MATHEMATICAL MODELS FOR POLLUTION

CONTROL IN THE USK ESTUARY .

Michael Werner Rogers, B.Sc.(Jt.Hons.)

```
Thesis submitted to the University of Aston 1977 *
Being the report of research supported by SRC,Usk River Authority
and the IHD Department of the University
```


CONTENTS

VOLUME 1

CONTENTS

APPENDICES

Appendix A	The Sag Severity Index Parameter (SSI) and water quality indeces.
Appendix B	Two programs for the Hydrodynamic Analysis of a
	General Estuarine System (31 sections)
${ }^{\text {Appendix }} \mathrm{C}$	Two programs for the Pollutant Transport in a
	General Estuarine System (26 sections)
Appendix D	A Deterministic Stochastic Mixed Model of Estuarine
	Pollutant Transport (30 sections)
Appendix F	Additional Software Designed for the Project with
	general applicability (8 sections-84 Routines)

Michael Werner Rogers
Dept: IHD/Civil Engineering

Brief Summary of Submitted Work

Submitted for the degree of Ph.D. , Aston University December 1977

The now Usk River Division of the Welsh National Water Development Authority was required to make several major policy decisions on water quality within the Usk Estuary. These were highly relevant to a series of large capital projects and, after a public enquiry, the Secretary of State for Wales required a scientific investigation to be initiated that would rationalise the method of arriving at the decisions.
The process of biological degradation of pollutants would have to be understood. A number of models were reviewed, and also the attitude to the use of models by representatives of the public and management. Three types of models were developed for differimg requirements of the overall management function : a Steady State Model for approximate trends that could be available quickly and can be adapted for use in economic/cost models, a time dependant multi-dimensional model for considering short term effects and diss ipation of perturbations (pollution 'incidents'), and a semi-stochastic/deterministic model to utilise field data and generate realistic confidence limits on management projections. The models were so formulated as to be flexible and as interchangeable as possible. A number of projected capital plans were simulated by management for load variants and flow reductions. Problems were encountered because of the rapidity of the worlds second largest tidal rise, the antiquity of Newports drains system and the sometime overriding influence of the Severn $E_{\text {Stuary }}$. Telemetric monitoring proved inefficient because of field conditions.The awareness of management was developed in the appreciation of modelling and computing, to self sufficiency if required. Many routines were provided for the routine interpretation of data by the Pollution Control Department. The need for common modelling policy was recognised by WNWDA and these models were to be made available nationally through the Water Data Unit of the Department of the Environment for access at divisional level as an aid to management. KEYWORDS MATHEMATICAL MODELLING, STEADY STATE, TIME DEPENDANT,STOCHASTIC,
APPLIED MANAGEMENT

```
This work is submitted in two parts so that it can also be used
as a reference manual by the model user.
Volume 1 consists of model descriptions and formulations and
    general topics.To maintain independant chapters, the
    chapter bibliography appears after each chapter in the body
    of the volume.
Volume 2 consists of formal descriptions of the model software and
    data layout for input, with flow logic. Other routines used
        are also described.
```


Dedication

To my family and that of man.

ACKNOWLEDGEMENTS

```
The Author wishes to thank the following for their support
and contributions :
The Science Research Council and the Usk River Authority for main
financial support.
Dr. T R E Chidley, Senior Lecturer in Civil Engineering,Aston
University as Principal Academic Supervisor.
Mr. H A Hawkes of the Life Sciences Dept.,Aston University as
Associate Supervisor.
Mr. M D Hunter , Pollution Control Officer of the Usk River Authority
as project instigator and Industrial Supervisor.
Dr. A Cochran and the Staff of the Interdisciplinary Higher Degree
Department of Aston University for administrative supervision and
assisstance.
Professor McLain,Dr. Baldwin,Mr. Damodoran,Mr. Kingdon, and the staff
of the University College Cardiff Computing Facility.
Mrs. T Davies,Mrs C Powell,Mrs. E Smith,Mrs K Rogers,Mrs. V Dant
and Miss G Lloyd for their help in typing the manuscript.
Hunting Surveys,Epsilon Industries,Gwent County Council Library Staff
and British Transport Docks Board.
Messrs. Gameson,Barrett and Mollowney of the Water Research Centre,
Stevenage for their valuable discussion.
```

This is the final report of project B72-13003 of the Science Research Council.

Scale 1 : 126,720

The project has suceeded in the broad aim to supply a management tool in the form of a mathematical model to the now Usk River Division of the Welsh National Water Development Authority. Work to make this tool available nationally has been initiated.

Three models were developed in parallel for differing management aspects :

1. A Steady State Model developed in the short term to provide a tool within the duration of the project and provide a model that offers trend predictions over long term averages, to so generate input to economic models of water resouce management.
2. A mixed dimension time dependant model with a hydrodynamic and Pollutant Transport phase. This allows simulation of the suspected effects of the Severn Estuary as a reservoir for the Usk Estuary. Predictions are extremes of quality within tidal cycles.
3. A deterministic-stochastic mixed model to provide management with a tool for estimating variations and thus confidence limits on predictions. Also allows the simulations of perturbations on the whole system.

Some subsidary aspects of the management function of the division were also developed :

1. Provision of software for analysing data generated by a network of Automatic Monitoring Water Quality Stations.
2. Increasing Management Awareness of the potential of Computer use and familiarisation with the methodology involved .
3. To build up a software library to assist the Pollution Control Department in its analytical data "interpretive" role. This has been largly superceded by a national system from the Department
of the Environment on very similar lines to pilot proposals put forward.

There has been a lack of cohesive data to validate the models in a wholly satisfactory manner. Such as it is, validation has been only with piecewise continuous data, mainly historic and so lacking any overall statistic strategy.

The project has established the need for a modelling strategy on a common national front. The Welsh Water Authority have accepted this responsibility by appointing such a co-ordinator. The necessary detailed validation surveys requested by the investigators in August 1973 will be carried out next summer. On hindsight it is clear that a smaller division of the water industry in its current role is not able to provide all the necessary facilities for such an investigation. This is because of the breadth of expertise and resources required. What is available is best utilized by supporting a centralised research facility in the applications/verification fields of a modelling project.

The project has also regressed through variation in mamagement policy as it existed as a subsidary of a departmental function in an atmosphere of flux at a time of majoe re-organisation. This would not have arisen if managed as a research phase where resource allocation is necessarily committed in a medium and long term plan capital and expenditure programme

Abstract

Notwithstanding these difficulties, the various models have been used in their function of assessing the water quality implications on projects of proposed industrial development, sewage treatment plant design and location and a major water supply scheme. It is conservatively estimated that the total capital cost of schemes so investigated is \& $90,000,000$. In an area of high unemployment major projects are politically very sensitive. Measured against such capital costs, the production of a management tool involved relatively nominal expenditure. This cost ratio justifies the instigation of the project and its support. And indeed, even measured against the costs of providing this array of modelling software through consultants or software houses, the costs incurred are fractional.

This project was carried out in an industrial environment. Tools which would enable logical evaluations of water quality planning proposals were required. Because of this, simple technology which had been found useful elsewhere could not be overlooked. Outside of the water industry research bodies, little modelling expertise had been acquired. It was therefore considered useful to initially devolve a model already established, with simple input requirements that could be easily used by management in a stand-alone environment. It also provided a short-term solution to the planning applications already with the ind strial sponsor.

The project has suceeded in its broad aim of providing river management tools in the form of a selection of models for the Usk River Divison. Recognising the wide applicability of them, the Welsh National Water Development Authority has initiated work to make these models available nationally through a computer network.
committment from the largest of them to adopt these approaches. By 1978 upwards of 120 million equivalent heads of population will have their water quality projects modelled.

CHAPTER 1

INTRODUCTION,
1.1. The Project Scenario,
1.2. The Eastern Valley Sewage Board.
1.3. A Statistical Model?
1.4. The Theoretical Approach.
1.5. Integration of the Project,
1.6. Attitudes to Environmental Pollution.
1.7. Attitudes to Modelling.
1.8. The Usk Estuary.
1.9. Monitoring the Estuary.
1.10. Software Support for Programs in this thesis.

1.1. The Project Scenario

1.1.1. Previous to the Discharge of Tidal Waters Act (1960) no legal authority could control the discharge to a stretch of tidal water. The Usk rises at Carmarthen Fau in Central Wales, flows in a wide loop easterly to a confluence with the Severn Estuary/Bristol Channel some miles below Newport (Gwent). In its 80 mile length, there are no major discharges until about 25 miles upstream from Newport, at Abergavenny, when it receives treated sewage from a population catchment of some 15,000 . The tidal stretch commences below Usk, some 17 miles from its confluence with the Severn. In the last 12 miles it receives some 20 major discharges, mainly from the town of Newport,
1.1.2.

Of these, the majority are crude discharges of pure domestic and only occasionally industrial affluents are part constituents. Additionally a CEGB Power Station abstracts cooling water which are reintroduced upstream of the intake, so forming a loop. Many of the discharges are tidelocked, so the majority of polutants are discharged to minimal dilution levels. The peculiar shape of the Severn/Usk estuaries gives the World's second highest tidal rise at a maximum of 50 feet (15.4 m). With a dry weather flow of $80-100 \mathrm{~m} . \mathrm{g}$.d.low water dilution can be as little as $5-6$ times. In favourable summer conditions these factors can combine to produce areas of low dissolved oxygen and environmentally undesirable bank effects.

1.1.3.

With the introduction of legislation, the Usk River Authority were now required to make management decisions on discharge applications to Tidal Waters, an area where little expertise was available. ${ }^{(21)}$ Drinking water, industrial water and recreation water all had to be available. (18)

1.2. The Eastern Valley Sewage Board

On the 12th May, 1955 effluent from the works was the subject of consent issued by the Usk River Board for $1.8 \mathrm{~m} . \mathrm{g}$. d. under dry weather conditions and limits of B.O.D. 20 p.p.m, and suspended solids 30 p.p.m, in relation to a discharge of the Afon Lwyd,

The Minister determined that a temporary consent for a period not exceeding 5 years from the 4 th June, 1964 for an altered discharge maximum rate of flow be fixed at $3.4 \mathrm{~m} . \mathrm{g} . \mathrm{d}$. in dry weather and $10.2 \mathrm{~m} . \mathrm{g}$.d. in wet weather and that the storm tank discharge should not exceed 10.2 m.g.d. and that no further additional discharge of trade wastes should be accepted in the sewerage system until suitable extensions had been built.

Proposals to take the treated sewage effluent to the Usk Estuary resulted in an application being made for a 42 inch diameter outlet on the 14 th Apri1, 1965, and a consent dated 25 th May, 1965 for 5.14 m.g.d, during dry weather and $15.42 \mathrm{~m} . \mathrm{g} . \mathrm{d}$. maximum rate of discharge was issued, granting among its consent conditions B.O.D, 20 p.p.m., suspended solids 30 p.p.m, standards, On the

30th June, 1965 Eastern Valleys (Mon.) Joint Sewerage Board appealed against the conditions of this consent, although Angling Clubs supported the conditions. Their main point was that, with the increased dilution in the Usk Estuary compared with the Afon Lwyd, they wished a more relaxed standard. It was pointed out at the Inquiry that dilution factors at the new point of discharge for certain parts of the tidal cycle during dry weather were still of the order of 20 to 1 and that for some 8 hours in a tidal cycle of 13 hours fresh water was opposite the point of discharge. The Secretary of State's decision dated 20 th October, 1965 granted a consent B.O.D. 60 p.p.m., comprised of a proportion of the effluent derived from the existing Ponthir Treatment Plant not taking up 20 p.p.m. of B.O.D., i.e., some part of the effluent additional to $3 \mathrm{~m} . \mathrm{g} . \mathrm{d}$. could be mixed with a B.O.D. of $20 \mathrm{p} . \mathrm{p} . \mathrm{m}$. fully treated effluent and a new consent on the tidal discharge meant B.O.D. 60 p.p.m. and suspended solids 65 p.p.m. would have to be complied with. The consent took effect from the 20th October, 1965 for volumes of 3.86 m.g.d. and 11.58 m.g.d. during dry and wet weather respectively.

By Apri1, 1966 the Eastern Valleys (Mon.) Joint Sewerage Board was concerned as the effluent from Messrs. Girling's was being considered in relation to acceptance into the trunk sewer, and in March, 1968 duplication of the trunk sewer between New Road, New Inn, Pontypool and Rose Cottage, Llanfrechfa was the subject of notice to
land owners in respect of laying a trunk sewer which varied in diameter from 39', 36', 30' and partly 27' for 7,750 yards.

In 1967 an Usk Estuary Investigation scheme was compiled by myself and was taken to the Welsh Office on the 7th August, 1968, when senior engineering inspectorate, together with the Chief Chemist for the Ministry of Housing and Local Government vetted the scheme. Reference was made to a Secretary of State's decision that investigation of the estuary be carried out in no less than 5 years and not more than 10 years, in order that sufficient information on which to base accurate consent conditions could be made available.

On the 4th December, 1968 consent on treated effluent to the Usk Estuary stipulated maximum B.O.D. 92 p.p.m., suspended solids 100 p.p.m., and maximum rate of discharge $15.06 \mathrm{~m} . \mathrm{g} . \mathrm{d} .$, being 3 x dry weather flow. Settled storm sewage was granted consent at $15.06 \mathrm{~m} . \mathrm{g} . \mathrm{d}$.

A survey of the estuary on the 10 th and 11 th March, 1969 indicated that the quality of the dilution water suffered very slightly, and on the 3rd September, 1969 acceptable increases in B.O.D. above and below the effluent were accompanied by permanganate values which rose from 1.8 p.p.m. above to 9.0 p.p.m. below.

It is worth noting that during the last few years the effluents from I.C.I. Fibres, Parke-Davis and Recham International Limited, Pontypool, are all included in the trunk sewer. The level of capital expenditure to achieve
this was considered excessive by the Sewage Board and consequently a public enquiry was convened by the Minister of State, We1sh Office.
1.2.2. To prepare for the enquiry the River Authority conducted several long surveys to measure BOD/OD variations in the Estuary. The extrapolation of these data was questioned and a compromise of partial treatment was reached. The Minister of State, Welsh Office, did then charge the Authority to produce a sound scientific system from which predictions could be produced. The Authority were allowed time to complete this work, this period expired on 31 December 1975.
1.2.3. The Authority saw themselves being involved in many future situations along similar lines and took up the condition imposed on them by the Minister.

1.3. Statistical Mode1s

1.3.1. It seemed as if the problem was insufficient data, The Authority embarked on a monitoring project (Ref. 1.8) with the thought that sufficient volume of data would allow regression of the most relevant parameters against the pollution index - per cent dissolved oxygen. This had been successfully attempted in the Clyde Estuary ${ }^{(22)}$. This approach soon became less favourable with the problems of mass data collection, collation and analysis.

1.4. The Theoretical Approach

Abstract

1.4.1.

A considerable amount of resource had been invested in monitoring, and it was with some reluctance that the Authority asked the author to produce a theoretical approach. Management were much impressed by the progress in the theoretical approach when attending the Symposium on Modelling at Water Pollution Research Laboratory, Stevenage, in April 1972.

1.4.2. Any model produced would have to satisfy the following criteria:
A) Forecast worst effects of a variation in input variables.
B) Forecast broad trends resulting from input variations.
C) Take some account of accuracy attainable.
D) Be capable of being understood and controlled by Management in absence of any permanent technical back-up.
E) Be economically viable as computer time would have to be purchased externally, at commercial rates.
F) Be flexible and as machine independent as possible.

1.5. Integration of the Project

1.5.1. The Interdisciplinary Higher Degree scheme was approached at Aston University to consider the outlines above for a project. Because of the Multidisciplinary approach required and the practical requirements the project was considered to be suitable and was accepted to commence in October 1972. The author was based at the offices of the River Authority
in Caerleon with use of the University College Cardiff Computing facility. Aston University and Water Pollution Research Laboratories provided an academic and theoretical basis. The Science Research Council sponsored the project for 3 years, and for the last quarter, the River Authority were sponsors with the Department of Civil Engineering, Aston University.
1.5.2. The resultant thesis was to fulfil the following requirements:
A. Satisfy an examining body as to the work carried out to award the author a higher degree under the IHD regu1ations.
B. To act as a reference for the scientific foundations of the models used.
C. To act as a reference manual for management to use the models without expert assistance.
D. To catalogue the software that had accumulated during the course of the project.
1.5.3. Hence this is not a thesis in the conventional sense, it must meet a wide variety of criteria and cover a broad field of interest.

1.6. Attitudes to Environmental Pollution

1.6 .1. Public attitudes are recognised as the most fickle of parameters as far as trends and predictibility are concerned. It is therefore more surprising that for the past decade,

```
attitudes towards pollution have been substantially
constant. Only in the extreme financial crisis of the
past year were opinions modified to temporary relaxation
of standards.
```

1.6.2.

The author conducted private correspondence with many prominent people in the field of pollution control. Opinion is remarkably consistent amongst representatives of the public ${ }^{(1)-(5)}$, the only differences being in the rate and priority of improving the environment. One prominent councillor ${ }^{(3)}$ interestingly suggests that the breakdown of organised religion led to a consequent lack of faith in the future and an increasing self awareness that personal intervention was more likely to succeed than of the divine variety. All agreed that the apathy of the public is only aroused by personal experience of a pollution and too little of the technical aspects are understood. The representatives all recognised their own lack of knowledge and dependence on technical advice and guidance. This is the kind of advice the models would hopefully supply.

One prominent civil servant expects a net increase of pollution ${ }^{(6)}$. It is reasonable therefore to wish to minimize the effect of this by optimizing current treatment facilities. Again, the models would be of great assistance in this respect.
1.6.3. Some correspondants recognised that in the short term, pollution control may have to be relaxed to allow economic reflation. Only a few suggest a compromise cost benefit analysis of pollution vs employment ${ }^{(7),(10)}$. Lack of
effective controls were mentioned $(7),(11)$, as well as the difficulty of defining exactly what pollution constitutes. (4), (7), (11).

1.7. Attitudes to Modelling

1.7.1.

Correspondence on the matter of modelling also flowed during the project. Here the expected dichotomy between the expert and the layperson dominated views. Some public representatives had little concept of what a model is ${ }^{(1) \text {, }}$ (4), (5), and some limited experience (2), (7). They were all aware, however, of the potential use and misuses so lack of in-depth knowledge is less relevant.
1.7.2. Experts in the field all had experience of modelling of varying forms. The limitations seem to be well established $(6),(9),(10),(16)$, and so borne in mind when predictions are employed in the real world. No reference was made to the relative cost of modelling/cost of works to which models are applied. In this project, the ratio is about $1: 15 \emptyset \emptyset$. So even limited modelling success quick1y becomes economically beneficial.
1.7.3.

There was a notable lack of differentiation between physical models and theoretical mathematical model. Physical Models may be expected to be morally more acceptable to laypersons. The lack of discrimination is to be welcome as a sign of increasing acceptance of the attempts to understand the modelled processes rather than just duplicate them.

1.8. The Usk Estuary

1.8.1. The Usk Estuary has the world's second highest tidal rise ${ }^{(17)}$, Spring tides recently reaching 51 feet. This is largely due to its geographical position as an offshoot of the Severn Estuary (see figure 1.8.1.) The lower 17 miles of the Usk are tidal, nearly to the town of Usk. It has a narrow but low flood plain and above Newport meanders violently to make erosion and flooding a frequent event in previous years ${ }^{(10)}$.

Figure 1.8.1. Schematic Diagram of the position of the Usk Estuary.
1.8.2.

At low water it is no more than a stream above the Newport Road Bridge sill. There are numerous small tributaries, the main ones being:

1.8.3. The Ebbw once held the undistinguished title of most polluted river in Europe. As its primary volume source is the British Steel Corporation works at Ebbw Vale, this is perhaps not unexpected. Part of this pollution found its way into the main estuary system and compounded the situation. In recent years the evident improvement in this river has been a major achievement for the Pollution Control Department at the Usk River Division. The Ebbw can now be considered primarily as a dilution source.
1.8.4. The estuary receives some 20 major discharges, of which the Eastern Valley outfall is the major source of volume and leading - about $5 \mathrm{~m} . \mathrm{g} . \mathrm{d}$. at 90 p.p.m. BOD. (ref 1.2.1). The town of Caerleon has a partially treated discharge from its own sewage works some 10 miles from Pierhead. The remainder are crude discharges from the town of Newport. These are usually tidelocked for some part of the cycle so their effective position is displaced. Newport Borough Council Main Drainage Scheme will eventually treat most of the discharges and the estuary will receive
an increasingly major discharge about 2 miles upstream of Pierhead. Corresponding loading further upstream will also be removed.

The stretch of the Usk between the Pierhead and the end of the dredged channel is of interest. At low water it is a narrow channel, maintained and dredged by the British Docks Board, until it meets the water body of the Severn Estuary. As water level rises, there is a dramatic change in shape as the river widens to over a mile, narrowing to a mere 100 yards at the Pierhead. Much of this water is slow moving and 'liquid mud' with very high suspended solids. Parameter range was wide enough to allocate two channels for suspended solids on the British Aluminium Corporation Site Monitor Station.

1.9. Monitoring The Estuary

1.9.1.

In 1970 the Usk River Authority set out on an integrated monitoring programme for the tidal water. There were to be 5 complete monitoring stations and a similar number of depth probes. Management then hoped to establish a pure statistical regression model.

The data loggers were of an experimental variety, the physical conditions were extreme and many problems were encountered. Specifications in the design gave an accuracy of 1 scan in a million. No clock track was therefore included. Final analysis of the first few data tapes showed an accuracy of less than one per hundred scans.
1.9.2. Physical problems encountered were:
A. Coordinating a stabilised power supply. Especially the British Aluminium Company logger showed marked deviation from linearity with a fluctuating mains supply.
B. Physical pumping of water up to 500 feet from the submerged pump to the probes.
C. The reliability of a pump exposed to up to 50 foot pressure heads and a river with frequent large items of flotsom.
D. Technical support and back up from the Company ${ }^{(20)}$.
E. Vandalism at stations.
1.9.3. The resultant data was in two forms, a chart with coloured plots taken by a multiple recording head and a plotting frequency of about 72 seconds, and a locked cassette magnetic tape which the logger firm translated (see system component chart ${ }^{(21)}$). The problems with data encountered were:
A. Absence of clock track on analogue/digital interface leading to temporal displacement of data.
B. Corruption of Data through
i. Absence of scan marker,
ii. Extraneous channel or one missing channel
iii. 'Dropping' a bit.
C. Frequent redesign of sampling frequency and channel interpretation by the technical staff.
D. Data format was in continuous binary, no parity track on paper tape, the tape being of poor quality and often fan folded. This was unsuitable for the high speed reader (1.5 k c.p.s. against 10 c.p.s.)
1.9.4. Clearly the task was formidable. The software to edit the above as much as possible was written and tested in the first year of the project. When hardware errors also caused long delays it was recommended that the main modelling should receive its due priority for the remainder of the project.

This phase of the whole project cost some $£ 30,000$ of which nil has been recovered by providing useful data. However, software to the value of $£ 12,000$ (supplying company quote, 1970 prices) is available and applicable to most similar monitoring schemes. In view of the investment in this phase, it is suggested that the computing facilities at the Water Data Unit, Reading are employed for cleaning the tapes. This makes editing feasible because of excellent paper tape facilities and low costs for users mill-time. To be noted is the financial loss through over stretching available expertise. The supplier must bear the major moral burden here. Details of the software appear in the attached volume of programs.

1.10. Software Support For Programs in This Thesis

The Project hinges on the numerous programs developed for the modelling. The modelling software will be used by the Welsh National Water Development Authority, through the Water Data Unit at Reading, to provide a national service for the individual river divisions to interrogate.

All software will also be supported in its current form by M.R.S.S., currently of 11 Highfield Road, Caerleon, Gwent, NP6 1DU (Registered under the Business Names Act, 1916) until at least 31.12 .1979.

Note: Private Correspondence represents the views of the individuals only, and not those of employers or public bodies.
(1) Private Correspondence, Councillor Rosemary Butler, Newport Borough District Council.
(2) Private Correspondence, The Mayor, Newport Borough District Council.
(3) Private Correspondence, Councillor Paul Flynn, Newport Borough District Council and Gwent County Councillor.
(4) Private Correspondence, Councillor James T.Kirkwood, Gwent County Council.
(5) Private Correspondence, Rt. Hon. John Stradling Thomas, M. P.
(6) Private Correspondence, Head of Economics and Statistics, Dept. of Energy.
(7) Private Correspondence, Chief Environmental Health Officer, Torfaen.
(8) Private Correspondence, Director of Civil Trust for Wales, Cardiff.
(9) Private Correspondence, Director of Planning and Scientific Services, Northumbrian Water Authority.
(10) Private Correspondence, Director of Resource Planning, Severn Trent Water Authority.
(11) Private Correspondence, Research Fellow, Dept. of Botany, U.C.Cardiff.
(12) Private Correspondence: Divisional Water Quality/ Fisheries Officer, Glamorgan River Division.
(13) Private Correspondence, Water Quality Planner, Thames Water Authority.
(14) Private Correspondence, Director of Resource Planning, Anglian Water Authority.
(15) Private Correspondence, Divisional Manager, Usk River Division.
(16) Private Correspondence, Divisional Scientist, N.W. Water Authority.
(17) Newport Tide Tables and Shipping Directory, Annually published by R.M.Johns Ltd, Daniel Str, Newport.
(18) "We live in Thirsty Times", published by W.N.W.D.A.
(19) The Usk River Authority Annual Reports, 1965-1974 (1st to 9th). Land Drainage, Section "Flooding".
(20) M.W.Rogers, Progress Report on the I.H.D. Project to SRC, Project B72/13003, Oct 1973.
(21) M.W.Rogers, Initial Report on the I.H.D. Project, SRC Ref B72/13003, Dec 1972.
(22) D.W.MacKay, "A Model for leyels of dissolyed oxygen in the Clyde Estuary", Proceedings, WPRL Technical Paper No. 13 on "Mathematical and Hydraulic Modelling of Estuarine Pollution", 18th April 1972, p.85-p. 94.
\qquad

Water Management and the General
Philosophy and Review of Models

```
2.1 Mans Use of Water
2.2 Management of Water Resource
    2.2.1 Introduction
    2.2.2 The Gwent Water Board
    2.2.3 Water Resources
    2.2.4 Management Objectives
    2.2.5 Benefit Models
    2.2.6 The Ruhr as an example
    2.2.7 Water Quality Indeces
2.3 Models as a Management Tool
    2.3.1 Advantages and Disadvantages of Models
    2.3.2 What is a Model ?
    2.3.3 Physical Models
    2.3.4 Mathematical Models
    2.3.5 A loosely Mathematical Theory of Models
    2.3.6 Sub-Models
    2.3.7 Sensitivity of a Model
    2.3.8 Quality of a Model
    2.3.9 Extension of Prediction Systems
    2.3.10 Summary of General Modelling Philosophy
2.4 A Comparative Review of some more Significant Models
2.4.1 Streeter-Phelps
2.4.2 Dobbins' Model
2.4.3 0'Connors Model
2.4.4 Thomann's Model
2.4.5 A Distributed Parameter Model
2.4.6 Box-Jenkins Method Models
```

2.4.7 Stochastic Models
2.4.8 Stochastic Model of Custer and Krutchkoff
2.5 Models selected for the Project
2.5.1 A Steady State Model
2.5.2 A Mixed Dimension Time Dependant Model
2.5.3 A Stochastic Model
2.6 Bibliography

2.1. Mans Use of Water

2.1.1.

Water is the single most important commodity to life as we know it, as a sustainer of life, as a means of transport, as a raw chemical, as a production aid and as a means of pleasure. The supply of water is the most generally accepted necessity to exist in any degree of comfort. Past abundance has fashioned public attitudes and perceptual variables were stronger in impact and opinion moulding than any demographic data $[1,2]$ Unfortunately by the time water quality changes are perceptible by the public they are usually gross variations and may have caused irreversible ecological damage.
2.1.2. The main uses of water are:

A Domestic e.g. supply to the home,
B Industrial e.g. use as a chemical,
C Cooling Waters e.g. Power Station cooling. Often classed as industrial use;

D Recreational e.g. Non contact use e.g. boating and contact use e.g. swimming,

E Commercial Fisheries, F Irrigation for Agriculture. Each geographic area places varying emphasis on the subjects above. In the South Wales Area all except F) are important, with A) and C) predominating due to population concentration and cooling waters in Steel and Power complexes. There is no irrigation in the area other than some deliberate flooding of fields to allow silting.

2.1.3. Domestic Supp1y and Use

The main criteria applied here is twofold: the supply must be potable and palatable at the point of consumption. This criteria provided the inertia for the initial models of stream pollution by Streeter and Phelps ${ }^{(5)}$; the maximising of the natural stream purification and thus minimizing artificial treatment supplied. Water use is on the increase. The AM population of Wales require four million gallons per day for all uses, 40 galls per capita per day domestic consumption.

Fig.2.1.3.A - $\begin{array}{r}\text { Breakdown of Water Use, by Domestic } \\ \text { Consumers in Wales (6) }\end{array}$
The breakdown shows that an increased living standard wil1 increase water demand. So in a situation where population expands and living standards rise the demand situation becomes more acute. This is the situation in the
long term for Gwent. The low level of metered supply (virtually nil domestic users) and the system of general rate levy does little to encourage any degree of conservation. Only the absence of supply is of interest to the domestic user. The problem is not localised. In the USA, consumption rose by 50% in the period 1965 , finally at a rate of 125 gallons per capita per day ${ }^{(7)}$.

The desired tolerances for this water use are strict and digression outside limits can have wide reaching consequences. Some of the limits for raw domestic water are: Coliform bacteria 5,000 per 100 ml , Streptococci/Faecal Coliforms 100 per 100 ml , Cyanides 0.1 p.p.m., Pesticides $<0.1 \mathrm{ppm}$, Temperature $<95^{\circ} \mathrm{F}\left(36^{\circ} \mathrm{C}\right)$, Phenols 0.02, 0i1-Turbidity-Colour not to be visible etc. ${ }^{(3,4)}$. Of these, possibly the Faecal Coliform count is the single most important criteria.

2.1.4. Industrial Supp1y and Use: Cooling Water

Due to the variety of processes employed, generalisations of use in this area are very different. Some figures generally accepted for Steel manufacture are:

To produce 1 km of Steel	requires
Blast Furnace Smelting	25,000
Milling etc	21,000
Rolling and Drawing gallons of water	3,500

Other heavy consumers are the pulp/paper industry, one ton of paper requires $50,000-60,000$ gallons, a manufactured vehicle requires about 20,000 gallons per ton of vehicle. For each water consuming industrial user, a certain quality must be attained. If a supply is networked to several users, the most stringent conditions have to be applied. This is uneconomic and a burden on all users. Generally a moderate standard is networked and then each user can upgrade to their required standards. Cooling waters are generally not required to be of a high standard unless high temperatures are attained. The table below gives some measure of the variations allowed (8)

Type of Con- suming Process	Dissolved Solids	Ch1orides	pH	Iron	Manganese
Fresh Cooling Water brackish Cooling Water	1000	600	$5-8.3$	NE	NE
Textile Manu- facture	1000	1900	$6-8,3$	NE	NE
Organic Chem- ical Manuf.	-	NE	$5.5-8.7$.1	.1
Petroleum Refinery	1000	300	$6-9$	1.0	NE
Vegetable/ Fruit growing	500	250	$6-8$	0.2	0.2

Notes: A) NE - Any value acceptable within normally received waters
B) A11 concentrations in p.p.m.
C) Depending on process used

Fig.2.1.4.B.

The low quality requirement of cooling waters and the amount of steel production in the Gwent area is reflected by the level of non potable water supplied by the water undertaking.

2.1.5. Recreational Use of Water

Recreational use may be split into two groups; water contact and non-contact activities. Separate quality may be permitted.

Contact Recreation	
Swimming	Boating Contact Recreation
Diving	Fishing
Water Skiing	Waterside recreation

2.1.5.1. Contact Recreation demands more stringent standards than raw domestic supplies with a faecal coliform count of less than 200 per $100 \mathrm{mg} / 1$, with a maximum of 400 in the area of a discharge. These limits are applied to 5 samples over a period of not more than 30 days. A pH in the range $6.5-8.3$ and a temperature under $85^{\circ} \mathrm{F}$ is also required. A Secchi disc should be visible at least at 4 feet depth.
2.1.5.2. For Non Contact Recreation the public health standards can be relaxed. However, fishing and other aquatic life require separate standards which may in part be more stringent. Minima generally accepted for fisheries are

| D.0.: $5 \mathrm{mg} / 1$ for 70% of time, yet never $<3.0 \mathrm{mg} / 1$ | Resident
 Fisheries |
| ---: | :--- | :--- |
| $4.5 \mathrm{mg} / 1$ for up to 25% of day, never $<4.0 \mathrm{mg} / 1$ | Migratory
 Fisheries |

Artificial heat should not raise water temperatures by more than $1^{\circ} \mathrm{C}$ in summer, $2^{\circ} \mathrm{C}$ in winter months. If molluscs are reared, coliform levels should be below 70100 per 100 ml . Water pH should not vary outside 6.7-8.5.
2.1.5.3. Water Side recreation require little explicitly in
the way of standards as they are only affected by
grossly polluted situations like eutrophication or
anaerobic kinetic producing unsightly vegetation or pungent
odours. As these are rarely pursued without a mix of
other activities mentioned, it is likely that any desir-
able site will have sufficient water quality to meet these
loose requirements.

2.1.6. Agricultural Use of Water

The proportion of water used for this purpose naturally varies widely. In the area of this project there is little use of water for irrigation, and the main abstractions are for drinking and cleaning water. Yet, within 200 miles these factors are a major source of use and with a high growth rate and only ${ }^{1 / 3}$ of the Usk's precipitation, will require major expenditure ${ }^{(11)}$. Other managements have a major obligation to provide irrigation waters, the U.S.A. water undertakers provided $135,000,000$ million gallons for
irrigation in $1965^{(10)}$, a major factor in the self sufficiency of America.
2.2. Management of Water Resource
2.2.1. The Gwent Water Division (formerly Gwent Water Board) is responsible for supply, while a section of the Engineering Section of the Usk River Division is responsible for resource management. Both liaise closely with local authorities and industry and the pollution control function of the Usk River Division.

2.2.2. The Gwent Water Board

The Gwent Water Board is the major Water Board in the Usk/Newport Area. On March 31st, 1973 it serviced 433,000 people over 576 sq. $\operatorname{miles}{ }^{(12)}$, placing it 8 th and 16 th in order of population and area amongst all water undertakers in the United Kingdom. Out of a daily supply of $47,000,000$ gallons ${ }^{(13)}$, 50% is unpotable, so its 1.27 p income for every 1,000 gallons supplied is not ungenerous when compared to 7 p for East Shropshire Water Board. Against 0.01p for the Fylde Water Board it appears sufficient. 160,000 properties were connected to the mains supply of which 6,000 were metered. This is a very low ratio compared to most other areas where a ratio of $1: 10$ to $1: 20$ is more usual. Now reorganised into the Gwent Water Division, it still carries a responsibility of supply maintenance. Currently the supply is $50,000,000$ gallons a day, of which 30% are supplied to Spencer Steelworks at Llanwern. The recent unusual climatic
conditions have caused a crisis situation in water supply. The main reservoir (Talybont) of 50 days supply has a level at 20.02 .76 of only 28 days. This highlights the possible need to abstract further from the Usk whilst maintaining quality for the estuary section. The media are in no doubt as to the gravity of the situation ${ }^{(14)}$ and the responsibility of the Board and Consumer.

2.2 .3 Water Resources

The Usk has a protected flow level of $100 \mathrm{~m} . \mathrm{g} . \mathrm{d}_{\text {, }}$, which must be maintained. The Steel industry are major users and due to the nature of pollutants from Newport, enough solvent must be present to ensure adequate dilution factors at low water. In practice, flow levels of 55-60 m.g.d. have been attained during summer 1975. Some preventive schemes are available, the three principles being:
a) Wye-Usk Transfer Scheme. Capable of maintaining guaranteed flows.
b) Graig Goch Reservoir A major project to guarScheme antee storage capacity.
c) Circulation Scheme. Reservoir resource is pumped to head of section, released \& recaptured further downstream.

South Wales is a highly populated area with a high water demand. High rainfall in mountainous regions provide sufficient resource, which must nevertheless be efficiently managed as a large proportion is lost to areas outside the region.
2.2.4. Management Objectives

Water industries are usually financed through public funds and thus extensions of government in some form. This leads to frequent overriding political motivation when alternative proposals are analysed. It is a simpler task to study various economic alternatives than to attempt to predict political/social factors. Incorporating shadow cost benefits into any model provides considerable area for dispute.

The simply water management objective is:
"To provide sufficient water resources of
sufficient quality at minimum cost and environmental impact".

It is only recently that indirect costs/benefits are being considered in long term impact analysis. The feasibility of such considerations depend on equally long term forecasts of social developments and economic trends in the region under study.

2.2.5. Benefit Models

There are three main benefit models, where the Annual Net Benefit (i.e. Social and Capital) B is related to the time from the design year of the project Y :

$$
\begin{array}{ll}
\text { A: Constant Benefit } & B(Y)=K_{A} \\
\text { B: Linearly Increasing Benefit } & B(Y)=K_{B} Y \\
\text { C: Compound Increasing Benefit } & B(Y)=K_{C} \Theta^{Y} \\
\text { D: Linear Combinations of above } & B(Y)=\alpha_{A}+\beta K_{B} Y+\gamma K_{C} \theta^{Y}
\end{array}
$$

A represents a situation where a project used at constant capacity for its design life, as near to the optimum design level as possible.

B represents a situation where a resource is not fully used at once but steadily increasing while on initial resource decrease to expiration at a similar rate.

C Represents a demand resource situation where controlled supply increases resource potential due to rising demand.

In a long Design Life (50 years or more), the eventual model is a case of a D type model, a linear combination of the previous models to take account of variants in social/economic patterns. If any K are negative, either the benefit is decreasing, for example in a resource exhaustion situation, or benefit is negative. A highly undesirable scheme from water quality aspects but more pol-. itically desirable would yield a permanently negative benefit mode1. Parker ${ }^{(15)}$ and Davis/Hanke ${ }^{(16)}$ cite some models and examples of the dilemma encountered. Parker concludes that
A) Benefit is primarily determined by regional growth.

```
B) Benefits have found to decrease rapidly with advances in technology,
so the main factors are outside the sphere of influence of the design.management.
Successful integrated models have been applied successfully \({ }^{(20)}\) using simple sub models but effectively integrated:
```


and the work showed the problem is likely to be in the implementing of the least cost solution.

2.2.6. The Ruhr

The Ruhr management system has been extremely successful in coping with limited supply, heavy industry and extensive recycling ${ }^{(22)}$ since 1913. It operates two strong bodies, the resource: Ruhrtalsperrenverein and the user: Ruhrverband, controlled by constant legal statutes laid down by state government. Instream aeration, transfer schemes backup reservoir and automatic monitoring stations together provide an effective management system. The Thames estuary has also been a prime example of a good concerted Management programme in pollution control ${ }^{(23)}$.

2.2.7. Water Quality Indices

Growth in scientific method and wider acceptance of its output by other disciplines has led to a greater degree of standardisation and reproducibility within. This has signalled the demise of adjectives in data as they are considered to be subjective and objectivity is the goal.

They are invaluable though in transmitting managements view of water quality to the general (and usually paying through taxed) population. A substitute has clearly to be found for this role. There are hundreds of potential pollutants to be found in a water body, many physical/ biological characteristics to be considered when classifying. The populace are not interested in, say, the level of 2-4-6 Tri-chloro-benzoicacid, but want to know whether they can swim or not. Yet to the tomato grower 'down the way', the level of TBA is most critical for his crop ${ }^{(19)}$.

Attempts have been made to coagulate all the measured parameters into single index, for example ${ }^{(17)}$

$$
W Q I=\left\{\Pi\left\{f_{i} \mathrm{w}_{\mathrm{i}}\left(\mathrm{P}_{\mathrm{i}}\right)\right\}^{1 / \mathrm{S}}\right.
$$

where $S=\sum_{i=1}^{N} w_{i}, w_{i}=$ weight attached to ith variable, P_{i} $=$ value of $i^{\text {th }}$ variable, f_{i} is sensitivity function of i variable. The Water-Quality-Index (WQI) so devised is the geometric mean of the N sensitivity functions. This is more sensitive to extreme values and being numeric
removes the need to itemise physical/chemical tests individually. No account can be taken of the use of the body of water to which a single index has been specified.

As the primary purpose is to pass information on to allow public decision making as to use, the water quality of each use must be identified individually.

A similar but more explicit index would seem more useful ${ }^{(18)}$. Levels of acceptability are graded in a base n into n categories 0 to $\mathrm{n}-1$. The tests are then strung together to form a digit string which can be condensed by grouping digits.

Consider a water body with the following characteristics:

Parameter	Leve1	Category
B.O.D.	Unacceptably High	0
D.O.	Unacceptably Low	0
Coliform count	Acceptable	1
Odour	None	1
Suspended Solids	Average to moderate	1

A single index would show that its a fairly poor state, but would it be possible to say that it is good enough for contact recreation from a single figure? If written

BIN' 11100 ' or 0 OCT ' 34 ' or HEX'1C'
knowing the position of the coliform count (the most important single deciding factor for contact recreation) in the string, it is possible to identify whether the category is acceptable or not. The tomato grower would only be interested in the TBA digit when he considers irrigation waters. This sort of index minimizes information loss and allows the pub1ic to make decisions rather than the fait accompli of a single index which predetermines the YES/NO decision of the public. The disadvantage is that much public education would be necessary to enable a reasoned thought process to digest the implications of the number string.

The complex WQI retains the property of the simpler WQI that for two water body quality indices n_{1}, n_{2}, if $n_{1}>n_{2}$ the quality of body 1 is 'better' than that of 2 , thus allowing simpler comparison procedures as only classes of acceptability and order of priority in a string has to be considered.

The public must be given maximum information to allow self-determination. The indices should be widely publicised and would act as a public yardstick to monitor the effectiveness of the pollution control body of the region. The public do want to know ${ }^{(21)}$.

2.3. Mode1s as a Management Tool

2.3.0. Introduction

Management have two functions, planning and control. In the water quality context both roles can be supplemented by models. For example, a housing estate development generating 50 gal/day water usage can be planned for as its likely effect can be estimated, then planned in advance of the realisation of the physical reality. Should a milk tanker crash and discharge to a river, the area most critical downstream can be located and controlling action taken in advance of it. On a system with retention times in the order of a week this is feasible even in the absence of an on-1ine computer facility.

Scant regard is usually paid to the overall philosophy of the modelling process, resulting often in management using tools they have no background to, thus increasing the dangers of unsuitable extrapolations of usage. This can be prevented by the formulator retaining the control of the production phase of the model. This is unsuitable in the many instances where the building phase may be through temporary retention of expert staff. In any case, it is desirable to have management aware of the powers of their tools and thus lessen the black-box concept that emerges through rapid advances in theory or technology beyond the grasp of up-line management. Publications on models are now recognising this ${ }^{\left(2^{8)}\right.}$.
2.3.1. Advantages and Disadvantages of Models

As with all tools, there are gains and losses. Some of the advantages are

A Time scales of feedback quicker once established.
B Situations can be simulated and effected without disturbing the system.

C Alternatives can be simulated without additional field effort.

D Alternative solutions can be optimized from water quality criteria.

E Most viable economic alternative can be found
F Cost of simulation on a computer should be cheaper than field observation.

G Cost of simulation will be several orders of magnitude less than the possible economic savings through its use, so it need only be useful in some app1ications.

H Useful for substantiating broad opinion.
I Pollutants need not be introduced into the system for measurements (e.g. colour, radioactive or virus tracer techniques).
$J \quad$ Should provide some measure of errors/fluctuations in system which can easily be missed in field studies.
K Easily updated on advances in process knowledge.
L Can be written interactively for direct use by management.

Some of the disadvantages are:
A Initial capital/manpower investment before anything concrete is achieved.

B Initial time of response to management query, until established.

C Difficulty of 'translating' output for or by management.
D Extrapolation beyond bounds of statistical significance.
E Possibility of unconsidered processes emerging as dominant factors.

F Skewed data input would distort output.
G Interdependent on continuous computing expertise availability and a high percentage of up-time by the central processor unit.

Overall, the gain in a good model is high. The models in this project have been used on the following projects.

A Impact of Graig Coch Reservoir Scheme £80 M
B Variations in consent for Eastern Valleys £2 M Discharge

C Estuary Fisheries
£1 $M^{(31)}$
D Newport Main Drainage Scheme
£12 M
E Various industrial and other schemes
>£5 M PROJECTED CAPITAL COSTS

2.3.2. What is a Mode1? ${ }^{(27)}$

The Oxford Dictionary defines the word 'model' as
"something which resembles something else". The implied resemblance being physical as these are the 'models' a
layman associates with the word. The water industry uses both types of model - physical and conceptual. Any process can be modelled mathematically, the success of which determines the acceptance of a mode1 ${ }^{(29)}$.

2.3.3. Physical Mode1s

These are well established in the water industry for certain applications and will continue to be of practical significance for some time. They are usual strict scaled versions of physical reality, with lateral scales more reduced than vertical scales. They are usually of estuaries, reservoirs, bays etc. and of great importance in studies of tidal action, sedimentation siting of works etc. They are also useful for calibrating mathematical models for any hydraulic predictions. Current models exist for the Thames, Humber and other estuaries.

Physical models are infrequently used to study water quality problems as the distortion of scale confuses diffusive mechanisms and the problems of monitoring concentrations are equal to that of field data collection. Considerable progress has been made in the adaption of hydraulic models to simulate pollution phenomena by adjusting the physical parameters of the model ${ }^{(30)}$. Tracer studies can be carried out economically in the laboratory.

2.3.4. Mathematical Mode1s

2.3.4.1. Mathematical Mode1s are conceptual models. A physical
process is considered, dismembered, translated analytically and reassembled as a system of mathematical manipulations. The various models resulting for any given situation arise through differing methods of achieving the above reconstructions. A model does not exist in isolation, but is a part of a larger systems plan towards a desired objective.
2.3.4.2. Formulating a model is a stepwise procedure with many options at each stage.
A. Definition of Objectives. A management phase. They must have a clear idea of the questions they wish investigated, some concept of time scale of the problem and of the time delay in receiving useful feedback.
B. Selection of Scale. The objectives are analysed to consider what level of modelling is required, and the extent of the sub system to be included in the model
C. Selection of theoretical environment, i.e. which processes are to be modelled, to what depth of accuracy, alternatives available etc. An ideal mode1 would include all processes, with a perfect understanding of their individual behaviour. So practical models are not ideal models.
D. Planning of verification/calibration and of translating step C to an algorithmic form. following error sources to a consistent minimum.
A. Inherent data errors, depending on quality of analytical chemistry available.
B. Process equations are approximations to the real response, especially at extremes of response or time scales.
C. Arithmetic errors through hand and especially digital computers. We11 designed algorithms reduce this source of error to a 6th significant place phenomena.
D. Exclusion of factors under C of 2.3.4.2. that do have a profound effect on the real system. This is usually a major source of error, but it is not unknown for one parameter in a model to be the 'x-factor', i.e. adjusted to allow for all other phenomena.

Random errors are not as serious as others, as volume of data can compensate for lack of definition in analytical chemistry. Consistent errors may cause reaction mechanisms to be switched in which should not be invoked. Lack of consistency in calibration of the model usually indicates an error under section D, in which case the theory has to be revised.

2.3.5. A Loosely Mathematical Theory of Models

2.3.5.1.

Consider a subset E_{S} of the real world E , so that E_{s} is an isolated system. The subsystem E_{s} comprises n independent parameters, m dependent parameters and p processes.

The set of dependent variables is V_{d}, and has m items The set of independent variables is V_{i}, and has n items For each item in V_{d}, we can define a non-trivial subset of V_{i} called $V_{i d}$.
The set $V_{i d}$ forms a sub-environment within E_{s} for the variable considered in V_{d}.
A set of processes is now defined, $P_{i d}$, which defines the process kinetics for each respective element in V_{id}. The sum of operations on elements of v_{id} by processes $P_{i d}$ form the model of dependent variables V_{d}.
2.3.5.2. Consider Newton's Law of Gravity $F=g . m_{1} \cdot m_{2} / r^{2}$ An unlikely choice of V_{d} could be $\{\mathrm{F}$, velocity of light C, density of the ether $\rho\}, \mathrm{V}_{\mathrm{i}}$ is chosen as $\left\{\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~g}, \mathrm{r}\right.$, refractive index of ether $\left.\mu_{E}\right\}$. To model the Newtonian Law, select F from Vd. This is modelled on a subset of V_{i}, in this case $\left\{\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~g}, \mathrm{r}\right\}$. The 'process' set is $\mathrm{P}_{\mathrm{id}}=$ $\left\{*, *, *, /()^{2}\right\}$. Combined, these give the model: $\mathrm{F}=\mathrm{m}_{1} * \mathrm{~m}_{2} * \mathrm{~g} /(\mathrm{r})^{2}=\mathrm{P}_{\mathrm{id}}$ of $\left.\mathrm{V}_{\mathrm{d}}(\mathrm{F}) \circ \mathrm{V}_{\mathrm{i}}\right\}$
2.3.5.3.

In a practical model, the set V_{d} contains those variables to be investigated, and V_{i} should contain all those variables considered to be necessary to influence the set of variables in V_{d}. The processes $P_{i d}$ are more complicated, as these may involve various interactions and dependencies. This is where the scope is considerable.

There are 3 major groups of mathematical models:

2.3.5.4. DETERMINISTIC Mode1s

In a model M_{D}, if $\left\{V_{d}\right\}=\left\{M_{D} V_{C}\right\}$
where all variables in V_{i} are non-random in nature, and the model M_{d} introduces no random components, the model is said to be DETERMINISTIC. One set of input values will produce one set of output values, reproducibly. Can also be used when random effects are known to be present but considered to be negligible.
2.3.5.5. STOCHASTIC Mode1s

$$
\text { In a model } M_{S} \text {, if }\left\{V_{d}\right\}=\left\{M_{S} \quad V_{i}\right\}
$$

where either some variables in V_{i} or some part of the modelling process M_{S} is not defined exactly but by an expectation value and some distribution, the model is said to be STOCHASTIC. One set of input values will produce a set of output values, but not reproducibly.

Consider a variable x, random with normal distribution, standard deviation σ and a set of random numbers distributed normally $\{R\}$. Suppose a prediction of y is
made for every case of $x+R_{i} \sigma$. Every individual case is a deterministic model, but they can be grouped into M_{S}

RELATIONSHIP BETWEEN M_{D} and M_{S}

2.3.5.6. REGRESSION MODELS

These seek to relate observed data in $\left\{\mathrm{V}_{\mathrm{i}}\right\}$ to $\left\{V_{d}\right\}$ parameters by fitting a surface through the observed data by minimizing the sum of distances between the surface to the points of $\left\{\mathrm{V}_{\mathrm{i}}\right\}$. This is the LEAST SQUARES Algorithm and is rarely used as a model form in isolation.

2.3.6. SUB MODELS

2.3.6.1. Many tasks considered for modelling would be formidable in terms of an overall approach. It may be convenient to break a problem down into a set of sub models. A11 submodels of a system must be of the stochastic/regressive or deterministic/regressive type. Sub models can be interactive with other submodels. Consider a mode1 M
to be a combination of two models M_{A} and M_{B}, then

If $M=M_{A}+M_{B}$ the model M is said to be LINEAR in M_{A}, M_{B}
If $M=M_{A} * M_{B}$ the model M is said to be MULTIPLICATIVE in M_{A}, M_{B}
If $M=M_{A}\left(M_{B}\right)$ the models M_{A} and M_{B} are interdependent to form M
2.3.6.2.

Consider the problem of a minimum cost/maximum water quality benefit sewage treatment plant site. The treatment plant has to be modelled to predict the quality of effluent through primary, secondary and tertiary treatment, the cost of each phase has to be modelled, and the cost of discharge to various points on available water courses. If E is the input effluent and D is the output effluent, then

$$
D=M_{T}\left\{M_{S}\left(M_{P} E\right)\right\}
$$

where M_{P}, M_{S}, M_{T} are models of primary/secondary and tertiary treatment efficiencies. The cost model $C=M_{C T}\left(M_{C S}\left(M_{C P}\{E\}\right)\right)$ is similar, but requires addition of $M_{D T}$, or model of discharge transportation costs. The overall model M required is
$M=\max D+\min C=\operatorname{MAX}\left(M_{T}\left(M_{S}\left(M_{P}\{E\}\right)\right)\right)+\operatorname{MIN}\left(M_{C T}\left(M_{C S}\left(M_{C P}\{\right.\right.\right.$ $E\})\left(+M_{D T}\right)$
i.e. the result is a mixed additive/interdependent model.

Sensitivity is not usually a linear function. It can be thought of as the gradient component of an n dimen-
sional surface for the variable under consideration. It is more valid to use the term 'conditional sensitivity' and define it as the relative change in a variable for a unit change in input variable V_{k} for specific values of $\forall V_{i}$ ε \{set of input variables $\} \neq V_{k}$. The sensitivity of a variable with respect to an input variable is conditional on other variables in a system. Often though only a limited number have significant effects.

2.3.7. SENSITIVITY of A MODEL

The sensitivity of a model is defined as the relative change in a predicted value for a unit change in an input variable. For a variable x input to a model predicting y via a model M , the sensitivity of M for y through x is

$$
S(y M(x))=\frac{(Y(M(x+1))-Y(M(x)))}{Y(M(x))}
$$

Often S is a well behaved function, but often a small change in x can trigger a different sub model (as in the Steady State model described later when concentration of D.0. falls below $0.4 \mathrm{mg} / 1$) producing a discontinuity in s.

A highly sensitive model could be detrimental in that magnitudes of cause/effect become distorted. A model so insensitive that variations in input produce little variation in prediction is of no use either. It should be remembered that the system itself may be highly sensitive or stationary for some conditions, so similar variations in the model are to be expected.

2.3.8. QUALITY OF A MODEL

It is difficult to quantify as different levels of acquaintance with the model will have different viewpoints. Managements only quality criteria is whether it meets their demands. The formulator knows the implicit and explicit assumptions made, the processes included and excluded etc. One measure used is the amount of variation in data that can be modelled. Ideally, after data observed is subtracted from that predicted, an uncorrelated series of random variants remains. This is usually not so, the amount of correlation not present indicating the 'quality' of the predicted series.
$\left\{R_{i}\right\}=\left\{O_{i}\right\}-\{P\}$, i.e. residuals $=$ observed - predicted \% quality of model $=(1 . \emptyset-\max$ autocorrelation coefficient of series R) * $1 \varnothing \emptyset$

2.3.9. Extension of a Prediction System

2.3.9.1.

The main function of models being the application of the predicting process to theoretical situations, some consideration of the validity of extrapolation is required. Models are tested for one set of conditions, a validation population. Usually then the model is used to predict a population at a different point in the set of space-time.

Algorithms for distinguishing groups and testing the significance of any differences have been established for many years ${ }^{(24)},\left(2^{25}\right)$, based on work by Hotelling, Fisher and Mahalanobis. The essence of the statistics is the

Linear Discriminant Function (LDF), being the sum of products of each variable with a weighting factor that seeks to optimize the difference between two groups. Finally, the value of

$$
\frac{N_{1} N_{2}\left(N_{1}+N_{2}-P-1\right) D^{2}}{P\left(N_{1}+N_{2}\right)\left(N_{1}+N_{2}-2\right)}
$$

is calculated, and tested against an ' F ' distribution with P and $\mathrm{n}+\mathrm{n}-\mathrm{P}-1$ degrees of freedom to test significance of difference between two groups. D^{2} is the Mahalonobis $\mathrm{D}^{2(24)},{ }^{(26)}$. This is accepted for testing two known populations. It has to be decided whether a population and a prediction relate to the same underlying predicting mechanism. Then any such prediction can be qualified to assist management in the decision making task.

Consider the context of this project. The procedure to assign probability classes to extensions of models is 1. Measure variables in both populations that are influencing variations in the predicted parameters. 2. Use Discriminant Analysis and Factor Analysis to eliminate composite variables and those variables with a high factor to weighting, but a low Discriminant Analysis weight ((26) suggests <0.01)
3. C1assify into high risk/low risk category according to the following scheme:
2.3.9.2. LOW RISK EXTENSIONS: Factor contributions to the LDF from no more than one related factor. HIGH RISK EXTENSIONS: Contributions from at least two factors related to the predicted population to the LDF.

In the project, it was shown that it is not valid to apply a river BOD-OD mode1 to the Estuary for the period tidal cycle where fresh water flow predominates.

2.3.10. SUMMARY OF GENERAL MODELLING PHILOSOPHY

2.3.10.1. Users of models should consider the following points when interpreting a model system:

Models are only as good as their process formulations.
Simple Models are less accurate than complex models and their predictions allowed greater elasticity in interpretation.

Models often model interacting processes less well
than independent parallel or series processes.
Feedback and optimizing models usually require more compitational resource.

A sensitive model is not necessarily an accurate model. Errors are inherent in every phase, they can only be minimized.

Models are like deep freezes, one only gets out what is put in (GIGO principle), often after a long time interval, but looking different.

Models can only be applied to situations for which they were formulated, extrapolations must be thoughtful. Models must be allowed to predict without 'assistance' from external agencies.
2.3.10.2.

Pollution Models are mostly based on one conservation equation, that of conservation of mass
$F=\sum Q_{I} C_{I} K_{I}+\sum Q_{N} C_{N} K_{N}-\Sigma Q_{A} C_{A} K_{A}$
where suffix $I=$ Input, $N=$ Natura1, $A=$ Abstractions, Q is flow, C is concentration, K are kinetic transformation factors.

For conserved materials; $K_{I}, K_{N}, K_{A}=1$.
For the solute $C_{I}, C_{N}, C_{A}=1$, and as the solute is conserved

$$
F_{S}=\Sigma Q_{I}+\Sigma Q_{N}-\Sigma Q_{A}=Q
$$

This is the second basic equation used, the 'Flow Continuity' equation.

These equations recur frequently in varying guises and are basic physical facts of the system.
2.3.10.3.

Some models will now be discussed in greater detail, each one being of historic significance in the progress of water quality modelsin the past fifty years, and covering the spectrum of approaches.
2.4. A Comparative Review of Some More Significant Models

2.4.1. STREETER-PHELPS MODEL

This is the first attempt to quantify the problem of dissolved oxygen levels in water bodies ${ }^{(32)}$, and is of classic standard. The assumptions are simple. Bacteria working to stabilize the organic matter deplete the dissolved oxygen level, at equal rates. The D.O. in turn is replenished by surface absorbtion, reaeration.

$$
\frac{d B}{d t}=-K_{B} B \quad 2.4 .1 . A
$$

B is $B O D$ remaining, K_{B} is rate of removal.

$$
\frac{d D}{d t}=-K_{R} D+K_{B} B \quad \text { 2.4.1.B. }
$$

D is D.O. deficit, K_{R} is rate of reaeration.
At time of introduction of the load under consideration, initial conditions were D_{0} and B_{0}. Integrating gives

$$
\begin{aligned}
& B=B_{0} e^{-K B t} \\
& D=\frac{K_{B} B}{\left(K_{R}-K_{B}\right)}
\end{aligned}\left(e^{-K_{B} t}-e^{-K_{R} t}\right)+D . e^{-K_{B} t} \text { 2.4.1.C. }
$$

This equation does not relate well to the physical system because of extensive assumptions about constancy. It also refers to a static system, as time is the independent coupling variable. Assuming uniform velocity defined by

$$
\frac{d x}{d t}=U \rightarrow x=U t+x o
$$

and changing the variable in the two expressions allows a relation in terms of displacement from point of origin.

When modelling of water quality management was attempted, there was a need to find an expression that would estimatẹ water quality rapidly and effectively, with minimum inputs and concise outputs. So 50 years after formulation the Streeter-Phelps Model was examined and new properties discovered ${ }^{(33)}$.

Differentiation of 2.4.1.C-D setting the derivative to zero and solving, gives the turning points where the maximum deficit is reached, after a time t_{c}

$$
\begin{array}{lll}
t_{c}=\frac{1}{\left(\frac{\left.K_{R}-K_{B}\right)}{}\right.} \log \frac{K_{R}}{K_{B}} & 1-\frac{\left(K_{R}-K_{B}\right)}{K_{B}} \cdot \frac{D_{o}}{B_{o}} & \text { 2.4.1.E. } \\
D_{c}=\frac{K_{B}}{K_{R}} \cdot{ }^{B} o_{0} e^{-K_{B} \cdot t_{c}} & \text { where } D_{c}=\text { critical } & \text { 2.4.1.F. } \\
& &
\end{array}
$$

The ratio K_{R} / K_{B} is the self purification $f(34), D_{0} B_{o}$ the deficit load ratio R_{o}, so
$t_{c}=\frac{1}{K_{B(f-1)}} \log f 1-(f-1) R_{o} \quad$ 2.4.1.G. The long term must be positive for t_{c} to be defined, and one of the following must hold.

$$
\mathrm{f}<1 \quad \text { and } \quad \mathrm{R}_{\mathrm{o}}>0 \quad \text { 2.4.1. } \mathrm{H}
$$

or

$$
f>1 \quad \text { and } \quad 0<R_{o}<\frac{1}{f-1}
$$

to ensure a non negative tc.

It can be shown that by using a linear approximation of the form
$\bar{D}_{c}=E+R B_{o}+A D_{o}$ 2.4.1.J.
errors are likely to be less than 6% of \bar{D}_{c} and often only 1% in practical management problems. The precise values of $E, R \& A$ are obtained by minimizing the maximum error.

In a practical problem ${ }^{(37)}$, the resultant equation $\overline{\mathrm{D}}_{\mathrm{c}}=0.515+0.222 \mathrm{~B}_{\mathrm{o}}+0.542 \mathrm{D}_{\mathrm{o}}$ 2.4.1.K. gave a maximum error of $0.098 \mathrm{p} . \mathrm{p} . \mathrm{m}$. , where the deficit was allowed to rise up to $4 \mathrm{mg} / 1$.

This form is easily assimilated into a standard optimizing package, and the linear approximation is used as such.

2.4.2. DOBBINS MODEL

Based on the Streeter-Phelps equations, this model represented a significant broadening of factors for inclusion (35). Sedimentation, runoff sources, benthal layers, photosynthetic action are all included in the mode1.

Consider the concentration term $c(x, t)$. Then by definition $\underline{d c}=\frac{\partial c}{\partial x} \cdot d x+\frac{\partial c}{\partial t} d t$, so $\frac{d c}{d t}=\frac{\partial c}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial c}{\partial t} \quad$ 2.4.2.A.

Again assuming $d x / d t=U, \frac{d c}{d t}=U \frac{\partial c}{\partial x}+\frac{\partial c}{\partial t} . \quad$ 2.4.2.B.

The derivative $d c / d t$ represents the total change of $c(x, t)$, and is due to diffusion and net source terms. Assuming that diffusion is Fickian, i.e. represented by rate of change of concentration gradient, the equation 2.4.2.B becomes

$$
\begin{array}{ll}
E \frac{\partial^{2} c}{\partial t^{2}}+\Sigma S_{0}-\Sigma S_{I}=\frac{U \partial c}{\partial x}+\frac{\partial c}{\partial t} & \text { 2.4.2.c. } \\
\frac{d c}{\partial t}=E \frac{\partial^{2} c}{\partial t^{2}}-\frac{U \partial c}{\partial x}+\sum(\Delta S) & \text { 2.4.2.D. }
\end{array}
$$

Assuming the water body has reached steady state $c(x, t)$ $=c(x)$ and so $\frac{\partial c}{\partial t}=0$ and reduces to a $2 n d$ order
differential equation. To facilitate solution, the following assumptions have to be made on the nature of source/sink terms:
A) The volume of the kinetics of each source/sink term.
B) The constancy of these within the water body being considered.

Dobbins also concluded that neglecting E in a stream gave an error of 0.4% in the final predictions. Although this value was later estimated as 10 times too small by Lynch ${ }^{(36)}$, it is still a small error in relation to the mathematical simplification and the error accepted in field data.

Using the same symbols as in the Streeter-Phelps equation, can be written as

$$
\begin{array}{ll}
E \cdot \frac{d^{2} B}{d x^{2}}-U \cdot \frac{d B}{d x}-\left(K_{B}+K_{N}\right) \cdot B+B_{R} & 2 \cdot 4 \cdot 2 \cdot E \\
E \cdot \frac{d^{2} D}{d x^{2}}-U \cdot \frac{d D}{d x}-K_{R} \cdot D+K_{B} \cdot B+D_{B} & 2 \cdot 4 \cdot 2 \cdot F
\end{array}
$$

where K_{N} is rate of decrease in BOD due to all non-oxygen consuming kinetics and D_{B} is oxygen demand due to benthic action. The D_{B} term includes photosynthetic action and assumed to be time constant to be consistent. B_{R} is BOD addition due to run off.

Using the $\mathrm{E}=0$ approximation, we derive

$$
B=B_{O} e^{-\left(K_{B}+K_{N}\right) t}+\frac{B_{R}}{K_{B}+K_{N}} \quad 1-e^{-\left(K_{B}+K_{N}\right) t} \quad \text { 2.4.2.G. }
$$

and a similar layer expression for D. If all factors Dobbins introduced are set to zero a 2.4.2.G reduces to the Streeter Phelps Model equations 2.4.1.C \& D.

2.4.3.0'CONNORS MODEL

This is a development of the Dobbins Model (see 2.4.2) because it does not require the simplification $E=0$ and os is more representative of a real system $(37),(38),(39)$ Applied to the estuary situation, segments have constant parameters and E also allows for tidal advocation. As turbulent diffusion and apparent tidal diffusion are linked phenomena, it is possible to group the two effects. E will, however, be a function of position and time in these cases. The model has been refined by Thomamn.
THOMANN'S MODEL
Constant conditions within a
(40), (41)
-
egment are assumed. The process modelled may be shown by diagram

The equation to model the system is
$V_{i} \frac{d C_{i}}{d t}=\frac{Q_{i}\left(C_{i-1}+C_{i}\right)}{2}-Q_{i}+\frac{\left(C_{i}+C_{i+1}\right)}{2}+E_{i}\left(C_{i-1}-C_{i}\right)$
$+E_{i+1}\left(C_{i+1}-C_{i}\right)+V_{i} \Sigma S_{o}-V_{i} \Sigma S_{I}$ 2.4.4.A.
where Q_{i} is net flow from segment $i-1$ to i. E_{i} is the diffusion coefficient from segment $i-1$ to i. C_{i} is the concentration, V_{i} the volume of segment i. So are source terms, S_{I} are sink terms, summation to be over the segment only.

Two equations of the form 2.4.4.A. are obtained, one for the $B O D$ process, one for the $D O$ process.

By approximating $\frac{\mathrm{dc}_{i}}{\mathrm{dt}}=0$, i.e. a steady state approximation,
the solution becomes simple. The equations can be written in matrix form

$$
\underset{\sim}{\mathrm{A}} \cdot \underset{\sim}{c}=\underset{\sim}{b}
$$

where $\underset{\sim}{b}$ is the vector of net (source-sink) segment terms. As the matrix A of equation coefficients is tridiagonal, solutions are relatively easy to accomplish, being $\underset{\sim}{c}={\underset{\sim}{A}}^{-1} \cdot \underset{\sim}{b}$

The coupled equations have also been solved without the steady state approximation ${ }^{(42)}$ to simulate tidal cycle variations.

2.4.5. A Distributed Parameter Model (43)

This is a novel approach to the problem of solving an equation like 2.4.2.D. Previous models discussed seek to approximate the differential equations derived by finite difference schemes of various complexities. The approach in this model is to approximate the final solution, not the similar restrictions as the Thomann model (ref. 2.4.4.). To represent segments, a cascade connected electrical network is established. A segment is a network block with voltage/current representing concentration/pollutant transport. The analysis are extended to model the other parameters, and the resultant network is analysed using a standard network analysis program ${ }^{(44),(45)}$. The state of the work currently makes it inappropriate to most practical applications as problems arise with a network of over 5 segments but there are generality reasons why this work should progress and prove fruitful.

2.4.6. BOX-JENKINS METHOD MODELS

Advances in environmental monitoring techniques in recent times has made bulk data acquisition more viable than early days of water quality management. Developing a model along lines of theory inevitably involve simplifying assumptions. If one could build a model based on actual historic data, then the model would include all sources of variance, the fitting being the limiting factor.

Box and Jenkins Time Series analysis use time as a base ${ }^{(46),(47)}$, as opposed to frequency. An observed time series is a collection of events sequentially dependent, especially in the water quality field.

A frequency based method would seek to resolve all variations into the different frequency components, thus relating them to the varying factors. The time based method seeks to express variations by expressing the observed data as output from a linear filter with random input and transfer functions in series ${ }^{(48)}$.

Models can be built stepwise to cope with variations in time scale ${ }^{\left({ }^{49}\right)}$.and it has been used very successfully ${ }^{(50)}$.

Mathematics of the Box Jenkins Method

Define B, a Backward shift operator, so that $B Z_{t}=Z_{t-1}$
Define ∇, a Backward different operator, so that

$$
\nabla z_{t}=z_{t}-z_{t-1}
$$

The model is

$$
z_{t}=\sum_{j=0}^{\infty} w_{j} a_{t-j}
$$

where a_{i} are a series of random 'shocks', i.e. uncorrelated, w_{j} are weights and z_{i} is the observed value output. This can be written as

$$
z_{t}=\sum_{j=1}^{\infty}\left\{w_{j}{ }_{j} z_{t-j}\right\}+a_{t}
$$

If one can assume that
$z_{t}=\sum_{j={ }_{1}}^{p} \phi_{j} z_{t-j}+a_{t}$, so $a_{t}=\phi(B) z_{t}$
then Z_{i} is an autoregressive process (AR) of order p. The current observed value is a linear sum of finite historic observed values and a current shock a_{t}.

2.4.7. STOCHASTIC MODELS

The first major stochastic model ${ }^{(51),(52)}$ was developed from the Dobbins model described earlier. Mechanism in the Dobbin model were modified for random processes. An additional assumption was made: that BOD/DO distributions could be discretized, i.e. put into small packets of a basic unit Δ. The state m then refers to a concentration of $\mathrm{m} \Delta=\mathrm{S}_{\mathrm{m}}$. Consider a short time interval $\delta \mathrm{t}$ such that $(\delta \mathrm{t})^{2}$ is negligible. In that time several changes may occur: polluting loads/DO may increase or decrease, and the other mechanisms considered by Dobbins may change by i Δ states.

The increase in pollution due to B_{o} in time δt is B_{o}. t. Let P_{1} be the probability that pollution increases by Δ in δt due to B_{o}.

$$
\begin{aligned}
& P_{1}=B_{0} \cdot \delta t / \Delta+O(\delta t) \\
& \text { Also } \mathrm{P}_{2}=\mathrm{K}_{\mathrm{N}} \cdot \mathrm{~B}_{\mathrm{m}} \delta \mathrm{t} / \Delta+\mathrm{O}(\delta \mathrm{t}) \\
& P_{3}=K_{B} B_{m} \delta t / \Delta+0(\delta t) \\
& P_{4}=B_{B} \delta t / \Delta \quad+O(\delta t) \\
& \mathrm{P}_{5} \quad \mathrm{~K}_{\mathrm{R}} \mathrm{D}_{\mathrm{n}} \delta \mathrm{t} / \Delta \quad+\mathrm{O}(\delta \mathrm{t})
\end{aligned}
$$

where P_{2} = probability of decrease in pollution due to non-oxygen consuming processes. $P_{3} \quad=$ probability of decrease in pollution due to oxygen consuming bacterial activity. $\mathrm{P}_{4} \quad=$ probability of increase in pollution due to benthal demand.
$P_{5}=$ probability of decrease in D.O. deficit due to reaeration.

For the case of a moving average (MA) process:
$z_{t}=\sum_{j=0}^{q} \theta_{j} a_{t-j}$, so $z_{t}=\theta(B) a_{t}$,
the current observation is a linear sum of previous deviations from the mean and a current shock a_{t}. Combining the two gives an autoregressive moving
average (ARMA) process

$$
\phi(B) z_{t}=\theta(B) a_{t}
$$

The mixed model of order (P, q) incorporates a finite number of previous observations, a finite number of previous deviations and a current shock a_{t}.

This is for a stationary process z_{t}. The models can now be extended to any level or combination required when employed, it has been found to require only a few terms, even though sometimes separated by months in the instances where seasonal trends are important.

There seems little doubt that this kind of model will be used more extensively with the advent of better on-line logger data integrated to management models.

The joint probability that the $B O D$ is in state m and the $O D$ in state n is $P_{m}, n(t)$ at time t.

A difference equation is obtained for $P_{m}, n(t+d t)$ in terms of $P_{m}, n(t)$ and the factors P to P. This can be solved for given boundary conditions to yield expected values and variances. The expectation values (means) were those predicted by the Dobbins Model.

Mouskegian and Krutchkoff ${ }^{(53)}$ extended this model by segmenting a stream and using a cascade approximation that the probability output of one segment could be treated as the probability input into the next downstream segment. This was shown to be a very good sequential model.

2.4.8. STOCHASTIC MODEL OF CUSTER AND KRUTCHKOFF

This is an extension of the Thayer and Krutchkoff model ${ }^{(51)},(52)$, to include estuaries using a random walk mechanism as opposed to the creation/annihilation process. The units of the processes are again in multiples of Δ. Consider a particle of $B O D$ for a time interval of δt in an estuary $x=0$ to $x=x_{i}$. In the time it can either move upstream by δx with probability $P_{u}(t)$, move downstream by δx with probability $P_{D}(t)$, or be absorbed by some process and last to the BOD system with a time independent probability P_{R}. By mutual exclusivity, one can write

$$
P_{u}(t)+P_{D}(t)+P_{r}=1
$$

If $\mathrm{P}(\mathrm{m}, \mathrm{n})$ is the probability that a unit of pollution is at m $\delta \mathrm{x}$ after a total of n randomly generated steps, the
time laps is $n t$, and it could only be in $m x$ through being at $(n-1)$ at $m-1$ and P_{D} occurring or at $m+1$ and P_{u} occurring.
$\therefore P(m, n)=P(m-1, n) P_{D}(\{n-1\} \delta t)+P(m+1, n) P_{u}(\{n-1\} \delta t)$
Bearing in mind the Brownian motion nature of the $(54),(50),(56)$
process the following interpretations are given to each term.
$P_{D}(t)=\frac{1}{2}\left\{\left(1-K_{D} \delta t\right)+U(t) \delta t\right\} \quad$ 2.4.8.A.
$P_{U}(t)=\frac{1}{2}\left\{\left(1-K_{D} \delta t\right)-U(t) \delta t\right\} \quad$ 2.4.8.B.
$P_{R}=K_{D} \delta t$
2.4.8.C.
where $K_{D}=$ total BOD decay rate $=K_{N}+K_{B}$, Utt) is the complete velocity function, i.e. freshwater flow and tidal velocity.

Similar logic for the D.O. process leads to
$\frac{\partial B}{\partial t}(x, t \mid$ to $)=E^{2} \frac{\partial^{\prime} B}{\partial x^{2}}-U(t) \frac{\partial B}{\partial x}-K_{D} B(x, t \mid$ to $) \quad$ 2.4.8.D.
$\partial D\left(x_{1} t \mid\right.$ to $)=E^{<} \frac{\partial^{2} D}{\partial x^{2}}-U(t) \frac{\partial B}{\partial x}-K_{R} D(x, t \mid$ to $)$
$+K_{B} B(x, t \mid t o)$
2.4.8.E.

The solution of this for given boundary conditions forms the basis of this model.

2.5. MODELS SELECTED FOR THE PROJECT

3 Models were selected for the project to meet the differing needs of management.

2.5.1. A Steady State Mode1

Simply constructed and in concept it fulfilled
three functions.

A Was yielding results within one year.
B Can be adapted later for cost optimizing
C Can be useful for broad trends and can also be adopted for a regional (as opposed to local) model.

2.5.2. A Time Dependent Model

A one dimensional river (the Usk) discharging into a two dimensional bay (the Severn). Programmed to predict minimum and maximum effect of a variation. Fulfills the management functions of

A Predicting extremes of effects.
B Allowing a suspected reservoir effect of the Severn Bay to be investigated.

C Having considerable spin off in terms of sheer hydrological predictions.

D Being modular and flexible.

2.5.3. A Stochastic Mode1

A one dimensional segmented estuary model using field data to calculate stochasticity. Fulfilled management functions of:

A Using data acquisitions from planned monitoring system.

B Giving error bounds on predictions.
C Having capability of investigating transient effects.
2.5.4. Each of these models will now be described in detail,
(1) "Effects of Water Pollution in San Francisco Bay", G.E.Willeke, Report No. EEP-29 Program in Engineering Economic Planning, Stanford University, California, No. 94305 October 1968.
(2) 'Public Perceptions of Water Quality in a Metropolitan Area*, W.W.Hines and G.E.Willeke, Water Resources Bulletin, American Water Resources Association Vol. 10 No.4, August 1974, p. 745-755.
(3) "Urban Planning Aspects of Water Pollution Control", S.Grava, Columbia University Press, 1969.
(4) "Water Quality Criteria", Engineering and Technical Research Committee, American Petroleum Institute, 1967.
(5) "A Study of the Pollution and Natural Purification of the Ohio River"; Streeter, Phelps, U.S.Public Health Service, Public Health Bulletin No.146, Feb 1925.
(6) "We live in Thirsty Times", W.N.W.D.A. (Brecon), P.I.O.Office, 1976.
(7) Estimated use of Water in the United States, C.R.Murray, 1965 Geo. Surv. Circular 556, U.S.Dept. of the Interior, Washington DC, 1968.
(8) Water quantity criteria. Report of the National Technical Advisory Committee to the Secretary of the Interior, Federal Water Pollution Control Admin, Washington, April 1968.
(9) Water in Industry. Nat. Assoc. of Man and Chamber of Commerce of US, New York, Jan 1965.
(10) "Water Quality Management, Environmental Sciences \& Engineering Lectures 18-20", U.S.D.H.E.W. Public Health School, Cincinatti, Ohio, March 1965.
(11) "Annual Report and Accounts", Anglian Water Authority, 1974-1975.
(12) Water Statistics, Department of Environment, 1973.
(13) Gwent Water Division Annual Report, 1.4.72-31.3.73.
(14) "Water Crisis in Gwent Looms as Reservoir Levels Drop". Page 1 Main Article, South Wales Argus, 21 Feb 1976.
(15) "Water Quality Management and the Time Profile of Benefits and Costs", D.S.Parker, Water Resources Research, Vol. 4 No.2. April 1968, p.233-p. 246.
$\left({ }^{16}\right)$ "Conventional and Unconventional Alternatives for Water Supply Management", R.K.Davis and S.H.Hanke, Water Resources Research Vol.9 No.4, Aug 1973, p.861-p870.
(17) "Consumers Water Quality Index", T.L.Walski, F.L.Parker, Journal of Environmental Engineering Division of A.S.C.E., Vol.EE3. pp. 10601 June 1974, p. 593-p610.
(18) "Discussion on C.W.Q.I.", M.W.Rogers and R.H.McOwen, Journal of Environmental Engineering Division of A.S.C.E., Vol EE1, Feb 1975, p. $185-\mathrm{p} .189$
(19) "Draft Report of the Bedford Case Study", Anglian Water Authority, to be published.
(20) "Optimal water Quality Management for the Hauston Ship Channel", A.J.Hays, E.F.Gloyna, Sanitary Engineering Div. of A.S.C.E. Vol.SA1, Feb 1972, p.195-p. 215.
(21) "Perceptions of Water Quality in a Metropolitan Area", W.W.Hines and G.E.Willke, Water Resources Bulletin, Vol. 10 No.4, Aug 1974, p.745-p. 755.
(2) "Water Quantity and Quality Management in the Ruhr Valley", K.R.Imhoff, Journal of W.P.C.F., Vol 46 No. 7 July 1974, p.1663-1673.
(23) "Management of the Thames", J.H.Potter, WPRL Symposium on Mathematical and Hydraulic Mode1ling, 18/19 April 1972, Paper no.9.
(24.) "Survey of Discriminatory Analysis", J.L.Hodges, O.S.A.F. School of Aviation Medicine, Randolph Field, Texas, 1950, pp. 115.
(25) "An Introduction to Multivariate Analysis", T.W.Anderson, J.Wiley, New York, 1958.
(26) "When is it safe to extend a Prediction Equation?", J.R. Wa1lis, Water Resources Research, Vol.3 No.2, 2nd quarter 1967, p. 375 - p. 384.
(27) "What is a Mathematical Mode1", M.W.Rogers, Report for Usk River Division, Caerleon, 12th March 1974.
(28) "Draft Report of the Bedford Ouse Study", Anglian Water Authority, To be published.
(29) "Mathematical Mode1s", C.A.Cou1son, Bu1letin of I.M.A., Sept/Oct 74 p.340-p. 343.
(30) "Interpretation of Water Pollution Data from Tidal Estuary Models", D.R.F.Harleman, E.R.Holley and W.C.Huber, 3rd International Conference on Water Pollution Research, Section 3, Paper 3, (Munich, B.R.D.)
(31) Private Communication, R.Millichamp, Fisheries Officer, Usk River Division.
(32) "A study of the Pollution and Natural Purification of the Ohio River", H.W.Streeter, E.B.Phelps, Public Health Bulletin 146, U.S.P.H.S., Washington, 1925.
(33) "The Oxygen Sap Equation: New Properties and a Linear Equation for the Critical Deficit", M.Arabi, J.Elzinga, C.Revelle; Water Resources Research, Vol 10 No. 3, Oct 1974, p.921-p.929.
(34) "?" Name of article not known,
(35) B.O.D. and Oxygen Relationships in Streams, W.E.Dobbins, J. Sanitary Eng. Div. of A.S.C.E., Vo1 90 No.SA3 June 1964, p. 53-p. 78 .
(36) "Discussion of B.O.D. and O.D. Relationships in Streams", W.O.Lynch, J.Sanit. Eng. Div. of A.S.C.E., Vol 91, No.SA1, Feb 1965, p.82-p. 83.
(37) "Analysis of Diffusion Data of the Delaware River Model", D.J.0'Connor, Int. Journal Air Water Pollution, 1963, Vol 7, p. 1073-p. 1084.
(38) "Estuarine Distribution of Non Conseryative Substances", D.J.0'Connor, J.Sanitary Eng. Div. of A.S.C.E., Vol 91, No. SA1. Feb 1965, Paper 4225 p.23-p. 42.
(39) "Notes from Summer Institute in Water Pollution ControlStream and Estuarine Analysis", D.J.O'Connor, Manhattan College, New York, 1968.
(40) "Mathematical Model for dissolved oxygen", R.V.Thomann, J.Sanitary Eng. Div. of A.S.C.E. Vol 89, No. SA5 Oct 1963, Paper 3680, p. 30.
(11) "Recent Results for Mathematical Model of Water Pollution Control in Delaware Estuary", R.V.Thomann, Water Resources Research, Vol.1, No.3, 1965, p.349-359.
(42) "Time Karying Dissolved Oxygen Mode1", R.V.Thomann, G.O. Pence, J.M.Jeglic, J of Sanitary Engineering Division, A.S.C.E., Apri1 1968.
(43) "Computer Aided Analysis of Estuarine Dynamics Simulated by a Distributed Parameter Mode1", B.P.Butz, R.Fisch1, T.R.Harper, I.E.E.E. Transactions on Systems, Man, and Cybernetics, Vol SMC3, No 4, Ju1y 1973 p.318-p.327.
(44) "Mathematical Simulation of Estuarine Behaviour", J.M.Jeglic, Digital Computer Technology and Programming Analysis, Memo 1032, Revision A, G.E.C., July 1967.
(45) "A Textbook Computerized State Space Network Analysis Program", C.A.Pottle, I.E.E.E. Transactions Circuit Theory, Vo1 CT16, Nov 1969, p.566-p.568.
(46) "Some Recent Advances in Forecasting and Control", G.E.P. Box, G.M.Jenkins, Applied Statistics, Vol 17, No.2, 1968, p.91-p. 109 .
"Time Series Analysis, Forecasting and Control, G.E.P.Box, G.M.Jenkins, Holden Day, San Francisco, Calif. 1970.
(48) "An Introduction to Time Series Analysis", G.H.Toebes, Stochastic Hydraulics, School of Eng. Publications, Series No.4, University of Pittsburg, 1971.
(49) "Water Quality Models using the Box Jenkins Method", P.M. Muck, and G.J.Farquahr, Journal of Enviro. Eng. Div. of A.S.C.E., No.EE3, PP10629, June 1974, p.733-p. 752.
(50) "Characterization of Time Varying Organic Loads", A.T.Wallace and D.M.Zollmann, Journal of Sanit. Eng. Div. of A.S.C.E., Vo1 98, No.SA2, PP8800, Apri1 1972, p.444-p. 455.
(51) "A Stochastic Model for Pollution and Dissolved Oxygen in Streams", R.P.Thayer, and R.G.Krutchkoff, Water Resources Research Centre, Virginia Polytechnic, Institute, August 1966.
(52) "Stochastic Mode1 for BOD and DO in streams", R.P.Thayer and R.G.Krutchkoff, J.Sanit. Eng. Div. of A.S.C.E. No. SA3, June 1967, p.59-p. 72.
(53) "Generalized Initial Conditions for the Stochastic Model for Pollution and Dissolved Oxygen in Streams", R.H. Moushegian and R.G.Krutchkoff, Water Resources Research Centre, Bulletin 28, Aug 1969.
(54) "Diffusion Process in Genetics", W.Feller, Proceedings f the 2nd Berkeley Symposium on Math. Stat. and Probability, J.Neyman (ed), 1950, p. 227.
(55) "Random Processes", Rosenblatt, Murray (ed), Oxford University Press, 1962.
(56) "Stochastic Processes and Distribution of Gene Frequencies under Natural Selection", Kimura and Motoo, Cold Spring, Herbor Symposia, Quantitative Biology Vo1 XX, New York, 1955.
(57) "Linear Programming Applied to Water Quality Management", C.S.ReVelle,D.P.Locks, Water Resources Research, Vol 4,1968 p1-p9.

CONTENTS-CHAPTER 3

3.1	Introduction
3.2	Conservation of Volume
3.3	Consevation of Pollutant
3.4	The tidal velocity
3.5	Combining the conservation
3.6	Estuary Salinity
3.7	Time averaging
3.8	The Steady State Model Chemistry of the Steady State Model
3.9	Modifications for local circumstances
3.10	Notes on units
3.11	The

```
The Steady State Model is a simple version of a full time dependant
model. The model has been employed successfully in the Thames [2]
and Severn}[3] Estuaries. Its relative simplicity makes it an idea
management tool and with emphasis on input/output simplicity and
intuitive comprehension it has been used directly by the WNWDA
divisional management team for consent simulations.
```

This chapter seeks to outline the theory of the basic model and then
show how the Steady State Model is derived.

3.2 The Conservation of Volume

This conservation equation is the basic building block of many models and requires careful derivation. There are several similar means of expressing this relationship, also known as the conservation of mass. 3.2.1 Consider a particle of fluid of infinitesmal volume $\delta \mathrm{v}$, of density λ at any time t. As the particle moves under the influence of various forces, its mass cannot change. Mass is defined as the product of density and volume, it can be seen that

$$
\begin{equation*}
\frac{d}{d t}[\lambda \delta v]=0 \tag{3.2.1.A}
\end{equation*}
$$

Should compression or expansion take place, this is reflected in λ and δ_{v} such that the product remains constant.
3.2.2 Alternatively, consider a closed surface S lying entirely in the body of a fluid and thus enclosing a volume V. if \underline{u} is a unit normal inward for the element $d s$ of S and \underline{v} the velocity vector at the same point, then $-\lambda \underline{u} . \underline{v} . d s$ is the flow out of the surface element in unit time. The volume enclosed by S is constant once S is defined, so V is constant and thus

$$
\begin{equation*}
\int_{V} \lambda \cdot d v \tag{3.2.2.A}
\end{equation*}
$$

Assuming no creation/annihilation of fluid within V, the computed loss can only be replenished by an equal flow into the boundary, which is, by Gauss's Theorem $\underline{\nabla}(\lambda . \underline{v}) . \delta \mathbf{v}[4,5]$

It can be seen that

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{V} \lambda \cdot \delta_{v}=\int_{--} v \cdot d \cdot d s=-\int_{S} \underline{\nabla} \cdot(\lambda \underline{v}) \delta v \tag{3.2.2.B}
\end{equation*}
$$

and therefore $\int\left[\frac{\partial \lambda}{\partial t}+\underline{\nabla} \cdot(\lambda \cdot \underline{v})\right] \cdot \delta \mathbf{v}=0$
As the surface S integral is arbitrary, V is arbitrary and so

$$
\frac{\partial \lambda}{\partial t}+\underline{\underline{t}} \cdot \lambda \cdot \underline{v}=0 \text { at every point } \quad(3.2 \cdot 2 \cdot B)
$$

3.2.3 The step 3.2.2.C to 3.2.2.D is important. If an arbitrary volume V existed to satisfy $3.2 .2 . c$, then

$$
\begin{equation*}
\int_{V}^{A} \delta_{V}=0 \text { for any } V \text {, and so } \int_{V} A \cdot \delta_{V}=0 \tag{3.2.3.A}
\end{equation*}
$$

Then also $\underset{\mathrm{V} \rightarrow 0}{\operatorname{Limit}} \frac{1}{\mathrm{~V}} \int \mathrm{~A} \cdot \delta \mathrm{t}=0$, ie $\underset{\mathrm{V} \rightarrow 0}{\operatorname{Limit}} \frac{1}{\mathrm{~V}} \cdot \mathrm{~A} \cdot \mathrm{~V}=\mathrm{A}$ and not $=0$

So if the arbitrary V existed, the closed surface S would need to vanish. Therefore the step in the derivation is justified.
3.2.4 Expanding the second term in 3.2.2.D gives

$$
\begin{equation*}
\frac{\partial \lambda}{\partial t}+\lambda \underline{\nabla} \cdot \underline{v}+\underline{\mathbf{v}} \cdot(\underline{\nabla} \cdot \lambda)=0 \tag{3.2.4.A}
\end{equation*}
$$

Rewriting $3 \cdot 2 \cdot 2 . D$ now gives $\mathbb{Z} \cdot \underline{v}=\frac{d}{d t}[\log (1 \Lambda)]$
3.2.5 Equations $3 \cdot 2 \cdot 2 . \mathrm{D}, 3.2 .4$. A and $3.2 .4 . \mathrm{B}$ are all forms of the common CONTINUITY EQUATION for a fluid. Should this fluid be incompressible, the above equations further reduce to

$$
\begin{equation*}
\underline{\nabla} \cdot \underline{v}=0 \text { as } \lambda \text { is constant } \tag{3.2.5.A}
\end{equation*}
$$

So for each unit volume it is possible to write the equation

$$
\frac{\partial v}{\partial x} x+\frac{\partial v}{\partial y} y+\frac{\partial v}{\partial z} z=0
$$

where $\mathbf{v}_{\mathbf{x}}, \mathbf{v}_{\mathbf{y}}, \mathbf{v}_{\mathbf{z}}$ are the velocity components along the cartesian axes. 3.2.5.B is the General Equation of conttinuity for an incompressible fluid.
3.2.6 The previous theory is now considered in the context of a one dimensional estuarine system at any point x_{1}

$$
\begin{equation*}
\frac{\partial V}{\partial t}(x, t)=Q_{0}(t)+\int_{0}^{x_{1}} q(x, t) \cdot d x-A(x, t) \cdot U(x, t) \tag{3.2.6.A}
\end{equation*}
$$

Rate of	FWF in	Sum of inputs	Flow out of point
increase	at head		
between head of	being the product		
of vol in of the	system and x_{1}	of cross-sectional	
time at x_{1}	system		areas and velocity

(V-volumes,A-areas, Q and q-flow inputs, U-velocities in 1-dimension)

Rewriting and diffrentiating with respect to x gives :
$\frac{\partial}{\partial x}\left(\frac{\partial V}{\partial t}\right)=\frac{\partial}{\partial t}\left(\frac{\partial V}{\partial x}\right)=\frac{\partial Q}{\partial x^{\circ}}(t)+q(x, t)-\frac{\partial}{\partial x}[A(x, t) \cdot U(x, t)]$

Now $\frac{\partial V}{\partial x}=A$ by definition and $\frac{\partial Q_{0}}{\partial x}(t)=0$ as Q_{0} is the input at a fixed point, so

$$
\begin{equation*}
\frac{\partial A}{\partial t}(x, t)=q(x, t)-\frac{\partial}{\partial x}[A(x, t) \cdot U(x, t)] \tag{3.2.6.C}
\end{equation*}
$$

3.3 The Conservation of Pollutant

Let P be any property of the fluid under consideration. Using very similar logic to section 3.2.1, the equation

$$
\begin{equation*}
\frac{d}{d t}\left[\int_{V} P \cdot \lambda \cdot \delta v\right]=0 \tag{3.3.A}
\end{equation*}
$$

for any volume V is derived.Carrying the temporal differentiation into the integral gives

$$
\begin{equation*}
\int_{V} \frac{d p}{d t} \cdot \lambda \cdot \delta v+\int_{v} P \cdot \frac{d}{d t}(\lambda \cdot \delta v) \tag{3.3.B}
\end{equation*}
$$

The second term is $3 \cdot 2 \cdot 1 . \mathrm{A}$ and so zero, so $\int_{V} \frac{\mathrm{dP}}{\mathrm{dt}} \cdot \lambda \cdot \delta \mathrm{v}=0$

This is the equation of conservation of a property of the fluid, in this case a pollutant being carried within the fluid undergoing other transformations.
3.3.1 By analogous logic,for one dimensional estuarine considerations, using 3.2.6.A the following equation can be written :
$\frac{\partial P}{\partial t}(x, t)=Q_{0}(t) \cdot C_{0}(t)+\int_{0}^{x} P(x, t) \cdot d x-\int_{A} U(x, t) \cdot c(x, t) \cdot d A$
where Q_{0} is as in $3.2 .6, C_{o}(t)$ is the concentration of the pollutant in a
flow Q_{0} at time $t, p(x, t)$ is the amount of pollutant added in the interval
$x=0$ to the point under consideration, $x=x_{1} . P(x, t)$ is the absolute mass and $c(x, t)$ the concentration of the pollutant.

Partial Differentiation with respect to x gives the equation
$\left.\frac{\partial}{\partial x}\left(\frac{\partial p}{\partial t}\right)=\frac{\partial}{\partial x}\left(Q_{0} \cdot C_{0}\right)+p(x, t)-\frac{\partial}{\partial x}\left[\int U(x, t) \cdot c(x, t) \cdot d A\right]=\frac{\partial}{\partial t} \frac{\partial p}{\partial x}\right)(3 \cdot 3 \cdot 1 \cdot B)$
Where $\frac{\partial P}{\partial x}$ is the rate of change of mass of pollutant with repsect to the distance from the head of the system and can be written as $A(x, t), C(x, t)$.

3.3.2 Decay Rates

The conservative equations derived only hold for sustained systems where either decay balances inputs at all times and all points or no decay or creating factors are operating. For most purposes, a first order decay is assumed. The rate of decay is k per unit of time.Equation $3 \cdot 3,1, B$ then requires an extra sink term, this being $-k \cdot A(x, t) \cdot c(x, t)$. So
$\frac{\partial}{\partial t}(A \cdot c)=Q_{0} \cdot C_{0}+p-\frac{\partial}{\partial x}\left[\int_{A} U \cdot c \cdot d A\right]-k \cdot A \cdot c$
3.3.3 Cross sectional averaging and the source of longitudinal dispersion. The velocity and concentration terms are functions of both space and time. The dependance on x, y, z, t must be mapped to one on x, t only for a onedimensional model. Define \bar{u} and \bar{c} as the mean values of u and $c(x, y, z, t)$ over the range of y, z. The resultant is the mean value over the cross-section Sim larly define u^{\prime} and c^{\prime} as departures from the defined means \bar{u} and \bar{c}. Them

$$
\begin{aligned}
& \int_{A} U(x, t) \cdot c(x, t) \cdot d A=\int_{A}\left(\bar{u}+\frac{u}{}\right) \cdot(\bar{c}+c) \cdot d A=\int_{A} \bar{u} \bar{c} \cdot d A+\int_{A} \bar{u} c!d A \\
&+\int_{A} u^{\prime} \cdot \bar{c} \cdot d A+\int_{A} u^{\prime} \cdot c^{\prime} \cdot d A(3 \cdot 3 \cdot 3 \cdot A)
\end{aligned}
$$

As, by definition, the mean values of u^{\prime} and c^{\prime} are zero, two of the terms
in 3.3.3.A are zero, and so
$\int_{A} u \cdot c \cdot d A=\bar{u} \cdot \bar{c} \cdot A+\int_{A} u^{\prime} \cdot c^{\prime} \cdot d A$
The term $\bar{u} \cdot \bar{c} . A$ is the net mass transport per unit time. The variations in
concentrations over the cross section combine with the variation in velocity to produce the second term. It is this term that produces the dispersion which skews a direct mass transport response function (fig. 3.3.3.C)

$\frac{\text { Fig 3.3.3.C Response to input without (1) and with (2) the }}{\text { presence of logitudinal dispersion. }}$

3.3.4. A Dispersion Coefficient $D(x, t)$

A term may be defined to overcome the problems of solving the diffusive integral in $3 \cdot 3.3 . B$. A dispersion coefficient D is defined as in $3 \cdot 3.4 . A$ in terms of per unit area per unit concentration gradient.

$$
\begin{equation*}
\int_{A} u^{\prime} \cdot c^{\prime} \cdot d A=-D(x, t) \frac{\partial c}{\partial x} \tag{3.3.4.A}
\end{equation*}
$$

The term is negative to show the net transport towards the area of lower concentrations $[6]$.
3.3.5. The final conservation of pollutant equation is then

$$
\begin{equation*}
\frac{\partial}{\partial t}[A \cdot c]=p+\frac{\partial}{\partial x}[D \cdot A \cdot \partial c]-\frac{\partial}{\partial x}[A \cdot U \cdot c]-k \cdot A \cdot c \tag{3.3.5.A}
\end{equation*}
$$

Coupled with $3.2 .6 . C$, these two equations form the basis of the estuary model.
3.4 Tidal Velocities

The velocity u considered previously has been the total, net, velocity seen in the system.In an estuary, the tidal velocity is an important factor and requires individual consideration. The velocity can be written as

$$
\begin{equation*}
U=U_{\text {Tidal }}+U_{\text {Fresh Water }}=U_{t}+\frac{Q(x, t)}{A(x, t)} \tag{3.4.A}
\end{equation*}
$$

where $Q(x, t)$ is the sum of the first two right hand terms in $3 \cdot 2 \cdot 6 . A$.
3.2.6.A can now be written as

$$
\begin{equation*}
\frac{\partial V}{\partial t}=U \cdot A-U_{t} \cdot A-A \cdot U, i e \frac{\partial V}{\partial t}+A \cdot U_{t}=0 \tag{3.4.B}
\end{equation*}
$$

As $\frac{\partial V}{\partial x}=A, 3.4 . B$ can now be written as $\frac{\partial V}{\partial t}+\frac{\partial V}{\partial x} \cdot U_{t}=0$

The interpretation of this is that any particle moving with a particle velocity equal to the tidal velocity has a constant volume upstream of it.

A simple proof appears in [7].

3.5 Combining the conservation equations

Combining the two derived equations,
$\frac{\partial A}{\partial t}=q-\frac{\partial}{\partial x}[A \cdot U] \quad(3 \cdot 2 \cdot 6 \cdot C)$ and $\frac{\partial}{\partial t}[A \cdot c]=p+\frac{\partial}{\partial x}\left[D \cdot A \cdot \frac{\partial c}{\partial x}\right]-\frac{\partial}{\partial x}[A \cdot U \cdot c]-k \cdot A \cdot c$
(3.2.5.A) . By expanding the term $\partial / \partial x[A . U . c]$, substituting for $A U$ from 3.4.A , dividing by A and some rearrangement, results in
$\frac{\partial c}{\partial t}(x, t)+U_{t}(x, t) \cdot \frac{\partial c}{\partial x}(x, t)=\frac{1}{A}\left[\frac{\partial}{\partial x}(D \cdot A \cdot \partial c)-\frac{\partial}{\partial x}(Q \cdot C)+p\right]-k \cdot c$
Consider a salt particle moving with tidal velocity $U_{t},[7]$ shows the conditions required for a constant salinity, with p and k both zero, are that the contents of $[. \ldots]$ in 3.5.A vanish, ie

$$
\begin{equation*}
\text { D.A. } \frac{\partial c}{\partial x}-Q \cdot C=0 \text { where } c \text { is the salinity } \tag{3.6.A}
\end{equation*}
$$

This necessary condition suggests that the dispersive transport mechanism is balanced by the 'fresh water flow' transport mechanism.A plot of salinity at any point against cumulative volume upstream should result in a well defined curve. This method was developed by the Water Research Centre and used extensively on the Thames $[8]$. Even if 3.6. . were not strictly the equality shown, but only approximately vanishes, the concentration gradients are similarly small.This implies that particles moving at U_{t} experience minimal variations when compared to those occuring through time at a fixed point, or those at a fixed point occuring through time. As numerical solutions will eventually be employed to solve this system, it is then desirable to have to model minimum concentration changes.
3.7.1 In order to facilitate a solution, the previously derived equations require modifications to evolve a difference scheme.

The estuary is segmented into N segments, with their boundaries lying at the points $X_{i}(t)$. These segments are moved with a velocity of U_{t} to take advantage of the concepts developed in 3.6

$$
\begin{equation*}
\frac{\partial X}{\partial t} i=U_{t}(x, t) \tag{3.7.1.A}
\end{equation*}
$$

3.7.2 The conservation of volume equation is also rewritten (cf 3.2.6.A) Rate of change of volume $=$ Inflow in unit time + input to segment in unit time - outflow from segment in unit time
$\frac{\partial}{\partial t} \Delta V_{i}=A_{i-1}\left(U_{i-1}-U_{t, i-1}\right)+\Delta Q_{i}-A_{i} \cdot\left(U_{i}-U_{t, i}\right)$
The suffix i refers to the point $X_{i}, \Delta V_{i}$ is the volume of segment i. A, U and U_{t} are as before. In 3.4 it was shown that $A_{i} U_{i}=U_{t, i} A_{i}+Q_{i}$, substituting in 3.7.2. gives
$\frac{\partial}{\partial t} \Delta V_{i}=Q_{i-1}+\Delta Q_{i}+\left(-Q_{i}\right)=0 \quad$ (by definition of $Q, \Delta Q$)
ie the volume of a segment is constant in time. As a corollary, the volume from $x=0$ to $x=x_{i}$ is constant, as it solely composed of fixed volume segments and this allows x_{i} to be calculated as a function of time $[7, p 74]$.

3.7.3 The mixing terms

These are used to simulate the logitudinal dispersion between adjacent segments, representing an equal and opposing interchange of water. The values of F_{i} are defined by

$$
\begin{equation*}
\frac{2 D_{i} \cdot A_{i}}{X_{i+1}-X_{i-1}}=F_{i} \tag{3.7.3.A}
\end{equation*}
$$

This representation will later allow A_{i} to be taken out of the equations.

The dispersion term is most difficult to establish. In practice, a method to estimate the mixing coefficients is used to provide an implicit estimate of dispersion. If there were no turbulent mixing in an estuary, the fresh water input would merely pass through the system in a st atified stream.In this case the assumption of small depth variation no longer holds.Also, were salt detected, it would be at the concentration found in seawater. In most cases,however, there is sufficient mixing to give a homogeneous system. The longitudinal salinity distribution is the result of mixing between the tidal surge and the fresh water head. The mixing coefficients are defined as

$$
F_{i}=\frac{Q_{i} \cdot\left(S_{i}-S_{0}\right)}{\left(S_{i+1} S_{i}\right)}
$$

where S_{i} is the salinity in the ith segment and S_{o} is the salinity of the fresh water input at the head of the system.
3.7.4 The conservation of pollutant equation (3.5.A) is now reconsidered.

$$
\begin{align*}
& \frac{\partial P}{\partial t}(x, t)=\frac{\partial}{\partial t}\left[\Delta V_{i} \cdot c_{i}\right]=\Delta V_{i} \cdot \frac{d c}{d t} i \tag{3.7.4.A}\\
& \int_{0}^{X_{i}} p(x, t) \cdot d x=P_{i}+\int_{0}^{X_{i-1}} p(x, t) \cdot d x \tag{3.7.4.B}
\end{align*}
$$

where P_{i} is the amount of pollutant added in X_{i-1} to X_{i}. The rate of change of a pollutant in any segment i is :
$\frac{d P}{d t}=$ [Amount introduced through inflow] [Amount introduced through mixing] + Amount entering through external sources $]-$ [Amount lost through out flow]-[Amount lost to mixing to next segment]-[Amount extracted by all external sinks]-[Amount lost through decay]

Each of the terms in 3.7.4.C can be quantified in terms of F, c and p as follows :

$$
\begin{array}{ll}
\text { Inflow into segment } & Q_{i-1} \cdot c_{i-1} \\
\text { Inflow through additions } & p_{i} \\
\text { Loss through decay } & \Delta V_{i} \cdot k \cdot c_{i} \\
\text { Inflow through mixing } & F_{i-1} \cdot\left(c_{i-1}-c_{i}\right) \\
\text { Loss through mixing } & F_{i} \cdot\left(c_{i}-c_{i+1}\right) \\
\text { Loss through outflow } & Q_{i} \cdot c_{i}
\end{array}
$$

(the p_{i} terms the net source in a segment, ie sources-sinks.)

Substituting these into 3.7.4.C gives

$$
\begin{align*}
& \frac{d P}{d t}=\left[Q_{i-1} \cdot c_{i-1}+p_{i}+F_{i-1} \cdot\left(c_{i-1}-c_{i}\right)\right]-\left[k \cdot c_{i} \cdot \Delta V_{i}+F_{i} \cdot\left(c_{i}-c_{i+1}\right)\right. \\
& \left.\quad+Q_{i} \cdot c_{i}\right]=\Delta V_{i} \frac{d c}{d t} i \tag{3.7.4.D}
\end{align*}
$$

The diffrential is approximated by $\frac{c_{i}^{t}-c_{i}^{t-1}}{\Delta t}$ and this allows 3.7.4.D to be solved using the Crank-Nicholson approximation $[9,10]$.

> Fig. 3.7.4.E The grid for The Crank Nicholson Method

This method is inherently stable and implicit, with an error order of magnitude $(\Delta t)^{2}+(\Delta x)^{2}$.

The complete time dependant iterative solution can now be written. The last term is the amount of pollutant entering the segment in the time step under consideration.This can have different functional representations.

$$
\begin{align*}
\Delta V_{i}\left(c_{i}^{t}-c_{i}^{t-1}\right)= & \frac{\Delta t}{2}\left[\left(Q_{i-1}^{t} \cdot c_{i-1}^{t}-Q_{i}^{t} \cdot c_{i}^{t}\right)+\left(F_{i-1}^{t} \cdot\left(c_{i-1}^{t}-c_{i}^{t}\right)\right.\right. \\
& \left.\left.+F_{i}^{t} \cdot\left(c_{i+1}^{t}-c_{i}^{t}\right)\right)-k \cdot \Delta V_{i} c_{i}^{t}\right]+\frac{\Delta t}{2}\left[\left(Q_{i-1}^{t} \cdot c_{i-1}^{t-1}\right.\right. \\
& \left.-Q_{i}^{t} \cdot c_{i}^{t-1}\right)+\left(F_{i-1}^{t} \cdot\left(c_{i-1}^{t-1}-c_{i}^{t-1}\right)+F_{i}^{t}\left(c_{i+1}^{t-1}-c_{i}^{t-1}\right)\right)- \\
& \left.k \cdot \Delta V_{i} \cdot c_{i}^{t-1}\right]+\int_{t-1}^{t} p_{i} \cdot d t \tag{3.7.4.F}
\end{align*}
$$

If the boundary conditions $C_{0}(t)$ and $C_{N}(t)$ are known for all times of the simulations, the equation $3.7 .4 . F$ can be solved directly ${ }^{[11]}$ or by the Gauss-Seidel method $[12]$. An estimate is made for $t=t_{0}$ if an initial set of field data is not available, and subsequent times are estimated from this.

3.8 Time Averaging

The model thus derived will predict concentration patterns over any time scale. Frequently it is the smaller time scale that is of interest, some knowledge of events within one tidal cycle of some shock transient input can be of great practical benefit. This project, being primarily concerned in the long term effects of variations of discharge consents, required long term trends and a method of time averaging was thus required.

Consider any integrable function $\gamma(t)$. A definition of its time-averaged value could be

$$
\begin{equation*}
\frac{1}{H} \int_{t_{1}}^{t_{1}+H} r(t) \cdot d t=\left.\bar{\gamma}(t)\right|_{t_{1}+H} ^{t_{1}} \tag{3.8.A}
\end{equation*}
$$

where t_{1} and $t_{1}+H$ represent the limits of the periods to be averaged.Using 3.7.4.D and $T=o n e$ tidal cycle, N the number of whole cycles considered, gives

$$
\begin{align*}
& \Delta V_{i} \int_{t} \frac{d c}{t_{1}+N T}{ }_{1} \cdot d t=\Delta V_{i} \cdot \bar{c}_{i} \text { where } \bar{c}_{i} \text { is the mean value of } c_{i} \text { in the period } \\
& \left.\int_{t_{1}}^{\left[{ }^{t}+N T\right.} Q_{i-1} \cdot{ }^{\circ} c_{i-1}+p_{i}+F_{i-1} \cdot\left(c_{i-1}-c_{i}\right)-k \cdot c_{i} \cdot \Delta V_{i}+F_{i} \cdot\left(c_{i+1}-c_{1}\right)-Q i_{i} c_{i}\right] \cdot d t \\
& =\Delta V_{i} \cdot \bar{c}_{i} \tag{3.8.C}
\end{align*}
$$

If the fresh water flow is reasonably consistent, and rates of entry are constant, variations only arise from larger scale fluctuations. If N is 60 or more (ie at leats a lunar cycle) the the effects of the spring-neap tide cycle are included in the averaging and only seasonal factors are excluded.

$$
\frac{1}{N \cdot T} \int_{t_{1}}^{t_{1}+N T} \frac{d c}{d t} i \cdot d t=\frac{1}{N T}\left[c_{i}\left(t_{1}+N T\right)-c_{i}\left(t_{1}\right)\right]=0 \text { as NT is large }
$$

So when substituted in 3.8.C gives

$$
\begin{equation*}
\bar{Q}_{i-1} \cdot \bar{c}_{i-1}+\bar{P}_{i}+\bar{F}_{i-1} \cdot\left(\bar{c}_{i-\overline{1}} \bar{c}_{i}\right)-k \cdot \Delta V_{i} \cdot \bar{c}_{i}+\overline{\bar{F}}_{i} \cdot\left(\bar{c}_{i+1} \bar{c}_{i}\right)-\bar{Q}_{i} \cdot \bar{c}_{i}=0 \tag{3.8.E}
\end{equation*}
$$

where a bar denoted a time averaged value of the parameter in question. Note that ΔV_{i} is still constant. This type of system, rewritten as

$$
\begin{equation*}
\alpha_{i-1} \cdot \bar{c}_{i-1}^{+\alpha_{i}} \cdot \bar{c}_{i}+\alpha_{i+1} \cdot \bar{c}_{i+1}=-\bar{p}_{i} \tag{3.8.F}
\end{equation*}
$$

this being a band matrix of order m for $a n m$ segment estuary and is readily solved.

3.9 The Steady State

Equation 3.8.F is the basis of the stationary state model applied to the Usk Estuary. It will predict the mean value of a pollutant in a moving segment over a period of one lunar cycle. The variation in the neap-spring tide cycle is about 6 m , large by comparison to other british estuaries (eg 2.9 m Gt. Ouse, 3.3 Humber) and so the mean value will have an inherently wide confidence limit attached to it when variations from the mean are
considered.
3.10

The Chemistry of the Steady State Model

3.10.1 The chemistry may be summarised by figure 3.10.1.A which shows the primary links.

Fig. 3.10.1.A Source - Sink Terms for D.O. and common pollutants

The interconnections show possible reaction paths. These are not purely
chemical reactions, with bacteria and related kinetics playing major roles[13]

By reducing differing components to oxygen equivalents, direct comparisons are possible.

3.10.2 Carbonaeceous Effluent

The chemical reaction involved is $\mathrm{C}+\mathrm{O}_{2}-\mathrm{CO}_{2}$. Each unit of organic carbon requires $2^{*} 16 / 12$ units of oxygen, ie an oxygen equivalent of $8 / 3$ or 2.67 , for complete oxidation. The simplest representation of this oxidation process is the first order kinetics developed by Phelps ${ }^{[14]}$.

$$
\begin{align*}
& \frac{d R}{d t}=-K . R \text { where } R \text { is the residual } \tag{3.10.2.A}\\
& \text { D.O. deficit }
\end{align*}
$$

This simple approach is unsatisfactory in many cases as the rate of reaction is dependant on the form the carbon appears in and which bacteria are available to catalyse the process. One approach used successfully is the method of composite rates[15]. In this method, the effluent is considered to be a mix of
a number of components, each a source of organic carbon, but each oxidized at an individual rate. Components can be isolated by tracing the percentage of the total oxygen demand excercised after some interval of time. Results show that normal sewage effluent has two main components only, one with a rate of decay 0.2 of the main 'fast' component. The equation is :

$$
\begin{align*}
& \text { Oxygen Uptake }=\text { UOD. }\left[1 \cdot-\mathrm{pe}^{-\mathrm{K}_{\text {or }}^{t}}-(1-\mathrm{p}) \mathrm{e}^{-\mathrm{K}_{\text {or }} \mathrm{t} / 5}\right] \\
& \text { at time } t
\end{align*}
$$

UOD is the ultimate oxygen demand excercised (ie complete oxidation) and p is the proportion of the fast component present in the effluent.

Various experimental oxygen equivalents have been reported, very much dependant on what representation is given to the empirical formula of 'norm' sewage. Figures of $2.79{ }^{[16]}$ to $3.00{ }^{[17]}$ have been reported, but it can be shown that a 10 per cent error in this value is negligable ${ }^{[8]}$ on final predictions. A value of 2.89 was used, this being a reported figure in the Thames Study. As oxidation has still been measured on effluents after several months ${ }^{[15]}$, it seems that the primary point is to employ a figure representative of the process during the average retention time of the system under study.

3.10.3 Nitrogenous Effluents

Ammonia is the major component of this group of discharges. The outline reaction is $\mathrm{NH}_{3}+2 \mathrm{O}_{2} \rightarrow \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O}$, an oxygen equivalent of $2 * 2 * 16 / 14$ $=4.57$. This is inclusive of an initial hydrolysis of organic nitrogen to ammonia. The oxidation of nitrite is written as $2 \mathrm{HNO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{HNO}_{3}$, an oxygen equivalent of 1.14 . Nitrite content of an estuary is of ten small.

At low D.O. levels (<.5ppm) , nitrification is a prevalent factor. The
nitrate formed under normal conditions, can be used as a source of oxygen for the breakdown of carbonaeceous effluents $[8, p .217,19]$.

$$
\begin{equation*}
\mathrm{NO}_{3} \longrightarrow \mathrm{NO}_{2}+\mathrm{O}^{\circ} \xrightarrow{7 \mathrm{~N}+20^{\circ}} \mathrm{NH}_{3}+20^{\circ} \tag{3.10.3.A}
\end{equation*}
$$

3.10.4 Difference Equations for Effluent Decomposition

Consider any segment i in the system. The resident amount within it of any one pollutant over a time interval is [the initial content] [Inflow] + [external input]-[outflow]-[decaying amount] (fig 3.10.1.A).

For organic carbon
$\Delta V_{i} \cdot \frac{d C}{d t}{ }_{o r, i}=\Delta V_{i} \cdot I_{i}-K_{o r / c, i} \cdot \Delta V_{i} \cdot C_{o r, i}+C_{o r, i}^{A d d}$

For organic nitrogen
$\Delta V_{i} \cdot \frac{d N}{d t}{ }^{\text {or }, i}=\Delta V_{i} \cdot I_{i}-K_{\text {or } / N, i} \cdot \Delta V_{i} \cdot N_{\text {or }, i}+N_{\text {or }, i}^{\text {Add }}$
For ammonical nitrogen
$\Delta V_{i} \cdot \frac{d N}{d t} a m, i=\Delta V_{i} \cdot I_{i}-K_{a m / N, i} \cdot \Delta V_{i} \cdot N_{a m, i}-K_{o r / N, i} \cdot \Delta V_{i} \cdot N_{o r, i}+N_{a m, i}^{A d d}$ (3.10.4.C) For oxidized nitrogen

$$
\begin{equation*}
\Delta V_{i} \cdot \frac{d N}{d t} o x, i=\Delta V_{i} \cdot I_{i}-K_{a m / N, i} \cdot \Delta V_{i} \cdot N_{a m, i}+N_{o x, i}^{A d d} \tag{3.10.4.D}
\end{equation*}
$$

For dissolved oxygen

$$
\begin{align*}
\Delta V_{i} \cdot \frac{d D}{d t}=\Delta V_{i} \cdot I_{i}+f_{i} \cdot R_{i}\left[D_{s, i}-D_{i}\right] & -K_{o r / c} \cdot \Delta V_{i} \cdot C_{o r, i}+D_{i}^{A d d} \\
& -K_{o r / N, i} \cdot \Delta V_{i} \cdot N_{o r, i} \tag{3.10.4.E}
\end{align*}
$$

The K's are reaction rates, f_{i} reaeration rates. The superscript 'Add' refers to additions within the segment i, I_{i} the influx to each segment. The value I_{i}
is composed of flux into i th segment via dispersion $\left(F_{i-1}\left[C_{i-1}-C_{i}\right]-F_{i}\left[C_{i}-\right.\right.$
$\left.C_{i+1}\right]$ plus that due to land water flow $\left(Q_{i-1} C_{i-1}-Q_{i} C_{i}\right)$.
$D_{s, i}$ is the saturation level of dissolved oxygen in segment i, R_{i} is the surface area of segment i. All these equations are similar to 3.7.4.D and can be solved in that way. When levels of oxygen fall below 0.5 ppm (appx) the restricted oxidation of ammonia and the denitrification of oxidized nitrogen has to be catered for. This is accomplished by additional terms in 3.10.4. $\mathrm{C}-\mathrm{D}-\mathrm{E}$ to include additional source and sink terms.Initially the oxygen demand by the ammonia is calculated, and if this is not present or cannot be gained through reaeration, the difference is satisfied by reduction of oxides of nitrogen. In the Usk, indications are that this would not occur with present loadings until the fresh water input were approaching 40 mgd (ie well below Dry Weather Flow levels).
3.11 Modifications for the Usk Estuary
3.11.1 The Steady State Model as described has been applied successfully in two estuaries. The nature of the Usk was considered unusual in two aspects :

1. The number of outfalls and their variable tide-locked nature
2. The long tidal excursion due to the high tides in relation to the whole length of the estuary.

The origional program was to solve for all components iteratively. The model was restructured and made more modular and employed a more efficient method of solution of the four non-interacting components (fast and slow carbon, fast and slow nitrogen). Simulation of varying reaeration is then 50 per cent faster in terms of mill time.

The length of tidal excursion has a pronounced effect on the surface areas of a segment as it oscillates with the tidal motion. The data read in can be optionally moved up and down the estuary with tidal excursion of the segment
in question and an adjusted set of data for surface areas employed in the main calculation phase.Comprehensive input/output options provide for online summary of predictions for management presentation.
3.11.2 Tidelocking Outfalls vary widely in the system, the period of no discharge lasting from 2 to 9 hours per tidal cycle. To attempt to cater for the individual dynamics of each outfall would introduce unecessary time dependant elements, and a prohibitive amount of field work. The following approximation was employed :
'A tidelocked discharge effuses from half ebb to half flood' This implies that the associated tidal excursion segments receive unequal loads.The upstream segments receive the normal load and the downstream ones receive none, or an optional leak rate load only. The reservoir effect of the locking is calculated on the grounds of elapsed time and this is all loaded into the segment opposite the outfall at the time of opening after a period of tidelocking.This reservoir load is that which would have been discharged into the downstream segments.

Each outfall can be simulated as being either tidelocked over a variable period or freeflowing. Results showed that if all outfalls effused throughout the tidal cycle, the D.O. situation would improve.

The units of the final predictions of pollutant levels are in concentration units, mg/litre or parts per million, even though the inputs are in imperial units. The predicted level of D.O. is also calculated in terms of percentage of saturation at ambient temperatures and salinities.

The input data units are to some extent arbitrary as long as they are overall consistent.Conversion factors are part of the input parameters and are intended to bring a variety of units into a cohesive system.Depth, surface areas, volumes and temperaturs are
in feet, millions of square/cubic feet and deg.C. Salinities are
in grams per litre or parts per thousand, head water inflow is
in m.g.d.(million gallons per day) and later converted to mill-
ions of lds per day by FCTRL. The reaeration rate is in $\mathrm{cms} / \mathrm{hr}$.
and mixing coefficients in millions of lbs. per day.All the input
arrays for discharge additions are in lbs per day, so that on the
addition to millions of pounds per day units, concentrations in
p.p.m. result.
"A Computer Program for a Steady State Model of the USK Estuary",M W Rogers, I.H.D. Report for USK River Division of W.N.W.D.A., 16 Jul 74.
[2] "One Dimensional Models of Estuarine Pollution",B M Mollowney, W.R.C. Symposium,W.P.R.Technical Paper No. 13,1972, p.71-p. 84
[3] "A Desk Study of the Severn Estuary", A Winters,W.R.C Symposium,W.P.R.Technical Paper no.13.1972,p.105-p. 116
"A Course in Applied Mathematics", D F Lawden, Chpt 15 p.399-p.402,English University Press.
[5]
"Introduction to Electromagnetic Fields and Waves", D Corson and P Lorrain, Chpt. 2.4 , p. 33-p.35,Freeman and Co,
"Dispersion of Pollutants in Estuary Type Flow", E R Holley and D R F Harleman,Hydrodynamics Laboratory,M.I.T., 1965 Report No. 74

As $[2], p .73,12 \mathrm{a}-12 \mathrm{c}$.
[8]
"Effects of Polluting Discharges on the Thames Estuary" W.P.R.Technical Paper No. 11, 1964,p.6-p. 9
[9] "Difference Methods for Initial Value Problems", R D Richtmeyer and K W Morton, Interscience, 1969, p. 189
[10]
"Numerical Methods and FORTRAN Programming", D D M ${ }^{\text {C Cracken }}$ and W S Dorn, Wiley International,1966,p.383-p. 385
"Computational Techniques for Chemical Engineers", H H Rosenbach and C Storey,Pergamon Press,1966,p. 167
M^{C} Graw-Hill,1962,p. 259
[13] "Pollution Problems in Relation to the Thames Barrier" M J Barrett and R M Mollowney, Phil.Trans.R.Soc.London, A, 1972, vol $272, \mathrm{p} .213$
[14] " ",E B Phelps, 8th International Congress of Applied Chemistry, 1912, vol26,p. 259
" ", A L H Gameson and A B Wheatland, Journal of Institute of Sewage Purification, 1958,p. 106
[16] "Effects of Polluting Discharges on the Thames Estuary, see [8]
[17]
"Bacterial Nutrition and Synthesis", C N Sawyer,Biological
Treatment of Sewage and Industrial Wastes,Rheihold Publishing Co, 1956, vol 1 ,p. 3
[18]
" ", H A Painter and M Viney,Journal of Biochemistry,
Microbiology Technology and Engineering,1959, vol 1,p. 143
[19] "Forecasting the Effects of Polluting Discharges on Estuaries" R M Gilligan,Chemistry and Industry, 16 Dec 1972, p. 950

	Imperial	Mixed	Metric
Mixing Coeff.	$10^{6} \mathrm{lbs} /$ day	$10^{6} \mathrm{lbs} /$ day	$10^{6} \mathrm{~kg} /$ day
Flow rates	$10^{6} \mathrm{lbs} /$ day	$10^{6} \mathrm{lbs} /$ day	$10^{6} \mathrm{~kg} /$ day
Polluting Load	$\mathrm{lbs} /$ day	lbs/day	$\mathrm{kg} /$ day
Surface Areas	$10^{6} \mathrm{sq.ft}$	$10^{6} \mathrm{sq} \cdot \mathrm{m}$	$10^{3} \mathrm{sq} \cdot \mathrm{m}$
Volumes	$10^{6} \mathrm{cu} . \mathrm{ft}$	$10^{6} \mathrm{cu} . \mathrm{m}$	$10^{3} \mathrm{cu} \cdot \mathrm{m}$
Re-aeration	$\mathrm{ft} /$ day	$\mathrm{m} /$ day	$\mathrm{m} /$ day
FACTOR	62.3	2200	1

Table 3.12.B Constants and Units currently employed in the Model

Variable Name	Units or Value
NSEG, IPRINT, NC, MAXCNT OMFC, OMSC, OMAM, OMN, OMD	Dimensionless,user specified constants
DOXMIN	$\mathrm{mg} / \mathrm{l}(\mathrm{ppm})$ set to 0.4 , ie 4% saturation
RKC, RKN	per day rate constants - . 183
RKAMM	per day rate constant - . 26
RKNO3	per day rate constant - . 004
COXNO3	Chemical Equivalents 2.86
OXA	Chemical Equivalents 4.57
ERROR	Solution accuracy - mg/l (ppm)
FFLOW, FFFLOW, F	$10^{6} \mathrm{lbs} /$ day. Input converted by multiplier FCTRL
TEMP	Degrees Centigrade
DISTAN	Units of Distance.
REAER	$\mathrm{cms} / \mathrm{hr}$
SA	10^{6} sq.ft
V	Cu.ft. FACTOR converts to $10^{6} \mathrm{lbs} /$ day
DEPTH	Feet
FCADD, SCADD, FNADD, SNADD AMMADD, ANO 3 ADD, DOXADD	After multiplying by FCTRL, in lbs/day

CHAPTER 4

A TIME DEPENDANT MIXED DIMENSION MODEL FOR AN ESTUARY / BAY SYSTEM

SUCH AS THE USK - SEVERN

Contents

4.1 Introduction
4.2 The basic equations of non-viscous unsteady flow
4.3 The Theory of the "2-D" Bay Model
4.3.1 Introduction
4.3.2 Forces in the z -direction
4.3.3 Components of the Coriolis Acceleration
4.3.4 Frictional forces from Bottom Friction
4.3.5 Forces from Wind Stress
4.3.6 Final Theoretical Equations
4.4 The Theory of the "1-D" River or Estuary
4.4.1 Introduction
4.4.2. Reduction of the $2-\mathrm{D}$ Equations to $1-\mathrm{D}$
4.4.3 The 1-D Equation of Continuity
4.5 Modification of the 2-D Hydrodynamic Unsteady Flow Equation prior to solution
4.5.1 Introduction
4.5.2 Integration of the Continuity Equation over depth
4.6 Some properties of Finite Difference Schemes
4.6.1 Introduction
4.6.2 Finite Difference Approximations-order of a scheme
4.6.3 Stability of a Difference scheme
4.6.4 Schemes for Inertia term stability
4.7 Computational Transformation of the 2-D Wave Equation
4.7.1 Introduction
4.7.2 Outline of the solution scheme
4.7.3 The Multioperational method
4.7.4 Non-Linear Terms in the Continuity Equation
4.7.5 Convection/Inertial Terms
4.7.6 Bottom Friction Effect Terms
4.7.7 Wind Stress Terms

```
4.7 Computational Transformation of the 2-D Wave Equation (contd.)
    4.7.8 Summary and Final Computational Model.
    4.7.9 Assumptions and Boundary Conditions.
    4.7.10 Stability Criteria.
4.8 Computerisation of the One Dimensional River Model.
    4.8.1 Introduction.
    4.8.2 Computational Model of the 1D Equations.
    4.8.3 Solving the Computational Model
    4.8.4 Boundary Conditions.
    4.8.5 Solutions at Nodes
4.9 The Pollutant Transport Model.
    4.9.1 Introduction.
    4.9.2 Classical Theory of Transport Equations.
    4.9.3 Conceptual Basis of the One Dimenional Phase.
    4.9.4 Conceptual Basis of the Two Dimensional Phase.
    4.9.5 Conceptual Basis of the Matching Program.
    4.9.6 Notes on Diffusion and Pseudodiffusion.
```


CHAPTER 4

A time dependent, mixed dimension model for the estuary/bay system such as the Usk/Severn

4.1 Introduction

4.1.1 The 'model' consists of a suite of programs which can be composed in various combinations to provide the following models
A. A Hydrodynamic one dimensional mode1 of estuarine flow
B. A Hydrodynamic one dimensional estuary/two dimensional bay flow model
C. A Water Quality model for a one dimensional estuarine system
D. A Water Quality model for a one dimensional estuary/two dimensional bay system.
E. A velocity prediction model for input to the semi-stochastic mode1

The flexibility available was ideal for the project, where management objectives were broadening constantly with the progress in modelling.
4.1.2 There are four separate models:

F1 - One dimensional estuarine system, hydrodynamics.
F2 - Estuary/bay mode1, hydrodynamics.
PT1 - One dimensional estuarine system, pollutant transport.
PT - Estuary/bay mode1, pollutant transport.

The mathematical development for each of the four models is different and autonomous and each topic will be dealt with in isolation.

4.2 The basic equations of nonviscous unsteady flow

4.2.1 Propagation motion of long waves is complex but does have some pattern and is generally mathematically continuous. The coordinate axis are x, y, z with z in the vertical plane, see Fig. 4.2.1A.

Figure 4.2.1A Coordinate axis in use

The full equations are written as a starting point for development

$$
\begin{align*}
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+\sum F_{x} \tag{4.2.1.A}\\
& \frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+\sum F_{y} \tag{4.2.1.B}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial z} \sum F_{z} \tag{4.2.1.C}
\end{equation*}
$$

where u, v, w are velocities in the x, y, z directions, ρ is the density of the medium. $\mathrm{F}_{\mathrm{x}}, \mathrm{F}_{\mathrm{y}}, \mathrm{F}_{\mathrm{z}}$ are components of individual forces parallel to the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis and p is the pressure component. The extraneous forces are combinations of earth rotation, tide generation due to extra terrestial bodies and vertical gravity.

The equation of continuity for incompressible flow used

 is$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \tag{4.2.1.D}
\end{equation*}
$$

Long waves are defined as waves where the amplitude is small compared to the wavelength. This allows velocities in the ω direction to be neglected and also accelerations are small compared to g . This particularly simplifies equation 4.2.1.C to

$$
\begin{equation*}
0=-\frac{1}{\rho} \frac{\partial p}{\partial z}+\sum F_{z} \tag{4.2.1.E}
\end{equation*}
$$

4.2.2 Two depth variables are used, one relating the depth of water from an unperturbed state, and one relating the perturbation height of water at any one time, figure 4.2.2A.

4.3 The Theory of the Two Dimensional Bay Model

4.3 .1

The model was first developed to model nuclear explosion tidal waves ${ }^{[1]}$ and includes all of the major influences found in the project system, and is very responsive.

The nomenclature of fig. 4.2.2A is used. As variations in the ω direction are to be neglected, the velocity components u and v are now altered in definition to velocities averaged in the ω direction, i.e.

$$
\begin{equation*}
\bar{u} \text { or } \bar{v}=\frac{1}{(h+\zeta)} \int_{-h}^{+\zeta}(u \text { or } v) d z \tag{4.3.1.A}
\end{equation*}
$$

Equations 4.2 .1 . A and B can now be written as

$$
\begin{align*}
& \frac{\partial \bar{u}}{\partial t}+\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+\sum F_{x} \\
& \frac{\partial \bar{v}}{\partial t}+\bar{u} \frac{\partial \bar{v}}{\partial t}+\bar{v} \frac{\partial \bar{v}}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial y}+\sum F_{y}
\end{align*}
$$

and 4.2.1.E as: $\frac{1}{\rho} \frac{\partial p}{\partial z}=\sum F_{z}$

The generating forces must now be itemised to allow solutions to the above.

4.3.2 Forces in the z direction

From 4.3.1.D, $\frac{\partial p}{\partial z}=\rho \sum F_{z}$, or $p(z)=\left[\rho F_{z} \cdot z\right]_{z=h}^{z=\zeta}$. Assuming uniform density, the pressure is the hydrostatic pressure exerted by a liquid column, and

$$
\begin{equation*}
p(z)=g \rho(h-z)+p(0) \tag{4.3.2.A}
\end{equation*}
$$

where $p(0)$ is the atmospheric pressure p_{a} and ρ is water density. 4.3.2.A allows an alternative expression for the right hand derivatives in $4 \cdot 3.1 . B$ and C to be obtained

$$
\frac{\partial p}{\partial x}=g \rho \frac{\partial h}{\partial x}+\frac{\partial p_{a}}{\partial x}, \quad \frac{\partial p}{\partial y}=g \rho \frac{\partial h}{\partial y}+\frac{\partial p_{a}}{\partial y}
$$

Generally it can be considered that derivatives of p_{a} with respect to (x, y, t) are zero. However, in a situation of a storm surge or a transient partial vacuum this would be an insufficient approximation.

In this model, it is assumed

$$
\frac{\partial p}{\partial x} \simeq g \rho \frac{\partial h}{\partial x} \text { and } \frac{\partial p}{\partial y} \simeq g \rho \frac{\partial h}{\partial y}
$$

4.3.3 Components of the Coriolis Acceleration

As the coordinate axes are fixed, the earth's rotation generates a resultant force, manifest by particle acceleration in the (x, y) plane. The Coriolis acceleration allows the use of a local axes, in a moving reference frame, instead of the fixed axes with origin at centre of the earth. Let ω be angular velocity of earth's revolution, $\theta=$ angle of latitude.

Figure 4.3.3A Relation of two reference frames

When the transformations for acceleration in x and y direction components are obtained, the fixed system (primed reference frame) coordinates may be used instead of the moving frame if centrifugal acceleration and Coriolis acceleration are included. The centrifugal acceleration components are $-\omega^{2} x,-\omega^{2} y$ and are included in gravity factor g.

The Coriolis component of the transformation is

$$
\begin{aligned}
& v^{\prime}=-(2 \omega \sin \theta) v=-\Omega v, x \text { direction } \\
& u^{\prime}=(2 \omega \sin \theta) u=\Omega u, y \text { direction }
\end{aligned}
$$

The z component can also be calculated but is negligible ${ }^{[2]}$ in this context.

4.3.4 Frictional Forces from Bottom Friction

In the well established Navier Stokes equation ${ }^{[3]}$, [4], [5]

$$
\begin{equation*}
\rho \frac{\mathrm{dv}}{\underset{\sim}{\mathrm{dt}}}=\nabla \mathrm{p}+\mu \Delta \underset{\sim}{v}+\rho \underset{\sim}{\mathrm{v}} \tag{4.3.4.A}
\end{equation*}
$$

the term $\mu \Delta \underset{\sim}{v}=\mu \nabla^{2} \underset{\sim}{v}$ is the friction term defined by

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}} \underset{\sim}{v}+\frac{\partial^{2}}{\partial y^{2}} \underset{\sim}{v}+\frac{\partial^{2}}{\partial z^{2}} \underset{\sim}{v}\right) \tag{4.3.4.B}
\end{equation*}
$$

In the model the u and v components are of prime interest. The coefficient, μ, of dynamic viscosity is replaced by ε_{i}, coefficients of eddy viscosity. These coefficients ε_{i} are directional. The friction terms can be written as

$$
\begin{align*}
& \varepsilon_{H}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)+\varepsilon_{v} \frac{\partial^{2} v}{\partial z^{2}} \quad \text { (x term) } \tag{4.3.4.C}\\
& \varepsilon_{H}\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)+\varepsilon_{v} \frac{\partial^{2} v}{\partial z^{2}} \quad \text { (y term) } \tag{4.3.4.D}
\end{align*}
$$

These two expressions are integrated in the z direction to yield

$$
\begin{align*}
& \varepsilon_{H}\left(\frac{\partial^{2} \bar{u}}{\partial x^{2}}+\frac{\partial^{2}-\bar{u}}{\partial y^{2}}\right)+\frac{\varepsilon v}{\bar{h}+h}\left[\left.\frac{\partial u}{\partial z}\right|_{z=h}-\left.\frac{\partial u}{\partial z}\right|_{z=-\bar{h}}\right] \tag{4.3.4.E}\\
& \varepsilon_{H}\left(\frac{\partial^{2} \bar{v}}{\partial x^{2}}+\frac{\partial^{2}-}{\partial y^{2}}\right)+\frac{\varepsilon v}{\bar{h}+h}\left[\left.\frac{\partial v}{\partial z}\right|_{z=h}-\left.\frac{\partial v}{\partial z}\right|_{z=-\bar{h}}\right] \tag{4.3.4.F}
\end{align*}
$$

where \bar{u}, \bar{v} are mean velocities over depth and \bar{h} is the depth with respect to mean water level.

In most physical systems $\varepsilon_{V} \gg \varepsilon_{H}$ and terms in ε_{H} are therefore neglected ${ }^{[6],[7]}$.

The following physical interpretation can now be placed on each term:

$$
\begin{align*}
& \varepsilon_{v}\left(\frac{\partial u}{\partial z}\right)_{h}=x \text { component of tangential } \begin{array}{l}
\text { stress at sea surface }
\end{array}=T_{s, x} \tag{4.3.4.G}\\
& \varepsilon_{v}\left(\frac{\partial v}{\partial z}\right)_{h}=\mathrm{y} \begin{array}{l}
\text { component of tangential } \\
\text { stress at sea surface }
\end{array}=T_{s, y} \\
& \varepsilon_{v}\left(\frac{\partial u}{\partial z}\right)_{-\bar{h}}=\mathrm{x} \text { component of tangential } \begin{array}{l}
\text { stress at sea bottom }
\end{array}=T_{b, x} \\
& \varepsilon_{v}\left(\frac{\partial v}{\partial z}\right)_{-\bar{h}}=\mathrm{y} \begin{array}{l}
\text { component of tangential } \\
\text { stress at sea bottom }
\end{array}=T_{b, y}
\end{align*}
$$

The bottom stress can also be expressed by

$$
T_{b}=\frac{\rho g \bar{u}^{2}}{C^{2}} \text { where } C \text { is the De Chezy coefficient. }
$$

When applied to the two dimensional system

$$
\rho F_{\mathrm{x}}^{\mathrm{b}}=\frac{-\rho \mathrm{g}}{\mathrm{C}^{2}(\overline{\mathrm{~h}}+\mathrm{h})}|\underset{\sim}{v}| \mathrm{u} \text { and } \rho \mathrm{F}_{\mathrm{y}}^{\mathrm{b}}=\frac{-\rho \mathrm{g}}{\mathrm{C}^{2}(\bar{h}+\mathrm{h})}|\underset{\sim}{v}| \mathrm{u}
$$

where $\mathrm{F}_{\mathrm{x}}^{\mathrm{b}}, \mathrm{F}_{\mathrm{y}}^{\mathrm{b}}$ are the components of F of (4.3.4.A) due to bottom friction. The negative sign is to indicate that friction opposes the direction of motion. u and v are the components of $\underset{\sim}{v}$ and

$$
|\underset{\sim}{v}|=+\left(u^{2}+u^{2}\right)^{\frac{1}{2}}
$$

4.3.5 Forces from Wind Stresses

The principles of wind stress are similar to those of 4.3.4. The major extension occurs in shallow water where the vertical velocity distribution is skewed by wind action on the surface. Consequently, the surface gradient is additionally influenced by $T_{b, x}, T_{b, y}$. The theory of wind effects is complex and still developing ${ }^{[8],[9],[10], \text { and the }}$ approximation

$$
T_{s}=\theta^{2} \rho_{a} V_{W}^{2}
$$

where $\rho_{a}=$ density of air, $V_{W}=$ wind velocity; is employed.
θ^{2} is found experimentally to be about 2.6×10^{-3} for a V_{W} range of 6 to $20 \mathrm{~m} / \mathrm{sec}$ (i.e. ~ $13 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. to $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.). ρ_{a} can be considered as $1.3 \mathrm{gm} / 1$ itre, so $\theta^{2} \rho_{\mathrm{a}}$ is 3.4×10^{-6}.

For a wind of V_{W} metres/second at a constant direction degrees to the x-axis, the two components can be written as
and $\quad F_{y}^{s}=\theta^{2} \rho_{a} \cdot \frac{\mathrm{~V}_{\mathrm{W}}^{2}}{(\bar{h}+h)} \cdot \sin \psi$
Although θ^{2} is usually within the wind range, in shallow systems, where the ratio T_{b} / T_{s} becomes significant, it is advisable to calculate a mean value from observation.

4.3.6 Final Theoretical Equations

Summarising the formulae developed in 4.3.2-4.3.5 and substituting in 4.3.1.B and C gives

$$
\rho\left\{\frac{\partial \bar{u}}{\partial t}+\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}-\Omega \bar{v}+\frac{g|\stackrel{\rightharpoonup}{v}| \bar{u}}{c^{2}(\bar{h}+h)}-\frac{g \partial h}{\partial x}\right\}=\frac{\theta^{2} \rho_{a} v_{W}^{2} \cos \psi}{(\bar{h}+h)}
$$

$\rho\left\{\frac{\partial \bar{v}}{\partial t}+v \frac{\partial \bar{v}}{\partial t}+\bar{v} \frac{\partial \bar{v}}{\partial y}+\Omega \bar{u}+\frac{g|\underset{\sim}{2}| \bar{v}}{c^{2}(\bar{h}+h)}-\frac{g \partial h}{\partial y}\right\}=\frac{\theta^{2} \rho_{a} v_{W}^{2} \sin \psi}{(\bar{h}+h)}$

$$
\frac{\partial}{\partial \mathrm{x}}(\overline{\mathrm{~h}}+\mathrm{h}) \overline{\mathrm{u}}+\frac{\partial}{\partial \mathrm{y}}(\overline{\mathrm{~h}}+\mathrm{h}) \overline{\mathrm{v}}+\frac{\partial \mathrm{h}}{\partial t}=0 \begin{align*}
& \text { (two dimensional } \\
& \begin{array}{l}
\text { equation of } \\
\text { continuity) }
\end{array}
\end{align*}
$$

The mean operator from u and v will now be dropped. Any future reference to u and v implies the mean u or mean v over the water depth.
4.4 The Theory of the One dimensional River or Estuary Model

4.4.1 Introduction

A river is a water body where the flow of water is predominantly in one direction and one physical dimension (maximum width) is an order of magnitude smaller than the length. In an estuary situation the long term flow is that of a river with a net throughflow of the 'fresh' water inflow at the tidal limit.

The tidal element of an estuary can be considered to consist of a series of local flow reversals. Most models assume complete vertical mixing, i.e. concentrations of solutes are independent of depths. These allow the system to be modelled in one physical dimension and time. In stratified estuaries, two dimensional models are required to model the skewed vertical distributions and models/observations become more complex ${ }^{[2],[12]}$.

It is possible to compensate to an extent by adjusting the bottom friction. This is because the nature of the tidal propagation is highly dependent, during the flood phase, on the bottom roughness ${ }^{[13]}$. At slack water, the friction becomes less significant.

The x coordinate is considered to be along the centre line of the estuary, and it is usual to reference all sections to a common datum plane. Figure 4.2.2A shows the relevant notation

,	$\uparrow h$			Highest water level (HT)
			\uparrow	Mean water level (MWL)
	h^{*}	a_{0}	ho	Low Water Leve1 (LT) Bottom of Bed (BB)
		120		ference P1ane (DATUM)

Symbols: $\quad \begin{aligned} \mathrm{h}_{0} & =\mathrm{a}_{0}+z_{0}:- \text { mean water level with respect to DATUM } \\ \mathrm{h} & =\text { deviation of water level from mean } \\ \mathrm{a} & =\mathrm{a}_{0}+h_{\text {max }}:- \text { depth of high tide } \\ \mathrm{a}_{\mathrm{o}} & =\text { mean depth of water, averaged over time }=\bar{h}\end{aligned}$

4.4.2 Reduction of the Two Dimensional Equations to One Dimension

The expressions $4.3 .6 . A, B$ and C are the basis of the one dimensional equations. A11 terms in y are neglected, and they can be written as

$$
\begin{equation*}
\rho\left\{\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+g \frac{\partial h^{*}}{\partial x}+\frac{g|u| u}{C^{2} \cdot a}\right\}=\frac{\theta^{2} \rho_{a} V_{W}^{2} \cos \psi}{a} \tag{4.4.2.A}
\end{equation*}
$$

where $|u|=$ absolute value of u

$$
\frac{\partial}{\partial x}(a u)+\frac{\partial h^{*}}{\partial t}=0, \text { one dimensional equation }
$$

Equation $4 \cdot 3 \cdot 6$. B can be included as

$$
\begin{equation*}
\rho \Omega u=-g \rho \frac{\partial h^{*}}{\partial y}+\frac{\theta^{2} \rho_{a} \sin \psi}{a} \tag{4.4.2.C}
\end{equation*}
$$

which would allow small lateral variation. In wider rivers the Coriolis force may perceptably alter the water height without causing an appreciable lateral velocity component, in which case 4.4.2.C will have to be included in further developments. Kelvin wave motion is not considered important in this project context, nor transverse wind components, as the estuary is quite narrow in most areas. So 4.4 .2 . A can be simplified to

$$
\begin{equation*}
\rho\left\{\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{g \partial h^{*}}{x}+\frac{g|u| u}{c^{2} \cdot a}\right\}=0 \tag{4.4.2.D}
\end{equation*}
$$

This equation, rewritten in terms of conservation of momentum ${ }^{[11]}$, yields

$$
\begin{equation*}
\rho\left\{\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+g \frac{\partial z}{\partial x}\right\}=g\left(\frac{\partial z_{o}}{\partial x}-S_{e}\right) \tag{4.4.2.E}
\end{equation*}
$$

where z is the depth above the channel bottom, z_{o} is the height of channel bottom with reference to datum $p l$ ane and S_{e} is the slope of the energy grade line. The energy grade line slope is approximated by

$$
\begin{equation*}
S_{e}=\left(\frac{n}{1.49}\right)^{2} \frac{u^{2}}{R^{4 / 3}} \tag{4.4.2.F}
\end{equation*}
$$

where n is Mannings friction factor and R is the hydraulic radius.

4.4.3 The One Dimensional Equation of Continuity

Equation $4 \cdot 4 \cdot 2$. B requires slight modification to be of use in situations where external sources may be important.

Let $b_{n}(x, t)$ be the width of the river bed. Let b_{s} be the 'storage width', i.e. width of water surface so that $\mathrm{b}_{\mathrm{s}}>\mathrm{b}_{\mathrm{n}}$. For $\mathrm{a} \cdot \mathrm{u}$ in $4 \cdot 4 \cdot 2$. B write $\mathrm{Q}(\mathrm{x}, \mathrm{t})$, then the equation

$$
\frac{\partial Q(x, t)}{\partial x}+b_{S}(x, t) \frac{\partial h}{\partial t}=0
$$

This can be interpreted as the difference in discharge across area $a, a+d a$ at the respective points x and $x+d x$. A factor for external flow disruption will have to be included. If R is the rate of addition through some external agency, the equation

4.4.3.A is modified to read

$$
\begin{equation*}
\frac{\partial Q}{\partial x}+b_{s} \frac{\partial h}{\partial t}+R=0 \tag{4.4.3.B}
\end{equation*}
$$

If these flow disruptions are a high proportion of the main channel flow, further energy factors will have to be considered. For example, if a discharge is perpendicular to the main stream flow, the discharged mass has no momentum in the direction of general flow. This has to be assimilated from the energy of motion and thus will result in a degradation of the main flow velocity. In the case of an abstraction the momentum of the abstraction is gradually reduced from the main stream value to zero through bottom or internal friction once the storage area is reached.

4.5 Modification of the Two Dimensional Hydrodynamic Unsteady Flow Equations Prior to Solution

4.5.1 Introduction

The equations to be solved are 4.3.6.A, B and C once the following points have been noted.
A) Variation in barometric pressure in x and y directions are neglieible.
B) Velocities are assumed to be vertically averaged in x and y direction
C) Density of water is unitary and constant. $\rho_{\text {new }}=\rho_{\text {air }}$.

4.6 Some Properties of Finite Difference Schemes

4.6.1 Introduction

The choice of solution scheme for the coupled system 4.5.1.A, B and C is the major item for a modelling project. This is due to the vast choice of methods available and the underlying applications that discuss options of choice ${ }^{11}, 14,15$ For any particular problem, the choice of method will depend on local considerations such as:
A) Power of solving tools available: (slide rule - computer)
B) Economics of solving tool used : (free - commercial computing rates)
C) Is the method applicable : (Are underlying assumptions compatible with that of model)
D) Accuracy required
E) Simulation time scale
: (less accurate methods require less effort)
: (tactical-strategic model?)

4.6.2 Finite Difference Approximation - Order of a scheme

For purpose of discussion, consider the one dimensional wave motion equations:

$$
\begin{equation*}
\frac{\partial s}{\partial t}+h \frac{\partial u}{\partial x}=0 \text { and } \frac{\partial u}{\partial t}+g \frac{\partial s}{\partial t}+\frac{\partial p_{a}}{\partial x}=0 \tag{4.6.2.A}
\end{equation*}
$$

where $S(x, t)=$ water level, $u(x, t)$ water velocity, $p_{a}(x, t)$ atmospheric pressure and $h=$ water depth. If a set of initial conditions are established for $\mathrm{x} \rightarrow 0$ to x_{o} then the equations 4.6.2.A give the solution for $v t>0$ if boundary definitions are known.

> D) S is the deviation of the water level from the mean level.

The principal equations can be written

$$
\begin{align*}
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}-\Omega v+g \frac{d s}{d x}+\frac{g u\left(u^{2}+v^{2}\right)^{\frac{1}{2}}}{c^{2}(h+s)}=\frac{W_{x}}{(h+s)} \\
& \frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+\Omega u+g \frac{d s}{d x}+\frac{g v\left(u^{2}+v^{2}\right)}{C^{2}(h+s)}=\frac{W}{(h+s)}
\end{align*}
$$

where W_{x}, W_{y} are wind stress components.

4.5.2 Integration of the Continuity Equation over Depth

The boundary conditions are at the free water surface (s)
and at the bottom (-h) :

$$
\begin{aligned}
& A(s)=\frac{\partial s}{\partial t}+u \frac{\partial s}{\partial x}+v \frac{\partial s}{\partial y} \\
& A(-h)=-u \frac{\partial h}{\partial x}-v \frac{\partial h}{\partial y}
\end{aligned}
$$

Integrating 4.3.6.C with respect to the vertical axis gives

$$
\begin{equation*}
\frac{\partial s}{\partial t}+\frac{\partial\{(h+s) u\}}{\partial x}+\frac{\partial\{(h+s) v\}}{\partial y}=0 \tag{4.5.2.A}
\end{equation*}
$$

If (4.6.2.A) is replaced by a finite difference scheme of step size Δx and Δt then the solution will be known at the set of points
$S_{F}=\left\{(x, t) ; \quad x=n_{x} \Delta x, x<x_{o} ; \quad t=n_{y} \Delta t, t<t_{o} ; n_{x}, n_{y} \varepsilon Z^{+}\right\}$
where x_{o} defines the end of the simulation space field and to the upper time limit. Had 4.6.2.A been solve analytically, the solution will be known at the set of points

$$
\begin{array}{r}
S_{A}=\left\{(x, t), x=R_{x} x_{o}, t=R_{t} t_{0}, 0<R_{x}<1 ; 0<R_{y}<1 ;\right. \\
\left.R_{y} \varepsilon\right\}
\end{array}
$$

i.e. S_{A} is an infinite set and S_{F} is a subset of S_{A}, and as $\Delta \mathrm{x}, \Delta \mathrm{t} \rightarrow 0, \mathrm{~S}_{\mathrm{F}} \rightarrow \mathrm{S}_{\mathrm{A}}$. Also, if U_{A} is the analytical solution and U_{F} the finite difference solution, as

$$
\Delta \mathrm{x}, \Delta \mathrm{t} \rightarrow 0, \quad \mathrm{U}_{\mathrm{F}} \rightarrow \mathrm{U}_{\mathrm{A}}
$$

The practice $\Delta x, \Delta t$ remains finite and so

$$
\begin{equation*}
\mathrm{U}_{\mathrm{F}}=\mathrm{U}_{\mathrm{A}}+\mathrm{U}_{\mathrm{D}} \tag{4.6.2.B}
\end{equation*}
$$

where U_{D} represents the difference in the two solutions through the approximation. It is important to investigate U_{D}, as for any acceptable method it must have three properties:

1. U_{D} must not be a monotonically increasing function over time.
2. U_{D} must be capable of estimation and minimisation.
3. U_{D} must tend to zero as $\Delta \mathrm{x}, \Delta \mathrm{t} \rightarrow 0$.

To generalise, D_{D} is the difference approximation operator, operating on U_{D}, equal to F_{D}, the forcing functions. 4.6.2.A is now rewritten

$$
D_{D} U_{D}=F_{D}
$$

Where $D=\left|\begin{array}{cc}\frac{\partial}{\partial t} & h \frac{\partial}{\partial x} \\ g \frac{\partial}{\partial x} & \frac{\partial}{\partial t}\end{array}\right|, \quad U=\left|\begin{array}{c}S \\ U\end{array}\right|, \quad F=\left|\begin{array}{c}0 \\ -\frac{\partial p_{a}}{\partial x}\end{array}\right|$
it is possible to write $4 \cdot 6.2$. D for the analytical solution $D U=F$ (4.6.2.D). The norm is defined as $N\left[f_{1}-f_{2}\right]$ and is the maximum difference between functions f_{1} and f_{2} over the area under consideration. The order of the finite difference approximation can now be defined as ' p ' in

$$
\begin{align*}
& N\left[D_{D} U_{D}-D U\right]<q(\Delta x)^{p} \\
& N\left[F_{D}-F\right] \quad<r(\Delta x)^{p} \tag{4.6.2.E}
\end{align*}
$$

using 4.6.2. C and D and where q, r are >0, finite and constant.

It can be shown that similar logic allows an expression for the order of the approximation to be written as ${ }^{[16]}$:

$$
\begin{equation*}
\mathrm{N}\left[\mathrm{U}_{\mathrm{D}}-\mathrm{U}\right]<\mathrm{s}(\Delta \mathrm{x})^{\mathrm{p}} \text { where } \mathrm{s} \text { is similar to } \mathrm{q}, \mathrm{r} \tag{4.6.2.F}
\end{equation*}
$$

the difference scheme used is stable.

Also, if the properties of U_{D} are correct, then $U_{D} \rightarrow U_{A}$. This can also be established rigidly ${ }^{[16]}$. The order of an approximation is useful when critically reviewing different schemes, but give no guide to the accuracy of such a method.

4.6.3 Stability of a Difference Scheme

A scheme must be stable in the sense that as $t \rightarrow \infty$, the error remains bounded, and as the mesh is refined, i.e. $\Delta x, \Delta t \rightarrow 0$ the scheme must tend to the continuous analytical solution. A simple method ${ }^{[17],[18]}$ for investigating stability is to use Fourier expansions of the error element U_{D} and then calculate the amplification.

Using the lowest order scheme and omitting the forcing element of $4.6 .2 . A$, a difference equation can be written as

$$
\begin{align*}
& S_{m}^{n+1}-S_{m}^{n}+\frac{h}{2} \frac{\Delta t}{\Delta x} \cdot\left\{U_{m+1}^{n+1}-U_{m-1}^{n+1}\right\}=0 \tag{4.6.3.A}\\
& U_{m}^{n+1}-U_{m}^{n}+\frac{g}{2} \frac{\Delta t}{\Delta x} \quad\left\{S_{m+1}^{n+1}-S_{m-1}^{n+1}\right\}=0
\end{align*}
$$

If $U=\left\{\begin{array}{l}U \\ S\end{array}\right\}$, then a vector $\delta \underset{\sim}{U}$ exist at time zero (arbitrary) and in the spatial field $x=0 \rightarrow x_{0}$. This vector can be decomposed into a finite Fourier Series:

$$
\begin{equation*}
\delta_{\sim}^{U}(x)=\sum_{n} \underset{\sim}{A} \cdot e^{i \sigma_{n} x} \text { of } x_{o} / \Delta x=N \text { terms }, \tag{4.6.3.C}
\end{equation*}
$$

The system is linear, so only one term need be considered. A_{n} is time dependent and must have the general form $U_{n}^{*} e^{i \beta_{n} t}$ to satisfy the $t=0$ Fourier series (4.6.3.C).

So at a grid point $(x, t), \delta U(x, t)=U_{S^{*}}^{*} e^{i \beta_{t} Q i \sigma x}$
If it is assumed that errors are fluctuations superimposed on the true solution, having deducted the real solution should leave only the error perturbation. Rewriting $4 \cdot 6 \cdot 3 . A-B$ in Fourier terms and deducting the whole expression including perturbations, gives

$$
\begin{align*}
& \left(e^{i \beta t}-1\right) s^{*}+\frac{h}{2} \frac{\Delta t}{\Delta x}\left(e^{i(\beta t+\sigma x)}-e^{-i(\beta t+\sigma x)}\right) U^{*}=0 \\
& \left(e^{i \beta t}-1\right) U^{*}+\frac{g}{2} \frac{\Delta t}{\Delta x}\left(e^{i(\beta t+\sigma x)}-e^{-i(\beta t+\sigma x)}\right) s^{*}=0
\end{align*}
$$

writing $E=e^{i \beta t}$, as S^{*} and U^{*} do not vanish identically, and as 4.3.6.D-E are two homogeneous equations in S^{*} and U^{*}, the determinant must vanish, giving a quadratic in E , solving

$$
e^{i \beta t}=\left\{1 \pm i \cdot\left(\frac{\Delta t}{\Delta x}\right) \sqrt{ } g h \sin (\sigma x)\right\} /\left\{1+\left(\frac{\Delta t}{\Delta x}\right)^{2} g h \sin ^{2}(\sigma x)\right\}<1
$$

Therefore the errors introduced at time $t=0$ will decay without restriction on Δx or Δt and the scheme is said to be unconditionally stable.

These equations are only of interest at grid points. The two series 4.3.6.G can be substituted into 4.6.3.A-B and written as
where

$$
\begin{align*}
& \text { [} \left.\underset{\sim}{\mathrm{A}}] \underset{\sim}{\mathrm{~m}} \mathrm{U}^{\mathrm{n}+1}=\underset{\sim}{\mathrm{B}}\right] \underset{\sim}{\underset{\sim}{\mathrm{m}}} \underset{\mathrm{n}}{\mathrm{n}} \tag{4.6.3.H}\\
& \underset{\sim}{U}{ }_{j}^{i}=\left|\begin{array}{l}
S_{j}^{i} \\
U_{j}^{i}
\end{array}\right|, \underset{\sim}{A}=\left|\begin{array}{ll}
1 & i \frac{\Delta t}{\Delta x} h \sin (\sigma \Delta x) \\
i \frac{\Delta t}{\Delta x} g \sin (\sigma \Delta x)
\end{array}\right|, \\
& \underset{\sim}{B}=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right| \quad, \sigma \text { is the wave number }
\end{align*}
$$

Equation 4.3.6. H can be written as $\underset{\sim}{\mathrm{U}} \mathrm{m}+1=[\underset{\sim}{\mathrm{P}}] \underset{\sim}{\mathrm{U}} \mathrm{m}$ where $[\underset{\sim}{\mathrm{P}}]=[\underset{\sim}{\mathrm{A}}]^{-1} \cdot[\underset{\sim}{\mathrm{~B}}]$ and [P] is the Amplification Matrix ${ }^{[14]},[19],[20]$.

The condition for stability can be expressed in terms of behaviour of the Amplification matrix.

$$
[P(\Delta t, \sigma)]^{\mathrm{n}} \text { must be bounded for } 0<\mathrm{t}<\mathrm{t}_{\mathrm{o}} \text {, for wave numbers } \sigma
$$

If R is the spectral radius of $P^{[14]}$,

$$
\begin{equation*}
R(\Delta t, \sigma)^{n} \leqslant N\left[P(\Delta t, \sigma)^{n}\right] \leqslant N[P(\Delta t, \sigma)]^{n} . \tag{4.6.3.1}
\end{equation*}
$$

The stability condition is now that there exists a K , > 1 , such that

$$
\begin{align*}
& R(\Delta t, \sigma)^{n}<K \quad \text { for } 0<n \Delta t<t_{o} \\
& R(\Delta t, \sigma)<K^{1 / n}=K^{\Delta t / t_{0}} \tag{4.6.3.J}
\end{align*}
$$

for t in the interval 0 to , $K^{\Delta t / t_{o}}$ is bounded by $1+K^{\prime} \Delta t$. Bearing the definition of spectral radius in mind, the Van Neumann Stability Criteria is written as

$$
\left|\lambda_{i}\right|<1+0(\Delta t) \text { where } \lambda_{i} \text { are eigenvalues of } P \quad(4 \cdot 6 \cdot 3 \cdot K)
$$

4.6.4 Schemes for Inertia Terms Stability

It can be advantageous to use off centred differences, using a weighting function θ as a measure of the eccentricity ${ }^{\text {(14) }}$. Consider

$$
\frac{\partial s}{\partial t}+h \frac{\partial u}{\partial x}=0 \text { and } \frac{\partial u}{\partial t}+g \frac{\partial s}{\partial x}+U_{0} \frac{\partial u}{\partial x}=0
$$

where $g \frac{\partial s}{\partial x}$ is small and U_{0} is the basic mean flow rate and large compared to the fluctuations. This equation can be written as

$$
\mathrm{U}_{\mathrm{m}}^{\mathrm{n}+1}-\mathrm{U}_{\mathrm{m}}^{\mathrm{n}}+\frac{1}{2}\left(\frac{\Delta \mathrm{t}}{\Delta \mathrm{x}}\right) \mathrm{U}_{\mathrm{o}}\left\{(1-\theta)\left[\mathrm{U}_{\mathrm{m}+2}^{\mathrm{n}+1}-\mathrm{U}_{\mathrm{m}}^{\mathrm{n}+1}\right]+\theta\left[\mathrm{U}_{\mathrm{m}}^{\mathrm{n}+1}-\mathrm{U}_{\mathrm{m}-2}^{\mathrm{n}+1}\right]\right\}=0
$$

Applying the derivation of amplification matrices from 4.6.3, the amplification factor (a|x| matrix) is

$$
\begin{align*}
\lambda=1 /\{1 & -\frac{1}{2}\left(\frac{\Delta t}{\Delta x}\right) U_{o}\{(1-2 \theta) \cos (2 \sigma \Delta x)-(1-2 \theta) \\
& +i \sin (2 \sigma \Delta x)\}\}
\end{align*}
$$

Two possibilities have to be considered, $\mathrm{U}_{\mathrm{O}}<0$ and $\mathrm{U}_{\mathrm{O}}>0$. If $\mathrm{U}_{\mathrm{O}}<0$ then the denominator is >1 if $0<\theta<\frac{1}{2}$ and so satisfies the necessary and sufficient stability condition (4.3.6.K)

If $U_{0}>0$ then $(1-2 \theta)$ has to be negative to change the - sign outside to + to make the denominator positive. This occurs for $\frac{1}{2}<\theta<1$. For $\theta=\frac{1}{2}$ the sufficient condition is met in both 1imits.

Using this analysis, it is possible to predict instability. On boundaries instabilities have been predicted and found ${ }^{[1]}$. If economic forces permit, all finite difference schemes can be programmed for off centre differences. These can then be switched in and investigated as required.

4.7 'Computerisation' of the Two Dimensional Wave Equation

4.7.1 Introduction

The computational model of the two dimensional wave equation will now be developed, based on the sections $4.3,4.5$ and 4.6 .

Three indices are required to locate a variable in the x / y field and in time $U(i, j, k)=U(i \Delta x, j \Delta y, k \Delta t)$ is the notation employed.

$$
\text { A simplifying assumption is that } \Delta x=\Delta y=\Delta H . \quad(x, y)
$$

$=(i \Delta x, j \Delta y)$ is a grid point in the two dimensional field.

$$
\begin{aligned}
& i=0, \pm \frac{1}{2}, \pm 1, \pm 3 / 2 \\
& j=0, \pm \frac{1}{2}, \pm 1, \pm 3 / 2 \\
& k=0, \frac{1}{2}, 1,3 / 2
\end{aligned}
$$

Some averaging operators are defined as $A^{x}, A^{y}, A^{x y}$ and two difference operators D^{x}, D^{y}

$$
\begin{align*}
& \left.\bar{f}^{\mathrm{X}}(\mathrm{i}, \mathrm{j})=A^{\mathrm{X}}\left[\mathrm{f}^{\mathrm{X}}\right]=\frac{1}{2}\left[f\left(\mathrm{i}+\frac{1}{2}\right) \mathrm{j}\right)+\mathrm{f}\left(\mathrm{i}-\frac{1}{2}, j\right)\right] \tag{4.7.1.A}\\
& \bar{f}^{y}(i, j)=A^{y}\left[f^{y}\right]=\frac{1}{2}\left[f\left(i, j+\frac{1}{2}\right)+f\left(i, j-\frac{1}{2}\right)\right] \tag{4.7.1.B}\\
& \overline{\bar{f}}(i, j)=A^{x y}[f]=\frac{1}{4}\left[f\left(i-\frac{1}{2}, j-\frac{1}{2}\right)+f\left(i-\frac{1}{2}, j+\frac{1}{2}\right)+f\left(i+\frac{1}{2}, j-\frac{1}{2}\right)\right. \\
& \left.+f\left(i+\frac{1}{2}, j+\frac{1}{2}\right)\right] \\
& \text { (4.7.1.C) } \\
& f_{x} \quad=D^{x}\left[f^{x}\right]=\left[f\left(i+\frac{1}{2}, j\right)-f\left(i-\frac{1}{2}, j\right)\right] \tag{4.7.1.D}\\
& f_{y} \quad=D^{y}\left[f^{y}\right]=\left[f\left(i, j+\frac{1}{2}\right)-f\left(i, j-\frac{1}{2}\right)\right] \tag{4.7.1.E}
\end{align*}
$$

4.7.2 Outline of the Solution Scheme

A staggered spatial grid is used (Figure 4.7.2.A) so that $u, v ; s$ and h are located at different points. This ensures that the current variable acted on in time is always central ${ }^{[21]}$.

TABLE 4.7.2.A Grid point references of variables

Variable	x grid reference of description	y grid reference of description
s-water leve1	Integer values of I	Integer values of J
u-x component of velocities	I $+\frac{1}{2}$	J
v-y component of velocities	I	$\mathrm{J}+\frac{1}{2}$
H-depth	I $+\frac{1}{2}$	$\mathrm{~J}+\frac{1}{2}$

FIGURE 4.7.2.A Staggered Grid used in the Computational Model

A double time step method is employed, i.e. to obtain $t+\Delta t$ from t, firstly $t+\Delta t / 2$ is estimated, then this is used to obtain $t+\Delta t$. This allows spatial derivatives and Coriolis forces to be alternately calculated forwards or backwards in time:
$U, V, S\left(i, j, k+\frac{1}{2}\right)$ are obtained from $U, V, S(i, j, k)$ by a method implicit in S and U and explicit in V, then $U, V, S(i, j, k+1)$ are obtained from $U, V, S\left(i, j, k+\frac{1}{2}\right)$ by a method implicit in S and V and explicit in U .

4.7.3 The Multioperational Method

Firstly, values of U, V, S are obtained at plus one half time step, then at plus one time step. A minimum of six equations are thus required, U and V are determined from the equations 4.5.1.A and B while S is obtained from 4.5.2.A, the equation of continuity. Derivatives are replaced by finite differences with the exception of the velocity gradients in the convection terms. Wind and Barometric effects are lumped in the function W and Bottom Roughness/Friction in the function F. Superscripts refer to time
$U\left(i+\frac{1}{2}, j, k+\frac{1}{2}\right)$ from $S, U, V(i, j, k) \exp 1$ icit in V, implicit in U and S, at $\left(i+\frac{1}{2}, j\right)$:

$$
\begin{align*}
U^{\left(k+\frac{1}{2}\right)}=U^{(k)} & +\frac{\Delta t}{2}\left\{\Omega \overline{\bar{V}}(k)-U^{k+\frac{1}{2}}\left|\frac{\partial u}{\partial x}\right|^{(k)}-\right. \\
& \left.=(k)\left|\frac{\partial u}{\partial y}\right|^{(k)}-\frac{g}{\Delta H} S_{x}^{\left(k+\frac{1}{2}\right)}\right\}-F(x)^{(k)}-W(x)^{\left(k+\frac{1}{2}\right)} \tag{4.7.3.A}
\end{align*}
$$

$S\left(i, k, k+\frac{1}{2}\right)$ from $S, U, V(i, j, k)$ explicit in V, implicit in U and S, at (io):
$\left.S^{\left(k+\frac{1}{2}\right.}\right)=S^{(k)}-\frac{\Delta t}{2 \Delta H}\left\{\left[\left(\bar{h}^{y}+\bar{s}^{-x}\right) u\right]_{x}^{\left(k+\frac{1}{2}\right)}-\left[\left(\bar{h}^{\mathrm{x}}+\bar{s}^{-y}\right) v\right]_{y}^{(k)}\right\}$
(4.7.3.B)
$V\left(i, j+\frac{1}{2}, k+\frac{1}{2}\right)$ from $S, U, V(i, j, k)$:
$\mathrm{V}^{\left(\mathrm{k}+\frac{1}{2}\right)}=\mathrm{V}^{(\mathrm{k})}-\frac{\Delta \mathrm{t}}{2}\left\{\Omega \overline{\bar{U}}^{\left(\mathrm{k}+\frac{1}{2}\right)}-\overline{\bar{U}}^{\left(\mathrm{k}+\frac{1}{2}\right)}\left|\frac{\partial \mathrm{v}}{\partial \mathrm{x}}\right|^{(\mathrm{k})}-\frac{\mathrm{g}}{\Delta \mathrm{H}} \mathrm{S}_{\mathrm{y}}^{(\mathrm{k})}\right\}-\mathrm{F}(\mathrm{y})^{\left(\mathrm{k}+\frac{1}{2}\right)}-\mathrm{W}(\mathrm{y})^{(\mathrm{k})}$

Then, for the second phase from $k+\frac{1}{2}$ to $k+1$
$U\left(i+\frac{1}{2}, j, k+1\right):$
$U^{(k+1)}=U^{\left(k+\frac{1}{2}\right)}+\frac{\Delta b}{2}\left\{\Omega \overline{\bar{V}}^{(k+1)}-U^{(k+1)}\left|\frac{\partial u}{\partial x}\right|^{\left(k+\frac{1}{2}\right)}-\right.$
$\left.\overline{\mathrm{V}}(\mathrm{k}+1)\left|\frac{\partial \mathrm{u}}{\partial \mathrm{y}}\right|^{\left(\mathrm{k}+\frac{1}{2}\right)}-\frac{\mathrm{g}}{\Delta \mathrm{H}} \mathrm{S}_{\mathrm{x}}^{\left(\mathrm{k}+\frac{1}{2}\right)}\right\}-\mathrm{F}(\mathrm{x})^{(\mathrm{k}+1)}-\mathrm{W}(\mathrm{x})^{\mathrm{k}+\frac{1}{2}}$
(4.7.3.D)

S(i,j,k+1) from continuity equation:
$S^{(k+1)}=S^{\left(k+\frac{1}{2}\right)}-\frac{\Delta t}{2 \Delta H}\left\{\left(\left[\bar{h}^{y}+\bar{s}^{\mathrm{x}}\right] \mathrm{u}\right)_{x}^{\left(k+\frac{1}{2}\right)}-\left(\left[\bar{h}_{\mathrm{x}}+\bar{S}^{\mathrm{y}}\right] \mathrm{V}\right)_{\mathrm{y}}^{(\mathrm{k}+1)}\right\}$
(4.7.3.E)
$V\left(i, j+\frac{1}{2}, k+1\right):$

$$
\begin{align*}
& \mathrm{V}^{(k+1)}=\mathrm{V}^{\left(k+\frac{1}{2}\right)}-\frac{\Delta \mathrm{t}}{2}\left\{\Omega \overline{\bar{U}}^{\left(k+\frac{1}{2}\right)}-\overline{\overline{\mathrm{U}}}\left(\mathrm{k}+\frac{1}{2}\right)\right. \\
&\left|\frac{\partial \mathrm{v}}{\partial \mathrm{x}}\right|^{\left.\mathrm{k}+\frac{1}{2}\right)}-\mathrm{V}^{(\mathrm{k}+1)}\left|\frac{\partial \mathrm{v}}{\partial \mathrm{y}}\right|^{\mathrm{k}+\frac{1}{2}} \\
&\left.-\frac{\mathrm{g}}{\Delta \mathrm{H}} \mathrm{~S}_{\mathrm{y}}^{(\mathrm{k}+1)}\right\}-\mathrm{F}(\mathrm{y})^{\left(\mathrm{k}+\frac{1}{2}\right)}-\mathrm{W}(\mathrm{y})^{(\mathrm{k}+1)}
\end{align*}
$$

The equations 4.7.3.A - 4.7.3.F have now to be solved numerically. To simplify the essential development of a solution scheme, the functions F and W are omitted at this stage. The terms still in differential form are also omitted and developed later.

Consider equations 4.7 .3 . A and B. Each equation contains three unknowns at time $n+\frac{1}{2}$ in line j 4.7.3.A can be rewritten as

$$
B\left(i+\frac{1}{2}, j, k\right)=-\frac{g}{2} \frac{\Delta t}{\Delta H} S_{i+\frac{1}{2}}^{\left(k+\frac{1}{2}\right)}+U_{i+\frac{1}{2}}^{\left(k+\frac{1}{2}\right)}+\frac{g}{2} \frac{\Delta t}{\Delta H} S_{i+1}^{\left(k+\frac{1}{2}\right)}=U^{k}+\frac{\Delta t}{2} \Omega \overline{\bar{V}}(k)
$$

and the continuity condition $4 \cdot 7.3$. B is

$$
\begin{align*}
A(i, j, k)= & -\frac{\Delta t}{2 \Delta H}\left[\left(\bar{h}_{y}+\bar{S}_{x}\right) u\right]_{i-\frac{1}{2}}^{\left(k+\frac{1}{2}\right)}+S_{i}^{\left(k+\frac{1}{2}\right)}+\frac{\Delta t}{2 \Delta H}\left[\left(\bar{h}_{y}+\bar{S}_{x}\right) u\right]_{i+\frac{1}{2}}^{\left(k+\frac{1}{2}\right)}=S^{(k)} \\
& -\frac{\Delta t}{2 \Delta H}\left[\left(\bar{h}_{x}+\bar{S}_{y}\right) v\right]_{j}^{(k)} \tag{4.7.3.H}
\end{align*}
$$

So in 4.7.3.G for each velocity point U_{i+}. there is one equation in 3 unknowns, similarly for S in 4.7.3.H. If there are ℓ water level points on the line j, velocities are known at boundaries, ℓ water levels and $\ell-1$ velocities have to be calculated from $2 \ell-1$ expressions.

Now define r_{i} as follows:
$r_{i}=\frac{g}{2} \frac{\Delta t}{\Delta H}=r_{i+1} \quad, \quad r_{i+\frac{1}{2}}=\frac{\Delta t}{2 \Delta H}\left(\bar{h}_{y}+\bar{S}_{x}\right)_{i+\frac{1}{2}}$

For a line j in the y direction of the water field, 4.3.7.G and H can be written in matrix form

$$
\begin{equation*}
M \cdot N^{\left(k+\frac{1}{2}\right)}=\alpha^{(k)}+\beta^{\left(k+\frac{1}{2}\right)} \tag{4.7.3.J}
\end{equation*}
$$

assuming $U_{S-\frac{1}{2}}^{k+\frac{1}{2}}$ and $U_{e+\frac{1}{2}}^{k+\frac{1}{2}}$ are known velocities at start and end (i.e. boundaries) of water field. The matrix M is a banded matrix and $\mathrm{N}, \alpha, \beta$ are column vectors
$M=\left|\begin{array}{ccccc}1 & r_{s+\frac{1}{2}} & 0 & 0 & \cdot \\ -r_{s} & 1 & r_{s+1} & 0 & \cdot \\ 0 & -r_{s+\frac{1}{2}} & 1 & r_{s+3 / 2} & \cdot \\ 0 & \cdot & \cdot & . & \cdot \\ 0 & \cdot & -r_{e-1} & 1 & r_{e} \\ 0 & \cdot & \cdot & -r_{e-\frac{1}{2}} & 1\end{array}\right| \begin{aligned} & \text { Dimension of } M=\ell \times \ell \\ & \text { where } \ell=2(e-s+1) \\ & s=\text { end boundary index }\end{aligned}$
N is a column vector at time $k+\frac{1}{2}=\left[S_{s} U_{s+\frac{1}{2}} S_{S+1} \ldots S_{e-1} U_{e-\frac{1}{2}} S_{e}\right]$
α is a column vector at time $k=\left[A_{s} B_{s+\frac{1}{2}} A_{s+1} \cdots A_{e-1} B_{e-\frac{1}{2}} A_{e}\right]^{\prime}$

$$
\begin{equation*}
\left.r_{e+} . U_{e+\frac{1}{2}}\right] \tag{4.7.3.K}
\end{equation*}
$$

The matrix N is the solution and one possible method is to find M^{-1} and use the matrix relation

$$
\begin{aligned}
N^{\left(k+\frac{1}{2}\right)}=M^{-1}\left[\alpha^{(k)}+\beta^{\left(k+\frac{1}{2}\right)}\right] \quad & \text { (where bracketed superscripts } \\
& \text { are non arithmetic powers) }
\end{aligned}
$$

However, a band matrix is a special case of a square matrix and so a simpler method for solution similar to that used in the steady state mode1 is employed.

To solve 4.7.3.J the following recursion equations can be used:

$$
\begin{align*}
& S_{i}^{k+\frac{1}{2}}=\pi_{i} U_{i+\frac{1}{2}}^{\left(k+\frac{1}{2}\right)}+\mu_{i} \tag{4.7.3.L}\\
& U_{i-\frac{1}{2}}^{k+\frac{1}{2}}=\psi_{i-1} S_{i}^{\left(k+\frac{1}{2}\right)}+\Phi_{i-1} \tag{4.7.3.M}
\end{align*}
$$

where values of π, μ, ψ and Φ can be obtained from considerations of the terms involved and 4.7.3.L/M.

$$
\begin{align*}
& \pi_{i}=-r_{i+\frac{1}{2}} /\left\{1-r_{i-} \psi_{i-1}\right\} \tag{4.7.3.N}\\
& \mu_{i}=\left\{A_{i}^{(k)}+r_{i-\frac{1}{2}} \Phi_{i-1}\right\} /\left\{1-r_{i-\frac{1}{2}} \psi_{i-1}\right\} \tag{4.7.3.0}\\
& \psi_{i}=-r_{i+1} /\left\{1-r_{i} \pi_{i}\right\} \tag{4.7.3.P}\\
& \Phi_{i}=\left\{B_{i+\frac{1}{2}}^{(k)}+r_{i} / \mu_{i}\right\} /\left\{1-r_{i} \pi_{i}\right\} \tag{4.7.3.Q}
\end{align*}
$$

The values of these recursion coefficients are calculated initially at ℓ and then backwards until s is reached. $\mathrm{U}_{\mathrm{e}+\frac{1}{2}}^{\left(k+\frac{1}{2}\right)}$ is a known velocity so π_{e}, μ_{e} are the last factors to be calculated. This allows 4.7.3. L to be used to calculate $\mathrm{S}_{\mathrm{e}}^{\mathrm{k}+\frac{1}{2}}$ as the velocity is known. The result of this allows 4.7.3.M to calculate $\mathrm{U}_{\mathrm{e}-\frac{1}{2}}^{\mathrm{k}+\frac{1}{2}}$ to be calculated, which, on reducing the index can again be used to calculate S_{e-1} from 4.7.3.L etc until the boundary s is reached. U and S for $k+\frac{1}{2}$ are then known. This allows 4.7.3.C to be used to calculate V at $k+\frac{1}{2}$ as only $U^{k+\frac{1}{2}}$ is required for the Coriolis term.

Equations 4.7.3.D and E can be used in an identical manner to solve for $U^{(k+1)}$ and $S^{(k+1)}$ in the time step $k+\frac{1}{2}$ to $k+1$. Then 4.7.3.F is used to determine $\mathrm{V}^{(\mathrm{k}+1)}$.

A11 the previous theory was developed for a variable $c(i, j, k)$ with j constant. This j has to be cycled also to provide a complete solution at each time step. An alternative method can be developed initially, varying j for a fixed i. Ideally, both methods are programmed and used alternatively.

The method is quite economic in terms of computer store and runtime as the solution method is one of substitution and there are no iterative sections (see 4.7.4). Further, only two levels of solution have to be stored, at k and $k+\frac{1}{2}$ or $k+\frac{1}{2}$ and k, for each of the three variables.

4.7.4 Non Linear Terms in Continuity Equation

The terms $\left[\left(\bar{h}^{y}+\bar{S}^{\mathrm{x}}\right) \mathrm{u}\right]_{\mathrm{x}}^{\mathrm{k}+\frac{1}{2}}$ in 4.7.3.B and $\left[\left(\bar{h}^{\mathrm{x}}+\bar{S}^{\mathrm{y}}\right) \mathrm{V}\right]_{\mathrm{y}}^{\mathrm{k}+1}$ in 4.7 .3 .E contain non 1 inearities in the context of equations 4.7.3.A-F.

The initial value of $S^{k+\frac{1}{2}}$ calculated from 4.7.3.B uses the non-linear term at time k and not $k+\frac{1}{2}$ as should be the case. The solution of this part can be made iteratively until the values $S^{k+\frac{1}{2}}$ converge, each step approximating the $\overline{\mathrm{S}}^{\mathrm{x}}$ at $\mathrm{k}+\frac{1}{2}$ better than the previous cycle. This does introduce an undesirable element into the model. Iterative procedures need not converge. In practice it is uneconomical in additional computer time to allow more than two iterations.

4.7.5 Convection/Inertial Terms

These are the terms in $4.7 .3 . A, C, D, F$ and are in spatial derivative form. To estimate these, available grid points have to be used. Therefore

$$
\begin{align*}
& \left|\frac{\partial u}{\partial x}\right|^{(k)}=\frac{1}{2 \Delta H}\left\{U(i+3 / 2, j, k)-U\left(i-\frac{1}{2}, j, k\right)\right\} \tag{4.7.5.A}\\
& \left|\frac{\partial u}{\partial y}\right|^{(k)}=\frac{1}{2 \Delta H}\left\{U\left(i+\frac{1}{2}, j+1, k\right)-U\left(i+\frac{1}{2}, j-1, k\right)\right\} \tag{4.7.5.B}\\
& \left|\frac{\partial v}{\partial x}\right|^{(k)}=\frac{1}{2 \Delta H}\left\{V(i, j+3 / 2, k)-V\left(i, j-\frac{1}{2}, k\right)\right\} \tag{4.7.5.C}
\end{align*}
$$

These terms cannot be taken central in time as the matrix M would be filled out to more than a 3 element band matrix and to minimize error, spatial derivatives are taken at a lower velocity in the higher time levels.

It has been shown that by use of an alternate network by which S is computed at the same location as h, allowing velocity derivatives to be spaced over $\Delta H^{[22],[23]}$. This would double store requirements of the model and also may create oscillations between the two systems. The magnitude of these terms is small and so a simpler approximation is employed. The terms involved in 4.7.3.A, C, D and F are the approximations used.

4.7.6 Bottom Friction Effect Terms

The Bottom Friction Term is approximated using Chezy coefficients assigned at values where S is defined from 4.3.4:
$F(s)^{(h)}=\frac{g \Delta t}{2} U^{(k)}\left[\left(U^{(k)}\right)^{2}+(\overline{\bar{V}}(\mathrm{k}))^{2}\right]^{\frac{1}{2}} /\left\{\left[\bar{h}^{y}+\bar{S}^{x(k)}\right]\left[\overline{\mathrm{C}}^{\mathrm{x}}\right]^{2}\right\}$

$$
\begin{align*}
& \text { at }\left(i+\frac{1}{2}, j\right) \tag{4.7.6.A}\\
& \left.F(y)^{\left(k+\frac{1}{2}\right)}=\frac{g \Delta t}{2} V^{\left(k+\frac{1}{2}\right)}\left[\left(\overline{\bar{U}}\left(\mathrm{k}+\frac{1}{2}\right)\right)^{2}+\left(V^{(k)}\right)^{2}\right]^{\frac{1}{2}} /\left\{\bar{h}^{\mathrm{x}}+\bar{S}^{y\left(k+\frac{1}{2}\right)}\right]\left[\overline{\mathrm{C}}^{\mathrm{y}}\right]^{2}\right\} \\
& \text { at }\left(i, j+\frac{1}{2}\right) \tag{4.7.6.B}\\
& F(x)^{(k+1)}=\frac{g \Delta t}{2} U^{(k+1)}\left[\left(U^{\left(k+\frac{1}{2}\right)}\right)^{2}+\left(\overline{\bar{V}}^{(k+1)}\right)^{2}\right]^{\frac{1}{2}} /\left\{\left[\bar{h}^{y}+\bar{S}^{x(k+1)}\right]\left[\bar{C}^{x}\right]^{2}\right\} \\
& \text { at }\left(i+\frac{1}{2}, k\right) \\
& \begin{array}{c}
F(x)^{(k+1)}=\frac{g \Delta t}{2} U^{(k+1)}\left[\left(U^{\left(k+\frac{1}{2}\right)}\right)^{2}+(\overline{\overline{\mathrm{V}}}(\mathrm{k}+1))^{2}\right]^{\frac{1}{2}} /\left\{\left[\overline{\mathrm{h}}^{\mathrm{y}}+\overline{\mathrm{S}}^{\mathrm{x}(\mathrm{k}+1)}\right]\left[\overline{\mathrm{C}}^{\mathrm{x}}\right]^{2}\right\} \\
\text { at }\left(\mathrm{i}+\frac{1}{2}, \mathrm{k}\right)
\end{array}
\end{align*}
$$

$$
\begin{gathered}
F(y)^{(k+1)}=\frac{g \Delta t}{2} V^{\left(k+\frac{1}{2}\right)}\left[\left(\overline{\bar{U}}^{\left(k+\frac{1}{2}\right)}\right)^{2}+\left(V^{\left(k+\frac{1}{2}\right)}\right)^{2 \frac{1}{2}}\right]^{\left.1 /\left\{\bar{h}^{\mathrm{x}}+\overline{\mathrm{S}}^{y\left(k+\frac{1}{2}\right)}\right]\left[\overline{\mathrm{C}}^{\mathrm{y}}\right]^{2}\right\}} \\
\text { at }\left(\mathrm{i}, \mathrm{j}+\frac{1}{2}\right)
\end{gathered} \text { 4.7.6.D) }
$$

4.7.7 Wind Forcing Terms

Using the expressions developed in 4.3.5 an expression is obtained for the wind component.

$$
\begin{aligned}
& \text { Shear stress } T=C \rho_{a}|V|^{2} \text { where } C \text { is the drag coefficient } \\
& \text { Wing drag component in } x \text { direction } W X=T^{x} \rho_{\omega}^{-1}, \\
& y \text { direction } W Y=T^{y} \rho_{\omega}^{-1} .
\end{aligned}
$$

Terms are $\mathrm{WX} /\left\{\overline{\mathrm{h}}^{\mathrm{x}}+\overline{\mathrm{S}}^{\mathrm{x}}\right\}$ and $\mathrm{WY} /\left\{\overline{\mathrm{h}}^{\mathrm{y}}+\overline{\mathrm{S}}^{\mathrm{y}}\right\}$

4.7.8 Summary and Final Computational Mode1

The terms discussed after the development of the basic method can all be included in the recursive factors developed in 4.7.3.N-Q. The method developed for the x-direction is identical to that for the y-direction. The formulae so developed still cannot be translated directly for a high level language as fractional indices are used. All indices could be multiplied by 2 to ensure pure integer indices. This would be wasteful of storage as each lattice would be sparsely determined. It is more efficient to use three different coordinate systems, one for U and V, one for water levels S and one for depths h (Figure 4.7.8.A, compare Figure 4.7.2.A).

FIGURE 4.7.8.A "Grid Systems for U/V, SE, H in Bay"

The remaining equations of this section used the following notation:
$H(N, M)=$ value of array at col N, row M, invariant with respect to time $\operatorname{SE}(\mathrm{N}, \mathrm{M}, \mathrm{T})=$ water level at time T $\frac{\Delta t}{\Delta H}=$, the ratio of two steps

The recursive equations are, for each row N

$$
\begin{align*}
\operatorname{SE}(N, M, T+t / 2) & =-P(M) \cdot U(N, M, T+\Delta t / 2)+Q(M) \\
U(N, T, T+t / 2) & =-R(M-1) \cdot \operatorname{SE}(N, M, T+\Delta t / 2)+S(M-1)
\end{align*}
$$

where P, R, Q, S are defined by the relationships:

$$
\begin{align*}
& P(M)=\frac{\Delta}{2}[H(N, M)+H(N-1, M)+S E(N, M, T)+S E(N, M+1, T)] / F(M) \tag{4.7.8.C}\\
& Q(M)=\left\{A(M)+\frac{\Delta}{2}[H(N, M-1)+H(N-1, M-1)+S E(N, M-1, T)+S E(N, M, T)] S(M-1)\right\} / F(M)
\end{align*}
$$

$$
\begin{equation*}
F(M)=\left\{1+\frac{\Delta}{2}[H(N, M-1)+H(N-1, M-1)+S E(N, M-1, T)+S E(N, M, T)] R(M-1)\right\} \tag{4.7.8.D}
\end{equation*}
$$

$R(M)=\Delta \cdot g / G(M)$
$S(M)=\{B(M)+\Delta \cdot g \cdot Q(M)\} / G(M)$
$G(M)=\{1+\Delta[g \cdot P(M)+(1-\alpha(N, M))(U(N, M+1, T)-U(N, M, T))+\alpha(N, M)(U(N, M, T)-$ $\mathrm{U}(\mathrm{N}, \mathrm{M}-1, \mathrm{~T}))]\}$
$A(M)=S E(N, M, T)-\frac{\Delta}{2}[\{H(N, M)+H(N, M-1)+S E(N, M, T)+S E(N, M+1, T)\}$ $V(N, M, T)+\{H(N-1, M-1)+H(N-1, M)+S E(N, M, T)+S E(N-1, M, T)\}$ $\mathrm{V}(\mathrm{N}-1, \mathrm{M}, \mathrm{T})]$
$B(M)=U(N, M, T)+\frac{\Delta t \cdot \Omega}{4}-\frac{\Delta}{4}\{(1-\gamma(N, M))(U(N+1, M, T)-U(N, M, T))$
$+\gamma(N, M)(U(N, M, T)-U(N-1, M, T))\} .\left\{\frac{1}{4}[V(N, M, T)+V(N, M+1, T)\right.$
$+V(N-1, M+1, T)]\}-8 \cdot \Delta t \cdot g \cdot U(N, M, T)\left[U(N, M, T)^{2}+\left[\frac{1}{4}\{V(N, M, T)\right.\right.$
$\left.+\mathrm{V}(\mathrm{N}, \mathrm{M}+1, \mathrm{~T})+\mathrm{V}(\mathrm{N}-1, \mathrm{M}, \mathrm{T})+\mathrm{V}(\mathrm{N}-1, \mathrm{M}+1, \mathrm{~T})\}]^{2}\right]^{\frac{1}{2}} /[(\mathrm{SE}(\mathrm{N}, \mathrm{M}, \mathrm{T})$
$\left.+\operatorname{SE}(N, M+1 \mathrm{mT})+\mathrm{H}(\mathrm{N}, \mathrm{M})+\mathrm{H}(\mathrm{N}, \mathrm{M}-1)) \cdot(\mathrm{C}(\mathrm{N}, \mathrm{M})+\mathrm{C}(\mathrm{N}+1, \mathrm{M}))^{2}\right] \quad$ (4.7.8.J)

To calculate $V(N, M, T+\Delta t / 2)$ explicitly, use $\operatorname{UAV}(N, M, T+\Delta t / 2)=\frac{1}{4}[U(N, M, T+\Delta t / 2)+U(N+1, M, T+\Delta t / 2)+U(N+1, M+1, T+\Delta t / 2)$ $+\mathrm{U}(\mathrm{N}, \mathrm{M}-1, \mathrm{~T}+\Delta \mathrm{t} / 2)]$

$$
\begin{align*}
V(N, M, T+t / 2)= & \{V(N, M, T)-[\Delta t \cdot \Omega+\Delta(1-\delta(N, M))(V(N, M+1, T) \\
& -V(N, M, T))-\Delta \cdot \delta(N, M)(V(N, M, T)-V(N, M-1, T)) \\
&] \cdot U A V(N, M, T+\Delta t / 2)-\Delta g(S E(N+1, M, T+\Delta t / 2) \\
& -S E(N, M, T+\Delta t / 2))\} / D(M) \tag{4.7.8.L}
\end{align*}
$$

$D(M)=1+\left(8 \cdot \Delta t \cdot g\left[V(N, M, T)^{2}+[U A V(N, M, T+\Delta t / 2)]^{2}\right]^{\frac{1}{2}} /[(S E(N, M, T\right.$ $+\Delta t / 2)+S E(N+1, M, T+\Delta t / 2)+H(N, M-1)+H(N, M))]$. $\left.(C(N, M)+C(N+1, M))^{2}\right]+[\Delta .(1-\beta(N, M))$ $(V(N+1, M, T)-V(N, M, T))+\Delta \beta(N, M)(V(N, M, T)$ $+\mathrm{V}(\mathrm{N}-1, \mathrm{M}, \mathrm{T}))]$
where $\alpha(N, M)=\beta(N, M)=\delta(N, M)=\frac{1}{2}$ for central differences.

Equations 4.7.8.A-M are the computational model for the step T to $T+\Delta t / 2$. For the step $T+\Delta t / 2$ to $T+\Delta t$ the recursion formula 4.7.8.A and B is written

$$
\begin{align*}
& S E(N, M, T+\Delta t)=-P 2(N) \cdot V(N, M, T+\Delta t)+Q 2(M) \tag{4.7.8.N}\\
& V(N-1, M, T+\Delta t)=-R 2(N-1) \cdot S E(N, M, T+\Delta t)+S 2(N-1) \tag{4.7.8.0}
\end{align*}
$$

where $P 2, Q 2, R 2$, $S 2$ are similar to P, Q, R, S and defined by
$P 2(N)=\frac{\Delta}{2}[H(N, M)+H(N, M-1)+S E(N, M, T+\Delta t / 2)+S E(N+1, M, T+\Delta t / 2)] / F 2(N)$
$\mathrm{Q} 2(\mathrm{~N})=\left\{\mathrm{A} 2(\mathrm{~N})+\frac{\Delta}{2}[\mathrm{H}(\mathrm{N}-1, \mathrm{M})+\mathrm{H}(\mathrm{N}-1, \mathrm{M}-1)+\mathrm{SE}(\mathrm{N}, \mathrm{M}, \mathrm{T}+\Delta \mathrm{t} / 2)\right.$ $+\mathrm{SE}(\mathrm{N}+1, \mathrm{M}, \mathrm{T}+\Delta \mathrm{t} / 2)] \mathrm{S}(\mathrm{N}-1)\} / \mathrm{F} 2(\mathrm{~N})$

```
F2(N) ={1 + 老 [H(N-1,M)+H(N-1,M-1)+SE (N,M,T+\Deltat/2)
    +SE (N+1,M,T+\Deltat/2]R2 (N-1)}
R2(N) = \Delta.g/G2(N)
S2(N) ={B2(N)+\Delta.g.Q2(N)}/G2(N)
G2(N) = {1+\Delta.[g.P2(N)+(1-\beta(N,m))(V (N+1,M,T+\Deltat/2)
    -V (N,M,T+\Deltat/2))+\beta(N,M)(V (N,M,T+\Deltat/2)
        -V (N-1,M,T+\Deltat/2))]}
\(R 2(N)=\Delta . g / G 2(N)\)
\(\mathrm{S} 2(\mathrm{~N})=\{\mathrm{B} 2(\mathrm{~N})+\Delta \cdot \mathrm{g} \cdot \mathrm{Q} 2(\mathrm{~N})\} / \mathrm{G} 2(\mathrm{~N})\)
A2(N)}=SE(N,M,T+\Deltat/2)-\frac{\Delta}{2}(H(N,M)+H(N-1,M)+SE(N,M,T+\Deltat/2
    +SE (N,M+1,T+\Deltat/2))U(N,M,T+\Deltat/2)+ 者(H(N,M-1)
    +H(N-1,M-1)+SE(N,M-1,T+\Deltat/2)+SE (N,M,T+\Deltat/2)).
    U(N,M-1,T+\Deltat/2)
B2(N) = V (N,M,T+\Deltat/2)-(\Omega.\Deltat+\Delta(1-\delta(N,M)) (V (N,M+1,T+\Deltat/2)
    -V(N,M,T+\Deltat/2)).(UAV (N,M,T+\Deltat/2)))-V (N,M,T+\Deltat/2).
    [8.\Deltat.g V (N,M,T+\Deltat/2) }\mp@subsup{}{2}{2}[\operatorname{UAV}(N,M,T+\Deltat/2)\mp@subsup{]}{}{2}\mp@subsup{}}{}{\frac{1}{2}}]/
    SE (N,M,T+\Deltat/2)+SE (N+1,M,T+\Deltat/2)+H(N,M)+H(N,M-1)).
    (C (N,M)+C(N+1,M))}\mp@subsup{}{}{2
\(\operatorname{UAV}(N, M, T+\Delta t / 2)=\frac{1}{4} U(N, M-1, T+\Delta t / 2)+U(N+1, M-1, T+\Delta t / 2)\)
    +U(N+1),M,T+\Deltat/2)+U(N,M,T+\Deltat/2)
(4.7.8.x)
```

To finally calculate $U(N, M, T+\Delta t)$ explicitly, use:

$$
\begin{align*}
\mathrm{U}(\mathrm{~N}, \mathrm{M}, \mathrm{~T}+\Delta \mathrm{t}) & =\{\mathrm{U}(\mathrm{~N}, \mathrm{M}, \mathrm{~T}+\Delta \mathrm{t} / 2)+[\Omega \cdot \Delta \mathrm{t}-(1-\gamma(\mathrm{N}, \mathrm{M})) \cdot \Delta \cdot(\mathrm{U}(\mathrm{~N}+1, \mathrm{M}, \mathrm{~T} \\
+ & \Delta \mathrm{t} / 2)-\mathrm{U}(\mathrm{~N}, \mathrm{M}, \mathrm{~T}+\Delta \mathrm{t} / 2))-\gamma(\mathrm{N}, \mathrm{M}) \cdot \Delta \cdot(\mathrm{U}(\mathrm{~N}, \mathrm{M}, \mathrm{~T}+\Delta \mathrm{t} / 2) \\
& -\mathrm{U}(\mathrm{~N}-1, \mathrm{M}, \mathrm{~T}+\Delta \mathrm{t} / 2)) \cdot \operatorname{VAV}(\mathrm{N}, \mathrm{M}, \mathrm{~T}+\Delta \mathrm{t})]-\Delta \cdot(\mathrm{SE}(\mathrm{~N}, \mathrm{M}+1, \mathrm{~T}+\Delta \mathrm{t}) \\
& -\mathrm{SE}(\mathrm{~N}, \mathrm{M}, \mathrm{~T}+\mathrm{t})\} /\left\{1+8 \cdot \Delta \mathrm{t} \cdot \mathrm{~g}\left[\mathrm{U}(\mathrm{~N}, \mathrm{M}, \mathrm{~T}+\Delta \mathrm{t} / 2)^{2}\right.\right. \\
+ & \left.(\mathrm{VAV}(\mathrm{~N}, \mathrm{M}, \mathrm{~T}+\Delta \mathrm{t}))^{2}\right] /[\{\mathrm{SE}(\mathrm{~N}, \mathrm{M}, \mathrm{~T}+\Delta \mathrm{t})+\mathrm{H}(\mathrm{~N}, \mathrm{M}) \\
& \left.+\mathrm{SE}(\mathrm{~N}, \mathrm{M}+1, \mathrm{~T}+\Delta \mathrm{t})+\mathrm{H}(\mathrm{~N}-1, \mathrm{M})\} \cdot\{\mathrm{C}(\mathrm{~N}, \mathrm{M})+\mathrm{C}(\mathrm{~N}, \mathrm{M}+1)\}^{2}\right] \\
+ & \Delta \cdot[(1-\alpha(\mathrm{N}, \mathrm{M}))(\mathrm{U}(\mathrm{~N}, \mathrm{M}+1, \mathrm{~T}+\Delta \mathrm{t} / 2)-\mathrm{U}(\mathrm{~N}, \mathrm{M}, \mathrm{~T}+\Delta \mathrm{t} / 2)) \\
+ & \alpha(\mathrm{N}, \mathrm{M})(\mathrm{U}(\mathrm{~N}, \mathrm{M}, \mathrm{~T}+\Delta \mathrm{t} / 2)-\mathrm{U}(\mathrm{~N}, \mathrm{M}-1, \mathrm{~T}+\Delta \mathrm{t} / 2)]] \tag{4.7.8.Y}
\end{align*}
$$

$$
\begin{align*}
\operatorname{VAV}(N, M, T+t) & =\frac{1}{4}\{V(N, M, T+\Delta t)+V(N, M+1, T+\Delta t)+V(N+1, M, T+\Delta t) \\
& +V(N-1, M+1, T+\Delta t)\} \tag{4.7.8.7}
\end{align*}
$$

4.7.9 Assumptions and Boundary Conditions

It is assumed that boundaries are closed, i.e. that the boundary remains fixed in space implying that there is always a finite depth of water remaining.

At a closed bound, the velocity perpendicular to the bound can be taken as zero, i.e. there is no flooding over the bound. Also, the maximum deviation of SE from H at this point should be less than H so that $|\mathrm{H}-\mathrm{SE}|$ remains positive. This is a necessary condition for definition of a fixed boundary, as if $\mathrm{SE}=\mathrm{H}$ then water depth $=0$ and boundary can be moved forward until $|\mathrm{H}-\mathrm{SE}|>0$ again.

The boundary passes through locations at which the depth H is given.

At a bay/ocean interface the forcing function provides the boundary condition for $S E$ at those points included in the boundary.

At a river/bay interface the velocity of outflow of the river can be calculated from the output of the river hydrodynamic model. This velocity can be split into components to provide boundary conditions for U and V at each interface point.

Alternatively, for a flood phase, an average of the velocities around the river/bay interface is used to compute inflow volumes to the river phase.
$\underline{\text { Stability Criteria }}$

Using the criteria developed in 4.6 for stability, the basic equations should give unconditional stability ${ }^{[1]}$. The additional terms are all stable and it seems reasonable to postulate that a method composed of stable sub methods is also stable. It has been shown that this is not necessarily so ${ }^{[24]}$, and instead the Courant Stability condition is used to provide a guide; although not perhaps the most strict criterion for efficiency:

$$
\begin{aligned}
& \frac{\Delta \mathrm{H}}{\Delta \mathrm{t}}>\sqrt{ } 2 \mathrm{~g} \mathrm{~S}_{\mathrm{m}} \text { where } \mathrm{S}_{\mathrm{m}} \text { is maximum depth expected } \\
& \text { in any of the field }
\end{aligned}
$$

In the Severn model, $\Delta \mathrm{H}=2$ miles $\sim 10,000 \mathrm{ft}, \mathrm{S}_{\mathrm{m}}=50 \mathrm{ft}$, giving a Δt of 180 seconds. Some numerical experiments have been carried out on the complete model in the absence of a comprehensive stability analysis ${ }^{[1]}$.

Early testing in the Severn showed that the approximation of a closed bound above Avonmouth, where the Severn Estuary width < $\frac{1}{2}$ mile, the bore that develops to some extent on all tides in this area is, by nature of the boundary, reflected.

The reflected wave interferes with the hinter waves causing amplification and consequent stability. This was eliminated by using a rounded boundary that would prevent the accentuation of the bore wave.
4.8 Computerisation of the One dimensional River Model

4.8.1 Introduction

The theory applied in section 4.7 could be simplified for one dimension and strictly applied to the one dimensional case. For a flow in a prismatic channel, other methods are available to provide a rapid, stable and accurate method of solution.

A characteristic method is used in this computational model ${ }^{[29]}$.

$$
\begin{align*}
& \text { Equation 4.4.2.E is written } \\
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+g \frac{\partial z}{\partial x}=g_{f}\left\{S_{z}-S_{e}\right\} \\
& \text { where } S_{z}=\text { slope of bed of river, } S_{e}=\left(\frac{F^{\prime}}{1.49}\right)^{2} \cdot \frac{u^{2}}{R^{4 / 3}} \text {, } \\
& M_{F}=\text { Manning friction factor } \\
& \text { Equation } 4.4 .2 . B \text { is } \frac{\partial Q}{\partial x}+b \frac{\partial z}{\partial t}=0 \tag{4.8.1.B}\\
& \text { where } Q=A(x, t) \cdot U(x, t) \text { is the flow and } b=\text { top width of channel. }
\end{align*}
$$

The method employs the relationship for a function 25 A(b, c)

$$
\begin{equation*}
d A=\frac{\partial A}{\partial b} \cdot d b+\frac{\partial A}{\partial c} \cdot d c \tag{4.8.1.C}
\end{equation*}
$$

4.8.2 Computational Model of the One Dimensional Equations

Equation 4.8.1. B is multiplied by a factor β and added to (4.8.1.A)

$$
\begin{equation*}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+g \frac{\partial z}{\partial x}+\beta \frac{\partial \theta}{\partial x}+\beta b \frac{\partial z}{\partial t}=g\left\{S_{z}-S_{e}\right\} \tag{4.8.2.A}
\end{equation*}
$$

is so chosen as to make u and z perfect differentials. Using (4.8.1.C) gives

$$
\begin{equation*}
d u=\frac{\partial u}{\partial x} \cdot d x+\frac{\partial u}{\partial t} \cdot d t, \quad d z=\frac{\partial z}{\partial x} \cdot d x+\frac{\partial z}{\partial t} \cdot d t \tag{4.8.2.B}
\end{equation*}
$$

and $\quad \frac{d u}{d t}=\frac{\partial u}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial u}{\partial t}, \quad \frac{d z}{d t}=\frac{\partial z}{\partial t} \cdot \frac{d x}{d t}+\frac{\partial z}{\partial t}$

If β is chosen as $\pm \sqrt{ } g \bar{D}^{-1}$ where $\bar{D}=$ mean depth $=$ area/ width $\mathrm{B}, 4 \cdot 8.2$. A becomes

$$
\begin{equation*}
\frac{d u}{d t}+\beta \frac{d z}{d t}=g\left\{S_{z}-S_{e}\right\} \tag{4.8.2.D}
\end{equation*}
$$

which is satisfied along the characteristic lines

$$
\begin{equation*}
\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{U} \pm(\mathrm{gD})^{\frac{1}{2}} \tag{4.8.2.E}
\end{equation*}
$$

The theory for the above is briefly thus:

Let $z(x, t), u(x, t)$ be the solution of the tidal equations in one dimension, equations 4.8.1.A and B. It is generally possible to derive a unique solution for this kind of equation ${ }^{[26],[27]}$. $z(x, t)$ defines a surface in the z, x, t space, $u(x, t)$ one in the u, x, t. Consider $\mathrm{x}=\mathrm{x}(\alpha), \mathrm{t}=\mathrm{t}(\alpha)$ in the x, t plane. They are curves ψ_{x} and ψ_{t} in the surfaces of $u(x, t)$ and $z(x, t)$ and usually exist. For these curves, using 4.8.1.C, the derivatives are

$$
\begin{equation*}
\frac{d z}{d \alpha}=\left|\frac{\partial z}{\partial x}\right|_{\alpha} \cdot \frac{d x}{d \alpha}+\left|\frac{\partial z}{\partial t}\right|_{\alpha} \cdot \frac{d t}{d \alpha}, \frac{d u}{d \alpha}=\left|\frac{\partial u}{\partial x}\right|_{\alpha} \cdot \frac{d x}{d \alpha}+\left|\frac{\partial u}{\partial t}\right|_{\alpha} \cdot \frac{d t}{d \alpha} \tag{4.8.2.F}
\end{equation*}
$$

Also, let z and u be on the curves $x(\alpha)$ and $t(\alpha)$. Then $z(\alpha)$ represents a curve $\psi_{X}(\alpha)$ in the space z, x, t and $u(\alpha)$ represents a curve $\psi_{t}(\alpha)$ in the space u, x, t. The problem is: Can one determine solutions such that ψ_{x} and ψ_{t} lie in the integral spaces $\mathrm{z}, \mathrm{x}, \mathrm{t}$ and $\mathrm{u}, \mathrm{x}, \mathrm{t}$? This is the classic Cauchy Boundary Problem.

For the solution of this, all partial derivatives of u and z have to be known. This can be calcuatted from a determinant of rank 4 of coefficients of $\partial z / \partial x, \partial z / \partial t, \partial u / \partial x, \partial u / \partial t$ to yield

$$
\begin{equation*}
\delta=b d x^{2}-u \cdot b \cdot d t \cdot d x-g A d t^{2} \tag{4.8.2.9}
\end{equation*}
$$

If $\delta=0$ the equations cannot be used to derive the derivatives. However, when $\delta=0$ then

$$
\begin{equation*}
0=\left(\frac{d x}{d t}\right)^{2}-u \frac{d x}{d t}+\frac{g A}{b} \tag{4.8.2.H}
\end{equation*}
$$

and using the quadratic solution formula, gives $\frac{d x}{d t}=u \pm \sqrt{ } g A / b$

This is the solution of the characteristic lines ψ_{X} and ψ_{t}. In deep rivers where the tidal amplitude only creates small values of u then it is permissible to write

$$
\begin{equation*}
\frac{\mathrm{dx}}{\mathrm{dt}} \simeq \pm \sqrt{ } \mathrm{gA} / \mathrm{b}= \pm \mathrm{c}_{\mathrm{c}}=\sqrt{ } \mathrm{gH}_{c} \tag{4.8.2.J}
\end{equation*}
$$

4.8.3 Solving the Computational Model

The basic space for solution is the x, t space. A grid is established, figure 4.8.3.A. The $x=0$ point is the upstream end of the model, usually beyond all tidal influences. Advancing time is in the positive y plane

Suppose the values of $z(x, 0)$ and $u(x, 0)$ are known, and each are continuous. The x grid is defined by a set of points x_{i} like A, B in Figure 4.8.3.A, each separated by a distance Δx. Consider the point $x=0$ where either z is known, or Q which can be converted to a height estimate. Equation 4.8.2.I can be used to calculate the slopes of the two characteristic lines

FIGURE 4.8.3.B Method of Characteristics -First Estimates

It can be seen that two segments of origin $x=0$ and x_{1} will intersect at (x^{\prime}, t^{\prime}). If Δx is sufficiently small, these lines will be sufficiently close to the true characteristic intersection at $\left(x_{T}, t_{T}\right)$. Once the intersection is located, values of z and u can be calculated.

Writing 4.8.2.D as a difference equation for the graphical construction of Figure 4.8.3.A gives

$$
\begin{align*}
& \frac{U_{I}-U_{R}}{\left(t_{0}+\Delta t\right)-t_{0}}+\beta_{c} \frac{Z_{I}-Z_{R}}{\left(t_{0}+\Delta t\right)-t_{o}}=g\left(S_{z}-S_{e}\right) \text { for } \psi_{1} \tag{4.8.3.A}\\
& \frac{U_{I}-U_{S}}{\Delta t}-\beta_{c} \frac{Z_{I}-Z_{s}}{\Delta t}=g\left(S_{z}-S_{e}\right) \text { for } \psi_{2} \tag{4.8.3.B}
\end{align*}
$$

These terms with subscript I are unknown, so 4.8.3.A and B are rewritten with them as the subjects

$$
\begin{align*}
& \mathrm{U}_{\mathrm{I}}+\beta_{\mathrm{c}} \mathrm{Z}_{\mathrm{I}}=\alpha\left(\psi_{1}\right)=\mathrm{g} \cdot \Delta \mathrm{t} \cdot \Delta \mathrm{~S}+\beta_{\mathrm{c}} \cdot \mathrm{Z}_{\mathrm{R}}+\mathrm{U}_{\mathrm{R}} \tag{4.8.3.C}\\
& \mathrm{U}_{\mathrm{I}}-\beta_{\mathrm{c}} \mathrm{Z}_{\mathrm{I}}=\alpha\left(\psi_{2}\right)=\mathrm{g} \cdot \Delta \mathrm{t} \cdot \Delta \mathrm{~S}-\beta_{\mathrm{c}} \mathrm{Z}_{\mathrm{S}}+\mathrm{U}_{\mathrm{S}} \tag{4.8.3.D}
\end{align*}
$$

The values of U_{I} and Z_{I} can be obtained by solving 4.8.3.C and D, to give

$$
\begin{equation*}
\mathrm{U}_{\mathrm{I}}=\frac{1}{2}\left(\alpha\left(\psi_{1}\right)+\alpha\left(\psi_{2}\right)\right), \quad \mathrm{Z}_{\mathrm{I}}=\frac{\mathrm{g} \beta_{\mathrm{c}}}{2}\left\{\alpha\left(\psi_{1}\right)-\alpha\left(\psi_{2}\right)\right\} \tag{4.8.3.E}
\end{equation*}
$$

The only problem is the determination of $U_{R}, U_{S}, Z_{R}, Z_{S}$ as they will not occur on a previous intersection point. However, values of these are known at A, B and C and other points on the grid of x by the previous step. Four linearly interpolated equations are of value here:

$$
\begin{array}{ll}
\mathrm{Z}_{\mathrm{R}}=\mathrm{Z}_{\mathrm{C}}+\left(\mathrm{Z}_{\mathrm{A}}-\mathrm{Z}_{\mathrm{C}}\right) & \left(\mathrm{U}_{\mathrm{C}}+\mathrm{C}_{\mathrm{C}}\right) \\
\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{C}}+(\Delta \mathrm{t} / \Delta \mathrm{x}) \\
\left.\mathrm{Z}_{\mathrm{C}}-\mathrm{Z}_{\mathrm{B}}\right) & \left(\mathrm{U}_{\mathrm{C}}-\mathrm{C}_{\mathrm{C}}\right) \\
\mathrm{U}_{\mathrm{R}}=\mathrm{U}_{\mathrm{C}}+(\Delta \mathrm{t} / \Delta \mathrm{x}) \tag{4.8.3.I}\\
\left.\mathrm{U}_{\mathrm{A}}-\mathrm{U}_{\mathrm{C}}\right) & \left(\mathrm{U}_{\mathrm{C}}+\mathrm{C}_{\mathrm{C}}\right) \\
\mathrm{U}_{\mathrm{S}}=\mathrm{U}_{\mathrm{C}}+(\Delta \mathrm{t} / \Delta \mathrm{x}) \\
\left(\mathrm{U}_{\mathrm{C}}-\mathrm{U}_{\mathrm{B}}\right) & \left(\mathrm{U}_{\mathrm{C}}-\mathrm{C}_{\mathrm{C}}\right) \\
(\Delta \mathrm{t} / \Delta \mathrm{x})
\end{array}
$$

to determine the points required for the application of 4.8.3.E. The two limiting assumptions used so far are:

1. Characteristic curves are linear
2. Flow remains subcritical

The movement of a particle can be seen through a series of motions along characteristic lines, the criterion for time steps for a geometric stability is seen to be $\left(\frac{\Delta t}{\Delta x}\right) \cdot(U+C)<1$ otherwise equations 4.8.3.F-I are extrapolations and give rise to instability. This condition includes the $\mathrm{U}-\mathrm{C}$ component also. Within the constraints outlined, the equations are stable and converge as $\Delta x, \Delta t \rightarrow 0^{[28]}$.

4.8.4 Boundary Conditions

Referring to the geometric interpretation of the method of characteristics, boundaries are those spatial locations where only one characteristic can be calculated, ψ_{1} at the downstream end and ψ_{2} at upstream end of a section. However, at least one is available and so if either Z or U (or Q) is given at a boundary, the existing characteristic can be used to solve for U or Z respectively.

The theory further assumes prismatic channels. Most natural systems will not meet this requirement. They can usually be segmented into such subsystems though. Information can then be passed from one section to another using Kirchoff type laws. Having accepted this segmentation, a small additional programming effort would yield a model capable of handling intricate networks often found in estuary situations.

4.8.5 Solutions at Nodes

A node is a point in the system where one or more prismatic channels meet another set of one or more prismatic channels.

FIGURE 4.8.5.A A General Node

A node can be treated as a spatial point where boundary conditions only are given. Only one characteristic line can be found. It is possible to write the general node continuity equations from this and a simple conservation.

Suppose there are inflow branches and j outflow branches. For the i inflowing branches the characteristic is given by (4.8.3.C)

$$
\begin{equation*}
\alpha_{i}\left(\psi_{i, 1}\right)=U_{i, 1}+\beta_{c} z \tag{4.8.5.B}
\end{equation*}
$$

For the j outflowing branches the characteristic is given by (4.8.3.D)

$$
\begin{equation*}
\alpha_{j}\left(\psi_{j, 2}\right)=U_{j, 1}-\beta_{c} z \tag{4.8.5.C}
\end{equation*}
$$

The depth z is common as all water levels are assumed equal. Let $A_{i, 1}$ and $A_{j, 2}$ be the cross-sectional areas at end of inflowing and start of outflowing segments. The Kirchoff Law can be used: inflow + input $=$ outflow.

$$
\begin{equation*}
\sum_{i} U_{i, 1} \cdot A_{i, 1}+Q=\sum_{j} U_{j, 2} \cdot A_{j, 2} \tag{4.8.5.D}
\end{equation*}
$$

The unknowns are the sets $\left\{\mathrm{U}_{\mathrm{i}, 1}\right\},\left\{\mathrm{U}_{\mathrm{j}, 2}\right\}$ and the depth Y , making $i+j+1$ unknowns. As there are i equations 4.8.5.B and j of 4.8.5.C, there are $i+j+1$ equations and the system can be solved. The depth at node $z=\frac{\left\{\sum_{i}\left\{\alpha_{i}\left(\psi_{i, 1}\right) \cdot A_{i, 1}\right\}-\sum_{j}\left\{\alpha_{j}\left(\psi_{j, 2}\right) \cdot A_{2, i}\right\}\right\}+Q}{\left\{\sum_{i} \beta_{c} A_{i}+\sum_{j} \beta_{c} A_{j}\right\}}$

This additional model for nodes combined with the previous method allows most types of systems to be modelled.

4.9.1 Introduction

In sections 4.2 to 4.8 a complete one and two dimensional hydrodynamic model is described. This generates sufficient predictive data to answer the primary question : given a particle introduced into the system at a known point , to what point will it be transported and how long will it remain in the system? In its broader context, the problem ist one of a series of polluting inputs interacting with each other and the environment and also subject to the forces of turbulent flov. Most nathematical models employ the basic diffusive equations. The model to be outlined does not, it seeks to describe mathematically what is essentially an intuitive model, more in the sense of a hydraulic model (34).

4.9.2 Classical Theory of Transoort Equations

The theory is included to provide a reference point for the model used. The customary starting point is the'convective diffusion'or'conservation of mass in turbulent flow' equation ${ }^{(30)(31)}$:
$\frac{\partial c}{\partial t}+\frac{u \partial c}{\partial x}+v \frac{\partial c}{\partial y}+\frac{w}{\partial c} \frac{\partial z}{\partial z}=\frac{\partial}{\partial x}\left(E_{x} \cdot \frac{\partial c}{\partial x}\right)+\frac{\partial}{\partial y}\left(E_{y} \cdot \frac{\partial c}{\partial y}\right)+\frac{\partial}{\partial z}\left(E_{z} \cdot \frac{\partial c}{\partial z}\right)+\Delta S$ (4.9.2.A)
where $c(x, y, z, t)$ is the complete concentration distribution of a pollutant or other substance; u, v, w are the x, y, z direction velocity components; E_{x}, E_{y}, E_{z} are the turbulent diffusion coefficients and ΔS is the net rate of addition of the substance to the system. If $(\bar{c}-c(x, y, z, t))$ is permanently small over the solution space, then $\partial c / \partial t$ is also consistently small and the system can be said to have reached pseudo Steady State. If the magnitude of this term is not negligible non-steady conditions prevail. Few natural system cannot be grouped into some form of steady state description.

The next three terms in $4 \cdot 9 \cdot 2$. A represent the mass transport by convection. Molecular diffusion processes are small in an environment of turbulent flow. The first three right hand terms of 4.9.2.A represent the diffusive turbulent flow. The scalar diffusion coefficients are less accurate than the use of tensors ${ }^{(32)}$. However, lack of detail to estimate these tensors usually precludes their use. Also the process itself is still the subject of debate and it seems that scalar approximations will continue to be widely used in practical studies ${ }^{(33)}$.

Despite modern methods of numerical and analytical problem solving, it is generally impossible to solve 4.9.2.A either way. The first simplification is the reduction to two dimensions, by assuming a completely vertically mixed system.Writing 4.9.2.A in mass terms and for two dimensions gives
$\left.\frac{\partial}{\partial t}(c z)+\frac{\partial}{\partial x}(u c z)+\frac{\partial}{\partial y}(v c z)=\frac{\partial(D}{\partial x} x \cdot \frac{z \partial c}{\partial x}\right)+\frac{\partial}{\partial y}\left(D_{y} \cdot \frac{z \partial c}{\partial y}\right)+R_{a d d}-R_{a b s} \quad$ (4.9.2.B) where z is depth; u, v the velocities in the x and y direction; D_{x} and D_{y} the longitudinal and transverse dispersion coefficients averaged over the point depths, $R_{\text {add }}$ and $R_{a b s}$ being the rate of mass additions and abstractions. Usually further simplifications have to be made,two frequently used are
a. Averaging over a tidal cylcle or longer period
b. Reducing 4.9.2.B further to a one dimensional system

In one dimension, the simplest forms of coupled equations used for the first order decay $B O D / O D$ mechanism is

$$
\begin{aligned}
& \frac{\partial B}{\partial t}+u \frac{\partial B}{\partial x}=-K_{B} \cdot B+\frac{\partial\left(E \frac{D}{\partial x}\right)}{\partial x} \\
& \frac{\partial D}{\partial t}+u \frac{\partial D}{\partial x}=-K_{B} \cdot B+K_{R}\left(D_{S}-D\right)+\frac{\partial(E \cdot \partial D)}{\partial x} \cdot \frac{D}{\partial x}
\end{aligned}
$$

where B, D are concentrations of $B O D$ and $D O ; K_{B}, K_{R}$ are rates of $B O D$ decay and DO re-aeration, D_{s} is the saturation concentration of DO and E is the lumped coefficient of dispersion. These coupled equations
have been widely used $(36)(37)(38)$ and there is a good choice of implicit or explicit schemes available for their solution (39).

4.9.3 Conceptual Basis of the One Dimensional Phase

The one dimensional flow phase is divided into the same segmentation scheme as for the one dimensional hydrodynamic program. These segments have stationary common interfaces - nodes. Up to three upstream segments can connect directly to one downstream segment. The final lone downstream segment then interfaces with the two dimensional part of the model over a variable area. Internally , however, the segment is not split into fixed, predetermined grid points. The water in a general segment is divided into volumes of water positioned sequentially along the segment axis. The initial segmentation scheme is taken from the hydrodynamic phase. Flow from one segment to another is simulated by taking a volume from the end most element of the outflow segment and creating a new inflow element in the one or more receiving segments. The magnitude of these moves is determined by the predicted velocities from the F1/F2 models and node data. This simulates the convective step. The body of water is generally at its new location. The content of pollutant of this body is now diffused from its new location. The concentration in a new element is the same as that of the origional element in a previous segment. Elements staying in a segment are kept in that sequence although some merging has to be triggered to keep the number of elements down. New positions can be computed using elemental volume and channel area together with mean velocities. This method reduces numerical dispersion in the convective step and removes channel geometry constraints. In the purely one dimensional phase, the boundary conditions are constant pollutant concentrations
at the downstream end of the most seaward segment. If the one dimensional model is connected to a two dimensional phase, the boundary conditions are the time varying predicted concentrations at the bay/river interface. The method has been fi ld tested and appears a wholly satisfactory method ${ }^{(40)}$.

4.9.4 Conceptual Basis of the Two Dimensional Phase

An identical grid to that used in the hydrodynamic program is used with the associated velocity vectors. The motion of a set of marker particles is tracked, with a superimposed diffusive step. The base time segment is a tidal phase, ie a flood or ebb phase whatever their actual duration.

Initially, a grid point is considered at the end of the current tidal phase.The particle is moved backwards in time steps over the two-dimensional grid using the computed velocity vectors from the hydrodynamic program. This defines a theoretical position at the start of the current phase. The nearest grid point is located and the particle assigned to it. This simulates again the pure convective terms of the motion. The diffusive estimate is less satisfactory. To allow diffusion, the original concentration is not that taken for the marker particle, but the nearest neighbour average is used. This implies a diffusive step of order of one grid spacing per phase. Often this restriction is not representative of the actual process in terms of over or understating the physical reality. A greater rate can be achieved by averaging over a greater number of neighbours. This can be simply implemented by extending a search for neighbour points. An alternative way to increase diffusion is to sub-divide the tidal phase into shorter time steps and perform the diffusive step as often as required to estimate the physical processes. . To simulate steps smaller than one grid point, there has to be a finer grid, laid
either explicitly or implicitly computed from the coarser grid. Any extension of the simpler nearest neighbour assumption carries serious computing overheads.

During the backward convection of marker particles, several abnormal situations may occur.

The marker could move from the bay into the river, where it is trapped for the whole phase (as the time base is a tidal phase). Alternatively the river could introduce a marker point, in which case the bay concentration is that of the emergent particle at the time of entering the bay.

The marker could cross the ocean/bay interface. If it moves to the ocean the marker is lost and ceases to be of interest as a distinguishable entity. Moving the other way introduces to the bay grid the marker at ocean concentration.

The marker may attempt to cross a bay/land interface.This is the main inaccuracy introduced by the use of coarse grids and numerical dispersion The marker is located to the nearest grid point at the time of the attempted transfer and retained there for the duration of the phase. Any boundary crossing event is further recorded and,if it includes the one dimensional phase,is used for the one dimensional transport calculations.

The convective velocity of each marker particle is inevitably required at points other than on the intersections of the u / v prediction grid.

Ideally, a linear or higher order interpolative process should be employed to estimate these cases. For a large grid system with an irregular geometry the exception clauses and interpolation other than simple linear create large computing overheads.

There are two phases per tidal cycle, and as the transport routines are also particle movers within phases, the two principal routines need to be matched at all times. During a flood phase, ie a period of net tidal inflow, the events in the bay are relevant to those occuring in the river. There is a time delay between the parameters from the bay being relevant in the river phase, so the entire bay phase is simulated without reference to the one dimensional phase. Concentration parameters crossing into the river are stored at regular intervals (currently every parameter is retained on an hourly basis). When the entire bay phase is completed, the river phase is run with inputs from the bay phase into the single interface segment.

During an ebb phase, the position is reversed. The net flow is out of the river to the bay, and so parameters in the river are of interest to the bay, but only after a transport time delay. The river phase is run in its entirety, and output concentrations stored as required. These are the variable boundary conditions (along with the constant bay/ocean parameters) for the bay phase. To facilitate easier starting up of the scheme, the user has to supply steering information as to the initial phase. This merely determines which program is run first and sets switches without pre-inspection of velocity data.
4.9.6.1 The one dimensional phase uses only the longitudinal dispersion coefficient.This is the parameter D_{x} in 4.9.2. B and E in equation $4 \cdot 9 \cdot 2 . C$ \& D. The lumped parameter is sufficient in many cases, especially where tidal amplitude is large so that turbulence ensures genuine vertical and transverse mixing.Also a situation where there are numerous discharges ensures that the effects of an erroneous value, or one in which the mixing assumption does not hold, will be reduced.Literature cites cases where adoption of the assumptions leads to placing of the ultimate DO deficit twice as far from the outfall as was found in practice ${ }^{(41)}$. In this situation a model of one more dimension is usually applied. Multi-dimensional models allow direction dependant diffusion and so can simulate a'streamed' effluent or similar effect.
In the program, the value of 'EFOR' determines the level of diffusion (ref. App. C).A single value is applied for the model as a whole and can be used as a tuning parameter. If this value is zero, convection only occurs, but molecular diffusion could become an important process.This is the situation in certain areas of many systems where because of geometry the water mass is essentially stationary for a large portion of each phase. Evaluation of the diffusive parameter is usually the most difficult part of any validation phases, and often recourse to predictive formulae is the only practical solution. Predictive investigations suffer from one of two restrictions : either they are for idealised situations and therefore of doubtful applicability to real-world cases, or they are for specific systems in which case their transfer to another system opens areas of doubt. Both however, are invaluable aids to providing a base for the investigator either for tuning or for local field measurements.

Many studies attempted to find a method for predicting diffusion from more easily determined parameters (42)(43). Turbulence in natural systems compounded by variable geometries are more suited to semi-analytical methods $(44)(45)$, and a general predictive form often used is

$$
D=K \cdot z \cdot \sqrt{g \cdot \mathrm{z} \cdot \mathrm{~S}_{\mathrm{e}}}
$$

where z is the depth, K is a constant, S_{e} is the energy grade line slope.The values of K are reported widely varying. For vertical and transverse directions, the values of 0.07 and 0.23 have now gained widespread acceptance. The unanimity of these two values is eclipsed by the diverse values accepted for the longitudinal coefficient. Values varying from 10 to 400 have been cited ${ }^{(45)}$. If a sound estimate is available for a system, then using D for tuning the model provides a useful guide to the accuracy of the rest of the model. The newly obtained value of D should then be qualified when quoted.As the internal grid in this model is moveable, there are advantages to the two step explicit method used: convection and diffusion can be simulated in isolation and tuned independantly, numerical errors are reduced due to lesser elements of intergrid point estimation.

4.9.6.2 Pseudo-Diffusion

This is a numerical phenomena that occurs in fixed grid systems using the serial method (ie convection then diffusion). In a fixed grid, Δt and Δx are selected, and for steady, non-turbulent flow $\Delta x=\mathrm{U} . \Delta \mathrm{t}$. Consider a unit concentration function such as fig. 4.9.6.A . For the two step method, the distribution in fig. 4.9.6.A will predict a distribution as in fig. $4 \cdot 9 \cdot 6$. B, which is the pure convective step (solid lines)

However, in physically realistic situations , $\Delta x \neq \mathbb{U}$. Δt. Assume that $\Delta \mathrm{x}=\mathrm{n} \cdot \mathrm{U} \cdot \Delta \mathrm{t}$. For a particle to have arrived at a grid point $\mathrm{m}+1$ at a time $t+\Delta t$, it would not have origonated from m unless $n=1$ (ideal case) If $n>0$ the particle was originally at $m+(n-1) / n$, and if $n<0$, at point $\mathrm{m}+1-(1 / \mathrm{n})$ (all in terms of units of grid points). As the distribution in fig. 4.9.6.A is only known at the grid points, the assumption that intermediate points are estimated by interpolation has to be accepted :

$$
C(x)=(1 / n) C_{m}+(1-1 / n) C_{m+1} \quad \text { 4.9.6.B }
$$

and the dotted distributions are implicitly assumed.Consequently, the dotted origonal distribution in fig. 4.9.6.A gives rise to the dotted distribution in fig. 4.9.6.B. This can be seem to retard the pure convective step by seeming to introduce a diffusive effect into that step. The magnitude of the effect depend on the value of n.

A maximum pseudo-diffusive effect occurs for $n=2$. E_{p} is the coefficient of pseudo-diffusion and analogous to E in 4.9.2.C.

$$
\operatorname{Max}\left(E_{p}\right)=\frac{(\Delta x)^{2}}{8 \cdot \Delta t} \quad 4 \cdot 9 \cdot 6 \cdot C
$$

However, as the stability of the physical diffusion term E is limited by $(\Delta x)^{2} / 2 . \Delta t$, the values of Δx and Δt cannot be so defined to reduce E_{p} as desired.
At best, $E=(\Delta x)^{2} / 2 . \Delta t$, and applying this to 4.9.6.C gives

$$
\operatorname{Max}\left(E_{p}\right)=E / 4=\min \left(\operatorname{Max}\left(E_{p}\right)\right)
$$

Therefore, worst possible conditions to give $\mathrm{n}=2$ with best possible choice of E implies diffusion errors of 25%.

In a two step explicit method with a variable grid system, the grid is subdivided dynamically so that $n=1$, by a variable Δx. This ensures that no interpolation is required as the value is known exactly at the grid point.

As the sequel to disposing of pseudo-diffusion, small segments tend to accumulate at end points of the fixed segment system.occasionally these have to be merged to keep computing requirements within limits and this involves an element of averaging and smearing of concentration elements - as in pseudo-diffusion. This process is not subject to any constraints other than practicality, and in any event, this effect generates a coefficient of $<E / 4$ in normal systems.
[1] "Aspects of a Computational Model for Long Period Water Wave Propagation", J.J.Leendertse,Rand Memorandum, RM5249PR
[2] "Dynamical Oceanography",J.Proudman, John Wiley,1963
[3] "Amplifications of Long Waves in Bays", R.Dorrestin, University of Florida, Vol XV , Gainsville 1961 ,p.224-p. 247
[4] "Methods of Tidal Computation", J.J.Dronkers, De Ingenieur, The Hague, 1951
[5] "A Numerical and Experimental Study of Deep Fronted Solitary Waves", J.Faure ,N.Nahas, La Houille Blanche, Vol5 , 1961
[6] "Hydrodynamical Methods Applied to Oceanographic Problems",W. Hansen, Proc. of Symp. on Mathematical-Hydrodynamical Methods of Physical Oceanography,Hamburg University, 1962
[7] "The Numerical Calculation of Wind Effect in Sea-Level Elevations", S.Uusitalo, as [6]
[8] "Growth of Wind Generated Waves and Energy Transfers", J. Thysse, U.S.G overnment Printing Office, 1952
[9] "On the Generation of Waves by Turbulent Wind", O.M.Phillips, Journal of Fluid Dynamics, Volume 2
[10] "Surface Wind Stress over Water as related to Wave Action", F.Gerritsen,De Ingenieur, Vol 31,1963
[11] "Tidal Computations in Rivers and Coastal Waters", J.J.Dronkers ,North Holland Publishing Co. 1964
[12] "Ueber die Quantitative Ermittlung der Gezeiten und Gezeitenstroemungen in Flachwasser-gebieten mit den Differenzverfahren", D.Rose,Ph.D.Thesis, University of Hannover
[13] "The Sea", Vol.2,"The Composition of Sea Water and Comparative and Descriptive Oceanography", W.M.Cameron,D.W.Pritchard,Section 3,Chapter 15 ,Interscience, 1963
[14] "Difference Methods for Intial Value Problems",R.D.Richtmeyer K.W.Morton, John Wiley, Interscience, 1967
[15] "Numerical Methods in Fortran", M^{c} Cormick, R .Salvadori, Prentice Hall Pub.Co.
[16] "The Theory of Difference Schemes",S.K.Gudonov,V.S.Ryabenki, North Holland Pub.Co.,Amsterdam, 1964
[17] "A Method for the Numerical Calculation of Hydrodynamical Shocks",R.D.Richtmeyer, J.Applied. Physics,Vol 21,p. 232
[18] "Mathematische Grundlagen der Quantenmechanik", J.von Neumann Dover Publications,New York,1963
[19] "Survey of the Stability of Linear Finite Difference Equations" P.D.Lax,R.D.Richtmeyer, Comm.Pure and Applied Maths.,Vol 9,p. 267
[20] "On the Stability of Difference Schemes",P.D.Lax,R.D.Richtmeyer Comm.Pure and Applied Maths.,Vol 15,p. 363
[21] "A Numerical Computation of the Surge of 26 th J ne 1954 on Lake Michigan", G.W.Platzmann,Geophysics,Vol.93,No. 1 Jan 1965.
[22] "On the Comptational Stability of Numerical Solutions of Time Dependant Nonlinear Geophysical Fluid Dynamics", D.K.Lilley, Monthly Weather Review", Vol.93,No.1,Jan 1965.
[23] "Computational Design for Long Term Numerical Integration of the Equations of Motion : 2-D Incompressible Fluid Flow", A.Arakawa J.Comp.Phys. Part1, Vol 1,1966
[24] "On Certain Finite Difference Methods for Fluid Dynamics", A. Kasahara, Monthly Weather Review, Vol 93,No.1, Jan 65.
[25] "Mathematical Methods in Physics", Chisholm and Morris, North Holland , 1966
[26] "Partial Differential Equations", Sommerfeld ,Academic Press.
[27] "Numerical Methods",R.A.Buckingham,Pitman,1962
[28] "On the Solution of Non-linear Hyperbolic Differential Equations by Finite Differences",R.Courant,E.Isaacson,M.Rees,Comm. Pure and Applied Maths., Vol 5,1952
[29] "Hydraulic Transients",V.L.Streeter, E.Wylie, M ${ }^{\text {C Graw Hill, }} 1967$
[30] "A Method for Predicting Pollutant Transport in Tidal Waters", H.B.Fischer, WRC No. 132, HEL College of Engineering, University of California,Berkeley, March 1970
[31] "The Significance of Longitudinal Dispersion in the Analysis of Pollution in Estuaries",D.R.F.Harlemann,Hydrodynamics Laboratory MIT Cambridge , August 1964
[32] "Dispersivity Tensor for Turbulent Uniform Channel Flow", Discussion,H.B.Fischer,ASCE Proc.,Hydraulics Div.,Vol 96,1970
[33] "Dispersivity Tensor for Turbulent Uniform Channel Flow", G. Dagan, Journal Hydraulics Div of ASCE, HY5, Sept 1969,p.1699-1712
[34] "Numerical Studies of Unsteady Dispersion in Estuaries",Discussion T.R.E.Chidley,ASCE,Sanitary Eng. Div.,SA5,Oct 1969,p.964-p. 966
[35] "The Dispersion of Pollution in Streams", K.Munns , University of Aston,Dept.Civ.Engineering,1972
[36] "DO Sag in Oscillating Flow",Wen Hsiung Li,M.E.Kozlowski,Journal of Environmental Engineering Div.,ASCE,EE4, Aug 1974,p.837-854
[37] "Effects of Dispersion on DO Sag in Uniform Flow", Wen Hsiung Li, Sanitary Eng.Div.,ASCE,SA1,Feb 1972,p.169-182
[38] "Systems Analysis and Water Quality Management",R.V.Thomann, M^{C} Graw Hill,1972
[39] "Transport Equations Stability and Estuary Modelling",F.G.Haag K.W.Bedford,Journal Hydraulics Div., ASCE, HY12, De $\mathrm{e}^{\text {e }} 1971$, p. 2051
[40] "A Lagrangian Method For Predicting Pollutant Transport in Bolinus Lagoon, California",H.B.Fischer, US Geological Survey Open File Report,Menlo Park, 1969
[41] "Critical Oxygen Deficit for Bank Outfall",O.E.Rood,E.R.Holley Journal of Environmental Engineering, ASCE, EE3, June 1974,p. 661
[42] "The Dispersion of Matter in Turbulent flow through a Pipe", G . I.Taylor,Proc.Royal Society, A223, 1954
[43] "On the Dispersion of a Solute in a fluid flowing through a tube" R.Aries, Proc. Royal Society, London, A235, p. 67
[44] "Mechanique de l'ecoulment turbulent des fluides", B.A.Bakhnieteff Dunod, Paris, 1940
[45] "The Dispersion of Marked Fluid Particles in Turbulent Shear Flow", S.W.Elder, Journal of Fluid Mechanics, Vol 5(4),1959,p544
5.0 Introduction
5.1 BOD/DO as a Discrete Interactive Process
5.2 Assumptions of the Model
5.3 The Random Walk
5.4 The Segmented Estuary in terms of Probabilities - BOD
5.5 The Segmented Estuary in terms of Probabilities - OD
5.6 The Limit of the Probabilistic Expressions
5.7 Analytical Results
5.8 The Difference Equations for BOD/OD in an Estuary
5.9 Interpretation of the Probability Density Functions
5.10 Continuous: Sources
5.11 Solution for the Mean
5.12 Computational Considerations for the Expected Value Computation
5.13 Predicting Δ - The Stochastic Coefficient
5.14 Verification of the Model
5.BIB Bibliography

5.0 Introduction

This chapter details the Stochastic Model investigated for the Usk Estuary. The basic principles are detailed in 2.4 .7 and 2.4 .8 , the reasons for choice appearing in 2.5 .3 . It was hoped to provide via the results of the model, some analysis of the diversity of values for the predicted parameters, possibly with a view to imposing percentile defined standards on major effluent inputs to the system.

5.1 BOD/DO as a Discrete Interactive Process

In the model about to be considered, it is implicitly assumed that BOD and DO (or more strictly, virtual units of oxygen deficit) occur and interact in parcels of Δ units of concentration. This allows levels of occurrence of the two components to be classed into states and thus given appropiate state numbers for use in a probablistic context.

$$
m_{1}=\text { concBOD } / \Delta \quad m_{2}=\text { conc } D O / \Delta
$$

This parameter \triangle is measureable within a system. $B O D$ can only decay in parcels of \triangle and $O D$ can only be created in similar parcels, as the decay /depletion on a normal reaction path, is a $1: 1$ process.
Deterministic processes are a subset of all processes. All processes are
stochastic in nature, and as such, the deterministic process is an
idealized system. For the formulation of this model, the various processes
of the Dobbins' Model are reformed from being considered as deterministic
to stochastic.
5.2.1 Consider a small time step δt. Consider the base unit of BOD /OD changes as Δ. This restricts any reaction to integer multiples of the base unit Δ in terms of quantities. The actual change may occur via any combination of the processes previously formulated. All such transformations are considered to be statistically independant events. Only first order changes are considered important within the time span δt. This assumes a predominance of first order rate kinetics for all the relevant chemical and biological reactions.

The probability of a transformation of Δ or one of its multiples is directly proportional to the magnitude of the time slice δt. This implies that a small δt is required as the assumed linearity is oftne not present over larger δt.
5.2.2 The major processes to be stochastized are outlined in 2.4.7 to 2.4.8.
5.3.1 A random walk is a cumulative series of individual Bernoulli trials which $[1],[2]$, when considered in toto will reproduce a stochastic process with an overall general effect, for example-diffusion.
5.3.2 An estuary is considered to be a field where a procession of random walks occur in small time steps. As the time step is decreased, in the limit $\delta t \rightarrow 0 \quad$ the process observed Brownian motion or Wiener Process becomes evident ${ }^{[3]}$.
5.3.3 Consider any time step δt, and one unit of BOD. This unit can move upstream, downstream, remain or be degraded. The remaining probability is near zero. The relevant probabilisfies for the other processes are defined by:

$$
\begin{equation*}
r(x, t), s(x, t), q(x, t) \tag{5,3.3.A}
\end{equation*}
$$

with the constraint of :
$r+s+t=1$

The probability q is the sum of all degradative processes. For each unit lost through the q process, a virtual unit of oxygen deficiency ($O D$) is created. This unit of $O D$ carries on with the virtual random walk until it is 'neutralized by a 'real' DO unit from the re-aeration process , or until it is abstracted from the system.

5.4 The Segmented Estuary in terms of Probabilities - BOD

5.4.1 Consider a segmented estuary of N segments. Let $p(m, n)$ be the probability that a 'particle' of $\triangle B O D$ is in segment m (or a point $m \delta x$
where δx is the segment length) after n Bernoulli Trials, or a random walk of n steps. To be at this point $m \delta x$ at time $n \delta t$, the particle must, at the time $(n-1) \delta t$ have been either at $(m-1) \delta x$ and moved positively, or at $(m+1) \delta x$ and moved negatively. So

$$
\begin{aligned}
& p(m, n)=p(m-1, n-1) r(x, t)+p(m+1, n-1) s(x, t) \\
& \text { for } m, n \in \mathbb{Z}^{+} \quad-\infty<m<+\infty \quad 0<n<\infty
\end{aligned}
$$

For consistency with the physical reality of Brownian Motion, define the following terms :

Diffusion Coefficient $E=\frac{1}{2} \cdot \frac{(\delta \mathbf{x})^{2}}{\delta t}$

$$
\begin{align*}
& r(x, t)=\frac{1}{2}\left[(1-K \cdot \delta t)+U(t) \cdot \frac{\delta t}{\delta x}\right] \tag{5.4.1.C}\\
& s(x, t)=\frac{1}{2}\left[(1-K \cdot \delta t)-U(t) \cdot \frac{\delta t}{\delta x}\right] \tag{5.4.1.D}\\
& q(t)=K \cdot \delta t
\end{align*}
$$

Where $U(t)$ is the compound velocity function. K is the rate sum of all the degradative processes. Equation 5.4.1.A is now written as

$$
p(m, n)=\frac{1}{2} \cdot p(m-1, n-1)\left[(1-\mathbb{K} \cdot \delta t)+U(t) \delta \frac{t}{\delta}\right]+\frac{1}{x} \cdot p(m+1, n-1)\left[(1-K \cdot \delta t)-U(t) \delta \frac{t}{2}\right]
$$

$$
\begin{equation*}
+K . \delta t \tag{5.4.1.F}
\end{equation*}
$$

5.4.2 Boundary Conditions

The unit under consideration entered the field at a time t_{0} (where $t_{0}=n_{0} . \delta t$) Boundary conditions for the system are :

$$
\begin{aligned}
& p\left(0, n_{0}\right)=1 \quad \text { ie at point of entry to the system } \\
& p\left(m, n_{0}\right)=0 \\
& p(m, n)=0 \quad \text { for } m \neq 0 \\
& \text { if } n<n_{0} \\
& \text { and where } n_{0}=t_{0} / \delta t
\end{aligned}
$$

5.5 The segmented Estuary in terms of probabilities - The Oxygen Deficit.
5.5.1 Absorbing one unit of $B O D$ generates one unit of oxygen deficit (OD)
through the 1 to 1 stoichiometry of the reaction. This unit is reabsorbed by re-aeration in a similar manner to the BOD decay through bacteria.

If $\gamma(m, n)$ is the probability of a unit of $O D$ at a point $m \delta x$ at a time nôt, then analogous logic to section 5.4.1 leads to
$\Upsilon(m, n)=\Upsilon(m-1, n-1) r^{\prime}(x, t)+\Upsilon(m+1, n-1) s^{\prime}(x, t)+p(m, n) \cdot K_{d} \cdot \delta t \quad$ (5.5.1.A)
The extra term is the creation of $O D$ through $B O D$ decay. K_{d} is the deoxygenation rate constant (or of BOD decay).

The corresponding transition probabilities to $5 \cdot 4.1 . \mathrm{B}-\mathrm{D}$ are :

$$
\begin{align*}
& r^{\prime}(x, t)=\frac{1}{2}\left[\left(1-K_{r} \delta t\right)+U(t) \cdot \frac{\delta t}{\delta} \frac{x}{x}\right] \\
& s^{\prime}(x, t)=\frac{1}{2}\left[\left(1-K_{r} \delta t\right)-U(t) \cdot \frac{\delta t}{\delta} \frac{x}{x}\right. \tag{5.5.1.C}\\
& q^{\prime}(t)=K_{r} \cdot \delta t
\end{align*}
$$

5.5.2 Boundary Conditions

The initial condition is the absence of any $O D$ due to the absence of $B O D$ for decay to produce the $O D$, so

$$
\gamma(m, n)=0 \text { for } \forall m \text { if } n<n_{0}
$$

5.6 The limit of the probabilistic expressions

As $\delta t-->0$ the probabilities p and γ approach a continuous density distribution B and D respectively. Re-writing 5.4.1.A and 5.5.1.A :
$B(x, t+\delta t)=B(x-\delta x, t) r(t)+B(x+\delta x, t) s(t)$
$D(x, t+\delta t)=D(x-\delta x, t) r^{\prime}(t)+D(x+\delta x, t) s^{\prime}(t)+B(x, t) K_{d} \delta t$
These expressions are expanded in a Taylor series about the point (x, t).

Then incorporating 5.4.1.B gives
$\frac{\partial B(x, t)}{\partial t}=\frac{E \partial^{2} B}{\partial x^{2}}-U(t) \frac{\partial B}{\partial x}-K \cdot B(x, t)$
$\frac{\partial D(x, t)}{\partial t}=\frac{E \partial^{2} D}{\partial x^{2}}-U(t) \frac{\partial D}{\partial x}-K_{r} \cdot D(x, t)+K_{b} \cdot B(x, t)$
where K_{b} is the rate of $B O D$ decay through oxidation processes.

5.7 Analytical Results

Some trials have been conducted using $5.6 . C$ and $5.6 . \mathrm{D}$ to simulate a pollutant situation $[4]$. The broad results were that the random fluctuations of input loadings are of marginal significance in the mean levels of BOD/OD in a large diffuse system. The fluctuations do however, markedly influence the nature of the departure from the means. The compuational model is now considered to consist of two phases, one to estimate the mean distribution, and the second phase to estimate the departure from the means.

5.8 The Difference Equations for BOD/OD in an Estuary

5.8.1 The problem is the solution of the set of equations 5.4.1.A and 5.5.1.A
$p(m, n+1)=p(m-1, n) r((m-1) \delta x, n \delta t)+p(m+1, n) s((m+1) \delta x, n \delta t)$
for the range $-\infty<x<+\infty, 0$ < $t<\infty$
and
$\gamma(m, n+1)=\gamma(m-1, n) r^{\prime}((m-1) \delta x, n \delta t)+\gamma(m+1, n) s^{\prime}((m+1) \delta x, n \delta t)$
(5.8.1.B)

$$
+p(m, n) K_{d}(x, t) \cdot \delta t
$$

Now 5.8.1.A-B could be solved iteratively using the associated expressions $5.4 .1 . \mathrm{B}-5.4 .1 . \mathrm{E}, 5.5 .1 . \mathrm{B}-5.5 .1 . \mathrm{D}$. However, this solution would have to be effected for each particle in isolation, then convoluted to produce a probability density function (pdf).
5.8.2 It should be remembered that $\gamma(m, n)$ is infact $\gamma\left(m, n \mid n_{0}\right)$, i.e. a probability of a unit introduced only at $n_{0} . \delta t$. Different introductory times $n_{0} . \delta t$ will generally affect the final generated pdf. However, as all particles are identical, there is no need to label individual ones, so using this explicit scheme over determines the system.
5.8.3 Prior to analytical consideration, the difference equations 5.8.1.AB must be considered in the limit of $\delta x \rightarrow 0$. Writing the function B for the limit of p and D for the limit of γ, where B and D are the respective pdf's :
$B(x, t+\delta t)=B\left(x-\delta x, t \mid t_{0}\right) r(x-\delta x)+B\left(x+\delta x, t \mid t_{0}\right) s(x+\delta x, t)$
$D\left(x, t+\delta t \mid t_{0}\right)=D\left(x-\delta x, t \mid t_{0}\right) r^{\prime}(x-\delta x, t)+D\left(x+\delta x, t \mid t_{0}\right) s^{\prime}(x+\delta x, t)$

$$
+B\left(x, t \mid t_{0}\right) K_{d}(x, t) \cdot \delta t
$$

Consider the term $b(x, t+\delta t)$. Using a Taylor series expansion about the point (x, t) gives
$B(x, t)+\delta t \cdot \frac{\partial f}{\partial t}+(\delta t)^{2} \cdot \frac{\partial^{2} f}{\partial t^{2}}+\cdots \cdot$
Expanding each term. in 5.8.3.A in a Taylor series up to the point whwre terms are of the order δt^{2} yields
$\left[B(x, t)+\frac{\partial f}{\partial t} \cdot \delta t+\frac{\partial^{2} f}{\partial t^{2}} \cdot(\delta t)^{2}+\ldots\right]=\left[B(x, t)-\delta x \cdot \frac{\partial f}{\partial x}+\frac{(\delta x)^{2}}{2} \cdot \frac{\partial^{2} f}{\partial x^{2}}+\cdots\right]$

* $\left[r(x, t)-\delta x \cdot \frac{\partial r}{\partial x}+\frac{(\delta x)^{2}}{2} \cdot \frac{\partial^{2} r}{\partial x^{2}}+\ldots\right]+\left[B(x, t)+\delta x \cdot \frac{\partial f}{\partial x}+\frac{(\delta x)^{2}}{2} \cdot \frac{\partial^{2} f}{\partial x^{2}}+\ldots\right]$ * $[$
$\left.s(x, t)+\frac{\partial s}{\partial x} \cdot \delta x+\frac{(\delta x)^{2}}{2} \cdot \frac{\partial^{2} s}{\partial x^{2}}+\cdots\right]$
For $B(x, t)$ write B, multiplying out, grouping like terms, dividing by δt, and neglecting terms of order 2 and upwards, the above is reduced to : $\frac{\partial B}{\partial t}+\frac{\delta t}{2} \cdot \frac{\partial^{2} b}{\partial t^{2}}=B\left[\frac{(\underline{f+s-1})}{\delta t}+\frac{\delta x}{\delta t}\left(\frac{\partial s}{\partial x}-\frac{\partial r}{\partial x}\right)+\frac{(\delta x)^{2}}{2 . \delta t}\left[\frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} s}{\partial x^{2}}\right]\right]+$ $+\frac{\partial B}{\partial t}\left[\frac{\partial x}{\partial t}(r-s)+\frac{(\delta x)^{2}}{2 \delta t}\left[\frac{\partial r}{\partial x}+\frac{\partial s}{\partial x}\right]\right]+\frac{\partial^{2} B}{\partial^{2}}\left[\frac{(\delta x)^{2}}{2 \delta t}(r+s)\right]$

Now the expression $5.4 .1 . B$ is used to replace $(\delta x)^{2} / \delta t$, 5.4.1.C-D for $r+s$ and $(r+s-1) / \delta t$ and derivatives of r and s, e.g.
$\frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} s}{\partial x^{2}}=-\frac{\partial^{2} K}{\partial x^{2}} \cdot \delta t$
Substituting the various expressions for r and s into 5.8.3.E gives
$\frac{\partial B}{\partial t}+\frac{\delta t}{2} \cdot \frac{\partial^{2} B}{\partial t^{2}}=B\left[-K-\frac{\partial U}{\partial x}-\frac{E \partial^{2} K}{\partial x^{2}} \cdot \delta t\right]+\frac{\partial B}{\partial x}\left[-U-2^{E} \cdot \frac{\partial K}{\partial x} \cdot \delta t\right]+\frac{\partial^{2} B}{\partial x^{2}}[E(1-K \delta t)]$ (5.8.3.G)
This , in the limit $\delta x, \delta t \rightarrow 0$ yields, for a well behaved function :
$\frac{\partial B}{\partial t}=-K B-\frac{B \partial U}{\partial x}+\frac{E \partial^{2} B}{\partial x^{2}}$
This is the Fokker-Planck equation for a continuous diffusion process with a non conservative substance. Identical application to the OD phase leads to the expression
$\frac{\partial D}{\partial t}=-K_{\mathbf{r}} D-\frac{D \partial U}{\partial \mathbf{x}}-U \partial D+\frac{E}{2}^{2} D_{\mathbf{x}^{2}}+B K_{d}$

5.9 Interpretation of the Probability Density Functions (pdf's)

5.9.1. Equations $5.8 \cdot 3 . H-I$ are the pdf's for one particle of $B O D$ or $O D$ introduced at the point x_{o}, being found at the point x after an elapsed time since introduction of t.

Figure 5.9.1.A PDF's of BOD at various elapsed times

Curve	Interpretation
a	At the instant of discharge, $t=0$ (on high water, say)
b	Soon after discharge, at typically $t<2$ hours
c	Some time after discharge, $2<t<10$ hours typically
d	Long enough after discharge for all effects to be removed, in
e most estuaries $t>30$ days.	

Note : Times given for a typical estuary of 50 km length, with steady flow and 20 days retention for a headwater discharge.

Figure 5.9.1.B The probability Density Function for O.D. at similar

Elapsed Times

Fig. 5.9.1.A shows that at the time of discharge, the probability function has a value, and up to small elapsed times before appreciable transformation occurs, behaves much like the Dirac δ function (curve A and B).

$$
\text { i.e. } \int_{-\infty}^{+\infty} \delta(f) \cdot d x=1
$$

Eventually tidal distortion, fresh water input variability will skew the distribution, and the decay to produce O.D. will steadily reduce the area under the BOD curve (C and D). After a long period relative to the tidal retention of the system has elapsed, the effect of the input is lost altogether and so the PDF tends to zero (curve E).

Fig. 5.9.1. B shows the curve of the coupled $O D$ PDF. Assume at the initial discharge point, there is no $O D$ in the system, and the discharge itself introduces no direct OD. Initially then the PDF is zero, until the BOD begins to be utilized. The PDF slowy rises to a peak at a time when the rate of change of $B O D$ has reached a maximum . The $O D$ curve is also modified by the varied
re-aeration process, which is independant of the process of $B O D$ decay.
5.9.2. The term $-K B$ is the loss of $B O D$ due to decay through oxygen consuming and other processes .

The term $-K_{R} D$ is the rate of re-aeration term. The larger the oxygen deficit, the more prominent the re-aeration factor becomes. If, for some inputs under certain conditions, the system becomes supersaturated, the re-aeration process reverses until a zero deficit results.

The term $+K_{D} B$ is the rate of biological utilization of $B O D$ to create $O D$ units
5.9.3 The term $E \frac{\partial^{2} B}{\partial x^{2}}$ and $\frac{E \partial^{2} D}{\partial x^{2}}$ represnt the net difference in rates of diffusion between the segment 'slices' δx. There is an inherent assumption here; that is diffusion for real $B O D$ and virtual $O D$ particles are identical. Infact the actual differences in molecular diffusivities are insignificant. It is of interest to simulate a situation with $E=0$, then with E at a measured value. The additional 'smearing' of a pollutant provides a valuable source of dilution for meeting effluent standards in rivers and estuaries.
5.9.4 The term $-\frac{U \partial B}{\partial x}$ and $-\frac{U \partial D}{\partial x}$ represent the inputs due to bulked (ie fresh and tidal) flow. The differenc between input and output of a slice is the term $\partial / \partial x$.
5.9.5. The terms $\frac{B \partial U}{\partial x}$ and $\frac{D \partial U}{\partial x}$ allow for the compressability of the medium. This term is sufficiently small to be neglected in the case where the medium is water.
5.9.6. All the previous calculations have shown to yield is a probability density function for one particle of $B O D$ in isolation. The problem of aggregating many particle systems and converting the resultant PDF into meaningful terms remains.
5.10.1 If the time interval between sucessive BOD units entering the system, δt, tends to zero, the limit is an approximation to a continuous source. The total effect can then be obtained by convoluting the individual effects.

Let $A_{K}(m, n)$ be the probability that there are K BOD units at $m \delta x, n \delta t$, and $B_{K}(m, n)$ similar for $O D$ units.

Then, for a continuous source, S, for $B O D$ using equation 5.8.1.A :
$T_{A}(m, n, s)=\sum_{k=0}^{A}(m, n) \cdot s^{k}$
$\simeq \prod_{i=0}^{n}\left[(1-p(m, n \mid i)) S^{0}+p(m, n \mid i) S^{1}\right]$
$=\prod_{i=0}^{n}[(1-p(m, n \mid i))+p(m, n \mid i) S \quad \quad$ (5.10.1.B)

Similarly, for OD using 5.8.1.B :
$T_{B}(m, n, s)=\prod_{i=0}^{n}\left[\left(1-\gamma\left(m,\left.n\right|_{i}\right)\right)+\gamma\left(m,\left.n\right|_{i) S}\right]\right.$
5.10.2 For calculation of the probability of any one particular state , $\left(m_{A}, n_{A}\right) B O D$ and $\left(m_{B}, n_{B}\right) O D$, the equations 5.10.1.B and 5.10.1.C are fully expanded and the product coefficient

$$
T_{A}\left(m_{A}, n_{A}\right) \cdot T_{B}\left(m_{B}, n_{B}\right)
$$

is the probability of that particular state occurring from the set on input conditions of the system. This product-coefficient will have a maximum value, and the state this reflects is the expected state of the system for the input conditions.
5.10.2 For a function $F(x)$, the expected value is defined as $[5]$

$$
\begin{equation*}
E(g[x])=\int_{-\infty}^{+\infty} g(x) F(x) \cdot d x \tag{5.10.2.A}
\end{equation*}
$$

($g(x)$ is a function of x so that the integral exists over the range of integration). In the context of $5 \cdot 10.1 . B-C, E$ is the mean value
$E_{A}(k)=\left.T_{A}^{\prime}(s)\right|_{S=1} \quad \& \quad E_{B}(k)=\left.T_{B}^{\prime}(s)\right|_{s=1}$
(as probabilites for $s=0$ are zero). Consequently, for 5.10.1.B
$\frac{\partial T}{\partial_{S}} A=\sum_{i=0}^{n} p(m, n \mid 1) \cdot \prod_{\substack{i=0 \\ i \neq 1}}[(1-p(m, n \mid i))+p(m, n \mid i) s]$
and $\frac{\partial T_{s}}{\partial_{s}}=\sum_{s=1}^{n} p(m, n \mid l)$
Similarly, $\left.\quad \frac{\partial T}{\partial s} B\right|_{s=1}=\sum_{l=0}^{n} \lambda(m, n \mid 1)$
5.10.3 For a function $F(x)$, the variance is defined as $E\left(x^{2}\right)$. In the context of $5 \cdot 10 \cdot 1 . B-C$ this is equal to
$\left.T_{A}^{\prime \prime}(s)\right|_{S=1}+\left.T_{A}^{\prime}(s)\right|_{S=1}-\left.\left(T^{\prime}(s)\right)^{2}\right|_{S=1}$ with an identical expression for T_{B}.

To calculate $\mathrm{T}_{\mathrm{A}}^{\prime}$ '(s), the expression $5 \cdot 10.2 . \mathrm{B}$ is differentiated to yield

$$
\frac{\partial^{2} T}{\partial s^{2}} A=\sum_{l=0}^{n} p(m, n \mid 1) \cdot \sum_{\substack{i=0 \\ i \neq 1}}^{n} p(m, n \mid i) \cdot \prod_{\substack{j=0 \\ j \neq 1}}^{n}[(1-p(m, n \mid j))+p(m, n \mid j) s]
$$

and so $\left.\frac{\partial^{2} T}{\partial s^{2}}\right|_{s=1}=0 \quad$, then $E_{A}\left(T_{A}^{2}\right)=\sum_{1=0}^{n} p(m, n \mid 1)-\sum_{1=0}^{n}[p(m, n \mid 1)]^{2}(5 \cdot 10 \cdot 3 \cdot B)$
and similarly for the $O D$ expression.

Allowing $\delta t, \delta_{x}$ to decrease so that $1 / 2 .\left(\delta_{x}\right)^{2} / \delta t=E(x, t)$ and the process becomes continuous, n becomes large due to the very large number of states available for the system to occupy. As $\sum \gamma$ and $\sum p$ are each bounded by unity, the actual individual values of each probability state must decrease. Both sums also have the loer bound of zero. Therefore, in the variance terms above ($5 \cdot 10.4 . B$ and $D)$ the individual values of each state squared decrease very quickly and so

```
Variance(BOD/OD State) -----> Mean (BOD/OD Sta te)
    limit \deltax,\deltat}>>
```

5.10.5 These independant Bernoulli Trials with non uniform probabilities can be shown to converge to a Poisson Distribution ${ }^{[6]}$. This has to be further generalised in that, on the assumption of particle independance, as individual distributions are Poisson , and convoluting Poisson distributions gives a further Poisson distribution. The total concentraion distributions are Poisson with expectancy equal to the sum of the individual expectancies.

```
\(\sum . \pi\) (Poisson Probabilities) \(=\) Total PDF (Poisson).
```

all states
all particles

```
Mean Total Concentration \(=\Sigma\) (Individual Mean Concs)
                                    number of states
                                    \(=\Delta . \sum \frac{\text { (Individual Mean Probabilities) }}{\text { number of states }}\)
```

This holds for any pollutant that behaves independantly and has a finite
probability distribution. The only singularity may arise at a point of discharge, at a high rate of discharge (curve A, fig. 5.9.1.A).

The concentration variance is similarly the product of the state probability variance and Δ^{2}.

Consequently, a knowledge of the mean and Δ yields the complete anticipated solution to a general estuarine pollutant dispersion problem.
5.11 Solutions for the Mean
5.11.1 Equations 5.8.3.H and 5.8.3.I are rewritten in the concentrations sense with the notes of 5.9 incorporated :
$\frac{\partial B}{\partial t}=E_{B}(x, t) \cdot \frac{\partial^{2} B}{\partial x^{2}}-U(x, t) \cdot \frac{\partial B}{\partial x}-K(x, t) B+L(x, t)+F(x, t)$
$\frac{\partial D}{\partial t}=E_{D}(x, t) \cdot \frac{\partial^{2} D}{\partial x^{2}}-U(x, t) \cdot \frac{\partial D}{\partial x}-K_{R}(x, t) D+K_{B} B+D_{B}(x, t)-P_{S}(x, t)$
with the following key
$E_{B}(x, t)$ Diffusion Coefficient for BOD
$E_{D}(x, t)$ Diffusion Coefficient for $O D$
$\mathrm{U}(\mathrm{x}, \mathrm{t}) \quad$ Total Velocity
$K(x, t) \quad$ Total rate of BOD decay
$L(x, t)$ Land run off rate of addition of BOD load
$F(x, t) \quad$ Point Sources of BOD , discharges
$K_{R}(x, t) \quad$ Rate of re-aeration
$K_{B}(x, t)$ Rate of oxidation of $B O D$ to produce $O D$
$D_{B}(x, t) \quad$ Rate of increase of $O D$ due to benthal demand
$P_{S}(x, t) \quad$ Rate of decrease of $O D$ due to photosynthetic production
5.11.2 For most purposes,$E_{B}=E_{D}$. The term $U(x, t)$ can be estimated in different ways. It can be measured in the field, aprroximated in the form

$$
U(x, t)=U_{F}(x)+U_{T}(x) \cdot \sin (\alpha t)
$$

where $U_{F}=$ fresh water velocity, $U_{T}=$ maximum tidal velocity, α is tidal frequency.

The term $K(x, t)$ includes the term $K_{B}(x, t)$ and the rate of biological utilization through non-oxidation pathways. These are great oversimplifications of the pathways the reactions are thought to take ${ }^{[7,8]}$.
5.11.3 Briefly, some outline reactions thought to predomiate are : $B O D$ (carbonaeceous) $-\frac{\mathrm{O}}{-3->\mathrm{CO}_{2}+(O D)}$
BOD (nitrogenous) $-\underline{O}->\mathrm{NO}_{2}+$ (OD)
$\mathrm{NO}_{2}+\mathrm{O}^{\bullet} \quad---\mathrm{NO}_{3}+(\mathrm{OD})$
(OD) ----> Waste products
$\mathrm{CO}_{2}+\mathrm{NO}_{3} \quad--->$ Biomass
(Biomass) light - (OD)
(Biomass) death $B O D($ carb. $)+B O D($ nitr. $)$
5.11.4 The equations 5.11.1.A-B have to be solved simultaneously as they are coupled. They are simultaneous first order differential equations $[9]$: $\frac{d B}{d t}=f_{1}(B, D, t)$ and $\frac{d D}{d t}=f_{2}(B, D, t)$ As such they can be solved using a wide variety of methods. Ideally, a method requiring only knowledge of the current step, with insensitivity to start up errors, has some error estimation inbuilt and requires little storage and minimal computation time is sought.
5.11.5 A fourth order Runge Kutta method modified by Merson is best suited to meet the previously listed ideal requirements. The main necessary condition is that the functions are expandable as a Taylor series (see 5.6) For a step size h from $\left(x_{0}, y_{0}\right)$ to $\left(x_{0}+h, y_{0}\right)$, calculate the following :

$$
\begin{align*}
& c_{0}=\frac{h}{3} f\left(x_{0}, y_{0}\right) \tag{5.11.5.A}\\
& c_{1}=\frac{h}{3} f\left(x_{0}+h / 3, y_{0}+c_{0}\right) \tag{5.11.5.B}\\
& c_{2}=\frac{h}{3} f\left(x_{0}+h / 3, y_{0}+c_{1} / 2+c_{0} / 2\right) \tag{5.11.5.C}\\
& c_{3}=\frac{h}{3} f\left(x_{0}+h / 2, y_{0}+9 c_{2} / 8+3 c_{0} / 8\right) \tag{5.11.5.D}\\
& c_{4}=\frac{h}{3} f\left(x_{0}+h \quad, y_{0}+6 c_{3}-9 c_{2} / 2+3 c_{0} / 2\right)
\end{align*}
$$

Then, finally

$$
\begin{equation*}
y_{1}=y_{0}+1 / 2\left(c_{0}+4 c_{3}+c_{4}\right)+o\left(h^{5}\right) \tag{5.11.5.F}
\end{equation*}
$$

An estimation of the truncation error E is given by [9]

$$
\begin{equation*}
0.2 c_{0}+0.8 c_{3}-0.9 c_{2}-0.1 c_{4} \tag{5.11.5.G}
\end{equation*}
$$

Then, if $E>\mathrm{mE}_{A}$ where m is a multiple of E_{A}, the allowed error, the step size must be reduced. Alternatively, if $E<E_{A} / \mathrm{m}$, the step size is altered to a multiple of h to reduce computational effort. So if the alterations in step size reduce the computational effort by only 20%, the above method becomes efficient despite the additonal evaluation of the function .
5.12 Computational Considerations for Expected Value Computation

The computational aspects of the stochastic model can be considered in 3 sections:

1. Input of parameters and segmentation of the system
2. Stepwise time progressive computation of expected values of $B O D / O D$
3. Occasional reporting of values, presentation of results and controlling program efficiency.

Details of the coded procedures are given in Appendix D. Two principal versions are available. The first uses the functional representation of velocity, the second one has a link routine to abstract estimated velocity data from the data bank accumulated from simulations of the Fischer Model F1 or F2. The program is arithmetically bound, that is to say, a large proportion of the entire run/mill time is used by the arithmetic unit in the large number of function evaluations that are required. This was a prohibitive feature in the Usk Estuary where the large tidal prism with a high tidal velocity result in small time steps and consequently uneconomic running costs.
5.13.1 Doubt still surrounds the exact nature of $\Delta^{[10]}$, although it is now accepted to be a physical factor and not limited to the purely discrete interpretation of employed $[11,12]$. If one restricts changes to multiples of Δ then the ability to handle low order and high order changes of state is lost. However, having shown that the process is a continuous stochastic one, and that Δ enters as a scale factor in the variance only, the stochastic coefficient can be defined as
"The constant of proportionality of a change of mean concentration reflected in the variance."
5.13.2 No restriction on Δ has been placed, as to minimum levels of change involved. Because of the coupling of the process and their inherent first order kinetic common factor, it is reasonable to assume that

$$
\Delta_{\mathrm{BOD}} \simeq \Delta_{\mathrm{DO}}=\Delta_{\mathrm{OD}}
$$

However, it was found that there is an order of magnitude difference between the two coefficients [13]. This demonstrates that Δ is a function of the process itself, not only of its stochasticity.
5.13.3 Practically, Δ must be determined for each site from field data using

$$
\Delta_{.}(\text {mean })=(\text { variance })
$$

Care must be taken when using field data for an estimation of Δ. No other major parameters should be in a state of flux, and data included should exclude diurnal effects. Dependance on turbulence, temperature and initial conditions has been demonstrated ${ }^{[12]}$. Furthermore, only data outside the anaerobic region can be included. The chemistry of the model postulated fails below 5% saturation of dissolved oxygen.
5.13.4 Multiple expressions can be calculated using regressive techniques.These allow Δ to be expressed as a function of major state variables. For the Ohio for example, it was found that
$\Delta(O D)=-0.2+0.0823($ sample station no. $)+0.002($ time of day $)$

$$
\begin{aligned}
& +0.0078(\text { temperature })-0.0081(\text { BOD })-0.0088(\text { staion no. })^{2} \\
& +0.00004(\text { time of day })^{2}
\end{aligned}
$$

However, applying Student -t tests to the coefficients revealed that only two terms were significant, the .0823 and .0088 . This is a direct consequence of the restriction placed on the inclusion of data under 5.13.3. If all data were included, the above expression would have all significant coefficients ${ }^{[15]}$.

5.14 VERIFICATION of the Model

The model has been verified on the Potomac and Delaware Estuaries. All the preceeding theory can be applied equally to river systems, with the added simplification of the velocity representation. Further validation work has been carried out on the ohio $[14,15]$. The volume of data required to perform adequate validation was never available in the Usk system. The model was not extensively used during the project because of the high costs of running while connected to a bureau facility. When in-house computer power is available the routines will be regenerated and validated.
[1] "An introduction to Probability Theory and its Applications"
W Feller, Vol 1, Wiley International,p. 146
[2] "Die Gleichfoermigkeit in der Welt",K. Marbe,Munich 1916
[3] $\operatorname{Ref}[1], p .354-\mathrm{p} .359$
[4] "A Monte Carlo Case Study of Random Inputs in the Stochastic Model for Pollution in Estuaries" , S G Bartley , M.Sc. Thesis, Virginia Poly, May 1970
[5] "Introduction to Mathematical Statistics", R V Hogg, A T Craig,CollierMacmillan International Edition,3rd Ed. London.
[6] "Necessary and Sufficient Conditions for Poisson Distributions", B O Koopman,Proc.American Math. Soc. ,Dec 1950, pp813-823
[7] "Water Quality and Loadings, Upper Potomac Estuary during 1969", N A Jaworski Chesapeake Tech.Support Lab., Mid Atlantic Region, FWPCA, Dept of Interior Tech Report no. 27 Nov. 1969
[8] "Modelling of the Nitrogen and Algal Cycle in Estuaries", R V Thomann, D J O^{\prime} Connor, D M DiToro,5th International Conference on Water Pollution Research
[9] "Numerical Methods", R A Buckingham, Pitman, London
[10] "Discussion of Stochastic Model for BOD and OD in streams", R V Thomann D J O'Connor, D M DiToro, ASCE, J.Sanit.Eng.Div., Apr 1968 ,p.327-p431
[11] "Temperature and Turbulence Effects on Δ in the Stochastic Model for BOD and DO in streams", J R Bosley, J J Cibulka,R G Krutchkoff, W R C of Virginia, Bulletin 33, Ndv 1969
[12] "Closure of Stochastic Model for BOD and DO in streams", R G Krutchkoff ASCE J.Sanit.Eng.Div.,Oct. 1968 , p.1025-p. 1027
[13] "A Stochastic Simulation Study of the BOD and DO in streams and Estuaries" J R Barile, M.Sc. Thesis, Virginia Kolytechinc Institute, Sept. 1970
[14] "An O_{2} Balance for the Potomac Estuary ", w J Hetling, R L O'Connell Chesapeake Field Station, Annapolis,Maryland 1967
[15] "Stochastic Modeling for Water Quality Management", EPA WQO, ref 02/71 (Various Authors).

Chapter 6

Estuary Parameters and Sources

Chapter 6

CONTENTS

```
6.0 Introduction
6.1 Tides at Newport
6.2 Hydrological Data
6.3 Discharges to the System
6.4 Survey Data
6.5 The Re-aeration Rate
6.6 Field Measurment of the Re-aeration Coefficient
6.7 Dispersion and Diffusion
6.8 Sources and Sinks of Oxygen
6.9 The Biochemical Oxygen Demand
6.10 Flow Data
6.11 Estuary Fisheries
6.12 Minimum DO Requirements for Migratory Fish
6.BIBLIOGRAPHY for chapter 6
```

```
6.0 Introduction
6.0.1 A necessary step for theory is from conceptual framework to
reality and acceptability. Unless a model proposed for a situation
can duplicate a known baseline situation, it has no value in the
decision making process. Conversly , having duplicated some known
condition, extensions of established constraints are not guaranteed
to produce equally valid results. However, they will be more
thoughtful and of considerable use provided the underlying assump-
tions of the prediction process are impressed on the use of those
predictions. Few models have all the data they require, most have
considerably less than scientific approaches require. Scarcity of
data undermines the confidence of validation and this must be
reflected when considering the applicability of any projections.
6.0.2 Establishing a base-line data set can cause severe problems.
There are undoubted advantages to designing 'saturation' surveys of
a complete system for short, intensive periods. Information thus
gained is of course highly specific to a set of conditions, and
for a relatively short space of time, usually one tidal cycle.There
is an advantage in that recorded fluctuations are functions of the
main system and there are no long term variants to generate noise
on measured signals.This allows inter-relationships and interpretation
of data to be more efficient and reliable.
```

6.0.3 Ideally, for a given parameter, the least data required is that indicated in fig. 6.0.A. For a one dimensional (ie. longitudinal) data collection excercise, consider the estuary as a time-space box of length 1 Estuary and width 1 Tidal Cycle. The least desired data is represented by the lines A, B, D and E. A is the upstream, B the seaward boundary condition. At these points data can usually be gathered with fixed survey stations. At time 0 , nominally Low Water, the line E then represents parameter levels at low water throughout the estuary. Line D represents the high water trace. Lines D and E can be obtained by manning a large number of points for a short period of time or using a highly mobile survey station. A fast boat capable of 20 knots can cover a 17 mile estuary in $90-100$ minutes with about 20 samples. Because of the high and low water slack time lag, this can be a very effective method of freezing the system. Conventional boats are often restricted for low water access, because of drawing several feet that are not always available at low water. Two alternatives to be considered are the use of inflatables drawing less than one foot and the use of helicopters. Capital costs of a 12^{\prime} inflatable with 25 HP motor are about $£_{1500}$. Helicopters are extremely flexible and can cover a long area. They are restricted in that ground support is often required and hire costs can be about $£ 100$ to $£ 300$ per hour ${ }^{[4]}$.

Line C represents data acquired by use of an additional fixed survey station.Apart from the additional vertical trace on the data map, each station also provides correlative readings for the tide extreme freezes (at points F and G , fig. 6.0.A).

Abstract

6.0.4 Instrumentation should be calibrated in the field if possible as particularly Dissolved Oxygen Meters suffer from drift. As a matter of routine, 'Winkler' D.O.'s should also be collected at regular intervals. Braystoke Flowmeters and E.I.L. Salinometers tended to require less maintenance, although Flowmeter Control Units were prone to minor faults. Any B.O.D. Samples should be returned to the Laboratory as soon as possible.Some cooling should be available to prevent initial incubation.

6.0.5 Another matter to be resolved at the planning stage of the project

 is the required accuracy of the model. The level of accuracy required will affect the depth modelling to be attempted, the type of model used and the validating procedures (which tend to be man-power intensive). The only constraint specified in the project was the acceptability of the Steady State Model. This would be deened acceptable if the error remained within 10% of base line data. Idealised time dependent model validation required a field effort in excess of that available after re-organisation of the Water Industry.```
6.0.6 The criteria of fit is a further subject of choice. What
statistical measure should be regarded as acceptable? Usually at least
one state variable is left open as a degree of freedom to 'tune' the
model to any degree of accuracy desired to an observed data line.
Using this method, the term 'accuracy' becomes relatively arbitrary as
the tuning parameter becomes less a reflection of the physical measure
it relates and more of a 'best-fit' type weighting coefficient. In
this study it was decided to use best available estimates for all parameters
and accept any lack of fit as faults in the underlying model philosophy.
```

6.0.7 Fig 6.0.B shows three typical predictive curves to one observed base-line. In terms of total sum of squares of the predictive data to the field data, all three fits are acceptable. Line i) could be considered as a good fit, the general trend is reproduced with an apparent lag in space. If the fit were weighted in terms of volumes or seaward distance then it would be a goodness of fit well below $5 \%$. Without weighting the $10 \%$ criteria would be satisfied. Line ii) is on the whole a much closer fit and well within $1 \%-2 \%$ for the most part. However at the seward boundary divergence is rapid and the whole match loses its attractions. Even unweighted the fitting is pushed beyond the $10 \%$ goodness usually required. Rather than attempt to tune this type of deviation, the basic cause should be modified (in this case, seaward boundary conditions are the first parameters to consider for modification). Line iii) has a totally acceptable fit in terms of percentage deviation, at no point do projected and actual curves differ by more than $10 \%$, and is this a situation where the model predicts within the confidence limits of the field data. However, closed examination of the line shows regular projected variation which does not occur in the observed data. This indicates incorrect use of the particular model in terms of sphere of applicability or numerical instabilities. Again the model should be examined rather than using a 'tuner' to amplify or dampen the output to fit .
6.0.8 The following criteria are commonly employed for an observed data set $x$
(xp - predictive set)
a) $\operatorname{Max}|x-x p|<E \quad$ Absolute error
b) $\operatorname{Max}\left|\frac{x-x p}{x}\right|<E \quad$ Relative error
c) Combinations of Absolute and Relative error
d) $(x-x p)^{2}<E \quad$ Absolute sum of squares

All these are for one dimensional goodness of fit. For simultaneous multiple fitting each of the above definitions can be extended to more than one variable. In the multi-dimensional case the minimisation of the multiple least squares is used most frequently. The emergence of Cluster Analysis [6] [12] has recently made available a new set of statistics to judge groupings. As the differing parameters fitted may have differing relative importance, it may be required to weight each parameter prior to calculating the goodness of fit statistic.

For time series prediction, the residuals can be further analysed using the Durbin-Watson Statistic ${ }^{[14]}$ to test for trends in residuals (which theoretically should be randomly distributed). The Steady State Model uses a) for its convergence test, and the Stochastic Model method c).



Good fit generally but divergent at Sea area of great interest


### 6.1 TIDES at NEWPORT


#### Abstract

6.1.0 Newport tides tend to have more harmonic distortion than many 'sea' ports because of the situation within the geometry of the Severn Estuary. Periodic Regression and Harmonic Analysis was carried out on the 1970 tidal records from the Newport Outer Cill Survey Station. Fitting one years data to a harmonic function required the use of 15 principal harmonics and so involved 31 terms. This gave a maximum deviation of about 0.3 m ( $1^{\prime}$ ).


6.1.1 A section of the data was examined in greater detail. The period started and ended with identical high spring tides of 14.85 m ( $49^{\prime}$ ), with a lower spring tide intervening. Because of amplitude coefficients and sign variations, spring tides are less influenced by lower order harmonics, as shown by a comparison of the 4 th and 9 th order harmonic fits (fig 6.1.A and 6.1.B).
6.1.2 The purpose of the analysis was to assisst in considering what constituted a Steady State period, and also to enable tide profiles to be predicted. Given a starting condition, tide heights could be predicted and assumed that each tide was 12.4 hours after the previous high water. Together with tide-tables ${ }^{[1]}$ (table 6.1.A) , tide height / time sequences of variable length and optional detail can be constructed for input to various models. Modification of such series allowed modelling of storm surges and tidal waves if required.
6.1.3 The analysis fitted the following equation to predicted or observed amplitudes :

$$
\begin{equation*}
\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{0}+\sum\left(\mathrm{a}_{\mathrm{i}} \cos [\beta \mathrm{t}]+\mathrm{b}_{\mathrm{i}} \sin [\beta \mathrm{t}]\right) \tag{6.1.3.A}
\end{equation*}
$$

Where $\mathrm{T}_{\mathrm{a}}$ is total amplitude, $\mathrm{T}_{0}$ mean amplitude, t is time and the factor $\beta$ is $=2 \pi i / k$ and in radians.

Analysis of a neap to neap cycle over 120 tides showed even limited series required up to 9 harmonic components. However, some coefficients could be neglected without loss of overall accuracy. To achieve $\mathrm{a} \pm 2 \%$ maximum
Table 6.1.A - Tidal Reduction Tables, Newport
(by kind permission of the Harbour Commissioners)

## NEWPORT DOCKS

צกOH aTVH xצヨal tio yวot hinos no yalvm do shidga onimohs gTavi

deviation, the following coefficients and constant is used :

$$
\mathrm{T}_{\mathrm{k}}=12.371+\sum\left(\mathrm{a}_{\mathrm{i}} \cos [\beta \mathrm{t}]+\mathrm{b}_{\mathrm{i}} \sin [\beta \mathrm{t}]\right)
$$

where :

| $\mathbf{i}$ | $\mathrm{a}_{\boldsymbol{i}}$ | $\mathrm{b}_{\mathrm{i}}$ |
| :--- | :--- | :--- |
|  | -0.168 | neg. |
| 1 | -0.164 | 0.512 |
| 2 | -0.1 |  |
| 3 | -0.363 | -.302 |
| 4 | -1.472 | neg. |
| 5 | 0.393 | 0.144 |
| 6 | 0.147 | -.131 |
| 7 | neg. | neg. |
| 8 | neg. | neg. |
| 9 | 0.147 | neg. |

```
neg. is where coefficient is \(<0.05\)
```

6.1.4 Tides at Barry Port ${ }^{[2]}$ were used mainly for the F2 Model. Recorded data from Avonmouth was supplied by the Docks Engineer of the Bristol Port Harbourmasters Office ${ }^{[3]}$. The tide gauge at Newport Dock Outer Cill was not well maintained. This collection point could be very useful additional data for any investigation as it strategically placed with respect to the whole Estuary, although its prime function is for shipping. The site is near the dimension interface for models F1/F2.
6.1.5 Wind Effects on tides are significant on high spring tides from the flood prevention point of view.A westerly of strength $<5$ on the Beaufort scale adds 0.2 to 0.5 m to a tide. Winds $>5$ add 0.7 to 1.0 m to a tide. Northely winds tend to reduce by about 0.4 m and delay the time also. Fig. 6.1.C shows average tidal effects for varying wind directions for strength 3-4.
6.1.6 Barometric pressure deviations also influence tide heights. Every 5 mm over 760 mm Hg adds about 0.1 m to a spring tide. Every 10 mm below the norm reduces a high tide by about 0.1 m . Although only approximate guides they are useful in calculating statistically extreme tidal heights.
Figure 6.1.C The Effect of Wind Direction on Predicted Tide Heights at Newport




### 6.2 Hydrological Data.

The Usk River Authority had commissioned an aerial survey of the tidal Usk up to a level of 30 ft . O.D. [5]. The survey was to enclose the river between Newbridge-on-Usk Bridge and the line joining the East and West Usk Lighthouses. The resultant report merely contained cut and fill type volume as heights tables for 5 benchmarked sections. The accompanying contour maps were claimed to be accurate $\pm 0.5^{\prime}$ in $5^{\prime}$ contours. Huntings kindly made the original photographic plates available and in attempting to duplicate the accuracy using stereo photogrammetry an accuracy of $\pm 2^{\prime}$ was found to be more realistic because of overshadowed banks on insides of bends and general dull weather. The aerial survey data was recomputed in raw form and reprocessed to make typical cross-sections available across the main channel every 200 metres. Furthermore, as the survey was flown at low water spring, there was a critical void in the data. The sub water surface geometry was required for the full model. Above the step at Newport Road Bridge the regular geometry enables a triangular approximation with a maximum depth of $0,3 \mathrm{~m}$ to be made. Below the Road Bridge data was available from a centre line survey conducted by the Engineers Department of the URA using echo sounding, and occasional cross-sections from Newport Borough Council Surveyors Department $[5][7][8]$.

Close investigation of the data obtained revealed an exponential trend (figure 6.2.A), so the bulky aerial survey was condensed to about 25 cross-sections more scattered in the upper regions and more frequent in the lower sections of the estuary system.

Table 6.2.A.

Relative Widths for Extremes of a Spring Tide.

| Point | HW(ft) | LW(ft) | Banks | Bank \% of <br> HW width |
| :--- | :---: | :---: | :---: | :---: |
| Docks Entrance, just below | 2500 | 520 | 1900 | $79 \%$ |
| Newport Road Bridge | 360 | 265 | 195 | $54 \%$ |
| Oerlean Road Bridge | 280 | 155 | 125 | $45 \%$ |
| Newbridge Bridge | 140 | 75 | 65 | $46 \%$ |

The high percentage of drying area emphasised the need for accurate estimates of volumes and surface areas (Table 6.2.A). The Steady State Model required time averaged data the Fischer Model tables of height vs depth/width and the Stochastic Model point crosssectional data.

Fig. 6.2.A Cross-sectional Area Profile

6.3 Discharges to the System.

The discharges to the system arise from four principal sources:
a) Newport Borough District Council.
b) Eastern Valley Sewage Works.
c) Caerleon District Council.
d) Tributaries.
a) Newport has an old sewage system which is very scattered and discharges via tidelocked doors. This results in a modification of the diurnal variations in loadings (see fig 6.3.A, double length tide cycle). As the tide rises above the door level the flow is reduced dramatically to a background leakage rate. Then the inflow is retained in the pipe network leading to the outfall. All the outfalls are gravity feed and as the reservoir builds up the pressure on the doors increases. The discharge rapidly builds up to a peak usually before the door is above the waterline. In the initial opening all the shaded area is discharged, together with the partially shaded, which is delayed only slightly. Once the reservoir capacity has been discharged, the normal and tidelocked discharge curve coincide.

Because there is no discharge around the high water area, the area of maximum tidal excursion is not utilized.

A shock load admission can create concentration effects, poor mixing and overemphasise the errors in diffusion. In areas of sub-critical flow very localised oxygen sags can result.

Table 6.3.A itemised the principal discharges to the main estuary and associated population-served.

Table 6.3.A Discharges to the Usk Estuary from NEWPORT B.D.C. [10]

| --Me of Sower | $\begin{aligned} & \text { Feed } \\ & \text { Pop. } \\ & \text { in } \\ & 1000 \end{aligned}$ | Fiow per day in '000 gals/ day,mean 1973 | B.O.D. in <br> lbs load <br> per day, <br> mean 1973 |
| :---: | :---: | :---: | :---: |
| Beaufort | 1.5 | 75 | 180 |
| 5t. Julians | 4.25 | 213 | 510 |
| prehard | 1.7 | 86 | 205 |
| Fenotaph N. | 2.84 | 142 | 342 |
| Riverside | . 35 | 18 | 50 |
| Fenotaph S. | 5.67 | 334 | 680 |
| Maintee | 10 | 540 | 1200 |
| County | 19.7 | 1115 | 2364 |
| Brynglas/Bettws | 22.9 | 746 | 2748 |
| Barrack Hill | 25.0 | 105 | 300 |
| Civic | 5.2 | 270 | 624 |
| Town | 4.5 | 225 | 540 |
| Pill North | 3.3 | 165 | 396 |
| Tredegar Dry Dock | 11.3 | 573 | 1350 |
| Pill South | 8.35 | 428 | 1002 |
| Coronation | Industrial | 500 | - |
| Ringland | 12.75 | 560 | 1528 |

The Borough Council plans a rationalisation of this system to remove all the major inputs and re-route them via a Sewage Treatment Plant at Nash, near the mouth of the estuary $[11]$.
b) The Eastern Valley Trunk Sewer carries effluent from a hinterland of some 150,000 inhabitants and a wide variety of industry. The sewer is lead to Ponthir near Caerleon where it undergoes partial treatment. Up to 1967 the final effluent was discharged to the Afon Llwyd. However, as loadings rose this small tributary declined in quality and a pipeline was built to discharge direct to the Usk estuary just above the village of Caerleon. A further significant increase in load in the early $1970^{\prime}$ s was a principal reason to initiate this project. Pending the outcome of the investigation, the Secretary of State (Wales) granted permission for the increase to be permitted subject to review in the light of concerted scientific research programme.
c) Caerleon District Council has one sewage works with a reasonable level of treatment to serve a town of 10,000 and very little industry. The point of discharge is a creek on the North bank between the St. Julian and Beaufott outfalls. A $20 \%$ increase in loading occurred in the sixties due to residential development. In 1972 the town was declared a conservation area and so no major increases are imminent.
d) The principal tributaries are: R. Ebbw, R.Afon Lloyd, Sor Brook. The Ebbw is the largest of the three, with a DWF of 1.25 cummecs (or 25 mgd ) but comes in at such an advanced stage that it's load nor it's dilution are significant.

The R.Afon Llwyd is a useful source of dilution together with the smaller Sor Brook, for the Eastern Valleys Effluent.
6.4 Survey Data.
6.4.0 Little specific survey work was initially planned for the project. The principal source of data input was to be a network of water quality monitoring stations (5 to 8 stations with 3-7 parameters) maintained by the Pollution Control Department and a series of 8 depth recorders maintained by the Authority Engineers Department. This was initiated to satisfy the constraints prescribed by the Secretary of State for Wales during a public enquiry on the extension of the Eastern Valleys Sewage Treatment plant at Ponthir [13].
6.4.1 Two stations were initially to be used for trouble shooting. These were to be sited at the B.A.C. Jetty (now Uskmouth Power Station) and St. Julians (near the small Beaufort outfall). The St. Julian monitor would sense water quality at the commencement of input from Newport's discharges. The water at this point would be well mixed from bhe major Eastern Valley outfall ( 3 km . and several large meanders away) . The B.A.C. monitor would enable water leaving the system with the Newpert Discharges loads. It was thought the net deterioration would show the effect of Newports loadings, but in fact the sensitive D.O. area arose in an almost invariant position. By the time the St. Julian monitor senses Eastern Valleys effluent it may well be mixed laterally and vertically and diffused longitudinally, but as it has only been resident for a short time, the decay process will not have been initiated for long enough to depelete oxygen sufficiently.

[^0]b) Water Supply: As the station was bankside, water had to be pumped up to 80 m via $2 \frac{1}{2} \mathrm{n}$ plastic semi-rigid tubing to the monitor using a submersible Hoffmann Pump (which required mains supply).
c) Beeause of high suspended solids, the intake was liable to blockage and the pump could run dry.
d) Because of the size of the units, permanent concrete huts were built in a relatively isolated place. This was subjected to frequent vandalism.
e) Inadequacies of the system itself. Staff shortages meant that visits to the site were not as regular as required and error conditions were allowed to develop for some while.
f) Servicing difficulties. The pump could only be serviced on low water spring tides. Difficulties were encountered with the buoying system and shipping slicing the anchor cables.
g) The inside of the tubing tended to develop as a micro ecosystem and required regular flushing.

Dissolved oxygen, suspended solids, conductivity and temperature were to be monitored initially.

One major source of noise on the data acquired was the proximity of the Uskmouth Power Station (part of the CEGB). As this is a small station, with two substations, it was not always operational, so the noise could not be preprogrammed. At low water the thrust of the submerged outfall of the station's cooling water system was sufficient to create a fountain of considerable volume within the $2,000,000 \mathrm{galls} /$ hour tidal prism, and $0.3 \mathrm{~m}-1.3 \mathrm{~m}$ high. This gave rise to an area of high oxygen at a time when the general level of D.O. could be expected to drop rapidly as the tide recedes. When the tide turned, this water body passed the monitor and caused considerable deviation (fig 4.6.A). The dots on the D.O. curve are every 72 seconds and it is seen that the level rises from $40 \%$ saturation to $100 \%$ in about $8-10$ minutes, and almost immediately


## Fig. 6.4.B



General Layout of the EPSYLON INDUSTRIES Water
Quality Monitor, Mark One
decays so that within 25 minutes normal levels are achieved. It is interesting to note that this considerable perturbation cannot be traced on the outgoing tide. This indicates very good mixing within a tidal cycle. The temperature variation for this body of water accounts for about $80 \%$ of the variance of temperature within a tidal phase. At present intervals (usually 5 minutes) the Analogue/Digital interface read off all channels and wrote leivels to magnetic tape. The recorder was 15 channel, of which no more than 7 were ever used including scan marker and calibration channels.
6.4.3 St. Julians experienced much the same problems although not of the magnitude of the disruption caused at B.A.C. The monitor was eleven channel only, of which no more than 6 were used. It was apparent that the U.R.A. lacked the manpower to maintain either monitor satisfactorily, and St. Julians was closed down early 1973 after just 12 months of operations.

### 6.4.4 Data Quality and Quantity.

It was hoped to collect $3.6 \times 10^{6}$ data values over the period of the Usk Estuary Investigation. The quality is such however that the quantity is heavily discounted.

Estimated accuracies are estimated from parallel boat surveys:

| D.O. $\pm 1.5 \mathrm{mg} / 1$ | i.e. $10 \%-15 \%$ |
| :--- | :--- |
| - unsatisfactory |  |
| Temperature $\pm 1^{\circ} \mathrm{C}$ | - satisfactory. |
| Conductivity $\pm 7,000$ | - not unreasonable. |
| Suspended Solids ? | - wide range deadens sensitivity |

Each scan was to be prefaced by a scan marker (the digit 252). This was to be followed by an upper and lower calibration check and then either 8 or 12 data channels. The number of channels actually appearing could vary with some not registered or some recorded twice. Another common source was the loss of certain bits of a word. Losses of the 32 and upwards bits were very noticeable. Below that it is difficult to observe smaller weighted missing bits. Typical error rates were (occurrences per $10^{4}$ scans):

| Scan marker wrong or missing | $10-250$ |
| :--- | :--- |
| Calibration levels out of range | $30-300$ |
| Incorrect number of scans | $15-100$ |
| Observed 'bit' losses | $5-1000$ |

The processing problem was further compounded by switch on/switch off and channel changes on an ad hoc basis because of operational
difficulties. The first 8 months of the project were devoted to trying to process the paper tapes that hold the data off the magnetic tape cassette. Unfor tunately the manufacturer returned the tape in continuous, no parity, binary, non standard form. Considerable software was required to edit the output. A large part was in USERCODE (system 4 ICL machine code). No standard reader input can handle up to 400 m of such tape with no control and processing was delayed by a sporadic hardware failure (which was taken up with ICL, but not resolved in two years). Table 6.4.A estimates the advantages of processing tapes:

Table 6.4.A. Maximum Data Recovery Possible (\%)

| Year | D.O. | Conductivity | Temperature | Susp.Solids |
| :---: | :---: | :---: | :---: | :---: |
| 1970 | $37 \%$ | 38 | 39 | 15 |
| 1971 | $30 \%$ | 27 | 31 | 28 |
| 1972 | $34 \%$ | 37 | 35 | 24 |
| 1973 | $36 \%$ | 33 | 30 | 30 |
| Mean | $35 \%$ | $35 \%$ | $35 \%$ | $23 \%$ |

By this time the volume of the software (program PTEDIT) and complexity of condition raised running costs beyond reasonable levels (1p-2p per scan budgeted costs were now requiring 5 p per scan processed), Combined with the variable quality, it was recommended that the system be closed from a continuous use method and be available for back up at times of normal estuaries.

It is worth noting that the manufacturers claimed a loss rate of one scan per $10^{6}$. On the strength of this claim, no clock track was provided and that would have made the editing very much more efficient. Bearing in mind the quality and poor quantity, parameters are best used to describe relative relationships rather than absolute data values. 6.4.6 Instead of the bankside stations, a comprehensive boat and bridge survey schedule was planned and submitted. To compound the problem the Authority's own boat was unavailable for a year due to engine failure.

Data acquired and used is presented within the sections on specific models. All data is available as a matter of routine in the annual reports of the Authority.
6.4.7 Generally, BOD, Nitrates and Ammonias in highly saline conditions should be treated with caution due to interference in the analytical process. It was felt that modelling Total Organic Carbon (TOC) as opposed to BOD would be more beneficial but laboratory capabilities prevented this. It seems grossly illogical to proceed to model a component of dubious quantitative character with poor reproduceability solely because current legislative consent standards refer to this component. The BOD test is now nearly 100 years old and has not significantly changed in use or accuracy. In an economy orientated industrial enironment more doubt will be cast onto the BOD as alternative parameters could be easier to implement, analyse and perform in-situ measurements on.
6.5 The Re-aeration Rate.
6.5.0 Water with surface contact to a gaseous phase will dissolve an amount of that gas because of the phase rule $[15]$, which indicates two degrees of freedom: Pressure and Temperature.


#### Abstract

6.5.1 Henry's Law assumes ideal gases and states that "the mass of gas dissolved by a given volume of solvent, at constant temperature, is proportional to the pressure of the gas in equilibrium with the solution". This effect is independant of any other inert soluble constituent within the solvent. Le Chatelier's Principle $[16]$ indicates qualitative response to pressure: "An increase in pressure would increase mass of dissolved gas in order to reduce the pressure constraint on the gaseous phase". (This is an abstraction of the van't Hoff (Clapeyron Clausius equation, derived from the thermodynamic relationship $\Delta F=-\operatorname{RT} 1 \mathrm{n} \mathrm{K}^{[15]}$ ).


6.5.2 The influence of temperature can be established with the same qualitative results from the above principals. Increasing temperature reduces solubility to make more molecules available in the gaseous phase.

A situation where an oxygen consuming pollutant with non zero reaction rate is present will result in a less than saturated solution of oxygen in the water body. The rate of restoration of the saturated level via the air/ water interface is of primary interest when assessing natural assimilation capability.
6.5.3 If sufficient phytoplankton are present, additional sources of oxygen need to be considered $[22]$. In this project the effect was negligable. As this is the source of "supersaturation", this was not considered.
6.5.4. The recovery rate is proportional to the forcing function, i.e. the dissolved oxygen deficit in relation to saturation levels.
Carlson et. al. 17,18$]$ formulated that

$$
\frac{d C}{d t}=K\left(C_{s}-C\right)
$$

where $C_{S}=$ Saturation level, $K$ is the overall absorbtion coefficient (the reaeration coefficient).

Integrating between $t_{1}$ and $t_{2}$ as boundary conditions gives

$$
\frac{C_{s}-C_{2}}{C_{s}-C_{1}}=e^{-K\left(t_{2}-t_{1}\right)} \text { or } \log \frac{D_{1}}{D_{2}}=K \Delta t
$$

To allow for a more realistic situation where processes may be present that consume oxygen at an additional rate $b(t), 6.5 .4 . A$ is written as

$$
\begin{equation*}
\frac{d C}{d t}=K\left(C_{s}-C\right)-b(t) \tag{6.5.4.C}
\end{equation*}
$$

Usually there is unsufficient data to satisfactorily estimate $b$ as a time dependant function. The time averaged value is usually considered

$$
\bar{b}=\frac{1}{T} \int_{0}^{T} b(t) d t \quad \text { where } T=\Delta t=t_{2}-t_{1}
$$

## Integrating

$$
\log \frac{K\left(c_{s}-c_{1}\right)-\bar{b}}{K\left(c_{s}-c_{2}\right)-\bar{b}}=K\left(t_{2}-t_{1}\right)
$$

To obtain a coefficient independent of area and volume,
$f$ is defined as
$\frac{\text { K. (Volume of water body) }}{\text { (Surface Area) }}$

$$
\begin{equation*}
=\frac{\text { K. (Cross-sectional Area) }}{(\text { width })} \tag{6.5.4.D}
\end{equation*}
$$

Where $f$ is the Exchange Coefficient ${ }^{[19]}$


#### Abstract

6.5.5 The determination of this coefficient for each eatuary and preferably for multiple sites and under widely varying conditions is an essential part of the survey programme. Values for one estuary have been measured varying from 1.0 ft ./hour to $58 \mathrm{ft} / \mathrm{hour}$ [19]. Turbulence further increases the exchange and values up to 200 have been recorded ${ }^{[23]}$.


$\mathbf{E x}_{\text {cluding }}$ extreme conditions, an average value for a large estuary is in the range $1.5-8.5 \mathrm{ft} / \mathrm{hour}[24][25]$. However a literature review will only highlight the lack of agreement and concensus on this topic. Several papers conclude that using published formulations can lead to using values 10 to 100 times smaller than actual values ${ }^{[27][28][29]}$. This is because published predictive relationships tend to be for constant geometry, unidirectional steady flow or empirical results based on characteristic types of streams.

Kramer ${ }^{[29]}$ lists and reviews spheres of applicability of 17 such predictive methods.
6.5.6 Some purely theoretical expressions have been derived $[30]$.

$$
K=\sqrt{D u} / H^{3 / 2} \quad(6.5 \cdot 6 \cdot A)
$$

where $D$ is the oxygen diffusivity at $20^{\circ} \mathrm{C}(0.001944 \mathrm{sq} . \mathrm{ft} . /$ day $)$, u is the average stream velocity and $H$ the average depth (or volume/surface area - cross-sectional area/width ratio). If $D$ is in sq. ft/day, $H$ in $f t$. and $n$ in $f t / s e c .$,

$$
K=0.538 \frac{U^{\frac{1}{2}}}{H^{3 / 2}}
$$

This was derived from surface renewal of a liquid film through internal turbulence. Verification was reasonably successful for a eange of $\mathrm{H}: 1 \mathrm{ft}$, to 30 ft . $u$ from $0.5 \mathrm{ft} / \mathrm{sec}$ to $1.5 \mathrm{ft} / \mathrm{sec}$. Value of $K$ itself rose from a minimum of 0.05 to 12.2 per day.
6.5.7 For faster water bodies, the formula

$$
\begin{equation*}
\mathrm{K}=11.6 \mathrm{u} / \mathrm{H}^{1.67} \tag{6.5.7.A}
\end{equation*}
$$

is suggested ${ }^{[31]}$, being basically empirically derived in flows up to $5 \mathrm{ft} / \mathrm{sec}$, but in shallow regions (up to 11 ft ).

Another expression of ten used combines the previous empirical work with some additional stream studies to give ${ }^{[32][33]}$

$$
K={\frac{21.6 u}{H^{1.85}}}^{0.67}
$$

for a velocity range 0.1 to $5 \mathrm{ft} / \mathrm{sec}$ and depths to 11 ft .
6.5.8 Temperature has been assumed constant for the previous expressions at $20^{\circ} \mathrm{C}$. However, experimental results show that the temperature dependance ${ }^{[34]}$ is well defined by the expression

$$
\begin{equation*}
\mathrm{K}_{\mathrm{t}}=\mathrm{K}_{20} \quad 1.0241(\mathrm{t}-20) \tag{6.5.8.A}
\end{equation*}
$$

where $t$ is in degrees $C$. This represents a geometric growth of $2.41 \%$ per ${ }^{\circ} \mathrm{C}$ above $20^{\circ} \mathrm{C}$. So
$\mathrm{K}_{10}=78.8 \%$ of $\mathrm{K}_{20}, \mathrm{~K}_{15}=88.7 \%$ of $\mathrm{K}_{20}, \mathrm{~K}_{25}=112.6 \%$ of $\mathrm{K}_{20}, \mathrm{~K}_{30}=126.9 \%$ of $\mathrm{K}_{20}$
6.5.9 The saturation value has to be established in order to compute the oxygen deficit. In reaches of low salinity, the following expression is suitable ${ }^{[35]}[36]$.
$C_{S}(T)=14.652-0.41022 t+0.0079910 t^{2}-0.000077774 t^{3} \quad(6.5 .9 . A)$
Where salinity is appreciable, it may be required to correct for salinity. The following expression is used:

$$
\begin{equation*}
c_{s}=\alpha_{t}-\beta_{t} s \tag{6.5.9.B}
\end{equation*}
$$

where $\alpha_{t}, \beta_{t}$ are coefficients at temperature $t$ (see table 6.5.A) and $S$ is the salinity in parts per th.

Table 6.5.A - Coefficients for Calaulation of $C$ under
Saline Conditions.

| $t^{\circ} \mathrm{C}$ | t | $\beta t$ | $t^{\circ} \mathrm{C}$ | t | $\beta$ t |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 14.63 | . 0925 | 18 | 9.65 | . 0527 |
| 2 | 14.23 | . 0890 | 19 | 9.46 | . 0511 |
| 3 | 13.84 | . 0857 | 20 | 9.27 | . 0496 |
| 4 | 13.46 | . 0827 | 21 | 9.08 | . 0481 |
| 5 | 13.11 | . 0798 | 22 | 8.91 | . 0467 |
| 6 | 12.77 | . 0771 | 23 | 8.74 | . 0453 |
| 7 | 12.45 | . 0745 | 24 | 8.57 | . 0440 |
| 8 | 12.13 | . 0720 | 25 | 8.42 | . 0427 |
| 9 | 11.04 | . 0697 | 26 | 8.26 | . 0415 |
| 10 | 11.55 | . 0653 | 27 | 8.16 | . 0404 |
| 11 | 11.28 | . 0633 | 26 | 7.97 | . 0393 |
| 12 | 11.02 | . 0614 | 29 | 7.84 | . 0382 |
| 13 | 10.77 | . 0595 | 30 | 7.70 | . 0372 |
| 14 | 10.53 | . 0585 | 31 | 7.57 | . 0362 |
| 15 | 10.29 | . 0577 | 31 | 7.44 | . 0352 |
| 16 | 10.07 | . 0559 | 33 | 7.31 | . 0342 |
| 17 | 9.86 | . 0543 | $>33$ | 7.18 | . 0332 |

Note: For temperature correction, use column $t$ and $t^{\circ} C$. For the Salinity Correction, read ppth for temperature in deg. C and use column $\beta$ t as the correction factor for use in section 6.5 .9
6.5.10 In the absence of practical studies, equation $6 \cdot 5.6 . \mathrm{B}$ is recommended for larger systems. For smaller estuaries, 6.5.7.B is probably more suitable. In badly polluted situations, the actual pollutants could be investigated. Presence of certain organic groups would tend to form surface films and radically reduce re-aeration. However, very little quantitative work has been done in this field, but the indications are that effects are marked. 0.5 ppm of some surface active matter (measured as 'Manoxol OT') reduces the reaeration rate by a factor of 0.48 , and 0.1 ppm still gave a 0.42 reduction $[19][29][40]$. The reduction also seems to be moderated by improved flow rates.

The exchange coefficient is a more fundamental term to use as it is a measure of rate per unit surface area (where the interchange occurs) than the re-aeration rate, which is a more composite reflection of rate per unit volume.

```
The two are related by the expression 6.5.4.D rewritten as
 \(\mathbf{f}=\mathrm{K} \mathrm{H}_{\mathrm{m}} \quad(6.5 \cdot 10 . \mathrm{A})\)
```

where $H_{m}$ is the mean hydraulic radius of a stretch or point.
A useful intuitive concept is to consider $f$ the depth of a surface water
'slice' that is fully saturated in one unit of elapsed time if absorbtion
were constant and there were no molecular or diffusive net fluxes out of the slice.

Some strong correlations between $K$ and the longidudinal dispersion coefficients have also been established [92] although wind effects are inseparable ${ }^{[28]}$.

### 6.6 Field Measurement of the Re-aeration Coefficient.


#### Abstract

6.6.0 Section 6.5 illustrated the diversity of opinion on actual rates of reaeration. The Usk Estuary is a predominantly North to South flow in a narrow flood plain, between appreciable hills on either side. Because of the severity of tide level variations, the water level is well below the banks for a large proportion of the tide cycle time, As the winds are predominantly westerly, it seemed feasible that the actual surface could remain reasonably sheltered and so result in a relatively low value of K or $\mathbf{f}$.


### 6.6.1 The experiments previously used to gather field data for the reaeration coefficient were examined.

The use of simultaneous tracers ${ }^{[37]}$ seemed to be an effective method but complex to operate without extensive man power and mobility/communications. The oxygen tent method $[19]$ was practically difficult to operate in a small estuary without expert assistance. Because of an extensive natural D.O. sag curve deoxygenation is impractical because of the risk of causing irreversible damager.
6.6.2 An experiment was required that could be easily handled under ardous field conditions $[38]$.

An approximately cubic polythene bag was manufactured of approximate dimensions $1 \mathrm{~m} \times 1 \mathrm{~m} \times 0.5 \mathrm{~m} .7$ faces were closed and one side left open. Each corner had anchor eyelets anchored in the double seam. A frame of tubular steel or (preferred) aluminium is built slightly larger than the bag and the bag anchored within the rigid framework to give semi-rigidity.

The assembly is then transported to the estuary point where the experiment is to be carried out. When on station, the box is floated and filled with estuary water (figure 6.6.A). About $2-3^{\prime \prime}$ of the top of the plastic should remain clear so that the normal wave action will not ride into the water in the bag. The water in the bag is now deoxygenated using Sodium Sulphite and possibly a catalyst ( $0.2 \mathrm{ppm}_{\mathrm{Co}}{ }^{[23]}$ ) to about $20 \%$ saturation. Agitation is required at this stage. The D.O. probe/recorder within the bag will show a drop to a minimum. If the level drops to $5 \%$ or less, too much sulphite has been added and the bag contents must be diluted and remixed.
6.6.3 When a minimum of D.O. has been reached, the external and internal salinities are matched, either by dilution or preferably moving station. The bag is allowed to drift with the mainstream current, while anchored to a monitoring boat. The two salinometers are used to control the positioning of the box within the selected segment of water. They should remain matched. Meanwhile the internal D.O. probe monitors the recovery of the contained water. Occasiønally samples should be taken for Winkler titration as an instrument double check. If a D.O. probe is also outside the box, and the experiment commenced in an area of low oxygen, a parallel recovery may be observed if no further pollutants enter the system other than the original source.

### 6.6.4 The concept is that this method

a) eliminates the 'diluting' effects of diffusion and dispersion (section 6.7 ) by using an artifically contained water mass.
b) yet the water surface experiences all the perturbations of the natural water surface (wind/wave action).
c) and, because of the flexible walls, a large degree of the turbulent mixing is transmitted to the contained water to maintain isotrop $y$ within the box.


The floats are so that maximally only $2-3$ " of the top of the bag are above the water surface. Care should be taken not to allow many waves to break over the bag contents. The central post serves as a mounting for the two probes required. An additional D.O. instrument in the surrounding water yields useful additional data if the experiment is in an area of naturally caused D.O. depletion.
6.6.5 Some practical points are the safety considerations. In the second experiment the tidal velocity generated sufficient force on the rectangular side of the bag to put the monitoring launch into a hazardous position and the towing line had to be cut and the equipment retrieved later. For this reason it is advisable to only clip the two probes on the central post, for ease of detaching in case of urgent need to jettison. It is accepted that the Usk has a particularly violent tide surge compared to the vast majority of U.R. estuaries.
6.6.6 Both runs were in 'quiet' atmospheric conditions dry, 3-6/8th cloud and in the early morning to minimize any possible source of interference.

The run on an average tide resulted in $1.3 \mathrm{ft} / \mathrm{day}$ ( $1.7 \mathrm{cms} / \mathrm{hr}$ ) with accuracy of $\pm 15 \%$. The spring tide gave $1.7 \mathrm{ft} /$ day $(2.1 \mathrm{cms} / \mathrm{hr})$ with an accuracy of $\pm 9 \%$. The proximity of these results is surprising for widely differing tides and suggests that metereological conditions are probably the major perturbing forces. $95 \%$ confidence limits on the resultant traces (fig 6.6.B) were:

```
 \(-5 \%=0.9671\), for a mean of \(1.1139,+5 \%=1.2608\)
```

    \(-5 \%=1.4952\), for a mean of \(1.7173,+5 \%=1.9394\)
    (linear regression after transgeneration with all points). Because of the multiplicity of discharges in the area of the survey, no external D.O. meter was used. Chlorophyll 'A' levels were below levels where significant amounts of oxygen could be produced (assuming that $1000 \mathrm{mgms} / 1$ generate at most 1 mg of oxygen per hour [22] [39].
6.6.7 The experiment is simple and easily reproduceable. For this reason it is ideal for use in quantitative investigation of the effect of organic surface pollutants. If any discharge is known to contain such surface active pollutants then they should be investigated as 6.5 .10 demonstrates the radical effect on re-aeration until adequate mixing reduces concentrations to insignificant levels.


### 6.7 Dispersion and Diffusion

6.7.0 Dispersion and Diffusion phenomena are a valuable source of mechanism of dispersal and therefore dilution within the receiving water body. Fluid turbulence and non-uniform velocity profiles give rise to these addit onal mechanisms. Dispersion is the longitudinal spreading of a pollutant within the water body in the direction of local instantaneous flow. Diffusion is the spreading of a pollutant within the advancing front as a 'back-up' mechanism to satisfy concentration gradients created by the dispersion front. Although the nature of the processes are not finally defined in terms of an all-enveloping theory, understanding of them has advanced in recent years to a point where numerous predictive methods are available seemingly to confirm Taylors early work in broad outline ${ }^{[65]}$.

The turbulent diffusion coefficients arise in the conservation of Mass in turbulent flow equation ${ }^{[41]}$ from the classical theory of Transport Equations: (See section 4.9.2)

$$
\begin{aligned}
& \frac{\partial c}{\partial t}+u_{x} \frac{\partial c}{\partial x}+u_{y} \frac{\partial c}{\partial y}=\frac{\partial}{\partial x}\left[D_{x} \frac{\partial c}{\partial x}\right]+\frac{\partial}{\partial y}\left[D_{y} \frac{\partial c}{\partial y}\right]+\frac{\partial}{\partial z}\left[D_{z} \frac{\left.\partial_{c}\right]}{\partial z}\right] \\
& \quad+u_{z} \frac{\partial c}{\partial z}
\end{aligned}
$$

Knowledge of the longitudinal ( $\mathrm{D}_{\mathrm{x}}$ ), lateral ( $\mathrm{D}_{\mathrm{y}}$ ) and vertical ( $\mathrm{D}_{\mathrm{z}}$ ) diffusion/dispersion coefficients are important in a model of a real world system, and for hydraulic models because of scale effects.

[^1]
## Fig. 6.7.A Transverse Diffusion from an outfall


of 6.7.0. Many models implicitly assume complete lateral mixing, especially all one dimensional models. In the presence of oxygen consuming processes this can have serious consequences and result in severe local dissolved oxygen deficits ${ }^{[42]}$.

A survey of previous studies showed that $D_{y}$ can be expressed in the form $[43][44][45]$ :

$$
\begin{equation*}
D_{y}=\lambda \cdot H_{\cdot} U \tag{6.7.1.A}
\end{equation*}
$$

$H$ and $U$ are vaerage depths and water velocity for the point crosssection to be considered, and $\lambda$ is a coefficient representative of the type of estuary being investigated. For well defined flow channel,regular geometry estuaries, the range is 0.02 to 0.04 . For the Usk this value is 0.06 due to irregular flow patterns. Setting an arbitrary definition that when $2 \%$ of the outfall concentration reaches the opposing bank, the transverse diffusion process is considered to have reached the opposing bank at a distance B away, then the Transverse Mixing Length $L_{t}=\frac{0.0543 \mathrm{~B}^{2}}{0.06 \mathrm{H}}$ (6.7.1.B)

Applying this expression to the various main discharges on the Usk gave $L_{t}$ values ranging from 300 m to 500 m . Eastern $\mathrm{V}_{\text {alleys outfall }}$ mixing length was estimated at 400 m .

Therefore it is apparent that transverse mixing in the Usk can be regarded as instantaneous, being generated primarily by tidal and bottom roughness eddies.
6.7.2 Vertical Diffusion is also considered usually as instantaneous (fig. 6.7.B) . There has been some work on this coupled with transverse mixing. The anisotropic nature of this mechanism is reflected in the reported ratios of $D_{y}$ to $D_{z}$ of $3^{[47]}$ to $500^{[48]}$. The actual ratio is highly dependant on any stratification and is not necessarily a constant throughout the depth. Appreciable stratification usually implies ratios in excess of $15^{[49]}$.

The Usk Estuary has little stratification, perhaps marginally on neap tides. The ratio therefore is likely to be in the range of 3 to 20 . An absolute estimate can be obtained using the following expression $\left.{ }^{[53}\right]$

$$
\begin{equation*}
D_{z}=\frac{2.86 * 10^{-4 * U * H}}{\left(1+0.276 \mathrm{~N}_{R}\right)^{2}} \tag{6.7.2.A}
\end{equation*}
$$

where $N_{R}$ is the Richardson Number (stability measure), $\bar{U}$ the mean mid depth velocity of tide and $H$ the depth.

However, as the vertical plane is of less interest and for the Usk the typical mixing length values obtained are

$$
L_{\mathbf{v}}=600 \mathrm{~m} \text { to } 1500 \mathrm{~m}
$$

which can be considered instantaneous in the frame of the whole system. Practically these values are very liberal as most of the discharges for a large part of the discharge cycle have a strong vertical velocity component which is not considered in the above expression derivation.
6.7.3 At best, both transverse and vertical diffusion coefficients are considered constants over a reach if included in a model formulation. Considerable thought should be given to including these components in a model due to the wide reaching implications with limited theoretical base. The alternative method to allow these effects is to use a distance downstream weighting function for each outfall so that the main part of the load is not sensed at the outfall for the number manipulation, but some distance away from that point of discharge.

i)
<--- flow

## Bed

ii)


Length

Strength of shading is proportional to consentration, the left hand front in iii) continues to advance downstream

An alternative method of estimating these effects is to consider $D_{y}$ as a function of $D_{z}$, width $B$, depth $H$, mean reach velocity $V_{r}$ and mean point velocity $V_{p}$. Dimensional analysis shows that $[51]$

$$
\begin{equation*}
D_{y}=\left[\frac{v_{p} \cdot B}{V_{r} \cdot H}\right]^{2} \cdot D_{z} \tag{6,7.3.A}
\end{equation*}
$$

Another method used to assess field data is of the form $[55][56]$

$$
\begin{equation*}
\mathrm{D}_{\mathrm{z}, \mathrm{y}}=\frac{1}{2} \cdot \frac{\mathrm{~d} \sigma^{2}}{\mathrm{dt}}{ }^{2} \mathrm{y} \tag{6,7.3.B}
\end{equation*}
$$

where $\sigma^{2}$ is the lateral or vertical variance in a measured curve and the first full derivative is used. The form used in calculation is :

$$
\begin{equation*}
D_{z, y}=\frac{\bar{U}}{2} \cdot \frac{\sigma_{t_{2}}^{2}-\sigma_{t}^{2}}{\bar{t}_{2}-\bar{t}_{1}} \tag{6.7.3.C}
\end{equation*}
$$

where $t_{1}, t_{2}$ are two times of measurement of the concentration curves and the time bar indicates the mean time of passage of tracer for the stations 1 and 2 .
6.7.4 Longitudinal Dispersion differs from transverse and lateral effects in that it has (effectively) no boundaries and so it is a process that will significantly affect a system given sufficient residence time (fig6.7.C)

Few useful models ignore this effect completely, but due to practical difficulties and the dependance on many variables, this coefficient is often used as a tuning parameter in place of the re-aeration rate(sec. 6.5) However, the mainfestation of this phenomena is an additional dilution for a discharge and so it is useful to establish its magnitude with a view to its exploitation in an optimal disposal strategy.

Laboratory experiments with oscillating flows show that for steady state variables, in the sense of external forcing, $D_{x}$ can be considered as time independant $[50]$.


The dotted line is the distribution for a continuous discharge from the outfall

Longitudinal diffusion forms a small effect within dispersion, in the $t$ region of contributing 4 to $15 \%$ of the total $[65][77]$ and both effects are considered in one coefficient due to their inherent similarity.

There are many predictive methods available to estimate $D_{x}$ (table 6.7.A), but these are often for specific circumstances or a particular system. For similar system parameters the predicted values vary widely according to the predictive method used, no more than field variation though (fig. 6.7.D).

As for re-aeration, some field work is required for the estimation of the order of $D_{x}$ and guide the selection of predictive methods to be employed. Table 6. 7.B gives some experimental values.Fig. 6.7.E considers only estuaries similar in size to the Usk/Severn to make comaprisons more valid. Even similar systems show considerable scatter.

From a review of literature, the set of expressions

$$
\begin{equation*}
D_{x}=\alpha \cdot u_{*} \cdot \delta \tag{6.7.4.A}
\end{equation*}
$$

(where $\delta$ is the mean hydraulic depth, $\alpha$ is a constant, $u_{*}$ is the shear velocity $=\sqrt{\text { g.R.S }}$ where $R$ is the hydraulic radius, $S$ the surface energy slope $=-\mathrm{dH} / \mathrm{dx}$ ) look to have a wide range of applicability and are most commonly reported $[57] \rightarrow->[62][64]$. In a system where there are multiple discharges in proximity, the dependance as a distance function becomes more important as a means of estimating whether adjacend discharges have overlapping effective perceived loads (fig. 6.7.F). If so then it must be established that the net compound loads are acceptable if a design strategy is being planned. Usually though the position of the advancing compound front is of great interest rather than its precise composition (unless the discharges have radically differing constituents)

Investigator Ref Equation Reported.


Key : $n$ - Mannings $n$. $u_{\max }$ Max tidal velocity, $R$ - Hydraulic Rad. $H$ - depth, $\bar{u}$ - mean velocity from $t_{1}$ to $t_{2}, \bar{t}$ mean time of passage of pollutant, $\sigma^{2}$ - variance of distribution curve, $\mathbf{k}_{\mathbf{v}}^{-}$von Karman coeff., $u_{*}$ - shear velocity, $S$ - slope of Energy line, g - accel. grav. $\bar{u}_{z}, \bar{u}_{z, y}$ - vertical and cross-sectional averaged velocities

Tidal Waters




### 6.7.5 Relative Magnitudes of Erfects

Simultaneous measurements of all three parameters are restricted to hydraulic laboratories due to the complexity of the required monitoring process. However, the respective magnitudes are a useful guide in assessing the relative effects $[77][87][88]$

| $\mathrm{D}_{\mathrm{x}}$ | 54.9 | 51.6 | 70.8 | 73.5 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{D}_{\mathrm{y}}$ | 0.6 | - | 0.3 | 0.3 | 1 |

6.7.6 Methods of Data Collection for Measurement of the Dispersion Coefficient are all the process of fitting the distribution of a preferably consevative solute to a derived expression for $D_{x}$ from a development of equation 6.7.0.A or one of its alternative forms. Tracers are widely used for this experiment. Tracers fall in four main categories $[76][84]$ :
a) Natural in-situ Tracers. Usually chlorides or heat in the estuary context. Tritium also has applications.
b) Chemical Tracers and Dyes. Easily detectable compounds not significantly occurring naturally in the system. Ideally completely conserved and perfectly soluble with no absobtion onto solids, organic or othetwise. A vast selection available satisfy many of criteria specified $[85]$, although there is no one ideal tracer. Chemical tracers commonly used are chloride, sulphate, iodide. All are easily assayed and pose little problems in handling.

Among dyes, Rhodamine and Flourescein are commonly used.Rhodamine is absorbed by organic solids, but its DuPont derivative,Rhodamine WT less so. Photochemical decay and safety hazards are the main disadvantages with these dyes.
c) Radioactive Tracers.

> A suitable isotope with a convenient half life is used in small quantities to label large volumes of water ${ }^{[84]}$. The obvious main disadvantages are safety hazards, legislative procedures and general public reaction. Yet quantities are very small in the absolute sense, the amount of $\gamma$ activity being in the range 2-500 Curies.The great advantages are the high sensitivity and instantaneous data feedback. The final processing involves only re-computing counts back to the time of injection for absolute value.
d) Biological Tracers - this possibly includes otanges and parsnips ${ }^{[78]}$ but not pumice stone ${ }^{[79]}$. The bacterium Serratia has been used as it dies off at a rate comparable to coliform organisms from effluents ${ }^{\text {[80] }}$ [81][82]. For longer time spans the spore Bacillus Subtilis is useful. The main disadvantage is the delay in data feedback, at best 4 hours incubation time. Therefore a larger sample programme is required.

The basic process of the experiment is

1) Dosing
and
2) Tracking
3) Data Processing

Dosing can be either instantaneous or continuous depending on the terms of reference of the experiment.For data to determineD ${ }_{x}$ the method is instantaneous.
2) Tracking is the complex task of following the dosed component with minimizing the perturbations upon it. For radioactive tracers, scintillation counters coupled to chart recorders or digital printers are used. For dyes with flourescent components, a field flourimeter and chart recorder offer immediate data evaluation methods. Even for a small study data collection and boat positioning/tracking needs good organisation. ${ }^{84}$ ] The net result should be a selection of distributions of the tracer at different points in the system through time or other combinations of axis.


$$
\text { кер/ /سx } \cdot \text { bs }{ }^{x}{ }_{a}
$$

Fig. 6.7.1 Dispersion Coefficients for High Water


Fig. 6.7.H Salinity Distributions for Spring Tides in the Usk Estuary


## Fig. 6.7.G Salinity Distributions for Neap Tides


3) Data Processing is the process of relating all the acquired data to a common base line because of decay, absorbtion or dilution by external forces and general interpretation of correlating data such as boat position, the developing shape of the slug of tracer. This task is much simplified with the availability of digital computer and graph-plotter.

Several texts giving details of such an experiment are available $[72][76][84][86][91]$ for field and model tests. Work was proposed using radioactive tracer ( ${ }^{85} \mathrm{Br}$, half-life 35 hours) for establishing $D_{x}$ along the length of the Usk but not implemented.
However, it is possible to estimate $D_{x}$ from available salinity distributions.

### 6.7.7 Method of Estimating D from Salinity Profiles

For the case of a conservative component under steady state conditions, the distributions can be described by

$$
\begin{equation*}
D_{x} \cdot \frac{d^{2} c}{d x^{2}}-u \cdot \frac{d c}{d x}+\frac{M}{A}=0 \tag{6.7.7.A}
\end{equation*}
$$

where $M$ is the mass of component discharged per unit time into the reach of interest, zero in the case of the Usk, A is avaerage cross-sectional area and $u$ the average velocity. therefore

$$
\begin{equation*}
D_{x} \cdot \frac{d^{2} c}{d x^{2}}=u \cdot \frac{d c}{d x} \tag{6.7.7.B}
\end{equation*}
$$

For convenient boundary conditions, the solution for 6.7.7.B is

$$
\begin{equation*}
C=C_{0} \cdot e^{u x / D} x \tag{6.7.7.C}
\end{equation*}
$$

where $u$ is the net downstream velocity, $C_{0}$ the consentration at the sea boundary (say, 30 ppth ) and $C$ the salinity longitudinal profile. Then a plot of c vs. distance on semi-log paper should be a straight line with slope $u / D_{x} \cdot u$ can be estimated by using $Q / A=u$ for steady state inflow.

### 6.7.8 Calculation of $\mathrm{D}_{\mathrm{x}}$ for the Usk Estuary

Tables 6.7.C and 6.7.D summarise the data of fig. 6.7.G and 6.7.H . The 10 typical values obtained demonstrate the inherent variability of the coefficient. Fig. 6.7.I suggests limits to be simulated for high water, fig. 6.7.J upper limits for other states of tide.

In general, the dispersion coefficient increases towards the seaward boundary of an Estuary ${ }^{[90]}$. This is due to the mixing via salinity gradients and greater turbulence ${ }^{[89]}$. This trend is pronounced in the Usk as may be expected due to its large relative tidal prism and tide turbulence .

Table 6.7.C Estimates of $D$ for Neap Tides in different parts of the Usk

| Line Ref. | Appl <br> from |  | $\triangle \mathrm{c}$ ¢ 1 | FW vel. | Grad. | $\mathrm{D}_{\mathrm{x}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 (a) | 4 | 12 | 2.0 | . 25 | . 176 | 1.42 |
| 2 (a) (b) | 10 | 25 | 19.0 | 1.27 | . 040 | 31.75 |
| 3 (c) | 4 | 16 | 2.7 | 0.23 | . 089 | 2.58 |
| 4 (d) | 14 | 24 | 10.9 | 1.09 | . 277 | 4.01 |
| 5 (e) | 13 | 20 | 5.0 | 0.71 | . 288 | 2.46 |
| 6 (i) | 16 | 27 | 25.6 | 2.33 | . 063 | 36.98 |

Lines 1-3 for HW, 4-5 for half tide, 6 for LW
Table 6.7.D Estimates of $D$ for Spring Tides in different parts of the Usk


Lines 1-2 for HW, 3-4 for LW
Flow at 30 cumecs ( just above daily mean flow of 28 cumecs )

### 6.8 Sources and Sinks of Oxygen

6.8.0 Apart from the process of re-aeration, other sources and sinks of oxygen may contribute to the dissolved oxygen budget. Some have already been briefly mentioned in section 6.5 .

### 6.8.1 Freshwater Inflow

Most Estuaries have some frshwater inflow at the head or heads of the system. This water is usually generously oxygenated and an important contribution . Unfortunatetly, the volume of this source is at a minimum at times of maximum requirement, during the summer low flow period. The Eastern Valley Outfall is sufficiently far up the system to use this as a main $O_{2}$ source. The contribution of main tributaries is also important.

```
6.8.2 Photosynthetic Production by Phytoplankton
As low levels of active chlorophyll and high suspended solids tend to inhibit
contributions from this source }\mp@subsup{}{}{[22]}\mathrm{ are small in the Usk. Contributions of
1 to }1800\mathrm{ tons of O}\mp@subsup{O}{2}{}\mathrm{ per day [93][94] have been recorded for estuaries.
More data for the Usk will be necessary when some recovery becomes
apparent. No effects have been considered in the three models.
```


### 6.8.3 Rain

Rain contributes appreciable amounts when falling as it is at least $90 \%$ saturated. For the $T_{\text {hames, }}$, a mean of 2 tons/day was estimated for this mechanism $[19]$.

### 6.8.4 Tidal Inflow

Tidal water is usually saturated to a high degree, although having lower absolute levels due to the salinity content.In the Usk this is an important process and the models usually consider this by high boundary conditions which are prpogated through the system by the tidal prism.

### 6.8.5 Reduction of Nitrate

The use of nitrate as a terminal hydrogen acceptor in place of molecular nitrogen is a common property of many bacteria. Various paths can lead to different end products, dependant on the nature of the bacteria present and conditions favouring activity :


If Path (1) is followed, there is no net $\mathrm{O}_{2}$ gain as the oxidation of the generated $\mathrm{NH}_{3}$ will require all the liberated oxidation from the preceeding reduction process. However, there can be a useful facility as more oxygen is available at a point where a large amount may be required, which can be repayed at a point downstream where the requirements may not be so pressing. The Eastern Valleys Outfall is a good example of this trade-off. Paths (2) and (3) liberate net amounts of oxygen.

Generally, once this process is established in the system, it will continue as D.O. levels continue to drop and will prevent the system
from becoming completly de-oxygenated as long as possible ${ }^{[19][95]}$.


#### Abstract

6.8.6 Effluent Discharges

These usually contain appreciable amounts of oxygen unless they are very strong. Tentative estimates of up to $20 \%$ were used in the models from the little data available.As the sum of discharge volumes is less then $6 \%$ of the DWF, little effect was noticed overall.


### 6.8.7 Reduction of Sulphate

Sulphate reacts similarly to nitrate $(6.8 .5)$ but in a more easily
reversible manner :

$$
\mathrm{H}_{2}+\mathrm{SO}_{4}^{--} \stackrel{\mathrm{H}_{2} \mathrm{~S}}{\stackrel{-}{\sim}+\left[4 \mathrm{O}_{2}^{\circ} \mathrm{O}_{2}\right]}
$$

The $\mathrm{H}_{2} \mathrm{~S}$ is oxidised by sulphur oxidizng bacteria to produce elemental sulphur (which tends to sit in bottom muds), sulphates and thiosulphates. As the hydrogen sulphide also tends tends to escape to the air, there is a net gain in avai lable oxygen. The pungent odour of low levels of hydrogen sulphide makes this reaction undesirable. The generation power of this process has been measured at about one fifth of the path (1) in 6.8 .5 Few Estuaries have appreciable contributions from this source now, but its historical impact, particularly in the Thames Estuary, is great.

```
6.8.8 Artificial Means of Introduction
Structures may be built around outfalls or at critical points to
encourage oxygen absorbtion. Diffusers and baffles are used to
increase turbulence and so increase local exchange rates. In extreme
cases air bubble guns are mounted on the estuary bed to be operated in
event of low DO levels. Such sources are accomodated by either modifying
the re-aeration rate distribution to include local maxima, or estimating
the gross additional oxygen generated this way and adding this to the load
characteristics. The advantages of such a system are obvious. However, if
they are frequent in a system, their partial operation can cause severe
practical difficulties in the assessment of data quality.
```


### 6.8.9 Benthic Plants

```
Although marine phytoplankton production data is quite extensive \([99][100]\), very little is known about the source/sink effects of Benthic macrophytes occurring in the littoral zone. Yet two seaweed types, Chandrus and Fucus have been reported as producing \(10^{4} \mathrm{~mm}^{3} \mathrm{O}_{2} / \mathrm{gm}\) of dry weight per hour \({ }^{[101]}\). The apparent suitability of the isotope \({ }^{65} \mathrm{Zn}\) will make the more detailed studies required easier \([102][103]\). No data for the Usk is available. However, as the potential is high, and the intermediate bio-assay of value anyway(via diversity \([104]\)), some data should be gathered.
```

```
6.8.10 Land RUNOFF
This term refers to all seepage to and from river plains through non-
point sources. The effect can be net positive if there are bed springs from
the aquifer supplying dilution water, or net negative if land run off
is high in agricultural pollutants. This effect is difficult to estimate
and is sometimes used to fit a model to measured baselines either in
preference to or in conjuction with diffusion and re-aeration.
The model ST allows incorporation of a space variable steady state
run-off load to the system as a source of podlutant.
```

6.9.0 This is the principal measure of oxygen deamnd loading to water bodies. It has been adopted universally and in use now for almost 100 years, essentially unchanged ${ }^{[96]}$. A suitably diluted sample of water is incubated at $20^{\circ} \mathrm{C}$ for 5 days. The net difference in dissolved oxygen levels between commencement and termination of incubation is a measure of the Biochemical Oxygen Demand. The method used was the standard prescribed method $[22][96]$ but is subject to a number of interferences. This is a measure of the oxygen uptake up to 5 days and then merely the net figure for that time. In some cases the residence times may either be shorter than 5 days, or as is more common, much longer. It is therefore essential to represent the whole course of oxidation until either the pollutant is wholly oxidized or until it is lost to the system through the downstream open boundary. If this is possible, instantaneous rates of demand can be computed for the whole of the retention period of the component under consideration.

```
6.9.1 It is also recognized that there are two principle oxygen
deamnd areas, the oxidation of carbonaeceous constituents and the
oxidation of nitrogenous constituents. There are no a priori reasons
for assuming that both processes are parallel and similar in rates and
character.Estuarine systems favour carbonaeceous oxidation in the first
instance. Many models combine both into a singular lumped parameter
representation.
```

Generally,

$$
\mathrm{C}+\mathrm{O}_{2}-\cdots \quad \mathrm{CO}_{2}
$$

is the predominant reaction in the chain process. Consequently, when considered net, each gram of Carbon requires $32 / 12$ (ie 2.67) grams of oxygen for the reaction to be complete. The classical work of Phelps and Thierault ${ }^{[97][98]}$ is still widely used. In this, the process summarised by 6.9.2.A is assumed to be
a) A 1 st order (kinetic) reaction, ie the rate of uptake is proportional to the residual oxidzable material.
b) Implicit in a) that it proceeds independantly and parallel to other components.
c) It is independant of temperature. This will be discussed later in detail, but this is assumed initially as a base of $20^{\circ} \mathrm{C}$ is taken. Mathematically

$$
\begin{equation*}
\frac{\mathrm{dC}}{\mathrm{dt}}=-\mathrm{K}_{\mathrm{c}} \cdot \mathrm{C} \tag{6,9.2.B}
\end{equation*}
$$

where $C$ is the remaining oxygen demand and $K_{c}$ the first order rate constant. Integrating from time $t_{1}$ to a later time $t_{2}$ and $\Delta t=t_{2}-t_{1}$ gives, with boundary conditions,

$$
\log \left[C_{2}-C_{1}\right]=-K_{c}\left[t_{2}-t_{1}\right]=-K_{c} \cdot \Delta t \quad \quad(6 \cdot 9 \cdot 2 . C)
$$

and where $C_{i}$ is the instantaneous demand at time $t_{1}$. 6.9.2.C can be rewritten as

$$
\begin{equation*}
\frac{C_{2}}{C_{1}}=e^{-K} c \cdot \Delta t \tag{6.9.2.D}
\end{equation*}
$$

As $C_{2}-C_{1}$ is the net difference in demand, and the execution of a unit of deamnd creates by stoichiometry, a unit of deficit but with an opposing sign, giving
$\mathrm{U}=\mathrm{C}_{1}-\mathrm{C}_{2}$, so $\log -\mathrm{U}=-\mathrm{K}_{\mathrm{c}} \cdot \Delta \mathrm{t}=\log 1 / \mathrm{U}$
therefore $\quad U=C_{1}\left[1-e^{-K} c \cdot \Delta t\right]$
This last expression is identical for radioactive substances with a known half
life. Using 6.9.2.F with $\mathrm{C}_{2}=\mathrm{C}_{1}$ gives the expression

$$
\begin{equation*}
\delta_{t}=\frac{0.693}{K_{c}} \tag{6,9.2.G}
\end{equation*}
$$

(where $\delta_{t}$ is the half life)

The relationship of $\delta_{t}$ to the average retention time can be considered as the proportion of oxygen consuming processes excercised within the system. Consequently, longer retention times and high deacy rates are to be avoided.

The value for $K_{c}$ normally used is 0.23 per day , being derived from work carried out in the Thames $[19, p .213]$ and by Theriault $[98]$ in preferance to the value obtained by Gotaas $[108]$. This is for $20^{\circ} \mathrm{C}$ constant. Using 6.9.2.G it is seen that $\delta_{t}$, the half life of domestic sewage, is of the order of 3 days. Table 6.9.A and Fig. 6.9.A and B show the percentage of the oxygen deamnd excercised and remaining after elapsed times from discharge.

Table 6.9.A Average $\mathrm{V}_{\text {alues }}$ of Percentage of Oxygen Demand
Excercised and Remaining


Table 6.9.B and Fig. 6.9.C shows the effect of varying basic rate of decay
in terms of percentage deamnd excercised.

Other forms have been considered to represent the process on 6.9.2.A The two main alternatives are the retarded exponential decay and the multiple decay rate representation.

Elapsed Times since SDischarge at different values of $K$

| Elapsed Time | Rates of decay in per day |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.15 | 0.20 | 0.23 | 0.27 | 0.3 | 0.4 |
| 1 hour | 0.6 | 0.8 | 1.0 | 1.1 | 1.25 | 1.65 |
| 3 hours | 1.85 | 2.5 | 2.8 | 3.3 | 3.7 | 4.4 |
| 6 hours | 3.7 | 4.9 | 5.6 | 6.5 | 7.2 | 9.5 |
| 10 hours | 6.1 | 8.0 | 9.2 | 10.6 | 11.8 | 15.0 |
| 20 hours | 11.8 | 15.4 | 17.5 | 20.1 | 22.1 | 28.3 |
| 1 day (24) | 13.9 | 18.1 | 20.5 | 23.7 | 25.9 | 33.0 |
| 2 days (48) | 25.9 | 33.0 | 36.9 | 41.7 | 45.1 | 55.1 |
| 3 days (72) | 36.2 | 45.1 | 49.8 | 55.5 | 59.3 | 69.9 |
| 4 days (96) | 45.1 | 55.1 | 60.1 | 66.0 | 69.9 | 79.8 |
| 5 days (120) | 52.8 | -63.2- | 68.4 | 74.1 | 77.7 | 86.5 |
| 8 days (192) | 69.9 | 79.8 | 84.1 | 88.5 | 90.9 | 95.9 |
| 10 days (240) | 77.7 | 86.5 | 90.0 | 93.3 | 95.0 | 98.2 |

The retarded exponential decay rate assumes a time dependant $K_{c}$, of the form

$$
K_{c}(t)=K_{c}(0) /\left(1+C_{r} \cdot t\right)
$$

where $C_{r}$ is the coefficient of retardation and can be a function of the point of application but more usually a constant and $K_{c}(0)$ the initial rate of decay. Using this modifies 6.9.2.F to

$$
U=C_{1}\left[1-\left(1+C_{r} \cdot t\right)^{\left(-K_{c}(0) / C_{r}\right)}\right]
$$

$$
(6.9 .2 .1)
$$

There are difficulties in esablishing the initial rate as fast components may vary and thus distort the initial slope of the curve.A large volume of data is required to establish $C_{r}$ with any degree of satisfaction.




An alternative form of dealing with a non-first order is to assume that as the effluent is invariariably a mixture of conponents, the resulting decay characteristics are a summary of the individual independant components. Consider an effluent of $n$ constituents, so that the probability that a unit of pollutant is of component $i$ is $p_{i}$, and also

$$
\begin{equation*}
\sum_{i=1}^{n} \quad p_{i}=1 \tag{6.9.2.J}
\end{equation*}
$$

The rate constant associated with component $i$ is $K_{c i}$.
Proceeding from 6.9.2.B to 6.9.2.E for each of the $n$ components and then summing using the superposition principle gives a modified form of 6.9.2.F

$$
\begin{equation*}
\left.U=C_{1}\left[1-\sum_{i=1}^{n} p_{i} \cdot e^{(-K} c i \cdot \Delta t\right)\right] \tag{6.9.2.K}
\end{equation*}
$$

Where constituents are highly specific, this representation is preferred. Up to three terms have been used to fit uptake curves to settled sewage ${ }^{[110]}$. Laboratory investigations into the broad category of carbonaeceous oxidation have shown $[19]$ that the uptake characteristics can be duplicated very effectively by using $6.9 .2 . \mathrm{K}$ with two terms. $K_{c 2}$ was generally found to be $K_{c 1} / 5$, and similar results were established for nitrogenous decay. So

$$
\begin{equation*}
U=C_{1}\left[1-\left[(1-p) e^{-K} c \cdot \Delta t-p \cdot e^{-K} c \cdot \Delta t / 5\right]\right] \tag{6.9.2.L}
\end{equation*}
$$

where $p$ is the proportion of the 'slower' rate component in the carbonaeceous oxidation source'pool'. $\Delta t$ is the elapsed time since discharge. $V_{\text {alues of }} p$ were found by experiment $[19][117]$ and summarised in fig. 6.9.E This representation is used in the steady state model SSM.

Eq. 6.9.2.K can also be used for components with delay times prior to commencing oxidation. This may arise where another process proceeds in preference because of prefeered conditions or a more favourably direct reaction path.

### 6.9.3 The Effect of Temperature on $K_{c}$

Pleissner's early work $[111]$ was superceded by Streeter and Phelps ${ }^{[112]}$ with an empirical relationship of the form

$$
\begin{equation*}
K_{c t}=K_{c, 20} \cdot \beta^{(t-20)} \tag{6.9.3.A}
\end{equation*}
$$

where $\beta$ was 1.047 . Theriault confirmed 6.9 .3 .A independantly ${ }^{[98]}$.

Various investigations have revealed broadly similar results with only some exceptions (fig. 6.9.D).

An alternative to the empirical relationship is to use the Classical Arrhenius $\mathrm{E}_{\text {quation }}[15][19][116]$. The values so obtained for $\mathrm{K}_{\mathrm{c}}$ are markedly higher than those established experimentally ${ }^{[108]}$.

### 6.9.4 The Effect of temperature on $C_{4}$ - the Oxygen Demand

Although generally accepted that the $C_{1}$ of eq. 6.9.2.C is not temperature dependant $[108]$, some workers have reported differently and is a point of interest $[98][113][115]$. This could be due to the activation required for initiation of various active paths for the net reaction 6.9.2.A

FIG 6.9.D. TEMPERATURE EFFECT ON $K_{C}$


Fig 6.9.E
Suggested Value of 'p'


### 6.9.5 Nitrogenous Oxidation

Less precisely established because of the complexity of options, it is nevertheless an important process. A review established uniformity in outline of reactions $[118]$, but less uniformity in the infrastructure.

Generally, when ammonia is present in water containing reasonable levels of dissolved oxygen, it is oxidized via nitrite to nitrate. This nitrate can under low oxygen regimes be used in the oxidation of carbonaeceous components. Oxidation processes are usually predominant, but reduction processes are important under certain conditions $[117]$. Two very large scale studies have attempted to formulate the precise processes, in the Thames $[19]$ and Delaware ${ }^{[119]}$ Estuaries.In the Thames Study, nitrification was asumed to be a 1 st order reaction :

$$
\frac{d N}{d t}=-K_{n} \cdot N
$$

In a segment slice $\delta x$ of cross-section $A(x)$ and average concentration $N$. Let $S(\delta)$ be the set of all segments (sliced) of the estuary where nitrification is the dominant process. The net total rate of Utilization $\mathrm{U}_{\mathrm{n}}$ is then

$$
U_{n}=K_{n} \int_{\forall x \in S(\delta)} N \cdot A(x) \cdot \delta x
$$

Calculation of $K_{n}$ for the Thames over 40 quarters gave $K_{n}$ at 0.1 per day with a standard deviation of 0.03 . This is interference due to the phytoplankton growth/decay cycle as there are trends within seasonal quarters.

In the Delaware ${ }^{[119]}$, averages of 0.3 per day were required to fit data to observed data, so it is likely that interferences were again significant. Generally the kinetics are similar to that for the carbonaeceous component and the steady state model uses the same mechanism for both.
6.9.6 Temperature Dependance of $K_{n}$

Only scarce data is available, but the relationship

$$
\begin{equation*}
K_{n t}=K_{n, 20} \cdot \beta^{(t-20)} \tag{6.9.6.A}
\end{equation*}
$$

where $\beta$ is 1.017 is postulated in the Thames Study $[19, p .219]$ but is accepted as possibly too small $[19, p .503]$. Other work confirms the broad outline of 6.9.6.A although the noise level in data from various sources makes validation of the relationship difficult $[113][120][121]$.

### 6.9.7 Restricted Oxygen Processes

The Steady State Model postulates the following processes at low oxygen levels :
a) oxidation of organic carbon proceeds independantly of the level of $\mathrm{O}_{2}$
b) for DO $>0.4 \mathrm{mg} / 1$, the rate of nitrification is proportional to the ammonia present.
c) At levels $<0.4 \mathrm{mg} / 1$ nitrification ceases.
d) At levels $<0.4 \mathrm{mg} / 1$ nitrate is reduced to $\mathrm{N}_{2}$ to attempt to maintain the $0.4 \mathrm{mg} / 1$ threshold value.

Note : the $0.4 \mathrm{mg} / 1$ (or $5 \%$ saturation) is relatively flexible ${ }^{[19]}$, but in any event the figure will be less than $10 \%$ or $1 \mathrm{mg} / 1$.
6.10.0 Fresh Water inflow is a valuable source of oxygen and dilution.Its physical volume provides a mechanism for the gradual seaward displacement of pollutant inputs. Tidal Retention variations are largely determined by fresh water inflow levels. Protected flows at certain points are statutory minimum 'hands off' flows and it is important to simulate such extreme conditions. Should it prove possible to reduce, say, the Usk protected flow by only $10 \%$, resource for 25,000 equivalent heads of population is created at no capital cost other than distribution.

The Usk protected flow level influences the operation of the Usk Reservoir -Llandegfedd Rservoir-Lanwern River Regulation System and the Usk-Wye Transfer.

The software used to analyses flow data was FWFANA main routines with the date-time package (Ref. Appendix F).
> 6.10.1 Definition of the Dry Weather Flow (DWF)

> During the project, a reappraisal of the definition of the Dry Weather Flow was in progress. It was agreed that because of the lack of quantitative cohesive records available for the principal rivers and tributary brooks, the protected flow levels set for the tidal $U_{s k}$ were essentially arbitrary $[105]$ Furthermore, there is no one definition of the term DWF and the ' 7 day mean minimum flow' was proposed ${ }^{[106]}$ :

"The lowest total discharge occurring over 7 consecutive days in any year expressed as a mean daily flow level ".

Previously, all flow levels were related to a nominal flow of 100 mgd at

Chainbridge on Usk. The above definition redefined the DWF for protection to $90 \mathrm{mgd}($ table $6.10 \cdot A)$. Thoms and $W_{\text {ain }}[107]$ suggested a modified definition of the above employing the median for the same period as opposed to the mean. This has the advantage of not overweighting extreme values within the period. It also offered a statistically useful value which the system can be expected to recede below for any one year with an even probability. This definition when applied to the Usk, would reduce the protected flow further to 83 mgd . Uniformity of definition is an urgent requirement on a national scale.

Table 6.10.A Various Definitions of DWF Applied to Various Rivers

| Biver | DWF | \%Ex | DWF | \%Ex | DWF | \%Ex |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Afon L. | 0.66 | 98 | 0.59 | 100 | 0.6 | 99 |
|  | (12.5) |  | (11. |  | (11. |  |
| Ebbw | 1.69 | 95 | 1.15 | 100 | 1.64 |  |
|  | (32.1) |  | (21.9) |  | (31. |  |
| Usk | 4.72 | 93 | 2.35 | 99 | 4.39 | 95 |
|  | (89.7) |  | (44.? |  | (83. | ) |

[^2]
### 6.10.2 Usk Flow Data

Over three years data was analysed to consider the nature of flow distributions for freshwater input to the Estuary as gauged at Chainbridge on Usk station. Fig. 6.10.A and table 6.10.B summarise the data in percentile terms.

Table 6.10.B Percentage Daily Flow Levels for R. Usk at
Chainbridge on Usk

| - \% flow less than | m.g.d. | cumecs. |
| :---: | :---: | :---: |
| 1 | 64.5 | 3.39 |
| 2 | 65 | 3.42 |
| 3 | 66 | 3.47 |
| 4 | 69 | 3.63 |
| 5 | 71 | 3.75 |
| 6 | 73.5 | 3.87 |
| 7 | 76 | 4.00 |
| 8 | 79.5 | 4.18 |
| 9 | 82 | 4.31 |
| 10 | 85 | 4.47 |
| 2 C | 118 | 6.21 |
| 30 | 158 | 8.31 |
| 40 | 210 | 11.05 |
| 50 | 273 | 15.15 |
| 60 | 358 | 18.83 |
| 70 | 480 | 25.25 |
| 80 | 670 | 35.24 |
| 90 | 1025 | 53.92 |
| 100 | 4000 | 210.42 |
| Flow (mgd) | \%less than |  |
| 50 | 0 |  |
| 75 | 6.5 |  |
| 100 | 15 |  |
| 125 | 22 |  |
| 150 | 28.3 |  |
| 200 | 38 |  |
| 250 | 47 |  |



```
Flows were generally unstable for anything like a }\pm10%\mathrm{ day to day
variation. Fig. 6.10.B and C show that for
 \pm2% max steady period is 5-6 days
 \pm4% max steady period is 6-7 days
 \pm \mp@code { m \% ~ m a x ~ s t e a d y ~ p e r i o d ~ i s ~ 8 - 1 0 ~ d a y s . }
Therefore, fixing the typical time of the steady state model at
20 to 30 days mean, a flow tolerance of }\pm20% is required. The long ter
average flow appears to be about 470 mgd (25 cumecs).
6.10.3 Flows in Tributaries
There are closely correlated flows in tributaries to the Chainbridge
levels. A two year correlative analysis between the Afon L}\mp@subsup{L}{wyd}{}\mathrm{ and the Usk
gave significant correlation at the 99% level. The long term average for the
Afon Llwyd is around 57 mgd (3 cumecs).
```




Table 6.11.A shows species recorded in the $U_{\text {sk }}$ Estuary in the period 1965-1972 $[108]$.

Table 6.11.A Recorded Fisheries in the USK Estuary

| Species | Name |
| :--- | :--- |
| Petromyzonidae | Marine Lamprey |
| Clupidae | Allis and Twaite Shad <br> Salmonidae Trout <br> Brown Trout |
| Cotticiae | Bullhead (A) |
| Pleuronectidae | Flounder |

Note : (A) - especially abundant.
In order to maintain and improve fisheries available, oxygen levels must
be maintained above certain limits (see 6.12). Total fishery value passing
through or otherwise dependant on the $E_{\text {stuary }}$ is estimated at upwards of £2M $[108]$.

Toxic effects are important also but are too diverse a subject to be discussed here . Obviously specific industrial effluents need to be considered closely at time of consent garnting with a view to toxic effects.

### 6.12 Minimum Dissolved Oxygen Requirements for Migratory Fish

 The Pippard Report ${ }^{[122]}$ quotes the minimum requirement for oxygen content at $>30 \%$ saturation during the period April to May, nine years out of any 10 consequtive years. Although much data is available for fresh water fish requirements, for a criticall review see [123] , little actual work on estuaries is available. An experiment was planned for the Usk Estuary in conjunction with the Water Research Centre. The migratory fish were to be implanted with radio transmitters and then tracked.During periods of low oxygen, it was hoped to determine whether a fish would attempt to progress through the sag ( and so probably die) or whether it would learn to await an improvement before negotiating a sag. The answer obtained would have obvious implications on the severity of future consent standards. Due to financial economies the experiment was cancelled, although similar work is scheduled for the $R$. Tyne. The answer is important in this estuary. On the whole, requirements vary widely depending on species and lifecycle stage ${ }^{[124][125][126]}$. Other conditions are assumed to be nonlimiting factors in experiments.If thermal limits are near, much higher levels are required to maintain most species. The R. Don suffered a heavy mortality with DO $>4 \mathrm{mg} / 1$ because average temperatures were in excess of $22^{\circ}{ }_{C}{ }^{[127]}$. Fecundity and Embryonic ${ }^{D}$ evelopment is also affected by low levels of DO.

An analysis of past records of the Usk show that during the period 1951 to 1970 there has been a dramatic decline in the DO profile of the Estuary. In this period the mean level has fallen from $80 \%$ to $50 \%$, and the minimum level from $55 \%$ to $5 \%$. Yet there is no ancilliary trend in the salmon catches recorded $[129][130][131][132]$

However, minimums more recently proposed were not accepted by local
management $[132][133]$.
Alabaster $[132]$ proposes the following percentile standards :

50 per centile levels to be $>9 \mathrm{mg} / 1$
5 per centile levels to be $>5 \mathrm{mg} / 1$

These would require major improvements in the Usk Estuary system.

Chapter 6 BIBLIOGRAPHY
[1] "Newport Tide Tables and Shipping Directory", Newport Harbour Commissioners,BTDB(South Wales), 1972.
[2] "South Wales Ports Tide Tables",British Transport Docks Board,1975
[3] "Port of Bristol Tide Gauge Records", Harbourmasters Dept, (Photographic and chart records).
[4] "The Use of Helicopters on Surveys", Decklan-Dawson, Private Corresp.
Management Aviation Services, Bourn ,1977
[5] "Report on the Usk Aerial Survey",Hunting Surveys Ltd,1969 (Report and $25^{\prime \prime}$ to 1 mile maps, Photographic Plates and Survey Benchmarks).
[6] "Cluster Analysis",B. Everitt, Heinemann , 1974
[7] "Annual Soundings,Approaches to Newport,Pierhead to No. 4 Bouy" 1965 to 1970, BTDB, Cardiff
[8] "Usk Centre Line Survey, Rivermouth to Crindau Pill", Newport B.D.C. Engineers Dept. , 1968
[9] "Cambridge Elementary Statistical Tables",Lindley and Miller, Cambridge U.P., 1952
[10] "Survey of Crude Sewage Discharges in Newport", Department of the Environment Survey, 1971
[11] "Newport Main Drainage Scheme",Newport B.D.C.,Engineers Dept., 1968
[12] "Cluster Analysis at Cardiff University Computing Facility",User Guide,Computing Dept.,Cardiff University,1973
[13] "Report on the Public Enquiry on the Eastern Valley Sewage Scheme" Welsh Office, Cardiff , HMSO , October 1965
[14] "Test Program and Subroutine for Calculating the Durban-Watson Statistic",M.W. Rogers, MRSS Software Documentation,April 1975
[15] "Elements of Physical Chemistry",Glastone, Lewis , MacMillan, p348
[16] "Introduction to the Principles of Chemistry", L.H. Cragg,R.P. Graham, Harrap, p282
[17] "? (Re-aeration) ",T. Carlson,J. Chim. Phys. , Vol 9 ,p228, 1911
[18] " ? (Re-aeration) ",W.E. Adeney , H.G. Becker, Phil. Mag. , Vol38, p317, 1919
[19] "Effects of Polluting Discharges on the Thames Estuary", WPRL Tech. Memo, Paper No. 11 , HMSO, 1964
[20] "Water Quality Monitoring in the Usk Estuary",M.D. Henderson,J.W.P.C., Vol 71, p135, 1972
[21] "Usk Estuary Investigation",Usk RA Pollution Control Dept., 1968
[22] "An Investigation into the Effect of Planktonic Algae on the Stand--ard 5-day BOD Test",Regional Research Team,Anglian Water Authority
[23] "Re-aeration Studies in a Lakeland Beck",A.L.H. Gameson, G.A. Truesdale,A.L. Downing, Journ.I.W.Eng., Vol 9, No. 7,p571 ,1955
[24] "Oxidation,Re-aeration and Mixing in the Thames Estuary",A.L.H. Gameson,M.J. Barrett, Taft Eng. Centre Tech. Report, W58-2 ,Wash. D.C. , 1958
[25] "Factors affecting the Concentration of Dissolved Oxygen in the Thames Estuary",A.L.H. Gameson,W.S. Preddy,J.Inst.Sew.Purif.,Part 4, p332 , 1956
[26] "Introduction,Symposium on Mathematical Modelling of Estuarine Pollution" WPRL Stevenage, 1972
[27] "Estuarine Oxygen Resources - Photosynthesis and Re-aeration", T.E. Bailey,Sanit. Eng. Div. of ASCE , Vol 96 ,No. SA2 , Proc. Paper 7215 p279-p296 , April 1970
[28] "Re-aeration Measurements in an Estuary",D.W. Juliano,Sanit. Eng. Div. of ASCE , Vol 95 , No. SA6 , Proc.Paper 6987 , p1165-p1178, Dec 1969
[29] "Predicting Re-aeration Coefficients for Polluted Streams and Estuaries" G.R. Kramer, Environ. Eng. Div. of ASCE , Vol 100 , No. EE1,Proc Paper 10351, p77-p92, Feb 1974
[30] "Mechanism of Re-aeration in Natural Streams", D.J. O'Connor,W.E. Dobbins, Trans. American Soc. Civ. Eng. , Vol 123, p655, 1958
[31] "Prediction of Stream Re-aeration Rate",M.A. Churchill, H.L. Elmore, R.A. Buckingham, Sanit. Eng. Div. of ASCE, No. SA4, Proc. Paper 3199 , July 1962
[32] "Some Re-aeration Studies in Streams", M. Owens,R.W.Edwards,J. Gibbs Int. Journ. Air Water Poll. , Pergamon Press, Vol 8, 1964
[33] "The Oxygen Balance of Streams",M. Owens,R.W. Edwards, The Industrial Society, 5th Symp. of the Brit. Ecol. Soc. , Blackwell, Oxford, p149-p172 , 1965
[34] "Effect of Water Temperature on Stream Re-aeration", 31st Progress Report, Comm, on Sanitary Eng. Res. , Sanit. Eng. Div. of ASCE, Vol 87, No. SA6 , p59-p71, Nov. 11961
[35] "Oxygen Sag Curve with Thermal Overload",K. Keshaven,G.C. Sornberger C.I. Hirschberg, Environ, Eng. Div. of ASCE, Vol to be published.
[36] "Simulation of Dissolved Oxygen Profile",K. Keshaven,G.C. Sornberger Environ. Eng. Div. of ASCE, No. EE4,Proc. Paper 9943 , Vol. 99, p. 497-p. 488 , Aug. 1973
[37] "Tracer Measurements of Stream Re-aeration", E. Tsivoglou,J. Cohen S. Shearer, P. Godsil, J. W. Poll. Cont. Fed., Vol 40,No. 2 Part1 p.285-p. 305,Feb 1968
[38] "Report Establishing the Re-aeration Coefficient in the Estuary",M.W. Rogers, URA Internal Report, Nov 1965
[39] "Effects of the San Joaquin Masher Drain on Water Quality of the San Francisco Bay and Delta - Nutrients and Biological Response", Central Pacific Basin Comp. Proj., FWPCA, Dept.of Interior, San Francisco, California, May 1968
[40] "Some Factors Affecting the Re-aeration of Flowing Water",A.L.H. Gameson,L.H. Truesdale,R.A. Varley, Water and Sanit. Eng.,Jul 1956
[41] "A Method for Predicting Pollutant Transport in Tidal Waters", H.B. Fischer, WRC No. 132 , HEL Coll. of Eng. , Univ. of Calif., Berkely March 1970
[42] "Critical Oxygen Deficit for Bank Outfall", O.E. Reed, E.R. Holley, Environ. Eng. Div. of ASCE,No. EE3, Proc. Paper 10585,p.661-p. 678 June 1974
[43] "Transverse Mixing in Streams", E.R. Holley, Lab. Rep. S-132,Delft Hydraulics Laboratory , 1971
[44] "Field Tests on Transverse Mixing in Rivers", E.R. Holley,G. Abraham Journ. Hydr. Div. of ASCE, No. HY12, Vol. 99,Proc. Paper 10241, p.2313-p.2331, Dec 1973
[45] "Measurement of the Mixing Characteristics of the Missouri River between Sioux Falls City, Iowa and Plattsmouth,Nebraska ", N. Yotsukura,H.B. Fischer,W.W. Sayre, Water Supply Paper, 1899-G U.S. Geolog. Surv., Washington 1970
[46] "Transverse Diffusion of Solutes in Natural Streams",N. Yotsukura E.D. Cobb, Prof. Paper 582-C, U.S. Geolog. Surv. ,Washington, 1972
[47] "Tracer Tests of Eddy Diffusion in Field and Model",M.J. Crickmore Journ. Hydr. Div. of ASCE, No. HY10, Vol 98,Proc. Paper 9285,Oct 1972
[48] "An Investigation on the Fate of Organic and Inorganic Wastes Discharged into the Marine Environment and their effects on Biological Productivity", Publ. 29, State Water Quality Control Board, California , 1965
[49] "A Study of Turbulent Diffusion in the Sea with the aid of Flourescent Tracers",G.S. Karabashev, R.V. Ozmidov,Atmospheric and Oceanic Phys. Series, Vol. 1 , no. 11, p1178-p1189, 1965
[50] "Dispersion of Pollutants in Estuary Type Flows", E.R. Holley, D.R.F. Harleman, Hydrodynamic Laboratory, M.I.T.,Mass. , Tech Report no. 74 , USA, 1965
[51] "Dispersion in Natural Strema",M.K. Bansal, Hydr. Div. of ASCE No. HY 11 ,Proc. Paper 8540 , p. $1867-$ p. 1888
"Oxygen Sag in Tidal Rivers", G.J. MacDonald,R.N. Weissman, Environ. Eng. Div. of ASCE, No. EE3, Vol 103, p473-p488,1977
[53] "? ",D.W. Pritchard, Proc. of 1st Int. Conf. on Waste Disposal in the ${ }^{M}$ arine Environment, p512, 1960
[54] "Open Channel Flow", Henderson, pub. MacMillan Press
[55] "A Laboratory Investigation of Open Channel Dispersion Processes for Dissolved, Suspended and Floating Dispersants", W.W. Sayre, F.M. Chang,U.S. Geolog. Surv. Prof. Paper 433-E, 1968
[56] "Measurement of the Velocity - Concentration Covariance", R.S. McQuivey,T.N. Keefer, Journ Hydr. Div. of ASCE, No. HY9 ,Vol. 98 Proc. Paper 9184, p.1629-p.1646, 1972
[57] "The Dispersion of Marked Fluid in Turbulent Shear Flow", J.W. Elder, Journ. Fluid. Mech. , Vol. 5 , No. 4 , p544-p560, May 1959
[58] "Turbulent Diffusion and the Re-aeration Coefficient",P.A. Krenkel G. Orlob, Journ. Sanit. Eng. Div. of ASCE, Vol 88 , No. SA2, Proc. Paper 3079 , p53-p83 , March 1962
[59] "Dispersion of Dissolved and Suspended Materials in flowing Streams ",R.E. Glover, U.S. Geolog. Surv. Prof. Paper 433-B, Washington , 1964
[60] "On the Dispersion of a Solute in the Fluid through a Tube", R. Aris, Proc. Roy. Soc. London, Series 235A, 1956
[61] "The Effect of Wind Shear on Horizontal Spread from an Instantaneous Ground Source", P.G. Saffman, Quart. Journ. of Roy. Met. Soc. , Vol. 88 , London , 1962
[62] "Numerical Solution to a Dispersion Equation",N. Yotsukura,M.B. Fiering, Journ. Hydr. Div. of ASCE, No. HY5 , Vol 90,Proc. Paper 4046, p83-p104,Sept. 1964
[63] "Eddy Diffusion in Reservoirs and Pipelines", F.L. Parker, Journ. Hydr. Div. of ASCE,No. HY3, Vol 87,Proc. Paper 2825, p151-p171 May 1971
[64] "Marine Pollution and Sea Life", J.W. Talbot, Fishing News(Books) Ltd. , Great Yarmouth, Norfolk, England, 1972
[65] "The Dispersion of Matter in Turbulent Flow through a Pipe",G.I. Taylor, Proc. Roy. Soc. , London, Series $223-A, p 446-p 468,1954$
[66] "Longitudinal Mixing and Re-aeration in Natural Streams", E.L. Thackston, Ph.D. Thesis, Vanderbilt University, Nashville,Tenn USA, 1966
[67] "A Note on the One Dimensional Dispersion Model", H.B. Fischer Air and Water Poll. Int. Journ., Vol 10,p443-p452, Jul 1966
[68] "Longitudinal $D_{\text {ispersion in Laboratory and Natural Streams", }}$ St H. B. Fischer, Report KH-R-12, W M Keck Lab. of Hydr. and Water Research,Calif. Inst. of Tech.,Pasadena, Jun 1966
[69] "Transverse Mixing in a Sand Bed Channel",H.B. Fischer, U.S. Geol. Surv. Prof. Paper 575-D, Washington , 1967
[70] "The Mechanics of Dispersion in Natural Streams", H В Fischer, Journ. Hydr. Div. of ASCE, No. HY6 , Vol. 93, Proc. Paper 5592 p187-p216, Dec 1967
[71] "Circulation and Diffusion in Estuaries",K.F. Bowden, Ed. G.H. Lauff Pub. No. 83, American Assoc. for the Advancement of Science p15-p36, 1967
[72] "A Study of Tidal Dispersion in the Potomac River", L.J. Hetling R.L. O'Connell, CB-SRBP Tech Paper No. 4, Dept. of Interior, FWPCA, Chesapeake Bay Project, Annapolis
[73] "Simulation of Chloride Concentrations in the Potomac Estuary", L.J. Hetling, CB-SRBP Tech Paper No. 12, Dept. of Interior, FWPCA, Mid-Atl. Region, March 1968
[74] "A Study of Estuarine Pollution Problems , Progress Report no, 11" Dept. of Civ. Eng. (Sanit. Eng. Section), Univ. of Florida Gainsville, USA , May 1964
[75] "Mathematical Models for Water Quality for the HudsonChamplain and Metropolitan Coastal Water Pollution Control Project",Hydroscience Inc. (NEW JERSEY) for the Federal Water Pollution Control Administration , 1968
[76] "Measurement of Dispersion ",J.W. Talbot, WPRL Symp. on Math. Model. of Estuarine Pollution, Stevenage, UK, 1972
[77] "Investigation of Diffusion in Oper Channel Flows", T.N. Keefer R.S. McQuivey,Journ. Res. ,U.S. Geol. Surv., Vol. 2, No. 4, Jul/Aug 1974
[78] "Study of the 2-D Processes in the Sea", L.F. Richardson, H. Stommel, Woods Hole Oceanographic Inst. , Reprint No. 456,1948
[79] " ? ",M. Hanzawa, Records of Oceanographic Works in Japan, Vol 1 No.1, p18 , 1953
[80] "? ",J.E. Robson, Journ. Applied Bact.,Vol. 19,p243, 1956
[81] " ? ",J.E. Rippon,Rep. Challenor Soc., Vol. 15, p34, 1963
[82] " ? ",E.B. Pike,A.W.J. Bufton,D.J. Gould, Journ. Appl. Bact. Vol. 32 , p206 , 1969
[83] " ? ",A.L.H. Gameson,E.B. Pike,D. Munro,Chemistry and Industry p1582 , 1968
[84] "Report on Tracer Studies in the Kings Lynn Area of the Great Ouse ${ }^{\text {stuary",M.W. Rogers,Regional Res. Team,Anglian Wat. Auth. }}$ 1977
[85] " ? ",United Nations Conference on Peaceful Uses of Atomic Energy, Japanese Government Agencies, Vol. 18 , p404, 1958
[86] "Interpretation of Water Pollution Data from Tidal Estuary Models" D.R.F. Harleman,E.R. Holley,W.C. Huber, 3rd Int. Conf. on Water Poll. Res. , Munich , German y, Paper 3, Section 3, 1966
[87] "Finite Element Solution for Effluent Dispersion",R.A.Adey,C.A.Brebbia Numerical Methods in Fluid Dynamics, Pentech Press, 1974
[88] "Marine Disposal of Sewage and Sewage Sludge", J.D. and D.M. Watson, Report on the South Hampshire Plan Advisory Comm.,UK,1972
[89] "The Significance of Longitudinal Dispersion in the Analysis of Pollution in Estuaries",D.R.F. Harleman,Proc. 2nd Int. Water Pol. Res. Conf.,Tokyo,1964
[90] "Systems Analysis and Water Quality Management",R.V.Thomann, M ${ }^{c}$ Graw Hill p.166,1972
[91] "Application of Flourescent Tracing Techniques to Hydrologic Studies", R.R. Wright,M.R. Collins,Res. Journ. AWWA, p. 748-p.754,jun 1964
[92] "Atmospheric Reoxygenation in the Houston Ship Canal",R.W.Hann, Estuarine Systems Project Report No. 23 ,Texas A and M Univ., 1972
[93] "Sources of Oxygen in Estuaries",M. Owens,WPRL Symp. on Math. and Hydr. Modell. of Estuarine Poll.,Stevenage,Herts,UK,Apr . 1972
[94] " ? ",C.H.J. Hull, Proc. 1st Int. Conf. Water Pol. Res.,Vol. 3,1962
[95] "Some Observation on Denitrification in Rivers and Estuaries",A.B. Wheatlend,M.J. Barrett,A.M. Bruce, Journ. Proc. Inst. Sew. Purif., p.149,1959
[96] "Methods of Chemical Analysis as Applied to Sewage Effluents", Ministry of Housing and Local Government,2nd Ed., HMSO, 1956.
[97] "? ",E.B. Phelps,8th Int. Conf. App. Chem., vol 36,p252, 1912
[98] "? ",E.J. Theriault, Bull. U.S. Pub. Health Serv., No.174,p141, 1927
[99] "Studies of Primary Production in Coastal Waters of Southern Long Island",E.F. Mandelli et al., Marine Biology, vol 7,no. 2, p. 153 1970
[100] "The Effect of Nutrient Fertilization on the Benthic Alga Ulva Lactica", T. Waite,R. Mitchell, Botanica Marina, 1972
[101] "Photosynthesis and Respiration in some Seaweeds",J. Kanwisher, Some Contem. Stud. in Marine Sci., Hafner Pub. Co. Ltd., p.407, 1966
[102] "Uptake of ${ }^{65} \mathrm{Zn}$ and Primary Production in Marine Benthic Algae" R.W. Bachmann,E.P. Odum, Limnology and Oceanography, vol 5, no. 4 p.349,1960
[103] "Role of Benthic Plants in a Fertilized Estuary",T.D.Waite,R.D. Mitchell,Sanit. Eng. Div. of ASCE, No. SA5, Proc. Paper 9293, p.763-p.770, Oct 1972
[104] "Note Pour l'Identification Bilogique des Eaux Polluees Marines et Saumatres", J. Ehrhardt, Revue Corps Saute Armees, vol 9,no. 1 p.89, 1968
[105] "On the Definition of Dry Weather Flow", A. Wain,M.D. Thoms, URD ${ }^{M}$ emo ref G.11/aw/GH, 8th May 1974
[106] "The Definition of Dry Weather Flow in River Measurement",D.R. Hindley,J.I.W.E., vol 27 , no. 8, Nov 1973
[107] " [106] ",Communications, M.D. Thoms, A.W. Wain, J.I.W.E., vol 28 no. 2, 1974
[108] "? ",H.B. Gotaas, Sewage Works Journ., vol 20, no. 2,p.441, 1948
[109] Species of Fish Recorded in the Usk River Authority Area",R.M. Millichamp,Fisheries Officer URD, Communication, 1974
[110] " ? ",A.L.H. Gameson, A.B. Wheatlend,Journ. Proc. Inst. Sew. Purif. p.106,1958
[111] " ? ",M. Pleissner, Arbeiten des Kreisgesundheitamtes, vol. 36, p. 320,1910
[112] "? ",E. Phelps,H.W. Streeter, Pub. Health Bull. No.146,Wash. D.C., 1925
[113] " ? ",E.W. Moore, Journal of Sewage Works, vol 13 ,p.561, 1941
[114] "? ",D.H. Stoltenberg,M.J. Sobel, J. Wat. Poll. Cont. Fed., vol 37 p.1705, 1965
[115] "? ",A.E. Zanoni, Water Research, vol 1, p. 543,1967
[116] "Textbook of Physical Chemistry",S. Glasstone, D. van Nostrand,New York, 2nd Ed. , p. 1088, 1946
[117] "Utilization of Oxygen in Estuaries",M.J. Barrett, WPRL Symp. 1972
[118] "A Review of Literature on Inorganic Nitrogen Metabolism in MicroOrganisms",H.A.Painter, Water Research, vol 4,p.504, 1970
[119] "? ",D.J. O'Connor,J.P. St.John,D.M. DiToro, J. Sanit. Eng. Div. of ASCE, vol. 94, no. SA6, p.1225, 1968
[120] "? ",H.A. Thomas, Sewage Works Journal, vol 12,p.504, 1940
[121] " ? ",H.W. Streeter, Sewage Works Journal, vol 7, p.261, 1935
[122] "Pollution of the Tidal Thames", The Pippard Report, HMSO , 1961
[123] "Dissolved Oxygen Requirements of Freshwater Fisheries", P. Doudoroff D.L. Shumway, FAO Fisheries Tech. Paper No. 86, FAO Rome, 1970.
[124] "LC50 for Stage V larvae of Plaice", Personal Comm., J.D. Riley to J.S.Alabaster, WPRL, UK, 1972
[125] "On the Transport of Live Cod and Coalfish", AJ. Sundres, Journ. Cons. Perm. Int. Explor. Mer., vol 22, no.2, p.191,1957
[126] "Surviving Ability in the River Lamprey under Conditions of partial or complete elimination og gill respiration",J. Czopek, Bulletin Acad. Poln. Sci. Cl. 2 Ser. Sci. Biol., vol 18, no. 4,p.237,1970
[127] "R. Don Fish Mortality", Personal Comm. , E. McGregor Weir to J.S. Alabaster,WPRL , UK , 1971
[128] "Chronic Effects of Low Dissolved Oxygen Concentrations on the Fathead Minnow (Pimephalus Promelas)",W.A. Brungs, J. Fish. Res. Board of Canada, vol 28 , no. $8, p .119,1970$
[129] "Hydrographical Survey of the River Usk", A. Swain, O.F. Newman, Fishery Investigations, London, Series 1,vol. 6,no. 1, p.34,1957
[130] "Pollution and its Elimination in the Tidal Usk", A. Freeman, Water Poll. Cont. , vol 68, no. 6,p.679, 1969
[131] "A New Drainage Scheme for the County Borough of Newport, Situated on a tidal Estuary",D.P. Cartwright, G. Smith-Clapham, Proc. Inst. Civil. Eng. , vol 49, p.303, 1971 (see [11])
[132] "Oxygen in Estauries-Requirments for Fisheries",J.S. Alabaster, WPRL Symp. on Math. and Hydr. Mod. of Est. Poll. , Stevenage, UK Apr 1972
[133] " [132] ",M.D. Hunter, Comments and Discussions on Paper

Applying the Steady State Model

## Chapter 7

## Contents

```
7.0 Introduction
7.1 The Steady State Definition
7.2 Standard Data Input Set for the Steady State Model
7.3 Tidal Excursion Data
7.4 Boundary Conditions
7.5 Discharges to the System
7.6 Input Loadings to the Steady State Model
7.7 The Desktop Steady State Model
7.8 The Convergence Acceleration Parameters
7.9 Basic Output of the Steady State Model
7.10 Simulation of Low Flow Conditions
7.11 Varying Temperatures
7.12 An Alternative to the Newport Main Drainage Scheme ?
7.13 Varying Re-aeration Rates
7.14 Seaward Boundary Conditions
7.15 A Tidal Barrage
7.16 The Venture Carpet Factory
7.17 The Graig Goch Reservoir Scheme
7.18 The Ebbw as a Diluting Influence
7.19 Eastern Valleys Discharge
7.20 The Newport Main Drainage Scheme
7.21 Cost of Simulations
7.BIBLIOGRAPHY for Chapter 7.
```


### 7.0 Introduction

The Steady State Model was the first model made available to the Pollution Control Department fanagement. It satisfied their basic requirements and consequently those of the Welsh Office ${ }^{[2]}$. Use consisted of series of ad hoc enquiries relating received consent requests or effects of outline plans. Specific industrial effluents are protected by law from disclosure to protect the plant method and products.

Most parameters used were reasonable well established. The whole model was geared towards eventual unsupported use and so running variants was a simple task that the manager was capable of. After a sensitivity ahalysis, some variables were extracted and a simple regressive type desk top equation was developed to give a 'real time' model facility $[13]$.

Section 6,7 highlights the diversity of opinion on dispersion and diffusion.

Being a one dimensional model, only $D_{x}$ need be considered. The model treats both as a lumped effect, being a continuous process of exchange between adjacent segments of equal and opposing flows $[3][4]$. This allows a definition of a mixing echange coefficient as :

$$
\begin{equation*}
F(x)=2 \cdot D(x) \cdot A(x) / \Delta x \tag{7.0.A}
\end{equation*}
$$

$\Delta x$ is the distance between adjacent segment boundaries, $A(x)$ the crosssectional area function and $D(x)$ the dispersion coefficient function. Alternatively, it was postulated that 7.0.A can be written as

$$
F_{i}=Q_{i} \cdot\left(S_{i}-S_{0}\right) /\left(S_{i+1}-S_{i}\right)
$$

where $S_{i}$ is the mean salinity in segment $i$ and $Q_{i}$ the sum of fresh water inflows from the head of the system to the previous segment. This expression was validated against a physical model ${ }^{[5]}$ and found to be satisfactory for time dependant and steady state versions of this model.

Data was obtained from previous sources itemised in chapter 6 as well as other internal sources $[8][10]$.

### 7.1 The Steady State Definition

'Steady' state implies constancy. In an estuarine situation with a widely varying source of inputs and perturbations, a true steady state will never be reasonable established. However, generally it is acceptable to allow transients to pass through the system provided they do not skew the major state variables too much. Also, the term pseudo-steady state is permitted to mean that Steady State that would be established if the conditions currently constant were to remain so for a period exceeding the retention time of the system.

When inspecting data, some criteria of 'steadiness' has to be adopted for sake of consistency. If, for a set of data, a mean value $x$ is the long term mean (ie the steady state mean), the values scattered about it will normally be distributed according to the normal distribution. The probability of any data value falling within the limits $x_{1}$ and $x_{2}$ are

where $\sigma$ is the std. $\operatorname{dev}$. and $\mu$ the mean.
Alternatively, specifying a mean probability $P$ and an actual mean value $x_{m}$, limits can be calculated to satisfy the percentile requirements. The length of the steady state is then the length of time the data remains within the bands specified. Certain transients effects may be permitted by relaxation of the standard (eg the powerstation effect). A third method is to calculate moving averages over a variable number of points. The definition would then be the time span for which the data sequence would remain within predetermined percentage fluctuations of the moving mean within the period. This method was adopted for this study and used in routine FWFANA.

There are some situations where the concept requires careful interpretation of is without meaning.

```
In bilogical systems, often a small change will trigger a whole series
 of events that may lead to wholly different effects. This would not
be easily incorporated into a steady state. There is no way of accounting
for irreversible steps as they are inescapably time dependant. In a system,
a small change in flow may trigger a flow regulating system, or movement
may be artifical through air-bubbles or jetting, sluices may alter or open
or close. These would not normally be documented and it is also rare for
this type of external agency to be active sufficiently long to set up
its own steady state. The multiplicity of these systems now makes data
analysis for the application of one of the foregoing definitions more
difficult .
All the above difficulties are reflected in the task of data collection
for the eventual validation of the model. Dealing with steady states
implies a longer period of data collection than the maximum tidal excursion.
The implied use of manpower and other resource is beyond many smaller
units of the water industry and this is where the impending reorganisation
should provide a benefit, with the creation of data collection teams.
```

Low water 3.5 m ,high water 12.4 m .Half tide state at 5.4 m (in terms of time through the tidal cycle). Horizontal Tide Profile, poor tidal excursion data and smoothed temperature distribution.

| Segm <br> ent | From | to | Volumes | Surface <br> Areas | Salinity |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | .5 | .01 | .032 | 0 |
| 2 | .5 | 1 | .011 | .03 | 0 |
| 3 | 1 | 1.5 | .012 | .033 | 0 |
| 4 | 1.5 | 2 | .009 | .032 | 0 |
| 5 | 2 | 2.5 | .01 | .028 | 0 |
| 6 | 2.5 | 3 | .007 | .023 | 0 |
| 7 | 3 | 3.5 | .009 | .025 | 0 |
| 8 | 3.5 | 4 | .009 | .03 | 0 |
| 9 | 4 | 4.5 | .009 | .034 | 0 |
| 10 | 4.5 | 5 | .012 | .037 | 0 |
| 11 | 5 | 5.5 | .012 | .043 | .025 |
| 12 | 5.5 | 6 | .015 | .04 | .075 |
| 13 | 6 | 6.5 | .015 | .045 | .125 |
| 14 | 6.5 | 7 | .017 | .04 | .175 |
| 15 | 7 | 7.5 | .02 | .04 | .3 |
| 16 | 7.5 | 8 | .013 | .045 | .7 |
| 17 | 8 | 8.5 | .015 | .046 | 1.45 |
| 18 | 8.5 | 9 | .013 | .044 | 2.95 |
| 19 | 9 | 9.5 | .025 | .059 | 4.85 |
| 20 | 9.5 | 10 | .032 | .062 | 6.35 |
| 21 | 10 | 10.5 | .041 | .067 | 7.6 |
| 22 | 10.5 | 11 | .079 | .07 | 8.8 |
| 23 | 11 | 11.5 | .087 | .09 | 11.5 |
| 24 | 11.5 | 12 | .133 | .09 | 13.55 |
| 25 | 12 | 12.5 | .16 | .09 | 15.6 |
| 26 | 12.5 | 13 | .3 | .13 | 17.3 |
| 27 | 13 | 13.5 | .38 | .2 | 18.65 |
| 28 | 13.5 | 14 | .42 | .22 | 20.15 |
| 29 | 14 | 14.5 | .56 | .22 | 21.55 |
| 30 | 14.5 | 15 | .86 | .18 | 22.45 |
| 31 | 15 | 15.5 | 1.4 | .2 | 23.1 |
| 32 | 15.5 | 16 | 1.6 | .2 | 23.55 |
| 33 | 16 | 16.5 | 1.95 | .22 | 23.85 |
| 34 | 16.5 | 17 | 2.3 | .24 | 24.15 |

7.3 Tidal Excursion Data

| Ordinate | 0 | 5. | 11.5 | 12.0 | 13.0 | 14.0 | 15.0 | 16.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Downstream | 11.5 | 11.5 | 4.75 | 4.5 | 4.3 | 3.7 | 3.45 | 3.0 |
| Upstream | 0 | 1.65 | 1.9 | 2.1 | 2.0 | 1.9 | 1.1 | 1.5 |

Note : All distances in miles. Zero is Newbridge on Usk.

| Parameter | Upstream <br> Value | Downstream <br> Value |
| :--- | :--- | :--- |
| Slow Carbon. | .45 | .05 |
| Fast Cardon. | .05 | .01 |
| Slow Nitrog. | .45 | .05 |
| Fast Nitrog. | .05 | .01 |
| Ammonia | .50 | .04 |
| Nitrate | .10 | .05 |
| D.0. | 8.5 | 7.5 |
| FWF | 83 mgd | - |

Values obtained from existIng URD sample programme. The flow is obtained by the use of the definition of Thoms \& Wain.

7.5 Discharges to the System

| Name | Dist. | Flow | Tidelocked ? |
| :--- | :--- | :--- | :--- |
| Sor Brook | 6.85 | 1.0 | Tributary |
| Eastern Valley | 7.2 | 5.0 | Major discharge, not tidelocked. |
| Beaufort | 8.81 | 0.1 | Yes |
| Caerleon | 9.1 | .2 | No |
| St.Julian | 9.61 | .22 | Yes |
| Orchard | 10.81 | .10 | Yes |
| Brynglas \& | 11.08 | .75 | Yes |
| Bettws North | 11.15 | .15 | Yes |
| Cenotaph Nor |  |  |  |
| Afon Llwyd | 7.16 | 11.4 | Tributary, dilution source for |
| Riverside | 11.22 | .02 | Valley |
| Cenotaph South | 11.41 | .33 | Yes, very small |
| Barrack | 11.45 | .11 | Yes |
| Civic | 11.53 | .27 | Yes |
| Town | 11.72 | .23 | Yes |
| Maindee | 12.18 | .55 | Yes |
| Pill North 2 | 12.33 | .405 | Yes |
| County | 12.70 | 1.115 | Yes |
| Ringland | 12.82 | .6 | Yes |
| Pill North 1 | 12.92 | .405 | Yes |
| Tredegar Dock | 13.43 | .58 | Yes |
| Pill South | 13.54 | .45 | Yes |
| Coronation Park | 13.9 | .5 | Yes |
| R. Ebbw | 16.05 | 31. | Major Tributary |
|  |  |  |  |

7.6 Input Loadings to the Steady State Model

| $\begin{aligned} & \text { Fast } \begin{array}{l} \text { Slow } \\ \text { C a r b o n } \end{array} \end{aligned}$ |  | $\begin{array}{llll} \text { Fast } & & \text { Slow } \\ \text { Nittrog. } \end{array}$ |  | Ammonia | Nitrate |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Coronation Park 32 22 |  | 28 | 14 | 44 | 2.5 |
| $\begin{array}{\|c} \text { Pill South } \\ 572 \end{array}$ | $\bigcirc$ | 70 | $\bigcirc$ | 243 | $\bigcirc$ |
| $\begin{gathered} \hline \text { Tredegar Docl } \\ 744 \\ \hline \end{gathered}$ | - | 91 | - | 337 | $\bigcirc$ |
| $\begin{gathered} \text { Pill North } 1 \\ 522 \end{gathered}$ | $\bigcirc$ | 63 | $\bigcirc$ | 48 | $\bigcirc$ |
| $\begin{gathered} \text { Ringland } \\ 704 \end{gathered}$ | 176 | 103 | $\bigcirc$ | 351 | $\bigcirc$ |
| Pill North 2 | $\bigcirc$ | 65 | 48 | 48 | $\bigcirc$ |
| $\begin{array}{r} \text { Maindee } \\ 664 \\ \hline \end{array}$ | $\bigcirc$ | 86 | $\bigcirc$ | 296 | 2 |
| Town 300 | 0 | 36 | - | 130 | - |
| Civic 444 | - | 42 | - | 152 | $\bigcirc$ |
| Barrack 173 | $\bigcirc$ | 20 | $\bigcirc$ | 68 | - |
| Cenotaph South 368 |  | 46 | $\bigcirc$ | 174 | 2 |
| $\begin{array}{r} \text { Riverside } \\ 26 \end{array}$ | $\bigcirc$ | 4 | $\bigcirc$ | 11 | 0 |
| Cenotaph North 196 |  | 24 | $\bigcirc$ | 82 | 1 |
| $\begin{array}{\|c\|} \text { Brynglas \& Bettws } \\ 1508 \end{array}$ |  | 161 | $\bigcirc$ | 580 | 5 |
| Orchard 130 | 0 | 16 | $\bigcirc$ | 49 | 0 |
| $\begin{array}{r} \text { St Julian } \\ 288 \end{array}$ | $\bigcirc$ | 35 | $\bigcirc$ | 123 | - |
| $\begin{array}{r} \text { Caerleon } \\ 82 \\ \hline \end{array}$ | 82 | 12 | 12 | 44 | 1 |
| $\begin{aligned} & \text { Beaufort } \\ & 130 \\ & \hline \end{aligned}$ | $\bigcirc$ | 16 | $\bigcirc$ | 43 | 1 |
| Eastern Valleys |  | 242 | 242 | 1760 | 50 |
| Ebbw 1500 | 1500 | 610 | 610 | 1000 | 28 |
| $\begin{gathered} \text { Afon Llwyd } \\ 650 \end{gathered}$ | 650 | 240 | 240 | 400 | 24 |
| $\begin{gathered} \text { Sor Brook } \\ 10 \end{gathered}$ | 10 | 1 | 1 | 6 | 1 |
| County 1302 | - | 165 | $0 \times$ | 575 | 8 |





CMM $\because$






[^3]
## 7.7 <br> The Desk Top Steady State Model [13]

Although the Steady $\mathrm{S}_{\text {tate Molel }}$ itself is not data intensive, it was thought useful if the whole model could be further seduced. The model sensitivity was analysed for condensation to a desk top form. No attempt has been made to relate any significant correlations in terms of physical interpretations, as these relationships are necessarily model induced.

The standard data set for simulating the estuary using the Steady State Model consists of 3 tributaries and some 20 pollutant discharges. For the purpose of this investigation, it was assumed that the effects of pollutant loads could be computed by superposition. Therefore for the generation of predictions, the estuary system was simplified to the initial tributaries (as these provide useful dilution and so could affect extreme levels) and one mobile discharge point.

From sensitivity tests on the whole model, the following were found to be primary influencing factors for the value Dissolved Oxygen (minimum) and its occurrent position:
a. The type of pollutant discharged and its total load
b. The point of discharge of the pollutant of $a$.
c. Ambient conditions that determine re-aeration rates.
d. Fresh Water Flows to the head of the system.

All other physical and chemical parameters were set to constants to represent average 'poor' conditions. Flow was set constant to DWF level This mean the following 8 parameters were independant variables :
a. Fast Carbon Load
b. Slow Carbon Load
c. Fast Nitrogen Load
d. Slow Nitrogen Load
e. Ammonia Load
f. Nitrate Load
g. Re-aeration rates
h. Point of Discharge from head of system.

For all runs, the volumes discharged were set to 1 mgd , representing a consistent $1 \%$ dilution on DWF flow levels. About 1050 simulations were run with some systematic variation of all 8 parameters and some random data values. The output from these runs was analysed using a regression package with transgeneration facility(see App. F.7).

```
 Standard Statistical Tables [9] gave the following percentage points
for levels of rejection of the independance hypothesis for about }100
degrees of freedom :
Percentage Point : 5% 1% . 1%
Critical Value of 1.96 2.58 3.29
 coefficient(t)
This meant that a correlation coefficient in excess of 0.09891 (say 0.1)
indicates a slightly greater than 99% probability of being significant.
The correlation matrix is given in Table 6.
The main point of interest is that where the D.O. min occurs if a
significant load is entered is always in a reach from mile 11 to mile 13,
within passing through the main town of Newport.No regression was
attempted for this dependant variable in the light of this fact.
The three dependant variables mainly considered were D.O.min and its
log transform, and the Sag Severity Index (SSI, Appendix A).
```


Note : - appears where computed correlation coefficients are not si nificant.
variables $n$ and $o$ were generated internally by the program.

```
Variable d being dependant, variables f to o are independant.
From statistical tables [9], a Student 't' value of 3.36 is very
significant, at the 1% level. The regression gave :
Multiple Correlation Coefficient 0.9145
Students 't' value 7.9
Regression Constant
13.43
```

The individual components gave :

| Variable Coefficient | Error | 't' value | Significant |  |
| :--- | :---: | :---: | :---: | :--- |
|  |  |  |  |  |
| FC Load | .3 | .009 | 34.8 | Yes,highly |
| SC Load | .1 | .023 | 4.3 | Just |
| FN LOad | .45 | .019 | 23.0 | Yes,highly |
| SN Load | .09 | .033 | 2.7 | No |
| NH3 Load | .03 | .022 | 1.4 | No |
| Re-aeratn | -2.56 | .14 | -18.2 | Yes,highly |
| Position | -0.72 | .029 | -24.4 | Yes,highly |

The error in the above table is the standard error of the correlation regression equation. One point of interest is the ratio of $\mathrm{FC} / \mathrm{SC}$ and FN/SN coefficients. Because of the model formulation these should be about 5 ( as for the nitrogenous BOD load component), but for the carbonaceous load this is nearer 3 . This indicates a lack of assumed linearity in the superposition principle of load addition. It must be emphasised that the variable D.O.min $(\%)$ is now the deficit in D.O. from $100 \%$ constant value in the system. This was found to be of more use. The above table allowed the following equation to summarise the predictions of the Steady State Model :
$($ deficit $)=13.4+(3 * \mathrm{FC}+\mathrm{SC}) / 10+\left(\mathrm{FN}+6^{* N H} 3\right) / 10-2 \cdot 6^{*}$ REAER

- $0.7^{*}$ DISCH (6.
where REAER = Re-aeration rate and DISCH- point of discharge The equation dealt well with average variations, but, as could be expected, gave poor estimates if an isolated load for input was greatly in excess of the others (1.5 orders of magnitude or greater).


### 7.7.2 The Sag Severity Index as the Dependant Variable

Only a slightly lower multiple regression coefficient resulted from this run, but because of more degrees of freedom, the net regression was more significant. Abstracting from the output as for the previous section gave the following predictive equation :
$\mathrm{SSI}=0.137+0.0013 *(\mathrm{FC}+9 * \mathrm{NH} 3+2 * \mathrm{NO} 3-14 *$ REAER $-3 * \mathrm{DISCH})$ +0.002 * $\mathrm{FN}-0.003^{*}$ (NO3 * DISCH)

A run was attempted to predict the natural log transform of the DOmin\% and SSI but neither gave improved predictions. The effects of load increases can be seen in uniform signs on the coefficients, and the negative signs on re-aeration and position showing these as opposing moderating influences.

Because the tributaries did not contribute pure dilution water, but of a quality only slightly lower than river head waters, there remains a natural background DO deficiency. This is reflected by the equation coefficient in each case. there is a $13.4 \%$ natural sag, of overall SSI of 0.137 . If the cumulative effects of several discharges is to be evaluated, then the constants are ignored until the individual effects are summed. The natural deficiency is then added to give the estimated true deficiency for a multpile input situation. All loads are input in lbs per day, re-aeration in $\mathrm{ft} / \mathrm{day}$ and position in miles (or any consistent set of units )

### 7.8 The Convergence Acceleration Parameters

These are required for the interacting phase of the solution. Three basic values are required, for ammonia, nitrate and dissolved oxygen. Initially, setting all values to unity will ensure convergence although up to 1000-1500 iterations may be required. Resetting of these parameters is best an acquired skill, values usually found to be acceptable range from 1.05 to 1.45 depending on the severity of the variant. There are advantages to selecting an approximate value which will handle most variants without setting. Too fine a tune on the parameter will cause divergence of the method for all but the data set for which the parameter has been calculated.

A fourth parameter is defined in the program, OMW. This is only used in anaerobic situations and is usually left at unity as the section of the program should only be involved occasionally.

An estimate of the parameter value can be calculated from the expression

$$
\begin{equation*}
\alpha_{\mathrm{opt}} \approx \frac{2}{\left[\sqrt{1-\beta^{2 r}+1}\right]} \tag{7.8.A}
\end{equation*}
$$

[6][7]
where $\alpha_{\text {opt }}$ is the optimal choice of the parameter, and $\beta$ is the largest normalized eigenvalue of the iteration matrix (ie the spectral radius) This is calculated Using routine EIGEN (Appendix F). The effort to compute this is often far in excess of the cost of several testing runs to search for a reasonable set of values. Each component requires a different acceleration parameter to be developed.

### 7.9 Basic Output of the Steady State Model.

The data set calculated represents the situation in the estuary in 1973 with no discharge from the British Glue Co. Ltd. in Newport, which contributed a high percentage of the load prior to the factory closure. The tide is a 12.4 m Newport tide and the Thoms-Wain Method is selected for defining the DWF $[11]$. The point of time selected in the tidal cycle is when the flooding tide is at 5.4 m , roughly $40 \%$ into the tidal cycle. The essential data is outlined in previous sections. Fig. 7.9.A summarises routine parameters. The convergence coefficients used in this case are

$$
\begin{aligned}
& \alpha_{\mathrm{NH}_{3}}=1.3 \\
& \alpha_{\mathrm{NO}_{3}}=1.2 \\
& \alpha_{\mathrm{DO}}=1.5
\end{aligned}
$$

The routine has two possible internal loops, the inner loop automatically re-running part simulations for varying re-aeration, the outer repeating the whole simulation for incrementing freshwater inflow from the head of the system.

The data presented will simulate:

83,133 and 183 mgd at re-aeration 1.5
and 2.5 per day.

Fig. 7.9.B and C itemise some of the output of basic input data. All the initial printing can be supressed if desired. It is seen that the tidal excursion data is sparse at a point of great interest. Fig. 7.9.D shows the significant effect of excursion on segment surface areas. This was a recent incorporation into the model ${ }^{[12]}$. The overall effect is to improve

```
the D.O. profile as the segments around the Eastern Valleys outfall benefit
```

most.
Fig. 7.9.E (in 5 parts) show the breakdown of each outfall into loads per
segment. Each segment is given a weight, depending on how much of the outfall
the segment 'sees'. Non zero values are printed. Tributaries are considered
as additional outfalls (e.g. OUT fall 20).
Fig. 7.9.F summarises the input loads of each outfall to the system. Normally
this table is sufficient for output. The loads are then split according to
the computed weights to yield a distribution as in Fig. 7.9.G. Loads are
in lbs per day.
Fig. 7.9.H outputs the sum freshwater flow at each segment, and the computed
mixing exchange coefficient as defined by section 7.0.
The initial dissolved oxygen distribution is printed. (D.O.INIT.) The nearness
of this to the final solution greatly influences the iterations for converg-
ence. Using a zero estimate other than for boundaries, 969 iterations were
required. Using a linear slope between the boundaries reduced this to 103.
Accuracy required is 0.001 .

Fig.7.9.I lists the rate arrays and mixing arrays. These are influenced by temperature and freshwater inflow respectively.

Fig. 7.9.J and K plot the history of convergence. The accuracy defined as 0.001 is the sum total of the residuals over all segments and over all the interacting components. The difference between the two rates of convergence is due to the finer tuning of the a cceleration parameters. Fig. 7.9.K is

Fig. 7.9.L is the table prediction of the model proper. The run is for 83 mgd and re-aeration of 1.5 per day. The first six columns are $F C, S C, F N, S N, N H 3$, NO3 and as they are not measured on estuarine samples, they are of no interest at the moment. However they combine to generate the dissolved oxygen predictions (col. 7 and 8 in $\mathrm{mg} / 1$ and $\% \mathrm{~s}$ at.). The Column 9 headed ' U ' is non zero only when restricted oxidation of ammonia occurs. The $10 t \mathrm{~h}$ column headed 'W' is non zero when denitrification becomes a predominating process. Positive values in these columns occur when the D.O. level falls through $0.4 \mathrm{mg} / 1$. Fig. 7.9.M compares a predicted curve against observed data. The agreement in the upper reaches is to be expected as there are no discharges in the initial 7.2 miles. For the remaining section, observed and predicted remain within $8 \%$, the observed lower. It should be noted that the simulation was prior to the data collection, and so temperature will not correspond $\left(20^{\circ} \mathrm{C}\right.$ was modelled, when $21{ }^{\circ} \mathrm{C}$ to $23.2^{\circ} \mathrm{C}$ were recorded). Also flow levels were $16 \%$ lower than those simulated. There was no adjustment of any parameter to encourage improved correlation and the prediction is a mean of all such states over a lunar tidal cycle. There is no data available for calibration of the other distributions.

Little validation data is available in the form of tide-cycle duration. Monitor data is difficult to use because it has to be repositioned and in the absence of good velocity data is completely impractical.

The model then uses the prediction to initiate the next run (internally the same data but an incremented re-aeration). This means subsequent simulations

```
become extremely cost-effective, with as few as 4 iterations required to
generate the new predictions (depending on the severity of the change).
Figure 7.9.N summarises the predictions of the minimum D.O. and the total
sag severity index for the six simulations. It is seen that flow is an
excellent preventative for low mean D.O. levels, implying that high prot-
ected flow levels may be a cheap effective solution to the problem of
pollution control in relative (concentration) terms.
```

TITLE1
TITLEZ
TITLE3
TITLE4


| F19. 7.9.A |
| :--- |
| TITLE \& RUN |
| PARATIETERS |

u.
$1 d$

u
u.

4
4
u
u
u
u
4
4
4


4. 1

41
4. H

SMUOTHING $=F F F F F F F F F F F F$
PRINTING $\boldsymbol{F}$ T T T T T T T T T T T T
$8.510 \quad 7.460 \quad$ D.O.
0.080 FAST CAREON
0.200 SLON CARBON
0.080 FAST N
0.200 SLON N
$0.050 \quad \mathrm{NH}_{3}$
$0.100 \quad \mathrm{NO}_{3}$

## (ppm

$0000^{\circ} 2$
$000600^{\circ}$
$0098^{\circ}$


ITERATIVE ACCURACY
JPSTREAM * DOWNSTREAN
$0: 400$
0.600
0.400
0.500
1.000
0.100

FLoW Litits．
Boundaries
0005 แ и ш w ш $\begin{array}{lll}10 & 0 & 0 \\ 0 & C & 0 \\ 0 & 0 & 0\end{array}$ 1000
0000
0000
000 in in Ningin
 шшшшшш 000000
000000
000000 000000
000000
0004 N以心．
 n－Nmom ールNへM

OOOFEF

 1 MYSICAL
 $l=7.00000 E=03$
$=1.50000 E=02$
$=1.30000 E=02$
$=1.33000 E=01$
$y=8.6000 C E=01$ $n$
0
0
$w$
0
0
0
0
$m$
$\sim$
$n$
$n$
$n$
$n$
$n$
$n$
0
w
0
0
0
0
0
$n$
$n$


 0
0
0
0
0
0
0
0
0

| いこべい |
| :---: |
|  |  |
|  |  |


Nmanm $\rightarrow m o$ min
レーいいい いvいいい
$5 \%-N$







รョพกาด

 いいいいいい
 MN
00
10
0
0
0
0
0
0
0 $\begin{array}{ll}0 & 0 \\ 1 & 1 \\ w & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & -1\end{array}$
 $4.20000 E=01$
$2.30000 E 00$
 4
4
0
0
2
2
年合


 $\mathrm{N} M$
N
c
N
$\dot{\sim}$




 veoncon nmanto


FEENMM
दF



$$
\stackrel{O}{r}
$$

TO

## 

$\rightarrow \mathrm{O}$－NNM
い～レ～レい

Mi
$\stackrel{c}{c}$

NH2以下mm

ARRAY SURF．ARS－ELEMENT

$r$
Nmomn m


## THE

## SURFACE AREA THROUGH TIDAR EXCURSION


H



$$
\begin{array}{ll}
W & \gamma \\
\sigma & \uparrow \\
\dot{N} & \alpha \\
\sigma & \vdots \\
\frac{\sigma}{\Xi} &
\end{array}
$$



$$
\begin{aligned}
& \begin{array}{ll}
\text { us } & \infty \\
\sigma & 1 \\
\sigma & m
\end{array} \\
& \text { 药 }
\end{aligned}
$$



| $\begin{aligned} & \uparrow \\ & 9 \end{aligned}$ |
| :---: |
|  |  |
|  |  |

$\stackrel{v}{1} \stackrel{y}{2}$


| TNOQOQ0.00000 00000000 <br>  |
| :---: |
|  |  |



## 






















$\dot{\vdots} \hat{i}$
$\mathfrak{i} \underset{\sim}{\bullet}$



Wdd NI SNOI $\forall \forall \perp N \exists J N O J$ ヨJNU $\operatorname{SG}$ GS
URD STEADY STATE MODEL OUTPUT MUR


Fig 7.9.N Summary of Remaining Predictions
(min) D.0. \% sat vs Flow


```
As the actual levels of flow below 3-4 cumecs are unlikely to be maintained
for the required period, these are essentially pseudo-steady state simulations.
```

Flows were simulated from $40 \mathrm{mgd}(50 \%$ of Thoms-Wain's DWF definition) to
160 mgd (twice DWF) in steps of 15 mgd (i.e. 2 cumecs to 8.4 cumecs in steps
of 0.8 cumecs).
Figures 7.10. A to $D$ highlight the overall radical dependence of quality on
a sustained flow level. Below 85 mgd the mean D.O. curve is markedly depressed
for re-aeration of 1.5 per day. The 3.5 per day upper curve on each figure
shows the beneficial effect of a higher rate if it can be maintained.
Fig. 7.10. E shows that above 120 mgd maintained flow little benefit is
gained in terms of D.O. sags. There is an $8 \%$ drop in D.O. (absolute) likely
for the proposed redefined $D_{W F}[11]$.
It should be emphasised that the flow refers to headwater input only. In
practice, because of correlative flows (Chapter 6) flows from tributaries
would be modified accordingly.
It appears that flows below 60 mgd for any period of time would certainly
cause severe fisheries problems in the estuary.


HA IN: SNOILHYLNJONOO $3 ⿹ N U L 58 \cap 5$
UFD STEADY STATE MODEI DUTPUT MWR



NOILHYLNJONOT JONULS8RS
l IRD STEADY STATE MODEl output Mur
リPDOOL UPDO1.PLTOO2[NのलO17

NI SNOILHYLNZONO2 30NHLS日GS


URD STEADY STATE MODEL OUTPUT MWR
dd NI SNOILHY 1 NJJNOJ ヨONGLS日RS

Temperature variations within one to two degrees had little effect (the rate constants varying less than $2.5 \%$ per degree). A step of $5^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$ produces a delayed sag as expected, and not so severe (fig. 7.11. A). $20^{\circ} \mathrm{C}$ was chosen as a standard to represent moderately severe conditions. Recorded estuary temperatures are in the range $12^{\circ} \mathrm{C}$ to $24^{\circ} \mathrm{C}$.

At $25^{\circ} \mathrm{C}$ the effect on D.O. is pronounced (fig. 7.11. B) especially when combined with low flows (both figures are for DWF), but such a sustained temperature in an estuary would only result if other river temperatures were in excess of this. In that event, the potential loss of the rivers would be a more pressing problem.

Figure 7.11.C simulates a 500 year drought situation. The computer run was on 31 Dec 1975, just ahead of a 200 year drought : The low flow / high temperature combination is highlighted for 40 mgd to 60 mgd . These frequencies are beyond most design criteria unless major projects are involved.


URD STEADY STATE MODEL OUTPUT MUR
7.12 An Alternative to the Newport Main Drainage Scheme?

It is recognised that the fact that 18 discharges are tidelocked for various:
lengths of time has a derogatory effect on the overall dissolved oxygen profile.

What would the effect of having only pumped dischargesbe? The net loading would not alter but the distribution of received loads would alter radically and 'larger' segments receive a greater proportion. Fig. 7.12. A shows the redistribution of the fast carbonaceous component. The peak load is dampened over more downstream segments.

The net effect is summarised in terms of percentage (relative) improvement of dissolved oxygen and SSI.

Table 7.12. A Improvements in Min. D.O. and SSI.

|  |  | min.D.O. $\mathrm{mg} / 1$ |  |  |  | SSI |  |  |
| ---: | :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Flow | Re-aer. | from | to | $\%+$ | from | to | $\%+$ |  |
| 83 | 1.5 | 5.7 | 6.0 | 5.3 | .1807 | .1629 | 9.9 |  |
| 83 | 3.5 | 6.3 | 6.6 | 4.8 | .1284 | .1157 | 9.9 |  |
| 133 | 1.5 | 6.6 | 6.8 | 3.0 | .1302 | .1217 | 6.5 |  |
| 133 | 3.5 | 6.9 | 7.1 | 2.9 | .1010 | .0943 | 6.6 |  |
| 183 | 1.5 | 7.0 | 7.1 | 1.4 | .1089 | .1038 | 4.7 |  |
| 183 | 3.5 | 7.2 | 7.3 | 1.4 | .0889 | .0846 | 4.8 |  |

The improvement indicated in the SSI suggest a possible intermediate
solution if an immediate improvement is required for a low capital outlay;
installation of pumps at the main tidelocked discharges.


### 7.13 Varying Re-aeration Rates

As re-aeration is the only positive process for introduction of oxygen to the system, the importance of the rate of this process is apparent. Fig. 7.13.A shows the D.O. distribution for varying rates of re-aeration from 0.5 to 2.1 per day. The more pronounced the initial sag, the more effective the different rates become, as they are indicative of a net deficit forcing process. Fig. 7.13.B shows the effect on the overall D.O. profile. The net difference decreases with increasing rate.As flows increase, the effect of varying re-aeration rates is greatly reduced because of four factors:
a) increased dilution
b) more mixing
c) shorter retention
d) lower deficits

By the time flows exceed $2 \times$ DWF, re-aeration rates in the Usk do not have a great effect relative to the overall D.O. (\%) profile. The effects above however are better compared to deficits in an estuary where the overall profile is relatively healthy (SSI less than 0.2).
D.O. IN PER CENT SATURATION




DO. IN PER CENT SATURATION


### 7.14 Seaward Boundary Conditions

Because of the large tidal prism of the Usk, the oxygen content of it is important as a source of dissolved oxygen.

The effect of simulating a reduction of the D.O. boundary condition from $7.46(94 \%$ sat) to $6.5(82 \%$ sat) is seen in fig. 7.14.A. The upper portion of the system remains unaffected. When the D.O. sag appears, the decline is steeper and the recovery shallower. The higher re-aeration rate appears to be less effective here as the rate is forced to the same end point irrespectively.

Comparing respective SSI's ( 0.1089 to 0.1621 and 0.0889 to 0.132 ) demonstrates the overall radical effect in that a $48.6 \%$ worsening of the index is predicted. Similarly, increasing the downstream boundary condition marginally ( $94 \%$ to $100 \%$ ) radically improved the overall SSI by $24.5 \%$ ( 0.1089 to 0.0843 and 0.0889 to 0.0655 ). The solution to the USk Estuary pollution problem could well be the solution of the Severn Estuary pollution problem ${ }^{[14][15]}$.

At lower flows the boundary condition becomes more important as a larger tidal prism is admitted and the penetration is greater (Table 7.14.A)

Similar effects are simulated on varying the upstream boundary. A $16 \%$ saturation reduction affects the SSI by $40 \%$ while lowering the minimum D.O. by $8.3 \%[16]$.

Table 7.14.A SSI at Different Flows for $L_{0 w} / H_{i g h}$ Boundary Conditions.

| Flow | SSI low B.C. | SSI high B.C. |
| :---: | :--- | :---: |
| 40 | 0.387 | 0.294 |
|  | $(+21.7)$ | $(+26.5)$ |
| 55 | 0.303 | 0.216 |
|  | $(+15.5)$ | $(+20.4)$ |
| 70 | 0.255 | 0.172 |
|  | $(+11.7)$ | $(+16.3)$ |
| 85 | 0.225 | 0.144 |
|  | $(+9.3)$ | $(+13.9)$ |
| 100 | 0.204 | 0.124 |
|  | $(+7.3)$ | $(+11.3)$ |
| 115 | 0.189 | 0.110 |




Wdd NI SNOILHULNヨЭNOJ ヨコNU $158 \cap 5$

| 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\vdots$ |

Wdd NI SNOILU甘 1 NヨכNOJ ヨכNGLS日ns

```
Correspondance about a possible tidal barrage across the Usk and/or Severn
Estuary dates back to }1948\mathrm{ in the files of the old Usk River Board, predecessor
of the U.R.A. and U.R.D. of W.N.W.D.A.
Recent advances in extraction of energy from water movement [18] and the
high cost of conventional oil power since the oil crisis has stimulated
further discussion.
A barrage situation is possibly the only case where this system will reach
a true steady state.
The primary proposal for the Usk is for a sealing barrage to reduce tidal
influences and maintain certain levels in the estuary.It is argued that
this will help Newport's development as a South Wales Dock and have recreational
benefits.
Simulations show that a partial barrage in the upper reaches is possible
(in the upper 10 miles) without an appreciable reduction in the minimum
D.O. although the SSI is increased by 5.4%. Were the lower reaches to be
barraged, the cumulative loading of Newport's discharges would cause an
estimated 5 mile anaerobic section in the lower half of the town, clearly
reducing recreational benefit.
```


### 7.16 The Venture Carpet Factory [17]

In 1975 the URD received a major planning proposal for a new factory in the middle of Newport employing a large number of local people. The factory was engaged in processing fibres for carpet manufacture.

Outline effluent standards were submitted and the Pollution Control Dept. was able to recommend in a matter of days that, as the overall effect on the SSI was $1.2 \%$, by ensuring that the effluent contained at least $30 \%$ dissolved oxygen, there would be no net effect on the estuary.
7.17 The Graig Goch Reservoir Scheme

As the protected flow was fixed arbitrarily for the Usk, it was hoped that a large proportion of the flow could be used to supplement the inputs to the reservoir.Section 7.10 shows that low flow conditions will create problems. Whereas a reduction to $60-70 \mathrm{mgd}$ may be acceptable, flows lower than this will for some time be totally unacceptable, until the Newport Main Drainage Scheme is fully implemented.


It was thought that the Ebbw was a useful dilution influence. Simulation of the discharges without the Ebbw was not greatly different, as fig. 7.18 shows. The overall SSI was raised by only $2.4 \%$. The reason is principally that the River Ebbw water is fairly heavily loaded with pollutants from a domestic sewage discharge relative to other 'river' water.


Wdd NI SNOILHy

The proposed increase of this discharge is the primary reason for the whole project. Initially discharging about 5 mgd at 90 ppm , a proposed increase to 8 mgd was desired in the first instance.

Figures 7.19.A to C show the increasing D.O. sag for $50 \%$, $100 \%$ and $200 \%$ increases in loading.

Table 7.19.A Summarised Simulations for Eastern Valleys

| D.O. (min) mg/l |  |  |  |  |  | SSI |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Flow | Reaer ${ }^{\text {Re }}$ | Basic* 0.5 | *2.0 | *3.0 | *0.5 | *2.0 | *3.0 | Basic |
| 83 | 1.5 | $5.7 \quad 5.5$ | 5.3 | 5.0 | 0.191 | 0.200 | 0.218 | 0.180 |
|  | 3.5 | 6.36 .2 | 6.0 | 5.7 | 0.136 | 0.143 | 0.156 | 0.128 |
| 133 | 1.5 | 6.66 .5 | 6.4 | 6.2 | 0.135 | 0.140 | 0.150 | 0.130 |
|  | 3.5 | 6.96 .8 | 6.7 | 6.6 | 0.105 | 0.109 | 0.117 | 0.101 |
| 183 | 1.5 | 7.06 .9 | 6.8 | 6.7 | 0.112 | 0.115 | 0.122 | 0.109 |
|  | 3.5 | 7.27 .1 | 7.0 | 7.0 | 0.092 | 0.094 | 0.100 | 0.089 |

Fig. 7.19.D illustrates that for most flows, a $50 \%$ increase in
loadings can be tolerated if necessary. If some more dilution water were available then the situation would be noticeably better as the discharge reach is relatively small.

Above $50 \%$ increases, the SSI increases at low flows over the critical 0.2 mark.

Also, less room for contingencies would be available. For example, consider a raising of ammonia in the freshwater inflow. This could happen if works to the freshwater reach become non-operational due to industrial action. Fig. 7.19.E shows the cumulative effects of increased loads and high inflow ammonia. There is a distinct possibility of major industrial action.





Wdd NT -NOILHELNJJNOD JONULS日ПS


## 

Fig. 7.19.D Sag Severity Index for Load Variations for Eastern Valuer.


Wdd NI SNOI $\cup \forall \& \perp N \exists J N O J ~ \exists J N U \perp S 日 \cap S$

As a long term solution to the pollution levels received by the estuary, Newport Borough Council formulated a multiphase plan to re-route each of the principal discharges within its jurisdiction (not Caerleon or Eastern Valleys). (The details are outlined in references in Chapter 6 , numbers $[10]$, $[11],[130],[131]$.

The stage by stage implementation shows a steady improvement of both the minimum D.O. levels $(5.7$ to 6.5 to $7.4 \mathrm{mg} / 1)$ associated with a SSI improvement from 0.1807 to 0.1555 to 0.1019 , i.e. a $43.6 \%$ improvement $[16]$.

The works will be situated just upstream of the B.A.C. Water Quality Monitor and will offer primary treatment to all domestic sewage in Newport.

There are plans for a discharge point to be at the works, or for a small additional cost relative to the works, a discharge to the Severn Estuary.

Even with a discharge to the Estuary proper, a considerable improvement will be effected. Tentatively it could be argued that the pollution problem for the estuary has been resolved.

Unfortunately the continuing presence of the Eastern Valley outfall requires a maintained level of flow to ensure dissipation to reasonable levels.

An experienced operator or manager will be able to generate data for most queries from a basic data set within 20 minutes of establishing contact with the system via EDITOR.

Table 7.21.A shows the actual times of some main simulations. The Time units are for an ICL $4-70,768 \mathrm{~K}$ store, running under MJ 1500 (Multijob). The URD were required to pay 1 p per time unit. The time taken includes digital plots of simulations as well as graph plots generated for off-line plotting. It is seen that one flow/ one reaeration rate simulation takes $5-10$ time units, depending on the degree of tuning of the convergence parameters and the severity of simulation from norm.

For comparison, 1 time unit here is roughly 3 time units on an ICL 4.50 and 0.25 units on an ICL 19045, and 2 time units on an IBM $360 / 65$. The cost of a simulation can be reckoned as

$$
\begin{array}{ll}
30 \text { minutes staff time (Grade } 6-8) \text {, say } & £ 2.00 \\
\text { Core time costs of several simulations } & £ 2.00 \\
\text { Telephone charges } & £ \\
\text { Posting of output } & £ .90 \\
&
\end{array}
$$

This compares favourably with the cost of processing one typical estuarine sample at $£ 10-£ 15$.

Table 7.21.A. Core Time Requirements of Simulations

| Simulation Name | Main loops <br> (Flow) | Sub-loops <br> (Reaeration) | Time units |
| :--- | :---: | :---: | :---: |
| Tidal Barrage | 3 | 6 | 143.5 |
| Eastern Valleys | 9 | 18 | 499.2 |
| Low Flows | 8 | 16 | 429.3 |
| Vary Temperature | 6 | 12 | 322.6 |
| 500 year Drought | 8 | 16 | 431.3 |
| Reaeration | 2 | 16 | 501.0 |
| Low B.C. Flow | 8 | 6 | 438.7 |

7. BIBLIOGRAPHY for Chapter 7
[1] "An Introduction to Probability Theory and its Applications", W.Feller, Wiley International, Vol.1,3rd Ed., 1968
[2] "Report on the Public Enquiry on the Eastern Valley Sewage Scheme", Welsh Office, Cardiff, HMSO, Oct. 1965
[3] "Some Aspects of the Work of the Water Pollution Research Laboratory", A.L.Downing, A.R.A. Yearbook, p.73, 1966
[4] "One Dimensional Models of Estuarine Pollution", B.M.Molloway, WPRC Symposium, Paper No. 7, Apr. 1972
[5] "Thames Flood Prevention, 1st Report of Studies", G.L.C.,App.2, Hydraulics Research Lab. p. 69, Oct. 1969
[6] Private Communication, M.W.Rogers to I.Crofts, URD ref. 31,18 June 1975
[7] Private Communication, M. Mollowney to M. W. Rogers, WRC Stevenage, 1973
[8] "Report on Estuary Surveys for the Pollution Dept.",T.R.E. Chidley, URA Internal Report, 1966
[9] "Cambridge Elementary Statistical Tables",D.V. Lindberg,J.C.P. Miller Cambs. Univ. Press
[10] "A Study of the Hydrodynamic and Water Quality Characteristics of the Usk Estuary",D.W.Knight,J.R. West, Vol 1,Oct 1976
[11] "Definition of Dry Weather Flow",M.D. Thoms, A. Wain, URD Memo, reference G. 11/AW/GH
[12] Private Communication,M. Mollowney to M.W. Rogers , WRC Stevenage, Ref. WPRS/47/32/1, March 1973
[13] "On the Predictability of the Steady Sítate Model", M.W. Rogers, URD Internal Report, Pollution Control Dept., 1973
[14] "A Desk Study of the Severn Estuary", A. Winters, WPRL TP 13, HMSO p.105-p.113, 1973
[15] "The Physical Environment and Inter-tidal Fauna of the Southern Shores of the Bristol Channel and Severn Estuary", R. Bassindale, Journal of Ecology, vol 31, 1943
[16] "Preliminary Results of the Steady State Mode1", M.W. Rogers, URD Internal Report, J an 1974
[17] "Report on the Effect of the Proposed VENTURE Carpet Factory at Newport", M.W. Rogers, URD Internal Report, Apr 1975
[18] "Recent Advances in Wave Power", CEGB Research Dept., Portishead, Conference on Mathematics in Oceanography, Inst. of Appl. Maths. and Applications, University of Bristol, 1976

## Chapter 8

Applying the Time Dependant, Mixed
Dimension Model

## Chapter 8

## Contents

```
8.0 Introduction
8.1 The Severn Estuary Extension
8.2 De Chezy Friction Coefficient
8.3 Bay Boundary Conditions
8.4 Usk Estuary Data for Hydrodynamic Phase
8.5 The Bay Simulation
8.6 The 1-D Phase Simulation
8.7 Wind Effects on the Bay
8.8 Pollutant Transport Inputs
8.9 Pollutant Transport Simulations
8.10 A River Model
8.11 Model Execution Timings
8.BIBLIOGRAPHY for chapter 8
```


### 8.0 Introduction

The development of the software for this model and its testing against publisher test data $[1][2]$ took the major share of computer time and thus financial resource. The models required $46 \%$ of the budget, compared to th $14 \%$ of the Steady State Model, 10 Miscallaneous and $30 \%$ of the models ST/ST2. After extensive tests to establish correspondance, it was concluded that the results were driven by other data not available. Essentially results were sensible for the input data and for the thepretical system being considered $[1]$. The current state of the models is such as to be bulky and not geared towards general use. Volume of output can be prohibitive and expensive. The two dimensional bay phase is based on a routine established by Leendertse used as a sub-model without internal iteration and variable input boundaries $[3]$ There was a distinct lack of management interest in this suite of models. This was voiced to be due to their complexity. It would eventually have to be used unsupported. There seems little effectiveness in a management information project that will not be used willingly. As a project develops, the question of management training should not be overlooked. So when the model is available it will receive use through acceptance and valid judgements and not with predjudice through non-comprehension and built in mistrust of the unfamiliar.

Again, the policy of using best data available is maintained for the reason that scarcity of field data would make tuning against any one parameter unreasonable for later simulations. Bed friction is the one
exception in that coefficients for established types of bottom are vague within known limits.

### 8.1 The Severn Estuary Extension

The Severn Estuary can be considered to extend from the town of Gloucester (Maisemore Weir, just upstream of the town) to Lydney/Sharpness, where the two dimensional nature begins to predominate, then on to Penarth/Weston-super-Mare at 98 km from Maisemore Weir. For this distance, the direction of the system is south-west. From Penarth/Weston the estuary continues due west until just beyond Nash Point(nr. Swansea)/Porlock Bay. Then the change in coastline of both banks open up the width to about 25 km . This gives an estuary of 140 km length ( 88 miles), of which the section kilometer 57 (Severn Bridge) to 103 (Penarth /Steep Holme Island/Weston-super-Mare) is of interest for the Usk Estuary [4] , shown in fig. 8.1.A

Dpeths were abstracted from the continuously updated Admiralty Charts(Potters of London, Tower Hamlets) and British Transport Docks Board Soundings Charts [5] [6]. The area was split into square sections of 8000 ft . Note that overlapping charts are of different scales for sections of the system. For eachsquare, all soundings available were converted to a common level and averaged to give the mean interpoint depth. It is possible to put a case for using the mode depth here, were it not for the possible multiplicity of this statistic. For practical use, all depths likely to dry out during a simulation have to be lowered to remain wet. Fig. 8.1.B shows the mean depths using data from 1939 to 1972 charts. Likely changes occur through regular dredging of shipping
channels and through the building of a port complex at Avonmouth.

Fig. 8.1.C shows a typical tide record available from Swansea, Avonmouth and Newport Docks, all of the BTDB(South Wales-West Area). Usually gauges are unattended for $14-28$ days and as a result, records are cramped and of ten with a considerable cumulative error in the latter portion. Newport Gauge was not maintained and records were wholly illegible, whereas Avonmouth data was quite reliable on the whole. The illustration is for 1615 hrs . on $21 / 08 / 70$ to 1540 on $15 / 09 / 70$.

Fig. 8.1.D shows the mean tidal ranges and limits for spring and neap tides [4] The broadly funnel shape of the Severn causes a net increase in tide height up to kilometer 50. This is the source of the Severn Bore ${ }^{[8]}$, a wave front up to 6ft. high travelling from near Sharpness to Maisemore Weir at best. This is a characteristic of bays with depths about $70 \mathrm{ft}(20 \mathrm{~m})$ due to the oscillatory motion of the first node, amplified by noted width constriction [16]

Fig. 8.1.E shows the significance of the Usk and Severn in terms of potential development areas and thus flow increases. ${ }^{[7]}$ Summarising potential development into three local areas gives
Bristol - $16-18 \mathrm{mgd}$ domestic sewage additional
Newport - $12-15 \mathrm{mgd}$

| Cardiff $-1.5-2.5 \mathrm{mgd}$ |
| :--- |
| Levels |

Development of any sort in a high unemployment area is a sensitive political issue. The population increase will require treated sewage capability before





Fig. 8.1.D Average tibal Ranges - Severn Estuary


```
they are resident. These models should help ensure the correct answer in
terms of capital cost and accrued benefit to the commuinty is found before
heavy planning committments are made.
```

Fig. 8.1.F shows a complete set of bay data for input to F1/F2.

### 8.2 De Chezy Friction Coefficient

To increase the accuracy of solution, the boundary effects are considered in the motion of fluid along a slope under gravity. A water mass moving with velocity $u$ along a shallow slope $\alpha$, at cross-section area $A$ with wetted perimeter $W$ and hydraulic radius $d(=a / W)$ will move under the action of the gravity component in the vertical direction.

The compo nent of the weight along the line of the slope is balanced by the total frictional resistance, so

$$
\begin{equation*}
\alpha \cdot g \cdot A=k \cdot w \cdot u^{n} \tag{8.2.A}
\end{equation*}
$$

where $k$ is a constant of proportionality, therefore

$$
\mathrm{u}=[\alpha \cdot \mathrm{g} \cdot \mathrm{D} / \mathrm{k}]^{1 / \mathrm{n}}
$$

n was found to be nearly 2. De Chezy also observed that for fully turbulent flow in rivers the following held :

$$
\begin{equation*}
u=c \sqrt{D \cdot \alpha} \tag{8.2.C}
\end{equation*}
$$

Consequently, the de Chezy friction coefficient $C$ is defined as

$$
C^{2}=2 . g / F \quad \text { unit of } C^{2}-m / \sec ^{2} \quad(8.2 . D)
$$

where $F$ is a dimensionless friction coefficient. A more advanced formula is available :

$$
c=[\sqrt{g} / k] \log [12 . \mathrm{d} / \beta] \quad(8.2 . \mathrm{E})
$$

where $d$ is water depth and $\beta$ is a function of the heights of the bottom irregularities $[9][10][11], k$ is the von Karman Coefficient $[13]$ and roughly equal to 0.4. This requires greater verification effort to using 8.2.C

Values of the de Chezy coefficient recorded vary from 40 to 55 for a Rhine tributary ${ }^{[12]}$. For the silt beds of Rotterdam Waterways, values up to $60-65$ are recorded. For the Severn, a common value of $60 \mathrm{~m}^{1 / 2} / \mathrm{sec}$. was selected, although lower values in the upper reaches may be more reasonable due to the nature of the bed there.

## Bay <br> 8.3 Boundary Conditions

As the design was to allow any geographical form of bay, and because of the method of solution employed, elevation and stream points do not coincide. Consequently, some 20 special boundary conditions are recognised as being exceptions (fig. 8.3.A), involving 12 land-bay boundaries and 8 with land,bay and open sea combinations. Boundary intersections can only occur at multiples of 90 degrees. All thses exceptions have to accomodated in the software and details of the precise numerical approximations are given elsewhere ${ }^{[14][15]}$


The whole data set is shown in fig. 8.4.A. The data set shown is for input to model F2, the full version with mixed dimension (Appendix B).

For model F1 a different forcing function is required, but the discharge boundaries are not required.

The bulk of the data consists of depth-width tables for each segment. Fig. 8.4.B shows the breakdown scheme of the Usk and Ebbw branched system.

Arrows indicate the bank on which the feature is located.

```
8.5 The Bay Simulation
Initially, all elevations are set to 12.6 ft (specified by data input) in the
```

bay. This is slightly higher than the initial tidal forcing function at 13.1 ft
The tide is at high water however, and so the 12.6 ft level is a very stable
starting point. Fig. 8.5.A shows that after only 2 hours of real time simulatio
a high degree of stability and reaction exists. For many purposes, data
from the 6 th hour can be taken as stable if generated with a good initial
approximation.
Fig. 8.5.B follows four selected points for a double tidal cycle of 25 hours.
Interesting points are the time delay of high water at various points. These
agree with published figures to within 15 minutes ${ }^{[4]}$. Another point is the
relative tide heights of high water at points moving towards the upper
reaches of the bay $[(5,11)$ and $(2,15)]$. It is observed that the heights are
larger than the forcing function, and that the effect is accentuated towards
the Severn Bridge. This is the beginning of the Severn Bore and correlates
with observed effects (section 8.1).
$0000010060.13 \quad 1440 \quad 600.3+12.60 .09698$ BACKGROUNA DATA
$0000 n 200 \quad 1 \quad 1 \quad 1 \quad 24016 \quad 111$ DATE/TIME OF START OF SIMULATIONS
 00000400 $\begin{array}{llll}00000500 & 60 & 1440 & 60 \\ 00000600 & 60 & 1440 & 60\end{array}$ 00000600 $\left.\begin{array}{lll}2830 & 1440 & 855\end{array}\right\}$ TIMES OF PRINTING BAY/RIVER And PLOTTING

00000800 00000900 $00001000 \quad 1021.0110$


MQBD ROW DISCH $B D$ NOBD COL WATER BD NQBD COL DISCH $D$
 C00130 00001500 00001600 00001700 00001300 00001900 00002000 00002100 00002200 00002300 00002400 00002500 00002000 00002700 00002800 00302900 00003000 00003100 00003200 00003300 00003400 00003500 00003600 00003700 00003800 00003900 00004000 00004100 00004200 00004300 00004400 00004500 00004600 00004700 00004800 00004900 00005000 00005100
00005200 00005300 00005400 00005700 00005300 00005900 00006000

| 1 | 1101061 |
| :--- | :--- |
| 1 | 0306070 |
| 1 | 0210110 |
| 0 |  |
|  | 9 |

S1 MENARIDGEMCASTLEI: 10 $\begin{array}{rrr} & 0.0 \\ & 2.7 \\ & 6.7 \\ & 10.7 \\ & 2 & 2 \\ & 2 & C\end{array}$
$00005500 \quad 54.7 \quad 1786.4$ 00005600 S8 EBB'N TO MAESGLAS 100

S4 2 NEWPORT TOWN RD

| 0.0 | 249.0 |
| ---: | ---: |
| 6.5 | 267.2 |
| 15.5 | 310.0 |
| 26 | 37.3 |
| 41.5 | 491.7 |

S5 2 GEORGE STR
$\begin{array}{rl}\therefore .0 & 244.3 \\ 17.5 & 280.4 \\ 27.5 & 339.7 \\ 43.5 & 452.3\end{array}$
S6 2 TRANSDORTER 3R
$0.0 \quad 267: ?$
$\begin{array}{rl}9 & 323.9 \\ 19 & 427.8 \\ 27 & 511.9\end{array}$
S7 2 PIERHEAD

$$
\begin{array}{rr}
0.0 & 385.7 \\
9.7 & 450.3 \\
19.7 & 790.3 \\
34.7 & 1230.1 \\
54.7 & 1786.4
\end{array}
$$

3
2
$0.7 \quad 125.85$
$4.7 \quad 125.85$
$\begin{array}{ll}4.7 & 132.7 \\ 8.7 & 141.7\end{array}$
$\begin{array}{rr}16.7 & 171.4 \\ 100 & 260.5\end{array}$
-

9

| 0.0 | 0.0 | 0.0 | 0.0 |  | 28 | 0.0 QMEA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 2 | 9 | 19812 | 3 | . 025 | . 0006915 |
| 0.7 | 125.85 |  | SEGMENT | A | NEABRI | DGE-CASTLE |
| 4.7 | 132.1 |  | SEGMENT | A | NEWBRI | DGE-CASTLE |
| 8.7 | 141.7 |  | SEGMENT | A | NEMERI | OGE-CASTLE |
| 16.7 | 171.4 |  | SEGMELT | A | NEMBRI | DGEOCASTLE |



| 14916 | 3.025 | . 0003750 |
| :---: | :---: | :---: |
| SEG | CAERLEON | BRIDGE $-\mathrm{N}_{4}$ |
| SEG | CAERLEON | BRIDGE $=$ M4 |
| SEG | CAERLEON | BRIDGE $=34$ |
| SEG | CAERLEON | BRIDGE - |

$05406 \quad 2.025 \quad .00040691$ SEG O ML TO NEWPORT ROAD-BR SEG O ML TO NEWDORT ROAD BR SEG O M 4 TO NEWPORT ROAD BR SEG $\cap M_{4}$ TO NEWPORT ROAD ER $03458 \quad ? .025 \quad .00057841$ SEG E NEWPORT BR TO GEORGE SEG E NEWPORY BR TO GEDRGE SEG E IEWPORT BR TO GEORGE SEG E INEWPORT BR TO GEORGE

07310 . $2.025 \quad .00047831$ SEG F GEORGE STR-TRANSPORTE SEG F GEORGE STR■TRANSDORTE SEG F GEORGE STR-TRANSPORTE SEG F GEORGE STR-TRANSPORTE
$13070 \quad 4.025 \quad .0005887$ ? SEG G TRANSDORTERMPIERHEAD SEG G TRANSPOFTERーPIERHEAD SEG G TRANSPORTER-PIERHEAD SEG G TRANSPORTERTPIERHEAD
$9 \quad 13343 \quad 4.025 \quad .0031632$ SEG I EBB: SEG 1 EBBN SEG I EBAW
SEG I EBBW

MULTIJOB DRINT OF URDOOL;URDO1M.F2DATA(S2OOOS)/N FOR USER URDOOL AT TERIIINAG 16

| 00006100 | 54.7 | 577.2 |  | 100 |  | 577.2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00006200 | S9 FIER TO | A.SURVEY | 7 | ¢ | 0 | 00 | 9 | 04677 | 2 | - 25 , 000 | 06414 |
| 00006300 | 0.0 | 606.5 |  | 5 |  | 677.1 |  | SEG 4 | PIERH | EACmBASE | LINE |
| 00006400 | 10 | 769.7 |  | 15 |  | 949.8 |  | SEG H | PIERH | EAD-BASE | LINE |
| 00006500 | 20 | 1383.5 |  | 25 |  | 1865.0 |  | SEG H | PIER | EACMBASE | LINE |
| 00006600 | 35 | 3744.5 |  | 45 |  | 4928.5 |  | SEG H | PIERH | EADabaSE | LINE |
| 00006700 | 55 | 5960.0 |  | 100 |  | 5966.0 |  |  |  |  |  |

## FIG 8.4.B

Schematic Segmentation of the Usk Estuary System


It should be noted in the delineation of the bay for the upper reaches, a generously wide water field was allocated. Strictly only one point should be allocated. However, this so accented the bore effect and also as it was a reflective boundary (which in reality it is not) oscillations set up that soon swamped the whole are and the method failed.

The forcing function is input along the lower left (south-west) edge and the lower left vertical boundary (west). Considering the depth structure of the bay and practical knowledge, simulations were expected to show that the main part of the tide stays on the south west shore. Fig. 8.5.C shows the profile along selected columns at input high water for maximum flood for most points along the system. Tidal effects are emphasized along the south-west rows as anticipated (higher row number)

A complete cycle of elevations at all points is given in fig. 8.5.D ( 6 parts). As the bay is not of primary interest for this project, validation is needed only in the broadest terms. For a similar tide observed at Avonmouth, predict ions were within 30 minutes and within 2.5 ft of observed data.This was consid -
ered reasonable as the simulation had no wind effects, whereas the day of the
tide had a fresh breeze ( 500 run miles). Any disagreement can be tuned by use of the de Chezy coefficient, in the region and the stream leading to it. The value of this phase is when the whole Severn region is to be modelled. A working party to gather cohesive data drawn from the three principal Regional Water Authorities (Severn Trent, South West, Welsh N.W.D.A.) already exists with a view to a concerted policy for the area. Currently laboratories are being standardized for analytical techniques and cross-correlation.

Initial problems were encountered through drying out. It was thought the method could accomodate virtual water blocks. The tempoary expedient: lower ing the depths of such points to ensure their continued 'wetness' throughout the cycle.This obviously affects elevation predictions and velocity projections Velocities would in general be predicted low through this, similarly for the elevations. Were the bay to be modelled accurately, this would not be acceptable The solution is to use a one-step look ahead algorithm. This performs the calculation of elevation at each point as previously, but then checks the available depth. If the elevation is too negative, the point has dried out. The step is retracted and the point set to a land point for the time being. All steps in the bay are checked this way. If no drying out is sensed, the step is accepted and the method proceeds as before. If drying out is sensed, the step is retracted and then repeated with the new tempoary land-sea delineation. The additional computing effort required can vary considerably, but will be dependant on the ratio of drying area to total area. In the Severn the ratio is 0.45 to 0.75 in certain areas depending on the tides, and so it is anticipated that additional computing effort will be of the order of $50 \%$ to $70 \%$, as well as additional core store overheads.

The primary area of interest is the bay/estuary interface about column 7 . This feeds the one dimensional phase with forcing functions. As mouths are generally constrictions in reality, the area is again slightly enlarged to encourage stability. Furthermore, the interface is not merely the immediate point on the edge of the estuary, but is defined as average values over any number of relevant neighbouring points. Fig. 8.5.E (2parts) shows the 20 hour
period hour 39 to 59. The flow rate is in cubic feet per second, velocity in $\mathrm{ft} / \mathrm{sec}$. , height in feet. The velocity will bear no relevance to any measured in the tidal race channel, as it is the smeared average over several points some of which are imaginary, because of the drying out. This table is part retained in the file set up by F1 and later used as input to PT or PT1. The ebb and flood duration of $7.2,5.3$ hours respectively agrees wedl with observed figures at Newport Docks. Fig. 8.5.F (12 parts) are the predicted velocity components in the $x$ and $y$ direction for a complete tidal cycle. There is no validation data available for this data, but the elevation observation correlations will suffice. Fig. 8.5.G ( 8 parts) are the plotted distributions of velocity after 3,6 hours and the cycle 112-138 hours. Comparing the earlier output with the latter again shows how rapidly the expedient choice of initial conditions can assisst in reaching stability.



0880800808
088080080
00000000000



 $\stackrel{\square}{\square}$






0000000000
0000000000
0000000000 $\cdots 00000000000$

$\infty \rightarrow \infty 0000000$
 NONMOOOOOO
 $0 N$
$0 N G N O O$
0000000
$\sim$
$\sim 0$
 coontormoo $a$

 ＊ocinninnio． oncmurcmoc




 00．
 cencemata

čccucine
 ¢o0000nの日ro
 を

$\stackrel{+}{<}$
$\left.\begin{array}{l}c c o c c \\ c \\ c \\ c\end{array}\right)$

## $\frac{\text { TIDAR CYCLE }}{\text {（i）}}$ <br> FIG 8．5．D－ELEVATIONS FOR ONE

 ocmprinima
 conecen
ingman cednen



 nmmmio



$$
\begin{aligned}
& 000=400000 \\
& 0085 M 000000 \\
& 000000000 \\
& 0_{0}^{\circ} 000000000
\end{aligned}
$$









$\stackrel{-}{\square}$


i
a

$$
\begin{aligned}
& \text { ~ONN二000000 }
\end{aligned}
$$



ㅇㅇㅇㅇㅇㅇㅇㅇㅇ
응ㅇㅇㅇㅇㅇㅇ $\because 000000000$

| on0000000 0 No000000 －NOC00000 |  |
| :---: | :---: |
| $\sim 0.0000000$ |  |
|  |  |
| ～am＝080800 ～N～MOOO000 |  |
|  |  |
| $\because 0^{\circ} 00^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$ |  |
|  |  |
|  |  |
|  |  |
|  |  |

으얭ㅇㅇㅇㅇ


OOM－N00000
 $=\subset-\sim N O 0^{\circ}$ OOOMONOOOO 0.20060009
00000000
-000 －ymicooo OBoncinnugo
 CCONNかMNOO
 T～N～N～ic
 ～oc～nininmoc $c c N k \infty$
$c c c c c c c$
$c c c$
$c$
$c$ ocevinccome
cececicinc जco Ninmynno
cicoñごさc以 Oco o o
Ond
ince
cer
 $\stackrel{+}{\leftarrow}$
 Ocococom woocoogceco
 c
$\sim$
a
$\infty$
a

cerennnnoc ocmmintioco
 Geogonmioe
cicinnor जcinn inn

## 

 $\stackrel{47}{=}$
$\stackrel{\leftarrow}{<}$



 2


80088080응





OONMNOOOBO















0000009000
0080808080
00000000000000
 Nmma 00000
$c N 0$
00000000
000000
0100000000

##  <br> 0 0 0 0

OONMNOO8OO
000500000
$=-000000000$



acociox ox 心o
cenanuruco
cencinnce क人
 $c$ cocicicic



$c c c c c c u c w c$
$c c c c$
$c c c c$
$c$
$c$
iococonagno
inch
ong

$\infty$


0000000000
0889808808
00000000000000
+0000000


vininino00000


$800 \pi=00000$
$00 N J 500800$
$=0000000000$
$00000 N 0000$
$000 N 0000$
00000000
600000000000


0
0000000800
080880880
00008000
0000000000

 －ningo．000000 $2 \infty-n c 00000$
0
0
$n 008000$
0000000000


OOFMMOOO日品 Foco


OUMmánow
$\infty$



| Nms0000000 Not0000000 जN00000000 जnmió0000000 |
| :---: |
|  |  |
|  |  |


| －0Nm000000 MavポOㅇㅇㅇㅇ tonmo00000 <br>  |
| :---: |
|  |  |














 $M 50$







 cocerosoco


 なccccmanct ＝


CEECEENEO

 w̄ocivo0000
 2
$\stackrel{2}{2}$
$m$



ㅇ0ㅇㅇ000000 10000800808




Oningo80800 M N N O O O O O
 $\because 0$ O

$0806 n$
0800000
0.000000000
00000


OOCMFが心のO
 $\rightarrow c$
人c＂cocccooc



OCCCMNOMNO ज000co
 EOOOOQ0numo － 0 ¢0．
 $\stackrel{\text { に }}{\leftarrow}$






$006=060000$
0800080880
000000000000






 0000 上Nmoso cect：人 $0^{\circ} 0^{\circ} \mathrm{CNNNNMm}$
coooccnnono जce cos inmwo mocoosnnNmm $\stackrel{\leftarrow}{\star}$

| $\begin{aligned} & \text { ceccecnioo } \\ & \text { ciccencinc } \\ & 0 \\ & 0 \end{aligned}$ |
| :---: |
| cocnunmin |
|  |
| ciciedso |
|  |
|  |
|  |
|  |

1H013



 $\stackrel{4}{5}$





 $\sum_{i \rightarrow \infty}^{2}$


子品


## $\underset{\Sigma}{w}$




$1-$





## us

 $\stackrel{4}{4}$



 2







 た




 $\longmapsto$



 ○の Fo,



## us

 -



 $\alpha$



 M, MMM



 us





[^4]

|  |
| :---: |
| － |
| Nw |
| －00000000 |
|  |
| Fmiocioio |
| $\bigcirc 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$ |
|  |
| N응ㅇㅇㅇ응 |
| ～ |
|  |







000000000
000000000
000000000
0.000000000







 $\stackrel{n}{\sim}$



## 

©o0000nmin－
－••・゚ー… 17

```
#cccccccccoccoc
```

AY
$C L H$
$\mathrm{CL} * \mathrm{OL}^{2}$





$\stackrel{*}{*}$

$\stackrel{*}{n}$

$\underset{\sim}{\sim}$

CNNONEBE


と己どうnñoig







m

```
```

* 

```
```

* 

```
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular} \(\stackrel{*}{*}\)

coocoomooo

\(\stackrel{2}{2}\)

cNMan oncoor

 11*
 \(00 \ln 00000\)
e 0 min 00000
\(00 n m 00\)
0
 \(-6=00000\)
 10
0.000
0.000
0.000
1.044
0.254
0.000
0.000
0.000
0.000

 \(\stackrel{5}{5}\)

 icocic
 \(\stackrel{\vdash}{\gtrless}\)

 \(73 ん\)

 090000000
\(0 M N 00\)
\(0 N 0000\)
00000
No00000000

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline EAY & DATA VEL & I＇X AT & 51.500 & \＃15S & 5 & \[
n^{6} 0 n 0
\] & \(\rightarrow\)－\({ }^{\text {anc }}\) & & 0.0000 & \[
\begin{aligned}
& 10 \\
& 0.000
\end{aligned}
\] & \[
\begin{aligned}
& 11 \\
& n .000
\end{aligned}
\] \\
\hline 2 & ก．000 & C． 290 & 0．0） 0 & － & －non & & 55 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline 3 & 0.000 & & \(0 \cdot 000\) & －\({ }^{\text {a }}\) & カッa & 1） & 477 & \(n \cdot 45\) & 0.000 & 0.000 & 1．285 \\
\hline 4 & 0.090 & ？．0n0 & ？0no & ก＊ทの & へ9 & － － 0 ¢ & \(\therefore 36\) & \(\bigcirc * 47\) & 0.947 & 1．044 & 0.555 \\
\hline 5 & 6）\({ }^{\text {anc }}\) & －ann & － \(20 ?\) & ？．ヘヘ & － & ＊ & （\％） & 0.652 & 0.923 & 0.254 & 0.000 \\
\hline 6 & 0．\(n \cap \cap\) & ， 0 Co & ？．00？ & & & & & & ก． 563 & 0.000 & 0.000 \\
\hline 7 & 0.009 & 0.40 & 1.071 & －159 & 2． 23 & 1.59 & 726 & ？．659 & 0.550 & 0.000 & 0.000 \\
\hline \(\varepsilon\) & 0.090 & 1．302 & 1.412 & 1.787 & 2． 223 & 1．52 & 72 & ． 259 & 0.000 & 0.000 & 0.000 \\
\hline 9 & 0.100 & 9．361 & 1．948 & 2.237 & 2.270 & 2.756 & －．900 & n， 000 & 0.000 & 0.000 & 0.000 \\
\hline A & 0.000 & 1．564 & 1.789 & 1.613 & 2．4？8 & 2．？ 07 & － & － & － & 0. & \\
\hline
\end{tabular}

ㅇㅇㅇㅇㅇㅇㅇㅇ

in
\(\stackrel{+}{0}\)
```

        N
    ```
```

        N
    ```
51.50C HRS. NATE 1975

 \(\begin{array}{lccccc}c c c & 0 & w & c & 0 \\ c & c & c & c & c & 0 \\ c & c & c & c & c & m \\ c c c & 0 & 0 & 0 & 0 & 0\end{array}\)

 1.11
AY
L*F.W
.020808008
0.808080
0000000000

\(\stackrel{*}{*}\) \(\underset{\sim}{N}\)
\(\underset{N}{N}\) 000000000
00000000
00000000
0000000000 000000000
000000000
060000000
70000000000

060000000
000000000
0000000 \(\because 000000000\)

\(\underset{\sim}{n}\)
\[
\begin{aligned}
& w \\
& \stackrel{w}{F}
\end{aligned}
\]
\[
\begin{aligned}
& \text { Oogonag } \\
& \text { cogtinn }
\end{aligned}
\]
 \(\stackrel{\square}{<}\)
 i． 1
\(L * R U\)
\begin{tabular}{|c|c|}
\hline & \\
\hline & \(\bigcirc\) \\
\hline & \\
\hline
\end{tabular}

 M-00000000

ह̌cecomino - \(0^{\circ} 0^{\circ} 0^{\circ} \circ \mathrm{ONmm}\)
\[
\stackrel{t}{\sigma}
\]
çogoomñ \&とccccivio

\begin{tabular}{|c|}
\hline ceccceucus \\
\hline \\
\hline 出gcococcoc \\
\hline \(\bullet^{c} 0^{c} 0^{\circ} c^{c} 0^{c}\) \\
\hline \\
\hline \\
\hline
\end{tabular}

\(\stackrel{*}{\star}\)

\(00 c m i c\)
cockar
conn

 BAY OHTNUT OF VELI'X AT TIUE
\[
\begin{array}{rl}
06008080 \\
0 & 08080 \\
\sim & =1000000
\end{array}
\]

은nㅇㅇㅇㅇㅇ 응N으응

*
\[
\stackrel{\rightharpoonup}{\oplus}
\]
\[
\begin{aligned}
& \begin{array}{r}
800010008 \\
0.80 .0808 \\
-004 \%
\end{array}
\end{aligned}
\]

006808800
0.808080
1080000000

\(\begin{array}{rl}08 & 108008 \\ 08 & 080 \\ = & 00 \\ = & 000000\end{array}\)

 in
 \(\stackrel{*}{\bullet}\)

\section*{\(\underset{\sim}{*}\)}

*

\footnotetext{
SAY OUTPUT OF VEL IN Y AT TIME 53.000 HRS. DATE 1075.*
}

\[
\begin{aligned}
& \text { 응응용요으응 }
\end{aligned}
\]

\section*{영ㅇㅇㅇㅇㅇㅇㅇㅇㅇ
}

\section*{ \(\because 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}\)}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{}} \\
\hline & \multirow[t]{3}{*}{\(\checkmark 6\)} \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

2^た \(\mathfrak{M} \because 0000000^{\circ}\)

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{01
060}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}

000500000
0000008
\(=00 \% 1000000\)

*

응8ㅇ88응
\(\because 0^{\circ} 00^{\circ} 00^{\circ} 00^{\circ}\)
680808080
508080808
7000000000000

OOCNMNOOO
COCMONOOO

 \(\underset{\sim}{N}\)
\(\underset{\sim}{*}\)
\(\underset{\sim}{*}\)

 \(\stackrel{1}{4}\)

 1.
 QAY ロAT VEL I! Y
 BA

00000 o 0 O
0000100000
000000000

\(\stackrel{*}{\sim}\)
\[
11 *
\] 5*
\[
\begin{array}{llll}
00 N n & \vec{n} \\
0<N & 0 \\
c & 0 & 0 & n \\
c & 0 & 0 & n
\end{array}
\]
Coonarino
\[
\begin{aligned}
& \vec{N} \\
& \underset{\sim}{N}
\end{aligned}
\]
ज
\(\begin{array}{ccc}0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0\end{array}\)
16
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

으으으응 \(\because 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}\)

 in

응ㅇㅇㅇㅇㅇ \(\because 0000000\)

ONOOCOOOO
CNOCOCOO

 \(\because G M O 80080\)
\(M\)
\(M 000000000\)

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
0
\]} \\
\hline \\
\hline
\end{tabular}

000000000
000000000
000000000
\(* 000000000\)

 \(00 \% 000000\)
000000000
-000000000000000000
 *

\(\stackrel{N}{N}\)
\(\stackrel{\sim}{N}\)

\section*{\(\underset{\sim}{N}\)}

 \(\stackrel{+}{\circ}\)

58.500 H2S.DATE
 BAY OU
CL*RW

58.500 HRS.DATE 1775
\[
?^{7}
\]
000000000
000000000
000000000
-0.00000000

 \(0 m N 0000000\)
imN 000000
000000000
\(\cdots 0000000000\)

 000098988
0808080808
0.000000000

090080908
080880880 \(10^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 00^{\circ}\)

N NんNFOOOOO जninio8000 \(\cdots=0 \% 000^{\circ}\)
 ~0. \(\because 00000\)

 35*

\(\stackrel{*}{0}\)

\[
\begin{aligned}
& \text { c en ow m o } 00 \\
& c
\end{aligned}
\] \(\infty\)

\[
3
\]

§
v i \(\infty\)复
\(\square\)
0
0
0

\begin{abstract}

2-D BAY MODEL
MWR

URD
\end{abstract}
\(\sim\)
\(\square\)

\(\frac{\square}{2}\)

MODEL

bristol channel

\[
\text { URD - MGR } 2-D \text { BAY MODEL }
\]

\subsection*{8.6 The 1-D Phase Simulation}

Initial conditions in the estuary phase are set to a horizontal profile as a continuation of the bat phase (this is recommended by not essential). Only branches containing head water inflows are fitted with a modified elevation and velocity (elsewhere zero) calculated from the discharge propagated throughout the segment. Fig. 8.6.A shows the initial conditions for the phase. The number of sub-grid points are the minimum required to maintain the stability conditions discussed in chapter 4 . Because of the relatively high wave velocity in the reaches, and the requirement to have at least two points per segment, with a very short segment in the middle of Newport of about 1 km , the time step cannot be safely extended beyond 1 min .

Fig. 8.6.B (9 parts) is the one dimensional simulation for a complete tidal cycle. From inspection, it is seen that the tide does not penetrate to the upper reaches, in agreement with observation. The tidal progress up the \(R\). Ebbw is less pronounced due to its slope being 6-10*more than that of the main river.

Fig. 8.6.C shows the through-cycle elevations at points along the estuary, and fig. 8.6.D the associated velocities. Notable are the relative lengths of ebb and flood, and the rate at which the tide arrives when it turns. Fig. 8.6.E is a conglomeration of more and less relevant elevation observations available for the estuary. Better agreement in noted for more recently available data, gathered cohesively \({ }^{[19]}\). Again, friction could be adjusted within limits without infringing the best values policy. Friction is more
```

important in this phase than in the bay [12][20]. Table 8.6.A shows some
values for Mannings ' }\mathbf{n}\mathrm{ ', the friction term used in the model for fully
turbulent flow.
Table 8.6.A Mannings Roughness Coefficient 'n' [16][20]
Clean Channel, very straight 0.025 (all }\pm0.005
Clean channel,some meandering 0.030
Winding with a clear channel 0.033
Winding with pools and weeds 0.040
Winding,overgrown,weedy >0.075
(note : Mannings Equation and Coefficient are sometimes known as
Strickler's , notably on the continent)
Fig. 8.6.F illustrates the best calibration achieved with available data for
elevations. Fig. 8.6.G shows the correlation between predicted velocities
for the two simulations for similar conditions ( tide height predicted to
\pm 8% )against velocities measured through the depth for a 42.1 ft tide at St.
Julians monitor site.

```


FIG 8.6.A INITIAL CONDITIONS

\[
0
\]

\[
\begin{aligned}
& c \\
& i \\
& i \\
& \vdots \\
& \vdots \\
& c \\
& c
\end{aligned}
\]

RIVE? AT TIEE AN MEN
完

VELOC, OISCH, 2.21 1235. \(\begin{array}{ll}0.75 & 1660 . \\ 0.17 & 808\end{array}\)
出
\[
z: n \sim \text { n noncu n n }
\]

15.37

URD 1-D MODEL PLOT HEIGHTS

\subsection*{8.7 Wind Effects on the Bay}

The geographical siting of the estuary causes it to be subjected to prevailing rain bearing westerlies. The model allows the effect of wind to be included in the bay by modifying the surface stress. This facility is of use in flood prevention modelling. The Usk flood plai \(n_{\text {suffers }}\) from flooding and housing tends to be built on lower and lower levels. Extensive protection work has been completed in the upper reaches, but large parts of the plain near Caerleon is still in danger when high tides combine with strong forcing winds. Fig. 8.7.A shows the effect of a very light breeze of about 10 knots westerly, and a 40 knot westerly gale. It is seem that the breeze has little but some effect ' (line A1/A2) but the gale adds up to 2.5 ft to a tide at high water. During the ebb phase the now opposing prevailing wind prevents a complete ebb and about 1 ft additional depth is retained at the upper end of the system. By making the wind stress time dependant whole storm cycles can be imposed on the tide to predict water levels in the system.
ft

\subsection*{8.8 Pollutant Transport Inputs}

A small data file is required to steer the two models from the first phase.

Much of it represents \(\sim\) restating the parameters used in the first phase, such data should be consistent with that used to generate the background file.

The B.O.D. reaction assumed is the simple 1st order decay :
\[
\begin{equation*}
B(t)=B(0) \cdot e^{-0.23 * t} \tag{8.8.A}
\end{equation*}
\]
where 0.23 is the BOD decay rate in per day, \(t\) is in days. The line OMEAS in fig. 8.8.A requires restating of the head flows. This should be consistent with those used by F1/F2 although small variations are acceptable in practice \((\pm 10 \%\) of main DWF), otherwise water transfer volumes will exceed space and the routine fails. Flows are in f.p.s. (ft.per sec) and \(1 \mathrm{mgd}=1.11 \mathrm{cfs}\). The line CMEAS BOD sets the initial BOD's in each segment. That for the bay and estuary are set globally to 0.5 . Similarly for D.O.
Brief data for each segment is also required to be restated (length, connection).
For each discharge, the following is required :

Segment and position withing segment of discharge point

Height above local datum of outfall for tidelocking (set to 9999. else)

Decay Constant for tidelocked load -prportion let out from 'reservoir' upon opening after tidelocking

Loads for each of the polluting components being simulated (up to 4 at one time)

Re-aeration is assumed to be 1 st order process like 8.8.A with a variable rate. BOD decays is assumed to require DO on a 1 to 1 basis. No other sources and sinks of oxygen are modelled. This simplistic approach is sufficient at this stage, but is capable of expansion to justify the cost of computing background data. \({ }^{R}\) e-aeration is automatically adjusted for height within the routine.

MMAX1 NMAX2 MMAXZ 100 IBOD

PRINTING
\(\left.\begin{array}{cccccc}96 & 40 & 41 & 2 & & \\ ? & 16 & 11 & & \\ 2 & 1 & & & \\ 4 & 7 & 5 & 8 & 5 & \\ 15 & & & & \\ 15 & 0 & 5 & 0 . & 1 & 10\end{array}\right)\)

RIVEROBAY I/F
BAY OOCEAN I/F VERT
BAY \(\quad\) OOCEAN I/F HORIL
\begin{tabular}{ll}
OMEAS & \\
CMEAS & BOD \\
CMEAS & \(O D\)
\end{tabular}
\begin{tabular}{lll}
SEGMENT DATA & SEGY \\
SEGMENT DATA & SEGZ \\
SEGMENT DATA & SEG3 \\
SEGMENT DATA & SEG4 \\
SEGMENT DATA & SEGS \\
SEGMENT DATA & SEGG \\
SEGMENT DATA & SEG? \\
SEGMENT DATA & SEGB \\
SEGMENT DATA & SEG \\
PILL SOUTH &
\end{tabular}

TREDEGAR DRY DOCK
RINGLAND
MAINDEE
TOWN
CIVIC
BARRACK
CENOTAPH SOUTH
CENOTAPH NORTH
BRYNGLAS \& BETTWS
ST JULIANS
CAERLEON
EASTERN VALLEY
COUNTY
MAESGIAS
 NAMES OF PARAMETERS B.O.D. DIS.O.D.
\[
143
\]
\begin{tabular}{lrlllllllll}
14 & 3 & & 50 & & 0.0 & 0.0 & & \\
2 & 7 & 10 & 3 & 7 & 10 & 4 & 6 & 10 \\
5 & 5 & 10 & 6 & 4 & 10 & 7 & 4 & 0 \\
8 & 4 & 9 & 9 & 5 & 0 & 10 & 5 & 7 \\
11 & 4 & 6 & 12 & 3 & 5 & & 13 & 2 & 5 \\
14 & 2 & 4 & 15 & 2 & 4 & & & & & \\
8000 & 1 & 1 &. TRUE & & & & & & &
\end{tabular}

\section*{FI9 8.8. B PARAMETER OUTPUT PT/PTI}

USKGSEVERN.13.1 FT AVERAGE TIDE AT BARRYELO. 7 FT AT NEWPURT HOD B/R I/F BHDRFISCHER PHASE 2 TEST DATA - ACTUAL (USK)

PROBLEN: IOENTIFIERS DON'T HATC!
PROBLE'
PROBLEA
PROPLE!!
PROBLEM
PROBLE:
PROELEM
PROBLE"
PROBLE:
PROBLE'
PROBLEM
PROBLEM
PRUBLE'H IDEUTIFIERS DON'T HATCH
PRUBLE" IDEATIFIERS OON'T "ATCH
PROBLE'I IDENTIFIEDS DON'T UATCH
PRORLE! IDEITIFIERS DON'T :ATCH
PROBLEH IDEUTIFIERS OON'T ATCH
PRORLE' IDEMTIFIERS DON'T UATCH
\(\begin{array}{rccccc}\text { CyCLES } & 15 & \text { PRINTING AT THES } & \\ 1 & 2 & 3 & 4 & 5 & 11\end{array}\)
DAPAMETER RATE CNST.
\begin{tabular}{lll}
B.0.0. & 0.230 & DECAY \& \\
015.0 .0 & 0.500 & REAERATION \\
& 0.000 & RATE
\end{tabular}

BOJNDARY COHDITIONS IN OPEN SEA
\begin{tabular}{ccc}
\begin{tabular}{c}
0.50000
\end{tabular} & 0.10000 & 10.00000 \\
B.O.D. & O. D. & TEST COMPONENT \\
MF ML & & (CONSERATIV)
\end{tabular}

\subsection*{8.9 Pollutant Transport Simulation}

The routine operates in complete phases only. Convective transport operates in blocks of steps (6 currently), followed then by one diffusive step.At each time step a block of water is moved using the velocities generatod by \(\mathrm{F} 1 / \mathrm{F} 2\). At each step, the net travel in the current direction, together with the grossinflow at the receiving node and the gro ss outflow from the 'leaving' node is computed for each segment.Subsegments are created as required, by an inflow block reaching a node and splitting into tributaries or just being length adjusted for the new channel dimesnions.To avoid new blocks swamping the system, after each scan they are cleaned, smaller ones being compounded into larger ones. Fig. 8.9.A shows the record of nodal flow over a flood phase of 5 hours (time steps of 10 minutes). Care should be taken to see that the headwater inflows (-111 . and -28 . in this case) reside in the segments gross flow for the whole of the simulation. Should they not, it indicates that the tide has exceeded the limit and the remaining projections are invalid. This should not occur if precisely the same data as that used for F1/F2 is used on this phase.

Reports are issued if requested on the behaviour of the tidelocked discharges. Fig. 8.9.B is a list of discharges and the weighted discharge over the long terms mean that they are issuing. The ADDNOW units refer to the multiple of the mean load, that has built up through tidelocking's reservoir effect.

All discharges have a coefficient of 0.9 , ie. \(90 \%\) of reservoir is discharged in the first cycle after opening. Up to 25 times normal loads suddenly enter thesystem,

\[
\begin{array}{ll}
3 & 0 \\
0 & 0 \infty \\
1 & 0 \\
0 & 0 \\
u & 0 \\
0 & 0 \\
- & 0 \\
0 & 0
\end{array}
\]
\(\infty\)
\(n\)
\(n\)
0

\[
\begin{array}{lll}
3 & 00 & 0 \\
0 & 0 & 0 \\
3 & 0 & 0 \\
u & 0 & 0 \\
5 & 0 & 0 \\
3 & \pm & 0 \\
0 & 0 & m
\end{array}
\]

\(n \rightarrow 0\)

\(N+\infty\)
\(\gamma\)

I
\(\vdots\)
\(z\)
\(d\)
\(a\)
\(m\)
\(m\)
\(+\)

\(\sum_{<}^{\text {I }} N+\infty \infty\)

\(\infty\)
\(h\)

FManto ANCH
1
3
5
7
9 AHCH
1
3
5
7
9 ANCH
1
1
3
5
7
9 BRANCH
```

**っだ

```


\begin{tabular}{|c|c|c|c|}
\hline \(x\) & & 工 & \\
\hline 0 & & 0 & \\
\hline \(z\) & \(\cdots+\infty\) & \(\geq\) & \(N+000\) \\
\hline < & & \(\leqslant\) & \\
\hline \(\cdots\) & & \(\cdots\) & \\
\hline \(m\) & & \(\infty\) & \\
\hline
\end{tabular}
\(\ln\)

 -marco
E ANCH
1
3
5
7
9
0 BRANCH BRAlCH \(-M \ln -a\)

\begin{tabular}{|c|c|}
\hline 0 & Mnam \\
\hline S & amns \\
\hline u & a ont \\
\hline 1 & いざ \\
\hline \(=\) & min \(\infty\) \\
\hline & \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
N+\infty \infty
\]} \\
\hline \\
\hline
\end{tabular}

\section*{\(H\)}
\(Q 0\)
\(\sum_{\substack{x \\ \infty \\ \infty \\ \infty}} n+\infty \infty\)
\(N+\infty \infty\)

I
U
OnNo
 BRANCH
1
3
5
7
9
BRANCH -Mencr
\begin{tabular}{|c|c|c|c|c|c|}
\hline CYCLE，DHASE & 8 HRS．IUIT & \(A \sim E=\) & 1. & 9 & \\
\hline OUTFALL & & 13．0000n & TO DT． & 6 & 5 \\
\hline OUTFALL & OPEJ，ADOHOUE & 1.30000 & TO PT， & 6 & 5 \\
\hline OUTFALL 2 & 2054， 2054015 y & 14.00000 & TOPT， & 6 & 5 \\
\hline OUTFALL & On¢\％，Ano \({ }^{\text {ary }}\) & 0.131007 & TO PT． & 6 & 5 \\
\hline OUTFAL！？ & OPE：102：0リ： & 1．40000 & TOPT． & 6 & 5 \\
\hline OUTFALL & OPE＇，ADarnym & 0.09300 & TO PT， & 6 & 5 \\
\hline OUTFALL & ORE，－－Do Owe & 0．14000 & TO PT． & 6 & 5 \\
\hline OUTFALL 3 & & 16．0n000 & TO DT． & 6 & 3 \\
\hline OUTFALL？ & & （1．01490 & T－PT， & 6 & 5 \\
\hline OUTFALL 3 & ORES－ADOHOUE & 1.60000 & TO PT． & 6 & 3 \\
\hline OUTFALL 3 & & 0.16000 & TO PT． & 6 & 2 \\
\hline OUTFIL 3 & Oney：ancou＝ & 0.01602 & YP PT． & 6 & 2 \\
\hline OUTFALL 4 & Cres，ADOMCHE & 10．0nono & T－ 0 & 5 & 2 \\
\hline OUTFALL 11 & & －n．ananc & TO DT． & 3 & 7 \\
\hline OUTFALI．A & & 1.00021 & TO PT： & 5 & 2 \\
\hline OUTFALL & O25：\(\triangle\) ODOME & 20．0n000 & TO PT． & 4 & 2 \\
\hline OUTFALL 19 & On\％：Ann：06＝ & －noona & T PT． & 3 & 6 \\
\hline OUTFALL 4 & OOE゙，ADORO以 & Q． 1 mono & T 1 DT． & 5 & 2 \\
\hline OUTFiLL？ & & 1．\({ }^{\text {a anann }}\) & T－ 0 ． & 4 & 3 \\
\hline OUFF：L6 ？ & －nを゙．－rovolk & 2 anoun & IT & 4. & 2 \\
\hline 011TFALL & ORE：－－－\％＝ & rapono & TS RT & 3 & 6 \\
\hline OUTFILL 4 & & & T \(\mathrm{T}^{\text {a }}\) & 5 & 2 \\
\hline OHFFALI ？ & mat．：．ancola & －．．． & － & \(\therefore\) & ？ \\
\hline 017：¢ & ก．．．） & \(\therefore\)－ & ？ & \(\therefore\) & 3 \\
\hline OUTFIL？ & のーE：ionnony & rasa & DT & 4 & ？ \\
\hline OUTEML 19 & & －Canoo & YOPT． & 3 & \％ \\
\hline OUTEALI ia & & 2． ancora \(^{\text {a }}\) & TO DT， & is & 7. \\
\hline OUTFALL & & 3．aronot & TO PT： & 4 & 3 \\
\hline OUTFALL ？ & & 2．21000 & TO RT． & 4 & 3 \\
\hline OUTFALL 3 & & 2.20004 & TC PT． & 4 & 3 \\
\hline OUTFALL ？ & OCET，MODAOU： & － 220000 T & TO PT， & 4 & 2 \\
\hline OUTFILL 14 & ORE． anornwa \(^{\text {a }}\) & 2．20non & TO PT： & 6 & 2 \\
\hline OUTFALL 5 & OPEM，ADDVOUE & 24.00000 T & TC PT， & 5 & 9 \\
\hline OUTFALL 6 & aseriononvova & 2.30000 \％ & TOPT． & 4 & 3 \\
\hline OUYFALL？ & & － .02100 T & TO PT． & 4 & 3 \\
\hline OUTFALL 3 & & 0.22000 i & TOPT： & 4 & 3 \\
\hline OUTFALL 14 & & C． 22000 T & TO PT． & 6 & 2 \\
\hline OUTFALL 5 & OPEM，－ \(02 \cdot 10 \mathrm{M}=\) & 2.40009 T & TO PT． & 5 & 1 \\
\hline OUTFILL 6 & OPE：DODUO以＝ & 0.23000 T & TO PT． & 4 & 3 \\
\hline OUTFALL & OPE： 2020 OH & 0.02200 T & TO PT， & 4 & 2 \\
\hline OUTFALI． 14 & OREV AnnuOUm & 0.02200 T & TO PT． & 6 & 2 \\
\hline OUTFALL 5 & CDEV，ADOU04： & 0.24000 T & TO PT， & 5 & 1 \\
\hline OUTFALL 6 & & 0.02300 T & TO PT． & 4 & 2 \\
\hline OUTFALL 5 & OPEN．ADO OWE & 0.02400 T & TO PT． & 5 & 1 \\
\hline
\end{tabular}

The effect on the continuity requirements of some methods by this type of shock load is often catastrophic.

Fig. 8.9.C gives the full projections of BOD/OD for high and low water for a 100 mgd simulation. Both predictions fall within the computed confidence limits projected from field data shown in fig. 9.4.B and C. However, the actual distributions are skew and disatisfactory. Segment 8, the R. Ebbw, has no data available and in any event, the first sub-segment point should be ignored, as the discharge is close to the head of a small stretch.

Indications are that diffusion is not sufficiently well represented and thus cannot dilute shock loads sufficiently well.

Levels of BOD transported to and from the bay range from 1.8 to 0.49 .

Reducing the input \(B O D\) to zero on the boundary as well as setting D.O. levels to completely saturated, improves the BOD profile significantly, and the minimum D.O. by up to \(10 \%\) sat. (fig. 8.9.D). At high water the beneficial effec is in the lower reaches only, showing low dispersion characteristics. This lack of mixing tends to retain the Eastern Valley output in a plug and as the tide comes in this is pushed as a plug towards Newbridge (fig. 8.9.E)

Simulating a doubling of the Eastern Valleys outfall created a plug of pollutant of BOD about \(22 \mathrm{mg} / 1\) when \(12-13 \mathrm{mg} / 1\) is to be expected with localised high DO deficits.

Switching off the diffusion present generated high levels around lower/middle Newport in the region \(14-25 \mathrm{mg} / 1\) and unrealistic DO levels of only \(30 \%-40 \%\) at low water for some 6 miles. The Eastern Valleys outfall plug remains fairly discrete at about \(30 \mathrm{mg} / 1\), and \(20 \%-50 \% \mathrm{DO}\), oscillating with only convective motion between successive high waters. Whereas the conceptual
colcentrations til the riven，at eno of phase 3 of cycle 1
SES 1 PTS 3 LUNGTH（MLS） 3.75227
DISTANCE

17004 ． 24 ＊ 3.3341 O． 34517 E no \(0.81310 \mathrm{EmO1} \%\) O．D．
SE 3 ？PTS 4 LEUGTH（VLS） 2.57413
DISTANCE \(\quad \because C O H C\) SIIBS \(1.0 C O H C\) SUES 2 ．．COVIC SUBS
\(\begin{array}{llllll}1022.36 \\ 3778.72 * & 0.1236 & 0.12730 E & 01 & 0.1205 \mathrm{O} & 00\end{array}\)
3778.72 ＊ 0.71570 .3347 它 \(71 \quad 0.33512 \mathrm{E} 00\)
7449.53 ＊ \(1.4100 \quad 0.42756 \mathrm{E} 01 \quad 0.44172 \mathrm{E} 00\)
11437.63 ＊ \(2.1761 \quad 0.715 \% 3 \mathrm{E}\) ก1 0.47854 E 00

SE 3 DTS 5 LEVGTH（＇LSS） 2.02500

\(325.60 * 0.0617 \quad 0.6427 .4 \mathrm{E}\) 11 \(0.47583 E\) CO
\(2203.16 * 0.41730 .63073 \mathrm{E} 01 \quad 0.46556 \mathrm{E} 00\)
\(5555.73 * 1.0522 \quad 0.569 \mathrm{CBE}\) O1 0.43136 E तO
\(9395.45 * 1.7724 \quad 0.51807 \mathrm{E} 01 \quad 0.4242 \mathrm{E} 00\)
13175.04 ＊ 2.4753 ． \(45876 \mathrm{E} 01 \quad 0.37463 \mathrm{E} \mathrm{O} 11\)

SE3 4 PTS 5 LEVGTH（HLS） 1.023 ？ 6
DISTAACE \(50 \%\) ．\(\because\) COHC SUBS 1 ．．CONC SURS \(2 \ldots\) COIIC SUBS
\(507.33 * 0.05 .65 \quad 0.4544 \mathrm{E} 01 \quad 0.37342 \mathrm{E} 00\)
\(1527.73 * 0.23040 .43477 \mathrm{E}\) O1 0.36564 E 00
\(2546.63 * 0.43230 .46743 \mathrm{E}\) Of 0.35746 E un
\(\begin{array}{llll}3213.58 * 0.7223 & 0.45474 \mathrm{E} 71 & 0.5260 \mathrm{E} \\ 4988.58 *\end{array}\)
SES 5 PTS 4 LENGTH（4LS） 0.65402
DISTANCE \(\quad \because\) CONC SUBS 9 COILC SURS \(2 \ldots\) COHC SUSS
456.70 ＊ \(0.03850 .42120 \mathrm{E} \mathrm{O}_{1} 0.34162 \mathrm{E} \mathrm{O}_{0}\)
\(1370.03+0.2575 \quad 0.32964 \mathrm{E}\) П1 0.33585 E वी
\(2233.48 * 0.4325\) 0．3313RE O1 0． 22941 E O
\(3087.09 * 0.550^{2} \quad 0.32203 \mathrm{E} 01 \quad 0.32512 \mathrm{E} 09\)
SE3 6 PTS 10 LEHGTIC（ILS） 1.30447

\(272.02 \times 0.0515\) ． 3737 NE O1 0.3202 万E O

\(2097.44 * 0.3272\) 0．35252E O1 0．30402E 10
\(3020.10 * 0.5735 \quad 0.34363 \mathrm{E} \quad 01 \quad 0.29514 \mathrm{E}\) OO

5820.09 ＊ \(1.1023 \quad 0.302\) OUE त1 0．26922E 00
\(6750.75 * 1.27260 .31713 \mathrm{E}\) O1 0.2 ． 162 E 00

\(620.83 * 0.1176 \quad 0.26551 \mathrm{E}\) Of 0.23736 E OO

W5287．69＊U1． 0115 0．148n2E 01 O．13841E 00

\(7376.29 * \Sigma_{1}: 3 \sim 70 \quad 0.12333 \mathrm{E}\) ク1 0.11634 E OO
8307.71 ＋ 1.57360 .11377 E O1 0.10718 E 00
\(9243.13 * 1.7506 \quad 0.10545 \mathrm{E} \quad 01 \quad 0.10343 \mathrm{E} 00\)
\(11100.76 * 2.1042\) O．01046E OO O．93919E＝01
12043.37 ＊2，2：02 O．S4332E 20 O．F1993Em 1
\(12794.40 * 2.4232\) ． 79020 E On 0．00143E＝01
SE3 \({ }^{3}\) PTS 4 L ت̈＇IGTH（illS） 2.527118
DISTANCE \(\quad\). CONG SIIBS 1 ．．CONC SUES \(2 .\). CONC SURS
\(\begin{array}{lllllll}3.66 & * & 0.0007 & 0.25490 E & n 3 & 0.19902 E & 01\end{array}\)
\(3663.23 * 0.732 \% 0.27025 \mathrm{E} 01 \quad 0.20106 \mathrm{E} 00\)
10144.79 ＊1．7214 0．72622E OO 0.10125 E 00
12751.68 ＊ \(2.4530 \quad .71714 \mathrm{E} 00 \quad 0.86627 \mathrm{Em} 01\)

SES ？PTS 10 LELGTH（4LS）U． 28580
DISTANCE \(\quad\), COHC SUBS \(1 . . C O N C\) SUBS ？．．CONC SUBS
\(143.26 * 0.0271 \quad .72041 E\) NO 0.82225 Em 1
\(1040: 33 * 0.1071 \quad: 705 \mathrm{R} 5 \mathrm{E}\) NT 0.28155 Em 1
\(1543.71 * 0.2724 \quad 0.1726 \mathrm{E}\) กO \(0.28654 \mathrm{E}=01\)
\(2046.53 * 0.38760 .53032 \mathrm{E}\) OR \(2540.89724 \mathrm{E}=1\)
\(2547.45 * 0.4327 \quad 0.54528 \mathrm{E}\) On \(0.0141 \mathrm{DE}=01\)
3183.52 ＊ \(0.6,22 \quad 0.529^{n} 2 \mathrm{E}\) OC \(0.92977 \mathrm{E}=01\)
\(3872.59+0.7334 \quad 0.50706 \mathrm{E}\) On \(0.93223 \mathrm{E}=01\)
\(\begin{array}{llll}4345.00 & * 0.3229 & 0.50304 \mathrm{E} & 00 \\ 4593.77 & 0.91153 \mathrm{EEN1}\end{array}\)
\(\frac{\frac{F I G}{8.9} C}{P T / P T 1}\)
PREDI CTIONS
（L．W．）（i）

B．O．D
.94260 Emil
SE 3 PTS 14 LEUGTH(HLS) 3.75227
DISTANCE ..CONC SUBS 1..cONC SUES 2...CillC SUBS

 \(1675.83 \times 0.3174 \quad 0.15036 \mathrm{E}\) or 0.11223 EmO 1

 \(\begin{array}{lllll}4483.23 * 0.3471 & 0.30512 E & 0.27232 E & 0 \\ 5239.23 * 0.7923 & 0.65745 E & 01 & 0.52036 \mathrm{E} & 0\end{array}\)
 \(6612.85 * 1.2524 \quad 0.88410 \mathrm{E} 91 \quad 0.69130 \mathrm{E}\) กo
 \(3603.94+9.6275 \quad 2.802\) थUE \(21 \quad 0.73264 \mathrm{E} .00\)
 10595.02 * 2.0086 \(\quad .70820 E\) M1 . 2.69112 E NO

 16563.30 * 3.1370 O. 56973 E 01 \(\because .656 \mathrm{OE}\)
 \(17938.53 * 3.3074 \quad\). 537 O2E \(01 \quad 0.55743 \mathrm{E}\) UO
 \(13687.39+3.53 \cap 4 \quad 0.52772 \mathrm{E} 01 \quad 0.55202 \mathrm{E}\) 00
 17437.25*3.6213 0.524 R1E O1 0.55120 E 0 C
SE3 2 PTS 8 LE'GGTH('LS) 2.57443
DISTANCE ...CONC SUBS 1..CONC SURS ..CONC SURS
 \(741.05 * 0.1404\) C.48285E ती O.53104E OO
 \(2378.22 * 0.4504 \quad .430\) O25 01 6.43015E OO
 \(4170.45 * 0.75000 .38905 \mathrm{E}\) 2i C.44335E DU
 \(5062.63 * 1.1233\). 237517 E 01 . 1301 E OO

 502.82 * 0.0752 O.21173E 01). ? \(6007 E 00\)
 \(1677.50+0.317 \% \quad .1370 n \mathrm{E} 01 \quad 0 . \angle 4011 \mathrm{E}\)

 4540.21 * \(0.3579 \quad 0.14732 \mathrm{E} 01 \quad 0.19234 \mathrm{E}\) ü
 6234.44 * \(1.1208 \quad 0.13743 \mathrm{E} 01 \quad 0.17201 \mathrm{E} 70\)
 \(7928.66 * 1.5016\) 0.11222E O1 0.15772 E 00
 9622.89 * 1.82250 .79623 E กO . 14537 E 00
 \(11317.12 * 2.11 .34 \quad 0.87445 E 00 \quad 0.13724 E 00\)
 13011.35 * 2.4643 0.30346E 00 0.i3040E OO
 \(14387.21 * 2.7248 \quad 0.74025 \mathrm{E} \mathrm{OO} \quad 0.12639 \mathrm{E} 00\)
SE3 4 PTS 5 LE'IGTH(HLS) 1.02386
DISTANCE .CNNC SUAS 1..CONC SUBS 2..CONC SUBS
 \(241.24+0.0458 \quad 0.71475 E\) OO 0.12450 E 00
 \(1168.00 * 0.22120 .6943\) E 00 0.12246E 00
 \(2536.23+0.4 .203 \quad 0.65204 \mathrm{E}\) OO 0.11922 E Oी
 \(3904.47 * 0.7375 \quad 0.57205 E\) O 0.11863 E 00
 4997.29 * 0.04650 .559 EE OO 0.11823E 00
SE 3 PTS 3 LEHGTH("LS) 5.65402
DISTANCE \(\quad\) CONC SUSS 1..CONO SUSS 2..COUC SUBS
 667.09 * 0.1263 0.54372E OO 0.117 フЗE 00
 \(2004.10 * 0.3776 \quad 0.53422 \mathrm{E} 00 \quad 0.11754 \mathrm{E}\) dO
 3066.01 * 0.5 E 07 . 52805 E つつ 0.11734 E 00
SE3 6 PTS 7 LEIGTH(LLS) 1.30447
OISTANCE ..CONC SUSS 1...CONC SUBS 2.. CONC SUBS
 \(215.70 * 0.0409 \quad 0.52213 \mathrm{E} 00 \quad 0.11715 \mathrm{E}\))
 1051.10 * 0.10010 .51765 E 00 0.11670E 00
 \(2289.69 * 0.4337 \quad 0.5097\) 2E OO O. 11660 E 00
 \(3528.27+0.6632 \quad 0.506\) 万6E \(\quad 00 \quad 0.19623 \mathrm{E}\)
 4766.36 * \(0.7028 \quad 0.50653 \mathrm{E} 00 \quad 0.115\) R1E 00
 6005.45 * \(1.13740,54166 \mathrm{E} 00\) O.11537E
 \(6967.36 * 1.31760 .52867 \mathrm{E} 00\) 0.11470E OO
 FiG 8.9.C H.W. (i)
SE3 \({ }^{7}\) PTS 14 LEHGTH(ILLS) 2.47708
 \(1046.77 * 0.0479 \quad 0.43527 E 00\) 0.14432E OO \(2087.45+0.3 n 54 \quad 0.48533 E 00 \quad 0.11419 \mathrm{E} 00\) \(\begin{array}{lllll}3127.74 & * 0.5024 & 0.43507 E & 00 & 0.11353 E \\ 4163.42 & \text { * } & 0.7005 & 0.436 \text { OE } & 00\end{array}\) \(\begin{array}{llll}4168.42 & * 0.7505 & 0.4366 \text { CE OO O. } 11220 \text { O } 00\end{array}\) 6249.30 * 1.1336 0.43734E OO \(0.11157 E 10\) 7255.60 * 1.3742 O.43860E OO 0.111100 E 00
 9199.47 * 1.7423 0.43966E OO O.1.944E OO
 \(12115.29 * 2.2046 \quad 0.471\) P7E 00 O 1.355 E 00 12340.10 * 2.4313 0.40126E on 0.11314 E 00
SE3 \({ }^{8}\) PTS 24 LELGTIG(HLS) 2.52706
DISTANCE \(0.99 * 0.0\) COALC SUBS \(1 \ldots C O N C\) SUSS 2. COHC SUBS \(0.99 * 0.0902\)
\(235.91 * 0.1533\)
\(2191.62 * 0.34230 E\) O1 \(0.3=753 \mathrm{E} 0\) \(2191.62+0.415 i \quad 0.13912 E 11 \quad 0.3 C 153\) E 0

\(3663 . ? 3\) * 0.6037 0.5604んE DO
- Sounde do 0.1175SE oo
4230.55 * 0.3012 O.500nte 00 0. 1 i627E 00

\begin{tabular}{lllll}
6217.73 & +1.1730 & 0.433206 & 70 & 0.11449 E \\
6080.77 & 00 & 0.11327 E & 0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \\
\hline & \[
0.43427 \mathrm{E}
\] & 07 & & \\
\hline 7767.05 * 1.4712 & & 00 & & \\
\hline 8311.43 * 1.5741 & & 00 & & 0 \\
\hline 8354.92 * 1. & & 20 & & 0 \\
\hline 2398.41 & 0.43822 E & \(n 0\) & 0.110 & 0 \\
\hline 9943.33 * 1.3832 & 0.43822 E & 00 & 0.1102 & 0 \\
\hline 10489.84 * 1.7867 & . 43938 E & \(0{ }^{1}\) & & 00 \\
\hline 11036.29 * 2.0002 & 0.43900 E & 0) & \[
33
\] & 0 \\
\hline 11582.74 * 2.1037 & 0.49031 E & 00 & 0.10890 & 0 \\
\hline 12127.20 * 2.2072 & 0.47072 E & 00 & & 0 \\
\hline 12675.65 * 2.4007 & & & & 10 \\
\hline * 2.4873 & 708 & 10 & 744 & \\
\hline
\end{tabular}
SEG 9 PTS 9 LENGTH(MLS) 0.33530
DISTANCE \(24.23 * 0 . \operatorname{CONC}\) SUSS 1..CONC SUBS 2. COHC SUBS
\(24.23 * 0.0046 \quad 0.4\) ?2.17E On 0.107 OOE OO
\(1015.07 * 0.0716 \quad 0.49243 \mathrm{E}\) OO 0.1 .631 E 00
1627.79 * 0.3037 1. 40277 E On 0.1 .655 E 00
\(2244.51 * 0.4251 \quad 0.40327 \mathrm{E}\) O 0.10533 E 00
\(2350.23 * 0.5415\) - 0.10548 E 00
\(3473.05 * 0.6570 .47475 \mathrm{E}\) an 0.10459 E 00
\(4088.67 * 0.77440 .4951 \mathrm{E}\) 0) 0.10426 E 00

FIG 8.9.C H.W. (ii)
```

    COHCE"TNATIOYS I: THE RIVEN, AT END OF OIIASE 3 OF CYC
    SES 1 RTS 3 L-UCT:I(LLS) 3.752.27
    ```



```

    SE3 2 CTS & LHOCTH('LLS) 2.50443
    ```



```

    DISTA"CE &OCNC SMES A...CNHC SURS 2. CONC SHRS
    ```

```

    .5555.73* *.0522 0.5600nE O. O. 356105 on O
    ```

```

    SE3 & PTS % L.NTN(i,5) 1.^23nb
    ```



```

    SE3 STCNTS & LENCT:(`LS) .654の2
    ```

```

    *)
    SE3

```

```

        Ma,
    ```



```

SEG ? DTS 20 Lz'NT:1(1LS) 2.<77nの

```



```

        6535.2n* *.2L72 
    ```



```

    3.66* 0.0707 0.254nnE 03 O.10753E nl
    ```

```

    4205* 68 * 2 4rz O % ONT'Em^1
    SEg ? bTS an'LrNCT:(MLS) ?.0n5an

```


\section*{F19．8．9．D \\ ZERO BOUNDARY}

CONDITIONS
（L．W．）
\(\therefore \quad . \quad 35 \mathrm{CO}\)－
－ \(\operatorname{con} 25 \mathrm{ME} \mathrm{E}-1\)

stins 2．colic sues

－＂n？2 Emn
－
SUNS 2．CO：HC SIIAS
COOECE＝1

1rクアロー・•
\(.78: / \mathrm{E}=11\)
\(4.55 \mathrm{C}=01\)
－1．10の2E－01
プップーmの
－C8GのE＝n 1

Fi9 8.9.E
ZERO BOUNDARY CONDITIONS (H.W.)
```

approach to handling pollutants has undoubted advantages, more development is
needed here before radical projections can be accepted with confidence.
Diffusion and dispersion are undoubtedly continuous parallel processes.To
attempt to model them as discrete serial processes could meet with problems
if relative time scales are large.
8.10 A River Model
It is essential that at least a part of each headwater stretch operates as a
river so that the tide budget can be balanced rather than lose volume out of
the top of the system. However, there is no requirement for each segment to
contain tidal influences. Neither need the seaward boundary forcing function
be tidal in nature. Sluices or piped input will be equally applicable.
Consequently, the whole system can be used solely for modelling rivers.

```

\subsection*{8.11 Model Execution Timergs}

\section*{F2}

As no iterative phase is involved, timings for a set geometry were very constant for fixed time steps. For a river step of 1 min and 3 min . for the bay, and graph plotting, required 2000 time units for 63 hours simulation real-time, or 32 time units per hour. Including drying out in the bay phases and allowing internal iteration for greater accuracy will require about 75 time units per hour. For long runs, restart facilities are available on the full of each hour of simulation time.

\section*{F1}

The model has more options generating output and graphs, and so still requires

\section*{8.BIBLIOGRAPHY for Chapter 8}
[1] "A Method for Predicting Pollutant Transport in Tidal Waters", H.B. Fischer, WRE No. 132, Univ. of Calif., March 1970
[2] "A Lagrangian Method for Predicting Pollutant Transport in Bolinas Lagoon, California",H.B. Fischer, US Geolog. Surv. Open File, Menlo Park, 1969
[3] "Aspects of a Computational Model for long Period Water Wave Propagation", J.J. Leendertse, Memo RM-5294-PR, Santa Monica, 1967
[4] "Water Quality in the Severn Estuary and Recommendations for Future Investigations".A. Winters, M.J. Barrett,WPRL, WPRS/110/3/5,Jul 1972
[5] "Annual Soundings,Approaches to Pierhead , Newport", BTDB,Newport
[6] "Swansea Harbour Soundings", BTDB, Swansea
[7] "Severnside - A Feasibility Study", Cent. Unit for Environmental Plann. HMSO, London, 1971
[8] "The Severn Bore", F.W. Robotham, David and Charles Co. Ltd., Newton Abbot, 1970
[9] "Fluid Mechanics for Hydraulic Engineers",H. Rouse, McGraw Hill
[10] "Elementary Mechanics of Fluids",H. Rouse, J. Wliey, USA
[11] "Advanced Mechanics of Fluids", H. Rouse, J. Wiley, USA
[12] "Tidal Computations",J.J. Dronkers, North Holland Publishing Co.
[13] "Mechanische Aehnlichkeiten unt Turbulenz", Theo von Karman, Nachrichten Gesellschaft Wissenschaftler, Goettingen, 1930
[14] "? ",A.A. Szewczyk, Univ. of Queensland, C.Eng. Report, 1973
[15] "Numerical Modelling of Pollutant Transport and Dispersion in Bays and Estuaries",C.J. Apelt,A.A. Szewczyk, Num. Meth. in Fluid Dyn., Editor Brebbia, Connor, Pentech Press, Sept. 1974
[16] "Opend Channel Flow",F.M. Henderson, MacMillan and Co. Ltd.
[17] "Wind Effects on Lakes and Rivers",B. Hellstrom, Handlingen der Ingeniors Vetenkaps Akademie, Stockholm
[18] "Growth of Wind Generated Waves and Energy Transfer",J.T. Thysse, US Gov. Print. Office
[19] "A Study of the Hydrodynamic and Water Quality Characteris tics of the Usk Estuary, Vol \(1^{\prime \prime}\), D.W. K \(\mathrm{K}_{\mathrm{n}} \mathrm{ght}, \mathrm{J} . \mathrm{R}\). West, Univ. of Birmingham, Oct 1976
[20] "Open Channel Hydraulics", Ven Te Chow, Mc Graw Hill, New York, Chapter5

Chapter 9

Applying the Stochastic Model

\section*{Contents}

\section*{Chapter 9}
```

9.0 Introduction
9.1 Input Parameters
9.2 Software Testing
9.3 The Model in the Usk
9.4 The Stochastic Coefficient
9.5 A River Model
9.BIBLIOGRAPHY for Chapter 9

```

The Stochastic Model is the most expensive model of the three int erms of running costs for the mainframe computer and in data requirements for the latter phases of simulation.

Two versions are available. Version ST is completely self-contained, and ST2 can use intermediate files generated by the models F1 and F2 via software interfaces and a small run time parameter file.

The first step in the model is to compute the mean values of B.OD. and O.D. (oxygen deficit) at various times throughout the cycle for the length of the system. Again, depending on the accuracy of the initial conditions supplied by the user, the time taken to reach numerical steady state can vary from 400 computer time units to 2,600. Fig. 9.0.A shows initial conditions found suitable for a wide range of inputs to the Usk.

A minimum time of \(20-30\) hours real-time simulation was required to start considering output to be independant of start up effects. Because of the rapidity of tidal motion, the time step varies dramatically and is at times very much lower than for other sestuaries. Fig. 9.0.B illustrates time steps required in the \(U_{s k}\) and Delaware Estuaries \({ }^{[1]}\).

Much of the problem was caused by the tidelocking of the majority of the discharges in Newport. Fig. 9.0.C illustrates the times of discharge of the various outfalls in the tidal cycle. The Runge-Kutta-Merson Integration assumes a continuous function, which is now not the case as the function is only piecewise continuous. This could well threaten the stability of the system.
load on opening so accentuating the discontinuity. Using this method, time steps changed so rapidly that a two tidal cycle simulation required 6,000 time units.

To moderate the problem, a 'leek' rate is computed instead of complete closure. This ensures that the shock load is moderated and the discontinuity is vaguely continuous. This has a stabilizing effect on the time step and reduces the time for a 40 hour simulation to 3,000 time units. This means that a simulation is not cost prohibitive.

To make the model more cost effective, several actions were taken:
a) After investigation of time spent by the program it was found that the time consuming part of the integration was the array access for the variables. Many of the arrays are single valued for all practical purposes and an amended routine INPUT senses if a batch of these arrays are single valued. If so, a switch is set to enable function evaluations to be made using global constants, thus making a function evaluation up to \(12 \%\) more efficient.
b) The derivations calculated in the first phase are of the first and second order, and computed up to sixth order accuracy. Alternatives for second order accuracy were incorporated. Use of this in the startup period assisted stability. The second order accuracy derivatives may be used throughout for a maximum \(\pm 0.02\) deviation on O.D./B.O.D. projections. The overall program speed increased by \(3 \%\).
c) A second order Runge Kutta method was incorporated in place of the fourth order method. As less functional evaluations were required,
```

    program speed increased by up to 28%. However, as no inbuilt error
    estimate is available, the time step is fixed and can easily generate
    cumulative errors. Reducing the time step to the minimum used by the
    fourth order method increases core time by more than 40%. This facility
    should only be used for short duration simulations (less than one
    tidal cycle) and only where a good starting distribution is available.
    Despite all the above enhancements, the most efficient simulation still
required 56 time units per hourof real time simulation. Although 76% less
costlt than the original version it was still considered too expensive
for everyday use. In any event, it was finally available only after
termination of the project.

```


FIG 9.0.C TIDELOCKED DISCHARGES

Again the policy of using best estimates of parameters is adopted. As most parameters are estimated, there is little point in trying to tune the model to one or several of the parameters.

There is some flexibility on the B.O.D./O.D. (oxygen deficit) grid selected. They need not coincide. However, the B.O.D. spacings must be an integer multiple of the O.D. spacing. At most, three times as many B.O.D. points are required as O.D. points. Usually grids coincide for convenience. In the Usk, 150 points were used for both grids.

Up to 20 points can be selected for printing. For ease of eventual data interpretation, full date-time handling facilities are included.

The initial time step is merely a convenience in the full model, as the optimum step is soon reached. If the second order method is to be used, then it is very important as the step is used throughout simulation. Other initial conditions have been discussed in 9.0. Other parameters were from reviewed literature \([2][3][4]\) :

The solution was not found to be sensitive to Land Runoff values less
than \(50,000 \mathrm{lbs}\) per hour per cubic mile. Benthal Demand was not covered
```

by basic data available.
Outfall input data required opening and closing times for tidelocking
calculation, position and point averaged cross sectional areas in square
miles and mean loadings.
9.2 Software Acceptance Trials
Sufficient information was available in the literature to simulate the
Potomac Estuary. Input and output matched those of reference [1]
(fig. 9.2.A and B) This gave a useful validation source after many versions
of the original were developed to incorporate previously mentioned enhance-
ments, as well as graphical output.

```

шшшшшшшшшшшшш OOO～NF，
 ットにたたた

ㅇㅇㅇ응5555ㅇ
шшшшшшшшшшшшш

 －000000000000

OOO 00055550505 шшшшшшшшш шшшшшш

 MuJNFFFFFFF下 \(00^{\circ} 00^{\circ} 0000000^{\circ}\)

ㅇㅇㅇㅇㅇㅇ55555ㅇ
шш かっo

 \(\stackrel{2}{2}\) 000000555555555 шшшшшшшшшшшшшш \(\rightarrow 0\) N～に

 \(\stackrel{\square}{-}\)

ㅇㅇㅇㅇㅇ응5555․
山мшшшшшшшшшшшш へMルMNOFinanonoo

 OOOOOOOOOOOOOO

ㅇㅇㅇㅇ은55555ㄷ
山шшшшшшшшшшшшш
 かNingonniononn
 \(0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}\)
 шшшшшшшшшшшшшш

 OOO \(0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}\)

ㅇㅇㅇㅇㅇㅇㅇㄷ55555ㅇ

 OUN NMOFFFFNNFO \(00^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}\)
 wi i шш ш ш 山 ш шшшш山ш Mーの人の人
 \(00^{\circ} 00^{\circ} 00^{\circ} 00^{\circ} 0\)

 －000000000000

OKF
 inouninson
 －0000000000000
 حس HJONNNa～a onNo
 ON \(\infty\) obinnnsMNNN

 ェッ山 ハ00000000000000

OFF
 ～ounaomoomvN～a MMNOONOMMNかN～M MonntmumimnnNT \(00^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}\)

O 50505050505050

 MnaNN以NUNMMNNT \(0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}\)

O55555555505055 \begin{tabular}{lllllllllllll}
1 \\
\(\boldsymbol{1}\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
 No
 \(0^{\circ \circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 00^{\circ}\)
 шш 山ышш 山шш山шы山山

以下anNunincmmNNN OOOOOOOOOOOOO

шшшшшшшшшшшшшш O000000000000 000000000000000 ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ \(0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}\)

응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
шшшшшшшшшшшшшш
 ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ응 응ㅇㅇㅇㅇ․․ㅇ․ㅇ

O8080890ㅇㅇㅇㅇㅇ

0000 0ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

1 1000000000000 \(\sim\)
ㄴㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
\(\stackrel{<}{\alpha}\)
юшшшшшшшшшшшши ш －080ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 응ㅇ응ㅇㅇㅇㅇㅇㅇㅇㅇㅇ \(4.0 \circ 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}\) u

응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
шшшшшшшшшшшшшшш \(ш ш ш\)
 OOOOONOOOOOOOO －． 0 ． 0000000 －0000000000000

ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
\(山 ш ш ш ш ш ш ш ш ш ш ш ш ш\) 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 080ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ \(0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}\)

шшшшшшшшшшшшшш ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
 \(0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}\)
 \％O． 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

FIG \(9.2 . \mathrm{B}\)
OUTPUT FOR
POTOMAC -
MATCHING [1]

TIME, HRS
0.1756
delta t.ink
11.80

As the first phase aims to predict the mean values over multiple tides for a point in time and space, and accepting that the Steady State Model is reasonably sound, predictions from one may be used on the current model.

Figure 9.3. A shows the scatter of predictions about a mean Steady State value generated from the Steady State Model. There seems to be reasonable agreement, although the modelled situation is not very severe.

In the absence of data to see the process through to its ultimate conclusion, i.e. probabilistic limits on the means predictions, little further effort was possible.

The complete basic data set is shown in fig. 9.3.B.

Introducing a small benthal demand (500 ibs per hour per cubic mile) had no effect on the O.D. and only a very slight effect on the B.O.D.

Fig. 9.3.C shows the projected effect of doubling the Eastern Valley loadings.

The mean effect agrees well with that projected by the Steady State Model.

Note that there is no net improvement in the predictions as they reach the two dimensional phase boundary, as the boundary is open and not necessarily
constrained to be a constant. If this is required, the one dimensional
model has to be extended out into the two dimensional phase until
equilibrium is reached. This then has no physical interpretation, however.

Halving diffusion of the oxygen deficit affects predictions by at most
\(4 \%-5 \%\) in the section below the Eastern Valley discharge to the open boundary.

Reducing both diffusion coefficients to zero affects the efficiency of solution
as the inputs remain integral and so the function is extremely irregular.

Whereas with halved diffusion, only \(39 \%\) extra time is needed, now an extra \(603 \%\) are required to simulate the same time span. A \(25 \%\) increase in B.O.D. is observed and a \(12 \%-20 \%\) worsening in the Dissolved Oxygen profile at low water. Altering the upstream boundary condition reflects in a net movement of the whole profile due to the high flows for which the data is available.

Reducing the velocities gives a general build up of B.O.D. (fig.9.3.D) some of which remains to be converted to an oxygen deficit.

However, the whole system remained insensitive to changes in reaeration.

When halved, only a \(3 \%\) effect on the oxygen deficit was predicted. This is possibly due to the high flow levels, giving little momentum to the process at such low levels of deficit.

More validation data and better input velocities are required to make this model useful.

```

9.4 The Stochastic Coefficient

```

As discussed in Chapter 5, the stochastic coefficient needs to be established as accurately as possible via comprehensive selected data.

Table 9.4.C shows estimates of the coefficient \(\Delta\) using results from just 2 surveys(Table 9.4.A and B). Most values are reasonably well grouped apart from two in excess of unity and one low value.

Examination of the data record shows that the high estimates all contained values of D.O. within a zone of reaction that the model is not designed for. All readings below \(1 \mathrm{mg} / 1 \mathrm{D} .0\). should be discarded. Recalculation shows the new \(\Delta\) values are more reasonable. However, calculations include all data collected and other selections have not been carried out. Consequently values are likely to be overestimated. It is not unusual to find an order of magnitude difference for \(\Delta\) within an estuary \([1][4]\). The value at the seaward boundary is expected to be low. Theoretically, the 'sea' is tha constant boundary condition and so should theoretically have a variance of zero. Practically, some variance does exist of course, but as net values are usually numerically high (in excess of \(8 \mathrm{mg} / 1\)) the ratio defining \(\Delta\) tends to reduce this. Similarly, the upstream values should decrease as the point of calculation moves to the upstream boundary, which is theoretically a constant for the purposes of the model. In between the boundaries the coefficient will rise to maximum in the area of greatest mean oxygen deficit as the variance will maximize at a point with also the depressed mean to increase their mutual ratio. Fig. 9.4.A illustrates that the trend is already apparent even with very small amounts of noisy data. (fig. 9.4.B).

Table 9.4.A D.O. Summary Statistics
\begin{tabular}{ccccccc}
\begin{tabular}{c}
Distance of \\
Survey Point \\
(km.)
\end{tabular} & \begin{tabular}{c}
Neap \\
Samples
\end{tabular} & \begin{tabular}{c}
Tides \\
Mean \\
mg/l
\end{tabular} & & SD & \begin{tabular}{c}
Spring \\
Samples
\end{tabular} & \begin{tabular}{c}
Tides \\
Mean \\
mg/l
\end{tabular} \\
0.1 & 20 & 7.36 & 0.47 & & SD \\
4.3 & 25 & 6.51 & 2.57 & 24 & 8.47 & 1.94 \\
8.0 & 27 & 3.92 & 2.31 & 26 & 8.15 & 0.72 \\
10.0 & 26 & 3.34 & 1.55 & 25 & 6.00 & 2.45 \\
13.0 & 26 & 3.37 & 1.54 & 23 & 4.37 & 1.53 \\
16.0 & 25 & 2.82 & 1.40 & 25 & 4.12 & 1.14 \\
18.5 & 28 & 4.00 & 2.27 & 25 & 3.76 & 1.52 \\
21.0 & 25 & 4.44 & 2.13 & 26 & 4.30 & 1.87 \\
23.5 & 26 & 5.22 & 1.69 & 27 & 5.96 & 1.15 \\
27.0 & 18 & 5.97 & 0.77 & 23 & 5.85 & 0.65 \\
& & & & & 6 & 6.26
\end{tabular}

Combined Summary
\begin{tabular}{rccccc}
& Samples & Mean & \multicolumn{1}{c}{ SD } & \(95 \%\) Confidence Limits \\
0.1 & 44 & 7.96 & 1.55 & 4.85 & 11.08 \\
4.3 & 51 & 7.35 & 2.03 & 3.28 & 11.41 \\
8.0 & 52 & 4.91 & 2.58 & 0 & 10.08 \\
10.0 & 49 & 3.82 & 1.61 & 0.6 & 7.05 \\
13.0 & 51 & 3.74 & 1.40 & 0.94 & 6.54 \\
16.0 & 50 & 3.29 & 1.52 & 0.24 & 6.34 \\
18.5 & 54 & 4.15 & 2.08 & 0 & 8.30 \\
21.0 & 52 & 5.29 & 1.85 & 1.53 & 8.93 \\
23.5 & 49 & 5.51 & 1.28 & 2.96 & 8.06 \\
27.0 & 43 & 6.15 & 0.69 & 4.95 & 7.34 \\
SD - Std. Deviation, assuming normal distribution)
\end{tabular}

Table 9.4.B B.O.D. \({ }^{(1)}\) Summary Statistics
\begin{tabular}{lcclclcc}
\begin{tabular}{c}
Distance of \\
Survey Point
\end{tabular} & \begin{tabular}{c}
Neap \\
Samples
\end{tabular} & \begin{tabular}{c}
Tides \\
Mean
\end{tabular} & SD & \begin{tabular}{l}
Spring \\
Samples
\end{tabular} & \begin{tabular}{l}
Tides \\
Mean
\end{tabular} & SD \\
& & & & & & \\
0.5 & 7 & 2.09 & 0.16 & - & - & - \\
4.3 & 7 & 2.37 & 0.72 & 7 & 2.37 & 1.47 \\
8.0 & 7 & 2.49 & 0.75 & 8 & 1.95 & 1.02 \\
10.0 & 4 & 2.25 & 0.65 & 5 & 1.7 & 0.73 \\
13.0 & 5 & 3.74 & 1.76 & 5 & 2.5 & 1.25 \\
16.0 & 6 & 3.25 & 2.00 & 6 & 1.87 & 1.70 \\
18.5 & 8 & 2.21 & 1.56 & 5 & 1.78 & 1.01 \\
21.0 & 5 & 2.06 & 1.4 & 7 & 1.93 & 1.37 \\
23.5 & 7 & 0.73 & \(.35^{*}\) & 6 & 1.28 & 0.85 \\
27.0 & 5 & 0.92 & \(.15^{*}\) & & & \\
& 12 & 0.81 & \(.63^{*}\) & 3 & 0.6 & 0.1
\end{tabular}
* includes estimates for inexact B.O.D. measurements on samples
(1) 5-day standard non inhibited B.O.D. Test at \(20^{\circ} \mathrm{C}\).

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Point from \\
Nevbridge
\end{tabular} & Samples Quantity & Mean & Variance & Stochastic Coefficient \\
\hline 0.0 & 44 & 8.0 & 2.4 & 0.30 \\
\hline 7.7 & 51 & 7.4 & 4.1 & 0.55 \\
\hline 5.0 & 52 & 4.9 & 6.7 & 1.37 (0.74) \\
\hline 6.3 & 49 & 3.8 & 2.6 & 0.68 \\
\hline 8.1 & 51 & 3.7 & 2.0 & 0.53 \\
\hline 10.0 & 50 & 3.3 & 2.3 & 0.86 \\
\hline 11.6 & 54 & 4.2 & 4.3 & 1.02 (0.79) \\
\hline 13.1 & 52 & 5.3 & 3.4 & 0.64 \\
\hline 14.7 & 49 & 5.5 & 1.6 & 0.29 \\
\hline 16.9 & 43 & 6.2 & 0.4 & 0.06 \\
\hline
\end{tabular}

At no stage in the model development in Chapter 5 was the essential requirement that the system be an estuary. Naturally the development assumed this and so the algorithm is geared for this application.However, the model can be simply used for one dimensional river stretches simulations by switching out the tidal velocity component. There is also a reduced effort calculating \(\Delta\) although it tends to be subject to more severe interferences \({ }^{[4]}\).
9. BIBLIOGRAPHY for Chapter 9 .
[1] "Stochastic Modelling for Water Quality Management", EPA, Water Quality Office, No. 16090, Feb. 1971.
[2] "Recent Results for Mathematical Model of Water Pollution Control in Delaware Estuary", R.V.Thomann, Water Resource Research, Vol.1, No.3, p. 349-p.359, 1965.
[3] "A Study of Tidal Dispersion on the Potomac River ", L.J.Hetling, R.L. \({ }^{\prime}\) Connell, CB-SRBP Technical Paper No. 7, F.W.P.C.A.
[4] "Stochastic Model for Biochemical Oxygen Demand and Dissolved Oxygen in Estuaries ", S.W. Custer, R.G.Krutchkoff, Water Resource Research Centre of Virginia, Bulletin 22, Feb. 1969

Further Considerations

\section*{Chapter 10}

\section*{Contents}
```

10.0 Introduction
10.1 Data Collection for Models
10.2 Cost Effectiveness of the Research Programme
10.3 Future Data Acquisition
10.4 Future Work Suggestions for the Models
10.5 Models in a Database
10.6 Network Modelling Command Language
10.BIBLIOGRAPHY for Chapter 10

```
10.0 Introduction

There are 105 estuaries in the U.K. [3] (water bodies 5 km long with discernable tidal actions) of which only about one half had an analytical effort on them (B.O.D., Ammonia, pH). More data is always useful where little is available, but there is little advantage in random gathering. Estuary data is expensive to acquire, either through telemetry or more time honoured methods. A policy should exist for this work.

Three questions need to be answered:
a) What data is being collected, and why
b) How much data is required to fulfil functions
c) Effective gathering methods and related accuracy.

This should act as a building block towards some higher goal, e.g. a local or regional model.

Data as a collection of figures to satisfy political demands is wasteful. URD Management now have three models available. None have been calibrated extensively. Each has different strong points and weaknesses. A decision should be made to settle these questions:
a) Which models are to be used by management, if any?
b) Which are to be used by numerate staff?
c) Which are to be validated ?
d) Are any to be cross-calibrated ?
e) Are the questions to be asked suitable for any or one of the models ?
f) Who will translate questions into input and generate output ?
g) How good is the data applied to each model?

Many of these points were not considered when the project was formulated. A point to be noted is that neither instruments nor humans are infallible. Reliance on either in isolation will be less effective than a combination of both resources.
```

10.2 Cost Effectiveness of the Research Programme
The effectiveness of the research undertaken is best measured against
proposed costs for alternative methods.
The cost of }31\mathrm{ years computing and ancillary expenses of the study was
£18,000 at }1974\mathrm{ prices. This was low because the project was supported
financially by SRC, Aston University and Cardiff University (Computing
charges about 20% of bureau costs).
The tidal prism of the Usk is large compared to other physical dimensions.
The maximum inflow rate is estimated at an equivalent 40,000 m.g.d.
(2,00 cumecs) relative to a dry weather flow of 83 m.g.d.[1].
This large volume is difficult to trace and measure.A 1967 cost study gave
the following cost estimates:
A) One Radio-active tracing experiment, carried out and completed by

Water Researeh Centre.	$£ 35,000$
Two retention time surveys plus one dilution survey	$£ 4,900$
using students and U.R.Authority boats, based on	
bacteriological methods.	

bacteriological methods.
C) A network of 6-8 monitoring stations to record certain £13,000£29,000 physical and chemical parameters. Capital costs only (3 estimates )
(All above estimates are 1967 prices)
All three field studies generate data but do not provide any sort of management tool for long term use.The afvantage of a mathematical model is that, after completion of the initial work, it can, under certain circumstances, stand alone without technical support.

```

\section*{Compared to the cost of even small capital projects (Chapter1/2) models are very cost effective even if used lightly.}

Discussed elsewhere in this submission, the following broad recommendations are made:
a) If the full network of telemetry cannot be established, or anything approaching a reasonable coverage, the two current stations should be dismantled.
b) About 10 saturation surveys should be carried out in the Usk estuary to determine reasonably cohesive parameter relationships.
c) Regular estuary surveys should be geared towards being part of a long-term program for data acquisition for modelling.
d) The reaeration rate experiment should be repeated several times for differing conditions.
e) One large-scale tracer study is essential to acquire some idea of travel times, lateral and vertical mixing, and most important, to estimate the magnitude of \(D_{x}\). Either dye-tracing (Rhodamine WT) or radioactive tracer (\(\left.{ }^{85} \mathrm{Br}\right)\) would be suitable. Alternatively several short-term experiments are required.

\subsection*{10.4.1 The Steady State Model}

The following areas are of interest for further work:
a) The applicability of the definition of the mixing exchange \(F\) as defined in section 7.0.
b) Associated with a), the comparison of \(D_{x}\) values obtained using e.g. 7.0.A and field measurement.
c) Refining the restricted oxidation of ammonia path in the interactive iterative phase. This is not necessary for the vast majority of situations in the Usk, as it rarely reaches such low levels in simulations unless the now closed British Glue Co. is included \((10,000\) lbs BOD per day). However, it is very relevant in other Estuaries in the Region.
d) Data acquisition to enable validation of estimates regarding input loadings for tidelocked discharges, and also on the breakdown of loads into fast and slow components.
e) Data acquisition to enable some validation of the carbonaeceous and nitrogenous components, as well as ammonia and nitrate. A better established baseline should improve optimisation of natural purification powers for these components.
f) Incorporating the model into a cost optimizing routine for use by resource planners and operations for financial projections of likely effective schemes. This will involve the relative new filed of shadow cost benefit analysis and allocation of social cost benefits. This can be a highly subjective area with possibility of public involvement.
g) Compounding the various predicted distributions into a B.O.D. estimate, or writing a simple BOD/DO version of the model using compounded loads.
h) Investigating the possibility of replacing the deterministic \(B O D\) consent standard usually employed by either a composite standard or by a more reproducible standard such as Total Oxidizable Carbon, which appears to be closely correlated with \(B O D\) and more easily determined.
10.4.2 The Models F1/F2

The following areas are of interest for further work :
a) Establishing wind stress rpobability distribution for the Severn estuary in view of the influence of wind on elevations.
b) Extending the two dimensional phase to allow drying out areas via Moving Boundaries Method.
c) Incorporating self-stopping method when 'steady' or oscillating phase for a tidal cycle is reached.
d) Incorporating variable mesh spacing in the two dimensional phase to allow easier modelling of smaller scale diffusion and dispersion, as well as allowing examination of infr-structure where desired.
e) Extending the flexibility of the network capabilities of the software.
10.4.3 The Models PT / PT1

The following areas are of interest for further work :
a) Considering the nature of the alternatives to the conceptual method of pollutant transport used in the one dimensional phase.Methods of permitting dispersion to be continuous within the discretized process.
b) Establishing \(D_{x}\) for the one dimensional phase and its relevance to the classical value of \(D_{x}\) as discussed elsewhere.
c) Establishing absolute values of \(D_{x}\) and \(D_{y}\) for the bay phase. Then considering the relevance to the representation of diffusion as in the model currently.
10.4.4 Jointly for Models F1/F2 and PT/PT1 The following areas are of interest for further work :
a) Integration to a database to retain simulations from the hydrodynamic phase and allowing PT and PT/1 to use sequences of these with all the flexibility afforded by integrated use.
b) Incorporating multiple seaward segments from one estuarine system to the bay to allow use in complicated deltas like the Nile and Ganges.
c) Incorporating facilities for allowing several discrete one dimensional phases to be discharging to the same two dimensional phase. For the Severn Estuary this would allow the Usk, Wye, Severn, Avon and Yeo to be modelled as sub-sections of the Severn \(E_{\text {Stuary }}\) in an integrated manner.

\subsection*{10.4.5 The Models ST/ST2}

The following areas are of interest for further work :
a) Interchangeability of modules between these models and the model of Chapter 4, F1 and F2.
b) \(\quad D_{\text {ata }}\) acquisition to satisfy requirements outstanding for validation of the various phases of the model.
c) In-depth study of selected stations to collect sufficient relevant data to compute the stochastic coefficient \(\Delta\) for the latter phase with a reasonable degree of reliability.
d) Formulating a policy on setting probabilistic consent standards rather than the current deterministic method of one or two figures for at most BOD and Suspended Solids in most instances. This would require a major policy shift and generally a much increased data collection task. However, the increasing flexibility to the pollutant generator is beneficial and in any event, would only formalise informal and legally transgressing arrangements in existance for the occasional exceedance of prescribed standards.
e) Investigating ways of compounding the various phases of the model to give a continuous facility for the combined entry of field and theoretical data to yield a probabilistic estimate of BOD/DO profile without operator intervention. A modular structure will still allow sectional operation of the various phases in isolation. Also, as for F1/F2 a bank of simulations can be built up to avoid duplication of expensive simulations.
 in the formulation of the differential equations for the problem of
 the mean value predictor.
 g) A strenuous investigation of the solution method for piecewise
 continuous discharges.
 h) Developing a method for use in Network Databases for all phases of the
 model.
 i) Investigating the method for non-constant boundary conditions at the
 upstream limit.
 j) Jointly with i), simulating the input stretch as a river (say from
 Brecon via Abergavenny to Newbridge) to determine a distribution for
 upstream boundary limits.
 k) Extending the model to deal with probabilistically defined discharges.
 This would be especially useful in a load fluctuation situation (eg.
 tidelocking, high seasonal population)
1) Investigating the suitability of using the Steady State Model with the
stochastic components of this model.

A database is a cohesive method of data handling using an information orientated language. This is usually directly compatible with common high level languages like FORTRAN IV, ALGOL or COBOL. Very much in the ascendant, databases will become a feature of computer use and everyday life at work and in the home. Routine analytical data, survey field data and hydrographical data will be entered to databases as a matter of routine.Already 6 regional water authorites are using a common archive available via the Water \(D_{\text {ata Unit }}\) at \(R\) eading despite its current shortcomings [2] Financial data is currently on less specialised databases like ADABAS (the Adaptable Database Management System \([8]\)) and is available for use in cost models attached to quality modules. Fig. 10.5.A outlines how models fit into such a philosophy to replace the rule-of-thumb method still widely used. The key role is that of interpretation, and so experience of the real situation will and must remain to command a premium.

Model design should be strictly modular and machine independant and in itself not specific to any one Estuary situation. Model selection is usually not a management function, but their major role is in understanding the new power available and then

FORMULATING A SOUND SCIENTIFIC QUESTION . WHAT IS REQUIRED OF THE SYSTEM MODEL . HOW IS IT TO BE DEVELOPED AND WHAT RESOURCE DOES IT REQUIRE?

In eventual use,

FORMULATING PRECISE, COHESIVE AND RELEVANT QUERIES AND REMEMBERING THE

LIMITS OF THE PREDICTIVE PROCESS.

10.6 Network Modelling Command Language

An outline specification for eventual integration of all the models was written but work did not progress beyond some trial modules \({ }^{[4]}\). The advent of extensive finite element applications to the pollution field has gone some way towards this using specific high level languages such as FEHPOL \({ }^{[5][6][7]}\). Together with the national Hydrographic Referencing Scheme, advantages of a Network Philosophy are becoming more apparent to management.
[1] "USk EStuary Investigation - Feasibility Study", Pollution Control Dept. U.R.A., Dec. 1967
[2] "Functional Specification of the Water Data Archive - Phase 2", Water Data Unit, Reading, to be published Feb. 1978
[3] "Estuaries of the United Kingdom", A.L.H. Gameson, WPRL Symp.,Apr. 1972
[4] "A Network Modelling Command Language", M.W.Rogers, URD Internal Memo Aug. 1975
[5] "A Finite Element Problem Orientated System for Hydraulics", R. Adety, C.A. Brebbia,J. Nelson, Applied Numerical Modelling Conf., Southampton むul. 1977
[6] "A Finite Element Hydrodynamic Problem Orientated Language", J.Nelson, Ph.D. Thesis, Civil Eng. Dept., Univ. Southampton, 1976
[7] "Computational Hydraulics-Studies in Rio Grande deSul",N. Babilla, C.A. Brebbia, A. Ferrante, 16th Congr. Proc. of Int. Assoc. for Hydr. Research, Sao Paulo, Brazil, Jul/Aug 1975
[8] "The Adaptable Database Management System", S.D. Fitches, Database Journ. vol 7, no. \(2, p .2-p .8,1975\)```

[^0]: 6.4.2 The B.A.C. Monitor operated over a span of four years from late 1969. Difficulties were encountered on all aspects (fig 4.6.B):
 a) External Power supply was unstable as it was a feeder line from the British Aluminium Co. Smelters and when loads were taken at the works, mains voltage could drop by $25-30 \%$.

[^1]: 6.7.1 Transverse Diffusion is important in situations where the outfall jet has a low momentum compared to the receiving water body, or because of geometry the jetting action is ineffective in the transverse direction. In this situation the dilution experienced by the discharge is less than that available from the water body..Fig. 6.2.A shows the stages in transverse diffusion for a unidirectional flow. The magnitude of the diffusion will determine the time required to proceed from state i) to v) ie $t_{4}-t_{0}$. If the discharge continues the initial transport across is dispersion but the subsequent spreading diffusion within the definitions

[^2]: Notes DWF(lhs) - derived 7 day minimum flow
 DWF (mid) - min. 7 day flow for duration of flow records
 DWF (rhs) - Median flow of 7 day min. flow period
 \%Ex - Percentage of exceedance times of defined flows
 Flows in cumecs and (mgd).
 Data sequences vary from 6 to 15 years

[^3]: WULTIJOZ DRI:T OF UADOOL:UPDOTL.SSMOATESAOAR I/: FAR USËR UROCAL

[^4]:

