Aston University

Some parts of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

THE UNIVERSITY OF ASTON IN BIRMINGHAM

-BASED SYSTEMS AND

KNOWLEDGE

SOFTWARE ENGINEERING

JONATHAN LESLIE BADER

*

T IO L T

» .1.-..5 2edelss .. b nm.m
LRI 7 A pd= P8
S B
S BES
eEE:
3 85
: an- .w .

S

: ; ..m.

.o :- S LIS,
%lop-lha“-

BRIy A

7

sht rests with its author and that

4
I

/Z,

&
. -.H
\

Submitted for the Degree
g
Doctor of Phafl_os_‘gj‘é_hyf-'.' i

'y
.

&,
.
‘
of the l‘.hcsmhas been supplied on condition that
&

..............

‘&
.

..m, B
- K3
B
=1y
= -
a
2oy
o
&
B
i,
.-
g
.m_. ;
4
Q
._n..
g
-
=
>
I
Jm..
g
ls.u
&
(B3
2w
—
b}
o
—

g
5
2
85
= -

wk
mn g
£ 8

255
222
28 8

THE UNIVERSITY OF ASTON IN BIRMINGHAM
Knowledge-Based Systems and Software Engineering

Jonathan Leslie Bader

Submitted for the Degree of Doctor of Philosophy
1988

THESIS SUMMARY

The work described was carried out as part of a collaborative Alvey software engineering
project (project number SE057). The project collaborators were the Inter-Disciplinary
Higher Degrees Scheme of the University of Aston in Birmingham, BIS Applied
Systems Ltd. (BIS) and the British Steel Corporation. The aim of the project was to
investigate the potential application of knowledge-based systems (KBSs) to the design of
commercial data processing (DP) systems.

The work was primarily concerned with BIS's Structured Systems Design (SSD)
methodology for DP systems development and how users of this methodology could be
supported using KBS tools. The problems encountered by users of SSD are discussed
and potential forms of computer-based support for inexpert designers are identified. The
architecture for a support environment for SSD is proposed based on the integration of
KBS and non-KBS tools for individual design tasks within SSD - the Intellipse system.
The Intellipse system has two modes of operation - Advisor and Designer. The design,
implementation and user-evaluation of Advisor are discussed. The results of a Designer
feasibility study, the aim of which was to analyse major design tasks in SSD to assess
their suitability for KBS support, are reported. The potential role of KBS tools in the
domain of database design is discussed.

The project involved extensive knowledge engineering sessions with expert DP systems
designers. Some practical lessons in relation to KBS development are derived from this
experience. The nature of the expertise possessed by expert designers is discussed.

The need for operational KBSs to be built to the same standards as other commercial and
industrial software is identified. A comparison between current KBS and conventional
DP systems development is made. On the basis of this analysis, a structured
development method for KBSs is proposed - the POLITE model. Some initial results of
applying this method to KBS development are discussed. Several areas for further
research and development are identified.

Keywords: Knowledge-Based Systems, Expert Systems, Software Engineering,
Data Processing, Structured Systems Design.

For my Father

Acknowledgements

Thanks are due first to my colleagues at BIS Applied Systems Limited with whom I have
worked closely for three years: Raj Arya, Janet Clifford, David Hannaford and Chris
Harris Jones. A special thank you to David Hannaford, the Intellipse project manager,
with whom I have had many illuminating discussions. I am particularly grateful to David
for finding the time to read through this thesis, and for suggesting several helpful
amendments. Thanks are also due to the BIS consultants who acted as domain experts,
and without whom much of the project work would have been impossible: Philip
Alderman, Mike Capewell, Charles Haddon, Keith Hindle and Ann Inman. I should also
like to thank Russel Thomas and Kevin Wilson of BIS Banking Systems Limited;
Bernard Buckroyd of the Corporate Management Services Division of ICI plc.; and Tony
Dignan of the Alvey Directorate. A special vote of thanks must go to my colleagues at the
British Steel Corporation who "hung in there", even when it must have appeared to them
that things were getting a little remote from their needs: Alan Griffiths, John Hornsby,
Mike Humphreys, John Poston and Tony Spriggs.

I should like to acknowledge the fellowship of my contemporary IHD students: Clive
Bright, Andrew Carruthers, David Davies, Stephen Haake, James Pang, Al Rodger and
Hardial Sagoo. Crises of confidence are safer in the company of other PhD students.
Thanks are also due to Jenny Owens (Departmental Secretary) and Carol Seale (formerly
of the IHD Office) for their many valuable administrative services. I am grateful for
Carol's continued support, even after she had moved to another department. I should
also like to thank Dr David van Rest, former Director of the IHD Scheme, who offered
me many insights into the process of PhD research. A very sincere thank you to Dr
Alastair Cochran, acting Director of the IHD Scheme, who appeared never to tire of
answering an endless stream of questions about how a good PhD thesis should be
constructed. I have learnt a great deal from Alastair while at Aston, and without his
support when I arrived at the University, I would never have started this project.

I owe a great deal to my personal supervisor, Dr John Edwards. His keen interest in the
project, and his careful and perceptive analysis of my work, have ensured that I followed
a consistent path. His timely expressions of confidence, at the inevitable low points
during my project, were especially invaluable. I look forward to continuing my
collaboration with John on other projects which we have identified.

Finally, I would like to acknowledge the contribution of my wife, Janice. As always,
she has provided me with the encouragement and support, without which I would never
have been able to complete this thesis.

LIST OF CONTENTS

Title Page

Thesis Summary
Dedication
Acknowledgements
List of contents

List of figures

List of abbreviations

CHAPTER ONE AN INTRODUCTION
Preamble
1.1 The Alvey Programme
1.2 The Alvey Software Engineering Programme
1.3 The Aston-BIS-BSC Project
1.4 The IHD Scheme
1.5 BIS Applied Systems
1.6 The British Steel Corporation
1.7 Project Funding and Staffing
1.8 Thesis Structure
1.9 Aims of the Thesis

CHAPTER TWO THE INTELLIPSE PROJECT 1985-88
Preamble
2.1 The Original Project Specification
2.2 The Roles Played by the Three Collaborators
2.2.1 Aston and the Natural Language Component
2.2.2 BIS and the IKBS Components
2.2.3 BSC and Structured Design Methods
2.3 The Main Project Phases

CHAPTER THREE KNOWLEDGE-BASED SYSTEMS
AND DP SYSTEMS DESIGN
Preamble
3.1 What Are Knowledge-Based Systems?
3.1.1 A Definition
3.1.2 Foundations of Expert System Technology

14
14
14
17
19
20
21
22
22
23
24

26
27
27
28
29
30
31

34

34
34
34
38

3.1.3 Styles of KBSs
3.1.4 Interactions of KBSs with Existing Systems
3.2 Applications of KBSs
3.2.1 Problems Addressable Using KBSs
3.2.2 Operational KBSs
3.3 The Key Features of KBS Construction
3.3.1 Knowledge Engineering
3.3.2 Cognitive Task Analysis
3.3.3 Physical User Interface and Explanation Facilities
3.3.4 Tools Used to Build KBSs
3.4 Research into Automating the Software Life-Cycle
3.4.1 AlResearch
3.4.2 KBS Research
3.4.3 Al and the Rapid Prototyping of Conventional Software
3.5 KBSs in Engineering Design
3.6 Summary

CHAPTER FOUR THE INITIAL FEASIBILITY STUDY

Preamble

4.1 The BIS Structured Systems Design Methodology - SSD
4.2 Organisations and People Involved in the Intellipse Research
4.3 The Initial Feasibility Study

4.4 Conclusions of the Initial Feasibility Study

4.5 Summary of the Research Themes Identified

CHAPTER FIVE THE CONCEPT AND DESIGN OF

INTELLIPSE
Preamble
5.1 Initial Development Phases
5.2 Functional Specification
5.2.1 Objects and Activities
5.2.2 Advisor/Designer Concept
5.3 Intellipse Architecture and Knowledge Bases
5.3.1 Knowledge Bases
5.3.2 Activity Program Modules
5.3.3 External Links
5.4 Is the DPSD Domain Suitable for KBSs?

5.5 Summary

39
40
41
41

I N v

49
50
53
54
62

65
68

71
71
71
74
77
79
83

85

85
85
86
86
87
89
91
92
93
94
96

CHAPTER SIX
Preamble

ADVISOR

6.1 Why Was Advisor Built First?
6.2 How Was the Advisor Project Conducted?
6.3 Knowledge Representation Schema

6.3.1
6.3.2
6.3.3

Who were the Intended Users of Advisor?
What Kind of Information Do the Users of Advisor Require?
Frame-Like Representation Schema

6.4 Advisor - Mode of Operation

6.5 The Knowledge Acquisition Module (KAM)
6.6 Knowledge Engineering (KE) for Advisor
6.7 Implementation of Advisor and the KAM

6.7.1
6.7.2
6.7.3
6.7.4
6.7.5

Why Use a PC?

Why Use Prolog?

Text Entry

Graphics

Detailed Physical Design

6.8 Advisor - User Interface
6.9 User Evaluation of Advisor

6.9.1
6.9.2

How Was the Evaluation Conducted?
Summary of the Observations from the Advisor Evaluation

6.10 Potential Future Roles for Advisor

6.10.1
6.10.2
6.10.3
6.10.4

Advisor as a Stand-Alone System
Advisor and the BIS/IPSE
Advisor and the Inzellipse APMs
Advisor as a Shell

6.11 Advisor - the Lessons

6.12 Summary

CHAPTER SEVEN THE DESIGNER FEASIBILITY STUDY

Preamble

7.1 Why Was the Designer Feasibility Study Necessary?
7.2 How Was the Designer Feasibility Study Conducted?
7.3 Summary of the Results

7.3:1
7:3.2
7:3.3
7.3.4

Structuring Data (SD)

Structuring Processes and Logical Design
Physical Design

Database Design

98

98

98

99

100
100
100
101
104
105
106
110
110
111
112
112
113
113
117
117
118
120
120
121
121
122
123
126

127
127
127
128
132
132
137
140
141

7.3.5 DB Design and the Criteria for the Feasibility Study
7.4 The Lessons of the Designer Feasibility Study
7.4.1 Nature of the Designer's Expertise

7.5 Summary

CHAPTER EIGHT PRACTICAL ENGINEERING OF
KNOWLEDGE-BASED SYSTEMS
Preamble
8.1 Why Are Structured Development Methods Relevant To KBSs?
8.2 Contrasting Features of DP and KB System Development
8.2.1 Prototyping in KBS Development
8.3 Current KBS Development Methodologies
8.4 A POLITE Engineering Methodology for KBSs
8.4.1 Performance Objectives
8.4.2 Feasibility
8.4.3 Analysis
8.4.4 Logical Design
8.4.5 Physical Design and Implementation
8.4.6 Testing and Maintenance
8.5 Standards for POLITE Engineering of KBSs

8.6 Summary

CHAPTER NINE THE ITAM INVESTIGATION
Preamble
9.1 The General Objectives of the ITAM Investigation
9.2 Approach Adopted for the ITAM Investigation
9.2.1 [Initial Observations and Conclusions
9.2.2 Detailed Objectives
9.3 The Main Functional Requirements for [TAM
9.4 POLITE in Action
9.5 Evolution of POLITE Standards
9.6 Initial Lessons of the ITAM Investigation

9.7 Summary

141
145
145
148

149

149
149
151
159
159
163
165
165
166
167
168
169
170
171

172
172
172
173
173
175
176
177
180
182
183

CHAPTER TEN DISCUSSION AND CONCLUSIONS
Preamble
10.1 KBS for SE
10.2 SE for KBS
10.3 Contributions Made to Knowledge in the Field
10.4 Future Work
10.5 Final Summary

References

185
185
185
190
191
194
195

197

LIST OF FIGURES

CHAPTER ONE

Li The Alvey Programme 16
Lii The Alvey Software Engineering Programme 17

CHAPTER TWO

ILi Main Phases of the Intellipse Project 31
ILii Breakdown of the Key Stages in the Intellipse Project 32

CHAPTER THREE

IILi The Three Essential Characteristics of a KBS 36
IILii Relationship Between Work in Al IKBSs, KBSs and ESs 37
ILiii Architecture of Early Expert Systems 39
IILiv ~ Types of KBS Interaction with Other Systems 41
ILv Simple Circuit Diagram 45
IIL.vi Cognitive Task Analysis 47
IIl.vii Comparison of KBS Tools 51
IIL.viii Generalized Knowledge-Based Software Assistant Structure 56

CHAPTER FIVE

V.i Examples of Activities and Objects 87
V.ii Exploded View of an SSD-KB 89
V.iii Schematic View of the Intellipse Architecture 90
V.iv Logical Progression of Project Stages 97

CHAPTER SIX

VLi Correspondence Between SSD Knowldge and 102
Frame-Like Representation

VLii Example of Top-Level and Intermediate-Level 103
Frames Used in the Advisor Knowledge Bases

VILiii Knowledge Engineering Procedure for Advisor 106

VLiv Domain-Hierarchy Sheet for Structuring Data 107

VLv Topic-Hierarchy Sheet for Structuring Data/Data Analysis 108

VLvi Overview of the SSD Domain for Structuring Data 109
and Structuring Processes

VLvii Fragments of Advisor KBs in Prolog Syntax 113

VLviii Main Advisor Screen 114

VILix Advisor Low-Level Text Screen 115

CHAPTER SEVEN

VIIi Experts Involved in the Designer Feasibility Study 129

VILii Outline of Procedure Used During KE Sessions 130

VILiii Example of Data Relations in Third Normal Form 134
and the Associated Logical Data Model

ViLiv Example of a Process Sheet 138

VIiL.v Example of a Transaction Profile 139

10

CHAPTER EIGHT

VIILi
VIILii
VILiii
VIILiv
VIILv
VIILvi
VIILvii
VI viii
VIILix
VIILx

Comparison of DP and Knowledge Engineering
Comparison of Al with Conventional Programming
Simplified RUDE Cycle

The POLITE Life-Cycle

Feasibility and Requirements Definition

Analysis

Logical Design

Physical Design

Implementation

Evolution of POLITE Engineering

CHAPTER NINE

IX.1
IX.ii
IX.iii
IX.iv
IX.v
IX.vi

Schedule for the Analysis Phase of ITAM

Planning of Knowledge Engineering Sessions
Scheduling of Knowledge Engineering Sessions
Example of Documented Task Decomposition
Example of Documentation for an Activity Description
Example of Documentation for a Rule Description

CHAPTER TEN

X.1
X.ii
X.1i1

A Comparison Between Civil Engineering and DPSD
A Speculative View of the Future of DPSD
Trends in the Development of DP Tools and Methodologies

11

151
152
161
164
165

168
168
169
170

178
179
179
180
181
182

186
189
190

Al
AIT
APM
ASCII
BIS
BISBK
BSC
CASE
CCTA
CTA
DB
DBA
DBMS
DP
DPEA
DPSD
ES
4GL
FOT
ICI
IHD
IKBS
IPSE
ISF

ITAM
KAM
KB
KBS
KBSA
KE
LD
LDM
LSC

LIST OF ABBREVIATIONS

Artificial Intelligence

Advanced Information Technology
Activity Program Module

American Standard Code for Information Interchange
BIS Applied Systems Ltd

BIS Banking Systems Ltd.

British Steel Corporation

Computer Assisted Software Engineering
Central Computer and Telecommunications Agency
Cognitive Task Analysis

Database

Database Administrator

Database Management System

Data Processing

Data Processing Estimator Association
Data Processing System Design

Expert System

Fourth Generation Language

Futures and Options Trading

Imperial Chemical Industries plc.
Inter-disciplinary Higher Degrees
Intelligent Knowledge-Based System
Integrated Project Support Environment
Information System Factory
Information Technology

Intelligent Total Advisory Module
Knowledge Acquisition Module
Knowledge Base

Knowledge-Based System
Knowledge-Based Software Assistant
Knowledge Engineering

Logical Design

Logical Data Model

Logical System Chart

12

MIS
MMI
NCC
NLFE
PC

PD
POLITE

R&D
RDA
RUDE
SD
SDA
SDLC
SE

SP
SSA
SSD
STDC
VLSI
WIMPS

Management Information System
Man-Machine Interface

National Computing Centre

Natural Language Front End

Personal Computer

Physical Design

Produce Objectives Logical/physical design
Implement Test Edit

Research and Development

Relational Data Analysis

Run Understand Debug Edit
Structured Design

Structuring Data

Software Development Life-Cycle
Software Engineering

Structuring Processes

Structured Systems Analysis
Structured Systems Design

Software Tools Demonstration Centre
Very Large Scale Integration
Windows, Icons, Mouse, Pop-up/Pull-down menus

13

Chapter One

An Introduction

Although owing to the envy inherent in man's nature it has always been no less
dangerous to discover new ways and methods than to set off in search of new seas
and unknown lands because most men are much more ready to belittle than to
praise another's actions, none the less, impelled by the natural desire I have always
had to labour, regardless of anything, on that which I believe to be for the
common benefit of all, I have decided to enter upon a new way, as yet untrodden
by anyone else. And, even if it entails a tiresome and difficult task, it may yet
reward me in that there are those who will look kindly on the purpose of these my
labours. And if my poor ability, my limited experience of current affairs, my
feeble knowledge of antiquity, should render my efforts imperfect and of little
worth, they may none the less point the way for another of greater ability,
capacity for analysis, and judgement, who will achieve my ambition; which, if it
does not earn me praise, should not earn me reproaches.

Niccolo Machiavelli 1469-1527

Preamble

This thesis is concerned with work carried out by the author as part of a collaborative
Alvey project funded under the Alvey software engineering programme (project number
SE057). The project collaborators were the Inter-disciplinary Higher Degrees (IHD)
Scheme at Aston University, BIS Applied Systems Ltd (BIS) and the British Steel
Corporation (BSC). The aim of the project was to investigate the potential application of
intelligent knowledge-based systems (IKBS) to the design of commercial data
processing (DP) systems. The thesis also discusses the potential use of conventional
software engineering techniques for the design and implementation of knowledge-based
systems.

1.1 The Alvey Programme

The Japanese government announced in 1981 their "Fifth Generation", long-term
research programme in Information Technology (IT). The Japanese announcement led
to the creation of many committees and working parties in the UK, including the Alvey
Committee, which were set up to investigate and report on the long-term needs of
Britain's IT industry. The reports which emerged all included grave statements linking
the future prosperity of the country with the development of its IT industry.

14

The National Economic Development Office, for example, published a report in
November 1982 entitled, Policy for the UK Information Technology Industry™EDO82),
The report contained a wide-ranging list of recommendations for government and
industry, covering many aspects of IT development in the UK. It stated that:

"_..the UK needs to have a strong IT industry if its standard of living is not to be
further eroded." (Page 31.)

The National Computing Centre's report, Information Technology Strategy(NCC82),
published in 1983, began by quoting the Prime Minister:

"I believe that the future prosperity of Britain depends on our being bang up to
date in the latest technology, and preferably one step ahead of our rivals..."
(Page 4.)

The report went on:

"The most critical challenge facing Britain today is for the UK industry as a whole
to become more competitive in the markets of the world...One industrial sector
which is key to the national economy is the information technology sector, since
modern business is dependent to an unprecedented degree on the timely availability
of accurate information as a prime resource. Thus the capability of the
information technology industry to meet the information needs of today's business
is central to the successful development of industrial strength in any modern
society." (Page 5.)

The Alvey Committee was set up by the government in 1982 under the Chairmanship of
John Alvey, then Senior Director of Technology at British Telecom. The Committee
submitted their report to the government in August 1982(ALVEY82). 1 jke the other
organisations mentioned above, the Alvey Committee also warned that the future
well-being of the nation depended on its ability to compete on equal terms in the
international market-place with the IT industries of the USA, Japan and Western Europe.
The report acknowledged its debt to the Japanese on its first page:

"The catalyst to the formation of the Committee was the unveiling last October of
Japan's Fifth Generation Computer Programme." (Page 5.)

After outlining an Advanced Information Technology (AIT) Programme, the report
declared that:

"Unless there is action to implement the AIT programme...the prospects of the
UK competing successfully in the world IT market will be sharply reduced. The
spread of advanced IT applications in the UK will also be sharply constrained.

15

Both of these would be extremely damaging to employment prospects, to our
efficiency as a nation, and to our general economic position. " (Page 12.)

The Alvey Committee, in accordance with the brief given to them by the government, put
forward a comprehensive set of recommendations on how Britain should develop the
necessary basis for an internationally competitive IT industry. The central theme of their
recommendations was a detailed research and development programme in IT which they
believed would have to be followed, if the desired industrial goals were to be realised.

The government announced in May 1983(CAK85) that they were accepting the main
recommendations of the Alvey Committee for:

"i a programme of co-operative pre-competitive research in the enabling or
underlying technologies of Information Technology;

ii the directed programme to embrace all sectors of the community, government,
industrial research laboratories, academic research workers and public or
government laboratories;

iii funding, to be made by DTI, MoD, SERC and industry, of £350 million over
five years, including £200 million from government;

iv aprogramme of research much as outlined by the committee." (Page 7.)

The Alvey Committee identified four main enabling technologies as essential to the
progress of IT in Britain. These were: software engineering (SE); the man-machine
interface (MMI); intelligent knowledge-based systems (IKBS); and very large scale
integration (VLSI) of circuits on silicon. Figure Li shows the scope of the Alvey
programme.

ALVEY PROGRAMME

VAN

SOFTWARE MMI ARCHITECTURES
ENGINEERING

+ LARGE SCALE DEMONSTRATORS

Figure Li - The Alvey Programme

16

1.2 The Alvey Software Engineering Strategy

Of the four enabling technologies identified by the Alvey Committee, software
engineering was singled out in the technical section of the Committee's report(ALVEY82)

as of prime importance. The report stated:

"A strong domestic capability in the technology of building IT systems is the key
to a leading position in the world market. Software is a fundamental component
of IT systems and accounts for an increasing proportion of their cost.
Correspondingly, the capability to design and build software in the most reliable
and cost-effective way is a crucial element in establishing an important position in
the world IT systems market." (Page 22.)

An overview of the software engineering programme is shown in Figure Lii. Although
the Alvey Committee(ALVEY82) gaid that the "...technical leadership...(of the UK)...software
industry is well known", their report scorned ad hoc approaches to software development
and proposed that:

"Efficient production, an engineered approach to reliability, conformity with
requirements, and economical development and operation must become the UK
norm. The strategic objective proposed in this area is that the UK should become
a world leader in this Software Engineering technology by the end of the 80s."

(Page 22.)
ALVEY SOFTWARE
ENGINEERING PROGRAMME
IPSEs FORMAL REUSABLE AUTOMATIC
TOOLS METHODS SOFTWARE/ GENERATION
ISFs HARDWARE OF SOFTWARE

RELIABILITY AND PRODUCTIVITY
METRICS FOR QUALITY ASSURANCE
NATIONAL SOFTWARE CENTRE
BSI 'KITE' MARKS FOR SOFTWARE

Figure Lii - The Alvey Software Engineering Programme

17

The report continued:

"The programme to meet this objective is focussed on developing Information
System Factories (ISFs). The aim is to establish by the end of the decade a lead
in the UK's ability to provide ISFs...An ISF will be a computer system, both
hardware and software, which provides an integrated set of tools for producing IT
systems using software engineering techniques. It will be developed from
successive generations of Integrated Programming Support Environments (IPSEs),
starting with a consolidated set of the tools available today. IT systems produced
through the ISFs will meet the parallel requirements of efficient production and
operation, and of improved reliability and performance, which the competitive
market of the 1990s will impose." (Page 22.)

Other long-term objectives set for the UK software industry were a National Quality
Control Centre for software reliability and the inauguration of a Software Products

Brokerage Scheme.

The phrase Integrated Programming Support Environment was soon changed to
Integrated Project Support Environment within the Alvey community. In fact, the
Software Engineering Strategy (ALVEY83) published by the Alvey Directorate as early as
November 1983, was already employing the 'new' terminology. This change was a
recognition by the Alvey Directorate that software tools were required to support the
whole of the software development life-cycle, and not just the programming phase.

The Alvey Committee envisaged three generations of IPSEs, with the Third Generation
IPSE containing knowledge-based tools. The Alvey software engineering
strategyALVEY83) gaid that:

"The 3rd Generation IPSE (or ISF), containing knowledge bases and 'intelligent'
tools, requires significant research which must begin now if the 1989 target date
for the Information System Factory is to be met." (Page 1.17.)

By intelligent the Committee meant that the ISF would:

"...provide 'automatic' assisted system development from user requirements
expressed in high-level terms appropriate to the application rather than the
implementation." (Page 1.5.)

In August 1984, the Alvey Software Engineering Directorate published a document
which gave a more detailed description of what was expected from a 3rd Generation,
knowledge-based IPSE containing intelligent tools(PIG84)

18

It stated that:

"..intelligent tools may be loosely defined as those which utilise techniques
which are normally classified under the general heading of IKBS. Such tools may
replace conventional tools (e.g. a rule based syntax checker), enhance conventional
tools (e.g. intelligent front end to a complex test generator) or provide assistance
for tasks which have little, if any, conventional tool support (e.g. expert system
advisor for requirements analysis)." (Page 4.)

The lack of clarity concerning the concept of intelligent tools within the software
engineering community, and the need for further research into the general area of IKBS
tools and software engineering, was also emphasised in the document:

"IKBS offers a somewhat different paradigm for system development...However,
the IKBS paradigm is immature and unproven. It may not deliver as much as it
promises when exposed to the commercial and technical constraints of the market
place. Indeed it has yet to address, or even recognise, some of the legitimate
concerns of the software engineer." (Page 5.)

(The author of the above report, Tony Dignan, was appointed as the Alvey monitoring
officer to the Aston-BIS-BSC project described in this thesis.)

1.3 The Aston-BIS-BSC (Intellipse) Project

The Intellipse project is concerned with the development of IKBS software tools - tools
which could, in principle, be incorporated into a 3rd Generation IPSE. The project
proposal submitted to the Alvey Directorate in November 1984(BIS84) defined the
objectives of the project as these. To:

"~ demonstrate the potential for the use of IKBSs in systems development,

- provide a basis for tools for systems design,

- promote industry and academic awareness of the capabilities of IKBS in
systems development,

- produce a framework of techniques and tools which could be incorporated in
the development of an IPSE." (Page 3.)

The proposal related these objectives to the Alvey strategy in this way:

"This project will contribute to the Alvey objectives in the areas of IKBS and
software engineering by:

- improving the efficiency of design of IT systems,

19

- demonstrating the viability of IKBS in systems development,
- promoting collaboration between academic and industrial partners and,

- dissemination of experience with IKBSs." (Page 3.)

The first Alvey 'Poster' for the project, published in 1985(ALVEY8S) after the project had
been approved by the Alvey Directorate, contained a further summary of the project's
aims:

"This project aims to produce a set of IKBS tools which can be used in the system
design stage of a commercial data processing development. It is proposed that the
BIS Structured Design Methodology is used as a basis for this work. The IKBS
based tools will have two modes of operation - a designer mode and an adviser
mode. It is proposed that, to enable the adviser mode of operation to be effective,
a front end query evaluation component should be developed which can be used
with each expert system. The expert systems produced could become part of a
wider framework of development support tools by subsequent insertion into an
IPSE." (Page 129.)

1.4 The IHD Scheme

The Alvey Programme was seen from the start as a collaborative venture between
industry and academia. Section 2.3 of the Alvey Committee's report{ALVEY82) gaid that:

"The programme should be a collaborative effort between industry, the academic
sector and other research organisations, in order to improve the harnessing of our
technical strengths to industrial objectives; to get the best value from Government
support; and to allow the widest possible involvement and exploitation."

(Page 9.)

One of the original aims of the IHD Scheme at Aston University, when it was launched
in 1968(COCH31) w35 to:

"...encourage industry/university collaboration.” (Page 5.)

The THD Scheme was, therefore, a natural home for an Alvey project. The IHD Scheme
has extensive experience of industry/university collaborative projects which combine
innovative research with 'real-world' problem solving. The scheme also enables
participants in collaborative projects to register for the higher degrees of M.Phil or PhD

within the university.

An additional factor favouring the involvement of the IHD Scheme in an Alvey project
was that, during the period when the Alvey project was being discussed at Aston, other

20

organisations connected with the Scheme, were also suggesting collaborative IHD
projects in IKBS applications for industrial problems.

Another aim of the ITHD Scheme(©OCH8) jg to:

"encourage internal University broadening by bringing together disciplines which
did not normally collaborate.” (Page 5.)

This aspect of the IHD Scheme was felt by the Alvey Directorate to be particularly
appropriate since subjects likely to be relevant to the project included: computing;
linguistics (for natural language); and psychology (for MMI issues) - these subjects, of
course, traditionally residing in separate University departments.

1.5 BIS Applied Systems

BIS Applied Systems Ltd., founded in 1965, provide a broad range of services for
organisations which apply and use information technology. One of the company's main
interests is in information systems development and they offer a comprehensive list of
services to support project management and systems development.

Major investment by the company during the early 1980s, with government backing
through the National Software Products Scheme, resulted in the development of the
BIS/IPSE - a 1st Generation IPSE judged according to the Alvey Committee's
definition. In the words of one of the company's brochures®1586):

"Designed by system developers, BIS/IPSE brings a total systems approach
offering improvements in quality control and productivity to all aspects of system
development. And, unlike many other development aids, BIS/IPSE brings
particular benefit to the on-going tasks of system maintenance and enhancement.
In particular, BIS/IPSE offers management of, and access to, all project
documentation; support tools for formal methods and structured techniques; project
control facilities; document completeness and consistency checks, together with
design verification, through its integrated data dictionary software..."

The collection of structured design and management techniques are marketed by BIS
under the generic term, MODUS. MODUS services are available to BIS's clients
through various forms of consultancy, including training courses and the provision of
Standards manuals. The company believe that a knowledge-based or expert system-type
software development tool, based upon the MODUS techniques, is in line with the
Alvey software engineering strategy, as well as having important commercial potential.

21

An unstated, but also an important, aim of the company was to enhance their reputation
and credibility in the field of expert systems through their association with an Alvey
project.

BIS were responsible for formulating the original project proposal to the Alvey
Directorate, and were the prime contractor in the Aston-BIS-BSC project.

1.6 The British Steel Corporation

The third collaborator was the British Steel Corporation's Group Computer Systems
Development Team (Strip Products Group), based at Port Talbot in Wales. They are
responsible for developing and maintaining data processing systems for the Group's
UK-wide operations. These systems are typically to support order processing,
inventory control and other similar functions. The Strip Products Group of the BSC
represent approximately 40% of the total BSC operation.

BSC's role in the project, as an industrial end-user, was defined in the original project
proposal BIS84) in these terms:

"“The end user partner will be an existing user of a structured systems development
methodology and will be able to compare the effectiveness of the proposed tools
with those which he currently has, as well as assessing the practicability of the
tools in a live development environment by their use on a pilot project.”

(Page 19.)

The benefits to the end-user of involvement with the project were expressed as:

"...early access to tools which will enhance his systems development productivity,
and the knowledge that such tools will be applicable to his development
environment." (Page 19.)

1.7 Project Funding and Staffing

The funding allocated to the project by the Alvey directorate amounted to a total of
£800k. Alvey industrial collaborators are funded up to a maximum of 50% of their
costs, and academic partners receive 100% funding. The funding was for the equivalent
of two full-time staff at BIS for three years and two full-time research officers at Aston
for three years. BSC received a much smaller proportion of the total funding than did
the two main collaborators, as their role as end-user entailed significantly less effort.

22

1.8 Thesis Structure

This thesis consists of ten chapters including the introduction. An outline of each of the
chapters is given below.

Chapter Two: The Intellipse Project 1985-88. An historical overview of the project. A
comparison is made of the actual role played by the collaborators with the roles
envisaged in the original project specification. The latter discussion is related in
particular to the author's work.

Chapter Three: Knowledge-Based Systems and DP Systems Design. An introduction to
knowledge-based systems technology and the key literature in the field, and a review of
the literature on knowledge-based systems and their application in the area of DP
systems design (DPSD).

Chapter Four: The Initial Feasibility Study. A description of BIS's structured systems
design (SSD) methodology, and a report on the findings of the author's survey and
interviews with various industrial and commercial software developers, concerning their
perceived problems with current development tools and BIS's structured design method.

A development of the research themes pursued during the Intellipse project.

Chapter Five: The Concept and Design of Intellipse. A discussion of the concept of an
active or knowledge-based support tool. An initial appraisal of the DPSD domain and its
suitability for a KBS approach.

The concept and design of Intellipse - an Intelligent IPSE. Explanation of the
Advisor/Designer concept and the knowledge-bases required by the Intellipse
architecture.

Chapter Six: Advisor. An account of the design and construction of Advisor. An initial
view is given of a structured approach to knowledge engineering, and the lessons learnt
from building Advisor are discussed.

Chapter Seven: The Designer Feasibility Study. Why a major feasibility study was

necessary and how this was undertaken. The results of the feasibility study, the aim of
which was to analyse major design tasks in SSD to assess their suitability for KBS

23

support, are reported.
A discussion of the nature of the expertise possessed by experts in DPSD.

Chapter Eight: Practical Engineering of KBSs. The differences between KB and DP
systems development are identified. The need for a structured development
methodology for KBSs is discussed. The POLITE life-cycle model is introduced.

Chapter Nine: The ITAM Investigation. A discussion of the initial steps taken to
validate the POLITE model in the context of the ITAM investigation. A review of the
early results of using the POLITE model.

Chapter Ten: Discussion and Conclusions. A discussion of the main conclusions

derived from the author's work.
1.9 Aims of the Thesis
The aims of the thesis will be to show that:

i. CASE tools for DP system design will need to offer more than mechanical support to
be effective. CASE tools augmented with knowhow about DP design can be built to
provide more active support to inexperienced designers;

ii. KBS techniques can be applied successfully in the domain of DP systems design to
support the activity of expert and non-expert practitioners, but there are key areas within
DP systems design which are not amenable to KBS approaches, based on the use of
if-then production rules;

iii. KBSs and conventional software should be fully integrated in future computer-based
systems designed to solve problems in highly complex domains;

iv. Conventional software engineering techniques should be used to enrich KBS
technology and help the latter become an established technique within the DP

community;

v. KBSs can and should be built using an amended conventional SDLC and by adopting
an appropriate structured development methodology. KBSs built in this way are much

24

more likely to have the robustness and reliability demanded in an industrial or

commercial environment.

25

Chapter Two

The Intellipse Project 1985-88

All's Well That Ends Well.

William Shakespeare 1564 - 1616

Preamble

The Intellipse project has been a close collaboration between Aston and BIS, with BSC
involved as and when progress demanded. The collaboration was greatly facilitated by
the geographical proximity of the university to BIS's office (about 15 minutes walking
distance). The project proposal to the Alvey directorate®IS84) set out a clear demarcation
of responsibility between each of the collaborators, which will be summarised below.
However, Aston and BIS have, in practice, worked together on all aspects of the project.

Monthly project meetings have taken place throughout the project, involving
representatives of the three collaborators as well as the Alvey Directorate's monitoring
officer. In addition, weekly technical meetings have taken place, involving just Aston
and BIS personnel.

The author played a substantial role in determining the strategic direction of the project,
as well as participating fully in the day to day decision making process. This role was
primarily exercised through written proposals submitted to the monthly project meetings.
The practical work flowing from the decisions taken by the project team was shared
between Aston and BIS. Where BIS or BSC have carried out the major part of any
exercise, this is made clear in the thesis. If no indication is given, then the author was
responsible for the work described.

26

2.1 The Original Project Specification

The project specification®!58) submitted and approved by the Alvey directorate stated
that:

"This project aims to produce a set of IKBS based tools which can be used in the
system design stage of a commercial data processing development.” (Page 4.)

The tools were to be based on BIS's paper-based Structured Systems Design (SSD)
methodology mentioned in chapter one.

It went on to describe the proposed mode of operation of the IKBS tools.

"...the IKBS based tools will have two styles of operation, a designer mode and an
adviser mode.

When operating in designer mode, the expert system will provide the lead, by
working through the procedural rules of the sub-process..[within SSD].., and
extracting from the user, the information necessary to carry out the required tasks.

When operating in adviser mode, it is expected that a designer will approach the
IKBS with a problem associated with applying either the procedural techniques or
documentation rules and will wish to receive advice, and perhaps be 'walked
through' a specific part of the the sub-process against his problem.

It is proposed that, to enable the adviser mode of operation to be effective, a front

end query evaluation component should be developed which can be used with each
expert system." (Page 9.)

Chapter five will describe the architecture of the Inzellipse tools eventually devised and it
will be seen that the Intellipse concept differs significantly from the original proposals
above.

2.2 The Roles Played by the Three Collaborators

The work to be contributed by each of the collaborators was set out in the project
specification as follows:

"BIS will provide the main input on system design methodology and the building
of the designer role IKBS tools.

The academic partner will provide the main input on creating the English based
query evaluator, which will provide the adviser interface.

27

The user will review the specifications, evaluate the products and make
suggestions for modification, as the project develops, to ensure that the tools
produced will be of real benefit to subsequent industrial users." (Page 18.)

It became clear from the start that changes would be needed in the designated
responsibilities listed above, in order to meet the actual demands of the project
objectives, and to utilise effectively the expertise available within each of the
collaborating organisations. The changes made, and the reasons for them, are dealt with
in the next three sub-sections.

2.2.1 Aston Natural Lan mponen

A brief study of existing commercial and research-based natural language front end
(NLFE) systems indicated that four key problems needed to be solved before any work
on a NLFE to the proposed IKBS tools could be started:

i. The detailed reasons for including a natural language interface had
to be identified, and the consequent functional specification for the
interface defined.

ii. The breadth of semantic information to be contained within the
IKBS knowledge bases (KBs) had to be specified.

iii. An analysis of the prospective users of the IKBS tools was
necessary, to help identify the functional requirements for the
NLFE.

iv. It was necessary to know the precise data structures to be employed
in the KBs before a NLFE design could be attempted.

It was concluded that the design and functional specification of the IKBS tools was too
incomplete, and the extent to which natural language capability was required too vague,
to enable any serious work on a NLFE to begin at Aston at the start of the project. It
was further decided that the second academic researcher, when appointed, should
consider the requirement for natural language during the initial period of his/her
appointment. It was expected that, by the time of this appointment, some of the
outstanding issues mentioned above would be clarified.

Chapter six will indicate that the natural language capability required by Inzellipse turned
out to be of a very limited nature. The second academic researcher at Aston was mainly

28

concerned with the more general aspects of MMI design for IKBSs.

The author's attention was concentrated from a very early stage on the feasibility, design
and implementation of the core IKBS components. This remained the case throughout

the project.
2 BIS and the IKB nen

For a number of reasons, it was found necessary that BIS and Aston collaborate more
closely on particular areas of the project than was envisaged in the original project

proposal.

Firstly, the complexity of systems design suggested that an extensive review of the
project specification was necessary to determine the overall feasibility. The proposal
submitted to the Alvey directorate had been written mainly at BIS. It was important
therefore that Aston, an outside agency, as well as BIS should conduct this review. It
was also found desirable for substantial amounts of the knowledge engineering for
Intellipse to be done by people who were not experts in SSD. An expert practitioner in
SSD takes many of its rules and procedures for granted and it is difficult for the expert,
alone, to make explicit the principles and techniques which are important for the
inexperienced SSD user. The use of knowledge engineers, naive in SSD, was more
likely to lead to the successful elicitation of the required knowledge.

Secondly, the paper-based SSD methodology was subject to various internal reviews
within BIS around the time the project started. Also, there appeared to be some
inconsistency of view between different BIS consultants on particular aspects of the SSD
methodology. Thus it was necessary to identify a version of SSD which could serve as
a basis for the IKBS tools.

Thirdly, BIS are not primarily a research and development (R & D) company. Their
strengths lie in the application and management of established DP techniques to
administrative and financial systems within commerce and industry. The lack of
experience in R & D was compounded by the particular difficulties inherent in IKBS
development, which are absent in conventional DP systems development projects.

At the start of the project, the potential use of BIS's MODUS techniques for the

29

mangement of IKBS development was recognised as an important area for investigation.
In fact, it had already been agreed by the project team that, if possible, the applicability
of conventional DP development techniques to IKBS design and development should be
addressed at some point during the Intellipse project. This issue will be discussed fully
in chapter eight.

Fourthly, the BIS personnel attached to the project, although possessing wide DP
experience, did not have as much experience in IKBSs. No members of the project team
were widely experienced in IKBSs, reflecting the fact that in 1985 this was a very new
area of technology. Aston, however, did have some practical experience of building a
KBS(EDW88) which BIS did not possess. One of the general aims of the Alvey
programme is to widen the base of expertise within the UK in this area of technology.

There was initially a little uncertainty on the part of some BIS project team members
concerning the applicability of IKBSs to SSD. Inevitably, for a company whose main
source of revenue was from the sale of consultancy services, the consistency of
involvement of some of the BIS personnel was a problem. During the first year of the
project, for example, consultants attached to the project were often called away at short
notice to work on other, more urgent client-projects. This caused particular difficulties,
bearing in mind the central role which BIS were meant to play in the project.

The combination of these factors indictated that Aston had to take a more active role in
the technical management of the project than was originally envisaged. BIS and Aston
also had to work more closely on most aspects of the project, instead of each partner
having discrete areas of responsiblity. The proximity of BIS and Aston facilitated this
closer co-operation. This situation proved successful and the project is reputedly one of
the more successful examples of university/industrial collaboration within the Alvey
programme(PIGE7),

2.2.3 BSC and Structured Design Methods

It would have been desirable for the end-user collaborator to have been a user of BIS's
SSD methodology. However, the original choice of end-user, who was an SSD user,
had to withdraw at the last minute and BSC were brought in just before the start of the
project. BSC were not an SSD user and, in fact, had no "official" structured design
method in place. BSC did have their own informal development method. A lengthy

30

period of induction was necessary for BSC in BIS's structured techniques, although this
did not necessitate the adoption of SSD by the company. The lengthy induction period
hampered BSC's early involvement in the project, but did not have any adverse effects in

the long run.
2.3 The Main Project Phases

This section gives an historical outline of the work involved in the Intellipse project.
This historical picture is necessary here since, although the thesis chapters are arranged
roughly in chronological sequence, their organisation is principally designed to reflect
the logical relationship between the various aspects of the Intellipse work. Figure ILi
illustrates the main phases of the project. The theme of knowledge-based systems
applied to software engineering (KBS for SE) was present throughout the project; the
complementary SE for KBS theme only manifested itself strongly during the latter
phases of the work.

PRELIMINARY
FEASIBILITY WORK | <@~
AT BIS

v

REVIEW OF
ORIGINAL PROJECT
PROPOSAL

L 4
DESIGN OF
INTELLIPSE
ARCHITECTURE

DESIGN & KBS FOR SE
CONSTRUCTION OF
ADVISOR

DESIGNER
FEASIBILITY STUDY -
& KE

v

SE FOR KBS:
POLITE SE FOR KBS

METHODOLOGY

°F

ITAM
INVESTIGATION = .-

Figure ILi - Main Phases of the Intellipse Project

31

PRELIMINARY FORMULATION OF
FEASIBILITY WORK THE ALVEY
AT BIS PROPOSAL BY BIS
APPROXIMATE ELAPSED TIME
24 REVIEWOF 2 RE-APPRAISAL IN CALENDAR MONTHS
ORIGINAL PROJECT OF ROLES OF AFTER COMMENCEMENT OF
PROPOSAL COLLAB;)RATORS PROJECT
WITH DP DESIGNERS
v -
5 DESIGN 58 DESIGN OF
(OF INTELLIPSE ADVISOR
v y 6
e —
KEFOR::::::
ADVISOR =
_____*-'-----_ __-*-___-___—-__
9
v v 3
(e 7 FURTHER 7 PLANNING
of AT o INTERVIEWS WITH | | = FOR DESIGNER
DP DESIGNERS FEASIBILITY STUDY
L 2
12
6 INITIAL ~ PUBLICATION OF
USER EVALUATION ISTINTELLIPSE
OF ADVISOR p,;PER
_________.——‘="-' 14
v v
6 CODING OF 6 R DETAILED PLANNING
AMENDMENTS TO RB”A[;)E%%ROF : FOR DESIGNER
ADVISOR bbbl FEASIBILITY STUDY
Y ¥
16
6 FURTHER "2ND & 3RD 7 DESIGNER
EVALUATION OF INTELLIPSE FEASIBILITY STUDY-
ADVISOR PUBLICATIONS DESIGNER KE
Y v v
___-——-*_-———___ ___----ﬂ-__
b ¥ 2
® EVALUATION OF ? PLANNING FOR
ADVISOR KBs ITAM
L ¥
_-""""--.._______ _______,_.--"‘"_ 24
2 i ¥
® KEFOR B WORK ONSE: 4TH PUBLICATION
TTAM PORERSTOLIE _ON SE FOR KBS
e - METHODOLOGY R e
K* y Work done
__—-______.———'--—_ . .
x 28 - mainly by
* * * Author
6'1;:, ALZ‘K‘%N . ® copme ° DESIGNOF
OF ITAM ITAM 3
ADVISOR BIS
A

Figure ILii - Breakdown of the Key
Stages in the Intellipse Project

32

Number(s) indicate
relevant chapter(s)

The ITAM work referred to in Figure IL.i relates to the last phase of work of the
Intellipse project and is concerned with an investigation into the feasibility of using KBS
tools to support the design and maintenance of a database management system (DBMS)
application.

Figure ILii gives a more detailed breakdown of the key stages in the project and shows
the chronological sequence of events. In Figure IL.ii, boxes which appear on the same
horizontal level indicate that the work represented by those boxes was carried out
concurrently. The thesis is primarily concerned with the author's contribution to the
work identified in this diagram.

33

Chapter Three

Knowledge-Based Systems and DP Systems Design

..Rule X

To gain sagacity, our mind must be trained on the very problems that other men
have already solved, and it must methodically examine even the most trivial of
human devices, but especially those which manifest or imply an orderly
arrangement.

Descartes 1596-1650

Preamble

This chapter discusses the nature of KBSs and the type of problems they have been used
to solve. It describes the key features of KBS design and construction, and reviews
current research into the use of KBSs to support the software life-cycle.

The chapter does not analyse in detail the differences between building conventional
computer systems and KBSs. This topic is more specifically related to the application of
traditional software engineering techniques to the design of KBSs, and is discussed in
chapter eight, where a structured development methodology for KBSs is proposed.

3.1 What Are Knowledge-Based Systems?
d.1 inition

The field of expert systems (ESs) emerged from research into artificial intelligence (AI)
in the 1960s and early 1970s - mostly in American universities. It is the branch of Al
which has received most publicity and has had significant commercial and industrial
success. In the Handbook of Artificial Intelligence®BARR82) ESs were defined as:

"...computer systems that can help solve complex, real-world problems in specific
scientific, engineering, and medical specialities. These systems are most strongly
characterised by their use of large bodies of domain knowledge - facts and
procedures, gleaned from human experts, that have proved useful for solving
typical problems in their domain.” (Page 79.)

34

The Handbook also gave a succinct description of an human expert:

"Specialists are distinguished from laymen and general practitioners in a technical
domain by their vast task-specific knowledge, acquired from their training, their
subsequent readings, and especially their experience of many hundreds of cases in
the course of their practice." (Page 80.)

Hayes-Roth et al in their book, Building Expert SystemsHAYES83) gaid that:

"The area of expert systems..[within Al]..investigates methods and techniques for
constructing man-machine systems with specialized problem-solving expertise."
(Page 3.)

Waterman(WAT86) aid that ESs are:

"...special-purpose computer programs, systems that..[are]..expert in some narrow
problem area." (Page 4.)

Alex D'Agapayeff, who specialises in the application of ESs in commerce and industry,
gave this definition of ESs in a report to the Alvey Directorate which received wide
circulation in the UK(PAGAS5),

"An Expert System is a program, or a component of a program, the functioning
of which is significantly determined by both the knowledge and the reasoning
derived from one or more persons skilled in the domain of the application and
from other sources (e.g. books)." (Page 89.)

Arising from the many attempts which have been made to define ESs, a large number of
confusing terms are employed to describe this class of computer systems. The most
commonly used terms are expert systems, intelligent knowledge-based systems or
knowledge-based systems; each term has a different meaning, depending on who is
using it. The term used throughout the thesis, when referring to the Intellipse tools, is
knowledge-based systems defined as follows:

KBSs are computer-based systems which support, or perform
automatically, cognitive tasks in a narrow problem domain which are
usually only carried out by human experts. The human expert
performs these tasks by employing his/her skill, expertise and
judgement acquired and learnt over a period of time. By "cognitive
tasks" are meant tasks whose successful completion requires heuristic

knowledge and expertise which is not accessible in any other

35

organised external form, although the operational KBS can be
regarded as a semi-formal description of the human expert’s modus
operandi.

This definition encompasses the three essential characteristics of a KBS summarised in
Figure IIL.i. The definition has the merit of excluding any reference to the tools or
methods used to build a KBS, and is expressed solely in terms of the external, functional
characteristics of the system, as these would be observed by an end-user.

DOMAIN

| 3 NARROW PROBLEM

EXPERT PERFORMANCE -
AS PERCEIVED BY THE USER

Figure IILi - The Three Essential Characteristics of a KBS

Figure IIL.1ii depicts the author's view of the nature of, and relationship between, work in
AJ, IKBSs, KBSs and ESs. This relationship can be summarised as follows:

Al Research - research whose objective is the development of new techniques for
knowledge representation and heuristic search that could be used in
the computer-based modelling of human performance in specific
domains;

IKBSR & D - development work designed to turn newly developed experimental
techniques into operational technology;

KBS/ES - the use of established technology to produce operational systems in
Development specific application areas.

The avoidance of the term intelligence when describing operational KBSs in commerce
or industry is important. Current operational KBSs do not replicate, except in the
simplest fashion, three key attributes of human intelligence namely: abstraction,

deduction and learning.

36

As D'Agapayeff(PAGAS5) gaid in 1985:

"It is necessary to correct the widespread impression that Expert Systems are
inherently complex, risky and demanding. This impression deflects management
from competitive developments in both products and applications.” (Page 90.)

R & D SYSTEMS USED
FOR RESEARCH INTO
ADVANCED KR,
HEURISTIC SEARCH

. '\ AND OTHER KBS-SPECIFIC /
. TECHNIQUES G

IKBS

: TEMS USING
_—T__YPE SHELLSANDWITHLI’I‘I‘LE .

PC - personal computer

KR - knowledge representation

Figure IILii - Relationship Between Work in AI, IKBSs, KBSs and ESs

In his second survey of expert systems in UK business in 1987 for the Alvey

Directorate®AGA87) D'Agapayeff went on to say that:

"Phrases like 'artificial intelligence', 'machine learning' and 'superior reasoning
systems', relative to a human context, have no meaning whatsoever in current
applications. There is nothing remotely akin to natural intelligence or to human
reasoning that is being, or could be, programmed now in business." (Page 5.)

The erroneous impression of expert systems in commerce and industry has arisen partly
because of the loose employment of the term inzelligence by many writers, to describe

the capabilities of ESs.

37

Foundati Ex m hn

This section describes the first important ESs. These systems, developed in the 1960s
and 1970s in US universities, were large systems, implemented in LISP on mainframe
computers. Although they were cumbersome, lacking in performance and had limited
commercial application, they established the fundamentals of ES technology, upon
which modern ES shells and KBS applications are based.

DENDRAL(BUCH®9) _ gne of the first ESs developed in the late 1960s at Stanford
University in the USA. The system was designed for the spectroscopic analysis of
molecular samples. The main objective of the project was to demonstrate that heuristic
search techniques could achieve similar results to exhaustive, conventional algorithmic
search in a fraction of the computer-time(BARRSE2),

MYCINGHORTT6) _ hrobably the best known of the early US ESs. MYCIN uses if-then
production rules and gives consultative advice on the diagnosis and therapy of infectious
diseases. Its development led to the first important ES shell, EMYCIN(VANM81) which
was a domain-independent version of MYCIN. Empty MYCIN was MYCIN without
the domain specific knowledge, but retaining the rule-based inference mechanism.

PROSPECTORPUDA™) _ this sytem was developed to give expert advice which could
assist geologists in finding ore deposits based on geological data. The system is famous
for predicting the location of a molybdenum deposit which had not been predicted by
human experts. PROSPECTOR's prediction was confirmed by subsequent drilling.

PUFF(XUNZ78) _ 3 ryle-based ES for the interpretation of pulmonary function test results.
According to Hayes-Roth et al HAYES83) PUFF was in routine use in the laboratory and
95% of its reports were accepted without modification.

Many of the early systems shared the architecture shown in Figure IILiii. The separation
of an ES into a knowledge base and an inference engine remains an important concept in
ES development. It will be useful later to contrast the similarities and differences of the
Intellipse tools and these first ESs, and to consider whether the early definitions of what
constitutes an ES need to be modified.

38

FACTS AND
RULES

—

CONTROL
KNOWLEDGE INFERENCE MECHANISM
BASE ENGINE

USER INTERFACE

Figure IILiii - Architecture of Early Expert Systems

1 les of KB

The early expert systems described above supported predominantly diagnostic tasks.
However, as Hayes-Roth(HAYES83) et a1 and Waterman(WAT86) pointed out, a variety of
tasks can be supported by a KBS. Hayes-Roth et al list the following types of task:

"Interpretation
Prediction
Diagnosis
Design
Planning
Monitoring
Debugging
Repair
Instruction

Control

Inferring situation descriptions from sensor data
Inferring likely consequences of given situations
Inferring system malfunctions from observables
Configuring objects under constraints

Designing actions

Comparing observations to expected outcomes
Prescribing remedies for malfunctions

Executing plans to administer prescribed remedies
Diagnosing, debugging, and repairing student behaviour

Governing overall system behaviour." (page 33.)

The type of task performed is directly linked to the role the KBS is playing in relation to
its user. The list of KBS roles below is adapted from Worden(WORDS?),

Assistant - invoked by the user to perform a specific task as part of a

wider exercise;

Critic - reviews work already completed by the user and comments on

its accuracy, consistency and completeness;

Second opinion - executes a task and compares its results with those

of the user;

39

Expert consultant - offers advice or an opinion given certain
information;

Tutor - trains the user to expertly perform a specific task;
Automaton - completes an expert task automatically and
independently of the user;

The roles toward the top of this list are those in which the user's expertise is greater than
that of the system. As we move towards the end of the list it is the KBS which operates
as if it has greater expertise than the user.

The particular style of operation of a KBS will depend on whether the system is used by
an expert or a non-expert, and the degree to which the KBS has automated the task being
supported. As Waterman(WAT86) said a KBS can be used to distribute or archive
expertise within an organisation. It can improve the efficiency and consistency of an
expert's performance, as well as relieving him of the burdens of training and the solution
of routine problems; the expert can then concentrate on more difficult problems. All
these factors can influence the style of a KBS.

1.4 Interacti f KB ith Existin m

Commercial DP installations tend to accumulate significant amounts of computer
software over a period of time. Newly developed software must usually be integrated
with these old systems. The interaction of KBS tools with existing computer systems,
has therefore been an important issue during the Intellipse project and is discussed later
in the thesis. The author's interpretation of the way in which a KBS can interact with
other computer systems is given below and is illustrated in Figure IILiv.

Stand-alone - interaction is with the user only: these systems can be
characterised as small systems implemented using PC-based ES shells -
see Figure IILii;

Integrated - interaction is with company databases, management
information systems or PC-based tools, such as spreadsheets and
database packages. The operation of the KBS involves the exchange of
data between the KBS and other systems, as well as direct interaction
with the user;

40

Embedded - complete absorption of a KBS within an information
system. The user does not interact directly with the KBS but through
the user interface of the host system. The latter handles interaction with
the KBS components.

o]

STAND-ALONE USERS KBS
5
KBS MIS 2
<
=
a
MIS = DBMS
USERS E
DBMS A OTHER
SYSTEMS
INTEGRATED
OTHER
SYSTEMS
SYSTEM MIS - management information system
EMBEDDED DBMS - database management system

Figure IILiv - Types of KBS Interaction with Other Systems

The majority of reported KBSs are characterised by the first mode. However, there is an

increasing awareness that, in order to maximise the effectiveness of KBSs, the second
and third modes must be used more often(SMI84), (DAGA87), (WORD87), (JONES87a), (NOM87)

3.2 Applications of KBSs

3.2.1 Problems Addressable Using KBSs

Most writers on operational KBSs stress the importance of selecting an appropriate
problem before attempting a KBS approach, but few offer a precise set of criteria for
measuring this suitability factor(BAS84), (BOBS6), (HAYESS3), (JONES86a), (PRERSS), (WATS6),
(ZACK87) Of the literature cited above, Prerau's paper(PRER85) giyes the most useful
guide to assessing the suitability of a problem for a KBS approach. The difficulty of
establishing measurable criteria has meant that much of the understanding of what makes

41

a problem amenable to a KBS approach has been obtained empirically. The factors
summarised below are an interpretation of the criteria judged to be important by the
authors cited above. The importance of factor ix below has been particularly borne out
by the experience of the early part of the Intellipse project.

i. Narrowness of the domain: the problem should be well-bounded,
and the boundaries, within which data relevant to the solution can be
found, well-defined. Problems which rely significantly on general
knowledge about the domain are very unsuitable for a KBS approach.

ii. Complexity of the problem: the problem should not involve a great
deal of common sense reasoning. This point is related to that of
general knowledge. It should also be possible to structure or factor the
problem solution to some extent, and to partially represent the solution,
for example, in the form of a hierarchical structure diagram.

iii. Nature of the problem: the problem should be primarily cognitive
in nature. Problems requiring visual or other sensory skills are not
appropriate.

iv. Nature of the experts: except in a very small number of cases, at
least one expert in the domain is necessary. The expert needs to be
able to articulate his knowledge and be available and willing to
co-operate in the project.

v. Training: established domains, like medicine, in which expert
performance is attained after long periods of systematic formal
training, are more likely to be suitable for a KBS. The training
techniques will reflect explicitly the problem-solving strategies built up
over many years, and knowledge acquisition may therefore be easier.

vi. Speed of solution: does the problem take seconds, minutes, hours
or days to solve? Problems which must be solved in real-time,
involving large quantities of data, may involve insurmountable

performance difficulties for a KBS approach, at present.

vii. Sensitivity of the problem: domains such as medicine, the law or

42

personal finance can involve sensitive ethical and legal issues. The use
of a KBS in these domains, therefore, may not be appropriate, even
though it may be possible to construct them.

viii. Conventional solutions: it is unwise to attempt to build a KBS
until conventional, algorithmic solutions have been considered. The
complexities of KBS design and construction are such that conventional
solutions, if available, are likely to be less expensive to develop, and
easier to maintain.

ix. Written material: the existence of manuals, procedures, case studies
and other documentation in the domain will greatly assist the
development of a KBS - especially in the early stages of knowledge

acquisition.

In chapter five a detailed comparison is made between each of these factors and the
DPSD domain in general. In chapter seven, where the Designer-mode feasibility study
is described, a comparison is made between specific tasks within SSD and these factors.

3.2.2 Operational KBSs

Several hundred systems bearing the names IKBS, KBS or ES are reported in the
literature. Very few of these can be classed as operational systems. Waterman(WAT86)
identified 180 systems in his catalog of expert systems. Only eight of these were
classified as "commercial systems' and only two were said to be in everyday use.

Obtaining precise information on operational KBSs is difficult. This is partly because of
commercial secrecy, partly because some systems may not be classed as KBSs by their
owners or developers, and lastly because there is no accepted definition of the term
operational. In an article in Computing in 1987(°URH87) " Brian Johnstone, the manager
of Intelligent Systems at Istel, was quoted as saying that:

"The users of expert systems form a very elite club with extremely limited
membership! Most expert systems activity is in the academic or prototyping
environment. The number of expert systems in regular everyday use is still
probably less than 100 worldwide." (Page 22.)

Buchanan®BUCHS6) Jisted over sixty "working" ESs covering twelve application domains.

43

The CRI Directory of Expert SystemsCR186) Jists six hundred ESs. The Ovum Report
on Commercial Expert Systems in Europe(OVUM86) identifies fifty examples of
"operational" expert systems and two hundred "commercial” ESs.

Judging by two conferences(ES87), (AVIG87) jn T ondon and Avignon which were oriented
towards operational ESs, and the D'Agapayeff survey mentioned earlier®AGA87), the use
and development of KBSs in commerce and industry is increasing. KBS technology has
some way to go before it can be said to be in widespread use, but the indications are that
its importance is being increasingly recognised in commerce and industry.

The best publicised operational KBS is Digital Equipment Corporation's R/, now called
XCON. In 1980 McDermottMCD80) described R1 as follows:

"R1's domain of expertise is configuring Digital Equipment Corporation's
VAX-11/780 systems. Its input is a customer's order and its output is a set of
diagrams displaying the spatial relationships among the components on the order;
these diagrams are used by the technician who physically assembles the system."
(Page 269.)

In 1980, according to McDermott, R1 had a database of 420 components and a
knowledge-base of 772 rules. In 1986(VAN86) van de Brug et al reported that R1 had
grown to a database of 10,000 components and a knowledge base of 4,000 rules.
Dennis O'Connor, the DEC executive responsible for the original R1 project, was
quoted in 1987(PURH8) a5 claiming that R1 had saved his company $40 million in that
year.

3.3 The Key Features of KBS Construction

3.3.1 Knowledge Engineering

One of the main problems in constructing a KBS is the elicitation and representation of
the expertise of a human expert, and the translation of this knowledge into a
machine-executable form. This process is usually referred to in the literature as
knowledge engineering and much has been written on the subject, particularly in relation

to knowledge acquisition(HARTﬂﬁ). (HAYESS3), (OLS87), (READ87), (SCHW87), (WAT86)

44

Hayes-Roth et al HAYES83) and Waterman(AT86) identified five stages in the evolution of
an expert system:

"Identification Determining problem characteristics
Conceptulization Finding concepts to represent the knowledge
Formalization Designing structures to organize knowledge
Implementation Formulating rules that embody knowledge
Testing Validating the rules that embody knowledge." (Page 24.)

WatermanWAT86) described knowledge engineering:

"The process of building an expert system is often called knowledge engineering.
It typically involves a special form of interaction between the expert-system
builder, called the knowledge engineer, and one or more human experts in some
problem area. The knowledge engineer 'extracts' from the human experts their
procedures, strategies, and rules of thumb for problem solving, and builds this
knowledge into the expert system..." (page 5.)

The author prefers the term, cognitive task analysis (CTA), to describe the process of
knowledge acquisition during KBS construction. This term is used to signify that CTA
is a phase of development of KBSs which can be regarded as complementary to the
stages of conventional analysis, design and implementation in commercial DPSD. This
idea will be discussed again in chapter eight where the differentiation between KBS
development and DPSD is made more explicit. The description of knowledge
engineering given is the author's summary of the process as it has been described by the
authors cited above. This description will be compared later in the thesis with the
approach taken during the Intellipse project.

3.3.2 Cognitive Task Analysis

A simple view of an expert's knowledge or expertise is that it consists of facts, rules,
heuristics and an inference strategy. The following simplified example concerning the
operation of a circuit consisting of a battery, bulb and connecting wire, explains each of
these categories.

A
gy L}

Q

Figure IILv - Simple Circuit Diagram

45

Example of some FACTS: metals conduct electricity;
copper is a metal.

Example of a RULE: if the connector is copper,
and the battery is OK,
then the bulb will light.

Example of a HEURISTIC: if the bulb does not light,
then the battery is probably flat (Prob. 0.7),
or the bulb might be faulty (Prob 0.2), or the
connector may not be a conductor (Prob. 0.1)
CHECK THE BATTERY FIRST!

INFERENCE STRATEGY: a set of heuristics used by an expert to navigate
efficiently from a problem description to an acceptable problem solution,
without necessarily having to identify and test all candidate solutions.

Sommerville(SOMM83) mhade clear the distinction between a rule and a heuristic in the
context of KBSs.

"The distinction between a 'rule’ and a 'heuristic' is that if a rule is applied to a set
of outcomes, those which do not match the rule cannot be solutions. If a
heuristic is applied, those which do not match the heuristic could be solutions but
are not likely to be so." (Page 149.)

The objective of cognitive task analysis is to identify and codify the facts, rules,
heuristics and inference strategy which the expert employs to solve problems in the
application domain. The exercise has three basic components:

Acquisition - acquiring the basic knowledge from the expert.
Representation - organising and structuring the knowledge.
Execution - codifying the knowledge into a machine-executable format.

Figure IIL.vi summarises the process of cognitive task analysis. CTA can be very

complex, due to the intrinsic difficulty of extracting and representing the knowledge of an
expert and the acquisition stage, in particular, is often a bottleneck in KBS development.

46

EXPERT
REPRESENTATION KNOWLEDGE MACHINE

REPRESENTATION REPRESENTATION

increasing understandability, maintainability and executability -
from the viewpoint of the knowledge engineer >

Figure IILvi - Cognitive Task Analysis

Hayes-Roth et alHAYESS3) summarised this problem:

"Several major difficulties are involved in acquiring knowledge for an expert
system. One of the most troublesome is representation mismatch, the difference
between the way a human expert normally states knowledge and the way it must
be represented in the program. Others include the human's inability to express
knowledge possessed, limits on expert system technology, and the complexity of
testing and refining the expert system." (page 153.)

The next three sections give an overview of the key issues involved in the acquisition,
representation and execution stages respectively. Where the research described in the
thesis refers to specific knowledge engineering techniques, these will be discussed more
fully at the appropriate point in the text.

Acquisition

Many techniques have been devised for knowledge acquisition. Some have been
borrowed from conventional systems analysis and subsequently modified to suit the needs
of KBS analysis. HartHART36) jdentified the most commonly used knowledge acquisition
techniques as structured interviews, protocol analysis, repertory grid analysis, rule

induction and case study observation. These are different techniques by which the
knowledge engineer can make explicit the inferencing process and data which the expert
uses to solve a problem. The choice of technique can be influenced by many factors, some
of which are listed below. This summary is based on Hart(HART36) apn4
Hayes-RothMAYES83) - The observations and conclusions, made on the basis of the
knowledge engineering done during the Intellipse project, are discussed in more detail later

in the thesis.

- the availability and motivation of the expert;

47

- the ability of the expert to articulate verbally, or otherwise, his/her
expertise;

- the degree of complexity of the problem domain;

- the nature of the expertise involved,;

- the overall scale of the project;

- the availability of manuals and other written material;

- the experience of the knowledge engineers;

- the availability of tools or computer-based environments for
supporting acquisition;

- the amount of development resources available.

The material which first emerges from the acquisition process may be in the form of
transcripts of taped interviews, video recordings, hand-written notes, rough diagrams
and so on. The next step requires the organisation and represention of this raw
knowledge in a particular representation schema.

Representation

While the choice of acquisition technique is largely dictated by factors which leave little
room for manoeuvre by the knowledge engineers, the choice of representation schema is
more open. Five basic data structures are generally used for knowledge representation:
production rules, frames, semantic networks, objects and declarative logicWAT80) Each
of these mechanisms is very versatile and the ultimate choice will depend on the type of
procedural control required and the degree of familiarity of the knowledge engineers
with the different techniques. The representation schema can also be influenced by the
features offered by the implementation tools being considered since many of the KBS
toolkits are designed to support one particular form of knowledge representation schema,
or inference mechanism.

Ex ion

Once the knowledge representation schema has been chosen, the raw cognitive model
must be systematically translated into the new format. This can be a paper-based
exercise although in many cases, especially when prototyping, the raw knowledge is
transferred directly into the shell or toolkit being used. Where paper-based translation is
used, the coding into machine form usually takes place during the implementation phase.

48

Physi r Interf, nd Explanation Faciliti

Very often the impetus for building a KBS is the desire to remove the organisational
bottleneck which arises when only a limited number of experts are available to perform
an activity lying on some critical path in an organisation. The intention may be to enable
non-experts to perform tasks previously only carried out by the expert. In this case, it
will be necessary to define precisely the competence of the expected non-expert user, so
that an operational KBS is built which does not rely for its success on a level of expertise
in the user which the latter does not possess. For example, any questions which the
system poses to the user must not require judgement which the user is not able to
exercise. This point was discussed by Edwards and Bader (EPW88),

There is very little literature about the techniques that can be used to ensure that an
interface is devised, which will maximise the usability and effectiveness of an
operational KBS. This aspect of KBS design is still the subject of basic
research(BERR862), (BERR36b) The following is a summary of the factors which the
author concludes may significantly influence the choice of interface:

- the degree of expertise of the prospective KBS user;

- the amount and nature of direct user interaction required;

- the amount of textual explanations required;

- the importance of static or animated graphics;

- the degree of menu-type interaction necessary;

- the amount of concurrent help facilities required during operation;

- the appropriateness of windows, icons and mouse-style operation
(Wimps);

- the importance of making explicit the inference process and data
being used.

The information necessary to evaluate these factors is related to the type and style of
KBS, the nature of the expert task and the degree of competence of the prospective

users.

It is often desirable for highly user-interactive KBSs, in domains such as medicine or
finance, to make explicit to the user the reasoning behind any advice offered. For this
type of KBS, elaborate explanation facilities may be built into the system. One of the
main characteristics of early KBSs, as D'Agapayeff(PAGASS) pointed out, was their

49

ability to "..provide explanations of their reasoning on demand". The explanation
facilities provided with most KBS tools simply reproduce, in machine format, the
particular rules used in the last consultation. This type of facility is useful for the
knowledge engineer when developing the system, but its relevance to the end-user of the
KBS is limited. However, the ability of an expert system to explain its reasoning is still
regarded by some as a key feature of the technology. Waterman(WAT86) emphasised this
in his book on ESs referred to earlier:

"Most current expert systems have what is called an explanation facility. This is
knowledge for explaining how the system has arrived at its answers. Most of
these explanations involve displaying the inference chains and explaining the
rationale behind each rule used in the chain. The ability to examine their
reasoning process and explain their operation is one of the most innovative and
important qualities of expert systems." (page 28.)

The amount and type of explanation facilities in a KBS will ultimately depend on the type
of application domain, the style of the KBS, and the nature of the intended user.

4 Tool ild KB
The tools used to implement KBSs are normally from one of the following groups.

i. Expert system shells running on personal computers or
mainframes.

ii. AI environments or toolkits running on high power personal
workstations. The latter are characterised by their use of high
resolution graphics and Wimp-intensive operation.

iii. Al programming languages like Lisp, Prolog and OPSS.

iv. Conventional languages such as C, Pascal, Fortran etc.

The languages identified in iii and iv can run in any of the three hardware environments
mentioned.

Waterman(WAT86) Jisted six questions that should be considered when selecting a tool for
ES development:

"Does the tool provide the development team with the power and sophistication
they need?

Are the tool's support facilities adequate considering the time frame for
development?

50

Is the tool reliable?

Is the tool maintained?

Does the tool have the features suggested by the needs of the problem?
Does the tool have the features suggested by the needs of the application?"

(Page 143.)

Expert system shells and Al toolkits are specifically designed to support the knowledge
representation schemata and procedural control commonly used for KBSs. As a result
they can be very fast and convenient to use, once their extensive range of facilities has
been mastered. However, they do not offer the execution speed and flexibility for
interface design which is possible using conventional programming languages like C and
Fortran. It is also the case that building a KBS in an Al or conventional language can be
very expensive in development time and it is unlikely that the resulting code could be
utilised easily in another application domain.

Choosing the right tool to build a KBS is a complex task, requiring careful consideration
of a large number of interdependent factors. Figure IIL.vii illustrates some characteristics
of the different tools available and shows the two most frequently used tools.

CONVENIENCE
AND POWE Al
WORKSTATION

»
COST OF
TOOLS

COMPETENCE
REQUIRED BY
DEVELOPERS

Figure IILvii - Comparison of KBS Tools

The following is a list of important factors which should be considered in relation to
KBS tool selection. It illustrates the logical factors which can influence tool selection;
pragmatic commercial considerations which may also be relevant are not discussed here.

51

SCOPE:

SIZE:

TYPE:

STYLE;

PROBLEM:

USER:

USER
INTERFACE:

EXTERNAL
INTERFACE:

KR:

CONTROL:

ALGORITHMS:

DISTRIBUTION:

PERFORMANCE:

RESOURCES:

DEVELOPERS:

Prototype or operational system?

Small (< 100 rules), medium (< 500 rules),
large? Volume of external data involved.

Stand-alone, integrated or embedded?
Assistant, critic...?

Classification, prediction...?

Expert, novice, public..?

Graphics, Wimps, animation...?

Does the KBS need to link to a PC, MIS,
DBMS, other..?

Frames, objects, rules..?

Type of inferencing mechanism required?
How many conventional programs required?

Single PC only; distributed PCs + floppy
disks; LANs; mainframe..?

Batch, on-line, real-time..?
Development budget and time constraints?

Experience of knowledge engineers? Training
required to use development tools?

52

3.4 Research into Automating the Software Life-Cycle

This section discusses the application of Al to the domain of software engineering. Ince
et alINCE86) summed up the relationship between the two disciplines:

"One of the more exciting developments in software engineering over the past few
years is the promise that techniques in artificial intelligence hold out for the
software developer. That advances in areas such as: natural language processing,
intelligent knowledge-bases systems and logic programming languages will enrich
activities such as software design and requirements analysis.” (Page 81.)

Although there is plenty of evidence of attempts to use Al techniques to support the
software development process, much of the research must be regarded as having only
long-term benefits for commercial DP in the UK. Most of this research is looking at
ways to build support environments which can automate most of the life-cycle, through
the generation of executable code by automatic transformation of high-level
user-specifications.

There is little evidence of research into the application of KBSs to specific tasks within
the current, conventional life-cycle. This is an important area since this type of approach
could bring immediate benefits to the DP industry. Selecting particular tasks within the
DP life-cycle, and building tools to support them, is likely to be easier and bring more
immediate results than the Al research mentioned earlier.

A long-standing aim of Al research has been the automation of the complete software
life-cycle. FrenkelPREN8S) summed up this objective in the following way:

" At its most ambitious, automatic programming synthesis expresses the idea that
automatic programming is the purest sort of automation. A team of programmers
or users would focus their efforts on developing a complete specification of a
user's requirement. Then an intelligent system would write the program in much
the same way that today's compilers generate machine code from high-level
languages." (Page 579.)

Frenkel's paper also described the general research area of applying Al techniques to
software development:

"Expert systems are now being considered by some as tools for improving today's
software development techniques and programmer activity...However, they attempt
to automate or facilitate only some phases of the software-development cycle, like
debugging or maintenance. They are practical and short-term efforts improving on
techniques within the current person-based software approach.

53

Some researchers advocate a more ambitious approach. They see not only a shift
from manual to automatic programming development, but they also focus on
management aspects of large program-development projects. Those pursuing this
course propose that stages of the software-development life-cycle, like
requirements specification, implementation, documentation, and maintenance, can
be automated if emphasis is placed not on the products of these processes but on
the processes themselves. Because these processes are knowledge intensive, they
could be managed with knowledge-based automated tools." (page 578-9.)

Research into 'intelligent' support for the software life-cycle can thus be grouped under
two headings:

Al research: the long-term goal of an environment providing complete life-cycle
support, with the ultimate aim of automatic generation of executable code from
user-specified natural language specifications.

KBS research: the short-term goal of KBS tools to support specific tasks within
the overall software cycle in the context of current, person-based, conventional
development methods.

3.4.1 AI Research

The Handbook of Artificial Intelligence(BARRS2) Jisted several "Automatic Programming
Systems" (Volume II).

PSI(GREENT77) An objective of the PSI system, built at Stanford University, was that users
should be able to specify programs interactively, using a loose high-level specification
language. The application area addressed by PSI is symbolic programming, including
information retrieval, simple sorting, and concept formation. The system was designed
to allow the user to specify the desired program with a mixture of examples and mixed
initiative, natural language dialogue. Two parts of the PSI system, LIBRA(KANT79) and
PECOS®BARST9) were able to function as stand-alone systems.

PROGRAMMERS APPRENTICE(RICH78) This system was developed at the
Massachusetts Institute of Technology in the late 1970s. The Handbook described the
operation of the system as this:

"The intent of the Apprentice is that the programmer will do the difficult parts of
design and implementation, while the Apprentice will act as a junior partner and
critic, keeping track of details and assisting the programmer in the documentation,
verification, debugging, and modification of his (her) program.” (Page 343.)

54

The PSI system depended for success on its ability to analyse natural language
specifications. Generating executable code via English-like specifications requires
sophisticated facilities for parsing and analysing natural language. This remains a major
problem in the automatic synthesis of programs. Referring to this in relation to the PSI
project, Frenkel(FRENSS) gaid that:

"..specification was extremely difficult because users usually did not know what
they wanted; for those limited cases when they did know, languages, or
formalisms, for expressing specifications were too complicated. There was little
advantage in writing a specification that would be as long as the program itself,
and in a language that was almost harder to write and more error prone than the
program language." (Page 579.)

Work on the PSI system led to the design and implementation of the CHI system at the
Kestrel Institute. The Handbook discussed the aims of the CHI project:

"Automatic programming research in general, including the PSI project, has
concentrated on methods for compiling programs expressed in a very high level
language. The goal in CHI is to provide not only a knowledge-based synthesis
system, but also a supportive, high-level programming environment that includes
knowledge-based specification acquisition, consistency checking, debugging,
editing, and maintenance...The CHI system uses a common knowledge base about
the programming process to support all of these activities." (Page 334.)

This last quotation from the Handbook shows that Al research into automatic
programming has evolved into a quest for knowledge-based environments which allow
large parts of the development process, from high-level user-specification through to
executable code generation, to be automated. Smith et al(SMI85), describing research at the
Kestrel Institute in Palo Alto, USA, into knowledge-based software environments,
confirmed this view:

"The complexity of producing programs suggests that we begin to formalize and
mechanize the programming process. In pursuit of these related goals of
factorization and mechanization of the programming process, Kestrel Institute has as
its primary focus research on knowledge-based software environments. That such
systems are knowledge-based means that some of the diverse logical materials of the
programming process are factored out and represented formally in a knowledge base.
That they are software environments means that they are intended to provide
automated support to the entire software lifecycle." (Page 1278.)

55

Other reported automatic programming projects in the literature are DEDALUS(MANNTS)
SAFEBALZTS) and APEMBARTS1),

In 1983 the Kestrel Institute sponsored meetings to discuss a long-term research
programme for applying Al to software development. The meetings resulted in the
publication of a report setting five, ten and fifteen year research goals for a Knowledge
Based Software Assistant (KBSA)GREENS3) - Figyre 111 viii illustrates Balzer's(BALZE3)
view of the KBSA. (Balzer was a participant in the meetings which led to the report.)

Aston University

lustration removed for copyright restrictions

Figure IILviii - Generalized Knowledge-Based Software Assistant Structure
(From BALZB3 and GREENS3)

Balzer related the concept of the KBSA to an automation-based software paradigm. This
paradigm has three basic elements®ALZ83);

- formal specifications created and maintained by end-users;

- user-generated formal specifications which become prototypes of the
desired system ensuring that the system will be responsive to user
needs;

- implementation issues such as algorithm choice, control structure,
representation selection, caching intermediate results, buffers etc.
are excluded from the specification. These issues are decided either
by computer or by a person and then carried out automatically.

56

Balzer went on to say that:

"The automation-based software paradigm both facilitates and requires the
existence of an assistant [..the KBSA..]. This is a consequence of having all of
the development processes-requirements analysis, specification, implementation,
and maintenance-machine mediated and supported. The development processes
must be broken into individual activities so that the individual activities can be
mediated and supported, and the decisions and rationales behind them recorded.”

(Page 43.)

The first five year phase of the KBSA is due for completion in 1988. The work in the
first phase was split into five sub-projects(BENN88) each conducted by a separate
contractor. These were: the Project Management Assistant (Kestrel Institute), the
Requirements Assistant (Sander's Associates), the Specification Assistant
(USC/Information Sciences Institute), the Performance Assistant (Kestrel Institute) and
Framework (Honeywell Systems and Research Centre).

The Alvey Information System Factory (ISF) project has already been referred to in
section 1.2. The ISF concept has similarities with the KBSA project in the USA. A
project brochure(ALVEY873) jsqued in 1987 by the four ISF collaborators, GEC Research,
STC Ltd, and the Universities of Edinburgh and Lancaster, described their initial view of
the ISF:

"The broad specification of the ISF is that it should be a complete computer
system, providing an integrated toolset for developing IT systems both hardware
and software, based on sound engineering techniques. The ISF is to be developed
from successive generations of IPSEs, an IPSE being a coherent set of tools
covering the entire lifecycle of systems development, supporting both
management and technical roles within a project." (Page 2.)

Although this passage does not state it explicitly, it is envisaged by the Alvey Directorate
that the ISF will involve extensive use of knowledge-based tools. The Dignan
report®IG84) also referred to in 1.2 made this point clear. The ISF project is a long-term
venture, although an interim report has been produced which is discussed in 10.3.

Alvey's idea of a software factory is not new. Bratman and Court®RAT?S) described an
attempt to develop an integrated set of software development tools to support a
disciplined and repeatable approach to software development. However, the
environment they describe was very much oriented towards program design and
implementation. The factory did not address phases in the life-cycle such as
requirements analysis, project management and maintenance. In this respect a better

57

description of their concept would have been a Programming Factory.

Barbacci(BARB86) described work, at the Software Engineering Institute of Carnegie
Mellon University in the USA, into the concept of a Software Factory. The Institute is
attempting to lay the basis for the development of a Software Factory sometime in the

future.

Eliot and ScacchiEL186) proposed a Knowledge-Based System Factory (KBSF):

"The KBSF represents an innovative experiment in large-scale software
development via concurrent application of advanced software tools,
knowledge-based techniques, and strategies for organizing large development teams
in the use of these tools and techniques...A research project, the KBSF explores
knowledge-based factory concepts. Creating usable tools for actual industrial
settings is one important outcome of our efforts." (Pages 55,56.)

According to Eliot et al the KBSF project in 1986, after five years work, had produced a
number of usable tools representing 250,000 lines of code. The KBSF tools are also
designed to support VLSI circuit design, thus reinforcing the idea of a system factory.

At the annual Alvey conference in 1987 a "technical cross-boundary session” was held to
discuss /KBS in Support of Software Engineering and Vice Versa. A report(BADER87b)
of the session summed up the the relationship between the two disciplines of SE and
IKBS, within Alvey:

"The UK was at the leading edge of IPSE technology. However, current
generation IPSEs were complex and expensive tools and relied for their success on
the expertise of the analyst or designer using them. If IPSEs were to get into
widespread use the next generation would have to be designed so that the
non-expert could utilise them relatively easily. This meant that IPSEs must play
a more active role in system development by assisting the user at various points
within development, and by automating more activities within the design process.
The latter could be achieved by incorporating knowledge-based tools and Al
techniques within an IPSE. The knowledge bases would have knowledge about
design as well as information about project management, configuration control
and other key aspects of the software life-cycle." (Page 12.)

Another Alvey project is concerned with the idea of a knowledge-based IPSE. The ISM
project has similar objectives to those of the KBSA, ISF and Intellipse projects, and
involves Software Sciences Ltd and the Universities of Lancaster and Keele. The ISM
project Consortium described the aims of their work in 1987(5M87);

"The ISM project is a research programme which is investigating the structure and

58

applications of a knowledge-based IPSE. Its objective is to develop a prototype
kernel for a knowledge-based IPSE along with demonstrator applications for the
system...The ISM is a prototype for a knowledge-based IPSE. It is not a
complete IPSE in itself as it does not include a complete range of tools. In
essence, the project is concerned with investigating how knowledge based methods
may influence the design and use of an IPSE." (Pages 1,2.)

Lubars and Harandi("UB86) jdentified five areas where Al techniques could be used in the
software life-cycle:

- schematic knowledge-based techniques to encode expert design
knowledge in a form that can be accessed and incorporated into new
software designs,

- rule-based refinement techniques to perform a stepwise refinement
of specifications and high-level designs into detailed designs,

- constraint propagation techniques to propagate design decisions and
constraining specifications from one part of a design to other
affected parts of the design,

- planning techniques to solve design problems by automatically
composing design components, and

- agenda-driven control strategies to help track goals, dependencies,
and objectives to assist in managing design complexity for the user.

Lubars et al described an Intelligent Design Aid System (IDeA) implemented on a
Unix-based workstation, which has been used to aid the design of small system
examples. Their work developed ideas put forward in two of their earlier
papers(HAR852),(HARBSY) which considered the use of template-based specification and
design. This concept envisages a library of stored design templates and a system for
effective retrieval and manipulation of the templates. The latter represent abstract and
generic solutions for different types of problem. The design templates, which can be in
the form of fragments of data-flow diagrams, are the basis for a stepwise process
involving the user interactively refining the design.

Blum and SigillitoBLUMS6) discussed the general theme of using expert systems for the
design of information systems. They identified two types of knowledge appropriate to

the information systems development domain:

- application knowledge, about the application environment and its
needs, and

59

- transformation knowledge, about the software process itself.

The application knowledge is sub-divided into knowledge about a specific application,
and generic knowledge about a whole class of applications. The transformation
knowledge is divided into heuristic design knowledge, and algorithmically prescribed
transformation knowledge.

Blum et al went on to describe an Environment for System Building (ESB) consisting of
three modules:

- the definition module, for capturing the specification;

- the transformation module, an expert system to transform the
specification into an executable specification;

- the generation module, a program generator to transform the
executable specification into an operational program.

The ESB project began in 1984 and prototypes of some parts of the system have been
implemented.

Persch(PER86) defined a model of a software environment based on an expert system for
transformations. As with most transformation systems, the approach is based on the
successive translation of formal specifications into an executable format. Persch's
system is unusual in that it uses a transformation development environment constructed
like an expert system. It consists of rules, an inference "machine" and the "explanator".
The rules are implemented in Prolog. The system works by applying a given set of rules
to map documents from one phase to another. The system has been used for some
Ada-based applications.

Pidgeon and Freeman®IP85) proposed an idealised architecture for a Design Quality
Expert (DQE) system. The DQE is expected to be an active design aid and to be able to:

- provide alternative suggestions for improvements to the design,
- explain or justify diagnoses and suggested improvements,

- be able to implement improvements selected by the designer,

- have the capacity to acquire new rules, and

- be able to instruct the neophyte.

60

The DQE architecture consists of a natural language/graphics front end, a
knowledge-base and a blackboard. The knowledge base has facts, rules, an audit trail
and performance statistics; the blackboard is for plans, agendas and solutions. It is also
envisaged that the DQE will have a learning component for the acquisition of new rules,
a teaching component for instructing, an historian for capturing an audit trail of changes
to the design, and an observer to monitor not only the performance of the human
designer, but also the performance of the rule base. The DQE is an idealised system and
has not yet been implemented.

Grindley(CRIN86) considered the use of expert systems for the development of computer
systems. He divided the problem domain into two basic areas; solution expertise
needed, and problem definition facilities.

The solution expertise is made up of four parts:

- designing the program strategy,

- coding the programs,

- debugging the programs, and

- altering and adding to existing coded programs.

Grindley also separated the problem definition facilities into four areas of expertise:

- structuring the enquiry process,

- confirming the evidence (for each requirement),

- being friendly (asking questions of the user in layman's terms), and
- prompting the specifier (for other implied requirements).

A Systematics Generator is proposed which would contain precoded solution templates,
rules for extracting the required parameters from the problem statement, a parametizer for
applying the rules to the problem statement, and a generator which accepts the
parameters and applies them to the relevant templates to automatically produce a
solution-statement of coded and tested programs.

RUBRIC(VANAS8) i an Esprit project looking at the applicability of a rule-based

approach to information systems development. (Esprit is a European Community AIT
programme with similar objectives to the UK Alvey programme.)

61

The basic RUBRIC paradigm is that:

"...development of an information system should be viewed as the task of
developing or augmenting the policy knowledge base of an organisation, which is
used throughout the software development process, from requirements
specification through to the run-time environment of application programs."

(Page D3-7.)

Work on the definition of the concepts and development framework for RUBRIC is
complete. Implementation of the system has begun on Sun workstations using Prolog.

3.4.2 KBS Research
Software Cost Estimation

Chapman and SeilerCHAP86) described an expert system that can assist engineers and
managers in estimating software development efforts and schedules. The system,
COCOMOXx is based on Boehm's(BOEH81) Cocomo model for software cost estimation.
It was built using a proprietary expert system shell.

Cuelenaere et al(CUEL87) discussed the role of an expert system in supporting the
calibration of a software cost estimation model. They developed a prototype expert
system containing about 200 rules.

Edwards-Shea et al EPWA87) described the development of the BIS/Estimator. This is an
expert system for estimating development times for DP software systems. It is written in
Prolog and is based on an empirical model of cost estimation. The model is calibrated
using the expertise of BIS consultants built up over many years of actual development
experience. BIS/Estimator is available as a commercial product from BIS Applied
Systems Ltd. and runs in the IBM PC environment.

Specification

Kampen(KAMP85) described research at Boeing Computer Services (BCS) into the
application of Al to software engineering. In particular, Kampen discussed a prototype
system called ARGUS II used for supporting the development of formal specifications.
The goal of the BCS research project is said to be "an expert system that elicits
specifications directly from the customer or end-user of an application".

62

Programming

Lewis Johnson and SolowayLEWI85) described PROUST, a knowledge-based system for
analysing and understanding Pascal programs written by novice programmers.
Knowledge about what implementation methods should be used in programming is
codified in PROUST. In a preliminary test of the system, PROUST constructed
complete analyses of 161 out of 206 sample programs. It is reported that, of the
"problem" programs it identified, 95% did have faults.

Oddy(ODD86) reported on the Knowledge Based Programmer's Assistant (KBPA). The
KBPA is an advanced interactive software development tool which uses techniques from
Al to help programmers in the task of program composition. Like PROUST, the KBPA
contains knowledge about programming plans and mechanisms. The KBPA is a
prototype system implemented on a Sun workstation.

Project Management

Hurst et al(HURS5) report the work of an Esprit project which looked at the application of
rule-based techniques for software project management and maintenance. Hurst et al
described a system called the Software Production and Maintenance Management System
(SPMMS). SPMMS uses rules to guide its internal operation. In addition, the end-user
is able to enter rules which describe the supporting environment for the software project.
Rules can also be used to control the products and processes relevant to the project.
SPMMS is a pilot system and research into its applicability in a real environment is
continuing.

Basili and Ramsey®BASI85) described ARROWSMITH-P a protoype expert system for
software engineering management. They investigated the use of rule-based deduction
and frame-based abduction for building expert systems in the management domain.
Metrics were employed in the system such as, "software changes per line of source
code", and "programmer hours per software change". The performance of the expert
system was compared with what actually happened during the development of a project.
Basili et al claimed that the system performed "moderately well".

Maintenance

Dyer(DYER84) considered the application of expert systems to the problem of planning for

63

software maintainability. Dyer concluded that:

"The use of rule-based systems to evaluate some aspects of software design may
not be practical at present because the complexity of the implementations would
require a prohibitively large number of rules." (Page 299.)

Leung and Choo(LEUNSS) discussed the potential of Prolog for efficiently managing the
information concerning the different modules, and their inter-relationships, in a large
software system. They described a possible architecture for a rule-based design and
maintenance expert system.

Alperin and Kedzierski(ALPE87) described Problem Manager (PM) which is one of a
number of "expert managers" forming part of a larger Knowledge-Based Software
Development Environment used by the US company, Carnegie Group Inc. The
environment is a framework for building integrated tools to support software managers,
designers, programmers, and maintainers. PM deals with software problems, including
bugs, changes, and enhancements to the system. A prototype system has been built
using the Al environment, Knowledge Craft. Boeing Computer Services, mentioned
earlier, are funding the work.

4.3 Al and th i ing of Conventional Sof

Dunning(PUNN85) in a paper which proposed the use of expert systems for supporting
the rapid prototyping of conventional software, said that:

"In contrast to the sequential steps involved in the traditional software
development life-cycle, rapid prototyping allows rapid iterations through design
and implementation. A prototype is not a complete implementation of the
system, but is a partial implementation representing the major required functions
and the interfaces between functions. The prototype represents what the system is
to do and how it will be accomplished." (Page 3.)

Dunning described the use of LISP-based tools to animate the specifications and designs
of conventional systems, but points out that it is likely that the LISP-based prototype will
need to be re-implemented in a conventional language before an operational system is
obtained.

Ince(INCE88) gugoested that the use of artificial intelligence languages could greatly

facilitate the prototyping of conventional software. He proposed that a set of user
requirements could be expressed as rules, and the rules coded into Prolog allowing the

64

user-specification to be demonstrated very quickly. Ince cited the development by the
accountants, Arthur Anderson in Chicago, of a system for accounting for the movement
of equipment from one oil lease to another. The requirements for the system were very
complex and an expert system shell was used to incrementally build up a prototype
specification of the system, which allowed the users to check that the system was
behaving correctly in different situations. The ES model of the design was subsequently
used to build and test a conventional implementation of the accounting system.

Many of the proposed "new" paradigms(AGRE86) for information system development are
based on some form of rapid prototyping. However, so far, the proponents of the
prototyping approach have not identified Al techniques as a key element in the new
strategy. The use of prototyping to accurately identify user-requirements was summed
up well by Carey and Mason(CAR83);

"Prototypes...attempt to present the user with a realistic view of the system as it
will eventually appear. With prototypes a distinct attempt is made to produce a
'specification' which users can directly experience. Communication with users,
particularly the non-specialist middle management user, is a major motivator
behind the recent interest in prototypes.” (Page 49.)

The use of prototyping in DPSD for the purpose described by Carey et al is closely
analogous to techniques used in civil engineering. For example, when a new building is
being designed, the developers often build scale models to help finalise the design, and
satisfy interested parties that the proposed structure will blend in appropriately with its
surroundings. The close relationship between traditional engineering design and DPSD
suggests that the potential use, if any, of KBSs in the engineering disciplines should be
investigated, to see if there are any lessons for the applicability of KBSs in the DPSD
domain.

3.5 KBSs in Engineering Design

Mittal MITT86) characterised the link between KBSs and design in the following way:

"Designing an artifact is one of the most challenging problem-solving tasks
performed by engineers. It is a task requiring both large amounts of
domain-specific knowledge (that is, knowledge specific to the class of artifact
being defined) as well as considerable problem-solving skill." (Page 102.)

Hayes-Roth et alHAYES83) jdentified design as a generic application area for KBSs.
They characterised design as: "configuring objects under constraints.” (page 14).

65

There is evidence that Al in general, and KBSs in particular, are being used extensively
in engineering design. Duffy(PUFF87) published a bibliography covering Al in
engineering design which cites over 300 papers. An annual conference on Applications
of Artificial Intelligence in Engineering ProblemsSRIR86) wag held for the first time in the
UK in 1986 and has become an annual event. RychenerRYCH85) discussed the
application of ESs for engineering design. His analysis was related to chemical and civil

engineering and he concluded:

"Expert systems are being applied to a wide variety of engineering design domains
where expertise is known to exist and to be in demand. They are effective in
providing a starting basis for ongoing projects that can make significant impacts
in industrial and commercial settings." (Page 40.)

Few authors make explicit the link between traditional engineering design and DPSD, yet
the emergence of the term software engineering in the 1960s, and structured
development methods in the 1970s, was an explicit attempt to put the construction of
computer systems on the same footing as disciplines like civil and mechanical
engineering. Wasserman(WASS80) made this point very clearly:

"In the 1960's, software developers attempted to design and implement
increasingly complex systems...In many cases, developers were unable to
construct systems that were suitable for the envisioned application. Even those
systems that worked were often unreliable, poorly documented, inefficient, and/or
in need of extensive maintenance...To a large extent, their failures may be
attributed to the generally ineffective character of software development practices at
that time...The result of this situation could be seen in the lengthy delays or even
outright collapse of a number of large-scale software projects. Identification of the
problems and discussion of possible approaches to their solution took place at
several meetings in the late 1960's, two of which were sponsored by the NATO
science committee. The term 'software engineering' was coined as the theme for
these meetings, and was chosen as a provocative term, to indicate that the design
and construction of software should be viewed as an engineering discipline."
(Page 664.)

The traditional engineering disciplines are much older than software engineering, and
have evolved rigorous methodologies and systems of training. In addition, they are
grounded on proven mathematical and physical principles. Software engineering has not
yet developed a widely accepted formal mathematical foundation and is still too young a
discipline to have established a widely accepted engineering methodology. In this
connection, Boehm(BOEHT6) gaid that:

"Those scientific principles available to support software engineering address
problems in an area we shall call Area 1: detailed design and coding of systems
software by experts in a relatively economics-independent context. Unfortunately,

66

the most pressing software development problems are in an area we shall call Area
2: requirements analysis design, test, and maintenance of applications software by
technicians in an economics-driven context. And in Area 2, our scientific
foundations are so slight that one can seriously question whether our current
techniques deserve to be called 'software engineering'..Hardware engineering
clearly has available a better scientific foundation for addressing its counterpart of
these Area 2 problems. This should not be too surprising, since 'hardware science'
has been pursued for a much longer time, is easier to experiment with, and does
not have to explain the performance of human beings." (Pages 1239,1240.)

Hebden™EBDS6) ¢4i4-

"Software engineering is a relatively young discipline. It is somewhat younger
than the computer industry itself and, like any evolving discipline, there has to be
a delay between the theoretical work which forms its basis, the availability of
proven tools which enables the theory to be put into practice and the experience
gained from having made use of the tools." (Page 199.)

Research into formal methods for software specification and design is an attempt to
provide software engineering with a mathematical basis similar to that which underpins
the traditional engineering disciplines. There has been great emphasis in the Alvey
software engineering programme on projects researching into formal methods. Of the
ninety software engineering projects listed in the 1986 Alvey Annual Report(ALVEY87b)
thirty six (40%) are in the general area of formal methods. This reflects the desire of
some parts of the UK software industry, especially those involved in the production of
real-time, 'mission’ or safety-critical systems, to establish rigorous, algebraic techniques
that can ensure the production of provably correct software. Talbot, who was Director

of the Alvey software engineering programme, saidTALB86);

"The Formal Methods programme..[within Alvey]..above all aims to raise the
professional standards of software engineering. There is a need for at least the
same level of confidence in certain forms of software as, for example, in civil
engineering where there are techniques and methods applied in the design process
to give a quantitative measure of the suitability of a civil engineering design for
its environment. The use of Formal Methods is the key to being able to certify
software in safety-critical applications." (page 23.)

Ince™NCES®) commented that the optimistic expectations of the Alvey Directorate in the
area of formal methods have not been fully justified by events.

"The formal methods developers are seeing very limited take-up of their ideas, and
we are far from the prediction by the Alvey Directorate that, by the end of the
programme, 30% of all software engineers would be familiar with the techniques
associated with mathematical software development.” (Page 21.)

67

This observation by Ince suggests that the widespread use of formal methods in
commercial DP must be regarded as a long-term objective.

The design and development of a commercial DP system involves many of the problems
associated with more traditional engineering design. These problems include control and
management of a large team of people with diverse but specific skills, budgeting and
scheduling human and physical resources, and building complex systems to meet both
physical constraints and aesthetic requirements. However, as we have noted, there are
two essential differences between software engineering and traditional engineering: the
former is a more immature technology as far as development methodologies are
concerned, and it does not have a firm mathematical foundation. Formal methods
research is investigating potential mathematical foundations for the software process;
research into KBS tools for supporting DPSD can help strengthen existing
engineering-like development techniques. In addition, the success of KBSs in other
engineering design areas suggests that KBS tool support can be an effective way of
enhancing the design process.

The similarities between traditional engineering design and DPSD, coupled with the
evidence that KBSs are being successfully used in the former domain, lends credence to
the idea that KBSs can be successfully applied to the problems of information system
development. The detailed nature of the tasks performed in the two domains are
fundamentally different and we cannot, therefore, expect that KBSs used in engineering
could be used in DPSD. However, KBSs in engineering do suggest generic areas of
design where these systems may be applicable in DPSD.

3.6 Summary

The review of reported work into the application of Al to software engineering has
shown that the research is in two broad areas: automation-based Al environments for the
whole software life-cycle and KBS tool support for specific tasks within current
conventional development methods. The former area is characterised by
Balzer's(BALZ83) work and the KBSA project(CREEN83) at the Kestrel Institute. KBS
research has been more limited and there is little reported research into the use of KBS
tools for the design phase in the commercial software development life-cycle. While the
Al environment research offers potentially more powerful support for the software
engineering process than KBS tool support, it is unlikely that the results will be available
in a commercial environment in the near future. In fact the use of environments such as

68

the KBSA is likely to require fundamental changes in the nature of commercial DPSD, as
well as engendering significant managerial and organisational changes. The
development of KBS tools with more limited scope, to support particular tasks within
the current software life-cycle, could bring more immediate benefits to the commercial

DP environment.

The Intellipse project is concerned with the development of KBS support tools.
However, there is a link between Balzer's view of the automation-based software
paradigm and the basic concept of the Intellipse system. Like the KBSA, the architecture
proposed for the Intellipse system is also based on the notion of a knowledge-based
support environment for DPSD incorporating discrete knowledge bases relating to the
different tasks in the design process. The essential difference between the Inzellipse
concept and the KBSA is that the latter is based on the paradigm of automatic code
generation via very high-level specifications - to be achieved through incremental formal
transformations of a very high-level specification language(®ALZ85) which minimises
human intervention. The Intellipse concept is more limited in scope and is based on the
paradigm of expert support for the human designer at specific points in the design cycle
via KBS tools, together with some automation of mechanical tasks where this is
appropriate(BADER873) 1y addition, the Intellipse project is not primarily concerned with
the specification stage of the DP life-cycle, except insofaras this is part of the BIS SSD
methodology.

There is another important difference between the Intellipse research and KBSA-type
projects. The Intellipse project is concerned with developing tools which could be
incorporated into a typical DP installation found in the UK today. This implies that the
tools should be compatible with existing tools and development methods, and run on
hardware which is acceptable in these installations. As has been said, KBSA-type
projects are long-term programmes, unlikely to produce tools which could be used in a
commercial or industrial setting in the near future.

The distance from industrial reality of some current research into IKBS applications in
software engineering was noted at a joint AlveyDirectorate/British Computer Society
workshop held in 1985. A report(OWEN8S) of the workshop said that:

"Not only do the software engineering and intelligent knowledge-based systems
communities tend not to speak to each other, but neither group tends to speak to
the data-processing managers responsible for running today's mainstream
computing systems in business and industry. Hence the directions of software

69

engineering and IKBS advances could bear little relation to the real-life needs and
problems of the working DP community." (Page 13.)

The Intellipse project is attempting to address current problems in the commercial DPSD
environment. It offers the prospect of KBS tools which could be introduced into this
environment in the very near future. In this respect, the Intellipse project is clearly
addressing the need, identified by the Alvey Directorate, for KBS research to relate
directly to the "real-life needs and problems of the working DP community".

70

Chapter Four

The Initial Feasibility Study

Faust

Trust honesty, to win success,

Be not a noisy jingling fool.

Good sense, Sir, and rightmindedness
Have little need to speak by rule.

And if your mind on urgent truth is set,
Need you go hunting for an epithet?

Johann Wolfgang Goethe 1749-1832 (Faust/Part One)

Preamble

This chapter introduces the BIS/SSD methodology. It describes the methods used for
the initial feasibility study and the conclusions resulting from it. A description of the
organisations and people used in the Intellipse research is given and the detailed themes
of the research are identified.

4.1 The BIS Structured System Design Methodology - SSD

The SSD method is based on the theories of structured systems design formulated in the
1970s(STE74), (YOU79), JACT5)_ Stevens et al summed up the philosophy of structured
design:

"Structured design is a set of proposed program design considerations and
techniques for making coding, debugging, and modification easier, faster, and less
expensive by reducing complexity...Simplicity is the primary measurement
recommended for evaluating alternative designs relative to reduced debugging and
modification time. Simplicity can be enhanced by dividing the system into
separate pieces in such a way that pieces can be considered, implemented, fixed,
and changed with minimal consideration or effect on the other pieces of the
system." (Page 115.)

The other major advantage of structured design was identified by Wasserman(WASS80).

" ..increased effort in the earlier stages of development would be reflected in
reduced costs for testing and maintenance. Early detection of errors (in the
specification, for example) could reduce the cost of correcting those errors at a later
time. The resulting software would be of higher quality and would be more likely
to fulfill the needs of its users.” (Page 665.)

71

The SSD methodology is one of a large number of system development methodologies
marketed commercially in the UK. The better known methods are SSADM, LBMS,
SADT, INFOREM, CORE, JSP, JSD, IE, DDSS(MADD83), (DOWNS86), (CONNSS),
(JONES86b) - gome of the methodologies, such as SSADM and INFOREM, address more
than one phase of the software life-cycle and others, like JSP, address the programming
phase only. It is beyond the scope of the thesis to discuss the nature and relative merits
of these methodologies in relation to SSD. However, SSD has a significant number of
major commercial and government users and the Alvey Directorate regarded it as
sufficiently important in its own right and representative of other methods, to make it a
suitable basis for a project researching into IKBS tools for structured design.

SSD is very similar to the Structured Systems Analysis and Design Methodology
(SSADM) which is approved and recommended by the government's Central Computer
and Telecommunications Agency (CCTA). SSADM was originally developed by the
CCTA in conjunction with the company, Learmonth and Burchett Management Services
Ltd. (LBMS), whose founders were former employees of BIS and worked on early
versions of BIS's structured techniques. SSADM is a structured development
methodology which goverment departments, as well as private sub-contractors, are
expected to use when building administrative computer systems for government use.

SSD is part of BIS's MODUS services for computer-based information system
management and development. MODUS covers the areas of strategic planning, resource
management, project management, system development and production management.
The components of MODUS are procedures, techniques, documentation, automated
aids, training and implementation support.

The MODUS framework recognises the following phases for the conduct of a project:

- feasibility study,

- systems analysis,

- systems design (computer and clerical),
- programming,

- system testing,

- acceptance testing,

- implementation, and

- post-live review.

72

SSD is concerned with the design phase which follows systems analysis and precedes
programming. The development phases are regarded by BIS as discrete entities in their
own right, and the use of SSD need not be in relation to any of the other MODUS
phases. The input to the SSD phase is a set of documentation, arising from the analysis
of a user's system requirements. This analysis usually covers any existing manual or
computer systems relevant to the project, and data and files which will be needed by the
proposed system. The output from the SSD phase is a set of program and file
specifications from which the software for a computer system could be built.
Wasserman(WASS80) hag described the nature of the design phase in the software
life-cycle:

"...the importance of the design process has become evident, since the output of
the design activity is a software blueprint that can be used by the programmer(s)
to implement the system without having to refer back to the specification and
without having to make unwarranted assumptions about the requirements." (Page
672.)

The SSD course manual suggests that any design method should:

- reduce design complexity,

- assist detection of errors at an early stage,

- improve documentation,

- provide for effective project control,

- increase the ability of non-technical staff to contribute,

- enforce the consideration of factors often overlooked, and

- cope with bad input, i.e. functional specifications of poor quality.

The manual also states that SSD incorporates the following features:

- a formal statement of design criteria,

- a formal design method leading to a system with simple interfaces
between independent segments,

- design reviews,

- documentation,

- methods for estimating design performance with reference to given
performance parameters, and

- asimple interface between design and programming.

73

The underlying principle of SSD is that the design process should be rigorously divided
into two halves: logical and physical design. In principle, the logical design of the
system should be devised without any consideration of the physical constraints the
system must meet. This feature of SSD is related to the concept of simplicity referred to
by Stevens et al above, and is characteristic of most semi-formal development methods.
A more detailed description of SSD will emerge in chapters five, six and seven.

4.2 Organisations and People Involved in the Intellipse Research

The Intellipse research has drawn on the domain expertise of a large number of people
outside the immediate project team. Information about the organisations and persons
involved is collected here for convenience, and references to organisations or individuals
in the rest of the thesis will be with respect to this section.

BIS Appli tem

A general description of BIS was given in 1.5.

BIS1

Principal consultant-Birmingham (promoted to Divisional Director during
the Intellipse project). Intellipse project manager. Responsible for BIS's
Technical Division (TD) for the Birmingham region.
Specific expertise: several years experience of using MODUS methods on
development projects; data analysis; expert systems.
BIS2 - Senior consultant-Birmingham. Member of project team.
Specific expertise: training people in the use of structured programming; use
of MODUS standards on projects; developer of BIS's introductory course
on expert systems.
BIS3 - Consultant-Birmingham. Joined the project team and BIS at the end of the
first year of the project.
Specific expertise: several years programming experience in a DP
environment.
BIS4 - Consultant-Birmingham. Member of project team. Main programmer of
Intellipse tools.
BIS5 - Senior consultant-London/TD. Used extensively as a domain
expert.
Specific expertise: SSD; database systems (DBS) design; data analysis
(DA); experience of several major development projects using MODUS.

74

BIS6 - Senior consultant-London/development division (DD). Used as a domain
expert.
Specific expertise: experience of two major development projects using
SSD.
BIS7 - Senior consultant-Birmingham. Used as a domain expert.
Specific expertise: extensive experience of teaching SSD on BIS courses.
BIS8 - Principal consultant. Head of MODUS training division-London. Used in
evaluation of Advisor.
Specific expertise: Use of MODUS on development projects and tutoring on
MODUS training courses.
BIS9 - Senior consultant-Birmingham. Used as a domain expert.
Specific expertise: training in SSD; extensive knowledge of DBS design.

BIS Bankin ms L

BIS Banking Systems Ltd. (BISBK) are based in Wimbledon, London. They are part
of the BIS Group but trade separately from BIS Applied Systems Ltd. BISBK develop
and market large-scale software systems (for an /BM System 38 environment) used by
major international banks for their financial administration systems. The software,
known as the MIDAS system, is highly complex and involves some 87 million lines of
code. MIDAS has the largest share of the world market in this type of software.

In 1986 BISBK began a thirty man-year development project to build a new module for
the MIDAS system dealing with futures and options trading (FOT). A senior
management decision had been taken to adopt SSD standards for the project and to use
BIS/IPSE. The project team had experience in the DP industry as analysts and
programmers but none of them had used SSD. The team were inducted into the SSD
method using the standard one week BIS training course.

The FOT team represented a typical group of technically skilled DP practitioners, who
were inexperienced users of SSD and who did not have access, within their installation,
to designers with expert knowledge of SSD, who could help them during the difficult
early stages of using the method. The Head of Development at BISBK is particularly
interested in the area of KBSs and their potential use in DPSD and he gave permission
for the FOT team to be involved in several aspects of the Intellipse project.

75

BSC

The DP installation at BSC, Port Talbot, is large by UK standards and consists of an
IBM 3090 mainframe computer with several hundred megabytes of on-line disk storage.
The development environment is based on the Cincom Systems Inc. range of DBMSs,
Total, Tis and Supra, and the Cincom Fourth Generation language (4GL) Mantis. Some
of the older applications at BSC are written in Cobol.

BSC1 - Project manager. Member of the project team.
BSC2 - Project manager. Member of the project team.
BSC3 - Database Administrator (DBA) of the BSC installation.

ICLplc - CMS Divisi

The Corporate Management Services (CMS) division of ICI is responsible for advising
ICI's ten divisions on various aspects of information technology (IT). The deputy head
of CMS (ICI1) had taken the initiative in contacting the Inzellipse project after studying
the full list of Alvey SE project summaries. ICI1 was critical of the Alvey SE
programme believing that few projects addressed current problems within the DP
function of companies like ICI. The Intellipse project had been selected as one of only
three Alvey SE projects which had any potential relevance to ICI's corporate DP
activities. ICI have their own DPSD methods and standards which are similar to SSD.
The CMS division was used during the initial feasibility stage and during the evaluation

of Advisor.

ICI1 - Deputy Head of the CMS division. Responsible for facilitating the adoption
of DP standards throughout ICI's ten divisions.

ICI2 - Senior manager. Responsible for evaluating CASE tools and standards for
potential use within ICL

ICI3 - Senior manager. Responsible for advising ICI's divisions about methods
and standards to be used for DPSD.

ional Computin n - T Demonstration Centr

The NCC/STDC was set up with Department of Trade and Industry funding and is partly
sponsored by the Alvey Directorate. The objective of the STDC is to encourage the use
of appropriate software tools, and to promote awareness and understanding of SE

76

methods. The STDC has assembled an extensive range of CASE tools which are
available for public evaluation and training. The STDC also offers consultancy services
in the area of CASE tools and SE methods. The STDC was used to evaluate some
current CASE tools during the initial feasibility stage.

BIS Trainin Atten

Attendees on two of BIS's public training courses in SSD and database systems design
(DBS) were interviewed informally at different times during the project.

Miscellaneous

A significant number of people have been interviewed informally during seminars and
conferences which the author attended, particularly during the first 15 months of the
project. Information was also obtained from the project's Alvey monitoring officer -
ALV1,

4.3 The Initial Feasibility Study

It should be noted that the term feasibility used in the thesis is not intended to encompass
the idea of a cost-benefit analysis, which is the objective normally associated with this
term in commercial DP.

It was noted in 2.2.2 that MODUS did not have procedures or standards available, at the
start of the project, appropriate to KBS development. In addition, there were no detailed
specifications for the proposed KBS tools. As was to be expected in a research project,
the project proposal simply stated some general aims and objectives. This meant that
progress at the start was hesitant, particularly at BIS.

Thus, the approach adopted at the start of the project was to examine in more detail the
project proposals, and to establish from SSD users firm evidence of their experience of
using the method as well as their expectations of an SSD support tool. In addition, a
feasibility study and user-requirements analysis was broadly in line with the first two
phases in MODUS's conventional development standards.

77

Two main options were considered for the study:

- aquestionnaire to be sent to SSD users and other users of similar
SD methods and,

- a series of structured interviews with a specific group of
individuals and organisations.

The first option was discounted for several reasons:

- BIS were not happy about issuing a list of SSD clients;

- many DP installations are reluctant to admit to the use of a
particular methodology, and are even more reluctant to admit to
the non-use of any development methodology;

- a questionnaire was unlikely to reveal the kind of detailed
information which the project required;

- it would be difficult to identify only installations using
structured design methods, which meant that the questionnaire
would have to be sent very widely;

- responses to questionnaires in the DP industry are traditionally
poor, and BIS's involvement in the project was likely to deter
respondents who were sensitive about information relating to
their commercial operations;

- conducting a major questionnaire would be costly in resources.

Structured interviews had three important advantages:

- the exercise could be targeted precisely at organisations known to
be willing to co-operate;

- more detailed information could be obtained revealing some of
the subtleties of using SSD in a live DP environment and;

- the personal contact implicit in interviewing could establish the
basis for using the interviewees later in the project to evaluate
any tools and ideas developed.

The last point was particularly important since the credibility of the results obtained

during the Intellipse project would be enhanced, if organisations who were not part of
the immediate project team were involved in validating the research.

78

An attempt was made to solicit information by publishing an article in the STDC's
newsletter. The latter had a wide circulation especially amongst the Alvey community.
The article invited organisations to contact the author if they were willing to co-operate in
the study. This general call for information received a very poor response partly
justifying the validity of the decision not to use a questionnaire.

The initial feasibility study involved the following individuals and organisations:

- BIS1, BIS2;

- BSC1, BSC2;

- ICI, ICI2, ICI3;
- STDC and;

- ALVL

The initial meetings were followed up by further interviews after Advisor was built.
These interviews are discussed in chapter six.

The interviews were designed to elicit information in the two general areas summarised
below. If the interviewees were not familiar with the project or the Alvey programme, a
short introduction to the main aims and objectives of the project was given.

- The problems of using structured design, in general, and SSD in
particular, in a commercial DP environment.

- The advantages and shortcomings of current CASE tools, and the
type of facilities that were being sought in the next generation of
knowledge-based tools.

4.4 Conclusions of the Initial Feasibility Study

This first set of conclusions are related specifically to SSD although some of the
problems identified are endemic to most forms of structured design.

i The introduction of SSD can slow down to a significant extent
the design phase of the software life-cycle. Commercial
pressures on DP departments to deliver systems quickly often
lead to the abandonment of SSD in favour of ad hoc approaches.

79

The long-term benefits of SSD, of reliability and maintainability,
are lost in order to gain the short-term advantage of early

delivery.

ii SSD requires the production of large volumes of support
documentation which are difficult and tedious to manage
manually, but which are central to the SSD method.

iii Naive SSD users find that the step from the training course (or
manual) to the application of SSD to a project in their own
environment is a difficult one, sometimes resulting in partial
reversion to inferior, ad hoc methods.

iv Maintaining the standards and disciplined approach of SSD
is very much dependent on the expertise of the
designer. Current support tools rely almost entirely on this
expertise and on the designer's knowledge of the development
methodology. The tools lack any intelligence and can do little
more than provide mechanical support by recording information,
helping with word and diagram processing and carrying out
simple consistency checking. The shortage of expert support for
the inexperienced designers using SSD leads to a reduction in the
standard of results obtained.

v The existing systems and methods of a DP department often
represent many man-years of investment. The introduction of
SSD, and CASE tools, must take account of
this investment and allow essential parts of the old systems and
methods to be incorporated into the new development
environment.

vi Support tools for a particular methodology should have available
examples of how the methodology can be used to solve typical
design problems. This facility should be linked to a system for

recording past design problems and their respective solutions.

Some of these findings are corroborated by three reported surveys into the use of

80

structured methods in commercial DP. Lee(LEE86a), (LEE86Y) carried out an independent
review of industrial and commercial DP organisations in the UK under the auspices of
the City University. She obtained replies from 111 organisations. Some of the
respondents were the subject of in-depth interviews. Her main observation was:

"...how few organisations-only 32% of the sample-were using structured methods
for systems development, although a further 15% of data processing managers said
they were considering adopting one in the near future." (Page 30 - LEE86a.)

Lee quoted some of the respondents’ views on the use of structured methods:

"Project Manager:

'One problem is convincing management that the change of emphasis towards
design is both necessary and cost effective. (We suffer from the Wisca syndrome -
why isn't Sam coding anything?)'

Systems Development Manager:

"Major benefits derived during structured analysis but found to be cumbersome at
the design stage, particularly generating masses of paperwork.' " (Page
29-LEE86b.)

Sumner and SitekSUM86) investigated whether structured methods for systems analysis
and design were being used in the USA. They sent questionnaires to 172 organisations
involved in a mixture of "real-time" and "business applications” - only 47 (27.4%)
replied. They concluded:

"One of the major findings of our study is that although most of the respondents
acknowledged the benefits of using structured tools in requirements analysis and
design, these tools were not being used in actual development projects, largely
because of their lack of acceptance by data processing professionals, and the fact
that they were perceived as time-consuming to use...Project managers may resist
their use because they are being pressured to complete projects within time and
cost constraints imposed by users and feel that the use of structured tools would
only add to project costs.

Many of the programmers and analysts may not have had formal education in
information systems design and may have learned development practices from
project managers and peers-on-the-job. As a result they may be unfamiliar with
structured approaches and how to use them.” (page 23.)

Condon(CON88) analysed the NCC's 1987 annual survey of its members. The survey
covered many aspects of DP and had 365 respondents. Condon made these comments
in relation to the use of structured methods by NCC members:

"In the section..[of the survey]..on systems development methods, a third of the
respondents said they were using some form of development methodology-a
disappointingly low level, although two-thirds of all new business applications

81

involve some defined method...The survey found some predominant obstacles in
the use of tools. 'The most significant one is finding the tools with the right
facilities for the various stages in the development life-cycle.'" (Page 13.)

Some general conclusions were also drawn from the results of the feasibility study.
failur

The problems of building DP systems on time, within budget and meeting end-user
requirements are well documented. A frequently quoted statistic is that 50-80% of the
budget for a systems development project is spent "maintaining" the system after it has
been delivered to the user{ALVEY82), (RAMAS4) - However, despite its reputation for
failure, the DP industry can point to a number of highly successful systems in
widespread, everyday use. The international airline booking system or the many plastic
card operations are two highly visible examples. The existence of high quality DP
systems is an important observation, since any attempt to build knowledge-based tools
for supporting DPSD must be predicated on the assumption that techniques exist which
can adequately cope with the problems of DPSD, and that people exist who know how
to apply those techniques successfully.

End-user involvemen

Another problem in commercial DP is the large backlog of development work in many
DP departments encouraging the DP industry to look for ways to improve analyst and
programmer productivity. This fact, together with the need for DP managers to deliver
systems which satisfy end-user expectations, has led to suggestions that end-users
should play a more active role in information systems development™UM87), (CORD8S) 1f
end-users are to play a more active role, development tools are required which do not
depend for their success on a high level of design expertise on the part of the user.

Movement of D nn

Another long-standing problem in the computer industry, which a knowledge-based
approach can address, is the frequent movement of DP personnel between companies.
When a person leaves the DP department of one company to join another (s)he takes
with him/her not only technical skills but, more importantly, accumulated knowledge of
the company's development environment and computer-based information systems.
Knowledge-based tools could enable this knowledge to be retained within the company

82

so that it could be used, for example, to speed up the induction and training of new

personnel.
ommonali n m

Information systems in use in diverse organisations possess a high degree of
commonality, especially in relation to their functional specification. A knowledge-based
design tool could exploit this commonality by providing the designer with a knowledge
base containing generically classified design templates. The template knowledge base
could be used as a basis for a new design built up using proven design elements from
systems already built and tested.

One further important conclusion was drawn from the feasibility study. Although the
DP practitioners interviewed clearly stated their desire for support tools which would
address the problems of structured design, none of them offered a coherent view of the
nature of the support that such a tool should give. In particular, the concept of a
knowledge-based tool was an unfamiliar one to those interviewed, and it became clear
that it would be desirable to develop some prototype KBS tools as early as possible.
These tools could then be used to help clarify, with DP designers, the precise
functionality that was required in a knowledge-based support tool.

4.5 Summary of the Research Themes Identified

The essential conclusion from the initial feasibility study was that the successful use of
SSD requires a high level of expertise on the part of the SSD practitioner. This expertise
was usually attained only after considerable experience of using SSD on actual
development projects. Knowledge-based tools designed to support SSD should have,
as a central feature, the facility to be able to be used effectively by users who were not
necessarily expert SSD practitioners. This meant that the tools would have to encompass
the design expertise of expert SSD practitioners.

Current support tools, typified by products like the BIS/IPSE, LBMS's Automate and
James Martin's JEW and JEF JONES87Y) 4y not know how to design. The ability of
these tools to effectively manage the design process, by automating mechanical tasks and
facilitating diagram production, word processing and documentation management, is
dependent on the expertise possessed by their user. These tools, for example, do not
guide the user through the design process but expect the designer to know which tasks to

83

perform, how to perform them, and the order in which they should be carried out.

The areas of research which were important to the Intellipse project were clearly
identified by the initial feasibility study. Research was necessary to establish whether
knowledge-based tools could be designed which would exhibit some of the following
features:

- support for a particular structured design methodology, SSD,
which did not necessarily require the user to be an expert in that

method for the support to be effective;

- the ability to provide expert support for specific design tasks
within the overall development life-cycle;

- knowledge about design procedures and past design practices
which could be made available to the user;

- the usability, robustness and reliability demanded in an industrial
or commercial environment;

- the ability to integrate successfully with current support tools, like
BIS/IPSE, and existing DP development practices.

84

Chapter Five

The Concept and Design of Intellipse

Mephistopheles

What need, dear Sir, this dull life to pursue?
One loses pleasure in the same old view.
It's good no doubt

To try things out;

Then off we go to something really new.

Johann Wolfgang Goethe 1749-1832 (Faust/Part One)

Preamble

This chapter describes the initial development phases for Intellipse and introduces the
concept and architecture of the system. A broad functional specification is given and the
key features of the design are explained. An initial appraisal of the suitability of the
DPSD domain for KBSs is also made.

5.1 Initial Development Phases
After considering the results of the initial feasibility study and the outline specification of
the proposed tools in the project proposal to the Alvey Directorate (descibed in 2.1), five
initial phases of development were identified in order to investigate the potential for
building a knowledge-based support tool which would exhibit the features listed in 4.5.
i The definition of a functional specification for the system.
ii The establishment of a unified system architecture possessing a
high degree of modularity and allowing for incremental
development over a period of time.
iii The identification and classification of the individual tasks
performed within SSD and their precise relationship within the

overall SSD method.

iv The adoption of a suitable, umbrella knowledge representation

85

schema for the system.

v The development of a structured knowledge engineering approach
able to cope with the demands of a very wide application domain.

The remaining sections will expand on each of these phases and explain why each of

them was identified as necessary.
5.2 Functional Specification

A functional specification was required which would provide a framework for
developing some prototype tools. This specification was not intended to be a detailed list
of functions or actions which the system should perform in precisely defined
circumstances. This type of specification is the necessary basis for the development of a
conventional DP system, but not for one whose mode of operation was still
undetermined. The informal functional specification devised was for a system which
could:

i advise a designer about the SSD method in general, by answering
specific questions about objects and activities which are relevant in
the domain (Advisor-mode);

ii offer active support to the designer in the form of intelligent
advice about a specific task within design. This advice should
actively assist the designer to make design decisions and perform

specific design tasks (Designer-mode);

iii where appropriate, automatically execute tasks within the design
phase of SSD which are currently executed manually;

iv build and maintain a unified project database and data dictionary
which could be linked to any existing systems and proprietary data
dictionaries appropriate to a particular DP environment.

2.1] Activiti

SSD consists of a number of tasks or activities to be performed in a certain order, and

86

the SSD standards precisely specify the pre-requisites and the output for each activity.
The output from an SSD activity is usually an item of documentation, an object, which
must conform to a pre-defined structure and content. It was decided, therefore, to
classify all "things" in the SSD domain as either activities to be performed, or objects
which were the subject or focus of a particular activity.

A general example of this classification would be that cooking is an activity and
ingredients and meal are the related objects. In the context of SSD, Figure V.i illustrates
some examples of objects and activities.

ACTIVITIES OBJECTS
DATA ANALYSIS DATA, PRIME KEY
STRUCTURE
PROCESSES PROCESS SHEET
IDENTIFY BASIC- ACTIVITY,

LEVEL ACTIVITIES ACTIVITY SHEET

Figure V.i - Examples of Activities and Objects

Two basic modes of operation were devised for Intellipse: Advisor-mode and
Designer-mode - hereafter referred to as Advisor and Designer. Related to this concept
is the idea of passive and active support. Four potential forms of support were identified
for a tool intended to help a designer perform a task in SSD:

- remove the decision-making from the designer by completely
automating the task - AUTOMATION;

- share decision-making with the designer by using the tool to offer
advice about procedures and techniques, and their specific
application to a design problem being considered, but leaving the
ultimate design decision to the designer - ACTIVE SUPPORT;

87

- general advice about procedures and techniques for a specific task
which does not offer specific advice in relation to a particular
design problem - PASSIVE SUPPORT.

- facilities for recording decisions made by the designer and for
aiding diagram and word processing, but excluding any advice
(general or specific) on design procedures or techniques -
MECHANICAL SUPPORT.

Most current tools, such as the BIS/IPSE, fall into the last category. The first three
forms of support are related to the KBS roles of automaton, expert consultant and tutor
respectively, identified in 3.1.3.

Advisor

Advisor is a passive, knowledge-based, question-answering system dealing with the
SSD domain. It is knowledge-based because it contains knowledge about the design
process which reflects the expertise of expert human designers not to be found in the
SSD manual or standards. It is passive since it offers advice about SSD in general, and
not in relation to a specific application. It is a question-answering system because its
mode of operation is intended to model the actions of a BIS/SSD consultant answering
general questions about SSD for inexperienced SSD designers. Advisor has three basic
components:

- a set of knowledge bases containing facts, rules, procedures and
techniques relating to the objects and activities in SSD;

- aknowledge base representing the hierarchical relationship of all
the activities within SSD;

- amechanism for navigating the SSD domain.

In Advisor, the designer is able to interrogate the knowledge bases about any of the
objects or activities in the SSD domain, but Advisor cannot actively execute, in relation
to a specific application, any of the design tasks which it knows about. However, the
Advisor knowledge bases could act as an explanation facility while the user is in
Designer-mode. A detailed description of Advisor is given in chapter six.

88

Designer

The objective of Designer is to provide active support for the designer carrying out tasks
in SSD. Designer should not only be able to execute some design tasks itself but, where
the latter is infeasible, it must provide sufficient advice to allow the human designer to
make appropriate design decisions. That is, Designer will enable the user to work on a
specific design problem by actively invoking the rules and procedures which are
passively described in the Advisor knowledge bases.

Where current tools simply record the decisions taken by the designer, or facilitate the
mechanical tasks of diagram and document production, Designer should contribute its
knowledge of the design process, thereby actively promoting good design on the part of
the human designer. The Designer system is described fully in chapter seven.

5.3 Intellipse Architecture and Knowledge Bases

The architecture of the Intellipse system is illustrated in Figures V.ii and V.iii.

META-LEVEL KNOWLEDGE
INTERMEDIATE-LEVEL KNOWLEDGE
DESIGN
TEMPLATES

PASSIVE ACTIVE
RULES RULES

LOW-LEVEL KNOWLEDGE

Figure V.ii - Exploded View of an SSD-KB

89

INYINYDIY as5d1jjajuy Y} JO MIAA dJBUWAYIS - HI'A N3 q

jusuruoxtauy poddng 02foxd pajesderu] - FSdI
Areuonoiq ereq - ad

wsAg JuomaSeury aseq ere(- SWEA

aseq 28pajmouy| - g

STINAOW

gsvav.ivad

Y-SINIVIILSNOCO Jodroud
TVOISARd LNTRIND

a1

HOVIIHLNI

ada-yasn

HAOW-MANDISHA HAOW-HOSIAQY

YIOVNVIN

aM-dass

NOISAd NOISEA ONILLSEL
facgiLvAR: (el TYOISAHd AdIDAdS
SHSSHDOHUd viva
ONRENIDNALS ONDINIONHLS

SWHLSAS-¥ESN
INTHEIND

90

3.3.1 Knowledge Bases

The SSD domain was divided into six separate knowledge bases. This was done for

two reasons:
- it corresponded with the six phases of design identified by SSD;

- it was expected that when Advisor came to be implemented, the
separation of the knowledge bases would make it easier to fit the
system into a personal computer (PC) environment.

The last point indicates that decisions about physical implementation of the Intellipse
tools had been taken early in the project. This issue is discussed in chapter six.

Each of the knowledge bases is made up of several distinct components.

- Meta-level knowledge describing the objects and activities within a
domain and their inter-relationships;

- Intermediate-level knowledge describing the types and categories
of knowledge recorded for a specific object or activity;

- Low-level knowledge corresponding to the facts, heuristics,
procedures and techniques for a given topic, stored in the system
as text or Activity Program Modules (APMs);

- Partially instantiated design templates appropriate for specific tasks
within SSD and based on past applications, or the design
experience of BIS experts. This KB exploits the commonality
which exists between the designs of systems built for different
application areas but whose functionality is similar.

The other knowledge bases which the system will require are the Current Systems KB,
the Physical Constraints KB and the Re-usable Components KB. The first two will
contain knowledge about the particular DP environment in which Inzellipse is installed.
This would include data about the storage and processing constraints which the design
had to meet. The Re-usable Components KB, which would be linked directly to the

91

Current Systems KB, would contain knowledge about programs and other modules

available to the designer in his/her installation.

The knowledge bases identified in the last paragraph are one of the key features of the
Intellipse concept. It is essential that KBS design-support tools, intended for use in a
commercial DP environment, have the facility to take account of pragmatic issues, such
as available disk storage and performance constraints, when making design
recommendations. Many of the Al environments discussed in chapter three emphasise
the role of abstract design knowledge, and appear to give relatively little attention to
concrete target environment and application domain knowledge.

532 Activity P ,

The architecture of Intellipse has been designed with the maximum degree of modularity
allowing development of the system to take place in an incremental fashion. Incremental
development ensures that discrete elements of the system can be prototyped, evaluated
and implemented without waiting for the system as a whole to be completed. In
addition, the modular architecture enables individual components of Intellipse’s
knowledge bases to be revised as developments take place in the SSD method.

Central to the modular architecture are the Activity Program Modules (APMs). The
APMs will be executable modules which, together with the meta-level knowledge base,
will govern the operation of Intellipse in Designer-mode. They will be either KBS
modules embodying the facts and rules governing a specific design task, or algorithmic
programs, if the particular task can be automated. An APM may also be an existing tool
such as an editor or compiler which could be invoked by the system.

The integration of KBS and non-KBS modules is another key feature of the Inzellipse
design. This concept makes explicit the need for support tools in complex domains like
DPSD, to encompass both heuristic and conventional approaches under one umbrella.
In 3.1.4 it was noted that this type of integration is an increasingly important aspect of
operational KBSs.

The ability to develop Intellipse incrementally is crucial. Section 5.4 will indicate that
SSD is a very wide domain containing a large number of distinct tasks and the Intellipse

concept envisages an integrated system of KBS tools capable of supporting a large
number of these tasks. The integration of the system will be through the exchange of

B2

data between different tools and by managing the tools under one umbrella environment.
Due to the large number of tasks in SSD, the construction of such a system is likely to be
unmanageable unless a rigorous logical separation between modules is maintained.

Integration of the individual APMs could also be achieved through the use of a project
database and data dictionary which would contain details of all design decisions made
during a particular project. This concept is used in the BIS/IPSE which generates a
system model for each project being supported by the system.

5.3.3 External Links

All of the DP practitioners interviewed during the initial feasibility study stressed the
importance of support tools being able to link easily to existing systems and target
environments. A target environment is the hardware system that will run a particular
application. The term is used to distinguish it from the development environment which
can be a separate system used to build the software. There are three main reasons why
these external links are important.

- Most proprietary data dictionaries and similar systems used by
installations to store data about their system designs and databases
run in a mainframe environment. CASE tools, on the other hand,
usually run in a PC or minicomputer environment, although these
tools can often produce files of data in the appropriate mainframe
format. If these files cannot be transferred directly to the target,
manual keying of the data is required which can be a very
time-consuming and error-prone exercise.

- Certain tasks in SSD may require the exchange of data between the
target environment and specific Intellipse tools. It is also
important that this can be done automatically to avoid manual
keying of data.

- The BIS/IPSE provides mechanical support for several tasks in
SSD. It is sensible therefore for Intellipse to supplement
these IPSE facilities with active tools, rather than re-implementing
the IPSE support and then adding on active tools. This has been a
crucial issue during the project and is discussed in greater detail in

93

chapters six, seven and ten.
5.4 Is the DPSD Domain Suitable for KBSs?

It is useful at this stage to make some initial observations on the suitability of the SSD
domain for KBS support, before going into the details of how the proposed Inzellipse
architecture was validated. In 3.2.1 a list of factors is identified which should be
considered when assessing the suitability of a problem for a KBS approach. In this
section these factors are considered in relation to the SSD domain as a whole. In chapter
seven, which deals with the Designer feasibility study, individual SSD tasks are
considered.

Narrowness of the domain: SSD is a very wide domain and many of the tasks
performed early in the design process involve significant general knowledge about the
application environment. The width of the domain is evidenced in the first two SSD
phases, structuring data and structuring processes, which contain over thirty different
tasks. The width of SSD is a key reason why a structured approach to knowledge
engineering is required.

Complexity of the problem: SSD is a highly complex domain involving large quantities
of data. However, the structured nature of the method means that the tasks are
performed in a highly ordered manner. This natural structure can be exploited when
defining problem-solving strategies in the domain.

Nature of the problem: SSD tasks are cognitive in nature and do not require visual or
sensory skills. Many of the tasks are executed manually using a pencil and paper
technique.

Nature of the experts: In principle, BIS were prepared to make domain experts available
who were not necessarily part of the immediate project team. However, this political
support for the project had to be balanced against the client work-load at any particular
time. This indicated that the involvement of individual BIS consultants would have to be
planned well in advance and knowledge engineering sessions organised for maximum
efficiency. Since BIS consultants spend a great deal of time working with clients who
are having problems with SSD or who require tuition, it was likely that their ability to
articulate knowledge would be good.

94

Training: BIS have well-established training courses for SSD. The courses make
extensive use of syndicates, where small groups of course attendees work on case
studies illustrating various SSD techniques. This suggests that SSD has evolved
well-established approaches to specific design problems and this is likely to make
knowledge elicitation easier.

Speed of solution: None of the SSD tasks have to be solved in real-time and, although
some tasks are dependent on data from other tasks, there are no specific time constraints
for individual tasks.

Sensitivity of the problem: Legal and ethical issues are not relevant in SSD.

Conventional solutions: The existing mechanical support for some aspects of SSD can
be regarded as conventional solutions to specific SSD problems. The research objectives
of the project dictated that KBS approaches should be the focus of attention. The
important issue for the Intellipse work was to identify which tasks could be, or were
already, supported algorithmically, and which ones needed KBS support - and to
integrate both types of support into a single environment.

Written material: The training courses and standards for SSD means that a large amount
of written material is available on many aspects of SSD. The availablility of written
material enables the knowledge engineers to do their homework prior to the initial KE
sessions. This can greatly enhance the credibility of the knowledge engineers in the eyes
of the experts, who do not then feel as if they were talking to people ignorant of their
field of expertise. From the knowledge engineers' point of view, the expert does not
appear to be talking a foreign language. Thus the written material can speed up
significantly the early stages of knowledge elicitation.

The main disadvantages of SSD with respect to KBS support appeared at this stage to
be:

- the width and complexity of the domain;

- the extensive use made of general knowledge;
- the uncertainty regarding the availability of domain experts.

95

Advantages noted at this stage were that:

- SSD s a highly structured methodology;
- the domain experts are likely to be articulate;
- alarge quantity of training/written material is available.

The most difficult potential problem seemed to be the use of common sense knowledge.
In the DPSD domain common sense can be taken to mean general knowledge about
different application domains (finance, manufacturing, banking, insurance etc.) or
different target environments (IBM, Honeywell, DEC etc.). Only a closer examination of
individual SSD tasks could resolve this question.

5.5 Summary

This chapter has proposed a conceptual design and architecture for a support
environment for SSD, based on the integration of KBS and non-KBS tools. The
proposed design is intended to provide a basis for building tools which will exhibit the
features identified in 4.5, and meet the broad functional specification in 5.2. Seven basic
questions to be addressed in order to validate the Intellipse concept are:

- Can the advisor-mode system be built and will it meet the
objectives set for it?
(Advisor - chapter six.)

- Which tasks in SSD are suitable for KBS tool support?
(Designer feasibility study - chapter seven.)

- Can a structured development method for KBS construction be
devised which can cope with the complexity of the SSD domain,
and can such a method be an adaptation of existing conventional
methods?

(POLITE methodology - chapter eight.)

- Can knowledge-based APMs be constructed which will help a

human designer perform tasks in SSD?
(ITAM - chapter nine.)

96

- Can the system be built in the incremental fashion proposed?
- Can the APMs be integrated under a single umbrella environment?
- Can the tools be linked easily with external systems?
The last three questions are discussed in chapters si.x, seven and ten.
These questions motivated the future direction of the work and to a large extent dictated

the next steps in the project. Figure V.iv illustrates the sequence of work and underpins

the structure of the rest of the thesis.

INITIAL FE;E;ETBIQ.I;TY ALVEY LITERATURE
INVESTIGATION OBJECTIVES REVIEW
STUDY
INTELLIPSE
HYPOTHESIS ARCHITECTURE
ADVISOR
EXPERIMENT } DESIGNER FURTHER
FEASIBILITY INVESTIGATION
USER
EVALUATION

HYPOTHESIS AND POLITE
INVESTIGATION FEs > ETHOD

Figure V.iv - Logical Progression of Project Stages

Figure V.iv is not meant to imply that the project work followed a formal scientific
method. The latter approach would not have been valid since the absence of metrics in
the domain precluded accurate quantitative measurement. However, the diagram does
indicate that the project exhibited a clear logical progression from one stage to another.

97

Chapter Six

Adyvisor
The Nightingale and the Lark
What should we say to the poets who take flights beyond the understanding of
their readers?

Nothing but what the Nightingale said one day to the lark. "Do you soar so very
high, my friend, in order that you may not be heard?"

Gotthold Ephraim Lessing 1729-1781
Preamble

This chapter describes the design and construction of Advisor. It discusses why
Advisor was built first and how Advisor influenced later work on the project. It
describes the knowledge engineering methodology adopted at this stage, and the reasons
for choosing the tools used to implement the system.

6.1 Why Was Advisor Built First?

At this stage in the project, a significant amount of feasibility work had been done.
However, the project still lacked a focal point and it was important to identify some
concrete proposals around which the next stage of the project could be organised. There
were several reasons why Advisor was chosen as this focal point:

- Of the aspects of Intellipse defined in 5.2, Advisor appeared to be
the easiest part to build.

- The nature of the proposed Advisor system indicated that it would
be necessary to rigorously structure the SSD domain and to identify
all its objects and activities. This preparatory work would be
useful in familiarising the project team with the domain, and would
help to clarify ambiguities and gaps in SSD which were already
evident.

- The structuring of the SSD domain would also help identify the
different terms and concepts used in the domain.

- Having the Advisor system available would provide an initial basis
for the knowledge engineering sessions with BIS experts. It could

98

be used to display a first pass version of the knowledge bases to
the experts, prompting them to suggest amendments and changes.

- Advisor would also help in further interviews with DP
practitioners, since it would provide a more concrete basis for them
to make suggestions about features they thought desirable in KBS
tools for SSD.

- Apart from its role within Intellipse, it was felt, particularly at BIS,
that Advisor would be a useful tool in its own right - as a
stand-alone system. BIS wanted a tool which could supplement
the one week training courses in SSD by acting as a mechanised
consultant for newcomers to the methodology - see 6.2.

- It was felt that the existence of Advisor was an essential precursor
to building the Designer system, as it would identify precisely the
tasks which Designer would have to support, as well as providing
an initial description of how these tasks were performed. It could
also be used in knowledge engineering sessions for the Designer
feasibility study.

6.2 How Was the Advisor Project Conducted?

Although some initial attempts were made to conduct the Advisor project according to a
conventional software development model, this was found to be inappropriate. This was
mainly because the Advisor work was of a prototyping nature and very much therefore
an exploratory exercise. In addition, no detailed requirements for a system existed
which could form the basis for a conventional life-cycle approach. Many of the decisions
on what steps should be taken next in developing the system were made at the end of a
particular stage, and were based on a subjective assessment of what seemed appropriate
at the time. With hindsight the following phases of development can be identified:

- definition of an informal functional specification (5.2.2);

- identification of the intended users;

- definition of a knowledge representation schema;

- definition of a detailed mode of operation;

- definition of an informal specification for a Knowledge Acquisition
Module (KAM);

- production of program specifications for Advisor and the KAM;

- knowledge engineering for the Advisor KBs;

- coding of Advisor and the KAM,;

99

(the last two phases were done concurrently)
- instantiation of Advisor KBs using the KAM;
- initial testing and user evaluation;
- re-design of the Advisor user-interface;
- further testing and user-evaluation;
- further instantiation of KBs;
- evaluation of Advisor KBs by BIS experts;
- further re-design of the Advisor user-interface.

6.3 Knowledge Representation Schema

3.1 Who were the Inten f Advisor?

Advisor was intended to be a more accessible version of the SSD training manual as well
as presenting SSD in a more structured and logical manner than the manual. It was to
contain knowledge of procedures and techniques which could not be found in the
manual, or in any other documentary form. The manual is designed to support the
training course and is organised to reflect the way the material is presented on the course.
It does not, for example, contain an index. Many attendees of the courses complain that,
while the manual is a very good support for the week-long course, it is a very
unsatisfactory guide or tutor, once the course is over and the new SSD practitioner is
back in his/her own environment facing real design problems. It followed from this that
two basic categories of potential user for Advisor were important:

- the naive SSD user - course attendees whose only practical
experience of the method is the syndicate work during the training
course, and whose only support after the course is the SSD manual;

- the rusty SSD user - someone who has attended an SSD course
in the past and has significant practical experience gained on actual
development projects, but who has not used the method for some
time and needs reminding of some of the techniques.

.3.2 What Kind of Informati f Advisor Require?
It was thought by BIS that some of the difficulties users experienced when first using
SSD arose because they failed to appreciate the context within which many of the SSD

tasks were performed. This failure was partly the fault of the manual which often did
not justify the necessity for a particular task or method. The manual also obscures the

100

hierarchical relationship of the SSD tasks, and it is difficult to appreciate the position of a
particular task within the overall design method. It was therefore decided to classify
knowledge about tasks in SSD into five categories.

Descriptive what are the tasks that must be performed?

Justificational ~ why is the task important?

Conditional when should the task be performed and what is its
relationship to other tasks?

Procedural how 1is the task performed? - procedures and
techniques.

lllustrative example of the techniques used for the task applied
to a particular case.

A similar classification is used for objects in SSD, except in this case only the what and
example categories are normally employed. Examples of this classification applied to
objects and activities in SSD is given in section 6.6.

6.3.3 Frame-Like Representati hem

MinskyMIN75) proposed a theory of knowledge representation based on the concept of
frames. The theory was principally concerned with Al systems for the analysis of visual
scenes. Minsky defined frames in the following way:

"A frame is a data-structure for representing a stereotyped situation, like being in a
certain kind of living room, or going to a child's birthday party. Attached to each
frame are several kinds of information. Some of this information is about how to
use the frame. Some is about what one can expect to happen next. Some is
about what to do if these expectations are not confirmed.

We can think of a frame as a network of nodes and relations. The 'top levels' of a
frame are fixed, and represent things that are always true about the supposed
situation. The lower levels have many terminals- 'slots' that must be filled by
specific instances or data...Collections of related frames are linked together into
frame systems." (Page 212.)

Scripts are a more restricted form of the frame concept. Rich®ICH83) described scripts as
a "frame-like structure":

"A script is a structure that describes a stereotyped sequence of events in a
particular context. A script consists of a set of slots. Associated with each slot
may be some information about what kinds of values it may contain, as well as a
default value to be used if no other information is available...

101

Scripts are useful because, in the real world , there are patterns to the occurrence of
events. These patterns arise because of causal relationships between events.
Agents will perform one action so that they will then be able to perform another.
The events described in a script form a giant causal chain." (Page 235-6.)

SSD is a domain consisting of a large number of "events" (tasks) which follow each
other in a strict chronological sequence. Therefore a frame-like representation schema
similar to the concept of scripts seemed an appropriate choice for representing the
knowledge in Advisor. It is frame-like because it exploits some of the features of frames
identified by Minsky, although it must be stressed that Advisor is only a partial
implementation of a full frame system as envisaged by Minsky. In particular, Advisor
does not make use of the concept of inheritance whereby a frame, which is a 'child' of a
frame at a higher level, inherits the properties of the higher level frame.

The use of the term frame(s) throughout the rest of this chapter is always qualified by the
proviso made in the last paragraph. One of the main reasons for choosing frames was
that it was a useful conceptual schema for facilitating discussion and communication
amongst the project team, during the knowledge engineering for the Advisor system.
Other features of frames which seemed appropriate for Advisor and which led to this
choice of conceptual schema are summarised in Figure VLi.

SSD FRAME-LIKE
KNOWLEDGE SCHEMA

hierarchical network of

structure frames

different topic- Slots
types
several knowledge | multiple slot
types per topic categories
sequential description ;

of procedures e

Figure VLi - Correspondence Between SSD Knowledge
and Frame-Like Representation

102

Three types of frames were defined. They are related directly to the description of the
Intellipse KBs given in 5.3.1.

Meta-level frames - '"knowledge about knowledge", that is, the
topics in SSD about which Advisor contains information.
Slots Domain: e.g. structuring data, logical design...
Topic: e.g. data analysis, record data...
Is: e.g. activity, object...

Intermediate-level frames - knowledge about the sub-activities,
related objects and knowledge-types for a particular topic.
Slots Sub-activities: e.g. record data, select key...

Related objects: e.g. data, prime key...

Knowledge- e.g. what, why...

Type:
Low-level frames - the text corresponding to a specific
knowledge-type for a particular topic.
Slots Text: Data analysis/what. Data analysis is a task.

An example of a meta-level and intermediate-level frame is given in Figure VLii.

TOP-LEVEL
FRAME-KEY-NUMBER:
XXX1234
DOMAIN: TOPIC: IS:
structuring data data analysis activity
""""""" INTERMEDIATE
FRAME-KEY-NUMBER:
YYY3456
KNOWLEDGE- RELATED SUB-ACTIVITIES:
TYPE: OBJECTS:
record data and select key
what daa remove repeating groups
i prime key remove part-key dependencies
why foreign key remove other item dependencies
when optimise and re-check
example

Figure VLii - Example of Top-Level and Intermediate-Level
Frames Used in the Advisor Knowledge Bases

103

The frame-key-numbers shown in the diagram are the physical means by which the
frames were linked together at the implementation stage. They are not an essential
element in the logical schema and were not therefore listed as slots above. Also, values
in these slots are assigned automatically by the knowledge acquisition module (KAM)
and cannot be entered by the knowledge engineers (see 6.5). The meta-level and
intermediate-level frames together represent the hierarchical relationship between the
SSD tasks.

6.4 Advisor - Mode of Operation

After considering the informal specification for Advisor described in 5.2.2, the intended
users and the information the latter require, the following list of detailed features was
defined:

- the user should be able to select any particular topic (object or
activity) in SSD and obtain information about it in conformity with
the categories listed in 6.3;

- the user should be able to navigate around the SSD domain and be
able to see clearly the relationship between the current selected
activity and its parent, child and neighbouring activities;

- the user should be able to step through the SSD activities one at a
time if required;

- the system should respond to menu commands, or a highly
constrained English-like query language (the Query Analyser).

Query Analyser

The objective of the query analyser is to enable the user to enter free-form, English-like
queries to interrogate the KBs, allowing the experienced user to bypass the multiple-level
menu system. This capability is essential since the Advisor system contains KBs
covering over one hundred individual topics - each topic having, potentially, several
categories of knowledge. The menu structure reflects the breadth and complexity of
these KBs. Although an advantage for the naive user, who can be guided through the
domain step by step, using the interactive menu system, this was thought likely to be an
inhibiting interface for the experienced user, already familiar with the system or with the
SSD method. The query analyser allows the experienced, but rusty, SSD user to bypass
the menu system and go immediately to any position within the SSD hierarchy.

104

Some examples of the free-form queries which can be processed by the Advisor are:

What is a prime key?
How do I perform first normal form analysis?
When do I start the physical design stage?

Show me an example of a transaction profile.

It was found that an effective and practical natural language capability could be achieved
without resorting to the construction of a sophisticated set of grammar rules with their
accompanying translation and interpretation modules. The latter approach inevitably
leads to a severe cost in processing speed and consequent degradation in performance as
seen by the user. The analyser built is designed to detect only key words or phrases in
the input query and can therefore cope with ungrammatical sentences. This method also
means that the user who has become familiar with the system can access the KBs using a
fast-path by simply entering queries containing only the appropriate keywords.

The query analyser described above is clearly of a much more limited nature than was
envisaged in the original Alvey project proposal. In 2.2.1 it was indicated that even
before the Intellipse system had been devised, it was thought that a sophisticated natural
language capability for the system would be unnecessary. The mode of operation and
scope defined for Advisor confirmed these initial views.

6.5 The Knowledge Acquisition Module (KAM)

The Advisor system allows a user to navigate and interrogate the six KBs covering SSD.
However, a separate system is required to enable the KBs to be created in the first
instance. The KAM is a system for creating the meta-level and intermediate-level
frames. It also allows text to be entered into the low-level frames. The KAM
automatically assigns frame-key numbers and provides a number of other house-keeping
facilities for managing the KBs.

The KAM and Advisor were designed in such a way that very little knowledge specific
to SSD is built into the code. This means that, in principle, the KAM and Advisor could
be used in domains other than SSD. In this respect Advisor/KAM can be regarded as a
"shell" system which could be filled with knowledge about another domain. Of course,
the system would only be appropriate for hierarchical domains like SSD, which could be
represented using the knowledge representation schema adopted for Advisor/SSD. An
application of Advisor to another domain is discussed in 6.10.

105

6.6 Knowledge Engineering (KE) for Advisor

It was noted in 3.3.2 that knowledge acquisition can be a bottleneck in KBS
development and it was thought appropriate that, unlike some of the other Advisor
development phases, the KE phase should be structured and planned in advance. The

procedure followed is shown in Figure VLiii.

SSD
manuals &
standards

hierarchy
sheet

meta-level
frames

intermediate-
level frames

identification of
a domain

v

identification of
topics

.

identification of
activities

!

selection of
individual topic

experts consulted
at this stage to

‘/ confirm hierarchy
sheets

identification of

: activities

b

v

identification of
knowledge-types

topic-
hierarchy
sheet

s

re-examination
of manuals and
standards

experts consulted
at this stage to

v

confirm text and
rules

development of
Advisor-mode
text and rules

low-level
frames

Figure VLiii - Knowledge Engineering Procedure for Advisor

106

As Figure VLiii suggests, a significant amount of the KE for Advisor, especially at the
start, was done primarily from documentary sources, without reference to BIS experts.
Only after a first-pass version of the KBs was obtained, were experts asked to validate
the structure and text and begin the process of enriching the KBs with knowledge not
available in the manuals or standards. Although begun at this stage, the enrichment
process was largely performed during the Designer feasibility study and will be covered
in the next chapter. The domains chosen for the first Advisor system were structuring
data and structuring processes. This was because, apart from being the first two phases
in SSD, the MODUS standards place a great deal of emphasis on the need for a rigorous,
formal analysis of the business data at the start of the design process. Thus, structuring

data is a key phase in SSD. In addition, many of the currently available CASE tools
address this phase in the development life-cycle.

The domain-hierarchy sheets and topic-hierarchy sheets referred to in Figure VLiii are a
key product of the KE process. The sheets represent the hierarchical set of tasks which
are required to complete a specific design process. The domain-hierarchy sheets deal
with activities relevant to a whole sub-domain, like structuring data. The topic-hierarchy
sheets describe sub-activities within a higher-level activity. The resulting tree-like
structure of activities is codified in the Advisor KBs and dictates the way a user can
navigate the SSD domain.

DOMAIN:
structuring data

collect data

v

data analysis

v

data structure
analysis

v

cross-reference
data

v

review data

Figure VLiv - Domain-Hierarchy Sheet for
Structuring Data

107

Figures VLiv and VLv give examples of a domain-hierarchy sheet and topic-hierarchy
sheet from the sub-domain, structuring data. The linear nature of these examples is
typical since the sheets show tasks only one level below the high-level task concerned.

DOMAIN: TOPIC:
structuring data data analysis

record data
as relations

v

select key

v

remove repeating
groups

¥

eliminate part-
key dependency

v

eliminate other
item dependency

v

optimise

v

document
normalised
relations

v

draw logical
data model

Figure VLv - Topic-Hierarchy Sheet for
Structuring Data/Data Analysis

Figure VLvi gives an overview of the SSD for the first two sub-domains in SSD and
illustrates the complexity of the domain. The rigorous structuring of the KE process was
vital for managing the analysis of such a complex domain. For example, the structuring
of the KE process allowed the work-load to be spread throughout the project team. Each
team member was allocated a group of SSD topics within a given sub-domain. Regular
meetings were held to organise and consolidate the separate analyses into a single,
paper-based representation of the first two SSD domains, prior to the transfer of the
sheets into machine form via the KAM.

108

VYOS SR,

$3§S30044 3uran)ONI)§ pue eje(SurIn}PNIS spaweo [| siwino | [sidw
J0j urewlo(] (ISS Y} JO AMIIAIIAQ - IAJA danSi e IovaiXa Iovaixa

THGOW VIVA SNOLLVTY ADNHANELHE ADNHSANSJEA SdNO¥o

le—| TESTIVIAMON fe—]| aspaLLdo WAL ¥AHIO | ADI-LAVA g ONLLVEdH |e— Ao IDHTES o—] oy SNOLLY T
VOISO MYE LNEWMDOoa ALVNIAIT AIVNINIT FAOWR SyviyacHoom
3
Yiva SISATYNY
VIVAMEIATY HONTH AT MiLS V.IvVd _‘l SISATVNY VIVA f— VIVAIDITIOO
-SSOUD
e S - VLVQ GENDISEA VivVa BHnd
dmanco [“dvad | [+ alrawo haaoata [NN 501 G
LOdNI BOT Al LNdNI D01 @I
SHSSHDOHL THAFT WYEDVIa LNdNI
SASSEAIOUd INTNO ANV [e— St le—| 1dNI'VOI00T le| minionuis e~ ONIARIG
ANEWDOd ASOJWCDEA AALINE VIVA MVHA AALLNE

NIVIWOAQ ass

109

6.7 Implementation of Advisor and the KAM

Advisor and the KAM were implemented using Logic Programming Associates Ltd.
(LPA), micro-Prolog, running under PCDOS on an IBM PCAT personal computer
(PC). The choice of implementation tools was largely dictated by BIS at the start of the
project, before any design and specification work had been started. The reasons for their
choice at this stage were mainly pragmatic, rather than based on a logical analysis of
what was required. As a result, a number of problems were encountered using the
chosen environment. The following sections identify both logical and pragmatic reasons

for the various decisions.

6.7.1 Why Use a PC?

BIS were keen to achieve portability of the tools and clearly the
IBM PC route would achieve maximum portability since an IBM
PC, or compatible, is the most widely used business
microcomputer in the UK.

LBMS Ltd, a key competitor of BIS, have marketed very
successfully the CASE tool, Automate, which is PC-based.

The BIS/IPSE can run in the IBM PC environment under the
Unix operating system. The possibilities for linking Inzellipse tools
with the IPSE would be enhanced if the former ran in a similar
environment.

Many other Alvey software engineering projects were using
workstation or DEC-Vax environments. For example, in a survey
of all Alvey projects in 1986, it was reportedMAR86) that of the
161 project-respondents, 55% were using Vaxes, 39% were using
Sun workstations and only 16 projects (10%) were using IBM
PCs. (Some Alvey projects use more than one type of machine.)
Vaxes and Suns are very expensive (> £30k) and are
uncommon in a typical DP installation. It was felt by all the team
that a key objective of the Intellipse project was to make
tools available in a format, and at a price, likely to be acceptable in
UK DP environments.

The PC environment was a common factor within the team.
Although access to a Vax was available at Aston, BSC was an IBM
environment, and BIS only had access to PCs.

A workstation environment would have offered more power and

110

2 W

scope for prototyping work but was beyond the resources of the
project.

An IBM PC was the most convenient medium for exchanging
software between BIS, Aston and BSC.

Pr 2

In 1985 there was a popular view in the UK, due to the influence
of the Japanese "Fifth Generation" AIT programme, which had
adopted Prolog as its main programming language, that expert
systems were synonymous with Prolog. BIS were therefore keen
to enhance their experience of using Prolog, since they believed that
this would be a good investment for the future in that it would help
them develop their expert system skills.

The BIS office in Birmingham was also host to the Data Processing
Estimator Association (DPEA). The DPEA was a club set up by
BIS to build expert systems for software cost estimation. A
decision to use LPA micro-Prolog for this project had also been
taken by BIS. (See 3.4.2).

By the time Advisor and the KAM were ready to be coded,
consideration was given to the use of an expert system shell. A
shell was clearly unsuitable since Advisor did not require a
rule-base interpreter or editor. Also, the available shells at the time
had very poor facilities for linking with other PC systems, and did
not provide facilities for the production and incorporation of text or
graphics - both of which were essential for Advisor. A PC shell
would not be able to represent the complex hierarchical structure of
SSD. However, Prolog would be particularly useful in
this respect as it allowed complex hierarchies to be coded relatively
easily. An Al toolkit running in a workstation environment would
have been able to represent the SSD structure, but these systems
were beyond the hardware and software resources of the project.
The Al toolkits did not run on IBM PCs and would not provide an
acceptable delivery environment for commercial DP installations.
Prolog would also enable the proposed query analyser to be built
quickly. The declarative nature of the Prolog language means that a
simple pattern-matching parser for analysing the English-like
queries could be implemented. The powerful facilities in Prolog for

111

handling symbolic data structures (words) make it possible to
analyse sentences by "cutting them up" into their constituent
parts. Prolog rules could then be used to detect key words in the
input queries.

- BIS were an official distributor of LPA micro-Prolog. In late
1985, there was only one other serious contender in the PC-Prolog
market. This was Expert System International's Prolog2. This
Prolog system had more facilities than LPA micro-Prolog but was
three times more expensive. The price of Prolog2, together with
BIS's formal links with LPA, effectively ruled out the use of any
other version of Prolog.

6.7.3 Text Entry

LPA micro-Prolog did not provide a convenient means for creating the low-level text
frames. Microsoft's word-processing package, Wordstar, was used to create
ASCII-based text pages. A program written in C at BIS was used to access the pages
via micro-Prolog. The C program was required, as micro-Prolog was too slow at

reading from disk and displaying on screen the ASCII-based text files.
4 Graphi

Many of the low-level frames required diagrams but micro-Prolog did not have any
facilities for creating them. A great deal of time was spent discussing this problem in the
project team. Two prototype solutions were explored.

- A character-based diagram editor was written by BIS
in micro-Prolog. This allowed diagrams to be created using
standard ASCII characters. Diagrams were constructed using the
keyboard arrow-keys to move around the screen. The ability to edit
these character-based diagrams was very limited, and linking them
with the low-level text frames was tedious.

- A more sophisticated bit-mapped diagram editor was built in
micro-Prolog by the author. The system exploited a proprietary
graphics library and could be driven by a mouse. It also allowed
text and graphics to be mixed easily. However, although this
system had far more scope, it was cumbersome for creating and

112

editing large amounts of text and, because it was bit-mapped, could
not be linked easily to Advisor. Advisor was based on a 25 (deep)
x 80 (wide) ASCII character screen.

Because of the difficulties of linking the bit-mapped diagram editor to Advisor, its more
sophisticated facilities were sacrificed in favour of the less sophisticated BIS system,
which had the advantage of being character-based and could therefore be linked easily to
Advisor. The use of the BIS editor did, however, significantly slow down the
translation of the paper-based frame sheets into machine format via the KAM.

iled Physical Desi

Figure VILvii shows annotated fragments of the Prolog knowledge bases within
Advisor. The diagram gives an indication of how the Advisor frame-like schema was
implemented.

sub-domain frame-key-nos

Erames /
top ((t11001 sub-domain (structuring data) ((activity im1001))))

intermediate ((im1001 ((what 111001) (why 111002)..) (((collect data) t11002) ((data analysis t11003)..))))
low (111001 txt1001w)) knowledge types
((t11002 structuring data (collect data) ((activity im1002))))

((imlOOZ ((what 111005) (why 111006)..) (((extract system inputs) t11007)..))))

Figure VLvii - Fragments of Advisor KBs in Prolog Syntax

Much of the detailed design of the KAM and Advisor was done at Aston, and the system
was coded at BIS.

6.8 Advisor - User Interface
The first version of Advisor successfully implemented the SSD hierarchy and provided
all the specified facilities for navigating the KBs. However, its interface was poor as it

obscured from view the SSD hierarchy. The low-level frames could be displayed but it
was not clear at what point in SSD the user was situated.

113

The failure of this first interface was for three main reasons.

- Insufficient effort had been made by the author in specifying
clearly what the interface was meant to show.

- No attempt had been made to prototype different interfaces to
evaluate their effectiveness or their technical feasibility.

- Too much emphasis had been placed on implementing the SSD
hierarchy and the Advisor frame structure, and not enough thought
had been given to the best means of allowing the user to navigate
the KBs.

These shortcomings occurred mainly because of the experimental nature of the Advisor
work referred to in 6.2. It is not unusual in prototype software development for the
user-interface to be accorded little attention.

Current domain: structuring data Current parent activity

Current topic: structuring data structured systems design
Topic-class: activity Query-type: what

Current related activities

Advisor menu

Examine text of current topic mmmm
structuring processes

Enter free-format query logical design

Select activity g:;j;ﬁ dii?;in

Select object system testing

Select query type

Step to next activity
Step to previous activity

Current sub-activities:
Return to last selected activity

Return to top of domain Document data
Return to main menu Data analysis
Help Define data structure

Figure VLviii - Main Advisor Screen

The problems of the first Advisor interface were overcome by prototyping potential
Advisor screens using the desk-top publishing facilities of the Apple Macintosh. The
author made up several possible screens on paper and these were used as a basis for
discussion amongst the project team. After two days work, agreement was reached on
new versions of the Advisor interface. These paper-based screens were used as
specifications for the programmer. The new interface designs did not require any

114

changes to the Advisor code which implemented the frame system. This confirmed that
the first version successfully represented the overall frame system. It also indicated that
there was a logical separation in Advisor's design between the functional and interface
components - a desirable feature as far as maintenance of the system is concerned. The
second version of Advisor has two basic screens which are illustrated in Figures VI.viii
and VLix. In fact, Figure VI.viii is a copy of the paper-based specification which was
used as the basis for implementing the design.

Command ? n=next, p=previous, b=beginning, e=exit. Command? :

Strycturing Data - What

Structuring data is a method used to analyse, check and document the

Figure VLix - Advisor Low-Level Text Screen

The rest of this section will describe the operation of the system with reference to the
menu options shown in the diagram. Advisor was keyboard driven, although the author
did experiment with a mouse-driven menu system later in the project. The technical
feasibility of this approach was demonstrated and the use of this type of interface is
discussed in 6.11.

The main Advisor screen was designed to make explicit the relationship between the
currently selected activity and its position within the SSD hierarchy. The "Current
related activities" window (CRAW) shows activities on the same level as the selected
activity. Activities on the same level denote the fact that the activities all belong to a
higher level activity (the parent), and that the execution of the parent-activity involves the
completion of all of the child activities. In Figure VLvi, activities on the same level are
shown as a series of horizontal boxes linked by arrows. The first activity in the chain is
attached to the parent of the chain. The ordering of the tasks from left to right (Fig.
VLvi), or top to bottom (Advisor screen), indicates the order in which the activities are
performed. The currently selected activity is highlighted in CRAW and is shown in its

correct position in the chain.

1D

The "Current sub-activities" window (CSUB) shows the sub-activities (child-activities)
belonging to the currently selected activity. The "Current parent activity" window
(CPAR) shows the owner of the currently selected activity and is also, therefore, the
owner of all the activities in CRAW. The CRAW, CSUB and CPAR windows form a
"grandparent-parent-child" relationship. The top-left hand window shows the currently
selected domain and topic, the topic-class (object or activity) and the current
knowledge-type for that topic (what, why etc.).

Examine text of current topic - invokes the text screen for the selected
domain/topic/knowledge-type. The text can be paged backwards and forwards. On
exiting the text screen, the user is returned to the main Advisor screen.

Enter free-format query - allows entry of a free-format query. The text screen
appropriate to the topic/knowledge-type is displayed. The domain is assumed to be the
current domain.

Select activity - the Advisor menu is replaced by a menu consisting of the activities
displayed in CRAW and CSUB. The user can choose any one of the available activities.
After selection, the main screen is redrawn to reflect the new selection and its
parent-activity, related activities and sub-activities (if any).

Select object - a list of objects relevant in the domain are displayed and the user may
choose any single object. The main screen is redrawn to show the selected object, but
the CRAW and CSUB are left blank as an activity has not been selected.

Select query type - this option allows the query type to be changed. The screen is
redrawn accordingly.

Step to next activity and Step to previous activity - these allow the user to move one
activity at a time along the list of activities shown in CRAW only - that is, a group of
activities which are on the same level in Figure VLvi, and which contain the currently
selected activity. The user is not allowed to jump between levels using these commands.
If the commands are used when the selected activity is either the first or the last activity
in CRAW, the system defaults to the first activity in CRAW.

Return to last selected activity - often a low-level text frame may refer to an object which

is unfamiliar to the user. In this instance the user may select that object via the main
menu and examine its text frame. It is useful if the user can then go back to the activity

116

in the SSD hierarchy which was current when the object was selected. This avoids the
necessity to step through the domain. It also overcomes the problem of the users
forgetting where they were when the object was selected.

Return to top of domain - returns user to the first activity in the domain.

Return to main menu - makes available some housekeeping commands and allows the
user to quit the system.

6.9 User Evaluation of Advisor

Advisor was formally evaluated by BSC and the FOT team at BISBK. In addition,
BIS5-9 and ICI1-3 were asked to comment. Advisor was also shown at several
exhibitions including the 1987 annual Alvey conference.

1 w Was the Evaluation 14

The FOT team were given Advisor for a month. They were asked to use Advisor as a
support tool in relation to the FOT project which was using SSD. At the end of this trial
period, a meeting was held with the team to obtain its observations. Comments were
sought on two aspects of the system: the Advisor interface and mode of operation, and
the applicability and clarity of the KBs. The meeting was tape recorded and a verbatim
transcript made of the tape. Both the author and BIS made summaries of the transcripts.

The same procedure was followed with BSC. However, BSC were not SSD users; nor
were they using the methodology in relation to a specific project. Their evaluation of
Advisor was therefore somewhat constrained and their comments tended to be of a more
general nature. BSC were not able to comment on the text in relation to the BIS courses
or manuals. Instead they tended to question some of the procedures and techniques
suggested in SSD. These issues were not pursued, as it was not the purpose of the
project to assess the validity or applicability of SSD in comparison to other design
methods.

The evaluation exercise and the interviews were of a subjective nature. It was not
possible to devise formal experiments which could, for example, have compared the
performance of the FOT team at BISBK with a control team who did not have Advisor.
This type of approach was precluded as it was not clear what metrics could be used to
measure the respective teams' performance; besides the project lacked access to other

117

project teams using SSD.

The subjectivity of the exercise manifested itself in the form and content of the questions
posed by the author, during the evaluation interviews and in the way these interviews
were directed. For example, where problems were identified by an evaluator, the author
tended to suggest possible solutions immediately. By the time the summary of the
transcript was made, it was not always clear who had originated some of the suggested
improvements. There was also a degree of subjectivity on the part of BISBK and BSC.
Since they were not asked to follow a formal assessment procedure, they made their
comments on areas which were of particular interest to them. This meant that some
aspects of the system were given more consideration than others.

Despite the subjective nature of the evaluation exercise, it was felt that the use of
semi-structured interviews was the best available option for conducting the evaluation of
Advisor.

The user evaluation at this stage was biased towards an assessment of the potential of the
Adpvisor system to fulfil the role proposed for it, as well as the appropriateness of that
proposed role. None of the evaluators were expected to validate the SSD knowledge
contained in the KBs. It was the responsibility of BIS experts to assess the accuracy of
the KBs, and a separate exercise for this purpose was conducted later in the project. The
Designer feasibility study was also used to help validate the Advisor KBs.

2 Summ f the rvations fr Advisor Evaluation

The following is a synopsis of the detailed points raised by the evaluators. None of the
points are attributed to individual evaluators, although there was a high degree of
correspondence between BSC and BISBK. The summary is primarily concerned with
the problems identified; approving comments are not explicitly mentioned at this stage.
General conclusions about Advisor are discussed in 6.10 and 6.11.

Selecting Objects Selecting objects via the main menu was cumbersome. A pointing
device which could highlight an individual word in the text was required. The desired
information could then be overlaid onto the text screen leaving the system at the selected

activity.

Paging Text Using a keyboard character followed by "return" was an inconvenient
method for paging quickly through the text. A more convenient scrolling mechanism

118

was required. Connected with this was the idea that all the knowledge for a given topic
should be available at once. That is, the knowledge should still be categorised according
to query-type, but it should be possible to obtain the other query-types without changing
the latter via the main menu. This was another facility which could be handled by a
pointing device. There was a consensus of opinion that some of the main Advisor
options should be available from the text screen through the use of pop-up and
pull-down menus.

Hierarchy The main Advisor screen illustrated the hierarchy well. However, the
partition of SSD shown was limited in size. A diagram of the hierarchy showing a
greater region around the selected activity would be useful. This would necessitate the
use of a bit-mapped display which could overlay graphics on to the text. A paper-based
diagram would also be helpful.

Examples The examples were the most useful aspect of the system. More examples
were required as well as a system for classifying or indexing them. This was
particularly important if a topic had a large number of examples.

Query Analyser This was useful but its effectiveness would be greatly improved if it
could process abbreviations and cope with minor spelling errors. Synonyms should also
be allowed especially as SSD often used different terms for the same concept.

The Text A number of detailed technical points were made concerning specific issues
within SSD. These dealt, for example, with SSD's coverage of on-line development,
and the fact that it was not always clear whether a particular task was mandatory or not.

The response to Advisor was favourable and BISBK said it had been very useful for
reference and for "jogging the memory" - particularly in the early days following the BIS
training course. It was felt by both BSC and BISBK that the system could be useful in

other domains.

ICI felt that Advisor could be useful, but that it was a rather expensive system as it
would occupy a machine on a 24 hour basis. They also said that the system response
was too slow. However, they only had an IBM PCXT system available for the
demonstration and this is much slower than the PCAT. This biased their opinion.
BISBK are currently using Advisor on the new IBM PS2, which greatly improves its

speed of response (see 6.10).

118

The several BIS experts who studied the system tended to concentrate on the Advisor
KBs. They were quick to spot minor inaccuracies, omissions and mis-interpretations of
SSD. It became clear that knowledge presented through Advisor seemed to have greater
status than the paper-based manual or standards, and the BIS consultants were keen to
have their own variants of specific procedures in SSD encoded in the system. This was
expected to some extent, and was one of the main reasons why Advisor was built in the
first instance. Advisor was certainly a useful starting point for the KB enrichment
process mentioned in 6.1.

6.10 Potential Future Roles for Advisor

This section discusses the potential roles for Advisor, the work that would be required to
enable it to fulfil those roles, and the interest that BIS and others have expressed in using
Advisor in any of the roles identified. Clearly, a key question is the role of Advisor
within the proposed Intellipse system. This aspect is discussed more fully in chapter ten
after more of the investigation into /ntellipse has been covered.

.10.1 Advisor nd-Alon m

Both the technical and training divisions within BIS have expressed a firm interest in
using Advisor as a stand-alone tutorial system. It would be used internally by BIS for
supporting BIS consultants, and in relation to the SSD training courses. Advisor/SSD
has little potential as a commercial product for use outside BIS. This is for three main
reasons:

- the market for a PC-based tutor in BIS/SSD is very limited since
the number of SSD users is small;

- the Advisor/SSD system running on an IBM PC or compatible
would be relatively expensive compared to the cost of a BIS
training course, since it would require the purchase or the
permanent use of a machine;

- to market Advisor/SSD commercially would require significant
further development effort to improve the user-interface, which
could not be justified on the basis of the potential sales revenue.

The internal BIS use of Advisor would require work in the following areas:

- the instantiation of the Advisor KBs for the three remaining

120

domains in SSD - physical design, detailed design and system
testing. (The logical design domain was completed in late 1987).
- minor changes to the user interface.

10.2 Advisor an E

The BIS/IPSE provides mechanical support for a large number of tasks in systems
development. However, it does not know how to design and while it encompasses well
the BIS standards for SSD, its effectiveness is dependent on the expertise of the IPSE
user. Linking the Advisor/SSD KBs with the IPSE was suggested by the author very
early in the Intellipse project. The Advisor KBs would be the basis for providing
context-sensitive design knowledge to the IPSE user while the latter was using the IPSE
to support various tasks in SSD. This help could be in the form of a knowledge-based
help window which temporarily overlaid the IPSE screen.

IPSE/Advisor would begin to address the general problem of CASE tools which do not
know how to design. That is, linking the Advisor KBs with the IPSE could be the first
step towards a more active support environment. BIS have expressed a definite intention
of pursuing this potential role for Advisor.

The use of Advisor for this purpose will require extensive validation of the existing
machine-based KBs as well as the draft paper-based KBs for the three domains
mentioned above. The technical feasibility of linking the Prolog KBs to the IPSE will
also have to be examined. This assessment may suggest that the KBs be
re-implemented, using a physical design more compatible with the IPSE. However, this
would not require any changes to the basic knowledge representation schema.

1 iSOr an Intelli P

In the same way that the Advisor/SSD KBs could be used within the BIS/IPSE, the KBs
could also be used within the Intellipse APMs. Since the knowledge in Advisor about
specific SSD tasks is being used as a basis for specifying individual APMs, it should be
relatively simple to use the relevant part of the KBs as a form of context-sensitive help
within the APMs. The KBs could also act as an explanation facility within the APMs.

This idea is being explored as part of the ITAM work covered in chapter nine. The
analysis work for ITAM is generating rules, procedures and explanations which are

121

being systematically recorded. Also, the domain structuring used during the knowledge
engineering for Advisor has been used during the ITAM project to produce domain and

topic hierarchy sheets. These could be used to build the appropriate Advisor KBs for the
ITAM tasks.

10.4 Advisor hell

It was noted in 6.5 that the design of Advisor and the KAM enables the knowledge bases
to be filled with knowledge from domains other than SSD. The commercial potential for
such a system is limited, as the AI workstation environments have powerful facilities for
the type of object-oriented representation needed to represent highly structured domains.
Although these systems are expensive compared to most PC software, they are likely to
become increasingly available to PC users as the PC becomes more powerful. BISBK,
however, have begun a feasibility exercise to examine the potential for Advisor to be
used for an application domain, other than SSD, related to the FOT system.

The FOT system is a large software system comprising hundreds of individual programs
and files. The use of SSD and the BIS/IPSE to support the FOT project has resulted in
the production of a large quantity of documentation, a part of which represents the
hierarchical relationship between the many parts of the FOT system.

The system will eventually be supported by BISBK's regional offices which are spread
all over the world. If a technical problem arises with the system at a client-site, it is the
responsibility of the regional office to identify the nature and location of the problem,
and to amend the system-code if required. Identifying the particular module which is
causing the problem within such a complex system can be difficult, and the objective of
BISBK is to use Advisor to represent the FOT system, so that it can aid the location of
the faulty module. Advisor/FOT would be distributed on floppy disks for use on PCs
located in the various regional offices.

Preliminary feasibility work has been done to assess the suitability of Advisor for this
purpose and it appears at this stage that the proposed objectives can be met. The aspect
of the Advisor knowledge representation schema, which has had to be reviewed for the
FOT system, is the knowledge-types and the categories of “things" in the domain. For
example, instead of objects and activities, Advisor/FOT is using the terms programs and
reports. The hierarchical nature of the Advisor representation has been found to be
usable without modification, and the structured approach to KE, described in 6.6, was
found by BISBK to have been particularly valuable.

122

6.11 Advisor - the Lessons

This section discusses the lessons learnt from the Advisor exercise. The discussion is
related particularly to the reasons for building the system advanced in 6.1, and the
methods followed during the development discussed in sections 6.2 - 6.8.

Ease of Construction Advisor meets the informal functional specification defined in
5.2.2. It is a passive tool and the basis it lays for a more active tool generated a lot of
interest on the part of the evaluators. However, this interest also suggests that Advisor
falls far short of the active support which is desired by developers in CASE tools. The
speed with which it was built confirmed that, of the elements identified in the Intellipse
system, Advisor is likely to prove, in the long-term, to have been the easiest part to
build. '

Intended Users BISBK represented "naive SSD users" and they confirmed that the
system did assist the FOT project, when team members needed reminding about aspects
of SSD covered on the training course. The proposed use of Advisor internally by BIS
consultants suggests that the "rusty SSD user" can also benefit from the system.

Knowledge Representation Schema The frame-like schema was successful in
representing the SSD hierarchy, although it was sometimes difficult to separate the
knowledge into the what, why, how and when categories without repeating some of the
information. The distinction between what-type knowledge and how-type knowledge
was found particularly useful and, although the Advisor/FOT is not using the
Advisor/SSD knowledge-types, it is retaining the concept of object-like and activity-like
entities.

Query Analyser The evaluation exercise confirmed that only a simple analyser was
needed. The users of Advisor required a method for gaining fast access to lower levels
within the SSD hierarchy. It was also clear that users preferred using simple
combinations of keywords to access the system, rather than complete, grammatically
correct natural language sentences, which are cumbersome to zype into the machine.

Knowledge Engineering This aspect of the Advisor exercise provided the most
important lessons. In 6.2 it was indicated that conventional life-cycle approaches were
found to be inappropriate, even though a structured approach was adopted in practice.
This method was dictated by the width and complexity of the SSD domain.

123

The rigorous structuring of the domain and the use of the diagrammatic techniques
discussed in 6.6 for representing the knowledge were extremely useful. It is difficult to
see how the complexity of the domain could have been managed without this approach.
Although excellent for managing the process, the structured nature of the approach did
take considerable time and involve large amounts of documentation. On balance, the
time involved was repaid by the ease with which the knowledge could be organised and
maintained. This observation is similar to that made in relation to the use of structured
methods for conventional systems analysis, referred to in 4.1. Ease of management and
maintenance is often cited as the main reason for adopting these methods in DPSD.
After completing the knowledge engineering for Advisor, the project team had gained a
clear understanding of the SSD domain. Subsequent knowledge engineering for more
specific areas in SSD was, therefore, greatly assisted by this initial exercise. The
Advisor/FOT project at BISBK, described in 6.10.4, also confirmed the value of the
structured approach to KE employed during the Advisor project.

The lessons learned concerning the applicability of structured methods for knowledge
engineering were the first steps towards the proposed, structured life-cycle development
model for KBSs, which is introduced in chapter eight.

Use of the PC The use of a PC had been dictated by a number of pragmatic
considerations. The PC was convenient and assisted the exchange of software between
the collaborators. The commercial wisdom of using a PC is something that can only be
assessed in the long-term, if BIS decide to market any of the tools produced.

Micro-Prolog The use of the particular version of Prolog - LPA's micro-Prolog - did
cause a number of problems.

- The version of micro-Prolog used was an interpreted, as distinct
from a compiled, version. This presented performance problems.
Current versions of micro-Prolog can be compiled and would have
been preferable to the version used for Advisor, had they been
available at the time.

- The evaluation space of micro-Prolog is limited to 64K.

- Micro-Prolog offers limited facilities for handling graphics and
its file-handling features are primitive. This was overcome by
writing file-handling routines in C. A Prolog system which
incorporates a graphics library would be a more sensible approach,
where significant amounts of graphics are required.

124

- Micro-Prolog has a number of useful features for creating window-
based interfaces. However, mouse drivers are not provided and
coding more sophisticated interfaces requires the integration of
micro-Prolog with other software written, for example, in C.

Prolog - in General The use of Prolog confirmed its power for performing complex
symbolic manipulation. This allowed the query analyser to be written in less than fifty
lines of code. The analyser had no performance problems, due to the limited vocabulary
employed by the users, and the consequent small size of the machine-based vocabulary.

Although Prolog is useful for handling symbolic data structures, it suffers from
performance and complexity problems, when attempting to code conventional
algorithms. The conversion of the frame-based knowledge representation schema was
very natural using Prolog. Prolog does not offer the flexibility for building interfaces
which is available in languages like C. Where Prolog is required for symbolic
processing, a compiled version running on a high powered machine is likely to lead to
the best results. Until the performance of the PC is greatly improved, PC Prologs will
tend to suffer from operational performance problems.

User Interface The scope for building innovative user interfaces is dependent on the
power and flexibility of the implementation tools. Therefore, consideration should be
given early in the design process to the user interface, in order to make a realistic
assessment of the implementation tools required. Interface designs are likely to be more
sensitive to the implementation environment than the design of the processing algorithms
required by the system.

Paper-based prototyping of interfaces using desk-top publishing facilities, such as those
of the Apple Macintosh, was found to be a useful way of specifying and evaluating
potential interface designs. This is a much less expensive alternative to using the
powerful prototyping facilities found in AI workstation environments.

General Consideration should always be given to the feasibility of using a shell or other
packaged software before attempting to code from scratch. Some of the problems with
graphics might have been avoided, if earlier consideration had been given to finding a
graphics package which met the requirements of the project. There is a delicate balance
between pragmatic considerations and ease of implementation, where tools are
concerned. Some of the implementation problems could have been avoided only by
using hardware and software, whose cost was far beyond the resources available to the

125

project. This approach was not, in any event, a serious alternative, since the more
powerful workstation environments would have been completely inappropriate for use in
2 commercial DP environment in the UK - at least for the foreseeable future.

The most frequent criticism of the Advisor interface was the difficulty of navigating the
KBs quickly. 1t is clear that a mouse-based pointing device would greatly enhance the
system, especially if this was combined with the use of pop-up and pull-down menus.
The most frequent praise for Advisor was the clarity with which it presented the
hierarchical structure of the SSD domain.

6.12 Summary

This chapter has described the design and construction of Advisor. The Advisor project
served three crucial purposes:

- It focused the project, at a time when clear direction was needed.

- It played a fundamental part in helping the project team structure
and understand the SSD domain and thus laid the essential basis for
subsequent work on the Intellipse system.

- It provided a useful tool in its own right.

The construction of Advisor necessitated the structuring of the SSD domain in a rigorous
and understandable manner from the viewpoint of the project team. Having achieved the
latter, it was now possible to begin the Designer feasibility study, whose main objective
was to examine individual SSD tasks and assess their feasibility for knowledge-based

support.

126

Chapter Seven

The Designer Feasibility Study

Mephistopheles

...The web of thought, I'd have you know,

Is like a weaver's masterpiece:

The restless shuttles never cease,

The yarn invisibly runs to and fro,

A single treadle governs many a thread,

And at a single stroke a thousand strands are wed.

Johann Wolfgang Goethe 1749-1832 (Faust/Part One)

Preamble

This chapter discusses why a feasibility study was necessary and how the study was
carried out. It gives a more detailed description of some of the key areas of design within
SSD, particularly in relation to the list of KBS suitability factors given in 3.2.

7.1 Why Was the Designer Feasibility Study Necessary?

The Intellipse concept proposed in 5.3 envisages individual APMs to support discrete
design tasks in SSD. However, not all the tasks would require expert, that is, KBS
support. Some of the tasks required only mechanical support of the kind already
provided by BIS/IPSE and other available CASE tools. Of those tasks not supported by
tools, it was reasonable to assume that only some of them would be suitable for a KBS
approach. The main objective, therefore, of the feasibility study was to identify design
tasks which could, potentially, be supported by a KBS. This approach would also make
it possible to begin to validate the Intellipse concept.

Satisfying the criteria for KBS suitability in 3.2 was a necessary, but not sufficient, basis
for the identification of SSD tasks for KBS support. Since the resources available to the
project were limited, it was also necessary to select a task, or tasks, for which a detailed
investigation into the potential for KBS support, could be started within the remaining
resources. It was clear that it was impossible to build the APMs for the complete
Intellipse system within the lifetime of the Alvey project, or even to identify and specify
all those that would be required. However, establishing whether the system could be
built in principle, by attempting to specify individual APMs, and assessing the potential

127

for building others in the future, were realisable objectives.

The criteria which were used during the Designer feasibility study, as a basis for
identifying tasks suitable for KBS support, were thus as follows.

- Was adequate, conventional (mechanical) support available for the
task already?

- Was the task important, relative to other SSD tasks? (E.g. was it
on a critical path?)

- Was the task one which was normally only performed
successfully by experts, and which inexperienced designers
found difficult?

- Did the task satisfy most of the criteria for KBS suitability in 3.2?

- Was the task sufficiently bounded to render meaningful progress
towards a KBS tool possible during the remainder of the Alvey
project?

- Would a KBS support tool for the task have more general
applicability, particularly to a DP environment, such as BSC's,
which did not use the SSD method?

The last point above was important. BSC had remained on the margins during the
Advisor project. This was mainly because they were not an SSD user and had limited
interest in a support tool specific to SSD. Investigating a KBS support tool of potential
benefit to the BSC installation was regarded as one of the more important issues for the
remainder of the Intellipse project. In addition, if the task chosen for KBS support was
relevant to BSC, it was likely that some of their own experts could be involved in the
investigation.

7.2 How Was the Designer Feasibility Study Conducted?

The method used for the feasibility study was a series of knowledge engineering
sessions, involving three experts from BIS and three experts from BSC. These experts
and their areas of expertise are shown in Figure VILi. The author also attended two of
BIS's training courses on SSD and Database Systems Design as part of the feasibility
study.

Only the first four domains in SSD, structuring data (SDA), structuring processes (SP),

128

logical design (D) and physical design (PD) were considered in the feasibility study.
The study was limited in this way for three reasons:

the first four sub-domains were representative of SSD as a whole;
by the time the last two sub-domains were to be considered in
detail, there was a high degree of consensus upon which SSD area
to focus on for KBS support during the remainder of the project;

- the limited resources meant that, in the light of the last point, it was
sensible not to extend the feasibility study unnecessarily.

The starting point for the sessions, involving the BIS experts, were the domain and
topic-hierarchy sheets and text, generated during the knowledge engineering for

Advisor.
AREA OF NUMBER OF
EXPERT pXPERTISE KE SESSIONS
structuring data
BISS physical design 5
database design
structuring processes
BIS6 logical design .
physical design
BIS7 database design '
] physical design
BSC1-3 database design !

Figure VILi - Experts Involved in Designer Feasibility Study

The approach adopted for the KE sessions is summarised in Figure VILii.

The KE sessions were tape-recorded and verbatim transcripts made of the tapes. The
transcriptions were done by a professional audio-typist.

This method has two important advantages:

- Taping eliminates the need for note-taking during the session by the
knowledge engineer. This is crucial, since it was found to be very
difficult to participate properly in the session and, at the same time,
take down detailed notes.

- A verbatim transcript provides an accurate record of the session

129

which can be used as reference material in the absence of the
expert. The transcript can be sent to the expert to allow
him/her to validate it, and any summaries made, and to
prepare for any subsequent KE sessions. The experts appreciated
the chance to look over what they had said, although some did not
want the transcripts circulated widely.

familiarise expert with the
objectives of the study

v

establish precise area
of expertise of expert

v

step through selected
task(s) in SSD using
Advisor KBs as the guide

v

ask expert to comment
on accuracy, completeness
etc. of KBs

2

work through case study
example from training
course manual

v

work through case study
of the expert's own
choosing

Figure VILii - Outline of Procedure Used During KE Sessions

There are also a number of problems with using tape-recording and verbatim transcripts:

- The tapes can be difficult to transcribe, especially if a large number
of technical terms are used which are unfamiliar to the transcriber.
Making available to the transcriber a paper-based glossary of
frequently used, technical terms can alleviate this problem.

- If more than one expert and one knowledge engineer are involved
in the session, the transcriber may have difficulty differentiating
between the participants. It is important, therefore, for KE

130

participants to speak clearly, and avoid frequent interjections.

- Verbatim records of human conversation, even where the latter is
focused on a specific subject, usually contains large amounts of
irrelevant information, badly formulated and unfinished sentences,
and interjections which are barely audible. This can make it
difficult for the transcriber to interpret the tape.

- Some of the explanations by the expert can involve diagrams and
other visual material which is not recorded on the tape. The use of
a video tape-recorder can be used, if a visual record is important.
Shpilberg et al(SHPI86) haye reported on an expert system
development project which used video-taping during knowledge
engineering.

- Some experts may be inhibited by the presence of the tape-recorder.

In order to avoid some of the difficulties of verbatim transcription, an attempt was made
by the author to create summaries of the audio tapes by playing them back and making
handwritten notes. This was abandoned, as it was extremely tedious and took inordinate
amounts of time to complete even small portions of the tape. When professional
audio-typing resources were available, it was found preferable to make summaries of the
KE sessions from the type-written verbatim transcript. The transcripts were annotated
approximately every half-page with the counter setting from the tape-recorder. This
allowed the knowledge engineer to go back later and find quickly parts of the tape which
needed clarification.

On balance, the advantages of taping and transcribing KE sessions outweighed the
disadvantages identified. The ability of the knowledge engineer to participate, question
and otherwise interject, while the expert is articulating his expertise, was found to be
crucial to the success of the knowledge engineering process.

The typed verbatim transcripts were used as the basis for future knowledge engineering
sessions, and to analyse the individual SSD tasks. In addition to analysing the tasks in
relation to the criteria in 3.2, the following information was also required:

- Confirmation of the task and sub-task hierarchies in Advisor.

- Identification of missing tasks.

- Identification of the data exchanged/transferred between
neighbouring tasks.

131

- Identification of type and amount of support available in the
BIS/IPSE for specific tasks, as well as any other BIS-internal, or
proprietary CASE tools which were relevant.

- Qualitative assessment of the degree of conventional and heuristic
techniques employed by the expert to perform SSD tasks.

The ability of the expert to articulate verbally his/her expertise proved to be an important
factor in the knowledge engineering sessions. Two of the BIS experts had extensive
experience of tutoring on BIS's training courses and, as suggested in 5.4, this was
reflected in the productivity of their sessions. These sessions needed minimal
involvement of the knowledge engineers once the session had started, as the experts were
able to work through the material in a systematic and logical manner. In contrast, where
the expert had difficulty in articulating clearly, the author had to continually lead the
discussion by asking detailed questions, in order to achieve similar clarity of explanation.
Sessions with the articulate experts could last for nearly three hours, but two hours was
found to be the maximum useful span in the other cases. The KE sessions resulted in
hundreds of pages of type-written transcripts, hand-written summaries, diagrams and
other material. The results of analysing this data are given in the next section.

7.3 Summary of the Results

The sub-domains of structuring data (SDA) and physical design (PD) are discussed in
detail with reference to the criteria for the designer feasibility study identified in 3.2 and
7.1. The sub-domains of structuring processes (SP) and logical design (LD) are covered

more briefly.

7.3.1 Structuring Data

SDA is a critical area in the MODUS development phases. There was some ambiguity in
BIS as to whether SDA should form part of the MODUS Structured Systems Analysis
(SSA) phase, or whether it should be the first step in SSD. During the lifetime of the
Intellipse project, the detailed structure of the SSA and SSD training courses were
changed and less emphasis was placed in SSD on some aspects of SDA. The overall
importance of SDA to SSA and SSD together was not affected. The transfer of some of
the SDA tasks to SSA was partly because BIS's training division felt that there was too
much material to cover in the one week SSD course.

132

The main objective of SDA is the production of a normalised or Logical Data Model
(LDM) of the business data relevant to the proposed application area. SSD's approach to
SDA is based on Codd's established theory of relational data analysis(COPD70), (DATE81)
The specific end-product of SSD is a model of the business data in third normal form

(TNF). Although Codd's theory has been extended since it was first proposed to enable
data to be expressed in fourth, fifth and other normal forms®ATE8D), SSD does not make

use of these extensions.

Some of the objectives put forward by Date®ATE8D) to justify the relational approach are
listed below.

"To provide a high degree of data independence.

To provide a community of view of the data of spartan simplicity, so that a wide
variety of users in an enterprise (ranging from the most computer-naive to the
most computer sophisticated) can interact with a common view (while not
prohibiting superimposed user views for specialized purposes).

To simplify the potentially formidable job of the database administrator.

To introduce a theoretical foundation (albeit modest) into database management (a
field sadly lacking in solid principles and guidelines)." (Page 487.)

Relational data analysis (RDA) is a feature common to many other structured information
system development methodologies. The basic steps in RDA as it is described in SSD
are listed below. The list is from the Advisor KBs.

Record data as relations.

Select prime key.

Remove repeating groups (first normal form).
Eliminate part-key dependency (second normal form).
Eliminate other item dependencies.

Optimise and re-check (third normal form).
Document normalised relations.

Draw logical data model.

00 N W N

An example, also taken from Advisor, of some data in third normal form, with their
associated logical data model (LDM), is given in Figure VILiii. The notation adopted is
that recommended by SSD.

133

Many of the proprietary CASE tools offer sophisticated mechanical support for RDA.
For example, Automate (LBMS Ltd.) provides facilities for creating and editing data
relations using a mouse-driven user interface. The tool provides a basic framework for
carrying out the RDA tasks, and can perform automatically some limited consistency
checking and optimisation. Automate can also generate a first pass database (DB)
schema for a limited range of proprietary DBMSs. Other products, such as Normal
(Cincom Systems Inc.), and JEW (Arthur Young Associates), offer similar facilities.

AREA HOTEL ROOM TYPE
*+ Areanumber ++ Hotel number ** Room type
Area Name Hotel name Room type description
* Area number
Hotel address
H TYPE ROOM BOOKING
** Hotel number *+ Hotel number
** Room type ** Room type
Number of rooms ** Booking date

Number of rooms booked

Data relations in Third Normal Form

% fprime key AREA
* foreign key

HOTEL

Y

ROOM ™ HOTEL ROOM
TYPE TYPE

Y

ROOM
BOOKING

Logical Data Model

Figure VILiii - Example of Data Relations in Third Normal Form
and the Associated Logical Data Model

While the tools described provide excellent mechanical facilities, it must be stressed that
none of these tools know how to perform RDA. They rely on the designer to make the
appropriate decisions as far as the detailed steps in RDA are concerned. Typical
mistakes made by inexperienced designers, which were identified by the experts are, for
example, the selection of keys and repeating groups, which were logically correct, but

134

totally inappropriate in a business context. These sorts of mistakes would not be

identified by any of the tools discussed above.

The BIS/IPSE offers less sophisticated facilities in the RDA area. However, unlike
Automate, IEW and Normal, which are limited in scope, the BIS/IPSE offers mechanical
support for a much larger number of phases in the development life-cycle.
Notwithstanding the last remark, the three tools mentioned have achieved some success
in the DP market place for PC-based, Wimp-driven CASE tools. The BIS/IPSE is not
specifically directed at the PC-tool market, but at the CASE market for more powerful
IPSE tools. However, its success here was limited and there was significant emphasis

in BIS on the need for a CASE tool which would compete more directly with Automate

and similar products.

It was noticeable, therefore, in the early stages of the feasibility study that BIS were keen
to steer it towards those areas in SSD (such as structuring data) which, in their view,
were of commercial importance. The Automate-type tool represented the approach
which many at BIS thought had good commercial potential. The author's view was that
a tool which augmented the mechanical facilities available in Automate with some
knowledge-based features, thereby endowing the tool with knowhow about design, was
an area with more commercial potential than a tool which merely reproduced the usual
mechanical support for RDA. In the event, at about the same time as the feasibility
study, the BIS/IPSE team in London were finalising plans to produce a cut-down
version of the BIS/IPSE for the PC-based CASE tool market. This meant there was
much less emphasis on producing such a tool, as part of the Alvey project.

There are major difficulties in building rule-based, KBS tools in the RDA area. (By
rule-based KBSs are meant systems whose knowledge representation is based on the use
of "if-then" production rules, and whose architecture is like the early ESs illustrated in
Figure IILiii.) The key tasks in SSD/SDA, listed as 1, 2, 3, 4 and 5 on page 133, rely
overwhelmingly on general knowledge of the specific business domain involved, related
application domains and the accumulated experience of the expert gained from past RDA
exercises. Lengthy consideration was given, in conjunction with the experts, to ways in
which this knowledge could be generalised and represented in machine form. However,
the kind of knowledge being employed by the experts to, for example, select a key in an
un-normalised data relation, is being drawn from a human KB, which is far too wide to
encompass in a machine. The expert was using knowledge which, in another context,
would be regarded as common sense.

135

As discussed in 5.4, in the context of DPSD, common sense can be taken to mean the
general knowledge about abstract design techniques, and detailed domain-specific
experience, which the expert designer accumulates over an extended period of time

whilst working on a diverse range of systems development projects.

The problems arising from the use of common sense reasoning are exacerbated by the
fact that much of the relevant business-specific data, which the expert uses in RDA, is
not readily available but has to be obtained by interviewing clients. When the data is
available, it is normally in a form which cannot be utilised easily in a machine
environment.

The other tasks in RDA (6, 7 and 8) are algorithmic in nature and can be performed
automatically using conventional implementation techniques.

As far as the criteria in 3.2 were concerned, two features of SDA made it particularly
unsuitable.

- The problem is not well-bounded and relies predominantly on
common sense knowledge.

- Those tasks, which can be supported, are already adequately
addressed by conventional techniques.

Ceri and Gottlob(CERI®S) discussed the use of a Prolog system for RDA. They
characterised their program as "...suitable for the interactive design of small database
applications and as a teaching aid." However, the work reported is confined to a
description of how various conventional normalisation algorithms are represented as
Prolog rules. The system would not be of use to an inexperienced designer in the
context of a commercial system development project, as it does not offer facilities for
taking into account data about the application domain.

Bouzeghoub and Gardarin8OUZ85) described SECSI, an expert system for supporting
the production of a set of normalised data relations based on information about the
application supplied by the user. The system is also implemented in Prolog. SECSI
requires a "sound semantic schema" in order to produce a normalised model. The
system interacts extensively with the user, in order to identify characteristics about the
application domain which are relevant to the normalisation process, but not covered by
the semantic schema. In a typical commercial application this would not be a viable

136

approach because of the very large number of questions which would have to be asked.
The inexpert designer would also have difficulty in answering some of the questions.

Conclusions

- Heuristic tasks in SDA cannot be supported by a rule-based KBS
due to the level of common sense reasoning used by experts.

- A degree of KBS support for the heuristic tasks could be achieved
by incorporating suitably augmented Advisor KBs for the SDA
sub-domain into the BIS/IPSE - in the manner described in
6.10.2. In particular, the Advisor KBs could be augmented with
an extensive set of generically classified RDA examples which
covered most of the common problems found by BIS experts in the
course of their work. A limited paper-based version of such a set
of examples is already available in BIS, but does not appear to be
widely used. Incorporating this into Advisor/IPSE is likely to
greatly enhance the usefulness of these examples.

- The BIS/IPSE is the appropriate environment to support those
algorithmic tasks in SDA which can be approached using
conventional techniques. Other mechanical support could also be
provided in the IPSE.

1 ring P n ical Desi
The KE sessions for these areas were affected by two main factors.

- The expert involved was not able to articulate as well as the other
experts interviewed.

- It was apparent from the start that many of the tasks involved in SP
and LD were very unsuited to a KBS approach.

The construction of a DP system involves two fundamental components, the data which
the system must use, and the processes to be carried out on that data. The processes are
synonymous with the detailed functions which the system is expected to perform. While
SDA is the method used to analyse the data and structure it, in a form suitable for the
next stage in the design cycle, SP is concerned with structuring the processes and
documenting them in a systematic way. The low-level processes, which a DP system

137

must perform, are derived from the high-level transactions which future users expect the
system to execute. For example, in the hotel application used in Figure VILiii, an
enquiry (a high-level transaction) might be expressed in the following way:

Approximately three times per day, the hotel receptionist will want
a list of all rooms of a certain type unallocated for a given number
of consecutive days, from a given day. This enquiry will be made
on-line, and the report is to be printed immediately on a printer

situated in the reception area.

The main object used in SP is the process sheet. An example is given in Figure VILiv.
A process sheet is completed for every low-level process into which the overall system
specification has been decomposed. For a large system there will be hundreds of
process sheets produced.

PROCESS Extract room data No. PRO 001
FOR EACH Booking with hotel specified
WHEN During room allocation enquiry

DIAGRAM BOOKING

BOOt!NG

NARRATIVE 1. For each requested room type...

Figure VILiv - Example of a Process Sheet

At the logical design stage the process sheets are sorted and organised into transaction
profiles. A transaction profile is a group of low-level processes which form a logical
representation of a high-level system function. An example of a transaction profile is
given in Figure VILv.

The final outcome of the LD phase is a Logical System Chart (LSC) which contains, in
diagrammatic form, a complete description of the processes, transaction profiles and data
which are required to perform the system functions identified for the application. The
notation used in the LSC allows the time-ordering of the system processes to be
expressed, as well as the static data files involved. The logical nature of the LSC means
that the design does not reflect any characteristics of the hardware and software

138

environment, which may be used to implement the application represented by the LSC.
The LSC is the basis, therefore, for the second, physical half of the SSD design cycle.

PROFILE PROFILE)
NAME -~ Room Count D TPO1
Hotel Room Type

> >
PRO001 j«g— iteration [«@§— PRO002

v

PRO003

v

ETC

Figure VILv - Example of a Transaction Profile

Conclusions

The scope for building rule-based KBSs in the near future in the SP and LD areas is
limited. The essential difficulty is finding a knowledge representation schema which will
allow process sheets, transaction profiles and similar objects to be held and manipulated
in a machine environment. Some heuristic knowledge is used to identify processes and
group them into appropriate transaction profiles, but, unless the SP objects themselves
can be represented, it will be very difficult to exploit the heuristics identified using a
KBS. The iterative nature of many of the tasks in SP and LD means that mechanical
support, which offers sophisticated facilities for editing and creating diagrams easily, is
the critical support requirement. This is another area served well by proprietary CASE
products including the BIS/IPSE. The linking of the Advisor KBs for SP and LD with
the IPSE is again the best form of KBS support which could be used in these areas in the
short-term. Other ideas for KBS support which were explored briefly with the experts
were as follows:

- The use of a KBS tool for performing syntactic and consistency
checking of process sheets.

- The addition of a KB in Advisor containing example process sheets
organised into generic classes.

- The use of a KBS tool for advising on the completion of process

139

sheets, and in particular the narrative part of the sheet.
- The construction of a KB of generically classified transaction
profiles, which could be coupled with a KBS facility for advising

on their use.

These ideas for KBS support in SDA/LD were identified as worthy of further detailed
research, but were not pursued during the designer feasibility study. The reasons for this
are discussed in 7.3.5.

7.3.3 Physical Design

The objective of the PD phase in SSD is to begin the transformation of the LSC into a set
of detailed program and file specifications. These specifications reflect the physical
environment chosen to implement the system, and would be used by the programmers to
code the system software. SSD emphasises the physical implementation of a DP system
using a high-level language (e.g. COBOL) + program-managed data files.

This view envisages that the program specifications will define all of the procedures
necessary for the creation, storage and retrieval of data in the system. However,
although this approach to DPSD is still widely prevalent in the UK, there is an
accelerating movement towards a different implementation method which can be
characterised as a high-level or Fourth Generation language (4GL) + DBMS.

In this approach, all data management is handled by a proprietary DBMS, and the
application code is confined to the area of system functions only. The importance of this
approach was clearly identified by the BIS experts, and there is also evidence from the
DP press(JONES86c), (NORTS6), (LAWRS?), (STURS?), (MACI87) that DBMSs are becoming a key
component of the DP environment. (It should be noted that the MODUS environment, as
distinct from SSD, does provide standards for both file-based and DBMS-based systems
development.)

The rest of this chapter concentrates on the approach to physical design based on the use
of a DBMS. This reflects the way that the KE sessions developed - and was a direction
dictated by the opinion of the experts, as well as by the author's own independent
assessment.

140

7.3.4 Database Design

Database design involves two main components, the Logical Data Model generated
during the SD phase, and the list of system transactions identified in SP. A first-pass
DB design is obtained, by transforming the LDM into the DB schema appropriate to the
DBMS being used to implement the system. This first-pass schema must be sized and
timed to check whether it meets the physical constraints laid down in the system
specification.

The process of first pass physical design is primarily concerned with analysing the
performance of a system based on a pure LDM. This first-pass design is modified to
become a second-pass design by making various degradations to the LDM in order to
meet specific physical constraints. The main objective is to achieve the required physical
performance by adjusting the logical design, whilst retaining the maximum possible
degree of maintainability and clarity inherent in a normalised LDM. This process
involves the application of heuristic rules for changing the design, followed by a
re-calculation of the design's performance. Invariably, a design alteration can produce
several interacting effects on the design's performance. This means that design changes
must be balanced against each other, in order to gain the desired result. At any point
several different strategies may be available to the designer, of which only some are
capable of meeting the desired objectives.

The initial analysis of the database design area suggested that it was suitable for a
rule-based, KBS approach.

D ign h

This section discusses DB design in relation to the list of KBS suitability factors in 3.2,
and the specific criteria for the designer feasibility study given in 7.1.

KB itability Factors (from 3.2
Narrowness of the Domain The problem is well-bounded. Some general knowledge
about the application domain is important but this is well-defined, and the experts are

definite about where this knowledge can be obtained.

Complexity of the Problem By concentrating on one proprietary DBMS, the complexity

141

of the problem can be greatly reduced. The experts use a well-defined procedural
approach which involves both heuristic rules and conventional numerical methods. The
procedural nature of the experts' method means that the problem can be factored and
represented as a hierarchical structure of tasks, similar to that used for analysing other
aspects of SSD in the Advisor project.

Nature of the Problem The problem does not rely on visual or other sensory skills. The
refinement of a first-pass DB design into a form which meets the physical constraints
and objectives of a specific application is a problem normally only carried out by human
experts. Furthermore, BIS experts have a well-established record of successfully
performing this type of design exercise. The experts are also of the view that the design
problem itself is relatively straightforward, providing the appropriate techniques are
known. BSC also has some established procedures in the area.

Nature of the Experts Two experts were available in BIS, both of whom had extensive
experience of DB design in general, and one who had particular expertise in the
proprietary DBMS used by BSC. Both had taught on BIS training courses and were
- known to be highly articulate. Expertise at BSC was also available.

Training The DBS training course promotes a highly structured approach to DB design.
This provided a sound basis for the KE required.

Speed of Solution The design problems are solved 'off-line' and take minutes, hours or
a few days to solve, depending upon the size and nature of the application.

Sensitivity of the Problem There are no obvious legal or ethical issues involved.

Conventional Solutions Computational tasks are involved and these could be supported
easily using conventional techniques. However, there are very few computer-based
support tools known to the experts which provide this kind of support. The integration
of conventional and knowledge-based support appears to be both feasible and desirable.

Written Material A large amount of documentation is available covering the general

design tasks involved, and the specific procedures associated with the proprietary
DBMS.

142

Feasibility Study Criteria (from 7.1)

Conventional Support Conventional support tools were not available as far as the

experts and the project team were aware.

Importance of the Problem in SSD As has been indicated above, the use of DBMSs in
commercial DPSD is of growing importance. It was also clear from anecdotal evidence
given by the experts, based on their work with BIS clients, that DP installations often
have significant problems achieving the desired performance from their DBMS
applications. This was the case, even when there were no hardware or software-based
restrictions to prevent them attaining the required objectives. This assessment was borne
out by the author's own independent analysis of the problem.

KBS Suitability The problem appeared to satisfy most of the KBS suitability factors in
3.2,

Scope of the Problem The problem could be bounded in such a way that the feasibility
of building an operational KBS could be adequately demonstrated. It was felt that this
demonstration of feasibility could include the design and implementation of some
elements of the system, within the remaining project resources.

General Applicability and Relevance to BSC By choosing the proprietary DBMS, Toral
from Cincom Systems Inc, the investigation would have direct relevance to BSC who
used Toral as well as other Cincom products. The following factors indicated that an
investigation, initially restricted to the Total DBMS, would have general applicability:

- The newer Cincom product, Supra, a relational database, although
different from Total in its mode of operation - from an
application-user's point of view - was very similar to Total from
the DB designer's viewpoint. That is, those KBS facilities
developed for Total would also be applicable to Supra. This was
important, as Total is being superceded by Supra. In fact, it was
clear from discussions with experts in Cincom and BIS, that Supra
could utilise a KBS tool to an even greater extent than Toral. This
is because the extra flexibility that Supra offers to the DB user, at
the logical level, necessitates a much tighter control of the DB at the
physical level, if performance constraints are to be met.

143

- The general techniques used by the expert in the DB design area
are applicable to all DBMS-based applications. Only a relatively
small number of the detailed tasks are specific to a particular
DBMS.

- Of the many DBMS products on the market in the UK, Cincom's
share of the sites, where DBMSs were in use, is significant.
5.51% of DBMSs presently in use on IBM mainframes in the UK
are from Cincom Systems Inc(MACI87)

- The use of a KBS to obtain optimum performance of software,
running in a commercial mainframe environment, is of growing
importance. Two articles on the subject appeared in 1988 in
the DP press(LANG88), (BETTS88) opy the subject. In 1988, System
Designers Ltd announced their product, SD Tuner, which is an
expert system for tuning the Vax/Vms mainframe operating system.
This product is discussed by Betts. (TimmTuner from the General
Research Corporation in the USA is another expert system available
for tuning the Vax/Vms operating system.) These developments
indicate that the use of KBSs, in place of human systems
programmers, is a feasible approach, and that the building, tuning
and optimisation of a DBMS design is similar to the problem of
managing a large mainframe operating system.

There is an additional feature of DB design, which makes it a particularly interesting
area: the combination of conventional algorithmic tasks and constraints-based, heuristic
refinement of an initial design. The integration of conventional and KBS components
was identified in 3.1.4 as an area of growing importance. Thus, the DB design domain
offers a good opportunity to evaluate the extent to which this integration is possible.

On the basis of the criteria for the Designer feasibility study, a decision was taken to
begin a more detailed investigation into the feasibility of a KBS tool for supporting the
design, implementation, and maintenance of a DP application, running in the Toral
DBMS environment. There were valid reasons for not investigating in detail, at this
stage, the further ideas for KBS support identified in the feasibility study.

- The form of KBS support identified for the other SSD areas was

principally based on the incorporation of augmented Advisor KBs
into the BIS/IPSE. The feasibility of building these KBs had been

144

demonstrated during the Advisor project. Incorporating them into
the IPSE was essentially a technical problem which could be
investigated by the BIS/IPSE team.

- Pursuing the ideas in the other SSD areas had limited relevance to
BSC who were in favour of the ITAM investigation.

- The use of a KBS support tool in the DBMS area was an innovative
approach, but it still needed significant research effort to establish
its real credibility.

- Cincom Systems Inc, who were consulted about the proposed
ITAM investigation, before a final decision was taken, had
responded very positively to the idea.

7.4 The Lessons of the Designer Feasibility Study
4.1 Nature of the Designer'

The extensive knowledge engineering sessions, involving different designers, allowed
some conclusions to be drawn about the nature of the expertise possessed by experts in
DPSD. The skills identified were as follows:

Analytical - the ability to extract the relevant aspects (or essence) of a
proposed application from the mass of irrelevant information, normally
collected as part of the DP analysis and design phases.

Experiential - the ability to identify the common factors between a
current design problem and a problem solved in the past, enabling
features of that solution to be used in the current application.
Innovative - the ability to improvise and find new solutions to design
problems, when none of the normally-used techniques appear to work.
Procedural - the ability to apply their extensive knowledge of design
practices in a consistently accurate way.

Abstractive - the ability to generalise from particular design solutions
and form generalised approaches which worked in other domains.

The DP designer's expertise consists of two major components. Firstly, abstract,
domain-independent knowledge about the design process itself - represented, for
example, by the SSD methodology. However, a key observation made during the
designer feasibility study was that designers also make extensive use of a second

145

component - application domain knowledge - that is, their general knowledge about
banking, insurance, manufacturing and so on. In fact, the successful use of the abstract
design knowledge was largely dependent on the degree to which the designer was able to
utilise his/her domain-dependent expertise. Many of the heuristics used by the experts
are based on their domain-specific knowledge, built up over a long period of time. The
expert and non-expert designer can be distinguished by the degree of domain-dependent
experience which they possess.

These observations are in line with those made by Adelson and Soloway(ADEL35) They
looked at the role of domain experience in software design and observed that:

"A designer's expertise rests on the knowledge and skills which develop with
experience in a domain." (Page 1351.)

Greenspan(CREENSP86) 4154 identified the importance of domain knowledge:

"Software systems are developed to solve problems that exist in some application
domain, for example in the world of manufacturing, business, or geological
exploration. Knowledge of the application domain must play a major role in the
software development process, since it provides the context for both defining the
problem and for evaluating the validity of solution systems." (Page 61.)

Barstow(BARS87) concluded that:

"Software Engineering is a knowledge-intensive activity. Of special importance
are knowledge of the application domain and knowledge about the design and
implementation history of the target software itself." (Page 209.)

Ryan(RYAN8S) 150ked at the nature of the software developer's expertise. He identified
the need for KBS tools in software engineering to have "domain and target system
knowledge", and also the difficulties of adequately representing this knowledge in
machine form, using present techniques. This is in line with the conclusions in 7.3.1
and 7.3.2 concerning the difficulty of representing the knowledge used by experts, to
perform many of the tasks in SDA, SP and LD.

Sharp(SHARP88) renorted on the results of an experiment designed to assess the role of
domain knowledge in software design. Fifteen software designers were asked to
perform a software design task, based on a given set of documentation. The latter
included an appropriate functional specification and other relevant material. Designers
spent between 140 and 210 minutes on the task. The tasks were in different application

146

areas, and the designers were asked to complete questionnaires which allowed them to
indicate their degree of domain knowledge about the application tasks.

Sharp concluded from the investigation that:

"This study has provided no evidence for supporting the hypothesis that general
domain knowledge affects the production of a good system design...However,
some designers claim that application domain knowledge is necessary for
producing a good design, and some claim to have used it during this study,
although there is nothing in their design notes to support this claim.” (Page 16.)

The discrepancy between the results of Sharp's work and the author's conclusions can
probably be explained by two things. Firstly, the experiment by Sharp was necessarily
restricted to relatively small application tasks, compared to a typical DPSD project. It
would be difficult to conduct a similar investigation in the commercial DP environment,
although it would be an extremely valuable exercise. Secondly, the experiment
concentrated on the software design phase in the conventional life-cycle, whereas the
Designer feasibility study took a broader view of the whole DPSD cycle.

Other points which emerged from the Designer feasibility study were:

- Carrying out the Designer feasibility study would have been
extremely difficult, if not impossible, without the work previously
involved in building Advisor. The Advisor KBs were the
foundation for the feasibility exercise.

- The use of tape-recording and verbatim transcripts worked well,
although this depended on the co-operation of the experts, and the
availability of professional typing services.

- The study had been technology or KBS-driven. The exercise was
one, in which a chosen solution was looking around for
an appropriate problem. For an R&D project this is an acceptable
approach; however, for operational or commercial KBS
development, it is important that the feasibility study is focused on
a specific problem, for which conventional solutions have been
found to be unsuitable.

Finally, the results of the Designer feasibility study suggest that existing mechanical
CASE tools can be made more active by augmenting them with knowledge-based

147

components. In particular, the BIS/IPSE could be augmented with the Advisor KBs to
produce an environment capable of offering significant knowledge-based support in the
near future. This support need not be rule-based, but could provide facilities which give
the inexperienced designer information about the critical factors, which an expert
designer would consider in relation to specific design problems. This type of support
would still leave the initiative with the designer, but it would increase the chance that the
less expert designer would consider the relevant factors before making design decisions.

7.5 Summary

This chapter has described the designer feasibility study. DB design was identified as
the most appropriate area for further investigation during the Intellipse project. In
addition, the results of the study indicated that rule-based KBS support for DB design
was technically feasible. Other forms of KBS support for tasks in SSD have been
identified, although some areas of SSD were found to be unsuited to a rule-based
approach. The concept of augmenting the BIS/IPSE with the Advisor KBs, first
proposed in chapter six, was again shown to be the best short-term method of providing
knowledge-based support for SSD tasks, not suited to a rule-based approach.

Up to this point, the Inzellipse project had concentrated on the application of KBS
techniques to DPSD - the KBS for SE theme. However, two factors were inevitably
pushing the SE for KBS theme into the picture.

Firstly, the experience of using a structured approach to KE in Advisor had been very
positive. The type of diagrammatic techniques employed, and the decomposition of
activities into sub-activities had similarities with approaches used in conventional

systems analysis.

Secondly, the basis of the Alvey project was the SSD methodology, itself an engineering
approach to computer systems development. Once a specific KBS support tool for use
in an operational environment had been identified as the focus for the project, the
importance of considering the applicability of structured development methods to the
development of an operational KBS became evident. In particular, the opportunity was
there to assess the suitability of conventional development methods for building an
operational KBS.

148

Chapter Eight

Practical Engineering of Knowledge-Based Systems

Ask not what your country can do for you, but what you can do for your country.

John Fitzgerald Kennedy 1917-1963
Preamble

This chapter considers the applicability of conventional DPSD methodologies, such as
the BIS SSD approach, to the development of operational KBSs. It discusses the
differences between DP and KB system development, and proposes some initial steps
which could lead to the establishment, in time, of a structured engineering approach for
KBS development. The author was in an advantageous position for considering these
issues, since the Intellipse project work had necessitated a thorough study of both KB
and DP system development methods.

8.1 Why Are Structured Development Methods Relevant to KBSs?

The discussion of operational KBSs in 3.2.2 showed that few KBSs are in operational
use. The great majority of KBSs, built so far, have been of an experimental or
prototypical nature. In addition, those KBSs, which are in operational use, are mainly
small, stand-alone systems which do not interact with other computer systems.
Worden(WORD8T) for example, said:

"Most knowledge-based systems in current use are small, standalone systems with
little connection to the mainstream data processing of an organisation." (Page 60.)

Waterman noted that(WAT86).

"Most expert systems never get past the research prototype stage. This is because
until recently most were developed in research rather than in commercial
environments." (Page 212.)

It follows that most writers on KBS development are from an academic or R&D
environment and few have considered the need for KBSs, intended for operational use,
to be built to the standards expected in conventional DP systems. Their research

149

background also means they are frequently unfamiliar with conventional DP practices.

The objectives of using structured engineering methods in commercial DPSD have been
discussed in 3.5 and 4.1. This discussion indicated that structured methods are expected

to provide the following advantages:

- Control - the ability to plan, schedule and run a DPSD project
according to a fixed budget, and to meet precise delivery targets.

- Robustness - the ability to build a system which will continue to
function, even when users do not interact with it in precisely the
expected manner.

- Reliability - the ability to continue to function on a 24 hour basis,
where required, or to be able to be shut-down and re-started in a
predictable way.

- Maintainability - the ability to add functionality to the system after it
is operational, and to fix problems easily where these arise.

This is not a complete list of desirable attributes to be expected from the use of a
structured methodology, but is intended to give an idea of what should be expected from
an engineering approach.

Although not referring specifically to KBSs, Partridge(PART863) jdentified the need to
build practical Al software.

"...if we intend to push on with our Al programs into the harsher world of
applications software, we will require all of the usual desiderata of practical
software:

(1) perceptual clarity;

(2) robustness;

(3) reliability;

(4) maintainability." (Page 130.)

Ford(FORD86) commented on the lack of a methodology for practical Al software.

" Al has yet to evolve a methodology suited to the production of practical software,
largely because most Al software has been of an experimental nature, and thus not
developed in a disciplined way to satisfy the needs of users, managers, and others
one stage downstream in the lifecycle, but also because it has been unable to draw
from the methodological foundations provided by SE." (Page 263.)

If operational KBSs are regarded as a particular type of computer system, and if future

150

KBSs are to be integrated more fully with existing DP systems, it follows that KBSs
should meet the same operational standards expected in the commercial and industrial
environment, Furthermore, since structured engineering methods are the most widely
established means, at present, of attaining the desired operational standards in
conventional DP systems, then it is reasonable to propose that similar engineering
methods should be employed in the development of KBSs. This proposition suggests
that the following key question be addressed:

To what extent are existing conventional structured methods

appropriate to the development of an operational KBS?
This initial question points to two further areas of investigation:

What are the essential differences between DP and KB systems,
particularly in relation to the methods used for their construction?

And, if there are significant differences:
How does the conventional life-cycle development model need to be
adapted to meet the particular needs of KBS construction, and the
general requirement of KBSs built to commercial and industrial
operational standards?

8.2 Contrasting Features of DP and KB System Development

Waterman(WAT86) considered the differences between data processing and knowledge
engineering. Figure VIILi illustrates his results.

Aston University

lustration removed for copyright restrictions

Figure VIILi - Comparison of DP and Knowledge Engineering (from WATS6)

151

Gervarter(GERV83) compared AI with conventional programming and his results are

shown in Figure VIILii.

Artificial Intelligence Conventional Computer Programming
Primarily symbolic processes Often primarily numeric
Heuristic search (solution steps implicit) Algorithmic (solution steps explicit)
Control structure usually separate from Information and control integrated together
domain knowledge
Usually easy to modify, update and enlarge Difficult to modify
Some incorrect answers often tolerable Correct answers required
Satisfactory answers usually acceptable Best possible solution usually sought

Figure VIILii - Comparison of AI with Conventional Programming
(from GERVE3)

Partridge(PART86Y) analysed the differences between the nature of Al and software
engineering problems.

"Al problems
(a) Answers tend to be adequate or inadequate.
(b) Context-sensitive problems.
(c) Dynamic.
(d) Not completely specifiable.
(e) Performance-mode definition.

Software engineering problems
(a) Answers are correct or incorrect.
(b) Context-free problems.
(c) Static.
(d) Completely specifiable.
(e) Abstract definition." (Page 31.)

This comparison, however, confuses the ideal of software engineering using formal
methods, with the reality of DPSD in the current commercial environment. This point is
discussed again later in the chapter.

Ford(FORD86) cqnsidered the differences between the methods used for Al and SE

problems.

"The methods and tools of software engineering are suited to problems that can be
characterized as having reliable, static data for which the problem solution space is

1562

small. Problems with unreliable and dynamic data usually imply a much larger
solution space; Al techniques have been developed to deal with this situation."

(Page 257.)

The authors cited above have mainly focused on what the differences are between
problems addressed by Al and those approached using conventional techniques, and
they are in general agreement about the nature of those differences. The following
analysis concentrates on how the construction of commercial DP systems differs from
current KBS development practices, in relation to the six key phases in the conventional
development life-cycle, namely: feasibility, analysis, design, implementation, testing and
maintenance. Inevitably, there is some repetition of points made earlier in the thesis.
However, this is essential in order to present a coherent argument.

Feasibility and requirements definition: how much? vs is it possible?

The technology used in building typical DP applications, such as airline booking or
credit card management systems, is well established. The balance of debate at the
feasibility stage is not concerned with the technical possibility of building the proposed
system, but with the time required to build it and the consequent cost. DP projects are
often concerned with computerisation of existing manual systems. It is generally an
implicit assumption that there will be no intrinsic difficulty in analysing and
understanding the manual system, prior to the formal specification of a computer-based
alternative. The feasibility study for a KBS must, of course, also address issues of cost
and estimated development time. However, other questions which will need to be
addressed are quite distinct:

i Problem selection The initial problem analysis will need to consider whether
conventional solutions have been adequately considered. A common pitfall in KBS
development is the selection of an inappropriate problem. An attempt must be made to
classify the complexity of the problem. For example, how much common sense
reasoning is involved and how long does the expert usually take to solve the problem?
The availability and expected co-operation of the experts must be estimated. Building a
KBS with an unco-operative and/or elusive expert will be impossible. An initial
technical assessment of the expert's knowledge and expertise will be necessary, in order
to establish whether the available knowledge representation formalisms will be able to
cope with the problem.

ii Human factors In 3.3.3 the importance of human factors in KBS development was

153

discussed. In particular, the need to define the prospective users of a KBS was
identified. Having characterised as accurately as possible, during the feasibility phase,
the users of the proposed KBS, it will be easier during the design phase to take account
of human factors when specifying the user-interface for the system. The intention of
building a KBS may be to allow non-experts to perform at a similar level of competence
as experts in some specific domain. It is essential therefore that the user-interface within
the system is tailored as closely as possible to the prospective users. In a conventional
DP project, it is rare to give much consideration to the issue of human factors and
user-interfaces. This is because the scope for tailoring the interface in a DP system is
constrained by the limited facilities available on the "dumb terminals" used in most
mainframe computer installations. Also, wider human-organisational factors in relation
to a new DP system are normally dealt with at a management level, separate from that of
the DP department. The lack of involvement of users in the design of computer systems
has been criticised by several authors®MUM87), (LAND87), (CORD85) They point out that this
lack of involvement is often responsible for subsequent problems in the operation of
some DP systems.

iii Performance objectives A DP system can have a precisely specified set of output
requirements or transactions. It is unlikely that the performance of a KBS can be as
easily circumscribed. Although the "combinatorial explosion" associated with many Al
systems is usually avoided in a KBS, it may not be possible at the commencement of the
project to state a semi-formal, closed set of requirements. Some of the requirements may
have to be stated in terms of the performance expected from the system. For example, a
knowledge-based classification system for analysing rock samples may be specified in
terms of the correlation between the system's performance, when used by a
'non-expert', as compared with analysis of the same rocks by an expert. The use of a
performance-based requirements statement can also, therefore, serve as a basis for
testing a KBS. An example of specifying and testing a KBS, using correlation between
expert and KBS performance, is discussed by Edwards and Bader{(EPW88),

iv Prototyping It can be seen from the discussion so far that the nature of KBS
construction, particularly the lack of a transaction processing-style statement of
requirements, means that it is difficult at the feasibility stage to be as certain about
development costs as is possible with a conventional DP project. The history of
software project estimation in conventional DP shows that, even with a detailed
statement of requirements, accurate forecasting of development effort is frequently an

illusory target.

154

Building a small scale prototype of the proposed KBS can be an effective way of
assessing the feasibility and likely development costs of a full-scale version of the
system. A successful prototype can also serve as an active, semi-formal specification for
an operational system, since users and managers can use the prototype to ensure that the
desired functionality and usability of the system have been accurately identified.
However, the scope and methods for a prototyping exercise must be clearly defined. A
successful small system at the feasibility stage can lead to the continuation of prototyping
towards an operational system. But the latter approach is unlikely to yield reliable or
maintainable software. In conventional DP, it is very unusual to "throw away" existing
code. Therefore the likelihood that a prototype, built as part of a feasibility exercise,
may be subsequently discarded needs to be stated and budgeted for, at the outset of the
feasibility phase in KBS development.

v Hard and soft analysis Judgements about the desirability or appropriateness of
building a KBS, in relation to the estimated financial or other benefits which may accrue
to the organisation, using the system, are not discussed here. This type of soft analysis
is essential to any proposed computer system project and usually takes place, prior to
any decision to build a system. This analysis is confined to the hard design phase, after
the judgement on whether to build a computer system has been made. However, a
question that arises when building a KBS, which the KBS developer should address if
possible, is: how successful is the expert in solving problems in the application domain?
This will be discussed below in the section on testing.

Analysis: data analysis vs task analysis.

A conventional DP project begins with an analysis of the existing manual or
computerised system. The objective is to produce an accurate, semi-formal model of the
business activity being studied. This model is concerned with identifying the data
required by the activity, the movement, storage and retrieval of that data, and the
processes to be carried out on the data, such that the desired outputs from the activity are
achieved. Whereas conventional analysis requires the examination of clerical operations
and procedures, KBS task analysis is concerned with the problem-solving activity of
human experts. The fulcrum for conventional analysis is the data; the fulcrum for KBS

task analysis is the expert.

Formal techniques, such as Codd's relational model, have been developed to support
conventional data analysis(COPP70), Relational analysis has its roots in set theory and its

155

correct application can produce a rigorous formal model. Well established formal
techniques for analysing the cognitive activity of an expert, who is solving a problem, do
not exist as yet. Also, while conventional data analysis can be done largely by external
observation of business procedures, KBS task analysis requires a much more intimate

involvement with the expert.

As well as modelling the expert's knowledge, the analysis stage during KBS
construction may need to perform further the analysis of prospective users of the KBS,
begun during the feasibility stage.

Design: complexity of size vs complexity of representation.

Many of the complexities which arise in DP design are due to scale. The use of
structured methods to develop the system specification can lead to large quantities of
documentation, covering every aspect of a project, from analysis through to coding. The
volume of documentation, and the need to link individual items of documentation
together, mean that documentation management is a major headache. But the problem is
one of management rather than understanding.

Large knowledge bases may also present problems of scale. However, in KBS design
complexity mainly arises because of the need to analyse cognitive activity, represent
human expertise in a structured form and formalise ill-defined problems and solutions.
The problems of knowledge representation are very complex. The data structures
employed in a conventional DP system will not be rich enough for the requirements of a
KBS. On the other hand, the representation structures commonly used in Al - such as
objects, frames or production rules - are themselves only crude approximations to the
knowledge structures, apparently employed in human intelligence. In addition, the
sophisticated inferencing techniques, employed by an expert, must be modelled using
more restrictive mechanisms, such as forward or backward chaining.

The main tasks during the design phase of a DP system are concerned with defining
logical and physical file structures and specifying the logical and physical processes,
which must access these files. The main output of this phase is a set of detailed
specifications for programs which, when executed in conjunction with the data files
defined, will generate the output required by the system specification. The design phase
for a KBS may also require the generation of program specifications for conventional
software components. In addition, it will be necessary to devise an executable

156

knowledge representation schema and inferencing structure, which can adequately model
the expert's activity.

Implementation: program debugging vs iterative refinement.

In the traditional waterfall model(BOEHT6), (AGRES6) the development phases are executed
sequentially. The implications of design decisions, made in the early phases, are not
reviewed until the code has been executed much later in the development cycle. The
waterfall model assumes that, by the time the coding phase is reached, the analysis and
design stages are complete. The main objective of the latter two phases is to generate a
set of program specifications, which are complete with respect to a set of requirements
for the system. Any iteration at this stage should simply be between program coding and
program de-bugging. According to the model, after the analysis and design phases have
been completed the de-bugged programs should meet user requirements without further
modification.

Theory and practice in conventional DP systems development have a habit of diverging.
The delay between taking a design decision and reviewing its implications often leads to
expensive mistakes, since errors made early in the design cycle, but not discovered until
later, can be very costly in development time to rectify(BOEH76) validation of early
design decisions through rapid iteration between design and implementation phases, via
the animation of prototype designs, is not encompassed in the traditional waterfall
life-cycle. This weakness in the model has led to amended versions being suggested

and, in particular, to a proposed life-cycle model based on some form of
prototyping(GLADSZ). (HEKM86), (AGRE86)

KBS construction must include a strategy for incremental development. The waterfall
model needs to accommodate iteration between the various development phases, since in
KBS development a significant amount of iteration during analysis, design and coding
will be necessary in order to identify, specify and represent the range of problem-types
and special cases, which the expert can solve in the application domain. It may be
necessary to animate intermediate designs of the system, in order to facilitate validation
of the analysis and design by the expert and prospective user. This is why prototyping
techniques are particularly relevant to KBS development - especially during the
feasibility phase. The prototyping process can be a very useful method of attaining the
desired performance objectives for a KBS. The crucial point is that this iterative process
is managed as part of a developmental model which ensures that the requirements of

157

reliability, robustness and maintainability are met.
Testing: acceptance testing vs validation of performance.

In DP, acceptance testing is designed to establish whether the system meets the set of
user requirements agreed by developers and users at the start of the project. The
developers are primarily concerned with building a system which meets those
requirements. It is the users or owners of the system who must judge the extent to
which the specified system will meet the wider, business objectives which prompted the
desire to build the system in the first place.

In KBS development, since we are modelling specific human-cognitive activities,
developers must be concerned with the performance of the system beyond the purely
mechanical replication of certain requirements. Not only must the system be tested to
establish whether it successfully models that part of the expert's activity, which it was
designed to duplicate or support, but, if practical, an attempt must also be made to
validate the performance of the expert in the application domain. For example, where
experts with conflicting opinions have been involved in the construction of an
operational KBS, the problem owner must arbitrate and decide, on the basis of the
desired business objectives, how the KBS should operate.

Maintenance: Bug fixing vs Knowledge-Base upkeep.

Maintenance in DP is a euphemism often used to describe the process by which delivered
systems are gradually adapted to remove obvious bugs in the software and to add
essential functionality, which was not envisaged at the time the system specification was
finalised. Maintenance can absorb a large proportion of the life-time costs of an
operational DP system(ALVEY82)

In KBS development the use of prototyping during the feasibility phase and the
animation of intermediate designs may avoid some of the typical problems requiring
maintenance. Of course, software bugs may also be present in a KBS and will have to
be rectified. However, unlike a conventional system, a KBS is modelling human
expertise in a specific domain. Very few fields involving experts remain static; the
medical domain is a good example. The knowledge-bases and inference models inside a
KBS will have to be continually under review to ensure that the system does not become
outmoded.

158

This analysis has identified some key differences between DP and KB systems
development. One of the most significant differences is the importance of prototyping
throughout the KBS development life-cycle.

2.1 Pr ing in KBS Devel n

The objectives of prototyping in KBS development, identified in the analysis above, can
be summarised as follows:

- To establish the technical feasibilty of acquiring and
representing the expert's knowledge in machine form, and to

illustrate the key functional requirements expected of the system.

- To aid the evaluation and validation of the machine-based
rule-bases, using the expert and problem owner as arbiters.

To help specify the user-interface by animating possible designs.

- To evaluate and validate the inferencing mechanisms chosen for the
system.

- To ensure the range of problem types addressed by the expert are
covered by the KBS.

8.3 Current KBS Development Methodologies

Hayes-Roth et al HAYES83) defined five stages in the evolution of an expert system:

"Identification: Determining problem characteristics
Conceptulization: Finding concepts to represent knowledge
Formalization: Designing structures to organise knowledge
Implementation: ~ Formulating rules that embody knowledge

Testing: Validating rules that embody knowledge." (Page 24.)

This does not represent a structured methodology but simply a statement of the general
stages associated with KBS development. In particular, it does not identify detailed
tasks to be performed in KBS construction. This was not the intention of their
description since, at the time the book was written, the development of KBSs was still in

189

its infancy.

HaywardHAY86) discussed an Esprit project, looking at structured methodologies for
KBS development. He suggested that "rapid prototyping"” was "commercially
foolhardy" and proposed an alternative development method for expert systems.

"The alternative taken in our research is to adopt the philosophy of structured
development methodology, as familiar from conventional software development.
This suggests a partitioning of the development process, with the specification of
structured descriptions according to a well-defined process as development
proceeds." (Page 197.)

Hayward went on to propose a four phase life-cycle comprising knowledge acquisition,
system design and implementation, testing and operational use. The acquisition stage is
broken down into three more steps:

- analysis of static domain knowledge;
- analysis of inferential relationships;
- analysis of expert problem-solving strategies.

The work led to a system known as KADS and is implemented in Prolog on Sun
workstations.

Breuker et al(BREU86) a]50 reported on the work of the KADS project and concluded that:

"The results of our work to date lead us to believe that the goal of a theoretically
well founded methodology is achievable and that with suitable support tools it
will be useful and practical." (Page 782.)

Davoudi(PAV87) also reported on the KADS methodology. The KADS project has
looked at the way KBS development could be structured but, although it has linked its
work with conventional software development models, the KADS system does not yet
offer a detailed framework of procedures which can be adopted easily in the commercial

DP environment.
Partridge(PART86b) characterised the prevailing Al methodology as RUDE:

- Run-Understand-Debug-Edit.

160

He said that:

"Traditionally, Al programs have not been developed by implementing a
completely specified problem [My emphasis-JLB]. Al program development has
usually been characterised by the run-understand-debug-edit cycle (the RUDE
cycle), which can become random code hacking, in the worst case, or incremental
analysis and redesign in its better manifestations.” (Page 33.)

The RUDE paradigm is synonymous with iterative prototyping and a simplified version
of it is illustrated in Figure VIILiii.

version: n
. - mm RUN

‘ /(EXPERT)
version: n

UNDERSTAND

v

b KNOWLEDGE
DEBUG ENGINEER

v

version: n

+ EDIT
version: n+1

-—— e e -~

Figure VIILiii - Simplified RUDE Cycle

Partridge clearly stated the need for improvements in the RUDE paradigm:

"...the RUDE-based program development methodology is in dire need of
development to yield a disciplined derivative that may be used to construct
commercial Al software." (Page 34.)

Partridge went on to propose a "complete life-cycle environment" for Al software based
on the RUDE paradigm. The proposed environment is discussed more fully in
Partridge's bookPART863) and is based on a model of "controlled code modification" of
" Al program abstractions".

"Code modification should be systematic and based upon the abstract
representations that underlie a given inadequate implementation. We have to work
with the machine-executable description but we use the underlying specification
and less abstract intermediate representations (a possible design sequence) as the

161

basis for guiding implementation development.” (Page 122.)

Partridge did not discuss his RUDE life-cycle explicitly in relation to commercial KBS
development and his approach should not therefore be criticised for failing to provide a
detailed methodological approach. Partridge, however, identified some of the
fundamental issues associated with producing practical KBSs.

The main weakness in Partridge's analysis concerns his characterisation of conventional
software engineering which he associates with the notion of "completely specified
problems". For example, he said(PART862).

"In software engineering there is the opportunity, which should be exploited to the
full, of capturing, independent of any particular persons, a complete and rigorous
specification of the problem. That is not to say that human wishes can be
ignored, on the contrary that must be taken into account. But this contrasts
sharply with typical Al problems wherein certain humans are the only known
embodiments of adequate implementations.” (Page 120.)

Complete problem specifications in commercial DP are simply a statement, at a particular
time, of the problem, as it is perceived or understood by developers, users and problem
owners. This perception is just as liable to change, re-statement and re-design as many
of the problems being approached by AI and KBS developers. The problem of iteration
in DPSD was referred to earlier and Boehm(BOEH6) jdentified its potential dangers to
successful DP development. Iteration is sometimes unavoidable, or even desirable, in
order to accommodate changes in the perceptions and requirements of those concerned
with a particular application. Commercial DP uses the structured conventional life-cycle
to control any iteration and, above all, to enable the results of iteration to be documented
and maintained. Thus, the lack of a "completely specified problem™ does not necessarily
mean that Al or KB software development cannot benefit from some of the techniques
evolved for managing conventional system development.

The RUDE paradigm is an appropriate method for doing research and development into
KBS systems, and the RUDE cycle encompasses well the iterative refinement which is
necessary for KBS construction. However, an engineering methodology for KBSs
needs to provide a method for constructing an initial system from which the RUDE cycle
can begin, as well as encompassing some form of control of the iterative process of
development. The use of a KBS development methodology, without these last two
features, is likely to lead to problems of documentation, maintenance and testing, all of
which must be easily accomplished in an engineering methodology.

162

Thus, in order to engineer a KBS, the iterative features of the RUDE paradigm need to
be incorporated within a structured and controllable framework.

In 8.1 it was concluded that conventional development models such as SSD, itself based
on the waterfall model, were the best available basis for evolving an engineering model
for KBS development. It follows that we should attempt to combine the RUDE
paradigm with the waterfall model. In short, the RUDE cycle must be augmented, so
that it becomes POLITE:

Produce Objectives - Logical/physical design - Implement - Test - Edit.

The central feature of conventional development methodologies for commercial software
development, which provides the basis for a controllable framework, is the definition of
detailed design tasks and procedures with accompanying checkpoints and documentation
standards for carrying out those tasks. The proposed POLITE model, based on this type
of approach, is described below.

8.4 A POLITE Engineering Methodology for KBSs

A schematic view of the proposed POLITE life-cycle is shown in Figure VIILiv. Each
of the development phases is divided into two. The left side is related to conventional
components and the other to the knowledge-based or cognitive elements in the system.
The following sections will give an overview of the tasks associated with each of the
development phases identified. For maximum clarity, each phase in the POLITE model
is illustrated with a diagram. Two points should be noted, however:

- The tasks identified reflect the experience gained during the
Intellipse project, as well as the methods for KBS development

described in chapter three.

- To avoid unnecessary repetition, the level of detail is restricted.

163

FEASIBILITY AND
REQUIREMENTS DEFINITION

COSTS
BENEFITS

COSTS R
BENEFITS U
PROTOTYPE | D
OBJECTIVES WE

Y /
I
"':Li" f

ANALYSIS
g ACQUISITION
DATA | TASKs | o
E
DESIGN
LOGICAL FILES KNOWLEDGE | o
AND PRO’CESSESJ_ m PROCEDURES U REPRESENTATION
[PHYSICALFILES |7~~~ °°°°7 D[]
AND PROCESSES ENVIRONMENT wp
PHYSICAL]
IMPLEMENTATION
PROGRAMS KNOWLEDGE BASES | EXECUTION
FILES INFERENCING g
TESTING

R
ACCEPTANCE VALIDATION g

E

MAINTENANCE
BUG FIXING UPDATING KNOWLEDGE-BASES f‘l
ADDING FUNCTIONALITY INCREASING SCOPE IEJ

Figure VIILiv - The POLITE Life-Cycle

164

The description of the POLITE model which follows deals with the development of
hybrid systems comprising both conventional and KBS components. In the diagrams
illustrating each phase of the model, those aspects mainly associated with KBS
components are shaded. Conventional tasks are not discussed in detail as it is assumed
that models like SSD are being used in these areas.

8.4.1 Performance Objectives

A key feature of the POLITE model is the production of performance objectives at the
start of any project intended to produce an operational KBS. Performance objectives are
a statement, in the problem owner's terms, of how the KBS should operate in the chosen
domain.

A clearly stated set of performance objectives are essential, in order to facilitate validation
of the KBS. Performance objectives are a complete statement of requirements for a KBS
at a particular time and they provide a framework within which any RUDE development
can be controlled. The performance objectives can be used as the basis for evaluation
and validation at each stage in the POLITE cycle where RUDE development is
appropriate.

8.4.2 Feasibility

Figure VIILv identifies the main issues that need to be considered during a KBS
feasibility study and those involved in the exercise.

(MANAGEMENT) \
PROBLEM (CExperTs)

———

Figure VIILv - Feasibility and Requirements Definition

165

Tasks and procedures are not given for this phase as these have been covered in 8.2.
The diagram highlights the fact that co-operation between several discrete parts of an
organisation is crucial to a successful evaluation. It is important that management
oversees the feasibility exercise, since they will have to take the decision on whether to
proceed to a full operational system.

8.4.3 Analysis

Figure VIIILvi shows the tasks involved in the analysis phase of the POLITE life-cycle.
The main tasks during this phase are domain and task analysis, secondary feasibility,
cognitive task analysis (CTA) and data analysis. (Tasks begun in the CTA phase may
overlap into the logical and physical design stages - see 3.3.2.) There are many parallels
here with conventional systems analysis. The main differences arise when the task being
examined is a cognitive activity carried out by a human expert.

)

KNOWLEDGE
ENGINEERS

USERS (EXPERTS)
 DOMAINAND | | SECONDARY
TASK ANALYSIS [pEASIBILITY

DOMAIN OOGNI’HVB DATA
TAXONOMY; HLERARCHY TASK ANALYSIS

Figure VIILvi - Analysis

Domain and Task Analysis
The objective at this stage is to take a broad look at the application domain, in order to

identify and label the main tasks which the expert performs. This high level picture is
successively refined by analysing each of the high level activities. Finally, a sufficient

166

level of detail is reached to provide an accurate guide to the expert's approach to the
problem domain. The resulting description can be represented using a network
structure, showing the hierarchical relationship between the activities. This exercise is
particularly useful in familiarising the knowledge engineers with the application domain.
This early analysis may not require much involvement of the expert, since a great deal of
the information needed can often be obtained from existing manuals or text-books. In
addition to the high level description of activities obtained, a domain taxonomy can be
produced, which identifies and describes the key terms and concepts in the domain.

Secondary Feasibility

Depending on the level of complexity of the problem being studied, a varying proportion
of the list of tasks identified will be non-heuristic and could be modelled using
conventional procedural algorithms. Since the machine execution of conventional
algorithms is relatively well understood, these tasks should be subjected to conventional
analysis. Only those tasks which appear to rely on judgemental reasoning or cognitive
analysis by the expert should be the subject of cognitive task analysis.

Cognitive task analysis and conventional analysis have been fully described in chapters
three and seven respectively.

4.4 1ogical Design

The logical design phase is shown in Figure VIILvii and is concerned with transforming
the raw knowledge, obtained from the analysis stage, into a particular knowledge
representation schema. At this stage it will also be necessary to devise an inferencing
mechanism which reflects the expert's approach to problems in the application domain.
A logical representation is required at this stage, which does not depend on any specific
implementation environment. This will provide flexibility in the choice of hardware and
software at the physical design stage, as well as providing the basis for maintaining the
KBs in the future. In an operational or commercial environment this logical or
intermediate representation (INTEM REPRN) should be paper-based (or held as
machine-based documentation within a project management environment) - another
important maintenance consideration. These tasks have been described in detail in 3.3.2.

167

KNOWLEDGE
ENGINEERS

' DEL -: , DETERMINE +
DETERMINE ! KNOWLEDGE 'LOGICAL INFERENCE | DETERMINE
LOGICAL PROCESSES || REPRESENTATION ! | MECHANISM « [®] LOGICAL USER
¥ PR SRR o INTERACTION
DETERMINE INTEM
LOGICAL FILES \ REPRN
— S sl
DETERMINE LOGICAL INTERACTION
~ BETWEEN CONVENTIONAL AND
COGNITIVE COMPONENTS, AND
WITH OTHER SYSTEMS

Figure VIILvii - Logical Design
.4.5 Physical Desien and Implementation

The physical design and implementation phases are shown in Figures VIILviii and
VIILix respectively. This is the stage when the intermediate representation is translated
into the chosen implementation environment - the cognitive specification (COGN
SPECN). Sections 3.3.3 and 3.3.4 have discussed the tasks involved and, in particular,
the need to define the user-interface and explanation facilities required. Extensive RUDE
development is likely here and the logical representation of the system, obtained during
the last phase, allows this iterative process to be kept under control.

KNOWLEDGE
ENGINEERS

DETERMINE e IR'A”N_ SEATE : e sz
PHYSICAL FILES - INTEM REPRN INTO s e
v CHOSENKRENVIRON-’ - DETERMINE = |

PRODUCE OGN SER e bt I R B
PROGRAMSPECS I\. @ &5) lcosorzornrm=== G

AND INTERNAL
INTERFACE SPECS

Figure VIILviii - Physical Design

168

KNOWLEDGE
i
ENGINEERS ESTERES

(PROGRAMMERS)

=)

CODE PROGRAM CODE
T SPECIFICATIONS INTERFACE
CODE
HEURISTIC MODEL _ /
e PROGRAM
'VALIDATION |

\

Figure VIILix - Implementation

Three components will require coding: the cognitive specification, conventional program
specifications and any programs needed to provide interfaces with external computer
systems. If shells or Al toolkits are used to implement the system, it is both possible
and desirable for the expert and users to be involved at this stage. Incremental validation
of the executable model and interface can then be performed.

8.4.6 Testing and Maintenance

The testing and maintenance phases in KBS development were discussed in 8.2. Formal
acceptance testing of the KBS, including all external interfaces, will differ from the
testing which is performed on a DP system. The probable absence of a DP-style
statement of requirements means that the performance objectives, defined at the
feasibility and analysis stages, must be used as a basis for measuring the system's
performance.

If the rules and procedures in the application domain of the KBS are subject to regular
change, a maintenance regime is needed which ensures that experts and management
review periodically the performance of the system. The adoption of a structured
methodology to build the system should ensure that additions or changes to the cognitive
model, and in the overall functionality of the system, can be made and documented

relatively easily.

169

8.5 Standards for the POLITE Engineering of KBSs

The proposed POLITE life-cycle paradigm is a synthesis of two existing development
models (waterfall and RUDE) formulated by the author while building KBSs as part of
the Intellipse project. A sound life-cycle model, based on a structured methodology, is a
necessary, but not sufficient, first step towards engineering KBSs. In addition to
identifying the key phases and tasks required to design and implement an operational
KBS, it is also necessary to identify a practical method of executing each of the
development phases.

The evolution of KBS development standards, based on the POLITE model, is required
to assist developers in the practical construction of KBSs. The standards which are
currently used to support the structured development of DP systems are the product of
practical experience of many hundreds of projects. POLITE standards, and the validation
of the POLITE model itself, can only be achieved through the use of the model on many
real development projects. Figure VIII.x summarises the origins of the POLITE model
and its potential evolution in the future.

RUDE WATERFALL

Clerative .~ deterministic

PRACTICAL EXPERIENCE
—_ OF BUILDING KBSs

Figure VIILx - Evolution of POLITE Engineering

170

8.6 Summary

This chapter has discussed the applicability of structured development methods, such as
SSD, to the design and implementation of operational KBSs. It has analysed the
differences between DP and KB system development and used this analysis as a basis
for proposing an alternative paradigm for KBS development, based on an engineering
approach - the POLITE life-cycle.

The POLITE model has the status of a hypothesis, based on some empirical evidence
and limited theoretical foundations. Substantial effort is therefore required, over an
extended period of time, to evaluate and validate the proposed model, and to evolve the
standards vital for its practical application in an industrial or commercial environment. It
should be noted that conventional DPSD models, and their accompanying standards,
have evolved to their present state only after many years of use in the commercial DP
environment. The next chapter describes the first steps taken to evaluate the POLITE
model, in the context of the ITAM investigation identified in chapter seven.

171

Chapter Nine

The ITAM Investigation

Proteus

...But here's no need for musing on our part;
In the wide ocean you must make a start.
There you begin with small things of the seas,
Rejoicing even the tiniest to devour,

Until you compass growing by degrees,

The high achievement of a loftier power.

Johann Wolfgang Goethe 1749-1832 (Faust/Part Two)

Preamble

This chapter describes the initial steps taken in the ITAM investigation identified in
chapter seven. In the context of this investigation, some early results of employing the
POLITE model are given.

Both the ITAM investigation and the evaluation and validation of the POLITE model are
longer-term studies which will need to continue beyond the Alvey Intellipse project.
This chapter cannot therefore give as detailed or rounded a picture as the previous
chapters. However, the material included gives a clear indication of how the results of
the Intellipse project can be taken forward in the future. In addition, it allows some
initial conclusions to be made about the appropriateness of the proposed POLITE
life-cycle for commercial KBS development.

The main objective of this chapter is to examine the results of applying the POLITE
life-cycle model to the feasibility, requirements definition, analysis and design phases of
the ITAM project.
9.1 The General Objectives of the ITAM Investigation
The initial objectives of the ITAM investigation were as follows:
- To confirm the initial findings of the Designer feasibility study in
the domain of DB design.

- To specify and design a KBS tool for supporting the design,
optimisation and maintenance of DBMS applications in the Total

172

environment.
- To begin the evaluation and validation of the POLITE model.

- To begin the evolution of practical development standards for the
POLITE model.

9.2 Approach Adopted for the ITAM Investigation

The first step taken was to conduct two separate KE sessions with BIS9 and BSC1-3.
These were intended to confirm the initial findings of the Designer feasibility study, and
to establish an overall set of functional requirements for a KBS support tool. As a
preliminary exercise, the knowledge engineers studied the extensive documentation
available on DB design in general, and the Total DBMS in particular. Some early
domain hierarchy sheets were prepared on the basis of these sessions.

2.1 Initi rvations an nclusion
The points which emerged from the first two KE sessions are summarised below:

- Acceptable performance of Total-based applications is achievable,
in principle, using information available in the Cincom manuals,
data from appropriate hardware and operating system manuals, and
heuristic knowledge about DB design in general, and Total in
particular.

- In practice, installations do not usually achieve optimal
performance from their Total applications. Those installations,
which can afford it, resort to Cincom or other external consultants
to sort out their performance problems. It is possible for a Toral
expert to identify and recommend a solution to a performance
problem in a few hours, on average. The use of consultants for
this purpose is very expensive.

- The failure of installations to achieve optimal performance unaided
is due to five main factors:

i. The complexity and size of the paper-based manuals.

ii. The reluctance of DBAs and others to grapple with the
mathematical and statistical content of the Cincom tuning manual.

173

iii. The absence of a disciplined or structured method for designing
database applications and tackling optimisation problems.

iv. Insufficient understanding of the general mode of operation of
Cincom's products. This undermines the ability of installations
to relate performance problems to potential solutions.

v. The absence of the required heuristic knowledge in the
installation. This knowledge accumulates over extended periods of
time and an individual end-user of Toral is unlikely to have the
experience of a DB consultant or Cincom expert.

- There is an absence of mainframe or PC-based tools to support the
design and optimisation of Total applications.

- Significant improvements in the performance of Total-based
applications could be achieved through relatively simple techniques.
In addition, it was clear that, if a few simple design principles were
adhered to at the 1st and 2nd cut physical design stage, many
installations could avoid most of their performance problems.

Conclusions

Optimisation problems with Total can be solved by a human expert in a few hours, using
a small set of heuristic rules. The heuristic knowledge is well understood and could be
represented in machine form.

A PC-based tool for optimising Total applications, able to simulate the function of a
Cincom expert or external consultant and usable by a typical Total installation, would be
a cost-effective solution to a problem which occurs in a very wide user-base. The
design, optimisation and maintenance of DBMS applications is a key operational

problem in commercial DP.

It appeared at this stage to be technically feasible to represent the heuristic knowledge of
the expert, the inferencing techiques employed and the external data required. The main
problem would be to acquire this knowledge and structure it ready for transfer to the

machine environment.

174

9.2.2 Detailed Objectives

The general objectives for the ITAM investigation stated earlier were re-defined as
follows:

- To produce a stand-alone, PC-based KBS tool which could assist a
typical Toral installation to achieve significant performance
improvements in a live Total application, without resorting to
external, expert support.

- To assist Total DB designers to achieve an optimal physical design,
from a normalised logical model, prior to the installation of the
database, using a KBS support tool.

- To design ITAM so that it integrated conventional and
knowledge-based components.

- To ensure that the knowledge-based components in ITAM required
the minimum amount of keyboard input on the part of the user.

- To conduct the knowledge engineering for ITAM, with a view to
generalising the knowledge about DB design, so that a basis is laid
for KBS support tools for other proprietary DBMSs.

- To determine task-lists, documentation standards, check-points and
deliverables enabling the ITAM investigation to be conducted as
closely as possible to the approach envisaged in the POLITE
life-cycle.

The prospective users of ITAM were determined as:
- Database administrators (DBAs) in Total installations.
- Database designers in Toral installations.
- Cincom product consultants.
The early decision that the target environment for ITAM should be the PC was based on

the considerations of portability and appropriateness for the DP environment, as well as
a number of other factors, all of which were discussed in detail in 6.7.1.

178

9.3 The Main Functional Requirements for ITAM

The following is a high-level set of functional requirements determined for the ITAM
system based on the initial KE sessions with the BIS and BSC experts:

- Passive, advisory support on translating a logical database design
into an optimised 1st and 2nd cut Total physical design. This
advice should help the user check that the logical design does not
contain any obvious errors or inefficiencies.

- Facilities for displaying graphs of the various statistical formulae
used for Total tuning which are described in the Cincom manuals.
This function should also allow the user to interpolate values from
the graphs and to invoke the formulae, when using other ITAM
functions.

- A facility to download the output from the Cincom statistics
package and other mainframe statistics packages to the PC enabling
the data to be used by various ITAM functions.

- A knowledge base containing data about various proprietary
hardware (e.g. disk capacities, transfer rates, block transfer sizes
etc.) which can be accessed by the appropriate ITAM facilities.

- Facilities for creating user-definable "waming files" which could be
used in conjunction with the Totral statistics to check for specific
problems arising in the database.

- Facilities for determining the optimum values for Tozal system
parameters, based on a given logical data model, and a set of
expected user-queries, prior to the installation of the application.

- Facilities for supporting the tuning of live Total applications using a
combination of conventional and heuristic analysis of the Toral
statistics. This facility should recommend changes to system
parameters with explanations of why particular changes are being
suggested.

176

- Facilities for storing and retrieving data on specific applications or
projects which have been partially designed or tuned using ITAM.
This function should allow the user to analyse historically the
performance of a specific Tozal file and the changes which have
been made to it over a given period of time. It should also be
possible to annotate this historical data with comments, indicating
the reason for changes which have been made.

As the main purpose of this chapter is to give some early results of employing the
POLITE model, no further details of the ITAM system are discussed.

9.4 POLITE in Action

The feasibility and requirements analysis phase established a detailed set of objectives for
the ITAM investigation, together with a statement of high-level functional requirements
for the proposed KBS support tool. An overall domain hierarchy sheet had also been
produced which identified nine high-level tasks, to be supported by ITAM. The next
step was to produce a plan and schedule for the analysis and design phases of the
investigation, based on the POLITE model described in chapter eight.

It was important for the credibility of this initial test of the POLITE model that people,
other than the author, attempted to employ it in a practical context. Any development
methodology must, in principle, be usable by a DP environment, without the constant
support of those who formulated the method in the first place. BIS expect users of SSD
to be able to employ it successfully after a one week training course and some additional
consultancy. Of course, chapters four, five, six and seven have shown that SSD does
need, at least, some tool-support to be successful. However, the principle that an
engineering methodology should be usable by different people, in a variety of
installations, with the minimum of human-expert support, is a valid one.

Thus, BIS took the main responsibility in drawing up a detailed schedule of tasks and
checkpoints, which were required to complete the analysis and design phases, based on
the POLITE model. A part of this schedule is shown in Figure IX.i for the analysis
phase (the numerical details have been left out of the diagram). Similar schedules were
prepared for the logical and physical design phases.

p frdrd

VLI Jo 3seyq sisk[euy ay) Joj Inpayos -

I'X] dan31y

Sunosul MarAdYy

sisA[eue Jo yO

SYSE) gy-UOU JOJ SISA[RUE [BUONUSAUOD)

g 10j s9nu [ea130] autjeg

(‘seaJ ATepu0d9s) 10U JO gy SUTULIR(

SISATeUR SB) JO Ma1Aal Jadxyg

sISATeue jSe) JepIjosuo))

6 01 T SYSe} 10J SISA[eue jse],

SISA[PUE UTBWIOP [eNTUI 93138 PUe SSNoSI(]

P uondrrdsa(q
ske@ :syrun) SPOM iS|BAJIJUT duul], 1oL
€ jJo 1 :33eq d1eq ¢sSId ispenuy siskeuy :aseyq
WVl :39afog-qng AIATV :pafoag ATNAAHOS

178

The analysis phase involved four further KE sessions with BIS9 and one session
involving BSC1-3. The same basic procedure, followed during the Advisor project and
Designer feasibility study, was used. The interviews were recorded and transcribed as
before. Extensive domain and task analysis was done and the resulting documentation
was iteratively refined in close consultation with the experts. Since BIS9 was heavily
committed to BIS clients, careful planning and preparation was essential to ensure that
KE sessions were productive, and that BIS9 was given the maximum notice of dates for
the sessions. One of the main objectives of using a structured approach is to allow this
type of planning and scheduling to be done. Figures IX.ii and IX.iii show how the
planning and scheduling of the knowledge engineering were accomplished.

intermediate

- o om om w W oW -

acquisition : :

---------------] \

: Tt Analyse)

\ \ \]

L]) \ L] \

: Interview ' * :
]

\ 'y :

: # |—": Document :

: o :

; Transcribe Yo * :

\ Vo \

N \ : Review :

] L]

]]

Py L e e S]

Figure IX.ii - Planning of Knowledge Engineering Sessions

TASK KE(s) CLERICAL | EXPERT(s)
preparation 1/2 - -
interview 1/2 - 1/2
transcription - 1 -
analysis 2-3 - -
documentation 1-2 = -
review 172 - 172

(units of days)

Figure IX.iii - Scheduling of Knowledge Engineering Sessions

179

Figure IX.iii illustrates the need for metrics to enable knowledge acquisition effort to be
estimated. The metrics employed are based on empirical evidence gained during the
Intellipse project.

9.5 Evolution of POLITE Standards

The KE sessions with BIS9 involved the extensive use of case studies to determine the
accuracy of the diagrammatic representations produced. The sessions necessarily
overlapped with the logical design phase during which rules, explanations and potential
user-interactions were identified and documented. Figure IX.iv shows an example of
the documentation used to record the decomposition of a high-level task, identified
during the analysis phase.

Activity: Set Initial Master File Parameters

“.“.“.“.l‘»‘."\“‘t\\\\.\“\“\\“\‘\

- - -

L]
y ‘volatility' .| COMPUTE INITIAL) S
: PACKING DENSITY (PD) *>MF SETTINGS
\ 1.1 \
\ PD \
N v v :
] L]
v file size CHOOSEINITIAL BE |
: ! BLOCKING FACTOR (BF) 3
: 1.2 :
\ ‘ \
\ L]
DATATYPE | » COMPUTEINITIAL *|q PD |
SUMMARY |1 filesize 3| QUT-OF-BLOCK :
\ OBSR
: SYNONYM RATE (OSBR) et
z
' v :
L]
¥ 5
_file size DETERMINE HOME \
: »| SYNONYM RATE (HSR) ;
\ 1.4 \
\ L]
\ * \
: !
_filesize__ | DETERMINE SYNONYM \
X ®! CHAIN LENGTHS (CL) \
\ 125 1
\ A
\ ,

Figure IX.iv - Example of Documented Task Decomposition

The document illustrated in Figure IX.iv makes use of notation recommended in the BIS
MODUS standards for Structured Systems Analysis. Martinez and Sobol™MARTE8) haye

180

reported on the use of conventional systems analysis techniques for expert systems
development. Martinez et al commented that the use of these techniques "...provide a
way to document processes so that the experts can review them to see if they have
accurately described what they do." This is in line with the experience of using these
techniques throughout the Intellipse project, and has been commented on elsewhere in
the thesis.

Addis(ADDIS85) discussed the use of conventional relational data analysis techniques
(RDA) for Al systems. His discussion is mainly concerned with a comparison of
conventional database theory and AIl. Although techniques from RDA theory are
identified, which could be used for knowledge representation in KBSs, Addis does not
relate his work to the requirements of an operational KBS development methodology.

Figures IX.v and IX.vi give examples of the documentation which has evolved for
recording activity descriptions and rules. This documentation, although based on
existing MODUS standards, has had to be amended to meet the particular needs of KBS
development. This adaptation of conventional standards to create POLITE KBS
development standards is the process which was envisaged in chapter eight.

ACTIVITY SHEET NO 123 NAME set initial mf parameters

For Each:

- o W oM M M O M O O O OE M M W MO M OO W M OE M OE MO M OE W OW oMM O Om oW OWOEMOWM oM OWMOWOWOW oW ow

Explanation:

e = m e m m om oW oW M ORM OWM OM OWM M OMOWM M OM OM OM OWM WM OM oM M OM oM OM oM OW WM OWM oW OR R R OWE M OMOWEOWMOWE W OW™ O™ e oW ow

Procedure:

Figure IX.v - Example of Documentation for an Activity Description

181

RULE DESCRIPTION RULE NO 6

System: ITAM

Activity Name: Compute initial MF parameters Activity Ref: 1.2.3

Data required:

Rule context:

Rule:

Source:

A T T T T O R R S S S o S A A e e e e T T T S S S Y

Explanation:

Figure IX.vi - Example of Documentation for a Rule Description

It should be noted that much of the adapted MODUS documentation illustrated has been
developed by BIS independently of the author. This is an important observation, as it
adds credibility to the proposition advanced in chapter eight, that the use of the POLITE
model on a live KBS development project was necessary to evolve the required practical
development standards.

9.6 Initial Lessons of the ITAM Investigation

The documentation evolved so far is limited and the ITAM project is a relatively small
exercise, compared to a typical DPSD project. Caution is therefore necessary in drawing
any firm conclusions. However, the following is a list of initial observations made on

the basis of the ITAM work:

- The findings of the Designer feasibility study in the area of DB
design were confirmed. The technical feasibility of designing KBS

182

tools to support the building, optimisation and maintenance of a
DBMS application was demonstrated.

- Complex design tasks involve both heuristic and conventional
elements necessitating the use of hybrid support tools in this type of
domain.

- Structuring the knowledge engineering again proved successful;
and the diagrammatic representation of the results of the expert task
analysis was found to be valuable, not only for recording the
results, but also for confirming the accuracy of the analysis with
the expert. The diagrams and accompanying documentation were
also valuable as a basis for iteratively refining the analysis with the
expert. It should be noted, however, that the experts used
were familiar with the techniques of conventional systems
analysis, which also makes extensive use of diagrammatic
techniques. Thus, the usefulness of this type of documentation
with experts, who are unfamiliar with such approaches, needs to be
investigated. This cautionary note is applicable, only where it is
intended to make use of the diagrammatic material as the basic
means of communication with the expert.

- The POLITE life-cycle model provided a basis for planning and
scheduling the feasibility, analysis and design phases of the ITAM
investigation. The model enabled BIS to draw up detailed task lists
and check-points for managing the work.

- Practical standards and documentation have already begun to
emerge from the ITAM work, much of which kas been adapted
from existing MODUS standards. The fact that it has been adapted
from MODUS, however, also confirms that conventional
techniques do need to be adapted to suit the particular requirements
of KBS development.

9.7 Summary
This chapter has described some early results of work arising out of the main Intellipse

project. This work has been addressing both the KBS for SE and the SE for KBS

183

themes. The feasibility of building KBS support tools in the area of DB design has been
confirmed, and the initial results of applying the POLITE life-cycle model to this
investigation suggests that the model will have practical applicability in the future.
Development standards have also begun to emerge, adding extra weight to the validity of
the POLITE model. BIS are satisfied with the results to the extent that they will continue
to pursue the development of commercial standards for operational KBS development
based on the POLITE life-cycle.

184

Chapter Ten

Discussion and Conclusions

...Rule XI

If, after gaining intuitive knowledge of several simple propositions, we are to
draw some further inference from them, it is useful for us to run through them in
a continuous and uninterrupted movement of thought, to reflect on their
interrelations and to form, so far as we can, distinct conceptions of several at once.
For this adds much to the certainty of our knowledge, and it greatly increases the
scope of our mind.

Descartes 1596-1650

Preamble

The final chapter will discuss some general issues relating to both the KBS for SE and
SE for KBS themes. It will also indicate to what extent the author's work has
contributed to existing knowledge in these areas. Potential directions for future work are
also identified.

10.1 KBS for SE

In chapter three, an analogy was drawn between DPSD and the traditional engineering
disciplines, like civil engineering. Figure X.i summarises some of the common features
of these two domains. The most significant difference between the disciplines, which is
not evident from the diagram, is their difference in maturity. Since the engineering
disciplines have been evolving over a greater historical period than DPSD, they have
many more established traditions. Other fields, like medicine and the law, show a
similar domain maturity. For example, we would not expect a trainee engineer to be
given the responsibility for designing a building, or an articled clerk to handle a major
criminal prosecution. In medicine, a solid hierarchical training structure attempts to
ensure that young doctors are not expected to make judgements on patients, which ought
to be the province of their more experienced colleagues. However, in commercial DP,
even the most inexperienced programmers and analyst/designers find themselves in a
position of significant responsibility in relation to major application projects. No other
industry seems to expect such inexperienced practitioners to show such a degree of
competence so early in their careers.

185

DESIGNING DESIGNING
A BUILDING A DP SYSTEM
N E OF
” ACTIVITIES AND ISSUES NATUEE.OF
e THE ANALYSIS
fea&;l:c:llt)’ cavironment user interviews
requirements pl;:;lli ﬁgﬂ;&s prototypes SOFT
definition 3 (AESTHETICS)
THE FORM:IS DECIDED l
analysis helg!'u,, ﬂqor area } user-requirements
heating, lighting X queries, data HARDER
THE CONTENT IS DECIDED (REQUIREMENTS)
stress analysis, structural data analysis, processes,
analysis : files, transactions
Gesign steel specs, concrete mix, disk access times, core HARD
wiring standards : size, on-line storage
THE PLAN TAKES SHAPE (CODSTRAINIS)
building contractors 5
implement- | brick layers, electricians } EHOBraTE
ation who work ac%:‘ording to plans
drawn up by'someone else
THE COMMITMENT IS MADE
building inspectors analysts, designers,
testing architects, designers management
office workers, tenants : users
THE AGONY AND THE ECSTASY
li(g)}:;::’ g:: ;?;k system too slow,
maintenance b ! queries are not answered
t00 noisy X
THE EXPENSIVE PHASE BEGINS

Figure X.i - A Comparison Between Civil Engineering and DPSD

This situation arises because commercial DP does not yet have the tools, methods or the
number of experienced analysts and designers to cope with the demands being placed on
the DP functions of many companies and organisations. Hence the two motive forces in
the industry: the drive for more productivity through the use of powerful CASE tools;
and the drive throughout the history of the DP industry to automate as much of the
process of systems development as possible. Research into the application of Al to
software engineering and the development of formal algebraic methods for specifying

186

software address both of these concerns.

The common factor linking the AI and formal methods research is the idea that the
systems development process can be represented in some abstract formalism which
would be applicable to any application domain - a representation which would only
contain knowledge about design as a generic activity, rather than as a process always
applied to specific areas of human activity. Yet the traditional engineering disciplines do
not use such a formalism, except in so far as mathematics is used to solve specific
problems like stress analysis, aerodynamics and so on. But even in these areas the
mathematical notation is instantiated very early in the design cycle with data relating to
the particular domain of application.

The research reported in this thesis has been based on extensive interviews with different
DP designers. In every case, application domain knowledge has been the decisive
influence in most of the design activities identified and analysed. It is clear therefore that
tools to support DP systems development need to encompass as fully as possible
application-specific design knowledge. It was also observed that the designers did not
manipulate their knowledge using a formal mathematical algebra. The notation used was
a form of structured English, whose vocabulary was loaded with technical terms specific
to computer systems design. Extensive use was also made of diagrammatic notations.
This leads to another major problem of DP: communication between users of the
technology, and those who design and implement application systems.

End-users employ natural language loaded with their own domain-vocabulary. The
problem for the designer is to re-formulate this natural specification into one which can
be used as a basis for implementing a DP system. Because of the unavoidable time-lag
(while coding takes place), between completing a design and specification and executing
the code based on that specification, two problems arise. Firstly, users cannot see early
enough the implications of their requests for functionality - expressed in their language ,
but communicated to the programmer in another notation. Secondly, by the time the
programs are executed, the users' requirements may have changed, because of changes
in their operational domain.

Al research is addressing the problem of communication between users and developers
by looking at techniques for parsing and analysing natural language, so that that this can
be used as the main basis of communication. Al research seeks specification languages
as close as possible to the users' natural means of communication. If these natural

187

specification languages could also be used as implementation languages, by generating
executable code automatically from this natural specification, then systems could be
implemented very quickly. This objective is the link with formal methods research
which seeks algebraic specification languages which could be used to animate system
designs (to allow users to see prototypes early), and as a basis for automatic code
generation.

Formal specification languages would have another potential advantage: if code is
generated automatically on the basis of algebraic specifications, then the executable code
can be mathematically proven to be a "correct” implementation of the specification. This
does not solve the problem of ensuring that the original specification was appropriate
from the users' point of view, and hence the importance of Al-based natural specification
languages.

The introduction of higher level languages into DP like Fourth Generation tools,
application generators and advanced relational DBMSs, is an attempt to bring the
specification language closer to the users' language. However, these tools are still based
on a semi-formal syntax. There remains the need for systems to be designed to achieve
operational requirements of speed and size, and for programmers to code the systems.
4GLs can enable the implications of system requirements to be looked at earlier in the
development cycle - in terms of screen layouts, query layouts and so on - but they do not
help to measure accurately the timing and sizing of a fully operational and loaded
commercial database. These tools therefore do not remove the necessity for systems to
be designed, nor do they enable the inexperienced designer to build systems to
commercial and industrial standards.

Figure X.ii gives a speculative view of the way commercial DP may develop in the
future, if present trends continue. The emphasis on the automation of, and on Al
support for, DPSD has historically been at the implementation-end of the life-cycle
spectrum, as distinct from the analysis-end. As these techniques have become more
sophisticated, the emphasis has shifted towards the analysis phase of the life-cycle. This
reflects the ultimate objective of Al in software engineering, identified in chapter three,
that of generating executable computer systems automatically from user-specified natural
language requirements statements. This is clearly a long-term goal and depends on very
significant advances in both natural language processing and formal specification
languages. Figure X.iii summarises the trends in the development of CASE tools and
methodologies towards this long-term objective.

188

ASJdd JO 2aniny 3y} JO MIIA dAnemIds vy - 'Y 2andiyg

SADVNONVI HDOVNAODNYV'I ADVNONVI
ONINIWVADO0udd NOILVDIAIDHAdS NOILLVDIAIOAdS
d3LNdWNOD SHANDISHA SAASN
Aol HOVIONV 1 UONEDIUNLILIOD >
J[notyyip AIoA .
9po9 Jo ¢ SUONEDIUNWILIOD >
uonerousd Suraoxdur

[enuew

<

SUOTIEDIUNUILIOD Ul
Jeaiq Arerodwo)

opo% Jo
uonerouss
onjewio)ne

suonesyoads
JO uonewue

uoTE[SUER)

RIEIDEL
“NIVINOd

pue [P

 DHIDHdS

>

pexnnbar 108uo]
Ou SIoUIISop

pannbar uonesununuos ou

0s61

0961

0L6l

0861

0661

(e

189

structured programming
——>

paper-based structured
design methodologies
4>

TIME mechanical support for methodologies
: via IPSEs and CASE tools

< KBS augmented IPSEs

‘ Al environmen
vV < o

>

>
| feasibility | analysis | design | implementation | testing |

LIFE-CYCLE SPECTRUM

Figure X.iii - Trends in Development of DP Tools and Methodologies

The Intellipse research has addressed the short-term goal of KBS tools for DPSD, based
on a model of development which is still largely dependent on human practitioners. The
final conclusions in relation to this KBS for SE theme are summed up in 10.3.

10.2 SE for KBS

Much of the reported KBS work has been of a research or prototype nature. The
systems built have been small, stand-alone KBSs. There is a clear trend emerging,
however, towards the use of KBSs in complex application domains, to support a
broader range of tasks currently carried out by human experts. There is also an
increasing awareness that operational KBSs need to integrate fully with existing DP and
other computer systems. For example, an important area for development in the future
will be the integration of KBSs with management information systems and decision
support systems. This will enable company and organisational knowhow to be
combined with the large databases of sales, marketing, technical and other information,
which now exist in commerce and industry. This process will allow senior management
to make far more effective use of their strategic information resources.

A related development is the increasing awareness, in the traditional manufacturing and
processing industries, that KBSs can be a powerful tool for use in real-time process
control. Significant developments are already taking place to embed KBSs inside

existing computer systems used for monitoring continuous manufacturing processes.

The trends described require that operational KBSs be built to the same standards as

190

those expected in other operational computer software. This, in turn, means that KBS
development projects need to be managed, using similar techniques to those used in the
construction of conventional computer systems. An engineering basis for KBS
development will also enhance the credibility of the technology. This is important, since
there is still significant doubt in industry and commerce about the applicability and
reliabilty of KBS techniques.

As operational demands for the use of KBSs increase, there will be a move away from
the situation in which much of the work in the field has been technology-driven. The
technology-driven nature of much KBS work is another manifestation of the academic
origins of the technology. Many KBSs are the result of a process which can be
characterised as a specific technological solution looking around for a problem to solve.
It will be critical to the future success of KBS technology that its operational use is
problem-driven, not technology-led. The drive for operational systems may also help
dispel the widely held view that KBSs are synonymous with small PC systems using
"if-then" production rules for their knowledge representation. There can be a role for
KBSs, even where the human expertise involved cannot be represented using a simple
production rule schema.

10.3 Contributions Made to Knowledge in the Field

The Intellipse project work reported in the thesis has contributed to knowledge in the
following areas:

KBS Support for DPSD The concept of, and architecture for, a knowledge-based
environment to support a widely used structured design methodology has been
proposed. Although the Intellipse system is related specifically to BIS's SSD
methodology, the fact that SSD is similar to other commercially used methods suggests
that the system will have general applicability. The Intellipse concept envisages
supporting the design process, through the use of an integrated set of KBS and
non-KBS tools each addressing specific tasks in the design cycle.

An Interim Report(ALVEY88) of the Alvey Information System Factory (ISF) project,

discussed in 3.4.1, was published in January 1988. The report proposes an
" Architecture for Information System Factories".

191

Section 6.1 of the report states that:

"The proposed architecture for ISDFs..[Information Systems Development
Support Facilities-JLB]..is based upon the concept of an activity in the ISF and
the provision of explicit support for that activity in an ISDF activity...Each
activity can itself be broken down into sub-activities, which are themselves
activities within a method that implements the overall activity. Activities may be
structured, in which case they are explicitly treated as a network of activities at a
lower level; or terminal, in which case they constitute terminal nodes in the
decomposition of activities. A terminal activity may be complex, but its
structure is not controlled by the ISDF; rather it is seen as an individual tool."
(Page 15.)

This type of tool-support, proposed for individual activities in the ISF, bears great
similarity to the role of APMs in the Intellipse system described in 5.3.2. Thus, the ISF
report offers a degree of independent validation of the Intellipse architecture.

Chapters six and seven describe work done to begin the process of evaluating the
appropriateness of the Intellipse concept. In particular, a study has been made of the
SSD methodology, to identify individual design activities and assess the degree to which
they could be supported by knowledge-based techniques. This investigation has
identified potential areas for rule-based KBS support. In addition, it identified the SSD
areas where this type of support is not feasible, and indicated how other types of KBS
support could be developed. These results may help work directed towards the
long-term goal of the Alvey Directorate (discussed in 1.2) to develop a third generation
IPSE incorporating knowledge-based components.

The Designer feasibility study described in chapter seven also proposed that existing
CASE tools, like the BIS/IPSE, could be improved by augmenting them with
knowledge-bases similar to those developed for the Advisor system. In this way,
formerly mechanical support tools could begin to offer more expert support. In
particular, a proposal to incorporate the Advisor knowledge bases into the BIS/IPSE has
been discussed. IPSE/Advisor would represent an intermediate system between existing
mechanical support environments and the large-scale knowledge-based support
environment, represented by the Intellipse system. Since the Intellipse system can only
be built in the long-term, due to the very large number of tasks involved in the complete
design life-cycle, an intermediate system is a necessary objective.

Chapter seven also identified the DB design domain as a key problem in commercial DP.
The chapter demonstrated, however, that DB design provides a sound technical basis for

192

the development of KBS support tools. Chapter nine went on to discuss the analysis
and design phases for the ITAM system, which is intended to provide KBS support for
the design, optimisation and maintenance of a particular proprietary DBMS.

There has been some reported work on research into KBS support for software
engineering in 1988. For example, Symonds(SYM88) discussed the CASE/MVS project,
which is looking at the use of knowledge-based techniques to build a CASE environment
to support the IBM MVS/XA operating system environment. He observed that:

"Synthesizing the knowledge-engineering and software engineering disciplines can
lead to a powerful CASE environment...A practical approach is to implement the
knowledge-engineering technology incrementally rather than try to implement it
all atonce." (Page 56.)

Paolo Puncello(PAO8®) et al reported on the ASPIS Esprit project. This project is also
researching into knowledge-based CASE environments. Their work has been focused
on the analysis end of the life-cycle. The ASPIS research has addressed the problem of
domain knowledge.

"The most useful heuristics...are those that relate to the application domain. For
example, it is surely more useful to have alternative functional decompositions of
the system at hand instead of just general domain-independent heuristics. Even
more useful are alternative decompositions based on parameters such as data and
results. The domain knowledge, then, is an enhancement of the methodical
knowledge." (Page 60.)

Both of the observations quoted above corroborate key conclusions made on the basis of
the Intellipse project work.

Development of Operational KBSs The Intellipse project necessitated a thorough study
of both DPSD methods and the methods used to build KBSs. Chapter eight discussed
the applicability of conventional DPSD techniques to the design and implementation of
operational KBSs. The key differences between the methods used for DP and
knowledge-based systems development have been identified. Using this analysis as a
basis, an adapted conventional life-cycle model for KBS development has been proposed
- the POLITE model. There is very little reported work on engineering methodologies
for KBS development and, although the POLITE model is based on limited empirical
evidence and theoretical foundations, it does provide a basis for taking some initial steps
towards a life-cycle for KBS development which can produce KBSs meeting industrial
and commercial operating standards.

193

Chapter nine described the initial results of evaluating the POLITE model, in the context
of a real KBS development project, and it illustrated some of the development standards
which have begun to emerge. However, it should be borne in mind that the long-term
value of the POLITE model can only be assessed, after it has been used on a large
number of development projects.

10.4 Future Work

There are five areas of future work suggested by the results of the Inzellipse project so
far:

i. Continued development of the Advisor knowledge-bases and, in
particular, validation and enrichment of the knowledge using the
expertise of BIS experts.

ii. Incorporation of the existing Advisor knowledge-bases into the
BIS/IPSE and the development of further Advisor
knowledge-bases containing process sheet and transaction profile
templates, as envisaged in 7.3.2.

iii. Further research into the potential for knowledge-based support
for SSD tasks, particularly in the areas of structuring processes,
logical design, detailed design and testing.

iv. Continued development of the ITAM-KBS tools for supporting
DBMS applications, and generalisation of this work to support
other proprietary DBMS products.

v. Continued evaluation and validation of the POLITE life-cycle for
KBS development, with a view to the evolution, in time, of a
comprehensive set of development standards for operational
KBSs.

The first three areas of work are necessary, of course, to provide a basis for
implementing the full Intellipse system in the future.

194

10.5 Final Summary

S(BISS4)

The overall objective of the Intellipse project were quoted in 1.3. They were to:

"~ demonstrate the potential for the use of IKBSs in systems development,
- provide a basis for tools for systems design,

- promote industry and academic awareness of the capabilities of IKBS in systems
development,

- produce a framework of techniques and tools which could be incorporated in the
development of an IPSE." (Page 3.)

The work on the Intellipse concept, Advisor and the Designer feasibility study have
addressed the first, second and fourth objectives above. Although only limited progress
has been made to implement the proposals for "IKBSs in systems development”, the
potential of using KBSs has been clearly demonstrated, and a sound basis has been laid
for the implementation of KBS support tools in the near future. A framework also now
exists for incorporating KBS techniques into the BIS/IPSE.

The four published papers(BADER872), (BADER87c), (BADER87d), (BADERSS) renorting the
work of the Intellipse project have helped to promote "awareness of the capabilities of
IKBS in systems development" - the third of the objectives above.

The specific aims of the thesis were expressed in 1.9. They were to show that:

i. CASE tools for DP system design will need to offer more than mechanical support to
be effective. CASE tools augmented with knowhow about DP design can be built to
provide more active support to inexperienced designers;

ii. KBS techniques can be applied successfully in the domain of DP systems design to
support the activity of expert and non-expert practitioners, but there are key areas within
DP systems design which are not amenable to KBS approaches, based on the use of

if-then production rules;

iii. KBSs and conventional software should be fully integrated in future computer-based
systems designed to solve problems in highly complex domains;

iv. Conventional software engineering techniques should be used to enrich KBS

195

technology and help the latter become an established technique within the DP
community;

v. KBSs can and should be built using an amended conventional SDLC and by adopting
an appropriate structured development methodology. KBSs built in this way are much
more likely to have the robustness and reliability demanded in an industrial or
commercial environment.

The discussion in this chapter indicates that these aims have largely been fulfilled. Of the
two themes which have dominated the thesis, the KBS for SE work has provided a basis
for development of KBS tools in the future. However, it will require significant
investment by BIS in order to turn the results of the /nzellipse project into deliverable
CASE tools for the commercial DP environment.

The SE for KBS theme did not take up as much time in the project, and it was never the
main priority of the work. However, since the relevance of KBS technology to modern
commercial and industrial problems is being increasingly appreciated, the proposed
POLITE life-cycle model, and accompanying development standards, may prove to have
the greater significance in the short to medium-term.

The synthesis of software engineering and artificial intelligence has been heralded as the
solution to the age-old problems of the DP industry. Ironically, the application of
traditional software engineering methods to KBS development may turn out to solve
many of Al's problems, but it may be some time before Al solves as many of the
problems of its less glamorous partner.

196

REFERENCES

The number(s) below each reference indicate the page(s) where the reference is cited in
the main body of the thesis.

ADELSS

ADDISS85

AGRES86

ALPES87

ALVEYS82

ALVEYS83

ALVEYS8S5

ALVEY87a

ALVEY87b

ALVEYS8S8

AVIGS87

Adelson, B., Soloway, E., The Role of Domain Experience in
Software Design, IEEE Transactions on Software Engineering, Vol.
SE-11, No. 11, November 1985, pp 1351-1360.

146

Addis, T. R., Designing Knowledge-Based Systems, Kogan Page
Ltd., London, 1985.
181

Agresti, W., W., New Paradigms For Software Development, IEEE
Computer Society Press, Washington, USA, 1986.
65, 157

Alperin, L., B., Kedzierski, B., L., AI-Based Software Maintenance,
Proceedings of the 3rd Conference on Artificial Intelligence
Applications, Kissimmee, FL, USA, February 1987, pp 321-326,
IEEE.

64

The Report of the Alvey Committee, Her Majesty's Stationery Office
London, 1982.
15, 17, 18, 20, 82, 158

Software Engineering Strategy, The Alvey Directorate London, 1983.
18

Alvey Programme, Annual Report 1985 - Poster Supplement, The
Alvey Directorate London, 1985.
20

ISF Alvey Study-Project Brochure, The Alvey Directorate, London,
UK, 1987.
o7

Alvey Programme Annual Report 1987, Poster Supplement, The
Alvey Directorate, London, October 1987.
67

Alvey Information Systems Factory Study, Internal Working Note,
ISF/15.1, Architecture for Information Systems Factories, (Author
Gavin Oddy), The Alvey Directorate, London, January 1988.

191

Proceedings of the 7th International Workshop on Expert Systems
and Their Applications, Volumes I and II, Avignon, France, May
1987.

.

197

BADERS87a

BADERS87b

BADERS87¢

BADERS87d

BADERSS

BALZ78

BALZS83

BALZS85

BARBS86

BARRS2

Badc_r, J., Hannaford, D., Cochran, A., Edwards, J. S:
Intellipse: Towards Knowledge-Based Tools for the Design of Data
Processing Systems, Information and Software Technology, Vol. 29,
g;. 89, October 1987, pp 431-439.

, 195

Bader, J., IKBS in Support of Software Engineering and Vice
Versa, Alvey Conference Report, The Alvey Directorate,
London, UK, 1987, pp 10-12.

58

Bader, J., Hannaford, D., Cochran, A., Edwards, J. S., Intellipse: A

Knowledge Based Tool For an Integrated Project Support

Environment, Proceedings of the International Conference On

xléglgtomating Systems Development, Leicester Polytechnic, UK, April
75

195

Bader, J., Cochran, A., Edwards, J., Hannaford, D., Intellipse: A
Knowledge-Based Tool to Support the Design of Commercial Data
Processing Systems, Proceedings of the 3rd International Expert
Systems Conference, London, June 1987, Publ. Learned Information
(Europe) Ltd., UK, pp 363 - 375.

195

Bader, J., Edwards, J. S., Harris Jones, C., Hannaford,
D., Practical Engineering of Knowledge Based Systems,
Information and Software Technology, to appear in Vol. 30, June
1988.
195

Balzer, R. M., Goldman, N., Wile, D., Informality in Program
Specifications, IEEE Transactions in Software Engineering, SE-4(2),
pp 94-103, 1978.

56

Balzer, R., Cheatham, T. E., Green, C., Software
Technology in the 1990°s: Using a New Paradigm, Computer,
November 1983, pp 39-45.

56, 68

Balzer, R., A 15 Year Perspective on Automatic Programming,
IEEE Transactions in Software Engineering, SE-11(11), November
1985, pp 1257-1268.

69

Barbacci, M., The Software Factory Project at the Software
Engineering Institute, AFIPS Conference Proceedings, Vol. 55,
1986, National Computer Conference, Las Vegas, NV, USA, June
1986, pp 94-95.

58

Eds. Barr, A. and Feigenbaum, E. A., The Handbook of

Artificial Intelligence Volume II, Pitman Books Ltd., London, 1982.
34, 38, 54

198

BARS79

BARS87

BARTS81

BAS84

BASI8S

BENNS8

BERRS86a

BERRS86b

BETTS88

BIS84

BIS86

Barstow, D., Knowledge-Based Program Construction, Elsevier,
Amsterdam, 1979.
54

Barstow, D., Artificial Intelligence and Software Engineering,
Proceedings of the 9th International Conference on Software
Engineering, Montery, USA, 1987, pp 200-211.

146

Bartels, U., Olthoff, W., Raulefs, P., APE: An Expert
System for Automatic Programming from Abstract Specifications of
Data Types and Algorithms, Proceedings of the 7th International Joint

Conference on Artificial Intelligence, Vancouver, Canada, August
1981, pp 1037-1043.
56

Basden, A., On the Application of Expert Systems, in
Developments in Expert Systems, Ed. Coombs, M. J., Academic
Press, London, 1984, pp 59-75.

41

Basili, V., R., Ramsey, L., Arrowsmith-P: A Prototype Expert
System for Software Engineering Management, Proceedings of an
Expert Systems in Government Symposium, McLean, VA, USA,
October 1985, pp 252-264, IEEE.

63

Benner, K., T., The Knowledge-Based Software Assistant,
Proceedings of an International Workshop on Knowledge-Based
Systems in Software Engineering, University of Manchester Institute
of Science and Technology (UMIST), Manchester, UK, March 1988,
pp C1-1 to C1-11. Publ. by The Information Systems Research
Group, Department of Computation, UMIST. Proceedings will also
appear in Knowledge Based Systems (Butterworths Publications
Ltd., Guildford, UK) in 1988.

57

Berry, D. C., Broadbent, D. E., Expert Systems and the
Man-Machine Interface-Part One, Expert Systems, Vol. 3, No. 4,
October 1986, pp 228-231.

49

Berry, D. C., Broadbent, D. E., Expert Systems and the
Man-Machine Interface-Part Two: The User Interface, Expert
Systems, Vol. 4, No. 1, February 1987, pp 18-27.

49

Betts, B., Vax Tuning Software Grows from an Expert System
Shell, DEC User, January 1988, p 69.
144

Proposal to the Alvey Directorate for Development of IKBS Software
Tools, BIS Applied Systems Ltd., Birmingham, November 1984.
19,22.26, 27, 195

The BIS/IPSE, BIS Applied Systems Ltd London, 1986.
21

199

BLUMS86

BOB86

BOEH76

BOEHS81

BOUZS85

BRAT7S5

BREU86

BUCH®69

BUCHS86

CARS83

CERI86

Blum, B. I., Sigillito, V. G., An Expert System for
Designing Information Systems, Johns Hopkins APL Technical
Digest, Vol. 7, No. 1, 1986, pp 23-30.

59

Bobrow, D. G., Mittal, S., Stefik, M. J., Expert Systems:
Perils and Promise, Communications of the ACM, Vol. 29, No. 9,
September 1986, pp 880-894.

41

Boehm, B., W., Software Engineering, IEEE Transactions on
Computers, Vol. C-25, No. 12, December 1976, pp 1226-1241.
66, 157, 162

Boehm, B., W., Software Engineering Economics, Prentice-Hall,
NJ, USA, 1981.
62

Bouzeghoub, M., Gardarin, G., Database Design Tools: An Expert
System Approach, Proceedings of the 11th International Conference
on Very Large Databases, Stockholm, Sweden, 1985, pp 82-95.

136

Bratman, H., Court, T., The Software Factory, Computer, May
1975, pp 28-37.
57

Breuker, J. A., Wielinga, B. J., Hayward, S. A., Structuring of
Knowledge Based Systems Development, Esprit '85: Status Report
of Continuing Work, Elsevier Science Publishers B.V.
(North-Holland), 1986.

160

Buchanan, B. G., Sutherland, G. L., Feigenbaum, E. A., Heuristic
DENDRAL': A Program for Generating Explanatory Hypotheses in
Organic Chemistry, in Machine Intelligence 4, Eds. Meltzer, B.,
Michie, D., Edinburgh University Press, pp 209-254.

38

Buchanan, B. G., Expert Systems: Working Systems and the
Research Literature, Expert Systems, Vol. 3, No. 1, January 1986,
pp 32-51.

44

Carey, T., T., Mason, R., E., A., Information System Prototyping:
Techniques, Tools, and Methodologies, INFOR-The Canadian
Journal of Operational Research and Information Processing, Vol.
21, No. 3, 1983, pp 177-191. Also in Agresti, W., W., New
Paradigms For Software Development, IEEE Computer Society
]gress, Washington, USA, 1986, pp 48-57.

)

Ceri, S., Gottlob, G., Normalization of Relations and Prolog,
Communications of the ACM, Vol. 29, No. 6, June 1986, pp
524-544.

136

200

CHAPS86

COCHS1

CODD70

CONSS

CONNS8S

CORDSS

CRI86

CUELS7

DAGASS

DAGAS7

DATES1

DAVS87

Chapman, P., Seiler, H., Estimating Software Development Costs
Using Expert System Shell and COCOMOx Knowledge Bases,
Proceedings of the 5th Annual International Conference on
Computers and Communications: PCCC'86, Scottsdale, AZ, USA,
March 1986, pp 568-591, IEEE.

62

Cochran, A. J, Vocational PhDs: Aston’'s IHD Scheme,
University of Aston in Birmingham, May 1981.
20, 21

Codd, E., F., A Relational Model of Data for Large Shared Data
Banks, Communications of the ACM, Vol. 13, No. 6, June 1970, pp
377-387.
133, 155

Condon, R., Is There Madness in the Method?, Computer News,
January 14, 1988, p 13.
81

Connor, D., Information System Specification and Design Road
Map, Prentice Hall.
71

Corder, C. R., Ending the Computer Conspiracy, McGraw Hill,
UK, 1985.
82, 154

The CRI Directory of Expert Systems, Learned Information, UK,
1986.
44

Cuelenaere, A., M., E., Genuchten, M., J., 1., M., Heemstra, F. J.,
Calibrating a Software Cost Estimation Model: Why and How,
Information and Software Technology, Vol. 29, No. 10, December
1987, pp 558-567.

62

D'Agapayeff, A., A Short Survey of Expert Systems in UK
Business, R & D Management, Vol. 15, No. 2, 1985, pp 89-99.
35, 37, 49

D'Agapayeff, A., Report to the Alvey Directorate on the Second
Survey of Expert Systems in UK Business, Publ. IEE on behalf of
The Alvey Directorate, London, August 1987.

37, 41, 44

Date, C., 1., An Introduction to Database Systems, Addison-Wesley,
3rd. Ed., USA, 1981.
133

Davoudi, M., KADS: A Methodology for KBS, Proceedings of KBS
in Government, Gatwick, UK, November 1987, Ed. Paul Duffin, pp
19-36, Online Publications, Pinner, UK.

160

201

DIG84

DIG87

DOWNSS86

DUDA79

DUFF87

DUNNSS

DURHS87

DYERS84

EDWS8S8

EDWAS7

ELI86

Dignan, A., Software Engineering/IKBS Strategy for Knowledge
Based IPSE Development Tools, The Alvey Directorate, London,
November 1984.

18, 157

Dignan, A., The Alvey Directorate. Personal Communication.
30

Downs, Ed, System Design Development Methodologies, Computer
Systems, February 1986, pp 53-55.
71

Duda, R., Gaschnig, J., Hart, P. E., Model Design in the
PROSPECTOR Consultant System for Mineral Exploration, in
Expert Systems in the Micro-Electronic Age, Ed. Michie, D.,
Edinburgh University Press, pp 153-167.

38

Duffy, A., Bibliography - Artificial Intelligence in Design, Artificial
Intelligence in Engineering, Vol. 2, No. 3, 1987, pp 173-179.
66

Dunning, B. B., Expert System Support for Rapid Prototyping
of Conventional Software, Proceedings of Autotestcon 1985, IEEE
International Automatic Testing Conference, New York, USA,
g:tober 1985, pp 2-6.

Durham, T., Moving Experts Forward One Step at a Time,
Computing, September 17, 1987, pp 20-21.
43, 44

Dyer, C., A., Expert Systems in Software Maintainability,
Proceedings of the Annual Reliability and Maintainability
Symposium, San Francisco, CA, USA, January 1984, pp 295-299,
IEEE.

63

Edwards, J. S. and Bader, J. L., Expert Systems and University
Admissions, Journal of the Operational Research Society, Vol. 39,
No. 1, January 1988 pp 33-40.

30, 49, 154

Edwards-Shea, P., Hannaford, D., Harris-Jones, C., BIS/Estimator:
An Expert System for Estimating Data Processing Projects,
Proceedings of the 3rd International Expert Systems Conference,
London, June 1987, Learned Information (Europe) Ltd., UK, pp
395-405.

62

Eliot, L. B., Scacchi, W., Towards a Knowledge-Based System
Factory: Issues and Implementations, IEEE Expert, Winter 1986, pp
51-58.

58

202

FORDS86

FRENSS

GERVS83

GLADS2

GREEN77

GREENS3

Ford, L., Artificial Intelligence and Software Engineering: A Tutorial
Introduction to Their Relationship, Artificial Intelligence Review,
Vol. 1, No. 1, 1986, pp 255-273.

150, 152

Frenkel, K. A., Toward Automating the Software-Development
Cycle, Communications of the ACM, Vol. 28, No. 6, June 1985, pp
578-589.

33,55

Gervarter, W., B., An Overview of Artificial Intelligence and
Robotics, Vol.l - Artificial Intelligence, NASA Technical Memo
NAS 1.15:85836, June 1983.

152

Gladden, G. R., Stop the Life-Cycle, I Want To Get Off, ACM
Sigsoft, Software Engineering Notes, Vol. 7, No. 2, April 1982, pp
35-39.

157

Green, C., A Summary of the PSI Program Synthesis System,
Proceedings of the 5th International Joint Conference on Artificial
Intelligence, 1977, pp 380-381.

54

Green, C. et al, Report on a Knowledge-Based Software Assistant,
Technical Report No. KES.U.83.2, Kestrel Institute, Palo Alto,
USA, August 1983.

56, 68

GREENSP86 Greenspan, S., J., On the Role of Domain Knowledge in

GRINS86

HARS85a

HARS85b

HARS86

Knowledge-Based Approaches to Software Development, ACM
Sigsoft Software Engineering Notes, Vol. 11, No. 4, August 1986,
pp 61-65.

146

Grindley, K., Applying Expert Pronciples to Computer Systems
Development, Data Processing, Vol. 28, No. 1, Jan./Feb. 1986, pp
10-14.

61

Harandi, M. T., Young, F. H., Template Based Specification
and Design, Proceedings of the 3rd International Workshop on
Software Specification and Design, London, UK, August 1985, pp
94-97, Publ. IEEE.

39

Harandi, M. T., Young, F. H., A Knowledge Based Design
Aid for Software Systems, Proceedings of Softfair II, San Francisco,
USA, December 1985, pp 67-74, Publ. ACM.

59

Hartley, K., Survey of Equipment Used by Alvey Projects, Alvey
News, December 1986, pp 16-18, Publ. The Alvey Directorate,
London, UK.

110

203

HARTS86

HAYS86

HAYESS83

HEBDS86

HEKMS86

HURSS

IES87

INCES86

INCESS8

ISM87

JACT75

JONESS86a

Hart, A., Knowledge Acquisition for Expert Systems, Kogan
Page, London, 1986.
44, 47

Hayward, S., A Structured Development Methodology for Expert
Systems, Proceedings of KBS '86, Pinner, UK, 1986, Online
Publications, UK, pp 195-203.

160

Eds. Hayes-Roth, F., Waterman, D. A., Lenat, D.
B., Building Expert Systems, Addison-Wesley, USA, 1983.
35, 38, 39, 41, 44, 45, 47, 65, 159

Hebden, C., Software Engineering for AUTOCOM IV, in Software
Engineering, The Decade of Change, Ed. Ince, D., Peter Peregrinus
Ltd., 1986, pp 199-213.

67

Hekmatpour, S., Ince, D., Rapid Software Prototyping, Oxford
Surveys in Information Technology, Vol. 3, Oxford University
Press, pp 37-76.

157

Hurst, R., S., Frewin, G., D., Hamer, P., G., A Rule-Based
Approach to a Software Production and Maintenance Management
System, in Esprit '84: Status Report of Ongoing Work, Eds.
Roukens, J., Renuart, J., F., Elsevier Science Publishers B.V.
(North Holland), 1985, pp 127-144.

63

Proceedings of the Third International Expert Systems
Conference, London, 1987, Publ. Learned Information
(Europe) Ltd., Oxford, UK.

44

Ince, D., Woodman, M., Hekmatpour, S., The Application of Some
Artificial Intelligence Tools and Techniques in Software Engineering,
in Software Engineering the Decade of Change, Ed. Ince, D., Peter
Peregrinus, 1986, pp 81-99.

53

Ince, D., Prototyping Gets a Formal Boost from Alvey Work,
Computing, January 28, 1988, pp 20-21.
64, 67

The ISM Project: Towards a Knowledge-Based IPSE, The ISM
Project Consortium, Software Sciences Ltd., Farnborough,
Hampshire, UK, 1987.

58

Jackson, M. A., Principles of Program Design, Academic Press,
New York, USA, 1975.
71

Jones, R., Commercial Expert Systems, Data Processing, Vol.
28, No. 3, April 1986, pp 115-119.
41

204

JONESS86b

JONESS86¢

JONES87a

JONES87b

KAMPS8S

KANT79

KUNZ78

LANDS87

LANGSS

LAWRS7

LEES86a

LEES86b

Jones, R., Engineering the Best Possible DP Solution,
Computing, June 19, 1986, p 26.
71

Jones, R., An Automation Revolution Hits System Design,
Computing, July 17, 1986, pp 16-17.
140

Jones, R., Business Gets on the Trail of Expert Advice,
Computing, December 10, 1987, pp 18-19.
41

Jones, R., Time To Automate the Automators, Computing,
February 12, 1987, pp 18-19.
83

Kampen, G., R., Expert Specification Tools, Proceedings of the 3rd
International Workshop on Software Specification and Design,
London, August 1985, pp 120-121, IEEE.

62

Kant, E., Efficiency Considerations in Program Synthesis: A
Knowledge-Based Approach, Doctoral dissertation, Computer
Science Department, Stanford University, USA, 1979.

54

Kunz, J. et al, A Physiological Rule-Based System for Interpreting
Pulmonary Function Test Results, Heuristic Programming Project,
Report No. HPP-78-19, Computer Science Department, Stanford
University, USA, 1978.

38

Land, F., Social Aspects of Information Systems, in Management
Information Systems: the Technological Challenge, Ed. Piercy, N.,
Croon-Helm, London, 1987.

154

Langley, N., Slaves to the System, Computing, February 11, 1988,
pp 18-19.
144

Lawrence, A., Cleaning Up the Market, Datalink, September 1987,
p 8.
140

Lee, M., Slow Response to Formal Methods, Computing, April 24,
1986, p 30.
81

Lee, M., Structured Methods: Users State Their Case,
Computing, May 1, 1986, pp 28-29.
81

205

LEUNSS

LEWIS85

LUB86

MACI87

MADDS3

MANN78

MARTS8

MCD80

MIN75

MITT86

MUMS87

Leung, C., H., C., Choo, Q., H., A Knowledge-Base for Effective
Software Specification and Maintenance, Proceedings of the 3rd
International Workshop on Software Specification and Design,
London, August 1985, pp 139-142, IEEE.

64

Lewis Johnson, W., Soloway, E., PROUST: Knowledge-Based
Program Understanding, IEEE Transactions on Software
Engineering, Vol. SE-11, No. 3, March 1985, pp 267-275.

63

Lubars, M. D., Harandi, M. T., Intelligent Support for
Software Specification and Design, IEEE Expert, Winter 1986, pp
33-41.

59

Maclver, K., Matters of Fact, Datalink, September 14, 1987, pp
16-17.
140, 144

Maddison, R. N. et al, Information System Methodologies, Wiley
Heyden Ltd., UK, 1983.
71

Manna, Z., Waldinger, R., DEDALUS-The DEDuctive ALgorithm
Ur-Synthesizer, Proceedings of the National Computer Conference,
Anaheim, USA, 1978, pp 683-690.

56

Martinez, D. R., Sobol, M. G., Systems Analysis Techniques for the
Implementation of Expert Systems, Information and Software
Technology, Vol. 30, No. 2, March 1988, pp 81-88.

180

McDermott, J., R1: An Expert in the Computer Systems Domain,
Proceedings of the 1st Annual National Conference of the American
Association for Artificial Intelligence, Stanford, USA, 1980, pp
269-271.

44

Minsky, M., A Framework for Representing Knowledge, in The
Psychology of Computer Vision, Ed. Winston, P. H., McGraw-Hill,
1975, pp 211-277.

101

Mittal, S., Dym, C. L., Morjaria, M., PRIDE: An Expert
System for the Design of Paper Handling Systems, Computer, July
1986, pp 102-114.

65

Mumford, E., User Participation in a Changing Environment -
Why We Need It, Proceedings of Unicom Seminar on Participation in
Systems Design, London Business School, April 1987, pp 3-16,
g;,bl. [inicon Seminars Ltd., Middlesex, UK.

, 15

206

NCC82

NEDOS2

NOMS87

NORTS86

OAKSS

ODD86

OLS87

OVUMS6

OWENSS

PAOSS

PARTS86a

PART86b

Information Technology Strategy, National Computing Centre
Publications Manchester, 1983.
15

Policy for the UK Information Technology Industry, National
Economic Development Office London, November 1982.
15

Nomura, T., Lunn, S., Integration of Knowledge-Based
Systems with Data Processing, Knowledge-Based Systems, Vol. 1,
No. 1, December 1987, pp 24-31.

41

Norton, M., Behind the Scenes as the Database Becomes a Star,
Computing, December 4, 1986, pp 22-23.
140

Oakley, B. W., The Alvey Programme: Progress Report-1985.
Alvey Programme Annual Report 1985, pp 7-16, The Alvey
Directorate, London, November 1985.

16

Oddy, G., C., The Knowledge Based Programmer's Assistant,
Proceedings of a IEE Colloquium on Knowledge-Based Techniques
in Software Engineering, London, October 1986, IEE Digest No.
1986/99, pp 3/1 - 3/3.

63

Olson, J. R., Reuter, H. H., Extracting Expertise from
Experts: Methods for Knowledge Acquisition, Expert Systems, Vol.
4, No. 3, August 1987, pp 152-168.

44

The Ovum Report - Commercial Expert Systems in Europe, Ovum
Ltd., London, UK, 1986.
44

Owen, K., Can Advanced Research Help Today's DP
Manager?, Alvey News, April 1985, pp 13-15, Publ. The Alvey
Directorate, London, UK.

69

Paolo Puncello, P., Torrigiani, P., Pietri, F., Burlon, R., Cardile,
B., Conti, M., ASPIS: A Knowledge-Based CASE Environment,
IEEE Software, March 1988, pp 58-65.

193

Partridge, D., Artificial Intelligence - Applications in the Future of
Software Engineering, Ellis Horwood (part of John Wiley & Sons),
1986.

150, 161

Partridge, D., Engineering Artificial Intelligence Software, Artificial

Intelligence Review, Vol.1, No. 1, 1986, pp 27-41.
152, 160

207

PERS86

PID8S

PRERS8S5

RAMAS84

READS87

RICH78

RICHS83

RYANSS8

RYCHSS

SCHWS87

Persch, G., Automating the Transformational Development of
Software, Proceedings of the 3rd European Seminar and Tutorial on
Industrial Software Technology from EWICS, Frieburg, FRG, June

1986.
60

Pidgeon, C. W., Freeman, P. A., Development Concerns for a
Software Design Quality Expert System, Proceedings of the 22nd
ACM/IEEE Design Automation Conference, Las Vegas, USA, June
1985, pp 562-568.

60

Prerau, D., S., Selection of an Appropriate Domain for an Expert
System, The Al Magazine, Vol. 6, No. 2, Summer 1985, pp 26-30.
41

Ramamoorthy, C. V., Prakash, A., Tsai, W., Usuda, Y.,
Software Engineering: Problems and Perspectives, Computer,
October 1984, pp 191-209.

82

Proceedings of the First European Workshop on Knowledge
Acquisition for Knowledge-Based Systems, Reading University,
UK, September 1987, Publ. Reading University.

44

Rich, C., Shrobe, H. E., Initial Report on a LISP Programmer’s
Apprentice, IEEE Transactions on Software Engineering SE-4(6), pp
456-467, 1978.

54

Rich, E., Artificial Intelligence, McGraw-Hill, New York, c1983.
101

Ryan, K., Capturing and Classifying the Software Developer's
Expertise, Proceedings of an International Workshop on
Knowledge-Based Systems in Software Engineering, University of
Manchester Institute of Science and Technology (UMIST),
Manchester, UK, March 1988, issued separately. Publ. by The
Information Systems Research Group, Department of Computation,
UMIST. Proceedings will also appear in Knowledge Based Systems
(Butterworths Publications Ltd., Guildford, UK) in 1988.

146

Rychener, M. D., Expert Systems for Engineering Design,
Expert Systems, Vol. 2, No. 1, January 1985, pp 30-44.
66

Schweickert, R., Burton, A. M., Taylor, N. K., Corlett, E. N.,
Shadbolt, N. R., Hedgecock, A. P., Comparing Knowledge
Elicitation Techniques: A Case Study, Artificial Intelligence Review,
Vol. 1, No. 4, 1987, pp 245-253.

44

208

SHARPS8

SHORT76

SHPI86

SMI84

SMIS8S5

SOMMS3

SRIRS86

STE74

STURS87

SUMS86

SYMSS8

TALB86

Sharp, H., The Role of Domain Knowledge in Software Design,
Technical Report 88/3, Faculty of Mathematics, The Open
University, UK, 1988.

146

Shortcliffe, E. H., Computer-Based Medical Consultations: MYCIN,
American Elsevier, New York, 1976.
38

Shpilberg, D., Graham, L., E., Schatz, H., Expertax: An Expert
System for Corporate Tax Planning, Proceedings of the Second
International Expert Systems Conference, London, September 1986,
pp 99-123, Learned Information, Oxford, UK.

131

Smith, Reid G., On the Commercial Development of Expert Systems,
The AI Magazine, Fall 1984, pp 61-73.
41

Smith, D. R., Kotik, G. B., Westfold, S. J., Research on
Knowledge-Based Software Environments at Kestrel Institute, IEEE
Transactions on Software Engineering, SE-11(11), November 1985,
pp 1278-1295.

55

Sommerville, ., Information Unlimited, Addison-Wesley, USA,
1983.
46

Eds. Sriram, D., Adey, R., Proceedings of the Ist International
Conference on Applications of Artificial Intelligence in Engineering
Problems, Southampton University, UK, April 1986, Publ. Springer
Verlag.

66

Stevens, W. P., Myers, G. J., Constantine, L. L., Structured
Design, IBM System Journal, Vol. 13, No. 2, 1974, pp 115-139.
71

Sturridge, H., DB2 Passes the Quality Control Test at M & S,
Computing, October 1, 1987, pp 30-31.
140

Sumner, M., Sitek, J., Are Structured Methods for Systems
Analysis and Design Being Used?, Journal of Systems Management,
June 1986, pp 18-23.

81

Symonds, A. J., Creating a Software-Engineering Knowledge Base,
IEEE Software, March 1988, pp 50 - 56.
193

Talbot, D., The Alvey Programme for Software Engineering, in
Software Engineering, The Decade of Change, Ed. Ince, D., Peter
Peregrinus Ltd., 1986, pp 21-26.

67

209

VANS6

VANASS8

VANMS1

WASSS80

WATS86

WORDS87

YOU79

ZACKS87

van de Brug, A., Bachant, J., McDermott, J., The
Taming of R1, IEEE Expert, Fall 1986, pp 33-39.
44

Van Assche, F., Layzell, P., Loucopoulos, P., Speltincx, G.,
Information Systems Development: A Rule-Based Approach,
Proceedings of an International Workshop on Knowledge-Based
Systems in Software Engineering, University of Manchester Institute
of Science and Technology (UMIST), Manchester, UK, March 1988,
pp D3-1 to D3-24. Publ. by The Information Systems Research
Group, Department of Computation, UMIST. Proceedings will also
appear in Knowledge Based Systems (Butterworths Publications
Ltd., Guildford, UK) in 1988.

61

van Melle, W., Shortcliffe, E. H., Buchanan, B. G., EMYCIN: A
Domain-Independent System that Aids in Constructing
Knowledge-Based Consultation Programs, Machine Intelligence,
gx;;fotcch State of the Art Report, 9, no. 3, 1981.

Wasserman, A. 1., Toward Integrated Software Development
Environments, Scientia, 115, 1980, pp 663-684.
66, 71, 73

Waterman, D. A., A Guide to Expert Systems, Addison-Wesley,
USA, 1986.
35, 39, 40, 41, 43, 44, 45, 48, 149, 150

Worden, R., Integrating KBS into Information Systems: The
Challenge Ahead, Proceedings of KBS in Government, Gatwick,
UK, November 1987, Ed. Paul Duffin, pp 59-69, Online
Publications, Pinner, UK.

39, 41, 149

Yourdon, E., Constantine, L. L., Structured Design, Prentice-Hall,
1979.
71

Zack, B. A, Selecting an Application for Knowledge-Based System
Development, Proceedings of the Third International Expert Systems
Conference, London, 1987, pp 257-269, Publ. Learned Information
(Europe) Ltd., Oxford, UK.

41

210

