
Agent Based Models of

Competition and Collaboration.

Harry James Goldingay

Doctor Of Philosophy

� Aston University �

March 2010

This copy of the thesis has been supplied on condition that anyone who

consults it is understood to recognise that its copyright rests with its

author and that no quotation from the thesis and no information derived

from it may be published without proper acknowledgement.

Aston University

Agent Based Models of

Competition and Collaboration.

Harry James Goldingay

Doctor Of Philosophy, 2010

Thesis Summary

Swarm intelligence is a popular paradigm for algorithm design. Frequently drawing
inspiration from natural systems, it assigns simple rules to a set of agents with the
aim that, through local interactions, they collectively solve some global problem.
Current variants of a popular swarm based optimization algorithm, particle swarm
optimization (PSO), are investigated with a focus on premature convergence. A
novel variant, dispersive PSO, is proposed to address this problem and is shown to
lead to increased robustness and performance compared to current PSO algorithms.

A nature inspired decentralised multi-agent algorithm is proposed to solve a con-
strained problem of distributed task allocation. Agents must collect and process the
mail batches, without global knowledge of their environment or communication be-
tween agents. New rules for specialisation are proposed and are shown to exhibit
improved e�ciency and �exibility compared to existing ones. These new rules are
compared with a market based approach to agent control. The e�ciency (average
number of tasks performed), the �exibility (ability to react to changes in the envi-
ronment), and the sensitivity to load (ability to cope with di�ering demands) are
investigated in both static and dynamic environments. A hybrid algorithm combin-
ing both approaches, is shown to exhibit improved e�ciency and robustness.

Evolutionary algorithms are employed, both to optimize parameters and to allow
the various rules to evolve and compete. We also observe extinction and speciation.
In order to interpret algorithm performance we analyse the causes of e�ciency loss,
derive theoretical upper bounds for the e�ciency, as well as a complete theoretical
description of a non-trivial case, and compare these with the experimental results.
Motivated by this work we introduce agent �memory� (the possibility for agents
to develop preferences for certain cities) and show that not only does it lead to
emergent cooperation between agents, but also to a signi�cant increase in e�ciency.

Keywords: Evolutionary Computation, Optimization, Swarm Intelligence, Task
Allocation

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Methodology . 4

1.4 Contributions . 4

1.5 Structure . 5

2 Background 6

2.1 Swarm Intelligence . 7

2.2 Evolutionary Optimization . 9

2.2.1 Evolution Strategies . 10

2.2.2 Particle Swarm Optimization 12

2.2.3 Comprehensive Learning PSO 21

3 Distributed Task Allocation 24

3.1 Motivation . 25

3.2 The Mail Processing Problem . 26

3.3 Threshold Based Algorithms . 32

3.3.1 Mail Uptake . 34

3.3.2 Specialisation Update Rules 35

3.3.3 Evolution Strategies . 38

3.3.4 A Theoretical Description . 39

3.3.5 Results . 41

3.3.6 Conclusions . 49

3.4 A Comparative Approach . 50

3.4.1 Market Based Algorithms . 50

iii

CONTENTS

3.4.2 A Hybrid Algorithm . 52

3.4.3 Particle Swarm Optimization 53

3.4.4 Theoretical E�ciency Limit 53

3.4.5 Results . 55

3.4.6 Conclusions . 67

4 Task Allocation with Memory 68

4.1 Motivation . 69

4.2 Memory . 70

4.3 Results . 72

4.3.1 Conclusions . 79

5 Premature Convergence in PSO 80

5.1 Attractive and Repulsive PSO . 82

5.2 Dispersive PSO . 83

5.2.1 Details . 85

5.2.2 Movement . 87

5.2.3 Convergence Conditions . 88

5.2.4 Dispersal Region . 89

5.3 Results . 91

5.3.1 Behaviour . 94

5.3.2 Robustness . 95

5.3.3 Conclusions . 99

6 Summary & Future Work 101

6.1 Summary . 102

6.2 Future Work . 103

A Theory 115

A.1 Details of the Theoretical Analysis 115

A.2 Theoretical Upper Bound for the E�ciency 118

B Parameter Details 121

B.1 The Standard Setting . 121

B.2 Parameter Optimisation . 122

iv

CONTENTS

B.2.1 Re-parametrisation . 123

B.2.2 Parameter Details . 125

C PSO Cost Results 129

v

List of Figures

2.1 Example fully connected topology for n = 8 and i = 1. 18

2.2 Example ring topology for n = 8 and i = 1. 19

2.3 Example von Neumann topology for n = 20, a = 5, b = 4 and i = 3. . 20

3.1 Average e�ciency of the SO algorithm as a function of the system

size Na in a static environment . 42

3.2 Evolution of the e�ciency and loss sources during a single run 44

3.3 E�ciency and loss sources in a static environment with removal of

specialised agents. 45

3.4 Evolution of the e�ciency during an ES optimisation of the popula-

tion of agents. 47

3.5 Evolution of the population frequencies an ES optimisation of the

population of agents. 47

3.6 Comparison of the theoretical solution for an in�nite system, with

simulations. 48

3.7 The average e�ciency of the MB algorithm as a function of the system

size Na. 56

3.8 Evolution of the e�ciency and loss sources during a single run in the

static environment using the MB algorithm. 57

3.9 E�ciency and loss sources as function of Nm in the static environment. 57

3.10 E�ciency and loss sources as function of Ra/m for Nm = 2 in the

static environment. 59

3.11 E�ciency and loss sources as function of the changeover time tc in

the static environment. 60

3.12 Evolution of the e�ciency and loss sources during a single run in the

dynamic environment using the SO and MB algorithms. 61

vi

LIST OF FIGURES

3.13 Specialisation behaviour in a dynamic environment using the stan-

dard MB settings. 62

3.14 E�ciency and loss sources as function of the wavelength ξ in the

dynamic environment. 63

3.15 Evolution of the e�ciency and loss sources during a single run with

removal of specialised agents. 64

4.1 E�ciency and loss sources and specialisation behaviour for Ra/m = 1

and ρ = 0.95 . 73

4.2 E�ciency and loss sources, specialisation behaviour, and maximum

waiting time as a function of ρ . 74

4.3 E�ciency and loss sources, and specialisation behaviour as a function

of Ra/m for ρ = 0.95 . 75

4.4 E�ciency and loss sources as a function of θmax for Ra/m = 1 and

ρ = 0.95 . 76

4.5 E�ciency and loss sources, city-specialisation behaviour and mail-

specialisation behaviour with the removal of specialised agents. 77

5.1 A single run of the DiPSO algorithm on the 30-dimensional Schwefel

function. 94

5.2 Average performance and robustness of our PSO algorithms. 95

vii

List of Tables

2.1 Use of paradigms in evolutionary algorithms 10

3.1 The average e�ciency of the di�erent methods 49

3.2 Final e�ciencies (as proportions of the theoretical upper limit) with

tc = 2 . 66

3.3 Final e�ciencies (as proportions of the theoretical upper limit) with

tc = 10 . 67

4.1 Comparison of the e�ciency of the best threshold based memoryless

algorithm with the theoretical limit for any memoryless algorithm

and for the algorithm with memory 78

5.1 Robustness of the PSO algorithms in 10 dimensions. 97

5.2 Robustness of the PSO algorithms in 30 dimensions 97

5.3 Robustness of the PSO algorithms in 100 dimensions 98

5.4 Robustness of the PSO algorithms in 100 dimensions after 107 func-

tion evaluations . 99

B.1 Parameters for threshold based algorithms 122

B.2 Parameters for market based algorithms 122

B.3 Parameters for memory algorithms 122

B.4 Parameter bounds for the PSO algorithm 125

B.5 Optimised parameters for the market based algorithm 125

B.6 Optimised parameters for the SO rule 126

B.7 Optimised parameters for the hybrid VRT algorithm 127

C.1 Average Cost of the PSO algorithms in 10 dimensions 130

C.2 Average Cost of the PSO algorithms in 30 dimensions 130

viii

LIST OF TABLES

C.3 Average Cost of the PSO algorithms in 100 dimensions 131

C.4 Average Cost of the PSO algorithms in 100 dimensions after 107 func-

tion evaluations . 131

ix

Acknowledgements

First and foremost I would like to thank my supervisor, Dr. Jort van Mourik, who

provided much needed advice and insight into the work herein, and without who

this thesis would not have been written.

I am grateful to all the sta� at Aston University and, in particular, to Vicky Bond

for ensuring that the real world didn't intrude too much upon my research, and to

Alex Brulo whose technical support enabled the experimental side of my work.

I would also like to express gratitude to Dr. Peter Ti¬o, Dr. A. Ekart and Dr.

Juan Neirotti for stimulating discussions, useful suggestions, and careful reading of

various elements of this manuscript.

This thesis was made possible due to funding from the EPSRC and due to support

and and equipment from the Non-linearity and Complexity Research Group at Aston

University. I also extend my thanks to my friends and colleagues within the research

group, and within the university, who have made the time spent working here such

a pleasant experience.

Finally, I am deeply grateful to my family, and particularly to my parents, for

providing encouragement and support throughout my education.

x

1 Introduction

CONTENTS

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Methodology . 4

1.4 Contributions . 4

1.5 Structure . 5

1

Chapter 1 INTRODUCTION

Swarm intelligence is a popular paradigm for algorithm design. Drawing inspi-

ration from natural systems, it assigns simple rules to a set of agents with the aim

that, thorough local interactions, they collectively solve some global problem.

In this thesis, we consider a nature inspired, decentralised, multi-agent algorithm

for distributed task allocation. We propose a set of new rules for task specialisation

and test them on an idealised model of large scale task allocation, the mail retrieval

problem. We test examine their performance both qualitatively and, through the

use of an evolutionary algorithm in which the various rules can evolve and compete,

quantitatively. In order to interpret algorithm performance we analyse the causes

of e�ciency loss, and derive a complete theoretical model of the system under non-

trivial conditions.

The best new rule found in this manner is compared with a market based ap-

proach to agent control. We focus on e�ciency, �exibility, and robustness under a

range of conditions. We also combine the threshold and market based approaches

into a hybrid algorithm, which exhibits improved e�ciency and robustness. Again,

we use an evolutionary algorithm to quantitatively compare all algorithms in a range

of representative environments. We also derive theoretical upper bounds for the ef-

�ciency, and compare these with the experimental results.

Motivated by this work, we propose a threshold based algorithm in order to

maximise the overall e�ciency. We show that memory, i.e. the possibility for agents

to develop preferences for certain cities, not only leads to emergent cooperation

between agents, but also to a signi�cant increase in e�ciency (above the theoretical

upper limit for any memoryless algorithm).

Finally, we investigate current variants of a popular swarm based optimization

algorithm, particle swarm optimisation (PSO), with with a focus on premature con-

vergence. We propose a novel variant, dispersive PSO, to address this problem and

is shown to lead to increased robustness and performance compared with current

PSO algorithms.

1.1 Motivation

Firstly, nature-inspired rules are partially constrained by the circumstances, re-

sources and requirements under which they evolved. When dealing with arti�cial

2

Chapter 1 INTRODUCTION

systems, these conditions may be substantially di�erent. As such, when looking at

how a nature-inspired algorithm can be improved, it is important to analyse what

scope for improvement there is within the current framework. In this way, limita-

tions within the current framework can be systematically addressed and appropriate

modi�cations to the framework designed, in order to maximise performance.

Emergent behaviour in swarm intelligence systems is the foundation of their

success. However, due to the high degree of di�culty in specifying individual rules

which lead to exactly the desired behaviour, good rules frequently lead to elements

of undesirable behaviour. An example of such behaviour is �premature convergence�

in PSO, in which the entire swarm converges to a single point, eliminating all future

search capacity. The modi�cation of standard behaviour required to eliminate this

would remove the capacity for local searches, compromising overall performance. As

such a conditional modi�cation, which allows the swarm to search normally until

premature convergence is threatened and then changes agent behaviour to avoid it,

is desirable.

1.2 Objectives

The main objectives of this thesis are:

• To investigate and improve the current nature inspired rule sets for threshold

based task allocation.

• To compare threshold based task allocation algorithms with leading current

methods under a range of circumstances in order to identify which methods

are best suited to particular conditions.

• To theoretically model the problem of distributed task allocation upon which

our work is based, and to analyse these models in order to gain insight into

an �ideal� decentralised distributed task allocation algorithm.

• To analyse the causes of premature convergence in the PSO algorithm, and to

design an algorithm to systematically reverse them in order to regain search

performance.

3

Chapter 1 INTRODUCTION

1.3 Methodology

As the self organising behaviour exhibited by social insects appears in (large) colonies,

it seems natural to consider the performance of our task allocation model with a

large population of agents. Not only does the large system size have the advantage

of removing �nite size e�ects (such as large �uctuations both inside and in between

di�erent runs), but Anderson and Ratnieks [1, 2] have also shown that a speci�c form

of collective behaviour involving direct cooperation between agents is only e�cient in

large systems. Furthermore, Dornhaus et al. [18] hypothesise that the simulation of

honeybee behaviour that they have investigated, did not produce realistic behaviour

because of the small size of the system used. Hence, in this chapter we consider the

behaviour of the system mostly from a population dynamics perspective where the

average behaviour is of greater importance than the individual performance of an

agent. Nevertheless, we also investigate the in�uence of (small) system size on the

overall e�ciency and �uctuations thereof.

When testing our PSO variant, we compare its performance with a good current

PSO variant, as well as with its nearest competitor. In order to do this we attempt

to identify a set of standard test functions, from the literature on evolutionary

algorithms, which are representative of a wide range of problem classes. As PSO

performance can be fairly chaotic we compare the algorithms' performances with

respect to performance and robustness as an average of a large number of runs.

Note that all simulations are implemented in C++ and are performed on a linux-

PC cluster.

1.4 Contributions

The main contributions of this thesis are:

• The development of a constrained task allocation problem which allows anal-

ysis of large scale, decentralised, task allocation algorithms under a range of

conditions.

• The development and analysis of new specialisation rules in threshold based

task allocation.

4

Chapter 1 INTRODUCTION

• A comparison of these new threshold based approaches with a current market

based approach. We analyse behaviour in terms of both absolute performance

(following optimisation) and the conditions under which such performance can

be obtained.

• The introduction of a stigmergic �memory� based mechanism for task alloca-

tion, allowing close to perfect performance in our task allocation problem due

to emergent cooperation.

• An analysis of �aws in a standard PSO variant for avoiding premature con-

vergence and the introduction of an algorithm, dispersive PSO, which allows

for greater robustness when solving this problem.

1.5 Structure

The structure of the thesis is as follows. In chapter 2 we give some background to

our work, discussing swarm intelligence and introducing the evolutionary algorithms

which we use in our work. In chapter 3 we introduce a model of distributed task

allocation and investigate methods for solving it in the general case, whereas chapter

4 looks at a speci�c case of the problem and how, under certain conditions, we can

achieve an close to perfect solution. In chapter 5 we discuss methods of dealing

with premature convergence in PSO, discussing a current method and introducing

our own variant, before performing a comparative study. Chapter 6 summarises our

�ndings and gives an outlook to future work.

5

2 Background

CONTENTS

2.1 Swarm Intelligence . 7

2.2 Evolutionary Optimization 9

2.2.1 Evolution Strategies . 10

2.2.2 Particle Swarm Optimization 12

2.2.3 Comprehensive Learning PSO 21

6

Chapter 2 BACKGROUND

2.1 Swarm Intelligence

The solution of problems using multiple software systems, distributed arti�cial in-

telligence, is an important and developing �eld of research. It has been applied to

problems from prioritising information given to �ghter pilots to assisting with the

diagnosis of problems in the CERN particle accelerator [12]. In [19] it is noted that

distribution of A.I. leads to the following useful properties.

• Parallel problem solving can lead to more e�cient use of resources.

• Problems which are spatially distributed can cut down on their need for com-

munication by being able to make independent decisions

• The modularisation of software makes it easier to manage.

• Systems which are composed of multiple intelligent entities can be simulated

well by combining simulations of these individuals.

Aside from cost factors their may be inherent barriers in communication which ren-

der centralised control ether impractical or impossible.

We shall be concerned with the subset of distributed A.I. dealing with au-

tonomous agents. Autonomous agents act within an environment using the proper-

ties that

• They have some ability to collect data from their environment.

• They use this data to decide upon some action based on simple rules with no

outside input.

• The action which they take can a�ect their environment.

The aim is that they are designed such that, in concert, their actions combine to

complete some task. Also, as they have no centralised means of correcting their be-

haviour, the system as a whole must be robust and capable of adapting to changes

in its environment. In such a situation self organisation, the ability of the system

to adapt itself to its problem or environment without centralised control, is clearly

a desirable attribute.

7

Chapter 2 BACKGROUND

A system which closely shares the properties of autonomous agents and already

possesses self organisation is that of social insects. For instance, in [34], Huang et al.

show that in honeybee colonies which have too few adult members to forage e�ec-

tively, some juveniles develop faster to �ll the adult roles. The number of juveniles

undergoing this hastened development was shown to decrease with the increase of

the proportion of foragers. A mechanism suggested to explain this and other similar

social insect behaviours is stigmergy. Introduced by Grassé in 1959, the hypothesis

is that members of the colony perform actions based on their environment, thus

altering the environment. This altered environment would then trigger another set

of, possibly di�erent, environment altering actions. This repeating chain of action

and reaction has evolved in such a way that it gives rise to apparently coopera-

tive behaviour which leads to the accomplishment of useful tasks. The similarity

of autonomous agents and social insects has been exploited, and algorithms based

on this similarity fall under the heading of swarm intelligence. Simulations with

stigmergic rules have been run and behaviour comparable to that seen in nature has

been observed [10],[18].

Of chief importance to us is the fact that any simulation which accurately repro-

duces the behaviours described must have the property of self organisation. This

means that if we wish to solve a distributed problem and can �nd a suitable analogue

for it in nature which has been solved by social insects, modelling the behaviour of

these insects can lead to novel and e�ective solutions. Both [16] and [63] describe

the use of mobile agents with rules based on path �nding methods used by ants

while foraging to create network routing algorithms. Both algorithms are not only

highly adaptable to changes in network tra�c, but also outperform a variety of

other algorithms in realistic conditions. Other applications, examined in detail by

Bonabeau et al. in [9], include

• Good solutions to shortest path problems such as the travelling salesman prob-

lem can be arrived at using the ACO metaheuristic, which is based on ant

foraging behaviour.

• Systems inspired by brood sorting behaviour have provided good approaches

to graph partitioning problems.

8

Chapter 2 BACKGROUND

• An algorithm inspired by nest building behaviour in termites has been used

to improve the performance of self assembling robots.

The complexity of natural systems combined with the number of possible applica-

tions ensure that there are many open questions left within the �eld.

2.2 Evolutionary Optimization

Another �eld which has drawn inspiration from natural systems is evolutionary opti-

mization, the use of evolutionary algorithms (EAs) to optimise a given system.

EAs are heuristic methods which use populations of candidate solutions, coupled

with some nature-inspired rule set, to perform a process of iterative improvement.

These algorithms show good robustness and performance on a wide range of prob-

lems [23].

In order to engage in optimization, we need to de�ne three things:

• A search-space, S, corresponding to a set of inputs which we can change.

• The set of constraints on these inputs.

• Some way of measuring the quality of a particular con�guration of variables.

Given a speci�c input, ~x ∈ S, we denote its quality using a cost function f(~x).

In general this function can be such that f : S → IRn. However, in this thesis we

consider only single-objective optimization in which f : S → IR. It is important

to note that f is not required to be a mathematical function (it could be the output

of some industrial process or even human input) it is just representative of solution

quality.

For the duration of this thesis we assume that S has a simple (rectangular) set

of bounds, so that a component in the ith dimension of the search space must lie in

the interval [bmini , bmaxi]. While this is an oversimpli�cation for real-world problems,

it allows us to compare our algorithms with in a similar setting to the literature

(see, for instance [69; 71]). In addition for the main optimisation algorithm studied

in this thesis, particle swarm optimisation, optimal behaviour at a boundary is an

open problem even for rectangular boundaries [33]. The study of this problem is

beyond the scope of this thesis.

9

Chapter 2 BACKGROUND

Table 2.1: Use of paradigms in evolutionary algorithms

EA Search Space Search Mechanism Improvement Mechanism

Genetic Algorithm Chromosomes Mutation and Crossover Natural Selection

Ant Colony Optimization Foraging paths Divergence from pheromones Pheromone decay

Particle Swarm Optimization Positions in swarm Attraction to neighbours Memory

The general purpose of any single-objective optimisation algorithm is to take a

set of inputs and to either minimise or maximise some single output based on these

inputs. It is convenient to think of this in terms of minimising our cost function as

this can be done without loss of generality because minimising f is equivalent to

maximising −f . More formally, we aim to �nd some ~x ∈ S such that f(~x) ≤ θ

• Ideally for all thresholds θ ∈ R.

• In practice for some acceptable threshold θ ∈ R.

where R is the range of f .

Typically when minimising a cost function, an EA is not concerned with the exact

detail of the natural behaviour which inspired it, but instead in using the paradigm

behind the behaviour to design an e�cient algorithm. In table 2.1 we give some

examples of these paradigms, broken down in to three categories. The representation

of a candidate solution in the search space is some object or phenomenon which

appears in nature, and which undergoes improvement through a de�ned process.

This process is then encoded in the search and improvement mechanisms, with the

search process moving the object in the search space. The improvement mechanism

aims to in some way bias the system into producing, or preserving, those moves

which improve the overall state of the system.

We will now discuss two evolutionary algorithms used within this thesis: evolu-

tion strategies and particle swarm optimization.

2.2.1 Evolution Strategies

Evolution strategies (ES) is an algorithm [4] based on a similar paradigm to

genetic algorithms (GAs), biological evolution. To optimise a cost function f

ES uses a population of real-valued individuals with variables (x,σ, F). Here the

elements of x, referred to as the object parameters, are the inputs into the function

10

Chapter 2 BACKGROUND

we wish to optimise. σ are known as strategy parameters and control the mutation

of x. Mutation is also applied to the strategy parameters, allowing them to self-

adapt to the structure of the �tness space. The �tness, Fm = f(xm), is a measure

of the quality of x for optimising our function f .

An ES algorithm starts generation g with a set of µ parents, P(g) and proceeds

to create a set of ` o�spring, O(g). Each o�spring agent is selected by choosing ρ

(called the mixing number) parents at random from P(g) and recombining them into

a single individual. This new individual is then mutated according their strategy

parameters. These populations undergo selection, keeping the �ttest µ individuals

as a new generation of parents.

In this thesis we will not discuss on recombination schemes as we always take

ρ = 1 and, as such, when a parent (x,σ, F) is chosen to produce o�spring (x̃, σ̃, F̃),

we copy the parent's variables. For standard ES this initial o�spring is then mutated,

component-wise for each dimension i, and its �tness is evaluated according to the

following procedure:

1. σ̃i = σi · eξi

2. x̃i = xi + σ̃i · zi

3. F̃ = f(x̃)

where ξi ∼ N(0, 1√
d
) and zi ∼ N(0, 1) are independent random numbers and d is

the number of dimensions of our object parameter x̃.

Once a complete set of ` o�spring has been created, the population undergoes se-

lection during which those µ individuals with the highest �tness are deterministically

selected from either

• the current set of o�spring (O(g)). This is known as the (µ, `)-ES.

• the current set of o�spring and parents (P(g) ∪ O(g)). This is known as the

(µ + `)-ES.

Once selected, they are used as the new generation of parent agents P(g + 1). The

repeated iteration of this process comprises an ES algorithm.

Covariance matrix adaption evolution strategies (CMA-ES) is a variant

of ES introduced by Hansen and Ostermeier [29]. Rather than considering strategy

11

Chapter 2 BACKGROUND

parameters for each individual and for each dimension, CMA works with a single

distribution de�ned by a weighted population centre and a full covariance matrix.

All individuals o�spring are created by sampling this distribution. The covariance

matrix is updated using information gathered by the whole population in such a way

that it encourages mutation from the mean in the gradient direction. This improves

its performance as a local optimizer, but not its global search performance [29]. As

our application of the ES algorithm in this thesis does not require fast local search,

we prefer standard ES over CMA-ES for simplicity.

2.2.2 Particle Swarm Optimization

Particle swarm optimisation (PSO) is a swarm intelligence based algorithm,

[38], which has emerged as a viable continuous optimisation algorithm. Similarly to

the GA it is comprised of a population of individuals (or particles) moving in, and

evaluating, the �tness landscape. However, rather than relying on random moves

to improve their �tness, these particles retain information about good locations

and share them with the rest of the swarm. Particles are attracted to these good

locations allowing e�cient searching of the �tness space. This often allows PSO

to �nd comparable solutions to naive GAs in fewer function evaluations [30]. The

e�ciency of PSO, combined with it retaining the relative simplicity of a GA, makes

it a good general purpose search heuristic. It has been applied to the design and

optimisation of a wide range of systems, including:

• antenna design,

• control systems,

• electronics,

• video analysis,

For a comprehensive overview of the applications of PSO, see [52].

PSO uses a population of n particles, whose d-dimensional positions ~x are used

as candidate solutions to minimise the objective function and who move according

to certain rules. These rules were inspired by the swarming/�ocking behaviour of

various animals. These animals are hypothesised to gain a competitive advantage in

12

Chapter 2 BACKGROUND

the search for resources (e.g. food, roosts) by socially sharing information [38]. In

a canonical PSO algorithm individuals remember their best previously discovered

location and share it with the rest of the swarm. The population is then attracted

towards these good locations, replacing points of attraction with better ones as they

are discovered.

2.2.2.1 Details

In the standard literature a swarm is de�ned at time t by the following set of

variables:

{(~xi(t), ~vi(t),~hi(t)), i = 1, .., n} (2.1)

where, for a given particle i, we have

• ~xi(t), the particle's position. This is the point selected by the particle as a

candidate solution for minimising the cost function. f(~xi(t)) is evaluated at

every time-step.

• ~vi(t), the particle's velocity. This is a standard discrete-time position update,

with the particle' next position de�ned as

~xi(t+ 1) = ~xi(t) + ~vi(t) (2.2)

Because positions are used as candidate solutions, how velocity is calculated

in e�ect determines the algorithm's search behaviour.

• ~hi(t), the particle's historic best position. Each particle remembers the best

(i.e. lowest cost) position it has visited over the course of a run. Formally,

this can be written as

~hi(t) = argmin
~xi(τ)

f(~xi(τ)), τ = 1, ..., t (2.3)

Just as a particle's velocity determines changes in its position, the memory of

these good positions is used to drive changes in a particle's velocity.

Additionally, in order to extend the generality of our de�nitions we introduce a

new variable:

13

Chapter 2 BACKGROUND

• ~ai(t), the particle's attractor. Similarly to its historic best position an attrac-

tor is a low cost position discovered by a particle over the course of a run and

used to drive velocity changes. However, unlike with a historic best position,

it is possible (depending on the details of the algorithm) for particles to forget

their attractors and set them to positions of higher cost.

Given a position ~xi(t + 1) and previous attractor ~ai(t) the update equation for a

particle's attractor is given by

~ai(t+ 1) =

~xi(t+ 1) if f(~xi(t+ 1)) < f(~ai(t)) and ~xi(t+ 1) is valid ,

~ai(t) otherwise

(2.4)

Unless speci�ed by a non-standard algorithm, we consider all positions ~xi(t) which

meet the the constraints on the search space to be valid. As such, for canonical

PSO algorithms and their derivatives, a particle's attractor ~ai(t) is identical to its

historic best position, ~hi(t).

This gives us our full variable set

{(~xi(t), ~vi(t),~hi(t),~ai(t)), i = 1, .., n} (2.5)

As we shall discuss, these variables determine the areas in which PSO searches. As

such, it can be considered that the overall search behaviour of PSO is driven by

changes in these variables.

2.2.2.2 Movement

Given a �xed set of variables, the ultimate aim of PSO is to discover a lower cost

position than the current global historic best position. This is the best position

evaluated by the swarm so far and is formally de�ned as

ĥ(t) = argmin
~hi(t)

f(~hi(t)), i = 1, ..., n (2.6)

In order to do this, PSO attempts to assign velocities to its particles such that

they move towards promising locations in the search space. In standard PSO, par-

ticles use two positions as clues to these promising locations: their historic best

position (represented here by the particle's attractor), and a socially shared posi-

tion taken from the historic best positions of other particles. The original movement

14

Chapter 2 BACKGROUND

update equation is given by

~vi(t) = ~vi(t− 1)︸ ︷︷ ︸
Inertial

+ c1 ~r1 ⊗ (~ai(t)− ~xi(t))︸ ︷︷ ︸
Cognitive

+ c2 ~r2 ⊗ (ĥ(t)− ~xi(t))︸ ︷︷ ︸
Social

(2.7)

where ⊗ is the component wise vector product (i.e. ~a ⊗ ~b = (a1b1, a2b2, ...), note

that this is not an inner product as it must produce a new velocity vector). ~r1, ~r2

are d dimensional vectors with components drawn independently from U [0, 1], and

c1 and c2 are constants determining the relative magnitude of the �cognitive� and

�social� parts of the equation respectively. This velocity is then clamped to decrease

the chance of a particle leaving the search space. In practice, this typically means

that no dimension of ~v is permitted to exceed the size of the corresponding search

space dimension, with those that do being arti�cially limited.

Equation (2.7) can be considered to have two purposes. Expansion, governed

by the velocity term and local search around discovered positions governed by the

cognitive and social terms. In addition, the relative values of c1 and c2 control

convergence behaviour. Prioritising the cognitive term will cause the swarm to

spend more of its time exploring a diverse set of regions, slowing convergence while

lessening vulnerability to local minima, with the converse true of prioritising the

social term.

Di�erent problems, and indeed di�erent stages of solving the same problem,

may require a particular balance of expansion and exploration. The constants c1, c2

are unsuitable for adjusting this balance as they also govern the convergence to

previously discovered positions [51; 70]. In order to overcome this limitation, Shi

and Eberhart in [66] added an inertia weight coe�cient η to the previous velocity

term in the velocity update equation, giving

~vi(t) = η ~vi(t− 1) + c1 ~r1 ⊗ (~ai(t)− ~xi(t)) + c2 ~r2 ⊗ (ĥ(t)− ~xi(t)) (2.8)

We can see that this allows us to explicitly control the balance between expansion

and local search.

It can be advantageous to have di�erent search behaviour over the run-time of the

algorithm. Speci�cally it is wasteful to spend many function evaluations attempting

to exploit local minima in currently discovered locations, if we have not already

discovered a promising (low cost) region in the �tness space. Conversely, if we have

15

Chapter 2 BACKGROUND

discovered a promising region it may require many additional function evaluations to

�nd a better one. It is also impossible to properly compare two similarly promising

regions in the search space without any local exploration in order to gain a good

estimate of the true value of their respective minima.

Because the value of η allows us to control the focus of the algorithm's search

behaviour, we can change its value when necessary to take account of the trade o�

between global exploration and local search. Although their are several methods

for choosing the value of η [53], Eberhart and Shi [22] have shown that making η

a linearly decreasing function of time (i.e. annealing η) permits the algorithm to

�nd good regions early in its run time and then exploit them better as it nears its

end, improving performance, particularly in multi-modal landscapes.

2.2.2.3 Constriction Coe�cient

As an alternative to arti�cially clamping the velocity to provide stable particle tra-

jectories, Clerc and Kennedy [15] proposed adding a constriction coe�cient χ to

the velocity update equation, so that it was of the form

~vi(t) = χ[~vi(t− 1) + c1 ~r1 ⊗ (~ai(t)− ~xi(t)) + c2 ~r2 ⊗ (ĥ(t)− ~xi(t))] (2.9)

By analytically analysing PSO from the perspective of an arbitrary individual

particle, they calculated the value of χ at the boundary between the set of values

forcing convergence and those at which velocity could increase unbounded This value

is given by

χ =
2

|2− φ−
√
φ2 − 4φ|

(2.10)

for φ = c1 + c2 > 4.

By setting the constriction coe�cient to this critical value we retain the stability

of velocity clamping. The advantage we gain, however, is that for a constriction co-

e�cient at or below this value a particle is guaranteed to converge to some weighted

combination of its local attractor and the global historic best, providing they remain

stationary. As the trajectory of a converging particle is damped oscillation about

the point it is converging to [51], the constriction coe�cient guarantees us a local

search, something which is not true of velocity clamping.

Note that as χ is merely a constant multiplicative factor running through the

velocity update equation it does not need to be regarded as separate to the other

16

Chapter 2 BACKGROUND

update methods discussed. Instead it can be regarded as a principled method for

choosing η, c1 and c2 in order to get some desirable behaviour. Secondly, although

it was originally proposed to replace velocity clamping, empirical studies [22] show

that an algorithm using both velocity clamping, with vmaxj = bmaxj − bminj , and the

constriction coe�cient gives better performance than either do, individually.

2.2.2.4 Topology

As mentioned previously, the original PSO algorithm grew out of a simpli�ed simu-

lation of �ocking [38]. In this precursor model, the agents' behaviour was driven by

the velocities of their �neighbour� agents, those agents closest to them in the search

space. As the algorithm was developed for optimization purposes, the system was

simpli�ed and the topological aspect removed meaning that all agents had access to

information from the entire swarm.

Variants of PSO have since been designed in which this �social� sharing of in-

formation has been restricted to subsets of the swarm, or neighbourhoods. The

nearest neighbour Euclidian approach taken originally was found to be too com-

putationally expensive [53] and was abandoned. Instead, it is common in current

variants to assign each particle i a static set of neighbours, Ni and limit the sharing

of information to this subset. As, in the canonical PSO algorithm, global informa-

tion sharing allows each particle to know the global historic best position of the

swarm, we must modify this so that each particle instead knows a local historic

best position, given by

ĥi(t) = argmin
~hj(t)

f(~hj(t)), j ∈ Ni (2.11)

This is then used to update the velocity in exactly the same manner as in equation

2.8, giving

~vi(t) = η ~vi(t− 1) + c1 ~r1 ⊗ (~ai(t)− ~xi(t)) + c2 ~r2 ⊗ (ĥi(t)− ~xi(t)) (2.12)

Note that as this makes no modi�cation to the overall structure of the velocity

update equation, it is entirely compatible with the constriction factor shown in

equation 2.9.

Clearly, how we set Ni will a�ect the overall behaviour of the algorithm and

numerous topologies have been proposed. Here we discuss three popular variants.

17

Chapter 2 BACKGROUND

Figure 2.1: Example fully connected topology for n = 8 and i = 1. We have
N1 = {1, ..., 8}.

HHHH
@

@
@
@
@@

L
L
L
L
L
L
L
LL

�
�
�
�
�
�
�
��

�
�

�
�

��

����

�
�
�
�
�
�
�
��

�
�
�
�
��

����
HHHH
@

@
@

@
@@

L
L
L
L
L
L
L
LL

A
A

AA

�
�

��

!!!!!!!!!

aaaaaaaaa

!!!!!!!!!

aaaaaaaaa

A
A
AA

�
�
�� �

�
�

�
�

�
� @

@
@

@
@

@
@

xvtr tr
tr

trtrtr
tr

tr

xvtr − Particle itr − Particle in Nit − Particle outside Ni

Fully Connected

The fully connected topology, an example of which is given in �gure 2.1, is commonly

known as the gbest version of the PSO algorithm. It de�nes the original PSO

algorithm, in which all particles share their historic best positions with all other

members of the swarm, in terms of a neighbourhood given by

Ni = {1, ..., n} (2.13)

Note that, using this topology, ĥi(t) ≡ ĥj(t) for all 1 ≤ i, j ≤ n and so all particles

in the swarm will be attracted to a single, low cost, point. As such it is believed

that gbest-based algorithms should converge quickly but be more vulnerable to local

minima [39].

Ring

With the aim of making PSO more robust against the e�ect of local minima the ring

topology, or lbest algorithm, was introduced [20]. Conceptually, the particles are

placed in a ring and form a local neighbourhood with their neighbouring particles

(see �gure 2.2 for an illustration of this). More formally, given an enumeration of

the particles we can de�ne their neighbourhoods as

Ni = {i, i± 1 mod n} (2.14)

Note that, due to the convention of enumerations beginning with 1, we use the

18

Chapter 2 BACKGROUND

Figure 2.2: Example ring topology for n = 8 and i = 1. We have N1 = {1, 2, 8}.
HHHH

����

����
HHHH

A
A

AA

�
�

��

A
A
AA

�
�
�� t

ttt
t

xvtr trtr

xvtr − Particle itr − Particle in Nit − Particle outside Ni

upper modulo function (i.e. taking n mod n = n). This is merely for notational

convenience.

As this an example of a bi-directional neighbourhood1 which has the smallest

maximum neighbourhood size, we expect information about good positions to be

spread slowly. This means that the swarm will be able to maintain searches in mul-

tiple locations, decreasing the e�ect of local minima, but is likely to converge more

slowly than a fully connected swarm.

von Neumann

The von Neumann topology can be seen as a extension of the ring topology to two

dimensions. We place the particles on an a× b grid (where a, b > 2 and ab = n). We

then construct two ring sub-neighbourhoods for each particle, one along its row and

one along its column. The particle's true neighbourhood is taken to be the union of

these sub-neighbourhoods.

More formally, it is clear that we can construct a bijective function

fa,b : {1, ..., a} × {1, ..., b} → {1, ..., n} (2.15)

which sends any point on this grid to a unique particle. Let fa,b(u, v) = i, then

Ni = {i, fa,b(u± 1 mod a, v), fa,b(u, v ± 1 mod b)} (2.16)

Note that as search-space topology is not respected (i.e. a particle's position is inde-

pendent of its index, i), the exact form of fa,b is unimportant. Studies have shown the

1Neighbourhood in which j ∈ Ni ⇔ i ∈ Nj .

19

Chapter 2 BACKGROUND

Figure 2.3: Example von Neumann topology for n = 20, a = 5, b = 4 and i = 3.
We have N2 = {1, 2, 3} ∪ {2, 7, 17} = {1, 2, 3, 7, 17}.

t t t t
t t t t t
t t t t

t txvtrtr tr

tr
tr

xvtr − Particle itr − Particle in Nit − Particle outside Ni

von Neumann topology to be a good compromise between the fully connected and

the ring topologies, providing a good level of both robustness and convergence speed

[39]. As particles are highly dynamic, and information spreads quickly through the

grid, the initial choice of neighbourhood has a minimal e�ect on performance. In fact

Mendes [47] shows that the particular topology chosen may not be crucial, �nding

that �All topologies with degree 4 have consistently good proportion of successes�.

2.2.2.5 Noise-resistant PSO

Particles in standard PSO deterministically remember the lowest cost position that

they have evaluated over the course of an algorithm run. This has two main draw-

backs in a stochastic system:

• Noise in the region of a local minimum can render the true minimum di�cult

to �nd. If the noise is typically large enough to dominate the structure of the

local search space, then we can have little con�dence in a single evaluation of

a given point.

• If a single extreme variation severely decreases the apparent cost of a given

point, this can critically a�ect the performance of the entire algorithm. This

single point could be taken as the neighbourhood historic best of a large num-

ber of particles in the swarm, attracting them to a single, possibly suboptimal,

region of the search space.

20

Chapter 2 BACKGROUND

As such, when optimising a stochastic system we need to ensure that our algorithm

is robust with respect to stochasticity. Pugh et al. [58] have developed a simple

variant of PSO in which, if a particle's historic best position is not replaced in a

given iteration, its cost is re-evaluated and its true cost is taken to be the average

of all previous values. As this variant outperforms standard PSO in the presence of

noise, we use it when optimising stochastic systems.

2.2.3 Comprehensive Learning PSO

While PSO performs well on a variety of problems, it can be prone to premature

convergence on the more di�cult, multi-funnelled problems [67]. We say that a

system has converged if all its particles are clustered around a single point and

their velocities are such that they are incapable of escaping from this state. This

has the advantage of facilitating a thorough local search, but comes at the cost of

global search capacity. We say that it has undergone premature convergence if

the likely cost reduction in continuing with a global search outweighs the advantages

of fully optimising the current best minimum, given the constraints the algorithm

is operating under (e.g. time, cost).

Note that equation 2.7 clari�es the cause of premature convergence. If there is

some ĥ which is su�ciently di�cult to improve upon, it tends to remain �xed for

long enough such that (assuming f is continuous) the swarm's attractors cluster

around it. Once a particle i is oscillating about a single location, the magnitude of

the velocity tends to decrease due to the contribution of the random vectors ~r1, ~r2,

causing ~ai to approach ĥ. Once all velocities are su�ciently small and all personal

bests su�ciently close to the global best, the particles are trapped and all search

capacity is lost. Using a topology with fewer connections slows the speed of this

information spread, but does not stop it.

To guarantee that the swarm converges into such a small area, we require that

c1 + c2 < 4 (see [51] for theoretical proof of this in a simpli�ed system). It would,

therefore, seem reasonable to increase the magnitude of these constants to prevent

premature convergence. However, this not only prevents premature convergence,

it prevents any convergence, meaning that the swarm cannot cluster around and

e�ciently exploit good locations in the search space. For this reason, other methods

21

Chapter 2 BACKGROUND

of preventing premature convergence must be looked at. Therefore we look at a

PSO variant designed to combat this problem, comprehensive learning PSO.

Comprehensive learning PSO (CLPSO) is a PSO variant introduced by

Liang et al. [44] which outperforms many current PSO variants, particularly on

di�cult multimodal problems.. It attempts to slow convergence by allowing particles

to generate exemplar positions, ~ei(t), which they are attracted to. These exemplars

are stochastic combinations of a particle's own knowlege and that of its neighbours.

As exemplars are unique to a particle they allow swarms to retain their diversity. A

CLPSO particle updates its velocity according to the following equation.

~vi(t) = η ~vi(t− 1) + φ ~r ⊗ (~ei(t)− ~xi(t)) (2.17)

Particles generate a single exemplar, learn form it, and then discard it in favour

of a new position. In an attempt to ensure that good exemplars are retained for

long enough for a particles to exploit them fully, while bad exemplars are discarded

quickly to minimise wasted function evaluations, the concept of particle stationarity

is used. A particle i is said to have been stationary for τ time steps if τ is the

largest number for which:

f(~ai(t− s)) = f(~ai(t)), ∀s < τ. (2.18)

A particle generates a new exemplar when it has been stationary for m timesteps,

where m is called the refreshing gap.

When generating a new exemplar, a particle starts with its own attractor as

a base position. Each dimension of this exemplar vector is then independently

modi�ed with probability Pci (or not modi�ed with probability 1−Pci), called the

learning probability for agent i. To modify dimension d of the exemplar, two

distinct neighbours of the particle are chosen at random, and the one with lower

cost ~h(t) is deterministically selected (i.e. if neighbour j is selected then ei,d(t + 1)

is set to hj,d(t)). If this processes �nishes with no modi�cation to the exemplar,

one dimension of is randomly selected for the insertion of a neighbouring value. See

algorithm 1 for details.

Liang et al. [44] found that better results were obtained when particles had a

heterogeneous set of learning probabilities and we will take their approach when

using CLPSO, setting each particle's learning probability according to the following

22

Chapter 2 BACKGROUND

equation.

Pci = 0.05 + 0.45 ·
exp

(
10·(i−1)
n−1

)
− 1

exp(10)− 1
(2.19)

Algorithm 1 Exemplar Selection
for 1 ≤ j ≤ d do
Randomly choose r ∼ U [0, 1]
if r < Pci then
ei,j = ai,j

else
Randomly choose u, v ∈ Ni such that u, v and i are all distinct.
if f(~hu) < f(~hv) then
ei,j = hu,j

else
ei,j = hv,j

end if
end if

end for
if ~ei ≡ ~ai then
Randomly choose j ∈ {1, ..., d}
Randomly choose u, v ∈ Ni such that u, v and i are all distinct.
if f(~hu) < f(~hv) then
ei,j = hu,j

else
ei,j = hv,j

end if
end if

23

3

Distributed Task

Allocation

CONTENTS

3.1 Motivation . 25

3.2 The Mail Processing Problem 26

3.3 Threshold Based Algorithms 32

3.3.1 Mail Uptake . 34

3.3.2 Specialisation Update Rules 35

3.3.3 Evolution Strategies . 38

3.3.4 A Theoretical Description 39

3.3.5 Results . 41

3.3.6 Conclusions . 49

3.4 A Comparative Approach 50

3.4.1 Market Based Algorithms 50

3.4.2 A Hybrid Algorithm . 52

3.4.3 Particle Swarm Optimization 53

3.4.4 Theoretical E�ciency Limit 53

3.4.5 Results . 55

3.4.6 Conclusions . 67

24

Chapter 3 DISTRIBUTED TASK ALLOCATION

3.1 Motivation

Distributed systems are an active and important �eld with applications ranging from

distributed heterogeneous computing systems [32] to mobile sensor networks [45],

and their performance is dependent on the coordination of disparate sub-systems to

ful�l the overall goal of the system. This problem can be seen as one of e�ciently

deploying a �nite set of resources in order to complete a distributed set of sub-tasks,

where these sub-tasks further this overall goal. It is clear that, in theory, the best

method for coordinating these resources must be centralised. A central controller

can, at minimum, issue commands causing resources to be deployed as if according

to the optimal decentralised behaviour. In fact, access to global information and the

ability to coordinate agents should allow better performance than any collection of

individuals. However, limitations on resources such as computational power and/or

communication costs [36] mean that centralised solutions are not e�cient in practice.

This is particularly true for large systems as the calculation time of an optimal

allocation of tasks becomes a major limitation [13]. Large systems also decrease

the e�ectiveness of global inter-agent communication. Shehory et al. [65] point out

that if n agents are communicating with each other, this involves a total of O(n2)

communications, potentially �overwhelming� the communication network.

Rana et al. [59] suggest that many practical applications will require large num-

bers of agents, and because of this the poor scalability of centralised systems rules

them out as solutions to these problems. Therefore, decentralised approaches must

be investigated. In a decentralised approach, a set of autonomous, decision mak-

ing, agents control the behaviour of sub-systems with the aim of coordinating to

provide good global behaviour. A simple method to promote coordination would

be to allow all agents to communicate freely, however n agents are communicating

with each other involves a total of O(n2) communications [59]. If communication is

costly, this is hardly an ideal approach and so �nding good decentralised methods

for distributed task allocation, which require a minimum of communication, is an

important problem.

25

Chapter 3 DISTRIBUTED TASK ALLOCATION

3.2 The Mail Processing Problem

The mail processing problem has been used in various comparative studies of algo-

rithms for distributed task allocation, both presented as a problem of mail processing

[27; 56; 57] and one of truck painting [11; 40]. It is a �exible problem which allows

for a comprehensive investigation of the behaviour of candidate algorithms. The

problem comprises a set of Nc mail producing cities, each of which is capable of

producing and storing one batch each of Nm di�erent mail types, and a set of Na

mail processing centres. Each centre has one associated mail collection agent whose

task it is to travel to a city and return with a batch of mail for its centre to process.

We stress that the problem is intended as a prototype for general distributed

task allocation rather than as a realistic model for either mail processing or truck

painting. Although a fairly simple problem, it contains a number of characteristics

useful for testing task allocation algorithms. It is:

• large scale, meaning that centralised methods are not practical.

• constrained, meaning that good trade-o�s between various aspects of perfor-

mance are necessary.

• �exible, allowing algorithms to be comprehensively tested .

Each mail type requires a di�erent processing method and at any point in time

the processing centre of agent a is specialised in one speci�c type σ′
a. When pro-

cessing a batch of this mail type the centre can do so e�ciently, taking a time tp.

However, in order to process a batch of a di�erent mail type m, the centre must un-

dergo alterations. This changeover σ′
a → m (including the processing of the batch)

takes a time tc > tp.

In order to reduce the direct impact of these changeovers, each processing centre

has a mail queue in which it can temporarily store mail while processing other

batches. This queue is capable of storing up to Lq batches of mail and, while there

is space, the agent will continue to collect mail. A processing centre must process

the mail in its queue in the order in which it arrives, such that all the freedom in

the system is concentrated in the behaviour of the collection agents. Therefore, we

de�ne the e�ective specialisation σa of the agent as the last collected mail type,

because σ′
a will be σa by the time the next collected mail is processed.

26

Chapter 3 DISTRIBUTED TASK ALLOCATION

Because we wish to study algorithmic performance under settings requiring de-

centralised methods, we will use large number cities and a correspondingly large

population of agents. In order to make this computationally viable we use the ver-

sion of the problem studied in [27] in which we neglect city topology and information

about this mail at a city is local and cannot be determined from outside the city.

As this modi�ed version of the problem is both large scale and only admits local

information, it is ideal for studying the behaviour of decentralised, self-organising

algorithms.

In order to simulate this system, we discretise time into steps of the amount of

time it takes an agent to visit a city and return with mail. This allows us to de�ne our

measure of an algorithms performance, i.e. the e�ciency, as the average amount

of mail processed per agent per time step. During each time step the following

happens:

1. Each centre processes the top batch of mail (if any), thus emptying one space

in its queue, or proceeds with its changeover.

2. Each agent a picks one city c to visit, unless its processing centre has a full

queue.

3. Each city now has a set Ψc of visiting agents and agents proceed to choose

mail at these cities.

4. Then each agent returns to its processing centre and deposits the chosen batch

(if any), into the queue.

5. Finally, the cities increase the stimuli of left-over batches and produce new

batches.

Note that as a further constraint upon the agents we do not allow them to self-

determine the order in which they see mail, or to retrospectively decide to take a

batch of mail they have previously rejected even if no other agent has taken it. To

avoid bias, mail is o�ered to agents in a random order either agent by agent, or as

a group. These steps are described more formally in algorithm 2.

It is possible to consider many di�erent schemes under which agents choose cities,

but in this chapter we will only consider random city choice. The reasons for this

27

Chapter 3 DISTRIBUTED TASK ALLOCATION

Algorithm 2 An iteration of the mail processing problem at time t.
for agent a = 1, ...Na do

if queue isn't full (if la 6= Lq, where qla is the last non-zero entry in qa) then

Choose a city (add a to the set Ψc) for random c ∈ {1, ...Nc}

end if

end for

for city c = 1, ...Nc do

for mail type m = 1, ...Nm do

if mail of type m is not already at city c (i.e. if wc,m = 0) then

produce mail of type m (set wc,m = 1) with probability πm(t).

end if

end for

Agents in Ψc act at city c, details are algorithm dependent

for mail type m = 1, ...Nm do

if mail of type m is already at city c (i.e. if wc,m 6= 0) then

increase waiting time of mail type m (set wc,m = wc,m + 1).

end if

end for

end for

for agent a = 1, ...Na do

if agent a accepted a piece of mail (type denoted m) then

if mail matches e�ective specialisation (if m = σa) then

add mail to the processing queue (qa,la+1 = tp)

else

add mail to the processing queue with a penalty (qa,la+1 = tc)

switch e�ective specialisation to account for the changeover (σa = m)

end if

end if

if agent a has mail in its queue (if qa,1 6= 0) then

Continue to process the �rst item in the queue

if the agent has �nished processing a batch of mail (if qa,1 = 0) then

move remaining batches of mail up in the queue

(set qa,l = qa,l+1, l = 1, ..., Lq − 1 and qa,L1 = 0)

end if

end if

end for

choice are twofold. Firstly, for the generality of the problem. It is easy to imagine

a real-world problem in which a systematic method of returning to task locations is

28

Chapter 3 DISTRIBUTED TASK ALLOCATION

impractical. Task locations may be non static, rendering memories of past locations

obsolete, or the environment may be di�cult to navigate, making the problem of

agent navigation more di�cult than the initial problem of task allocation. Therefore,

it is important to consider a version of this problem in which agents are incapable of

preferential choice of task site. Secondly, current implementations of decentralised

task allocation algorithms have not been designed or tested with other systems of

city choice, and the introduction of such a system could bias comparative results.

No centralised control of the agents is permitted, such that the aim is to give

agents a set of autonomous rules in order to maximise the amount of processed

mail. We refer to this in terms of average mail processed per agent per time step,

or e�ciency. It is clear that this e�ciency is limited by several factors. The agent

must strike a balance between maximising the proportion of times it takes mail

when it visits a city and minimising the amount of time which it spends not visiting

cities due to its centre having a full queue. The likelihood of having a full queue

increases with the agents likelihood to take mail of a type di�erent from that it took

previously. In an ideal situation, an agent would always take mail of the type that it

took previously. However, this ideal situation is impossible unless the agent rejects

all types of mail other than the one previously taken, which in turn is sub-optimal

as it increases the number of times the agent returns empty handed and in extreme

cases may even lead to a deadlock situation in which all mail of a certain type is

rejected by all agents.

Each city c has a vector wc = (wc,1, .., wc,Nm) where wc,m is the waiting time of

the batch of mail type m. A piece of mail with high waiting time is representative

of a high priority task. Note that wc,m = 0 indicates that there is no batch of that

type of mail present, either because no such batch was produced, or because another

agent has already taken that batch. Upon production of a batch of mail type m, its

waiting time is initialised to wm = 1, and at the end of each time step the waiting

times of remaining batches of mail are increased by 1.

For each agent a, each mail type represents a distinct task in which it engages

upon uptake of that batch. Agents visit cities and, once there act in the manner

determined by their algorithms. Speci�cally, for a threshold based algorithm agents

are individually allowed to examine mail at a city, accepting or rejecting each batch

in turn based on their response thresholds. For market based algorithms all agents

29

Chapter 3 DISTRIBUTED TASK ALLOCATION

at a city are o�ered each piece of mail in turn and must submit a bid determined

by their bidding function, with the highest bidder taking the batch of mail. Once

an agent selects a piece of mail, it is then deposited in the queue of the agent's

processing centre, qa = (qa,1, .., qa,Lq), which can store a backlog of up to Lq batches

of mail.

Two di�erent types of environment are considered:

• A static environment, in which a city automatically replaces each taken batch

of mail at the end of each time step.

• A dynamic environment, in which the probabilities of production of batches

of the mail types varies over time.

The dynamic environment is speci�cally designed to test the �exibility of the system

with respect to continuous changes. We have chosen to vary the probability of taken

mail batches being replaced in a sinusoidal fashion, although the exact form of the

function is not critical. All mail types have the same wavelength (e.g. to mimic

seasonal variations), but have a di�erent phase. Hence, all mail types have periods

of both high and low production with certain mail types being dominant at some

times and scarce at others. The probability of creating a taken batch of type m at

the end of cycle t is given by:

πm(t) =

1, static

1
2
[1 + sin(t2π

ξ
− m2π

Nm
)], dynamic

(3.1)

where ξ is the wavelength. In the dynamic environment an agent may be forced

to compromise in its strategy of specialising in one type of mail as there will be

periods during which its preferred mail type is rare. Note that as mail is produced

independently for each mail type m and at each time step t, πm(t) is a well de�ned

probability.

In addition to environmental changes, we also investigate the robustness of the

system under abrupt changes. To this purpose, we consider the case where all agents

specialised in a particular mail type are suddenly removed, and monitor the ability

of the system to adapt quickly to the change. This represents one of the most

catastrophic failures in terms of instantaneous loss of e�ciency, and should give an

fair indication of the general robustness.

30

Chapter 3 DISTRIBUTED TASK ALLOCATION

It is clear that the problem is to minimise the loss of e�ciency. Therefore, it

is important to identify the di�erent mechanisms that lead to e�ciency loss. If an

agent of e�ective specialisation σa fails to process mail during an iteration, this can

be categorised into four cases:

(`.1) The agent is inactive due to a full mail queue at its processing centre.

(`.2) Mail type σa is available at the city, but the agent rejects all mail.

(`.3) Mail type σa is unavailable at the city and the agent rejects all mail.

(`.4) There is no mail at all available by the time of the agent's action.

While it is possible to minimise `.4 by increasing `.1-`.3 (i.e. by lowering the overall

acceptance rate of mail), this is clearly not ideal. In particular, `.3 and `.4 are due to

the non-uniform number of agents visiting cities. In the current problem we have no

control over this and focus mainly on the other sources. Clearly `.2 is unnecessary,

as the uptake of mail of its own specialisation has no negative consequences for an

agent.

One should note that `.1 and `.3 are �nely balanced against each other as a

greater uptake of mail of non-specialised types leads to an increase in agents with

full queues. This relationship is clearly non-linear as a increase in the number of

inactive agents leads to an increase in average stimulus, hence to an increase in the

uptake of non-specialist mail and an even further increase in the number of inactive

agents.

As market based algorithms never reject mail, they are una�ected by `.2 and

`.3. This means that they are never a�ected by the unnecessary `.2, but are also

unable to actively balance `.1 against `.3.

As the only freedom lies in the behaviour of agents at cities, one can only min-

imise these loss sources by selecting an agent rule-set which has the optimal balance

between loss sources under the given circumstances. In particular, we wish for agents

to take mail of the same type on consecutive occasions with the high probability,

minimising changeovers and the probability of their queues �lling up. However,

agents should retain some �exibility and should not compromise their ability to ad-

just to the current level of demand in the system (giving a long term advantage) to

avoid a single changeover (a short term penalty).

31

Chapter 3 DISTRIBUTED TASK ALLOCATION

To illustrate this, it is possible to imagine two rules for agent behaviour designed

to highlight the extremes of possible algorithms. In the �rst, agents would �greedily�

take mail if it was available ensuring cities' were maximally served in the short term.

In the second, agents would be completely �selective�, refusing to take any mail type

other than the one they were specialised in. Clearly the �rst approach has no method

of reducing `.1 and the second, no method to reduce `.3. Thus, a good algorithm

must involve some compromise between greed and selectivity.

3.3 Threshold Based Algorithms

The behaviour of social insects has been a good source of inspiration in the design of

multi-agent-systems (MAS) [9]. In particular, we are interested in algorithms using

the principle of �stigmergy�, introduced by Grassé [28]. Stigmergic mechanisms

are ones in which agents coordinate themselves using the environment rather than

through direct communication. Behaviours, which are triggered by observation of

the environment, also cause environmental change, thus modifying the behaviour

of other agents. This coordination without communication makes stigmergy a very

attractive paradigm when designing MAS.

Therefore, our �rst candidate solutions to the mail processing problem are in-

spired by natural systems, and are based on the variable response threshold model of

task allocation [8; 68]. This model is a stigmergic mechanism developed to explain

division of labour in social insect colonies. Price [56]; Price and Ti¬o [57] show that

agents using rules based on the threshold model exhibit good performance on this

problem when compared with several other algorithms, particularly when �exibility

is required. Algorithms based on this model have also been successfully applied to

other problems which require robust, decentralised control including the scheduling

of truck painting [11; 40; 50], which involves similar constraints, and the real world

example of conserving battery life in a remote sensor network [36].

The idea of thresholds as a method for task allocation was developed by [8] in

order to show how the �exibility of insect colonies to di�erent circumstances can be

explained by the autonomous �exibility to engage in tasks of the individuals which

comprise them. They proposed a model, known as the �xed response threshold

(FRT) model, which stated that the tasks that an individual is capable of engaging

32

Chapter 3 DISTRIBUTED TASK ALLOCATION

in could be broken down into types and that each instance of a task has some

stimulus associated with it which is indicative of its demand for completion. Each

colony member has a set of thresholds which determine their preference for engaging

in each type of task. Upon encountering a task an individual will compare the

stimulus s of the task with the corresponding threshold θ, and use this to determine

the probability of uptake of that task. The probability of uptake should be high for

s >> θ, low for s << θ, zero for s = 0 (no demand for the task), and 1
2
for s = θ,

and is de�ned by a threshold function Θ(s, θ).

In the original formulation of the model it was assumed that each agent had a

genetically determined set of thresholds which were constant over an agent's lifetime.

However, while this was able to account for such features of social insect colonies as

increased uptake of tasks by non-specialist individuals upon the removal of specialists

in these tasks, it was unable to account for the initial distribution of specialisations

or the re-specialisation of colony members to meet changes in the distribution of

stimulus. In order to account for these features [68], introduced a process of self

reinforcement whereby time spent performing a task would lead to a decrease in an

agent's threshold for this task whilst time spent not performing this task would cause

the threshold to increase. Individuals possess an update rule, U , which governs the

magnitude of these changes. This model is known as the variable response threshold

(VRT) model. In this chapter a discretised version of this model is used and increases

in thresholds at times when the individual is inactive are discounted. As such an

agent with thresholds ~θ = (θ1, ...θn) will, upon completion of a task of type i, update

its thresholds as follows:

U(θ, i) = (u(θ1, i), ..., u(θn, i)) (3.2)

where u(θj, i) < θj if i = j,

u(θj, i) > θj otherwise,

(3.3)

with θj restricted to some range [θmin,θmax]. These changes are related to both

the size of the threshold and the time taken to complete the task.

We introduce a set of new update rules and analyse their behaviour when applied

to a general model of distributed task allocation, the �mail processing� problem. We

use these rules as �species� in an evolution strategies algorithm to determine the best

33

Chapter 3 DISTRIBUTED TASK ALLOCATION

rule in a given circumstance and to optimise the parameters of these rules. These

are statistically analysed from a population dynamics perspective. The �exibility

of the system is also tested in a dynamic environment in which task production

probabilities are continuously varied, and with respect to a catastrophic breakdown

in which all agents specialised in a particular task cease functioning.

3.3.1 Mail Uptake

Threshold based algorithms can be seen as an advance on the selective algorithm

outlined at the end of section 3.2. Each agent has a set of thresholds related to its

desire to engage in particular tasks. In this case, as tasks types are represented by

mail types, each agent a has a set of thresholds θa = (θa,1, .., θa,Nm), where θa,m is

the agent's threshold for mail type m. This threshold is related to the stimulus s

of a particular task instance, indicating the demand of a task for completion using

a threshold function, Θ which gives the probability of engaging in a task given a

stimulus and corresponding threshold. The probability of engagement should be

high for s >> θ, low for s << θ, zero for s = 0 (no demand for the task), and 1
2
for

s = θ. Thus, for appropriate thresholds, agents will behave selectively in most cases

but, for extreme stimulus, are capable of adjusting their behaviour.

Here we have chosen to use the exponential threshold function (ETF), which is

the standard threshold function as proposed by Bonabeau et al. [8], and is de�ned,

for threshold θ and stimulus s, as:

Θ(s, θ) =


sλ

sλ+θλ
if s 6= 0,

0 otherwise.

(3.4)

which for λ ≥ 1 has all the desired properties. Note that we enforce Θ(0, θ) = 0 (i.e.

the task is not performed if there is no demand) to prevent unde�ned values when

s = θ = 0. In this problem, the stimulus is taking to be the waiting time of a batch

of mail, which is a fairly natural measure of its demand for completion. This means

that if an agent a encounters a batch of mail of type m at city c, its probability of

accepting the mail is given by Θ(wc,m, θa,m).

When a set of agents are visiting a city they are permitted to act, one at a

time, in a random order. The agent which is currently acting then examines each

piece of mail at a city again, one at a time, in a random order, with the probability

34

Chapter 3 DISTRIBUTED TASK ALLOCATION

of mail uptake given by its threshold function. The agent continues either until it

has accepted a batch of mail, or until it has rejected all batches. While it is clear

that, for a given threshold function, the action of an agent at a city (and its short

term e�ciency) critically depends on its thresholds, its �exibility to adapt to new

situations (and therefore its long term e�ciency) critically depends on its ability to

modify theses thresholds.

To adjust their behaviour to the state of the system, agents update their thresh-

olds through self reinforcement using a strategy determined by an update rule. After

taking mail of typem, an agent replaces its thresholds with a set given by U(θ,m) =

(u(θ1,m), ..., u(θNm ,m)), where u(θm,m) < θm and u(θj,m) > θj, ∀j 6= m. Thus,

agents increase the chance of taking type m (decreasing `.2) mail and decrease the

chance of taking other mail types (decreasing `.1). It is clear that a good update

rule should drive an agent's thresholds to a state in which θa,σa is very low, thus

avoiding `.2 altogether.

3.3.2 Specialisation Update Rules

For a given threshold function, the e�ciency of an agent critically depends on its

thresholds, while its �exibility to adapt to new situations critically depends on its

ability to modify its thresholds or update rule. The original threshold based algo-

rithm, applied to the current problem in [56; 57], was proposed by Theraulaz et al.

[68] as a model for social insect behaviour. It is possible, therefore, that this rule

contains artefacts which are desirable to social insects, but which do not translate

to optimal behaviour in a general setting.

The main goals of this section are to investigate what kind of threshold based rule

is best suited to the problem at hand, and to investigate whether optimal update

rules can be found autonomously by competition between the agents. Therefore, we

compare the performance of some existing and some newly introduced update rules.

We now proceed with a short overview.

The Variable Response Threshold (VRT) is the original nature inspired rule,

proposed by Theraulaz et al. [68] and applied by Price [56]; Price and Ti¬o [57].

35

Chapter 3 DISTRIBUTED TASK ALLOCATION

The change in threshold ∆θm over a period of time t, is given by:

∆θm = −ε∆tm + ψ(t−∆tm) (3.5)

where ∆tm is the time spent performing task m, where ε, ψ are positive constants,

and where θm is restricted to the interval [θmin,θmax]. For the current model, (3.5)

can be discretised, taking into account the fact that thresholds are only changed

when a task is performed. Therefore, when the update rule is called, over a single

time step, t will be 1 and ∆tm is 1 if mail type m was taken and 0 otherwise. Hence,

the VRT rule can be rewritten as

u(θm, i) =

θm − ε if i = m,

θm + ψ otherwise.
(3.6)

A drawback of the VRT rule is that, in the event of a changeover, for small ε and

ψ agents are unlikely to change their thresholds enough to have a high chance of

picking the new mail type in the next time step, thus increasing `.2 and potentially

`.1.

In order to overcome these �aws and to see if better e�ciency could be obtained,

we introduce another update rule.

The Switch-Over (SO) update rule, introduced by Goldingay and van Mourik

[26], updates thresholds in a very simple manner: by fully specialising in the most

recently taken mail type, and fully de-specialising in all other mail types:

u(θm, i) =

θmin if i = m,

θmax otherwise.
(3.7)

In some sense the switch-over rule can be seen as an extreme case of the VRT rule

with ε, ψ ≥ θmax − θmin. Such values, however, are not in the spirit of the VRT,

and so it makes sense to consider them as separate cases. We introduce SO as we

expect it to minimise `.1 and `.2 in a static environment, while a drawback is that

`.3 could be maximised.

The Distance Halving (DH) rule, keeps the thresholds in the appropriate range

by halving the Euclidean distance between the current threshold and the appropriate

36

Chapter 3 DISTRIBUTED TASK ALLOCATION

limit.

u(θm, i) =


θm+θmin

2
if i = m,

θm+θmax

2
otherwise.

(3.8)

Note that DH takes several time steps to fully specialise, but e�ectively de-specialises

in a single time step.

The (Modi�ed) Hyperbolic Tangent ((m)tanh) rule is introduced in a sim-

ilar spirit to the VRT rule, allowing continuous variation of the thresholds without

arti�cial limits. The thresholds are a function of some hidden variables hm:

θm = θmin + (θmax − θmin)
1

2
(1 + tanh(hm)), (3.9)

Note that any sigmoid function could replace tanh(). The update rule works on the

hm similarly to the VRT (i.e. hnewm = u′(holdm , i)):

u′(hm, i) =

hm − α if i = m,

hm + β otherwise,
(3.10)

for some positive constants α and β. As for the VRT, low α and β values may su�er

from slow re-specialisation, however, the speed of re-specialisation is independent of

θmin and θmax. Furthermore, the rule may lead to the problem of saturation. For

large hidden variables, the tanh rule produces insigni�cant changes to the actual

thresholds. As the whole basis of VRT-like models is that engagement in a task leads

to an increased likelihood of repeating the task, this problem must be addressed.

Therefore, we modify the tanh rule by making a distinction between positive and

negative hidden values, and introduce re-specialisation coe�cient η ∈ [−1, 1] such

that

u′(hm, i) =



hm − α if i = m and hm ≤ 0,

η hm − α if i = m and hm > 0,

hm + β if i 6= m and hm ≥ 0,

η hm + β otherwise.

(3.11)

It is identical to the tanh rule for η = 1, but is more similar to the SO rule for η

close to −1.

37

Chapter 3 DISTRIBUTED TASK ALLOCATION

For ease of notation, we will refer to the VRT (resp. SO, DH, (m)tanh) algorithm

rather that �a threshold based algorithm using the VRT (resp. SO, DH, (m)tanh)

update rule�.

3.3.3 Evolution Strategies

As we wish to study the absolute performance of our update rules in a manner

unbiased by our original parameter choices, we optimise our parameter sets. Evolu-

tionary algorithms seem a natural way of optimising the model, as it is inspired by

the behaviour of social insects, and have been used before to good e�ect in similar

settings (e.g. genetic algorithms in [10], [11]). We choose to use an evolution strate-

gies (ES) algorithm [4] as its real valued encoding �ts well with our problem. ES

also allows for inter-update-rule competition, which enables us to �nd an optimal

rule-set while we optimise the parameters rather than optimising each rule-set and

choosing the best one. It is also possible that a population of di�erent update rules

can outperform a homogeneous population.

There are two peculiarities to note in our use of ES. Firstly, we are interested in

looking at a range of update rules or �species� (possibly with di�erent parameters

spaces) within the same evolving population. As such, at initialisation we de�ne each

agent's object parameters to be a random update rule and its necessary parameters.

This causes problems within ES as neither mutation to, nor recombination between,

di�erent species are well de�ned. As such we do not allow inter-species mutation

and have enforced ρ = 1.

Secondly, the performance of an individual agent is highly stochastic and de-

pendent on the behaviour of other agents. In fact, our true �tness function is of

the form f(x,P), where P is some population of agents, and is taken to be the

average e�ciency of the agent with parameters x over the course of a run amongst

this population. Good agents in early (poorly optimised) populations are likely to

have extremely high �tness as competition for mail is scarce. If we allow them to

retain their �tness over many generations, this will strongly bias the ES towards

their parameters. For this reason we evaluate the �tness of parents and children

every generation in a population P ∪ O.

38

Chapter 3 DISTRIBUTED TASK ALLOCATION

3.3.4 A Theoretical Description

In general, the mail retrieval problem is hard to solve exactly as it depends on

continuous variables (the thresholds), such that the number of micro-states of the

agents is in�nite (not countable). In other contexts where this problem occurs,

such as continuous models on sparse random graphs (see e.g. [41] and references

therein), population dynamics can be used for the theoretical analysis. For agent

based models, however, this is tantamount to simulating the model. On the other

hand agent based models are theoretically solvable when the number of discrete

micro-states is �nite. It turns out that we can analyse some non-trivial cases of the

current model exactly.

For the SO algorithm, specialised agents only have thresholds in {θmin, θmax},

and thresholds are entirely determined by the e�ective specialisation. Therefore,

a micro-state A of an agent is determined by the thresholds θ associated with its

specialisation σ, and the state qL of the mail queue at its processing centre:

A ≡ (θ, qL) (3.12)

where L ∈ {0, .., Lq} is the length of the queue and qL = (q1, .., qL) are the remaining

processing times. Note that if an agent is specialised in mail type m then θm = θmin

while all other θn = θmax, and that q1 ∈ {1, .., tc} and qi ∈ {tp, tc} (i > 1), as their

processing has not yet started. Hence, the set SA of all possible agent micro-states

has cardinality |SA| = Nm (1 + tc
∑Lq

L=1 2
L−1) = Nm (1 + tc(2

Lq − 1)).

The micro-states C of the city are already discretised, and consist of the waiting

times of the mail types:

C ≡ wNm = (w1, .., wNm) (3.13)

Although the number of such states is in�nite (waiting times have no upper limit),

this is not a problem when the threshold function is such that Θ(w, θ) = 1, ∀w >

θmax. Only states in {0, .., θmax, (>θmax)}Nm need to be considered, and the set SC of

all possible city micro-states has cardinality |SC| = (θmax + 2)Nm . For the threshold

functions that we have considered, this is the case for su�ciently high λ because

39

Chapter 3 DISTRIBUTED TASK ALLOCATION

then:

Θ(w, θ) =


0 if w < θ or w = 0,

0.5 if w = θ and w 6= 0 ,

1 if w > θ.

(3.14)

De�ning the states of the agents as s(t) = {sa(t), a = 1, .., Na} and the states of the

cities as S(t) = {Sc(t), c = 1, .., Nc}, at any time t the global state of the system is

completely determined by the agent pro�le µ(t) = {µA(t), A ∈ SA} and city pro�le

η(t) = {ηC(t), C ∈ SC}, where

µA(t) ≡
1

Na

Na∑
a=1

δsa(t),A , ηC(t) ≡
1

Nc

Nc∑
c=1

δSc(t),C . (3.15)

This is because, as agents and cities have no relevant features other than their micro-

states A and C, the system only depends on the proportion of agents and cities in

each micro-state. Therefore the matrices µ(t) and η(t), containing the density of

each micro-state, contain all information about the system at time t.

In the large system limit, as a consequence of the Central Limit Theorem, µ(t)

and η(t) become deterministic quantities, for which we can derive the exact time

evolution. It is convenient to break up the time evolution into four distinct steps:

a.1 changes to the µ during mail uptake.

c.1 changes to the η during mail uptake.

a.2 changes to the µ during processing of the queue.

c.2 changes to the η during mail production.

During the mail uptake the change in the agent pro�le can be described by mul-

tiplication with a matrix T(µ(t),η(t)) which explicitly depends on both µ(t) and

η(t) due to the competition between agents at the cities. The change to the agent

pro�le during the processing of the queue, can be described by multiplication with

a constant matrix Q. The change in city pro�le during mail uptake can be de-

scribed by multiplication with a matrix L(µ(t)), which explicitly depends on µ(t)

due to competition between the agents. Finally the change in city pro�le during

mail production can be described by multiplication with a matrix P(t) which is

40

Chapter 3 DISTRIBUTED TASK ALLOCATION

time dependent for the dynamic environment only. Combined, this leads to the

following exact time evolution:µ(t+ 1) = Q T(µ(t),η(t)) µ(t) ,

η(t+ 1) = P(t) L(µ(t)) η(t) .

(3.16)

The derivation and exact expressions of the matrices T, Q, L and P are rather

involved, and can be found in appendix A.1. The theoretical time evolution and

numerical simulations are compared in the following subsection, and are in excellent

agreement.

3.3.5 Results

In this subsection, we discuss the numerical results of our investigation into threshold

based rules. First we describe the general tendencies, presenting results representa-

tive of our update rules in the static and dynamic environments. We also test the

rules' robustness to sudden change with the removal of all agents specialised in a

particular mail type. The second part of this section is dedicated to the optimisation

of the parameters, and the selection of the best possible combination of update rules

in terms of the overall e�ciency. Thirdly, we compare our simulated results with

the theoretical predictions made previously.

We investigate the performance of the di�erent rules, both in terms of their

behaviour under di�erent conditions and in terms of absolute e�ciency. However,

investigating the in�uence of the system parameters on performance is beyond the

scope of this chapter. Therefore, we have �xed the parameters to a standard setting.

See appendix B.1.

3.3.5.1 General Tendencies

In order to investigate the dependence of our results on the system size, we vary

Na, while keeping Nm and Ra/c �xed. In general, we �nd that the average of any

measured quantity quickly (Na ' 5 · 102) converges to its asymptotic value (for

Na = ∞) with increasing system size, while both inter- and intra-run variance

decreases to below the line width of the plots at values Na ' 104. With these

41

Chapter 3 DISTRIBUTED TASK ALLOCATION

10
1

10
2

10
3

10
0

N
a

E
ffi

ci
en

cy

Figure 3.1: The average e�ciency (solid line) of the SO algorithm as a function of
the system size Na with �xed Ra/m = 1 and Nm = 2, in a static environment on a
log-log scale. Runs were averaged over 2 × 105/Na runs with error bars of ±1s.d.
(dashed lines).

�ndings in mind, we have decided to �x the system size at Na = 5 · 104, for which

simulations can be run in reasonable time, and for which a single run su�ces to

determine any quantity with su�cient accuracy, omitting the need for error-bars in

most �gures that follow.

The signi�cant �nite size e�ects for relatively small system sizes are illustrated

in �gure 3.1 (which is representative for all threshold-based algorithms). The in-

creased average e�ciency for small values of Na can be explained by considering that

each agent on average competes with (Na − 1)/Nc agents, which is monotonically

increasing with Na for �xed Ra/m and Nm and saturates for high Na values.

As a rule of thumb, we consider an agent to be fully specialised in a mail type

if its threshold for this type is less than a distance of 1% of the possible range from

θmin while all other thresholds are within 1% of θmax. The qualitative behaviour

of the SO algorithm, as shown in �gure 3.2 (top), is typical for all update rules

although the speed of convergence and asymptotic values, depend on both the update

rule and threshold function. We see that the algorithm accounts for the genesis of

specialisation. The system tends towards a stable asymptotic regime in which most

agents are specialised and the specialists are equally split between mail types. We

see that `.1 is almost negligible while we have non-zero `.2 is indicative of the high

value of θmax. With the S0 algorithm and θmin = 0, `.2 becomes impossible once

an agent has taken a piece of mail. Agents with all initial thresholds close to θmax

may never, over the course of a run, encounter a batch of mail with a strong enough

42

Chapter 3 DISTRIBUTED TASK ALLOCATION

stimulus to accept it.

In the dynamic environment (see �gure 3.2, bottom), we observe that the e�-

ciency �uctuates about some average value over the course of a wavelength. The

qualitative behaviour, as shown in �gure 3.2 for the SO algorithm, is typical for

most update rules and the behaviour of their average values is qualitatively simi-

lar to that in the static environment. However, the specialisation that drives this

behaviour varies between rules. In particular, all rules based on hidden variables

((m)tanh) tend to specialise in a manner similar to the mtanh algorithm, while

the other algorithms (VRT, SO and DH) behave qualitatively similarly to the SO

algorithm.

The tanh function, like any sigmoid function, is e�ectively constant (i.e. satu-

rated) for su�ciently large arguments. The saturation region is reached when an

agent using the tanh update rule repeatedly takes the same mail type. Once in this

region, the update rule becomes incapable of e�ective self reinforcement on which

the VRT model relies, and incapable of reacting to changes in the environment. A

similar problem can be encountered in neural networks with sigmoidal nodes, in

which Hebbian learning drives synaptic weights into the saturation region of the

function rendering the relative sizes of these weights meaningless [64] thus removing

the selectivity of the node.

The tanh algorithm is the only algorithm inherently unable to dynamically adapt

its thresholds due to the saturation e�ects described above, while the other algo-

rithms can do so if given suitable parameters (i.e. a lowering of η in the mtanh

algorithm). To highlight the e�ects of saturation for the tanh algorithm, we let the

system equilibrate for 1500 iterations in the standard static environment to allow

agents to specialise fully. Then we remove that half of the population that is most

specialised in e.g. mail type 2, and equilibrate the remaining system (with halved

Ra/m) for a further 1500 iterations. The results, shown in �gure 3.3, show that in

contrast to the SO algorithm, which adapts very quickly to the change, none of the

specialised agents using the tanh algorithm re-specialise.

Stability is reached when the average stimulus of mail type 2 reaches a high

enough level to force changeovers a signi�cant proportion of the time, leading to

high levels of `.1. The mtanh algorithm is able to somewhat adapt to this by

lowering the thresholds of agents taking type 2 mail most often, causing some to re-

43

Chapter 3 DISTRIBUTED TASK ALLOCATION

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Ef f i ci ency
ℓ. 1
ℓ. 2
ℓ. 3
ℓ. 4

(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

P
ro

po
rt

io
n

of
 A

ge
nt

s
S

pe
ci

al
is

ed
 in

 M
ai

l T
yp

e
m

m=1
m=2

(b)

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iteration

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Ef f i ci ency
ℓ. 1
ℓ. 2
ℓ. 3
ℓ. 4

(c)

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

P
ro

po
rt

io
n

of
 A

ge
nt

s
S

pe
ci

al
is

ed
 in

 M
ai

l T
yp

e
m

SO, m=1
SO, m=2
tanh, m=1
tanh, m=2

(d)

Figure 3.2: (a): evolution of the e�ciency and loss sources during a single run in
the standard static environment using the SO algorithm. Note that `.1 is negligible
everywhere and `.2 tends to 0, while `.3 and `.4 (and hence the e�ciency) quickly
tend to their long time values. (b): the population of agents tends towards an
equal split in specialisation with almost all agents specialised. (c): evolution of the
e�ciency and loss sources during a single run in the standard dynamic environment
using the SO algorithm. The values of the loss sources and the e�ciency �uctuate
around their average values, which are qualitatively similar to those in the static
environment. (d): the di�erence in specialisation behaviour between the SO and
the tanh algorithms. Note that the tanh algorithm tends to a static, uneven (initial
condition dependent) set of specialisations, while the SO algorithm e�ciently adapts
to changes in the environment.

44

Chapter 3 DISTRIBUTED TASK ALLOCATION

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Ef f i ci ency
ℓ. 1
ℓ. 2
ℓ. 3
ℓ. 4

(a)

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration
E

ffi
ci

en
cy

/E
ffi

ci
en

cy
 L

os
s

S
ou

rc
es

Ef f i ci ency
ℓ. 1
ℓ. 2
ℓ. 3
ℓ. 4

(b)

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Ef f i ci ency
ℓ. 1
ℓ. 2
ℓ. 3
ℓ. 4

(c)

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

P
ro

po
rt

io
n

of
 A

ge
nt

s
S

pe
ci

al
is

ed
 in

 M
ai

l T
yp

e
m

SO, m=1
SO, m=2
tanh, m=1
tanh, m=2
mtanh, m=1
mtanh, m=2

(d)

Figure 3.3: E�ciency and loss sources in a static environment with removal of
specialised agents. The SO algorithm (a) almost immediately returns to the op-
timal split in specialisations. Due to saturation, the tanh algorithm (b) is unable
to re-specialise, resulting in a dramatic increase in consecutive changeovers (`.1).
Although the mtanh algorithm (c) is capable of re-specialising, it does so far less
e�ciently than the SO algorithm and initially reacts similarly to the tanh algorithm.
(d): evolution of the fraction of specialised agents for the various algorithms.

45

Chapter 3 DISTRIBUTED TASK ALLOCATION

specialise. Once enough agents are re-specialised that the average stimulus of type

2 mail drops to a level where frequent changeovers are unlikely the re-specialisation

slows signi�cantly meaning that an optimal set of specialisations will not be regained.

3.3.5.2 Evolutionary Optimisation

As explained in section 3.3.3, we employ an ES algorithm to obtain the optimal

parameters and allow inter-update-rule competition. We use re-parametrisation to

obtain better ES performance, both for parameters with �xed relationships with

other ES variables (p1 = θmax − θmin, p2 = α/p1, p3 = β/p1) and for those with

exponential dependence (p4 = log(λ)). Parameters are constrained to θmin, p1, ε, ψ ∈

[0, 100], p4 ∈ [log(1), log(10)], and η ∈ [−1, 1]. It turns out that the optimised SO

algorithm outperforms the other algorithms in virtually all circumstances. The

only update rules that can compete with it are those that can e�ectively mimic its

behaviour by extreme choices of parameters. As this against the spirit of the nature

inspired VRT algorithm, we have constrained its parameters to p2, p3 ∈ [0, 0.5].

In the ES we use a (µ+ `)-ES, with µ, ` = 5000 and initialise each element of σ

to the size of parameter space. As mtanh can evolve into tanh for η = 1, we do not

explicitly use the tanh rule in our algorithm. The ES was run for 100 generations

and results are averaged over 50 runs. We investigate the average �tness both of all

the agents competing in an ES generation, but also of the parent agents (i.e. those

selected by the ES as parents for the next generation). We also look at the relative

fractions of each update rule within the population.

In the both environments (see �gure 3.4), the ES quickly obtains a high level of

e�ciency. This is obtained by dropping θmax to a much lower value than intuitively

expected (and used in the standard setting). The remaining e�ciency gain is mainly

a consequence of the increasing fraction of the population with a good rule set

(see �gure 3.5). We observe a peak in the e�ciency of parent agents during the

early generations as agents �rst discover good rules and parameter sets. These well

optimised agents have more mail available than those in later generations, as they

are competing with inferior agents.

We see from �gure 3.5 that the two best algorithms are the SO and the mtanh

algorithms (with η < 0 and large ε, ψ, thus approximating SO). The SO algorithm,

however, has the added advantage of not being able to move away from this be-

46

Chapter 3 DISTRIBUTED TASK ALLOCATION

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generation

A
ve

ra
ge

 E
ffi

ci
en

cy

Parent Average
Population Average

(a)

0 10 20 30 40 50 60 70 80 90 100
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Generation

A
ve

ra
ge

 E
ffi

ci
en

cy

Parent Average
Population Average

(b)

Figure 3.4: Evolution of the e�ciency during an ES optimisation of the population
of agents in the static (a) and dynamic (b) environment. In environments both ES
leads to increase the e�ciency of both on average and of parent agents. After ≈ 30
generations e�ciencies tend to a stable value. We also observe a peak in parent
e�ciency early in the run.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation

F
ra

ct
io

n
of

 th
e

P
op

ul
at

io
n

SO
VRT
mtanh
DH

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generation

F
ra

ct
io

n
of

 th
e

P
op

ul
at

io
n

SO

VRT

mtanh

DH

(b)

Figure 3.5: Evolution of the population frequencies during an ES optimisation of
the population of agents in the static (a) and dynamic (b) environment. In both
environments, all update rules eventually tend to extinction, except the mtanh and
SO rule which e�ectively become the same. The relative fractions are determined
by the initial conditions and sensitivity to mutations.

47

Chapter 3 DISTRIBUTED TASK ALLOCATION

0 50 100 150 200 250 300 350 400 450 500
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Iteration

E
ffi

ci
en

cy

Theoretical Prediction
Simulation

(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

E
ffi

ci
en

cy

Theoretical Prediction
Simulation

(b)

Figure 3.6: Comparison of the theoretical solution (lines) for an in�nite system, with
simulations (dots) in the standard static (a), and the dynamic (b) environment. Note
that all agents were initialised with specialisation in mail type 1.

haviour. As such, in both environments, the SO algorithm has an initial advantage

over mtanh. In the static environment the ability of mtanh to mutate away from

SO style behaviour causes the fraction the mtanh agents to be slow out-competed

by SO, although in the dynamic environment we see no bias towards either rule.

An analysis of the inter-run variance shows that the �nal proportions of SO

and mtanh algorithms are only an average trends, and in some runs the fraction

of mtanh agents increases from its early value, while in others it decreases. The

variance is low for the �rst ≈ 10 generations, while VRT and DH become extinct

and mtanh �nds SO-like behaviour, but subsequently increases. In fact the �nal

proportions ±1 standard deviation are 0.747 ± 0.257 (0.661 ± 0.189) for the SO

algorithm and 0.253 ± 0.257 (0.339 ± 0.189) for the mtanh algorithm in the static

(dynamic) environment.

3.3.5.3 Theoretical Validation

In �gure 3.6, we show the excellent agreement between the exact theory for in�nite

system size and simulations of a large but �nite population with corresponding

settings. Note that we have opted to show the e�ciency, but any other quantities

such as fractions of specialised agents can also be calculated and are in equally good

agreement.

48

Chapter 3 DISTRIBUTED TASK ALLOCATION

Table 3.1: The average e�ciency of the di�erent methods

Environment Static Dynamic

VRT 0.501 0.412

SO 0.586 0.467

ES 0.629 0.512

Theory 0.633 0.504

3.3.5.4 Performance

In Table 3.1, we illustrate the e�ect on the e�ciency made by the introduction of

new update rules and evolutionary optimisation in comparison to the original VRT

model, which already outperforms a range of other general purpose algorithms [56;

57]. These e�ciencies are given in the static and dynamic environment. E�ciencies

are averaged over 500 iterations (including the initial specialisation period). ES

results are given as an average over 50 runs of the performance of all the agents

in the �nal (100th) generation. Note that these �gures include the damage caused

by mutations and the introduction of random agents. The theoretical results are

given for the optimal (integer) values of θmax, which were determined by exhaustive

search.

The SO algorithm already provides a large improvement over the VRT algorithm,

while the ES determined rules and parameters obtain increased performance, par-

ticularly in the dynamic environment. The best results obtained by the theoretical

model are very close to the �nal results of the ES.

3.3.6 Conclusions

In this section, we have studied a threshold based algorithm for distributed task

allocation retrieval. The e�ciency and �exibility have been investigated both in

static and dynamic environments. and with respect to catastrophic breakdowns

of agents. We have introduced new rules for mail selection and specialisation and

have used a evolutionary algorithm to optimise these further. We have shown that

some of the new rules have improved performance compared to existing ones. The

49

Chapter 3 DISTRIBUTED TASK ALLOCATION

best ones give increased e�ciency by 25.5% in a static, and 24.3% in a dynamic

environment, compared to a method (VRT) which already outperformed a variety

of other algorithms [56].

3.4 A Comparative Approach

While we have shown the SO algorithm to be able to outperform other threshold

based rules, we do not know how it compares to other task allocation methods.

Therefore, in this section we introduce another current approach to e�cient task

allocation, a market based algorithm. Such algorithms have been used as a control

mechanism in a wide range of multi-agent systems [17]. They are characterised by

their ability to assign tasks and resources using market-like mechanisms, typically in

the form of an auction. While this approach does require some level of communica-

tion between agents (hence it is not applicable to all problems), if desired, this can

be kept at the local level, avoiding the scalability issues associated with centralised

control. We also present a novel hybrid algorithm which combines both threshold

and market approaches.

As both approaches have strengths and weaknesses, we compare them in a variety

of circumstances. In particular, we investigate them with regards to e�ciency, �exi-

bility (ability to react to changes in the environment), and sensitivity to load (ability

to cope with di�ering demands). As all these approaches depend on parametrised

functions, we optimise these parameters using a nature inspired particle swarm op-

timisation (PSO) algorithm, which allows us to determine the best rule in any given

circumstance in an unbiased manner. We also wish to know how close our algorithm

is to optimal e�ciency, therefore we derive a theoretical upper limit on algorithm

performance and include this in our comparisons when appropriate.

3.4.1 Market Based Algorithms

Markets are an area which have provided inspiration for the design of self-organising

systems. Market based (MB) algorithms treat their elements as self-interested

individuals with goals. Groups of individuals use auction-like mechanisms to decide

who ful�ls these goals, with bids based on both the individual's desire and ability

50

Chapter 3 DISTRIBUTED TASK ALLOCATION

to complete their goal. Individual goals are designed to further the overall goals of

the system, meaning that these auctions can allow agents to coordinate and produce

desirable system-wide behaviour.

The market based algorithm investigated in this chapter, introduced by Campos

et al. [11], approaches the problem from a di�erent perspective than threshold based

algorithms. It attempts to match each task to the best available individual, rather

than allowing allowing individuals to choose tasks independently. When a group of

individuals encounters set of tasks, they are all required to submit bids for the tasks,

which are then assigned to the highest bidder. Hence, high bids should indicate

willingness and ability to complete the task.

In comparison to threshold based algorithms, this can have both advantages and

drawbacks. As individuals must engage in a task (if one is available, and they are

capable of doing so), the maximum number of tasks is completed at each point in

time when considered in isolation. However, forcing individuals to engage in tasks

for which they are not suited, does incur penalties which may be costly in the long

term.

The MB algorithm that we use, can be seen as a re�nement of the greedy style

algorithm outlined at the end of section 3.2. In the market based framework, origi-

nally developed for this problem type by Morley [49], the set of all agents at a city

are o�ered batches of available mail in a random order. Each agent must submit a

bid, determined by a bidding function, for the o�ered batch of mail, with the high-

est bidder being assigned the batch. In the case of equal high bids, the winner is

selected at random from the highest bidding agents. This means that, if there are

su�cient agents available at a city, all tasks must be assigned in a similar fashion

to the greedy algorithm. The added selectivity is determined by the agents' bidding

function.

We use a version of the bidding function developed by Campos et al. [11]. This

function causes an agent a to submit large bids for a task with type m and waiting

time w if

1. the task has a high priority (w is high)

2. the task type matches its specialisation (σa = m)

3. the agent can process the batch of mail soon (small backlog in queue)

51

Chapter 3 DISTRIBUTED TASK ALLOCATION

It is of the form

Ba(w,m) =
ωpw(1 + ωsδm,σa)

Ta(m)ωt
(3.17)

where ωp and ωs weight the bid in relation to the priority of the task for comple-

tion and the selectivity (desire to take mail of its specialised type) of the agent

respectively. We de�ne

Ta(m) =

Lq∑
l=1

qa,l + δm,σatp + (1− δm,σa)tc (3.18)

as the time it would take agent a to clear its queue and �nish processing a batch of

mail of type m, which is exponentially weighted by ωt.

As the set of agents is homogeneous and the acceptance of a bid is only deter-

mined by its magnitude relative to other bids, the priority w and weight parameter

ωp can be removed from eq. (3.17), to yield:

Ba(m) =
1 + ωsδm,σa
Ta(m)ωt

(3.19)

3.4.2 A Hybrid Algorithm

To maximise e�ciency, we also consider a simple hybrid of the VRT and MB algo-

rithms. In this algorithm all agents have a set of thresholds. However, the order of

the action of the agents is determined in an auction identical to the MB algorithm

described above and using bidding function (3.19). After each round of bidding, the

winning agent is then o�ered the mail type it has bid for which it accepts or rejects

using the ETF. In the case of rejection, it then looks at the other mail at the city in

a random order, accepting or rejecting according to the ETF exactly as it would in

a standard threshold based algorithm. Upon acceptance, it updates its thresholds

according to the VRT update rule in eq. (3.6).

We note that this combination of VRT and market rules can behave exactly like

any of the previously described algorithms. If we have θmax = 0 then agents will

always accept the �rst batch of mail o�ered to them (i.e. the one that they have

won an auction to be o�ered) thus making the algorithm entirely MB. Likewise if

we choose ωs = ωt = 0 then agents will all submit identical bids of 1 to the auction,

causing them to act in a random order exactly as in a pure VRT algorithm. As

has already been noted, the SO algorithm is identical to the VRT algorithms with

ε = ψ = θmax − θmin.

52

Chapter 3 DISTRIBUTED TASK ALLOCATION

3.4.3 Particle Swarm Optimization

For any given environment, the behaviour of the previous algorithms is governed by

a set of parameters. For a fair comparison of the performance of the algorithms it is

necessary to ensure that none is unfairly disadvantaged by poor parameter choices.

Therefore, we optimise the parameter sets to determine the best performance of

each algorithm in a given circumstance.

Unlike in the previous section, in which we were interested in competition be-

tween algorithms, we are only interested in comparisons of e�ciency between our

algorithms. Because of this we optimise at the population level, to avoid selective

pressure on agents to improve their own performance at the cost of the rest of the

population. As this is more costly in terms of function evaluations (a single run of

the algorithm produces 1 result, rather than Na results) we will use PSO to optimise

our algorithms, as it typically requires fewer function evaluations than a naive GA

to �nd a similar quality result. Since we optimise a stochastic system we need to

ensure that our algorithm is robust with respect to stochasticity. Therefore we use

the noise resistant PSO variant described in section 2.2.2.5

3.4.4 Theoretical E�ciency Limit

As described in section 3.3.4, it is possible to derive a complete theoretical de-

scription of a solution to our problem. However, this is dependent on a particular

threshold based rule and parameter set. However, by following a similar strategy,

we can derive algorithm-independent theoretical upper bounds for the e�ciency of

an in�nite population in ideal circumstances, i.e. when no mail is lost due to `.1-`.3.

This situation would occur when t ≤ Lq and when agents never reject mail such

that the e�ciency is only limited by `.4.

Although this assumption does neglect an important source of complexity in the

system, it does allow us to study the performance lost due to agents' random city

choices. We will see in the results section that this is a driving factor in e�ciency

changes under the variation of certain system parameters. We will also see that in

certain situations, our assumptions become realistic and that this limit does in fact

match algorithm performance.

Then, both the agent pro�le and the mail waiting times become irrelevant and

53

Chapter 3 DISTRIBUTED TASK ALLOCATION

the e�ciency is a function of the pro�le of the following simpli�ed city micro-states

alone:

C = bNm = (b1, .., bNm) , (3.20)

where bi ∈ {0, 1} is the availability of mail type i at the city. The set SC of all

possible states has cardinality |SC| = 2Nm . De�ning the states of the cities as

S(t) = {Sc(t), c = 1, .., Nc}, at any time t the global state of the system is completely

determined by the city pro�le χ(t) = {χC(t), C ∈ SC}, where

χC(t) ≡
1

Nc

Nc∑
c=1

δSc(t),C . (3.21)

Again, χC(t) becomes a deterministic quantity in the large system limit, and we

can derive the exact time evolution. In this case, we only require breaking up this

time evolution into two distinct steps:

1) changes to the χC during mail uptake.

2) changes to the χC during mail production.

The change in city pro�le during mail uptake can be described by multiplication

with a matrix L, while the change in city pro�le during mail production can be

described by multiplication with a matrix P(t) which is time dependent for the

dynamic environment only. Combined, this gives the following exact time evolution

for the city pro�le:

χ(t+ 1) = P(t) L χ(t) . (3.22)

Then, the e�ciency E(t) (the probability that an agent takes mail at time t) is given

by

E(t) =
Nm∑
k=1

χk(t)

(
1−PRa/c

(k)+
k−Ra/c

Ra/c

∞∑
j=k+1

PRa/c
(j)

)
, (3.23)

where χk(t) ≡
∑

b∈SC
χb(t)δ|b|,k is the probability that a city has exactly k pieces

of mail available, Pλ is the Poisson distribution with parameter λ, and Ra/c is the

ratio of agents to cities. The details of these derivations and the exact expressions of

the matrices L and P(t) can be found in appendix A.2. A comparison between the

performance of the various algorithms with this theoretical upper bound is presented

in the following section.

54

Chapter 3 DISTRIBUTED TASK ALLOCATION

3.4.5 Results

In this section we discuss the numerical results. Rather than looking at all threshold

based algorithms again, we will only compare the MB algorithm with the best per-

forming update rule, the SO algorithm, and the original VRT algorithm, which we

will use as a baseline. First, we compare the general tendencies of the algorithms,

looking at �nite size e�ects, the behaviour over the course of a run, and the reaction

to di�erent values of Nm. Secondly, we test their ability to cope with di�erent levels

of load, in particular the reaction to the system parameters Ra/m, and tc. Thirdly

we look at the adaptability of the algorithms, testing their ability to react to contin-

uous change in the dynamic environment, and to sudden change with the removal of

specialised agents. Finally, we optimise the algorithms' parameters using PSO and

compare their absolute performances in terms of overall e�ciency.

As there are many parameters to cover, we have opted to investigate the in�uence

of di�erent factors on the e�ciency systematically, by varying one parameter at a

time and keeping the rest in the standard MB setting as de�ned in section section

B.1, with Na = 5 · 104.

For the MB algorithms we take values approximately equal to the values found

using a GA by Campos et al. [11], with ωs = 1750 and ωt = 4. A standard run

consists of 500 iterations over which the average e�ciency per agent is monitored,

and the standard dynamic environment has a period ξ = 50.

The results presented here are intended to be representative of a larger investi-

gation and, as such, we make the following comments. As the parameters we have

chosen are by no means guaranteed to be ideal for a given setting, comparing the the

algorithms quantitatively is not appropriate (until section 3.4.5.4, when we optimise

the parameters). Instead we are interested in comparing the qualitative trends of

the algorithms in various circumstances. Therefore, we only present the same test

under multiple circumstances (e.g. high or low tc, static or dynamic environments)

if it leads to qualitatively di�erent behaviour. The only exception is that, in almost

all circumstances, high tc causes a breakdown in the performance of the MB algo-

rithm. We illustrate this when investigating tc and do not restate it for our other

tests. Also, in single run examples we present SO as representative of our threshold

based algorithms unless VRT has qualitatively di�erent behaviour.

55

Chapter 3 DISTRIBUTED TASK ALLOCATION

10
1

10
2

10
3

10
0

N
a

E
ffi

ci
en

cy

Figure 3.7: The average e�ciency (solid line) of the MB algorithm as a function of
the system size Na with �xed Ra/m = 1 and Nm = 2, in a static environment on a
log-log scale. Runs were averaged over 2 × 105/Na runs with error bars of ±1s.d.
(dashed lines).

Note that, over the course of our investigation, we observed that changes in

e�ciency caused by varying a system parameter were largely triggered by changes

in: `.1 in the case of the MB algorithms; `.3 in the case of the SO algorithm; `.1

and `.3 in the case of the VRT algorithm. However, `.3 for the VRT algorithm

exhibits qualitatively similar behaviour to `.3 for the SO algorithm. Therefore, for

the sake of clarity, when presenting all three algorithms on the same graph we will

only include `.1 for market and the VRT algorithm and `.3 for the SO algorithm

unless there is good reason to do otherwise.

3.4.5.1 General tendencies

In order to ensure that our results on FSE e�ects in threshold based algorithms

also hold for the MB algorithm, we vary Na, while keeping Nm and Ra/c �xed. The

results, shown in �gure 3.7, are qualitatively similar to our threshold based results

(�gure 3.1) so we can conclude that our system size of Na ' 104 is still su�cient.

In the static environment (see �gure 3.8), the market based algorithm maintains

a constant high e�ciency throughout, with all loss caused by `.4 which, as shown

in section 3.4.4, is unavoidable. This contrasts with the SO algorithm (�gure 3.2 a),

which is also a�ected by `.3.

Figure 3.9 shows the e�ciency as a function of Nm. For the threshold based

algorithms, the e�ciency initially increases with Nm due to a more uniform distri-

bution of agents over cities, decreasing the likelihood of `.4. For the SO algorithm

56

Chapter 3 DISTRIBUTED TASK ALLOCATION

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iteration

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Ef f i ci ency
ℓ. 1
ℓ. 2
ℓ. 3
ℓ. 4

Figure 3.8: Evolution of the e�ciency and loss sources during a single run in the
static environment using the MB algorithm. The behaviour of the MB algorithm
exhibits stable e�ciency throughout, and all loss source except `.4 are negligible.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
m

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Market Effi ciency
SO Effi ciency
VRT Effi ciency
Market ℓ. 1
SO ℓ. 3
VRT ℓ. 3

(a)

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
m

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Market Effi ciency
SO Effi ciency
VRT Effi ciency
Market ℓ. 1
SO ℓ. 3
VRT ℓ. 1

(b)

Figure 3.9: E�ciency and loss sources as function of Nm in the static environment
for tc = 2 (a) and tc = 10 (b). In both situations the threshold based algorithms
show an initial increase in e�ciency, while the MB algorithm shows a sharp increase
followed by a decrease, as `.1 increases, for tc = 2 and a sharp decrease for tc = 10.
Both the MB the SO algorithm quickly tend to a relatively stable e�ciency, although
market exhibits a small downward trend driven by increasing `.3 and SO a small
upward trend driven by decreasing `.3. After the initial increase the VRT algorithm
decreases in e�ciency, before tending towards a stable value. For tc = 2 this is
caused by `.3 while for tc = 10 this is caused by an increase in `.1 (note the change
in between (a) and (b)).

57

Chapter 3 DISTRIBUTED TASK ALLOCATION

the e�ciency then levels o�, while for the VRT algorithm it decreases as Nm further

increases.

For tc = 2 this is caused by an increase in `.3. At low levels of Nm this matches

an increase in `.3 for the SO algorithm and can be explained by a higher probability

of encountering other mail types (i.e. a trade-o� with `.4). The additional increase

on top of SO's `.3 is explained by VRT's lower ability to re-specialise. VRT agents

rely on repeated exposure to high stimulus batches of mail of a particular type to

force them to change their thresholds to match their specialisation. When Nm is

high (and, therefore Nc is low for �xed Ra/m) there is low chance that a particular

agent will repeatedly see a batch of the same under-served mail type. This leads to

low pressure to develop an optimal split in specialisations (Na/Nm agents specialised

in each mail type) and an increased chance for similarly specialised agents to visit

the same city (high `.3).

For tc = 10, VRT's loss of e�ciency is due to an increase in `.1. For high

Nm, agents must examine more mail before they �nd their type leading to increased

chances of changeovers. As VRT agents are slow to change their thresholds to match

their specialisation, this is likely to lead to repeated changeovers and thus, when tc

is high, increased `.1.

The MB algorithm experiences an initial increase in e�ciency for tc = 2, for the

same reason as the threshold based algorithms: a decreased chance of `.4 due to

the increasingly uniform numbers of agents at cities. The following increase in `.1,

and levelling o� of e�ciency, is caused by agents being forced to bid upon more

mail before they are o�ered their specialised type. For tc = 10, the MB algorithm

shows an initial increase in `.1, merely due to the fact that an increasing fraction

of available mail will not be of the specialised type. The e�ciency loss then levels

o� because `.1 approaches 0.9, the total fraction of `.1 that would occur if agents

always switched mail types with tc = 10. This limit is never reached as market

agents don't always have the opportunity to take mail.

While it is important to note which parameter values cause a breakdown in the

algorithms (e.g. high tc in the MB algorithm), behavioural comparisons are more

relevant under normal conditions. As high Nm causes a breakdown in the VRT

algorithm and, for appropriate tc, leads to relatively similar behaviour in the SO

and the MB algorithms, we �x Nm = 2 in the remainder of our investigation.

58

Chapter 3 DISTRIBUTED TASK ALLOCATION

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a/m

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Effi ciency Limit
Market Effi ciency
SO Effi ciency
VRT Effi ciency
Market ℓ. 1
SO ℓ. 3
VRT ℓ. 1

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a/m

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Effi ciency Limit
Market Effi ciency
SO Effi ciency
VRT Effi ciency
Market ℓ. 1
SO ℓ. 3
VRT ℓ. 1

(b)

Figure 3.10: E�ciency and loss sources as function of Ra/m for Nm = 2 in the static
environment for tc = 2 (a) and tc = 10 (b). For the threshold based algorithms, and
with the exception of very low values of Ra/m, where `.1 dominates, the e�ciency
follows the same trend as the theoretical upper bound. As expected loss `.1 becomes
negligible and `.3 increases as Ra/m increases. The deviation from the theoretical
limit is less pronounced for tc = 2. For the the MB algorithm e�ciency increases
with Ra/m, coupled with decreasing `.1, until it reaches the theoretical limit. It then
immediately switches to a downward trend taking the same value as the limit.

3.4.5.2 Load

The system's e�ective load is determined by how close it is to a breakdown due to

`.1. This is a self-reinforcing concept, as high `.1 increases load on the remaining

agents, increasing `.1 further. The parameter Ra/m is closely linked to the load as

it is e�ectively a measure for the demand on agents.

For low Ra/m there are many more tasks than agents and demand is high such

that the breakdown of a few agents will cause a proportionally larger increase in load

than for large Ra/m. The parameter tc also determines the sensitivity of the system

to load. For high tc overloaded agents su�er `.1 more often, and remain inactive for

a longer period of time than for low tc. Therefore, we investigate the e�ects of both

parameters.

In �gure 3.10, we compare the upper bound with the actual e�ciency and the

loss sources of the algorithms (for Nm = 2), as a function of Ra/m. For threshold

based algorithms the low e�ciency at low Ra/m is due to high average waiting

times which become close enough to θmax to overwhelm agents' selectivity and force

multiple changeovers and high levels of `.1. Note that this is merely a function of

our arbitrarily chosen θmax, progressively increasing this value as Ra/m decreases

59

Chapter 3 DISTRIBUTED TASK ALLOCATION

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t
c

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Market Effi ciency
SO Effi ciency
VRT Effi ciency
Market ℓ. 1
SO ℓ. 3
VRT ℓ. 1

Figure 3.11: E�ciency and loss sources as function of the changeover time tc in the
static environment. Increasing tc causes `.1 to increase for MB algorithms, with a
corresponding drop in e�ciency. The value of tc has little e�ect on the threshold
based algorithms, its only noticeable result being a small increase in `.1 for the VRT
algorithm while other values remain approximately static.

would allow us to overcome this lack of selectivity. At high values of Ra/m it is clear

that θmax is too high as we know that a smaller population could serve the demand,

such that a drop in `.1 would be acceptable in order to decrease `.2 and `.3.

For the MB algorithm a high demand upon agents (i.e. low Ra/m) leads to

`.1. Therefore, as Ra/m increases `.1 decreases, leading to increasing e�ciency until

`.1 reaches a negligible value. At this point `.1-`.3 are all negligible satisfying the

conditions used to derive the theoretical limit on e�ciency. Thus, the algorithm's

e�ciency increases until it hits this limit after which it saturates the theoretical

limit as `.4 entirely determines its behaviour.

Note that while the increased changeover penalty from �gure 3.10 (a) to (b)

makes only a small di�erence in the demand that threshold based algorithms can

cope with, it renders the MB algorithm unproductive up to a relatively high value

of Ra/m. After this value `.1 drops sharply due to its self reinforcing nature.

We can see from �gure 3.11 that the level of tc has very little e�ect on the

threshold based algorithms. These algorithms tend to reject mail which is of a

di�erent type to their e�ective specialisation, and the penalty caused by high tc

is incurred infrequently, leaving the agents with time to clear their queue backlog.

The performance of the MB algorithm, however, is highly determined by tc. As

the algorithm is incapable of rejecting mail o�ered to it by a city, it incurs a far

higher proportion of changeovers than the threshold based algorithms. This leads

60

Chapter 3 DISTRIBUTED TASK ALLOCATION

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Ef f i ci ency
ℓ. 1
ℓ. 2
ℓ. 3
ℓ. 4

(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Ef f i ci ency
ℓ. 1
ℓ. 2
ℓ. 3
ℓ. 4

(b)

Figure 3.12: Evolution of the e�ciency and loss sources during a single run in the
dynamic environment using the SO (a) and MB (b) algorithms. The values of
the loss sources and the e�ciency �uctuate around their average values, which are
qualitatively similar to those in the static environment.

to a huge loss in performance as `.1, the proportion of agents inactive due to a full

queue, increases with tc.

To conclude, we observe that the threshold based algorithms can cope reasonably

well with a much greater range of loads. Although the MB algorithm manages to

saturate the bound in conditions of low load, it completely breaks down under high

load.

3.4.5.3 Adaptability

To investigate the ability of the algorithms to cope with changing environments, we

also test them in the continuously changing dynamic environment as introduced in

eq. (3.1), and with respect to a sudden change such as the removal of all specialised

agents in one mail type.

In the dynamic environment (see �gures 3.12,3.2 (c)), we observe variations in

e�ciency over the course of a wavelength. The positions of the minima and maxima

are surprising at �rst sight, as the total probability for mail production remains

static and the points of maximum e�ciency occur where a non-uniform distribution

of mail is expected. However, at the end of an iteration in which mail type m is

predominantly produced it is also more likely for this mail type to be left over. This

in turn lowers the probability of this mail type being produced in the next iteration

compared to when π1(t) ≈ π2(t). Hence, while the a priori total probability of mail

61

Chapter 3 DISTRIBUTED TASK ALLOCATION

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration
P

ro
po

rt
io

n
of

 E
ffe

ct
iv

e
S

pe
ci

al
is

at
io

ns

Market
SO
VRT

Figure 3.13: Specialisation behaviour in a dynamic environment using the standard
MB settings. All algorithms �uctuate around the average mail production proba-
bility, 0.5. The threshold based algorithms do not �uctuate far from this average
value while the MB algorithm does.

production probability is static, the e�ective total probability of mail production is

maximal when π1(t)− π2(t) → 0.

If we consider the average values rather than the details of the �uctuations, the

behaviour of all algorithms is qualitatively very similar to that in the static envi-

ronment. The relative values of the e�ciencies and loss sources are approximately

preserved, as is their evolution over the course of a run, and the MB algorithm reacts

in the same manner to changes in tc.

Figure 3.13 shows that the market and threshold based algorithms have vastly

di�ering e�ective specialisation behaviour. While both threshold based algorithms

maintain a roughly even split in specialisations, �uctuating somewhat with the state

of the environment, the MB algorithms tends to fully re-specialise to get as close to

the optimal specialisation as possible. Note that when comparing MB and threshold

based algorithms we investigate the e�ective specialisation, rather than the extrem-

isation of thresholds which have no meaning when applied to MB algorithms.

Figure 3.14 shows the average e�ciency and loss sources as a function of the wave

length for the dynamic environment. The peak in average e�ciency at relatively

short wavelengths has the same origin as the peaks of instantaneous e�ciency seen

inside a single run in the dynamic environment: persistence of mail. At short

wavelengths the state of the environment changes so quickly that left over mail from

the previous iteration is less likely to be of the type that is predominantly currently

produced. Hence, the e�ective mail production is increased. The relatively low

62

Chapter 3 DISTRIBUTED TASK ALLOCATION

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength
E

ffi
ci

en
cy

/E
ffi

ci
en

cy
 L

os
s

S
ou

rc
es

Market Effi ciency
SO Effi ciency
VRT Effi ciency
Market ℓ. 1
SO ℓ. 3
VRT ℓ. 1

(a)

Figure 3.14: E�ciency and loss sources as function of the wavelength ξ in the
dynamic environment. After e�ciency initially increases, it then gently decreases to
the long wave length value.

e�ciency at the initial value ξ = 2, is caused by the discrete nature of the iterations.

The sine wave part of (3.1) becomes sin((t −m)π) = 0 for Nm = 2, such that the

mail production probability probability is e�ectively constant with πm = 0.5. As in

the previous results, the MB algorithm is compromised by high `.1 in the standard

setting, but performs well with tc = 2.

To investigate the behaviour of the algorithms under abrupt changes, we let

the system equilibrate for 1500 iterations in the standard static environment to

allow agents to specialise fully. Then we remove that half of the population that

is e�ectively specialised in e.g. mail type 2, and equilibrate the remaining system

(with halved Ra/m) for a further 1500 iterations. The results, shown in �gure 3.15,

show that all algorithms are capable of reacting to this abrupt change.

Both threshold based algorithms show a short spike in `.3 immediately following

the loss of specialised agents as most of the mail remaining at cities will initially be

of opposite type to their e�ective specialisation. Agents then re-specialise, causing a

brief increase in `.1 and decrease in e�ciency for the VRT algorithm, sending their

e�ciencies to a new, higher, value appropriate to the decreased Ra/m. While the

SO algorithm quickly re-specialises to an optimal split, the VRT algorithm stops

short. This is because a VRT agent which has just re-specialised in mail type m

will not necessarily take mail of type m with high probability as the new threshold,

potentially θmax − ε, may be high. In fact a mail type may never become fully

re-specialised in unless its average waiting time becomes high enough to overwhelm

63

Chapter 3 DISTRIBUTED TASK ALLOCATION

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iteration

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Ef f i ci ency
ℓ. 1
ℓ. 2
ℓ. 3
ℓ. 4

(a)

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iteration

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Ef f i ci ency
ℓ. 1
ℓ. 2
ℓ. 3
ℓ. 4

(b)

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Ef f i ci ency
ℓ. 1
ℓ. 2
ℓ. 3
ℓ. 4

(c)

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

P
ro

po
rt

io
n

of
 E

ffe
ct

iv
e

S
pe

ci
al

is
at

io
ns

Market
SO
VRT

(d)

Figure 3.15: Evolution of the e�ciency and loss sources during a single run with
removal of specialised agents using the SO algorithm (a), the VRT algorithm (b),
the market based algorithm (c), and the specialisation behaviour of these algorithms
(d). After the removal of the specialised agents, both threshold based algorithms
increase in e�ciency following a short period with increased `.3. For VRT we see
an initial drop in e�ciency, corresponding to an increased level of `.2. The MB
algorithm shows a long term small e�ciency increase following a short term large
increase corresponding to a sharp drop in `.3 and a similar increase in `.1. In (d)
The MB algorithm almost immediately returns to the optimal split in specialisations,
and the SO algorithm does so quickly. The VRT algorithm, however, starts towards
the optimal re-specialisation, but stops short of it with a disparity remaining. Note
that the after stopping re-specialising, the VRT algorithm actually moves away from
optimal specialisation.

64

Chapter 3 DISTRIBUTED TASK ALLOCATION

the selectivity of the threshold function Θ. Once enough agents have re-specialised

in mail type 2, the average waiting time decreases to a manageable level, halting

further progress towards optimal re-specialisation.

The MB algorithm shows an increase in e�ciency as it re-specialises to suit the

new conditions almost instantaneously, and the increase in the amount of available

mail causes a drop in `.4. However, the high load on the system forces changeovers

which in turn leads to `.1. This increase does not take e�ect immediately as it takes

time for agents to build a backlog in their queue.

3.4.5.4 Performance

Although a full investigation of the e�ect of all parameters of the algorithms is

beyond the scope of this chapter, we do wish to be able to compare the performance

of our algorithms. Therefore, we employ a robust PSO algorithm to �nd optimised

parameters with good performance. We cannot guarantee the parameters to be truly

optimal, but they do allow each algorithm to perform well, unhampered by initial

parameter choices.

As an exhaustive investigation of the optimised performance of these algorithms

under all possible combinations of system parameters (or even under individual

variation of each system parameter) would be impractical, we choose to test the

algorithms' performances in four representative settings: the static and dynamic

settings with either tc = 2 or tc = 10. The static and dynamic settings are repre-

sentative of an algorithms' performance when stability, respectively adaptability is

required. Similarly, tc = 2, 10 are representative for low and high load situations

respectively. Under low load immediate task completion is more important than the

short-term performance of individual agents, while high load requires selectivity to

avoid a fatal cascade of agent failures.

We optimise the performance of three di�erent algorithms: the SO and market

based algorithms (as they outperform VRT in all circumstances), and the hybrid

VRT algorithm. It allows us to test whether the hybrid algorithm can outperform

the individual algorithms on which it is based. Given its ability to evolve into any

of the other algorithms (including the VRT algorithm), it gives us a method to

determine the optimal single algorithm. Details of the optimised parameters are

provided in B. Note that PSO provided no improvement the MB algorithm over the

65

Chapter 3 DISTRIBUTED TASK ALLOCATION

Table 3.2: Final e�ciencies (as proportions of the theoretical upper limit) with
tc = 2

Environment Static Dynamic

Original VRT 0.492156 (0.674807) 0.406784 (0.622904)

Original SO 0.579163 (0.794104) 0.463681 (0.710030)

Original Market 0.729365 (1.00004) 0.653368 (1.00050)

Optimised SO 0.704393 (0.965810) 0.653255 (1.00032)

Optimised Market 0.729369 (1.00005) 0.653368 (1.00050)

Optimised VRT Hybrid 0.72926 (0.999905) 0.653203 (1.000243)

standard settings, due to its relative insensitivity to parameter choice [40].

Table 3.2 illustrates the e�ciency of our various algorithms for tc = 2 in com-

parison to the original VRT algorithm, which already outperforms a range of other

general purpose algorithms [56; 57]. These e�ciencies are given in absolute numbers

and as a fraction of the theoretical upper bound (in brackets). Note that fractions of

the theoretical limit > 1 are possible as our system, though large, is still stochastic.

We can see that while the introduction of the original SO algorithm provides

an increase in performance, the MB algorithm easily outperforms both, reaching

the theoretical limit on e�ciency. Optimising the SO algorithm allows it to close

this performance gap, particularly in the dynamic environment and the VRT hybrid

displays similar performance by �nding parameters which make it entirely MB.

Table 3.3 gives the e�ciency of our algorithms for tc = 10. In this situation with

high load, the e�ciency of the MB approach falls far below that of the threshold

based algorithms due to its inherent inability to reject mail. The performance gained

by choosing SO over VRT is large, and we get a comparable performance boost

by optimising the parameters. The hybrid algorithm slightly outperforms SO by

essentially using a SO based threshold mail selection/rejection method, while using

a MB approach to increase its chance of seeing its desired mail type if possible.

66

Chapter 3 DISTRIBUTED TASK ALLOCATION

Table 3.3: Final e�ciencies (as proportions of the theoretical upper limit) with
tc = 10

Environment Static Dynamic

Original VRT 0.491360 (0.673715) 0.405367 (0.620735)

Original SO 0.579069 (0.793975) 0.463695 (0.710052)

Original Market 0.246390 (0.337831) 0.250129 (0.383020)

Optimised SO 0.630432 (0.864400) 0.513024 (0.785589)

Optimised Market 0.246399 (0.337843) 0.249985 (0.382800)

Optimised VRT Hybrid 0.645127 (0.884549) 0.536984 (0.822278)

3.4.6 Conclusions

In this section we have studied both nature inspired and market based algorithms

for distributed task allocation applied to a problem of mail processing. We have

investigated the algorithms' ability to cope with load and their adaptability. In par-

ticular, we found that nature inspired, threshold based algorithms have a far higher

tolerance of load than the market based algorithms. Market based algorithms were

found to be quicker to adapt to system changes than the threshold based algorithms,

although this only translated into a small performance di�erence compared to the

optimised SO algorithm.

We have identi�ed the various loss sources, and have demonstrated that the ran-

dom choice of cities to visit by the agents forms the main limitation on the maximal

attainable e�ciency. We have derived this limit theoretically. We also investigated

the absolute absolute performance of the algorithms in relation to this limit and, to

that end, introduced a new hybrid approach and used a particle swarm optimisation

algorithm to �nd good parameter sets for our algorithms. These algorithms, with

optimised parameters, give us increased e�ciency in a low load setting of 48.2% in

a static, and 61.3% in a dynamic environment, compared to a method (VRT) which

already outperformed a variety of other algorithms [56; 57]. In a high load setting

these �gures are 31.3% in a static, and 32.4% in a dynamic environment.

67

4

Task Allocation with

Memory

CONTENTS

4.1 Motivation . 69

4.2 Memory . 70

4.3 Results . 72

4.3.1 Conclusions . 79

68

Chapter 4 TASK ALLOCATION WITH MEMORY

4.1 Motivation

While both standard methods (threshold and marked based algorithms) presented in

section 3 can provide a good solutions to the mail processing problem at a given city,

they are always limited by the likelihood of poor city choices. An agent choosing a

city at random is no more likely to visit a city which has no other agents visiting

it than it is to visit a city which has already had all its mail taken, thus leaving

the �rst city unserved and the agent without mail. This puts an upper limit on the

e�ciency, shown in equation (3.23).

For �xed resources (number of agents) and environment (number of cities and

mail types) the only way to improve on this limit is to change the pro�le of agents

visiting cities, and hence the way in which agents choose cities. When designing an

e�cient method for agents to visit cities, it is useful to establish some conditions on

how agents should be allocated to cities in ideal circumstances:

(c.1) No city should be visited by fewer agents than it has mail available.

(c.2) For each mail typem that a city has available, exactly one of its visiting agents

should have specialisation σa = m.

Globally, c.1 minimises `.4 while c.2 reduces the trade-o� between `.1 & `.3. How-

ever, while a lack of appropriately specialised agents can be recti�ed by the threshold

model, c.1 is impossible to ful�l if Ra/m < 1, where Ra/m = Na

Nc×Nm
is the ratio of

agents to mail. Hence, we must add a third condition to ensure that no cities go

unserved for long periods of time.

(c.3) If c.1 & c.2 cannot be ful�lled over a single time step, they should be ful�lled

uniformly at all cities over a longer period.

In an attempt to ful�l these conditions while maintaining the decentralised nature

of the algorithm (no knowledge of the state of cities before agents visit them), and

the relative simplicity of its component agents, we propose a Stimulus Based (SB)

system of agent memory in which taking mail from a city increases an agent's chance

of revisiting the city in the future.

Both market and threshold based methods provide a framework in which good

global behaviour is emergent from local interactions. We can see from compara-

69

Chapter 4 TASK ALLOCATION WITH MEMORY

tive studies [11; 40], and from the work in the previous chapter, that both pro-

vide comparable e�ciency in problems similar to mail processing. However, market

based algorithms perform better when �exibility in mail choice is required, whereas

threshold based algorithms minimise changeovers, with agents gaining strong, stable

specialisations. As stable specialisations will be an important requirement of our

algorithm, we have opted to base our method of task selection on the threshold

model.

4.2 Memory

Each agent a is assigned a memory ~Ma, consisting of a set of µa paired variables

~Ma ≡ {(Ca,`,Wa,`), ` = 1, .., µa}, where Ca,` is a city which the agent has taken mail

from in the past, and where Wa,` is a weight assigned to this memory.

An agent a either bases its selection of city on its memory ~Ma with probability

ρa, or chooses one randomly with probability 1−ρa. The parameter ρa ∈ [0, 1] allows

us to move continuously from a memoryless scenario (ρa = 0), to one completely

dominated by the memory (ρa = 1). The total probability that agent a visits city c

is given by

V (c| ~Ma) = ρa M(c| ~Ma) + (1− ρa)
1

Nc

(4.1)

where M(c| ~Ma) is the probability that city c is visited given that memory ~Ma is

used. Initially, the probability for choosing a speci�c city from the memory was taken

to be its normalised weight Wa,`∑µa
j=1 Wa,j

. However, we encountered the problem that

self-reinforcement tends to lead to one weight becoming so much larger than all the

others that it completely dominates, thus making stable multiple city-specialisation

virtually impossible. In general, this may lead to some cities being well served while

others are neglected in violation of condition c.3 (for similar reasons values of ρa < 1

are needed). This e�ect can be avoided by the introduction of a maximum usable

weight La, and by replacing the Wa,` with min(Wa,`,La), such that

M(c| ~Ma) =

µa∑
`=1

min(Wa,`,La)∑µa
j=1 min(Wa,j,La)

δc,Ca,` , (4.2)

when
∑µa

j=1 Wa,j > 0, and M(c| ~Ma) = 1
Nc

otherwise. This allows for uniform

probabilities in a small subset of cities (needed for c.3), while allowing the weights

70

Chapter 4 TASK ALLOCATION WITH MEMORY

themselves to become large (giving the agents' city choices stability). Note that

although this stability is an advantage in the current scenario, it would leave the

agent vulnerable if a breakdown were to occur at a city for which it has built up a

large weight.

In a similar spirit to the threshold model, we propose a memory weight update

that is stimulus based. In SB memory, cities do not occur more than once in an

agent's memory, such that an agent can remember up to µa cities. Each city in

the agent's memory is assigned an individual weight which increases when an agent

takes mail from that city proportionally to the stimulus (waiting time) of the taken

mail, and decreases when it does not. We loosely de�ne a city to be well-served if

it has a set of agents which return to it repeatedly and ensure that all types of mail

are taken from it with regularity. Specialisation of any new agent in a city which

is already well-served adds nothing to c.1, c.2, and should be avoided. As agents

have no direct knowledge of other agents' memories and specialisations, they must

infer it from the only available information at a city, namely the waiting times. Mail

at well-served cities will tend to have low waiting times compared to poorly served

cities, such that it makes sense to make the increase in weights proportional to the

waiting time of taken mail. Upon taking mail with waiting time w from city c the

agent's memory is updated as follows:

1. If Ca,` = c (city c is already in the agent's memory), then its weight is increased

by w:

(Ca,`,Wa,`) → (Ca,`,Wa,` + w) (4.3)

2. Otherwise if w is at least as big as the least weight Wa,` then city c replaces

this lowest weighted element.

(Ca,`,Wa,`) → (c, w) (4.4)

Note that in case of multiple equal minimum weights, only the city which was

last visited the longest time ago is replaced.

3. All unmodi�ed, non-zero weights decay.

(Ca,`,Wa,`) → (Ca,`,Wa,` − 1) (4.5)

71

Chapter 4 TASK ALLOCATION WITH MEMORY

Note that if no mail is taken, all non-zero weights decay. We de�ne an agent which

has a weight of at least La in a city is city-specialised in that city. Note that an

agent a can in principle be city-specialised in up to µa cities. Now, we can formalise

the de�nition of a well-served city as a city which has an agent a specialised in it

with mail specialisation σa = m for every mail type m, such that c.1, c.2 are ful�lled

locally.

If it persists, a well-served city can be seen as an example of emergent cooperation

between agents. Each agent minimises the waiting time of its given mail type which

decreases the chance of changeovers for other city-specialised agents. In return

its own chance of a changeover is decreased by the low waiting times of all other

mail types. This situation resolves the con�ict between `.1 and `.3 and could, in

principle, lead to perfect e�ciency. Note that the persistence of a well-served city

relies on both the stability of the serving agents' memory and their specialisations.

This justi�es the use of the threshold model over a market based approach to task

allocation.

Assuming that Nm, Ra/m and µa are �xed and �nite, both the memory require-

ments to implement this algorithm, and the number of operations per time step,

scale linearly with the system size Na. An agent's behaviour (including memory)

is only a�ected by the stimulus detected at cities and this is independent of Na:

hence, each agent performs O(1) operations. Cities must perform Nm operations to

increase their waiting times and in the worst case (all agents visiting a single city)

must perform Na − 1 operations to randomly order the agents.

4.3 Results

While the full optimisation of the model's parameters for particular circumstances is

beyond the scope of this chapter, we do study the in�uence of some key parameters

on the system's qualitative behaviour. Parameters that are not explicitly varied,

are set to those given in the standard setting (see Appendix B.1). Hence, we take

Nm = 2 which is the most interesting case, as the distribution of agents to cities

becomes more uniform with increasing Nm such that the upper limit on the e�ciency

(3.23) tends to 1. Furthermore, we take Ra/m = 1, as this is both the minimum

ratio at which all cities could in principle be served perfectly, and the maximum

72

Chapter 4 TASK ALLOCATION WITH MEMORY

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Ef f i ci ency
ℓ. 1
ℓ. 2
ℓ. 3
ℓ. 4

(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

po
rt

io
n

Iteration

1 city specialisation
2 city specialisations
3 city specialisations
4 city specialisations
Well Served Cities

(b)

Figure 4.1: E�ciency and loss sources (ta), and specialisation behaviour (b) for
Ra/m = 1 and ρ = 0.95 over a single run of 500 iterations.

ratio at which all agents could take mail every iteration (no wasted resources). We

also set Na = 5× 104 and have shown in [26] that this is su�cient to neglect �nite

size e�ects. For the threshold function, we take λ = 2 and set θmin = 0 in order to

minimise `.2, and θmax = 50 su�ciently high to avoid most repeated changeovers.

Finally, for the memory parameters, we take µa = 10, La = 10 and ρ = 0.95.

Figure 4.1 shows the performance of the algorithm over the course of a single

run. We see that within the �rst 50 iterations the e�ciency quickly tends to a high

value while `.1-`.4 all take small values. This is followed by a slow increase in the

e�ciency to its asymptotic value which is mainly due to a corresponding decrease

in `.2. We see the reason behind this in the specialisation behaviour, with almost

all cities being well-served by either singly or doubly specialised agents, ful�lling

c.3. Subsequently, some of the remaining unspecialised agents gain specialisation

in a city being served by a doubly specialised agent, which then loses its second

specialisation, This ful�ls c.1 and c.2 and allows further increases in e�ciency.

Figure 4.2 shows the in�uence of ρ on the e�ciency. The e�ciency is a mono-

tonically increasing function of ρ, with the most marked increase taking place for

ρ > 0.5. This increase can be explained by the specialisation behaviour, with city-

specialisation starting to become prevalent at this point, as agents return often

enough to cities for their average weights to increase. Although specialisation in up

to 10 cities is in principle possible, we observe that most agents specialise in a single

city. Double city-specialisations also occur for intermediately high values of ρ, but

for ρ ≈ 1 the chances of a specialised agent to visit another city become so small that

73

Chapter 4 TASK ALLOCATION WITH MEMORY

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Ef f i ci ency
ℓ. 1
ℓ. 2
ℓ. 3
ℓ. 4

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

P
ro

po
rt

io
n

1 city specialisation
2 city specialisations
3 city specialisations
4 city specialisations
Well Served Cities

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

15

20

25

30

35

40

45

50

ρ

A
ve

ra
ge

 M
ax

im
um

 W
ai

tin
g

T
im

e

(c)

Figure 4.2: E�ciency and loss sources (a), specialisation behaviour (b), and maxi-
mum waiting time (c) as a function of ρ for Ra/m = 1 averaged from iteration 401
to 500.

74

Chapter 4 TASK ALLOCATION WITH MEMORY

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a/m

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Ef f i ci ency
Memoryl ess Li mi t
ℓ. 1
ℓ. 2
ℓ. 3
ℓ. 4

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a/m

P
ro

po
rt

io
n

1 city specialisation
2 city specialisations
3 city specialisations
4 city specialisations
Well Served Cities

(b)

Figure 4.3: E�ciency and loss sources (a), and specialisation behaviour (b) as a
function of Ra/m for ρ = 0.95 averaged from iteration 401 to 500.

very few doubly specialised agents emerge. We note, furthermore, that although the

overall e�ciency is maximised for ρ = 1, this is clearly not optimal for the fraction

of well-served cities or the maximum waiting times. With increasing ρ a smaller and

smaller fraction of agents visit cities at random, such that not well-served cities are

less and less likely to be visited. The sharp increase after ρ > 0.95 is due to the fact

that city-specialised agents not only never choose cities at random, but also stop

specialising in multiple cities.

In �gure 4.3 we compare e�ciency with the upper bound on e�ciency of any

algorithm using random city choices, given by equation (3.23). At low values of Ra/m

high `.1 leads to low e�ciency compared to the limit as high average waiting times

overwhelm the selectivity of the threshold function, leading to multiple changeovers.

Note that this is a consequence of our choice of θmax: higher values would lead to

increased e�ciency at low Ra/m (due to lower `.1) and decreased e�ciency at high

Ra/m (due to higher `.2, `.3).

As Ra/m increases, `.1 decreases without much of an increase in `.2-`.4 as city

specialisation becomes useful. Note that the average number of city specialisations

becomes approximately R−1
a/m meaning that the agents are acting to serve approxi-

mately all the mail. This leads to most cities being well-served well before Ra/m = 1,

ful�lling c.3 and allowing e�ciency to surpass the memoryless limit. The proportion

of singly specialised agents continues to increase, ful�lling c.1 and c.2, but this does

not lead to increased e�ciency as it is inherently limited by the fact that there are

less batches of mail than there are agents. E�ciency decreases as `.2-`.4 increase,

75

Chapter 4 TASK ALLOCATION WITH MEMORY

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

θ
max

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Ef f i ci ency
ℓ. 1
ℓ. 2
ℓ. 3
ℓ. 4

Figure 4.4: E�ciency and loss sources as a function of θmax for Ra/m = 1 and
ρ = 0.95 averaged averaged from iteration 401 to 500.

with these increases caused by both the lack of mail and the low average waiting

times of the remaining batches. This means that less agents specialise in cities and

e�ciency approaches the memoryless limit, which also tends to the true upper limit

R−1
a/m for high values.

Figure 4.4 shows the in�uence of θmax on the e�ciency. We observe that (too)

low values for θmax cause a high probability of changeovers (high `.1). The e�-

ciency increases sharply initially, peaking at approximately θmax = 20, after which

it decreases due to increases in `.2. These increases are due to higher average initial

thresholds which lower the probability of initial mail uptake and hence specialisa-

tion. The behaviour is markedly di�erent from that found in a memoryless system,

for which much lower values of θmax are optimal [26]. The increase in the optimal

value of θmax is due to the increased need to avoid changeovers. At a well-served

city an agent that undergoes a changeover must not only cope with the penalty in

processing time, but must now also compete for mail with another agent with whom

it was previously cooperating.

76

Chapter 4 TASK ALLOCATION WITH MEMORY

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

E
ffi

ci
en

cy
/E

ffi
ci

en
cy

 L
os

s
S

ou
rc

es

Ef f i ci ency
ℓ. 1
ℓ. 2
ℓ. 3
ℓ. 4

(a)

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

P
ro

po
rt

io
n

1 city specialisation
2 city specialisations
3 city specialisations
4 city specialisations
Well Served Cities

(b)

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

P
ro

po
rt

io
n

of
 A

ge
nt

s
S

pe
ci

al
is

ed
 in

 m
ai

l t
yp

e
m

m=1
m=2

(c)

Figure 4.5: E�ciency and loss sources (a), city-specialisation behaviour (b) and
mail-specialisation behaviour (c) for ρ = 0.95 a single run of 3000 iterations. After
the �rst 1500 iterations, with Ra/m = 1, the agents specialised in mail type 2 were
removed and the system was run for a further 1500 iterations with Ra/m = 0.5.

77

Chapter 4 TASK ALLOCATION WITH MEMORY

E�ciency

Best Memoryless 0.645

Memoryless Limit 0.729

With Memory 0.953

Table 4.1: Comparison of the e�ciency of the best threshold based memoryless
algorithm with the theoretical limit for any memoryless algorithm and for the al-
gorithm with memory (ρ = 1). Starting from uniform initial conditions and with
no city-specialised agents, the e�ciency is averaged over 500 iterations and the �nal
e�ciency is averaged over a subsequent 100 iterations.

In order to test the ability of the system to cope with abrupt changes, we al-

low it to converge over 1500 iterations. That half of the population with greatest

specialisation (lowest thresholds) in mail type 2 is then removed and the remaining

agents continue to process mail for 1500 more iterations. We see in �gure 4.5 that

after the removal of agents the e�ciency initially increases, due to the increase in

mail per agent, before changeovers cause an increase in `.1 and corresponding sharp

decrease in e�ciency. Changeovers then decrease and e�ciency steadily increases,

reaching its long term value around 200 iterations after the removal of agents.

The (re-)specialisation behaviour highlights the causes behind the variations in

e�ciency. Note that since immediately after the removal no specialised agents

in mail type 2 remain, the fraction of well-served cities decreases to 0. The in-

creased waiting times in type 2 mail, combined with the fact that agents are gen-

erally specialised in a single city, causes over half of the population to switch mail-

specialisation to type 2 within the �rst 50 iterations. As agents then gain additional

city-specialisations, stable cooperation emerges and the proportion of each mail-

specialisation returns to 0.5. This allows the re-emergence of well-served cities,

decreasing `.1 and allowing e�ciency to return to a high level. Although the details

di�er, similar results are obtained if agents are randomly removed independently of

their specialisations.

Table 4.1 compares the best actual e�ciency for a fully optimised, hybrid thresh-

old and market, memoryless algorithm [26], the theoretical upper limit of memo-

ryless e�ciency, and the best e�ciency obtained in this chapter using SB memory

with partially optimised parameters. Note that we use e�ciency as the measure of

performance and so take ρ = 1 even though this dramatically increases maximum

78

Chapter 4 TASK ALLOCATION WITH MEMORY

waiting times and is not optimal for other measures such as the fraction of well-

served cities. We see that memory provides a large boost in e�ciency. Note that

the �nal e�ciency of the only partially optimised SB memory system is at 98.6%,

which is indeed very close to perfect e�ciency.

4.3.1 Conclusions

In this chapter, we have introduced the SB model of agent memory as a solution

to a problem of distributed task selection. The performance of this model has been

investigated under the variation of key parameters and is close to that of the best

centralised solution, while retaining the necessary conditions for good scalability

such as a (very) limited information �ow, localised decision making and relatively

simple agents. In particular, the elimination of random city choices allows the system

to exceed the theoretical upper limit on memoryless e�ciency, an upper limit on the

performance of the standard methods, by 35.3% after convergence and to obtain

near perfect e�ciency. This is partially due to emergent cooperation between the

agents, which resolves the con�ict between the need for agent �exibility, and the

constraints of the model.

79

5

Premature Convergence in

PSO

CONTENTS

5.1 Attractive and Repulsive PSO 82

5.2 Dispersive PSO . 83

5.2.1 Details . 85

5.2.2 Movement . 87

5.2.3 Convergence Conditions 88

5.2.4 Dispersal Region . 89

5.3 Results . 91

5.3.1 Behaviour . 94

5.3.2 Robustness . 95

5.3.3 Conclusions . 99

80

Chapter 5 PREMATURE CONVERGENCE IN PSO

In a static minimisation problem, convergence (unless guaranteed to the global

minimum) serves no particular purpose. As long as the best point discovered so

far is remembered, the actual distance to the current best is irrelevant. The main

advantage of a converging PSO algorithm is the local search behaviour it generates,

with e�ort switching from exploration of the search space to full exploitation of

the region of the best current local minima. Once this region has been identi�ed,

however, the semi-random moves of PSO are far less e�cient than gradient based

methods [6]. As such, it seems wrong to sacri�ce PSO's most e�ective feature: the

e�cient search of the global landscape, for ine�cient �ne-tuning of a solution which

is probably worse than the global optimum. However, to discard local searching

altogether is not desirable either, as it makes identi�cation of the most promising

solution very unreliable and requires a separate local search method, thus detracting

from the simplicity of the algorithm.

In standard version of PSO, however, approaching convergence causes a break-

down in the global search capacity of the system. As mentioned previously, the

search behaviour of PSO is driven by changes in the particles' local variables. As-

suming that the parameters are set such that unbounded expansion is impossible

(i.e. set according to the constriction coe�cient method), a converging PSO will

reach a point at which the set of possible future positions for all particles are either

very close to their historic best position or are of greater cost. This means that little

meaningful change to the local variables is possible and, therefore, that global search

capacity has been lost. As discussed previously, if the combined bene�ts and chance

of �nding an improved minimum in the global space outweigh the bene�ts of opti-

mising within the current best region we say that PSO has undergone premature

convergence

Premature convergence can also occur in the PSO variants presented in the

previous chapter, although the e�ect is mitigated by slower convergence speeds.

However, convergence would be required to be in�nitely slow in order to guarantee

the avoidance of premature convergence. This is clearly impractical as we must work

with �nite resources and such a scheme e�ectively corresponds to no local search,

which leads to the problems outlined above. As such it would be useful for PSO to

be able to converge to a local minimum (gaining a good estimate of its true value)

and then modify its behaviour, allowing it to regain global search capacity. Here we

81

Chapter 5 PREMATURE CONVERGENCE IN PSO

describe a variant which allows this, the attractive and repulsive PSO, and introduce

another, the dispersive PSO.

5.1 Attractive and Repulsive PSO

The attractive and repulsive PSO (ARPSO) algorithm (introduced by Riget

and Vesterstrøm [60]) approaches this problem by allowing the algorithm to utilise

two distinct search behaviours, or phases. While the algorithm is performing well,

by either engaging in global search or attempting to exploit a local minimum, it

is governed by the rules of some base PSO algorithm. If, however, the algorithm

appears to have prematurely lost search capacity, and is attempting to �ne-tune a

well exploited local minima, it switches its behaviour in an attempt to regain it.

In general we cannot explicitly determine whether PSO has lost global search

capacity until all search capacity is gone as doing so would require enough knowledge

of our cost function to render local search pointless. However, a good indicator of

search capacity is the swarm's diversity D, de�ned as

D =
1

n`

n∑
i=1

|~xi − x̄| (5.1)

where x̄ is the centre of mass of the swarm and where ` = |~bmax−~bmin| is the length of

the longest diagonal in the search space. We can see that for low diversity, particles

occupy a relatively small region of the search space. While this can occur merely

due to chance, it is far more likely that this is indicative of particles converging to

a given point and so losing global search capacity. Conversely, high diversity shows

that particles are spread widely in search space. This indicates that particles have

a wide range of potential future positions and, therefore, a high chance that the

system retains its global search capacity.

The ARPSO algorithm switches between its two search phases based on this

diversity. Initially it proceeds according to its base PSO algorithm but if the diversity

drops below a given thresholdDlow it modi�es its movement until su�cient diversity

(> Dhigh) is regained. The search phases are:

• the attractive phase. This is the initial phase of the algorithm in which the

swarm's movement is determined by some base PSO algorithm. While the

82

Chapter 5 PREMATURE CONVERGENCE IN PSO

ARPSO algorithm was designed for use with the original PSO algorithm (i.e.

movement according to equation (2.12)) there is no reason, in principle, why

the attractive phase cannot use another PSO variant. If, during this phase,

diversity decreases such that D < Dlow, we switch to the repulsive phase of

the algorithm.

• the repulsive phase. This phase attempts to regain search capacity by arti-

�cially increasing diversity. Equation (2.12) is modi�ed by switching the sign

of the social and cognitive terms, leading to repulsion from the attractor and

neighbourhood historic best, and is given by

~vi(t) = η ~vi(t− 1)− c1 ~r1 ⊗ (~ai(t)− ~xi(t))− c2 ~r2 ⊗ (ĥi(t)− ~xi(t)) (5.2)

Repulsion continues until diversity has increased such that D > Dhigh, at

which point the attractive phase is resumed.

This system does not allow the swarm to fully converge, sacri�cing some local search

capacity. However, the ability to continue searching even after a good candidate

solution has been found means that premature convergence is avoided. Well chosen

diversity thresholds should allow a reasonably close search of promising regions,

while ensuring that global search capacity is not permanently lost.

5.2 Dispersive PSO

While the motivation behind ARPSO is sound, the algorithm itself has a number of

issues which can improved upon

1. When introducing the ARPSO algorithm, we discussed the loss of search ca-

pacity that can result from clustering too closely around a historic best posi-

tion. ARPSO takes low diversity to be the root cause of this loss and, therefore,

directly increases diversity in order to regain search capacity. Recall, however,

that a particle with �xed attractor and neighbourhood historic best oscillates

about these points, eventually converging to a weighted combination [51; 70]

and that this oscillation is e�ectively a PSO algorithm's local search proce-

dure. This means that unless an ARPSO particle �nds a better attractor in

83

Chapter 5 PREMATURE CONVERGENCE IN PSO

another region through chance, adding diversity merely causes it to perform a

local search on a larger area: it has no systematic way of �nding other minima.

An ARPSO algorithm which has low enough diversity to trigger its repulsive

phase is likely to have well optimised the minimum which its attractors are

clustered round. If this minimum is of low cost then the regions containing

even lower cost points (i.e. potential new attractors) may be very small. Thus

the probability of a particle moving into one of these regions through chance

is low, trapping the algorithm into a cycle of expansion and re-convergence to

a single point.

2. The repulsive phase of the ARPSO algorithm introduces diversity but does

not target good locations over poor ones. In fact, it is noted by Riget and

Vesterstrøm [60] that so few improved solutions are found in this phase that it

might be a more e�cient use of resources not to calculate the �tness of particles

until the attractive phase restarts. When combined with the previous issue,

this makes �nding an improved global optimum in high dimensional space

becomes very di�cult.

3. Low diversity causes the loss of global search capacity, but while it is a rela-

tively good measure of proximity to a local optimum, it is not a direct one. If

we have a region in which small increases in proximity to the minimum can

lead to great improvements in �tness then we can only evaluate it by system-

atically decreasing diversity. As such, the algorithm should not stop its local

search while it is still �nding improved positions with reasonable frequency.

Conversely, when a locally optimal solution is found, it may take some time

for the diversity to decrease to below the minimum threshold. This means

that the subsequent time steps not only waste function evaluations, but also

unnecessarily decrease diversity. This e�ect is exacerbated in the case of PSO

variants which slow diversity loss in order to better optimise multi-modal cost

functions. This is problematic as these are exactly the type of functions that

ARPSO is designed to solve, and it renders combinations of ARPSO with these

variants sub-optimal.

84

Chapter 5 PREMATURE CONVERGENCE IN PSO

In order to address these issues we propose the dispersive particle swarm

optimisation (DiPSO) algorithm, which is based on principles not too dissimilar

from the ARPSO algorithm. However, rather than relying on repulsion to enforce

extra diversity, we allow attractors close to the current optimum to be forgotten

once it has been su�ciently optimised. This allows swarm members to be attracted

away (or disperse) from the current optimum towards other good positions, and

prevents the cycle of re-convergence to a single good position.

Just as with the ARPSO algorithm, DiPSO acts on top of some base version of

PSO. While the base algorithm is judged to be using its resources well DiPSO does

not modify its behaviour in any way. However, once we are su�ciently con�dent

that the base algorithm has lost search capacity, we create a dispersal region

around the current optimum and de�ne all attractors within this region to be invalid.

Particles with invalid attractors use an alternative velocity update equation to the

base PSO algorithm and the attractors themselves can be replaced by higher cost

valid attractors, allowing the algorithm to regain some of its lost search capacity.

5.2.1 Details

An individual particle in a DiPSO population requires the full set of variables given

in equation (2.5) and was our motivation for introducing the attractor variable.

Note that when introducing the update of attractors, equation (2.4), we say that

for standard PSO all positions are valid attractors and so a particle's attractor is

identical to its historic best position. In the DiPSO algorithm, however, this is not

the case.

When certain convergence conditions are met, a so-called dispersal region

Rd(t) (analogous to a single entry tabu list in the tabu search algorithm [24; 25]) is

created around a dispersal centre ~cd(t). Local attractors are forbidden to lie within

this region and any local attractors ~ai(t) ∈ Rd(t) are forgotten, by setting them to

the null-vector ~∅. This vector is de�ned to have the property that f(~∅) > f(~x) ∀~x,

so that it can be replaced by any valid position, and particles for which ~ai(= ~∅) are

described as dispersing. Formally, when a dispersal region is created we update

85

Chapter 5 PREMATURE CONVERGENCE IN PSO

particle i's attractor according to the following equation:

~ai(t) =


~ai(t) if ~ai(t) /∈ Rd(t),

~xi(t) else if ~xi(t) /∈ Rd(t),

~∅ otherwise.

(5.3)

Apart from when the dispersal region is initialised, the local attractors are up-

dated identically to equation (2.4), although we explicitly de�ne valid attractors as

those falling outside the dispersal region.

~ai(t+ 1) =

~xi(t) if ~xi(t) /∈ Rd(t), and f(~xi(t)) < f(~ai(t)),

~ai(t) otherwise.
(5.4)

If the base PSO algorithm used is CLPSO, we also remove any exemplars inside the

dispersal region, and reinitialise them in the next iteration that the particle has a

valid local attractor. As the exemplar is the only point a particle is attracted to in

the CLPSO algorithm, we wish to guarantee that it lies outside the dispersal region.

As such, if a newly generated exemplar lies within Rd(t), we move it to the nearest

boundary of Rd(t) (the details of this depend on the form of the dispersal region).

The forgetting mechanism combined with making certain positions invalid should

allow DiPSO to �nd attractors in new regions of the �tness space. As these new

attractors are unlikely to be locally optimal, improved attractors within these regions

are likely to be found. As the search behaviour of PSO is driven by exactly these

types of changes in remembered positions, DiPSO should be able to recover search

capacity damaged by �nding low cost positions.

The underlying assumption behind the search method of standard PSO is that

good positions have characteristics in common. In particular it is assumed that low

cost positions are proximate in the search space and, therefore, that the best place to

search for the global minimum of a function is in the regions surrounding previously

discovered positions which have the lowest cost, the historic bests. While this is not

true for some complex problems, we are taking PSO as our base search method and,

therefore, must ensure our algorithm is compatible with the basic functionality of

PSO. Because of this we do not wish to completely disregard historic best positions,

only to remove the absolute dependence on them. As such, we allow the particles to

�socially� use the historic best positions of their neighbours1, but only to �cognitively�
1Note that a particle can be a neighbour to itself.

86

Chapter 5 PREMATURE CONVERGENCE IN PSO

use their own attractor.

The justi�cation behind this choice is that we cause particles to forget their

attractors when we believe the system has converged. At such a time we expect the

set of historic best positions to be low diversity (as the converging PSO will tend

to cluster around the global historic best) and more di�cult to improve upon than

the newly created attractors. Conversely we expect the set of attractors found after

convergence to be of higher diversity and more liable to change as new positions

are explored. As we want the remembered positions driving search behaviour to be

both diverse and changing, and as socially sharing a variable cuts down the diversity

of information used (due to selectivity), we choose to share the low-diversity, low-

change historic bests and allow the attractors to be used individually.

We have de�ned two types of PSO such that they are compatible with DIPSO:

standard PSO and CLPSO. Note that in the parts of the algorithms in which the us-

age of the particles' local variables is de�ned (the movement equation (2.12) for PSO

and the exemplar update, algorithm 1, for CLPSO) there is a well de�ned balance

between using local and neighbourhood information. This balance is independent

of the number of neighbours, and can be simply weighted by adjusting either c1 &

c2 in standard PSO, or by changing the learning probability, Pci, in CLPSO.

5.2.2 Movement

As dispersing particles lack the local information required by base PSO algorithms to

de�ne movement updates, we must introduce new rules governing their movement.

These rules can be split into three cases.

• For non-dispersing particles, movement in the DiPSO algorithm is identical to

that of its corresponding base algorithm.

• For dispersing particles, the local attractors ~ai(= ~∅) cannot be used to update

the velocity. Neither should dispersing particles be attracted to ĥ(t) which

with high probability lies within the dispersal region. How dispersing particles

update their velocity depends on whether their set of valid (i.e. non-dispersing

neighbours) Vi = {j ∈ Ni : ~aj(t) 6= ~∅} is empty or not.

• When all particles are dispersing, they are all repulsed by the dispersal centre

87

Chapter 5 PREMATURE CONVERGENCE IN PSO

~cd(t). This is in order to prevent a deadlock situation in which all particles

are stuck within the dispersal region.

Formally we can write this as

~vi(t) =


set according to base algorithm if ~ai(t) 6= ~∅,

η~vi(t− 1) + φ ~r2 ⊗ (~αi(t)− ~xi(t)) else if Vi 6= ∅,

η~vi(t− 1)− c2~r2 ⊗ (~cd(t)− ~xi(t)) otherwise.

(5.5)

where η, c1, c2 > 0 and ~r1, ~r2 are chosen similarly to their counterparts in eq. (2.8).

The dispersal attractor ~αi(t) is a stochastic combination of the above average

normal local attractors, weighted by �tness:

~αi(t) =

∑
j∈V+

i
rj(f(~aj(t))− fVi

) ~aj(t)∑
j∈V+

i
rj(f(~aj(t))− fVi

)
(5.6)

where fVi
= 1

|Vi|
∑

j∈Vi
f(~aj(t)) is the average �tness of particle i's valid neighbours,

and V+
i = {j ∈ Vi : f(~aj(t)) ≥ fVi

} is the set of valid neighbours of greater than

average �tness. The form of this attractor can be thought of as a special case of

the informed attractor described in the fully informed PSO (FIPSO) algorithm

algorithm introduced by Mendes et al. [48]. Note that particles can move within

Rd(t), but cannot set their local attractor in it.

This stochastic combination of information from good, valid, neighbours should

allow dispersing particles to engage in some sort of principled search behaviour, even

before it regains access to its own cognitive function.

5.2.3 Convergence Conditions

As discussed previously, basing detection of convergence entirely on swarm diversity

can result in under-exploitation of a local minimum (if low-diversity improvements

are relatively) or wasted function evaluations (if we are using a PSO variant which

slows diversity loss). As, to preserve the generality of our algorithm, we do not want

to assume knowledge of the gradient of our �tness space we cannot directly measure

our solution quality. Therefore, we have implemented a compromise designed to

avoid the extreme consequences of a convergence measure which is entirely diversity

dependent. Our measure is diversity based, but is bu�ered by a time dependent

element.

88

Chapter 5 PREMATURE CONVERGENCE IN PSO

In order to de�ne our convergence conditions we also need to de�ne the concept

of algorithmic stationarity. This concept is driven by the algorithm's current best

attractor. Note that as ~ai(t) only contains the personal best position of particle

since its last dispersal, we de�ne the current best attractor as:

â(t) = argmin
~ai(t)

f(~ai(t)), i = 1, ..., n (5.7)

We use this to introduce the concept of algorithm stationarity, similar to particle

stationarity as de�ned for CLPSO. The system is said to have been stationary for

τ time steps if â(t) 6= ~∅ and τ is the largest number for which:

f(â(t− s)) = f(â(t)), ∀s < τ. (5.8)

We now de�ne two critical times for convergence: tD and tabs. Given the system has

been stationary for τ time-steps, we say that it has converged if one the following

conditions is met:

1. τ > tD and the diversity as de�ned in equation 5.1 is is such that D < Dlow.

2. τ = tabs

When either of these conditions is satis�ed, we initialise the dispersal region Rd(t)

and remove local attractors which lie inside it as discussed in section 5.2.1. A newly

created dispersal region supplants existing regions.

Note that, for appropriate parameter values, tD should provide a bu�er against

the early creation of a dispersal region in situations when local improvement is

still viable. Likewise, tabs should protect against wasted function evaluations in

slowly converging variants as well as providing a fail-safe against the algorithm

becoming stuck without converging. Clearly, in order for our diversity condition to

be meaningful, we require tD < tabs.

5.2.4 Dispersal Region

Now we discuss the choice and behaviour of the dispersal region Rd(t). As the

dispersal region has the ability to stop some areas of the search space being exploited,

its size, shape and permanence are critical to the behaviour of the DiPSO algorithm.

If the region is too small, local attractors can still cluster around the dispersal point.

89

Chapter 5 PREMATURE CONVERGENCE IN PSO

If it is too large, we risk excluding good minima within the dispersal region. As the

properties of an optimal dispersal region are entirely problem dependent, we propose

a simple heuristic for setting an appropriately large dispersal region while ensuring

that good minima are not permanently excluded from the algorithms search region.

The dispersal region is characterised by two variables:

• The dispersal centre ~cd(t), a point at which we think an exploited local

minimum lies.

• The dispersal radius rd(t) which along with `, the length of longest diagonal

in the search space, de�nes the size of the dispersal region.

Given these variables, we say that a point ~x lies inside the dispersal region if

|~cd(t)− ~x| < ` · rd(t) (5.9)

where ` is used to scale dispersal radius size with the size and dimension of the

search space.

When DiPSO's convergence conditions are met, ~cd(t) is set to â(t) which, as the

point our algorithm has converged to, should be a good estimate for the location of

a local minima. Note that using a static dispersal radius rd could critically a�ect

the performance of the algorithm. Therefore, we initially set the dispersal radius to

some relatively high value rmaxd and linearly reduce it to 0 over the course of td time

steps. This should stop any initial clustering around ~cd(t), while allowing minima

inside the initial dispersal region to be found during later iterations.

While our algorithm now has many additional parameters, we do not consider

this to be a great disadvantage as we are seeking a robust algorithm, as opposed

to an optimal one. While it would be possible to set the parameters such that the

algorithm performs very badly, we give the following heuristic guidelines which we

believe will lead to good robustness.

• The dispersal conditions should be di�cult to meet. While spending addi-

tional time in a converged state is costly in terms of function evaluations, an

algorithm which is frequently interrupted during promising searches will not

tend to �nd good solutions.

90

Chapter 5 PREMATURE CONVERGENCE IN PSO

• The dispersal region should initially be large, and should reduce its size slowly.

A large initial dispersal region should allow particles to �nd attractors outside

the basin of attraction of the current historic best. A slow reduction in disper-

sal radius gives particles a chance to �nd solutions which are locally optimised

to some degree before high quality solutions close to the current historic best

become valid, encouraging good swarm diversity after convergence.

While these guidelines will not give us the fastest possible version of DiPSO, the

purpose of DiPSO is to be robust when other PSO methods are not. Therefore we

allow some loss of speed in order to ensure good robustness.

Note that we make no claim as to the optimality of this scheme, but �nding an

optimal, general, scheme is beyond the scope of this thesis. Also, it is worth noting

that with some knowledge of the �tness landscape DiPSO is working in, it should

be possible to devise a dispersal region, speci�c to the problem, in order to improve

performance.

5.3 Results

As we cannot test our algorithm on all problems it might reasonably be used on,

we require a set of problems which can determine its behaviour in a range of cir-

cumstances. Because the results of a PSO algorithm over a range of runs on a

di�cult problem are highly chaotic, we will conduct a large number (104) of repeat

trials per algorithm, per function in order to gain a reasonable estimate on their

performances. This, combined with practical limits on computing time mean that

we carefully chose a small range of functions on which to conduct our tests.

The functions used by Potter and Jong [54] contain a uni-modal function, the

Rosenbrock function, three multi-modal functions with di�erent properties, the Ack-

ley, Griewank and Rastrigin functions, and one multi-funnelled function2, the Schwe-

fel function. To this we shall add a simple uni-modal problem, the well known sphere

function, along with a multi-funnelled function which evolutionary algorithms tend

to fail to fully optimise, the Rana function [72]. We feel this problem set is suitable

for a preliminary test of the performance of DiPSO.

2Multi-funnelled functions are those multi-modal functions in which jumping to successively
better local minima can lead an algorithm away from the global minimum.

91

Chapter 5 PREMATURE CONVERGENCE IN PSO

The function de�nitions, along with their bounds, are given below. Where nec-

essary, they have been adjusted to give a minimum value of 0.

The Rosenbrock function, de�ned as
d−1∑
i=1

(1− xi)
2 + 100(xi+1 − x2i)

2, ~x ∈ [−5.12, 5.12]d

is a uni-modal function characterised by a shallow, curved, valley leading to the

global minimum. This valley is easy to �nd, but due to its low gradient may cause

algorithms to slow down and become stuck.

The sphere function, de�ned as
d∑
i=1

x2i , ~x ∈ [−5.12, 5.12]d

is a very simple uni-modal function in which cost decreases directly with distance to

the global minimum. It is useful for determining algorithms' speed when exploiting

a minimum.

The Ackley function, de�ned as

20 + e− 20 exp

−0.2 ·

√√√√1

n

d∑
i=1

x2i

− exp

(
1

n

d∑
i=1

cos(2πxi)

)
,

~x ∈ [−32.768, 32.768]d

is a function with a uni-modal trend, given by the �rst exponential term. The second

exponential term introduces local �uctuations, making the function multimodal.

The Griewank function, de�ned as

1 +
d∑
i=1

x2i
4000

−
d∏
i=1

cos

(
xi√
i

)
, ~x ∈ [−600, 600]d

is a function similar to the sphere function but with multi-modality introduced due

to sinusoidal variations. Note that this function is non-separable, meaning that

algorithms which work on a variable-by-variable basis will break down.

The Rastrigin function, de�ned as

10 · d+
d−1∑
i=1

x2i − 10 cos(2πxi), ~x ∈ [−5.12, 5.12]d

is a multimodal function characterised by regularly spaced minima, decreasing in

cost towards global minimum. If an algorithm can e�ciently move between neigh-

bouring global minimum, it can optimise this function by repeatedly moving to a

lower cost neighbouring minimum.

92

Chapter 5 PREMATURE CONVERGENCE IN PSO

The Rana function, de�ned as

512.7531+
d∑
i=1

(
xi sin(αi) cos(βi) + (xj + 1) sin(βi) cos(αi)

d

)
, ~x ∈ [−520, 520]d

where j = i + 1 mod d, αi =
√
|1− xi + xj| and βi =

√
|1 + xi + xj|, is a multi-

funnelled function which is non-separable and highly multimodal. It is a di�cult

problem for many evolutionary algorithms, and we use it as a test case for problems

our algorithms struggle with.

The Schwefel function, de�ned as

418.9829 · d−
d∑
i=1

xi sin(
√
|xi|), ~x ∈ [−500, 500]d

is a multi-funnelled function with good local minima far from the global minimum.

It is a useful test of an algorithm's ability to transition between good minima without

the need for intermediate steps.

The main aim of this section is to investigate whether the DiPSO algorithm can

systematically improve the robustness of its base PSO algorithms, and to compare

this improvement with its nearest competitor, the ARPSO algorithm. In order to do

this, we test both the standard PSO and CLPSO with no modi�cation, with ARPSO

and with DiPSO on 10, 30 and 100 dimensional versions of the above problem set. In

order to better understand how these improvements come about we also investigate

the performance of DiPSO as a function of time, both on average, and over the course

of a single run. Note that, for notational convenience, we will use C-ARPSO to

denote an ARPSO algorithm acting on top of the CLPSO algorithm with S-ARPSO

meaning that standard PSO was used as a base algorithm. We also use a similar

convention for DiPSO.

Results are given both in terms of performance, the average cost of the best

solution , and robustness, the fraction of trials in which the algorithm has found a

solution of acceptable quality. These results are taken after a set number of function

evaluations, 1 · 106 unless otherwise speci�ed. An acceptable solution is de�ned

to be one with cost less than 0.1, except in the case of the Rana function, in which

we take the threshold to be 75 due to its high degree of di�culty. We also measure

how quickly, on an average run in which an acceptable solution was found, the

acceptability threshold was passed.

93

Chapter 5 PREMATURE CONVERGENCE IN PSO

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

10
0

10
1

10
2

10
3

Function Evaluations

C
os

t

Global Historic Best
Current Best Attractor

Figure 5.1: A single run of the DiPSO algorithm on the 30-dimensional Schwefel
function.

5.3.1 Behaviour

Figure 5.1 is illustrative of the behaviour of the DiPSO algorithm over a single run.

We see that following a period of stationarity in the global historic best cost, the

current best cost increases as the algorithm disperses. This increase in cost can be

dramatic, but allows the swarm to systematically improve and �nd a new lower cost

position.

We can also see that, sometimes (e.g the �rst dispersal period shown), the global

historic best cost improves during a dispersal period ahead of the increase in current

best cost. This is possible because the swarm can move within the dispersal region

and freely update their historic best positions. Often these new positions are not

fully optimised until the dispersal radius decreases enough to allow attractors to be

set in this region. Once this occurs a full local search of the area can take place,

allowing e�cient exploitation of the new minimum.

Figure 5.2 illustrates the average behaviour of DiPSO, compared to the other

PSO variants. We can see that when the other algorithms get stuck at a reasonable

level of average cost, DiPSO can still be capable of making improvements. The

mechanism behind this can be seen (from the �gure 5.2 (b and d)) to be its robust-

ness. In other variants, those swarms �nding acceptable quality solutions may do so

94

Chapter 5 PREMATURE CONVERGENCE IN PSO

0 1 2 3 4 5 6 7 8 9 10

x 10
5

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Function Evaluations

A
ve

ra
ge

 C
os

t

PSO
CLPSO
C−ARPSO
C−DiPSO

(a)

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function Evaluations

F
ra

ct
io

n
of

 A
cc

ep
ta

bl
e

S
ol

ut
io

ns

PSO
CLPSO
C−ARPSO
C−DiPSO

(b)

0 1 2 3 4 5 6 7 8 9 10

x 10
5

10
−4

10
−2

10
0

10
2

10
4

10
6

Function Evaluations

A
ve

ra
ge

 C
os

t

PSO
CLPSO
C−ARPSO
C−DiPSO

(c)

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function Evaluations

F
ra

ct
io

n
of

 A
cc

ep
ta

bl
e

S
ol

ut
io

ns

PSO
CLPSO
C−ARPSO
C−DiPSO

(d)

Figure 5.2: Average performance (a and c) and robustness (b and d) of our PSO
algorithms when applied to the Rastrigin function (a and b) and to the Schwefel
function (c and d), both 30-dimensional.

more quickly than DiPSO. However, those swarms which do not �nd such a solution

quickly may never do so (or in the case of the C-ARPSO algorithm applied to the

schwefel function, may do so very slowly). The DiPSO algorithm, conversely, tends

to �nd acceptable solutions at a steady, if slightly slower rate.

Note that if another PSO variant had been able to �nd the global minimum of

the Rastrigin function with certainty, then the slowing e�ect of the dispersal regions

in DiPSO would render its performance inferior. This does happen in some tests,

and we will highlight these cases in the following section.

5.3.2 Robustness

In order to systematically compare DiPSO to the other algorithms, we compare their

performance and robustness across all test functions in 10, 30 and 100 dimensions.

95

Chapter 5 PREMATURE CONVERGENCE IN PSO

Similarly to in �gure 5.2, the average cost is largely driven by robustness. This is

because those test runs of an algorithm which do not converge to the global minimum

account for a large proportion of the average cost and so a slightly lower robustness

may lead to a greatly increased cost. As such, we only show details of robustness in

the main body of the text. For details of the average cost, see appendix C.

when giving robustness results for an algorithm, we give both the fraction of runs

in which it found an acceptable quality solutions and (in brackets) solution time:

the average time at which it found such solutions. Runs in which no acceptable

solutions were found are discounted for the purpose of this average. When deciding

which algorithm performed best on a particular problem (those solutions highlighted

in bold), we �rst look at which is the most robust. If there are number of equally

good algorithms in terms of robustness, then the one with the lowest solution time

is deemed to be best. Note that as we are looking at improvements in robustness,

we will tend to compare algorithms with the same base method for a given trial.

Table 5.1 shows the robustness of the PSO variants on a 10-dimensional problem

set. We can see that, on a given problem and for a �xed base, DiPSO is always

at least as robust as the best alternative. However because the other PSO variants

are also very robust on this problem set there is usually a variant which beats it

in terms of solution time. ARPSO also tends to improve the robustness of its base

algorithms, but not to such a large degree. In general, however, it shows improved

speed when compare to DiPSO variants of equal robustness.

Table 5.2 shows the robustness of the PSO variants on a 30-dimensional problem

set. A similar general pattern is seen to that on the lower dimensional problem set,

with DiPSO at least as robust as other methods. The one exception is the case of

the Griewank function when using standard PSO as a base, in which S-ARPSO is

more robust than S-DiPSO. As this di�erence is as a result of one trial out of 104,

however, it is quite possible that this is because of a statistical �uctuation. When

other variants reach the robustness of DiPSO, they also tend to have a lower solution

time. However, the robustness advantage DiPSO is highlighted by this more di�cult

problem set, particularly when standard PSO is used as a base.

We can see from table 5.3 that when the base method is capable of solving the

problem with reasonable robustness (sphere function, Ackley and Griewank func-

tions with CLPSO as base algorithm) DiPSO retains its high robustness, and its

96

Chapter 5 PREMATURE CONVERGENCE IN PSO

Table 5.1: Robustness of the PSO algorithms in 10 dimensions.
Function Base No Convergence ARPSO DiPSO

Rosenbrock Standard 0.855 (54869.8) 0.913 (80055.8) 1 (82197.4)

CLPSO 0.942 (58430.8) 0.942 (58430.8) 0.997 (196593)

Sphere Standard 1 (1681.52) 1 (1671.94) 1 (1681.42)

CLPSO 1 (4895.46) 1 (4925.8) 1 (4913.32)

Ackley Standard 0.995 (3753.93) 1 (3785.36) 1 (3843.1)

CLPSO 1 (13494.7) 1 (13596.8) 1 (13905.6)

Griewank Standard 0.936 (12769.9) 0.981 (20110.4) 0.991 (12677.6)

CLPSO 1 (14008.4) 1 (14032.4) 1 (31801.6)

Rastrigin Standard 0.016 (163862) 0.905 (195868) 1 (54061.8)

CLPSO 0.999 (20821.5) 1 (20944.3) 1 (27451.4)

Rana Standard 0.426 (57535.5) 0.532 (114672) 0.997 (68859.3)

CLPSO 1 (41590.6) 1 (41590.6) 1 (65526.3)

Schwefel Standard 0.098 (28980.4) 0.966 (97375.4) 0.998 (50658.5)

CLPSO 0.982 (15100.9) 1 (19457.2) 1 (15719)

Table 5.2: Robustness of the PSO algorithms in 30 dimensions
Function Base No Convergence ARPSO DiPSO

Rosenbrock Standard 0.748 (264167) 0.82 (318706) 0.97 (348889)

CLPSO 0.82 (246464) 0.82 (246464) 0.954 (443845)

Sphere Standard 1 (6474.66) 1 (6449.82) 1 (6443.16)

CLPSO 1 (17958) 1 (17947) 1 (18098.8)

Ackley Standard 0.758 (12070.6) 1 (16892.6) 1 (25539.6)

CLPSO 1 (39571) 1 (39695.3) 1 (44788.1)

Griewank Standard 0.999 (11867.1) 1 (11903.5) 0.999 (12482.4)

CLPSO 1 (35717.6) 1 (35564) 1 (61106)

Rastrigin Standard 0 0.546 (658922) 1 (252237)

CLPSO 0.972 (99323.5) 0.987 (106809) 1(148216)

Rana Standard 0 0.024 (675895) 0.46 (662041)

CLPSO 1 (335087) 1 (335087) 1 (516287)

Schwefel Standard 0 0.146 (860858) 0.666 (463305)

CLPSO 0.861 (55483.6) 0.924 (94055.5) 1 (69263.3)

97

Chapter 5 PREMATURE CONVERGENCE IN PSO

Table 5.3: Robustness of the PSO algorithms in 100 dimensions
Function Base Standard ARPSO DIPSO

Rosenbrock Standard 0.001 (382500) 0.014 (560456) 0.003 (624440)

CLPSO 0 0 0

Sphere Standard 1 (35347.3) 1 (35388.5) 1 (35264.2)

CLPSO 1 (60452.1) 1 (60520.4) 1 (63959.8)

Ackley Standard 0 1 (391179) 0.025 (763777)

CLPSO 0.825 (114199) 1 (135811) 1 (156790)

Griewank Standard 0.708 (54854.5) 0.79 (76797.4) 0.806 (86093.5)

CLPSO 1 (99409.4) 1 (99592.5) 1 (147326)

Rastrigin Standard 0 0 0

CLPSO 0.029 (369641) 0.026 (431492) 0.021 (854183)

Rana Standard 0 0 0

CLPSO 0 0 0.44 (960146)

Schwefel Standard 0 0 0

CLPSO 0.082 (214824) 0.106 (232762) 0.823 (513781)

corresponding cost in speed. On some of the other problems, however, it doesn't

systematically lead to increased robustness and is even comprehensively outper-

formed by S-ARPSO on the Ackley function. Also, while C-DiPSO is signi�cantly

more robust than other methods on the multi-funnelled problems, its robustness is

less than it achieved in lower dimensions.

An indication of the reasons behind this lie in the solution times. Many of them

are close to the limit on function evaluations (1·106), especially when it is considered

that they are an average solution time. This leads us to believe that the algorithms

haven't �nished improving, and require more time to solve the problem. This is

not entirely surprising, due to the �curse of dimensionality� [35]. To counteract this

e�ect, we will look at the results after a longer run of (1 · 107) function evaluations.

For clarity, we will remove those problems which were already solved with high

robustness.

We can see from table 5.4 that this extra time allows C-DiPSO to achieve close

to perfect robustness on the Rastrigin, Rana and Schwefel functions while other

methods struggle signi�cantly. S-ARPSO also shows some improvement on these

problems, but of a much smaller scale. Also its low solution times relative to the

limit on function evaluations give us no indication that it would continue to improve,

at a reasonable rate, if given more time. All algorithms show a small improvement on

the Griewank function and S-DiPSO also becomes able to solve the Ackley problem

98

Chapter 5 PREMATURE CONVERGENCE IN PSO

Table 5.4: Robustness of the PSO algorithms in 100 dimensions after 107 function
evaluations

Function Base Standard ARPSO DIPSO

Rosenbrock Standard 0.337 (990135) 0.557 (1.4739 · 106) 0.494 (1.13677 · 106)

CLPSO 0.02 (1.58313 · 106) 0.014 (1.75299 · 106) 0.022 (1.63784 · 106)

Ackley Standard 0 1 (430056) 0.999 (935048)

Griewank Standard 0.758 (59608.9) 0.863(146884) 0.86 (169278)

Rastrigin Standard 0 0.001 (2.94862 · 106) 0.672 (1.63739 · 106)

CLPSO 0.071 (715795) 0.137 (1.5279 · 106) 0.998 (1.03502 · 106)

Rana Standard 0 0 0

CLPSO 0.127 (2.83609 · 106) 0.127 (2.83609 · 106) 1 (2.28999 · 106)

Schwefel Standard 0 0 0

CLPSO 0.127 (250641) 0.148 (724339) 0.999 (669800)

with close to perfect robustness, a signi�cant increase. Finally, on the Rosenbrock

function, designed to cause problems with the speed of convergence, the additional

time gives algorithms based on standard PSO the ability to solve the problem a

reasonable fraction of the time, with S-ARPSO being the most robust.

5.3.3 Conclusions

In this chapter we have analysed the ARPSO algorithm with respect to its ability

to recover search capacity following premature convergence in PSO. To address the

issues identi�ed we have introduced a new PSO variant, dispersive PSO, which

can maintain good search performance under normal conditions before switching

behaviour when the system has converged. The performance of DiPSO has been

analysed in comparison to other PSO variants on a range of standard test functions

with respect to robustness and average cost. We have seen that DiPSO is almost

always more robust than other PSO variants and that this is particularly the case

in di�cult, high dimensional problems. We have also seen that DiPSO's ability to

re-converge to the global optimum can lead to it having a low average cost more

often than can be explained by robustness. These advantages, however, have been

observed to come at a cost to speed in problems which standard PSO variants are

capable of solving robustly.

An important question remaining is whether DiPSO is sensitive to parameter

choice. Initial studies seem to back up our heuristic guidelines in section 5.2.4. The

fact that the same parameters lead to good performance on a range of test functions

also supports this. However, a more in depth investigation of the e�ect of parameters

99

Chapter 5 PREMATURE CONVERGENCE IN PSO

on the DiPSO algorithm is necessary.

100

6 Summary & Future Work

CONTENTS

6.1 Summary . 102

6.2 Future Work . 103

101

Chapter 6 SUMMARY & FUTURE WORK

6.1 Summary

In this thesis, we have studied an agent based model for distributed mail retrieval.

The e�ciency and �exibility have been investigated both in static and dynamic

environments. and with respect to catastrophic breakdowns of agents. We have in-

troduced new rules for mail selection and specialisation and have used a evolutionary

algorithm to optimise these further. We have shown that some of the new rules have

improved performance compared to existing ones. The best ones give increased ef-

�ciency by 25.5% in a static, and 24.3% in a dynamic environment, compared to a

method (VRT) which already outperformed a variety of other algorithms [56].

We have studied both nature inspired and market based algorithms for dis-

tributed task allocation applied to a problem of mail processing. We have investi-

gated the algorithms' ability to cope with load and their adaptability. In particular,

we found that nature inspired, threshold based algorithms have a far higher robust-

ness to high load than the market based algorithms. Market based algorithms were

found to be quicker to adapt to system changes than the threshold based algorithms,

although this only translated into a small performance di�erence compared to the

optimised SO algorithm.

We have identi�ed the various loss sources, and have demonstrated that the ran-

dom choice of cities to visit by the agents forms the main limitation on the maximal

attainable e�ciency. We have derived this limit theoretically. We also investigated

the absolute performance of the algorithms in relation to this limit and, to that end,

introduced a new hybrid approach and used a particle swarm optimisation algorithm

to �nd good parameter sets for our algorithms. These algorithms, with optimised

parameters, give us increased e�ciency in a low load setting of 48.2% in a static,

and 61.3% in a dynamic environment, compared to a method (VRT) which already

outperformed a variety of other algorithms [56; 57]. In a high load setting these

�gures are 31.3% in a static, and 32.4% in a dynamic environment.

We have also introduced the SB model of agent memory as a solution to a problem

of distributed task selection. The performance of this model has been investigated

under the variation of key parameters and is close to that of the best centralised

solution, while retaining the necessary conditions for good scalability such as a (very)

limited information �ow, localised decision making and relatively simple agents. In

102

Chapter 6 SUMMARY & FUTURE WORK

particular, the elimination of random city choices allows the system to exceed the

theoretical upper limit on memoryless e�ciency, an upper limit on the performance

of the standard methods, by 35.3% after convergence and to obtain near perfect

e�ciency. This is partially due to emergent cooperation between the agents, which

resolves the con�ict between the need for agent �exibility, and the constraints of the

model.

Finally, we have analysed the ARPSO algorithm with respect to its ability to

recover search capacity following premature convergence in PSO. To address the

issues identi�ed we have introduced a new PSO variant, dispersive PSO, which

can maintain good search performance under normal conditions before switching

behaviour when the system has converged. The performance of DiPSO has been

analysed in comparison to other PSO variants on a range of standard test functions

with respect to robustness and average cost. We have seen that DiPSO is almost

always more robust than other PSO variants and that this is particularly the case

in di�cult, high dimensional problems. We have also seen that DiPSO's ability to

re-converge to the global optimum can lead to it having a low average cost more

often than can be explained by robustness. These advantages, however, have been

observed to come at a cost to speed in problems which standard PSO variants are

capable of solving robustly.

6.2 Future Work

While our task allocation algorithms are well studied and have been shown to be

applicable to various problems, here we have made several modelling choices which

may have a�ected the performance of our algorithms:

• Local task sites - In the current model tasks are clustered within distinct,

identi�able locations. Information about the state of the tasks at a location

can only be identi�ed by visiting it. If tasks were instead distributed within

an area of which an agent could gain some local overview then the agent could

avoid visiting areas in which all mail had already been taken. Cases with a

lack of memory would, however, still lead to unbalanced numbers of agents

within di�erent areas resulting in competition for mail.

103

Chapter 6 SUMMARY & FUTURE WORK

• Geometry - We have assumed that each agent's processing centre is equidistant

from each city and, therefore, that the time taken to visit a city and collect

a batch of mail is independent of the city chosen. In a more realistic model,

agents should take longer to travel to some cities than others. This should

actually lead to an additional bene�t of memory, as memories in distant cities

should decay faster than an agent can build them up, driving agents to visit

local cities and decreasing average travel time.

• Static environment - When testing the memory based algorithm, mail is pro-

duced constantly and uniformly at all cities neglecting the dynamic environ-

ment which we studied in other cases. The current system of memory does

not di�erentiate between cities visited recently and those visited a longer time

ago, which have a greater chance to have produced new mail batches. Build-

ing some repression of memory in recently visited cities into the model should

allow agents to specialise in multiple cities in a more e�cient way and make

it more applicable to dynamic problems.

• Breakdowns - While we have seen that the system can adjust to compensate for

the breakdown of agents, the memory based algorithm cannot quickly readjust

after breakdowns in cities. The stability of established city-specialisations

means that agents will return to cities long after they have ceased to produce

mail. As for dynamic environments, a way to solve this problem would be to

build some time dependence into the model, with memories decaying faster

when not reinforced regularly.

Finally, the performance of our algorithms may still be limited by our choice of the

functional forms of the algorithms and bidding functions, as such it would also be

interesting to apply genetic programming in which agents are allowed to develop

their strategies freely. Also, the design of a MB protocol which allows a greater

degree of selectivity in accepting or rejecting tasks would be of great advantage in

a high load setting. Our hybrid algorithm is a possible approach to this problem,

however, it requires a separate adjustment of parameters between both high and low

load settings and this needs to be addressed for it to be fully e�ective.

With regards to the DiPSO algorithm, we have also made a number of choices in

our design process which may have a�ected our algorithms. Firstly, while we have

104

Chapter 6 SUMMARY & FUTURE WORK

initial evidence to support our heuristic guidelines for setting DiPSO's parameters,

it that we fully validate them. Secondly, our choices of the shape and persistence

of the dispersal region, along with our convergence conditions, may be vital to per-

formance. As we have chosen these features based on intuition rather than through

thorough empirical or theoretical research there may be scope for large performance

improvements, particularly if optimal behaviour can be designed for di�erent prob-

lem classes. We also believe that their is scope for improvement on current base PSO

methods when applied to non-separable and discrete functions, and an investigation

is currently in progress.

105

Bibliography

[1] C. Anderson and F. Ratnieks. Task partitioning in insect societies. i. e�ect of

colony size on queueing delay and colony ergonomic e�ciency. The American

Naturalist, 154(5), 1999.

[2] C. Anderson and F. Ratnieks. Task partitioning in insect societies. ii. use of

queueing delay information in recruitment. The American Naturalist, 154(5),

1999.

[3] S. N. Beshers and J. H. Fewell. Models of division of labor in social insects.

Annual Review of Entomology, 46:413�440, 2001.

[4] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies -

a comprehensive introduction. Natural Computing, 1(1):3�52, March

2002. ISSN 1567-7818. doi: 10.1023/A:1015059928466. URL

http://dx.doi.org/10.1023/A:1015059928466.

[5] E. L. Bienenestock, L. N. Cooper, and P. W. Munro. Theory for the develop-

ment of neuron selectivity: Orientation speci�city and binocular interaction in

visual cortex. Journal of Nuroscience, 2(1):32�48, 1982.

[6] H.K. Birru, K. Chellapilla, and S.S. Rao. Local search operators in fast evo-

lutionary programming. In Evolutionary Computation, 1999. CEC 99. Pro-

ceedings of the 1999 Congress on, volume 2, pages �1513 Vol. 2, 1999. doi:

10.1109/CEC.1999.782662.

[7] E. Bonabeau, A. Sobkowski, G. Theraulaz, and J.-L. Deneubourg. Adaptive

task allocation inspired by a model of division of labor in social insects. In

Biocomputing and Emergent Computation, pages 36�45, 1997.

106

Chapter 6 BIBLIOGRAPHY

[8] E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Fixed response thresholds

and the regulation of division of labour in insect societies. Bull. Math. Biol.,

60:753�807, 1998.

[9] E. Bonabeau, M. Dorigo, and G Theraulaz. Swarm Intelligence: From Natural

to Arti�cial Systems. Oxford University Press, 1999.

[10] E. Bonabeau, S. Gueŕin, D. Snyers, P. Kuntz, and G. Theraulaz. Three-

dimensional architectures grown by simple stigmergic agents. Biosystems, 56

(1):13�32, 2000.

[11] M. Campos, E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Dynamic

scheduling and division of labor in social insects. Adaptive Behavior, 8(2):

83�92, 2001.

[12] B. Chaib-draa. Industrial applications of distributed ai. Communications of

the ACM, 38(11):49�53, 1995.

[13] Yann Chevaleyre, Paul E. Dunne, Ulle Endriss, Jérôme Lang, Michel Lemaître,

Nicolas Maudet, Julian Padget, Steve Phelps, Juan A. Rodríguez-Aguilar, and

Paulo Sousa. Issues in multiagent resource allocation.

[14] M. Clerc. The swarm and the queen: towards a deterministic and adaptive

particle swarm optimization. In Evolutionary Computation, 1999. CEC 99.

Proceedings of the 1999 Congress on, volume 3, pages �1957 Vol. 3, 1999. doi:

10.1109/CEC.1999.785513.

[15] M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and con-

vergence in a multidimensional complex space. Evolutionary Computation,

IEEE Transactions on, 6(1):58�73, 2002. doi: 10.1109/4235.985692. URL

http://dx.doi.org/10.1109/4235.985692.

[16] G. Di Caro and M. Dorigo. Antnet: Distributed stigmergetic control for com-

munications networks. Journal of Arti�cial Intelligence Research, 9:317�365,

1998.

[17] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based multi-

robot coordination: A survey and analysis. Proceedings of the IEEE,

107

Chapter 6 BIBLIOGRAPHY

94(7):1257�1270, August 2006. doi: 10.1109/JPROC.2006.876939. URL

http://dx.doi.org/10.1109/JPROC.2006.876939.

[18] A. Dornhaus, F. Klügl, F. Puppe, and J. Tautz. Task selection in honeybees -

experiments using multi-agent simulation. In Proc of GWAL'98, Bochum, 1998.

[19] E. H. Durfee, V. R. Lesser, and D. D. Corkill. Trends in cooperative distributed

problem solving. IEEE Transactions on Knowledge and Data Engineering, 1

(1):63�83, 1989.

[20] R. Eberhart and J. Kennedy. A new optimizer using particle swarm the-

ory. In Proceedings of the Sixth International Symposium on Micro Ma-

chine and Human Science, 1995. MHS '95., pages 39�43, 1995. URL

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=494215.

[21] R. Eberhart, P. Simpson, and R. Dobbins. Computational intelligence PC tools.

Academic Press Professional, Inc., San Diego, CA, USA, 1996. ISBN 0-12-

228630-8.

[22] R. C. Eberhart and Y. Shi. Comparing inertia weights and

constriction factors in particle swarm optimization. volume 1,

pages 84�88 vol.1, 2000. doi: 10.1109/CEC.2000.870279. URL

http://dx.doi.org/10.1109/CEC.2000.870279.

[23] D.B. Fogel. An introduction to simulated evolutionary optimization.

IEEE Transactions on Neural Networks, 5(1):3�14, January 1994. doi:

10.1109/72.265956.

[24] F. Glover. Tabu search - part i. ORSA Journal on Computing, 1(3):190�206,

1989.

[25] Fred Glover. Tabu Search�Part II. INFORMS Journal on computing, 2(1):

4�32, 1990.

[26] Harry Goldingay and Jort van Mourik. Genetics and competing strategies in a

threshold model for mail processing. Technical Report NCRG/2008/003, Aston

University, 2008.

108

Chapter 6 BIBLIOGRAPHY

[27] Harry Goldingay and Jort van Mourik. The in�uence of memory in a threshold

model for distributed task assignment. In SASO '08: Proceedings of the 2008

Second IEEE International Conference on Self-Adaptive and Self-Organizing

Systems, pages 117�126, Washington, DC, USA, 2008. IEEE Computer Society.

ISBN 978-0-7695-3404-6.

[28] P. P. Grassé. La reconstruction du nid et les interactions inter-individuelles chez

les bellicositermes natalenis et cubitermes sp. la théorie de la stigmergie: essai

d'interprétation des termites constructeurs. Insectes Sociaux, 6:41�83, 1959.

[29] Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal muta-

tion distributions in evolution strategies: The covariance matrix adaptation. In

Proceedings of the 1996 IEEE International Conference on Evolutionary Com-

putation, pages 312�317. Morgan Kaufmann, 1996.

[30] R. Hassan, B. Cohanim, and O. de Weck. A comparison of particle

swarm optimization and the genetic algorithm. In Proceedings of the 46th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Mate-

rials Conference, 2005.

[31] J. Holland. Genetic algorithms. Sci. Am., 267(1):66�72, 1992.

[32] B. Hong and V. K. Prasanna. Distributed adaptive task allocation in hetero-

geneous computing environments to maximize throughput. In IPDPS, 2004.

[33] T. Huang and A.S. Mohan. A hybrid boundary condition for robust particle

swarm optimization. Antennas and Wireless Propagation Letters, IEEE, 4:

112�117, 2005. ISSN 1536-1225. doi: 10.1109/LAWP.2005.846166.

[34] Z. Huang and G. E. Robinson. Honeybee colony integration: Worker-worker

interactions mediate hormonally regulated plasticity in division of labor. In

Proceedings of the National Academy of Sciences 89(24), pages 11726�11729,

1992.

[35] G. Hughes. On the mean accuracy of statistical pattern recognizers.

Information Theory, IEEE Transactions on, 14(1):55�63, 1968. URL

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1054102.

109

Chapter 6 BIBLIOGRAPHY

[36] P. Janacik, T. Haimfarth, and F. Rammig. Emergent topology control based on

division of labour in ants. In Proceedings of the IEEE 20th International Con-

ference on Advanced Information Networking and Applications (AINA 2006),

2006.

[37] R. A. Johnson. Learning, memory, and foraging e�ciency in two species of

desert seed-harvester ants. Ecology, 72(4):1408�1419, 1991.

[38] J. Kennedy and R. Eberhart. Particle swarm optimization. vol-

ume 4, pages 1942�1948, 1995. doi: 10.1109/ICNN.1995.488968. URL

http://dx.doi.org/10.1109/ICNN.1995.488968.

[39] J. Kennedy and R. Mendes. Population structure and particle swarm per-

formance. In CEC '02: Proceedings of the Evolutionary Computation on 2002.

CEC '02. Proceedings of the 2002 Congress, pages 1671�1676, Washington, DC,

USA, 2002. IEEE Computer Society. ISBN 0-7803-7282-4.

[40] O. Kittithreerapronchai and C. Anderson. Do ants paint trucks better than

chickens? markets versus response thresholds for distributed dynamic schedul-

ing. Evolutionary Computation, 2003. CEC '03. The 2003 Congress on, 2:

1431�1439 Vol.2, Dec. 2003. doi: 10.1109/CEC.2003.1299839.

[41] Reimer Kühn, Jort van Mourik, Martin Weigt, and Annette Zippelius. Finitely

coordinated models for low-temperature phases of amorphous systems. J. Phys.

A: Math. Theor., 40:9227�9252, 2007.

[42] K. Lerman and A. Galstyan. A general methodology for mathematical analysis

of multi-agent systems. Technical Report ISI-TR-529, University of California,

Information Sciences Institute, 2001.

[43] K. Lerman and A. Galstyan. Agent memory and adaptation in multi-agent

systems. In Proceedings of the second international joint conference on Au-

tonomous agents and multiagent systems, pages 797�803, 2003.

[44] J.J. Liang, A.K. Qin, P.N. Suganthan, and S. Baskar. Comprehensive learn-

ing particle swarm optimizer for global optimization of multimodal functions.

Evolutionary Computation, IEEE Transactions on, 10(3):281�295, June 2006.

ISSN 1089-778X. doi: 10.1109/TEVC.2005.857610.

110

Chapter 6 BIBLIOGRAPHY

[45] Kian Hsiang Low, Wee Kheng Leow, and Marcelo H. Ang, Jr. Task allocation

via self-organizing swarm coalitions in distributed mobile sensor network. In

Proc. 19th National Conference on Arti�cial Intelligence (AAAI-04), pages 28�

33, 2004.

[46] Roger Mailler, Victor Lesser, and Bryan Horling. Cooperative negotiation for

soft real-time distributed resource allocation. In AAMAS '03: Proceedings of

the second international joint conference on Autonomous agents and multiagent

systems, pages 576�583, New York, NY, USA, 2003. ACM. ISBN 1-58113-683-8.

doi: http://doi.acm.org/10.1145/860575.860667.

[47] Rui Mendes. Population Topologies and Their In�uence in Particle Swarm

Performance. PhD thesis, Universidade do Minho, 2004.

[48] Rui Mendes, James Kennedy, and JosÃ© Neves. The fully informed particle

swarm: Simpler, maybe better. IEEE Transactions on Evolutionary Computa-

tion, 8:204�210, 2004.

[49] D. Morley. Painting trucks at general motors: The e�ectiveness of a complexity-

based approach. Embracing Complexity: Exploring the Application of Complex

Adaptive Systems to Business, pages 53�58, 1996.

[50] S. Nouyan, R. Ghizzioli, M. Birratari, and M. Dorigo. An insect-based algorithm

for the dynamic task allocation problem. Technical Report TR/IRIDIA/205-

031., UniversitÃ© Libre de Bruxelles, 2005.

[51] E. Ozcan and C.K. Mohan. Particle swarm optimization: sur�ng the waves. In

Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress

on, volume 3, pages �1944 Vol. 3, 1999. doi: 10.1109/CEC.1999.785510.

[52] Riccardo Poli. Analysis of the publications on the applications of particle swarm

optimisation. J. Artif. Evol. App., 2008(1):1�10, January 2008. ISSN 1687-6229.

doi: 10.1155/2008/685175. URL http://dx.doi.org/10.1155/2008/685175.

[53] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm op-

timization. Swarm Intelligence, 1(1):33�57, June 2007. ISSN 1935-

3812 (Print) 1935-3820 (Online). doi: 10.1007/s11721-007-0002-0. URL

http://www.springerlink.com/content/046g237554721g95/.

111

Chapter 6 BIBLIOGRAPHY

[54] Mitchell A. Potter and Kenneth A. De Jong. A cooperative coevolutionary ap-

proach to function optimization. In PPSN III: Proceedings of the International

Conference on Evolutionary Computation. The Third Conference on Parallel

Problem Solving from Nature, pages 249�257, London, UK, 1994. Springer-

Verlag. ISBN 3-540-58484-6.

[55] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical

Recipes in C. Cambridge University Press, 1988.

[56] R. Price. Evaluaton of adaptive nature inspired task allocation against alternate

decentralised multiagent strategies, 2004.

[57] R. Price and P. Ti¬o. Parallel Problem Solving from Nature VIII, chapter

Evaluaton of Adaptive Nature Inspired Task Allocation Against Alternate De-

centralised Multiagent Strategies, pages 982�990. Springer Berlin / Heidelberg,

2004.

[58] Jim Pugh, Yizhen Zhang, and Alcherio Martinoli. Particle swarm optimization

for unsupervised robotic learning. In Swarm Intelligence Symposium, pages

92�99, 2005. URL http://www.ieeeswarm.org.

[59] Omer F. Rana and Kate Stout. What is scalability in multi-agent systems?

In AGENTS '00: Proceedings of the fourth international conference on Au-

tonomous agents, pages 56�63, 2000. ISBN 1-58113-230-1.

[60] J. Riget and J.S. Vesterstrøm. A diversity-guided particle swarm optimizer -

the arpso. Technical report, Aarhus Universitet, 2002.

[61] R. L. Riolo. Survival of the �ttest bits. Sci. Am., 267:114�116, 1992.

[62] J. Robinson and Y. Rahmat-Samii. Particle swarm optimization in electro-

magnetics. IEEE Transactions on Antennas and Propagation, 52(2):397�407,

2004.

[63] R. Schoonderwoerd, O. Holland, and J. Bruten. Ant-like agents for load bal-

ancing in telecommunications networks. In Proceedings of the �rst international

conference on Autonomous agents, pages 209�216, 1997.

112

Chapter 6 BIBLIOGRAPHY

[64] N. N. Schraudolf and T. J. Sejnowski. Unsupervised discrimination of clus-

tered data via optimization of binary information gain. In Advances in Neural

Information Processing Systems., volume 5, pages 499�506, 1993.

[65] Onn Shehory, Sarit Kraus, and Osher Yadgar. Emergent cooperative goal-

satisfaction in large scale automated-agent systems. Arti�cial Intelligence, 110

(1):1�55, 1999.

[66] Y. Shi and R. Eberhart. A modi�ed particle swarm optimizer. In Evolution-

ary Computation Proceedings, 1998. IEEE World Congress on Computational

Intelligence., The 1998 IEEE International Conference on, pages 69�73, May

1998. doi: 10.1109/ICEC.1998.699146.

[67] Andrew M. Sutton, Darrell Whitley, Monte Lunacek, and Adele Howe. Pso and

multi-funnel landscapes: how cooperation might limit exploration. In GECCO

'06: Proceedings of the 8th annual conference on Genetic and evolutionary com-

putation, pages 75�82, New York, NY, USA, 2006. ACM. ISBN 1-59593-186-4.

doi: http://doi.acm.org/10.1145/1143997.1144008.

[68] G. Theraulaz, E. Bonabeau, and J.-L. Deneubourg. Response threshold rein-

forcement and division of labour in insect societies. In Proc. Roy. Soc. London

B 265, pages 327�332, 1998.

[69] F. van den Bergh and A. P. Engelbrecht. A cooperative approach to

particle swarm optimization. IEEE Transactions on Evolutionary Com-

putation, 8(3):225�239, 2004. doi: 10.1109/TEVC.2004.826069. URL

http://dx.doi.org/10.1109/TEVC.2004.826069.

[70] F. van den Bergh and A. P. Engelbrecht. A study of parti-

cle swarm optimization particle trajectories. Information Sciences,

176(8):937�971, April 2006. doi: 10.1016/j.ins.2005.02.003. URL

http://dx.doi.org/10.1016/j.ins.2005.02.003.

[71] Jakob Vesterstrøm and Rene Thomsen. A comparative study of di�erential evo-

lution, particle swarm optimization, and evolutionary algorithms on numerical

benchmark problems. In Proceedings of the 2004 IEEE Congress on Evolution-

113

BIBLIOGRAPHY

ary Computation, pages 1980�1987, Portland, Oregon, 20-23 June 2004. IEEE

Press. ISBN 0-7803-8515-2.

[72] Darrell Whitley, Deon Garrett, and Jean paul Watson. Quad search and hybrid

genetic algorithms. In In Genetic and Evolutionary Computation - GECCO

2003, pages 1469�1480. Springer, 2003.

114

A Theory

A.1 Details of the Theoretical Analysis

Exact time evolution

As discussed in section 3.3.4, the exact time evolution of the algorithm can be

calculated in the large system limit when the total number of states is �nite, and

can be divided into four distinct phases. For the mail uptake stage, we note that

agents only visit cities if their mail queue is not full, but that their behaviour at the

cities is otherwise only depends on their specialisation θ. Therefore, we de�ne the

marginal densities of active agents with a given specialisation as:

µaθ ≡
∑

qL (L<Lq)

µθ,qL
(A.1)

and the total number of active agents as Na
a = Na

∑
θ µ

a
θ .

In the current model, agents visit cities randomly such that the probability that a

115

Appendix A THEORY

subset of k agents visits any given city, is given by(
Na
a

k

)(
1

Nc

)k (
Nc − 1

Nc

)Na
a−k

' PRa
a/c

(k), (A.2)

where Ra
a/c ≡ Na

a/Nc is the ratio of active agents to cities, and Pλ is the Poisson

distribution with parameter λ, which can be truncated to arbitrary precision. We

also introduce short-hand notations 〈n〉 for an arbitrary subset of mail types, 〈n〉k (≡

{n1..nk}) for a subset with k distinct mail types, and 〈n〉lk−1 the corresponding subset

with mail type nl removed.

a.1 Evolution of agent states during mail uptake

One can write down the probability Um(θ,w, i) that an active agent with speciali-

sation θ in position i > 1 at a city with initial waiting times w, takes mail of type

m in recursive form:

Um(w,θ, i) =
∑
θ′

µaθ′

[
U0(w,θ

′) Um(w,θ, i− 1) +
∑
n6=m

Un(w,θ
′) Um(wn,θ, i− 1)

]
,

(A.3)

where the �rst term corresponds to the case that the previous agent (with thresholds

θ′) did not take any mail, while the second term case corresponds to the case that

the previous agent took mail type n(6= m) and the waiting times were updated to

wn ≡ w|wn→0. The corresponding probability that the agent takes no mail is given

by U0(w,θ, i) = 1−
∑

m Um(w,θ, i).

When it is the agents' turn (i.e. when it is �rst in the queue, i = 1), the Um(w,θ)

(≡ Um(w,θ, 1)) are given by:

Um(w,θ) =
Θ(wm, θm)

Nm

×

Nm−1∑
k=0

1(
Nm−1
k

) ∑
〈n〉k(63m)

k∏
i=1

(1−Θ(wni
, θni

))

 , (A.4)

where we sum over all possible subsets of mail types that are rejected before mail

type m is accepted. The corresponding probability that the agent takes no mail

is given by U0(w,θ) =
∏Nm

m=1(1− Θ(wm, θm)). Using these de�nitions, we can now

easily write down the total probability Um(θ) that an active agent with specialisation

θ takes mail of type m:

Um(θ) =
∑
w

ηw
∑
k=1

PRa
a/c

(k − 1)

k

k∑
i=1

Um(w,θ, i) , (A.5)

116

Appendix A THEORY

where we sum over all possible sets of waiting times at the cities, numbers of visiting

agents and positions of the agent in that set. Note that an active agent always visits

a city, such that the sum starts at k = 1, and that PRa
a/c

(k − 1) is the probability

that k − 1 other agents visit that particular city. Again, U0(θ) = 1−
∑

m Um(θ) is

the probability that it takes no mail. Note, furthermore, that the inactive agents

all have U0(θ) = 1 irrespective of their specialisation. Then, the element of the

transition matrix T describing (the probability of) a transition from an agent state

(θm, qK) to a state (θn, q
′
L) during the mail uptake stage is given by:

T(θn,q′
L),(θm,qK)=U0(θn) δn,m δq′

L,qK
+δL,K+1

K∏
i

δq′i,qi ×(
Un(θn) δn,m δq′L,tp + Un(θm) (1− δn,m) δq′L,tc

∑
i

)
(A.6)

where δa,b is the Kronecker delta (i.e. 1 if its arguments are equal, and 0 otherwise),

while θn is the set of thresholds for specialisation n (i.e. θi = θmin if i = n, and

θi = θmax otherwise). Note that the state either remains unchanged (when no mail

was taken), or a processing time tp is added to the queue (when mail of the current

specialisation was taken), or a change-over time tc is added to the queue and the

specialisation is changed (when mail of a di�erent type was taken).

The e�ciency can also be expressed in terms of the probabilities of mail uptake and

is given by:

E =
∑
θ

µaθ

Nm∑
m=1

Um(θ) (A.7)

c.1 Evolution of city states during mail uptake

Similarly, we can write down the probability G〈n〉k(w, i) that exactly the subset 〈n〉k
of mail types is given out by a city with waiting times w and i visiting agents, in

recursive form:

G〈n〉k(w, i) =
∑
θ

µaθ

(
k∑
l=1

Unl
(w,θ) G〈n〉lk−1

(wnl
, i− 1) + U0(w,θ) G〈n〉k(w, i− 1)

)
(A.8)

withG〈n〉k(w, i) = 0, when k > i or wm = 0 for anym ∈ 〈n〉k, and withG〈n〉0(w, 0) =

1. The total probability G〈n〉(w) that exactly a subset 〈n〉 of mail types is given out

by a city with waiting times w is given by:

G〈n〉(w) =
∑
i=0

PRa
a/c

(i) G〈n〉(w, i) (A.9)

117

Appendix A THEORY

Then, the element of transition matrix L describing (the probability of) a transition

from an city state w to a state w′ during the mail uptake stage is given by:

Lw′,w = G〈nw−w′〉(w) (A.10)

where 〈nw−w′〉 is the set of indices n for which wn 6= 0 and w′
n = 0.

a.2 Evolution of agent states during queue processing

The element of the transition matrix Q describing (the probability of) a transition

from an agent state (θ, qK) to a state (θ′, q′
L) during the queue processing stage is

relatively straightforward to write down directly:

Q(θ′,q′
L),(θ,qK) = δθ,θ′ ×

(
δK,0δL,0 +

∏
i

(A.11)

(1− δq1,1)δL,Kδq′1,q1−1

K∏
i=2

δq′i,qi+δq1,1δL,K−1

K∏
i=1

δq′i,qi+1

)
.

Note that specialisations don't change, that empty queues remain empty, and that

the �rst element of non empty queues gets lowered by one until it reaches 0, in which

case all the other elements in the queue are shifted by one position.

c.2 Evolution of city states during mail production

The element of transition matrix P describing (the probability of) a transition from

an city state w to a state w′ during the mail production stage is again relatively

straightforward to write down directly:

Pw′,w =
Nm∏
m=0

(
(1− δwm,0) δw′

m,min(wm+1,θmax+1) + (A.12)

δwm,0 (πm(t) δw′
m,1 + (1− πm(t)) δw′

m,0)
)
,

where the πm(t) are time dependent for the dynamic environment only.

A.2 Theoretical Upper Bound for the E�ciency

We derive the upper bound for the e�ciency in ideal circumstances, when no mail

is lost due to `.1-`.3, and the e�ciency is only limited by `.4. Then all agents have

an identical set of thresholds θ = {θn(= θmin = 0), ∀n = 1..Nm}. Mail uptake

118

Appendix A THEORY

is independent of the waiting time, and only depends on the availability of the

di�erent mail types. Hence, the city states can be simpli�ed to C = b ∈ {0, 1}Nm

where bm = 1 when the mail type m is available, and bm = 0 when it is not.

Agents visit cities randomly such that the probability that a subset of i agents

visits any given city, is given by equation (A.2) Since agents are indistinguishable,

the probability that an agent takes mail when visiting a city with k available mail

types and i visiting agents, is given by:

U(k, i) =


k
i
, if i > k ,

1 , if i ≤ k .

(A.13)

The total probability that an agent takes mail (i.e. the e�ciency) is thus:

E(t) =
Nm∑
k=1

χk(t)
∑
j

PRa/c
(j − 1) U(k, j) = (A.14)

Nm∑
k=1

χk(t)

(
1−PRa/c

(k)+
k −Ra/c

Ra/c

(1−
k∑
j=0

PRa/c
(j))

)
.

where χk(t) ≡
∑

b∈SC
χb(t)δ|b|,k is the probability that a city has exactly k pieces of

mail available.

We now derive the expressions of the matrices P(t) and L, that govern exact

time evolution for the city pro�le:

χ(t+ 1) = P(t) L χ(t) . (A.15)

1. Evolution of city states during mail uptake

We can now write down the elements of the transition matrix L describing (the

probability of) a transition from an city state b to a state b′ during the mail uptake

stage. It is clear that

Lb′,b =
∞∑
i=0

PRa/c
(i) Lb′,b(i) (A.16)

where Lb′,b(i) is the corresponding transition probability for a city visited by exactly

i agents. Since all agents take mail when available, and since during the uptake phase

all mail types are equivalent, we have that

Lb′,b(i) =

 δb′,0, i ≥ |b|(|b|
i

)−1
δ|b′|,|b|−i

∏Nm

m=1

(
1− δb′m,1δbm,0

)
, i < |b|

(A.17)

119

Appendix A THEORY

In the �rst case, there are enough agents and all mail is taken. In the second case

a random subset of i out of |b| mail types is taken (
(|b|
i

)
possibilities), such that

there are |b| − i mail types left, and these must be of the types that were originally

present.

2. Evolution of city states during mail production

The element of transition matrix P describing (the probability of) a transition from

an city state b to a state b′ during the mail production stage is relatively straight-

forward to write down directly:

Pb′,b=
Nm∏
m=1

(
δbm,1 δb′m,1+ δbm,0 (πm(t) δb′m,1+(1−πm(t)) δb′m,0)

)
, (A.18)

where the πm(t) are time dependent for the dynamic environment only.

120

B Parameter Details

B.1 The Standard Setting

The following parameters de�ne the standard setting for the mail processing prob-

lem. We set Na = 5 · 104 and, in order to have a fair comparison between di�erent

environments, we take and Ra/m = 1 in a static environment, while in the dynamic

environment we take Ra/m = 0.5 (as πm(t) = 0.5 over a period) and we �x Nm = 2.

The standard dynamic environment has a period ξ = 50 and we �x tp = 1 and

tc = 10. A standard run consists of 500 iterations over which the average e�ciency

per agent is monitored.

For reasons discussed in the main text we also de�ne a standard MB setting

to allow meaningful comparisons between threshold and market based algorithms.

This is identical to the standard setting with the exception of setting tc = 2, the

reasons for which are discussed in the main text.

For ease of reference, we reproduce the parameters for our algorithms in tables

B.1, B.2 & B.3 below.

121

Appendix B PARAMETER DETAILS

Table B.1: Parameters for threshold based algorithms

Parameter θmin θmax ε, ψ α, β, η λ

Value 0 50 5 0.5 2

Table B.2: Parameters for market based algorithms

Parameter ωs ωt

Value 1750 4

Table B.3: Parameters for memory algorithms

Parameter µa La ρ

Value 10 10 0.95

B.2 Parameter Optimisation

While fully investigating the e�ect of the parameters on our algorithm is beyond

the scope of this paper, we do wish to be able to compare the performance of our

algorithms in di�erent circumstances. As such, we employ a robust PSO algorithm

in order to �nd parameters which give us good algorithm performance. Note that

we do not claim that these parameters are necessarily the truly optimal set, merely

that they allow each algorithm performing well, unhampered by our initial parameter

choices.

Each run of the PSO algorithm consists of 20 particles and is stopped after 5 ·104

function evaluations. Here a single function evaluation consists of a single run of

the task allocation algorithm we are attempting to optimise, in the environment for

which we are trying to optimise it, and the output value is the average e�ciency

over the course of this run. Each run consists of 500 iterations with 1 · 102 agents,

although the �nal results presented are for the parameters tested on 5 · 104 agents.

Other than the number of agents used, the only deviation from the standard setting

is, when speci�ed, using a value of tc = 2. Note although PSO is generally framed as

a minimisation algorithm, we can minimise the e�ciency multiplied by −1 which is

122

Appendix B PARAMETER DETAILS

exactly equaivlent to maximising e�ciency. The initial parameters used in the PSO

algorithm are set using the method de�ned by equation 2.10, giving η(0) ≈ 0.7298

and c1 = c2 ≈ 1.496. We then linearly decrease inertial weight with the number of

function evaluations, so that

η(t) = η(0)

(
1− fn(t)

fmax

)
(B.1)

where fn(t) is the number of function evaluations at time t and fmax = 5 · 104 is the

maximum number of function evaluations.

We choose to optimise three di�erent algorithms. Fistly, we will optimise the

SO rule and the market based algorithm as they outperformed the VRT rule in all

circumstances. We also choose to optimise the hybrid VRT algorithm. Not only does

this allow us to test whether our hybrid algorithm can outperform the individual

algorithms upon which it is based but, if it does not, its ability to evolve into any of

our ther algorithms (including the VRT rule) gives us a method to �nd which single

algorithm perfoems best.

As an exhaustive investigation of the optimised performance of these algorithms

under all possible combinations of system parameters (or even under individual

variation of each system parameter) would be impractical, we choose to test the

algorithms' performances in four representative sttings: the static and dynamic set-

tings with tc = 10, and the static and dynamic settings with tc = 2. Performance

in the static and dynamic settings can be seen respectively as representative of an

algorithms' performance when stability, or when re-specialisation ability is required.

Performance when tc = 10 can be seen as representative of an algorithm's perfor-

mance when it is overworked and when selectivity is required so as not to cause a

fatally compromising cascade of agent faliures. If tc = 2, we can see this as repre-

sentating a situation in which tasks are sparse and, therefore, in which immediate

task completion is more important than the short-term performance of individual

agents.

B.2.1 Re-parametrisation

Before proceeding with the optimisation of our algorithms it is useful to determine

whether their �natural� parameter set, as given in their de�nitions, is conducive to

123

Appendix B PARAMETER DETAILS

optimisation. In order to do this, we will consider what problems might arise when

optimising these natural parameters.

Firstly, we require θmax ≥ θmin but as θmin in a parameter in our PSO algorithm

the bounding mechanism required to achieve this directly would be complex and

could compromise our algorithm's performance. Therefore, instead of optimising

θmax directly, we choose to optimise a parameter p1 such that θmin + p1 = θmax

and ensure p1 ≥ 0. Secondly, it is clear that the re-specialisation constants for the

VRT rule, ε and ψ, should be restricted to the range [0, θmax − θmin]. For similar

reasons as θmax this is impractical. Therefore, we de�ne parameters, p2 and p3, where

ε = p2(θmax−θmin) and likewise ψ = p3(θmax−θmin) and optimise them. Restricting

these parameters to the interval [0, 1] will restrict ε and ψ to the desired range. It

is also possible that this re-parametrisation will lead to better search performance

as p1 and p2 are a direct measure of how quickly an agent can re-specialise.

Finally, we have two parameters, λ in the ETF and ωt in the market bidding

function which are used as exponents. This means that a small change in either of

these parameters can greatly a�ect the overall performance of the algorithm. This

is particularly true for small values of either parameter because for high values of

either parameter the functions e�ectively become discrete. In the case of the ETF,

a high value of λ gives us a function of the form

Θ(s, θ) ≈


0 if w < θ

0.5 if w = th

1 otherwise

(B.2)

whereas for high ωt we have a bidding function with approximately the following

properties

Ba(m) > Bb(m)

if Ta(m) < Tb(m)

else if Ta(m) = Tb(m) and δm,σa > δm,σb

(B.3)

As, for both of these parameters, we have a situation in which high values lead to

similar behaviour but a minor change in a small value may lead to a large behavioural

change, we wish our algorithm to have �ne control over small parameter values.

Therefore instead of working directly with λ and ωt, we will instead work with new

parameters p4 and p5, where λ = ep4 and ωt = ep5 .

The ranges we permitted these parameters to take are given in table B.4.

124

Appendix B PARAMETER DETAILS

Table B.4: Parameter bounds for the PSO algorithm

Parameter Minimum Value Maximum Value

θmin 0 100

p1 = θmax − θmin 0 100

p2 =
ε

θmax−θmin
0 1

p3 =
ψ

θmax−θmin
0 1

p4 = lnλ ln 1 ln 10

ωs 0 2000

p5 = lnωt ln 10−10 ln 10

Table B.5: Optimised parameters for the market based algorithm

Environment Static Dynamic

tc 10 2 10 2

ωs 1948.02 764.79 1009.03 108.261

ωt 5.0941 · 10−5 6.4002 · 10−2 4.6837 · 10−5 1.223

Original E�ciency 0.246390 0.729365 0.250129 0.653368

PSO E�ciency 0.246399 0.729369 0.249985 0.653368

B.2.2 Parameter Details

We will now discuss the results obtained from our PSO algorithm runs. It is im-

portant to note that as these represent the output of single runs of an optimisation

algorithm, rather than a systematic investigation of the parameters, it is inappro-

priate to draw strong conclusions from the parameter values obtained. However, we

will try to highlight the patterns within the parameter values and suggest reasons

for them.

While optimising the market based algorithm, it is interesting to note that for

each setting e�ciencies very close to the �nal optimised values were found within a

125

Appendix B PARAMETER DETAILS

Table B.6: Optimised parameters for the SO rule

Environment Static Dynamic

tc 10 2 10 2

θmin 0 0 0 0

θmax 4.4746 0.43421 17.8449 0.0152564

λ 7.2969 1.0266 1.0062 7.2174

Original E�ciency 0.579069 0.579163 0.463695 0.463681

PSO E�ciency 0.630432 0.704393 0.513024 0.653255

single iteration (20 function evaluations) of PSO. This indicates that there may be a

wide range of parameters for which the market based algorithm performs well. This

hypothesis is supported by the e�ciencies shown in table B.5, which shows that the

parameters found by the PSO algorithm perform almost identicaly to those we used

originally. Although this is not entirely surprising, considering that our original

market parameters were based on the output of a GA, the fact that such di�erent

parameters can produce such similar results indicates that we have a reasonably wide

margin for error in our parameter choices. It is also clear that the lack of selectivity

is a inherent �aw in the market based alogrithm for high tc as no parameter set was

able to overcome the high level of `.1 and produce reasonable performance.

Optimising the SO rule leads to a di�erent outcome. While good parameter

sets were found within the �rst few PSO iterations, the initial best positions had

very low e�ciency. This low e�ciency appears to be mainly due to non-zero θmin,

which allows `.2 to occur and also increases `.3. Following parameter sets with

θmin = 0 being discovered, the rate of improvement dropped, but was still greater

than was shown during the optimisation of the market based algorithm. While this

suggests a lower range of parameters produce acceptable performance in the SO

rule, a reasonably disperate set of good parameters were found.

The outcome of this optimisation is shown in table B.6. We can see that the

optimised parameter set show a large improvement over our original arbitrarily cho-

sen parameter set. It is interesting to note the lower values of θmax when tc = 2

126

Appendix B PARAMETER DETAILS

Table B.7: Optimised parameters for the hybrid VRT algorithm

Environment Static Dynamic

tc 10 2 10 2

θmin 0 0 0 0

θmax 8.5015 4.8841 · 10−5 12.6245 0

ε 8.4993 2.8772 · 10−5 12.6188 0

ψ 8.2894 2.3320 · 10−5 12.3903 0

λ 1.1894 7.8457 1.0004 1

ωs 1795.76 1981.15 0 658.981

ωt 2.6414 · 10−6 3.0478 · 10−1 1.6472 · 10−3 3.4410

E�ciency 0.645127 0.72926 0.536984 0.653203

compared to in the standard setting, implying that the low cost of changeovers can

allow agents to be less selective. In particular, the low value of θmax when coupled

with the high value of λ the dynamic environment when tc = 2 means that the

agents will take all mail that they encounter. They can a�ord to do this as the mail

types they are likely to encounter in successive iterations are inherently correlated

in the dynamic environment, reducing the probability of repeated changeovers in a

short space of time.

In terms of performance, the optimisation of the hybrid VRT algorithm pro-

ceeded in a similar manner as the optimisation of the SO rule, with a sharp initial

increase followed by a series of small improvements. This again is due mainly to

the great suboptimality of non-zero θmin. We can see a clear split in the parameters

between those optimal inthe standard environment and those optimal when tc = 2.

In the standard environment the hybrid algorithm is primarily threshold based, as

the high θmax means that agents will tend not accept the �rst piece of mail o�ered

to them if it is not of their specialised type. We also note that, rather that a VRT

rule threshold algorithm, the hybrid tends to a SO style update rule. When tc = 2,

however, the hybrid tends to an entirely market based approach as, with θmax ≈ 0,

127

Appendix B PARAMETER DETAILS

agents will accept all batches of mail o�ered to them and so the only important

detail of the algorithm is the bidding function.

128

C PSO Cost Results

In this appendix we give the details of the average cost of our algorithms, correspond-

ing to the robustness results in section 5.3.2. Given in the tables are the average

cost of the best solution an algorithm has found after a set number of function

evaluations (1 · 106 unless speci�ed) ± 1 standard deviation.

As these results are largely explained by robustness, we will not examine them

in great detail. It is, however worth noting that DiPSO's ability to re-converge to a

solution, e�ectively repeatedly performing a local search, without the limitation of

a strict minimum diversity threshold allows it to have the lowest average cost more

often than would be solely explained by robustness.

129

Appendix C PSO COST RESULTS

Table C.1: Average Cost of the PSO algorithms in 10 dimensions

Function Base No Convergence ARPSO DiPSO

Rosenbrock Standard 0.578± 1.409 0.347± 1.128 6.875 · 10−6 ± 6.265 · 10−6

CLPSO 0.0903± 0.532 0.0903± 0.532 0.003946± 0.02136

Sphere Standard 7.826 · 10−9 ± 4.533 · 10−9 8.203 · 10−9 ± 4.422 · 10−9 9.178 · 10−9 ± 4.596 · 10−9

CLPSO 9.512 · 10−9 ± 4.582 · 10−9 9.438 · 10−9 ± 4.646 · 10−9 1.044 · 10−8 ± 4.851 · 10−9

Ackley Standard 0.006267± 0.0896 1.590 · 10−7 ± 6.226 · 10−8 1.224 · 10−8 ± 4.878 · 10−9

CLPSO 1.527 · 10−8 ± 5.342 · 10−9 8.968 · 10−6 ± 2.444 · 10−6 3.415 · 10−8 ± 1.135 · 10−8

Griewank Standard 0.0504± 0.0302 0.0401± 0.0249 0.0349± 0.0218

CLPSO 3.699 · 10−5 ± 0.000523 1.726 · 10−5 ± 0.0003900 2.960 · 10−5 ± 0.0004681

Rastrigin Standard 4.736± 2.479 0.461± 1.610 8.556 · 10−9 ± 4.500 · 10−9

CLPSO 0.0009950± 0.0315 1.202 · 10−8 ± 5.109 · 10−9 9.932 · 10−9 ± 4.905 · 10−9

Rana Standard 79.627± 25.724 70.882± 32.553 17.625± 13.699

CLPSO 5.659± 3.241 5.659± 3.241 3.604± 2.822

Schwefel Standard 265.568± 170.022 11.917± 70.042 0.477± 10.672

CLPSO 2.2505± 17.059 0.0001273± 5.584 · 10−9 0.0001273± 4.642 · 10−9

Table C.2: Average Cost of the PSO algorithms in 30 dimensions

Function Base No Convergence ARPSO DiPSO

Rosenbrock Standard 1.010± 1.736 0.724± 1.539 0.103± 0.612

CLPSO 0.367± 2.495 0.367± 2.495 0.12718± 1.06733

Sphere Standard 1.224 · 10−8 ± 4.847 · 10−9 1.401 · 10−8 ± 4.892 · 10−9 1.531 · 10−8 ± 5.337 · 10−9

CLPSO 1.805 · 10−8 ± 5.329 · 10−9 2.209 · 10−8 ± 5.555 · 10−9 2.350 · 10−8 ± 6.19685 · 10−9

Ackley Standard 0.355± 0.686 3.687 · 10−6 ± 8.492 · 10−7 2.820 · 10−8 ± 6.984 · 10−9

CLPSO 3.906 · 10−8 ± 6.692 · 10−9 7.646 · 10−5 ± 1.566 · 10−5 1.856 · 10−7 ± 1.09361 · 10−7

Griewank Standard 0.009987± 0.0149 0.008657± 0.0117 0.009784± 0.0134

CLPSO 1.893 · 10−8 ± 5.415 · 10−9 7.416 · 10−6 ± 0.0002341 1.484 · 10−5 ± 0.000332053

Rastrigin Standard 55.874± 14.627 16.281± 27.744 1.460 · 10−8 ± 5.135 · 10−9

CLPSO 0.0279± 0.165 0.0122± 0.109 2.377 · 10−8 ± 6.20596 · 10−9

Rana Standard 165.348± 22.700 158.848± 31.231 77.642± 18.877

CLPSO 28.537± 5.791 28.537± 5.791 18.558± 5.538

Schwefel Standard 2731.8± 634.78 1162.88± 1353.28 90.138± 154.861

CLPSO 17.056± 43.334 9.244± 33.131 0.0003819± 6.045 · 10−9

130

Appendix C PSO COST RESULTS

Table C.3: Average Cost of the PSO algorithms in 100 dimensions

Function Base Standard ARPSO DIPSO

Rosenbrock Standard 117.009± 48.735 95.109± 45.914 114.649± 47.986

CLPSO 155.66± 55.603 158.853± 54.443 157.773± 57.473

Sphere Standard 1.308 · 10−6 ± 1.552 · 10−5 4.145 · 10−8 ± 6.683 · 10−9 3.740 · 10−8 ± 8.181 · 10−9

CLPSO 5.441 · 10−8 ± 8.426 · 10−9 7.898 · 10−8 ± 9.897 · 10−9 1.004 · 10−7 ± 1.837 · 10−8

Ackley Standard 6.809± 2.886 6.608 · 10−5 ± 1.051 · 10−5 1.495± 0.864

CLPSO 0.166± 0.363 3.489 · 10−4 ± 2.816 · 10−5 1.282 · 10−6 ± 7.933 · 10−7

Griewank Standard 0.186± 0.829 0.0516± 0.0774 1.787 · 10−4 ± 1.282 · 10−3

CLPSO 5.181 · 10−5 ± 7.042 · 10−4 4.454 · 10−5 ± 5.749 6.417 · 10−5 ± 8.456 · 10−4

Rastrigin Standard 373.288± 55.312 203.649± 100.385 82.955± 27.284

CLPSO 3.915± 2.135 3.896± 2.094 4.793± 2.515

Rana Standard 201.656± 16.854 199.067± 20.871 165.82± 15.061

CLPSO 117.291± 10.404 117.291± 10.404 81.288± 18.432

Schwefel Standard 13447.4± 1437.42 8317.3± 4511.38 7474.74± 1285.81

CLPSO 283.799± 181.662 273.049± 179.389 22.839± 53.415

Table C.4: Average Cost of the PSO algorithms in 100 dimensions after 107 function
evaluations

Function Base Standard ARPSO DIPSO

Rosenbrock Standard 15.814± 25.902 4.558± 11.417 15.180± 26.196

CLPSO 114.599± 58.196 116.656± 56.122 115.105± 57.751

Sphere Standard 1.823 · 10−5 ± 5.550 · 10−4 3.304 · 10−8 ± 6.127 · 10−9 3.692 · 10−8 ± 8.648 · 10−9

CLPSO 4.593 · 10−8 ± 6.989 · 10−9 6.474 · 10−8 ± 8.349 · 10−9 3.522 · 10−8 ± 6.119 · 10−9

Ackley Standard 5.993± 2.822 2.004 · 10−5 ± 2.404 · 10−6 3.644 · 10−4 ± 0.0110

CLPSO 0.0432± 0.196 0.0002232± 1.446 · 10−5 1.237 · 10−7 ± 1.480 · 10−8

Griewank Standard 0.150± 0.606 0.03852± 0.0612 0.0386± 0.0571

CLPSO 1.730 · 10−5 ± 3.898 · 10−4 2.105 · 10−4 ± 5.740 · 10−3 7.437 · 10−6 ± 2.345 · 10−4

Rastrigin Standard 369.676± 54.322 85.511± 133.553 1.369± 3.261

CLPSO 2.667± 1.672 2.038± 1.447 1.990 · 10−3 ± 0.0448

Rana Standard 198.181± 16.652 186.667± 33.549 164.964± 16.753

CLPSO 84.358± 8.114 84.358± 8.114 51.811± 7.049

Schwefel Standard 13225.2± 1427.09 6875.75± 4983.11 5678.11± 1514.11

CLPSO 255.69± 175.348 235.002± 171.003 0.120± 3.749

131

