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THESIS SUMMARY

The research described here concerns the development of meirics and models o support
the development of hybrid (conventional/knowledge based) integraied systems, The rﬂ?@g%g
argues from the point that, although it is well known that estimating the cost, duration and
quality of information systems is a difficuli task, it is far from clear what sorts of tools and
techniques would adequately support a project manager in the estimation of these
properties. A literature review shows that metrics (measuremenis) and estimating fools
have been developed for conventional systems since the 1960s while there has been very
little research on metrics for knowledge based systems (KBSs). Furthermore, alﬂmmﬁ‘i
there are a number of theoretical problems with many of ithe “classic” meirics developed
far conventional sysiems, it also appears that the fools which such meirice can be used io
develop are not widely used by praject managers. A survey was carried out of large UK
companies which confirmed this continuing state of affairs, Before any useful toals could
be developed, therefore, it was important to find out why project managers were nok uging
these tools already.

By characterising those companies that use software cost estimating (SCE) tools against
those which could but do not, it was possible to recognise the involvement of the
client/customer in the process of estimation. Pursuing this point, a model of the early
estimating and planning stages (the EEPS model) was developed to test exactly where
estimating takes place. The EEPS model suggests that estimating could take place either
before a fully-developed plan has been produced, or while this plan is being produced, If it
were the former, then SCE tools would be particularly useful since there is very little other
data available from which to produce an estimate, A second survey, however, indicated
that project managers see estimating as being essentially the latter at which point projec
management tools are available to support the process. It would seem, therefore, that SCH
tools are not being used because project management tools are being used instead. The
issue here is not with the methad of developing an estimating model or tool, but in the way
in which “an estimate” is intimately tied to an understanding of what tasks are being
planned. Current SCE tools are perceived by project managers as targefting the wrong
point of estimation, A model (called TABATHA) is then presented which describes how
an estimating tool based on an analysis of tasks would thus {it into the planning stage.

The issue of whether metrics can be usefully developed for hybrid sy stems (which also
contain KBS components) is tested by extending a number of “classic” program size and
structure mefrics to a KBS language, Prolog. Measurements of lines of cade, Halatead's
operators/operands, McCabe's cyclomatic complexity, Henry & Kafura's data flow fan-
injout and post-release reported errors were taken for a set of 80 commercially-developed
LPA Prolog programs, By re-defining the metric counts for Pralog it was found thai
estimates of program size and error-pronencss comparable 1o the best conventional siidies
are possible. This suggesis that meirics can be usefully a?;ipii@d fo KRS languages, such as
Prolag and thus, the development of metrics and models (o support the development af
hylrid information systems is both feasible and useful.

KEY WORDS: Sofjware cost estimation, Sofiware developmeni, Knowledge bnrsd
syatems, Project management,

2



o

To the cat I never had

c




Acknowledgements can never do justice to the number of people T owe thanks during my
time at Aston University. I would like, therefore, to name a few people who are owed
special thanks and hope that those missing from this list will forgive their omission. |
would like to thank in particular:

Roger Barrett
Taoby Barrett
Alistair Cochran
John Edwards
Chris Harris-Tones
Beryl Hodder
Nigel Hough
John Kidd
Alan Logan
Colin Thompson
Mike & Jayne Woaod

The research described in this thesis was conducted as part of the IED4/1/1426 project
developing a meta-method for the integration of conventional and knowledge based
systems. The industrial partners are BIS Applied Systems Limited (Birmingham office) and
Expert Systems Limited (based in Oxford). The research is supported by the Science and
Engineering Research Council and the Department of Trade and Industry. The material
within this thesis has previously appeared in the following publications:

EDWARDS J S and MOQRES T T (1992a) “Metrics and project management models in
the development of hybrid information systems.” In Proceedings, International
Conference on EconomicsiManagement and Information Technology, Tokyo, 31 August-
4 September, 1992, , :

EDWARDS T § and MOORES T T (1992b) “Metrics and models to help information
systems project managers.” In Proceedings, OR Society Annual Conference,
Birmingham, 8-10 September, 1992,

EDWARDS J S and MOORES T T (1994) “A conflict between the use of estimating and
planning tools in the management of information systems.” To appear in The Eurapean
Journal of Information Systems, 3, .

MOORES T T (1992) “On the use of Software Cost Bstimating tools,” Docioral Working
Paper No.6 (NS), Aston Business School, Aston University, April 1992, _

MOORES T T and EDWARDS T § (1992a) “Could large UK carporations and compiting
companies use Software Cost Rstimating tools? A survey.” The European Journal of
Information Systems, 1(5), 311-319, _ . N .

MOORES T T and EDWARDS T § (1992b) “Why would anybody use an esiimaning fonl?
- A comparison of users and non-users.” In Proceedings. Euwropean Safrware Cast
Madelling Meeting, Munich, 27-29 May, 1992,



~ List o

.
Title page............... LR 3t BN o P R RO 1

Thesis
Dedication

Acknowledgements..........oooevennn, e Ceereeeieees e irrreeeeee e rereessene
i f C
List o onfents.....ocooeeens eeerrresenene e ierrsesaenererans rerrrsesaseanrees

List
List

1 ¢

.
of FIgUI‘CS ..................... veoeresas cenrees ceveres r e trseecrveeerEeeaenyierearstatTyEsey

o
of Tables.............. Yevessons verreaes Veevteseerrestes ittt ierrEranses Ceessresseenerriroiee |

I“tr‘ﬁ‘qutionvaawweovvv'wcveoaceaw?vvﬁvwlvvoﬁeiovevesvvwowfwiﬁﬁvvieeﬁaﬁa

1.1

1.2
1.3

Background to the Tesearch.........ccoiiiiiinniii
1.1.1 The JFIT programme.............ooee. e
1.1.2 The TED4/1/1426 Project ..o
1.1.3 Methods integration and RUSSET........cocooinannn
Main research qUeSHONSE. ..o
THESIS  SETUCTUTE. 1o vvvvvrerirnirrrsirrerreririrmee s ies e ressrernenirnen
1.3.17 Theoteltical T88UES.vviiviiici e
1.3.2° Empirical 18SUES.....ccoiiiiiiiiii

1.3.3 Hybrid metrics and toolS.........coeeeiiiiiiiiiiiniin,

Problems of Project Management.......coocieeieiieceennenncecseconce

2.1
2.2

2.3
2.4

The software “Crisis”........ccoceeviiiininin P ceens
Techniques for project management............ouw...
2.2.1 Work breakdown structures (WBSS)......ccooounn.
2.2.2 Gantt charts....coooviviviiiiiiiiinn, S,
2.2.3 Project network analysis and PERT charts........ccoccnnivinn
Techniques for eStMAION. v
Models of software development...............

Software Development Metrics.cccovivvioriveviorivorrevireserens

3.1

3.2

33

Thc Sizﬁ a S()ftwa’re prOgl‘am“!"""ii'f'f('l"tvvf'vﬁvi!VGG\"V?OV@VFFF‘)WfV'?E
3.1.1 Sofiware Science (Halstead, 1972, 1977).ccciccicicnninnmiiinn

3.1.2 Function point analysis (Mk.J and MEIDnnninmnnn

The structure of a SOfTWATE PIOZTAM.. v

3.2.1 Cyclomatic complexity (McCabe, 1976).......cccvvininnmnn

3.2.2 Data flow fan-in/fan-out (Henry & Kafura, 19843 i
AXTOMATISING  MEETICE vt v

ar 2
Summary.......... REIALLLEN ER S R e T e

3
4
5
g
1

13
18
18
18
19
23
%
25
25



4.  Metrics for Knowledge Base IS

4.1
4.2

4.3

Developing knowledge based SUSIEMS. . s
A review of KBS MEtTICS. it s
4.2.1 Code MEITICS i
4.2.2 Management merics...iiiiv i SRR
Problems with KBS METICS.covviiiiiiiiniinnin e,

go Developing a“ Estimating TOD'uawoaaoninenv9699vaevaavwaaicwveﬁa@eiww

5.1

52

5.3

Techniques for developing an estimating model.........ccocoovne

.
5.1 Correlation
1. \ et rreaeries BT |

5.1.2 Regression......ccoccovviiiinnns e e
5.1.3 Factor analysis.......... e e
5.1.4 Performance evaluation......... e e
Estimating models............ e e e
5.2.1 Farr & Zagorski (1968) ..o e
5.2.2 SLIM (Putnam, 1978) o,
5.2.3 PRICE § (Freiman & Park, 1979) ..o
5.2.4 COCOMO Boehm, 1981 i
5.2.5 COPMO (Thebaut & Shen, 1984; Conte er al, 1986).............
Problems for SCE models......cccociiviiiiiiiiiiiininieiieeea

6. A Survey of Large UK Companies......ccccocviiivieniniieneniens

6.1
6.2
6.3

6.4

Devising a survey of large UK companies.............coeeeiiiniiniinnn
Defining the survey respondents...........c.cccovvveiiiiiiiniiiiin,
SUrvey resultS. i
6.3.1 Proposition L., e
6.3.2 Proposition 2......ccooviiiniiiiiiiii,
6.3.3 Proposition 3. R,
6.3.4 Proposition 4.......... e e e
6.3.5 Proposition 5.,
6.3.6 Proposition 6.......... s
6.3.7 Proposition 7...... derearsunsves
SUrvey CONCIUBIONE. .ottt ra e ens

‘73 Pla“n%“g Or Egﬂ'imai‘iﬁg Tﬂaig?w¢lﬁi79€675950?0696??&90?Wﬁ@ﬂ"ﬁ?’ﬁ?ﬁﬁiﬂﬁﬁ

7.1

Distinguishing between SCE users and non-uger....oowviis
7.1.1 The original SOIVEY....oooimminannmman
7.1.2 Face-10-face InIBIVIEWR. ovvorvviiiininiiom
7.1.3 A telephone pollicnimnannmnmenng

129
133
134
135
136
136
137
139
140
142
142
145

148
149
149
150
15

—.



7.2

7.3

7.4

7.1.4 A rule to characterise SCE (00l USETS....cviivrririnisnnsseormo

7.1.5 “Discussion’ 0f TeSUIES., it
A potential conflict between planning and SCE t0018.......v.everrrenns
7.2.1 The functionality of commercial SCE t00ls.....c.covvvniiininin
7.2.2 The TAD-law of data input........om.
7.2.3 A characterisation of project datf....cccoecevccciiiiininnin,
The EEPS model....o.cocoviiiiiiiinnin PP
7.3.1 Modelling the influence of a client during estimating..............
7.3.2 Validating the EEPS model...c..coooivviiinn
7.3.3 Summary of the EEPS results........ Ceeereetanes vevrecenn
Conclusions............. e e

DETEHEHg a Task“BaQEd SCE Toalovvtﬁﬂﬂvvwiievsathﬂtbiw?ﬁewavveve@vew

8.1

8.2
8.3
8.4
8.5
8.6

Basis for a task-based estimating model......ccovnn
8.1.1 A process model of software development......cccvciin
8.1.2 Defining a set of measurementS. ..., e
A description of TABATHA........ e e

The effect of requirements VOlALTEY. oo
A metrics programme o validate TABATHA ...
Remaining problems........ccoooiviiiiiiii
8.6.1 Measurements of paper producCtS..........cccceevviriiiiiiniiiinnn.
8.6.2 Identifying relevant adjustment factorS............c.cocoveviviiiinns
8.6.3 The cost of a MEIriCS Programime..........ceevevirviiniiienninnn

Developing Hybrid Metrics and ModelS...cccoovnviarciocirrnoncns

9.1
9.2

9.3

9.4

9.5

9.6

The Prolog 1anguage.........coooviiiiiiiiiiiiniii i, .
Defining Prolog metriCS.....ooovvviiiiniii
9.2.1 Software Science for Prolog..........cocooviiiiiniinninn eveeee
9.2.2 Cyclomatic complexity for Prolog.......... e eeraan
9.2.3 Data-flow fan-in/out for Prolog............... reeeerees
The PSA tool for automatic data collection........... reerreee
Applying structure meirics o LPA Prolog......... .
9.4.1 Comparing three SIUCIUIE MEITICS..covivviriviiviaiiomg
9.4.2 Finding an optimal combination of SIruciure memics. ...
Applying size metrics to LPA Prolog.........
9.5.1 Lines of code or program Iength?. ..o
0.5.2 Deducing a linear &ize model  ...vimiionnng
9.5.3 A paper-based Prolog sizing 100). ..o
A summary of meirics TesUIE. i

1

152
154
155
156
158
159
162
162
164
167
167

1706
171

172
174
176
178
181

183

185
185
185
186

188
190
193
193
197
199



10, ConcluSioN...eceersresisrssossososs

4?3/9’41,9”':"13.991tt,ewvwéecv_wevvvqaave 225

10.1 Limitations of the research. ..., 229
10.1.1  Accuracy not an issue in the Chapter 6 survey................ . 229

10.1.2  Small sample of UK project managers.......ccooovnnen, v 228

10.1.3 No validated TABATHA model........... vt .. 230

10.1.4 Small sample of LPA Prolog programs.......ccocccevevivinn, 231

10.1.5 No extension of hybrid metrics to conventional systems....... 231

10.2 Areas of further research.............. PR . 232
10.2.1 Establishing the meaningfulness of metrics resulis.............. 232

10.2.2 Control of SCE model databases........coooviiiniiiiinn 233

10.2.3  Better tools to develop SCE models......ccooviiinniiiinn 234

10.2.4 Modelling corrective actions by project managers........... 234

10.2.5 Tools which meet the way project managers actually work.... 235

10.3  Final rvemarks.......... e e e e e 236

RS o o1 151 5% T PP e e coveneene 337
APPENAICES. .o B PP AT
A - The 1991 Survey QUESHONNAITE cvvvriiiiririrrmninr 49

B - Summary of the PSA resulis files....coviinmnoan, 207

C - LPA Prolog structure analysis tables.........ccoooiiiii 276

D - LPA Prolog size analysis tables............cccoivviiin 283



List of Figures

Chapter 1

1.1 The metrics—models—tools approach..........coococviiiiiniinn, 15
1.2 The RUSSET structural model......ccoovviviviininiiinn. 19
1.3 The four SyStEmMS PEISPECLIVES. v 21
1.4 RUSSET’s Methods Process Model (MPM)..oooiiiiiiniiniiiieniineeiiccnannns 22
Chapter 2

2.1 Work breakdown structure for a simple project......coivvinnine 31
2.2 A Gantt chart for a simple Projech..cimin .., 31
2.3 Network for a simple project (critical path shown in bold arrows)................ a2
2.4  Time spent by 70 Bell Lab programmers............ P veevnne, 38
2.5  The ‘classic’ seven-stage Waterfall model.............ocoovininnn e veereee 36

Chapier 3

3.1 Buclid’s algorithm and associated Halstead-table..........cocoeeiciininncinn 45
3.2  FPA Mk calculation worksheef....... . L
3.3 Example entity model and associated FPA Mk.II breakdown...................... 57
3.4  Two flow-graphs with the same cyclomatic complexity, v(G)=4................. 66
3.5 Simple flow of data diagram................ccooooii 67
3.6  Options in the decomposition of a flowgraph, F.............ooooo 73
Chapter 4

4,1  Elements of a knowledge based SyStem.............cccoccinvimviviinininns v 17
4.2  Example of a program breakdown..............cccocoi S 85
4.3  Representations of a Prolog Clause.......coocoviiiiiiiiiiiiinn, o B8
Chapter §

5.1 Anatomy of an estimating tool............ e ceeerieriaens veeees 100
5.2  Putnam’s Norden-Rayleigh manpower curve............... e R
53 A representation of the PRICE § estimating t00l.....oovveviincnnone. 113
5.4  The effect of task interaction modelled by COPMO..........ccoconviiiininnn, 123
5.5  Duration and effort compression for Basic COCOMO (N=58).......ccovevens 127
5.6  Duration and effort compression for Intermediate COCOMO (N=58)............ 127

Chapter 6

6.1

Characterising respondenis by Business ATEA.......covmnmnn 134

9



6.2  Size of software development departments.....c.cicvrermirrmmoneioieinnn. 134
6.3  Percentage of overall development work devoted 10 KBSS.......vvvvrioveonn 135
6.4  Relative use of project management/planning to0IS.....c.cccomveiirivivecrirnieenns 137
6.5  Relative “heard of”, “evaluated” or “used” for 13 commercial tools.............. 138
6.6  The relative popularity of methodologies in use (out of 92 responses)........... 140
6.7  Level of error associated with excellent/good/adequate/poor/bad estimates...... 143
6.8  Expectations of the levels of accuracy for different kinds of system.............. 144
6.9  Categorising the SCE nOn-uSers.........cciiiinnann, 146
Chapter 7

7.1  The early estimating and planning stages (EEPS) model......ccooocvniiiiinn, 163

Chapier 8

8.1
8.2
8.3
8.4
8.5

RUSSET’s representation of the development process.......oviiiieinn 172
Metrics classification tree defining the task-based estimating model.............. 174
TABATHA - a task based estimating model.......occoovviiiiinn. 176
Transformations of products in a Waterfall life-cycle......coovviiniinnin 180
The effect of requirements volatility on a project’s SITUCIUTE .o, 182

Chapter 9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Example Prolog program (in Edinburgh syntax)........................... 195
Example cyclomatic complexity graph (for the program in Figure 9.1)........... 197
Representation of the PSA ool 205
Representation of an ideal Structure MELrIC........cccccovvivviiiiiniiiinniininn 207
Comparison of stepped Propgrighe values for LOC, v(G) and Cp........cocven. 209
Comparison of stepped Propwrong values for LOC, v(G) and Cp..........c...... 209
N histogram for the LPA Prolog sample.........ccoooviiiviiiniiinniinnn. 214
N versus Naat (=11.1022M 14N 2.10Z2M 2 viveririiiriniiiiiiiiiiiinnnc 216
N versus Nhat (=3.14P+2.59174+2.52UT) i 219



List of Tables

Chapter 2
2.1  Total IT expenditure for the UK. 29
Chapter 3
3.1 Summary of Halstead’s (1977) Software SCIENCE.......cccovviiiiiviiiiiininen 48
3.2 Variations in sizing with function points or source lines of code.................. 60
3.3 Information flow complexity and number of changed procedures................ . 69
Chapter 4
4.1 Complexity bounds by range............ PP B 85

Chapter S

5.1  MMRE and Pred(0.25) results for four SCE t00lS..ccccooviinniin N iy
52  MMRE and Pred(0.25) scores for four SCE 0018 108
5.3 Three regression models predicting man-monihs from a series of factors....... 110
5.4  Changes to Basic COCOMO parameters with mode........ooovrvviniinn. 119
5.5 The 15 Intermediate COCOMO COSt-drivers.......ocuvvemmemerivmmmviiinniiiinennns 119
5.6  Accuracy of Basic, Intermediate and Detailed COCOMO by project mode....... 121
5.7  Parameters of the COPMO model......ccoo.iiviiniiiinnnnn 123
5.8  Application of the General COPMO model to the COCOMO database............ 125
Chapter 6

6.1  Comparison of survey resultS............oiiiiii. . 136
6.2  Comparison of UK Surveys..........iin i, 141
6.3 A summary of TeSUMS....ooviiiiii 145
Chapter 7

7.1  Contingency table based on Business Ared..........ccocniiinnionn e 150
7.2 Contingency table based on Department Size......... ST v 150
7.3 Contingency table based on Requirements Volatility. ... U [
7.4  Contingency table based on Charging a Client..........cc..oo. v 181
7.5  Contingency table based on Person-Months Effort.....coviin, 1582
7.6 A summary of TeSponSeS.........n verreseverseee s 183
7.7 Estimating tool vendors SUIVeY............ PP & I
7.8 Characterising project management datf...namnoon 1l
7.9 Results of the EEPS telephone survey (N=17).oovvnanmmnne A8

!



Chapter 9

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Example Halstead-table (for the program in Figure 9.1)....cccciiininns v 195
Example data-flow table (for the program in Figure 9.1)....c.ccorvvrvnneee. . 200
Cross-correlation of Prolog structure metrics............... PP RPRORRRIN 206
Best performing combinations of (one or more) Metrics..c..ooovvevviveeerinnee, 212
Best combinations of logarithmic and linear models of Prolog size............... 216
Best combinations of models for Prolog size......ccooviiiiiininn, 216
A tool for sizing Prolog programs (based on 80 Prolog programs)............... 221



CHAPTER ONE

1. Introductiﬁnw ‘

“If a man will begin with certainties, he shall end
in doubts; but if he will be content to begin with
doubts, he shall end in certainties.” Francis
Bacon (‘The Advancement of Learning’).

Summary: The IED programme is outlined as well as the main body of the
work for Project IED41111426, from which this research is taken. The main aim
of the IED4 project is to support management in the integration of conventional
and knowledge based methods. The research aims, goals and structure of this
thesis is then set out.

Developing software systems is a complex and difficult task. A software sysiem is defined
here as any system which makes use of an electronic platform and is driven by a pisce of
software that carries out some function: normally, that the system provides some required
response or output given some expected input. This definition does not necessitate that the
system provides any useful or beneficial function, since what counts as ‘useful’ or
‘beneficial’ can be a matter of serious debate. For instance, would the guidance system in a
missile be described as “beneficial” for the recipient? When the system is small, developed
by one person and is for personal use, these issues of ‘use’” and ‘benefit’ can be answered by
the same person. For larger systems, however, there is the problem of communicating
between the client and the developers. If there is any output from this discussion it is usually
a document which outlines the rdle (and thus the functionality, use and benefits) of the
required system.

The problem of communication is not the only issue, however, since as the clienis’
requirements are transformed into a (hopefully operational) sysiem, it may sometimes e
difficult to believe that the pracess by which it is braught about is driven by anything other
than magic. This feeling can be reinfarced by the fact that - for most of its life - a soltware
system is no more than an intangible object within the circuits of a CPU fronied by the
Cyclaps-like eye of a monitor. But if software development is driven by magic then ihere
need be no good understanding of haw the actions of the development team result in the final
product. Like any ather type of magician, a good praject manager would be someane (hal
had an intuitive undersianding of the relevant incantations and an innate skill o direci ihe

13



CHAPTER ONE

project team along the right track. In this respcct,‘ther@ is no place for project management
techniques or methods because magic - by its very nature - breaks all the natural laws and so
is beyond any serious study.

The goal of software engineering, on the other hand, is to destroy this description of
software development and aims to transform the state-of-the-art from that of magic to that of
science. The definition provided by Boehm (1976) is that software engineering is:

“The practical application of scientific knowledge in the design and
construction of computer programs and the associated documentation required
to develop, operate, and maintain them (p1226)."”

Boehm goes on to say that, ideally, such a development environment would make use of
techniques such as formal, machine-readable specifications, top-down design, siructured
programming and automated aids for sofiware testing. These techniques would allow the
previous incantations to be replaced by a set of well-understood, repeatable and refinable
processes by which systems emerge in a good, orderly fashion. With such a well-farmed
process in place it would then be possible to understand the effects of certain actions and
allow a meaningful set of best practices to be established. What is important to Boghm is that
software should be cost-effective and veliable enough “to deserve our frusi (ibid, p1226)",
and as software systems increasingly pervade daily life the issue of “trusting” software

becomes ever more important.

Borning (1987) questions whether we can gver have sufficient faith in systems which (for
instance) are meant to be safety-critical. Borning gives two examples of the failure of US
missile attack warning systems: firstly, in October 1960 a “massive missile attack” with a
certainty of 99.9% turned out to be the rising Moon; secondly, in June 1980 an ‘attack’ with
a random pattern turned out to be a chip failure. Only the lack of visual verification in 1960
and the illogical pattern of the attack in 1980 meant that neither alert resulted in a mistaken
retaliation of missiles. The first example was a lack of precision in defining the environment
in which the system was meant to operate, while the second example was clearly a hardware
problem. In a third example, however, Borning nofes that even when the software is dealing
with more everyday problems, poorly defined software can prove faral when the underlying
madel is inaccurate. In 1983 severe flooding in the lower Colorado river claimed a number
of lives. The problem was that there was a “monumental mistake™ in compuier projections of
snow melt-off flow, and so, oo much water had been dammed upsiream before the spring
thaw. With each of these examples Barning’s contention is thai:

“... the sheer complexity of the system is itself a bhasic cause of problems,
Anyone who has worked on a large computer system knows how difficuls it

14




is to manage the development process; usually, there is nobody who

understands the entire system completely (p120, original italics),”

Software engineering would not deny that trapping the semantics of software development
into a scientific framework will be a difficult and complex problem in itself. The point is,
however, that it cannot remain a black art.

Perhaps, then, a more fitting analogy for the project manager is the medical doctor:
employing a set of well-known techniques to reveal the structure of the patient and identify
the symptoms of common diseases. In the project manager’s case, the patient is the software
development project while the common diseases to be identified are malfunctioning tasks or
software. It may still be a maiter of debate whether the most effective medicine is to siop the
disease before it starts (preventative) or freating the disease as it appears (reactive). Get it
wrong either way and the patient/project conld siill end up dead. The fact that sofiware
development still has the air of “witch doctoring™ even given the number of management

“treatments” which are now available is a major part of this thesis.

Figure 1.1 : The metrics—ym

REAL-WORLD PROJECT

SCE TOOL

s—y[00ls approach

METRICS DATABASE

)
-
)

[

£BUDGET

KLOC ¢ Dur

1 120 2M 18
2 100 1.6M 12
3 300 4M 24
4 50 SO0K 9

5 200 3M 24
6 100 M 9

7 100 1.5M 12
8 150 2.5M 12
9 300 5M 36
10 500 10M 36
it 250 5M 24

fnterface

|

SCE MODEL

Size = a.K"

SCE wmodel

Adf.
facters

BEffort = ¢.(8ize) 9

Duration = e.(Bffer) f

CHAPTER ONE




CHAPTER ONE

The focus of this research, therefore, is the development of metrics, models and tools fo
support the development of hybrid information systems. The definition of a metric used
throughout this thesis is as follows:

A ‘metric’ is a measurement of some aspect of the development process or

products which gives some indication of other (more important) properties.

It will be assumed throughout that there is an intimate connection between the properties of
a project under study, the metric data which can be extracied from the project, the models
which can be deduced from this database of information, and the final development of project
management tools which can then be used to estimate the same properties for subsequent
projects. This metric—model->tool approach is represenied in Figure 1.1. The specific
need here is for a set of metrics which can form the basis of sysiem size and structure models
and which can also be applied 1o bath conventional and knowledge based systems. The
focus on size and structure is made on the grounds that:

o ‘Size’ is the key inpui to models of effort and duration. Early estimaies of effort allows
the cost and feasibility of the project to be assessed.

« ‘Structure’ is the means by which the error-proneness of sofiware can be dediiced.
The “quality” of a piece of software is often boiled down to a judgement of its
likelihood to fail.

Metrics for size and structure, therefore, are the basis of models for cost and quality. Such

models have the general form:
U = a.Kb * Adjustment_factors

where ‘U’ is some unknown property, ‘K’ is some known or at least measurable property,
while the parameters @ and b are typically found by regression. Adjustment factors capiure
internal differences between similar projects which make one project different from another,
Such differences might include the experience of the development team, the need for 100%
reliability, etc. By representing the model in such a way that its use is simplified, e.g., by
building an electronic version with interface and help facilities, then the madel becomes a (ool
which is potentially usable by a third party, such as project managers on ofhier projecis,
Recause the metrics—model—tool approach beging and ends with the real-world problem of
software development, the tool becomes useful only if it can accurately predici ihe
relationship between U and K for subsequent prajects.
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The models of particular interest here-amthaseforéStimatin_g the cost, duration and quality
of software systems. Models of cost and duration-are often related in the sense that models
estimating person-months effort is a surrogate for cost, while an estimate for effort is the key
input to models of project duration, thus:

Effort = a.(Size)® * Adjustment_factors (in person-maonths)
Cost = Effort * £person-month-! (in £5)
Duration = c.(Effort)d (in calendar-months)

As can be seen, system size is a key input to the effort model. The availability of this firsf
measurement, will be seen to be an important problem for software cost estimating (SCE)
models.

Equally problematic is the concept of ‘quality’, defined by Boehm ef a/ (1976) as a
hierarchy of desirable attributes, including reliability, portability, efficiency and fesiability.
Despite the breadth of these features, the vagueness of these notions has resulied in quality
becoming synonymous with reliability and the ideal of zero defecis, The concept of
reliability was quickly defined as the time between system failures, or mean-time-io-failure
(MTTF)(e.g., Musa, 1979). The longer the MTTF the betier the reliahility of ihe sysiem
and, hence, the better the quality of the system as a whole. The issue of reliability continues
to be the most active area of research in quality (e.g., Lipow, 1982; Musa et al, 1987,
Brocklehurst & Littlewood, 1992).

Issues of quality for KBSs have also looked at reducing the likelihood of defects. This
could mean either testing the faults in the reasoning of a KBS (Miller, 1990; Preece, 1990),
or by applying a rigorous method from specification to development (Plant, 1991),
Although ‘quality’ clearly involves more than MTTE (Card, 1990), the likelihood of a “bug”
or error being discovered within the system can be taken to be the most significant atiribute.
A system which contains a number of bugs would substantially reduce its ability o afiain any
of the other quality artributes. For this reason, metrics for ‘quality’ will be taken to be
measurements that estimate the likelihood of a program having a defect or “bug”.

What remains unclear, however, is whether there are any meirics which can be used when
a praject has both conventional and knowledge based components. A praject manager of
such a hybrid system would thus have to face the additional problem of integrating theae
often specialist tasks into a coherent development project that can still be understoad and
controlled. But which tools would be most useful, and what set of techniques can be
develaped which can deal with both conventional and knowledge based componenia? Thess
are the questions that need fo be answered. The rest of this chaprer will sef oui:
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« the background to the research (carried out as part of Project IED4/1/1426);
« the main questions to be addressed by this research;
« the structure of this thesis.

1.1 Background to the research

The research contained within this thesis is based on work carried out as part of Praoject
IED4/1/1426. The project is part of the Joint Framework for Informarion Technology (TFIT)
programme funded by the Department of Trade and Industry (DTI) and Science and
Engineering Research Council (SERC), and adminisiered by the DTI's Information
Engineering Directorate (IED) and SERC’s Information Technology Directorate (ITD). This
section will outline the aims of the JFIT programme and Project 1E134/1/1426 in particular.

1.1.1 The JFIT programme

The JFIT programme was designed to follow the example of ALVEY and ESPRIT
by continuing to foster links between indusiry and academia. In particular, JFIT sl
out to advance work in the software engineering, knowledge based systems and
human computer interaction fields. Morgan er al (1988, p2-6), define IFTT as aiming
to:

» increase the applicability of existing and anticipated research results;

« maintain and increase the UK’s strength in strategically important areas of
information technology (IT);

» ease and accelerate the process of technology transfer between project partners
and from developers to users.

The JFIT programme co-ordinates a number of projects within the fields of
microelectronic devices, systems architectures, systems engineering, and conirol and
instrumentation.

1.1.2  ThelEDA/111426 project

The TED4/1/1426 project falls within the systems engineering field and is supervised
by the DTT's Information Engineering Directoraie. The project is a collaboration
hetween BIS Information Systems Lid (Birmingham office), Bxpert Sysisms Lid
(based in Oxford) and The University of Aston. The praject set out to develop ioale
and techniques o support and control:
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« the integration of conventional (DR) and knowledge based system (KBS)
methodologies;

¢ the configuration of a such a hybrid method to a particular project;

¢ the estimation of the cost, duration and quality of a hybrid system.

The key areas being addressed are software development methodologies and projeci
management. The research into methods integration and configuration was carried
out by BIS Information Systems Lid and Expert Systems Ltd, while the problem of
estimation is addressed by this thesis. To understand fully the problems being
addressed by this research, therefore, it is necessary to describe the other half of the
project. The rest of this section will describe the need for methods integration, the
development of the RUSSET integration tool, and consequently, the need for
metrics.

Figure 1.2 : The RUSSET structural model 1

of ¢ 1993, p29)

Aston University

Content has been removed for copyright reasons

i.1.3 Methods integration and RUSSET

The key to methods integration is to describe methods in such a way that components
from different methods can be compared, and where identical componenis can he
identified and deleted from the final hybrid method, “Componenis™ here are the
tasks, rechniques and products described by the method. A ool - called RUSSET -
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has been developed to carry out the integration of methods (Harris-Jones et al, 1992,
1993). RUSSET contains three models: a structural model; a perspectives model,
and; a methods process model (MPM), These models are used to describe methods
in general and properties of methods components in particular,

The structural model abstracts descriptions of method componenis inio three levels
(see Figure 1.2): from the description by the methods handbook (level 1); to an
intermediate frame-based representation which has a commaon structure across all
methods (level 2); to a model of all tasks, techniques and products a method musi
have in order to be a complete method. In this sense, level 3 must cantain a ceriain
amount of knowledge about what a method is and is used to identify gaps and
overlaps between methods. The expertise at this level was supplied by an expert in
methods and methods integration.

The perspectives model defines the arientation of a methad in terms of the class of
objects which are used to describe the properties of a system. The method
perspective defines which set of (correctly oriented) iechniques are able o represent
the system. The concept of a perspective follows ihat also used by Olle er al (1988)
where conventional (DP) methods are classified as having one of three orientations:

« data perspective (the system is described in terms of transformations of data and
represented using techniques such as data normalisation and entity-relationship
diagrams);

« process perspective (the system is described in terms of discrete inter-related
processes and represented using techniques such as functional decompaosition
and process dependencies);

« behaviour perspective (the system is described in terms of responses to certain
events and represented using techniques such as tactics and strategies),

Knowledge based systems (KBSs), on the other hand, are seen as being strong in
the areas of problem-solving behaviour and domain knowledge. The behaviour
perspective was extended to take account of the first of these areas. A fourih
(knowledge) perspective was also needed in order to deal with methods defining a
system in terms of domain knowledge objects. The knowledge perspeciive defines g
static but semantically rich class of (knowledge based) objecis which are represenied
using techniques such as object hierarchies and semantic nets. This places the
knowledge perspective an an opposife pole to the process perspeciive (see Figure
1.3).
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Figure 1.3 : The four systems perspectives
(cf. Harris-Jones ef gl 1993, p30)

Aston University

Content has been removed for copyright reasons

The perspective model is used to determine whether two or more methods
components which maich functionally (they perform the same task) are identical or
complimentary. Two components are identical only if they maich funciionally and
have the same perspective. If the perspectives are different, then the maiching
components provide different representations of the sysiem and so ane cannot he
substituted for the other.

A methods process model (MPM) is a description of how the methods components
in the level 3 structural model are configured into a life-cycle. That is, an ordering of
the tasks is imposed usually by logical relation where X must be done before Y can
begin. Harris-Jones et al (1993) point out (p33) that very few methods give detailed
descriptions of the MPM and so it is not always clear how the method can be
configured. The MPM used by RUSSET (see Figure 1.4) is similar to Boehm’s
(1988a) spiral model except the “assess” quadrant is replaced by “decision” on the

grounds that:

“At this point in a project a decision has to be made about the next
step. Although an assessment of the risk is a very significant element
in the decision making process, there are other elements including. for
example, internal political issues. These can often kill a praject far
more efficiently than risk factors (Hairis-Tones ef al, 1993, p34)."”

The MPM is used to configure the method components using knowledge of the
way in which a development can be organised (Waierfall, spiral, efc.), and
management rules of thumb such as the larger the project the maore checkpointa
required (while the smaller the project the fewer reparis and checkpoinis required).
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Figure 1.4 : RUSSET’s methods process model (MPM)
(cf. Harris-Jones er g/ 1993, p33)

Aston University

Content has been removed for copyright reasons

In summary, therefore, the structural model, perspectives model and MPM are used
to describe conventional and KBS methodologies in such a way that different
methods can be efficiently integrated into a coherent whole. This will enable
organisations to take their existing conventional method and integrate it with a KBS
method. The integration process takes into account information about the project an
which the method is to be used, tailoring the contents of the method accordingly. In
this way, not only is a fully integrated method generated, but the ouiput from
RUSSET also provides a sound basis for detailed project planning.

Even with a well-constructed method in place, however, whether the proposed system is
developed at all could well depend on the project manager’s ability to accurately estimate,
plan and control the project as a whole. If mistakes are made over the cost and duration of
the project then at best there will be a strain on limited personnel and hardware resources,
and at worst, the project could be cancelled due to costs outweighing any remaining benefiis,
Tt is at this point that the prablems of praject management are put into sharper focus.
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1.2 Main research questions

There are a number of questions which must be answered before a clear definition of the
most useful metrics and models can be established. The questions are related to those a
project manager might ask if presented with a set of metrics and estimating tools for use on a
project. These questions are initially of a theoretical nature and relate to the use of mefrics

and estimating tools on any project (whether conventional or knowledge based) and ask:

«  What problems do project managers face?
¢ What are “metrics” and “‘estimating tools”?
o How are they developed?

» How are they used?

Only by investigating these theoretical questions can the feasibility of using metrics and
estimating toals be established. The questions then become mare empirical and ask whether
the theory relates to the way project managers actually work and generaie estimaies. The

empirical questions ask:

«  Are estimating tools being used in industry?

« If not, why not?

« Does this affect the sorts of metrics and models which a project manager would actually
find useful?

It is entirely possible that even though metrics have a sound theoretical rdle to play they
have been superseded, replaced, or ignored by current practice. The result of these empirical
questions would modify the set of tools and techniques which might be usable (they have a
role to play), into a set of tools and techniques which are useful (they are the best or only
way of solving some project management problem). Having established that meirics and
estimating tools are both usable and useful, the question then becomes whether the
technology can be used on projects which have both conventional and knowledge based
components. The final question therefore becomes:

«  What would a hybrid metric/model/estimating tool look like?

These are the questions which are addressed by this thesis.

b
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1.3 Thesis structure

The structure of this thesis is shaped by the need to answer the theoretical and empirical
questions outlined above before addressing the feasibility of applying metrics and developing
size and structure models for hybrid systems. After outlining the problems being addressed
in Chapter 1, the rest of this thesis can be divided into three parts:

1.3.1 Theoretical issues

Chapter 2:  This chapter outlines the problems faced by projeci managers in the
development of software sysiems. Recent resulis continue to suggest that there is a
lack of control even though a number of management techniques have been
developed since the 1950s. Various methods of deriving an estimale are described,
before explaining the use of life-cycle models to understand the process of software
development. It will be argued that although these planning technigues are well
established, control requires accurate numbers o be available before the plan can help
in project control. This establishes the importance of meirics in project management.

Chapter 3: A description of the nature of metrics as a measurement of the software
products or the development process itself is given. Particular attention is paid to the
“classic” metrics that measure size (Halstead’s Software Science and Function point
analysis), and structure (McCabe’s cyclomatic complexity and Henry and Kafura’s
data fan-in/out). It will be argued that although size and structure metrics may form
the basis of any metrics programme, it is not at all clear that well-defined counting
strategies for such metrics have been established. As such, the evidence for the
usefulness of metrics for conventional systems’ development remains in doubt.

Chapter 4:  This chapter describes the few metrics which have been developed
specifically for knowledge based systems (KBSs). They are typified in the same
way that metrics for conventional systems are plausible, mainly direcied towards
measurements of program code, while more useful estimating models suffer from a
lack of validation. It will be argued that although there is meant to be a theoretical
difference between conventional and knowledge based systems, these KBS meirics
show that measuremenis of KBSs do not differ substantially from measuremenis of
conventional systems. This holds out the possibility that conventional meirica could
be extended to KBSs.
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Chapter 5:  This chapter describes the process by which raw (project) data can be
converted into a software cost estimating (SCE) tool that estimates properties such as
cost, effort (or manpower) and project duration. Such tools are developed by
collecting historical data on the resources expended by a completed project and
developing a regression model across the dataset. It will be argued that although
many of the well-known SCE models have been developed into commercial tools,
there is evidence to suggest that the models use poor statistical experimentation, they
can be overly complex, and are generally inaccurate. This would seem to cast doubt
on the suggestion that SCE tools can be useful to project managers.

1.3.2 Empirical issues

Chapter 6:  This chapter presents the resulis of a survey of large UK corporations
and computing companies. The survey aimed to discaver whether: a) estimation was
seen as a problem; b) estimating tools were in use; and, ¢) companies had the sori of
development environment within which an estimating ool could be develaped or
calibrated. Tt will be seen that while mast respondenis see estimation as a prablem
and could develop/calibrate an estimating tool, less than a third actually do.

Chapter 7:  Given that it is now known that project managers could but do not seem
to be using Software Cost Estimating tools, the next question to be answered is
“Why not?” A follow-up to the original survey is described in which a conflict
between the use of estimating and planning tools is identified and resolved. It will be
argued that by redefining SCE tools as those which can generate estimates before a
plan (at a bidding/tendering stage) and supports the creation of plan-based (task-
based) estimates, estimating tools do indeed have a necessary place in the armoury of

current project managers.
1.3.3 Hybrid metrics and tools

Chapter 8:  Building on the empirical results of the previous chapters, a definition
and specification of a task-based estimating tool is presented. The tool is here called
TABATHA. Given that the research is based within 1ED4/1/1426 it is assumed that
the nature and number of tasks within a project are to be provided by the RUSSET
tool. The general task-based model is presenied along with the seven measurements
required to instantiate and validate TABATHA. Tt will be argued that such & ool can
deal with re-estimating as user requirements change because the effect of project
changes occurs at the task level, exactly the point at which TABATHA generaica iia
esmaies.
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Chapter 9:  In order for TABATHA to be useful for hybrid projects, it is necessary
to assume that the languages used to develop knowledge based components would
also be susceptible to the same form of (metric) analysis as conventional languages.
Prolog is taken to be a mainstream KBS development language and so a description
is given here of an analysis of 80 commercially-developed Prolog programs. 1t will
be argued that by refining the definition of three “classic” metrics (software science,
cyclomatic complexity and data fan-in/out), excellent models of both Prolog struciire
and size can be developed. This is the first step to developing the more sophisticated
models required by TABATHA to estimate the size and cost of Prolog components.

Chapter 10: The contributions o knowledge derived from this research are sel out as
well as the limitations of the research. The research questions posed in Chapter 1 are
answered and areas of further work identified. The final remarks revalve around the
potential of TABATHA (in Chapter 8) and the high-level sizing tool (in Chapier 9) o
stand as useful models for use in hybrid systems development. The canclusion is
that they can.



CHAPTER TWO

2. Problems of Project Management

“Software systems are similar to biological systems...They arise
out of a painful birth, require intensive care in the beginning,
slowly mature, reach their state of maximum benefit after several
years, become increasingly inflexible and difficult to support,
die, and leave behind a wealth of experience from which grows
a new generation of systems.” H.M.Sneed (1989, p21)

Summary: This chapter outlines the problems faced by project managers in the
development of software systems. Recent results continue to suggest that there is
a lack of control even though a number of management techniques have been
developed since the 1950s. Various methods of deriving an estimate are
described, before explaining the use of life-cycle models to understand the
process of software development. 1t will be argued that although these planning
techniques are well established, conirol requires accurate numbers (o be available
before the plan can help in project control. This establishes the imporiance of

metrics in project mandagement.

Project management is defined here as the art (or science) by which techniques of control
are exercised by an individual or group of individuals (management) over a set of tasks that

has the properties of:

« atleast one active or consumable resource;
¢ a start point;

¢ anend point;

¢ a goal which needs to be achieved.

The rdle of project management, therefore, is to organise the resources between the start
and end points in such a way that the specified goal is achieved at an optimum cost. In
software development terms, the resources are personnel and computing facilities and the
specified goal is the delivery of a software system with its associated documentation. This
definition assumes that some identifiable method of development is in place, otherwise there
would be no recognisable process to be “managed™. This point accords well with recent
theories that propose a systematic approach to the impravement of saftware development
processes (e.g., Humphrey, 1989). The definition presented here also suggesis that there
are preconditions to effective praject management, natably that:
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 the start point, end point and project goal are specified clearly at the outset;
« the resources allocated are sufficient;
« none of the above are significantly changed during the life-time of the project.

If these preconditions are violated then the project manager could be faced with few
“winning moves” (Boehm & Ross, 1989). Creating the right conditions is the key 1o good
management and in software development this begins at the outset when the client demands
answers to questions such as “How much will it cost?” and “How long will it take?”, while
the project manager will also have to decide on the level of support required and answer
questions such as “How many bugs is it likely to have?” and so “How much testing/fixing
should be done?” These problems are compounded by the fact that even if all the resources
are available, the chances are that the system specification will change as the project examines
and produces the stated functionality. Indeed, it has been suggested that requirements
specifications should be fluid and open to change (Spence & Carey, 1991).

Throughout the life of the project there will be a constant tension befween demands for
higher quality, more functionality, reduced development time and lower cost. This tension is
sometimes referred to as the ‘devil’s square’, where it is possible (o satisfy two of the
demands but at the expense of the other two. For instance, increasing quality and
functionality will impact on the cost and time to deliver and this cannot necessarily be solved
by adding more people (Brooks, 1975). With these problems at hand, it is essential that
management understands the current state and progress of the project. The rest of this
chapter will investigate the degree to which project managers can be said to be “winning”,

and discusses:

« the software “crisis”;
« techniques for project management,
« methods of estimation;

« models of software development.

3.1 The software “crisis”

Since the late-1960s the software development industry has seen itself facing a crisis. The
crisis began when the relative cost of hardware decreased to such an extent that the major
expense in developing a sysiem was the labaur-costs involved in designing, writing and
testing the software. The crisis for the development manager is the apparent inability to plan
far and allacate these expensive resources so that projects are completed on-time and within
budger. For instance, in March 1993 the national UK newspapers reported that ihe
TAURUS system - which was meant to control share seitlement procedures in the City of
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London - had been abandoned after 10 years of development and over £275 million of
investment. It was reported as needing a further 2-3 years before it became usable and
eventually led to the resignation of the chief executive of the Stock Exchange. Surveys of
senior management continue to find that less than half are satisfied with their software
development departments (e.g., Gunton, 1989).

Some of these problems may be explained by the problems developers perceive with top
management. For instance, AEI (1989) conducted a survey of UK, French, German, Italian
and Swiss companies. The 635 replies (24.4% response rate) were mainly from the
Retail/Finance/Manufacturing sectors with 159 replies received from UK companies. Most
interestingly, to the statement “Top management will not devote sufficient time o make
Information Technology a success,” 37% of UK respondents agreed while 37% disagieed
(p23). Agreement to this statement was found to be 33% in Ttaly, 21% in France and 21% in
West Germany. The polarity in UK companies may explain the result that to the question
“Top management are satisfied with the present contribution fram I'T investment,” anly 27%
of UK respondents agreed (p26). This proportion is much lower than those responding
from France (53% agree), West Germany (52% agree) or lialy (58% agree). Of ihe
companies which rated their use of IT as “very successful”, only 11% agreed with the first
statement while 63% agreed with the second. The conclusion seems (0 be thai developing
information systems is not purely a technical problem, but requires continued and committed

support from top management.

Table 2.1 : Total IT expenditure for the UK

Year Expenditure
(£Bn)
1986* 13.6
1987* 16.0
1988* 18.0
1989
1990%** 25.7
19971 #* 27.1

*  Computer Weekly (1988)
**  OTR-Pedder/CUY R (1992)

This is particularly important considering the cost of software developmeni, Boehm &
Papaccio (1988) expected annual US software costs o rise by 12% each year fram around

79
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$70 billion in 1985. This rate has been exceeded in the UK with total IT expenditure rising
from £13.6Bn in 1986 to £27.1Bn in 1991 (see Table 2.1). The rise from 1990 to 1991 is
only 5.5%, however, and coincides with the onset of the recession in the UK.

If budgets become tighter then one might expect that the need for project conirol becomes
even more important. However, while management tools - such as Gantt charts - have been
developed to support project planning since the 1950s, the ability of any given manager (o
control a project seems to remain a serious problem. Surveys of European companies show
that effort and schedule overruns are in the order of 30-50% (e.g., Jenkins et al, 1984; Phan
et al, 1988). If the lower end of this scale (30%) is taken to be the typical project over-spend
throughout the UK software development community, then the UK spent over £6.3Bn more
in 1991 than was originally planned. Such levels are not confined to the UK since within a
sample of 600 US firms, 35% admiited to currently having at least one runaway project
(Boehm, 1991). Clearly, there is a problem with deducing the cost and duration of software

development projects.

2.2 Techniques for project management

Managing a project clearly demands control, and confrol relies on planning and monitoring.
In order to plan, the manager must analyse the nature of the project. A number of graphical
techniques have been developed which represent the tasks scheduled, ongoing, completed or
even abandoned. The most well-known of these are the work breakdown structure (WBS),

Gantt chart and project network analysis (using PERT charts).
2.2.1 Work breakdown structures (WBSs)

Work breakdown structures (WBSs) are block diagrams which set out the major
“chunks” of work to be carried out during a project (see Figure 2.1). Such diagrams
are useful since a project manager is unlikely to be able to immediately specify all the
tasks to be carried out, although it follows that there will probably be some
management, hardware, software and quality assurance work. These blocks are then
broken down into sub-tasks until the project manager is saiisfied that all relevani
tasks have been identified.

A WBS, then, is a top-down technique which makes clear how each piece of wark
fits within the project as a whole. It has also been suggesied that the WRS can be
used to accumulate costs-per-task which could then be used as a reference for {arer
projects (Youll, 1990). What a WRS does not shaw, hawever, is the relative size af
duration of each task. For this purpose Ganit and PERT charis were developed.
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Figure 2.1 : Work breakdown structure for a sii
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2,2.2 Gantt charts

Gantt charts represent a project as a calendar of activities where the start and end
dates for each activity are represented as points joined by a line (see Figure 2.2). The
Ganti chart is divided into columns representing time periads often headed hy monih
initials (e.g., F=February). The duration of the task is therefore the length of the line
from start point to end point (e.g., Pocumentation is shown as 9.5 months), and thus
the progress of the project can be closely monitored. By assigning the number of
staff required for each activity (in each raw), the total number of siaff in any
particular manth can then be calculaied by summing the siaff numbers dowr each
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column. This would quickly show the busiest times of the project and when extra
personnel may be needed.

However, Gantt charts can provide little assistance in planning or re-planning the
actual ordering of tasks and are simply an effective means of displaying the final
project plan. Re-arranging the overlap between activities would require the Ganit

chart to be redrawn.

Figure 2.3 : Network for a simple project
(critical path shown with bold arrows)

Product
design g

2.2.3 Project network analysis and PERT charts

Project network analysis is a technique developed in the 1950s as a means of
analysing the sequencing and scheduling constraints of competing project plans. A
project is represented as a network of tasks denoted by arcs joining a stari-node fo an
end-node (see Figure 2.3). The start-node denotes a task beginning, the arc
represents the task ongoing, and the end-node denotes the end of one task and the
beginning of another. Dashed lines are “dummy”” dependencies used to make logical

dependencies clearer.

Calculating the duration values for all the tasks allows the “critical” (or longest)
path through the project to be identified. The critical path is the minimum duration of
the project and is shown in Figure 2.3 in bold arrows. For a praject to be completed
earlier, one or more of the tasks on this critical path must be completed in & shorier
duration. This may lead the project manager fo buy tools to increase the productivity
of certain tasks or assign more staff 1o its completion. This assumes that ihe expected

durations are accurate.
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PERT (Program Evaluation and Review Technique) charts were developed in the
mid-1960s and are used to assess the probability and variance of completing tasks
within stated durations. The expected duration, D, and variance, V, assigned to each
task is assumed to follow a f-distribution (where considerable under-estimates are
more likely than considerable over-estimates). By assigning estimates to each fask
for duration in terms of the most optimistic (OPT), most likely (LKY) and mast
pessimistic (PES), then the PERT calculations give:

_ OPT+4*LKY + PES
6

D and

v [PES—DPTT
6 .

If a task were assigned OPT=1, LKY=2 and PES=3, then D=2.0 and V=0.11. For
instance, the project defined in Figure 2.3 could be calculated to have an expecied
duration of OPT=20 months, LKY=26.5 months and PES=33 maonths, which would
give D=26.5 months and V=4.7 months. This means the praject could take from
21.8 to 31.2 months. Those tasks with the highest variance (e.g.. Documeniation,
Implementation, etc.) are clearly the tasks which put the projeci at risk from
completing later rather than ealier. The project manager would then have to expend
most of his or her efforts ensuring that these tasks are completed on time. For
meaningful results to be deduced from PERT charts, however, it is assumed that
accurate estimates have been assigned to each arc. If the values are wrong (and they
are only estimates) then the critical path may only be identified as the project

progresses and task deadlines begin to slip.

Technigues for estimation

The project management techniques described in the previous section are able to represent

the relationship between tasks but give no indication of their relative size or the project as a

whole. There are, however, a number of techniques which aittempt to produce such

estimates. Boehm (1981) provides a list of seven notable estimating techniques (pp329-
343). They are:

Algorithmic models (producing linear or composite models of factors which influence
cost). Such models have been developed since the mid-1960s (e.g., Farr &
Zagorski, 1965). They are objective and thus repeatable, bul rely on a database
which can be quickly out-of-date as new methads and iechniques are used. A
detailed discussion of these models is given in Chapter 5.
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Expert judgement (using human experience). Means of structuring discussions
between estimating experts, such as the Delphi technique, have been developed since
the late-1940s. The Delphi technique co-ordinates the discussion between a number
of project managers who are asked to estimate (and then explain the rationale of)
costing a particular project. Although still seen as a useful technique (e.g.,
Goodman, 1992), the extent to which this technique would overcome the problems
of estimating already experienced by project managers is, however, far from clear.
Analogy with past projects (based on comparison with past projects). Estimating-by-
analogy is widely reported as being the most popular technique (e.g., Heemsira &
Kusters, 1991). The question a manager still needs to answer is ‘How far is the past
project a good representation of the system about to be developed?” This may
involve breaking the project down a number of levels before the analogy with a pasi
project can be justified (Wolverton, 1974).

Parkinsonian (filling the space available). Boehm (1981) criticises this technique on
the grounds that by attempting to estimate on the basis of maximum availahle
resources, it is unlikely that the project manager is making the best use of these
resources. Since the actual demands of the project are not being addressed there is no

Price-to-win (deadlines or budget constraints defining the estimaie). In this case, the
financial rewards, rather than the demands of the project are being addressed.
Boehm (1981) points out that as long as companies fail to distinguish between real
and price-to-win estimates, this technique may win contracts but few friends.
Top-down (global properties producing an estimate which are then broken down into
constituent parts). The advantage of this technique is that by taking the macro-view,
competing under- and over-estimates at a micro-level are allowed to cancel out. The
disadvantage is that components which have a significant impact on the project may
be overlooked.

Bottom-up (summing the estimated costs of individual components to arrive at 4 total
system estimate). The advantage of this technique is that the project manager now
has detailed knowledge of individual components. The problem is that as the paris
are summed to produce a final estimate, the project manager may ignore the cost of
integrating and configuring these parts. Specifically, the time spent programming
may, in fact, be a small proportion of a programmer’s time (e.g., see Figure 2.4).
Boehm (1981) suggests that if the estimate is produced by the person who will do the
job this will give a certain motivation (o its SUCCEsS.

Roehm's awn conclusion is that none of the abave seven techniques is significanily beiier
than any other. He suggests (p342) that the most effective salution may be o cambing

number of techniques, such as:
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« top-down estimates using local experts or analogy;
¢ bottom-up estimation at the component level;
¢ comparison and iteration between the above two.

Such a combination of techniques is exactly the way companies now appear o be
approaching the problem (e.g., Goodman, 1992). But at the heart of estimation is the
premise that the development environment is stable enough to allow any technique to be
applied consistently. Such stability requires that the process of developing software is
understood, and it is at this point that life-cycle models become important.

Figure 2.4 : Time spent by 70 Bell L.ab programmers
(after Boehm, 1981, p341, cf. Bairdain, 1964)

Read programs, Wrile programs
manuals (16%) (13%:)

Training (6%)

Mail, misc.,

documents (5%) Job

communication
(32%)

Misc. (15%)

Personal (13%)

2.4 Models of software development

If software development is to be amenable to study then it is important that the process is
structured by a method. A software development method can be defined as a prescription of
those tasks (and techniques) which are required for the successful development of a software
system. In the same way that a doctor who prescribes a course of drugs musi also state how
they are to be taken (once a day, twice a day, eic.), the documentation which purports io
describe the method must also contain a Methads Process Model (MPM) ihat explaing the
arder in which tasks are to be carried out. Unfortunately, no method covers every phise of
development; few describe the project management tasks which are essential fo the smoath
running of any project; and, there are rarely any guidelines on how to relate the method (o e
project at hand (Harris-lanes e/ al, 1993),
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Figure 2.5 : The ‘classic’ seven-stage Waterfall model
after Royce, 1970, p2; Boehm, 1976, p1227

Requirements

Program

= Development
slage

= Successful flow
between stages

= [teration between
local .
ocal stages Operations

It was in response to problems such as these that models were first developed in the early-

Testing

1970s which sought a deeper understanding of what goes on during software development.
To use the medical analogy again, these models attempted to provide the software developer
with the anatomy and physiology of the development process. The classic maodel of the
development process is the seven-stage Waterfall model (see Figure 2.5). Although the
stages are sometimes renamed and others added (e.g., Feasibility before Systems
requirements), the general philosophy of the madel is that there are a number of Togically
ordered stages which have a number of tasks and produce uniquely identifiable products.

These are:

1. System requirements (specifying the overall functionality and perfoarmance
canstrainis of the system, delivering an Operational Requirements document).

2. Software requirements (defining the averall architecture of the sysiem including
control and data structures, delivering a Functional Requiremenis document).
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3. Analysis (representing the relationships of components within the system and
uncovering how the system needs to work, delivering an Analysis
Report/Specification document).

4. Program design (detailing the algorithms, interfaces and structures of specific
components, delivering a Program Design/Specification document).

Coding (implementing the program design, delivering Program Listings).
Tesring (verifying the system components do what they are supposed to do,
delivering Test Reports and perhaps a final Specification doecument).

7. Operations (a fully functioning system with associated Acceptance Test resulis and
User Guides).

As each stage is completed the accepted products are signed-off by the client and so the
project progresses to the next stage. It is generally accepted that the Waterfall cannot stricily
follow the laws of gravity since some local iterations may be required, such that, if the
testing stage uncovered some faults with the program design then the project would need o
backirack and refine the necessary design sections. In this way, major chunks of completed
work are preserved. The model does not allow iterations from, say, festing back io
requirements or analysis, since this would entail a more radical alieration to the curreni
system and changes to products already signed-off often some time ago. Tn this case any
control the Waterfall model has attempted to impose has been significantly broken.

The major weakness with the classic Waterfall model is that only when the coded system is
subjected to testing at stage 5 can critical weaknesses in the requirements specification and
design be uncovered. Royce (1970) addressed this specific issue by attempting to preserve
the basic Waterfall model but adding five further steps (ibid, pp4-7):

1. Produce a preliminary program design before analysis is complete. This removes the
possibility of a system failing storage, time and data handling constraints. These
constrains are regardless of the final functionality specified by analysis and so, is
independent of it.

2. Carry out a ‘ruthless enforcement’ of all documentation requirements. Royce calls
this the “first rule of managing software development (p5)°. Only then can there be 4
good understanding of how the system is meant to work.

3. Ensure that, if the system is new, the critical functions delivered are actually the
second version developed. The first (pilot model) version involves carrying out (he
whole development cycle in miniature and so allows trouble spots in the design fo be
identified and some key functions (o be tested early.

4. Pay particular aiténtion 1o the testing phase. 1t is this siage which puts the project
mast at risk. Royce suggests that the majority of errars can be found by visial
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inspection but he also advocates testing each logical path at least once before releasing
the product to the customer. The previous three steps should have minimised the
actual number of errors present.

wn

Commit the customer to accepting that the correct interpretation of the requirements
are being implemented. This ‘formal and continuous’ involvement should also be
throughout the life cycle, from the earliest development stages until the system is
finally accepted.

Royce’s conclusion is that although these extra steps will add to the cost of develaping
software, they provide a significant improvement over the classic Waterfall and are necessary
if software is to be developed successfully.

The Waterfall model itself has often been criticised on the basis that it does not realistically
represent the software development process (e.g., Gladden, 1982). McCracken & Jackson
(1982) even go so far as to condemn the concept of software life-cycles by saying that the
very idea creates a rigidity in the development process. For them, systems in the real warld
are continuously changing as the customer’s needs and requirements are explared and
understood. McCracken & Jackson (1982) give ihe example:

(%3

. the conventional life cycle approach might be compared with a
supermarket at which the customer is forced to provide a complete order to a
stock clerk at the door to the store, with no opportunity to roam the aisles -
comparing prices, remembering items not on the shopping list, or getting a
headache and deciding to go out for dinner. Such restricted shopping is
certainly possible and sometimes desirable - it’s called mail order - but why
should anyone wish to impose that restricted structure on all shopping (p31,
original underlining)?”

An answer to their question would seem to be relatively straight-forward: If the customer
wishes to take their time and is prepared to pay for changes and work which is made

redundant, then there would be no problems. But this is rarely how large software

development is carried out. A client ‘roaming the aisles’ is more like a project put out o
tender where the client then selects from a number of supermarket/developers. Once a price
is agreed, the client can quite rightly object if the final system turns out to be more expensive.
Likewise, however, the developers may object if the client continuously changes their mind
about what they meant when they said they wanted “such and such” a system,

To continue the supermarket analogy, if the customer and the stock clerk do nof
communicate well, then there is quite likely to be arguments and problems when the haskel
of groceries is delivered. But does this mean that life-cycles are the cause of this failure or
that their continued use perpetuates the problem? Apparently so, since McCracken &
Jacksan (1982) continue that:
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“The life cycle concept rigidifies thinking, and thus serves poorly as possible
the demand that systems be responsive to change (p31).”

McCracken & Jackson insist that the logic and language of the life cycle concept cannot
incorporate prototyping or strategies of re-analysis/re-implementation in order to help the
customer and analyst understand exactly what is required. Such techniques have been found
to be useful in Decision Support Systems (and KBSs), but cannot be mapped onto the
traditional life-cycle model. This is plainly false. Royce’s (1970) refined model focused on
this need and thus addresses the very problems set out by McCracken & Jackson. Maore
recent models have also incorporated this point, in particular, Boehm’s (1988) spiral model.
The use of prototyping is often seen as an essential part of developing KBSs but it has also
recently been seen as having a useful - if not essential - part to play in
conventional/knowledge based systems’ development (e.g., Macleish & Vennergrund, 1986,
Bader, 1988; Partridge, 1990).

Installing a method of developing software which tackles exactly these issues, however,
can turn out to be more difficult than may at first be thought. During the period 1989-1949()
Avison et al (1992) were brought in by the telecommunications company BT Fulcrum (how
Fulerum Communications) with a view to interfacing a system (called SCOUR) which tesied
up to 180 000 telephone lines per night with a UNIX-based M6000 computer. This would
allow the SCOUR test results to be more easily assimilated, analysed and made available.
The solution involved introducing a number of methods and techniques into the organisation
where no methodology had been used before. Avison et al’s view of a method is not that of
a set of strict rules which must be followed at all times, but as a framework within which
useful tools and techniques can be easily assimilated. A number of different techniques were
therefore used as the situation demanded. However, the methodology-based approach itself

received some hostile reaction, Avison ef al (1992) saying:

« .. the approach was seen as ‘academic’, required too much effort “up-front’
and increased the danger of slippage in time-scales. From the developers’
point-of-view, they had their own traditional ways of developing computer
applications which often consisted of a specification in natural language
which would then be transformed into code. They were resisiant to the new
techniques. Further they needed to be convinced that this approach was betier
than the approaches which were more familiar to them (p137).

Why this hostility? Are McCracken & Jackson (1982) right after all? Avison ef ai deny
that the problems lie in the fact that a number of techniques were being used rather than a
single, whole method. In a real sense, Avison et al are following McCracken & Jackson's
edict that any development methadology must be flexible and ned fo the actunl demands of
the situation. Perhaps, then, it is an inherent fact that any changes in the way sofiware is
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developed will always receive a “better the devil you know” response. If so, then only under
the strongest pressure (or enlightened visionary) will a method, tool or technique be
introduced into current software development departments or companies. This would be a
bleak prospect indeed and demands that the techniques and tools that are used show
themselves to lead to notable improvements, while those that do not require considerable
investment are more likely to be taken up quickly. Such problems would also affect the type
of software metrics and models which should be developed. It would seem foolish ta
develop further techniques if they are too costly or fail to lead to improvemenis. The
question, then, is whether the software meirics and models which have been developed do
indeed have these important strengths. This will be the subject of the next iwo chapters.
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3. Software Development Metrics

“We don’t measure software just to watch for trends;
we look for ways to improve and get better... A
medical doctor would never prescribe medicines or
therapies to patients without carrying out a diagnosis
first. Indeed, any doctor who behaved so foolishly
could not stay licensed (Jones, 1991, p185).”

Summary: A description of the nature of metrics as a measurement of the
software products or the development process itself is given. Particular attention
is paid to the “classic” metrics that measure size (Halstead’s Software Science and
Function point analysis), and striicture (McCabe’s cyclomatic complexity and
Henry and Kafura’s data fan-infout). 1t will be argued that although size and
structure metrics may form the basis of any metrics programme, ii is not at all
clear that well-defined counting strategies for such metrics have been established.
As such, the evidence for the usefulness of meirics for conventional sysiems’

development remains in doubt.

In software development terms, a ‘metric’ can be defined simply as the measurement of
some property of the software product or development process which is seen as being
indicative of some other (harder to measure) property such as cost, quality and
maintainability. Knowing the cost of a project helps with resource planning, while knowing
the quality and maintainability of the products developed helps decisions about rework of
existing program code and levels of support once the product has been released. Ideally,
these metrics would have a meaningful relationship with the system size and structure fram

which a project manager can plan the manpower and resources required.

The temporal distance from (say) the earliest stages of the Waterfall model when the project
manager needs to make the estimate, and the paint at which the attributes are directly
measurable can often cast doubt on the ability of any measurement program to provide useful
estimates. For instance, while the literature on software metrics can be traced back (o the
early-1960s, it took over twenty years before industry seemed to investigate the use of
metrics as a serious project management tool (e.g., Grady & Caswell, 1987). There are now
a number of European-funded BSPRIT projects which have sought to develop and promaie
ihe use of software meirics in industry, such as REQUEST (PA00), MUSHE (P1257),
MERMAID (P2046), COSMOS (P2686), PYRAMID (P5425) and AMT (P5494).
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But do metrics really capture anything useful or important? The answer is sometimes given
that a metric is a means of quantifying a management problem which has been framed as a
question (Basili & Rombach, 1988). This Goals—Question—Metric (GQM) paradigm is the
means by which the relevance of the metric result is meant to be interpreted. But interpreting
the result of a metric can be a matter of debate and has led to the abandonment of at leasi one
attempt to build an expert system to interpret metric data (Ramsey & Basili, 1989). In what
sense, then, can an approach such as the GQM paradigm explain the meaningfulness of a
metric?

If the goal were to increase productivity, then the question might be “What is our cuirent
productivity?” and the suggested metric might be to measure the number of lines of code
produced each month. But how would a project manager validate the fact that the question
correctly frames the desired goal and that the metric reasonably represents a measurement of
the proposed question? If the goal were to increase product quality, what question would
suffice to frame this goal? Questions about productivity may be relatively easy to frame, bui
“What is our current quality standard?” would simply beg the question “What is quality?”
Does it have something to do with maintainability, adaptability, the code being ervar-free, or
something else? If quality were equated to maintainability, what meiric would reasonably
capture this property? The number of bug fixes/changes? But what happens if the code is o
complex that no-one dares implement any change? It appears that there as many questions
about the efficacy of applying metrics as there are management questions to be answered by
them. Although a “goal” may explain why the “metric” was devised, it still remains
problematic whether the goal and metric are always related to the same thing (such as

“quality” and “number of bug fixes”). This problem remains an open issue.

But software development is not only a complex and difficult task, it may also be difficult
fo accept that any measurements can be used to make the process any more understandable.
Software development is an essentially intellectual, human activity and it is this very point
which makes an analysis of the development process peculiarly difficult. Browne & Shaw
(1981) point out that the biggest difference between models of the physical sciences and of
software is that the former can be tested against reality, while for the latter the programmer is
creating that very reality. In principle, therefore, the programmer can produce exactly the
reality predicted by any model of software development that is proposed! This is amply
demonstrated by Weinberg & Schulman (1974) who found that development teams could
aptimise whichever aftribute of a program asked of them (e.g., shortest time to develop, beat

user interface, etc.).

If soffware development were truly as malleable as this then it would be beyond any

scientific study or control. Indeed, there is at least one suggestion that there are some Hings
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about software development which can never be measured in any useful sense (Shepperd,
1991, p78). Browne & Shaw (1981) are not so pessimistic but sound the cautionary note:

“In establishing a hierarchy of models, we make the assumption that natural
causality corresponds to our hierarchy of simplifications. Whether this
assumption is entirely valid can be debated, but our limited intellectual
capacity forces us to make it; without such an assumption, we could not cope
with the complexity surrounding us (p22, original italics).”

By attempting to measure software development, then, we begin first with the assumption
that there are invariant principles which exist within the process and which are therefore apen
to scientific study. The need to make this assumption is reinforced by DeMarco (1982) who
states “‘you cannot control what you cannot measure”, and this is the central theme of mefrics:
control through measurement. But what needs to be measured? Tt is assumed here that if
cost and quality are the two key concerns of management, then metrics for size (io deduce
cost) and structure (to deduce quality) are the two most important metrics. Bui how is the
size or structure of a system or piece of code measured? The rest of this chapter will answer

this question for conventional data-processing (DP) metrics, and, in particular, describe:
¢ meifrics for measuring the size of software systems;
« metrics for measuring the structure of software programs;

 attempts to axiomatise a description of a “metric”.

3.1 The size of a software program

The size of a software system provides vital project management data in terms of giving the
project manager the ability to assess the demands of the project as a whole. The bigger the
system, the more resources will be required in its development. If the system is too large for
the developing department then questions of sub-contracting, modular development, or even
cancellation can be more properly addressed. System size, therefore, is one of the most
important attributes to be estimated early in the life of a project. A common measurement of
system size is lines of code (LOC), which is sometimes taken as the baseline against which
better measurements of size can be judged (e.g., Basili & Hutchens, 1983).

The problem with LOC is that it may be difficult to agree what a “line of code” is. For
instance, Jones (1978, 1986) suggests there are eleven major counting methads, the first six
are broad definitions of a LOC (at the program level) while the last five take info account the
need to identify only those 1.OC which are the subject of work within a project (at the project
jevel). The program level definitions given by Jones (1986, p15) are:
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count only executable lines;

count executable lines and data definitions;

count executable lines, data definitions and comments;

count executable lines, data definitions, comments and Job Control Language (JCL);
count only physical lines (as they appear on an input screen);

count only physical lines ended with a logical delimiter (such as ;).

When these different counting procedures were applied to a single program written in
Basic, Jones (1986) found that the LOC count ranged from 360 to 1500 (a difference of
4.2:1). Whichever of these program definitions is adopted, the project level definitions are
then (ibid, p15):

7.

10.

1.

count only new lines;

count new lines and changed lines;

count new lines, changed lines and re-used lines;

count all delivered lines and any temparary “scaffold” code constructed during the
development process;

counti all delivered lines, temparary code and any other suppori code.

Definitions 7-11 are important since they indicate which lines of code are to be identified

with a project, and thus, are crucial for calculations such as productivity and cost-per-LOC.

As can be seen, however, there are a number of competing alternatives which can breed

confusion and cast doubt on the ability to compare results between companies or even

departments. One could even query what is meant by “new” or “changed”. If L.OC is more

problematic than might have been presumed, then, what other means of measuring system
size are there? Although other “sizing” methods exist (e.g., DeMarco’s “Bang” metric), the
most well-known alternatives are Halstead’s Software Science and the function point method
of Albrecht & Gaffney and Symons.

3.1.1 Software Science (Halstead, 1972, 1977)

One of the first attempts to formalise a science of software and deduce equations for
program size (in terms of its length) and development effort was put forward by
Halstead (1972, 1977). The most important elements in this science is the nature of
the program and the ability of the programmers. A “program’” is defined in terms of
operators and operands; the “programmers™ are defined in terms of their memary
capacity and ability to “chunk” information. By focusing on just these propertics,
Halstead suggests, we have an objective means of measuring a program. First &
family of measuremenis are defined (Halsiead, 1977, p7):

44



CHAPTER THREE

N1 = number of unique operators
N; = total number of operators
N2 = number of unique operands
Ny = total number of operands

= T + 12 (vocabulary)

n
N = Nj+ N; (the sum of all program characters)

These can now be applied to a program. For instance, consider an implementation
of Buclid’s algorithm in Algol provided by Halsiead (see Figure 3.1). A table of
operator and operand counts is also given in Figure 3.1. Halstead denotes j as the
rank of the most frequently occurring operator/operand, while f;; denotes the
frequency of the jth operator, and /> ; denotes the frequency of the jth operand. But
what rules govern the count of operators and operands?

Figure 3.1 : Euclid’s algorithm and associated Halstead-table
(cf. Halstead, 1977, p7)

IF(A=0)
LAST: BEGIN GCD : =B ; RETURN END ;
IF(B=0)
BEGIN GCD : = A ; RETURN END ;
HERE: G:=A/B;R:=A-BxG;

IF(R=0)GO TO LAST;
A:=B;:B:=R ;GO TOHERE

Operator i fy Operand i f ,‘.]
1 9 B I é
= 2 6 A 2 5
(..)or BEGIN..END 3 5 0 3 3
IF 4 3 R 4 3
= 5 3 G § 2
/ 6 I f
7 |
X 8 i
GO TO HERE 9 [

=10 Nj=31

45



CHAPTER THREE

Defining a counting strategy is one of the major problems in Halstead’s description
of Software Science (e.g., Elshoff, 1978; Salt, 1982). Halstead himself suggests
that recognising an operator and an operand is ‘intuitively obvious’. For instance,
with ‘a bit of reflection’ it will be seen that a pair of parentheses is one operator.
Further, a BEGIN...END statement, performing an identical function, must also be
regarded as the same operator. Labels, on the other hand, may or may not be
counted, Halstead (1977) suggesting:

“Since the labels HERE: and LAST: are neither variables nor
constants, they are not operands. They must, therefore, be operators
or parts of operators. The combination of the instruction GO TO
HERE and the label HERE: determines program flow by determining
a program counter or text pointer; consequently, the combination is
classified as one operator. An unused label, on the other hand, is
treated as if it were only a comment, hence not essential 1o, or part of,
the program (pp7-8).”

Delimiters which determine flow - such as the semi-colon in Figure 3.1 - are
counted as operators. Similarly, control structures such as 1F, TH.. THEN...ELSE
and DO..WHILE are also considered operators. On classifying operands, Halsiead
says merely that the table makes this ‘intuitively obvious and requires no further

explanation (p8)’.

We must surmise, therefore, that an operator performs a function across at least one
operand (otherwise it has no use and should be ignored). The scope of an operator
can extend across more than one operand and even across other operators, e.g., the
parentheses in ( A = B ) extend across the operands A and B and the operator =.
What seems to be important is the function of the operator, not its particular name.
Thus, parentheses and BEGIN...END statements are counted as the same, while
comments and unused labels are ignored. For this definition to be accepied,
however, it must also be presumed that a pointer is made different when it Jocates a
different part of the program; otherwise, GO TO HERE and GO TO LAST would
have to be considered the same operator. Halstead seems to embrace this distinction

when he notes that:

“.. the ability to define labeled paints, like the ability to define new
functions, removes any limitation on the growth of g that might
otherwise be imposed by the instruction set of a machine, or the
design of a language (p8).”

In other words, no matter how small the vacabulary of a language, a programmer
can invent a new aperaior each time a labelled paint is created. This is important,
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because for larger programs, the (unrestrained) number of operands would begin to
dominate vocabulary counts.

With a counting strategy in place (whatever it may be), Halstead goes on to define a
number of relationships. The most important of these are summarised in Table 3.1,
In most cases, Halstead justifies the validity of the relationship by way of high
correlations between expected and actual program measures which ranged (where
given) from 0.90 to 0.993. The highest correlations were those between program
length, N, and the estimate, Nhar. The significance of such empirical support is quite
clear to Halstead (1977), who asks us to remember that:

“... for every way in which an algorithm can be implemented in
agreement with.. [the length equation].. there are an infinite number
of ways in which an equivalent version could be written. This
suggests that the human brain obeys a more rigid set of rules than it
has been aware of, and that the parameters ni, n2, Ny and Ny may
serve as useful elements in eliciting further relationships (p15).”

A Software Science, in other words, is possible and at its heart is the philosophy of
“Man, the symbol manipulator” (Halstead, 1972). In fact, so compelling was this
philosophy that Software Science survived nearly a decade befare any serious doubis
were raised. Early successes suggested good correlations for development time
(Gordon & Halstead, 1976), the number of errors in a program (Funami & Halstead,
1976), and even attempted to explain the quality of a program (e.g., Elshoff, 1976;
Gordon, 1979). By the late-1970s a large amount of empirical support had been
gathered (e.g., see Fitzsimmons & Love, 1978).

But Halstead is clearly confusing high correlations with meaningful relationships
(Hamer & Frewin, 1982). Other studies began to cast doubt on the apparent
successes of Software Science, with high correlations not being seen between effort
and time (e.g., Curtis ef al, 1979) and where the program length equation was anly
questionably extendible to other (non-Algol) programming fanguages (e.g., Basili e/
al, 1983). Experimentation with the program length equation, however, is one area
of Software Science which continued well into the 1980s (e.g., Johnston & Lister,
1981: Woodward, 1984; Felican & Zalateu, 1987). More recently, there has been
continued interest in the comparison between Halstead’s measurement of & program’s
vocabulary, N.logon, and one based on Zipf's law (e.g., Prather, 1988; Chen, 1992}
where a relationship is hypothesised between the length of a word (operatar/operand)
and its frequency within the text (program) as a whole.
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Table 3.1 : Summary of Halstead’s (1977) Software Science

Name Equation Meaning
Program . The “length” of a program, N, 1s a function of the number of
length Nhat =n.logon+1z.logama| .
unique operator names (N1) and the number of unique
operand names (12) used.
The “size” of a program, V, is a function of the minimum
Volume Y — ; L )
' V= Nelﬁgm length (in bits) to represent each element (logam) by the
number of elements.
The “minimum volume” of an algorithm, V*, independent
P . of implementation language, requires only 1wo operalors
ofentia Yok = 2+ * - _
volume v ( M, )'102’(2-1 ﬂ"i) (i.e., one function name and one assignment symbal) and
no operand vepetitions (No¥=v5%). The asterisk denotes a
minimum value.
The “efficiency of an implementation” can be defined as
2 "M F
Program - 2 e . . . S .
lz:v:]l l Lhar= “ﬁ*}g‘ L=V*/V, and rewritien by assiining program level, L, is
IRV . . )
related to the proportion of unique operatars (n;*/N;) and
the proportion of operand repetitions (17/N»).
prop p P T2/Ny
Intelligence 1= ————-—£—— N. ]0g2 il “How much” is being measured in an algorithm is a function
content ! 2 of Lhar*V and a measure of the intelligence content, 1.
3 “Programming effort”, E, is the effort to make N.logyn
Program- \Y LR VA
ming effort E= “]: = v = 22 mental comparisons (V), and where effort is proportional to
the difficulty of the task (1/L).
2
Program- That = E_ - \ — \ “Programming time”, T, is a function of the effort where
ming time } § S SV* o
there are 18 momenis of psychological time (8) per second.
“Language level”, A, defines a constant relationship
Language =L.V* between the program level and the potential volume of an
level P P
implemented algorithm.
g2 The number of “delivered errors”, B, is a function of the
Delivered Bhat=——= number of mental discriminaiions between errars, given
errors 3000 3000 g
that high-spsed memory handies {ive “chunks” 1o praduce a
P |
result (giving V¥=3000),
The ideal “modularity”, M, af a program is a function of the
1 * Prog
. — 12 . . . .
Madularity M = aumber of unique input/ouipui paramelers, given Mat anly

3y

five “chunks” can be manipulaied simultanenisly to

produce a resuli (giving a dotal of six "chinks™).
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For a project manager, however, knowing the size of system once it has been
written is of little use. What is more important is to make early estimates of size and
the required effort to build a system. Even here Halstead makes a number of dubious
intellectual leaps which have been roundly (although sometimes unfairly) criticised
(e.g., Lassez e al, 1981; Shen er al, 1983). Halstead (1977) defines programmiing
effort as:

““... the mental activity required to reduce a preconceived algorithm to
an actual implementation in a language in which the implementor
(writer) is fluent (p46).”

While this definition may be accepted, Halstead also requires that the program is
“pure” (it has no superfluous logical statements or structures), and that the
programmer works with a ‘high degree of concentration’. By only going on to study
algorithms published in academic journals it becomes unclear how Software Science
would then relate to any everyday commercial programming project.

Notwithstanding this problem, Halstead goes on to say thai if F is the total number
of mental discriminations required to implement a program, then the time it would
take to implement that program can be deduced by borrowing from psychology the
notion of “psychological time”. This concept (denoted as Stroud’s number, S) is the
moment of time required for the brain to perform ‘the most elementary
discrimination’. Halstead accepts Stroud’s hypothesis that there are “five to twenty
or a little less” of these moments per second to define the number of mental

discriminations, S, as:
5<8<20

Halstead takes it that S=18, presumably because this fits the proposed model.
There is no explanation as to why this should be so, but it is this number that allows
the equation for E to be converted into an estimate of the time to program (see again
Table 3.1). Empirical support for this equation was supplied in a series of
experiments in which 12 algorithms from the Communications of ACM were
implemented at random in PL/1, Fortran and APL by a single programmer fluent in
all three languages. Using S=18, a correlation of r=0.92-0.94 was found hetween T
and Thar (Halstead, 1977, p53). It can also be noied, however, that the actual valie
of § is effectively irrelevant here, since if carrelation is being used as the measure of
correctness, then S=9 would produce answers which were twice thai of S=18 hui the
data points berween T and That would have the same coefficient of correlation.
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Although Halstead suggests these steps from E to T are straightforward, many
controversial statements are made. Principally, Halstead imports theories on memory
without taking into account which type of memory is involved in programming.
Recent research sees memory as having three distinctly different stages, namely:
sensory, short-term and long-term. Which stage does computer programming make
use of? By defining effort in terms of the effort to deal with a preconcejved

algorithm, it must be assumed that Halstead is defining programming as a process of
recall from long-term (i.e., memorised) memory. If so, then Coulter (1983) points
out (p169) that the use of S does not apply since Stroud’s number is specifically
confined to sensory memory.

Halstead borrows other theories from psychology in an atiempt 1o deduce equations
for the number of delivered bugs, B, and the ideal modularity of a program, M, on
the basis of the ability of a programmer to “chunk” about five uniis o produce a
result. For Halstead, a “chunk™ is a conceptually unique input/output parameter. But
Coulter (1983) questions whether Halstead makes any meaningful use of the concept
since it is not clear what such a “chunk’ is in programming: a mairix, & vector, or
something else? Coulter continues thai a “chunk” can only be knowable on ihe basis
of the individual programmer, and so is not a useful cancept (o use.

However, what seems equally clear is that understanding a program with many
lines of code must involve some level of “chunking” (Brooks, 1977; Tracz, 1979);
otherwise, programs would now be reduced to a token-by-token description with no
basis for abstracting their higher-level meaning. The fact that it may be unclear what
counts as a “chunk” for a programmer and how it could be accurately measured does
not preclude its use (e.g., Vessey, 1987; Davis & LeBlanc, 1988). Even within
psychology, clear definitions of what a “chunk” is can be hard to come by but
consensus is being reached. A “chunk” has been described in terms of ‘a familiar
unit (Miller, 1956)’, ‘compound structures in memory (Simon, 1974)’, or as
‘familiar units of information based upon previous learning and experience (Bysenck,
1984, p88)’. But this problem should have been the beginning of further research,

not the end of Software Science.

The contribution that Halstead does make to software metrics is that his was the
first attempt, and thus, the clearest example of the problems that exist in aempiing to
define and then extend a model of the programmer's universe. He begins by defining
a means of breaking a program down into elementary units which can then he
siidied. Dividing a program into aperaiors and operands is the firsr step from he
electronic form of the pragram o a model of what a program g which can then be
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studied objectively. The problem is what to do next. For instance, Lister (1982)
criticises the program length equation on the basis that for high-level languages - such
as Pascal - the size of 1| tends to tail-off relative to the size of 1), and thus Nhat
begins to seriously underestimate N. For Pascal, the count of n is deprived of
labels used as control-transfer targets since it uses control structures instead. Only by
taking the ‘counter-intuitive’ view that each control structure is a distinct operator
does 11 become large enough to satisfy the length equation. Lister (1982) states:

“Such a counting scheme, however, is most unappealing. One of the
beauties of Pascal is its economy of control structure: it seems
counter-intuitive to wilfully disregard this economy in the counting
scheme used (p68).”

However, it is not entirely clear whether the point Lister is making here is a
criticism or not. If he is saying that a general definition of what counts as an
“operator” or “operand” cannot be defined for all languages and must take into
account properties of individual languages then this seems entirely reasonable. If he
is saying that for Pascal the counting strategy musi add one to 1) for each conirol
structure before Nhar accurately estimates N, then this would seem ta confirm that
Software Science can be extended to Pascal. This is hardly a criticism. Since
Software Science is a syntactic measure of programs, Lister cannot be suggesting that
the counting strategy must make some statement about the (subjective) aesthetics of
the programming language, beautiful or otherwise. The revised counting strategy
that Lister has provided us with (e.g., Johnston & Lister, 1981) points to the
problem of deciding what counts as an “operator’” or an “operand”, a problem which
may not necessarily translate easily from one language to another. But this is far
from being a devastating criticism.

The unfair nature of Lister’s (1982) criticism is further demonstrated when he goes
on to attack Halstead’s suggestion that language level, A, is a constant for a particular
language. Given that Halstead defined language level, &, as L = L.V* and program
level, L, as L = V*#/V then it follows that:

Lister contends that since V* is dependent on the number of parameters and V is
dependent on the complexity of the algorithm, then far A to be constant for & given

language it must be true that:
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algorithm complexity o (no. of parameters)?

Lister (1982) finds this relationship to be ‘unlikely (p69)’. In the year before this
article appeared, however, a new metric had already been published which - although
in opposition to Software Science - suggested exactly this form of relationship.
Henry & Kafura’s (1981) data-flow metric suggests that:

(design) complexity o (count of data fan-in/out)2

An unlikely relationship which may in fact be true is exactly that which deserves
our attention. The fact that Software Science may not have been fully worked out is
indicative of a new immature science atiempting to study a complex problem. Tt can
hardly be seen as a mortal blow to the approach. Lister’s own conclusion is that the
assumptions, goals and areas of application of Software Science need to be made
clear and a rigorous methodology put in place. Lister does concede that Software
Science may develop in these ways, but it is interesting to noie that few studies
appeared in subsequent years which attempied to tackle these problems and it can be
taken for granied that Software Science was effectively dismissed by the mid-1980s,

The conclusion to be made here, however, is that there is value in Software Science
and it rests in the simplicity with which a program is described in terms of operators
and operands. The failure of Software Science rests on Halstead’s inability to extend
beyond the program length equation to more useful models of programming effort
and the number of errors within a program. If a count of operators and operands is
taken to be a measure of program size (or length), then it can certainly compete with a
count of LOC. The question is whether N or LOC is the more useful measure. This

point is raised in later chapters.
3.1.2 Function point analysis (Mk.d and Mk.1I)

The function point method was initially devised by Alan Albrecht in the late-1 9705 to
correct the lines of code (LOC) paradox in productivity. This paradox suggested that
if productivity was one of the targets of improvement for which management aimed,
then all programs should be developed in low-level languages such as Assembler,
since programmers typically produced more lines of Assembler per month than of
higher-level languages such as Pascal. Burt this is nonsense since each line of Pascal
is clearly seen to deliver more functionality than each line of Assembler. The solufion
far Albrecht & Gaffney (1983), therefore, was to rate the delivered funcrionality (or
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‘outward manifestations’) of an application which is independent of the technology or
language of its implementation.

The concept of a “function” is taken from Halstead’s program length equation, N.
They suggest that the factor 1y.logsn can be omitted with only a small amount of
error since the amount of data a program processes is a more determining factor than
the number of operators. Further, 1)y (the number of unique operands) can be
approximated by 12* (the minimum number of conceptually unique inputs and
outputs), with the added advantage that 1,* is available early at the design stage once
analysis has detailed the external input and output requirements. Albrecht & Gaffney
base their confidence on the fact that when the program length equation is reduced o
Nhat=n,*logsno* or Nhat=ns.logon,, the correlation between N and Nhar for 29
APL programs is still impressively high (0.918 using n2* and 0.988 using 12).

In what also amounts to a partial answer to Coulter (1983), Albrecht & Gaffney
describe o™ as the overall inputs and outputs to an application which include top-
level inputs/outputs (such as screens and files). The funciion point measure of a
program is thus calculated in three sieps (see Figure 3.2):

1. Evaluate the “information processing” power of the program by identifying
and counting the different types of user functions used.

2. Develop an adjustment factor by rating the “processing complexity” or
structure of the application.

3. Multiply the score in ‘1’ by the structure score in ‘2’ to give the total function

point score.

The information processing size is found by first drawing a boundary around the
application. This boundary identifies those components which are said to belong fo
the same application and defines what is meant by “internal” and “external”. The five
user functions defined by Albrecht & Gaffney (1983) are groups of user data or
control information defined as types of (ibid, pp645-6):

o external inputs (those which cross the external application boundary and add or
change data in a logical internal file, including input files entered by the user of

another application);
o external outputs (those which leave the external boundary of the application,
including reports and messages (o other systems);
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logical internal files (those which - from the users’ viewpoint - are generated,
used or maintained by the application, although those which are not accessible
by the user are not to be counted);

external interface files (those which are passed or shared between applications
as well as those which enter or leave the application, while outgoing external
interface files also count one to the number of logical internal files);

external inquiries (those which are input/output combinations in which a user or
application generates immediate output, while inquiries differ from input types
because inquiries direct a search for information and input types only change
data).

Figure 3.2 : FPA Mk.I calculation worksheet
(cf. Albrecht & Gaffney, 1983, p647)

Aston University

Content has been removed for copyright reasons
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A user function is said to be unique if it has a unique format or processing logic and
is rated as simple (few elements involved), complex (many elements involved), or
average (neither simple nor complex). For instance, an external input is rated as
simple if it has few data elements, while an external output is rated as complex if if
has intricate data transformations and file references. Completing the appropriate
calculations in Figure 3.2 then gives the (unadjusted) function count, FC. The
processing complexity measure, PC, is a rating of the degree of influence of 14
project characteristics. When summed, PC produces a processing complexity
adjustment, PCA, factor given by:

PCA =0.65+(0.01*PC)
while the total function point measure (FP) is found by:
FP =FC*PCA

Thus, since PC can vary from 0.65 to 1.35, an adjustment of 35% can be made to
the nominal function point score. Albrecht & Gaffney call this measure a “formula”
estimate, since it is based on counting features (rather than tasks) and can be used as
a measure of (amongst other things) function points per man-month and man-hours
per function point. The principal advantage of this approach is that it gives a measure
of system size in terms which are more easily understood by the user than ‘lines of
code’. Since the five user types are independent of the implementation language, the
function point method also promises to measure system size independent of the

technology or language of its implementation.

Symons (1988, 1991) criticises what he termed the Mk.I approach on the basis that
it will consistently underestimate systems which have high internal complexities. He

notes:

o although straightforward, the Mk.I classification system aggregates differences
too simplistically such that a companent with 100 data elements can score, af
maximum, only twice that of a 1 data element component;

« the choice of weight (points per component type) was derived by Albrecht in a
“trial and debate” within IBM and as such, it is not clear why (say) interfaces
should be weighted as more impartant than any other input or output;

o while the internal complexity of & system is related o the number of iniernal
files referenced by an external input or output, in the M.l approach this can
anly contribute up to 5% of the processing complexity;
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> the 14 complexity factors do not appear to be final and may require some
‘reshuffling’.

Symons also takes issue with Albrecht & Gaffney’s (1983) suggestion that
productivity falls by a factor of roughly three as system size increases from 400 to
2000 FP’s. Symons (1988) continues:

“Most of the above criticisms of the FP method point toward the
conclusion that the FP scale underweighs systems which are complex
internally and have large numbers of data elements per component,
relative to simpler and therefore “smaller” systems. If the criticisms
are valid and significant, then the fall-off in productivity with system
size may not be as serious as apparently observed. Clearly it is an
important issue to resolve (p4).”

Symons’ (1988) Mk.II solution begins with the following assumptions:

s a system consists of input/process/output combinations (iransaction fypes);

s interfaces are either inputs or outputs (contributing o the averall complexity of
a sysfem only if they increase the size of the task);

« inquiries are just another input/process/ontput combination;

« at the transaction level, the term “logical file” should be considered to be dealing
with entities (object, real or abstract) ‘about which the system provides

information’. i

The Mk.IT approach thus seeks to replace the data processing functionality of the ;

Mk.I approach with a transactional interpretation of the value of functions delivered
to the user. A system becomes a series of logical input-process-output combinations, |

and Symons (1988) continues:

“The task then is to find properties of the input, process, and output
components of each logical transaction-type which are easily
identifiable at the stage of external design of the systems, are
intelligible to the user, and can be calibrated so that the wei %hts for
each of the components are based on practical experience (p4).

The logical transactions used by the Mk.IT approach are available once an entity-
relationship diagram has been produced for the proposed system (e.g., see Figure
3.3), and so, are available early in the development process. The process camponent
is the most difficult component fa apply a size parameter to and Symans relies on
developing a notion of complexity. This ‘complexity’ is defined in terms of 4 couni ]
of the number of entity-types referenced by the transaction-type (where “eferenced”
means created, updated, read or deleted). Symons (1988) admiis that the argument is
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Figure 3.3 : Example entity model and associated FPA Mk.II breakdown
(cf. Symons, 1988, p5)

Aston University

Content has been removed for copyright reasons

‘tenuous’ and the measure ‘crude’, but suggests that empirical data shows the
hypothesis is plausible. The size parameter for the input and output components are
taken to be the number of data elements. Thus, the Mi.IT formula for the information
processing size of an application expressed as Unadjusted Function Points (UFPs) is

given as (ibid, p5):

UFPs = N,W, + NyWp + NoWyq

where, ) :
Ny = number of input data element types (summed acrass all rangaction-

fypes)
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Wi = weight of an input data element type

Ng = number of entity-type references (summed across all transaction-
types)

W = weight of an entity-type reference

Np = number of output data element types (summed across all transaction-
types)
Wo = weight of an output data element type

The Mk.II function points scores were calibrated by collecting data from a
consultancy study in which Clients “A™ and “B” were each asked to nominate 6
systems of varying size and technology for assessment. Nine of the 12 systems were
developed in time for further analysis to be made. The UFP formula was then
deduced by calculating the average “man-hours per count” for input data elements,
entity references and ouiput data elements. When these averages were scaled down
such that the average system size (in UFPs) were identical for the 8 systems studied
under 500 UFPs, this gave a formula of (ibid, p7):

UFPs =0.44N, + 1.67TN, + 0.38N,

Symons then added six further factors to the original 14 Mk.I degrees of influence

(DI) components. The additional factors were meant to capture the need to:

®

interface with other applications (including technical software, e.g., message
switching);

+ incorporate security features;

« provide third party direct access;

« meet documentation requirements;

« provide special training facilities (i.c., a training sub-system);

« define, select and install special hardware or software unique to the application
(suggestion given by a project representative).

Like Albrecht, however, what counted as a technology complexity facior (TCF)
component was a matier of debate. Each system was then scored using all 20 faciors
and project represen ratives were asked to estimate the effort devated o each. Tn this
way, Symons was able fo deduce that the effort per DI companent and found that the
effort was not evenly distributed across the DT factors. In particular, companent 19
(documentation) required twice as much effort as any other.

L
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Finally, the Mk.II equation was calibrated against the Mk.I approach by plotting
TCF (the 20 Mk.II factors) against TCF (actual). TCF (actual) was derived from the
Mk.I processing complexity adjustment (PCA=0.65+[0.01*PC]) factor and given as

(ibid, p7):
TCF ., =0.65% [l + X_]
X
where,
TCFacmal = PCAncmaI
Y = man-hours devoted to TCFs
X = man-hours devoted to in UFPs

The suggestion here is that if Albrecht & Gaffney’s representation of TCF is
correct, then the relative effort devoted to TCFs:UFPs will be found o be 0.01:1.
This would be found by plotting TCF against TCFyq and finding the data points o
be on a slope giving a weight of 0.01 per DI. Symons found, however, that 6 of the
8 systems calibrated to the Mk.IT method lay on a slope of 0.005 per DI, This
suggests that half the effort is used to achieve the 20 TCFs than the Mlk.T approach
would calculate. The six systems on this second line were all developed by Client
“B” and Symons notes that this seemed to be because Client “B” had developed
specialist tools to simplify development while some systems used fourth-generation
languages. This questions Albrecht & Gaffney’s central assertion that the function
point method is technology-independent. Symons accepts, however, that the
problems of calibration also affects the sensitivity of the Mk.IT approach (ibid, p9).

What is more worrying is that by being dependent on entity-analysis, the Mk.II
approach becomes equally dependent on the clarity of the rules by which entities are
identified and counted. This is similar to the counting problems experienced by
Software Science. Acknowledging the fact that some subjectivity is apparent when
working with FPA, Symons (1988) suggests that ‘for some time to come’ FPA may
have to be supervised by an experienced Function Point Analyst (ibid, pp9-10). If
this is the case, then one could question whether FPA Mk.IT has achieved the original
FPA goal of producing a measure of system size which is more intuitive (o users ihan

a count of lines of cade.
When Symons (1988) says that both Clients “A” and “B” preferred the Mk.I1

approach (p7), it is unclear whether these Clienis are the project represeniafives who
supplied Symons with the FPA data, or the users within the organisations who were
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commissioning the systems. If itis the former then FPA Mk.IT has failed to address
the central theme that function points are meant to measure the user-functionality of
the system; while doubts can be expressed about the latter since studies have shown
that even FPA analysts can have trouble with the FPA approach.

Table 3.2 : Variations in sizing with function points or source lines of code
(SLOC)(after Low & Jeffrey, 1990a. p70)

Program Estimating No. of Develop- No. of WEX(%)
method organi- ment FPA Mean
sations Language analysis
1 FP Mk.I 2 22 45.5
1 SLOC | Cobol 2 72.2
| SLOC 2 PL/ 12 72.2
2 FP Mk.1 7 | - 7 33.8
2 SLOC | Cabol 2 (8.8
2 SLOC 2 PL/1 2 80.8

Using specifications for two programs and twenty-two FPA Mk.I analysts in seven
organisations, Low & Jeffrey (1990a) found a variance about the mean of more than
+30% between FPA analysts within an organisation, between organisations and
between experienced and novice analysts (see Table 3.2). Low & Jeffrey do point
out, however, that for the same two programs the FPA analysts were more in
agreement when estimating size on the basis of function points (FPs) than on the
basis of source lines of code (SLLOC). As can be seen, the deviation of FPA scores
varied from between 33.8% to 45.5%, while the deviation for SLOC varied from
68.8% to 80.8%. The actual FP or SLOC is not given. While later studies have
reported variances between analysts at nearer +10% (Kemerer, 1992), one could st
query how feasible an estimation method is when even the initial counting procedure
involves a degree of variance for the same system, especially when the estimate itself
is Tikely to be at variance with the actual system size.

Heemstra & Kusters (1991) found that companies using the FPA method were
actually less likely to avoid cost overruns than non-FPA companies, with mare than
66% of FPA users having cost overruns of 210% on large or very large projecis,
compared o 50% of non-FPA users. Although the FPA users W@‘r‘@: mwh more
likely to record data on past projects (96%) than non-FPA users (50%), this appears
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to be of little help. The key problems experienced by the FPA analysts were found to
be (ibid, p234):

« subjectivity in determining the input (28%);
« problems with sizing (26%);

« insufficient insight into the project to determine model parameters (20%).

If the FPA users really did keep records on past projects then presumably they
would be able to at least partially overcome these subjectivity/sizing/insight problems
by looking back over past data. It would appear not. Heemstra & Kusters also point
out that for the most experienced FPA analysts the technology complexity factor
(TCF) was virtually always set to 1.00 (i.e., no adjustment made to the UFP score).
This leads to the suspicion that those companies using FPA are not using FPA in the
way it was initially designed.

These studies suggest that the FPA approach is clearly a difficult method, although
it continues to be widely used in both the U.S. and Europe (e.g., Jones, 1991;
Betteridge, 1992), while tools are now being developed (o assist FPA measurements
(e.g., Matson & Mellicamp, 1993). However, the canclusion would seem (o be thai
whilst the notion that the size of a system has something to do with the “amount” of
functionality it aims to deliver remains appealing, the concept of a “function” - like
that of a “chunk” - remains problematic and one is left with the doubt that FPA Mk.II
is a method which is clear or accurate enough to provide project managers with useful

information.

The structure of a software program

Software size alone will not allow a project manager to assess the difficulty and demands

of a prospective development project. The missing atiribute is that of structure. Structure

normalises measurements of size (in terms of lines of code or any other measure), by
uncovering the internal complexity of the system. As the FPA MIcIT attempts to make clear,
a small system may require as much effort as a larger system simply because the size
measure hides the internal complexity of a system. In other words, by generating a mare
complex arrangement of code the same functionality can be contained within a significantly
smaller number of lines of code. Complexity is also scen as the best indicator of error-
proneness, or the likelihood of a piece of software to have an operational fauli (e.g..
Schneidewind, 1979; Dunsmare & Gannon, 1980).
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“Good structure” has often been described as the ability of a system to resist errors even
when changes are made to some part of its sub-structure (Soong, 1977; Yau & Collofello,
1980). In this sense, the best structure is one with the greatest independence between
modules or sub-parts. Using this definition, Ince (1990) traces the literature on structure
back to a thesis on sociological order published in 1964. The problem of software
complexity was recognised at about the same time with Underhill (1963) cautioning
programmers to control the seemingly inherent growth in program complexity over time.
For Underhill, “complexity™ is the way programs increase their functionality and size over
time but does not suggest how best to control this problem. Notwithsianding these
exceptions, however, most of the research on complexity in software engineering began in
the mid-1970s and focused on generating graphs which represent a change in the control
structure or the direction of data within a program. The most well-known of these are
McCabe’s cyclomatic complexity and Henry & Kafura’s data flow fan-in/out.

3.2.1 Cyclomatic complexity (McCabe, 1976)

The idea of transforming a piece of code into a directed graph against which to
measure “structure” or “complexity’” begins with McCabe (1976) who offers an
‘intitive explanation’ of how a program can be described in ferms of a graph.
McCabe’s motivation is to show that while structured programs are believed to be
easier to debug and maintain, it is not at all clear how complex a program can be
before it becomes unstructured. By transforming a program into a graph, a measure
of program complexity would then be a measure of the number of paths through this
graph. Of course, a program with a backward loop has a theoretically infinite
number of loops, so by ‘path’, McCabe (1976) means:

“... basic paths - that when taken in combination will generate every
possible path (p308).”

Paths are identified by defining a program as a strongly connected graph, G, which
has n vertices, ¢ edges and p connected components. The cyclomatic number, v(G),
can then be calculated as (ibid, p308):

viG)=e—n+2p

where,
p = 1 (for one component)

The component count, p, signifies the number of separate routines within a
program. In most studies, p is taken to be one. McCabe suggesis this formula gives
gram.
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a measure of the complexity of a program. By abstracting only from decision points,
cyclomatic complexity is also independent of the number of functional statements
within any given program. The first problem, however, is that McCabe (1976)
confuses his terminology of vertices and edges somewhat by attempting to explain
the application of this formula in the following way:

“Given a program we will associate with it a directed graph that has
unique entry and exit nodes. Each node in the graph corresponds to a
block of code in the program where the flow is sequential and the arcs
correspond to branches taken in the program. This graph is
classically known as the program control graph... [where] it is
assumed that each node can be reached by the entry node and each
node can reach the exit node (p308).”

In other words, a graph is here reduced to a set of arcs (or edges, ) and nodes (or
vertices, n). When the arcs have an orientation (each points in a particular direction)
the graph is called a directed graph. A set of connected aics which begin and end at a
terminal node and where no arc is revisited is called a path. If the terminal nades are
identical, the path is called a circuit. All circuits can be described in terms of
combinafions of a number of paths. If there is at least one path that visits every node
in the graph, the graph is said to be connected. If a node can reach every other nade
the graph is said to be strongly connected. On the basis of this representation,
McCabe suggests that complexity can be defined explicitly as the presence of sub-
graphs that branch into or out of a loop (or decision). This branching is isomorphic
with the following undirected graph (ibid, p317):

O—O—(O—C0O—0O——0

This suggests a minimum complexity for nonstructured programs of v(G)=3. The
difference for a structured program is that all structured programs can be reduced
using the simple rule of removing nodes - one at a time - that have only one input and
one output arc. Eventually the graph is reduced to a single node and this is a
characteristic of all structured programs.

The equation for cyclomatic complexity can also be reduced 1o a count of the
number of predicates (such as IFs, WHILES, etc.), plus one. In practice, McCabe
suggesis that it was mare convenient io count conditionals and so the refined measire
of eyclomatic complexity becomes (ibid, p314):
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v(G) = No. of conditionals + 1

Some care needs to be taken over the fact that compound conditionals are actually
disguised IFs (e.g., IF “C1 AND C2” THEN.. becomes IF C1 and IF C2 THEN..);
while CASE statements are actually multiple IFs, where a CASE statement with N
conditions would have to be re-written as N-1 [F statements. The number of areas

bounded by the arcs plus one is also given as a quick way of calculating v(G).

McCabe analysed the structure of several PDP-10 Fortran programs using a tool
called FLOW (written in APL). Each program was broken down into blocks
according to branching statements (IF, GOTO, etc.). From this analysis, McCabe
suggests that not only could he begin to recognise individual styles of programming
(ibid, p313), but it also allowed him to deduce a reasonable (‘but not magical’) upper
limit of v(G)=10. Programmers at TRW were required 1o calculate v(G) as they
worked and rethink any coding if v(G)=210 (ibid, p314). When analysing a tape of
24 Fortran sub-routines for a real-time graphics sysiem, McCabe found a number of
programs ranging from v(G)=16 1o v(G)=64. McCabe was iold by the prajeci
members that these programs were nofable because they were the ‘maost troublesome’
(ibid, p314). There would seem, therefore, to be a relationship between v(G) and
reliability. This result also aids testing, since, if a program, P, has a complexity of v
but only ac paths have been tested, then one of the following must be true (ibid,
p318):

« more testing needs to be done;
+ the flow-graph can be reduced by v-ac paths;
o portions of the program can be reduced to in-line (i.e., structured) code.

While ac<v then one of the above conditions are not satisfied and so more testing
needs to be done. But, McCabe (1976) warns:

“.. this procedure (like any other testing method) will by no means
guarantee or prove the software - all it can do is surface more bugs
and improve the quality of the software (p318).

Even though McCabe ends on a cautious note, the idea of transforming a program
into a graph of pathways proved to be an appealing and influential concept. The first
reactions, however, were o redefine the metric in order to accommadate prablems in
the way the graph represented certain program structures. New variations of the
mefric quickly emerged where more emphasis was placed on the bounds of BILSE
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statements (Myers, 1977), arcs at a node forming “knots” (Woodward et al, 1979),
the flow of both control and data (Oviedo, 1980; Stetter, 1984) and the nesting depth
of statements (e.g., Harrison & Magel, 1981; Piowarski, 1982).

The most important use of these graph-theoretic measures of complexity has been
to explain the number and distribution of errors (Kitchenham, 1981; Basili &
Perricone, 1984). The complexity of a program has also been related to the difficulty
of developing the program (Chen, 1978; Basili er al, 1983), the use or reachability of
particular nodes (Iyengar et al, 1982), while later studies generated similar graphs on
the basis of the system design or specification (e.g., Samson ef al, 1987; McCabe &
Butler, 1989).

Similar to Software Science, however, it is sometimes difficult to detect how the
elements of the program are to be mapped onto the appropriate metric elements.
Perhaps this is why McCabe sought to replace v(G)=e-n+2p with v(G)=Na.of
conditionals+1. By abstracting what a program is to a graph of nodes and arcs il
becomes confusing to know whether we are measuring syntactical or psychological
program complexity (Curtis ef al, 1979). As such, it is no surprise (o find empirical
support is often contradictory where cyclomatic complexity is somerimes seen as
corresponding well with notions of good programming style (e.g., Myers, 1977,
Hansen, 1978), and sometimes as not doing so (e.g., Oulsnam, 1979; Baker &
Zweben, 1980; Evangelist, 1982, 1983).

McCabe clearly wants to measure both syntactical and psychological complexity,
but the bridge from its syntactical measurement to its psychological impact is both
unsupported and uncertain. For instance, Prather (1984) notes that the two flow-
graphs in Figure 3.4 are both assigned v(G)=4. And yet, if the complexity of testing
these two procedures are at the heart of the v(G) metric, then it would seem that the
graph in (b) must be seen as being more complex than (a), since all three IF... THEN
loops can be tested independently in (a) while all three loops form sub-routines in (b)
and cannot be tested independently. Furthermore, Halstead's model of effort, E (see
again Table 3.1), has been found to correlate with construction time, the number of
errors, and debugging time significantly betier than cyclomaiic complexity (Davis &
LeBlanc, 1988). The lack of support for relating measures of complexity o what
Programimers Sec as “complex’ and thus being error-prone is 4 typical criticism of
siructure metrics (e.g., Shepperd, 1988; Kitchenham er al, 1990). The conclusion
would seem fo be, therefore, that cyclomatic complexity remains an appealing bui

unproven structure mefric.
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Figure 3.4 : Two flow-graphs with the same cyclomatic complexity,
v(G)=4 (cf. Prather, 1984, p341)

(a) R\

Aston University

Content has been removed for copyright reasons

3.2.2 Data flow fan-in/fan-out (Henry & Kafura, 1984)

Rather than defining structure in terms of an analysis of tokens within the program
(such as Halstead and McCabe), Henry & Kafura (1981, 1984) look to measure the g

environment created by the program itself. This “environment” is defined by the
connections made within the system by information flowing from one point fo |
another. There are two types of “flow”. Global flow passes information from
module X to module Y via a global data structure DS, such that, X deposits
information in DS which Y retrieves. A local flow passes infarmation from module
X to module Y either directly (where X calls Y), or indirectly (where X calls Y and Y
returns a value that X uses, or if module Z calls X and Y and a value is passed
between X and Y). Henry & Kafura (1981) illustrate their terminology by way of an
example (see Figure 3.5), and invest the diagram wiih the following behaviour:

“Module A retrieves information from DS and then calls B, module 8
then updates DS. C calls D and module D calls £ and £ returns #
value to D which D then utilizes and then passes o /. The function of
Fis 1o update DS (pS11; original denotation).”
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Figure 3.5 : Simple flow of data diagram (after Henry & Kafura, 1981, pS12)

- = 4 connection to another procedure which
retrieves or passes data

= a procedure (block of code)

DS | = global data store

On this basis, Figure 3.5 contains eight information flows, namely: two global
flows (B— A, F—A), four direci, local flows (A—B, C=D, D—=E, D—=F); and, two
indirect, local flows (E—D, E—F). The structure of a procedure is then a measure

of the fan-in and fan-out of data between individual procedures, where:

 fan-in is the number of local flows (direct and indirect) into X, plus the number
of data structures that X retrieves information from;

s fan-out is the number of local flows (direct and indirect) from X, plus the
number of data structures that X updates with information.

Henry & Kafura’s definitions are often simplified to a count of the number of
connections terminating at (fan-in) or emanating from (fan-out) a procedure. Using
this representation of structure, complexity is based on a measure of the procedure’s
length and connections with its environment. Length is counted as lines of source
code including embedded comments but not text preceding the procedure. Since
Henry & Kafura suggest that embedded comments are rare, length is therefore
roughly equivalent to a count of source statements. The procedure’s connections fo
its environment is a count of the number of connections fanning into or out of the
procedure. By assuming these two factors are independent, the complexity of 4
given procedure, Cp, is then given as (ibid, p513):

Cp = SLOC* (IFT *IFO)Y’
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where,
SLOC = source lines of code
IFI = information fan-in
IFO = information fan-out

The IFI*IFO term represents the input-output space, and the power of two
represents the hypothesis put forward (by Brooks, 1975) that communication is non-
linearly costly. Henry & Kafura suggest that since SLOC is a weak facior in the
equation, potential flaws in a design can be evaluated early allowing for relatively
inexpensive cycles of design-evaluate-redesign. Such design flaws are identified
when a procedure has a high fan-in or fan-out. Although Henry & Kafura give few
clues as to what is meant by “high”, they suggest a high number of connections
between a procedure and its environment would indicate that it is:

« overly complex (performing more than one function);
« a potential stress point (which would make debugging difficult, given its
influence on other procedures);

« requires further decomposition into two or more smaller procedures.

The validity of these suggestions was tested by studying the development of the
UNIX operating system. The aim of the study was to see how well procedure
complexity correlated with the likelihood of a change being made. Without defining
what is meant by “a change”, Henry & Kafura studied 165 procedures of which 80
had changes, and which ranged in Cp from 4 to 27 432 000 and in LOC from 3 10
180. Given these very high upper limits Henry & Kafura ordered the data into
powers of 10 (e.g., 100, 101, 102, etc.)(see Table 3.3), and found a ranked
correlation between Cp and number of changes of r=0.94 (p=0.02). They also
noted, however, that 53% of the procedures were less than 20 lines of code and
contained only 28% of the errors. By investigating the power of the SLOC and
IFI*IFO parts of the equation, Henry & Kafura found that while SLOC did not
correlate well with number of changes (r=0.60, p=0.08), the IFI*IFQ squared
component did (r=0.98, p=0.03). The conclusion seems to be that SLOC is
superfluous to the calculation of Cp. Indeed, IFO alone has sometimes been taken {o
be the best measure of complexity (Card & Agresti, 1988).

The most complex procedure in this study (called NAMED did not underga any
changes, however, and all Henry & Kafura tell us about this is that NAMET has
miany connections and would be difficult 1o change. In other words, nobody dared 1o

change this procedure!
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Table 3.3 : Information flow complexity and number of changed procedures
(after Henry & Kafura, 1981, p516)

Order Number of Number of changed
(10X, x=) procedures procedures
0 17 2
1 38 12
2 41 19
3 27 19
4 26 15
5 12 11
6 3 2
7 1 0

T a later article on the same UNIX siudy, Henry & Kafura (1984) suggesis thai
NAMEI was clearly a design problem since it was relatively long (LOC=155), while
fan-in and fan-out were high (IFI=13 and IFO=21). By identifying and separating
out the different logical functions NAMEI dealt with, Henry & Kafura (1984)
suggest that the combined complexity of this procedure could be reduced by 98% 1o
Cp=20 776 (p571).

However, while other studies have continued to find good correlations between
information flow and maintenance effort (Kafura & Reddy, 1987) and specified
complexity and implemented complexity (Henry & Selig, 1990), the suggestion that
limiting the size of a module will reduce the likelihood of change has not always been
supported (e.g., Card et al, 1986). Like many of the metrics described in earlier
sections, it is not always clear what is being measured by fan-in/out and how the
metric is meant to capture complexity. Kitchenham er al (1990) suggest that code
rarely fits neatly inio Henry & Kafura’s definitions of flow, while the notion of
indirect local flow is imprecisely defined and remains ambiguous. Being a composite
metric, programs returned values of zero if they failed to have at least one fan-in or
fan-out, thus concealing the effects of the other components in the equation.
Kitchenham et gl (1990) conclude:

“Tt would therefore seem preferable fo use design meirics hased an
primitive counts rather than synthetics, unless it is very clear how ihe
values obtained from the synthetics may be inierpreted (pSK).
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What is strange about the information flow metrics is that a metric which purports
to be more sophisticated than the simple token-counting metrics of Halstead and
McCabe should at first include and then dismiss program length from the equation.
If “flow” is about communication, what contribution was this measurement of length
supposed to add to the concept? The result of this confusion is that if the program
has only one input and one output (i.e., it is a straightforward sequential piece of
code), then the flow complexity is reduced to a measurement of its length. Adding
further sequential code would, in this respect, add to its complexity. This result is in
opposition to Henry & Kafura’s definition of flow as a structural (not a token-
counting) metric. This was perhaps their motivation in showing SLOC was a weak
part of the equation.

But length s a necessary part of a program’s character: the greater its length the
greater the risks of errors (typographical mistakes), improper functionality (incorrect
design) and inefficient coding (poor style). The amount of communication seems
also to be important because it portrays the dependence of a procedure on the sysiem
as a whole. What is less clear is how well a meiric which can refurn a zera value
even if the procedure is hundreds of LOC long, or explodes into millions with small

increases in data flow can capture this notion of complexity.

Axiomatising metrics

Most of the problems associated with the “classic” size and structure described in the

previous section can be traced to three critical problems:

the entities to be measured are not precisely defined, and thus, the counting strategy by
which the metric is applied is also vague;
while there is confusion over the counting strategy, it is difficult to understand what the

ER I 11

metric purports to measure and how this relates to such things as “size”, “structure”
and “complexity”;

if the concepts are confused, then it is difficult to know whether the empirical suppori
for and against the metric is actually measuring the same entities.

As Fenton (1991) points out, while the concept of a metric has a precise definition in
mathematics, its use in software engineering is much looser, and thus, more problematic.
Fenton describes the definition of a metric in mathematics as the function m(x, y) by which
(he distance hetween two objects x and y is measured. Such metrics have three impartani

properties (ps9):
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1. m(x, x) =0 for all x;
m(x, y) =m(y, x) for all x, y;
mix, z) Sm(x, y) + m(y, z) for all x, y, z.

These three statements are axioms which define the mathematical notion of (‘real’) metrics.
By the mid-1980s attempts were also being made to define a set of axioms which describe
those properties a software metric must have in order (o be a software metric.

An axiom can be defined as a statement which cannot be proved but leads to absurdity if
denied. An axiom, therefore, is a core belief which must be taken as self-evident (such as
Descartes’ cogito ergo sum), and is the root from which other statements of truth can be
logically derived. These axioms ave derived by setting out what is knowable about a widely-
held but troublesome concept and dismissing all those statements which could, conceivably,
be false. The remaining statements form the axioms from which the troublesome concept is
rebuilt and clarified. For instance, Descartes stripped away all suppositions about what
ensures a person knows he exists and was left with only one axiom:“T think, therefore T am.”

Given the problems discussed in §3.2 over what is meant by “complexity”, it is perhaps
not surprising to note that this (vague and troublesome) concept has been the prime farget of
the axiomatic approach. The first attempt was put forward by Prather (1984) who contended
that a structured program is one which is built up ‘inductively’ from a number of simple
statements (i.e., BEGIN..END, IF.. THEN..ELSE and WHILE..DO constructs). On this
basis, a proper measure of program complexity metric, m, would have to satisfy three

inductive axioms (ibid, p342):

1. The complexity of the whole is greater than or equal to the sum of the complexity of

the parts, given as
m(begin S;; Sz, ..; Spend) = T m(S)

7 Twice the sum of the complexity of a section is greater than or equal fo the
complexity of any IF..THEN construct to that section, and is also greater than the
sum of the complexity of the section parts, given as

2m(SH+m(S2)) = m(f Pthen Syelse §) > m(§)+m(S82)

3. Twice the complexity of a section is greater than or equal io the complexity of any
WHILE..DO construct to that section, and greater than the sum of the sections pars,

given as
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2m(§) = m(whilePdoS) > m(S)

The multiple of two in axioms 2 and 3 is based on the assumption that the complexity of
the predicate, P, in the left-hand side of the inequality must also be calculated and added to
the complexity of the section which contains it. Following axiom 1, however, the
complexity of P cannot exceed the complexity of the section. In other words, an IF.. THEN

or WHILE..DO construct can contribute no more than half the complexity of a section.

Prather goes on to show that a new testing procedure, ., can be defined which overcomes
some of the inadequacies of the way McCabe’s metric deals with nesting. The assumptions
are made that any bottom-up testing methodology will have assigned units of complexity to
small parts of the program, and so, parts in sequence order have a complexity which is
additive, while parts which are nested are multiplicative. By further assuming that the
complexity of a part of a flowgraph is equal to the maximum complexity of any one sub-
flowgraph, Prather also goes on o compute a maximum complexity of a (GOTO) flowgraph
of =100 and adds this notional maximum o the other accepted limiis of v(G)=10 and
N.logon=50 (ibid, p347).

Fenton & Whitty (1986) criticise Prather’s approach on the basis that he takes
structuredness to correspond to a finite set of IF. THEN and WHILE..DO constructs.

Fenton & Whitty see this as an unnecessary restriction and argue that:

“... programs do not fall into just two categories, ‘structured’ or
‘unstructured’ (as assumed by many researchers in this area), but all have a
quantifiable degree of structure characterised by the hierarchy of basic
structures on which it is built (p330).”

The attack, here, is on Prather’s second and third axioms which assume only IF. THEN
and WHILE..DO constructs exist within a program. Instead, Fenton & Whitty propose that
a program mapped onto a directed graph (called a digraph) is equivalent to a set of nodes, x;
to x,,, structured either in sequence or nested. Thus, a digraph Dy (say) is composed of and
can be reduced to a sequence of non-sequential sub-flowgraphs F to Fy. Fenton & Whiity's
contention is that there is a finite set of digraphs and that the structure of all flowgraphs can
be unambiguously reduced to a number of these basic components. A flow-graph which is
non-sequential (i.e., it has some structure) and coniains none of the basic sub-flowgraphs is
said to be ‘rreducible’. This produces four axioms (ibid, pp335-6):

] The complexity metric, i, of a sequential flawgraph, F, is a function, g, of ihe
complexity of its subcomponents, Fpo Fp, given as
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771( SCQ( F17 MR ] Fn)) = gn( m( FE)’ veey ’n(Fn))

2. The complexity metric, m, of a non-sequential flowgraph, F, upon the nodes,
Xj,...Xp, 18 a function, hp, of the complexity of all irreducible subcomponents,
F,,.. F,, given as

m(F(Fjonxj, .., Fyonx,)) = hi( m(F), m(F)), ..., m(F,))

3. FPor a finite set, n, of components in sequence, g,, the complexity metric, m, will
generate a result within a range, given as

lower upper
gl’l S gi) S gli

4. For each irreducible digraph, F, of nested components, ip, the complexity metric, in,
will generate a result within the range, given as

lower i upper
hp ™ < hp < by

Axiom 1 effectively preserves Prather’s first axiom - thai a program’s basic struciure is a
sequence of sub-components. The second axiom suggests the complexity of the whole is
measured in the same way as an analysis of a finite set of sub-components, but do not follow
Prather’s suggestion in saying that the complexity of the whole is greater than the sum of the
parts. Axioms 3 and 4 impose the limits of the metric which preserves the monotonic

relationship between parts of a flowgraph and its whole.

Figure 3.6 : Options in the decomposition of a flowgraph, F

Flowgraph, F Oion F’

Option F”
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However, while Prather broadly accepts Fenton & Whitty’s (1986) treatment of
hierarchical metrics (Prather, 1987) and it seems reasonable to begin by accepting axioms 1
and 2, the relationship between a metric and its result (be it g, or 4p) still does not seem to be
fully represented. Notably, given that Fenton & Whitty’s goal is to reduce a flowgraph fo an
unambiguous set of irreducible digraphs it is equally important to define a means of
unambiguously defining how members of this set are identified and combined. A number of
‘the most commonly occurring’ irreducible digraphs are mentioned (ibid, p331), but make no
mention of how these important ‘building blocks of programs’ are identified. For instance,
another flowgraph, F, given by Fenton & Whitty (1986, p331) could be reduced to more
than one combination of digraphs, F’ to F» (see Figure 3.6).

There are the same number of digraphs in each case so it cannot be suggested that the
correct reduction has the fewest number of sub-components. Neither could it be argued that
the forked digraph at the top of Option F” in Figure 3.6 is invalid, because Fenton & Whiity
do not give a means of accepting or dismissing particular flowgraphs. The conclusion musi
be, therefore, that Fenton & Whitty’s axioms are incomplete, and it is hard 10 see what needs

to be added in order for the axiomatic sei to be made complele.

A fuller description would seem to be given by Weyuker (1988), who set out to derive a
means of comparing competing models of software complexity. If | P | represents the non-
negative complexity measure of P (however it is measured), then Weyuker presents nine
desirable properties of complexity measures which are based only on syntactic features of a

program. They are, that a good complexity metric must:

1. Discriminate (assigns different numbers to programs which are not the same).

2. Not be too insensitive (does not assign the same number to programs which are
different).

3. Allow for equivalence (assigns the same number to programs which are the same).

4. Detect syntactic differences (since measures of complexity are here based on
structure, not function).
Be monotonic (since subprograms can be no more complex than the whale).
Allow that the concatenation of two subprograms does not necessitate an incredse in
structure (for instance, if the second subprogram does not interact with the first).

9 Re sensitive to component ordering (since a change in interaction hetween
componenis should be reflected in the measure).

& Be insensitive to syntactic renaming (since the ordering has nof changed, although
psychological complexity might be said 1o have changed).

9.  Allow for synergistic concatenations (gince there may be additional inieractions
hetween the components when they are concatenated).
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The properties 6-9 are described by Weyuker as defining more subtle differences between
the complexity measures. But she finds a number of well-known complexity metrics fail to
fulfil the important properties 2 and 5. The metrics analysed were a count of program
statements (described as ‘probably the oldest and most intuitively obvious notion of
complexity’), McCabe’s cyclomatic complexity model, Halstead’s programming effort
model, and a model of data flow (from Oviedo, 1980). Applying her desirable properties of
complexity measures to these four complexity metrics, Weyuker finds that none of the four
structure metrics satisfy all nine of the desirable properties.

Cherniavsky & Smith (1991) show that even satisfying these properties does not ensure
that the metric itself is a useful or meaningful measure. Shepperd (1991) painis out that
some of Weyuker’s properties are, at best, only hypotheses of good structure and so it is no
surprise that Weyuker did not find any structure metric which met her criteria. For instance,
monotocity indicates measures which are at least higher than the nominal scale, but how do
we define concatenation (property 9)7 Of syntactically incorrect programs such
concatenations are meaningless, while for design components it would be inappropriate.

Although a number of other attempts have been made in this field (e.g., Zuse & Bollmann,
1989; Ejiogu, 1991; Schneiderman, 1992), one is still left with the conclusion that no clear
set of axioms have been established which can guarantee the efficacy of a metric. One reason
for this failure could be the problem that the field of software metrics has not matured enough
for it to be possible to deduce what the essential properties of a good metric are. This is
because no metric has proven itself beyond doubt and established the beginning of a
workable science of software measurement. In other words, until a metric which is both
accurate and widely used has been found, it is not possible to deduce what it is about a
(successful) metric that makes it work. In lieu of this framework the only alternative seems
to be to take a naive approach where proof of the usefulness of a metric is taken to be a
reliable and high correlation between the actual and estimate values. Of course, high
correlation does not prove a meaningful relationship but if no other framework is in place,

what other justification can be given?

This thesis, therefore, will not take an axiomatic approach o generating hybrid metrics,
but begin where most of the early studies began: abserving what types of useful
measurements can be taken and then testing whether these measuremenis are related 1o the
important properties which need to be estimated. What remains uncertain is whether the
measurements that can be taken of knowledge based systems are similar or radically different
from the type of (DF) metrics described here. This will be the subject of the next chapier.
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4. Metrics for Knowledge Based Systems

“The debate over the possibility of computer thought will
never be won or lost; it will simply cease to be of
interest, like the previous debate over man as a
clockwork mechanism.” J. David Bolter (1984, p190).

Summary: This chapter describes the few metrics which have been developed
specifically for knowledge based systems (KBSs). They are typified in the same
way that merrics for conventional systems are plausible, mainly directed towards
measurements of program code, while more useful estimating models suffer from
a lack of validation. It will be argued that although there is meant to be g
theoreiical difference between conventional and knowledge based systems, these
KRS metrics show that measurements of KBSs do not differ substaniially from
measurements of conventional systems. This holds out the possibility that

conventional metrics could be extended to KBSs.

Knowledge based systems (KBSs) are part of the field of Artificial Intelligence (Al) and
can be defined as systems which incorporate at least one heuristic to choose between two or
more solutions to a problem. A KBS, therefore, makes decisions based on facts and a
knowledge of the domain in which it is working. Thus, a robot which arc-welded a point in
space regardless of whether the sheets of metal had made it to that point in the production line
would not be called a KBS; while a robot which sought out the appropriate edges of the
metal and decided if welding is likely to be successful would be called a KBS. The second
robot would have to answer questions such as ‘Are the sheets of metal in place?”, “Is the arc-
welding torch on?’, ‘Has the metal been welded successfully?’, etc. If the answer 1o any of
these questions is “No”, then the KBS robot would have to resolve the problem; ihe non-
KBS robot would simply arc-weld free space. The key to the use of a KBS, then, is the
presence of data which may be partial, uricertain, or even false. This places KBSs in sharp
contrast to conventional DP systems, which typically require a precise definition of the daia

to be handled by the sysiem.

Many knowledge based systems are also called expert systems (ESg). For simplicity, an
expert system is defined here as a sub-set of the field of knowledge based systems. The
peculiarity of expert sysiems is that they are designed to take parl in a process of
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interrogation (of or by humans) whereby information is elicited. Where the human is being
interrogated the expert system is often being used to teach the user about the subject domain
in which it is expert. The organic chemist DENDRAL (Feigenbaum et al, 1971), the medical
expert system MYCIN (Shortliffe, 1976) and the Molybdenum geologist PROSPECTOR
(Duda er al, 1979) are classic examples within Al. The arc-welding robot would only be an
expert system if it were possible to ask the robot how it went about welding. Knowledge
based systems ordinarily have this interface, and so the terms “knowledge based system’ and
“expert system” become virtually interchangeable. In order to take a broad view of intelligent
systems, the more general term “KBS” will be used throughout this thesis.

The question to be addressed here is whether the development of a KBS can be measured,
managed and controlled in much the same way as conventional systems development. If not,
then it would be difficult to define any meirics, models or tools which can support the
development of hybrid systems since half the system would become opaque (o the project
manager. The rest of this chapter, therefore, will describe:

« how KBSs are developed,;

+ current KBS mefrics;

« problems with current KBS metrics.

Figure 4.1 : Elements of a knowledge based system (after Anderson, 1989, p95)
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4.1 Developing knowledge based systems

Knowledge based systems (KBSs) are typically instantiated as production systems. A
production system is defined as a set of IF-THEN rules contained within production memory
and a database of assertions (called memory elements) contained within working memory.
The “knowledge” within a KBS is represented as production rules in the knowledge base
(see Figure 4.1). A production rule is a set of (conjunctive and/or disjunctive) conditions,
where the left-hand side of the rule (the IF-part) must be maiched with elements in the
working memory. The working memory is a database of assertions which effectively details
what the KBS “knows” to be true at any one time.

With the input of data the production system checks to see whether the data maiches any 1
conditions. All productions which can be satisfied form the conflict set and effectively
defines the range of deductions that can be made. The interpreter (or inference engine) must
then perform ‘conflict resolution’, whereby one of the rules in the conflict set is chosen for
execution (else the system halts). Tt is at this point that the experts’ heuristics make the
difference between traversing the entire search space and making the mosi plausible decision
first time around. Once an appropriate rule has been chosen the right-hand side (the THEN-
part) is executed. The right-hand side of a production rule contains one or more actions,
such as, placing another fact in the working memory. Once executed, the cycle of match-

resolve-execute is repeated until no further actions are required.

The heuristics coded within the system are most often derived by interviewing human
experts in the relevant field and finding some way of making this knowledge available to the
system (see again Figure 4.1). The use of human experts has led to KBSs being seen as
systems which perform tasks that would require intelligence if performed by a human. This
has been further refined to include only those domains where the body of knowledge is large
(Barr & Feigenbaum, 1982), and the area of expertise narrow and specialised (Hayes-Roth ef
al. 1983; Waterman, 1986). It should be noted, however, that there is no reason why a KBS
should be said to exhibit only “human” intelligence; the key here is the use of knowledge, noi

of species.
The greatest problem with developing a KBS is coding the knowledge of the expert, which

the experts themselves may find difficuli to articulate. Thus, prototyping is characierisiically
nsed in the building of such systems. This technique has four principal siages:

1. define the broad requirements of the system;
3. rapidly build a small, rough sysiem addressing some key issie in ‘17
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3. allow the expert and end-user to evaluate the prototype in ‘2’;

4.  carry out any changes and return to step ‘2’ to implement further enhancements.

These prototypes are further seen as progressing through five stages of evolution (e.g.,
Waterman, 1986, p140):

1. Demonstration (a high-profile part of the problem is coded, demonstrating the
viability of the KBS implementation).

2. Research (the depth of the systems’ domain knowledge continues to increase, giving
a credible performance, although not fully tested).

3. Field testing (the system is tested within the user environment).

4. Production (quality, reliability and speed requirements are satisfied).

5. Commercial (the system is in regular commercial use).

Unfortunately, in the mid-1980s Waterman noted that only a few expert sysiems had
reached the fourth stage of evolution. Those that had also tended to grow explosively in size
and often required re-implementation into a more efficient language to enhance speed. This
can be seen in the development of the knowledge base of the VAX expert sysiem R1/XCON,
which grew over 500% from 772 rules in 1980 to 4 000 vules in 1986 (McDermoii, 1980;
van de Brug et al, 1986). This raises critical questions about the ability to test or maintain
knowledge bases, an area which remains an active area of research (e.g., Hayes-Roth, 1989;
Preece, 1990; Soorgard, 1991).

There is now more evidence that KBSs are being actively used in a commercial setting
(e.g., D’Agapayeff, 1987; Andrews, 1989). A telephone survey of 199 companies
conducted an behalf of the UK government’s Department of Trade and Industry, DTI (1992)
reported more than 1500 KBSs in existence, with ‘more than a suspicion (p12)’ that many
more existed. It was found that over 55% of these systems addressed the complex tasks of
diagnosis, advice and assessment (p14). Even given these more encouraging signs it must
still be acknowledged that the development of KBSs remains a risky venture. What makes
KBS development particularly risky is the lack of a comprehensive methodology. Without a
well-understood method it would be difficult to control the project since it would not be clear
where the project should go next. Prototyping itself is an inadequate methodology since, as
Edwards (1991) notes:

“ here is no final “stopping criterion”, the process [of prototyping] can
néver be said to be finished. Some regard this as a virtue in ferms of

flexibility, others as a disaster in terms of an open-ended commitment to the
use of resources (p103)!”
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Beyond simple code hacking (which has no manageable project structure), those KBS
methods which do exist range from re-interpreting the Waterfall model (Macleish &
Vennergrund, 1986; Weitzel & Kerschberg, 1989), through cyclical-prototyping models
(Ince & Hekmatpour, 1988; Konig & Behrendt, 1989), to the multi-dimensional knowledge
acquisition and implementation phases of KADS (e.g., Hayward er al, 1988; Breuker &
Wielinga, 1989). Since the late-1980s, however, there has been a growing realisation that
AT techniques have a role to play in conventional Software Engineering and KBS
development can profit from the interaction (Pariridge & Wilks, 1987; Bader, 1988;
Partridge, 1990). More importantly, the difference between conventional and KBS as
software systems seems to be closing.

For instance, Baumert ef a/ (1988) note thai since at least 50% of expert system building is
still traditional data-gathering and coding then some of the well-understood characteristics of
the Waterfall model could be used to define an expert system methodology. Such a
methodology, they suggest, would have to satisfy the following 16 requirements (ibid,
p333):

Include a section defining terms;

2. Establish guidelines for evaluating the applicability of an ES solution to the problem;
3. Define the rdle of the project members;

4. Make the expert an active member of the development team;

5. Involve the users,

6.  Assign a knowledge engineer whose responsibility it is to deliver a system which is

satisfactory to both expert and user;

7. Use prototyping to develop the requirements definition and expert system software in
parallel;

8.  Allow for frequent prototype demonstrations;

0.  Allow for rapid, but controlled, system changes;

10. Agree a date when requirements are finalised (and prototyping comes to an end);

11. Provide for an objective means of reporting project progress;

12, Establish a set of baseline documents (updated with each prototype and formally
delivered at the end of the project);

13. Provide guidelines for budgets, schedules and contingencies;

14. Establish a set of standards and procedures which include knowledge acquisition and
promotes modularisation and a structured approach;

15. Allow for an active rdle by the group controlling system quality (e.g., Quality
Assurance);

16. Establish open lines of communication throughout.

R0
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What is noticeable about these points is that although they use key words such as “expert”,
“knowledge”, “prototyping”, etc., only three of them are intrinsically related to expert system
development (requirements 2, 4, and 6). Requirement 2 (evaluating the applicability of ESs
to the problem) is a more specific case of a feasibility study where the “KBS-ness” of the
problem must be evaluated. Similarly, requirements 4 and 6 (making the expert part of the
development team and using a knowledge engineer to design the system), are a recognition
of the extra “expert” dimension of the system. The other requirements, however, can be
applied equally well to models of conventional systems development (see again §2.4). This
includes the need to structure the use of knowledge acquisition techniques (requirement 14),
since this can be equally useful to both conventional and KBS development. Indeed, the use
of a firsi-pass prototype to capture poorly understood requirements was a key strategy
advocated by Royce (1970) for conventional sysiems.

A generalisation of these points within Baumert et al’s guidelines would then suggest that:
a methodology (for any type of system) must foster confidence and co-operation amongst the
group by providing guidelines (for development), standards (for knowledge acquisition and
prototyping) and procedures (for reporting and monitoring). 1t would then only be in the
particular techniques used which would make KBS projecis differ from conventional
projecis. This result suggests that although KBSs typically atiempt io automale uncertain and
complex problems, parallels can be drawn between the development of KBSs and
conventional DP systems. Given the similarity in project structure, there seems to be no
reason why KBSs cannot be measured in the same way as conventional systems. The
problem of knowing what to measure and how meaningful the metric can be remains equally

problematic between conventional and KBS projects. The question becomes: what ig there to

measure?

4.2 A review of KBS metrics

There seems to be little work being done on KBS metrics although it seems unlikely that
this lack of research is because KBSs do not suffer from the same problems of estimation as
conventional systems. It seems more likely that KBSs have yet to attain a commercial
footing where they are seen as the right solution fo business problems and therefore demand
the same level of management control. Defining exactly what sort of problem is amenable o
a4 KBS solution is itself a non-trivial problem (Basden, 1984 Prerau, 1985). As such, the
lierature which details measurements of and models for KBSs remains relatively scarce,
Given the peculiar KBS characteristics of production rules, TF-THEN matching and
it is no surprise to find that those KBS metrics which do exist have focused on
Furthermore, following conventional history, KBS meirics began by

profotyping,
these properties.
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looking at code before asking more general questions about their use to manage KBS
development. Those studies which do exist are described below.

4.2.1 Code metrics

One of the first measurement studies of an Al program was carried out at Carnegie-
Mellon University by Gupta & Forgy (1983, 1989). Six large systems in active use
or under continuing development were studied (including a version of the R1/XCON
expert system). These systems ranged in size from 103 to 1932 praduction rules.
Four of the systems were written in OPS5S and two written in SOAR. Gupta &
Forgy’s prime objective was to test if the matching of rules using the Rete algorithm
would benefit from parallelism, i.e., where a processor is assigned to each node in a
Rete-network. The Rete algorithm was developed by Forgy (1982) io address the
problem that 90% of run-time is taken up with production rule maiching. The Rete-
network links the left-hand side of all production rules and stores the resuli of 4
match as a state within the network. Data then moves the working memory from one
state to another.

The study carried out by Gupta & Forgy made a siatic analysis of the code by
taking measurements of a number of textual properties. Counts were made of such

things as:

condition elements per production;

« actions per production,

« negative condition elements per production;
« attributes per condition element;

« tests per two-input node;

« variables bound and referenced;

« variables bound but not referenced;

. variable occurrences in left-hand side;

o variables per condition element;

« condition element classes;

s action types (e.g., make, remove, modify).

The results found, firstly, that the profiles of the OPSS programs were more like

each other than the SOAR programs, while the two SOAR programs were more like
cach other and less like OPSS5 programs. This accords with Lister’s (1982) eriticism
of Software Science that syntactic counts are likely to differ between languages.
Secondly, measurements of the Rete algorithm network found ihat, on average, 63%
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of the activity is due to constant-test nodes (those which test whether production rules
with constant values are satisfied). Since these are low-cost actions that make very
little impact on the working memory elements, Gupta & Forgy conclude:

“First, we should not expect smaller production systems (in terms of
number of productions) to run faster than larger ones. Second, it
appears that allocating one processor to each production is not a good
idea. Finally, there is no reason to expect larger production systems
will necessarily exhibit more speedup from parallelism (1989, p92).”

In other words, by classifying the components of a program, Gupta & Forgy (1983,
1989) found that the interaction between production rules was too simple to warrant
parallelism.

What is missing from this study, however, is an examination of the way in which
the systems were developed. Were they all developed by the same person? A team?
Did project members change over fime? Was any method used fo control ihe
development of the system? Answers to these questions are needed before any of
Gupia & Forgy’s contentions can be properly understood. For instance, the
difference in the profiles of OPS5 and SOAR programs could be explained by
programming style rather than any intrinsic difference between the languages.
Furthermore, given the use of systems under continuing development as well as
those in active use, it would be difficult to confirm whether the study compared like
with like. A first prototype under development is likely to be quite different in nature
and structure to a third or fourth generation prototype in active use. Finally, it is
questionable whether the sample is large enough to support any of Gupta & Forgy’s

conclusions.

What is particularly interesting about Gupta & Forgy's study, however, is the way
in which they began their analysis by classifying the elements that go to make up a
KBS program: in this case, conditions, actions, attributes, variables and tesis. This
can be related to Halstead's search for a means of breaking down a program info its
constituent parts, although Halstead did not seek to use this information to defermine
the dynamic behaviour of a system. The Rete-algorithm itself can be seen a% anfi
approach (o the representation of the internal complexity vaa KES program, since i
represents explicitly the relationship between facts and tljf:if "rf:suh;ﬁ,, St_mh A
representation would seem to be similar to the data-flow graphs of Hfzn‘ry & Kafura
(1981, 1984). Apart from a revised version of the 1983 report appearing as the 1989
article, however, there appears 1o have been no follow-up ta this work.
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Later attempts to define the characteristics of a KBS program include Markusz &
Kaposi (1985) who sought to deal with the psychological complexity (rather than the
computational complexity) of an implemented algorithm. By looking for ‘objective
and quantifiable indicators of the complexity of the design of programs (ibid, p487)’,
predictions of cost and useful system life were being sought. Markusz & Kaposi
studied DEC10 Prolog programs and defined complexity in terms of:

« data relating to its environment;
s number of sub-tasks;
« relationships between sub-tasks;

« data flow through the structure.

Markusz & Kaposi use the term “partition” to describe the relationship between
Prolog sub-tasks. To briefly describe the syntax of Prolog programs, production
rules are expressed using firsi-order (IF-THEN) predicate calculus and are called
clauses. The IF part is called the clause head, while the THEN part is called the
clause body. The head and body are separated using a “:=" operator. afa is usually
represented using strings beginning with an upper-case letier, e.g., Input, Gutput,
etc. (The Prolog language is described in detail in §9.1.) The local complexity, 4
(denotation changed), between clauses and the global complexity, g, of the program
are defined by Markusz & Kaposi (1985) as (p487):

A= P1+P2+P3+P4

where,

P, = number of new data entities in the clause body

P, = number of sub-clauses defining the clause body
P3 = sum of relations between P» and Py (add 2 for each recursive call,
otherwise P3=0)
P, = number of new data entities in Py
and (ibid, p488):

g=§%

An example of calculating A for a program is given in Figure 4.2.
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Figure 4.2 : Example of a program breakdown
(cf. Markusz & Kaposi, 1985, p488)
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Content has been removed for copyright reasons

Table 4.1 : Complexity bounds by range
(after Markusz & Kaposi, 1985, p488)
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They suggest that A ‘reflects the intuitive feeling of experienced designers about the
relative complexity of design tasks (p488)°, while ¢ is a measure of program size and
is hoped to be ‘quite different’ from A. By summing - rather than multiplying - local
complexity Markusz & Kaposi’s definitions can be likened to Chapin’s (1979) Q-

metric and DeMarco’s (1982) “bang” metric, where a count of local data becomes a
measure of size.

Markusz & Kaposi focus their aitention on A, and suggest that there is likely (o be
an upper limit to this measure. They began by suggesting four bounds for A which
nominally follow the ‘magic number 7°. They then used this table of bounds (see
Table 4.1) to investigate the effect of top-down (TD) and bottom-up (BU) design
practices on A. Three versions of a design methodology were developed (called
PRIMLOG, NEW PRIMLOG 11 and NEW PRIMLOG 11, respectively). By
studying three (small) CAD programs, Markusz & Kaposi found that:

@

top-down design under PRIMLOG produced lower local complexity although if

the scores become too low the hierarchy deepens and more logical errors are

found;

« mixed TD-BU and only controlling local complexity, average local complexity
went up, errors were fewer but harder to find;

« mixed TD-BU and no control, produced a number of much more sophisticated
partitions (requiring V to be redefined from V (17-34) to VI (>100));

« most program partitions (from 46%-67%) were rated in the trivial or simple
categories, while the program developed using PRIMLOG had no partitions in
the highest categories (V and above), the highest proportion of partitions in the
lowest categories (S and below);

« using PRIMLOG was quicker (73 man-days) than only controfling local

=xity (80 man-days), although no figures are given for the uncontrolled

¢ of these results, Markusz & Kaposi suggested that for experienced
an upper limit or bound of A=7-10 seemed to be apprapriate. Although
a bound, the upper bound of this figure is remarkably close fo
1976) upper limit of v(G)=1 10, and may suggest that the structure of
- ns measured using A is comparable to conventional programs
ng v(G). Reconstructing programs which exceeded this damain, they
o a more elegant design. They give the example of a Frolog part im
which had A=55. When TASI was subdivided into 8 sub-parifi
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(Maverage=7.6), a partition called VALUE was identified which was subsequently
used in a number of other parts of the system. Such a reconstruction is similar to
Henry & Kafura’s (1981, 1984) study of the UNIX kernel.

The problem with Markusz & Kaposi’s formulation, however, is also similar to the
criticisms levelled at complexity metrics for conventional metrics: has the
measurement between metric and complexity been established? Can the sum of local
complexity equal anything other than “total complexity” rather than “system size™?
The reconstruction of TASK may suggest it can, but Markusz & Kaposi do not admit
how many other partitions with A>10 could not be usefully reconstructed, or, of
equal importance, how many partitions with A<10 continued to cause the developers
problems. Markusz & Kaposi do admit, however, that run-time suffered in the
reconstructed partitions but they blamed this on g rather than A. Since g is a direct
summation of X it is difficult to see how the blame can be placed on one rather than

the other.

Further attempts to define the structure of PROLOG code were put forward by
Myers & Kaposi (1991), who suggested that Prolog is useful not only as a language
in its own right but as a general syntax for specifications. This also follaws the
suggestion of Ince (1984). The measurements they propose are based on the ‘text of
the code (p414)’, or, as Gupta & Forgy (1983, 1989) put it, as measurements of the
syntactical (surface) properties of the program. This places Myers & Kaposi well
within the standard conventional approach of measuring what is easiest to measure:
static properties of the program code. Such an approach is sensible given that until it
is known whether any measurement is applicable, it would be difficult to know

which set of measurements are “best”.

Myers & Kaposi aim to represent a Prolog program in terms of uniquely identifying
the location of data, linking the predicates which define the location of data and the
nature of the data itself. A “predicate” (or functor) is how Prolog assigns a name to a
clause and is represenied by Myers & Kaposi as a structure bar at the root of a
digraph (e.g., see Figure 4.3). The location of data withi?x the giause is represented
by a box while directed arcs model “contains” re]ationsjzhrps. Naodes reprfzﬁcm cia.?:aa
where an empty node is a variable, a node with a value is a constant artq a nud'ﬁ v{}i‘h
an “=" models two variables with the same name (see Figure 4(4:33). Cidu% bodies
are also called data “forests” and are represented with data “growing” from the

functor root (see Figure 4.3¢).
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Recursion - whereby a procedure calls itself - is represented by including a relation
between the original clausal predicate and the lowest-level data structures (shown
twice in Figure 4.3d as the fusion of the nodes X and Tail). This would seem to
adequately capture the complexity of data referenced more than once by the same
predicate. Using this form of representation, a Prolog procedure is the linking of two
or more data relations (see Figure 4.3e), while a Prolog program becomes:

X3

. a hierarchy of Prolog procedure models linked through source
locations. The links are established by procedure and relation names
acting as pointers in the locations, derived from the initial code
(p419).”

The value of a model representing the nature of a program is that the model can be
used to define the space within which measurements are taken. While Gupta &
Forgy (1983, 1989) used the Rete-network to denote elements within a KBS
program, Myers & Kaposi (1985) take similar measurements from their model,
including (p428):

« number of root nodes, A;

« npumber of location nodes, L;

« total number of ‘content nodes’ (structure bars and atomic data types), T,
o total number of leaves, Y;

« number of constants, C;

« number of distinct variables, V;

« total number of variables, X;

«  number of variable repetitions, I;

« number of structure nodes (functors), S;

¢ depth of nesting, D;
« out-degree of the ih structure node (number of arcs from a structure bar), E;.

These counts allow Myers & Kaposi to define the inter-relationships beiween the
data parameters and their location as a representation of nodes and boxes. Ej‘mgu
(1985, 1991) proposed a similar tree-like model for the emire.ty of conventional
systems development. The software problem A is defined as an inverted tree where
each node of the tree represents the decomposition of the pmb‘lem in‘tt') complexatg
(units of function/thou ghts), Ap,..A. The notion that A can be refined into a i:r’zt*;ﬁ s
defined as Theorem | and relies on the use of structtsfed' programming. Ejilﬁ{f;i-b
(1985, 1991) then goes on 10 suggest measuring the height of the tree and iis

monadicity (number of leaves). Such proposals are clearly similar o those put

forward by Myers & Kaposi (1991).
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However, while Myers & Kaposi (1991) suggest that their representation allows
for measures which resemble conventional structure metrics (ibid, p432), their
representation misses a crucial point. Principally, if their representation is to truly
resemble other conventional structure metrics, why have they gone to the trouble of
devising an essentially awkward model of Prolog? Why not simply define counting
strategies for measuring the Prolog code directly? For instance, the counts of V and
X (above) are clearly similar to Halstead’s operand count 1y and Na, respectively,
although there seems to be no direct parallel for 1; and Ny, These counts could be

taken without converting the program into Myers & Kaposi’s schema.

Taking cyclomatic complexity and data-flow fan-in/out as the classic structure
metrics, it is difficult to see how either of these metrics could be defined using the
measurements Myers & Kaposi propose. For instance, cyclomatic complexity is
based on a count of decision points, but there is no representation of decisions in
their model. The number of structure nodes, S, would be a poor imitation of
decision points since S is mare a measure of the number of arguments within a clause
(head or body), and the number of times these arguments are partitioned within the
clause body. This is similar to the measurements made by Markusz & Kapaosi
(1985), but not a metric which can be easily likened 1o cyclomatic complexity. A
more sensible measure of decision points would seem to be a count of functors, the
label with which Prolog looks to match one production rule (clause head) with its
conditions (clause body). Again, these counts can be made directly from the code

and need not rely on the representation put forward by Myers & Kaposi.

Furthermore, while the use of the word “out-degree” to define £; makes it sound as
if it could be a measure of data-flow, it is difficult to see whether structure nodes are
the objects within the Prolog model upon which to base a notion of flow. Since
Prolog is a declarative language (in that it makes no distinction between data and
commands) it would be difficult to define any measure of “flow” because a piece of
data can thus become ambiguous, while assigning a unique direction would rely on
knowing the semantics of the program, i.e., the direction from which an item of data
‘< to be instantiated or passed. The measurements Myers & Kaposi propose would
seem to be more a measure of their model than of anything that can be clearly

understood as Prolog code.

4.2.2  Managemeni melrics

same time that measurements of KBS code were being developed, quekiions
- he development of KRSs were being riised. The

At the
about the use of metrics (0 MANAEE t
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earliest example is by Kaisler (1986) who set out to suggest metrics to measure the
growth of an expert system. Since expert systems tend to be developed using rapid
prototyping, Kaisler suggests that the metric values should be dynamic, not just
static, and begin by counting the growth in rules. The cyclical behaviour of a system
can be measured with counts of the number of production rules considered, selecied
and executed per cycle, and the number of cycles required to solve a problem. These
basic measurements would then be possible to tackle other issues, including:

« the effect of conventional vs. LISP machines (LISP being another declarative
KBS language);

« the rise in domain complexity;

« the trend of the knowledge base to increase;

e the number of hypotheses and consequents of a rule (its complexity);

« the slot access time (time o retrieve data);

« the execution time;

s+ the application vocabulary (number of distinct predicaies).

Kaisler does not provide any empirical evidence of the use of these measurements,
however, and admits that ‘substantial work’ needs fo be carried out to evaluate the

use of metrics to support the development of KBSs (ibid, p119).

The only example of a metrics programme placed within a structured methodology
is that put forward by Readdie et al (1989) as part of the ESPRIT project 1098 (the
first European community-funded KADS project). Their goal was to generate an
estimating model to predict resource-planning by focusing on the eight activities the
KADS life-cycle model defines for the analysis phase. They are (ibid, p27):

1. Determine scope of project. Scoping the nature of the project and setting up
management procedures.

2 Analyse present sityation. Understand and document those relevant parts of
the organisation which will influence the task and functional requirement of
the KBS. |

3. Analyse static knowledge. Acquisition and structuring the knowledge for the
domain (“static”) layer of the Conceptual Model.

4. Analyse objectives and constrainis. Same as activity 2 but for sysiems issiues
(real- time, multi-user, eic.). |

S Analyse expert and user rasks. Bliciting the remainder of the Conceptil
Model knowledge. Dependent on amount of interviewing (activity 2) and
analysis of elicited knowledge (activity 7).
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6.  Determine functional requirements. Similar to activity 2 and 4 but focusing
on system and project rather than client factors. Synthesis of data towards a
functional specification.

7. Construct conceptual model. A model of the generic tasks which define the
kind of expertise being implemented (e.g., diagnosis, planning, eftc.).

8.  Estimate feasibility. Estimating the likelihood that the project will be
successfully completed.

Readdie er al then suggest that estimating the cost of each of these eight tasks is
based on an understanding of what is produced, FP, and how the activity, FFA,
achieves this. On this basis, a nominal cost model is given as (ibid, p29):

C(A,P)=FA(A)*FP(P)

But how can the FA and FP factors be evaluated? Readdie er al atlempted (o isolafe
FP by conducting a questionnaire study of ESPRIT Project 1098 pariners. Six
“experimental” uses of KADS were studied which ranged in duration from 15 o 240
man-weeks. However, they found (ibid, p34) the resulis were (00 widely divergent
and no patterns emerged. This reduced the original model 1o a naive representation of
cost, C, given as (ibid, p35):

q:iam

or, the total cost is the sum of the costs of all the activities. This ignores overlaps and
interplay between activities, an effect which Brooks (1975) stressed was a significant
reason why conventional project managers grossly under-estimated the cost of a
project. The advantage of Readdie et al’s naive model, however, is that they can now
forward ideas of how {0 measure the eight analysis activities in KADS (ibid, pp36-

42

1. Determine scope of project. Evaluate the influence of:

o potential disagreement between users;

¢« proportion of people involved in scoping and beyond,

. method of agreement (commitiee or single manager).
2. Analyse present situation. Evaluate the influence of:

¢ number of experts (o be interviewed;

. client “push” or project “pull” on these eXperts;

¢ amount, quality and availahility of documentation.
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3. Analyse static knowledge. Evaluate the influence of:
¢ number of concepts;
¢ accessibility of the domain knowledge to layman;
¢ amount of data;
¢ number of - and agreement between - experts;
formal (e.g., engineering) or implicit (e.g., sales and marketing)
knowledge;
« availability of documentation tools to aid analysis.
4.  Analyse objectives and constraints. Evaluate the influence of:
« size and complexity of system requirements.
5. Analyse expert and user tasks. Evaluate the influence of:
« lucidity and motivation of experts;
« documentation reading time;
« nature of documentation (reference manuals useful for detail but not for
understanding; reverse for user guides),
« skill of the interviewer(s);
+  familiarity of the interviewer with the domain;
o accessibility (location and demand on time) of the experis.
6.  Determine functional requirements. Evaluate the influence of:
« size and complexity of functional specifications.
7. Construct conceptual model. Evaluate the influence of:
« nature and complexity of the problem-solving task;
« analysts’ understanding of the domain.
8. Estimate feasibility. Evaluate the influence of:
o effort required to design and implement the expertise.

Readdie er al suggest that project managers should use their experience to evaluate
and adjust these factors and on this basis a notion of cost can be derived. It is notable
that most of these factors are similar, if not identical, to issues and problems for
conventional software development. Of course, at the heart of any KBS development
is the rime to elicit knowledge from the expert (activity 5). Readdie er al propose a
model for this task where the interview time, #, 10 acquire knowledge from a number

of experts, N, is given as (ibid, pp39-40):

r=1,+6,.N

wherie,
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to o size and nature of the total expertise to be elicited
81.N = initial overhead getting to know the experts
to  >> &

Where the experts agree and all the interview time is spent acquiring different parts
of the expertise from each expert, the mode! incorporates the notion of an overhead in
talking to more than one expert. In the extreme case where the experts disagree, each
expert must be interviewed fully such that:

t=t, N+(3, +8,+8,).N

Readdie et al note that the KADS representation scheme needs to be formalised
further before the validity and accuracy of these metrics can be properly assessed.
Furthermore, while the number of KBS development projects available for study
remains small they also find it difficult to define any sensible product (i.e., quality)
metrics. The method by which they would deduce such quality mefrics is based on a
modified version of the scientific paradigm and has five steps (ibid, pp51-2):

Specify the most dominant primitive factors.
2. Assume a simplified functional dependence of the metrics, €.g.,
« linear, quadratic, etc.;
« multiplicative dependence, etc.
3. Test the postulation experimentally.
Give convincing reasons for the results.
5. Refine the preliminary result by
o including some further primitive features,

« assume functional dependence, eic.

What is interesting about this method is that it usefully summarises the way fo
systematically derive any metric, KBS or otherwise. Unfortunately, the fallow-up
project (KADS-II, ESPRIT Project 5248) does not seem 1o have utilised this method.

Devising a methodology oF framework by which to derive metrics for KBS
development is characteristic of more recent studies in this field. For instance,
Rehrendt er al (1991) used the GQM-paradigm to derive a model which takes account
of management and user perspectives. The GOM paradigm was developed by Basili
& Rombach (1988) as a means of focusing the development of (originally,
ics in achieving management Goals by setiing out a number of
he answered hefore develaping Meirics which will answer

canventional) metr
Ouestions which need 10
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these questions, and hence, achieve the required goals. For Behrendt er al, their goal
was to provide metrics for up-front cost estimation and project planning, progress
monitoring and KBS quality assurance. They begin by criticising ‘hindsight’” metrics
- such as structural complexity as an indicator of maintenance requirements - on the
basis that they:

« are isolationist, by not taking into account the context in which the maintenance
is being carried out (available tools and skills);

+ come too late, arguing that ‘measuring maintainability when the code is written
is too late’;

s their application still fails to give project managers what they need to know,
since maintenance requirements need to be thought of when the design is
produced.

Furthermore, like the KADS study, Behrendt e al find it doubtful that ‘maodels
based on conventional software can be made applicable for Al software (ibid,
p1059)." Instead they propose a KBS model which seeks to quantify the following
six key characteristics (ibid, ppl 061-2):

« the domain (expert tasks, level of expertise required, etc.);

« the type of KBS software (design type, number of rules, etc.);

« the client’s objectives (business related decision-drivers, etc.);

« the type of KBS project (effort/risk analysis, etc.);

« project management methods (plans, schedules, use of methods, etc.);

« KBS quality issues (usability, reusability, efficiency and performance,

correctness/completeness/accuracy, reliability/security, maintainability).

The model does not produce metrics automatically but is used as a tool which leads
the project manager to consider which issues are important and need to be controlled.
The applicability of the model was investigated by gathering data from 20 case
studies which raised a number of common problems, including: the lack of a firm
basis upon which to make size estimates (where first prototypes are seen tg he
linearly related to subsequent prototypes); the issue of re-usability;
maintaining/updating the knowledge base; validating and verifying the sysiem as a
whole. There is no mention of their model being used to define or apply any meirics
to salve these problems.

What is notable about these points is that after eliminating the word “KRS",
Rehrendt ef al’s model i8 equally applicable to conventional sysiems development - in
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the same way that Baumert ef al’s (1988) description of a KBS methodology could be
generalised. The issues raised by the case studies are certainly germane to all types
of software development. A more acute problem that Behrendt et a/ found for KBS
metrics is that only four of the 20 case studies used a methodology. Without such a
structure from requirements document to final system it would be difficult to trace the
relationship between early properties and final results. In effect, if the use of a
method is more common for conventional projects, Behrendt er al’s model is perhaps
more applicable to conventional rather than KBS projects.

Problems with KBS melrics

Since Project IED4/1/1426 is attempting to support the development of hybrid systems

there is a need to define metrics for a system which contains both conventional and

knowledge based components. However, the discussion of metrics in this chapter suggests

that if it is difficult to define metrics for conventional software, knowledge based sysiems are

equally problematic. Although code-based metrics would seem to be a simple (and logical)

start, the development languages for KBSs are quite different. For instance, conventiond
systems tend to use procedural languages such as COROL, FORTRAN and PASCAL (with
explicit conirol gransfers), while KBSs tend to use declarative janguages such as PROLOG

and LISP (where control transfers are more implicit). Taking the two key properties of cost

and quality, the following argument might be used to explain why metrics cannot be

extended to knowledge based systems (KBSs):

Cost is usually defined as a function of the size of the system (often, in terms of
thousands of LOC). An idea of system size is only possible when the estimator has a
detailed design to work from. Thus, it might be suggested that:

Ability to estimate cost o Design specification detail

Rut it is a characteristic of KBSs that there is no clear understanding at the outset of
how the system is going to work because it is unclear what knowledge the “expért” is
using or how best to represent it. Therefore, the first point at which there W‘i”— be
sufficient detail to form an idea of cost is when the system has been developed. This,

of course, makes early estimations of cost redundant.

Quality is often defined in terms of a list of properties, such as rjuoi‘ta‘ihil‘%tyi fzd%@ﬁi
use, etc. A lack of defects (or bugs) is a sirong member of this hs;i;.‘ L‘ﬁeﬁ ﬂi'ﬂ'}; f
defect in a KBS is problematic, however, since while KRSs ahﬁara.ci:@ris%nga.li‘y deal
with uncertain knowledge in complex domains there can be dowbis aver whether fhe
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KBS has or has not developed a bug. In other words, in the same way that
physicians can disagree over a diagnosis, when objecting to the output of (say) a
medical KBS it could be suggested that the KBS has simply entered the realm of

medical debate. Although operational bugs such as system crashes are clearly easier

to spot, when dealing with knowledge the term “defect” is not so easily applied, and

so, a measurement of the quality of a KBS remains subjective and difficult, if not
impossible.

While accepting the premise, this thesis rejects both conclusions. Firstly, although it is
important to gain as much information as possible about the system to be developed, there
seems no reason why the strategies employed in sizing conventional systems cannot be
extended to KBSs. Whether lines of code, function points or some other method is the bes
approach is a matter of research and debate, as it is with conventional systems. Secondly, if
the number of “bugs” is accepted as a surrogate measure for quality, then the existence of
bugs in a KBS will be as feasible (and problematic) a measure as that employed for
conventional systems. The bottom line, therefore, is that if KBSs are taken to be software
systems - and as such, coded systems - with similar documentation and program ariefacts as
conveniional systems, then there seems (o be no reason why KBSs cannot be measured

using a similar set of metrics.

This conclusion is supported by Shepperd & Ince (1991) who outline a number of KBS
metrics loosely based on a re-interpretation of lines of code (LLOC) to a KBS, such as: the
degree of nesting within production rules as a measure of the readability or understandability
of the rules; or, the rate of change of rules as a measure of the growth in the knowledge base.
They also suggest (ibid, p9) that the software cost estimating model COCOMO (Boehm,
1981) could be modified for KBSs using, say, the number of predicate rules as input rather
than LOC. The cost drivers within COCOMO are seen as being equally applicable to KBS as

to more conventional systems. All the suggestions, it is admitted, are speculative.

If it is granted that KBSs have essentially the same artefacts as conventional systems ‘theﬁ it
would seem equally sensible to attempt to re-interpret the classic conventional m?ti‘iCS far
KBSs. Can the metrics devised by Halstead (1972, 1977), McCabe (1976) and Hefwy &
Kafura (1081, 1984) be applied to a KBS using a language such as, 4y, Pfﬁfﬁgi’ Hﬁfér@
these questions can be answered, however, 4 more fundamental pmblaﬁzm? exwtgg namely:
what use would a project manager make of the results returned by a metric if - as Chapiers 3

. i 10 g o i 7 'TIaY ‘r}
and 4 have suggested - their theoretical basis is almost always dubious:

The suggestion here is that project MANAgETs do not want raw numbers; rather, they wani
Suggestt .

iaols which will give them early answers to the crucial question of cost and quality.
ools whic :
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Measuring the structure of a system’s design or its code to evaluate quality is a clear and
common use of metrics and is one of the questions which this thesis will seek to answer (see
Chapters 8 and 9). The issue of cost has been tackled for conventional systems by using the
data collected by metrics to develop software cost estimating tools. (The COCOMO model
has already been mentioned.) If the metric—model—tool approach assumed in Chapter 1 is
to remain intact, therefore, it is important to understand what sort of tool a project manager
needs to support the estimation of cost. The question now becomes: what is a software cost

estimating tool and how is it developed? This will be the subject of the next chapter.
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5. Developing an Estimating Tool

“Annual income twenty pounds, annual expenditure nineteen pounds
nineteen shillings and six, result happiness. Annual income twenty
pounds, annual expenditure twenty pounds nought and six, result
misery.” Charles Dickens (Mr Micawber in ‘David Copperfield’).

Summary: This chapter describes the process by which raw (project) data can
be converted into a software cost estimating (SCE) tool that estimates properties
such as cost, effort (or manpower) and project duration. Such tools are
developed by collecting historical data on the resources expended by a completed
project and developing a regression model across the daiaset. Tt will be argued
that although many of the well-known SCE models have been developed into
commercial tools, there is evidence 1o suggest that the models wse poor statistical
experimentation, they can be overly complex, and are generally inaccuiate. This
would seem to cast doubt on the suggestion that SCE tools can be useful to

project mandagers.

The metrics discussed in the last two chapters have focused on measurements of the size
and structure of software because a system must always be developed within available
resources and quality constraints. This was part of the role of a project manager given in
Chapter 2. To continue the metrics—models—tools approach, the focus must now turn to
whether such data can be sensibly used to define software cost estimating (SCE) models and
tools. The suggestion to be put forward here, however, is that a project manager is only
interested in the reverse of this technical process where the tool facilitates interrogation of a
SCE model that provides ouiput which is both meaningful and accurate. The

tool—model—data process may be called the management process.

The difference between the technical and management process can be likened o the
difference in perspective between a mechanic and driver over the use of 4 car: the mechanic i
interested in the car’s construction and how the parts interact; the driver musi know
something about how the car works but only in order to manipulate the vehicle and get fram
‘A’ to ‘R’. In software development [erms, the ‘A’ is a project with unceriain properties
while the ‘B’ is a set of accurate values for, say, the size, effort, cost and duration of ihe

project. In ather words, the argument here is that a praject manager need not know how the
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SCE tool is constructed and is more interested in the output, in the same way that a driver of
a car need have no knowledge of how the engine works but is keenly interested in its ability
to function correctly. This is the minimum understanding a project manager must have.

Whether this is sufficient or a source of concern will be addressed later in this thesis.

Figure 5.1 : Anatomy of an estimating too]

Estimating tool

Project manager
and PC

More importantly, the SCE tool is the means by which a project manager can apply a
consistent and repeatable method of getting from ‘A’ to ‘B’ (i.e., generating an estimate). As
DeMarco (1982) points out, an estimate is not a guess. The former is the product of a
repeatable process or method, while the later is the product of an ad hoc process which
would be difficult to repeat or justify. For instance, while a project manager might be
expected to estimate the cost of a project, (s)he could only hazard a guess as to the effect of
any poorly defined requirements. An SCE tool is defined here, then, as the means of

arriving at a repeatable estimating result. Such a tool contains three essential components

(see Figure 5.1):

1. A (mathematical) model, M, which relates some knowable system property, K, fo
some other more useful unknown property, U, such as project cost and duration.
2 A series of adjustment factors, A, which configure the generic model, M, to a

particular project. , o . pe o
3 An interface, 1, whereby the user can input the project data and abserve the effect of

K and A on U.
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Typically, a SCE tool will incorporate two related models. The first is a model of
development effort based on a nominal value for system size, while the second is a model of
project duration based on a nominal value of development effort. Thus:

Effort = a.(Size)® * Adjustment_factors (in person-months)
Cost = Effort * £person-month-! (in £s)
Duration = c.(Efforr)d (in calendar-months)

The cost of a project is a function of (person-months) effort, where, if the £ overhead that
can be attributed to one person working for one month can be calculated, total cost is this
figure multiplied by the total effort . In practice, this figure may be difficult to calculate given
the different salaries of personnel working at different grades, and whether or not to include
general costs such as maintenance of the building, the cost of heating, lighting, eic.
Differences in these definitions - like those for LOC - would have a significant impact on the
actual £ estimates given by two or more SCE models.

Duration (or schedule) is simply the actual “elapsed ime” length of the project afien given
i calendar months. Finally, dividing effort by duration gives an indication of the number of
people (or staffing level) required by the project. Thus, if two peaple work for one monih it
£5 000 per month, the effort would be two person-months, the cost would be £10 000 and
the duration would be one month. The trick, of course, is to know this before the project is

complete. For the purposes of this thesis, the terms “duration” and “schedule” will be

regarded as interchangeable.

Adjustment factors reflect the variation of technical, performance and management
constraints between projects. These factors can range from considerations of the memory
requirements and experience of the development personnel to the number of miles travelled
by the project members. These factors are often rated on a Likert scale from l=very low (not
important) to 5=extra high (very important) and a formula used to calculate a weighting
applied to the generic model. Multiplying the (nominal) estimate produced by the model,
a. Kb, by the weighted adjustment score, A, gives the final adjusted estimate, U=a.KP*A, Tn

this way, internal differences between projects can be modelled and the sensitivity of the

estimating model across environments increased.

The need for an interface is based on the premise that if a tool is difficult to use it will not
be used. A tool can be defined simply as an implement that reduces the effort i‘cqi,?’;mfimirﬁ
perform a task and increases the efficiency, productivity or quality of the same sk, 'l"n'cz
difference between an estimating tool and its underlying madel, therefore, m that & model q%
meant to represent the properties of the software development event, while 118 e 48 i 100]
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presumes data have been collected which validate the model and make it operational. In other

words, U=a.Kb is a model while (say) a spreadsheet programmed with Effort=3%(Size)1-12
is a tool.

The use of an interface does not rule out paper-based tools, but it seems reasonable to
suggest that any tool which attempts to reduce the effort and increase the efficiency of
producing estimates will naturally migrate towards an electronic platform. More
sophisticated tools would include extensive help and data export facilities which a company
might decide was the difference between competing tools (e.g., Fisher & Gorman, 1990).
For the purposes of this chapter, no distinction will be made between estimates of global
properties of a project (such as total effort, manpower, eic.) and estimates of local properties
of individual tasks or products. The method of arriving at global or local estimates should be
equally valid. The problem is how to construct the engine, M, that drives the SCE tool and
provides estimates that are both useful and accurate. To resalve this problem, the vest of this
chapter will set out to describe:

. techniques used to develop SCE madels;
¢ SCE models developed for conventional sysiems development;

v problems in the use of SCE tools.

& 1  Techniques for developing an estimating model

Building a model using data gathered from measuring software development is a
straightforward - although controversial - task. With measurements across a number of
projects a variety of statistical techniques can be used to define the properties of a model.
The most popular techniques employed are correlation and regression. A number of
techniques have also been su ggested for evaluating the performance of SCE models. These

techniques are described below.

§.1.1 Correlation

Correlation quantifies the hypothesis that a change in one variable (K, in Figure 5.1),
is accompanied by a change in another variable (U, in Figure 5.1). Applying a
technique such as Spearman’s Ranked Correlation Coefficient, r, returns a value
petween +1.00 (perfect proparti()ﬂal relationship), through 0.00 (no correlation) o
-1.00 (perfect inverse relationship). The value of r at which a correlation is said o be
“good enough’ is & matter of choice. The co-efficient of determination, 12, is the

percentage of variance in 0
ihe correlation between K and U was r=0.90, then the co-efficient of determination,

ne measure accounted for by the other. For instance, if
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r2=0.81. This suggests that 81% of the variance in U is accounted for by K.
Conversely, 19% of the variance remains unaccounted for. Again, the point at which
12 is high enough for K to be a useful predictor of U is a matter of choice.

A high correlation is used to verify the assertion that there is some stable
relationship between the variables K and U so that the behaviour of U can be
predicted if K is known. For instance, if the correlation between the number of
control branches and, say, the number of bugs is high, then taking the same count of
an untested program when the number of bugs is unknown will indicate how many
should be found if the testing procedure is successful. A model, therefore, must also
indicate which known properties should be measured in order to indicate the typical

size of currently unknown properties.

It can be a matter of argument, however, whether the relationship shown isa
meaningful or useful one to model. The model just described would depend on all
programs being error-prone at the same rate, although this would not seem o be
unreasonable, all other things being equal. What is more difficult to prave is that the
number of control branches is directly related fo the number of errars and not just
coincidental. For instance, no-one would suggest a count of storks’ nesis is relafed
to the UK (human) birth-rate, even if there happens to be a high correlation. If
control branches are directly related to the number of errors, then understanding the
nature of control branches should lead to some insight about the way errors are

introduced into a program.

Such models also presume that the relationships being represented are meanin gful,
but Courtney & Gustafson (1993) point out that if a large number of variables are
taken from a small number of observations, correlations of r>0.70 are easily
achieved. This can be so even when the variables are functions based on random

numbers. They call this many factors, few cases approach ‘“shotgun correlation”,

saying:

“In the shotgun approach o software measures, 4 hypothesis is not
stated. The researchers are experimenting with many different aspecis
of software projects, and although preliminary ideas exist about wha.i;
may be found, they are not stated in a manner that matches t,.hﬁ
statistical tests conducted.. The reason for labelling this methad as the
‘shotgun’ approach is that the researchers are loading numMerous

variables and taking a shot to see if they have hit anything (p5).”
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Correlation, therefore, does not prove the meaningfulness of the relationship and is

simply the technique by which some insight is given into the factors that have a
relationship with the properties under study.

5.1.2 Regression

Regression is a technique which minimises the “least squares” distance between a
series of (data) points and a linear or non-linear line of best fit. The parameters of the
regression line define the magnitude of the change in U which accompanies a change
‘n K and are reflected in the estimating model (see again Figure 5.1) by the
parameters ¢ and b.

If the relationship between K and U were presumed at the outset to be linear then
b=1.00 and the model would take the form U=a.i+c. This is called linear
regression. If the relationship is presumed to be non-linear then non-linear
regression produces a model that would fake the form U=a.KP-+c. The regression
analysis calculates the values of @, b and ¢ by producing a regression line, the
equation of which describes the relationship between U and K. The madel can be
forced to go through the origin, where ¢=0), 1o give a model where U=(l when jC=(0.
The differences between the data points and the regression line are plotted as

residuals, and are used to judge the aptness (or goodness) of the regression model.

On many occasions, the co-efficient of determination between K and U may be
deemed (arbitrarily) too low to generate a useful (i.e., accurate) model. In other
words, there is too much variance unaccounted for. In this case K may become
K +Ky+..K,, where K; are a number of factors which in combination have been
found to have a relationship to U. In this case, the model of U must be found by
multilinear regression which generates a model of the form U=a.K{+b.Ko+..z. K+,
The same issues of ¢ preferably being zero and studying the aptness of the regression
model exist for multilinear models. Although a number of other statistical techniques
are useful (Hamer, 1991), correlation and regression are effectively the verification

and validation techniques of building estimating models.

5.1.3 Factor analysis

Factor analysis is a technique which can be used to reduce the number of factars in a
ression madel by grouping fogether thase which are highly correlated 1o each
his is one way of deducing that different models are measuring the same
software development (Coupal & Robillard, 1990). For instance, lines of

reg
other. T
“as‘pec;t“ of
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code and the number of input fields might be related to each other as a measure of
system size. The model of U might now contain six variables (K to Kg), but after
factor analysis it may have produced three groupings:

{ K, Kq ) { Ky, Kg ), ( K3, Ks )

Each of the factors within {..} are related to each other and suggests the variance in
U accounted for by K; is virtually the same as that accounted for by K4. Thus,
factor analysis can simplify the model by (say) choosing only one of the factors from
each grouping. The model might now become U=a.K4+b.Ky+c.Ks+d. In this way,
fewer properties need to be measured to make the model work. What is still missing,
however, is a means of evaluating the accuracy of the model. The closeness between

the estimated and actual values of U requires some other form of measurement.
5.1.4 Performance evaluation

Roehm (1981) suggested that ten criteria should be used to evaluate the perfarmance
and usefulness of a model. They are (p476):

Definition (clearly defining what is being estimated and what is not);
Fideliry (level of accuracy given);
Objectivity (level of influence of subjective factors);

DW=

Constructiveness (clarity of the relationship between the estimate and the
nature of the software job being done);

Detail (estimates given of sub-systems and units with phase and activity
breakdowns);

Stability (relative influence on output of small changes to input);

L

Scope (contains data on the class of system being estimated);
Ease of use (clear meaning of the inputs and options);
Prospectiveness (not using information which is only available late in the

O oo =2 O

project);
Ll PR N
10.  Parsimony (power without over-use of redundant factars, i.e., Ockham’s

Razor).
The problem with these criteria is that some of them are ideal rather than nseful
while it could also be argued that some are even harmful. For instance, given the
nature of software development it may in fact be advaniageous to keep at least ane
subjective factor (‘3"), while insisting on a great level of detail may mislead ihe user
S4 1 B {1 > 4

into thinking the tool is more accurate than it really is (‘57). What is clearly imparian
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is the accuracy of the model itself and a project manager may be prepared to go to
great lengths to derive the estimate - as long as it was guaranteed to be accurate.

A definition of accuracy was given by Conte et al (1986) who suggested that
accuracy was a function of both the general predictive ability of the model, Pred, and
the size of error attributable to each estimate, MMRE. Accuracy is defined as (p176):

1. The estimate should be within 25% of the actual 75% of the time, where,

Pred(0.25)20.75

3]

The mean magnitude of the relative error should be legs than 0.25,
MMRE<0.25, where,

T T e 1 & |Actuali -—Estimat&i‘
E = MMRE = —. ,
MRE =M P 2‘( Actual,

i=1
and,

actual value for the it data point

It

Actual;
estimated value for the i data point

it

FEstimaie;

This definition has been taken on board and widely used in SCE model studies
although the value of +259% is clearly an arbitrary threshold. For instance, without
formally defining Pred as a relationship, Boehm (1981) took it that a SCE model
could be deemed to be accurate if it produced estimates within 20% of the actual 70%
of the time (ibid, p32).

There is even some dissent over the definition of relative error (e.g., Miyazaki ef al,
1991) and MMRE used to rate the performance of a SCE tool. For instance, Fisher
& Gorman (1990) set about choosing an estimating tool for use by software
development teams within the UICs Inland Revenue. They focused on four
commercially-available SCE tools, namely: Softcost-R, SLIM, Before You Leap
Mk.IT and Estimacs. The accuracy of these tools was studied using data from 16
completed projects. The relative error between estimate and actual was taken o be a
percentage of the estimate rather than - as Conte €/ al 1986 suggesied - a p@@@mag@
of the actual, Fisher & Gorman’s argument here is that a project manager ;g mare
concerned with being within range of the initial budgered estimate rather than the
stafistically correct definition of MMRE (p25). This gives:
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MMRE = |Estimate — Actuall noi  MMRE = |Actual — Estimate]

Estimate Actual

Using the data for all 16 projects supplied by Fisher & Gorman (1990, p86), and
using their definition for MMRE and Conte et al’s definition for Pred(0.25), Table
5 1 shows the results of the four tools on the three major factors studied (effort,
schedule, and staffing).

Table 5.1 : MMRE and Pred(0.25) resulis for four SCE tools
(after Fisher & Gorman, 1990)

Model Effori Schedule Staffing
MMRE | Pred(0.25) MMRE Pred(0.25) MMRE Pred(0.25)
SLIM 1.12 0.44 0.12 (.88 1.18 (.33
Softcost-R 0.37 0.44 0.24 0.63 0.64 0.40
Estimacs 0.44 0.38 0.43 (.25 (.70 (.27
BYL Mk.I1 0.21 0.69 (.68 0.50 0.27 .67

Fisher & Gorman’s choice after the analysis was that BYL Mk.II performed best
overall and, as can be seen, it does have better results on most of the ratings.
However, SLIM can be seen to be considerably better for estimates of schedule. An
alternative means of evaluating the best choice of SCE tool might be to score the

accuracy of individual tools. One might like to score the performance of the tools in

the following way:

« award 10 marks if MMRE<0.25

. award 5 marks if MMRE<0.40

« award 10 marks if Pred(0.25)>0.75
« award 5 marks if Pred(0.25)>0.60

The award of 10 marks represents a “pass” according to Conte e/ al’s MMRE and
Pred measure. The award of 5 marks represents a “near miss” given the problems
Fisher & Gorman experienced in calibrating the toals. One would expect, in other
words, that a tool which came close to passing would improve over time and
eventually exceed the performance criteria. The use of MMRESD.40 and
Pred(0.25)20.60 is, like Conte ef al’s more demanding threshold, entirely arbiirary.
Given that there are three faciors being assessed, twa performance measures for each
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Table 5.2 : MMRE and Pred(0.25) scores for four SCE tools

Model Effort Schedule Staffing
MMRE Pred(0.25) MMRE Pred(0.25) MMRE Pred(0.25)

SLIM 0 0 10 10 0 0
Softcost-R 0 10 5 0 0
Estimacs 0 0 0 0 0
BYL Mk.II 10 5 0 g 0 5 5

SLIM = 20/60 = 33%

Softcost-R = 20/60 = 33%

Estimacs =0

BYL Mik.II = 25/60 = 42%

BYL Mk.IT + SLIM = 45/60 = 75%

means a maximum score of 60 can be awarded. The result of this SCOTiNgE System is

given in Table 5.2,

This shows that BYL Mk.IT is indeed the relatively best toal: but its performance
can hardly be said to be outstanding with 25 marks out of 60 (i.e., 42%). What is
more interesting to note is that if SLIM is used to estimate schedule and BYL M1l is
used to estimate effort and staffing, then the conjunction of the two tools achieves a
more impressive score of 45 marks out of 60, or 75%. One could conclude,
therefore, that tools used in conjunction can outperform any singular tool. This point
confirms the recommendations made by Boehm (1981) and reiterated more recently
by Heemstra (1992). Given the common use of Conte et al’s (1986) definition and
without any additional information a model will be deemed here to be accurate if:

Pred(0.25)20.75 and MMRE<0.25

However, while this section might suggest that as long as care is taken over how

the regression analysis 18 carried out, well-formulated models can be designed for

any software development €
Lave been developed for conventional systems development? Have they

thod? Are they accurate?

qvironment, a number of questions still remain. What

models |
followed a reasonable development me

¢ were developed in the mid-1960s and presumed a lingar
iving madels such as U=a.K+h. The form of these models
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came under criticism in the 1970s led, in particular, by Brooks’ (1975) thesis that integration
between activities generates an overhead that increases the cost of development non-linearly.
This produced models of the form U=a.KP. By the early-1990s, however, doubts began to
be expressed as to whether the effort models should be non-linear models and whether the

multiplicity of models were really significantly different from one another. This may suggest

e

that many of the early studies in SCE models were correct in their original approach to
building SCE models. To explain these points, some of the most well-known models are
described below.

5.2.1 Farr & Zagorski (1965)

Tracing the beginning of research into quantitative models back to an initiative begun
by the Systems Development Corporation (SDC) in 1962, Farr & Zagorski (1965)
published one of the earliest effort models as part of research carried out at the US
Air Force Electronic Systems Division (ESD). Their aim was to provide a
quantitative model that could be used by both managers and buyers and solved the
cost estimation problem. Farr & Zagorski (1965) saw four principal reasons for this
continuing problem (p168):

1. A lack of agreement on terminology (with no standard model to describe the
process, products and personnel involved in software development).
2. A poor understanding of product quality (no standard measures of program

performance or quality).

3. The poor quality of cost data (since it remained difficult to find any large body
of data on cost by product or function that can be used on later prajects).
4. The non-quantitative nature of certain factors (influence of “foggy

requirements”, “proficiency” of staff, “quality” of management).

While one might generously suggest that the development of structured
methodologies in the 1970s and 1980s has partly helped to solve point ‘17, itis far
from clear whether any of the other points have been significantly resolved or even
properly addressed. Farr & Zagorski’s method in approaching this problem was to:
a)  identify factors which could logically influence cost
b) collect data on these factors (o SUppOTt OF reject their influence;
¢)  build a model which integrates these factors.

Parts (a) and (b) were approached by conducting a survey which asked project

managers within SPC guestions such as “Why did you over-rin your budget?” and

109



CHAPTER FIVE

Table 5.3 : Three regression models predicting man-months
from a series of factors (cf. Farr & Zagorski, 1965, p174)

Aston University

Content has been removed for copyright reasons

“Why did your program cost more or take longer to develop than another.progra‘m
that appears to be similar?” The results were classified into six categories ({bld,
p170). Only programs within SDC were studied, which meant they wel‘é operatloi?s,
utility and support programs with military application. The questionnaire asked for
data on 15 sorts of cost information (time to develop, number of personnel, etc.) and
03 measures which might affect cost (rating of system complexity, numbér of
agencies required to agree a design, etc.). Information was received on 27 projects.

The method to generate the model in part (c) was then (ibid, p172):

1. Reject factors which had low variance or had some identity with other factors
(around 10 were dismissed here). |

2 Produce a correlation matrix and reject factors with low correlations 1o cost of
which had no intuitive appeal (around 40 were dismissed).

3. Use knowledge of sysiems development, intuition and experience ta filter ihe

B - o | 18 ¢ I TT IV T SO,
list (two groups were pmduced with 15 “maost preferred” factors in one group
ist (two g

and 21 “aarisfactory’” in another).
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4. Use multivariate linear regression analysis to produce a model and reject
factors with a very low assigned weight.

Large programs with very high counts were also rejected because they overly
influenced the early regression analysis. Iteration at step 4 produced three equations
to model cost in terms of man-months to design, cost and test a program (see Table
5.3). Although Farr & Zagorski admit that the models produced were not particularly
accurate, the most dominant relation was found to be the number of program
instructions defined as X;, X or X;;. Eliminating the six largest programs
strengthened the relationship. The second significant factor was programmer
experience (Xg and X;3) which reduced cost, but Farr & Zagorski acknowledge that
this factor may be difficult to measure meaningfully.

There are a number of problems with this study, however. Firstly, one could
doubt the veracity of the results of a survey which asked such direct - and notably
hostile - questions of project managers. Presumably, if the study aimed to find those
factors which made projects expensive, Farr & Zagorski aimed their survey af project
managers who had had the sharp experience of failure. In this mood, answering
questions such as “Why did your program cost more or take longer to develop than
another program that appears to be similar?”’ would undoubtedly produce defensive
responses. This is probably one reason why such a large number of cost factors
were received. Secondly, once the model has been produced, Farr & Zagorski do
not make any comment about the fact that delivered documents (factor X3) appears in
all three equations. This factor is seen as a major plus for the FPA Mk.IT model.
Finally, it is possible that Farr & Zagorski’s model could be reduced to a model

which contained only three X factors, as in:

Effort =a.X, +b.X,, +¢. X5 +d

where,
X3 = Number of document types delivered to the customer
X4 = One or more of the dominant program instruction factors (X, Xg 01
X11) |
X5 = One or more of the dominant programmer experience factors (Xg or
X13)

This would not only make best use of the deductions Farr & Zagorski make for their

method but also lead to 8 simpler model. Since Farr & Zagorski do nat provide ihe
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database from which the models are derived it is not possible to assess the
performance of their models or the model given above.
Other studies have also sought to deduce linear models of effort (e.g., Nelson,
1966, Tausworthe, 1981) and can be criticised for similar reasons: Is a linear model
the best representation of the way in which effort varies with system size? Does there
need to be so many factors in the model? What is clear, however, is that the method *T
of collecting and then assessing a number of factors remains the classic approach (o Xh
developing a SCE model. %
Figure 5.2 : Putnam’s Norden-Rayleigh manpower curve ;

(cf. Putnam, 1978, p349) {

4

Aston University

Content has been removed for copyright reasons

5.2.2 SLIM (Putnam, 1978)

e 1970s linear models had been almost universally replaced by non-
iston & Felix, 1977; Herd et al, 1979; Bailey & Basili,
ial of these non-linear models is the manpower

By the end of th
linear models (e.g., Wa

1981). One of the most CONIOVErs _ L
model develaped by Putnam (1978). The model (and resultant tool) is called the

Software Life-cycle Methodology, or SLIM. Putnam (1978) saught to develop a

macromethadology which can accurately esrimate the cost of reaching critical
macromet
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milestones in terms of manpower, money and time. Furthermore, Putnam sought to
answer the question of how far a manager can “push” a project before it begins to
break down. So what is Putnam’s model? Based on Norden’s (1970) suggestion
that homogeneous R&D projects have a manpower that varies approximately at the
same rate as a Rayleigh curve, Putnam attempts to fit the same (manpower) curve to

the software development process (see Figure 5.2). The Rayleigh curve is defined
by:

y=2K.ate™
where,
a= 5 : 5 (or, the “pace” of development)
Sy

The area under the curve, K, is the total effort of the project; while fy represents the
point at which the development effort has reached a maximum, i.e., its point of
release. By swdying data on the U.S. Army’s Compuier Systems Command (CMC)
systems, Putnam found that projects tended fo fall on a consiant difficulty gradient
defined by (ibid, p350):

K
Difficulty,D = -t—2—

d

The magnitude of the gradient, Putnam suggests, was found to be dependent on the
disorderedness (entropy) of the system. By plotting project difficulty against
productivity Putnam found that when difficulty was small the systems were
considered “easy”, and vice versa. This, Putnam declares, is the “missing link”
between an input (manpower and development time) and the output (quantity of

source statements)(ibid, p350). For instance,

« if total effort, K=400 person-years, development time, ;=3 years, then

difficulty, D=44.4 person—years.yearl; 1
o if K=360 (i.e., decrease in effort), ;=3 then D=40 (i.e., a 10% decrease):
o if K=400, t;=2.5 (i.e., the more usual compression of a schedule), then D=64

(.e., a 44% increase!).

So, what is a feasible effort-time region to aim for? Plotting K, g and I shows that
as 1 decreases, D increases sharply. For the U.S. Army's CMC sysiems, Puinam
b d Wy
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found three distinct values of D and suggested there were possibly 6 or & more values
to be uncovered. The three known values were 8, 15 and 27, where,

8 => entirely new system with many new interactions and interfaces
15 => new stand-alone system

27 => rebuild or composite system with high re-use

The estimates of K and t, are related to the product in terms of source statements
(S,) by observing that the area under the coding rate curve is the number of source
statemnents produced at time, t. By integration and substitution of the productivity
factor, it is deduced that (ibid, p353):

el /3 4/3
S, =C, K",

where,
Cy = a constant relating to the ‘state of technology of the human machine

system’

Pumam (1978) argues that this equation is a quantitative descriptian of Brooks' law
in that adding people is a very high cost way of accelerating a project. E.g., with 5
= 100,000, if ty decreases from 510 3.5, then the effort involved (K) increases 5-fold
from 5 to 25 person-years. Putnam’s effort-time trade-off law, therefore, states that

if S, and Cy remain constant, then,

effort o —

time

It is this inverse fourth-power law that has come under most criticism. In later
studies Putnam offers evidence (0 support this relationship (e.g., Putnam ef al, 1983;
Putnam & Putnam, 1984), but in each study the technology constant, Cy, had 1o be
calculated for the completed project in order to show the trade-off law held. In other
words, the required Cy constant was calculated before the SLIM model was applied.
Since project managers are unlikely to be able to use this method when c'c}lcula,ting
their own project characteristics, Putnam’s analysis does not seem fo give much

support to his model.

Tensen (1983, 1984) proposes 4 model similar to Putnam’s but where the
iechnology constant is found by multiplying a series of technology factors based on
Roehm's (1981) COCOMO model (see §5.2.4). Conie ef al (1984) also question
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how realistic the Rayleigh-curve is, since it does not seem reasonable to suggest that
a project begins with no personnel and rapidly increases. It is more likely that the
project begins with a (perhaps) small project team which then expands as the project
progresses. Expanding the technology constant to a full set of adjustment factors and
deducing - rather than imposing - a model on the development process characterises
the SCE models which followed SLIM.

Figure 5.3 : A representation of the PRICE S estimating tool

Input/Output - The PRICE § tool and
Screen historical database

=

USER  |g- + PRICE S

? || 7 Input
Categories

vees

4 Output reports

5.2.3 PRICE S (Freiman & Park, 1979)

The PRICE of Software model (PRICE §) was developed in the late-1970s by
Freiman & Park (1979) but the literature on this model is an example of where the
(commercial) tool rather than the model is described. PRICE § provides estimaies of
cost and schedules based on historical data which is assumed to have giﬂy three k_ey
development phases (design, implementation, and test and integration). The n@dal
has four modes of operation: normal (for new projects); “re,s;o‘urce ca,lti:ﬂ‘?ftmﬁ;
application calibration, and; design-to-COSL. Roth types of calibration mm@e csﬁm;a;tc
rojects based on extrapolating from historical data (of, presumably, similar

l;roject@) The design-to-cost mode estimates size and schedules feasible within

given cost constraints.
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The model (see Figure 5.3) produces estimates by gathering information from the
user in the form of seven parameters and supports the estimates by producing four
management reports. The seven principal categories of PRICE S input are:

1. Project magnitude INSTRUCTIONS). In terms of the number of delivered,
executable, machine-level instructions (DEMIs), rather than lines of code.
Freiman & Park reason that since the effort to design, test, integrate and

document software accounts for 70-80% of total cost is strongly driven by

functionality, then DEMIs will summarise this better than LOC. f
2. Program application (APPLICATION). The characier of the project, defined ‘j
by function with an assigned weight, from operating systems dealing with 1
many interactions and with strict reliability and timing requirements ‘E

(weight=10.95) to mathemarical operations dealing with routine mathematical
calculations (weight=0.86). Ttis not clear where these weights are derived
from.

3. Level of new design (NEW DESIGN/CODE). An adjustment made to the

effective number of DEMIs on the basis of the fraction of new design or

code. Freiman & Park suggest that even off-the-shelf packages are not
entirely free of work since a certain amount of time must be spent in
familiarisation and modification of the package.

4 Resources (RESOURCE). Matching available skills to required tasks, seen
by Freiman & Park as the most significant consideration for any cost
estimating model. Some values are given but users are encouraged to

extrapolate from their own historical database by running the model

backwards in calibration mode - a feature called ECIRP. Resource values
typically range from 2.5 to 4.0 and, once established, can typically remain
constant unless the company radically changes its development environment.

5. Utlisation (UTILISATION)‘ Hardware consfraints such as speed and
memory. These constraints effect the cost of design and debugging. Values
typically range from 0.7 for airborne applications to 0.9 for space systems.
This range does not seem particularly wide, however, given the different
nature of the systems.

6. Customer specification and reliability (PLATFORM). Questions about the
testing and end-use of the system, that is to say, where and how the system
will be used. This factor directly affects the calculation of cost and schedules
and summarises quality constraints such as transportability, reliability, testing
and documentation. Values rypically range from 0.6-0.8 for iﬂt@i“i‘iﬂ.ﬂy:
developed software, 1.7 for commercial avionics systems (o 2.5 for manned

space §ysiems.
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7. Development environment (COMPLEXITY). Taking into account unique
project conditions which complicate a project. Freiman & Park warn that
‘reasonable care’ is needed to ensure there is no double-accounting between
this and other categories. but give no indication as to how this can be
guaranteed. The complexity factor is assigned 1.0 and decreases for simple,

non-defence contracts, and increases with complex projects.

The model is calibrated to a particular year and uses forecasts of inflation to adjust
the final output and the growth of technology which is bringing down the cost of
DEMI’s. PRICE S can also work with partial data and provides estimates for those
input categories which are missing, including INSTRUCTIONS. Finally, four
reports are produced with the output:

1. ResourcelComplexity Sensitivity. Giving a “What if?’ assessment by varyimg
the RESOURCE and COMPLEXITY parameters about their inpul values.
Instruction/Application Sensitivity. The same assessment as in ‘17 for the
INSTRUCTION and APPLICATION parameters.

3 Schedule Effort Summary. Comparing the projected costs and effort with

B2

typical values on the basis of praject scope, schedule inefficiencies and
inflation rates.
4.  Monthly Program Summary. A breakdown of total project effort and cost

into phase-by-phase monthly summaries.

The advantage of PRICE S, Freiman & Park (1979) suggest, is that the model is
process-driven and does not rely on a single cost-estimating relationship (CER).
Rather than a single U=a.K model, PRICE S develops a “family” of CERs for each
specific application by adjusting the relevance of each of the parameters. However,
one could question how easily some of the influences would be to estimate at the
outset (such as categories 1 and 4). Furthermore, although PRICE S is clearly
heavily dependent on the historical database, Freiman & Park make no mention of
their efforts or recommendations for controlling this database, building it up,

ensuring the data is clean and uncorrupted, or making sense of the results. One could

doubt, therefore, the
evidence is given for the accuracy of the model.

ability of any manager (o usefully emplay the madel. No

5.2.4 COCOMO (Boehm, 1981)

mating madel is called the COnsiructive COst MOdel, or
by Boehm (1981, 1984) ai TRW. The model

The most well-known esti
COCOMO, and was developed
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estimates eight major project activities from requirements analysis, through design,
programming and testing, and including verification, validation and documentation.
The model was derived from a database of 63 projects developed at TRW from 1964
to 1979 and which included a wide variety of applications (business, scientific, etc.)
and programming languages (ASSEMBLY, FORTRAN, COBOL). The key to the
model is that the project ‘enjoys good management’ and follows a well-structured
development plan. Boehm’s argument here is that no model can estimate where there

is poor management of the resources used.

The COCOMO model has three levels of complexity (Basic, Intermediate,
Comiplex) and operates in three modes (organic, semi-detached, embedded). The
difference between each model is the level of detail required to generate an estimate;
the difference between each mode is the constraints on the project being estimated.
The basic COCOMO model gives estimates of man-months effort, MM, and time (o
develop (project duration), TDEV, as (1 081, p57):

MM = 2.4%(KDSD'"”
TDEV = 2.5% (MM)"*

All of the parameters are deduced by regression. The KDSI parameter counts
thousands of delivered source instructions (lines of code), and includes job control
language, format statements, €iC., but excludes non-delivered code unless it is
developed with ‘as much care’ (review, test plans, documentation, etc.) as the rest of
the system code. Estimates are in terms of direct-charged labour and where 1 man-
month=152 man-hours or 19 man-days. The modes of COCOMO are defined as:

« Organic. Small to medium-sized projects (<32 KDSI), developed in-house
with a familiar development environment;

Semi-detached. Intermediate between organic and embedded,;

Embedded. Ambitious, tightly constrained requirements, developed on

multiple sites or with new machinery.

nstraints affect productivity and staffing levels. In organic made
productivity is found to be over 300 LOC.MM-!, around 200 LOC.M M-1 far semi-
detached mode and around 100 LOC.MM-! for embedded mode. Although fhe
schedule for large projects is about the same (around 24 months), i’t’rt organic mode n
rypical project only requires 16 people, semi—c_ietached projects ‘l‘fﬁf}ljii‘ﬁ %4 3}_@0;}]@ and
embedded made projects require S1 people. These effects are reflected in the cha‘ﬁg@;
¢ and b exponential as the mode changes (see Table §.4). The

Tightening ¢o

in the @ parameie
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problem for Basic COCOMO is that it is perhaps overly-simple and only uses KDSI
as a cost-driver.

4
&
i
i

i
i
k

.
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Table 5.4 : Changes to Basic COCOMO parameters with mode
(after Boehm, 1981, p75)

Mode Effort=a.(Size)b Schd=c.(Effort)d
a b c d

R

Organic 24 1.05 2.5 0.38
Semi-Detached 3.0 1.12 2.5 0.35
Embedded 3.6 1.20 2.5 0.32

_—

Table 5.5 : The 15 Intermediate COCOMO cost-drivers
(cf. Boehm, 1981, ppl15-6)

Aston University

Content has been removed for copyright reasons
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The most well-known version is Intermediate COCOMO. Intermediate COCOMO
(ibid, pp114-163) introduces 15 cost-drivers which adjust the nominal effort model
and make COCOMO more sensitive to project-specific factors. The 15 cost-drivers
are grouped under four attribute headings (see Table 5.5). Each cost-driver has one
of six ratings from very-low to extra-high from which a value is assigned (from 0.70
for very low CPLX to 1.66 for extra high TIME). The product of the cost-drivers is
then used to adjust the nominal effort model given by mode. The Intermediaie
COCOMO models for effort and duration are the same as for Basic COCOMO,
except the a parameter in the effort model varies from ¢=3.2 in organic mode, 0
4=3.0 in semi-detached mode, and ¢=2.8 in embedded mode. Detailed COCOMO,
on the other hand, differs from Intermediate COCOMO in that the cost-driver
parameters are varied according to their effect on different phases and system
components, allowing system and sub-system level estimates (o be calculated. This
amount of detail means that Detailed COCOMO has generally been ignored in follow-
up studies (e.g., Miyazaki & Mori, 1985).

The most interesting property of the COCOMO models is the deduction of an
exponential parameter of b>1.0 producing a diseconomy of scale which suggesis that
as the project size increases the effort increases at a non-linear rate. ‘This is barne oui
by the reduction in productivity from organic to embedded mode. The best way 1o
avoid the problem, Boehm (1981) suggests, is to reduce the scale of the project by
either prototyping, ‘ncremental development, or pruning the wish-list (or “gold
plating”) of customer requirements. However, Boehm also points out that there are
opportunities for economies of scale, since large projects are more likely to see the
worth of investing in better equipment, programming and testing aids, etc. Banker &
Kemerer (1989) suggest diseconomies of scale can be avoided by balancing project
size against the use of these extra tools and personnel. The cross-over point from

economy to diseconomy is found by understanding the nature of the project which

has shown to be the most productive.

Using the original COCOMO database provided by Boehm (1981) itis possib?c {0
deduce the accuracy of the COCOMO models. As can be seen (sce Table 5.6), there
is some variability between the models. Basic COCOMO applied to projects of any
mode is the worst performer, while there is little or no difference hﬁ‘twezeﬂ
Intermediate and Detailed COCOMO across all projects. Both of these maodels paﬁfﬁ
Cante et al’s accuracy criteria except for Pred(0.25)20.75 for p'roject‘,g in o::gan!c
mode. Given that organic projecis are fairly well represented with 23 data painis in
the COCOMO database, one might be led to infer that, either:
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Table 5.6 : Accuracy of Basic, Intermediate and Detailed COCOMO
by project mode (after Boehm, 1981, pp496-497)

Model Project mode
All Organic Semi-detached Embedded
MMRE | Pred |MMRE | Pred |MMRE | Pred |MMRE | Pred
Basic 060 | 020 | 062 | 030 | 0.66 | 042 | 057 0.21
Intermediate 0.19 0.75 0.21 0.65 | 0.18 | 0.75 0.18 (.82
Detailed 0.19 0.75 0.21 0.61 0.18 0.75 0.17 0.86

NB: Pred=Pred(0.25)

« there is a greater difference between organic projects than there is between
semi-detaced and embedded projects; or,

. the relative size of the semi-detached and embedded mode projects have
“hijacked” the Tegression analysis, making COCOMO virtually redundant on

organic mode projects.

What is peculiar about the organic projects in the COCOMO database is that thiey
also tend to be older and smaller. This difference may be indicative of COCOMO’s
database containing projects which are unrepresentative of current software
development. There is currently no clear method of how to maintain a SCE database

and avoid these potential problems. The Semi-Detached and Embedded modes do

not seem to suffer the same kinds of problem.

While the Basic COCOMO model is clearly inadequate, a typical criticism levelled
at the Intermediate and Detailed versions is that there are too many cost-drivers and
that the model could - and should - be simplified (e.g., Conte et al, 1986;
Kitchenham, 1991). Given the levels of accuracy shown, however, it could be
argued that a company may well be prepared to spend the time finding this extra data.
Of course, a simpler model with the same level accuracy would indeed be a maore
parsimonious model, but it would be up to the critics to find simpler models which
siill have the same degree of accuracy.

5.2.8  COPMO (Thebaut & Shen, 1984; Conte ct al, 1986)

Thebaut & Shen (1984) propose a madel which focuses on the effect of

Programming team size on the size of a praject in order o estimate effort. The
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resultant model is called the COoperative Programming MOdel, or COPMO, which
was revised into a generalised model by Conte ef al (1986). Taking Brooks’ (1975)

proposal that adding manpower to a project makes it later, Thebaut & Shen (1984) go
on to explain that:

« . when tasks are partitioned among several programmers, the effort
associated with communication must be taken into account. Brooks
views this effort as being made up of two parts: that which is related
to programmer training (i.e., assimilation into the team) and that
which is related to the coordination of programming activity. He
suggests that the former is likely to vary linearly with the number of
programmers, while the latter could, in extreme cases, vary with the
square of the number of programmers (p294).”

Thebaut & Shen model this situation by representing the communication paths
between a number of team members (programmers and their supervisors), P. The
number of communication paths can range from where the tasks are perfectly
partitioned (e.g., a task which would take one person 18 months will take two people
9 months, and three people 6 months), to where there are communication paths
between all members of the team. From perfect partitioning - defined by O(P) - ihe
co-ordination effort becomes a steadily increasing function until, as Brooks (1975)
has it, adding more people simply adds 1o the overall effort. The COPMO model has

the form:

E=a+bS+c.Pd

where,
E = effort (in person-months)
§ = thousands of lines of code (KLOC)
P = average personnel level, where P=E/T
T = project duration (in calendar months)

The parameters arc found by firstly finding those projects for which P=1, so
eliminating c.Pd as a separate factor and allowing a and b to be found using linear
regression. Secondly, with d and b known, least squares regression is u%cd {0 W.d C
and d. This method produces two versions of the model (see Figure 5.4), depending
on whether the communications being modelled are simple (where P=1, so there are

effectively no interactions), or complex (where P>1). Thus (ibid, panzy:

E=a+b§ p=1
B=a+h§+cP P>l
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Figure 5.4 : The effect of task interaction modelled by COPMO
(after Thebaut & Shen, 1984, p295)
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Table 5.7 : Parameters of the COPMO model (cf, Conte et al, 1986, p316)

Aston University

Content has been removed for copyright reasons

Conte et al (1986) show how the parameters can be calculated by regression using
datasets from a number of published sources. As can be seen (s;e“e Table 5:7),,
applying COPMO 10 all six datasets produces what. Conte éi al f%tfggist 35— A
“reasonable” performance. although below the required Pred((1.25)20.78 and
MMRRE<0.25 criteria. The parameter ¢ is said to define the standard cost Csf”ﬁ’iwﬁ
communication path within an arganisation, while d is said 1o l?@()réﬁﬁﬁt ihe 'm.-w‘n«lmiez:w
impact of co-ordinating the communication between increasing numbers of project
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members. In each case, the value of d is found to imply a diseconomy of scale

(where d>1.0). Conte et al (1986) criticise this first version of the COPMO model on
the grounds that (p318):

o least squares does not necessarily give good values for Pred and MMRE;

. the model parameters are significantly different between datasets,

+ the complexity of the projects is assumed to be constant but this cannot be;

o the model requires an early P value, but it would be better to have a more

sensible surrogate for this input.

They attempt to overcome these problems by defining a more general version of the
model. The generalised COPMO model has the form (ibid, p318):

E=b.S+c.P”

The value of ¢ was arbitrarily set to Zero because it was deemed ta be relatively
«mall in relation to the reported effort and thus insignificant to the model. Since the
weighted value of d in Table 57 was 1.53, this parameter was also arbitrarily set to
1.5. The value of b; and ¢; are dependent on the nature of the project and the
development environment. Conte et al attempt to approximate these effects by
partitioning projects into suitable complexity classes. By assuming that complexity is
inversely proportional to productivity, i.e., the more difficult the project the more
time it takes to write the code, Conte et 4l divided the same six published datasets into
ten classes. Since most projects had productivity rates of less than 1000 LOC per
month, the tenth and highest productivity class was arbitrarily set to this figure. With
values of S and P known, the values of b; and ¢; could then be deduced for each jth
complexity class. The overall performance of the generalised COPMO model across
all six datasets was MMRE=0.21 and Pred(0.25)=0.75 (ibid, p321).

Finally, Conte et al show that the value of P can be replaced with an undcrgténdin g
of the general demands on a project. Boehm’s (1981) 15 cost drivers are taken [o
adequately represent these demands. By partitioning the product rc:sult:,u m(X), of
these cost drivers into 7 classes, the same method as above can be used (o deduce the
value of b; and ¢; for each i complexity class (see Table 5.8). Applying this v@]‘giﬁﬁ
of COPMO to the COCOMO dataset produces levels of accuracy on a par :With
Detailed COCOMO, with MMRE=0.21 and Pred(0.25)=0.78.
rates clearly follow the pands of m(X), the COPMO model has the

Tntermediate and
Since productivity | 4 | .
advantage that all of Boehm's adjustment factors can be replaced by an estimaie of
1 antak 1 .

productivity The problem is what 1o do with the values at the horder of the classes,
1 8 &l
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A continuous function is proposed but discounted by Conte ef a/ on the grounds that _
it implies a greater level of accuracy than is warranted, and, although no details are
given, Conte er al admit that it doesn’t work very well (ibid, p328)!

Table 5.8 : Application of the General COPMO model to the COCOMO database
(cf. Conte et al, 1986, p327)

Aston University

Content has been removed for copyright reasons

5.3  Problems for SCE tools

The models and tools so far described denote key points in the development of SCE tools.
The history does not end with COPMO, however, with other models/tools addressing
general estimation (e.g., ESTIMACS by Rubin, 1983; SPQR by Jones, 1986), while still
others have focused on specific languages such as ADA (Boehm, 1988D) and object-oriented
systems (Laranjeira, 1990), or specific issues such as estimating productivi.ty. (Pfleeg.er,
1991) or system size (Verner & Tate, 1992). But are they accurate? Empirical studies
suggest they are not and suggest that both the models underlying SCE tools and the

techniques used to develop them are flawed.

The greatest problem for SCE tools is that since th‘ei.r urﬁdf-:rlying models have“ bv%ﬁ‘
developed within 2 specific development environment, it 1s d:fﬁcu’lt o know vwh‘e:ﬂj@r they
have captured anything universal about software deveiopm,ent or simply pmdu?izd} a @qd
that is specific to the database upon which it s based. fon‘ instance, Mc)han‘ty (‘l )?xl){f m;rﬂ
that 12 SCE tools sudied generated COSt estimates from 5{13"62' 500 o $2‘766 6§7 ,m‘id’
schedules of 13.77 10 75.8 manths given the same aut}ine descnpt.mn— of a project. ‘R/m‘hafny?
(1981) claims that models which give Very high estimates are likely 1o have a number of

tightly constrained, high quality projects in the database (what Boehm, 1081, called
Lig‘i' 3 7 51 5
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“embedded”). Tt was only in later SCE models where a quality factor was introduced that the
cost of external constraints began to be realised.

Such variances in estimates are typical when comparing estimating tools, and later studies
have found equally disparate results (Rubin, 1985; Kemerer, 1987, Kusters ef al, 1991).
These studies all suggest that it is essential to calibrate an estimating tool from one
development environment to another (Jeffrey & Low, 1990b). “Calibration” is the process
of assuming that the underlying model is correct and adjusting the parameters either by
“rweaking” the values until the output is deemed to be reasonable, or, by building a new set
of historical data and deducing the required parameters. Miyazaki (1 991) even went so far as
to improve the performance of COCOMO at Fujitsu by dismissing some of the cost-drivers
that correlated poorly to cost.

In either case it would have to be assumed that the model is meaningful and the parameters
adequately represent the behaviour of software development within an organisation. This
assumption can often be doubied. For instance, if the general effort and schedule models are
defined as Effort=a.(Size)® and Schedule=c.(Efforn)d, then Kitchenham (1992) points out
{hat b=1.000 and ¢=0.333 for 12 dataseis studied as part of the ESPRIT-funded MERMAID
project (P2046). In other words, where the model is built within a single organisation, a
linear model for effort in terms of size is likely to be sufficient, while the difference in the d
quotient from 15 is insignificant across almost all published models and datasets. This
would suggest that studies into diseconomies of scale suggested by both COCOMO, SLIM
and COPMO have been misguided. Furthermore, Kitchenham suggests that adjustment

factors have much less influence than had previously been thought. Specifically:

« looking at the COCOMO model dataset, only programming language (p<0.001) and
working environment (p<0.05) were found to be significantly related to productivity,

while language experience (p<0.05) was the only personnel experience factor which

showed an increase in productivity as the level increased;
o looking at the FPA scores within the MERMAID dataset, only factors relating o data

communications (p<0.05) and online systems (p<0.05) were related to productivity

(TCFs 1, 6 and 8).

The COCOMO model Suggests effort increases when timescales are altered, while SLIM
suggests effort increases when timescales are decreased, and decreases when timescales are
increased. However, Kitchenham (1992) shows that by defining effort compression,

eff comp, as (p216):



CHAPTER FIVE

Figure 5.5 : Duration and effort compression for Basic COCOMO
(N=58)(cf. Kitchenham, 1992, p216)
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Figure 5.6 : Duration and effort compression for
Intermediate COCOMO (N=58)
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actual effort

ff =
etl_comp estimated effort

and schedule compression, sch_comp, as:

actual duration
estimated duration

sch_comp =

a scatter-plot of the COCOMO dataset shows that a number of projects were both effort and
schedule compressed (see Figure 5.5). A value of less than 1.0 indicates compression,
while a value of greater than 1.0 indicates expansion. In other words, the projects in the
bottom-left corner of the scatter plot show effort decreased on a project where timescales
were compressed, an effect which contradicts both COCOMO and SLIM models.

However, (his criticism is weakened somewhat when it is realised that the scatter plot s
hased on Basic COCOMO, a model which Boehm (1981) acknowledged was nol & very
accurate model. The same scatter plot for Intermediate COCOMO - which was considerably
more accurate - shows a less dramatic picture. As can be seen (see Figure 5.6) most
cstimates are clustered around the point where effort and schedule compression are near 1.0
(i.e., actuals close {0 estimates). There are virtually no data points in the exireme bottom-
right corner, and those which are considerably amiss are where actual >> estimate. In effect,
this follows a reasonable B-distribution where considerable over-estimates (low

compression) are much more likely than considerable under-estimates (high compression).

The structure of SCE models may remain in doubt, therefore, but the nature of the
adjustment factors which correctly identify what makes a project expensive remains open. In
particular, Kitchenham (1992) does not seem to have removed the (intuitive) notion that the
experience of the personnel involved in the project is the dominant and over-riding
consideration in the equation of cost and duration. Given these mixed criticisms, it would
perhaps be surprising if any project manager would put their faith in such technology. What
is not clear, however, is whether the endeavour should be abandoned, whether the solution
is to build better estimating models or whether project managers arc laoking for different

soits of tools. This will be the subject of the next chapter.
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6. A survey of large UK companies

“The reasonable man attempts to adapt himself to the world; the
unreasonable one persisis in trying to adapt the world to himself.
Therefore all progress depends on the unreasonable man.” G.Bernard
Shaw (Maxims for Revolutionists in ‘Man and Superman’)

Summatry: This chapter presents the results of a survey of large UK
corporations and computing companies. The survey aimed to discover whether:
a) estimation was seen ds d problem; b) esiimating tools were in use; and, ¢)
companies had the sort of development environment within which an estimating
100l could be developed or calibrated. It will be seen that while most respondents
cee estimation as a problem and could developlcalibrate an estimating tool, less

than a third actially do.

The theoretical problems which have been discussed in the last three chapters have shown
that virtually all aspects of developing metrics to measure software development or building

tools to estimate cost have suffered a number of Criticisms:

« Metrics, because it is often not clear how the measurement relates to the property being
assessed. This is particular true for complexity and structure metrics. Even though it
may be accepted that KBSs are essentially like any other type of software development
project, this 1s of little help when the metrics to control and manager the project appear
to be flawed.

«  Software cost estimating (SCE) tools, because there is no well-formulated method of
building the underlying models which has proven itself to generate meanin gfuih and
useful tools. A “shotgun” approach to discovering the underlying cast-drivers

produces models which are statistically significant but semantically dubious.

Given these criticisms, it would perhaps be surprising to find any project mai?agem USing
Indeed, this would appear 10 he close (o the current state within md‘:isf;ry.u A
ltancy Information Processing Limited (1PL), found that af 36 UK
I-time software indusiry, only 27% used ‘any type aof

such tools.
survey by the consu

organisations mainly in the Tea R, . D
stimating tool’ (IP1 1089). In larger surveys carried out in The Netherlands, less ihan a

B8V ing b A SR ¢ . - L N ey Ay

quarter of companies used estimating tools (Heemsira & Kusters, 1989; van Genuchien &
AT s
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Koolen, 1991). The most pessimistic conclusion based on this evidence is that useful
metrics, accurate tools and the whole idea of controlling software development are essentially
impossible. This will be called ‘Option Zero’, in which nothing of any benefit can be
derived from metrics and so all research would stop here.

The rest of this thesis, however, will set out to prove that ‘Option Zero’ is false. Moreover
- given the place of this research within Project IED4/1/1426 - it will be argued that not only
can useful metrics, models and tools be developed, but a similar set can be extended to the
development of KBSs (and thus hybrid systems). Given the current staie of SCE tools, it
may be difficult to believe that the technology has advanced very far from ‘Zero’, but the
point here is to show that ‘Option Zero' is a function of misdirected models failing to show
their usefulness to project managers. The basic metric—model—tool approach, however,

remains sound.

The key to developing and using a SCE tool is that there are no barriers to their use.
Specifically, the ability (o develop and use SCE tools is interpreted here as requiring a
company to have a theoretical, practical and political framework in place. The theoretical
component of this framework suggests that applying a model fo a complex sysiem assumes
there are relationships within the system which are stable enough to be modelled. Tn effect,
this point follows Browne & Shaw’s (1981) axiom (see again §2.1), where it nist be
assumed that the subject under study is not chaotic but amenable to some form of
understanding. In this case, it must be assumed that there is structure to the software
development process. This will be assumed if a company has a structured methodology in
place. Clearly, a company which states it has a methodology does not guarantee that it is
precisely followed, while a company which denies the use of a methodology may have a
very good understanding of their development process. However, since it can be doubted
that any company has full control over any but the smallest projects, the assumption being

made here is that a company which recognises the existence of a method at least provides a

theoretical basis from which to model the development process.

The practical component of the framework suggests that 10 build an in-house model or
calibrate a commercial tool it is necessary to collect data on the cost and duration of projects
and the structure (and thus quality) of the resuliant code. Kitchenham (1992) suggesis that
local (in-house) models are likely to be more useful but this would require a company {0
invest in the costly process of building a database of project information. As such, it can
also be suggested that companies are more likely to use commercial toals because this costly
database has already been collected and the practical use of the tool can he studied
immediately. Adjusting the parameters of 8 commercial ool without some praject dati waold
he (o effectively guess how e database of the tool refaied o a particular company. Tn (his
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case, since person-hours expended on a project is the first concern of most SCE tools, the
minimum practical requirement will be assumed here to be the collection of time data. Again,
it is questionable whether collecting data means it is subsequently used to test or adjust the
accuracy of the SCE model or tool in use, while the lack of an historical database does not
cule out ad hoc but effective adjustments to a SCE model. In both cases, however, it must be
assumed that the accuracy of the model requires a comparison between the SCE model or

tool with some actual data.

The political component of the framework suggests that given the apparent resistance
Avison et al (1992) found to changes in the way systems developers work (see again §2.5),
it is possible that the lack of use of SCE tools is a political rather than a theoretical of practical
problem. This would mean that although estimating technology is useful and accurate, it
would be a long time before their use is seen as acceptable by those project managers that
would actually benefit from them. This would stunt the commercial exploitation of research

into metrics but would not denigrate the potential usefulness of the technology.

The assumption being made here, therefore, is that a company which already uses
technology closely related 10 SCE tools is likely to have already confronted and avercome
political resistance to the use of similar fools. Tn this case, it will be assumed that companies
using project management tools (such as PMW, elc.) are those whose resistance fo SCE
tools will be lowest. The connection between project management and SCE tools is simply
that both seek to be useful early in the life of a project. It need not be assumed here that SCE
tools are perceived as being identical to project management tools in any sense. What 18

important is that the use of tools to support project management tasks has already been seen

as “acceptable”.

The fact that ‘Option 7ero’ is false will therefore be established by demonstrating that the

following four key propositions are correct:

1. Project managers recognise the need for estimating tools. In particular, SCE tools
agsume that project managers see estimation as a problem, if not, then the technology
becomes redundant.

2. There are no prohibitions (o the use of SCE twols. Such as, the cost of collecting the
data upon which to develop a SCE tool outweighing marginal increases in accuracy.
This problem would demand the SCE tool places itself within everyday practice.

3. There is no other set of tools which can adequately address the issue of estimation.
Otherwise, although SCE toals may be feasible, they would have been found o be

unnecessary.
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4. The techniques for developing metrics, models and tools for conventional systems
development can also be extended to KBS development. Otherwise, the belief that

the metrics approach is universally applicable would be undermined.

In other words, if project managers do see estimation as a problem, they ordinarily collect
the right sort of data to develop or calibrate a SCE tool, no other tools have taken on the role
of estimating-support tool and the same method is applicable to KBS development, then it
would seem reasonable to conclude that ‘Option Zero’ is false and that the current problems
with metrics, models and tools can be put down to the informal, ad hoc and even unscientific
approach being taken by researchers in this field (MacDonell, 1991). These propositions
require empirical support and this chapter will describe a survey which set out to provide the
initial data. The survey began by attempting to validate seven propositions which would
explain why SCE tools would not (and possibly could not) be used by project managers.

The seven propositions are:

1. Estimating is not as problematic as has been previously reported, so the need for any

kind of support tool is negated.

N

Estimating tools have recently become commaonly used, s0 Previous SUIveys aie ot~

of-date.

3. Some other tool is used to support estimating decisions (e.g., a project management
tool such as PMW) and is perceived as replacing the need for a specific estimating
tool.

4. There is a failure of publicity, such that tools which could be used by development
managers are unknown to them.

5.  There is no framework in place from which to calibrate a commercial package or
develop an in-house model, so the technology is unusable.

6. Where needed, a model is developed which is directly relevant to the company

concerned and not purchased from outside.

7 Estimating tools have been used but found to be inadequate, SO the technology is not

perceived as being useful.

The survey was designed with the expectation that the first two propositions were false:
i.e., there is a problem with estimation but estimating tools are not used. chﬁi‘WiSﬁ, there
would be little point in investigating propositions 3.7. The survey focused on the use of
SCE tools because the tool is potentially mare useful to a project manager than the raw
mefrics data or SCE model. As was explained in the previous chapler, however, all three
slements are part of the same (SCE) technology. The rest of this chapter will describe:
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o how the companies targeted by the survey were defined
o a definition of the types of companies that responded to the survey

° the results of the survey in answering the above seven propositions

6.1 Devising a survey of large UK companies

The target sample were business organisations and public utilities with around 2000 UK
employees and computing companies with over 500 UK employees. It was felt that this
definition would target software departments likely to invest the most money in supporting
project development and thus those companies which would be more likely to use estimating
tools. Such a population, therefore, would provide more information about their use than
would a sample of all UK organisations/businesses. This would also overcome the problem
that if so few companies use estimating tools, then not enough information would be

gathered from any sample to test the above seven propositions.

The Higher Education careers book ROGET 91 was used to draw up a list of companies.
ROGET 91 lists UK companies that employ graduates and gives a brief description of the
company and its area of business. Tn this way, it is iniended that graduaies can make a mare
informed choice as to which company (0 apply for employment. The company description
was also used to deselect any company which satisfied the size criteria but made no mention

of a core DP department. From over 2000 entries, a list of 115 companies was produced.

The questionnaire itself (see Appendix A) consisted of 19 questions with a combination of
multiple-choice and written answer questions. An example of the former asked “How many
people are there in your department involved in software development?” and provided a
choice of seven boxes (1-50, 51-100, ..., 3014). An example of the latter asked “What
other types of data do you normally collect?” and provided a number of lines available for

free-form text answers. The questionnaire was piloted and a number of errors removed.

While the questionnaire was still being developed, introductory letters were sent (o each
farget company asking them 10 respond only if they did not wish to participate in the survey.
This was meant to forewarn the company, and also (o bias those who were undecided
towards receiving the survey. The possibility was that until they saw the survey they may
not be interested in participating. However, twenty-five declined to take part af this paint. A
few weeks later, quggtionnaires were sent to the remaining 90 companies. Fifty-four
eventually replied to the survey (giving a good response rale of 47% Qf thé original ta;v'g@i
sample). The results were processed firstly using a BASIC program developed —e:‘%pa‘.cmﬂy
for the survey and then with the spreadsheet package Fxcel running on an Apple Maciniosh

micro-compuier.
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Figure 6.1 : Characterising respondents by Business Area
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Figure 6.2 : Size of software development departments
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6.2 Defining the survey respondents

Using the description given in ROGET 91, the 54 responding companies can be divided

into six business areas (see Figure 6.1):

. Financial (banks, assurance companies, etc.);

o Commercial (property, foodstuffs, €tc.);

« Industrial (plant, engineering, etc.);

«  Chemical (producers of dyes, pharmaceuticals, etc.);

« Petro-chemical (oil exploration and/or refinement, efc.);

. Computing (including ielecommunications and independent computing subsidiaries of

other companies).

As can be seen, respondents were mainly from the computing (30%), financial (26%) and
industrial (24%) seCiors. The size of the software development depariment varied widely
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(see Figure 6.2). By business area, software development departments in the commercial,
chemical and petro-chemical companies tended to be smaller than the rest of the sample (82%
less than 50 people). Financial companies had the largest departments (44% with over 150
people).

Figure 6.3 : Percentage of overall development work devoted to KBSs

No.of

respondents
30

NilL- i-10 11-25 26-50 §51-78 T6-90 =40
% of overall effort

Knowledge based systems (KBSs) were developed by 56% of the respondents (30 out of
54) but, except for three respondents, tended to be a small percentage of their overall work
(1-10%, see Figure 6.3). Where carried out, however, this KBS work seems to be well-
established within the department, with 50% of companies reporting that the percentage of
development person-years spent on KBS rather than conventional development is an increase
on previous years, 10% reporting a decline and 40% reporting the percentage had remained
the same. This also suggests that the need for hybrid metrics and models will continue to
increase over the years. The conclusion seems to be that although the organisations may be
deemed to be “large”, the departments themselves are of variable size and can be taken to
represent a good cross-section of all those developing software. Based on this sample, then,

the propositions and findings are discussed in the following sections.

6.3 Survey results

The survey was designed to fest the validity or otherwise of seven propositions which, on
their awn or in combination, might explain why estimating tools are not widely used in large
UK companies. The results for each of the seven propositions are detailed below.
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6.3.1 Proposition 1

Proposition 1 stated that: Estimating is not as problematic as has been previously
reported, so the need for any kind of estimating tool is negated. The evidence
suggests this statement is false since, when asked “Do you see estimation as a
problem?”, 91% responded “yes” while only 9% responded “no”. Therefore, the
vast majority of respondents see estimating as a problem. Such is the strength of this
response, however, that it becomes even more important (and yet difficult) to answer
the question: If estimation is a problem, why are tools specifically designed to
support the task not being used?

6.3.2 Proposition 2

Proposition 2 stated that: Estimating tools have recently become commonly used, $0
previous surveys are out-of-date. This siatement also appears to be false. A series of
four questions asked whether respondents were using estimating toals, and il so
which. When asked “Have you developed any Software Cost Estimating taals in-
house?”, 13% replied “‘yes” while 87% replied “no”. Two further questions asked
which, if any, commercial estimating tools were in use: 249 used a commercial tool,
while 76% did not. In summary, only 30% use any form of estimating tool, with

17% of companies using a commercial tool only, 6% using an in-house tool only,

and 7% using both types.

Table 6.1 : Comparison of survey results

IPL Heemstra & This survey

(1989) Kusiers (1989) (1991)
Location of UK The Netherlands UK
sample
Number of 36 597 s4
respondents
Response 9% A%
raie
Use of an g 4% 0%
estimating toal 23% 14% v
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These results can be compared (see Table 6.1) to those of the two earlier surveys
(IPL, 1989; Heemstra & Kusters, 1989). Although still in the minority, this survey
finds a higher use of estimating tools within the target sample. This would seem to
confirm the selection criteria whereby larger companies were targeted in the belief that
they would have more money to invest in support tools, such as estimating tools.
The suggestion that Software Cost Estimating (SCE) tools are suffering from some
problem which appears to militate against their use now becomes apparent.
Specifically, even when targeting companies most likely to be using estimating tools
(as in this survey), there is found to be a huge difference between recognising the
problem of estimation and using tools designed to support project managers in

solving the problem.
6.3.3 Proposition 3

Proposition 3 states that: Some other tool is used to support estimating decisions
(e.g. a project management (ool such as PMW). The evidence SUggests that this
statement is frue, since, when asked “Do you use a Project Management ool?”, 94%
replied “yes” while only 6% replied “no”. Since estimating begins by analysing the
tasks of a project, then this siatistic by itself could explain why estimating tools are
not commonly used. Of 19 recorded, the most popular tool 18 PMW (49%) fallowed

by SuperProjectExpert and Instaplan (both 8%). (See Figure 6.4.)

Figure 6.4 : Relative use of project managemeni/planning tools

15 Others (306 . MW (49%)

In-house (5%

SuperProjectExpert (8% i
Instaplan (8%)

This result, however, may also suggest that estimating tools are not commonly
used because they approach the problem from the wrong direction. Specifically, if
manager is already developing a plan, how far would a specialist estimating fool help
in the planning process? The point of SCE tools is that they provide some i}f ihe
numbers to apply to the plan. One could speculate, however, that whai is difficult
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about estimating is not estimating the actual cost (since many estimates are likely 1o be
estimates-to-win or merely budgets which the project is expected to meet regardless)
but having a means of justifying the development of the project itself. The
speculation continues that even if an estimate is demanded of a manager before a
detailed plan has been created, it is likely that at least a broad mental plan of the
important tasks will be made, and - more significantly - it is on the basis of this plan
that the estimate is both meaningful to the manager and justifiable to a third party

(such as senior or user management).

In other words, it is possible that in the mind of a manager an estimate is derived
from the plan and not the other way round. Once the plan has been created a more
meaningful basis for estimation exists, and therefore the estimate from a SCE tool is
either no more than a check or entirely redundant.  Of course, a budget may be
thought of as a “received” estimate which drives the plan, and it is quite likely thai a
number of software development managers feel they work within “unreasonable”
consiraints. This point is more a question of how development teams can produce
software under such conditions rather than a question of whether the estimaie is an

accurate one.

Figure 6.5 : Relative “heard of”, “evaluated”, or “used” for 13 commercial (ools
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6.3.4 Proposition 4

Proposition 4 stated that: There is a failure of publicity, such that tools which could
be used by development managers are unknown to them. The evidence suggests that
this statement is true. Respondents were asked whether they had heard of, evaluated
or used one of 13 named commercial Software Cost Estimating tools. The list of 13
tools was taken from Fisher & Gorman (1990). Although COSTAR, SYSTEM-3
and SIMPACT ESTIMATOR were reported by Fisher & Gorman to be unavailable in
the UK, they were included in case the situation had changed, and because the target
sample may be equally familiar with U.S. tools. As it transpires (see Figure 6.5),
SYSTEM-3 had been evaluated by one company, although as a whole these three

tools were significantly less well-known.

The respondents were asked: “Have you heard of any of the following Software
Cost Estimating tools?”; if yes, “Have you evaluated this tool?”; if yes, “Do you use
this tool?”. At first sight, there appears (0 be a reasonable level of awareness of the
tools (61% having heard of at least one tool), although evaluation is much less
common (39%), while only five of the tools were found to be in use. (Noie that the
analysis here assumes that “evaluated” implies “heard of”", and “used” implies
“evaluated”.) Those in use were ESTIMACS (6 users), PRICE-S5 (2 users), Before
You Leap (1 user), GECOMO PLUS (1 user) and BIS/ESTIMATOR (1 user). One
company used two commercial tools, while two commercial tools not listed were
found to be in use: PMS BRIDGE (2 users) and SYZYGY (1 user). Even though
61% claimed to have heard of at least one of the listed tools, the figures still suggest a

failure of publicity for the following reasons:

« The respondents to the survey were exactly the sort of person at whom any
publicity for SCE tools should be directed, and so any successful publicity
campaign should result in all of the managers having heard of at least one tool.
Target awareness = 100%

« In fact, 39% of this group had not heard of any of the listed commercial SCE
tools.

Apparent awareness < 61%

. Those who had heard of a toal but carried out no evaluation (22%) probably
have little appreciation of what the tools actually do.
Apparent awareness probably S 9%

. 56% of the positive “heard of” data was provided by just 19% of the
respondents, so the majority of the data came from a small sub-group.
Apparent awareness < 39%
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Thus, the evidence suggests that at most 39%, probably fewer, could be deemed to
fully appreciate estimating technology. It therefore seems reasonable to conclude that

the initial figure of 61% was misleading and SCE tools have, in fact, suffered from
poor publicity.

Figure 6.6 : The relative popularity of methodologies in use

(out of 92 responses)

None 8%

25 Others 33% . SSADM 13%

LBMS/LSDM 11%

‘ fn-house 10%
Yourdon 5% -

Jackson 6%  Information Engineering 9%

6.3.5 Proposition 5

Proposition 5 states that: There is no framework in place from which to calibrate a
commercial package or develop an in-house model, so the technology is unusable.

The evidence suggests that this statement is false. The framework proposed the need

for:

. identifiable stages of development against which the model can be applied,
either by using a structured methodology, or by recording time expenditure
against different types of activities (e.g. meetings, interviews, programming,
etc.); o

«  the collection of project ime data, with time being the basis of many estimating
models (thus allowing the development of an ‘n-house model or the calibration
of a commercial tool);

« the use of some form of project management tool, thus implying tools are
typically seen as “aeceptable” in supporting the creation of a wark plan,

When asked “Which structured (documented) methadolagies are used within the
department?”, Q6% indicated at least one method was in use, 17% use an internal

method, while 14% use no method. (Two respondents failed (o Answer o the
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percentages given here are out of 52.) Nearly half of these 52 respondents (44%) use
more than one method, with a total of 92 responses being recorded (see Figure 6.6
for a summary).

When asked how often person-hours were collected during the development of a
project the choice being “Always”, “Mostly™, “Occasionally”, “Rarely” and “Never”,
70% replied they always collected person-hours, 11% mostly, 9% occasionally, 6%
rarely and 4% never. Assuming “Mostly” is taken to mean there would be few
occasions when person-hours would not be recorded, then 81% collect time data at a
high rate. When asked the same type of question for time expenditure, two further
companies recorded time expenditure at a high rate although they did not indicae
using a structured methodology. This allows 87% to apply a model to identifiable
stages of development. Together with the use of PM tools, the three conditions for
the calibration and development of basic in-house and commercial tools are satisfied
by 78% of the sample. But, if 78% of companies could be using estimating tools, it

is still unexplained why only 30% actually do so.

Table 6.2 : Comparison of UK SUrveys
This survey (1991) IPL (1989)
% %
Identifiable stages of development 87 60*
Siandard collection of time data 81 63
Use of Project Management tools 94 71
Use of any type of estimating tool 30 23

* only the percentage
using a method available

The importance of this «gCR” framework can be further supported by comparing
this survey with the IPL survey results (see Table 6.2). Since both surveys Were
carried out in the UK, one could speculate that the underlying reasons which restrict
the use of estimating tools are the same. Tn such a case, one could suggest fhat there
is 4 fixed ratio which relates the proportion of companies who satisfy the canditions

of the framework and the proportion of companies using estimating tools. Thus:

SCEusem = NUMfmmcwnrk * R
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where,
SCEysers = % using in-house or commercial tools
NUMpramework = % satisfying all three conditions of the framework
R =

constant ratio for UK companies

Using the data from this survey, R=0.385 (since SCE=30 and NUM=78).
Although NUM is not available for the TPL survey, it cannot be higher than the
lowest percentage of the three-point framework (i.e. 60% using a methodology, see
again Table 6.2). Itis also unlikely to be substantially lower than 60, since the three
conditions of the framework would tend to be found together. Taking SCE=23 and
NUM=60 would give R=0.383, so that the two values of R are in remarkably close
agreement. Although such extreme accuracy is no doubt fortuitous, it seems
reasonable to conclude that, once the framework has been accounted for, it appears
that the remaining properties which enable companies to become SCE users have
remained constant between 1989 and 1991. The factors which provoke potential

users into becoming actual users is still unclear, however.
6.3.6 Proposition 6

Proposition 6 states that: Where needed, a model is developed which is directly
relevant to the company concerned and not purchased from outside. This proposition
follows the recommendation of Kitchenham (1992). The evidence suggests,
however, that this statement is false. Only 13% of the sample developed in-house
models; this is less than the use of commercially-developed tools (24%). Although
in-house models would be more sensitive to local conditions, budget constraints and
lack of knowledge of metric models may explain this low level of in-house

development.

6.3.7 Proposition 7

Proposition 7 states that: Estimating tools have been used but found to be
inadequate, so the technology is not perceived as being useful. The evidence does
not clearly deny or agree with this statement but the suggestion is that proposition 7 is
probably false. None of the respondents indicated that they had stopped using a SCE
tool. However, 9% of companies had evaluated at least one fool without hecoming
actual users. [t was not possible io determine why, since this was not a question in
ihe survey. However, 0One could speculate that there are many possible reasons
including cost, case-of-use and levels of support as well as inadequate funciionality.
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Figure 6.7 : Level of error associated with excellent/good/

adequate/poor/bad estimates
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Taking “accuracy of estimate” to be one of the key properties of an adequate SCE
tool, however, a further question was included to investigate what level of accuracy
managers expected. Firstly, the survey asked respondents what perceniage errar
(%) they would assign (0 cstimates which they regard as being “excellent”, *gond,
“adequate’’, “poor” and “bad”. The results are given in Figure 6.7, it “adeguaie”
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represents the level at which an estimator becomes useful, then most tools purport (o
be able to give results within this range, roughly £20% or better. For instance,

+20% is exactly the level of accuracy Boehm (1981) stated as being a reasonable one
for COCOMO.

However, the level of accuracy must surely change according to the nature of the
project. For instance, Boehm changed the parameters of COCOMO according to
whether the project was organic (strai ght-forward), semi-detached (between straight-
forward and difficult) or embedded (difficult). Although not looking fo maich
Boehm’s ideas exactly, embedded, semi-detached and organic map onto the
categories used here. The respondents were asked:“What accuracy of estimate for
project costs and/or duration would be expected from a manager if the project was:
entirely new and complex; new, but not complicated; maintenance or reuse of system
code.” A multiple choice of five answers was given for each type of project from

“excellent” to “‘bad”, as above.

Figure 6.8 : Expectations of the levels of accyracy for different kinds of sysiem

Entirely new and complex New. but not complicated Mainienance oF ieuse

. Excellent Adequate  Poor (2%)
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The expectation was that the easier the project (“‘maintenance or reuse’”’ being the
easiest), the more accurate the expected estimate. This was found to be the case (see
Figure 6.8). It should be noted, however, that a level of accuracy of “adequate” or
better was expected by 74% of managers even when dealing with the development of
entirely new and complex sysiems. It seems reasonable to suggest, therefore, that
regardless of the nature of the project estimates are still expected 1o be within (af
most) £20%. If this is indeed the threshold against which estimates are judged
(whether generated by humans or tools), then other studies have indicated that hoth
are operating at a considerably warse level than the performance threshold of

“adequate”.
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Kusters ef al (1991) compared the performance of 14 project leaders against the
data from a completed project. The subjects made initial estimates manually of the
effort and lead-time given a description of a project. The subjects then made further
estimates using Before You Leap and ESTIMACS. (Kusters ef al report that the tools
were not calibrated, which means the tools would lose some accuracy.) A final
estimate was recorded once the subjects had experience of using the tools. While the
actual effort was 8 months and the lead-time 6 months, the mean effort estimate
ranged from 27.7 to 48.5 months, while the mean lead-time estimate ranged from 8.5
to 12.1 months. These mean values suggest that no-one in that study was able to
estimate, either manually or using a tool, in the range expected by the respondents of

this survey.

Table 6.3 : A summary of resulls

Proposition Conclusion
1. Estimating is not regarded as a prablem. False
2 . Estimating tools are in common usc. False
3. Some other tool is being used in place of SCE tools. True
4. There is a failure of publicity. True
5. There is no framework in place for their use. False
6 . An in-house model is more likely to be developed. False
7. SCE tools have been found to be inadequate. Probably false

6.4 Survey conclusions

The propositions investigated here (and symmarised in Table 6.3) were meant to provide
the data by which ‘Option Zero® could be dismissed. The empirical evidence required was
that: a) project managers continue (o see estimation as a problem; b) there is na prohibition to
the us,éaf SCE tools, and; ¢) no other tools are being used in their place. If these three
propositions were fue then there seemed no reason why some form of useful SCE tqm caulq
not be developed for KRSs. Even though estimation is regarded as a problem by almost all

of the respondents, the use of commercial tools or the development of in-house estimating

models remains low.
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This result is in spite of the fact that over three-quarters of companies fulfil basic
requirements for the development, calibration and use of these tools. The relevance of the
three-point framework of use, set out at the beginning of this chapter and investigated in
Proposition 5 (above), is supported by the fact that all 16 companies which used a SCE tool
satisfied the requirements. Although this demonstrates the importance of the framework it is
clear that other forces are at work, such as a lack of publicity. Even though almost iwo-
thirds had heard of at least one commercial tool, most of the positive responses came from a
fifth of the sample who had carried out a study and subsequently use one of the commercial
tools. It was found that the 38 non-users could be divided into four categories (see Figure
6.9):

« no framework in place to support the use of estimating tools;

«  no awareness of the technology (have not heard of any estimating tools);

«  Tlittle awareness of the technology (have heard of no mare than two estimating tools, no
evaluation carried out);

« most likely users (good awareness of the technology and/or have evaluated at least one

estimating tool, but none in use).

Figure 6.9 : Categorising the SCE non-users

Most likely users

B No framework
(24%) ;

31%)

Little awareness
(16%)

» No awareness
(29%)

No framework, or little or no awareness of the technology covered three-quarters of the
non-users. The survey did not reveal why the Jast group of well-qualified potential users
failed to become actual USsers. Since almost all respondents use a Project Management faol, it
seems clear that t0ols to support project management are Seen as acceptable (if not essentinl).
This result, however, may also hint at a more fundamental problem for estimating onls.
Since the general use of praject management (00ls is found to be so widespread, it may he
ihat in the mind of software development managers estimating is nothing more than planning

the tasks which need to be carried out.
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The suggestion here is that once a plan has been created, estimating time and budgets is an
implicit number-assigning task, whereby the total effort and cost of the project is the sum of
effort and cost numbers assigned to each task. If this hypothesis is true, then estimating
tools currently approach the problem from the wrong direction: estimates do not help
planning; rather, planning is the sole source of estimates. If this hypothesis is false, then
there seems to be no clear reason why estimating tools fail to be in greater use. So, while the
need for and feasibility of using SCE tools has been established there is doubt over whether
SCE or project management tools are the best means of providing this support. This will be
the subject of the next chapter.
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7. Planning or Estimating Tools?

“No matter what you answer, executives will halve it, users
will doubt it, and no one will stake a day’s pay on i
Definition of an estimate used at the beginning of an advert
(inside cover, Journal of Systems Management, 1(12), 1992)

Summary: Given that it is now known that project managers could but do not
seem to be using Software Cost Estimating tools, the next question to be
answered is “Why not?” A follow-up to the original suivey is described inwhich
a conflict between the use of estimating and planning tools is identified and
resolved. 1t will be argued that by redefining SCE iools as those which can
generate estimates before a plan (at a pidding/tendering stage) and supports the
creation of plan-based (task-based) estimates, estimating tools do indeed have a
necessary place in the armoury of current project mandagers.

The third proposition which needs to be established in order to prove that ‘Option Zero’ is
false is that SCE tools are necessary because no other tools can take their place in generating
estimates. The high use of project management tools and the low use of SCE tools might
suggest that this third proposition is false: project management tools are being used instead.
The question to be answered by this chapter is how project management tools are being used
and whether this use rules out the need for SCE tools. If it does, then all research carried out
into SCE tools has been misguided; if not, then there needs to be an explanation of why
those companies which see estimating as a problem and have good knowledge of SCE tools

do not use them.

Although accuracy is clearly an issue ‘Option Zero’ SULEEsts that until it has been
established that SCE tools have a role to play in project management then accuracy is a false
problerm. if it can be found that SCE tools have been developed incorrectly then it would not
be surprising to find they are inaccurate and any accuracy could be put down (o small
samples deducing narrow models fied to a particular development environment. If it can be
found that project managers arc using SCE tools incorrectly then the method described in
Chapter 5 of developing and using such models and tools can be defended. The rest of this

chapter will therefore set out to describe:
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« adefinition of what makes SCE users different from non-users;
. the potential for conflict between planning (project management) and SCE tools;

« a resolution of the problem by studying the early estimating and planning stages of
project management (the EEPS model).

7.1  Distinguishing between SCE users and non-users

If most companies surveyed in the previous chapter do not use Software Cost FEstimating
tools, what is it about those companies that do use them which makes them different from the

rest of the survey sample? The follow-up gathered data from three principal sources:

1. The original survey (Chapter 6);
5 Face-to-face interview at the company’s OWn site;
3. A telephone poll.

1t should be remembered that all companies in the follow-up comply with the framework
for using SCE tools defined in Chapier 6 (since they all use a method, collect fime data af a
high rate and use a project management tool). For the purposes of this comparison, ihe 16
companies which use SCE tools will be referred to as Group 1, while the 9 companies which

appear well-qualified but remain non-users will be referred to as Group 2.
7.1.1 The original survey

The data provided by the companies in the original survey showed that Group 1

companies tend to:

.  be over-represented by the Financial sector, while Computing companies are
over-represented in Group 2 (see T able 7.1);

« have larger departments than Group 2 companies. This division seems to be at
around 150 personnel (see Table 7.2);

. be more susceptible to changes in user requirements than Group 2 companies
(see Table 7.3).

If large departments tend to be working on large projecis, then overruns would be
particularly costly and more likely where requirements tend to be volatile. Under
these conditions, the use of SCE tools is understandable. The importance of being a
Financial company is not clear at this point.
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Table 7.1 : Contingency table based on Business Area

Financial Computing Other
Group 1 6 5 5
Group 2 1 6 2

Table 7.2 ¢ Contingency table based on Department Size

<150 people | 2150 people

Group 1 6 10
Group 2* 7 1

*One Group 2 failed to answer

Table 7.3 : Contingency table based on Requirements Volatility

<Occasional sQOccasional

Group 1 1 15
Group 2 5 4

7.1.2 Face-to-face interviews

In a bid to uncover further differences, all Group 1 and 2 companies were contacted
in order to carry out personal face-to-face interviews. However, only six of Group 1
and none of the Group 2 companies agreed (o take part. On the basis of the six

companies which did take part the following points emerged:

. One of the companies had such a change in corporate culture that the in-hause
SCE tool and methods tool TEW were no longer in use. Mare imporiantly,
clients were no longer charged for development time. This may suggest fhat
only the clear need for an accurate estimate will dictate the use of a SCE tool.

. Four of the five remaining Group 1 companies interviewed suggested that the
SCE fool was used for comparison rather than as the main methad of
estimating. As such, itis not clear whether estimating tools are being used in
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the belief that they are accurate, or as part of a need to show senior management
or a client that all attempts are being made to produce an accurate estimate.

Both these points suggest that even where needed, managers might be quite happy
1o use their own method of estimation rather than a SCE tool if it were not for extra
(outside) pressure on how that estimate is derived. The influence of the client on the
way project managers estimate will be the subject of further investigation later in this
Chapter.

7.1.3 A telephone poll

In order to answer the above questions and overcome the low response rate of the
personal interviews, it was decided to conduct a telephane poll of all Group 1 and 2
companies. The poll assumed that the need for an accuraie estimate would be based
on a client being charged and/or the size of project being developed. The first point
was tested by asking:“Do you charge a user (department or company) for the time
spent on software development?” On the evidence of the interviewed companies,
Group 1 companies should answer “yes”. The second point was fesred by
asking: “What is the size of a typical project (in person-months)?” Since averruns of
larger projects constitute more of 4 “threat” to resources, Group 1 companies might
be expected to develop Jarger projects than Group 2. The telephone poll obtained
responses from 10 of the SCE users and 7 of the non-users. The results showed that

Group 1 are more likely to:

« charge for development time than Group 2 companies (see Table 7.4), although
some in Group 1 do not charge, and;

. be working on projects of 24 person-months (or more) than are Group 2
companies (see Table 7.5), although some in Group 1 typically develop very

small projects.

Table 7.4 : Contingency table based on Charging a Client

Yes No
Group 1 8
Group 2 4 3
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Table 7.5 : Contingency table based on Person-Months Effort

<24 person- | =224 person-
months months
Group 1 3
Group 2 5 2

These results suggest that factors likely to increase the need for an accurate estimate
are positively associated with the use of SCE tools. However, the fact that some
Group 1 companies do not charge and develop small projects suggests a critical need

for accuracy is not a sufficient reason for using SCE tools.
7.1.4 A rule to characterise SCE tool users

Combining the results of the original survey and telephone poll, it is possible fo
identify five separate factors which increase the likelihood that a company capable of
using SCE tools will actually do so. These factors are:

« being a Financial company;

« having a large department (=150 people);

« experiencing high requirements volatility (‘mostly” or ‘always’);
« charging a client (department or company) for development;

« developing large projects (>24 person-months effort).

In order to judge both the relative importance of these five factors and their
completeness, a table was constructed (see Table 7.6). In terms of completeness, it
can be noted that the two companies {0 which all five factors apply (User 1 and User
5) are both in Group 1, while the company (o which none of these factors apply
(Non-user 5) is In Group 2. Although based on anly three observations, this does
give some measure of belief that all the relevant factors leading potential users (o

become actual users have been identified.

Retween the two extremes, where some factors are present and others absent, the
picture is less clear-cut. An additional complication is that there appear fo he twa

anomalies in the sample:

o
o2




User 8, the only group 1 company which does not have high requirements
volatility. This company is also the only Financial company which does not
have high requirements volatility. However, there seems no meaningful
explanation for the significance of such an interaction of factors. In this case,
the combination of large department size, charging and being a Financial

company clearly outweighs the low requirements volatility. User 8 is omitied

CHAFTER SEVEN

from the analysis, therefore.

User 7 and Non-user 1 have exactly the same patiern of answers - high
requirements volatility but none of the other factors. There seems no way

round this anomaly except to conclude that one of the observations is somehow

Table 7.6 : A _summary of responses

Company code - Vacior

1 2 3 4 5
User | Y Y Y Y Y
User 2 N N Y Y N
User 3 N Y Y Y Y
User 4 Y N Y N Y
User 5 Y Y Y Y Y
User 6 N Y Y Y Y
User 7 N N Y N N
User 8 Y Y N Y N
User 9 N N Y Y Y
User 10 N Y Y Y Y
Non-user 1 N N Y N N
Non-user 2 N N N Y N
Non-user 3 N Y N Y Y
Non-user 4 Y N Y N N
Non-user 5 N N N N N
Non-user 6 N N N Y N
Non-user 7 N N N Y Y
KEY Reing a Financial company

|
2
3
4
5 -
Y
N

Having a large department 1 50 pers’:gnne} ) )
High requirements volatility (“mostly” or “always’)
Charging a client for development ime ‘
Working on large projects (>24 person-months effort)
The company has this factor

The company does not have this factor
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“wrong”. The decision taken is that User 7 is “wrong”, since the company
typically undertakes very small projects indeed (a few person-weeks), whereas
commercial SCE tools are typically aimed at projects of several person-years.
For this reason, User 7 is omitted from the analysis.

More pragmatically, regarding Non-user 1 as the “correct” observation makes it
possible to produce a simple and meaningful rule which correctly classifies the
remaining 15 cases. The rule is thata potential SCE tool user company will become

an actual user if:

either it has high requirements volatility and tackles large projects;

or it has high requirements volatility and charges clients.
7.1.58 Discussion of resulis

The rule produced in §7.1.41s a characterisation rather than a definitive analysis of
SCE tool users since only a small sample was available for study, and of these, two
data points had to be removed before the rule could be derived. Even given these
methodological problems, however, it does seem possible to reject the assertion that
if estimation is perceived as a problem those companies which could use SCE tools
will do so. This result strengthens the possibility that ‘Option Zero’ is, in fact, true.
For those companies which do use SCE tools the most dominant factor seems to be
the volatility of requirements specifications: the likelihood that requirements will be

changed during the life-time of a project. What meaning can be attached to this

result?

Intuitively, if the cost of a system is directly related to the functionality defined by
the requirements specification, then there is an additional overhead involved in
developing a system where this functionality is poorly defined or continually
changed. As the requirements change, work which has already been completed may
become redundant, while the introduction of new functionality means another costly
cycle through the analysis, design and implementation phases of the development
process. In this scenario, a SCE tool may be seen as providing the means of
applying a consistent method of estimation to such a troublesome and chaotic

development environment.

However, while dealing with high requirements volatility may appear ia be a good
reason for using SCE tools it should be borne in mind that no current SCE model or

ool has adequately represented the effect of this problem. Far insiance, although
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COCOMO provides a cost-driver which allows for the volatility of requirements,
RVOL, the estimate itself is still crucially based on an understanding of what the
system is meant to do. The question here is what to do when changes are made to

user requirements and system functionality.

Currently, the only action a project manager could take is to re-generate an estimate
based on the new functionality and compare the old estimate with the new result. But
it is doubtful whether the difference, if any, would have any meaning. Specifically,
one must presume that - in the same way that adding personnel non-linearly affects
the complexity and effort of a project - continually redefining the functionality of a
system will have the same effect. Rather than RVOL as a cost-driver, then, this non-

linear effect would produce a model of the form:
- . b+e .
Effort = a.(Size)  * Costdrivers

where,
a = first parameter
b = exponential parameter
¢ = RVOL adjusiment

Of course, if a company typically experiences these problems then any SCE tool
which has been properly calibrated will have adjusted to these effects. This is the
same as seiting the RVOL cost-driver to “extra high” and misses the point that there is
no explicit means of relating an initial to a later estimate. How can a project manager
understand the effect of such volatility when all that current SCE tools can report is
what the (new) functionality would have cost had it been the original functionality?
COCOMO could assume that the changed system is actually a new system which will
reuse components from a previous system. But what adjustment should then be
made for the fact that some work is only partially complete, or even scrapped? Since
the effect of changing requirements is not a central part of any of the underlying SCE
models, the initial conclusion must therefore be that SCE users in this study do not

have a proper reason for using current SCE tools. So what other tool might they be

using?

A potential conflict between planning and SCE (ools

Although it appears possible to characterise those companies most likely 1o use SCE iools,

the small sample and the fact that two of the data poinis needed to he remoaved hefore i

definitive statement could be made also suggests that there may be other forces acting on the
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use or non-use of SCE tools. The point to be addressed here is that there is a conflict
between the use of SCE tools and the use of some other tool to fulfil the same (estimating)
function. Notably, it was found in Chapter 6 that 94% of project managers now use a

project management tool. The same survey also asked for the uses of the tool, and it was
found that:

«  100% are used for planning;
«  86% are used for monitoring the project;
s 77% are used for reporting purposes;

«  26% are used for charging/cost allocation.

The figure of 100% is regarded as sufficient justification for regarding “planning fools™ and
“project management tools” as synonymous in the rest of this thesis although it is accepted
that there is more to project management than simply planning. Ttis also interesting 1o note
that of the 44 respondents (81%) who agreed that such tools are now in common use, 43
said this became true from about 1083 onwards. This figure would seem 1o accord well with
the period in which cheap, powerful desk-top PCs became available, and so project

management techniques could at ast be made easier (o use and revise on 4 day-to-day basis.

The use of a planning tool to estimate assumes that as the planning process identifies the
relevant tasks, estimates of time, cost and performance can be assigned and the total summed
for the project as a whole. This is called bottom-up estimating. However, while current
planning tools allow estimates of task duration and cost to be recorded and aggregated, they
provide no support for making the relevant estimates. Do commercial SCE tools clearly have

this functionality?
7.2.1 The functionality of commercial SCE tools

Commercial (rather than in-house) SCE tools are those which project managers in the
Chapter 6 survey were most familiar with. The way the functionality of an estimating
tool is portrayed was investigated by contacting the companies which sell them and
asking questions about the types of estimates produced and the development stages al
which the tool can be used. Of 19 known tools, 16 addresses were found and 11
were contacted by fax and the other 5 by post. The survey was addressed to “The
Sales Desk”. Ten replies were received and the results are summarised in Tahle 7.7.
As can be seen, the tools are designed to estimate a range of properties with all the
tools giving estimales of manpower. All except BIS/Rstimator give estimaies for
cost. All but ESTIMACS give estimates from Requirements onwards. All bt SEER
can estimate without plan-based information being available, while estimares in (e
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of 2 Work Breakdown Structure (WBS) are possible for all the tools except Before
You Leap, ESTIMACS, SEER and SPQR.

Table 7.7 : Estimating tool vendors survey

T8 |88 481813 |% 5|%

g |m

A
Estimates provided
Cost X X | X | X | X | X | X]| XX
Duration X X | X | x| X x| x| XX
Manpower I X | XX | X | X | X | X]X]|X
Lines of code X X X | X | X
Fryor rate X X X | X
Stape usable
Requirements X | X | X | X X | X | X | X | X
Specification X | X | X | X | X | X | X | X X | X
Design X | X | X | X X | X | X | X| X
Implementation X | X | X X X | X
Testing X | X X X | X
Maintenance X | X | X | X | X| XX X | X
Before a plan X | X | X| X | X X | X | X | X
For a WBS X | X | X X | X X

It should be noted that the information in Table 7.7 is how the company selling the
tool portrays its functionality. According to this information, the tools listed are
clearly designed to be usable at the earliest development stage, and before a project
plan has been produced. [f project managers recognise the need for accurate
estimates then the vendors at least suggest their tools can provide this much needed
functionality at the earliest possible stages of a project. If there is no prablem aver
the use of SCE tools early in the life-cycle, what other problems would make their
use difficult?
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7.2.2 The TAD-law of data input

The availability of data upon which to make an estimate is crucial to the viability of
using a particular tool. Specifically, that planning tools could be used as estimating
tools does not prove that they are used in this way. The greatest difference between
SCE and planning tools is the type of data which is used to model (implicitly or
explicitly) the cost of a project. While planning tools provide the framework within
which to construct a model of the project - in terms of the planned tasks - estimating
tools impose a model of the development process and require instead information on
the peculiar complexities and constraints of the project being estimated. This is one
reason why calibration within and between development environments is so

important.

The key to the usefulness of any project management ool is whether the data
required as input is available at a fime when the project manager requires the auiput.
Behrendt ef al (1991) noted this problem with many of the “hindsight” structural
metrics (see again §4.2.2). Although this rule (called here the “Temporal Availability
of Data’ or TAD law) may appear obvious, itis not always clear that esfimating tools
abide by it. In particular, a number of estimating tools require an estimaie of lines of
code (LOC) as input when making an estimate of person-months effort and/or
calendar months project duration. If the value of LOC is taken to be an estimate of
the actual size of the system to be developed, then LOC can be described as TAD-
late, since no reasonable estimate can be made of the actual system size until well into

the project.

On the other hand, if LOC is taken to be a comparison between properties of the
current project and those of past projects (in other words, estimating-by-analogy),
then LOC becomes TAD-early since the final LOC size of a past project can always
be made available at the beginning of a subsequent project. The goal of estimating
tools, therefore, should be to ensure that all input data are TAD-early when the
estimate is produced. Note that the distinction between TAD-early and TAD-late data
is always relative to the point at which the estimate is produced. Unfortunately for
estimating tools, it is not always clear whether the input data comes from the current
or previous projects or exactly what measurements are needed o calculaie their
values. So what types of data are available within a development project?
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7.2.3 A characterisation of project data

A certain amount of this confusion over the type of data input required can be
explained by the fact that a measurement of software development can be a

measurement along a number of dimensions. A measurement can be:

EITHER  of the development process (such as time schedules, team size, €ic.);

OR of the development products (such as code, documentation, etc.).

EITHER direct (where the metric is a count of an attribute of the “element” or
“object” being measured, €.£., counting the number of boxes on a data-
flow diagram);

OR indirect (where an attribute of one object stands as a measurement of
another, e.g., the complexity of a program’s structure med sured as the
number of control statements).

To these two “What?" dimensions, a further one can now be added which relates o
the “When?" of taking a measurement. Itis:

EITHER TAD-early (where data first becomes available no later than the point at
which the estimate is produced, e.g., number of tasks planned counted
during or after the planning stage);

OR TAD-late (where data first becomes available only later in the
development process, €.g., System size or productivity rates at the

outset of a project).

TAD-early estimates are based on the information available at the point at which the
estimate is made. This would include measurements of the products produced to-date
on the current project, plus all the historical data collected on past projects. Thus, at
the design stage when data-flow models, E-R diagrams, requirements, specification
and design documents have already been produced, SCE models which taok as input
measurements of any of these products would be classified as TAD-early direct
measurements of the products. If the SCE model modelled the risk involved in
completing the project on the basis of these measurements, the output would be
classified as TAD-early (because of the data used) indirect measurements of the
pracess. Note, however, that the “risk’ is the risk at that point in the praject, not the
risk as it would be calculated at the end of the project. The later is a TAD-laie

estimaie.
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TAD-late estimates are based on information which would be measurable (directly
or indirectly) only later in the development process. In this case, TAD-late estimates
are based on surrogates for the missing information. If the SCE model modelled the
delivery date of the system as a whole at (again) the design stage, the same
information would be available for the TAD-early estimates, but the output would be
TAD-late because the delivery date is clearly a point in the future which is as yet
unattained. The same “unattained” description can be attached to many other types of
estimates produced by SCE models, including person-hours effort and calender-

months duration.

Note, however, that if the input to the SCE model was based on sizing the current
stage of the project, the ‘nformation available would be TAD-early and the ouiput
would also be TAD-early (since the actual effort and duration are measurable).
Measuring a stage of the development process when it has been completed will
always be TAD-early input and output. Measuremenis of expended effort and
duration would be useless as estimates, bul very useful in judging the current
performance of the development team against estimates values. These dimensions of
software data are illustrated in Table 7.8 (althou gh the examples given are not meanl
io be exhaustive). The examples of TAD class data are as at siep 2 of the BEPS
model, i.e., when the outline requirements are the only information available for the

current project.

Table 7.8 : Characterising project management data

Process Product
. planned tasks no.of requirements
TAD-early Direct available staff pages of reqmis doc.
. risk requirements difficulty
Indirect project size design complexity
Direci delivery date no.of reported bugs
: erson-hours lines of code
TAD-Iate - s _
: person-hours effort system size
Indirect productivity code complexity

As can be seen, planning tools can be fitted neatly into Table 7.8 by defining fheir
use as modelling direct TAD-laie properties of the process using direct TAD-enrly
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information of the tasks and experience of the assigned personnel. Once completed,
resources for the project could then be calculated by measuring the likely project size
and risk. Planning tools, therefore, are very much process-oriented and abide by the
TAD law. They are particularly useful at answering the sort of questions that a client

would ask, such as:“How much will it cost?”, and “How long will it take?”

A plan, however, is no more than an approximation of the project and two
managers could very well disagree on the details. Only when reliable (and accurate)
estimates of development effort and productivity are available can any confidence be
placed in the plan itself. Planning, therefore, is still reliant on indirect TAD-late

information such as system size and rates of productivity.

Estimating tools, on the other hand, have been developed to address virtually every
box in Table 7.8: Direct/indirect measures of the process are parameters typically
used to define adjustment factors, and when related 1o lines of code give the
COCOMO model (Boehm, 1981); code complexity related to the number of reporied
bugs gives the cyclomatic complexity model (McCabe, 1076); delivery date related (o
effort gives the Norden-Rayleigh manpower model (Putnam, 1978); functionality
related to system size gives the Mk.I function poini model (Albrecht & Gaffney,
1983); while the importance of documentation is seen as adding to the later Mk 11
version of function points (Symons, 1988, 1991). This apparent flexibility,
however, is also the fog that cloaks the potential usefulness of estimating tools
because the logical connection between the process/product attributes being estimated
and the nature of the data used as input becomes unclear - especially regarding

whether the data is meant to come from the current or previous projects.

Given that SCE tools should ideally fit into current working practices, one could
suggest that estimating tools should begin like planning tools with measures of the
development process and work from top-left to bottom-right in Table 7.8. In this
way estimates of process effort and product size should (and only ever) begin with
details of the method and personnel being used and adjusted using aitributes of
whichever products have been produced at that point (requirements documents, efc.).
Used in this way, a (task-based) estimating tool would operate in exactly the way as
estimating with a planning tool, except using a task-based estimating 100l would:

o provide a sound basis for incorporating the previous indirect system gize and

productivity rate information (required, but not provided by, planning fools),
since estimating would now be structured by a well-defined model;
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» provide estimates of some of the important product measures (such as the
number of likely bugs in a system of a certain size which would be used to size

the unit test and system testing phases), since the estimating tool is derived
from a wealth of historical data;

. make use of the same TAD-early requirements data (that ultimately drives the
planning task itself), since this is exactly the point at which estimating tools

would be most useful and planning tools are of no help.

It is these points which are crucial when it comes to deciding which tools can best
support the difficult and error-prone task of assigning the right level of staffing and
money to a project. The question that remains, however, is: Can this distinction
between planning and SCE tools be identified in the way project managers currently

estimate? The next section will argue that it can.

9 3% The EEPS model

The arguments presented in the previous sections suggest that although planning toals are
of a different form to SCE tools, they may be used as esiimating tools if the true task of
estimating is seen (o exist at a point in the life-cycle which is much later than SCE 1ools are
commonly seen as being useful. This point will be investigated by making use of the rule
deduced in §7.1.4. While ‘tackling large projects’ is almost certainly a by-product of the
Chapter 6 survey which targeted large companies only, the second ‘charging a client’ factor
is the most intriguing. This factor holds out the possibility that project managers are only
using SCE tools where they can be used in financial negotiations with a client. In particular,
it should be noted that ‘high requirements volatility’ and ‘charging a client” can both be traced
to the customers influence: the client is the source of the former and demands explanations
of the latter. Furthermore, the only case where a company stopped using their SCE tool was
also the company which stopped charging (inter-departmental) clients (see again §7.1.2).
Does this “need to show” issue dictate the type of SCE tool that is actually being used by
current project managers? Furthermore, arc project managers right to dismiss the use of SCE

tools when the “need to show” is removed? These questions will be addressed below.
7.3.1 Modelling the influence of a client during estimating

The EEPS (early estimating and planning stages) model (see Figure 7.1), focuses on
the involvement of the client in the negotiation of the cost and functionality of the
proposed system. Tn particular, the EEPS model represents the way in which the
clients involvement can lead (0 a conflict in the time at which estimates and plans are
produced. The madel is based on a naive understanding of the process and ihe
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Figure 7.1 : The early estimating and planning stages (EEPS) model
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experience of the TED4/1/1426 project collaborators who have substantial practical
experience in developing software sysiems. The EEPS model has five key sieps:

i The client sends an outiine statement of requirements o the development
department (oF company).
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2. An initial ‘rough’ estimate is generated by the developers based on these
requirements (possibly using an outline plan).

3. The client accepts the initial estimate (possibly negotiating more detailed
specifications).

4. A detailed project plan is created by the developers, and iteration between the
plan and estimate ensures the plan is within budget.

5. The client agrees to the budgets and the system is developed.

Steps 1 - 3 would form part of the feasibility/requirements stage of a “Waterfall”
life-cycle, while step 4 would certainly be completed by the end of the analysis stage.
As can be seen, however, the EEPS model is inconsistent over exactly what an
estimate is. Specifically, is an “estimate” a rough guide (as at step 2), or the result of
applying numbers to the detailed project plan (as at siep 4), or da both types of
estimate exist? If an estimate is a rough guide, then current estimating tools would be
particularly useful since they can be used at the beginning of the project (e.g., as
early as the feasibility/requirements stage), and are based on minimal information
(allowing estimates (o be generated even before a project plan). However, if an
estimate is a bottom-up, plan-based number-assigning task, then three imporiant

conclusions can be drawn:

« estimating tools are approaching the problem from the wrong direction (since
managers perceive estimating to be anchored to the task of planning and thus
SCE are estimating too early to produce sensible results);

o the initial (rough) estimate is not viewed as a “true” estimate (since an estimate
cannot be created before a detailed plan if estimating is truly seen as being
bottom-up);

o the real process of estimating is perceived to be at the planning stage (which is

currently supported by project management tools, not estimating tools).

The critical point in the EEPS model, therefore, is step 3, the point at which top-
down planning based on an initial estimate gives way to bottom-up estimating
subsumed within the planning process. But at which point are estimates produced,
and does this conflict between an estimate as a top-down guide or as a bottom-up fask

really exist?
7.3.2 Validating the EEPS model

To test the validity of the REPS model, a telephone survey was carried out in which

the following thiee questions were asked:
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1.  “On receiving the users’ global requirements, which do you do first: create a
plan or generate an estimate?”’
“Do you see estimating as a top-down or bottom-up task?”

3. “Do you see planning as a top-down or bottom-up task?”

The questions on the survey were designed (o test whether there is a place for high-
level estimating tools at a stage before a detailed plan has been produced; whether the
apparent inconsistency the model suggests between the two types of estimates really

exists: and whether bottom-up estimating can be tied to a top-down process of

planning.
Table 7.9 : Results of the EEPS telephone survey (N=17)
Yes No

1. Do you estimate before 1 6
producing a plan?

2. Is estimation a top-down 5 12
task?

3. Is planning a top-down 14 3
task?

Since the survey attempted to distinguish between points early in project
management where the use of estimating and planning tools may be considered
and/or rejected, it was important to gather a sample of managers who had knowledge
of both types of tool. By “good knowledge” it is meant that the project manager
belonged to a company which used, had used, or had evaluated both estimating and
planning tools. From the Chapter 6 survey, the sample of 25 such companies were
used of which 17 could be contacted and all of those contacted agreed fo fake part in
the telephone survey. The smallness of the sample reflects the fact that relatively few
companies have any knowledge of estimating tools and as such, no statistical tests

can be presented here. Nevertheless, the results (see again Table 7.9) suggest that:

¢+ most project managers produce an estimate before a plan;
¢ MOSt project managers see estimation as a bottom-up task;
¢« mnost project managers se planning as a top-down task.

o
Lo
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The first point (“Do you estimate before producing a plan?”) is a borderline result
and reflects the confusion that project managers seem to have over the process of
estimation. Can an estimate really be produced before any planning has been carried
out? According to this survey, 11/17 project managers would say “Yes”. This result
also confirms that there is a place for estimating tools within the early
feasibility/requirements stage since estimating tools are the only tools which can
provide estimates at this point.

According to this survey, 12/17 project managers see estimating as a boitom-up
task. However, the second point (“Is estimation a top-down task?”) questions the
nature of the initial (rough) estimate and places the task of estimating at step 4. But,
how can estimation be a bottom-up process if it typically occurs before a plan is
produced? From what top-level information does the estimate derive if it is produced

before a plan?

The only possible answer is that the project manager is using the outline
requirements (o search for past projects with analogous functionality and then
generating estimates of cost and project duration by analogy. However, while it 1§
known that estimating-by-analogy is the most popular methad of generating an
estimate (e.g., Heemstra and Kusters, 1991), unless a procedure for gauging the
similarity of current and past projects is in place, the technique should be more
properly described as “guessing—by—analogy”. Although there have been recent
attempts to structure estimates produced this way (e.g., Corbett & Kirakowski,
1992), a lack of rigour here may force the project manager to manage a project which
is already based on wildly inaccurate estimates. When projects fail, it is perhaps

exactly this point at which the first seeds of disaster are sown.

The third point (“Is planning a top-down task?”) has the most support from the
sample, since 15/17 project managers support the view that planning is a top-down
task. This result would seem (o suggest that the bottom-up nature of estimating is
because it is related to the step 4 planning stage of the EEPS model. This would also
lead to the conclusion that project managers are justified in expecting estimating tools
to generate estimates in a botlom-up (not top-down) mode. As §7.2.1 has pointed
out, however, estimating tools are designed to be used at the earliest siages of praject
management, and s0 they suffer from the fact that project managers may perceive
them as producing estimates which have no real validity (those at step 2). This is in
spite of the fact that estimating tools would allow a more methodical approach (o
estimating, since as the project progresses the accuracy of project infarmation wanld
iend to increase, and thus more accurate estimates could he produced.
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7.3.3 Summary of the EEPS results

These results suggest that there is, in fact, a conflict between the use of project
management and estimating tools stemming in part from a contradiction in project
managers’ minds about what estimating is. Although an early estimate is typically
produced before a plan, the “true” process of estimation seems to be subsumed
within the planning process. At this point estimating tools would appear to be less
useful, since if the client wishes to further negotiate the cost, the argument would be
more sensibly based around the proposed project plan rather than on the way in
which an estimating tool generates its result. Since project manageiment tools are in
almost universal use, and would be seen by project managers as operating at the right

level, it would appear they are taking on the role of an estimation support fool.

While it is true that a number of estimating tools have been developed within a suite
that includes planning tools (for instance, the estimating tool PMS BRIDGE and the
planning tool PMW), it should also be remembered that 01% of managers continue ia
cee estimation as a problem. The reason would now seem 10 be clear: a project
manager would rather estimate using a planning tool which does not consirain the
way in which an estimare is produced even though it is only SCE tools which can

apply meaningful numbers to this plan.
7.4 Conclusions

The EEPS model presented here suggests that there is a conflict in how an estimate is
perceived, and that this conflict seems to result in project management tools - rather than
estimating tools - being used to support estimating. The conflict appears to be the way in
which managers see the “true”’ process of estimating as being at the detailed planning stage,
where a more detailed picture of the project is available. At this point estimating models still
for the most part use information which was TAD-early at step 2 in the EEPS model,
although the plan is only an approximation of the project and fwo managers could disagree
on the detail. Since few estimating tools have been designed to deal specifically with task-
level information, it appears they have failed to address the problem of estimation at a level

which is in tune with the way project managers perceive the task.

What seems to be needed is a clear distinction between two Lypes of estimating tool.
Firstly, the tool which generates estimates at the early (step 2) stage of the EEPS model
should not be confused with the esiimation process which goes on at the (siep 4) task level.
The initial figure is a negotiation point, and the tool which generates this figure would he
mare properly classified as a bidding or tendering tool. Secondly, when described as an
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estimating tool, what managers expect is a tool which specifically operates at the task level.
Without such a clearly defined functionality it is no surprise that industrial experience of such
tools continues to be poor while the literature still produces recommendations to project
managers not to use estimating technology (Lederer and Prasad, 1992). This negative view
must be balanced with other studies which suggest that industry 1s attempting to develop a
well-formed metrics programmes (e.g., Grady & Caswell, 1987: Hager, 1989; Linkman &
Walker, 1991; Goodman, 1992), although there are few examples of where such
programmes have produced quantifiable results.

Where results have been reported they have tended to be spectacular. For instance,
following the SEI process maturity framework (Humphreys, 1989), Humphreys e/ al (1991)
implemented an improvement programme at Hughes Aircraft Corporation. After an
investment of $445 000 over two years Humphreys e/ al suggests this programme brought
an annual saving of $2 million to Hughes Aircraft Corporation (p11). Using a goal-driven
approach as part of the ESPRIT-funded PYRAMID project (Project 5425), Maller & Paulish
(1993) reported that consortium partners achieved improvements in bug-detection and quality

of up to 35% (p7). Although the improvements in both cases could be put down to

something being done and reservations have been raised about the bluntness of SEI's 101-

question assessment form (Bollinger & McGowan, 1991), it is clear ihat some advances are

being made in the control of software costs.

The argument presented here, therefore, suggests that ‘Option Zero’ is false only in so far
as project managers are forced to generate estimates before producing a plan. Thus, planning
tools are not in use at this point and this is where SCE tools can provide invaluable help.
This is not a necessary state of affairs, however, since project managers might still insist that
there is not enough information for even SCE tools to work. If this were true, then one
could question the project managers’ ability to generate estimates. After all, being derived
from an historical database, SCE tools are simply mechanical forms of past experience. But
it seems clear that the goal of future research should be to build accurate, task-based
estimating tools which fit current practice and prove to project managers that such tools can,
in fact, provide genuine and much needed help with estimating software costs. This goal is
indeed an important one, since the cost of overruns can have serious effects on a company’s

profitability.

This conclusion also holds out the possibility that although current SCE tools may he
inadequate for the job for which they are currently used, at least the nature of the required
SCE model has been identified and revolves around the need to estimate with poor data and
then re-estimate throughout the life of a project taking into accaunt the effect of changing @

sysiem before completion.
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Furthermore, if high requirements volatility and charging a client are taken to be symptoms
rather than causes of the use of SCE tools, then a more interesting suggestion surfaces.
Specifically, the changes and charges reflect the interaction between the developers and their
clients. These symptoms might reflect the developers need to show a client that every effort
is being made to produce an accurate estimate. If this were true, then, as stated at the outset
of this chapter, there need be no belief that SCE tools increase accuracy but only that it can be
demonstrated to a client that more than one method is being used. Used in this way the SCE
tool is a method by which issues of software development are brought to the mind of the
project manager rather than specifically solving the problem. This would also imply that the
use of SCE tools has not been taken seriously and it would be unlikely that a company would
expend too much effort or money collecting the data essential for calibrating the tool. Butif
this is the current state of industry, what changes should be made to make SCE tools more
suitable for use by project managers in general and for hybrid projects which contain both
conventional and KBS components in particular? This will be the subject of the next chapter.
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8. Defining A Task-Based SCE Tool

“A philosopher and theologian were having an argument.
‘You're just like all philosophers,” the theologian scoffed,
and quoted: You're a blind man in a dark room, looking
for a black cat that isn’t there!’ ‘Aghl’ replied the
philosopher, ‘but you would find i1/" 7 Atiributed 10
William James (in Michie & Johnston, 1984, p188).

Summary: Building on the empirical results of the previous chapters, a
definition and specification of a task-based estimating tool is presented. The 100l
is here called TABATHA. Given that the research is based within IED4/111426 it
is assumed that the natire and number of tasks within a project are to be provided
by the RUSSET tool. The general task-based model is presented along with the
ceven measurements required to instantiate and validate TABATHA. 11 will be
areued that such a fool can deal with re-estimating as user requiremenis change
because the effect of project changes occurs ar the task level, exactly the point ai
which TABATHA generates its estimates.

It was originally envisaged that the task of producing suitable metrics models and tools for
hybrid systems would be able to follow the same metric—model—tool approach already
extensively used for conventional (i.e. non-knowledge-based) systems development.
However, the theoretical problems uncovered by the literature review cast doubt on the
validity of the approach. It was thus conceivable that the approach itself was invalid and not
worth extending to hybrid systems (which, by definition, contain conventional systems
components). Much work, therefore, had to be devoted to clarifying what was required of
metrics models and tools and establishing whether it was the approach, or the specific

metrics and tools so far developed, which were at fault.

In the event, it was found that the conventional metrics approach remained sound but the
models and tools themselves were not well-matched to the needs of the end-users. In
particular, estimating was seen to be carried out at more than one level of detail during the
early stages of a development project. In particular, the existing approach needed to define a
task-based estimating tool, rather than the usual atiempt at sizing individual campanents or

the system as a whole.

170




CHAPTER EIGHT

The major problem with proposing a new form of estimating model is that validating such a
model would (typically) require at least 3-5 years of data collection. As an example,
Boehm’s (1981) data on 63 projects stretched back 13 years while data collection
programmes are seen as adding from 5-10% to the cost of a project (e.g., DeMarco, 1982;
Putnam, 1991). Such demands are beyond both the resources and time-frame of this
research. For these reasons, the attempt here will be to provide enough detail to allow a
follow-up project to construct a task-based model. The rest of this Chapter will therefore set
ouf to describe:

. a basis upon which to define a task-based estimating tool,

« the architecture of such a tool (which is here given the name TABATHA, the TAsk-
BAsed estimating Tool-HA));

o an example of how TABATHA would generate a bottom-up task-based estimate;

o the method by which TABATHA would cope with volatile requirements;

o an identification of what remains in order to instantiate the model and produce a viable
SCE tool.

#.1 Basis for a task-based estimating model

From the research carried out so far, there are known to be four important properties of the

way (UK) project managers currently perceive estimating:

1 Estimating is a problem.

2. An early estimate is often produced before a plan.

3. Later estimates are bottom-up rask-based estimates associated with planning.
4

Requirements volatility is a key issue for companies using SCE tools.

Point 1 comes from the original (Chapter 6) survey and identifies the need for estimating
tools; points 2 and 3 come from the EEPS model survey in Chapter 7 and pin-points when
estimates are typically generated, while; point 4 comes from the definition of SCE users also
in Chapter 7 and identifies the motivation behind using SCE rather than planning tools.
These points suggest that SCE tools are still potentially useful, should be task-based, and
allow for continual redefinitions of the user requirements. Furthermore, following
Kitchenham’s (1992) suggestion that SCE tools are simpler than has previously been
suggested, it will be assumed that models of effort and duration have the simplified general

form:

Effort = a.(Size)* Adjustment _factors
Duration = b. (Bffort)”’
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Since duration is derived from effort, the focus here will be on defining a mode! for effort
which is clearly based on an analysis of tasks. This gives a top-level (most abstract) model
where effort is defined as:

Effort = a. (z Tasks) * Adjustment_ factors

Bui how should tasks be modelled and what should be measured in order fo gain an

understanding of their size? These questions will be answered below.

Figure 8.1 : RUSSET’s representation of the development process

configures followed by produces
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8.1.1 A process model of software development

The elements of software development which are open to measurement will be
assumed to follow the development process defined within RUSSET. It should be
remembered that RUSSET is the methods integration tool described in §1.1.2 and
§1.1.3. The advantage of the model given by RUSSET (see Figure 8.1) is that it
contains no reference to the type of methodology in use, and so, RUSSET is able 1o
cater for both conventional and KBS methodologies. Furthermore, by linking the
cstimétin g tool to RUSSET’s representation of methods, the SCE model can assume
that the nature and number of tasks involved in a project will be available fram
RUSSET. At the heart of RUSSET’s model is the statement that software

development has three essential companents:

1 A Method. Otherwise, there can be no identifiable tasks because there is na
siructure within which the 1asks are defined and ordered. Of course, any
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project which contains programming can be said to have at least the task
“Programming” within its methodology, but this misses the point that the
point that the most useful estimating model is one which can be related to a
planning of a number of interdependent tasks.

2. Actor(s). The people who carry out the tasks within a method. These are the
team members and the active ingredients of any software development
project. Taking into account the differences in experience and productivity
between actors is a key problem in defining an accurate SCE model. For
instance, the overhead contained in co-ordinating and communicating between
actors forms the basis of the COPMO model.

3 A Product. The goal of any development project is Lo produce products
which will be of use to an end-user. Estimates of system size are
measurements of this attribute. When measuring the products developed as
part of a project, however, it is important fo realise that the program itself is
only a fraction of the deliverables presented to the user. Other products
include reports and all other paper-based documentation.

In other words, according to the RUSSET madel, a task is a feature of the process
by which a method is fallowed by actars (or agenis) to praduce products. This is
what software development is all about. As can be seen, these are a number of
features which are all candidates for measurement. Namely: the method must give a
description of the tasks, but (may) also contain information on the techniques to be
used, the rdles an actor can carry out, the specific products to be produced, and a
description of the way in which the method is to be configured (e.g., simple
Waterfall, Spiral, prototyping, etc.). As Harris-Jones et al (1993) pointed out,
however, not all methods will give descriptions of each of these features, but they are
clearly important features of a project and a project manager will have to give some

thought to each point when developing a project plan.

The project plan itself is structured according to the model of the development
process stated or implied by the method. It is at this point that the task-based maodel
relies on RUSSET having an adequate representation and configuration of tasks
within a method. What is important here is that the task-based nature of software
development can be captured by the relationship between a project plan and an
understanding of the development tasks involved. The next step is to combine these

elements into a model of effort.
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8.1.2 Defining a set of measurements

The degree to which each of the elements described above influences effort can be
shown by attempting to deduce a model whereby each feature is defined within a
task-based framework. Similar to the approach taken by Readdie er al (1989) in
§4.2.2, the general model is defined here simply such that:

Effort = Z Tasks * Adjustment_ factors
Task, = Z:Pr oducts
Product, = External, * Internal; * Technique,

Adjustment_ factors = Actors * Roles * Process * Plan

Figure 8.2 : Metrics classification ree defining the task-based estimating model

Level 1 Level 2 Level 3 fevel 4
P e T 2t ey
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ustment faciors
jus

g ) = Process Measuremeniifd
Effort
Plan
Tasks

4—— Measurement#i4

External @— Measurement#s

Products < Internal @—— Measurement#6
Techniques  @— Measurement##7

In other words, the effort to carry out a task is defined as the sum of the effort to
develop each product (e.g., document, code, etc.) associated with a task. The
remaining elements from the RUSSET model are taken to be adjustment factors
which affect the nominal effort for the project as a whole, i.e., the number and
quality of the personnel, development strategy used and constraints on the plan itself.
Rased on these features, a MeLrics classification tree (after Porter & Selby, 1990) can
now be drawn (see Figure 8.2). This classification tree suggests that a task-based
estimating tool would require seven measurements to be taken of the develapment

process. These are described below:
1. Actor. An adjustment hased on an assessment of the qualities of the team

members. This is equivalent (o personnel factors cantained in most SCR

models but applied to each estimated rask. Personnel factars are, however,
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the most difficult measurement to take since a direct measurement of

individual productivity may encounter difficult political problems within an
organisation, while the use of subjective ratings is often seen as a drawback
of current SCE models.

2. Réles. An adjustment based on the different functions performed by different
actors. It should be noted that a person could have more than one role in a
project (e.g., analyst and programmer), but roles is here simply a high-level
measure of the co-ordination and communication complexity of a project.

3. Process. An adjustment based on the type of methodology used in
development. For instance, Boehm (1981) found that incremental
development projects were more efficient than simple Waterfall strategies.
This point, in itself, may have a bigger influence on the cost and effort
required by a project than any other factor.

4. Plan. An adjustment based on the constraints placed on a plan. In effect, this
is a measure of the (external) size and (internal) complexity of 4 documented
product. However, the specific imporiance of measuring the plan itself is (o
calculate scheduling and manpower constraints placed on the project. This is
equivalent to the COCOMO product cosi-drivers.

s Product external. A measurement of the size of the praduct to be developed.

To differentiate this factor from a measure of (internal) structure, size is
defined within TABATHA as a measure of external size. This measure will

change depending on whether the product is a (paper-based) document or

system code.
6.  Product internal. A measurement of the (internal) structure of the product.
As explained in §3.2, a notion of internal complexity is required to adjust the

apparent size of a product. Again, this measure will change according to the

nature of the product itself.

7. Technique. An adjustment based on the effect of using different techniques.
A measure of the sophistication of techniques being used reflects a notion of
the productivity expected from a project. This is equivalent to the COCOMO

project cost-drivers.

Interpretations of these seven factors are based on an understanding of the features
of software development represented within RUSSET’s software development
process model (see again Figure 8.1). As can be seen, all seven features are at least

potentially measurable while the adjusiment factors 1, 2, 3, 4 and 7 reflect a number
of properties already contained within a number of SCE models. The question naw
is how this information would be combined into a usable tool useful to project

managers.

175



CHAPTER EIGHT

Figure 8.3 : TABATHA - a task based estimating model
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8.2  Adescription of TABATHA

This section will give an outline specification and description of the task-based estimating
(ool which is here given the name TABATHA (TAsk-BAsed estimating Tool-HA). The
description provided atiempts to explain how the model outlined in the previous section
would interact with RUSSET and a (human) user. The architecture of TARATHA 8
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represented in Figure 8.3. As with most SCE models, a notion of the “size” of a system is
the key input to the TABATHA models of effort and project duration. There are four levels
of relationship which are defined here top-down and then used bottom-up by TABATHA to
generate an overall estimate of system size. These four levels assume that:

N

The size of a project is a function of the sum of task sizes multiplied by the product of
adjustment factors. A task is an activity which ransforms one or more products into
another set of one or more products. The size of a task is therefore related to the size
of the product(s) it uses and the size of the product(s) it aims to produce. The range
of tasks involved in the project and their relationship 1s the key functionality provided
by RUSSET; TABATHA models a range of adjustment factors based on the features
Réles, Process and Plan and a means of calculating the relationship between the
tasks. The constraints on the project would be rated by the user in order to produce
the required adjustment quotient.

The size of a given task is defined by the nominal size of the produci(s) produced
adjusted by the skill level of the actor(s) carrying out the task. The actor index is an
adjustment based on skill defined here in terms of years of experience in the project
rble, application area and development environment. In other waords, the more
experienced the actor the smaller the effective size of the task, even though the
product(s) remain the same. The experience values are provided by the user.
Experienceole appears because it becomes relevant here to deduce the impact of
individuals on a specific task. “Réles” appear in ‘1’ as a more general description of
the project team.

The nominal size of a given task’s product(s) is calculated as the size of the input
product adjusted by a transformation index. The product(s) used as input to a task
would be provided by RUSSET. The transformation index is the typical ratio
between the size of an input product and its output. The values of these indices
would be calculable by gathering data from a number of development projects. A
transformation index is effectively a size model operating on a micro-project level,
The task level is seen as the lowest level of detail required.

The nominal size of an input product is calculated by applying a number of merrics 1o
the products generated during the project. The metrics would seek to determine the
physical size and structure of the product (SiZ€exiernal AN S1Z€iniernals respectively).
The suggestion here is that both size and structure are needed fo determine the aciual
amount of “work” coniained within a product. These values would have o be
calculated as the products are produced, and with a complete sei of rransformarion
indices in place, would imply the size of subsequent products at each point in the life-

cycle.
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These four levels represent an instantiation of the metrics classification tree described in
§8.1.2. At the highest level, the estimate is produced on the basis of the tasks involved in
the project using the historically-derived transformation indices and represent estimating
using only levels 1 and 3 of TABATHA. This type of estimating is equivalent to the way
current SCE tools work and where the entire project is the single task “develop system.” At
a more detailed level when the user is creating the project plan, the user would assign
personnel to carry out each task and therefore would have details of their experience in the
rble, application area and development environment. This would allow estimating using
jevels 1,2 and 3 of TABATHA. As the project is carried out, the size and structure of the
actual products are calculated and used to re-calculate the estimate as the project progresses.
At this point, estimation would be carried out using all 4 levels of TABATHA.

§.3 TABATHA applied at the task-level

As an example of how TABATHA would create bottom-up estimates at the task level,
consider the gross simplification that a method follows a 6-stage Waterfall model. In this
case there are only 6 tasks, 6 input products and 6 output products. With example metrics in
parentheses and possible ransformation indices also given, TARATHA would represent the

task list as follows:

Task 1
Input product 1

il

produce user requirements

user requirements (number of bullet points)

i

Output product 1 = user requirements document (lines of text)
Trans index = 10

Task 2 = produce system specification
Input product 2 = user requirements document (lines of text)

Output product 2 = system specification document (lines of text)

Trans index = 2

Task 3 = produce system design
Tnput product 3 = system specification document (lines of text)
Output product 3 = system design document (lines of text)
Trans index =2

Task 4 = jmplement system design
Input product 4 = system specification document (lines of text)
Output product 4 = implemented system code (lines of code)

il

Trans index 150
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Task 5 = integrate system code

Input product 5 implemented system code (lines of code)

Output product 5 = integrated system code (lines of code)
Trans index = 1.1

Task 6 = test system code
Input product 6 = integrated system code (lines of code)
Output product 6 = tested system code (lines of code)
Trans index = 1.1

To carry out a task-based estimate, it is assumed the project manager would begin to apply
a number of project and personnel values (o the project plan. For instance, assume three
people are assigned 1o the project. “Personl” is the project manager and has 10 years

experience as a project manager, 1 years experience in the application area and 5 years in the
development environment (actor index=0.2). “Person” is an analyst programmer and has

2.2 and 1 years experience res ectively (actor index=0.5), while “Persond’ is & PrOrammer
) | £

and has 1, 0, and 0.5 years experience respectively (actor index=1.0). The actor index in

each example is fictitious but can be based on formulae produced by, for instance,
COCOMO. Tasks with more than one actor take the average value.

Task 1 and Task 6 are to be carried out by “Personl” and “Person2”’, while “Person2” and

“person3” carry out Tasks 2-5. Assume also that the users define 20 bullet points of

functionality, then:

Task 1 = produce user requirements document
where,
Nominal product size = 20 bullet points * 10
Task size = 200 nominal lines of text * 0.2 ; 0.5

200 nominal lines of text * (.35

it

70 effective lines of text

i

From this information, all later product sizes can be similarly estimated and thus, an overall

estimate adjusted by the size of the first stage product can be calculated. The indices given
above suggest that 20 bullet points of requirements at Task 1 stage would be ransformed
into 145.2 KLOC by the end of Task 6 if the actor index and general project adjusiment
factors are set o one (see Figure 8.4). Iis this 145.2 K size estimate which becomes ihe
first input to the effort and duration models. For instance, using this figure and horrowing
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the a parameter from Intermediate COCOMO’s effort and duration models in Semi-Detached
mode (see again §5.2.4), TABATHA would generate the result:

Effort = 3.0%(145.2)
= 435.6 person-months effort
Duration = 2.5%(435.6)13

18.95 months duration

il

Dividing effort by duration suggests that 23 people are required, which is very close to the
average of 24 people which Boehm (1981) suggests is typical of projects in semi-detached
mode.

Figure 8.4 : Transformations of products in a Waterfall life-cycle |
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The approach described here has some similarities with that taken by Detailed COCOMO
(Boehm, 1981, pp344-474). Detailed COCOMO seeks to increase the sensitivity of
Intermediate COCOMO by changing the effort model parameters by phase and the cost-driver
values by granularity down to estimating individual modules. Since a task is defined in
TABATHA in terms of its products and a COCOMO module can be seen as a product there is
a superficial similarity between TABATHA and Detailed COCOMO. However, the key
difference between the two models is that Detailed COCOMO does not estimate on the basis
of the input—>output interaction between these products or provide a framework within

which to Tink the task products together.

In Detailed COCOMO, estimates are strictly independent estimates of system or sub-system
components which are then summed to produce an overall estimate. The only notion of there
being a structured method is on the assumption that the statistical data is collected within an
environment where a method has been used. TAB ATHA, on the other hand, requires an
understanding of the development method being used in order to structure the estimaie
around the tasks which produce the products. Thus, unlike Detailed COCOMO, TABATHA
would be able to continue to adjust the overall estimate and take inio account imposed

deadlines and changes to requirements as the project progressed.

8.4 The effect of requirements volatility

Those companies which used SCE tools were characterised by the experience of
requirements changing on most or all projects (see again §7.3). This effect would be
modelled by TABATHA not as an adjustment factor within the model itself, but as a method
by which the effect of changes can be calculated. The argument here is that if requirements
typically change within an organisation then the parameters of the SCE model should reflect
this volatility. There would be no point introducing an adjustment - such as COCOMO'’s
RVOL - if this situation is typical since subsequent projects would be in line with the
historical database and RVOL would always be rated as “average”. What is needed instead is
a method of gauging the effect of RVOL on the estimate already produced.

Consider a change (0 a project’s structure by representing the project in PERT-like form
(see Figure 8.5). The beginning of a project is represented by the node T0, and the end by
Tn. The intermediate nodes are the tasks numbered T1 to T7 in project 1. Presume now ihat
the user requirements change such that task TS is subdivided into twa sub-tasks, the majority
of the work in TS being preserved in TSa while the new task T8 implements the changes in
the requirements. How will this change affect the overall cost and effort of the project? By
analysing the praject on @ task-by-task basis, TABATHA allows a revision aof the classic
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approach to be applied, whereby the extra effort is the rework required to develop tasks T5a
and T8.

Figure 8.5 : The effect of requirements volatility on a project’s structure

However, the SLIM and COPMO models also suggest that there is an overhead incurred
by the interaction of personnel on a project. In the same way, therefore, it must he assumed
(hat there is an overhead involved in a change to a project. This can be seen by the increase
in complexity of the PERT-like chart. This will affect both effort (in separating and
designing T8 from T5 and TSa), and in the duration of the tasks since T6 and T7 are now
dependent on T5a and T8 being complete. Therefore, while the initial estimate must be based
on a linear model, re-estimating must be based on a more complex madel which focuses on
ihose tasks which are affected hy the change in requirements. Such a model would have the

form:
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Estimate,,, = Estimate,, — Estimate, . +a.(Re~ estimate,, )"

where,
Estimateew = Rstimate for the revised project (Project 2)
Estimateg)g = QOriginal estimate (Project 1)
Estimate aeks = Bstimate for the affected tasks (T5)

Re-Estimategs = TABATHA estimates for the revised tasks (T5a and T8)

The re-estimate model given above would be a local model based on the specific
rransformations between tasks using the same data as that which develops TABATHA. Such
a model would also overcome the problem of deducing the effect of requirements volatility,
sifice it is only the affected tasks within the project which are ve-estimated rather than the
project as a whole. The model also reflects the non-linear relationship between work added
to a project and the effort expended in carrying out this additional work. In this way,
TABATHA effectively contains SLIM- and COPMO-like micro-models working within a re-
estimation framework which sits more reasonably within the current working practice of UK

project managers.

8.5 A metrics programme to validate TABATHA

As mentioned earlier, while the relationships between products are assumed to be linear -
following Kitchenham (1992) - the actual values of the transformation indices and the value
of the parameter a for a particular organisation are a matter for substantial data collection,
Such a metrics programme would collect the seven sets of data specified in §8.1.2. There
are five adjustment factors and two size measuremenis within this set. The metrics

programme required would therefore have 10 steps, as follows:

1. Decide on the level of task-based reasoning to be carried out for the estimate. 1tis not
necessary to collect data on every product generated by the method. The key point is
10 have a level of detail which coheres with the level of detail required by a project
manager identifying the tasks within a plan.

5. Identify the products ussociated with each of these tasks. 1f the key products are
specification and design documents, milestone reports and coded programs, then the
tasks which generaie these products are the ones 1o be measured.

3. Devise a set of metrics 10 measure the size and structure of each of these producis.
The meaningfulness of the resultant madel will critically depend on this step, but at
present, it is difficult to be sure how {0 guarantee a Ceriain meiric CApLUTes an
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important property. The complexity of the process itself suggests that simple - rather
than sophisticated and detailed - sets of measurements are likely to be adequate.
Devise a means of recording the results of ‘3, the five adjustment factors and the
cost, effort and duration of individual projects. Ideally, these measurements would
be taken automatically, and there is some research being conducted into this problem
(e.g., Cote & St.Denis, 1992). What will continue to remain a problem is
guaranteeing the veracity of the data collected.

Begin collecting the relevant data on a series of live projects. As has been pointed out
by a number of researchers (e.g., DeMarco, 1982: Grady & Caswell, 1987, Kusters
& Heemstra, 1992), it is clearly vital to get the co-operation of the people involved in
the data collection such that the quality of the data can be relied upon.

When sufficient data has been collected, perform linear regression 10 dedice the
ransformation indices from one product to another. This step produces the size
model which has been presumed here (o be a linear relationship between a product
input to a task and its resultani output product. It is a matier of debate when
“enough” data has been collected.

Use linear regression to deduce the relationship between size and effort. Following
Kitchenham (1992), it has been assumed throughout that there is a linear relationship
between the measured size of a product and ihe effort required to praduce it.

Use regression to deduce the relative effect of ihe five adjustment factors on the
nominal size model in ‘7’ to produce a micro-effort model for each task. This step
seeks to adjust the nominal size model deduced in the previous step to a model of the
effective (i.e., actual) effort required to produce each product.

Use regression to deduce the relationship between effort, E, and duration, D. Again,
following Kitchenham (1992), it has been assumed throughout that the relationship
between effort and duration has the form D=a.E!/3. This could be presumed in the
calculation by performing regression between D and E!3. Alternatively, to test the
original assumption by taking logs such that the equation now becomes
log]0D=10g10a+1/3.10g]0E. Since this equation now has the form y=c+mx, by
plotting logioP against logioE it should be seen that the gradient of the line is 0.333
and the y-intercept is logoa.

Use linear regression to deduce the relationship berween effort and £cost. This siep
only makes sense on the assumption that the work carried out during the development
project is costed and charged to a client. If no direct charging mechanism is in place,
then the transformation from person-months effort 1o financial cost becomes A

redundant siep.

The actual cost of carrying out this programme would depend on the mechanisms already

in place to collect project data. The survey in Chapier 6 suggesi {hat most companies (T8%)
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collect at least the basic effort data on most projects while 94% produce plans upon which to
define step 1. There is reason to believe, therefore, that the cost of validating TABATHA

would be in the lower end of the 5-10% range cited earlier.

£.6 Remaining problems

Given the specification of TABATHA presented here, there are still a number of problems
which would hinder the development and validation of the tool. These problems are
identified and discussed below.

8.6.1 Measurements of paper products

What is particularly novel about the description of TABATHA given here is the need
to measure the non-code products such as reports and other documentation. The cost
of such products was highlighted in FPA Mkl which saw the Documentation
technology factor (TCF) to be ihe most expensive element in the FPA model,

commanding double the degree of influence (DY) of other factors.

For early estimates it is important 1o measure ihe requirements and specification
documents themselves. But how can this be done? Superficially, one could suggest
that lines of text could “size” the amount of work contained within a document in the
same way that lines of code is used as a (simplistic) measure of program size.
However, in the same way that lines of code is extremely sensitive to individual
programming style, this measure of text will also be sensitive to individual writing
style. The example given in §8.3 suggests that requirements are given in bullet
points but this would also assume that items of functionality can be readily separated
and noted. Given the propensity of requirements to change a simple method would

seem to be appropriate. What remains clear is that some representation must be used.
8.6.2 Identifying relevant adjustment factors

It is assumed that if a proper set of adjustment factors are to be identified for
TABATHA, then there must be some way of isolating the effects of a particular cosi-
driver from other influences. If a scientific approach were to be used, this would
mean conducting two development projects and deliberately changing one aspect of
the development environment and holding all other factors constant. The likelihood
of studies such as these being carried out, however, remains remate.  Software
development is expensive and it is unlikely that any company would be willing io
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conduct such experiments. A means of identifying these factors is the greatest
challenge for software metrics.

TABATHA assumes that only four factors influence the cost of a project, namely:
the experience of individual programmers, the roles carried out by the development
teamn, the process of development employed, and the constraints applied to the plan
itself. This is considerably less than other models have suggested. Care would
therefore have to be exercised over the quality of the data used to establish exactly
how these properiies affect cost. While the years’ experience, number of staff and
the use of (say) a Waterfall method would be fairly straightforward o collect, it is the
fourth set of data which would be difficult to capture. What is it about the project
plan which needs to be measured? The supposed complexity? Or timescales
imposed on the project? Or something else?

An ability to link the problems of generating the plan to generating estimates is
important since it is only at this point in the EEPS model that praject managers
perceive the true process of estimating to exist. Planning and estimating are
inextricably linked. This is why the process model given in §8.1.1 demands thai in
the same way estimaies are meant (o affect the plan, there must also be some
mechanism by which properties of the plan affect the estimates. Without such a
mechanism it would be difficult to say how one influenced the other. The adjustment
factor “Plan” might therefore explode into many of the subjective factors used by
other SCE models. By focusing on the problems and risks associated with planning
rather than estimating, however, TABATHA holds out the possibility of a new

assessment of what counts as a problem in the minds of project managers.
8.6.3 The cost of a metrics programme

Metrics programmes are expensive and in the competitive world of software
development, or, more importantly, where only fixed-priced contracts are put out for
bid, the cost of collecting such data may be the end to any profit. Even though
‘Option Zero’ may be seen (o be false it could well be that companies are not prepared
{0 invest the money to develop accurate and useful SCE tools. The number of
adjustment factors that could have a potential impact on the cost of a praject implies a
complex SCE maodels and increases the demand for large metric databases. All of
these problems add 10 the cost of developing or calibrating a SCE tool.

The solution to this problem would seem to be to develop simple madels with only
a few adjustment factors. The simpler the model, the more likely a project manager %
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to use it. The less data required to validate the model the cheaper the development
process. This point seems to be the direction SCE research is now going, where the

measurement of a problem must be as simple and as direct as possible. For instance,
Pfleeger (1993) notes that:

“The greater the distance from measurement {o problem, the less likely
developers are to use the measurement. For this reason, simpler
measures are better than complex ones. If a problem can be
understood with one piece of data instead of several, so much the
better. For metrics, more is not necessarily better (p73).”

Of the two models identified in Chapter 7, the simplest form of SCE model is the
bidding/tendering tool placed at step 2 of the EEPS model. This high-level model is a
surrogate for TABATHA since it operates before a plan has been produced and when
the details of the project are still unclear. Although such models have been developed
for conventional systems, the question still remains whether the same conventional
meirics and techniques can be used to develop gize and structure metrics and SCE
models for KBSs. If so, then the control of hybrid projects becomes the use of the
same set of project management techniques, regardless of the nature of the sysiem.
In other words, can conventional size and structure metrics be extended to KRS,
such that a measure of quality and SCE models of effart (and thus duration) can be
developed? This will be the subject of the next chapter.
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9. Developing Hybrid Metrics and Models

“Our doubts are traitors and make us
lose the good we oft might win, by
fearing to attempt it.”  William

Shakespeare (‘Measure for Measures’).

Summary: /n order for TABATHA to be useful for hybrid projecis, it is
necessary to assume that the languages used to develop knowledge based
components would also be susceptible to the same form of (metric) analysis as
conventional languages. Prolog is taken to be a mainstream KBS development
language and so a description is given here of an analysis of 80 commercially-
developed Prolog programs. It will be argued that by refining the definition of
three “classic” metrics (Software Science, cyclomatic complexity and data fan-
infout), excellent models of both Prolog structure and size can be developed.
This is the first step to developing the more sophisticated models required Dy
TABATHA to estimate the size and cost of Prolog components.

Embedding the TABATHA model within RUSSET allows TABATHA to receive
information about the number and range of tasks within a proposed project plan. But
RUSSET also aims to support the integration of conventional and KBS methodologies, i.e.,
TABATHA would receive information about both conventional and KBS tasks. The method
of estimation proposed by TABATHA assumes that the products of both styles of task can be
measured in the same way. However, while there have been some attempts to define (static)
code metrics for KBS code (see again Chapter 4), there have been no known attempts fo use
this low-level data to develop the high-level SCE models or tools required here for KBSs.

Can the same types of metric be applied to both conventional and knowledge based systems”?

The TABATHA model requires a substantial amount of data collection in order to be
validated but would generate estimates at exactly the right point: while the project plan is
being developed. The EEPS model in Chapter 7 also identified the need to generate estimares
pefore the plan has been developed. Clearly, this higher-level model could not be bised an
an analysis of tasks. The EEPS model suggests this point is at the carliest stages of the
development process when the project manager has only the highest-level details abott the
praject. This is where conventional SCE tools are at their most useful since they can
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generate estimates based on only nominal information, using a large historical database in the
same way that a project manager would rely on years of experience. The advantage of the
SCE tool is that it gives a disciplined approach to estimating, such that, anyone who has the
same input data will generate the same output estimate. But can such a high-level model be
developed for hybrid projects which also contain KBS components?

Since the history and body of knowledge for conventional metrics is substantially greater
than for KBS metrics, it would seem sensible to attempt to exiend a number of conveniional
metrics to KBS, rather than the other way around. Because of their standing as “classic”

metrics, the metrics chosen for extending to KBS are taken to be:

« non-comment, non-blank lines of code (LOC);

« Halstead’s (1972, 1977) Software Science (see again §3.1.1);

o McCabe’s (1976) cyclomatic complexity (see again §3.2.1);

s Henry & Kafura’s (1983, 1984) data-flow fan-in/out (see again §3.2.2).

Although FPA (Albrecht & Gaffney, 1981; Symons, 1988, 1991) can also be seen as a
“classic” approach to metrics, it was not investigated here because it was thought unlikely
that the necessary specification/design documents would be available for a KBS project from
which to investigate a count of Prolog function points. The advantage of the remaining four
metrics above is that they are code-based, and so, as long as some KBS programs can be
found then the simplest form of analysis can be carried out. There are a number of languages
and tools for developing knowledge-based including development languages such as Lisp,
OPS5 and Prolog, and expert system shells such as ProKappa and Interleaf. Because of the
author’s familiarity with Prolog and its popularity throughout Europe, however, Prolog is
taken here to be suitable for study as a mainstream KBS development language.

The goal here is to build models of both size and structure: what TABATHA calls
§iZ€exiernal ANd S1Z€inernal: A measure of Size€exiemal 15 the basis of sizing models which
feeds into models of effort and duration. A measure of Sizeinernal balances a notion of the
amount of work required to produce a product given its structural complexity, and is also
used to detect error-prone programs. Lines of code (LOC) is taken to be a baseline for both
size and structure. The Halsiead metric competes with LOC as a measure of Siz€exiernals
while McCabe and Henry & Kafura’s metric competes with LOC as a measure of Siz€iernal-
What needs to be answered here (s“Which is best?” and “Is the ‘best’ good enough?” The

rest of this chapter will therefore set out 1o describe:

o ihe nature of the Prolog language,
o a re-definition of Software Science, cyclomatic complexity and data flow for Prolog;

189




CHAPTER NINE

® a tool to collect the (above) metrics;
¢ an analysis of the structure of LPA Prolog programs;
o deriving a simple Prolog sizing tool.

9.1 The Prolog language

Prolog (PROgramming in LOGic) is a declarative language which defines functions as
logical statements in first-order predicate calculus form. The goal of a Prolog program is to
satisfy all conditions of a relationship using mechanisms such as tree-based data structuring,
pattern-matching, backtracking and recursion. For instance, consider a family of seven
people, namely: Mike who is married to Jane, their children David, Roger and John,
David’s wife Judy and their child Sam. Each name in the family are atoms of data which can
be represented as a tree such as: \

Each atoms is declared in Prolog as a factual clause. A fact does not require any further

processing, it is known to be true. The relationship defined between two atoms may be

called parent, i.e., who is a parent of whom? Thus, we have eight clauses:

parent( mike, david).
parent( mike, roger).
parent( mike, john).
parent( jane, david).
parent( jane, roger).
pareni( jane, john).

parent( david, sam).
parent( judy, sam).
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The comma “,” separates elements of the clause, while the full-stop “,” denotes the end of
the clause. The parentheses “(...)” group arguments together. The relationship here is that
the first term in parentheses (the first argument) is the parent of the second term (second
argument). The term “parent” is called a predicate or functor and is the means by which the
Prolog system looks for, and finds, required pieces of information. All names assigned to
predicates or variables are defined by the user. Any name may be used. Prolog simply
looks for and attempts to prove the truth of any staiement given to the program. For
instance, if Prolog was asked to find parent( mike, david) it would reply yes, since this
fact exists in the above program and so is known to be true. The query pareni( mike,
david) becomes a Prolog goal which it attempts to satisfy. The declarative nature of Prolog
means additional functions can be simply added to the program without specifying the

procedure by which the new clause is used by the rest of the program.

If Prolog were asked to find married( mike, jane) it would reply no, since the
relationship “married” has not been defined and so Prolog cannot prove that it is true. Notice
also that the first letter of the name is in lower case rather than (for pronouns) the correct
upper case letter. But, if Prolog was asked paveni( Mike, David) it would be able o
match with any of the above eight clauses. This is because a variable beginning with an
upper case letier is an uninstantiated variable, i.e., one that will match with any atom. Thus,
Mike is equivalent to X and will match with any clause argument. Variables which do not
begin with an upper case letter -such as mike - is called an instantiated variable and will only
match with an uninstantiated variable or another atom of the same name. A “match” is where
Prolog attempts to find a clause with the same pattern of predicates and arity (i.e., number of
arguments). In the above eight clauses the arity is 2. Where the argument is an atom (or
instantiated variable such as mike) the match must be exact; where the argument is a variable
(or uninstantiated variable such as X) then it will match with any argument in the correct

position.

Thus, parent( mike, Mike) will first return Mike=david because Prolog searches
depth-first, breadth-first, and so the fact at the top of the eight clauses above is the first fact
which satisfies the required relationship. The uninstantiated variable Mike matches with and
is instantiated to the atom david. A semi-colon ;" instructs Prolog to assume
Mike=david is false, backtrack up the data tree and search for other solutions which may
satisfy the relationship. Thus, giving Prolog “;" after the first solution will then refurn
Mike=roger and then Mike=john. Similarly, asking Prolog parent( jane, XY would
return X=david. However, if Prolog were asked io find parent( mike, jane, david) it
would reply no, because only relationships with two arguments (arity=2) are known. If
Mike could not instantiate iiself to some value then Prolog would return samething like
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Mike=_ 9083, where _9083 is simply the variable number assigned to Mike as it attempts

to satisfy the goal. A term beginning with an underscore “_is also a variable.

A “yule’ is a clause where conditions are attached which must be satisfied before the clause
can be known to be true. For instance, the relationship “grandparent of” can be defined

using the same eight clauses above with the rule:

grandparent_of( X, Y) :-
parent( X, 7),
parent( Z, Y).

This rule reads that X is the grandparent of Y if X is the parent of Z who is the parent of Y.
The terms X, Y and Z are uninstantiated variables. The predicate grandparent_of is the
head of this rule-clause and has two parent sub-clauses in the body. The operator = i8
equivalent to an “if*. Using the same eight facts stated earlier, if Prolog were asked
prandparent_of( X, Y) it would reply with X=mike and V=sam and then after an “57 it
would reply X=jane and Y=sam. A second ;" would return no because there are no other
solutions. It should be noted that the relationship grandfather_of or grandmother_of
cannot be defined because the relationship “male” or “female” is not a known fact.

More complicated processing can be carried out using recursion, which is when a rule
contains a sub-clause in the body which is identical to the head of the clause. For instance,

the following rule is recursive:

member( X, [ X | LD.
member( X, [ _ | LD -
member( X, L).

This rule reads that if X is a member of a list [..] which has X as its head, then stop;
otherwise, remove the head of the list and try again. The head of a list is simply the first
item. The operator “|” separates two elements, in this case, the first item from the rest of the
list, L. The underscore operator “ > will match with any variable and is a “don’t care what it
looks like” match. If the list L no longer has a head which can be removed, i.6., it is
exhausted, then the processing Stops and the member relation fails. For instance, if Prolog
was asked member( mike, [ david, roger, john, mike, jane]) after three cycles
around the second recursive rule, Prolog would maich on the fourth atiempt on the first
clause with member( mike, [ mike | janel). Prolog would then packtrack through the
cycles and return a yes. Similarly, if Prolog was asked member( ¥, [ david, roger,
john, david, jane]) five solutions could be found for X.
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In summary, therefore, the power of Prolog rests in its ability to declare functions that can
“run” backwards or forwards such as parent( mike, X) or parent( X, david), the use
of automatic backtracking which allows a search for more than one solution, and in its use of
recursion to elegantly define an infinite number of the same processes. There is more to it
than this, of course, but space does not allow a more detailed description of the language.
More complete descriptions of Prolog exist elsewhere (e.g., Clocksin & Mellish, 1981;
Bratko, 1986; Dodd, 1990). The question, however, is whether such a language is so
different from conventional languages that no metrics can be extended to capture its inherent
properties.

9.2 Defining Prolog metrics

The “classic” metrics which are to be extended to Prolog must be described in stch a way
fhat the elements which need to be counted are close to elements of the Prolog language. The
metrics to be defined are:

« lines of code (LOO);

«  Software Science;

s cyclomatic complexity;
o data flow fan-in/out.

Lines of code (LOC) is primarily a size metric which can be used as a measure of structure
on the basis that the longer the program the more likely it is that an error has been introduced.
The lines of code definition used here is the common non-comment, non-blank lines
definition and LOC is included simply to see if such a simple metric can out-perform the
other metrics. However, there is debate even for conventional languages of how to define
“pperators” and “gperands”, while imposing a clearly procedural notion of control flow or
data flow to a declarative language would seem to stretch the notion of what these metrics are
meant to be measuring. However, if such metrics can be extended to Prolog, then it must be
on the assumption that Prolog is just another language and defining what is meant by an
“operator” is the same as, say. Pascal or COBOL. After all, computer Janguages have the
same implementation at the machine code level. The following definitions of the “classic”

metrics are proposed on this basis.
9.2.1 Software Science for Prolog

The need here is 10 define a counting stralegy whereby counts of operaiors and
operands can ke defined far any Prolog program. The calculation of program lengih

FeEMAains:
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Nhat =1y.logni+N2.logaN2

Following the discussion given in §3.2.1, operands seem to be the easiest to define
and are taken to be any instantiated or uninstantiated variable. Thus, numbers,
instantiated and uninstantiated variables, and the underscore (null) variable are all
counted as operands. The in-built operators true and fail are also taken to be
operands on the grounds that they are values which Prolog takes to satisfy or fail a
clause. Therefore, although a Prolog programmer does not need to define the value
of true or fail, it acts in the same way as X=10 is either true or false. However,
this definition cannot guarantee to count only operands since predicates - which must
be taken to be operators - can appear to be operands. For instance, consider the

clause:

grandparent_of( mike, Y) :-
parent( X, Z),
parent( Z, Y).

It might initially be assumed that along with X, Y and Z, mile is an operand.

However, if the next clause read

mike :-
not parent( jane, ).

then it would be clear that mike was a predicate with no arguments that ruled out
jane the variable from being detected as a grandparent. This is permissible in Prolog
and is seen as one of its programming strengths, but makes it impossible to be 100%
certain of correctly classifying mike unless the clause mike was in the same
program. Where systems are broken down into modules it cannot be guaranteed that
the use and the definition are in the same prograf. One solution would be to classify
al] atoms as potential operands and confirm the classification after analysing all the
other programs and finding no other definition of the atom mike. This would greatly
increase the cost of counting operands, however, and was not considered a viable
solution to the problem. The potential of misclassifying a predicate as an operand

remains in this counting strategy.
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Figure 9.1 : Example Prolog program (in Edinburgh syntax)

process_term( ?-( Term), , ‘$none’) :-
call( Term, ‘$none’) -> true

.
5

true.
process_term( call( Term), , call( X, _)) :-
?(:::endwofmfile,
fail
call( Head :- Tail( ‘$none’)).
- call( ).
- op( 150, xfx, ::).

cali( ::( Term, _)) :-
call2.

Table 9.1 : Example Halstead-table (for the program in Figure 9.1)

Operator j £, Operand j £ “
(..) 1 12 _ 1 5
, 2 11 Term 2 4
- 3 6 ‘$none’ 3 3
. 4 5 true 4 2
call/1 5 4 X 5 2
process_termy/3 6 2 fail 6 1
call/2 7 2 end_of_file 7 1
: 8 2 150 8 1
22 9 2 call2 9 |
7- 10 ]
op/3 11 1
-> 12 1
! 13 1
xfx 14 1
= 15 1
Head/0 16 1
ny=17 Ny=54 Na=9 Ny=20
N = Ny + N |
= §2+20 = 72 .
Nhat = 1p.logan; + Na.logane
= 17.]oga17 + 9.1og29 = Of
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Similar to Halstead’s definition, an operator is taken to be all other elements of code
which are not operands. Thus, all predicate names, in-built operators (such as
bagof, mathematical notations, etc.), parentheses “(...)”, square brackets “[...]",

12 2)

commas “,

[228 21

, full-stops “.”, the rule operator “:-” and user-defined operators (using
the function op) are counted as operators. The possibility of misclassifying a

predicate as an operand affects the count of operators in the same way as mentioned
above.

The definitions given above would allow a count of Nj and N to be produced.
However, a count of 1)y and 13 would depend on whether itfems with the same name
are counted as the same or different, depending on their function. For instance, since
variables are locally bound, should the various instances of the operand X in the
member relation defined earlier be counted as occurrences of the same operand?
Within the same clause clearly it should, but since there are two member clauses
defined, what about the X in clause 1 and the X in clause 27 Technically, there is no
relationship. The two X’s in clause 1 could be replaced by two Got_it’s and the
function would still perform correctly. However, since Software Science is meant 1o
be based on an understanding of the psychological make-up of a programmer, one
can suggest that whenever the same name is being used (for a variable or a predicaie),
then there is a connection between one and the other. This suggests that there are

four occurrences of the same operand X defined across two clauses.

This is not quite satisfactory, however, since Prolog does make a distinction
between predicates which otherwise appear to be the same. Specifically, when
Prolog seeks a match with a predicate the number of arguments that a predicate has
defines whether the match is successful. Thus, parent( X, Y) will not match with
parent( X, Y, Z). For this reason, predicates are only counted as occurrences of
the same operator if they have both the same name and the same arity. This is the
only proviso attached to any count of operators. All non-predicate operators, i.e.,
inbuilt operators such as parentheses, commas, etc., are counted as occurrences of
the same operator. Thus, five sets of parentheses would add one to 1y and 5 to Nj.
Using these definitions, an example of how they are applied for the program in
Figure 9.1 is given in Table 9.1.

It should be noted that Figure 9.1 and Table 9.1 attempt 0 make clear how o
classify some of the more complicated structures in Pralog and are not meant {0 act A8
an example of Nhar being an accurate estimator of N. Such an example could he
easily contrived. The fact that Nhar is not a good estimate of N in this case neither
confirms nor denies the validity of the counting strategy proposed. The specific
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problem in Table 1 is that 1)} no longer becomes a good predictor of Ny because there
are too many operators with only one occurrence. This unbalances the program
length equation, but it remains a matter of empirical investigation as to whether 1
and 15 are useful concepts on which to base a model of system size, or whether Nhar

can ever be a good predictor of N.

Figure 9.2 : Example cyclomatic complexity graph
(for the program in Figure 9.1)

process_ierm

9.2.2 Cyclomatic complexity for Prolog

Cyclomatic complexity is a structure metric related to a measure of program control
flow and is meant to relate to the error-proneness of programs. The calculation of

cyclomatic complexity remains:

v(G)=e-n+2

Cyclomatic complexity is defined here in terms of the calls from one predicate (o

another and has the following properties:

.._.\
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s asingle node replaces all instantiations of the predicate (such that, a call by any
predicate with the same name is represented as a call from a single node with
that name)

« apredicate in the body of a clause is represented as an arc from the clause head
node to the clause body node (where one arc represents all calls between
predicates of the same name)

On the surface, cyclomatic complexity may appear to be the most inappropriate
metric to extend to a declarative language such as Prolog, because Prolog does not
make explicit the flow of control from one part of the program to another. However,
by defining predicates as the point at which decisions are carried out, it seems
reasonable to suggest that the nodes of a directed graph are the names of Prolog
predicates. In Prolog terms, a predicate is the point at which the conditions of the
clause are known to be true or false. The arc of the graph would then be to the
predicates which form the body of the clause since Prolog must search for, and
attempt to satisfy, the sub-clauses stated. Using these definitions a program can be
represented as a directed flow-graph from which a measure of cyclomatic complexity

can be taken (see Figure 9.2).

Unlike the definitions of predicates used for Software Science, the number or arity
of clauses with the same predicate name does not seem to be important. Principally,
the number of predicates does not affect the relationship defined by a set of predicates
and its sub-clauses. For instance, the two clause member relation defined above

could have been written as:

member( X, [Y | L 1) :-
( X=Y 3
member( X, L)
).

The only property which needs to be captured in either version of the member
relation is that there is a single recursive loop being defined. The above version is a
more opaque version of the first. Thus, a node within the directed graph is assigned
a predicate name as soon as a predicate is defined. The arcs from node to node are
from clause head to clause bady. Further predicates with the same name do not add
further nodes to the graph, but if the sub-clauses are different - i.e., they are direcied
to different predicates - then a further arc is added 1o the node to the newly assigned
sub-clause predicate. The arity of the predicate is not considered important here
hecanse it is the name being used as a location flag that is impartant, not ihe suciure.
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Rules do not necessarily require a predicate, since the rule :- get_list( X, L).
would fire in Prolog without any pre-conditions. In other words, the above rule
would fire as soon as Prolog got to that part of the program. But how can this be
represented in a McCabe graph? It was decided to represent null predicates by
grouping them all under a node called NULL. This would get around the problem of
losing the body of such rules because there is no predicate with which to denote their
position in the program. Strictly speaking, however, grouping these clauses together
is unsatisfactory since there is virtually no relationship between them other than their
lack of a clause head.

Forcing a grouping is necessary, however, since without a strategy of grouping
predicates it would be impossible to know what direction to put on the arrows of the
McCabe graph. This is acutely problematic for Prolog since, as discussed earlier, it
is possible to flow in a number of directions through a clause. Furthermore, it is
possible to state that a relationship should not exist between one predicate and

another. For example, consider the following program:

get_list( _, [ D.

get list( X, [Y | L] :-
parent( mike, Y),
not grandparent_of( X, Y),
get_list( X, L).

Is there a relationship between get_list and grandparent_of or not? The view
taken here is that there is, since get_list cannot be satisfied unless grandparent_of
is consulted. In other words, the existence of the relationship is not defined by the
need to return a no rather than a yes but by the dependency get_list has on

grandparent_of.
9.2.3 Data-flow fan-inlout for Prolog

The data flow metric is a design metric related to a measure of the data being

~

communicated between modules. The calculation of Cp remains:
Cp = LOC * (fan-in*fan-out)?

Since Prolog is a declarative language and & program file cannot easily be defined
as a module or in relation 1o its neighbouring predicates, data-flow “module” is
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taken here to be a single clause (in that a clause handles a certain set of data
conditions) and has the following properties:

o data is equated with variables contained within a clause
¢ data flow-in is defined as an uninstantiated variable in the head of a clause

¢ data flow-out is defined as an instantiated variable in the body of a clause
The same supposition used in §9.2.2 about the flow from one part of a Prolog

program to another must be used here to define the way in which data flows from one

set of predicates to another. An example is given in Table 9.2.

Table 9.2 : Example data-flow table (for the program in Figure 9.1) .

No. of clauses Fan-in Fan-oul
1 2 1
I | |
1 1 0
2 0 0
Lines of code = 14
Data-flow, Cp = LOC * (Fan-out * Fan-out)?
= 14*(4%2)2
= 896

Of course, this would depend on a correct classification of operands. What is more
difficult to justify is that a clause can be equated to a module, since the data flow
metric is meant to be a design metric related to a measure of the data being
communicated between (conventional) modules. The problem is not that Prolog is a
declarative language, since, presumably, even Prolog needs to be modularised.
Rather, a Prolog clause so neatly represents a single procedure that even if the
representation is of a lower level than Henry & Kafura intended, it seems more

reasonable to take into account this feature of Prolog. The assumption being made,
then, is that because an individual clause handles a certain set of data conditions,
“data-flow” is defined in terms of the type of data contained within the head or body

of a clause.
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The two types of data flow to be defined are fan-in and fan-out. Data fan-in is here
defined as an uninstantiated variable in the head of a clause, while data fan-out is
defined as an instantiated variable in the argument of a sub-clause. The suggestion
here is that where an uninstantiated variable occurs in the head of a clause, an item of
data must be passed to the clause (flow-in) when the predicate is called either from
the calling predicate or from the body of the clause; while, an item of data is being
passed (flow-out) where an instantiated variable is used in the arguments of a
predicate call in the body of a clause. The underscore (null) operand does not count

as a flow because no data is required for the clause to be satisfied.

This definition of data-flow also accepts the possibility of data flow originating
from the clause body to the calling predicate by instantiating a variable in the clause
head. Such a situation occurs in the head of the second gel_lisi clause defined
earlier, when the operand Y is passed by grandparent_of and stored in the list L
only during backtracking after the clause has been satisfied.

This is an example of data tracking backwards within a clause. The definition is
assuming, therefore, that any uninstantiated variable in the clanse head must flow in
from somewhere. Furthermore, operands with the sume name in either the head or
body are counted separately on the grounds that the data is flowing to more than one

position in the clause. For instance, consider the following recursive program:

find_name( X, [ X|]LD] :-
write( ‘The name: ’),
write( X),
write( ‘is in the list.”).
find name( X, [ _ | L] :-
find_name( X, L).

There are three occurrences of uninstantiated variables in the head of the first
find_name clause and the data-flow metric would count a fan-in of three even
though a call to find_name may appear 10 contain only two items of data, i.e.,
find_name( tom, [ tom 1). The argument here is that if the first clause maiches
Prolog would have to instantiate all three variables, and this is the key to the amount
of data required by the clause. Whether this simplification affects the ability of daia-

flow to 1‘6]’)!’88611[ program structure remains to be seen.
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9.3 The PSA tool for automatic data collection

The need to develop tools to collect the low-level data has long been recognised, especially
within the metrics consortia sponsored by ESPRIT. Out of these projects have come a
number of code-measurement tools, such as COSMOS (P2686) and the QUALMS tool from
AMI (P5494). These tools apply conventional metrics to conventional languages, however,
and could not be used in this study. To solve this problem, a simple Prolog measuring tool
was developed which was given the name PSA (Program Structure Analyst).

The time-scale of this research did not permit a highly sophisticated tool to be developed.
In particular, given the problems identified in the previous sections of how Prolog makes 1o
distinction between commands and data, then the PSA tool would - ideally - take all the
programs associated with a system, parse the program text and then calculate the required
metrics counts. A tool which parsed Prolog code was seen as being beyond the scope of this
study and so a more simplistic design was adopted. 1t was decided to search a Prolog
program token-by-token until an operator was recognised that flagged a change in the
structure of the program, and only then would the previous tokens be collected together and

identified. For instance, given the program line:
member( X, [ X | L ]) :-

the idea would be for the PSA tool to pick up all the tokens which made up member, but
only when the “(* operator is found would it be recognised that the tokens collected so far
constitute a single item of Prolog code. PSA would then set about classifying the string
comprising m-e-m-b-e-r. In this case, because of its relationships to the “(* operator, PSA
can deduce that member is a predicate since no other class of Prolog atom can immediately

occur before this operator.

Similarly, when PSA finds the operator «» it knows it must have passed another
significant element. In this case, knowing that a predicate has been identified and the other
parenthesis “)” has not yet been found, PSA will know that X is an operand and the first
argument of the predicate member. Again, when PSA finds the operator “[* it knows that a
second (list) argument has been found. On finding the operators “[” and then “]” PSA
deduces that the second argument of member has been completed and that the operands X
and L are contained within this argument. The operator ©)” ends the number of argumentis of
member, while the operator “i=” flags that the next line contains the body of the clause
member. Thus, the name of the predicate is deduced in retrospect, and iis arity recorded
with each cormma outside a list between the opening and closing parentheses.
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Using this method ensures that PSA only needs to know the in-built operators which
separate user-defined functions (such as the names of predicates and variables). The
program is not parsed, but specific operators are looked for which denote that the string of
tokens just passed was either a predicate or variable. Of course, this method assumes that
PSA understands all the possible relationships that an operator can imply. This is difficult
for three reasons.

Firstly, the user may change the grammar of the program by defining new sets of
operators. This is done using a predicate called op which defines the precedence and
direction of the relationship (e.g., op( 900, xfy, because) defines the operator because
ihat relates x to y and has a precedence of 900). This freedom of defining operators is
problematic in the same way that predicates with no arguments appear to look like
instantiated variables. Without the op definition in the same program, it would be
impossible to detect that because was an operator, rather than a predicate or a variable.
PSA must therefore assume that where the op operator is used it will also be defined. This
need not necessarily be the case, however.

Secondly, by taking a token-by-token approach and looking back at the SITINE just past,
ihere is a danger that the string can be incorrectly classified if some look-ahead is not also
carried out. Specifically, the full-stop operator «» can denote seven different relationships o

the string of tokens before it. These are:

within a comment (such as /*This is a comment.*/);

within a write statement (such as write( ‘Press F1 for help.”));
at the end of a clause (such as clause :- !, fail.);

as a decimal point (as in 0.01);

4s a list head (such as .( Head, Tail));

as part of an inbuilt operator (such as =..);

in a user defined operator (as in Head ... Tail).

<~ oN B W N

The full-stop operator is unique in having this number of roles, however, and so it was
possible for PSA to look-ahead only when the “.” operator was found. However, this does

agsume that the user has not defined combinations of other operators.

Thirdly, the problem of predicates looking like instantiated variables remains. 1t was
decided to handle this by asking the user to tell PSA if a program contained such atoms.
Although accepting the vulnerability of PSA to mistakes such as these, it would not be
possible (o implement a proper solution without devoting a considerable amount of ime (o

the development of a more complete measurement tool. Clearly, even manual caunts will be

203




CHAPTER NINE

error-prone and the tool was needed only to be at least as accurate as a manual count. A
series of Prolog programs were collected and PSA and manual counts recorded. Where

differences occurred it was found to be the fault of the manual count rather than the PSA
tool.

The Program Structure Analyst (PSA) tool was produced using Prolog-2. The program
works by reading programs, one ASCII character at a time using get0, and storing the
characters as a list called stringsofar. If one of a number of special ASCII codes is
detected which denotes the end of an interesting sequence of characters (such as “(* denoting
the end of a functor name and the beginning of one or more arguments), the program

analyses the contents of stringsofar.

The most basic elements of a Prolog program are taken to be the Halstead operator and
operand count. Thus, the results are asserted into the database with the label pred,
operator or operand. The next sequence of characters is then read. At the end of ihe
analysis, all the preds, operators and operands are swept up and lisied in a table along
with the results of applying the Halstead length equation to the data. The table is saved ina
separate file under a name given by the user. The predicates in pred form the basis of the
McCabe count, where each predicate is a node in the directed graph and the number of sub-
clauses denote the arc from one predicate to another. The operands noted in the head or body
of a clause then form the basis of the data-flow count. PSA stores the results of the analysis

in results files with the following extensions:

« HAL (program length count);
« MCC (cyclomatic complexity count);
« . HAK (data-flow fan-in/out).

The prefix filename is provided by the user at the same time as PSA asks for the name (and
location) of the program to be analysed. PSA has the facility to analyse one program at a
time or a series of programs defined within a user-created Prolog file. The results files can
be printed and viewed normally through DOS. Overall, the PSA tool reads but does not alier
the code of the program being analysed in any way. Using lest.doc stored on drive a:\ as
an example filename with PSA stored on the ¢:\ drive, the functionality of PSA can he
summarised in Figure 9.3. The user is asked to define any predicate with no arguments,
i e.. those that may look like instantiated variables. This can be done manually when
analysing one program at a time, or by specifying all the relevant information in a file which
PSA then reads as each file is Tocated and analysed.

A
o
<
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Figure 9.3 : Representation of the PSA tool

User_inputs
e InpUls TESTHAL , [N

Program filename A:\TEST.DOC
Resulis filename TEST —

The original motivation behind developing the PSA tool was so that a number of
commercial companies could be confacted and, instead of having to travel to these siles and
laboriously collect data, the PSA ool could be sent direcily to ineresied compa nies and PSA
could be run overnight. This held out the possibility of collecting 4 large amount of daia in a
short space of time. However, even with adverts posted in two international Prolog
newsletters (Prolog-2 and LPA Prolog), only three companies expressed any interest. The
PSA tool was sent to these companies but no results were returned. A number of further

attempts were made to re-contact these companies, without success, and the scheme was

eventually abandoned.

A fourth, local, company was then contacted and a number of programs were made
available for study. These comprised a set of 84 commercially-developed LPA Prolog
programs which formed a substantial part of a commercial tool. Of these, 80 were
successfully analysed by PSA. The remaining four programs were found to have Prolog
structures which had not been programmed into PSA. These 80 programs were principally
developed by one experienced programmer, and so there was no need to investigate relevant
adjustment factors since programs developed by the same programmer in the same
development environment meant any adjustment factors could be set 1o 1.0 for each program.

With the adjustment factors thus simplified out, the 80 programs were seen as ideal
candidates for study and are the programs used 1o validate the “classic” meirics defined here
for Prolog. A summary of the Pralog metric data collected is given in Appendix B.
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9.4 Applving structure metrics to LPA Prolog

The aim of the structural analysis here is to deduce a threshold, T, above which Prolog
programs tend to be error-prone and to choose the metric which follows subjective ratings of
program complexity. For instance, McCabe suggests that programs tend to be error-prone
when v(G)=10. The relationship between “error-proneness” and “‘subjective complexity” is
one assumed by most structure metrics, but not one which has been adequately established.

The structure metrics being used are:
o lines of code (defined as non-comment, non-blank lines of code);

s cyclomatic complexity (defined in §9.2.2);
« data-flow fan-in/out (defined in §9.2.3).

Table 9.3 : Cross-correlation of Prolog structure metrics

Lines v(G) Cp Under- | Debug Tesi

of code stand ,
Lines of code | ---—--- 0.910 0.914 0.750 0.719 0.675
v(G) 0910 | --—--- 0.851 0.719 0.690 0.656
Cp 0.914 0.851 | ----- 0.749 0.658 0.607
Understand 0.750 0.719 0.749 | - 0.900 0.840
Debug 0.719 0.690 0.658 0.900 | --—--- 0.947
Test 0.675 0.656 0.607 0.840 0.947 | -----

Regression was not thought to be a good technique to be used here since neither the metrics
nor the rating data correlate well with the number of errors (see Table 9.3). A regression
model which attempted to relate two uncorrelated factors would produce a “best fit” that
passed through a widely scattered plot of data points. Instead, it was decided fo test the
relative accuracy of the three structure metrics lines of code (LOC), cyclomatic complexity
and data flow. Of the 80 programs analysed, 46 had a total of 115 post-release errors (i.e.,
5§7.5% of the programs had errors). Such errors record faults found by users and {3-tesfers
after the product had been released. No reports defailing coding or festing ervors were
available. Since the task of testing is assigned by program/madule, the analysis will focus
on detecting an error-prone program regardless of how many errors a particular program

might have.
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A range of data is available to help calculate a threshold value, T. Firstly, ratings out of 10
(1=simple, 10=difficult) were given for each program and obtained from a programmer who
was familiar with both the system and implementation language (LPA Prolog). If the
structure metrics applied do indeed measure “structure”, then there should be a good
association between the ratings given to a program and its metric measure. Three sets of
ratings were given by the programmer responsible for the development of the system on the
basis of the difficulty a Prolog-literate person would have in taking over the maintenance of
the system and (1) understanding, (2) debugging, and (3) testing each program file. The raw
data collected using the PSA tool is summarised in Appendix B, Table B.1.

Figure 9.4 : Representation of an ideal structure metric

% of ervor-prone
programs detected

100 + -
e
| Threshold A_},Aw“"”
- CXLuﬁ(j(igL &
50 +
i Zféggggéd noLl Threshold, T,
| " |48 between these
i - two values
'/'/
0 Ve b
L 50 100
Value
9.4.1 Comparing three structure metrics

The question now is how well each of the three structure metrics perform in terms of
correctly identifying those programs which contain at least one post-release error.
Ideally, a sharp change would be detected about the point at which structured
programs became unstructured and, hence, complex and error-prone. A good

structure metric, then, would have a narrow threshold below which few (if any)

programs have errors and abave which most (or all) programs have errars. The
behaviour of such a meiric is represented in Figure 9.4. In order to define & good

model, hawever, the following questions need 1o be answered:
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« how is the adequacy of a threshold to be defined?
« how are the thresholds to be calculated?
« how can the accuracy of the metrics be compared against the rating data?

The results of the survey in Chapter 6 found that project managers tended to regard
the average threshold for an “adequate” estimate at £18.8%. A reasonable criterion
for structure thresholds would therefore seem to be the highest value of T at which
programs exceeding T contain 80% of the recorded errors, St(T)=0.80. This
replaces the Pred(0.20) criterion for size or effort models. Along with this condition,
however, it also seems necessary to maximise the proportion of programs which
exceed T and have recorded errors (Propg;gy=max) and minimise the proportion of
programs which have recorded errors but do not exceed T (Propwrang=min). These
two measures replace MMRE. It would not seem reasonable to apply constraints 1o
Proprign and Propwrong - such as, Proprign=0.80 or Propwiong<0.20 - since this
would depend on the efficacy of the error detection and reporting procedure and not
property of the structure itself. These conditions are therefore defined as:

S1(T) = the proportion of programs with errors that exceed T
_E
Ng
Proprignt = the proportion of programs which exceed T that have errors
_E
N,
Propwrong = the proportion of programs which do not exceed T that have
eITors
__Ng- E
N(olai - N'I‘

where,
E = number of programs above T which have errors (max=46)
Ng = number of programs with errors (total=46)
Nt = number of programs above T (max=80)

Niotaj = number of programs (total=80)
The value of St(T) will vary between 0.00 and 1.00. In comparing the
performance of each of the three siructure metrics, therefore, the threshold far each is

taken be the highest value of T for which the following are true:

ST(T)=0.80 (and where Proppign=max and Propwrang=min)
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Figure 9.5
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Figure 9.6 : Comparison of stepped Propwrong_values for LOC, v(G) and Cp
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The thresholds are calculated in a step-wise fashion, beginning with a suitably low
value of T for which ST(T)>0.80 and increasing in small steps until St(T)<0.80.

The previous value then becomes the threshold value. The method used is as
follows:

1. Choose an appropriate value for each step-wise increase, I, (in this case, 1=5
is taken for all three metrics).

2. Let the first value of T = 0 (in order to show the rate of change of the values

of ST(T), Proprign and Propwiong)-

Calculate the values of Nt and E for the sample, N.

For each step, calculate St(T), Propr;gn and Propwyong:

W B W

If St(T)>0.80, let I=I+5 and repeat step 3, otherwise let the threshold value
T=I-5.

Appendix C, Table C.1 summarises the respective lines of code (LOC), cyclomatic
complexity (v(G)) and data fan-in/out (Cp) samples. The S(T), Propgign and
Propwiang values are listed in Appendix C, Tables C.2 to C.4 and represenied in
Figures 9.5 and 9.6. Only those steps where there is a change in Ny are listed in
Tables C.2-C.4, while the analysis ends when less than 80% of those programs with
errors are above the threshold. As can be seen the best metric appears to be

cyclomatic complexity, v(G), on the grounds that it:

. requires the fewest number of programs to be tested in order to capture 80% of
the programs with errors (56, as opposed to 57 or 59);

« has the highest Propgign and lowest Propwyrong at the required 80% cui-off
point (0.643 and 0.417, respectively);

« achieves the highest Proprign of any metric (0.656 when T=25);

« achieves the lowest Propwyong Of any metric (0.167 when T=15).

The actual threshold chosen for v(G), however, would depend on the limits placed
on the number of error-prone programs which are allowed to be released, and the
number of programs which can be reasonably tested during the final development

phase.
9.4.2 Finding an optimal combination of structure merrics

The previous analysis has shown that v(G) is the best of the three stricture meirics
far detecting error-prone programs. This section atiempis {0 deduce ihe performance
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of the metrics in combination and identify the best combination and threshold values.

For each metric, there are three threshold values, T, that could be chosen:

o the point at which more than 80% of the programs with errors exceed T,
« the point at which Propgigy i$ at a maximuny,

« the point at which Propwgng is at a minimum.

The performance of the metrics at these points can be deduced from Tables C.2-
C.4. However, since LOC, v(G) and Cp do not correlate perfectly against one
another, it is possible that they are measuring different aspects of a program’s
complexity, and so, may perform better when combined. The metrics can be

combined in one of a number of ways, such that:

« g program is error-prone if it exceeds T for metric | and/or metric 2 and/or

metric3.

Altogether, therefore, there are 14 combinations. Appendix C, Table C.5 shows
(hese 14 combinations when the threshold value, T, for each meiric is taken (o be
when at least 80% of the error-prone programs exceed the value of T. Appendix C,
Table C.6 shows the same 14 combinations when the threshold is taken to be when
Proprign is maximised (i.e., the proportion of programs which exceed T and have
errors is at a maximum). Appendix C, Table C.7 shows the same 14 combinations
when the threshold is taken to be when Propwrong is minimised (i.e., when the

proportion of missed error-prone programs is at its non-zero minimum).

As can be seen, the combination of metrics in Tables C.5-C.7 consistently show
better results (in terms of Proprign and Propwrong) than the metrics used in isolation.
This not only suggests a better use of the complexity metrics but also that program
complexity has more features than are captured by any single metric. The best
combination of the LOC, v(G) and Cp metrics can be deduced by applying the

following criteria to the performance of any set used:

. more than 80% of the programs with errors (i.e., >37 programs) must be
captured by the value of T (this criterion is assumed to be a minimum level of
accuracy for a metric which proposes to measure EITOr-proneness);

¢ Proppign must be maximised (such that the proportion of programs which
exceed T and have errors is also maximised);

¢ Propwrong must be minimised (such that the proportion of programs which da

not exceed T but have errors is also minimised);
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o less than 80% of the programs (i.e., <63 programs) must exceed the threshold,

T (since the fewer programs triggered, the less effort required to carry out the
testing).

These criteria are applied to the previous seven tables of threshold values in order to
find the best table entry satisfying all four points (except for Appendix C, Table C.7,
which failed the first criterion in all cases). As can be seen (see Table 9.4) the
combination of metrics from Appendix C, Table C.6 proves to have the highest
Proprigh: and the lowest Propwrong. The best use of the complexity metrics studied
here can therefore be deduced to be using cyclomatic complexity, v(G), and data fan-
infout, Cp. In other words, a program is most likely to be error-prone when it

exceeds both structure metric thresholds.

Table 9.4 : Best performing combinations of (one or more) metrics
(from Appendix C, Tables C.3 1o C.8)

Table Combination Ny D Sp(T) Prop
Right | Wrong

C.2 LOC=75 61 37 0.804 | 0.607 | 0.474
C3 v(G)=30 62 40 0.870 | 0.645 | 0.333
C.4 Cp=55 60 39 0.848 | 0.650 | 0.350
C.5 v(G)=30 & Cp=75 55 37 0.804 | 0.673 | 0.360

C6 | v(G)=25&Cp=55 | 57 39 | 0.848 | 0.684 | 0.304
ci | | e e

This result suggests that the complexity of the control and data structures are the
key to a program’s overall error-proneness and not simply a matter of program
length. Tt also suggests that the most effective threshold values are taken from
maximising Proppign rather than from minimising Propwrong (Which catch more
errors but demand most of the programs to be tested). Testing the sensitivity of the
result by trying thresholds just below and just above those given (see Appendix C,
Table C.8), shows that v(G) could range from T=25 to T=30 without any loss of
performance, while the value of Cp needed to be precisely T=55.
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In summary, therefore, the search for the highest value of T at which S¢(T)>0.80
suggests that the best combination of metrics with which to detect programs that are
likely to have documented post-release errors is when:

v(G)230 and Cp=255

It should be noted that six of the largest programs exceed the threshold for all three
structure metrics and yet have no documented post-release errors (program numbers
1,35, 61, 62, 77 and 80; see Appendix B, Table B.1). This appears to be because
all six programs are core to the functionality of the system and so were exiensively
tested before release. Hence, it could be argued that the metrics defined here have
only captured programs which have been inadequately iested rather than which have
overly-complex structures that make them error-prone.

By using documented posi-release errors rather than errors detected during testing,
this criticism is essentially correct. This point is further reinforced by noting that
subjective ratings of the difficulty to understand, test or debug a program correlate
better with each other (r=0.840-0.947) than with the meirics LOC, v(G) or Cp
(r=0.607-0.750)(see again Table 9.3). Since results of testing were not available,

this criticism cannot be overcome.

On the other hand, it could also be argued that since fixing a “bug” during testing if
cheaper than post-release “fixes” (e.g., Boehm, 1981), the errors detected within the
sample of 80 programs by v(G)230 and Cp>55 are the sort of expensive repairs
which the standard testing procedure has clearly not captured. Furthermore, since it
remains doubtful that structure metrics do measure something called “psychological
complexity”, there seems little need to follow Kitchenham ef al (1990) and attempt to
correlate the metric to subjective ratings. Rather, what is needed is an analysis of
what it is about v(G)30 and Cp=55 that relates to the likelihood of 4 program having a
documented, post release error. Answering this question is an area of further

research beyond the scope of this current project.

Applying size metrics (o LPA Prolog

The data was collected using PSA and ranged in values of N from 92 to 3391. The sample

is skewed with a long upper fail (see Figure 9.7), which is typical of meliric data samples.
The aim of the analysis here was 10 deduce a model of Prolog program size which has as

input some variable related to the number of unique predicates, P, or the sum of predicates,

Py, and which correlates well with the overall size of the program. The usefulness of a
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Figure 9.7 : N Histogram for the LPA Prolog sample
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model based on P is that it is a feature of a Prolog program which a Prolog programmer is
most likely o have some intuitive feel for. Listing the number of predicates contained within
a program is effectively to list the functionality required. Clearly, P would be easier to guess
than Pp. With a good model of program size in place, it would then be possible to

hypothesise an effort model whereby:
Effort oo Program Size

In this case, the final size of the program is taken to be the sum of Prolog operators and
operands which was defined by Halstead (1972, 1977) as:

N =1;.logon; +M2.logane

where np=number of unigue operators and Ms=number of unique operands. Prolog
programs are similarly defined in terms of predicates, P, non-predicate operators, o,
instantiated variables, I, uninstantiated variables, U and their totals (Pr, Or, It and Uy,
respectively). In order to define a good model of Prolog program size the fallowing

questions need to be answered:
o« what is a definition for an “accurate” model?
o is the n.log2n model a good representation”?

.« can a model be defined which has P (or Pp) as its key inpul element?
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9.5.1 Lines of code or program length?

The measure of accuracy based on Conte er al (1986) and refined in Chapter 6 will

also be used here. A model of size will be deemed to be accurate, therefore, if:
Pred(0.20)20.80 and MMRE<0.20

A number of variations of the Halstead model - using the counting strategy defined
in §9.2 - was applied to the 80 LPA Prolog programs (see Appendix D, Tables D.1
and D.2). The different versions were applied because high correlation but poor
accuracy is typical for Halsiead’s model (e.g., Conie ef al, 1986). This raises the
question of whether the n.logyn model is a good representation of program size
especially since it is well-known that there is no strict basis for Halstead proposing a
logarithmic relationship between program length and the number of operators and
operands (e.g., Fitzsimmons & Love, 1978; Lister, 1982).

It has also been found that simple linear models (such as 10M2) have outperformed
the length equation in terms of correlations with N (Elshoff, 1976). The fact that the
logarithmic N-model is of a dubious form is borne out by the fact that a linear model
using M and M has coefficients on a par with the 1n.log,n model (see again
Appendix D, Table D.1). This result suggests there are four competing forms,

namely (in the same order as that listed in Table D.1):

f(n,)+fm,)
a.(f(n)+f(m,)+c
a.f(n,)+b.f(n,)+c
a.m, +b.mn, +c

B W N o=

where,
f(m,)
f(m,)
a

i

ni.logams
Na.logona
regression parameter

il

it

it
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Figure 9.8 : N versus Nhar (=n;.logon+1.logon,)

N x 103

Nhat x 107

Table 9.5 : Best combinations of logarithmic and linear models of Prolog size
(from Appendix D, Tables D.1 to D.4)

Model |Model= Coeff. |Coeff. MMRE | Pred
of Cor. | Detl. (0.20)
Nhat | Milogani+nz.logana 0.854 | 0.730 | 0.25 0.49
Nhat | 1.05(11.Jogon +n2.logan2)-74.80 0.856 | 0.732 | 0.22 0.59
Nhat 1.42(n;.logan1)+0.89(n2.logan2)-92.82 | 0.857 0.734 | 0.21 0.59
Nhat |10.531,+7.55m,-356.22 0.857 | 0.735 | 0.24 0.54

1LOChat 0.13(n;.]logan +M2.logan2)-5.92 0.930 | 0.866 | 0.20 0.66

LOChat 0.13(n3.logan 1 +M2.10g2M2) 0.930 | 0.865 | 0.20 0.66

LLOChat ();ZZ(nl,logzm)mil(ﬂz.]ogz’ﬁz)—]ﬂ.zo 0.936 | 0.876 | 0.20 0.66

LOChat 0.21(n 1. Jogan D+0.1(M2.logan) 0.934 | 0.873 | 0.22 0.68

L.OChat 1.687;+0.80M3-44.92 0.935 | 0.874 | 0.21 0.68

LOChar | 3.09m1-43.43 0.907 | 0.822 | 0.24 (.58

LOChar | 1.5412-21.50 0.904 | 0.818 | 0.23 (.56

N
)
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Form 1 is the original Halstead program length equation which only appears to
model estimates of N well for small values (see Figure 9.8). The other three forms
are deduced by regression and in each case better model performance is achieved (see
again Appendix D, Table D.2). More worrying, however, is that 1; and 13 used in a
regression model for lines of code significantly outperforms the length model. The
LOC models are given in Appendix D, Tables D.3-D.4, with a summary of the best
N and LOC models given in Table 9.5.

The conclusion seems to be, therefore, that the Halstead logarithmic model is a
poor representation of program size, although linear models using 1 and 12 as
counts of program elements produce results close to the standards of accuracy
required by this study. The approach taken here, then, will be to use the concept of
operators and operands to decompose a Prolog program into countable elements from
which a model can be built which relates to some “size” measure of the program.
This size measure can be either the length equation, N, or a model which relates

operators and operands to lines of code.
9.5.2 Deducing a linear size model
Since models of N and LOC have been found to be relatively accurate using 1) and
T2, the number of predicates used within a Prolog program can be introduced to the

size model by separating the counts of 1; and M2 as follows:

= number of unique predicate names

= total number of predicates

P

Pr

O = number of unique non-predicate operators
Or = total number of non-predicate operators

I

= number of unique instantiated variables

It = total number of instantiated variables

U = number of unique uninstantiated variables
Ut = total number of uninstantiated variables
n = P+ O

m = [+U

N; = Pr+ Ot

Ny = Ip+Ur

The count of 1 is now separated into a count of predicates, P, with all ather
aperators defined as a count of non-predicaie operators, O. The twa Lypes of variable
defined within Prolog are also used (o separaie M2 into counts of instaniiated
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variables, I (numbers, user-defined atoms and the in-built atoms true and fail), and
uninstantiated variables, U. The count of N remains Nj + Nj.

If P, O, 1 and U are to be seen as sensible Prolog surrogates for the 1y and 7>
terms, then the Prolog model must correlate at least as well as a model using 1 or
N,. Otherwise there would be little point in replacing 1y and M3 by P, O, Tand U.
Three further conditions can be applied in order to reduce the search space of
regression models:

1. The most useful model will have the number of unique predicates, P, as the
primary input parameter. Models using Py would be more difficuli to use,
but are not ruled out in case models using P might fail to reach the necessary
levels of accuracy.

9 The values for O and U are not sensible input parameters since these are
typically counts of the number of parentheses, use of X's, eic., etc. Models
using Op and Iy will not be ruled out at this stage, however, for the same
reasons as Ppin ‘17

3. Only models where the coefficient of correlation is greater than 0.936 will be
analysed further. This coefficient is based on the best size model using Ny
and 1,. If a model which replaces 1y and M with P, Py, Or, etc., is meant to
be a good representation, then it must perform better than the model using M
and 1M5>.

Using these conditions, a number of regression models were deduced for N and
LLOC (see Appendix D, Tables D.5 and D.6, respectively). Only when a model
exceeded the 0.936 coefficient value and contained no parameters with a negative
sign was the same model deduced without a constant (so the line goes through the
origin). No negative signs are allowed in the model on the grounds that all the
parameters are expected to confribute to program size, and thus, a negative sign

suggests the form of the model is wrong (Miyazaki ef al, 1992).

Given the number of models produced it became necessary Lo increase the third
selection criterion such that only those models whose coefficient of determination
exceeded 0.900 were selected for further analysis. The secondary analysis tested the
performance of the models using the conditions MMRE<0.20 and Pred(0.20)20.80.
Values for Pred(0.25) and Pred(0.30) are given for reference. As can he seen (see
Table 9.6), out of the six models the best are produced for N. In particular, if values
for P, Iy and U were available, then a remarkably accurate model would be possible
(see Figure 9.9). The accuracy of this model means that models using Pr insiead of
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P are not required and so no such analysis is presented here. The values of It and Ut
relate to the amount of data variables used in a program and whether these values can

be successfully deduced as input parameters to the program size model is investigated

in the following section.
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Table 9.6 : Best combinations of models for Prolog size

(from Appendix D, Tables D.5 to D.6)

Model | Model= MMRE Pred
of 0.20 | 025 | 0.30
Nhat | 0.30P+1.2707+0.8017+0.84Ur | 0.03 098 | 098 | 0.98
Nhar | 3.14P+2.591p+2.52Ur 0.06 0.99 | 0.99 | 099
Nhat | 9.18P+2.68Ur 0.15 0.78 | 0.84 | 0.91
LOChar |1.32P+0.1007+0.20T¢ 0.17 0.81 0.86 | 0.88
LOChat | 1.58P+0.3417+0.12Ut 0.17 0.78 | 0.84 | 0.86
LLOChar | 1.41P+0.1307 0.18 0.78 | 0.83 | 0.H8
Figure 9.9 : N versus Nhgr(=3.14P+2.5917+2.52Ur)
N x 103
4
3 . a
24 g“
§
1 ) @
o4 { ! 3 ]
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9.5.3 A paper-based Prolog sizing tool

The problem with the model deduced in the previous section is that ideally the cost
of a project needs to be determined early, and it is difficult to give reasonable input
values for P, It or Up. The best solution to this problem would seem to be to
produce a number of banded values of P, It and Uy such that as more information is

pained a more accurate estimate of the system/program size can be produced.

A set of “bands” is simply produced by choosing a suitable number (say, 5 or 7),
ordering the data points in terms of ascending values and dividing the data points into
this number of groups. Since there are 80 data points, a model with 5 bands would
have 16 data points in each group. Since 7 bands do not divide exactly, it was
decided to have 12 data points in the first six groups and the remaining ei ght in the
seventh group. This meant the relatively unrepresentative upper values of P, Iror Uy
would be grouped into a class of similar values. The value assigned to each band i8

then the average value of the set of data poinis contained within the group.

The upper and lower thresholds of a band are defined as the limit of values which
are meant to be represented by a given band. This is calculated as the average of the
highest value in one group and lowest value in the preceding group. For instance, if
the first band of P ended with P=24 and the second band of P started with P=26
(i.e., the values of the 16th and 17th data points), then the upper threshold of band 1
would be defined as P<25, while the lower threshold of band 2 would be P=25. The
upper threshold of band 2 would be calculated similarly. The threshold values of It
and Ur are calculated in the same way.

Using this method and trying different combinations of 5 or 7 bands of P, It and
Ur, on the basis of the highest Pred(0.20) score the best banded model was found to
be:

Nhar = 3.14(P)5B + 2059(11“)73 + 2-52(UT)7H

where,
(P)syg = values of P (number of unique predicate names) given in 5 bands
(Im)p = values of I (number of instantiated variables) given in 7 bands
(Up)jp = values of Uy (number of uninstantiated variables) given in 7 bands
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The values in each band can now be represented in a table (see Table 9.7), with
Likert ratings from 1 to 5 for Pr, and 1 to 7 for It and Ur. This representation of the

banded model also stands as a high-level tool for estimating the size of LPA Prolog
programs.

In this case, the term It is seen as being indicative of a data-strong program on the
basis that It reflects the number of instantiated variables that must be specified before
the clauses can be executed. Hence, the size of It represents the size of data which
must be programmed into the rule-base of Prolog clauses. On the other hand, Ut is
seen as being indicative of a processing-strong program on the basis that Ut reflects
the number of intermediary variable names which are used as the clauses are being
executed. Hence, the size of Uy is the size of the intermediary processing being
carried out by the system. These are regarded as preliminary definitions of It and Ut

and may change in future developments of the tool.

To use the tool in Table 9.7, the project manager would select the band which best
describes the program to be developed. Like most sizing models used early in the
development process, selecting the “right” band will be a matter of estimating-by-
analogy. To help in this process, the figures in parentheses are the upper and lower
threshold values for the band. The surrogate value on the P= (or It= or Ur=) line is
then entered into the second column which is then multiplied by the appropriate figure
given in column 2 to produce a final value in column 3. The estimate is then the sum

of the values in this last column.

For instance, if the program was decided to be “Low” on the number of predicate
names to be used, “Medium” in terms of being data-strong, and “Low” in terms of
being processing strong, then the values 32.4, 116.7 and 141.3 would be entered
into the second column. In this case, multiplying by the appropriate number in

column 2 and summing the result of column 3 would produce Nhar=782.7.

By recording the initial estimate and final program size, N, of past projects, a
database of analogies can be built up from which to decide on the most appropriate

band to choose for subsequent projects and the value of the tool assessed. When this

banded tool is applied to the LPA Prolog data-base, the accuracy is found to be

MMRE=0.13 and PRED(0.20)=0.90. This extreme accuracy is clearly a property of
the fact that the Prolog programs were developed by one person in a steady

development environment. The fact remains, however, that the type of simple, local

model advocated by Kitchenham (1992) and others can also be developed for Prolog.
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9.6 Summary of metrics results

The results of the analysis carried out in the previous sections have shown that Prolog is
amenable to analysis using metrics previously designed for conventional languages. In
particular, models of size and structure have been deduced from the sample of 80 LPA
Prolog programs, where a program is likely contain at least one documenied post-release
error when,

V(@230 and Cp255

where,
v(G)

Cp = measure of data flow-in/out

i

measure of cyclomatic complexity

while the size of a Prolog program follows a linear regression model which has the form:

Nhat = 3.14P + 2.591p + 2.52U7p

where,
P = the number of unique predicate names
It = the total number of instantiated variable names
Ut = the total number of uninstantiated variable names

The program size model based on Halstead’s N out-performs any model based on a
relationship between P, O, I, U (or their totals) with lines of code, where MMRE=0.06 and
Pred(0.80)=0.99. This performance far exceeds the demands of accuracy sought by project
managers in the survey carried out in Chapter 6. The use of v(G) and Cp is also important
since, again, it out-performs LOC and where Cp is a measure which can be deduced early in
the development process at the design stage. Calculating v(G) at the design stage is a
problem which has been investigated recently and shows some promise (e.g., McCabe &
Butler, 1989).

The program size model using P - the number of unique predicate names - and number of
data variable names shows the most extraordinary accuracy. This may in part be due io the
fact that the 80 programs studied were develaped primarily by one person within the same
development environment (machine, etc.). However, it does seem clear that good models

can be developed for Prolog.
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The ability to move from the models to the tools - where some method of predicting It and
Ut would need to be found - is a matter of further investigation and would require
substantially more samples of Prolog programs written by different programmers before a

reasonable tool can be built.

224




CHAPTER TEN

10. Conclusion

“The tar pit of software engineering will continue to be
sticky for a long time to come. One can expect the human
race to continue dttempting systems just within or just
beyond our reach; and software systems are perhaps the
most intricate and complex of man’s handiworks.”
F.P.Brooks Jr. (‘The Mythical Man-month’, p177)

Summary: The contributions to knowledge derived from this research are set
out as well as the limitations of the research. The research questions posed in
Chapter 1 are answered and areas of further work identified. The final remarks
revolve around the potential of TABATHA (in Chapter 8) and the high-level
sizing tool (in Chapter 9) 10 stand as useful models for use in hybrid systems
development. The conclusion is that they can.

Guided by the need to develop metrics and madels to support the development of hybrid
information systems, this research has posed and sought to answer a number of questions set

out in Chapter 1. The theoretical questions asked:

»  What problems do project managers face?
« What are “metrics” and “estimating tools™?
« How are they developed?

¢ How are they used?

The problems of project management and the need for software metrics were defined in
Chapters 1 and 2. The literature review in Chapters 3, 4 and 5 focused on the need for
metrics to estimate the size and quality of conventional DP systems, the similarity between
DP and KBS metrics, and the metric—model—tool approach to developing software cost
estimating (SCE) tools. Criticisms of the underlying metrics and models was such that there
was a possibility the techniques could not, in fact, support project managers in the control of
software development. Extending such technology to hybrid systems would then become a
redundant exercise. This led to a number of empirical questions, which asked:

o Are estimating tools being used in industry”
s If not, why not?

2
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o« Does this affect the sorts of metrics and tools which a project manager would actually
find useful?

The hypothesis that software metrics and models could not be usefully extended to hybrid
systems was defined as ‘Option Zero’ in Chapter 6. It was stated that “Option Zera’ could be
dismissed if it could be proved that:

1.  Estimation is seen as a problem.

2. There is no prohibition to using SCE tools.

3. No other tools are being used in their place.

4, Conventional mefrics can be extended to KBSs.

These points were subsequently investigated by conducting a survey of large UK
corporations and computing companies. ‘Large’ companies were approached on the basis
ihat they were more likely to be developing large projects, demanding stricter management

control, and hence, more likely to be using project management tools such as SCE tools.

Point ‘1’ was proved by showing thai 91% of those surveyed agreed that estimation was i
problem. However, it was also found that only 30% used any kind of SCE ool and
suggested that point 2 was, in fact, false. That the lack of use was not a logistical problem
was shown in Chapter 6 by setting out a three-point framework which suggested a company

would use a SCE tool if:

« they had a structured methodology in place;
o they collected ‘time’ data at a high rate;
» they used a project managemernt tool.

Point ‘2’ was proved, therefore, by showing in Chapter 6 that 78% of companies satisfied
this framework including all those which used SCE tools. A lack of knowledge of the
functionality of SCE tools appeared to be a strong factor since only 39%, and probably less,
could be said to have any real appreciation of the technology. Point ‘3" was investigated in
Chapter 7 by comparing the group of 16 companies which used SCE tools, and a group of 9
companies which satisfied the three-point framework (above), had a good appreciation of the
rechnology, but did not use the tools. It was deduced that a potential user would become an

actual user if:

o they had high requirements volatility and developed large projecis, or,
¢« they had high requirements volatility and charged a client.
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Neither of these classifications would seem to adequately define the proper use of SCE
tools, however, since SCE models do not specifically model the effect of high requirements

volatility. ‘Producing large projects” was an attribute of the companies targeted by the
Chapter 6 survey.

The issue of charging a client was found to be more significant. On interviewing four of
the companies which used SCE tools, it was found that one had stopped charging clients and
had also stopped using their (internally developed) SCE tool. The suggestion seemed (o be
that SCE tools were being used in order to show a client that the process of estimating was
being taken seriously, rather than in a belief that SCE tools generated accurate estimates.
This “need to show” is further strengthened by recognising that high requirements volatility
can also be traced to the client, in this case, changing the stated system requirements. By
modelling the interaction between client and developer, the FEPS model suggested there are
two points at which an estimate could be produced:

o at the earliest (pre-contract) negotiation stage (step 2), when the only tools available are
SCE tools;
s during the detailed planning stage (step 4), when project management tools such as

PMW are in almost universal use.

This suggests a conflict over the perception of what an estimate is, and on the use of SCE
or project management/planning tools to generate an estimate. A telephone survey of 17
companies known to be familiar with both types of tool showed that both conflicts exist,

while only bottom-up estimates at the (step 4) planning stage are perceived as “real.”

Point ‘3’ was shown to be true, therefore, by showing that SCE tools are the only tools
available when tendering or bidding for a project. The use of a planning tool to estimate
remains problematic because planning tools do not provide the crucial values upon which fo
generate a bottom-up estimate. The low use of SCE tools becomes clear, however, since if
“real” estimates are perceived as being bottom-up and task-based, then it appears that the
planning tools already in use can support the creation of this sort of estimate. This led (o the

final question in Chapter 1, which asked:

. “What would a hybrid metric/model/iool look like?”

Point ‘4’ aimed to answer this question and was proved in two parts. Firstly, a desecription
of a SCE tool which maiched the required (ask-based functionality is given in Chapier R,

The taol - called TABATHA - also sought to accommodate the prablem of requirements
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volatility by defining a method of re-estimation. Only the tasks affected by the change in
requirements are re-estimated, but with a non-linear cost associated with changing the
original project plan and integrating the new work into the system. Time and cost constrainis
meant that TABATHA could not be validated empirically, but a metrics programme by which
the model could be made into a working tool is given.

Secondly, point ‘4’ was proved by extending conventional DP size and structure metrics fo
LPA Prolog. A tool called PSA was used to collect data from 80 commercially-developed
LPA Prolog programs. “Structure” was defined in terms of non-comment, non-blank lines
of code, LOC, McCabe’s (1976) cyclomatic complexity metric, v(G), and Henry & Kafura's
(1981, 1984) data-flow fan-infout metric, Cp. Thresholds at which at least 80% of programs
with documented post-release errors exceeded the threshold, T, were deduced for each meiric
and metrics in combination. Initially, if 100% of programs were tested then 57.5% would be
found to have at least one error. By maximising the number of programs with errors that
exceeded T whilst minimising the number of programs flagged, the best result was found 1o
be when a program exceeded both v(G)=30 and Cp=55. In this case, 71 3% of programs

were flagged which accounted for 84.8% of those which had errors.

“Gize" was defined in terms of LOC and Halstead's (1972, 1977) program length equation,
N. Using linear regression and the performance criteria MMRE<0.20 and Pred(0.20)=0.80,
the most accurate models were produced by separating Nhat into counts of predicates, P,
total number of instantiated variables, Iy, and the total number of uninstantiated variables,
Ur, for which MMRE=0.06 and Pred(0.20)=0.99. Banding the values of P, I and Uy and
trying different combinations of 5 or 7 bands, a paper-based tool was produced, with
MMRE=0.13 and Pred(0.20)=0.90. Such extreme accuracy is likely to be due to the fact
that most of the 80 LPA Prolog programs were developed by a single programmer. The
main contributions to knowledge contained within this thesis, therefore, can be summarised

in the following points:

o Investigating the low use of SCE tools.

o« Deducing the conflict between SCE and planning tools.

«  Describing a task-based SCE tool which fits the way current UK project managers
work.

« FExtending conventional software metrics to LPA Prolog to deduce accurate meirics for
program size and structure.

«  Applying the metric—model-3toal approach to deduce a tool to estimaie the size of

LPA Prolog programs.
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10.1 Limitations of the research

Like any research project with a limited time scale, there are short-cuts and limitations
within the research which, in most cases, are unavoidable. Some of the more notable

problems encountered by this research are stated and explained below:

10.1.1  Accuracy not an issue in the Chapter 6 survey

Most studies on the use of SCE tools have focused on the accuracy of these tools
(e.g., Mohanty, 1981; Kemerer, 1987; Kusters er al, 1991). The survey in Chapter
6, however, did not take accuracy as an issue because unfil it was established that
SCE tools were addressing a recognised problem and were found 1o be widely used,
the accuracy - or otherwise - of such tools would be of little interest to a praject
Manager.

In other words, if estimation was not perceived to be a problem then there would be
no need for the tools. Furthermore, if SCE tools did not model faciors which were
perceived to be meaningful then even if the tools were accurate the suspicion would
remain that the accuracy was coincidental; that is to say, a set of inappropriate factors
could combine to give an accurate estimate but only in the same way that a clock
stuck at 9 ‘o’ clock would still be accurate twice a day. A meaningful SCE model is
the issue addressed in Chapter 6, therefore, and precedes any consideration of

accuracy.
10.1.2  Small sample of UK project managers

The survey in Chapter 6 used a list of over 2000 companies (from ROGET 91) to
derive a list of 115 companies, of which, 54 responded to the survey. In subsequent
analyses, the sample fell to 25 companies in Chapter 7, with 17 responding to the
final telephone survey. The issue being addressed in Chapter 7 was what might
prevent a company from using SCE tools. As such, it was important that the sample
contained companies who had some knowledge of the technology. The problem is
that there are so few companies which have such a knowledge that gaining a larger
sample than the 25 companies identified would be a substantial undertaking.

For instance, Heemstra & Kusters (1989) received 597 replies to their survey, with
14% (approximately 83 companies) defined as “actual users”. Assuming the
propartion of actual and potential users in the Duich survey is the same as thai found
in Chapier 6, then there would be a further 46 companies which could be defined as

(A
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“potential users”. Instead of the sample of 25 companies identified in Chapter 6 then,
the Heemstra & Kusters (1989) survey has a potential sample of 129 companies
which could be investigated on the same lines as that carried out in Chapter 7.
Clearly, this is a sample of sufficient size to carry out the sort of statistical analyses
missing from Chapter 7.

However, with a response rate of 22%, this would suggest Heemstra & Kusters
began with a target population of 2713 companies. This is well above the list of 115
companies deduced from ROGET 91 for the UK survey. One conclusion might be
that the selection criteria used in Chapter 6 is too strict, and that the use of SCE tools
is more wide-spread in the UK than the survey suggests. However, since the
proportion using SCE tools is more than twice that found by Heemstra & Kusters, it
is also likely that the selection criteria used in Chapter 6 correctly defined those
companies most likely to be users, i.e., those companies which can be defined as
“large”. Further responses to the Dutch survey, therefore, were from companies
unlikely to be using SCE tools and so would reduce the proportion of users o non-

USErs.

using companies can now be appreciated. To receive a sampie of 597 replies with a
response rate of 22%, the target population would have to be around 2700. If only
115 suitable candidates can be noted from (around) 2200 ROGET 91 entries, then a
sample of 2700 would require a ROGET 91-like database of over 50 000 companies.
A sample size of this magnitude suggests an international rather than a national
survey. Although the sample of companies in Chapter 6 is small, therefore, it can
also be argued that this faithfully reflects the proportion of companies who have any
real appreciation of software metrics, SCE models and their associated tools. If it
were not for the high 47% response rate to the original (Chapter 6) survey, these

samples would have been even smaller.
10.1.3  No validated TABATHA model

Ideally, the product of this research would have been a properly worked out and
validated TABATHA model integrated into the RUSSET tool. However, a final
version of the RUSSET tool only became available in the last few months of the
TEDA/1/1426 project, and so TABATHA did not have the crucial input-output product
information which would have guided the collection of data for a particular
methodology. There also remaing the issue of the cost of 4 metrics programme i
callect the necessary data and this problem would have io be avercame before any
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follow-up project could attempt to build the TABATHA SCE tool. It is the cost of

such a programme which might be the biggest barrier to the development of
TABATHA.

A further problem is the apparent complexity of estimating at the task-based level.
However, if an analysis of the project plan is the point at which project managers
perceive estimation to exist, then, presumably, they would not have any reservations
about using a tool which dealt with exactly this level of analysis.

10.1.4  Small sample of LPA Prolog programs

The sample of Prolog programs may appear small with only one system studied and
an analysis carried out on 80 programs. This was inspite of adverts placed in two
international newsletters published by the vendors of LPA Prolog and Prolog-2.
This problem is almost certainly to do with the lack of companies that have an inierest
in both software metrics and the development of KBSs. Although three companies
did vespond to the advert, the immature nature of the PSA toal and the uniried
character of the metrics proposed may have been the root cause of their decision not
to supply any data. Since the fourth company was lacal, it was possible for the tool
to be taken to the company and run by the author without any time being spent by the

company concerned.

On the other hand, a set of 80 data-points is towards the top end of samples used
by the classic software metric studies, for instance: Halstead (1972, 1977) studied
only 14 algorithms to support the program length equation McCabe (1976) only
indicates an analysis of 24 ‘troublesome’ programs; Albrecht & Gaffney (1981,
1984) give details of studies with 20-30 systems; Symons (1988) studied 9 systems
from two organisations, while; Henry & Kafura (1981, 1984) studied the UNIX
operating system which contained 165 modules. The sample size tends to be higher
in the development of SCE models, for instance: Farr & Zagorki’s (1965) biggest
sample was of 25 systems; Boehm (1981) looked back over 13 years in order fo

collect data on 63 systems, while; Thebaut & Shen (1984) had only 12 data-points.
With data on 80 programs it seems reasonable to suggest that the study present ted in
this thesis is of the same order as other initial metrics studies.

16.1.5  No extension of hybrid metrics io conventional sysiems

Hybrid metrics are defined as the extension of conventional metrics (o & KBS
development language, such as Prolog. This was primarily because ihe Titeratire on
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conventional metrics is considerably more extensive than for KBS metrics.
However, the sizing tool developed in Chapter 9 defined “size™ in terms of the
number of predicates, and totals of instantiated variables and uninstantiated variables
(P, It and U, respectively). It might then be unclear how this model relates to
conventional systems, especially when Software Science is generally regarded as
discredited, and SCE models typically require the first input to be in terms of lines of
code, not program length.

The analysis here used Software Science to classify elements of Prolog programs in
terms of counts of operators and operands. The logarithmic model of Nhar,
however, was dismissed in favour of a simpler, linear model. This simpler model
was also found to outperform models of lines of code. On this basis, the best model
of system size is not lines of code, but a measure of function names (like the count P
in Prolog), and the total number of instantiated and uninstantiated variables (like the
count Iy and Up in Prolog). This count is clearly similar to FPA, although no
distinction is made here between internal and external types of data. As such, it
would seem possible to apply the same model fo conventional sysicms, although the

proof of this would require further data collection.

10.2 Areas of further research

A number of outstanding areas of further research can be identified by the work carried out

by this thesis. In particular, there are five key issues which are stated and explained below.

10.2.1  Establishing the meaningfulness of metric results

The question remains throughout this thesis of whether the usefulness of size or
structure metrics should be established by their psychological validity, or whether the
nature of programming is to be uncovered by the application of software metrics.
Both scenarios would seem to have some validity since it is clearly impartant that
what is measured is intuitively related to what it is meant to represent. This is what
led Kitchenham et al (1990) to insist that complexity metrics should relate fo the
subjective complexity ratings of a programmer. However, the correlation between
the LPA Prolog structure metrics and the ratings provided by the pragrammer mainly
responsible for the development of the programs remained poor (see again §9.3.1).
On the other hand, the use of psychological concepts io build an understanding of
software development has been both supported (e.g., Halstead, 1977) and denied
(e.g., Coulter, 1983).
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Since systems design and programming are strongly intellectual and creative tasks,
it seems reasonable to suggest that a study of software development will be based on
or take account of the psychology of the development process. It does not seem
reasonable to follow Kitchenham ef al’s (1990) suggestion, however, that the
psychological rating of complexity should be the basis upon which to judge the
efficacy of structure metrics. This would be tantamount to suggesting that what is
meant by “psychological complexity” has been established and so can be used as a
bench-mark against which to judge other more questionable representations of the
same feature. But neither philosophy or psychology has been able to properly define
the psychology of Man - let alone programmers - to everybody's general satisfaction.
The psychology of software development and the results of software metrics (which
also includes size metrics) must be linked somehow, what remains an open issue is

the extent to which one reflects and judges the usefulness of the other.
10.2.2  Control of SCE model databases

When describing the development of SCE models in Chapier 5, it was noied on 4
aumber of occasions that the veracity of the model (and consequently. the SCE faal)
depended on the quality of the data contained within the underlying database.
However, it is not clear by what means the quality of this data can be guaranteed.
For instance, ‘“‘person-hours” is a key factor in estimating cost but it is unclear how
this data should be recorded and at what detail. Manually each week? By the

computer using log-on time? To the nearest day? To the nearest half-hour?

Although SCE tools tend to give effort in terms of person-months, this level of
detail would be too low to detect the effect of new tools or techniques on a particular
task. Collecting effort by the hour may also suggest a greater level of accuracy than
is warranted. While computer-led data collection has the advantage of a consistent
and automatic approach, manual data collection has the advantage of the project
manager being able to query the information submitted. If, as has been argued in
§10.1.5 that a FPA-like count of functions and data is a better model of system size
than LOC, then it can be presumed that person-hours or person-months manuaily or
automatically collected is not necessarily the best measure of developmeni effort.
Questioning the type of data collected and the means of collection will undoubtedly
lead to better insights as to the best means of ensuring the quality of SCE model

databases.

2
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10.2.3 Better tools to develop SCE models

One factor which seems to prohibit the development of local SCE models and tools is
the cost of collecting and analysing the data required to build such models. The need
is clear, therefore, for a series of tools which can quickly and cheaply perform this
task. Such tools might be as simple as a spreadsheet (Kokol, 1989) while more
sophisticated programmes might include:

« A PSA-like tool which collects the low-level data, but which can sit within the
mainframe or network of a development environment and unobtrusively caliect
program size and effort data.

« A system of collecting the notes of project managers during the project which
can then be used to highlight and explain the points at which problems first
arise. This would be used before project management/planning tools and
would give some clue as to the first point at which accuraie estimaies can
genuinely be produced rather than hoped for.

. A KBS-database which receives, sorts and presents the data collected. The
KBS element would be required to judge the quality of the data being received
and flagging data-points which appear unusual or unreasonable.

The three tools described above are suggestions of the types of tools a project
manager might need in order to support the rapid development of local models,
ensure the quality of the data, and question the demand for accurate estimates by
senior management of clients at the outset of a project. Although some of the
ESPRIT-funded projects have attempted to develop similar tools (e.g., MERMAID,
COSMOS, METKIT, etc.), the aim here is for an integrated set of tools for use by

the project managers themselves.
10.2.4  Modelling corrective actions by project managers

It seems non-sensical that models using results from completed projects should be
judged on the basis of estimaies made early in the life of a project. Specifically, if
high requirements volaiility is a standard problem, there seems no reason 10 believe
that the initial estimate will bear any resemblance (o what happens between fhe
functionality required at the beginning and the functionality of the completed sysem.
This is not a problem of communication, but a prablem of revising the srated
requirements as the nature of the required system is better undersiood.

o
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Under these conditions, the issue is how a project manager can best accommodate
changes if budgetary and resource constraints remain tight. Clearly, this can be done
well or badly and will make a critical impact on the relationship between developer
and client. If the skills and techniques of a project manager who excels in this
difficult area could be understood and incorporated into a SCE tool, therefore, the
resultant KBS tool would not only be able to produce better estimates (by
acknowledging and anticipating the likelihood of change), but the tool would be able
to re-estimate and advise on the best course of action when the situation does arise.
This would clearly have a significant impact on the training of future project
managers as well as an aid to current management.

10.2.5  Tools which meet the way project managers actually work

The key point about which this research turns is that it cannot be assumed that a tool
which can support a particular task will be used. The difference lies in the contexi
within which the project manager works and the tools and techniques already at hand.
In this case, SCE tools were not being used because estimalion was nat seen as 4 fask
in itself, but as part of the process of detailed project planning where planning tools
are already in use. To produce a tool which failed (o recognise this point is o make a

tool which is not perceived as being useful.

Clearly, project managers cannot generate estimates using planning tools, but if
SCE tools are portrayed as generating estimates at the earliest stages of a project
where it is perceived that no sensible estimates can be produced, then the apparent
strength of SCE tools results in its downfall. The solution could be as simple as
renaming these types of tool “pre-contract tendering/bidding” tools. In this case, the
output from the tool would at least be recognised as different, i.e., more likely to be
inaccurate, than the “real” estimate generated during planning. Only tools which

estimate alongside the plan could be called “estimating” tools.

The inadequacy of attempting to educate project managers as to what SCE toals
mean by an “estimate” is reflecied in the belief that the actual practicalities of software
development is the best testing ground for ideas on tools to support the process. In
other words, the way project managers currently work is likely to be the best
synthesis of available tools and techniques that deal with the problems of saftware
development. This is the crucial difference between a tool which is usable, i.e., the
requiremenis for their use are in place, and a tool which is useful, i.e., one which
fulfils a required function. Current SCE taols have been found to be usable but not

useful.
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The fact that project managers are making the best use of currently available tools
and techniques raises the further issue of whether the current state of these tools and
techniques are satisfactory. Since there is no clear definition of what is meant by
‘project management,” it is difficult to know what sorts of tools would best support

the tasks being carried out. This problem remains an area of further research.

103.3 Final remarks

As pointed out by Brooks (1975, p177) and Browne & Shaw (1981, p70), the problem
with understanding and modelling the nature of project management in software development
is that the subject under study is constantly changing. It therefore becomes a matter of debate
how long a piece of research remains valid. For instance, the demand for ever more complex
systems leads to ever more complex problems. The use of new techniques and tools changes
the type of system which can be developed, while the intrinsically intellectual nature of
software development makes it difficult to have a clear understanding of what goes on when
software is developed. Under these conditions, research in software engineering is in danger
of acquiring a transifory importance since it is not unreasonable 1o suggest that what was tiue

ten years ago in software development is no fonger true now.

The advantage of the research carried out in this thesis is that it has focused on the people
involved in software development. No matter how much the environment changes, the
human factor will remain. “People”, in this case, is the project manager attempting to
generate and defend an estimate of cost, duration and quality to a client demanding value-for-
money. The task-based nature of the SCE tool thus proposed fits into the way UK project
managers recognise the usefulness of tools in negotiation with a (probably non-computer
literate) client. The estimate at step 2 of EEPS is an “estimate” for the benefit of the client.
The meaning of the “real” estimate identified at step 4 of the EEPS model is the point at
which the project manager believes there is enough detail to make a first agtempt at a
reasonable estimate. These two points in the life-cycle would be valid for any project,

conventional DP or knowledge based.

manager with new functionality, but atiempts to support the point at which estimaies are
expecied, and by the same means by which they are already produced. As long as the
database upon which TABATHA is based remains up-to-date (and this remains a crucial ares
of further research), the task-based approach will remain valid even as other methods of

The validity of TABATHA, therefore, is that it does not attempt to provide the praject

coftware development change. It is on this basis that the research contained within this thesis
is presented as a significant contribution to knowledge.
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APPENDIX A

1991 Survey Form

The original survey form used three colours of paper. The front and back
cover was in white. The Part A section was in yellow. The Part B section
was in green. The reasoning behind this colour scheming is that if darker
paper produces less glare, colouring the survey form would be less hostile to
the eyes of prospective respondents. Recause of the poor quality of
microfisching darker paper, however, the survey form is presented here

using only white paper.
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ASTON UNIVERSITY

METRICS AND SYSTEM DESCRIPTION SURVEY

ALL INFORMATION SUPPLIED IS CONVIDENTIAL

There are two parts to the survey: PART 1 deals with the
size of your company (so similar companies can be grouped)
and the experience of estimating and using support fools or
their equivalent; PART 2 is more speculative and an
explanation of the purpose of this section is given on page
10 of the survey. Please read this page carefully before
answering PART 2.
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PART 1: The Use of Metrics and Other Support Tools in Large Companies

Q1. Company name

Q2. Which structured (documented) methodologies are used within the department?

Q3. How many people are there in Your department involved in software development?

Number of people
1-50 51-100 101-150 151-200 201-250 251-300 307+

[
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Q4. What percentage of development man-years are currently spent on knowledge-

based (or expert) system development?

% man-years on KBS
0 1-10 11-25 26-50 51-75 76-90 91+

Q5.  Is this figure increasing, decreasing or about the same as previous years?

Increasing Decreasing About the same

Q6. Do you see project estimation as a problem?

Yes No

Q7. Have you developed any Software Cost Estimating tools in-house?

Yes No

N Y
[

|
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Q8.  Have you heard of any of the following Software Cost Estimating tools?

Before You Leap

GECOMO PLUS

SOFTCOST -R

SEER

BIS / ESTIMATOR

CHECKMARK

PRICE - S

SLIM

ESTIMATICS

PC - COMO

COSTAR

SYSTEM -3

SIMPACT ESTIMATOR

No

O oooooooobodddd U

[
(W]

o

Have you eval-
Yes & Lated this 1o0l?

No

1 L1 L

1 O L

Ooooooooob iyl

L

Yes

Do you use
this tool?

0
00
00

][]
I
1 ]
] [
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Q9.  Are there any other Cost Estimating tools you know of or use? (Please

underline those you use.)

No Yes —————@p Which ones?

Q10. What is your opinion of Software Cost Estimating tools (e.g., are they useful,

relevant, etc.)?
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Q11. What percentage error (+ or - %) would you assign 1o the following estimates?

An EXCELLENT estimate would be within +/ - %
A GOOD estimate would be within +/ - %o

An ADEQUATRE estimate would be within + /- %
A POOR estimate would be within +/ - o

A BAD estimate would be within +/ - %

Q12. What accuracy of estimate for project cosl andior duration would be expected from

a manager If the project was.

Excellent  Good  Adequate  Poor Bad

Entirely new and
complex

New, but not
complicated

Maintenance or
re-use of system
code
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Q.13 Do you use a Project Management tool (e.g., PMW, Instaplan, etc)?

No Yes ———r—d~ s Whichone(s)?

g For which activities?

Planning

Monitoring

Producing reports

Charging/Cost allocation

Q14. Would you say Project Management tools are commonly used?

No Yes ———— s When would you say they became well-used?
Pre-1977 1077-1982  1983-1987  Since 1987
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Q15. How often do you collect any of the following types of data during the develop-
ment of a project?

All of Most of  Occas- _
the ime  the time  sionaly Rarely Never

Number of errors/bugs
discovered in the system

Type of error (system
crash, incorrect output,
incorrect functionality, etc)

Man-hours

Type of time expenditure
(i.e., distinguishing between
meetings, interviews,
programming, etc)

Productivity rates,
in terms of:

- lines of code

- number of rules generated (KBS)

- number of functions completed

Q16. What other types of data do you normally collect?
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Q17. Once the initial systems requirements specification has been agreed, how often are

there changes to these requirements during development?

) Occas- Mostof  Allof
Never Rarely sionaly  thetime  the time

Q18. What are the major reasons for projects failing? In terms of:

a) Time/money
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Qw,hﬂwmawMMgdwwMMywHmmmeMMMMMdeMWECmr
Estimation and support tools which has not been addressed by the above series of

questions?

201
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PART 2; Recognising the Type of System from the System Description

This section speculates that the ability to estimate accurately depends on an understanding

of the system proposed.

A number of descriptive words applicable to either KBS or conventional systems have
been collected. If the words come from a description of system requirements at the
analysis stage (e.g., submitted by a systems analyst), is the nature of the system to be
developed recognisable at this early stage? If all specific information is omitted, we are left
with the action word alone to represent what the sysiem or process is meant to do. Raite the
words in a range from 1 - 7, according to whether you believe the word was taken from the

system specification of:

1 - probably a KBS project

3 - possibly a KBS project

4 - can be implemenied as either

5 - possibly a conventional project

7 - probablya conventional project
2,6 - intermediate values

As can be the case with system requirements, Some of the words are more obscure than
others. Please try and rate all the words even if you have no experience of

sysiems with these type of requirements. Thank you.

[ ]
o
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Q.1 System character

The character of a system expresses what its overall purpose is meant to be (i.e., what

...... "I
the user completed the sentence with one of the following words, would you say the

function it has) and forms sentences like, "The following system will be used to
system sounded like a conventional or KBS project?

Please try and rate all the words even if you have no experience of
systems with these type of requirements.

1 - probably KBS 4 - can be implemented as either 7 - prabably conventional

Advise

Assist

Teach

Help

Support

Design

Develop

Build

Plan

Diagnose

Classify

Detect

Control

Monitor

Maintain
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Q2. System processes

The processes of a system details a job of work (i.e., how the system will work) and
forms sentences like, "The system will need to ...... (something or someone)". If the user
completed the sentence with one of the following words, would you say the system

sounded like a conventional or KBS project?

Please try and rate all the words even if you have no experience of
systems with these type of requirements.

1 - probably KBS 4 - can be implemented as either 7 - probably conventional

Invent

Search

Cooperate

Transform

Convert

Specify

Instruct

Integrate

Justify

Tell

Present

Recognise

Filter

Differentiate

Acquire

Interpret

Demaonstrate
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Q3.  Is there anything else which you think is important about system requirements

which needs to be taken into account?

Q4. Would you like to receive a copy of the summary of the results of this survey?

No Yeg ———dfp Contact name:
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THANK YOU VERY MUCH FOR YOUR ASSISTANCE
IT IS GREATLY APPRECIATED
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Summary of the PSA results files

Table Title
B.1 LPA Prolog program structure metric data
B.2 LPA Prolog program size metric data
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LPA Prolog structure analysis tables

Title

Summaries of the three metrics

Step-wise analysis of LOC thresholds

Step-wise analysis of v(G) thresholds

Step-wise analysis of Cp thresholds

Combination of metrics using threshold values at 80% of programs with
errors detected (LOC=75; v(G)=30; Cp=75)

Combination of metrics using threshold values at the highest Propgign for
each metric (LOC=80; v(G)=25; Cp=55)

Combination of metrics using threshold values at the lowest Propwrong for
each metric (LOC=45; v(G)=15; Cp=10)

Sensitivity analysis of the best threshold values for v(G) and Cp
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Table C.1 ;: Summaries of the three metrics

APPENDIX C

Metric Minimum | Maximum Step,
value value 1

Lines of code, LOC 25 444

Cyclomatic complexity, v(G) 1 179

Data-flow fan-in/out, Cp 0 14745

Table C.2 : Step-wise analysis of LOC thresholds

Threshold Ny E S¢(T) Propgiont Propwyong
0 80 46 1.000 0.575 | = -
30 79 46 1.000 0.582 | = -
35 77 45 0.978 0.584 0.333
40 74 44 0.957 0.595 0.333
45 73 44 0.957 0.603 0.286
50 71 42 0.913 0.592 0.444
55 69 41 0.891 0.594 0.455
60 64 37 0.804 0.578 0.563
75 61 37 0.804 0.607 0.474
80 59 36 0.783 0.610 0.476
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Table C.3 : Step-wise analysis of v(G) thresholds

Threshold Nt E St(T) Proprignt | Propwrong

80 46 1.000 0.575 | -
5 79 45 0.978 0.570 1.000
10 76 45 0.978 0.592 0.250
15 74 45 0.978 0.608 0.167
20 71 44 0.957 0.620 0.222
25 64 42 0.913 0.656 0.250
30 62 40 0.870 0.645 0.333
35 56 36 0.783 0.643 0.417

Table C.4 : Step-wise analysis of Cp thresholds

Threshold Nt E St(T) Proprignt Propwrong

80 46 1.000 0.575 | -

72 43 0.935 0.597 0.375
10 71 43 0.935 0.606 0.333
15 67 40 0.870 0.597 0.462
20 66 40 0.870 0.606 0.429
25 63 40 0.870 0.635 0.353
40 61 39 0.848 0.639 0.368
55 60 39 0.848 0.650 0.350
60 58 37 0.804 0.638 0.409
80 57 36 0.783 0.632 0.435
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Table C.5 : Combination of metrics using threshold values at 80% of programs

with errors detected (LOC=75; v(G)=30: Cp=75)

Combination Nt E St(T) Propgignt Propwrong
LOC and v(G) and Cp 52 34 0.739 0.654 0.429
LOC and v(G) 58 36 0.783 0.621 0.455
LOC and Cp 54 34 0.739 0.630 0.462
v(G) and Cp 55 37 0.804 0.673 0.360
LOC or v(G) or Cp 65 40 0.870 0.615 0.400
LOC or v(G) 64 40 0.870 0.625 0.375
LOC or Cp 64 39 0.848 0.609 0.438
v(G) or Cp 65 40 0.870 0.615 0.400
LOC and (v(G) or Cp) 60 36 0.783 0.600 0.500
(LOC and v(G)) or Cp 62 39 0.848 0.629 0.389
LOC or (v(G) and Cp) 63 39 0.848 0.619 0.412
(LOC or v(G)) and Cp 57 37 0.804 0.649 0.391
(LOC and Cp) or v(G) 62 39 0.848 0.629 0.389
(LOC or Cp) and v(G) 61 39 0.848 0.639 0.368
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Table C.6 : Combination of metrics using threshold values at the highest Propgien. for each

metric (LOC=80; v(G)=25; Cp=55)

Combination Nt E St(T) Proprieht Propwrons
LOC and v(G) and Cp 54 36 0.783 0.667 0.385
LOC and v(G) 58 36 0.783 0.621 0.455
LOC and Cp 55 36 0.783 0.655 0.400
v(G) and Cp 57 39 0.848 0.684 0.304
LOC or v(G) or Cp 66 41 0.891 0.621 0.357
LOC or v(G) 64 41 0.891 0.641 0.313
LOC or Cp 64 39 0.848 0.609 0.438
v(G) or Cp 66 41 0.891 0.621 0.357
LOC and (v(G) or Cp) 59 36 0.783 0.610 0.476
(LOC and v(QG)) or Cp 63 39 0.848 0.619 0.412
LOC or (v(G) and Cp) 62 39 0.848 0.629 0.389
(LOC or v(G)) and Cp 58 39 0.848 0.672 0.318
(LOC and Cp) or v(G) 64 41 0.891 0.641 0.313
(LOC or Cp) and v(G) 61 39 0.848 0.639 0.368
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Table C.7 : Combination of metrics using threshold values at the lowest Propwyong_for
each metric (LOC=45; v(G)=15; Cp=10)

Combination Nt E St(T) Propriont Propwrone
LOC and v(G) and Cp 69 42 0.913 0.609 0.364
LOC and v(G) 72 44 0.957 0.611 0.250
LOC and Cp 69 42 0.913 0.609 0.364
v(G) and Cp 71 43 0.935 0.606 0.333
LOC or v(G) or Cp 75 45 0.978 0.600 0.200
LOC or v(G) 75 45 0.978 0.600 0.200
LOC or Cp 75 45 0.978 0.600 0.200
v(G) or Cp 74 45 0.978 0.608 0.167
LOC and (v(G) or Cp) 72 44 0.957 0.611 0.250
(LOC and v(G)) or Cp 74 45 0.978 0.608 0.167
LOC or (v(G) and Cp) 75 45 0.978 0.600 0.200
(LOC or v(G)) and Cp 71 43 0.935 0.606 0.333
(LOC and Cp) or v(G) 74 45 0.978 0.608 0.167
(LOC or Cp) and v(G) 74 45 0.978 0.608 0.167
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Table C.8 : Sensitivity analysis of the best threshold values for v(G) and Cp

v(G) Cp Nt E St(T) Proprignt | Propwiong
threshold | threshold
20 50 59 39 0.848 0.661 0.333
25 50 58 39 0.848 0.672 0.318
30 50 58 39 0.848 0.672 0.318
20 55 58 39 0.848 0.672 0.318
25 55 57 39 0.848 0.684 0.304
30 55 57 39 0.848 0.684 0.304
20 60 56 37 0.804 0.661 0.375
25 60 55 37 0.804 0.673 0.360
30 60 55 37 0.804 0.673 0.360
25 55 57 39 0.848 0.684 0.304
26 35 57 39 0.848 0.684 0.304
277 55 57 39 0.848 0.684 0.304
28 55 57 39 0.848 0.684 0.304
29 55 57 39 0.848 0.684 0.304
30 55 57 39 0.848 0.684 0.304
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LPA Prolog size analysis tables

Title

Logarithmic and linear models of program length (N) using 17 and M
Performance of the N models using n; and n;

Models of lines of code (LOC) using n; and M3

Performance of the LOC models using 1y and 1,

Regression models for N based on P, O, I, It and Ut

Regression models for LOC based on P, O, I, It and Ut

Values of P, It and Ut bands

Performance of the 5 and 7 banded models using P, IT and Ut
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Table D.1 : Logarithmic and linear models of program length (N) using M;_and 1,

Form Model Coeff.Corr. Coeff.Det.
I Imidogani+na.logoma 0.854 0.730
2 1.05*(n1.logon+Ms.logom,)-74.80 0.856 0.732
2 1.00*(n;.logom+m2.logoms) 0.854 0.730
3 1.42(n;.Jogon1)+0.89(M2.logym»)-92.82 0.857 0.734
3 1.27(M1.logon1)+0.88(M2.logom2) 0.855 0.731
4 10.53M1+7.5512-356.22 0.857 0.735
4 | 6.08n+7.40m, 0.839 0.703

Table D.2 : Performance of the N models using 1;_and 1

Model Nhat= MMRE Pred
0.20 | 0.25 | 0.30
N1.logoni+M2.logoan2 0.25 1049 |0.60 | 0.65
2 1.05%(M1.Jogon1+M2.logana)- 022 1059 | 069 |0.73
74.80
3 1.00*(n1.logon1+M2-logana) 0.25 1049 |0.60 | 0.65
1.42(M1.Jogon1)+0.89(n2.Jogonz)-| 0.21 | 0.59 | 0.65 | 0.71
92.82
1.27(n1.Jogon1)+0.88(n2dogomz) | 0.27 | 0.49 | 0.55 | 0.64
10.53m;+7.55M2-356.22 024 10.54 | 0.64 |0.75
6.0811+7.40M2 0.37 029 | 041 | 0.46
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Table D.3 : Models of lines of code (LOC) using M;.and Ny

LOChat= Coeff.Corr. Coeff.Det.
0.13*(m1.logon14+M2.logoNn2)-5.92 0.930 0.866
0.13*(ny.logyn+M2.logoms) 0.930 0.865
0.22(M1.logon1)+0.1(n2.logyn2)-10.20 0.936 0.876
0.21(n;.logoM1)+0.1(M2.logomy) 0.934 0.873
1.6811+0.80M,-44.92 0.935 0.874
1.12m1+0.785n3 0.915 0.838
3.09m1-43.43 0.907 0.822
2.51n; 0.888 0.788
1.54m,-21.50 0.904 0.818
1.39m, 0.899 0.807

Table D.4 : Performance of the LOC models using 1; and 1

Model |LOChat= MMRE Pred

0.20 |{0.25 10.30
1 0.13*(ny.logon+M2.logon2)-5.92 0.20 |0.66 | 0.76 | 0.85
2 0.13%(11.logyn14+M2.logon2) 020 |0.66 |0.75 | 0.83
3 0.22(n;.logn)+0.1(M2.logan2)-10.20 | 0.20 | 0.66 | 0.75 | 0.83
4 0.21(M1.logoM1)+0.1(N2.logoN2) 0.22 1068 | 0.71 | 0.76
5 1.6811+0.80Mm-44.92 0.21 0.68 | 0.75 | 0.80
6 1.12n;+0.785M2 0.29 1054 |0.64 |0.70
7 3.09m;-43.43 0.24 1058 [ 069 |0.74
8 2.51n; 0.34 1048 | 051 | 0.63
9 1.541,-21.50 0.23 {0.56 | 0.70 | 0.81
10 1.39M7 0.26 1060 | 069 |0.74
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Table D.5 : Regression models for N based on P, O, I, It and Uy

Based on Nhat= Coeff.Corr Coeff.Det
P 24.26P-5.10 0.781 0.610
P+I 21.69P+2.531-59.54 0.786 0.618
P+Or+It+Ut | 0.42P+1.2607+0.831r+0.85U- 0.995 0.989
6.99
0.30P+1.2701+0.80IT+0.84UT 0.995 0.989
P+O7+IT -0.84P+1.8707-0.03I1+5.50 0.994 0.988
P+Or+UT -0.52P+1.7207+0.25U7+11.94 0.994 0.988
P+Ir+Ur 3.68P+2.65IT+2.50Ur-38.29 0.991 0.982
3.14P+2.5911+2.52U 0.991 0.981
P+Or -0.83P+1.86071+4.38 0.994 0.988
P+Ur 7.72P+2.70Ur+83.25 0.957 0.916
9.18P+2.68UT 0.956 0913
P+Ir 17.38P+3.4711-155.46 0.852 0.726

Table D.6 : Regression models for LOC based on P, Oy, I, It and Uy

Based on LOChat= Coeff.Corr Coeff.Det
P 3.27P-3.15 0.884 0.782
P+I 2.56P+0.661-17.37 0.906 0.820
P+O1+It+UT 1.33P+0.1807+0.1017-0.12UT- 0.973 0.946
10.67
P+Or+Ir 1.51P+0.0907+0.2311-12.50 0.971 0.943
1.32P+0.1007+0.20IT 0.969 0.940
P+O1+UT 1.20P+0.2407-0.20Ut-8.37 0.972 0.945
P+IT+UT 1.80P+0.3717+0.12U7-15.20 0.967 0.934
1.58P+0.3417+0.12Ur 0.964 0.929
P+OT 1.45P+0.13071-2.49 0.958 0.918
1.41P+0.1307 0.958 0.918
P+UrT 2.35P+0.14Ur+1.52 0.919 0.844
P+It 2 43P+0.40711-20.61 0.946 0.895
2.18P+0.37It 0.941 0.885
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Table D.7 : Values of P, It and Uy bands

APPENDIX D

Parameter | 5-Band Border Value 7-Band Border Value

P 1(uptol1) 22.0 15.36 | 1(uptol6) 26.5 18.31
2(upto23) 31.0 27.50 | 2(upto32) 37.5 32.38
3(upto35) 39.5 35.67 | 3(upto48) 46.0 41.88
4(uptod7) 46.0 4233 | 4(upto64d) 69.0 59.38
5(upto59) 64.0 55.08 | 5(upto80) >69.0 89.44
6(upto71) 85.0 72.17
7(upto80) >85.0 100.00

It 1(uptol1) 52.0 37.00 | 1(uptol6) 61.5 43.88
2(upto23) 79.0 66.92 | 2(upto32) 92.5 80.50
3(upto39) 98.0 88.50 | 3(upto4d) 141.0 114.00
4(uptod7) 141.0 116.67 | 4(upto6t4) 205.0 169.25
5(upto59) 178.0 155.67 | 5(upto80) >205.0 288.44
6(upto71) 258.5 213.67
7(upto80) >258.5 337.00

Ut 1(uptol1) 78.5 39.36 | 1(uptol6) 87.0 53.31
2(upto23) 112.0 04.00 | 2(upto32) 155.0 120.19
3(upto35) 167.5 141.33 | 3(upto48) 241.5 194.50
4(uptod7) 241.5 199.08 | 4(upto64) 401.0 294.25
5(upto59) 314.0 267.17 | 5(upto80) >401.0 652.63
6(upto71) 587.0 424.67
7(upto80) >587.0 787.78
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Table D.8 : Performance of the 5 and 7 banded models using P, It and Uy

Model MMRE Pred

0.20 0.25 0.30
3.14P+2.59171+2.52U 0.06 0.99 0.99 0.99
3.14(P)sp+2.59(I1)58 +2.52(UT)sB 0.19 0.71 0.83 0.86
3.14(P)sg+2.59(1)78+2.52(UT)sB 0.17 0.73 0.86 0.91
3.14(P)sp+2.59(I1)s+2.52(Ut)7B 0.15 0.85 0.90 0.91
3.14(P)sp+2.59(I1)73+2.52(UT)8 0.13 0.90 0.95 0.96
3.14(P)7+2.59(IT)s+2.52(Ut)sB 0.18 0.75 0.85 0.88
3.14(P)73+2.59(It)78+2.52(UT)sB 0.16 0.79 0.86 0.90
3.14(P)7p+2.59(I1)58+2.52(U)7B 0.15 0.84 0.91 0.94
3.14(P)7p+2.59(I1)73+2.52(Ut)78 0.12 0.88 0.94 0.95
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