

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our <u>Takedown Policy</u> and <u>contact the service</u> immediately

THE DEVELOPMENT AND DIFFUSION OF INDUSTRIAL ROBOTS

took of

Two Volumes

Volume II

Ricardo Zermeño-González

Submitted for the Degree of Doctor of Philosophy at The University of Aston in Birmingham

September 1980

K . SEPT A SEPT SEPT SEPT SEPT SEPTEMBER SEPTE

Oleonolder at las

LIST OF CONTENTS

VOLUME II

		Page
	Title Page	1
	List of Contents	2
	List of Tables	4
	List of Figures	.7
	Appendices	
- 8 - A - 1	Anatomy of an Industrial Robot System	Q.
A1		er.
A2	Pattern of Change in the Characteristics of Commercial Robot Types	14
A3	Analysis of the Growth and Pattern of Papers Presented at the Various International Symposia on Industrial Robots (ISIR)	.00
A3.1	The Development of Robot Technology	23
A3.2	Institutional Differences in the Contribution to Symposia	24
A3.3	International Differences in the Contributions to Robot Symposia	25
A3.4	Sources of Finance	25
A3.5	Conclusions	25
A 4	Chronology of Invention and Innovation in Robot Technology for Different Countries	45
A5	Chronology of Research and Experimental Development in Robot Technology for Different Countries	61
A5.1	Research and Development in Japan	65
A5.2	Research and Development in USA	87
A5.3	Research and Development in Britain	71
A5.4	Research and Development in the FRG	7
A5.5	Research and Development in Italy	71

A5.6	Research and Development in France	7.7
A5.7	Research and Development in Switzerland	78
A5,8	Research and Development in Scandinavia	78
A6	The Growth in Robot Supply and Manufacture	80
A7	The International Diffusion of Industrial Robots	86
A8	The Usage of Industrial Robots Worldwide	107
A9	The Usage of Industrial Robots in the UK	121
A10	List of Robot Applications in the UK	130
A11	Chronology of Main Promotion Activities Related to Robot Technology in Various Countries	1.49
A12	The Factors and Implications of the Introduction of Robots in Various UK Firms	148
7 - ±	Glossary of Abbreviations and Acronyms	164
	List of References	170
	forest the bost fordvation in the second of	
Åŧ.j	Journation our lanovation (22 Agent)	
1 4	istenting and levovayages, is it is to be a supply	
	enctor and Impovation of the Mary River.	
_		

The pure for the for flower in the control of the c

LIST OF TABLES

Table	VOLUME II	Page
A3.1	Classification and Number of Papers Delivered at the Various International Symposia on Industrial Robots (ISIR)	27
A3.2	Distribution of the Topics of Papers Dealing with Robot Prototypes (number of papers)	33
A3.3	Distribution of the Topics of Papers Dealing with Sensory Systems (number of Papers)	34
A3.4	Institutional Contributions to the Various International Symposia on Industrial Robots (number of papers)	97
A3.5	Institutional Differences in the Focus of Symposia Papers (number of papers)	38
A3.6	International Contributions to the Various ISIR (number of papers)	40
A3.7	International Differences in the Focus of Symposia Papers (number of papers)	4.2
A3.8	International and Institutional Differences of the Contributions to Robot Symposia (number of papers)	43
A3.9	International Differences in the Sources of Finance (number of papers)	44
A4.1	Invention and Innovation in the USA	47
A4.2	Invention and Innovation in Scandinavia	50
A4.3	Invention and Innovation in Japan	52
A4.4	Invention and Innovation in Britain .	55
A4.5	Invention and Innovation in the Rest of Western Europe	58
A6.1	Approximate Number of Firms Marketing Industrial Robots	62
A6.2	Approximate Number of Robot Models	83
A6.3	Nominal Capacity for Robot Manufacture in Various Firms and Countries (robots per annum)	84

Table		Page
25	The International Diffusion of Robots by 1974 - A Sample (cummulative number of robots sold)	88
A7.2	The International Diffusion of Robots by 1976 - A Sample (cumulative number of robots sold)	92
A7.3	The International Diffusion of Robots by 1978 - A Sample (cummulative number of robots sold)	95
A7.4	The International Diffusion of Industrial Robots - Aggregated Figures	100
A7.5	Unimate Robots in Spot Welding in the Motor Car Industry (cummulative)	104
A7.6	Growth of Spot Welding Robots in the Motor Car Industry	1,05
A7.7	Chronology of Main Robot Applications in the Motor Car Industry	106
A871	Distribution of Robot Applications in USA (%)	1.00
A8.2	Distribution of Robot Applications in Japan (%)	110
A8.3	Distribution of Robot Applications in Western Europe (%)	112
A8.4	Distribution of Robot Applications in several European Countries (%)	113
A8.5	Distribution of Robot Applications - A Sample of Main Suppliers (%)	115
A8.6	Distribution of Robots by Industry in USA (%)	117
A8.7	Distribution of Robots by Industry in Japan (%)	118
A8.8	Distribution of Robots by Industry in Western Europe (%)	119
A8.9	Distribution of Robots by Industry in Some European Countries (%)	120
A9.1	Distribution of Robot Applications in the UK(%)	193
A9.2	Distribution of Applications of Pick-and- Place Devices - A UK Sample (%)	1,25
A9.3	Distribution of Robots Sold by Industry in the UK (%)	186

Table		Pag
A9.4	Distribution of Companies Buying Robots in the UK (%)	127
A9.5	Sample (%)	128
A9.6	Distribution of Companies Buying PPD's by Industry - A UK Sample (%)	128
A9.7	Distribution of Robots to Companies	128
A9.8	Distribution of PPD's to Companies - A Sample	129
A9.9	Sequential Orders of Robots by Companies	1.20
A9.10	Sequential Orders of PRD's by Companies	129
A12.1	General Framework for Interviewing Managers on the Factors and Implications of Robot Adoption	1.50
A12.2	General Characteristics of Potential User	151
A12.3	General Characteristics of User Firms	1.52
A12.4	Labour Factors Encouraging Robot Adoption According to Managers in User Firms	154
A12.5	Managerial Factors Encouraging Robot Adotpion According to Managers in User Firms	1,55
A12.6	Economic Factors Encouraging Robot Adoption According to Managers in User Firms	156
A12.7	Labour Impacts of Robot Adoption According to Managers in User Firms	157
A12.8	Economic Impact of Robot Adoption According to Managers in User Firms	156
A12.9	Managerial Effects of Robot Adoption According to Managers in User Firms	161
A12.10	List of Robot Applications Discussed in Interviews	1.60

- Tropythligh

LIST OF FIGURES

VOLUME II

Figure		Page
A1.1	Basic Hardware Elements of a Robot System	10
A1.2	Subelements of a Robot System (Hardware)	11
A1.3	Robot Configurations	12
A1.4	Hierarchy of Sequential Controllers	1.3
A2.1	Pattern of Change in the Characteristics of Commercial Robot Types - (1) Structural Versatility (Body Configuration/Degrees of Freedom)	1.6
A2.2	Pattern of Change in the Characteristics of Robot Types - (2) Command Versatility (Memory Capacity/Memory System)	1.7
A2.3	Pattern of Change in the Characteristics of Commercial Robot Types - (3) Command Versatility (Control Type/Positioning Control)	1.8
A2.4	Pattern of Change in the Characteristics of Commercial Robot Types - (4) Other Characteristics (Positioning Accuracy/ Driving System)	19
A2.5	Pattern of Change in the Characteristics of Commercial Robot Types - (5) Main Groups (Driving System - Control Type - Positioning Control)	20
A2.6	Pattern of Change in the Characteristics of Commercial Robot Types - (6) Main Groups (Memory System - Degrees of Freedom - Positioning Control)	21
A3.1	Growth and Pattern of Papers Delivered at the Various ISIR	29
A3.2	Distribution of the Topics of Symposia Papers	30
A3.3	Distribution of the Topics of Research Papers	194,
A3.4	Distribution of the Topics of Experimental Development Papers	- 10
A3.5	Distribution of the Topics of Innovation Papers	16

Figures			Page
A3.6	Distribution Papers	of the Topics of Application	36
A3.7	Distribution Contributions	of the Different Institutional s to Symposia	39
A3.8		of the International Contribu- Various ISIR	41

APPENDIX 1

ANATOMY OF AN INDUSTRIAL ROBOT SYSTEM

FIGURE A1:1

BASIC HARDWARE ELEMENTS OF

A ROBOT SYSTEM

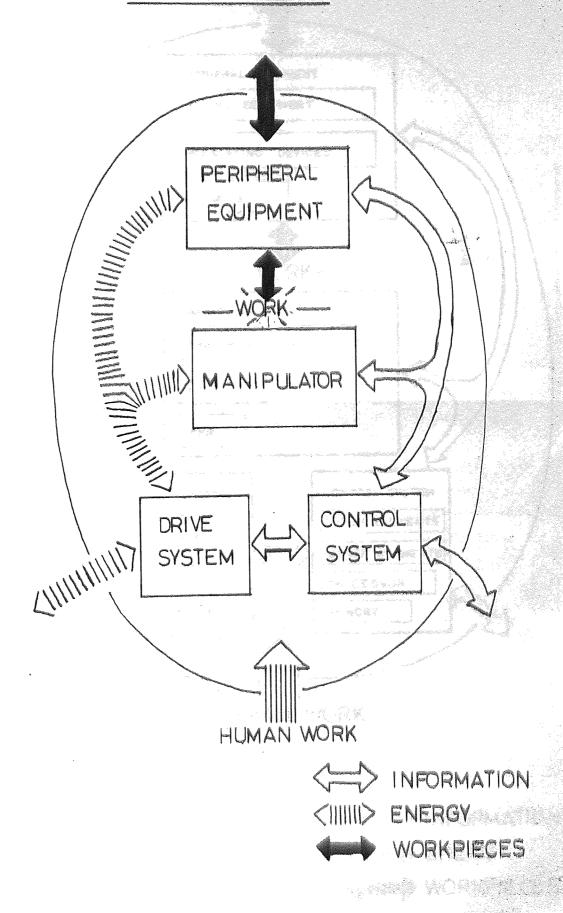
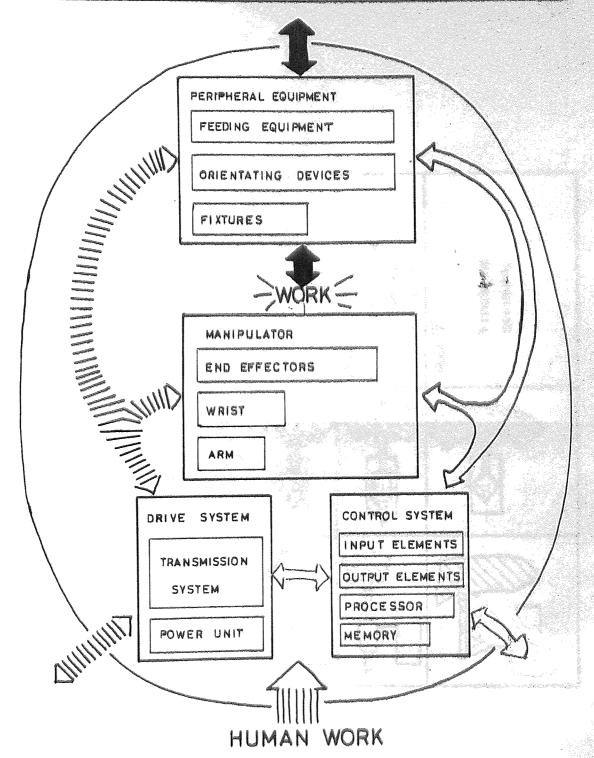
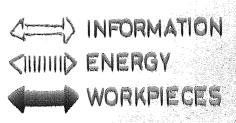




FIGURE A1.2

SUB-ELEMENTS OF A ROBOT SYSTEM (HARDWARE)

FROM: SCHRAFT, R.D., AND SCHMIDT, U. (1976, PA 2-30) Tain removed for copyright restrictions FIGURE A1.3 ROBOT CONFIGURATIONS

Figure A1.4 - Hierarchy of Sequential Controllers (Webb 1974, Table 1 and pB454)

Dimital Computers

Content has been removed due to copyright restrictions

The periation of reserve and a second of the second of the

APPENDIX 2

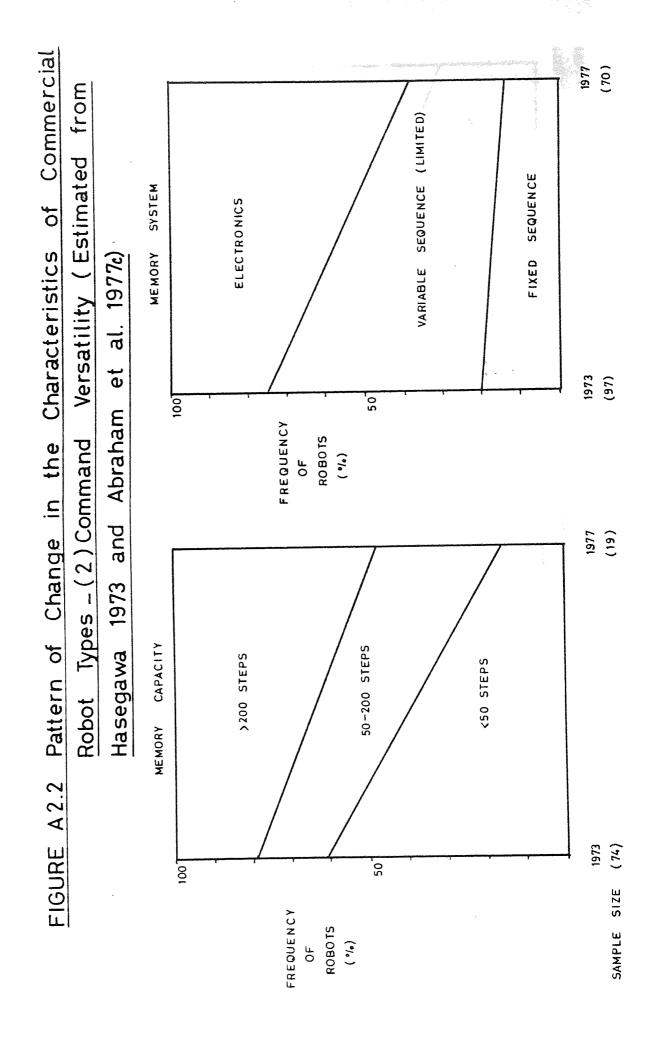
PATTERN OF CHANGE IN THE CHARACTERISTICS

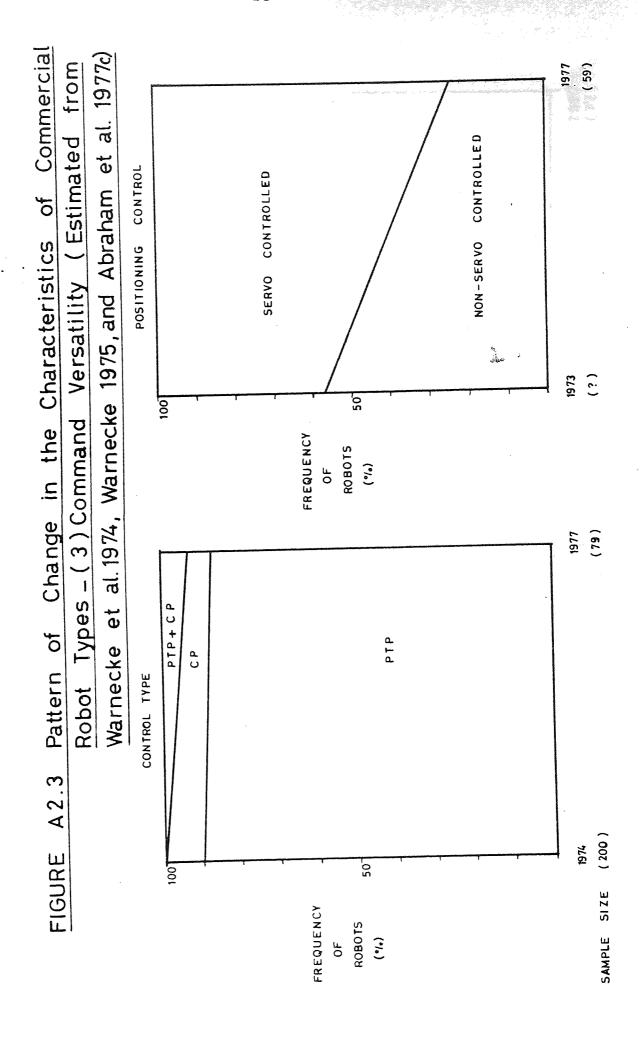
OF COMMERCIAL ROBOT TYPES

COLUMN BOOK OF THE BOOK OF THE WARRENCE

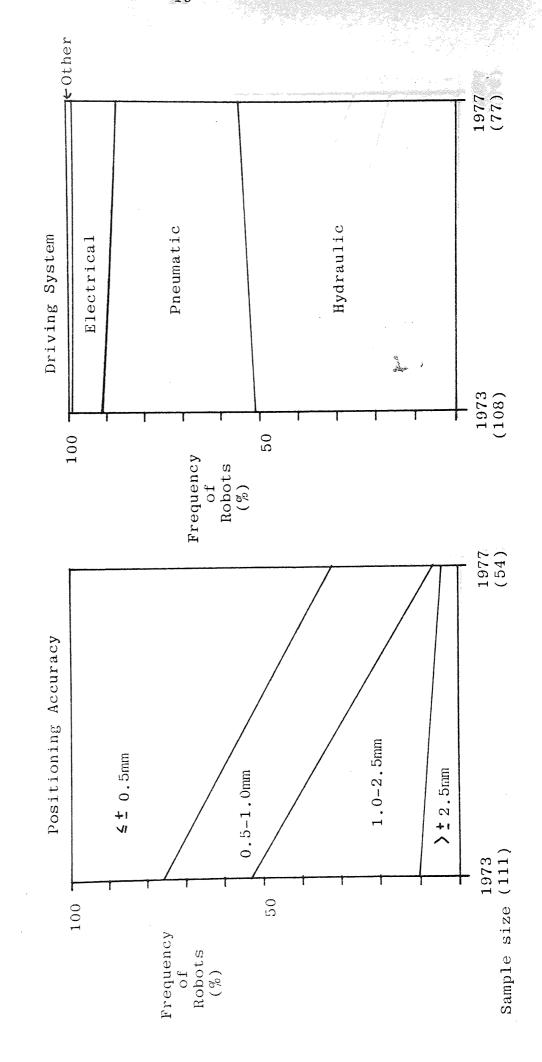
recolvice<mark>mparable.</mark> Tourstickics, and

APPENDIX 2

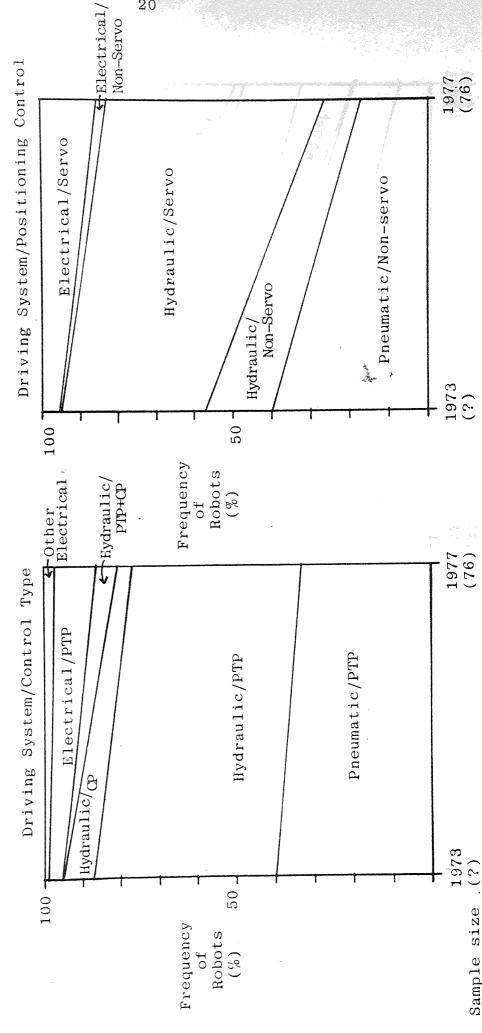

Pattern of Change in the Characteristics of Commercial Robot Types

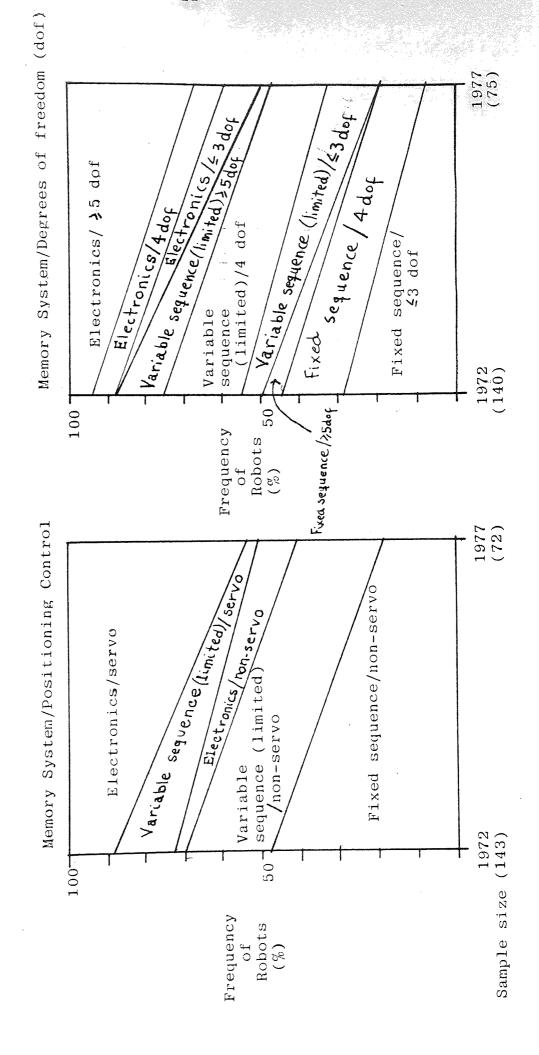

Various studies of the characteristics of robots in the market have been conducted since the early 1970's. Some of them reported the characteristics of robot models (JIRA 1973 and 1979, Lundstroem et al 1972, Warnecke and Schraft 1973, Johnson and Hanify 1973, Abraham et al 1977c, and Spur et al 1979); others synthesised the nature of commercial equipment from samples of robots in the market (Hasegawa 1973, Warnecke 1973, Warnecke et al 1974, Schraft 1977, and Warnecke and Schraft 1977a).

A comparison of some of these studies will reveal the pattern of change that has taken place in the characteristics of robots. The main reports chosen with this purpose are: Hasegawa 1973 and Abraham et al 1977c. The first paper gives a clear picture of the state-of-the-art in the early years of robots (before 1973). The second report described the models introduced after 1972 (It is an updated version of a report by Lundstroem et al which described robots introduced before 1972) and can be used to infer the characteristics of robots introduced in the period between 1973 and 1977.


This analysis has several limitations. Robot terminology and procedures for the measurement of characteristics are still non-standardised. Thus, specifications given in technical catalogues vary widely and might not be directly comparable. This is especially true of quantitative characteristics, and particularly those relevant to the performance of the systems. Emphasis will therefore be given to qualitative differences, especially those that indicate the versatility of equipment.

1977 Commercial Robot Types -(1)Structural Versatility (Estimated from Hasegawa 1973 and Abraham et al. A 2.1 Pattern of Change in the Characteristics of DEGREES OF FREEDOM **9** 8 (115) 1973 20 100 FREQUENCY OF ROBOTS (%) 1977 (54) CYLINDRICAL PROSTHETIC CARTESIAN POLAR CONFIGURATION ВОДУ FIGURE (156) 1973 507 SIZE FREQUENCY ROBOTS SAMPLE (%)




(4) Other Characteristics (Estimated from Hasegawa 1973 and Abraham et Pattern of Change in the Characteristics of Commerical Robot Types al 1977c) Figure A2.4 -

(5) Main Groups (Estimated from Warnecke 1973 and Abraham et al 1977c) - Pattern of Change in the Characteristics of Commerical Robot Types -Figure A2.5

(6) Main Groups (Estimated from Lundstroem et al 1972 and Abraham et al 1977c) - Pattern of Change in the Characteristics of Commercial Robot Types Figure A2.6

The Company of the Co

APPENDIX 3

ANALYSIS OF THE GROWTH AND PATTERN OF PAPERS

PRESENTED AT THE VARIOUS INTERNATIONAL SYMPOSIA

ON INDUSTRIAL ROBOTS (ISIR)

APPENDIX 3

Analysis of the Growth and Pattern of Papers Presented at the Various International Symposia on Industrial Robots (ISIR)

A classifiaction of the papers delivered at the various ISIR was conducted using the following information:

- 1. Types of paper (topic)
- 2. Kinds of institution where authors of the papers work.
- 3. Country of origin of the authors.
- 4. Sources of finance.

The number of papers was counted for every ISIR with the purpose of inferring: the main areas of development of robot technology, and the institutional and international differences of such development.

The use of scientific and technological papers in measurement of research and development output is generally accepted (UNESCO 1970, p 341). This methodology has various limitations:

- A. Not all research is published, particularly that of a proprietary nature. This indicator should be biased towards research and experimental development in universities and other laboratories, and against applied work in industry.
- B. The publication of development work involves varying time-lags. Applied work in industry is likely to be reported later than that of universities and other laboratories.
- C. The quality of papers varies widely in a symposium, and across symposia. These differences should be less significant at higher levels of aggregation.
- D. The quantity and kind of papers may be affected by the editorial policies of the symposia organisers, and by limitations to the size of the meetings. Thanks to the growth in development work, the symposia have become more specialised in research and development.

A3.1 The Development of Robot Technology

The papers presented at these symposia, except for the 10th ISIR held in Italy in 1980, were classified into four categories: research, experimental development, innovation and applications.

- 1. Research papers report theoretical work done with little or no direct connection with experimental work. They are mainly concerned with the understanding of the robot technical systems. Research papers were subdivided further into artificial intelligence, control and mechanics.
- 2. Experimental development papers report work done on robots or robot component prototypes. This work is directed towards improving the prototypes performance. These may eventually be ready for use in practical applications or lead to another generation of devices to be tested further. Experimental development papers were subdivided into: robot prototypes, control systems, software, mechanical systems, sensors, peripherals, and applications research.
- 3. Innovation papers are those papers describing successful prototypes which are either being introduced into the market, or being used in a normal operating system inside the firm. To be classified as successful, a prototype should be used on line production with a purpose other than to develop it further. Innovation papers were classified into: robot models, control systems, software, mechanical systems, sensors, peripherals and applications/flexible manufacturing systems.
- 4. Papers on applications are those describing case studies of robot applications and other investigations orientated towards the use of robotics in productive activities. These papers were grouped into five categories: assessment and forecasting, robot selection and workplace studies, suppliers experiences, users experiences, and flexible manufacturing systems.

The number of papers delivered which belong to each of the above categories are given in Table A3.1. Figures A3.1 to A3.6 and Tables A3.2 and A3.3 show the main information derived from this analysis.

A3.2 Institutional Differences in the Contribution to Robot Symposia

The institutions (i.e. the employers of the authors of the papers given) were classified into four categories: industry, university, government, and others. This last category embraces first of all, research institutions and secondly all kinds of joint work between different institutions. Tables A3.4 and A3.5, and Figure A3.7 show the main information derived from this analysis.

A3.3 International Differences in the Contributions to Robot Symposia

Symposia papers were also classified according to the authors' and institutions' country of origin. The international character of the symposia was clearly established in Switzerland - the first time the symposium was held outside the USA. Since then, the number of countries participating and their contribution, have increased steadily (see Table A3.6). Growth in the number of papers has mainly resulted from the activity of host countries, except in the case of Switzerland in 1972, and from expanding international participation (see Figure A3.8). This means that the change in focus and the institutional differences between symposia were largely caused by the characteristics of the host countries. Tables A3.7 and A3.8 show the information derived from this analysis.

A3.4 Sources of Finance

The institutions where the authors of the papers are employed are not necessarily the source of finance for the projects. Information on the sources of finance was, unfortunately, not available in the majority of cases. Table A3.9 was made under the assumption that if the source of finance was not acknowledged, the resources came from the same place where the project was undertaken. Almost all acknowledgements of financial support referred to governments. This table is therefore, more useful as an indicator of where the government certainly had a role, rather than of where it had not. The USA, FRG and UK were the countries that more often acknowledged a source of finance.

A3.5 Conclusions

The total number of papers has increased 6.6 times since 1970 through a series of peaks starting in 1974, followed by a second in 1978, and by a third in 1980. Four periods of symposium activity can be distinguished. The landmarks which identify these periods are closely linked to the meetings in Japan.

First Period (1970-1973): papers on applications from American industry played a major role.

Second Period (1974-1976): papers on applications rapidly gave way to papers on experimental development when the symposium was held in Japan for the first time in 1974. This coincided with the first peak in the number of papers, and with a small rise in research and innovation papers. Universities and other research institutes, and joint programmes increased their contribution. Experimental development took off in the USA.

Third Period (1977-1979): a small decline in 1976 was followed by an impressive surge in the number of papers in 1977 in Japan. This was also accompanied by an increasing importance of experimental development and innovation papers,

and a definitie decrease in the importance of papers on applications. The contributions from industry, university, and others became virtually equal and constant. Experimental development took off in the FRG.

Fourth Period (1980): an increase in the number of papers after the 1979 fall marks the beginning of a new period. The joint contribution of the FRG, USA and Japan falls below thirty five percent.

Classification and Number of Papers Delivered at the Various International Symposia on Industrial Robots (ISIR) l TABLE A3.1

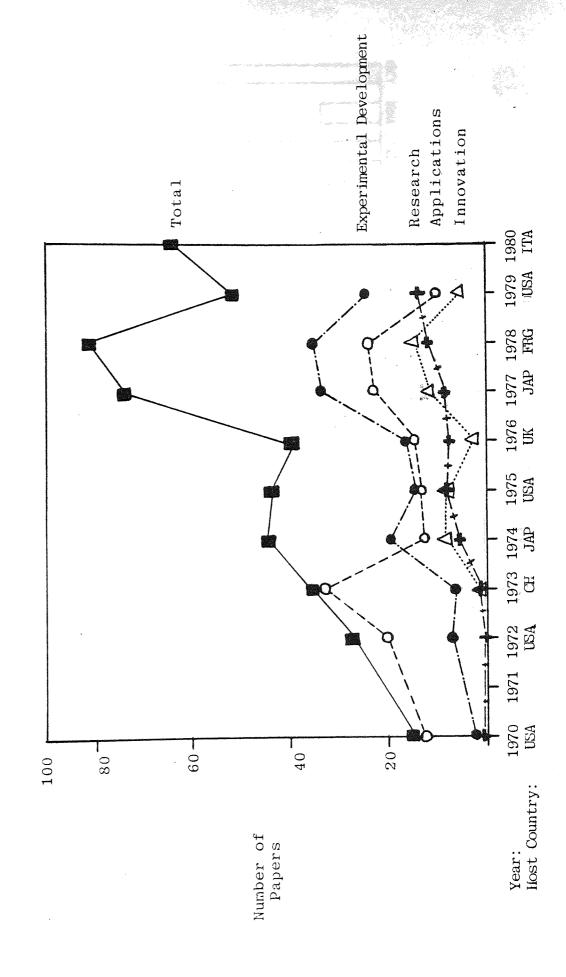

			ar i Arabir i dili dag	and the second s		
TOTAL	54	16 23 15	156	34 118 8 8 54 22 22 22	47	26 4 6 1 1 7
10th 1980*		1 1 1	l			1 1 1 1 1 1
9th 1979	13	2 4 4	24	3 1 7 0 0 2	5	0 0 4 H 0 0
8th 1978	11	2 7	35	74E11127	12	801010
7th 1977	8	184	33	24 9 C C T C T C T C T C T C T C T C T C T	11	1 100018
6th 1976	2	202	16	0001100	2	110000 0
5th 1975	8	4 2 2	14	4111406	8	1 001102
4th 1974	5	101	19	9400708	8	w0000 w
3rd 1973	-	0 1	9	, 0 0 3 1		00000
2nd 1972	0	000	7	10330011	0	000000
1st 1970	1	1000	2	000000	0	000000
SYMPOSIUM YEAR YEAR TYPES OF PAPERS	RESEARCH	Artificial Intell. Control Mechanics	EXPERIMENTAL DEVELOPMENT	Robot Prototypes Control Systems Software Mechanical Systems Sensors Peripherals Applicatons Research	INNOVATION	Robot Models Control Systems Software Mechanical Systems Sensors Peripherals Applications and Flex Manufacturing Syst.

TABLE A3.1 - (Continued)

TOTAL	152	38	52	36	07	9		
10th 1980		;	1	I	1	and the state of t	64	473
9th 1979	6	7	H	က	>	သ	51	409
8th 1978	23	വ	∞	2	ლ	73	81	358
7th 1977	22	വ	13	က	0	 1	74	277
6th 1976	14	Н	9	5	7	0	39	203
5th 1975	13	73	4	9	, - 1	0	43	164
4th 1974	12	3	ಬ	4	0	0	44	121
3rd 1973	27	4	11	2	വ	0	35	7.7
2nd 1972	20	11	က	2	4	0	27	42
1st 1970	12	5	H	₹-4	വ	0	15	15
SYMPOSIUM YEAR TYPES OF PAPERS	APPLICATION	Asses't. & F/casting	Robot Selection & Workplace Studies	Suppliers Experien- ces	Users Experiences	Flex. Manufacturing Systems	TOTAL	CUMULATIVE

* Type of papers not available

Figure A3.1 - Growth and Pattern of Papers Delivered at the Various ISIR

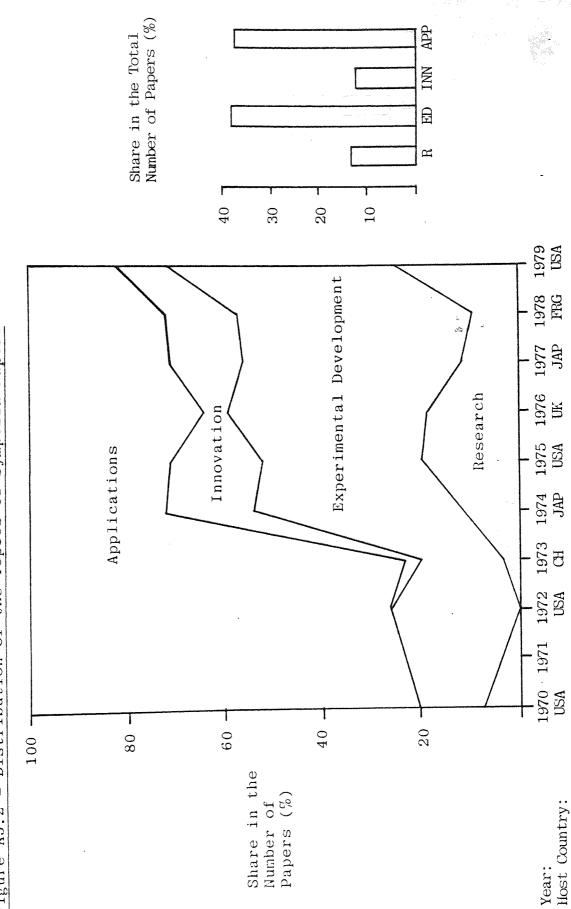


Figure A3.2 - Distribution of the Topics of Symposia Papers

Figure A3.3 - Distribution of the Topics of Research Papers

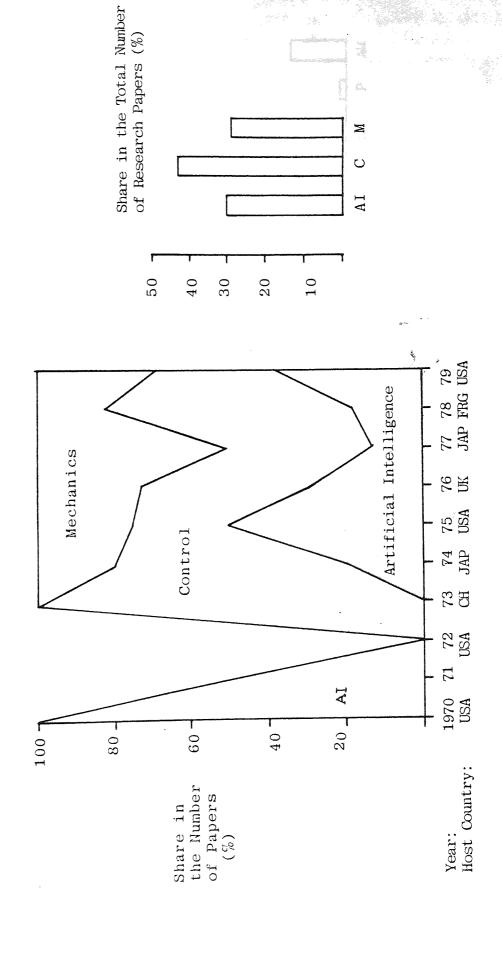


Figure A3.4 - Distribution of the Topics of Experimental Development Papers

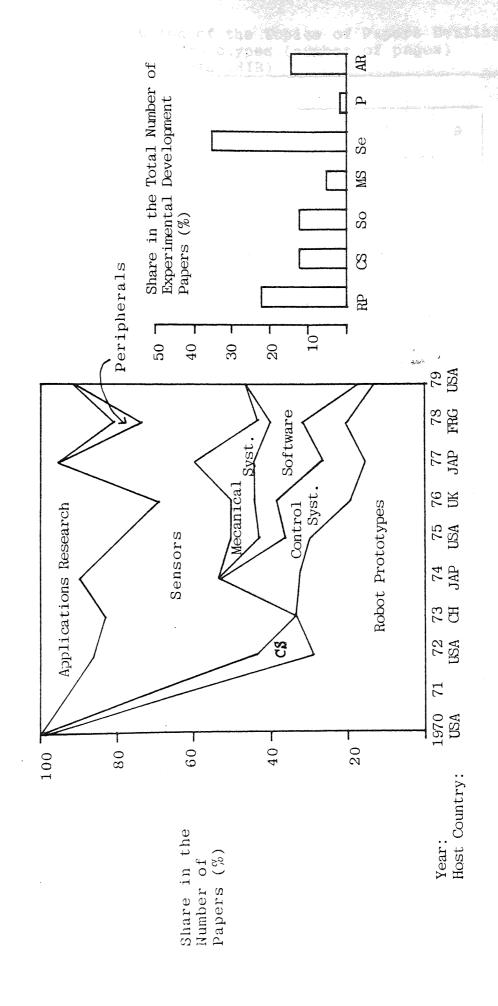


TABLE A3.2 - Distribution of the Topics of Papers Dealing with Robot Prototypes (number of pages) (excluding 10th ISIR)

	e typica come a communication of the communication	ages a compression of the comment	100 2000
Remote Controlled	Nuclear industry	5	9
Manipulators	Others	4	e e e e e e e e e e e e e e e e e e e
Automatic Vehicles			5
	Assembly	7	
Industrial Robots	General Purpose	9	20
	Others	4	
TOTAL			34

TABLE A3.3 - Distribution of the Topics of Papers Dealing with Sensory Systems (number of papers) (excluding 10th ISIR)

L			i i i i i i i i i i i i i i i i i i i		
		Integrated with Manipulator	Non-integrated	Sub- Total	Total
Vision	Complex	2	0	2	32
VISION	Simple	21	9	30	
Force	Complex	2	1	3	6
rorce	Simple	3	0	3	
Mounds	Complex	4	3	7	7
Touch	Simple	0	0	0	•
Multiple		4	0		4
Others		1	4		5
Total		37	17		54

Definitions:

recognition of shapes in a disordered state Complex vision:

detection of edges, holes, corners etc. Simple vision:

Workpieces are set in an arranged environment (e.g. backlight, assuming a limited number of positons, non-overlapping objects etc.)

Can measure force along two or more axes. Complex force: 11 a single asix.

Simple force: Multiple tactile sensors for detection of shapes Complex touch:

Single tactile sensors for detection of Simple touch:

presence or absence of workpieces.

More than one type of sensor Multiple:

Papers describing various sytems. Others:

Similar definitions appeared in Evans et al (1978, p22)

- Distribution of the Topics of Innovation Papers Figure A3.5

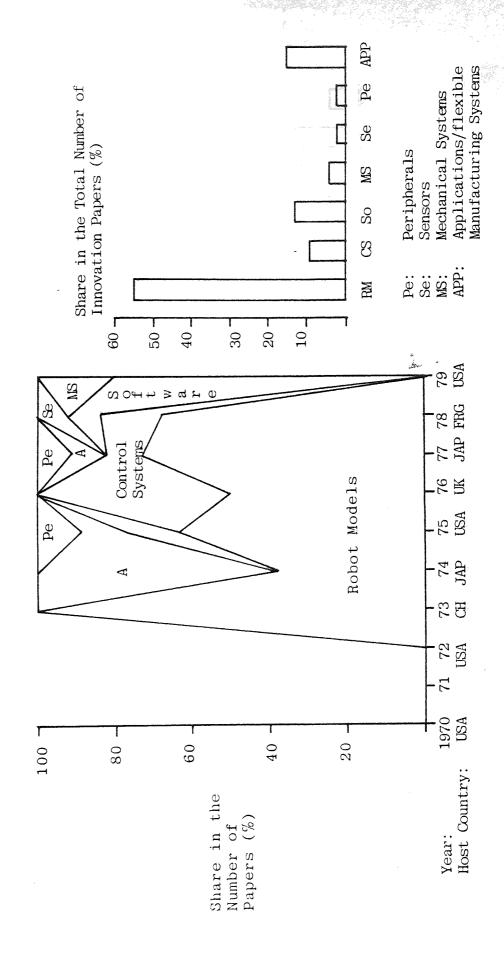
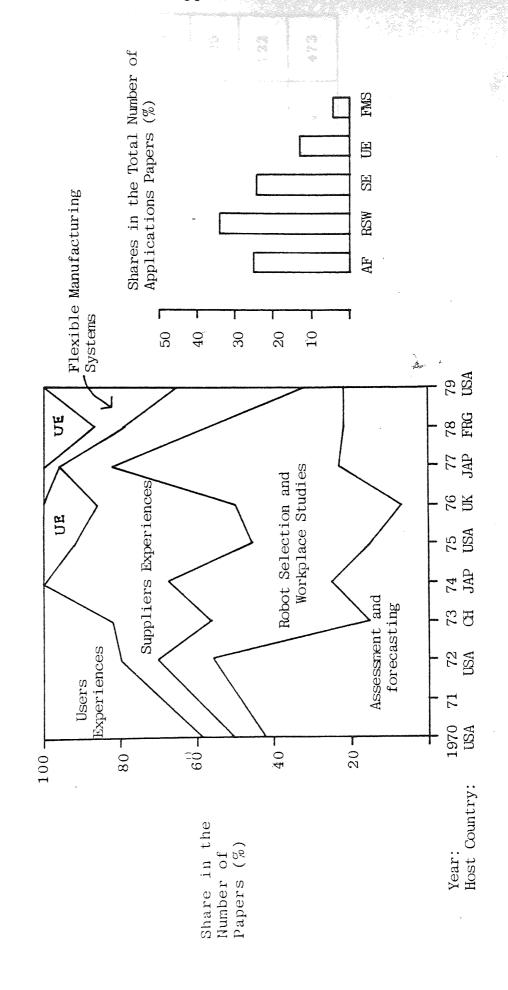



Figure A3.6 - Distribution of the Topics of Applications Papers

- Institutional Contributions to the Various International Symposia on Industrial Robots (number of papers) TABLE A3.4

										1	
SYMPOSIUM YEAR TYPES OF PAPERS	1st 1970	2nd 1972	3rd 1973	4th 1974	5th 1975	6th 1976	7th 1977	8th 1978	9th 1979	10th 1980	TOTAL
Industry		18	23	20	19	11	24	30	15	20	187
University	വ	9	ည	10	5	16	20	28	18	31	144
Government	H		0	Ţ	4	⊣	က	2	4	77	20
Others	2	1	2	13	15	11	27	21	14		122
	15	27	35	44	43	39	74	81	51	64	473

- Institutional Differences in the Focus of Symposia Papers (number of papers) (excluding 10th ISIR) TABLE A3.5

				to the second		
TOTAL	54	156	47	152	409	
OTHERS	24	48	8	31	111	
GOVERNMENT	4	9	0	∞	18	
UNIVERSITY	20	69	2	21	112	
INDUSTRY	9	33	37	92	168	
TOPIC	RESEARCH	EXP E R I MENTAL DEVELOPMENT	INNOVATION	APPLICATION	TOTAL	

Figure A3.7 - Distribution of the Different Institutional Contributions to Symposia

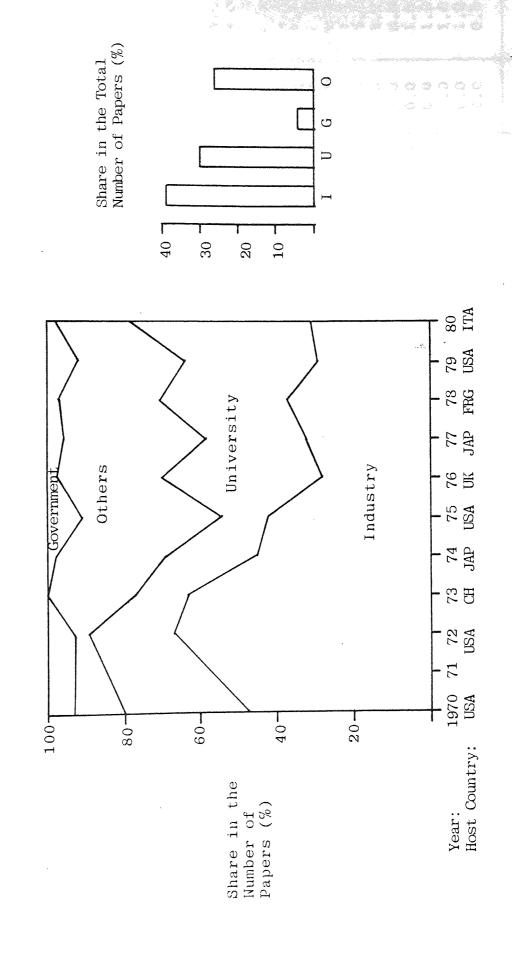


TABLE A3.6 - International Contributions to the Various ISIR (number of papers)

Symposium	7	9	13	13	12	14	16	18	13	16	TOTAL
Country	1st 1970	2nd 1972	3rd 1973	4th 1974	5th 1975	6th 1976	7th 1977	8th 1978	9th 1979	10th 1980	
.S.A.	14.0	17.0		6.				•	17.5	10.0	118.5
JAPAN	0.0	_	5.0	_		•	-	6.	•	•	Ϊ.
F.R.G.	0.0	т.	•		•	•	•	•	•	2	<u>.</u>
ITALY	0.0	0.0	1.0	2.0	2.0	2.0	7.0	ល្ច	0.0	•	
U.K.	•					•	٠	•	•	9	Эц
SWEDEN	•	_			•	•	•	•	•	•	
SWITZERLAND	•	2.0	•		•	•	•	•	•	•	•
POLAND	•	0.0			•	•	•	•	•		1 .
U.S.S.R.		0.0	•		•	•	•	٠			
FRANCE	•	0.0	•	•	•	•	•	•	•	•	• VI C
YUGOLSAVIA	•	0.0	•		•	•	•	•	•	٠	ر. م
HUNGARY	0.0	•	•	•	•	•	•	•	•	۰	•
BULGARIA	•	•	•	•	•	•	•	•	•		•
NORWAY	•	0:0	•	•	•	•	٠	•	•		
FINLAND	-		•	•	•	•	•		۰	۰	• .
BELGUIM	•	0.0	•	•	•	•	•	•	•	•	٠.
CZECHOSLOVAKIA	•	0.0	•	•	•	•	ø	•	•	•	•
ZAMBIA	0.0	•	•	•	•	•	•	•	•	•	
DENMARK	-	0.0	•	•	•	•	•	•	•	•	•
NETHERLANDS	0.0	•	•	•	•	•	•	•	٠	•	•
RUMANIA	-	0.0	•	•		•	•	٠	•	•	
TURKEY	0.0	•	•	•	•	•	•	•	٠	•	•
SPAIN	0.0	0.0	•	•	•	•	•	•		•]	•
TOTAL	15	27	35	44	43	39	74	81	51	64	473

Figure A3.8 - Distribution of the International Contributions to the Various ISIR

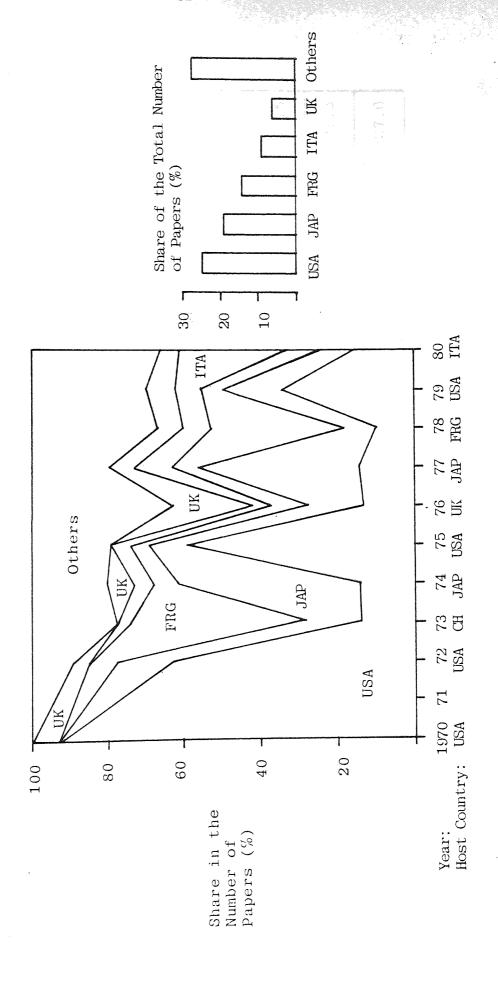


TABLE 3.7 - International Differences in the Focus of Symposia Papers (number of papers) (excluding 10th ISIR)

RESEARCH	 EXPERIMENTAL DEVELOPMENT	INNOVATION	APPLICATION	TOTAL
14.5	30.0	7.5	56.5	108.5
4.5	42.0	20.0	18.5	85.0
3.0	21.0	5.0	33.5	62.5
3.5	22.0	1.5	0.0	27.0
2.5	7.0	6.0	7.0	22.5
0.5	1.0	3.0	17.0	21.5
28.5	123.0	43.0	132.5	327:0

TABLE A3.8 - International and Institutional Differences of the Contributions to Robot Symposia (number of papers)

COUNTRY	INDUSTRY	UNIVERSITY	GOVERNMENT	OTHERS	TOTAL
U.S.A.	69.5	19.5	10.0	23.5	122.5
JAPAN	42.0	25.0	8.0	18.0	93.0
F.R.G.	29.5	14.0	1.0	27.0	71.5
ITALY	24.0	23,5	0.0	6.0	53.5
U.K.	1.0	24.5	1.0	4.5	31.0
SWEDEN	23.0	1,5	0.0	.2.0	26.5
TOTAL	189	108.0	2.0	81,0	398

TABLE A3.9 - International Differences in the Source of Finance of Papers (number of papers) (excluding 10th ISIR)

COUNTRY	INDUSTRY	UNIVERSITY	GOVERNMENT	OTHERS	TOTAL
U.S.A.	58.5	5.5	24.0	20.5	108.5
J AP AN	39.5	21.5	06	15.0	85.0
F.R.G.	22.5	8.0	22.0	10.0	62.5
ITALY	12.0	7 ° 0	2.0	1,5	22.5
U.K.	0.5	17.0	8,0	1,5	2Z.0
SWEDEN	19.0	0.5	0.0	2.0	21.5
TOTAL	152.0	59.5	65.0	50.5	327.0

over a subsector in

APPENDIX 4

CHRONOLOGY OF INVENTION AND INNOVATION

IN ROBOT TECHNOLOGY FOR DIFFERENT COUNTRIES

APPENDIX 4

Chronology of Invention and Innovation in Robot Technology for Different Countries

The following tables describe the main events related to the invention and innovation of robots. This information was mainly extracted from the issues of The Industrial Robot magazine, from the proceedings of ISIR and CIRT meetings, and from papers published in other technical journals.

The most important sources in technical magazines are divided into two: state-of-the-art reviews, and single technical news. For the first type of papers see: Frost and Sullivan (1974), American Machinist (1975), Stout et al (1976), Albus and Evans (1976), Shah and Pond (1977), Shah (1978), Rooks and Brock (1979), Bylinsky (1979), and Winship (1979). For the second type of papers for example see: The Engineer, Machinery and Production Engineering Journals.

The dates in the tables are only approximate and events not widely publicised are bound to be excluded. There is also a bias towards events in English-speaking countries, especially Britain.

Continued/....

TABLE M.1: Invention and Innovation in the United States of America

1954	Invention of "Unimate" by George Devol (Patents being generated for concepts of an industrial robot)	
1958	Development work starts AMF starts development on a "Unimate" robot directed towards machine loading and unloading	
1959	First prototype of a "Unimate" robot is produced (5 axes)	:
1961	First application of "Unimate" (diecasting)	
1962	Unimation Inc. is formed	
1963	AMF introduces "Versatran" (301 PTP system) into the market	
1966	AMF starts development work on Continuous Path Control (CP)	

TABLE A4.1 : (Continued)

1968		First a "Versat system)	First application of "Versatran" (302 CP system) (RAM)		cation etroit (in	of 30.	
1969				Introd "Auto- robots	uction of place"	Prab starts develop- ment of robots.	1
1970	1st Exhibition of CP controlled "Versatran" by AMF			IBM produce pick-and-pedevice for internal us	es Lace Se	Introduction of Burch Controls Inc. "Brute" robot	er
1971	Unimation develops "Unimate 4000" to Ford's specifica-	GM develops "SAM" for sp on moving li	s own robot spot welding lines	Westinghouse Corp. starts on robot arc	Westinghouse Electric Corp. starts project on robot arc welding	"Prab" robot intro- duced into the market	10
1972	Unimation introduces "Unimate 4000" (6 Axes)	Sundstrand robot into	d introduces o the market	Westinghouse a prototype ing (7 Axes)	Westinghouse manufactures a prototype for arc weld- ing (7 Axes)	tures cofsess	
1973	Robotics Inc. is formed			Westingla secondarc secondarc	Westinghouse manufactures a second prototype for arc welding (4 Axes)	tures	
1974							
1975	Cincinnati Milacron introduces mini- computer controlled robot		Auto-place markets programmable pnue- matic controller ("Computair")	0 t v v	Sterling Detroit Co. introduces two-armed "robotarm"	Westinghous welding rob tried on th floor	e arc ot is e shop-

TABLE M.1 : (Continued)

1976	Unimation and Ford Mo. Co. Cincinnati Milacron starts development of increases involvement	AMF introduces "Versatran nt model F" of modular construction
	s)	
1977	General Motors trials Auto-place introduces of the vision system at first commercial simple Delco Electronics vision system (optosense)	Cincinnati Milacron e introduces computed nse) path control
1978	Unimation intro- duces: "Apprentice" over Vicarm and arc welding robot for assembly "Unimate 2005F" and programmed for arc welding by high level and "Unimate 2006G" for arc welding the press transfer	Ford installs "Modular" robot Prab introduces six pairs of is introduced 5-axes robot "Unimate 6000" by Modular Machine Co.
1979	General Motors "Consight" "Versatran" robot vision system & Cincinnati licence acquired by robot nears commercial Prab introduction	Unimation intro- duces "Unimate 1000" heavyweight for diecasting and "Versatran FG" Multiarm Kawasaki robot (2000lbs) robot system (up to 8 separate arms)
1980	Unimation plans to supply "PUMA" with vision system from Standford Research Institute	

TABLE A4.2: Invention and Innovation in Scandinavia

	"Trallfa" robot project		
appr	$\overline{}$		
Fir: "Tr	First exhibition of "Trallfa" robot (Norway)		
	First robot installed in Sweden (USA robot)	ı	
	"Kaufeldt" robot is manufactured and installed for the first time (Sweden)		
Fill Ins	First "Tralfa" "Kaufeldt" robot is Installation for introduced into the spray painting (Norway) market in Sweden.	Electrolux starts development work in Sweden	
		"Electrolux" robot is introduced into the market (Sweden)	ASEA starts develop- ment work (Sweden)
			"ASEA" robot is designed (Sweden)
Firrar ar du coo	First installation of "Trallfa" robot for arc welding and intro- duction of computer control (Norway)		"ASEA" robot is introduced into the market (Sweden)
	Introduction of "HIAB-FOCOAB" robot (Sweden)	Retab introduces "Co robot (Sweden)	"Coat-a-matic"
			Continued/

TABLE A4.2: (Continued)

TABLE A4.3: Invention and Innovation in Japan

Corporation D project Corporation he first tion Inc. saki Unimate To ro i" is tarts devel- Ka inert gas op TP + linear ma ion) Ru an inn ion) Ru an introduced introduced				a builds first for pressing		wasaki starts devel- Kawasaki starts development ment of flexible of high performance robots nufacturing systems for assembly collaboration with jitsu Fanuc (1 robot d 8 NC machine tools)	Kobe Steel buys licence from Trallfa	are Fujitsu Fanuc introduces Fujikoshi develops robot with DNC system robot for heat treat-and "universal" gripper ment and arc welding	Continued/
	The Nissan Corporation starts R & D project on robots	The Nissan Corporation installs the first robot	Kawasaki buys licence from Unimation Inc.	First Kawasaki Unimate Toshiba is built robots	"Star Seiki" is developed	devel- Ka gas op linear ma in Fu	Kawasaki makes agreement Kok with Electrolux to supply fro Elextrolux robots in Japan	1 1	

Continued/...

TABLE A4.3: (Continued)

1974	Yaskawa Electric	Hitachi Ltd starts de	ts develop-	Tokyo Shibaura Electric	Electric	
	Mig. introduces "Electrun" robot for welding	robot for coating	ን ም	ically-mounted a robot (Toshiba robot)	spot welding	
1976	Yaskawa introduces "Motoman" 5-axis for arc welding	Hitachi develops computer controlled robot for coating (in collaboration w Japan Parkerising C	ith 0.)	Motoda Electronics introduces heavy- weight "PA-451520" robot (250kg)		
1977	Mitsui shipbuilding and Engineering Co. trials with welding robot with image sensor	Hitachi introduces "Mr. Aros" robot for arc welding and prox sensors	or oximity	Fujitsu Fanuc trials on Flexible Manufact- uring system (1 robot and 5 NC machine tools)	s)	Kawasaki intro- duces "Press robot"
1977	Yamaha Motor Co. S develops robot s for arc welding	Sumimoto Shipbuilding and Mach Co., develop computer controlled robot for assembly of rotors	ω	Komatsu Ltd., intro- duces modular industrial robot	Mitsubishi Heavy industries intro modular robot ("Robitus")	Heavy introduces
1978	Fuji Electric Co. Ltd., trials on visual identifa- tion and sorting with TV system in inspection	Toshiba Seiki Kintroduces curosman 1x15" r	Kawasaki devel- ops "Multiarm robot 6060"	- Kobe Steel introduces "Arcman" for arc weld- ing	Tokico robot is introduced for coat- ing	Mitsubishi Iwata introduces Nachi "Unimau 5000" for

TABLE A4.3: (Continued)

Kawasaki intro- duces new "robot 3430" for spot welding and "Multiarm robot 6060"	Kobe steel introduces arc welding robot "Arcman"
Star Seiki Ka introduces du new "Seiki XY" 34 PPD we	Toshiba and Kc Nissan develop in "Tosman 200" we for welding "A
Hitachi intro- duces "Hitachi Process" robot (small computer controlled for assembly)	Dainichikiko Co. introduces heavy weight robot "Babot" (350kg)
Fujitsu Fanucintroduces "Fanuc O" robot (attached to machine tool)	Shim Meiwa introduces sensorless sensing ("SLS") for arc weld- ing
Kawasaki Vision system near commercial exploitation	Dengensha (Sciaky license) Produces own robot "Gymnar" for spot weld-
1979	1979

TABLE A4.4: Invention and Innovation in Britain

1965	GKN buys "Unimate" licence from Unimation Inc. in USA			
1967	Hawker Siddeley Dynamics Engineering Ltd. (HSDE) buys "Versatran" license from AMF in USA			
1968	B&R Taylor Lt"Transiva" robo	B & R Taylor Ltd. develops "Transiva" robot for machine loading		
1971	HSDE trials on "Versaweld" robot for welding			
1973	HSDE introduces modular construction			
1974	Metal Box own robot	develops (Transfer arm)	Hall Automation and Binks Bullows intro- duce "Ramp" robot for coating	British United Shoe Machiner (BUSM) buys licence from USA
1975	Auto-place makes agreement with Compair Maxam and Climax-France to distribute robots in Britain and Western Europe	Hall Automation starts development of arc welder in collaboration with B.O.C.	ts "Retab" robots introduced to Britain	are Phillips R + K introduces "Area-4" from Italy
1976	Introduction of Star Seiki- robots	M"	"Mouldmate" PPD is designed and built	
				Continued/

TABLE A 4.4: (Continued)

1977	Aida and Kuka begin business in the UK					
1978	Euro Electronic Instruments Ltd., introduce pick-and-place device	0li is	Olivetti "Sigma" robot is introduced in the UK			
1978	Prab agreement with Acheson colloids to distribute robot in Britain	Hall Automation develops new control unit with non-volatile solid state memory	ops BOC develops si sensors for arc ate welding	s simple arc	Hall Automation and BOC trials of new arc welding robot	ttion and of new robot
1979	Fujitsu Fanuc agreement with Hydro Machine tools for the distribution of robot in Britain	ent Head Wrightson Mach. ools Co. (DAVY Corporation of Co.) introduces arc	Hall n "Lit hand	Ø	ASEA and Nottingham Univ (WIAG) develop adaptive deburring system	ingham levelop rring
1979	Mouldmation intro- duces punched tape sequence controller	Cincinnati Milacron robot is introduced to Britain	GKN introduces Minirobot for palletising	GKN Lincol electric buy licence from Yaskawa and introduces Linc Man for arc welding	ļ	Agency for "Renault" robots starts business
1979	Hall Automation developing "Magic Dragon"	Agreement between Unimation (Europe) and WIRS for market- ing arc welding robots	Russell of Leicester (B. Elliott Group) introduces two robots of Japanese origin ("Press hand" and Husky")	ester oup) robots gin und Husky"		British Federal Welder and Machine develops a robot for arc welding

Continued/...

TABLE A4.4: (Continued)

1980	Unimation plans for manufacturing of PUMA robots with support from DOI and NRDC (£660,000)	Hall Automation is taken over by GEC	Newtool of Fakenham introduces "SIMBOT" robot (British design)	British Robotic System starts development of assembly systems
	Fairey Group agreement with six Italian companies to market and manufacture robot welders, diecasters, and paintsprayers	nies ure ers,	Ingersoll Engineers introduces turn-key system	
-				

Invention and Innovation in the Rest of Western Europe TABLE A4.5:

1966	VFW "Transfer automat" is introduced in the FRG
1967	Industrial Marine starts development of robots for pressing (Italy)
1969	SIV starts development of spot VFW "Transfer automat" is welding robot "Deltix 6" in Italy sold to Japan from the FRG
1971	VFW-Fokker buys "Versatran" "Norda" robot is introduced license in the FRG
1972	VFW-Fokker re-introduces the "Unimate", "Trallfa", and "Aida Autohand" "Transfer Automat" in the FRG are being supplied to the FRG market
1973	First use of electrical drive, Olivetti develops modular non-ferrous disc type motors, assembly robot "SIGMA" in Italy in the FRG
1974	Keller & Kanappich (KUKA) distributes Industriale Marine (MAS) forging shop, arc welding, and introduces "Area-4" robot machine loading robots in the FRG in Italy
1975	VFW Fokker Very Fokker Very Fokker Volkswagen Volkswagen Volkswagen Volkswagen Volkswagen Volkswagen Keller & ustriale development Kanappich is formed plans in Taly Ty handling with support from the Ministry for Research & Technology Italy The FRG FIAT) Comau Ind- DEA starts development development Commed plans in Italy Italy Italy Italy Italy The FRG FIAT) Continued/

Continued/..

Continued)	
$\ddot{\circ}$	
··	
S	
4.5	
A	
TABLE	
31	
A	
Ţ	

	enten en e				THE PROPERTY OF THE PROPERTY O
1976	Olivetti OSAI introduces Sigma robot into the Italian market	Pfaff-Pietzsc ma introduces ro the FRG	czsch Industrieroboter s robot "PM-12" in	ooter	
1977	Volkswagen introduces four robots in the FRG	"Elfin" robot is introduced in Italy	Sciaky devel- ops modular robot system in France	SAF + Languepin introduce "Robolang" unit for spot and arc welding in France	Comau Zahnrad- introduces fabrik "Polar 6000" Friedrich- spot welding shafen intro- and handling duces modular robot in robot (FRG)
1978	Installation of first VW robot welding line in the FRG	Siemus buys license from Fujitsu Fanuc in the FRG	Nordson buys license from Basfer (sep- arate teaching arm) in Italy	Utita Lathe Olmat manufacturer and S develops robot are i in Italy Italy	Olmat, AISA, SLS, and Speroni robots are introduced in Italy
1978	Ranault (ACMA-CRIBIER) develops four types of robots in France	_	IWKA Keller & Knappich (Kuka) introduces "Famulus" robot	"Robox" robot is introduced in Italy	
1979	Brown Bovery Vision System near commerical exploitation (Switzerl	Vision commerical (Switzerland)	"Jobot" robot is introduced in Italy by JOBS	Bertin & Co. in collaboration with Exico introduces robot for water jet cutting in France	D.E.A. introduces Robot "PRAGMA A3000" for assemby (Italy)

TABLE A4.5: (Continued)

Renault (ACMA-Cribier) developing parts identification vision system	Sciacky buys license from Mitsubishi Heavy Industries ("RG Module" Type robot) in France
Reis introduces new Rengeneral purpose devicebot (FRG) sys	Hitachi starts marketing robots through Durr in the FRG
1979	1980

IN Elleni ! De velugment in

APPENDIX 5

CHRONOLOGY OF RESEARCH AND EXPERIMENTAL DEVELOPMENT

IN ROBOT TECHNOLOGY FOR DIFFERENT COUNTRIES

APPENDIX 5

Chronology of Research and Experimental Development in Robot Technology for Different Countries

The following sections describe the main development projects conducted in the most important laboratories around the world (source of finance is also given for some of the projects). This information was extracted from papers published in the ISIR proceedings, from different reviews on international R & D (Frost and Sullivan 1974, Albus and Evans 1976, Gonsalves and Kurlat 1977, Ferreti 1978, Winship 1979, Rooks and Brock 1979, and Bylinsky 1979), and from private reports on visits to various countries (Rooks 1974 a,b,c, and d; and Rosenbrock 1979 a,b,c,d,and e).

Since ISIR papers report work which has been undertaken long before the publication of the proceedings all dates were corrected two years (*). Thus, dates are only an approximation and the latest projects have less coverage.

^{*} According to Brock (1980), ISIR papers are outdated by 18 months. A two year period was chosen for simplifying purposes.

A5.1 Research and Development in Japan

Hitachi Limited

1. Central Research Laboratory

1970 "HI-T-HAND EXPERT -1": robot with tactile sensors for packaging solid blocks.

with Makago mechaniana.

- 1971 "HIVIP Mk. 1": Vision prototype (2 vidicon cameras) with drawing recognition, object recognition and object handling capabilities.
- 1972 "HI-T-HAND EXPERT-2": robot with tactile sensors performing an extremely precise insert operation (pistons in cylinders that have a clearance of only 20 microns) and tightening of bolts.
- "HITACHI HAND-EXE SYSTEM": objects to be recognised and handled are limited, and the environment is controlled (short cuts to hand-eye coordination).
- 1974 HAND-EYE system is tried in arc welding and in inspection of printed circuit boards.
- 1974 Robot with tactile sensors is tested in motor car assembly line putting wheels on vehicles.
- 1975 Integrated intelligent robot with multiple sensory feedback and two arms (tactile and vision sensors) developed in collaboration with the Production Engineering Laboratory.

2. Mechanical Engineering Research Laboratory

- 1972 Robot for underwater inspection (support from the Japan Society for the Promotion of Machine Industry).
- 1975 Automatic container handling device with tactile sensor.
- 1975 Automatic pouring system for cast iron.
- 1976 Materials handling device for irregularly shaped heavy work.
- 1978 Multipass welding of nozzles with an industrial robot.

3. Hitachi Research Laboratory

- 1972 Unattended travelling vehicle with optical guidance (in collaboration with Taga Works).
- 1975 Arc welding robot with sensor "Mr. Aros" (in collaboration with Narashino Works).
- 1975 Development of basic control programmes for robots with artificial intelligence (in collaboration with Narashino Works).
- 1976 Computer controlled robot for painting.
- 1977 Structural synthesis of robots.

- 4. Production Engineering Research Laboratory
 - 1975 Industrial robots with linkage mechanisms.
 - 1978 Robots for assembling a variety of mechanical parts.
 - 1979 Working on small intelligent assembly robots.

Mitsubishi Electric Corporation

- 1. Research and Development Division
 - 1971 Eye-in-hand robot with minicomputer control for recognition and orientation of parts in two dimensions (two man years).
 - 1974 Eye-in-hand robot with 6 axes and recognition and orientation of parts in three dimensions for assembly (e.g. insertion of small electric motor brushes into their housing in 15 seconds approx.) (3 man.years)
 - 1975 Automatic transistor bonding system with vision (T.V. camera).

Agency of Industrial Science and Technology (Ministry of International Trade and Industry)

- 1. Electrotechnical Laboratory (In general aiming at flexible and highly intelligent robots for use in manufacture
 - 1966 Industrial robot with vision and computer control project in the Systems Research Group.
 - 1967 Hydraulically powered single hand robot with visual system (in collaboration with the Tokyo Institute of Technology).
 - Design of articulated manipulator with torque control ability by the Automatic Control Division (in collaboration with the Manufacturing Development Laboratory of Mitsubishi Electric Corporation).
 - 1973 Robot with laser tracking, vision (mono and colour), tactile systems, and computer control for recognition and orientation of solid objects.
 - 1975 Versatile finger system (Automatic Control Division in collaboration with Drive System Co.).
 - 1975 Tactile sensor for a moving robot (in collaboration with the Tokyo Institute of Technology and Nippon Mining Co. Ltd.).
 - 1976 Robot (7-axes), visual and tactile sensing, and locomotion system for turning a crank or inserting a peg into a hole.
 - 1977 Working on two-hand coordinated manipulator for sawing and drilling.
 - 1977 Working on pattern and voice recognition.
 - 1979 Flexible complex manufacturing system provided with laser.

- 2. Mechanical Engineering Laboratory (In general working towards creating human-controlled robots for dangerous environments)
 - 1974 Force control actuator system and adaptive manipulator.
 - 1975 High precision manipulator with visual sense
 - 1976 Involved in research in a two-hand coordinated system with 3-dimensional pattern recognition to be operative by 1985.

Tokyo Institute of Technology

- 1. Department of Physical Engineering (70% subsidised by the Ministry of Education and 30% from Industrial contributions) (working on duplication of humans and animals)
 - 1972 Reticular locomotive robot.
 - 1974 Active cord mechanisms with tactile sensors.
 - 1975 Softgripper for versatile robot hand.
 - 1976 Micromanipulator with a piezoelectric tactile sensor.
 - 1978 Micromanipulator with multi degrees of freedom and a piezoelectric tactile sensor.
- 2. Department of Control Engineering
 - 1972 Programming and teaching method for an industrial robot (in collaboration with the Machinery Division of UBE Industries Ltd).
 - 1975 Robot with visual signal processing system.
 - 1975 Robot system for tapping work(in collaboration with four companies).
- 3. Research Laboratory of Precision Machinery and Electronics.
 - 1972 Simple vision for robots.
 - 1977 Features for discrimination of complex shapes.

Kawasaki Heavy Industries

- 1972 Computer control of robot with vision (position, orientation and pick-and-place of flat parts making use of problem orientated language "Robotlan") (Technical Research Laboratory).
- 1972 High Performance robot for arc welding and assembly (Industrial Robot Systems Department).
- 1978 Kawasaki vision system.

University of Tokyo

- 1. Department of Precision Engineering (research aims: speeding-up arm movements, development of high level languages, better sensors, teaching methods, and operation in hostile environments).
 - 1972 Remote control system with image registration (in collaboration with Tokyo Electrical Engineering College).
 - 1979 Development of robotic arm (6-axes) as a standard tool for R & D (Arm built by Sumitamo Heavy Industry) (Financed by the Science Council of the Education Ministry: £50,000).
- 2. Department of Mechancial Engineering for Production.
 - 1972 Study of tactile sensor for shape recognition.

Waseda University

- 1. Mechanical Engineering Laboratory (95% financed by the Ministry of Education and the rest from private funds) (In general concentrating on prosthetic devices and artificial intelligence. Aim to build robot capable of walking, talking, seeing and hearing).
 - 1972 Anthropomorphous (2-arms) manipulator with cooperational control: "Melarm".
 - 1973 Tactile type hardness sensor for versatile hand.
 - 1976 Artificial walking machine "Wabot".
 - 1976 Artificial leg and arm.
- 2. Systems Science Institute
 - 1970 Study of the application of robots.
 - 1971 Analysis of the characterisitics of robots in the market.
 - 1972 Robot system design for labour saving and safety (supported by the PALS Committee of JIRA and JMSA trade associations).
 - Robot and computer control system design (in collaboration with the Kawasaki Heavy Industries and Oki Electric Industries, and supported by the PALS Committee of JIRA and JMSA).
 - 1975 Robot applications for improving the quality of working life.

Nagoya University

- 1. Department of Electrical Engineering
 - 1970 Robot and tactile sensor for slip detection (in collaboration with Aichi Inst. of Technology).

- 1971 Adaptive grasping for an industrial robot.
- 1972 Sensors for an industrial robot.
- 1973 Control of grasping (in collaboration with Aichi.Inst. of Tech.).
- 1974 Simple vision systems for industrial robots.
- 1977 Robot with simple distance sensor and minicomputer control (supported by the Ministry of Education).
- 1978 Colour sensing for an industrial robot.

A5.2 Research and Development in USA

SRI International Inc. (formerly Stanford Research Institute, Stanford University)

- 1969 Stanford hand-eye project (machine perception research).
- 1970 Experiments in scene analysis and robot vehicle "Shakey" (Artificial Intelligence Centre sponsored by the Advanced Research Project Agency of NASA. SRI project 8259).
- 1973-75 Exploratory research on advanced automation (sponsored by National Science Foundation under project NSF G1-38100X1 and 12 industrial affiliates).
 - (i) Tactile and simple force feedback in packaging a box with water pumps (slow but potentially fast if controlled by dedicated computer).
 - (ii) Gripper with sensory fingers for part recognition.
 - (iii) Manipulator path control software
 (kinematic control, resolved motion rate
 control, and visual servoing).
 - (iv) Wrist force sensory system for "Stanford arm".
 - (v) Experimental vision systems.
- 1976 Demonstration of the use of force feedback for riveting application and binpicking using electromagnets as grippers.
- Servoing with visual feedback. Eye-in-hand Unimate 2000A (later converted to Unimate 2000B) with microcomputer control. Currently debugging software for microprocessor control of this arm. System tested for screwing two bolts in pump case (sponsored by the NSF APR 75-13074 and 10 industrial affiliates).
- 1977 Vision system (hardware and software) (sponsored by NSF APR 75-13074 and 16 industrial affiliates).
- 1977 Eye-in-hand project continues.
- 1977 Interactive compiler for more productive programming of computer controlled robots (in collaboration with Phillips Research Centre in Britain).

- 1979 Bin-picking experiments using a voice-controlled Unimate with electromagnetic end effectors (one-sentence spoken commands relating to portions of an assembly job) (sponsored by NSF and 18 industrial affiliates).
- 1979 Bowl feeding system with visual feedback (avoid the use of mechanical orientation devices).
- 1979 Robot assembly of cylinder heads onto a small compressor with vision.
- 1979 Robot with vision for recognition, picking up and orientation of parts on conveyor belt.

Artificial Intelligence Laboratory, Computer Science Department, Stanford University

- 1967 Optical feedback in computer control of arm (machine perception research: identification and picking-up of parts in random positions).
- 1971 Visual perception by computer.
- 1973 Computer description of curved objects.
- 1973-75 Computer integrated assembly systems project:
 - (i) Indirect force feedback trhough changes in the current of dc actuators
 - (ii) Assembly system tested for water pumps.
 - (iii) Different approaches to vision. Survey on sensors.
- 1975 Laser sensory system for three dimensional scene analysis.
- 1976 Task description language for assembly (Problem orientated language: AL).
- 1979 Pointy system: robot with vision for location, picking up and assembly of screwed parts onto the body of a valve

The Charles Stark Draper Laboratory Inc. (formerly The Charles Stark Draper Lab of MIT)

- 1970 Early model of wrist force sensor for teleoperator.
- Multimoded remote manipulator system (sponsored by NASA and AEC Space Nuclear Systems Office) (in collaboration with MIT)
- 1973 Force vector assembly concept (indirect sensing of force for gross motion control).
- 1974-75 Exploratory research on industrial modular assembly (sponsored by NSFG1-39432X and G1-4378) (in collaboration with MIT):
 - (i) Survey on sensors.
 - (ii) Force information in assembly process (vector force sensing for assembly operations. Close tolerance peg-in-thehole problem).

- (iii) Pedestal and wrist force sensors for automatic assembly (measurement of work forces of insertion operations in 6-axes).
 - (iv) Latest model of wrist force sensors (developed a force feedback strategy based on active accommodation).
 - (v) Mathematical model for the compliance wrist.
 - (vi) High speed robot assembly of precision parts using compliance instead of sensory feedback.
- 1976 Programmable robot assembly station for assembly of automobile alternators (17 parts) (Computer controlled, 4-axes manipulator with compliance wrist, six interchangeable tools, and two assembly fixtures).
- 1977 Cycle time analysis programme of assembly systems (sponsored by NSF APR 74 18173 AO3).
- 1977 Remote Centre Compliance wrist on trials.
- 1978 Monitoring of applications for the RCC.

MIT Artificial Intelligence Laboratory

- 1973 Vision systems for robots (Machine perception research A-TR-281 and AD-775-439).
- 1973 Scene analysis in a non-hierarchical structure.
- 1975 Parts recognition, positioning and orientation techniques with solid state arrays.

University of Rhode Island

- 1973 Visual robot instruction (sponsored by NSF APR 74 13935).
- 1974 New robot programming devices (sponsred partly by NSF APR 74 13935).
- 1975 Algoriths to visually acquire workpieces (sponsored by NSF APR 74 13935).
- 1976 Three approaches for acquiring workpieces using robots (sponsored by NSF APR 74 13935).
- 1977 Complex vision system. Recognition and orientation of parts randomly heaped on a chute (sponsored by NSF APR 74 13935).
- 1978 Complex vision system. Work on reduction of the time response (sponsored by NSF APR 74 13935).
- 1978 A contour adapting vacuum gripper.
- 1978 Hardware computation of image features based on local gradient direction histograms.
- 1979 Complex vision system (Binary image and standard T.V. camera).

General Motors Research and General Motors Manufacturing Development

- 1973 Computer vision for simulated assembly tasks (orientation, positioning and assembly of wheels on hubs).
- 1975 Machine perception project.
- 1976 Programmable computer vision system.
- 1976 Programmable Universal Machine for Assembly:
 PUMA project for human and robot assembly (in
 collaboration with Unimation Inc.). Tested for
 assembly of printed circuit boards.
- 1977 Consight: vision based robot guidance system (first practical approach to vision. Demonstrated recognition of multiparts in a scene where some parts are partially occluded or abult).
- 1979 Consight and PUMA project continue.
- 1979 Dynaslide system for feeding and orientating.
- 1979 Compound compliance devices.

Westinghouse Electric Corporation

- 1. Research and Development Centre
 - 1973 Robot for arc welding with contouring teach mode.
 - 1973 Requirement analysis and justification of intelligent robots (partially supported by the NSF).
 - 1976-79 Adaptable Programmable Assembly Systems (APAS)
 Project. Biggest effort to produce automated assembly: pilot production line with seven robots for assembly of five different electronic motors (partially supported by the NSF).

IBM

- 1. Thomas J. Watson Research Centre
 - 1972 Experimental system for computer controlled assembly with sensory feedback.
 - 1973 Computer controlled robot for mechanical assembly for subassembly of typewriters (problem orientated language ML).
 - 1979 Assembly automation and parts description languages.

Texas Instruments

1979 Assembly automation with vision sensors (a robot with T.V. cameras for assembly of pocket calculators has been designed).

GTE Laboratories Inc.

- 1973 Video target locator.
- 1973 Minicomputer controlled robot for T.V. tube handling.
- 1975 Structured software system for industrial automation (use of simple vision and problem oreintated language Alpha).

化化二磺胺医普温德

National Bureau of Standards

- 1973 Hierarchical control (cerebelar model articulation controller).
- 1974 Control strategies for industrial robots.
- 1977 Hierarchical control of robots using micro-computers.
- 1977 Mobile simple vision system.
- 1978 Measurement and control model for adaptive robots.

Unimation Inc.

- 1975 Assembly experiment. Two armed robot "Unimate 6000" (in collaboration with Ford Motor Company).
- 1976 Robot path controlled by off-line computer (in collaboration with CONDEC).
- 1978 Automatic control of an IR by vision.

Cincinnati Milacron Inc.

- 1973 Computer controlled robot.
- 1976 Computed path control.
- 1977 New wrist.
- 1977 Software.
- 1978 Off-line programming

Jet Propulsion Laboratory

- 1975 Robot vision system (laser + T.V. manipulator for Marsian surface).
- Remote sensing: proximity, slip, and touch sensors (e.g. plastic skin for robot hands).

- 1979 Shuttle remote manipulator system.
- 1979 Speech command (voice recognition).

Lockheed - California Co.

1979 Vision controlled fastening of aircraft structures.

United Space Boosters Inc.

1979 Utilisation of a robot system on the solid rocket booster components for the NASA space shuttle programme.

Johnson Space Centre

1979 Shuttle Remote Manipulator System (SRMS).

A5.3 Research and Development in Britain

Nottingham University

- 1. Department of Pruduction Engineering and Production Management, Department of Electrical Engineering, and Wolfson Industrial Automation Group (WIAG).
 - 1968 Flexible automated assembly systems (1st Programmable assembly system for assembly of Post Office relays).
 - 1970 Visual feedback to programmable assembly machinea (with support from the Science Research Council).
 - 1972 SIRCH robot
 - 1974 Versatile variable mission assembly machine.
 - 1974 Novel techniques for tactile sensing (with support from the SRC).
 - 1975 Computer graphic simulation of robot systems (with support from the SRC).
 - 1976 Three dimensional part identification with tactile sensors.
 - 1977 Versatile parts feeding package with vision feedback (in collaboration with Tecquipment Ltd. and support from the SRC).
 - 1977 Robot blacksmith (in collaboration with Hitachi Ltd.
 - 1978 Recognition and orientation through teletext.
 - 1978 Opendie forging (in collaboration with Hitachi Ltd)
 - 1978 Interactive computer graphics.
 - 1979 Ring forging with an industrial robot.

Edinburgh University

1971 Picture processing (machine perception project).

The Cincipal States of Con-

- 1972 Versatile computer controlled assembly system.
- 1974 Machine vision.
- 1977 Assembly description languages (with support from the SRC).

Surrey University

- 1972 Opto-pnuematic manipulator arm (simple vision by photo-diode).
- 1975 Microprocessor control and pneumatic drive for a manipulator.
- 1977 Electro-pneumatic industrial manipulator.

Birmingham University

- 1. Department of Mechanical Engineering
 - 1973 Simple and accurate positioning system.
 - 1975 Robots for cold forging (petro forging).
 - 1977 Fettling of castings (with support from the SRC).

Warwick University

- 1975 Tactile, sonar, and parallax sensors (with support from the SRC and NRDC).
- 1977 Mobile robot project (with support from the SRC).

University College London

- 1976 Mechanical manipulation for the investigation of disordered environments.
- 1978 3-degrees of freedom manipulator.
- 1979 Real time teaching and recognition system for robot vision.

University of Wales

1977 Vision System (with support from the British United Shoe Machinery and the Post Office).

National Engineering Laboratory (fully supported by the British Government)

1975 Computer control of arc welding (Unimate 2000B/ 5-axes/interpolation) (supported by DoI Mech.Eng. and Mach. Tools requirements Board).

- Robots for arc welding (in collaboration with the Welding Institute).
- A5.4 Research and Development in the Federal Republic of Germany

Berlin Technical University

- 1973 Flexible manufacturing system (two milling machine tools plus a transfer automat robot) (in collaboration with SIEMENS).
- 1975 CNC control of robots with a modular programming language (supported by the Federal Ministry of Research and Technology under the Humanisation of work programme).
- 1975 Model for a flexible manufacturing cell for rotor parts (in collaboration with Gilldemeister-Max Muller and support from the FMRT).
- 1976 Visual system (image converter with photoelectric sensors).
- 1976 Flexible manufacturing cell for rotor parts (in collaboration with the Gildemeister/Max Muller and support of the FMRT).

Institut fuer Informationsverarbeitung in Technik und Biologie (IITB), Karlsruhe

- 1975 Path control for a redundant type of robot.
- 1976 Direct digital control (with support from the FMRT DV5.505 + F683.19).
- 1976 T.V. sensor for an industrial robot (with support from FMRT BFTHdA01VV135-B13-TAP006 + ARGE-HHS).
- 1976 Identification of silhouettes (with support from the FMRT ARGE-HHS 01VV 046-2K 7AP 0004).

Institut fuer Produktionstechnik und Automatisierung (IPA) Stuttgart

- 1969 Industrial robots: problems and opportunities.
- 1970 Study of the state-of-the-art of robots in West German industry.
- 1971 Analysis of automatic handling systems
- 1971 Survey of the characterisitics of robots world-wide.
- 1971 Survey of the workplace requirements for robots.
- 1972 Comparison of required and available robot characteristics.
- 1973 Design of machine tools for automatic handling.
- 1974 Computer aided selection of robots.

- 1975 Test stand for industrial robot performance.
- 1976 Performance evaluation and standardisation of terms (with support from the FMRT ARGE-HHS).
- 1976 Flexible assembly (with support from the FMRT ARGE-HHS).
- 1976 Tactile sensor controlled IR for machining (FMRT ARGE-HHS).
- 1976 Multi-processor control system for an IR.
- 1976 Planning robot introduction by computer (FMRT ARGE-HHS).
- 1977 Advance tactile sensitive robot for grinding (FMRT BMFT-TAP0004).
- 1977 Fully flexible manufacturing cell.
- 1978 Deburring and fettling by sensor controlled IR
- 1978 An APAS using compliance and visual feedback.
- 1978 Concepts for standardisation of feeding systems.
- 1978 Potential for robots in new fields.
- 1979 Automatic positioning of parts with vision and tactile sensors.
- 1979 Vibrating bowl feeders with modular design.

University of Aachen

1976 Adhesive pallet (in collaboration with Sachs System-Technik and support from the FMRT).

Volkswagenwerk

1976 VW robot programme (with support from the FMRT ARGE-HSS).

Bosch

1976 Optoelectronics identification sensors (support from FMRT ARGE-HHS).

Karlsruhe University

1977 Vision system (support from FMRT SRT V5.505).

IBP Pietzch

- 1976 Electropneumatic robots (with support from the FMRT 01VC024 213TAP0002).
- 1978 Flexible ordering and feeding of workpieces using intelligent workplace recognition devices.

Pfaff Industrie Maschineu

1976 Adjustable jaw geometry grippers (with support from FMRT ARGE-HHS).

ortweetes (OWAT)

SIEMENS

1976 SIEMENS Robot

Zahnradfabrik Friedrichshafen

1976 Flexible systems with modular handling system (with support from the FMRT and the DFVLR).

A5.5 Research and Development in Italy

Milan Polytechnic

- 1. Artificial Intelligence Project
 - 1973 Emergency recovery for intelligent robots.
 - 1975 Multimicroprocessor control of robots (in collaboration with the Institute of Electrotecnia and Electronics of Milan Polytechnic IEEMP).
 - 1975 Programming an industrial robot in Italian.
 - 1977 Sensing system for Supersigma robot (in collaboration with the IEEMP).
 - 1977 Multipurpose Assembly Language MAL (in collaboration with the IEEMP).
 - 1978 Distributed robot programming.
 - 1978 Microcomputer based stepping motor drive.
 - 1978 User defined control structures in programming languages for robots.
 - 1978 Precision measurement by stereo vision system.
 - 1978 Programme abstraction and error correction for intelligent robots.
- 2. Institute of Mechanics and Machines
 - 1975 Design of multipurpose mechanical hands (supported by the Italian National Research Council INRC).
 - 1976 Prehension of a robot mechancial hand (supported by the INRC).
 - 1978 A new mechanical structure for robots.
 - 1978 General prehension elastic system (in collaboration with Alpha Romeo).

Olivetti Systems for Industrial Automation (OSAI)

- 1973 Sigma assembly robot project.
- 1975 New parts orienting device.
- 1976 Sigla assembly language.

Centro.Richerche FIAT

1978 Industrial robots with sensory feedback for continuous arc welding.

Genoa University

- 1976 Position steering by statistical controllers (in collaboration wit Lehigh Univ., USA)..
- 1978 Linguistic approach to measurement of 3-D motions of kinematic chairs.
- 1978 Control of anthropomorphous manipulator dynamics.

Elsag

1978 Formal language for 3-D objects description in robot vision.

SEPA

- 1976 IDRA-12 Fully static memory sepa control system for CP robots.
- 1978 New advanced control system for PTP robots.

Instituto Progetti di Macchine e Tecnologie Meccaniche de Bologna

1978 Multi-finger gripper.

A5.6 Research and Development in France

IRISA/ENSM/SAGEM

- 1976 Recognition and sorting of pieces (supported by grant DGRST No. 77-7-009S)
- 1976 Infrarred sensors.

Laboratorie d'Automatique de Montpellier

- 1977 Optimal pattern recognition method.
- 1977 Artificial skin sensor.

- 1978 Vision-movement interaction in handling by robot.
- 1978 Computer-aided design of robots.
- 1978 Force controlled robot.

Laboratoire d'Automatique Toulouse

- 1978 Multisensor system for mobile robot "HILAIRE".
- 1978 Task-specific planning in a blocks-world assembly experiment.
- 1978 Dynamic control of manipulator.

A5.7 Research and Development in Switzerland

Ecole Polytechnique Federale de Lausanne

- 1974 Rules for building robots.
- 1975 Description and control of the state of a robot.
- 1976 Force feedback control.
- 1976 Vision system (polar coding).
- 1976 Vision system (sponsored by SCERS 880 project).
- 1977 Visual recognition and handling (in collaboration with Swiss Institute of Technology and Linkoeping University Sweden)(Supported by SCERS 880 project).
- 1978 Design of APAS (in collaboration with Waseda University Japan).
- 1978 Dynamic parameters for robot arm.
- 1978 HYDRA robot controller.

Brown Boveri Research Centre

- 1976 Flexible opto-electronic sensor
- 1977 Optoelectronic sensor
- 1979 Vision System (near commercial exploitation)
 Identification, orientation and pick-andplace of objects in two dimensions.

A5.8 Research and Development in Scandinavia

Production Engineering Laboratory, NTH-SINTEF, Norway (Foundation for Industrial research at the Norweigan Institute of Technology)

1976 Flexible manufacturing cell (4 machine tools, one Cincinnati robot, and peripheral equipment).

Academy of Finland and Helsinki University of Technology

- 1975 Digitally implemented sensing and control for standard robots.
- 1976 Object recognition and handling with a robot with vision (2-dimension and stationary parts).
- 1977 Reduction of visual data by a programme controlled interface.

Linkoeping Institute of Technology Sweden

1978 Subassembly of an axle to a gear box by robot.

ASEA Sweden

1977 Adaptability for industrial robots.

APPENDIX 6

THE GROWTH IN ROBOT SUPPLY AND MANUFACTURE

APPENDIX 6

The Growth in Robot Supply and Manufacture

A compilation of estimates of the number of firms and robot models, and of the nominal capacity of manufacture of various firms is given below. Tables A6.1 and A6.2 show figures selected from a wide ranging sample, some of which vary significantly. Several sources of error may be noted. The type of firm (distribution agency, licensee or manufacturer), the type of robot, and the method of estimation, were not specified by the sources and are likely to be different. Thus, these tables can only be used to illustrate broad trends like the tendency for less robot establishments after a sudden burst in market entries. As this happened, successful firms grew substantially (Table A6.3).

of Firms Barbetion

TABLE A6.1 - Approximate Number of Firms Marketing Industrial Robots

	1962	1968	1972	1973	1974	1975	1976	1977	1978
W. Europe		2^{A}	8 ^A	16 ^A	21 ^A			40 ^F	
USA	1	2^{A}	20 ^A	31 ^A	45 ^A			40 ^F	
Japan		1 ^A	40 ^A	52 ^A	70 ^A			120 ^E	
World Wide	1	5 ^A	68 ^A	99 ^A	136 ^A	150 ^B	170 ^C	200	140 ^D

Notes:

- A Grefermann et al (1975, p75)
- B Ciborra et al (1976, p.188)
- C Compressed Air (1976)
- D Belyanin and Rozin (1978)
- E Yonemototo and Shiino (1977, p.171)
- F Warnecke and Schraft (1977a p.25)

TABLE A6.2 - Approximate Number of Robot Models

				45		
	1962	1973	1974	1975	1976	1977
W. Europe		A,F 23-35		69 ^G	·	
USA	1	A,F 16-21		36 ^G		
Japan		A,F 91-112		120 ^G		
Worldwide	1	A,F 142-156	250 ^B	250 ^C	200 ^D	200 ^E

Notes:

- A Hasegawa (1973, p.59)
- B Ghali (1974, p.114)
- C Ghali (1975)
- D Compressed Air (1976)
- E Warnecke and Schraft (1977a)
- F Heginbotham (1973, p.R1-10)
- G Tassel (1975)

TABLE A6.3 - Nominal Capacity for Robot Manufacture in Various Firms and Countries (Robots per annum)

		-	1	1					the second secon
FIRM	1972/3	1974	1975	1976	1977	1978	1979	1980	1981
Unimation	A 180-240	240^{B}	300 _C		360 ^D	480 ^D	$540^{ m E}$		
AMF		60 ^F							
Kawasaki Heavy Industries		B,F 60			200 ^G		200-225 ^H	300 ^I	
Fujitsu Fanuc							120–180		
Electrolux						100^{K}			
Volkswagen						$156^{ m L}$		-	
Hall Automation			,			24-36 ^M	36-48 ^N	108 ^N (Planned)	162 ^N (Planned)
Cincinnati Milacron (Planned)							,	400 ^O	
Unimation PUMA UK (Planned)									120 ^P
Japan's five largest manufacturers							400–450		
Scandinavia (Sweden and Norway)	120-180				·				
								,	

On average, economies of scale start to become significant at the 2000 robots per year level (R)

Continued/...

Notes for Table A6.3:

- A Tassel (1975)
- B Engelberger (1974b; p.145)
- C Lamb (1975)
- D Cakebread (1978)
- E McNeil (1979, p.60)
- F Frost and Sullivan (1974, p.73)
- G Wider (1977, p.37)
- H BRA (1979, p.154)
- I Brock (1980)
- J Barson (1979, p.11)
- K Dale (1979)
- L Hartley (1978, p.68)
- M Hall (1978)
- N Rooks (1979, p. 164)
- O Scarbrough (1980, p.18)
- P Duffy (1979b)
- Q Engellau (1972, p.49)
- R Average from figures given by Hall (1978) and Cakebread (1978)

ache, rial Zabots

APPENDIX 7

THE INTERNATIONAL DIFFUSION OF INDUSTRIAL ROBOTS

APPENDIX 7

The International Diffusion of Industrial Robots

Estimates of the number of robots installed at different points in time in different countries vary widely. Several problems exist: the definition of a robot is not precise and standardised; robots sold are not always installed and others may have been discontinued after unsuccessful trials; and in-house development and use of robots is less well-known. The number of robots sold was chosen as an indicator of the robot population. To improve the accuracy of these estimates several sources were used.

Disaggregated figures fo robots sold per make per country were collected for the years 1974, 1976 and 1978 (see Tables A7.1, A7.2 and A7.3). These are only samples of the population in each country and are more representative of Western Europe (Sweden in particular) than they are of USA and Japan. The different makes of robots were divided into classes with the purpose of giving some information on the extent of use of PPD's. This is bound to be less representative than the information on SR's and servo controlled robots.

As many estimates of the aggregaged figures of robots sold or of the robot population per country per year were collected. A selection of these estimates was then made using the disaggregated information as an aid. Selection of a range rather than single estimates were preferred with the purpose of giving information on the variance of the data. If a source was thought to be more reliable than the rest, this was the only chosen (see Table A7.4).

Further information on the international differences of robot usage is given with reference to spot welding in the motor car industry; the single most successful application of robot technology (see Table A7.5, A7.6 and A7.7).

- The International Diffusion of Robots by 1974 - A Sample (Cumulative number of robots sold) TABLE A7.1

T	T	T	T		5 10 10 coxeder-						
W/wide		772–822	433–458	251	∞	7	30	10	-300	30	1836–1911
Others		4	8 ^D	9							18
USA		200c	2509	6							759
Japan	MTR's)	100 ^C	75 ^Q	33			-		300		508
W. Europe	Medium and High Technology Robots (HTR's and MTR's)	C,B 140–222	F,Q 100-125	203	8	2	30	10		30	523–630
Others	logy Robot	5 ^A	4	8		1					18
France	gh Techno	11A	ဗ	27							41
ďĶ	and Hig	T,A 14-16	D,E 42-50	20							98-92
Italy	Medium	79 ^A	$g_{\mathbf{D}}$	23							111
FRG		30 ^A	D,A 5-6	69				10		30	144–145
Scandinavia (Sweden)		31(25) ^A	3(3) ^D	56(46)	8(8)	1(1)					99(83)
MAKE		Unimation	AMF (Versatran)	Trallfa (G)	Asea (H)	Retab (A)	SIV Robots (M)	ARO (A)	Yaskawa (N)	IWKA KUKA (0)	Total: MTR & HTR

Continued/...

TABLE A7.1 - (Continued)

-						- A (\$20) 21 - A (
W/wide	•	104	A, J 267–300	10	5						386-419	2222-2330
Others		1									1	19
USA								50	100	>250	> 400	1159
Japan		5									5	513
W. Europe		86	.87	5	. 5						195	718-825
Others	s)	3		·							3	21
France	Simple Robots (SR's)	П				-						42
UK	imple Rok		1^{A}		·	·	9				2	83–93
Italy	Š	П						-			-	112
FRG		15	1 ^A	5	5	1					27	171–172
Scandinavia (Sweden)		78(64)	85(80) ^A								163(144)	262(227)
COUNTRY		Electrolux (I)	Kaufeldt	Aida (A)	Fibro (A)	VFW Fokker (A)	B & R Taylor (Transiva) (L)	Prab (Q)	Snow Manufact'g (R)	Autoplace (P)	Total: SR	Total: MTR & HTR & SR

Continued/....

90

TABLE A7.1 - (Continued)

				Į.	90
W/wide		. 56			2248-2356
Others					19
USA					1159
Japan					513
W. Europe		26		s 4000–5000	4718-5825
Others	(bpd's)		-		20
France	Pick-and-Place Devices (PPD's)				42
UK	d-Place				83–93
Italy	Pick-an				112
FRG					171–172
Scandinavia (Sweden)		26(18)		26(18)	288(245)
MAKE		DIS (EKOMAT) (K)		Total: PPD	Total

Continued/....

Notes for Table A7.1

- A Warnecke et al (1974, p111)
- B Unimation (1975, p29)
- C Frost and Sullivan (1974, p70)
- D Information provided by Hall Automation (Hall 1978)
- E Birnie (1974b, pG18)
- F Birnie (1974a, pE2-17)
- G Information provided by The De Vilbiss Company Ltd. (Mooney 1978)
- H Information provided by ASEA Electronics Division (ASEA, 1979)
- I Information provided by George Kuikka Ltd. (Ryott 1976)
- J Lassi (1974, p441)
- K Information provided by Direct Transport Services (Sweden) Ltd (Sjoelin 1978)
- L Estimate for 1973 (Hunter 1973, pR-292)
- M Alessio (1974, pG-21)
- N Yoshinari et al (1974, p475)
- O American Machinist (1975, p101)
- P Estimates for 1972 (Adams 1972, p203)
- Q Frost and Sullivan (1974, p73)
- R Frost and Sullivan (1974, p83)
- S Tassel (1975)
- T See Appendix 10

Continued/....

ts by 1976 - A Sample	s sold)
TARIE A7.2 - The International Diffusion of Robots by 1976 - A Sample	(Cumulative number of robots sold)

COUNTRY	Scandinavia (Sweden)	FRG	Italy	ZK CK	France	Others	W. Europe	Japan	USA	Others	W/wide
			Medi	un and I	Medium and High Technology Robots	ology Robo	(MTR's	and HTR's)	(8		
Unimation	81(74) ^A	>18 ^B	> 58 ^B	20 ^M	>52 ^B		>225	186 ^B	>175 ^B	>15 ^B	CN 1000-1400
Trallfa (D)	95(71)	91	46	28	29	11	300	72	29	53	398
Asea (E)	55(55)	5		2	. 2		64			2	29
Olivetti (F)			>12				>12				>12
Hall (Bamp)				M ² 2							
Total MIR & HIR	231(194)	>114	>116	52	> 83	11	>601	>258	>205	۶۲0	1477-1877
	-			Simple	Robots	(SR's)					
			,	· .			196	14		9	216
Electrolux (G)	159(127)	24	-	4	4	r	DOT .				004
Kaufeldt (I)											>400
Showa Kuatsuki (VFW Fokker Transferautomat)				· · · · · · · · · · · · · · · · · · ·	and the second seco			100			
(1) (1) V									> 500	. •	>500
Autoplace (L)	1 200	*		₹.	4	4	196	114	> 500	9	>1116
Total: SR		74	- E	+	207	1.7	>797	>372	>705	>76	2593-2993
Total: MTR & IFFR & SR	n 390(321)	138	TIL.	8	10/	01					

Table A7.2 - (Continued)

					Ş	33		
W/wide				43		300	343	2936–3336
Others				3			3	> 79
USA								>705
Japan								>372
W. Europe				40			40	>837
Others	(PPD's)							15
France	Pick-and-Place Devices (PPD's)			·				787
UK	nd-Place	10	,- 4		7			72
Italy	Pick-a							117
FRG								138
Scandinavia (Sweden)				40(31)			40(31)	430(352)
COUNTHY		Mullard (M)	Hall (M)	DIS (EKOMAT) (H)	Starseiki (M)	Sterling Detroit (J)	Total: PPD	Total

Continued/..

Notes for Table A7.2

- A Information provided by George Kuikka Ltd. (Electrolux are suppliers of Unimate in Scandinavia) (Ryott 1976)
- B Information is limited to automobile spot welding applications. Provided by Unimation (Europe) Ltd (Cakebread 1978)
- C Engelberger (1976a, pJ 4-56)
- D Information provided by the De Vilbiss Company Ltd. (Craine 1978)
- E Information provided by ASEA Electronics Division (ASEA 1979)
- F Estimates for 1975 (D'Auria and Salmon 1976)
- G Information provided by George Kuikka Ltd (Ryott 1976)
- H Information provided by Direct Transport Services (Sweden) Ltd (Sjoelin 1978)
- I Estimate for 1975 (American Machinist, 1975, p99)
- J Canner (1975, p171)
- K Toussaint (1976, pG1-4)
- L Potter (1975, p56)
- M See appendix 10
- N Information provided by Unimation (Europe) Ltd. and valid for January 1977 (Cakebread 1978)

TABLE A7.3 - The International Diffusion of Robots by 1978 - A Sample (Cumulative number of robots sold)

	Scandinavia (Sweden)	FRG	Italy	M	France	Others	W. Europe	Japan	USA	Others	W/wide
	I		Medium	and Hig	gh Technol	ogy Robo	Medium and High Technology Robots (MTR's and HTR's)	nd HTR's)	-		
100(91) ^A		50 ^A	A, B 200–288	A, C 50-70	70 ^A	80 ^A	D, E 500–658	F 400–500	G 942–1300 	0	B 2100–2200
154(105)		148	110	45	47	18.	522	117	47	98	772
117(110)	I	25	4	14	19	26	205		4	16	225
4(4) ^A	i			J,A 20-50		6^{A}	30–60				100^{J}
		75–100					75–100				75–100
		100					100				100
					25–30		25–30				25–30
di digina manancia manancia manancia manancia manancia manancia di Caratta da	i		13 ^A		8 ^A	1^{A}	22^{A}				>22
	1		20				20				20
	1 1		10				10			<u>:</u> :	10
1 ,		4					ಬ			- :	7.5
		5					ಬ			-	2
376(310)		407-432	357-445	129–179	169–174	131	1519-1737	517-617	993–1351	102	3459-3589
										Continued/	1/

TABLE A7.3 (Continued)

			e descri	C	6									
W/wide		551–652	> 520	280–285	400–500	100	28	1909–2115	5368–5704		12000	>37	11–21	med/
Others									102					Continued
USA		300%		270				570	1563–1921			36		
Japan		25^{P}	500					525	1042-1142		10000			
W. Europe		226–327	20	10-15	400-500	02	58	784–990	2303-2727		7 15	>1	11–21	
Others	R's)	28 ^A				, , , , , , , , , , , , , , , , , , ,		28	159	s (PPD's)				
France	Robots (SR's)	$_2^{A}$				•	2	4	173-178	ce Devices				
当	Simple	0,A 6-10	⊣			10		17-21	146-200	Pick-and-Place	15		1	
Italy		10 ^A				09		. 02	432-457 427-515	Pick				
FRG		25 ^A						25	432-457				10-20	
Scandinavia (Sweden)		A,N 155–252 (252)			(400-500)		56	611–808 (652–752)	987–1184 (962–1062)					
COUNTRY		Electrolux	Aida (R)	Prab (X)	Kaufeldt (U)	MAS (Area 4) (a)	Rosenlew (A)	Total: SR	Total: MTR & HTR & SR		Star Seiki (T)	Rimrock (w)	Italpress (Y)	And the second s

TABLE A7.3 (Continued)

				- 97		
W/wide	>3	8	> 50	12109-12119	2391-2825 11042-11142 1599-1957 102 17477-17823	
Others W/wide					7 102	
USA				36	1599-195	
Japan				10000	11042-11142	
Others W. Europe Japan	>3	8	> 50	88-98	2391-2825	
į.		2		2	161	
France					173-178	
UK	က	9	>50	92	222-276	
Italy					442-477 427-515 222-276 173-178	
FRG				10-20	442-477	
Scandinavia (Sweden)					987-1184	(2001-200)
MAKE COUNTRY	Buhler (Z)	Mouldnate (V)	Montech (S)	Total (PPD)	Total	

Continued/....

Notes for Table A7.3

- A Estimates compiled by the firm Rosenlew and quoted in Rosenbrock (1979 c)
- B Information provided by Unimation (Europe) Ltd (Cakebread 1978)
- C Information provided by Unimation (Europe) Ltd. (Cakebread 1979)
- D Mortimer (1978, p17)
- E Addition of highest figures
- F In 1977 Kawasaki Heavy Industries had produced 200 robots (Wider, 1977, p37). In 1979 this company had sold 700 units and had a capacity to manufacture 200-225 per annum (BRA 1979, p154). Thus 400-500 is a good estimate for the cumulative sales by 1978
- G Assuming no sales to 'others' USA estimates results by substraction from worldwide sales
- H Estimates based on a 31% annual growth calculated from the number of Trallfa robots sold worldwide by 1974 and 1976. Information provided by De Vilbiss Company Ltd. (Craine 1978)
- I Information provided by ASEA Electronics Division (ASEA 1979)
- J Large (1978)
- K Mueller (1978, p80)
- L Hartley (1978, p68)
- M The Engineer (1979)
- N Estimate based on a 26% annual growth calculated from the number of Electrolux robots sold in Scandinavia by 1976 and 1977. The number of units by 1977 in Sweden was 200 (Rooks 1977, p27)
- O Information provided by George Kuikka Ltd (Dale 1979)
- P Estimate based on a 44% annual growth calculated from the number of Electrolux robots sold in Japan by 1976 and 1975
- Q Ryott and Gemvik (1978, p122)
- R Information provided by Marubeni Corporation Ltd. (Curry 1978a and 1978b)
- S Information provided by Derek W.S. Durance (D.W.S.D. 1978)

 Continued/....

Notes for Table A7.3 (Continued)

- T Information provided by Cole Equipment Ltd (Arnold 1978)
- U Estimates for Sweden in 1977 (Rooks 1977, p27)
- V Information provided by Mouldmation (Webster 1978)
- W Information provided by Rimrock Corp (Nagai 1978)
- X Information provided by Acheson Industries Europe (Renkl 1978)
- Y Information provided by Italpresse (UK) Ltd (Italpresse 1978)
- Z Information provided by Buhler-Miag (England) Ltd (Lorrimore 1978)
- a Information provided by Phillips R+K Ltd (Phillips 1979)

TABLE A7.4 - The International Diffusion of Industrial Robots - Aggregated Figures (*)

Region	1965	1967	1968	1.969	1970	1971	1972	1973	1974
Sweden			30 ^A	50 ^A	60 ^A	75 ^A	100 ^A	A,J 130-200	B, C 164–227
FRG							K,L 18–50	$50^{ m K}$	133 ^B
Italy								·	B,C 93-112
UK							-	200	82 _C
France									C,B 30-42
Others									B,C 42–55
			-						
W. Europe		20g		150 ^R		350 ^R		K,R 300–550	$547 - 705^{\mathrm{K}}$
Japan		10 ^R		T,R 42-50	161 ^T	T,R 252-500	T,K 371–750	T,R 546-1100	T,S 840-1500
USA	25 ^R	100^{R}		250 ^R	200 ^S	800 ^R		K,R 800-1000	C,F 1159-1300
Others									19 ^C
Worldwide	25	160		442–450	<1000 [×]	1202-1450		1646–2650	2564-3524
* Excludin	* Excluding Pick-and-Place Devices (PPD's)	1-Place De	evices (PPI)¹S)				Contin	Continued/

* Excluding Pick-and-Place Devices (PPD's)

TABLE A7.4 - (Continued)

	The state of the s				
Region	1975	1976	1977	1978	1979
Sweden	A,D 300-445	400 ^A	A,I 500–870	A,F 700-1062	$1000^{ m H}$
FRG	M,D 150-243	>138 ^E	490 ^H	$^{ m H}$	₉ 009
Italy	362 ^D	>117 ^E		N,F 300-515	500 ^P
UK	85–93	გ ^{E6}		147 [©]	207 ^Q
France	144 ^D	>87 ^E		173-178 ^F	>178
Others	$154^{ m D}$.84E		208^{F}	>280
W. Europe	D 1195–1441	1500 ^d		2093–2805	ž 2765
Japan	T,M 1148-1700	T;d 1561–2000	2261 ^W	U, X 3000–3361	· X 4100–4461
USA	Y 2059–2200	d,Z 2000-2500		U,a 2500-3000	4000–4800 ^b
Others		>76 ^E		$102^{ m F}$	>102
Worldwide	4402–5351	5500 ^d		7593-9166	10967-12128

Continued/...

Notes for Table A7.4

- A Fletcher (1979, p222)
- B Warnecke et al (1974, p111)
- C See table A7.1
- D Frost and Sullivan (1975)
- E See table A7.2
- F See table A7.3
- G McNeil (1979, p56)
- H Pugh et al (1979, p90)
- I Rooks (1977, p27)
- J Bojonsson (1973)
- K Grefermann et al (1975, p75)
- L Warnecke and Schraft (1972, p21)
- M Stout et al (1976, p440)
- N BRA (1978, p5)
- O Heginbotham (1973, pR1-10)
- P Duffy (1979a)
- Q Estimates from Appendix 10
- R Tassel (1975)
- S Frost and Sullivan (1974, p3-4)
- Variable sequence and play-back robots only (7% @ 1976 of the figures reported by Yonemoto and Shiino 1977, p171)
- U Shah (1978, p21)
- W In 1977 500 programmable robots and 200 intelligent robots were produced (Pugh et al 1979, p90)
- X In 1978 1100 programmable robots were produced (BRA 1979, p153). The same is assumed to be the case for 1979
- Y 900 industrial robots were sold in USA in 1975 (Unimation 1976)
- Z Unimation (1976)

Notes for Table A7.4 (Continued)

- a Knight (1978)
- b Estimates based on a growth rate of 125-150 robots per month (Knight, 1978)
- c Ghali (1972)
- d Warnecke et al 1976

TABLE A7.5 - Unimation Robots in Spot Welding in the Motor Car Industry (Cumulative)

Country	1976	1977	1978	1979
USA				
Ford Motor Co. General Motors Chrysler American Motors	77 61 29 8	112 83 48	208 87	236 160 80 10
<u>JAPAN</u>				
Nissan Motor Toyota (Motor &	88	95		
Shatai) Susuki Motor Fuji Heavy Ind. Kanto Motor Mitsubishi Motor	70 13 10 3 3	70		77
ITALY				
Fiat Lancia	53 5	180 6	232 6	
SWEDEN				
Volvo	44	58		
FRG				
Daimler-Benz	18	18		
FRANCE				
Renault Peugot Citroen	27 17 4	30 19		
POLAND				
FSO	15	16		
SOVIET UNION Zil		12		
<u>UK</u> British Leyland	-	31		

Source: Information from Unimation (Europe) (Cakebread 1978)

and various other sources

TABLE A7.6 - Growth of Spot Welding Robots in the Motor car Industry

Year	Sales	Cumulative Sales
1966	8	8
1970	31	39
1971	43	82
1972	62	144
1973	140	284
1974	65	349
1975	122	471
1976	82	553
1977	241	794
1978	182	976
1979	209	1185

Source: Estimated from information provided by Unimation (Europe) (Cakebread 1978) and various other sources

TABLE A7.7 - Chronology of Main Robot Applications in the Motor Car Industry

- 1962 First installation at Ford Motor Co. and GM
- 1970 First multiple installation (29) for spot welding of motor car body panels at GM, Lordstown Ohio plant in Chevrolet Vega line. First two robots at Daimler Benz.
- 1971 Ford's first multiple installation with Unimate 4000 (designed to Ford's specifications)
 GM develops own robot for spot welding on moving lines (SAM)
 Volvo starts evaluation of robots
- 1972 Fifteen robots for Chevrolet Camaro and Pontiac Firebird at GM Nordwood Ohio plant.
 Twelve robots for spot welding at Daimler Benz, Sindelfingen, FRG.
- 1973 Kawasaki Heavy Ind. gets order for a hundred robots for spot welding from motor car firms (Nissan and Toyota)
 Nissan Car Co. Mirayama plant introduces first multiple machine spot welding lines.
 First Volvo order of spot welding lines (two lines of six robots)
 First installation at FIAT; eighteen robots for model 132 255 line in Mirafiori plant.
- 1974 First installation of robot welders on a continuously moving motor car assembly line
- 1975 Twenty-two robots for Underbody welding of Chevette at GM, Wilmington Delaware
- 1976 Fiat orders twenty-seven robots for 131 model line
- 1976 Volvo order thirty robots for Torslanda plant
- 1977 Ford Motor Co. installs sixty robots for spot welding in a new line of compact cars
 Fiat orders a hundred robots for the Robogate Systems at the Rivalta and Cassino Plants
- 1978 Fiat order robots for extension of Robogate System (sidepanel, tackwelding and body framing with no multiple welding) at Rivalta and Cassino BL orders twenty-eight robots for Metro line
- 1979 Volvo order more than one hundred Cincinnati Milacron robots for spot welding

APPENDIX 8

THE USAGE OF INDUSTRIAL ROBOTS WORLDWIDE

APPENDIX 80 ber Applie 1103

The Usage of Industrial Robots Worldwide

The following tables are a compilation of many sources reporting the relative usage of robots in different applications and sectors of industry in several countries at various points in time. Unfortunately, no uniform basis for estimation exists. Thus, variations must be partially explained by the method of calculation. For example, the distribution of robot applications in Japan is notably different when figures include pick-and-place devices (transfer robots become the great majority). These problems are more acute in tables describing the distribution of robots by industry. Here, some estimates may or may not include pick-and-place devices and some may be based in the supply value rather than the number of robots.

TABLE A8.1 - Distribution of Robot Applications in USA (percentage of robots excluding PPD's)

YEAR	1971	1973
TRANSFER	38.0	41.0
Simple	_	_
Complex	1.0	2.0
Loading/Unloading of Machiery	33.0	33.0
Diecasting Injection Moulding Pressing Metal cutting	18.0 3.0 5.0 7.0	18.0 3.0 5.0 7.0
Other	4.0	6.0
MANIPULATIVE	1.0	3.0
Forging Fettling Grinding Investment Casting Other	1.0	3.0
PROCESSING	19.0	23.0
Metal cutting		
Joining	15.0	15.0
Spot Welding Arc welding		
Surface Treatment (Coating)	4.0	8.0
Inspection	_	_
Other		_
ASSEMBLY	1.0	2.0
OTHER (unspecified)	40.0	30.0
Sample Size (robots)	600	1000
Source	A	А

Notes: A - Tassel (1975)

TABLE A8.2 - Distribution of Robot Applications in Japan (see notes for differences on the basis for estimation) (percentage of robots)

YEAR	1971	1973	1973	1977	1977
TRANSFER	57.0	52.0	80.2	97.8	61.2
Simple	-	_	4544		-
Complex	4.0	2.0	21.5		-
Loading/Unloading of Machinery	49.0	46.0	58.7	97.3	46.4
Diecasting Injection Moulding Pressing Metal cutting	9.0 20.0 15.0 5.0	5.0 20.0 17.0 4.0	3.2 2.0 9.8 43.7	4.0 29.8 10.5 52.5	9.8 7.5 13.4 15.7
Other	4.0	4.0	-	0.5	14.8
MANIPULATIVE	12.0	10.0	5.6	-	6.7
Forging Fettling Grinding Investment	12.0	10.0	4.4	- - -	6.7 - -
Casting Other		<u>-</u>	1.2	-	
PROCESSING	9.0	20.0	6.88	1.1	13.9
Metal cutting	_	_	_	-	
Joining	7.0	10.0	2.8	0.9	3.7
Spot welding Arc welding	-		-		····
Surface Treatment (Coating)	2.0	10.0	4.0	0.2	3.8
Inspection		_	_		6.4
Other	_	_	_	_	
ASSEMBLY	2.0	5.0	7.3	_	17.9
OTHER (unspecified)	20.0	13.0	-	1.4	0.3
Sample size (robots)	500	1100	?	Approx 58000	665
Source	A	A	В	С	D

Provide Applications in Western Consts on Clude of PPUS

Notes for Table A8.2:

- A Tassel (1975) (excluding PPD's)
- B Stout et al (1976, p445) (likely to include a large proportion of PPD's)
- C Estimated from Yonemoto and Shiino (1977) (include a large proportion of PPD's)
- D Based on questionnaire survey to 125 companies by Hasegawa (1979, p449) (likely to include PPD's)

TABLE A8.3 - Distribution of Robot Applications in Western Europe (percentage of robots excluding PPD's)

		1 to 1 to 1		
YEAR	1971	1973	1974	1978
TRANSFER	37.0	38.0	41.8	33
Simple	-	_	-	_
Complex	1.0	2.0	1.6	0.8
Loading/Unloading of Machinery	32.0	32.0	34.1	24.9
Diecasting Injection Moulding Pressing Metal cutting	10.0 11.0 7.0 4.0	5.0 10.0 12.0 5.0	4.8 11.2 13.0 5.1	6.2 4.5 13.3 0.9
Other	4.0	4.0	6.1	7.3
MANIPULATIVE	4.0	3.0	2.5	2.6
Forging Fettling Grinding Investment	4.0	3.0 - -	2.4	2.0
Casting	-		0.1	0.3
PROCESSING	33.0	40.0	40.8	40.2
Metal cutting	-			0.2
Joining	13.0	20.0	20.0	24.4
Spot welding Arc welding	week	_		number
Surface Treatment (Coating)	20.0	20.0	20.8	15.5
Inspection	_	_		-
Other	_	-		0.1
ASSEMBLY	_	-		1.4
OTHER (unspecified)	26.0	19.9	14.8	22.9
Sample size (robots)	350	550	671	1926
Source	A	A	B.	C

A Tassel (1975)

B Warnecke et al (1974, pl09)

C Weighted average of UK, Italy, FRG and Sweden (see Table A8.4)

TABLE A8.4 - Distribution of Robot Application in Several European Countries (percentage of robots excluding PPD's)

COUNTRY	Federal Republic of Germany		Sweden	Italy	United Kingdom
Year	1977	1978	1978	1978	1978
TRANSFER	61.0	41.5	33.0	20.1	45.0
Simple		_	-	-	-
Complex		_	2.0		1.4
Loading/Unloading of Machinery		21.5	31.0	19.5	39.5
Diecasting Injection moulding Pressing Metal cutting		} 11.5 10.0	7.0 6.0 18.0	5.5 0.2 11.8 2.0	6.8 6.8 8.8 4.8
Other		20.0	. 	0.6	16.4
MANIPULATIVE		6.0	-	1.8	5.5
Forging Fettling Grinding		6.0	<u>-</u> -	0.8	0.7 0.7 -
Investment Casting Other		<u>-</u>	-	0.2	2.7
PROCESSING	39.0	33.5	23.0	69.5	45.6
Metal cutting		_	_	0.6	_
Joining	·	16.5	11.0	51.4	25.9
Spot welding Arc welding		- -		49.0 2.4	21.1 4.8
Surface Treatment (Coating)		17.0	12.0	17.5	19.7
Inspection				_	_
Other		_	-	_	_
ASSEMBLY		1.0	_	3.9	0.7
OTHER (unspecified)	_	18.0	44.0	4.7	3.4
Sample size (robots)	490	570	700	508	14 7
Source	A	В	С	D	E

Continued/....

Notes for Table A8.4:

- A Pugh et al (1979, p90)
- B Luetzenkirchen (1978, p185)
- C Fletcher (1979, p222)
- D Estimated from the applications distribution of Unimate (Cakebread 1978), Trallfa (assumed to be equal to the worldwide distribution). Asea (Asea 1979), Nordson (assumed to be similar to Trallfa), Olivetti (100% assembly), Fiat (100% spot welding) and MAS (100% pressing)
- E See Table A9.1

TABLE A8.5 - Distribution of Robot Applications - A Sample of Main Suppliers. Percentage of Cumulative Number of Robots Sold

MAKE ·	UNIMATE	UNIMATE	TRALLFA	TRALLFA	ASEA	ASEA
Year	1976	1977	1975	1977	1976	1977
TRANSFER	25.7	24.4		1.6	44.0	29.9
Simple	-		_		-	
Complex	3.5	3.1	-	-	1.5	1.2
Loading/Unloading of Machinery	21.3	20.5	_	0.7	19.8	10.5
Diecasting	14.3	13.8	***************************************		6.1	2.4
Injection Moulding	-	- 5.6	-	0.7	9.1	_ 5.7
Metal cutting Pressing	5.7 1.3	1.1	-		4.6	- 2.4
Other		_	-	0.9	22.7	18.2
Other	0.9(A)	0.8	-			
MANIPULATIVE	4.2	3.7	1.9	2.6	9.1	4.8
Forging Fettling	1.7	1.5	_	-	_ 1.5	- 0.4
Inv. Casting	2.5	2.2	_	0.77	3.0 4.6	0.3 3 .2
Grinding Others	<u> </u>	_	1.9(E)	0.7 1.9(E)	4.0	0.4
PROCESSING	5.6	52.2	92.3	78.4	34.9	50.7
Metal cutting	_		_		9.1	5.6
Deburring Others	<u>-</u>	-	_	-	6.1 3.0	5.2 0.4
Joining	56.8	52.2	_	5.1	25.8	39.9
Spot Welding Arc Welding	55 1.8	50.6 1.6	-	0.5 4.6	4.6 21.2	10.5 29.4
Surface Treatment		-	92.3	73.1		2.8
Coating	_	_	92.3	72.5	-	
Paint spraying		_	45.4 35.0	36.0 24.5		_
Enamel spraying Glazing		_	5.0	4.2	-	-
Under-body coating spray	-	_	4.6	6.5		
Other	_		2.3(F)	1.3(F)		

TABLE A8.5 (Continued)

				_		
MAKE	UNIMATE	UNIMATE	TRALLFA	TRALLFA	ASEA	ASEA
Year	1976	1977	1975	1977	1976	1979
Polishing & cleaning	-	_	-	0.4		_
Other	_	-	-	0.2	-	2.8
Inspection		_	_		- .	0.4
Other	-		_	0.2	_	2.0
ASSEMBLY		_		_	_	0.8
OTHER	13.3	19.8	5.8	17.4(G)	12.1	13.7
Sample size	1400	1600	260	432	66	248
Source	В	С	D	Н	I	I

- A Glass handling
- B Estimated from information provided by Unimation (Europe) Ltd (Cakebread 1978) (Figures as at January 1977)
- C Estimated from information provided by Unimation (Europe) Ltd. (Cakebread 1978) (Figures as at June 1977)
- D Estimated from information provided by the De Vilbiss Company Ltd (Mooney 1978)
- E Part dipping
- F Thermo-plasma coating, glueing, oiling, greasing and TV tube coating
- G Pilot plant, testing and research, demonstration and unspecified
- H Estimated from Underhaug (1977, p.17)
- I Estimated from information provided by ASEA Electronics Division (ASEA 1979) (Figures as at June 1979)

TABLE A8.6 - Distribution of Robots by Industry in USA (see notes for the bases of estimation)

YEAR	1971	1973	1974
Consumer Goods	60.0	45.0	37.0
Motor Car Domestic Appliances and Sanitary Ware	60.0 -	45.0 -	37.0
Intermediate Goods	26.0	28.0	45.0
Glass Metal Goods Plastics	4.0 20.0 2.0	4.0 20.0 4.0	5.0 34.0 6.0
Capital Goods	4.0	12.0	13.0
Machinery Electrical Equipment Electronics	4.0	8.0 4.0 -	13.0
Others	5.0	15.0	5.0
Source	А	А	В

- A Basis of estimation unspecified (exclude PPD's). From Tassel (1975)
- B Calculated as percentage of supply value (exclude PPD's). From Frost and Sullivan (1974, p126).

TABLE A8.7 - Distribution of Robots by Industry in Japan (see notes for the bases of estimation)

INDUSTRY	`1970	1971	1973	1974	1975	1976	1977	1978
Consumer Goods	22.0	31.1	30.0	37.0	21.0	31.5	34.0	35.0
Motor Car Domestic Applian-	22.0	25.7	30.0	35.0	20.0	30.5	34.0	35. 0
ces & Sanitary Ware	-	5.4	-	2.0	1.0	1.0	-	
Intermediate Goods	16.0	12.1	22.0	23.0	37.0	25.5	20.0	19.0
Glass Metal Goods Plastics	5.0 6.0 5.0	- 12.1 -	5.0 12.0 5.0	- 13.0 10.0	- 26.0 11.0	- 12.5 13.0	- 10.0 10.0	- 11.0 8.0
Capital Goods	41.0	39.2	38.0	25.5	28.0	29.5	38.0	39.0
Machinery Electrical	25.0	27.0	11.0	15.0	15.0	13.0	15.0	14.0
Equipment Electronics	16.0 -	12.2	27.0	10.0	13.0	16.5 -	23.0	25.0 -
Others & unkown	21.0	17.6	10.0	15.0	15.0	13.5	9.0	6.0
Sample size (robots)	?	?	?	?	?	?	?	?
Source	А	В	А	С	С	C & D	D	D

- A Basis of estimation unspecified (exclude PPD's). From Tassel (1975).
- B Calculated as percentage of supply value (exclude PPD's). From Frost and Sullivan (1974, p.120).
- C Calculated as percentage of supply value (include a large proportion of PPD's). From Yonemoto and Shiino (1977, p.173).
- D Calculated as percentage of supply value (likely to include PPD's). From Hasegawa (1979, p.448).

TABLE A8.8 - Distribution of Robots by Industry in Western Europe (see notes for the bases of estimation)

			•
YEAR	1973	1974	1978
Consumer Goods	35.0	19.0	54.0
Motor Car Domestic Appliances and Sanitary Ware	35.0 -	19.0	39.5 14.5
Intermediate Goods	42.0	19.0	19.2
Glass Metal Goods Plastics	2.0 35.0 5.0	7.0 12.0	4.3 11.5 3.4
Capital Goods	13.0	23.0	18.8
Machinery Electrical Equipment Electronics	10.0 3.0 -	13.0	9.9
Others	10.0	39.0	8.0
Source	А	В	С

- A Basis of estimation unspecified (exclude PPD's). From Tassel (1975)
- B Basis of estimation unspecified (exclude PPD's). From Ciborra et al (1976, p191)
- C Average percentage of robots in the UK, Italy and the FRG (exclude PPD's). See Table A8.9.

TABLE A8.9 - Distribution of Robots by Industry in Some European Countries (see notes for the bases of estimation)

COUNTRY	U.K.	ITALY	FRG
Industry	1978	1978	1979
Consumer Goods	43.6	54.9	63.7
Motor Car Domestic Appliances and Sanitary Ware	25.9 17.7	54.9 -	37.8 25.9
Intermediate Goods	34.0	17.7	5.8
Glass Metal goods Plastics	12.9 12.9 8.2	15.7 2.0	- 5.8 -
Capital Goods	10.2	15.7	30.6
Machinery Electrical Equipment Electronics	7.5 2.7 -	15.7	22.3 8.3 -
Others and unknown	12.2	11.8	
Sample size (robots)	147	?	278
Source	A	В	С

- A Percentage of robots excluding PPD's (see Table A9.3)
- B Percentage of Italian robots sold in 1978 for the Italian market (excluding PPD's). From Varvello (1980, p.26).
- C Percentage of robots excluding PPD's. From Brodner and Schacks (1979, p.123).

THE USAGE OF INDUSTRIAL ROBOTS IN THE UK

The Usage of Industrial Robots in the UK

The pattern of robot usage in the UK was inferred from the list of applications given in Appendix 10. This is a representative sample of the UK robot population in particular of SR's, MTR's and HTR's. Information about PPD's alone is also given to illustrate their differences with sophisticated equipment.

TABLE A9.1 - Distribution of Robot Applications in the UK
Percentage of robots sold (excluding PPD's)

Year	1974	1976	1978	1979
TRANSFER	63.8	60.3	45.0	36.5
Simple	-			
Complex (A)	1.2	1.1	1.4	1.0
Loading/Unloading of Machinery	55.4	52.7	39.5	31.5
Diecasting Injection Moulding Pressing Metal cutting Other (B)	8.4 9.6 12.1 4.8 20.5	7.5 8.6 12.9 5.4 18.3	6.8 6.8 8.8 4.8 12.3	7.0 5.5 6.5 3.5 9.0
Other (C)	7.2	6.5	4.1	4.0
MANIPULATIVE	1.2	4.4	5.5	5.5
Forging Fettling Investment	- 1.2	- 2.2	0.7 0.7 2.7	1.0 1.0 2.5
Casting Glass gathering	-	2.2	1.4	1.0
PROCESSING	28.9	30.2	45.6	49.0
Metal cutting	_		_	_
Joining	3.6	3.3	25.9	30.5
Spot welding Arc welding	2.4 1.2	2.2	21.1	20.5
Surface Treatment (coating)	25.3	26.9	19.7	18.5
Paint spraying Enamel spraying Other (D)	9.6 14.5 1.2	10.8 12.9 3.2	9.5 8.2 2.0	9.0 6.0 3.5
Inspection	_	_		_
ASSEMBLY	_	_	0.7	3.5
OTHER (E)	6.0	5.4	3.4	5.5
Sample size (robots)	83	93	147	200

Notes for Table A9.1

- A Packaging and palletising
- B Glass cutting machines (33%), Lehrs (17%), glass forming machines (11%), pack-forming machines (6%), T.V. tube processing machines (6%), furnaces (22%), and pedestal welding (spot welding) (6%) mostly by 1974.
- C Non-specified transfer operations
- D Dry enamel sprinkling, fibreglass spraying, underbody sealing, rust preventive spraying
- E Non-specified operation

TABLE A9.2 - Distribution of Applications of Pick-and-Place
Devices - A UK Sample (Percentage)

Sample size	59
Year	1978
Simple Transfer (A)	40.7
Diecasting	5.1
Injection Moulding	13.6
Component Transfer in Metal	
Cutting System	27.1
Component Transfer in Assembly	
Systems	13.6

 $\underline{\underline{\text{Notes}}}$: A Workpiece transfer in packaging systems and $\underline{\text{TV}}$ tube transfer

TABLE A9.3 - Distribution of Robots Sold by Industry in the UK Percentage of robots sold (excluding PPD's)

Industry	1974	1976	1978	1979
Consumer Products	17.7	54.6	43.6	39.5
Motor car (A) Domestic Appliances and Sanitary Ware (B)	3.6 24.1	3.2	25.9 17.7	26.5 13.0
Intermediate Goods	42.2	45.2	34.0	30.5
Glass (C) Metal Goods (D) Plastics	18.1 13.3 10.8	20.4 15.1 9.7	12.9 12.9 8.2	10.0 14.0 6.5
Capital Goods	12.0	11.8	10.2	12.0
Machinery (E) Electrical Equipment Electronics	7.2 4.8	7.5 4.3	7.5 2.7 -	8.5 2.5 1.0
Others and unknown	18.1	16.1	12.2	18.0
Sample size (robots)	83	93	147	200

- A Seventy-four percent (39 robots) are in one company only
- B Sanitary ware accounts for twenty-three percent
- C It can be divided into glass for motor cars (30%), for T.V. tubes and radar tubes (30%), and general (40%)
- D Components for the motor car industry accounts for fifty percent of the robots in metal goods
- E High precision components for aerospace accounts for fifty percent of the robots

TABLE A9.4 - Distribution of Companies Buying Robots in the UK Percentage of companies buying robots (excluding PPD's)

Industry	1974	1976	1978	1979
Consumer Goods	22.9	23.6	22.5	9.7
Motor car Domestic Appliances and Sanitary Ware	2.1	1.8 21.8	4.2	5.7 4.0
Intermediate Goods	39.6	41.8	38.1	43,3
Glass Metal goods Plastics	16.7 12.5 10.4	20.0 12.7 9.1	15.5 12.7 9.9	11.4 15.2 16.7
Capital Goods	18.8	20.1	16.9	18.1
Machinery Electrical Equipment Electronics	12.5 6.3	14.6 5.5 -	12.7	13.3 3.8 1.0
Others and Unknown	18.7	14.5	22.5	30.5
Sample size (companies)	48	55	71	105
Ratio robots to companies	1.73	1.69	2.07	1.91

TABLE A9.5 - Distribution of PPD's by Industry - A UK Sample (Percentage)

Plastics	11.9
Glass	26.2
Metal goods	61.9
Sample size (PPD's)	42

TABLE A9.6 - Distribution of Companies Buying PPD's by Industry - A UK Sample (Percentage)

Domestic Appliances	9.1
Glass	18.2
Metal goods	27.3
Plastics	18.2
Machinery	9.1
Other	18.2
Sample size (Company)	11

TABLE A9.7 - Distribution of Robots to Companies by 1979

Number of Robots Bought	Percentage of Companies
by a Company	1.9
≥10	- ·
5-9	2.9
2-4	21.9
2-4	73.3
1	

TABLE A9.8 - Distribution of PPD's to Companies - A Sample

Number of PPD's Bought by a Company	Percentage of Companies
≽ 10	27.3
5-9	27.3
2-4	9.1
1	36.4

TABLE A9.9 - Sequential Orders of Robots by Companies

Company placed at least:	Percentage of Companies
one order	100
two orders	12.5
three orders	3.9
four orders	1.0

TABLE A9.10 - Sequential Orders of PPD's by Companies

Company placed at least:	Percentage of Companies
one order	100
	33.3
two orders	25.0
three orders	25.0
four orders	

LIST OF ROBOT APPLICATIONS IN THE UK *

List of Robot Applications in the UK *

Names of robot users are not given since most of this information was offered under assurances of strict confidentiality. Other sources such as the technical press were also used.

Key notes refer to the situation regarding use as at the end of 1979:

- + Known to be setting up, on order or in development (e.g. in corporate labs) and thought to be not yet in use.
- ++ Use thought to have discontinued
- +++ Use known to have discontinued

BLANK Known to be in use

^{*} Compiled in collaboration with Dr. David Wield, Research Fellow at the Technology Policy Unit of the University of Aston in Birmingham

			0)		<u> </u>	<u> </u>		
Industry	Thermoplastic parts for domestic appliances	Components for the auto- mobile industry	Safety glass for automobile industry	High precision castings (turbine blades) for the aerospace industry	Plastic moulds for auto- mobile industry	Domestic appliances (tumble dryers)	Brass components (fittings)	Domestic appliances
Installation Dates and situation re use	1976 1977 1978:3	1972:3 1978:3 1979:2	1968–69:6 +++ 1975	1968 1978 1979	1974	1975	1974 +++ 1976:2 1978	1974:1 +++
Purpose of Application	Injection Moulding	Diecasting	Loading glass cutting machies	Investment casting.	Paint spraying	Paint spraying	Loading/unloading of presses	Diecasting
Robot Manufacturer	Star Seiki (PPD) Mouldmate (PPD)	Unimate 2000 Unimate 3000 Rimrock (PPD	Versatran Hall Gantry (PPD)	Unimate 2100 Unimate 4000	Trallfa	Trallfa	BUSM Area-4	Versatran
Quantity of Robots	1	7	6	2 1	1		-	П
Location	Warley, W. Midlands	Worcester	St. Helens	Deruy	Manchester	Bristol	Walsall	Peterborough
Firm		27	33	4	ro.	9		20

		1	1	er a manada mara gira	o mountana	and adoption of T	T	ı.	I	T		
Industry	T.V. tubes manufacture	Glass manufacture	Domestic appliances	Motor car industry			abbet :	Plastic water tank storage	Laboratory glass work	Sanitary ware (bath tubs)	Domestic appliances (tumble dryers)	Sanitary ware (bath tubs)
Installation Dates and situation re use	1974 +++	1967-74 +++	1978	1979 +	Before 1974 +++	1979 +	1978 +	1978 1979	1970 +++	1972-1974	1976 1978	1971
Purpose of Application	Lehr loading	Lehr loading	Diecasting	Welding (?)	Welding (?)	Spraying	Arc welding	Injection moulding	Loading/unloading of glass forming machine	Enamel spraying and dry enamel sprinkling	Paint spraying	Enamel spraying
Robot Manufacturer	Unimate 2100 Unimate 2000	Versatran 500	BUHLER (PPD)	Cincinnati Milacron	Versatran	Trallfa	Asea A30A	Unimate 2105B	Versatran 500p	Trallfa	Trallfa	Trallfa
Quantity of Robots	2	-	1	1	1	1	3	2	7	4	2	1
Location	Merseyside	St. Helens	Mexborough,	Oxford				Asinford, Kent	Staffs	Falkirk	Lancs	Cardiff
Firm Number	6	10	11	12				13	14	15	16	17

	l g		_ 1	T						4 A	, es
Industry	Domestic appliances (gas and electric cooker parts)	Domestic appliances (radiators)	Domestic appliances (wooden parts for radiators)	Sanitary ware (bath tubs)	Domestic appliances (gas	COOKET parts)	Fibre glass panels for housing	Domestic appliances (wooden chair frames and wooden parts for gas fires)	Domestic appliances (stores)	Plastic biros	Power tools
Installation Dates and situation re use	1972–1973	1972	1972	1972 ++	1973:2	1974:2	1976 +++	1974 +++	1973	1978	1978
Purpose of Application	Enamel spraying	Paint spraying	Paint spraying	Enamel spraying	Paint spraying	Enamel spraying	Spraying of fibre glass	Paint spraying	Enamel spraying	Unloading two injection moulding machines	Loading two gear hobbing machines
Robot	Trallfa	Trallfa	Trallfa	Trallfa	Trallfa		Hall Ramp	Trallfa	Trallfa	MIU Senior Electrolux	MIU Junior Loading two gear Electrolux (2 arms) hobbing machines
Quantity of Robots	8	72	1	Π	2	2	1	1	2		H
Location	Durham	Walsall	Ilkeston, Derby	Birmingham	Enfield,	Midds.	Birmingham	High Wycombe, Bucks	c.	London	London
Firm	18	19	20	21	22		23	24	25	26	27

٦.	\sim	_
ŧ	~	~

				135		1					
Industry	ċ	٤	Precision castings	Boat building (fibre glass yacht builders)	Tin manufacture		Automobile manufacture	Automobile manufacture	Auto turned parts	Special purpose assembly machines	Toy manufacture (precision zinc diecasters and plastic moulders)
Installation Dates and situation re use	1978	1979 +	before 1978	1976	1974 +++		1978	1978 +	1974–1978	before 1978	<u>1978</u>
Purpose of Application	Diecasting	ن	Investment casting	fibreglass spraying	Loading pack forming	machines	Loading/unloading spot welding machines (Pedestal welding)	Spot welding	Loading metal working machines	Component transfer in assembly systems	Component transfer in assembly systems — — Diecasting
Robot Manufacturer	MIU Electrolux	Asea	Cercast Shell-o-Matic	Hall-Ramp	Versatran	Ovn make (PPD)	Unimate	Unimate 2006A 2601A	MONTECH (PPD)	MONTECH (PPD)	MONTECH (PPD) Reis (PPD)
Quantity of Robots	_		1	-	1		Г	28	16	4	1
Location	ż	Harlow, Essex	Droitwich	Grinsby	London		Dagenham	Birmingham	Leicester	Dundee	London
Firm	28	239	30	31	32		33	34	35	36	37

			136			Magazia	Antero Antero de la Contra dela Contra de la	Logic Colono:		et Skangindabler	
Industry	Toys manufacturer (plastic)	Components for motor car industry (intake mani- folds)	٠.	Precision castings (turbine components)	Manufacture of Batteries	T.V. Tubes manufacture		3	T.V. tubes manufacturer	Glass parts manufacture	Metal parts manufacture
Installation Dates and situation re use	1978	1977	1977	1976	1967 +++	1974 +++	1976	1967-74 ++	1967-74 +++	1967-74 +	1967–1974 ++
Purpose of Application	Paint spraying	Loading/unloading of machines and inspection rigs	Paint spraying	Investment casting	Component transfer	Transver of TV	tubes	loading of jigs	Transfer of T.V. tubes	Loading/unloading of furnaces	Loading/unloading
Robot Manufacturer	Hall-Ramp	MHU Electrolux	Hall-Ramp	Unimate	Versatran	Versatran 500p	Own make (PPD)	Versatran 500p	Versatran 500p	Versatran 500p + 500s	Versatran 500s
Quantity of Robots	П			1	2	AND ADDRESS OF THE PROPERTY OF	10	-1	1	4	4
Location	Andover, Hampshire	Birmingham	Workington, Cumbria	Exeter	Birmingham	Rumlev		Hatfield	Enfield, Midds	Stoke-on-Trent	Newport, Mon.
Firm Number	38	39	40	41	42	73	ř.	44	45	46	47

				10		. al						
Industry	Metal parts manufacture	Metal parts	Metal parts	Plastics	Plastics	Metal parts	Electric components for automobile industry	Glass manufacture	High duty castings for the aerospace industry	Glass bottle manufacture	Research and development (Railways manufacture)	High duty forgings for the serospace industry
lation and ion	74 ++	++	‡	+ +	++	+++	‡	++	‡	+	† † +	++++
Installation Dates and situation re use	1967–1974	1967-74	1967-74	1967-74	1967-74	1967-74	1967-74	1967-74	1967-74	1967–74	1969	1965
Purpose of Application	Machine loading	Machine loading	Machine loading	Injection moulding machine	Injection moulding	Machine loading	Diecasting	Transfer of glass tubes	Diecasting	Packing of glass bottles	ω_2 welding	Pressing
Robot Manufacturer	Versatran 500p	Versatran 500p	Versatran 500p	Versatran 500s	Versatran 500s	Versatran 500s	Versatran 500p	Versatran 500s	Versatran 500p	Versatran 500s	Versatran 500s	Versatran D301
Quantity of Robots	_	p=4		1	1		<u> </u>	-	1	H	H	
Location	Bradford	Birtlex	Birmingham	Billericay, Kent	London	Liverpool	Birmingham	Doncaster	Slough	York	Derby	Redditch West Midlands
Firm	48	49	50	51	52	53	54	55	56	57	58	59

	1				138	Ontal Control	/4-(4)					_		
Industry	Metal goods	Metal goods	Aerospace industry	Aerospace industry	Brick manufacturing	Electrical instruments	Pressing for automobile	industry		ċ	Plastics		Agricultural plough manu- facture	Steel tube industry
Installation Dates and situation re use	1974	1974	1967-74 ++	1967-74 +++	1967–74 ++	1967-74 +++	1967-74 +++	+ 6791	1979 +	1974 +	1967-74 ++	1978	1979	1977
Purpose of Application	Pressing	Transfer	ż	خ	٠	ċ	¿	Paint spraying	Arc welding	Diecasting	Injection moulding	Arc welding	Arc welding	Hammer forging
Robot Manufacturer	Uninate	Unimate	Versatran D301	Versatran D301	Versatran D301	Versatran 500p	Versatran 500c	¿	Asea A30A	Versatran 500p	Versatran 500s	Trallfa .	Asea A30A	Unimate
Quantity of Robots	4	-	Г	-	1	1				1	က	2	-	
Location	Birmingham	Birmingham	Glasgow	Derby	Clwyd	Dover, Kent	Ri wai noham	DIIIIII		West Bronwich	· ·	Ipswich	Rugby	Birningham
Firm	09	61	62	63	64	65	000	00		29	68	69	02	71

				138	ar yaşı									
Industry	Chemical industry	Plastic products (Dustbins)	Earth moving equipment	Radar tube manufacture	Fork lift trucks		ggiota ottoper	Automobile industry	Control of the Contro		5	Domestic appliances		Food industry (confection===ery)
Installation Dates and situation re use	1978	1974 +++	1979 +	1976	1979 +	1974	1974	1978 +	1978 +	1978 +	1979	1978	1979	1978
Purpose of Application	Palletising	Injection moulding	Arc welding	Glass gathering and loading onto forming presses	Assembly	Spot welding	Spraying	Assembly	Fettling	Spot welding	Spraying	Injection Moulding	Arc welding	Product transfer in packaging system
Robot Manufacturer	Asea A30A	Unimate	HAL/BOC	Unimate	Puma	Unimate	Trallfa	Puma	Asea A30A	Unimate	Trallfa	Star Seiki (PPD)	Asea A30A	s, Odd
Quantity of Robots	-	က	qued e	2	1			1	1		1	3	3	12
Location	C	Bi rmingham	Uttoxeter	Birmingham	Basingstoke	Oxford	\$				٠.	London	Somerset	Birmingham
Firm	72	73	74	75	92	77	•				78	62	80	81

Industry	ċ		5	Electronics industry	Aerospace	Components for vehicle industry	High pressure cylinders	Glass manufacture	Aerospace industry (radar devices)	Steel industry	Foundry	5	c	•
Installation Dates and situation re use	1979 +	1979 +	1979 +	1979 +	1979 +	1979	1979	1979	1978	1979 +	1979 +++	1979 +		1979 +
Purpose of Application	Arc welding	ċ	5	Assembly	Rust preventive spraying	Arc welding	Hammer forging	Glass transfer	Paint spraying	Fettling	è	And melding	ALC WOLLAND	Arc welding
Robot 1	Asea A30A	Asea A30A	Asea A30A	Signa	Hall	Unimate	Unimate 2005G	Ucl (Little Giant)	Hall Ramp	ć	0	- 2	Ha1/BC	Hal/BOC
Quantity of Robots			-	2	-	П	-	1	1 1	-	+ +	4	, . 1	H
Location	ċ	Harlow	ċ	¢.	Derby	?	() () () () () () () () () () () () () (Cles ter trans	c. c.	700	Spellegu	Leeds	London	٥.
Firn	82	83	84	85	86	87.	GG	00	88		6	92	93	94

						L41	- 23		T							A STATE OF THE STA		
Industry	Automobile industry	Automobile industry	damair orthograph	Metal goods	ċ.	Automobile components industry	Research Association		ζ.		Electrical components for automobile industry		,	ċ	٥.			
Installation Dates and situation re use	1979 +	1979 +		1979	1979 +	1979	1978 +		1979 +	1979	1979 +		1979 +	1979	1979		1979	The same of the sa
Purpose of Application	Spraying underseal	500 FO TO	Spot welding	Diecasting	Arc welding	Arc welding	Arc welding		Arc welding	Diecasting	Assembly		٠.	Paint spraying	Accompl v	ASSOCIATION OF THE PROPERTY OF	Assembly	
Robot Manufacturer	Nordson		Kuka 6/60b	٠.	Asea A30A	Asea A30A	Asea A30A		Hal/BOC	٠.	Signa		Hall Ramp	ċ		Puma	Signa	
Quantity of Robots	6	1	10	1		1	-	4	- -1	1	1			1			1	
Location	C		Liverpool	London	Halifax	Gloucestershire	To sale showing	perkentre	Rochester, Kent	Wolverhampton	Birmingham)	Norfolk	(G) aspow	arma Born	Dorset	Glasgow	
Firm	П	33	96	97	98	66		001	101	100	103) 	104	105	100	106	107	

						142	 						4
	Industry	ċ		Truck manutacture	Metal goods				-				
	Installation Dates and situation re use	1979 +		1979 +	1976							 	
	Purpose of Application	Transfer		Paint spraying inside trucks	Machine tool loading								
and the state of t	Robot Manufacturer	Ilwimate 2000B	Ultilitate 40002	Trallfa	Unimate 2000B								
The state of the s	Quantity of Robots		4	Н	F==4					 		 	
The state of the s	Location		Bırmıngnanı	Coventry	Birmingham							 	
	Firm Number	0	108	109	110		 	 					

CHRONOLOGY OF MAIN PROMOTION ACTIVITIES RELATED

TO ROBOT TECHNOLOGY IN VARIOUS COUNTRIES

APPENDIX 11

Chronology of Main Promotion Activities Related to Robot Technology in Various Countries

A list of governmental and other important activities for the promotion of robot technology in Japan, the USA and Western Europe is given below in chronological order. This information was compiled from news coverage and papers on government intervention in the Industrial Robot Magazine, the ISIR proceedings, and the technical and other press. For the purpose of comparison all currencies were converted to pound sterling using current rates of exchange (Financial Times 1980, p17). Hence figures are only an approximation.

Japan Electronics Industry Development Association (JEIDA) establishes a technical committee for industrial robots and starts a wide-ranging survey with government support.

ne of America (Min) is counded under

1971 Japan Industrial Robot Association (JIRA) is established at the suggestion of the Ministry of International Trade and Industry (MITI).

Japanese government assigns £40M/8 years development work on artificial intelligence (55% for prive work in industry, 30% in MITI research laboratories, and 25% in Universities).

JIRA sponsors demonstration facility at the Kawasaki Heavy Industries works.

- 1972 Committee for industrial robots already operates within the Department of Production Engineering of the Sveriges Mekanfoerbund in Sweden (main support for research comes from the Swedish Board of Technical Development).
- MITI assigns £20M to be spent on the "Methodology for Unmanned Manufacture" (MUM) project. First phase: design concepts (1976) and second phase: model preparation work (1977-83) (eight private companies are involved).

Technology stimulation programme is proposed in USA administration financial year 1973 budget request for the National Science Foundation (NSF) and the National Bureau of Standards (NBS).

NSF starts programme on advanced automation in industrial, university and other laboratories (e.g. $\pm 0.28M/2$ years to SRI International and $\pm 0.11M$ to Westinghouse Research Centre (see Appendix 5).

1974 The German Research Society (DFG) donated £20M for engineering research, some of which is directed towards basic research closely related to robotics.

The Federal Ministry for Research and Technology and the Ministry of Labour and Social Affairs launch the the Ministry of Life at Work" programme (£40M/4 years "Humanisation of Life at Work" programme (£40M/4 years follows: £3M/1974, £8M/1975, £11M/1976, and £18M/1977).

A total of £13M/4 years are allocated to robot purhcase and development under the "Manufacturing Technologies" Programme.

The Robot Institute of America (RIA) is founded under the sponsorship of the Society of Manufacturing Engineers (SME).

The Italian Robot Association (SIRI) is founded.

Japan has 65 laboratories and 300 researchers spending approximately £0.71M in development work.

Japan has a government-industry development programme estimated at a level of £7M per year.

1977 In the FRG 140 research projects have already been approved under the HLW programme and have been placed with contractors (companies are assumed to contribute up to 50% of the planned research cost).

The committee on automated small-batch production (ASP) is formed by the Department of Industry in the UK.

The British Robot Association (BRA) is founded and receives a pump priming grant from the DoI (£15000/2 years).

1978 Second phase of "MUM" projects start in Japan (£25M/7 years).

Automation Research Council in the USA proposes the expenditure of £125M/6 years from government and industry.

Industrial robot associations are founded in France, Spain, and Denmark. First discussions on the formation of an international federation of industrial robots takes place at the 8th ISIR.

National funding of robotic research amounts to £1.3M per annum in the USA (the total cost of the space shuttle programme manipulator system is £27M).

The US Air Force (USAF) starts "Integrated Computer Aided Manufacture" (ICAM) programme (£42M). Projects include development of robots for the assembly of aircraft bodies (e.g. drilling, rivetting and other fastening operations).

MITI establishes system for leasing of high priced industrial robots for small enterprises.

The Mechanical Engineering and Machine Tool Requirments Board of the DoI in the UK based on the recommendations of the ASP committee sponsors development work on flex-of the ASP committee sponsors (£0.23M/3 years and a further ible manufacturing systems (£0.23M/3 years and a further £3M for construction of a prototype awarded to the £3M for construction manufacturer).

The Science Research Council (SRC) in the UK identifies robotics as a key area in a £10M research programme on microelectronics.

The Manufacturing Technology Committee starts project on robot technology and work transfer (£0.17/3 years) in the UK.

The SRC Roberts Report recommends a $\pm 0.75 \text{M}$ per annum for experimental development of integrated robot systems in the UK.

The Production Engineering Research Association (PERA) launches a persuasion campaign in the UK (£0.45M expenditure on advice and demonstration facilities).

The Advisory Council for Applied Research and Development (ACARD) recommends to the Cabinet Office of the British Government the launching of a programme on incentives for the installation of robots in UK companies (a 25% Government grant would involve £15M from public funds).

The DoI of the British Government gives interest relief grant (£0.24M) and the National Research and Development Corporation (NRDC) gives venture capital (£0.42) to Unimation for investment in PUMA plant in the UK (50% of the capital needed).

Approval for the expenditure of £2.5/5 year in robot research is given by the SRC. The programme involves industry and university groups working on the areas identified as priority by the Roberts Report: high identified as priority by the Roberts Report: high speed sensory systems, control and guidance techniques, speed sensory systems, control and guidance techniques, safety, diagnosis and error recovery functions, and safety, diagnosis and error specification and measurement.

APPENDIX 12

THE FACTORS AND IMPLICATIONS OF THE

INTRODUCTION OF ROBOTS IN VARIOUS UK FIRMS

APPENDIX 12 for interviewing Manageria

The Factors and Implications of the Introduction of Robots in Various UK Firms

A series of unstructured interviews were conducted with To help the users and potential users of robots in the UK. discussions the general checklist given below was used (see Table A12.1). Each interview was then summarised in writing. Later tables synthesizing the information were constructed. Tables A12.2 and A12.3 describe the most important characteristics of the firms visited. Tables A12.4 to A12.9 describe the motives and consequences of robot adoption according to the managers interviewed. Since these tables were made from unstructured interviews, the frequences reported must be regarded as the minimum number of occasions where a factor was considered important. This information is best used for inferring the differences between the adoption of transfer, manipulative, processing, and assembly systems, particularly between transfer and processing robots where samples are most representative (table A12.10 is a list of the robot applications visited).

TABLE A12.1 - General Framework for Interviewing Managers on the Factors and Implications of Robot Adoption

GENERATION OF THE IDEA 1.

- External forces encouraging or discouraging the use of robots
- Internal motives for the use of robots

SPREADING OF THE IDEA 2.

- Formal and informal procedures for the initiation 2.1 of the project
- Factors delaying or speeding the development of the 2.2 project

EVALUATION OF THE IDEA 3.

- Formal and informal evaluation procedures that the 3.1 project had to undergo
- Alternatives to robot technology considered
- Main factors affecting the decision 3.3
- Description of the present and expected system 3.4

APPLICATION OF THE IDEA 4.

- Procedures and stages that the project undergo before 4.1 the system was commissioned
- Factors delaying and speeding installation and start 4.2 up of the system

ASSESSMENT 5.

- Description of the actual system introduced 5.1
- Technical performance of the robot system 5.2
- Managerial benefits and problems 5.3
- Labour benefits and problems 5.4
- Economic results 5.5
- Future perspective for the technology inside the firm 5.6

- General Characteristics of Potential User Firms TABLE A12.2

7 1717					,
			ĬŦ.	FREQUENCY (%)	
			Robot Potential is certain (A)	Robot Potential is uncertain (B)	Total
			ı	1	1
WII ƏZ	Small Medium	Small (< 100 employees) Medium (100-500 employees) Large (500-1000 employees)	25 75	- 55 46	- 47 53
iA iS	Very 1	Very large (\$1000 employees)	50	18	33
Compa	ny's out	Company's output is expanding		!	
cal	(D)	Low technology Medium technology	50 50	36 55	40 53
:Bc		ngn technology		-	l
chnol		Low technology Medium technology	50 50	73 18	22
 9T		High technology	50	46	47
gange	Mass High Medi	Mass production (>1 Million per annum) High volume (0.5-1 Million per annum) Medium volume (0.1-0.5 Million per annum)	200 1 1	46 9	4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
		Low volume (\$0.1 Million per annum)		55	40
ən.	High Medium		100	36	Ç I
VaJ	P P P P P P P P P P P P P P P P P P P			1.1.	15
Numb	Number of firms	- Sull		Jaim and brazing)	

For examples of products and processes with varying technological levels and value added see Table A12.3 Interviewees thought conventional automation and PPD's were more appropriate in their case Medium-to-long term potential, particularly in fabrication (e.g. arc welding and brazing) CBB Notes:

TABLE A12.3 - General Characteristics of User Firms

			•			
		1		FREQUENCY (%)	(%)	
			Very Successful (A)	Successful (B)	Not Successful (C)	Total
ari Əzi	Small (<100 Medium (100 Large (500-	Small (<100 employees) Medium (100-500 employees) Large (500-1000 employees)	_ 13 25 63	- 33 44 22	20 40 40	_ 23 36 41
A S	of the surface of the	The control of the co	89	11	40	46
	any s oue		1	11	09	18
[ca]	D) Ogne _t	Low rechnology Medium technology	50	56 33	20	36
SE EJ))	nigii tecimoroby		FF	80	23
Connos Vev	(E) Ocess	Low technology Medium technology	- 38 63	78 11	20	50
<u></u> -	1	High technology			20	6
ognet	Mass High Medi	Mass production (>1 Million per annum) High volume (0.5-1 Million per annum) Medium volume (0.1-0.5 Million per annum)	38 25 38	56 11 22	20 40 20	23
		Low volume (\$0.1 Million per amount	Cu	22		27
Jue	de High Medium	en e	1 20	33	20 80	36
SV A					ſ	22
, tN	Mumbar of fi	fings	8	מ		
) N					Continued/	/p

Notes for Table A12.3

- Successful applications and/or large potential for robots is foreseen
- Successful application but no further installations В ane planned
- C Robots are not in use any more
- For example: D
 - * Low technology (traditional) products: wooden furniture, sanitary ware and glass bottles
 - * Medium technology products: plastic mouldings, safety glass, TV tubes, and light brass fittings
 - * High technology products: High duty forgings and castings, electrical domestic appliances, fork lift trucks, and earth moving equipment.

For example: Ε

- * Low technology (traditional) processes: working, ceramic casting and glass forming
- * Medium technology processes: conventional stamping,
- machining, casting, and finishing * High technology processes: screw injection of thermoset plastic and large mouldings, colour TV tube processing and assembly, high precision casting and use of NC machinery

For example: F

- * High value added: equipment, chemicals and food
- * Medium value added: fabricated metal products
- * Low value added: wooden furniture, sanitary ware and glass products.

- Labour Factors Encouraging Robot Adoption According to Managers in User Firms (A) TABLE A12.4

L			, p		
		超	FREQUENCY (%)		
`	Transfer	Manipulative robots	Processing robots	Assembly robots	Total
Inottractive Job	06	100	50	50	73
Monotonous Physically strenuous Dangerous	90 90 30 00	0 100 50 0	0 13 13 50	50 0 0 0	46 41 23 18
r time of incompling conditions	09	100	68	0	89
Unattractive working construction	40	50	89	Õ	55
Funes, vapours and dust Noise Hot environment	30 40 0	200	89 0 13	000	46 23 5
Glare	40	0	89	0	20
Negative attitudes to work	Q#		- 1 6 7		98.
High absenteeism High labour turnover	20 10 20	000	75 75 25	000	27 18
Frequent breams	06	50	63	0	36
Shortage of direct labour	2		13	50	23
Overmanning	30	0	2		Ľ
Dochlems of industrial relations	10	0	0	\circ	
	10	2	8	7	22
Number of firms	24				g-0 50 cl
				II Wilming way	

They imply the minimum number of Frequencies were inferred from unstructured interviews. occasions where the factor was important A Notes:

TABLE A12.5 - Managerial Factors Encouraging Robot Adoption According to Managers in User Firms

		H	FREQUENCY (%)		
	Transfer robots	Manipulative robots	Processing robots	Assembly robots	Total
Ease of management of direct	50	50	75	50	59
Difficult recruitment	30	50	63	50	46
Very long training is	20	50	25	0	23
Difficult labour lay-off and	10	0	13	.09	14
Large implications of absent-	10	50	0	0	6
Ease of supervision, monitoring and control of performance	20	50	50	20	50
Ease of production scheduling	40	0	25	0	27
and planning					22
Number of firms	10	2	0	1	

TABLE A12.6 - Economic Factors Encouraging Robot Adoption According to Managers in User Firms

		F.	TENCY (9)		
			CERCOLETACY (10)		
	Transfer Robots	Manipulative Robots	Processing Robots	Assembly Robots	Total
Increase economic efficiency	100	50	100	100	96
Increase output per shift	50	50	63	100	59
Immove product quality	30	50	50	0	36
Doduce rejection levels	30	50	25	0	27
Number of firms	10	7	æ	7	22
T. C.					

TABLE A12.7 - Labour Impacts of Robot Adoption According to Managers in User Firms

	Transfer	Manipulative	Processing	Assembly	Total
	Robots	Robots	MUMCB		
r. the lebana dien good					
Direct labour displaced Total Average	12.5	2.0	4.2 0-14	24.5 13–36	10.0 0-36
Range Per robot Average	2 .3	1.0	3.4	8.0 3+13	3.0
Range Per robot per shift Average	1.2	0.5	1.4 0-6	7.0	1.7
Range			FREQUENCY (%)		
				100	5.5
Reduction of direct labour skills	20	50	0c	201	
מוניקפן +סיייורייייייייייייייייייייייייייייייייי			i,	C	46
Difficulty of matching indirect random	8	100	75	0	21
skills to robot requirences		100	75	0	25
Total reliance on outside service	40				
Improvements in job remuneration Higher wages	40	00	38	100	41 36
Higher status					7
Losses in job renuneration	0	0	13	100	14
Social Contact year				Ç	Continued/

TABLE 12.7 - Continued

_	т			 1			П				
	Total		•	19		80		22			
	Assembly Robots			100 50		20		6	1		
	Processing Robots			20		75			×		
-	Manipulative Robots			0		100			2		
	Transfer	TREASE		50	>		00		10		
				Policies for labour dispacement (A) Transfer and natural wastage	Redundancy	Illinia	pasitive labour acceptance			Number of firms	

Notes

A Only those companies where labour wad displaced were counted

TABLE A12.8 - Economic Impact of Robot Adoption According to Managers in User Firms

			FREQUENCY (%)		
	Transfer	Manipulative Robots	Processing Robots	Assembly Robots	Total
	TO COOK				
Reductions in direct manufacturing	06	100	88	100	91
COSTS		001	88	100	82
Iabour costs Material costs	70 30 20	100 50 0	38	0	35
Energy costs	, L	100	71	100	20
Increases in output per shift	90	001			to the second state of the
Increases in the utilisation of capacity Reduction of rejection levels	56 33 11	100 100 0	71 43 29	100 0 0	70. 40 15
Reduction in cycle time		C C T	71	0	55
Increases in product quality	44	100	1		
Significant increase in indirect	29	100	71	0	59
costs	, u	100	75	100	89
Satisfactory payback	000				
Number of shifts Average	2.8	2.3	2.1	2.0	1-4
Range	1			Cont	Continued/

TABLE A12.8 (Continued)

	Transfer	Manipulative Robots	Processing Robots	Assembly Robots	Total
Payback required (years) Average	2.4	Cra. Cra	3.1	2.5	2-5
Range					
payback achieved if satisfactory				,	-
(years)	0.7	خ	2.1	0.6-1.6	0.6-2.9
Average	8.0-9.0	٥٠	1-4.3		2
Kange				C	99
	10	2	∞	7	3 1
Number of firms					

TABLE A12.9 - Managerial Effects of Robot Adoption According to Managers in User Firms

ive			
Transfer Robots 80 100 60 50 50 20 100 40 50 50 100 70 70 70 70 70 70 70 70 70 70 70 70 7	FRESOURING (%)	,	
90 100 80 50 60 50 50 0 100 40 50 70 70 50 70 70 60 70 100 70 70 60 70 70 60	Processing Robots	Assembly Robots	Total
80 80 60 50 50 70 70 70 70 70 70 70 70 70 7	38	100	73
safety guards	38 13 25	100 100 100	64 50 46
our 50 100 40 50 50 100 50	13	20	18
our 40 100 100 100 100 100 100 100 100 100	88	50	89
of 50 5 70 10 70 8 70 8	88 13 0	20 0	233
of 50 50 10 10 10 70 10 70 8	88	20	64
70 1C 70 50 50 50 50 50 50 50 50 50 50 50 50 50			
70 70 30	25	100	SC I
m 30	20	00	22
	50	0	25
	50	20	20
Rasier management of direct labour 50			
Easier supervision, monitoring and 50 50	25	100	46
		Contin	Continued/

TABLE A12.9 (Continued)

	cal	90	36	0	30	9	22		[*] cj	fo	- J		31	iye
	Total							 						
	Assembly Robots		100 10	0	(0	2							
FREQUENCY (%)	Processing Robots		13	0		38	0	\$						
H. H.	Manipulative Robots		00			90		2						
	Transfer	KODOUS	50	3 0		30		10						
			Changes in the organisation of	For direct labour For indirect labour and	management	Easier production scheduling	and planning		Number of firms					

TABLE A12.10 - List of Robot Applications Discussed in the Interviews

- Paint spraying of plastic moulds for automotive industry (one robot)
- 2. Paint spraying of tumble drier drums (one robot)
- Vitreous enamel and paint spraying of cooker parts (four robots)
- 4. Varnish spraying of wooden gasfire cabines (one robot)

- 5. Vitreous enamel spraying and dry enamel sprinkling of bath tubes (four robots)
- 6. Vitreous enamel spraying of cooker parts (three robots)
- 7. Loading of glass cutting machines (seven robots)
- 8. Loading and unloading of glass forming machines (two robots)
- 9. Glass gathering and loading into press (two robots)
- 10. Transfer of TV tubes from anode button machine to annealing lehr (one robot):
- 11. Loading and unloading of TV tubes into chemical treatment machines (one robot)
- 12. Packaging of glass bottles into cardboard boxes (one robot)
- 13. Loading and unloading of brass stamping presses (four robots)
- 14. Loading and unloading of forging press (one robot)
- 15. Unloading of diecasting machines (seven robots)
- 16. Unloading of injection moulding machines (five robots)
- 17. Dipping and stuccoing of wax patterns for investment casting (two robots)
- 18. Component transfer in special purpose metal cutting machines (sixteen robots)
- 19. Assembly in fork lift truck maufacture (one robot)
- 19. Assembly in form 20.

 Arc welding of components for earth moving equipment (one robot)
- 21. Mould finishing in sanitary ware manufacture (one
- 22. Sorting of chocolates into trays in special purpose system (twelve robots)

The Development de la Prilate.

GLOSSARY OF ABBREVIATIONS AND ACRONYMS

GLOSSARY OF ABBREVIATIONS AND ACRONYMS

ACARD:

THE TAX OF THE Advisory Council for Applied Research and

Development

ADEPA:

Association pour le Development de la Production

Automatisee

AEC:

Atomic Energy Commission

AF:

Assessment and Forecasting

AI:

Artificial Intelligence

AL:

Assembly language

AMF:

American Machinery and Foundry

APAS:

Adaptable Programmable Assembly Systems

App:

Applications

AR:

Applications Research

ARGE HHS:

Programme for the development and diffusion of handling devices and peripheral equipment of

the FRG

ASP:

Automated small-batch production

BMFT:

Ministry for Research and Technology of the FRG

BRA:

British Robot Association

BRS:

British Robotic Systems

BUSM:

British United Shoe Machinery

C:

Control

CAD:

Computer-Aided Design

CAM:

Computer-Aided Manufacture

CBRA:

Annual Industrial Robot Conference of the

British Robot Association

CIRT:

Conference on Industrial Robot Technology

CISM:

International Centre for Mechanical Sciences (Centre International de Sciences Mecaniques)

CM:

Cincinnati Milacron

Computer Numerical Control

CNC:

Computed path control

Comp Path:

National Council for science and Technology CONACYT:

of the Mexican Government

Continuous path control CP:

Control systems CS:

about Office The Charles Stark Draper Laboratory CSDL:

Cambridge University Press CUP:

Digital Electronic Automation DEA:

Digital Equipment Corporation DEC:

German Research Society DFG:

Degrees of Freedom dof:

Department of Industry in Britain DoI:

Economic Commission for Europe ECE:

Experimental Development ED:

Flexible Manufacturing Cell FMC:

Federal Ministry for Research and Technology FMRT:

of the FRG

Flexible Manufacturing Systems FMS:

Government G:

Groupement pour l'Avancement de la Mecanique GAMI:

Industrielle

Group Technology GT:

Hall Automation HA:

Humanisation of life at work HLW:

Hawker Siddeley Dynamics Engineering HSDE:

High Technology Robots HTR:

Industry I:

Integrated Computer-Aided Manufacture

ICAM:

International Conference on Industrial Robot ICIRT:

Technology

Institute of Electrotecnia and Electronics

of Milan Polytechnic IEEMP:

International Federation for the Theory of

Machinery and Mechanisms IFToMM:

TITB:

Institut fuer Informationsverarbeitung in

Technik und Biologie

IITRI:

Illinois Institute of Technology Research

Institute

ILO:

International Labour Office

INN:

Innovation

INRC:

Italian National Research Council

IPA:

Institut fuer Produktionstechnik und

Automatisierung

IPRODE:

The Institution of Production Engineers

TR:

Industrial Robot(s)

IRT:

Industrial robots that handle tools

IRW:

Industrial robots that handle workpieces

ISIR:

International Symposium on Industrial Robots

IVF:

Swedish Institute of Production Engineering

Research

JEIDA:

Japan Electronic Industry Development

Association

JIRA:

Japan Industrial Robot Association

JMSA:

Japan Metal Stamping Association

JPL:

Jet Propulsion Laboratory

JSPMI:

Japan Society for the Promotion of Machine

Industry

M:

Mechanics

MAG:

Metal Active Gas

MAL:

Multipurpose Assembly Language

MEMTRB:

Mechanical Engineering and Machine Tools Requirements Board of the DoI in Britain

MIG:

Metal Inert Gas

Massachusetts Institute of Technology

MIT:

Ministry for International Trade and Industry

MITI:

of the Japanese Government

ML:

Assembly Language

MMA:

Manual Metal Arc Welding

MS ·

Mechanical Systems

MT:

Manufacturing Technologies

MTR:

Medium Technology Robots

MUM:

Methodology for Unmanned Manufacture

NBS:

National Bureau of Standards

NC:

Numerical Control/Numerically Controlled

NEL:

National Engineering Laboratory

NRDC:

National Research and Development Corporation

in the UK

NSIR:

National Symposium on Industrial Robots

NSF:

National Science Foundation in the USA

0:

Research institutions other than University,

industrial and governmental

OSAI:

Olivetti Systems for Industrial Automation

P:

Peripherals

PALS:

Pressing and Allied Operations Labour Saving

and Safety Promotion

PERA:

Production Engineering Research Association

PPD:

Pick and Place Device

Proc:

Proceedings

PTP:

Point to point control

PUMA:

Programmable Universal Machine for Assembly

R:

Research

RAM:

Random access memory

RCC:

Remote centre compliance

R&D:

Research and Experimental Development

RIA:

Robot Institute of America

ROM:

Read only memory

RP:

Robot Prototype

Random programme selection

RPS:

Robot selection and Workplace Studies

RSW:

Se:

Sensors

SE:

Suppliers Experiences

SIRI: Italiand Robot Association

SME: Society of Manufacturing Engineers

So: Software

SPL: Systems Programming

SR: Simple Robots

SRC: Science Research Council

SRI: Standford Research Institute

SRMS: Shuttle Remote Manipulator System

TA: Technology Assessment

TI: Texas Instruments

TIG: Tungsten Inert Gas

TPU: Technology Policy Unit of the University of

Aston in Birmingham

U: University

UE: Users Experience

VAL: Assembly language

WIAG: Wolfson Industrial Automation Group

LIST OF REFERENCES

REFERENCES

- Abraham, R.G. et al 1976, Programmable Assembly
 Research Technology Transfer to Industry (NSF/RA 761416 Westinghouse Research and Development Center
 Pittsburgh, PA)
- Abraham, R.G., 1977, Programmable Automation of Batch Assembly Operations, The Industrial Robot, September, pp119-131
- Abraham, R.G. et al, 1977a, <u>Programmable Assembly Research</u>

 <u>Technology Transfer to Industry, (NSF/RA-770418, Westinghouse Research and Development Center, Pittsburgh, PA)</u>
- Abraham, R.G., et al, 1977b, Programmable Assembly Research
 Technology Transfer to Industry, (NSF/RA-770300,
 Westinghouse Research and Development Center,
 Pittsburgh, PA)

- Adams, W.P., 1972, Auto-Place A small and Intermediate Robot; Its Nature and Applications to Industry, in IITRI (eds), Proc 2nd ISIR, pp203-211
- Albus, J.S. and Evans, J.M., 1976, Robot Systems, Scientific American, Vol.5, February, pp77-86B
- Alessio, A., 1974, A Spot Welding Robot for the Automotive Industry Discussion Session, in Brock, T.E. (ed), Proc. 2nd CIRT, ppG21-22
- Allan, G.M, 1080, Interview at the International Exhibition on Machine Tools, 2/5/80, National Exhibition Centre, Birmingham
- American Machinist, 1975, Robots in Metal working, American Machinist, November, pp88-110
- Arnold, C.B., 1978, Letter from Cole Equipment Ltd, 5/4/78, Dorset.
- Arnstein, S.R., 1977, Technology Assessment: Opportunities and Obstacles, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-7, No.8, August, pp571-582
- Arthur D. Little Inc., 1965, Analysis of Automation

 Potential By Means of Unit Operations (US Department of Labour, Office of Manpower, Automation and Training, Washington)

- ASEA, 1979, ASEA Industrial Robot System, Pamphlet YB11-102E, 1979-06, Reference list, ASEA Electronics Division, Vasteras, Sweden
- Ashley, J.R. et al 1971, Developments in Programmable Assembly Devices, in IITRI (eds), Proc. 1st NSIR, pp69-82
- Barash, M.M., 1976, Integrated Machining Systems with Workpiece Handling, in Brock, T.E. (ed), Proc. 3rd CIRT and 6th ISIR, ppH4-29-38
 - Barson, T.D., 1979, <u>Industrial Robots in Japan. A</u>
 <u>Study Tour</u> (Nuffield Press: Cowley, <u>England</u>) (<u>Leaflet</u>)
 - Battelle-Institute, 1978, Soziale Implikationen der Einfuhrung von Industrierobtern im Fertigungsbereich, 4 Bde Oktober
 - Bell, R.M., 1972, Changing Technology and Manpower Requirements in the Engineering Industry (Sussex University press: Sussex)
 - Belyanin, P.N. and Rozin, B.S., 1978, Design and Evaluation, Present Status and Development of Industrial Robots, Vestnik Mashinostroeniya, Vol. 58, No. 3, pp9-11
 - Birnie, J.V., 1974a, Practical Applications of Versatran Systems, in Brockj T.E. (ed) <u>Proc. 2nd CIRT, ppE2-17-38</u>

- Birnie, J.V., 1974b, Practical Applications of Versatran Systems - Discussion session, in Brock T.E. (ed), Proc. 2nd CIRT, ppG18-19
- BMFT Forschungbeircht FT73-03, 1973, Technische Hilfen foer den Arbeitsprozeβ'', Studie im Auftrag des BMFT, November
- Bo Jonsson, 1973, Labour and Technological Change, in Brock, T.E. (ed), <u>Proc. 1st CIRT</u>
- Bohlen, J. et al, 1961, Adopters of New Farm Ideas,
 (North Central Regional Extension Publication No. 13,
 October)
- BRA, 1978, British Robot Association Aims to Educate
 Potential Users, Machinery and Production Engineering,
 27 September, p5
- BRA, 1979, British Robot Association Tour of Japan,
 May 27 June 9, The Industrial Robot, September,
 Vol. 6, No. 3, pp 153-155
- Braun, E. and MacDonald, S., 1978, Revolution in

 Miniature. The History and Impact of Semiconductor

 Electronics (CUP, Cambridge)
- Braverman, H., 1974, <u>Labour and Monopoly Capital</u> (Monthly Review Press: New York and London)

- Bright, J.R., 1958, <u>Automation and Management</u>, (Graduate School of Business Administration, Harvard University: Boston)
- Brock, T.E. (ed), 1973, Proceedings of 1st Conference on Industrail Robot Technology, University of Nottingham March 27th - 29th (International Fluidic Services, Bedford, England)
- Brock, T.E. (ed), 1974, <u>Proceedings of 2nd Conference</u> on Industrial Robot <u>Technology</u>, <u>University of Birmingham</u>, <u>March 27th - 29th</u> (International Fluidic Services, <u>Bedford</u>, England)
- Brock, T.E. (ed), 1976, Proceedings of 3rd Conference on Industrial Robot Technology and 6th International Symposium on Industrial Robots, University of Nottingham, March 24th 26th (International Fluidic Services, Bedford, England)
- Brock, T.E. 1980, <u>Interview on the 15th January</u>, British Robot Association, Bedford, England
- Brodner, P. and Schacks, P., 1979, Government Activities Supporting the Development of Industrial Robots in the Federal Republic of Germany, The Industrial Robot, Vol.6, No.3, September, pp121-125
- Brown, G.G., 1950, Unit Operations (John Wiley)
- Bryant, S. and Caine, B.E., 1974 Some Observations on the Economics of Complex Industrial Robots, in Brock, T.E. (ed), Proc. 2nd CIRT, ppF2-9-20
- Butler, P., 1978, Robot's Electro-optic Eyes Put to the Test on Conveyor Belt Job, The Engineer, 2nd March, p49
- Bylinsky, G., 1979, Smart Young Robots on the Production Line, Fortune, 17th December, p90-96
- Cakebread, R.F., 1978, Interview at Unimation (Europe) Ltd, 29/11/78, Telford,

- Cakebread, R.F., 1979, Brief Interview at Robots 79 Exhibition Nottingham
- Canner, J.B., 1975, Two Arms are Better Than One, in IITRI (eds), Proc. 5th ISIR, pp171-180
- CBRA, 1978, 1st Annual State-of-the-Art-Review on Industrial Robots and Automation, February 22nd, London (unpublished)
- CBRA, 1979, 2nd Annual Industrial Robot Conference of the BRA, University of Nottingham, March 27th 29th (unpublished)

- Ciborra, C. et al, 1976, <u>IL Robot Industriale</u> (Franco Angeli Editore: Milano) (In Italian)
- Ciborra, C. and Romano, P., 1977, Industrial Robots and Industrial Relations. An Empirical Research, in JIRA (eds), Proc. 7th ISIR, pp1-7
- CISM (eds), 1974, <u>Proceedings 1st CISM-IFTOMM Symposium</u> on Theory and Practice of Robots and Manipulators, <u>September 5th-8th 1973, Udine</u> (Spring-Verlag, Wien)
- Compressed Air, Vol. 81, No.10, pp6-11, 1976, The Emerging Robots of Industry
 - Connole, A.W., 1970, The Human Aspects of Automation, in IITRI (eds), Proc. 1st NSIR, pp95-100
 - Cooley, M.J., 1973, Industrial Robots: A Trade Union View of the Social and Industrial Implications, in Brock, T.E. (ed), Proc. 1st CIRT
 - Corwin, M., 1975, The Benefits of a Computer Controlled Robot, in IITRI (eds), Proc. 5th ISIR, pp453-470
 - Coventry Machine Tool Workers Committee, 1979, <u>Crisis</u>
 in Engineering: <u>Machine Tool Workers Fight for</u>
 Jobs (Coventry Workshop/Institute for Workers'
 Control, Nottingham)
 - Craine, K. 1978, <u>Interview at the De Vilbiss Company</u>
 Ltd., 24/11/78, Bournemouth

- Culberton, J.T., 1963, The Minds of Robots (U. of Illinois P: Urbana)
- Curry, P., 1978a, Letter from Marubeni Corporation 14/4/78, London
- Curry, P., 1978 b, Letter from Marubeni Corporation 13/11/78, London
- Dale, P.G., 1979, Interview at George Kuikka Ltd., 10/1/80, Watford
- D'Auria, A., and Salmon, M., 1976, Examples of Applications of the Sigma Assembly Robot, in Brock, T.E. (ed), Proc. 3rd CIRT and 6th ISIR, ppG5-38
- Davies, S., 1979, The Diffusion of Process Innovations (CUP, London)
- Dawson, B.L., 1977, Moving Line Applications with a Computer Controlled Robot (SME Technical Paper MS77-742)
- Dixon, G., 1971, From Man to Mechanical Man, Product
- Driscoll, L.C., 1972, Blue Collar Robots A Technology Forecast, in IITRI (eds) Proc. 2nd ISIR, pp197-201

- Driscoll, L.C., 1974a, Blue-Collar Robots: A US
 Market Evaluation, in JIRA (eds), <u>Proc. 4th ISIR</u>,
 pp121-132
- Driscoll, L.C., 1974b, Projecting Blue-Collar Robot Markets and Applications, in Brock, T.E. (ed), Proc. 2nd CIRT, ppF3-21-24
- Driscoll, L.C., 1974c, Discussion Session Projecting Blue-Collar Robot Markets and Applications, in Brock, T.E. (ed), Proc. 2nd CIRT, ppG-24
- Duffy, H., 1979a, Industry Warned Not to Fall Behind on Automation, The Financial Times, 2nd November
- Duffy, H., 1979b, Britain to Make American Robots, The Financial Times, 18/12/79
- D.W.S.D., 1978, Brief Interview with Attendant of Derek W.S. Durance Stand at the International Production Engineering and Productivity Exhibition (PEP), 2nd-7th October, Olympia, London
- Economist, 1978, Around the World with Elbow-Grease, The Economist, February 4th, p91
- Engelberger, J.F., 1966, A Robot Factory Worker, New Scientist, 3rd February, Vol.29, p270
- Engelberger, J.F., 1970, Economic and Sociological Impact of Industrial Robots in IITRI (ed), Proc. 1st NSIR, pp7-11
- Engelberger, J.F., 1972, Industrial Robots Second Generation, in IITRI (eds), Proc. 2nd ISIR, pp211-233

- Engelberger, J.F., 1974a, Man-Robot Symbiosis, in JIRA (eds), Proc. 4th ISIR, pp149-162
- Engelgerger, J.F., 1974b, Four Million Hours of Robot Field Experience, in JIRA (eds), Proc. of 4th ISIR pp133-148
- Engelberger, J.F., 1976a, Performance Evaluation of Industrial Robots in Brock, T.E. (ed), Proc. 3rd CIRT and 6th ISIR, ppJ4-51-64
- Engelberger, J.F., 1976b, Discussion and Contributions
 Session 9, in Brock, T.E. (ed), Proc. 3rd CIRT and
 6th ISIR, ppK-20-23
- Engelberger, J.F., 1976c, The Artificial Appendage

 Game, in Morecki, A. and Kedziov, K. (eds), Proc. 2nd

 Int. CISM-IFTOMM on the Theory and Practice of

 Robots and Manipulators, pp480-493
- Engelberger, J.F., 1976d, Designing Robots for Industrial Environments (SME Technical Paper MR76-600, Michigan)

- Engelberger, J.F., 1979, Robotics in 1984, The Industrial Robot, Vol.6, No.3, September, pp115-119
- Engellau, J.J., 1972, Robot Impact on Scandinavian Industry, in IITRI (eds), Proc. 2nd ISIR, pp49-51
- Evans, J.M., et al, 1977, Standards and Control Technology for Industrial Robots in JIRA (eds) Proc. 7th ISIR, pp479-486 A Stead of Thebar
- Evans, J.M., et al (eds), 1978, Computer Science & Technology; NBS/RIA Robotics Research Workshop (US Department of Commerce, NTIS, PB-279 334, Washington)
- Ferreti, M., 1978, Led Dossier de la Robotique Industriale: Vers la Generation 3, Le Nouvel Automatisme, November, pp315-327
- Financial Times, 10/8/78, Robot in Hot Powder Forging Operation, Technical News
- Financial Times, 4/11/79, Picks Parts Off Conveyor Belts,
- Financial Times, 23/7/80, Currencies, Money and Gold,
- Fisher, L.A., 1973, The Diffusion of Technological Innovation: A Study of the Adoption of the Electronic Digital Computer in Process Control (Ph.D. thesis, Polytechnic of Central London).
- Flemming, J., 1978, Labours Rising Costs, Management Today, November, pp9-16
- Fletcher, G.E., 1979, British Robot Association Tour of Sweden, September 3-6, The Industrial Robot, December, pp222-224
- Frost and Sullivan, 1974, The US Industrial Robot Market (Frost and Sullivan: New York)
- Frost and Sullivan, 1975, The Industrial Robot Market in Europe, (Frost and Sullivan, New York, Report
- Frost and Sullivan, 1980, <u>Industrial Robots</u> (New York)
- Freeman, C., 1974, The Economics of Industrial Innovation (Penguin, Harmondsworth, England)

- Freeman, C., 1977, Economics of Research and Development, pp223-275, in Spiegel-Rosing and De Solla Price, D., (ed), Science Technology and Society. A Cross-Disciplinary Perspective (SAGE Publications,
- Freudenberg, H.H., 1978, Interview at Freudenberg (Automation), 8/12/78, Leicester

- Friedrichs, G., 1973, The Social and Economic Aspects of the Application of Industrial Robots, in IPA (eds), Proc. 3rd ISIR, pp427-434
- Gebhardt, A. and Hatzold, O., 1974, Numerically Controlled Machine Tools in Nabseth, L. and Ray, G.F. (eds), The Diffusion of New Industrial Processes, pp22-57 (CUP; London)
- Gerstenfeld, A., 1977, Innovation: A Study of Technological Policy (University Press of America, Washington)
- Ghali, X.B., 1972, Robotology and an Overview of the International Robot Situation (History, Classification of Robots, Applications, Future), in IITRI (eds), Proc. 2nd ISIR, pp3-7)
- Ghali, X.B., 1974, Industrial Robots: Where Are They Heading?, in JIRA (eds), Proc. 4th ISIR, pp149-162
- Ghali, X.B., 1975, The Engineering of Industrial Robots, in Burckhardt, C.W., (ed), Industrial Robots, (Birkhauser Verlag: Basel and Stuttgart)
- Gizycki, R., 1978, Abridged Version and Conclusions of the Project: Social Implications of the Use of Industrial Robots in the Factory (Battelle-Institute: Frankfurt am Main)
- Golding, A.M., 1972, The Semi-Conductor Industry in Britain and the USA: A Case Study in Innovation, Growth and the Diffusion of Technology (D.Phil. Thesis, Univ. of Sussex)
- Goldmuntz, L.A., 1972, Technology and National Goals, in IITRI (eds), Proc. 2nd ISIR, pp89-92
- Gonsalves, R.A. and Kurlat, S., 1977, Robotics in Japan from an American Perspective (SME Technical Paper MS77-754, Michigan)
- Goodman, L.L. 1957, Man and Automation (Penguin Books:
- Grefermann, K. et al, 1975, Probleme der Innovations -Praxis in der Industrie, (Duncker & Humbbt, Berlin-
- Hagio, Y., and Ohta, A., 1974, Industrial Robot for Heat Treatment and Applications in JIRA (eds) Proc.
- Hagmann-Petersen, S., 1977, Socio-Economic Aspects as a Result of the 1977 E.C.E. Seminar on Industrial Robots and Programmable Logical Controllers, in JIRA (eds), Proc. 7th ISIR, pp641-648
- Hall, D.C., 1976, One Man's View, The Industrial Robot March 1976, p3

- Hall, D., 1978, Interview at Hall Automation 16/8/78, Watford
- Hartley, J., 1978, VW Robot Family, <u>Automotive</u> Engineering, Vol.3, No.2, p68
- Hasegawa, Y., 1973, Analysis and Classification of Industrial Robot Characteristics, in IPA (eds)
 Proc. 3rd ISIR, pp53-68
- Hasegawa, K. et al, 1977, Study on the Standardisation of Terms and Symbols Relating to Industrial Robots in Japan, in JIRA (eds), Proc. 7th ISIR, pp471-478
- Hasegawa, Y., 1977, Industrial Robot Applications for Improving the Quality of Working Life, in JIRA (eds), Proc. 7th ISIR, pp9-16
- Hasegawa, Y., 1979, New Developments in the Field of Industrial Robots, <u>Int.J.Prod.Res. Vol.17, No.5, pp447-454</u>
- Heginbotham, W., 1973, Reasons for Robots in Brock, T.E. (ed), Proc. 1st CIRT, ppR1-1-13
- Heginbotham, W.B., 1974, Robot Devices, 5th Edition Encyclopaedia Britanica, pp910-913
- Heginbotham, W.B., 1976, Where Goes Industrial Robot Technology?, The Production Engineer, March pp125-130

- Heginbotham, W.B., 1978, Automatic Handling, in NEL, Automated Small-Batch Production (DoI Technical Study), pp153-181
- Herrmann, G., 1975, Results and Conclusions of Workplace Analysis Applied to the Design and the Application of Industrial Robots, in Burckhardt, C.W. (ed) Industrial Robots (Birkhäuser Verlag, Basel und Stuttgart)
- Hewit, J.R., 1979, A Look at the USA Robotics Scene, Robots 79, University of Nottingham, March 27th-29th 1979 (unpublished)
- Hohn, R.E., 1976, Application Flexibility of a Computer-Controlled Industrial Robot (S.M.E. Technical Paper MR76-603)
- Hohn, R.E., 1978, Computed Path Control for an Industrial Robot, in IPA (eds), <u>Proc. 8th ISIR and 4th ICIRT</u>, pp327-337
- Holmes, J.G., 1979, An Automated Robot Machining System, in SME (eds), Proc. 9th ISIR, p39
- Horne, J., 1978, Interview at Timex Corporation 28/12/78, Dundee

- Hunter, D., 1973, Future Mechanical Automation in Engineering Discussion Session, in Brock, T.E., (ed), Proc. 1st CIRT, ppR290-292
- Hunter, J.J., 1977, The Automation of Arc Welding in Proc. ECE Seminar on Industrial Robots and Programmable Logical Controllers, 5-10 September, Copenhagen
- Hurter, A.P., and Rubenstein, A.H., 1978, Market
 Penetration by New Innovations: The Technological
 Literature, <u>Technological Forecasting and Social</u>
 Change, 11, pp197-221
- IITRI (eds), 1970, Proceedings of 1st National Symposium on Industrial Robots, IIT Research Institute, April 2nd-3rd (Chicago, Illinois)
- IITRI (eds), 1972, <u>Proceedings of 2nd International</u>
 Symposium on Industrial Robots, <u>IIT Research</u>
 Institute, <u>May 16-18th</u> (Chicago, Illinois)
- ILO, 1979, Year Book of Labour Statistics, (International Labour Office, Geneva, 39ed)
- Ingersoll, 1980a, <u>Industrial Robots</u>. The Report by
 <u>Ingersoll Engineers Vol.1 An Industrial Appreciation</u>
 (Department of Industry, National Engineering
 Laboratory, Glasgow)
- Ingersoll, 1980b, Industrial Robots. A World-wide

 Literature Survey Vol.2 Applications R&D Bibliography
 (Department of Industry, National Engineering
 Laboratory, Glasgow)
- Ingram, J.H. (ed), 1979, <u>Annual Abstract of Statistics</u>, <u>Central Statistical Office (HMSO: London)</u>
- IPA (eds), 1973, <u>Proceedings of 3rd International</u>
 Symposium on Industrial Robots, May 29th-31st,
 (Zurich, Switzerland)
- IPA (eds), 1978, Proceedings of 8th International
 Symposium on Industrial Robots and 4th International
 Conference on Industrial Robot Technology, May 30th
 June 1st (Stuttgart, West Germany)

- IPRODE Working Party on Automated Assembly, 1979,

 <u>A Management Guide to Automated Assembly</u> (Institution of Production Engineers, London)
- Italpresse, 1978, Brief Interview with Attendant of Italpresse (UK) Ltd., Stand in the 8th International Diecasting Exhibition, 9th-12th May, Olympia, London)
- JIRA, 1973, <u>Industrial Robots in Japan</u> (Japan Industrial Robot Association, Tokyo)

- JIRA (eds), 1974, <u>Proceedings of 4th International</u>
 Symposium on Industrial Robots, <u>November 19th-</u>
 21st (Tokyo, Japan)
 - JIRA (eds), 1977, <u>Proceedings of 7th International</u>
 Symposium on Industrial Robots, October 19th-21st
 (Tokyo, Japan)
 - JIRA, 1978, The Japanese Scene, <u>The Industrial</u> Robot, September, pp145-148
 - JIRA, 1979, <u>Specifications of Industrial Robots in</u>
 <u>Japan</u> (Japan Industrial Robot Association, Tokyo)
 - Johnsen, E.G. and Corliss, W.R., 1967, <u>Teleoperators</u>
 and <u>Human Augmentation</u> (an AEC-NASA <u>Technology</u>
 Survey, NASA SP-5047 Project)
 - Johnson, K.G. and Hanify, D.W., 1973, The Current Status and Impact of Industrial Robot Technology in the United States, in Brock, T.E. (ed), Proc. 1st CIRT, ppR2-13-43
 - Johnstone, B., 1979, The Robot Friend or Foe?, The Observer, Sunday 30th September
 - Jones, M.W., 1979, Interview at IMI Ltd., 23/1/79, Birmingham
 - Kennedy, C. and Thirlwall, A.P., 1972, Surveys in Applied Economics: Technical Progress, The Economic Journal, No. 325, Vol.82, pp11-72
 - Kirsch, J., 1976, Progression of Intelligence in Limited Sequence Robots (SME Technical Paper MR76-602, Michigan)
 - Knight, J., 1978, Artoo Detoo's Big Brothers in O'Reilly, D. (ed), <u>Automation and Employment, Case Study in Science, Technology and Society</u> (Siscon, Manchester Polytechnic)
 - Kondoleon, A.S., 1979, Cycle Time Analysis of Robot Assembly Systems, in SME (eds), Proc. 9th ISIR, pp575-587

- Konstantinov, M.S. and Zankov, Z.I., 1974, Multigrippers Hot Forge Manipulator, in JIRA (eds), Proc. 4th ISIR, pp405-428
- Konstantinov, M.S., 1975, Jaw-type Gripper Mechanisms, in IITRI (eds), Proc. 5th ISIR, pp325-326
- Konstantinov, M.S. and Djamdjiev, N.V., 1976, An Integrated Bevel Gears Manufacturing System in Brock, T.E. (ed), Proc. 3rd CIRT and 6th ISIR, ppJ1-1-16
- Laerdal, S., 1976, Trallfa Robot A New Concept of the Control System, in Brock, T.E. (ed) Proc. 3rd CIRT and 6th ISIR, ppG3-17-28

- Lagerlof, B., 1979, Current Industrial Robot Applications for Arc Welding, in SME (eds), Proc. 9th ISIR, pp99-106
- Lamb, W.G., 1975, Unimates at Work in Burckhardt (ed), <u>Industrial Robots</u> (Birkhäusser Verlag, Basel and <u>Stuttgart</u>)
- Large, P., 1978, Help for the £1 and Hour Workers, The Guardian 21/8/78
- Lassi, K.G., 1974, Current Technical and Economical Considerations Concerning Industrial Robots (IRb), in JIRA (eds), Proc. 4th ISIR, pp441-454
- Lawrence, E. (ed) 1980, Annual Abstract of Statistics, No. 116, Central Statistical Office (HMSO: London)
- Leonard, R. and Rathmill, K., 1977, The Group Technology Myths, Management Today, Jan, pp66-69
- Liff, H.J. et al, 1977, A Technology Assessment of Robots, in JIRA (eds), Proc. 7th ISIR, pp649-655
- Lighthill, J., 1974, Opening Address, in Brock, T.E, (ed), Proc. 2nd CIRT, pVII
- Lindbom, T.H., 1972, Today's Robots at Work in Industry: Matching the Robot and the Job in IITRI (eds), Proc. 2nd ISIR, pp129-148
- Lorrimore, D.A., 1978, Telephone Interview with Manager Diecasting Division of Buhler Miag (England) Ltd., 6/11/78
- Luetzenkirchen, W., 1978, Workmates with Steel Fingers, The Industrial Robot, December, pp183-186
- Lundstroem, G., et al, 1972, <u>Industrial Robots A</u>
 <u>Survey</u> (International Fluidics Services Ltd:
 <u>Bedford</u>, England)
- Lundstroem, G., et al, 1977, <u>Industrial Robots Gripper Review</u> (International Fluidics Services: Bedford, England)

- Lupa, Z., 1978, <u>Interview at Binks-Bullows Ltd.</u>, 11/12/78, Walsall
- Mansfield, E., 1961, Technical Change and the Rate of Imitation, Econometrica, 29, pp741-766
- Mansfield, E., 1968a, The Economics of Technological Change, (New York: Norton)
- Mansfield, E., 1968b, <u>Industrial Research and</u> <u>Technological Innovation</u> (New York: Norton)
- Mansfield, E., et al, 1971, Research and Innovation in the Modern Corporation (New York: Norton)

- Mansfield, E., et al, 1977 The Production and Application of New Industrial Technology (New York: Norton)
- Manufacturing Engineering, 1978, Using the Right Robot, Manufacturing Engineering, Vol. 80, No.4, p69
- Marsh, P., 1980a, Electronics Giants See the Light with Robots, New Scientist, 28 February, p641
- Marsh, P., 1980b, Sweet Dreams About Robot Factories, New Scientis, 27th March
- Martensson, N., 1976, Reliability of Industrial Robot Systems, Manufacturing Systems, Vol.5, No.2, pp99-112
- McNeil, I., 1979, It's Time Britain Put Robots In Their Place, Works Management, July, pp54-60
- Michie, 1979, Four Fatal Fallacies of Robot Research, Computer Weekly, Nov. 29, p4
- Mills, J., 1980, How to Get to Grips with a Robot, The Guardian, Thursday, February 28th
- Mooney, G.P., 1978, Letter from the De Vilbiss Company Ltd, 6/2/78, Birmingham
- Morecki, A. and Kedzior, K. (eds), 1977, <u>Proceedings</u> of 2nd International CISM-IFTOMM Symposium, <u>September 14th-17th, 1976, Warsaw</u> (Elsevier)
- Mortimer, J., 1978, Britain Way Behind Japan in Robot Use, The Engineer, Vol.246, pp16-17
- Mosher, R.S., 1964, Industrial Manipulators, Scientific American, Vol.211, No.4, October, pp88-96
- Mosher, R.R., 1977, Robotic Painting The Automotive Potential (SME Technical Paper MS77-738, Michigan)

- Mueller, S., 1978, Almost a Decade of Industrial Robots - Experience from Practical Applications, The Industrial Robot, June, Vol.5, No.2, pp80-93
- Nabseth, L., 1974, Summary and Conclusions, pp294-315, in Nabseth, L. and Ray, G.F. (eds), <u>The Diffusion of New Industrial Processes</u>. An International Study (CUP: Cambridge)
- Nabseth, L. and Ray, G., 1974, The Diffusion of New Industrial Processes (CUP, London)
- Nagai, M., 1978, Brief Interview at the Rimrock, Corp Stand in 8th International Diecasting Exhibition, 9th-12th May, Olympia, London

- Nevins, J.L. and Whitney, D.E., 1975, Adaptable-Programmable Assembly Systems; An Information and Control Problem in IITRI (eds), <u>Proc. 5th ISIR</u>, pp387-406
- Nevins, J.L. and Whitney, D.E., 1978, Computer-controlled Assembly, Scientific American, Vol.238, Part 2, pp62-74
- Nevins, J.L. and Whitney, D.E., 1980, Assembly Research, The Industrial Robot, March, pp27-43
- New Scientist, 1979, Robot Report to Government, New Scientist, 5th April, p5
- Nordsjo, P.O., 1979, A Study of the UK Market for

 Arc-Welding Robots (Third Year Project, Department
 of Mechanical Engineering, Imperial College of
 Science and Technology, London University)
- Norton, A.J. and Fogg, B., 1976, Small Companies, Management and the Cell System, Manufacturing Systems, Vol.5, No.1, pp47-26
- Ozaki, S., et al, 1977, Standardisation of Characterisation Relating to Industrial Robots, in JIRA (eds), Proc. 7th ISIR, pp453-459
- Peltu, M., 1979, Human Window on the Secret Machine, New Scientist, 18 October, pp178-181
- PERA, 1978, The Design and Operation of Flexible

 Cell Systems (PERA R&D Division, Melton Mowbray,

 England)
- Phillips, D.N., 1979, <u>Interview at the Technology</u> Policy Unit, 25/1/79, Birmingham
- Potter, R.D., 1975, Practical Applications of a Limited Sequence Robot, in IITRI (eds), <u>Proc.</u> 5th ISIR, pp55-63
- Potter, R.D., 1977, <u>Applications of Industrial</u>
 Robots with Visual Feedback (SME Tecnical Paper MS77-734)
- Pruvot, F., 1975, The Future of Robots in a Production System, in Burckhardt, C.W. (ed) <u>Industrial</u> Robots (Birkhäuser Verlag, Basel <u>and Stuttgart</u>)

- Pugh, A., et al, 1979, Conference and Exhibition Report, The Industrial Robot, June, pp89-94
- Ray, G.F., 1974, Summary of the Interim Report, pp16-21 in Nabseth, L. and Ray, G.F. (eds), The Diffusion of New Industrial Processes.

 An International Study (CUP: Cambridge)
- Reichardt, J., 1978, Robots: Fact, Fiction and Prediction (Thames and Hudson: London)

- Renkl, H.D., 1978, <u>Brief Interview at the Acheson</u>
 Colloids Stand in the 8th International Diecasting
 Exhibition, 9th-12th May, Olympia, London
- Richardson, B.A., <u>Interview at Wickman Machine Tool</u> Sales Limited, <u>15/12/78</u>, Coventry
- Rogers, E.M. and Shoemaker, F.F., 1971, Communication of Innovations A Cross-Cultural Approach (Collier MacMillan, London)
- Rogers, M.A.M., 1979, Robots for Palletising, Robots 79, 2nd Annual Conference and Exhibition of the BRA, March 27th-30th, Nottingham, England (unpublished)
- Rooks, B.W. and Tobias, S.A., 1974, A Simple Accurate Positioning System for An Industrial Robot, in JIRA (eds) Proc. 4th ISIR, pp371-384
- Rooks, B.W., 1974a, Report on a Visit to Japan, Part 1: 4th ISIR (unpublished)
- Rooks, B.W., 1974b, Report on a Visit to Japan,
 Part 2: International Industrial Robot and
 Material Handling Exhibition, 18-23 November,
 Tokyo (unpublished)
- Rooks, B.W., 1974c, Report on a Visit to Japan,
 Part 3: Post Symposium Industrial Tour, Nov.
 25-28. (unpublished)
- Rooks, B.W., 1974d, Report on a Visit to Japan,
 Part 4: Overall Discussion and Conclusion
 (unpublished)
- Rooks, B.W., 1977, Robot Applications Are Increasing, The Industrial Robot, March, p27-33

- Rooks, B.W., 1978, <u>Fettling of Castings A Preliminary Study</u>, Department of Mechanical Engineering, University of Birmingham, February, (internal document)
- Rooks, B.W. (ed), 1979, New Products and Developments, The Industrial Robot, September, p164
- Rooks, B.W. and Brock, T.E., 1979, Industrial Robots The State of the Art, <u>Engineering</u>, Vol.219, No.6, pp744-747
- Rosenberg, N., 1976, <u>Perspectives on Technology</u> (Cambridge University Press: Cambridge)
- Rosenbrock, H.H., 1979a, Social Effects of Automation, Reports on Visits in Germany, Switzerland and Hungary, 8-20 January (unpublished)
- Rosenbrock, H.H., 1979b, Social Effects of Automation Reports on Visit to Italy, 20-26 May (unpublished)

- Rosenbrock, H.H., 1979c, Social Effects of Automation, Report on a Visit to the USA, 2nd June 1st July (unpublished)
- Rosenbrock, H.H., 1979d, Social Effects of Automation, Report on Visit to Japan, 15-26 October (unpublished)
- Rosenbrock, H.H., 1979e, Social Effects of Automation, Report on Visit to Finland and Norway, 5-21 November (unpublished)
- Rosenbrock, H.H. et al, 1980, Report of the Committee on Robots of the Council for Science and Society (forthcoming)
- Ross, H.K. and Gilson, G.B., 1979, Robot Applications in the Steel Tube Industry, Robots 79, 2nd Annual Conference and Exhibition of the BRA, March 27th 30th, Nottingham, England (unpublished)
- Ryott, J.P., 1976, Electrolux Industrial Systems:
 Reference List 1976, TS-M, 76/12/31 (unpublished)
- Ryott, J.P. and Gemvik, K., 1978, MHU Industrial Robots in Production Systems, in IPA (eds), Proc. 8th ISIR and 4th ICIRT, pp122-131
- Sahal, D., 1977, The Multidimensional Diffusion of Technology, <u>Technological Forecasting and</u> Social Change, 10, pp277-298
- Sahal, D., 1979, A Theory of Evolution of Technology, Int.J.Systems Sci, Vol.10, No.3, pp259-274
- Salmon, M., 1977, Industrial Robots in Italy, in Proc. ECE Seminar on Industrial Robots and Programmable Logic Controllers, 5-10 September, Copenhagen

- Scarbrough, H., 1980, The Iron Hand of Rationalisation, Computing, 3/4/80, p18
- Scarbrough, H., 1981, Control of Technology in the Motor Industry A case Study, Ph.D. Thesis, Technology Policy Unit of the University of Aston in Birmingham, England (forthcoming)
- Scholz, L., 1977, Promotion of Innovation and Diffusion of Flexible Automation. General Aspects and the Situation in the FRG, in Proc. ECE Seminar on Industrial Robots and Programmable Logical Controllers, 5-10 September, Copenhagen
- Schraft, R.D. and Schmidt, U., 1976, A Computer-Aided Method for the Selection of An Industrial Robot for the Automation of a Working Place, in Brock (ed), Proc. 6th ISIR and 3rd CIRT, ppA2-17-33

- Schraft, R.D., 1977, Industrial Robots in Europe Market, Applications and Developments, Mechanism and Machine Theory, Vol.12, pp45-50
- Schumpeter, J.A., 1934, <u>The Theory of Economic Development</u>, (Havard University Press)
- Scott, T.W.K, 1975, <u>Diffusion of New Technology in the British and West German Manufacturing Industries:</u>
 The Case of the Tufting Process (D.Phil. Thesis, University of Sussex)
- Seligman, B.B., 1966, Most Notorious Victory. Man in an Age of Automation (The Free Press: New York)
- Shah, R. and Pond, J., 1977, Robots Become an Industrial Reality, <u>Iron Age Metalworking International</u> February, pp13-17
- Shah, R., 1978, Growth is the Word for Robots, <u>Iron Age Metalworking International</u>, July, pp.-19-21
- Sheridan, T.B. (ed), 1975, Performance Evaluation of Programmable Robots and Manipulators (Report of a Workshop held at Annapolis, Maryland, October 23-25, US Department of Commerce and National Bureau of Standards, US Government Printing Office)
- Simon, P., 1975, Models of Process Diffusion and Entry in the US Chemical Industry (Ph.D. dissertation, University of Pennsylvania)
- SIRI (eds), 1980, Proceedings of 10th International Symposium on Industrial Robots and 5th Conference on Industrial Robot Technology, March 5th-7th (Milan, Italy)
- Sjoelin, T., 1978, <u>Letter from Direct Transport Services</u> (Sweden) Ltd., 28/3/78, Derby
- Skinner, F., 1975, Multiple Prehension Hands for Assembly Robots in IITRI (eds), Proc. 5th ISIR, pp77-88
- Skoog, H., 1979, Adaptivity As Applied to Industrial Robots, in S.M.E. (ed), Proc. of 9th ISIR, pp729-733
- SME (eds), 1975, <u>Proceedings of 5th International</u>
 Symposium on Industrial Robots, IIT Research
 Institute, September 22nd-24th (Chicago, Illinois
- SME (eds), 1979, <u>Proceedings of 9th International</u>
 Symposium on Industrial Robots, <u>March 13-15</u>
 (Washington, USA)
- SOFI, 1978, <u>Industrieroboter im Volkswagenwerk</u>, Universitat Bremen, Zwischenbericht, Oktober
- Spur, G., et al, 1977, CNC-Control for Industrial Robots with a Modular Programming Language, in JIRA (eds), Proc. 7th ISIR, pp243-253

- Spur, G., et al, 1979, <u>Industrial Robots Control</u>, <u>Programming and Data and Flexible Handling Systems</u> (Carl Hauser Verlag Munchen, Wien) (In Germany)
- Stackhouse, T., 1979, A New Concept in Robot Wrist Flexibility in SME (ed), Proc. of 9th ISIR, pp589-591
- Stothard, P., 1980, How Britain Missed the Robot Revolution, The Sunday Times, March 16
- Stout, K.J., et al, 1976, Robots Current Trends and Industrial Requirements, <u>Machinery and Production</u> Engineering, Vol.128, No.3309, pp440-446
- Streatfield, G.R., 1978, <u>Letter from Blythe Colours</u> <u>Limited</u>, 7/11/78, Stoke-on-Trent
- Sunding, B. and Arnold, L.K, 1977, Use of Industrial Robots in A Plastic-Injection-Moulding Factory, in Proc ECE Seminar on Industrial Robots and Programmable Logical Controllers, 5-10 September, Copenhagen
- Sutherland, J.M., 1970, Robot Applications, in IITRI (ed), Proc. 1st NSIR, pp13-37
- Swords-Isherwoods, N., and Senker, P., 1978, Social Implications of ASP in NEL, <u>Automated Small-Batch Production (DoI Technical Study)</u>, pp19-64
- Tanner, W.R., 1977, <u>Basics of Robotics</u> (S.M.E. Technical Paper MS77-734)
- Tassel, M., 1975, Etat Actuel Et Evolution A Court Et Moyen Terme Des Manipulations Automatiques Programmables, GAMI et l'ADEPA (eds), <u>Proc. 2e'me</u> Journee d'entretiens, Mardi 21 Janvier
- Thackray, J., 1979, The Robots of America, <u>Management</u> Today, July, 1979, p66-69
- The Engineer, 1979, 25 January, p15
- Tilton, J., 1971, <u>International Diffusion of Technology:</u>
 The Case of Semi-Conductors (Brookings Institution)
- Toussaint, D. 1976, Selected Applications of VFW-FOKKER Flexible Handling Systems, in Brock, T.E. (ed), Proc. 3rd CIRT and 6th ISIR, ppG1-1-8
- Turnedge, V., 1978, <u>Interview at Alexander Cardew</u> (Machines) Ltd., <u>16/11/78</u>, <u>Surrey</u>
- Uhlmann, L., 1979, The Typology Approach in Innovation Research, in Baker, M.J. (ed), <u>Industrial Innovation</u> - Technology, Policy, <u>Diffusion</u> (Macmillan, London)
- Underhaug, N., 1977, Trallfa Robot An Industrial Robot with CP-Control for Spray Painting, Arc Welding and Handling, in Proc. ECE Seminar on Industrial Robots and Programmable Logic Controllers, 5-10th September, Copenhagen

- UNESCO, 1970, Measurement of Output of Research and Experimental Development (excerpts of Chapters 2.6 and tables, pp10-43) in Freeman, C., 1974, The Economics of Industrial Innovation, pp332-387 (Penguin, Harmondsworth, England)
- Unimation, 1975, Unimation Report Increased Sales New Products and Developments, The Industrial Robot, March, p29
- Unimation, 1976, <u>Tackling the Prejudice Against Robots</u>, Unimation pamphlet reprinted from Business Week
- Unimation, 1979, In this Family Everyone Works for a Living, The Industrial Robot, Vol.6, No.3, September, p108
- Usher, A.P., 1954, <u>A History of Mechanical Inventions</u> (Harvard University Press (rev.ed.): Cambridge)
- Utterback, J., 1974, Innovation in Industry and the Diffusion of Technology, Science 183, pp620-626
- Vantzelfde, K.S., 1974, <u>A Discussion of the Properties</u> and Applications of Robots, M.Sc. Thesis, Dept. of Industrial Engineering, Arizona State University
- Varvello, P., 1980, Industrial Robots in Italy, <u>The Industrial Robot</u>, Vol.17, No.1, March, pp23-27
- Ward, D., and Hollingum, J., 1980, Advantages and Pitfalls of Robotics Get Public Airing, The Engineer, 8 May, 1980, pp26-30
- Warnecke, H.J., and Schraft, R.D., 1972, State of the Art and Experiences with Industrial Robots in German Industries, in IITRI (eds), <u>Proc. 2nd ISIR</u>, pp21-30
- Warnecke, H.J., 1973, Industrial Robots Problems of Design and Application, in Proc. 1st CISM-IFTOMM Symposium on Theory and Practice of Robots and Manipulators, Vol. II, pp347-360
- Warnecke, H.J. and Schraft, R.D., 1973, <u>Industrie-Roboter</u> (Krausskopf-Verlag, Mainz) (In Germany)
- Warnecke, H.J., et al, 1974, The Gap Between Required and Realized Properties of Industrial Robots, in JIRA (eds), Proc. 4th ISIR, pp101-112
- Warnecke, H.J. et al, 1976, Applications, Social Impacts, Education and Training, in Morecki, A., et al (eds), Proc. 2nd Int. CISM-IFTOMM Symposium on The Theory and Practice of Robots and Manipulators, pp473-479
- Warnecke, H.J. and Schraft, R.D., 1977a, Research Activities at the Institute of Production and Automation in the Field of Robotics, in JIRA (eds), Proc. 7th ISIR, pp25-35

- Warnecke, H.J. and Schraft, R.D., 1977b, Application of Industrial Robots Premises and Volume, in Proc. ECE Seminar on Industrial Robots and Programmable Logic Controllers, 5-10 September, Copenhagen
- Warner, K.E., 1974, The Need for Some Innovative Concepts of Innovation: An Examination of Research on the Diffusion of Innovations, Policy Sciences, 5, pp433-451
- Webb, R.V., 1974, Sequential Controllers Used for Industrial Automation, in Brock, T.E. (ed), Proc. 2nd CIRT, ppB4-47-56
- Webster, G.J., 1978, Interview at the Technology Policy Unit, 14/11/78, Birmingham
- Weichbrodt, B., 1977, Some Special Applications for Asea Robots Deburring of Metal Parts in Production (SME Technical Paper MS77-736, Michigan)
- Weinstein, C.R., 1978, Robots in Industry Too Few Or Too Many, <u>Electronics</u> and Power, May, pp379-383
- Weisel, W. and Katoh, A., 1975, Beach heads for Robotics in S.M.E. (ed), Proc. 5th ISIR, pp1-10
- Whitehall, B., 1977, Industrial Robots Still Held at an Arm's Length, The Engineer, Vol.244, 219, June, pp28-29
- Wider, R.F., 1977, Newsletter, <u>The Industrial Robot</u>, March, p34-37
- Winship, J.T., 1979, Update on Industrial Robots, American Machinist, Vol. 123, January, pp121-124
- Wood, R., 1979, Swiss Robot Taking Great Look Forward, Electronics Times, No.37, 21 June
- Yonemoto, K., 1975, A Standardisation Plan for IRs, The Industrial Robot, March, pp19-25
- Yonemoto, K., and Shiino, K., 1977, Present State and Future Outlook for Industrial Robots in Japan, The Industrial Robot, December, pp171-179
- Yoshinari, A., et al, 1974, All-Electric IR "Electrun" in JIRA (eds), Proc. 4th ISIR, pp475-486
- Young, J.D., 1979, The Use of Robots in the Spraying of Coatings and Adhesives, <u>Paper delivered at Robots 79 Conference</u>, <u>March 27th-30th Nottingham (unpublished)</u>
- Zermeño-González, R., 1979a, The Industrial Use of Robots, The Industrial Robot, Vol.6, No.3, September, pp141-147

Zermeño-González, R., 1979b, <u>A Conceptual Framework</u>
for the Study of the Adoption of Robots in
Manufacturing Industry (Working Paper WP-79-123,
International Institute for Applied Systems
Analysis, Laxenburg, Austria