain limit, the stresses become critical at an input angle of 180°, the
angle at which the maximum transmission angle occurs and the effect of increasing

L4 1s reversed.

9.2. FURTHER WORK

The method developed in this study to run the mechanism above several critical
speeds requires the distance between the ground pivots to be adjusted while the
mechanism is rotating. Sometimes this is not possible for technical reasons. Another
method which could be pursued is to have an elastic support at the follower ground
pivot. Basically, this would change the characteristics of the mechanism at the
limiting critical speed and the system would be arranged in such a way that the
maximum vibration is at the support. Once the safe speed is attained, the support

could be locked.

The effect of damping on the maximum stresses experienced by the linkages has
been investigated theoretically, A method which could be used to dissipate energy
and therefore to increase damping is, for example, a laminated viscoelastic beam
where a viscoelastic layer is confined between two elastic layers. Studying the
characteristics of laminated viscoelastic beams would have two purposes, firstly to
quantify the variation of damping for different combinations of the layer thicknesses,

and secondly to investigate the influence of this solution on the critical speeds.
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In the past. two papers have been published in which an expert system was proposed
as an intelligent front to design software for a four-bar mechanism (Liou ef al., 1988;
Patra and Liou, 1992). From the set of geometrical data of the mechanism, the
system estimates the maximum deflection, maximum stress, etc. without the need
for simulation. The set of rules and the basic equations were derived from a simple
cantilever beam. The results obtained are quite accurate for speeds outside the
critical speed bands. However, at or near critical speeds the results will
underestimate the responses since the resonance phenomenon was not taken into
account. To improve the system a more refined model should be developed where

the model accounts for the critical speeds of the system.

[t is intuitive that the natural frequencies of a structure depend on the natural
frequencies of its individual members. Published results showed that critical speeds
have been linked by some researchers to the natural frequencies of the links, and to
the average values of the natural frequencies of the whole mechanism by others. For
some configurations of the mechanism these two can be considered equal but for
others they are quite different as witnessed by Fig. 9.1. The variation of the different

frequencies against the coupler length is shown.
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From this figure it is seen that the average of the first natural frequency could be
approximated by the natural frequency of the most flexible link assumed to be
pinned-pinned. In this particular case, for L,<0.547 m, the first natural frequency of
the mechanism is determined from the natural frequency of the follower; and when
[,>0.547 m, the coupler determines the first natural frequency of the mechanism. A
systematic investigation of the variation of the effect of the natural frequencies of the

links on the natural frequency of the mechanism is needed.

Finally, the fatigue phenomenon has not been taken into account in this study. The
definition of the limiting critical speeds was based on the maximum stress in the
links. It is desirable to include the fatigue so that not only can the mechanism
withstand the stresses at a certain speed, but it can also run at this speed for a

reasonable length of time.
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Appendix A

MATRIX ELEMENTS FOR THE p-VERSION

A.1. BEAM ELEMENT WITH 1 INTERNAL NODE

qlJL % qSJ
4, = th\ A
I — R TR e, | + A i _,_{_ e

/ — iy

Fig. A.1: Schematic of the element with 1 internal node.

In order to derive the element stiffness and mass matrices, the method followed was
outlined in chapter 4. The shape functions N(x) for this particular case are quintic
polynomials. Its coefficients are determined by equating the coordinates g;'s to the
displacements (and the rotations) at the respective position. Then the shape functions
are differentiated twice with respect to the space coordinate x to yield B(x) used to
calculate the stiffness matrix.

It is found that:
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A.2, BEAM ELEMENT WITH CURVATURES
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Fig. A.2: Schematic of the element with two curvatures.
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Appendix B

FREQUENCY FUNCTIONS Fj and Gj

F = —%(sinh] —sinl) B.1)
% .
F, =- 5 (coshAsinA — sinhAcosA) (B.2)
xz
F=- —s-(coshl —cosh) (B.3)
A'Z
F, = E—(sinhlsinl) (B.4)
A?
F, = E-(sinh)w sin)) (B.5)
2 '
F,=- 3 (coshAsin) + sinhAcos)) (B.6)
F, = —PBcot(BL) (B.7)
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Appendix C

EXPERIMENTAL RESULTS FOR L =0.328 m
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Fig. C.8.c: Stress at the follower midpoint for o= 17.70 rad/s
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Fig. C.9.a: Stress at the input link midpoint for o= 18.27 rad/s

Stress [Pa]

8 00E+06
6.00E+06

400E+06 +

2 00EHD6 4

O 0D0E+DD &
=1
-2 00E406 +

4 00E+06 -+

-6.00E+06

Input angle [deg]

Model = Experiment

Fig. C.9.b: Stress at the coupler midpoint for o= 18.27 rad/s

Stress [Pa]

L SOEHIT

1.O0E+07 -

S.00E+06 4

000E+00 4

(=1
-5 D0E+06 +

-1.00E+OT -

-1.50E+07 +

=2 00E+OT +

-2 SOE+07

i

180

210 L
240 L
270 .
300 L
330 L

Input angle [deg|

Model Experiment

360 L

Fig. C.9.c: Stress at the follower midpoint for o= 18.27 rad/s
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Fig. C.10.a: Stress at the input link midpoint for ©=20.07 rad/s
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Fig. C.10.b: Stress at the coupler midpoint for o= 20.07 rad/s
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Fig. C.10.c: Stress at the follower midpoint for o= 20.07 rad/s
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Fig. C.11.b: Stress at the coupler midpoint for o= 20.40 rad/s
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Fig. C.11.c: Stress at the follower midpoint for ®= 20.40 rad/s
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Fig. C.12.b: Stress at the coupler midpoint for o= 21.01 rad/s
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Fig. C.12.c: Stress at the follower midpoint for ®=21.01 rad/s
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Fig. C.13.a: Stress at the input link midpoint for o= 21.08 rad/s
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Fig. C.13.b: Stress at the coupler midpoint for o= 21.08 rad/s
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Fig. C.13.c: Stress at the follower midpoint for m= 21.08 rad/s
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Fig. C.14.a: Stress at the input link midpoint for o= 21.89 rad/s
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Fig. C.14.b: Stress at the coupler midpoint for = 21.89 rad/s

Stress [Pa]

3 00E+07

200E+07
| .DOE+07 |
0.00E+00
-1 DOE+07 -

-2 00E+07 +

-3 00E+0T +

-4,00E+07

Input angle |deg)

Model Experiment |

Fig. C.14.c: Stress at the follower midpoint for ®= 21.89 rad/s
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Fig. C.15.a: Stress at the input link midpoint for o= 22.52 rad/s
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Fig. C.15.b: Stress at the coupler midpoint for o= 22.52 rad/s
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Fig. C.15.c: Stress at the follower midpoint for o= 22.52 rad/s
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Fig. C.16.a: Stress at the input link midpoint for o= 22.60 rad/s
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Fig. C.16.b: Stress at the coupler midpoint for ®= 22.60 rad/s
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Fig. C.16.c: Stress at the follower midpoint for o= 22.60 rad/s
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Fig. C.17.b: Stress at the coupler midpoint for o= 23.44 rad/s
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Fig. C.17.c: Stress at the follower midpoint for o= 23.44 rad/s

231




Stress [Pa]

B OOE+OT
6.00E+07 -
4 00E+07
200E+0T 4
0.00E+00
-2 D0E+07 4
-4 DOE+OT

6 00E+0T -

B OOE+07 +
-1 OE+08

Input angle [deg|

Model ———— Experiment

Fig. C.18.a: Stress at the input link midpoint for o= 24.35 rad/s
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Fig. C.18.c: Stress at the follower midpoint for o= 24.35 rad/s
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Fig. C.19.b: Stress at the coupler midpoint for o= 25.96 rad/s
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Fig. C.19.c: Stress at the follower midpoint for o= 25.96 rad/s
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Fig. C.20.a: Stress at the input link midpoint for o= 27.32 rad/s
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Fig. C.20.c: Stress at the follower midpoint for o= 27.32 rad/s
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Fig. C.21.a: Stress at the input link midpoint for o= 29.09 rad/s
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Fig. C.21.b: Stress at the coupler midpoint for ®=29.09 rad/s
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Fig. C.21.c: Stress at the follower midpoint for o= 29.09 rad/s
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Fig. C.22.b: Stress at the coupler midpoint for ®=30.21 rad/s

Stress [Pa)

6.00E407
4 DOE+OT
200E+07
0.00E+00 \

aQ
2 00E+07 |

270
300
330

60

-4 00E+0T7 4

<6 0OE+OT 4

-RO0E+07

-1 DOE+08

-1 20E+08

Input angle [deg)

Model Experiment |

Fig. C.22.c: Stress at the follower midpoint for o= 30.21 rad/s
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Stress [Pa)

=5 DOE+HD6 +
-1 D0E+07 -+

-1 SO0E+07 |

2 S0E+07
2.00E+07 +
| SOE+07 ¢
1 00E+0T +

S 00E+06 § ¢

0.00E+00 +-
o

30
601

-2 00E+07 + \

-2 S0E+07 -

Input angle [deg|

Maodel Experiment

Fig. C.23.b: Stress at the coupler midpoint for ®= 31.42 rad/s
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Fig. C.23.c: Stress at the follower midpoint for @= 31.42 rad/s
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Fig. C.24.b: Stress at the coupler midpoint for ®= 35.30 rad/s
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Fig. C.24.c: Stress at the follower midpoint for o= 35.30 rad/s
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Appendix D

EXPERIMENTAL RESULTS FOR L3 = 0.636m
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Fig. D.1.a: Stress at the input link midpoint for @ = 6.84 rad/s.
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Fig. D.1.b: Stress at the coupler midpoint for o = 6.84 rad/s.
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Fig. D.1.c: Stress at the follower midpoint for o = 6.84 rad/s.
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Fig. D.2.a: Stress at the input link midpoint for @ = 7.86 rad/s.
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Fig. D.2.b: Stress at the coupler midpoint for © = 7.86 rad/s.
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Fig. D.2.c: Stress at the follower midpoint for ® = 7.86 rad/s.
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Fig. D.3.a: Stress at the input link midpoint for ® = 9.11 rad/s.
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Fig. D.3.b: Stress at the coupler midpoint for ® = 9.11 rad/s.
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Fig. D.3.c: Stress at the follower midpoint for ® = 9.11 rad/s.
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Fig. D.4.a: Stress at the input link midpoint for ® = 9.68 rad/s.
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Fig. D.4.b: Stress at the coupler midpoint for o = 9.68 rad/s.
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Fig. D.4.c: Stress at the follower midpoint for o = 9.68 rad/s.
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Fig. D.5.c: Stress at the follower midpoint for @ = 10.23 rad/s.
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Fig. D.6.b: Stress at the coupler midpoint for @ = 11.38 rad/s.
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Fig. D.6.c: Stress at the follower midpoint for @ = 11.38 rad/s.
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Fig. D.7.a: Stress at the input link midpoint for ® = 11.9 rad/s.

Stress [Pa]

2 00E+H07

| SOE+0T

1 DOE+OT

5 00E+D6 +

0.00E+00 +
=

-5 D0E+06 +

-1 .00E+07

Input angle |deg]

Maodel = Experiment |

Fig. D.7.b: Stress at the coupler midpoint for o = 11.9 rad/s.
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Fig. D.7.c: Stress at the follower midpoint for ® = 11.9 rad/s.
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Fig. D.8.a: Stress at the input link midpoint for ® = 12.44 rad/s.
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Fig. D.8.b: Stress at the coupler midpoint for ® = 12.44 rad/s.
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Fig. D.8.c: Stress at the follower midpoint for @ = 12.44 rad/s.
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Stress [Pa]

-S DDE+06 |

-1 OE+OT ¢

2 00E+0T

1. 50E+07 §

1 DOE+OT +

S.00E+06 +

0.00E+00 ¢
=1

360 L

-1 SOE+07

Input angle [deg]

| Model Experiment

Fig. D.9.b: Stress at the coupler midpoint for ® = 13.4 rad/s.
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Fig. D.9.c: Stress at the follower midpoint for ® = 13.4 rad/s.
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Fig. D.10.b: Stress at the coupler midpoint for » = 14.28 rad/s.
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Fig. D.10.c: Stress at the follower midpoint for » = 14.28 rad/s.
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Fig. D.11.b: Stress at the coupler midpoint for @ = 15.51 rad/s.
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Fig. D.11.c: Stress at the follower midpoint for @ = 15.51 rad/s.
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Fig. D.12.b: Stress at the coupler midpoint for ® = 16.45 rad/s.
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Fig. D.12.c: Stress at the follower midpoint for ® = 16.45 rad/s.
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Fig. D.13.a: Stress at the input link midpoint for ® = 16.89 rad/s.
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Fig. D.13.b: Stress at the coupler midpoint for ® = 16.89 rad/s.
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Fig. D.13.c: Stress at the follower midpoint for ® = 16.89 rad/s.
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Fig. D.14.b: Stress at the coupler midpoint for » = 18 rad/s.
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Fig. D.14.c: Stress at the follower midpoint for ® = 18 rad/s.
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Fig. D.15.b: Stress at the coupler midpoint for @ = 18.81 rad/s.
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Fig. D.15.c: Stress at the follower midpoint for @ = 18.81 rad/s.
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Fig. D.16.a: Stress at the input link midpoint for @ = 20.27 rad/s.
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Fig. D.16.b: Stress at the coupler midpoint for ® = 20.27 rad/s.
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Fig. D.16.c: Stress at the follower midpoint for ® = 20.27 rad/s.
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Fig. D.17.b: Stress at the coupler midpoint for @ = 21.37 rad/s.
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Fig. D.17.c: Stress at the follower midpoint for o = 21.37 rad/s.
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Fig. D.18.a: Stress at the input link midpoint for ® = 21.74 rad/s.
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Fig. D.18.b: Stress at the coupler midpoint for @ = 21.74 rad/s.
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Fig. D.18.c: Stress at the follower midpoint for @ = 21.74 rad/s.

256




Stress |Pa)

1 0OE+0OR

8 00E+07 4

6.00E+HOT

4. 00E+07 +

200E+0T -

0.00E+00 +

-2 0E+OT +

-4 DOE+OT

-6 00E+07 ¢

Input angle [deg|

| Modd

Fig. D.19.a: Stress at the input link midpoint for » = 22.68 rad/s.
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Fig. D.19.b: Stress at the coupler midpoint for » = 22.68 rad/s.
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Fig. D.19.c: Stress at the follower midpoint for ® = 22.68 rad/s.
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Fig. D.20.a: Stress at the input link midpoint for ® = 22.77 rad/s.
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Fig. D.20.b: Stress at the coupler midpoint for » = 22.77 rad/s.
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Fig. D.20.c: Stress at the follower midpoint for » = 22.77 rad/s.

258




Stress |Pa]

1. 20E+08
1 D0E+08 — F
8 00E+07 -+
6.00E+0T -
4.00E+0T +
2 00E+0T +
0.00E+00 +
9
-2 00E+07 +

-4 DOE+OT

-6 00E+0T
-ROOE+0T
Input angle [deg]
]
Model ——— Experiment ‘

Fig. D.21.a: Stress at the input link midpoint for @ = 23.36 rad/s.
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Fig. D.21.b: Stress at the coupler midpoint for ® = 23.36 rad/s.
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Fig. D.21.c: Stress at the follower midpoint for @ = 23.36 rad/s.
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Fig. D.22.a: Stress at the input link midpoint for ® = 23.62 rad/s.
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Fig. D.22.b: Stress at the coupler midpoint for @ = 23.62 rad/s.
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Fig. D.22.c: Stress at the follower midpoint for ® = 23.62 rad/s.
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Fig. D.23.a: Stress at the input link midpoint for » = 23.89 rad/s.
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Fig. D.23.b: Stress at the coupler midpoint for @ = 23.89 rad/s.
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Fig. D.23.c: Stress at the follower midpoint for @ = 23.89 rad/s.
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Fig. D.24.a: Stress at the input link midpoint for ® = 24,74 rad/s.
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Fig. D.24.b: Stress at the coupler midpoint for ® = 24.74 rad/s.
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Fig. D.24.c: Stress at the follower midpoint for ® = 24.74 rad/s.
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Fig. D.25.a: Stress at the input link midpoint for © = 25.34 rad/s.
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Fig. D.25.b: Stress at the coupler midpoint for ® = 25.34 rad/s.
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Fig. D.25.c: Stress at the follower midpoint for @ = 25.34 rad/s.
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Fig. D.26.a: Stress at the input link midpoint for » = 25.75 rad/s.
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Fig. D.26.b: Stress at the coupler midpoint for @ = 25.75 rad/s.
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Fig. D.26.c: Stress at the follower midpoint for o = 25.75 rad/s.
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Appendix E

STABILITY REGIONS OF MATHIEU'S EQUATION

Fig. E.1: Variation of the first eigenvalue of the monodromy matrix versus d and &.

The limits of z axis have been deliberately set to [-1,1]. This is because the
eigenvalues of the monodromy matrix are larger when d is small.
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Fig. E.2: Variation of the second eigenvalue of the monodromy matrix versus d and
€.
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3: Stability chart in (d.g) space.
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