A SPECIFICATION LANGUAGE

FOR DIGITAL SYSTEMS

by

PETER BLACKLEDGE

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy.

INTERDISCIPLINARY HIGHER DEGREES SCHEME

THE UNIVERSITY OF ASTON IN BIRMINGHAM

SEPTEMBER, 1982

The University of Aston in Birmingham

SUMMARY

A SPECIFICATION LANGUAGE
FOR DIGITAL SYSTEMS

Peter Blackledge

Submitted for the Degree of Ph.D.
1982

The work reported in this thesis is concerned with
the selection of a formal language for practical use in
industry for writing specifications of systems containing
both hardware and software. The aims of using such a lan-
guage are to improve the communication of reguirements
and to increase the number of errors detected at an early
stage of the design process. Due to the size of the au-
dience of writers and readers of these specifications,
one additional aim is to minimise the amount of training
which will be required by these people. BApart from its
formality, the 1language must therefore be able to
describe large and complex systems in a comprehensible
manner.

Criteria for the evaluation of candidate languages
are derived from these needs and then used in a review of
a large number of languages from published sources. All
those reviewed were found to be deficient in some
respect, sSo a new language was designed to fulfill the
criteria. This language was named ASL, being an acronym
for "A Specification Language"; it is suitable for use in
specifying all informetion-processing systems where the
received and transmitted information can be treated as
discrete (i.e. digital) signals.

In order to confirm the suitability of ASL, a number
of practical trials of the language were carried out. 2al-
though these were of limited size, they did cover both
hardware and software systems and personnel. The results
of these trials, including suggestions from the partici-
pants for improvements to ASL, are discussed as part of
the evaluation of the success of the project.

KEYWORDS: Specification Reguirements

ACKNOWLEDGEMENTS

The author gratefully acknowledges the financial sup-
port of GEC Telecommunications Ltd. and the SERC, the
moral support of his supervisory team (Prof. J.E.Flood,
Mr. R.K.J.Ford, Dr. N.W.Horne and Mr. G.A.Montgomerie),
and the practical support of the participants in the tri-
als (Mr. P.J.Briggs, Mr. R.Caberwal, Mr. G.V.Geiger, Mr.
P.W.Gray, Mr. D.Simblet, Mr. H.B.Taylor, Mr. D.R.Thompson

and Dr. J.C.Woodcock) .

LIST OF CONTENTS

TITLE PACGE. & & o s o i LR 5 TR 1 TR S e S |
SUMMARY 0 mloe Te oI = . i TR e AT e R
ACKNOWLEDGEMENTS . . 2 e e e e TR e e W WO
LIST OF CONTENTS . . . e v AN e & el s . 4
LIST OF FIGURES AT . AR NI SO RS U R R
LIST - OF TABEES & "+« s . . . A TR IR S R S T
1. INTRODUCTION s R = TR sy S s Sl -

1.1.

1.2,

1.5.

Phe - RrHl1em: e W e e i SRS L o sl D
Analysis of the Problem . . + « « « « 17
1.2.1. The Common Factor TR P SRR S - S T
1.2.2. The Current Situation 5 Lren RET Gl sen
1.2.3. Proposed New Design Process e R
1.2.4. Long-term Prospects S T e el 24

The Purpose of the Project S R e SRR e

Yo3.1. Background Bt ol Tw e T et aos o 2D
1.3.2. Initial Scope of the Project . . . 26
1.3.3, Final Scope of the Projdeets v % Few 27

Direction Taken by the Project ST e s S D)

l1.4.1. General e R i e T S T < |
1.4.2. ASL (A Specification Language) . . .32
1.4.3. Expected Benefits S e cbg e e e S
Structure of the Thesis . "« & & « w . 36

2.

REVIEW OF POSSIBLE CANDIDATE LANGUAGES T e

2.1.

2.2.

2.9.
2.10.
2-11.

212,

Introduction S L TR R Bl
Reguirements of a Specification Language
22,1 The: Skarting Point & % s %
2.2.2. Comprehensibility o AR it ot S
o A NG Ul 15 o Vo i S e A T SR S Sl P
2.2.4. Maintainability T A T SR
2.2.5. Testability A SRS T T
2.2.6. Structure G s e b st L TR
2.2.7. Conciseness i R e et
2.2.8. Perceptual Cues o R T
2 Selinamal i sy SEC IRl o s e
2.2.10. Separation of Concerns S W
2.2.11. Suitability for Computerisation
et Bormatityiiwe gy I e - s
Rt 3e FOUMMBEY. & TR 2 e b e
The Types of Specification Language .
Universal Lancuagel | = e o b e Es
2.4.1. Natural Languages A el
2.4.2, Programming Languages A
Computer Hardware Description Languages
New Programming Languages« .
Derivations from Programming Languages
Flow Chares = & 5 & 3 & ' s
Hierarchic Description Methods o] AGIE =
Finite State Machine Languages . . .
Static Description Languages . . .

Pre- and Post-condition Languages -

-

38
.38
38
.38
.40
42
43
.43
44
.44
45
45
.46
46
47
48
49
.50
.50
51
52
.53
53
54
.55
.56
57

58

3'

2.13. Event-triggered Languages .
2.14. Specification Analysers ols
2.15. Seqguence Description Languages
2oLrey Patrisfets . . L it T . »
2.17. Languages Using Axiomatics .

2.18. Conclusions S 5 S 5

THE DESIGN OF A SPECIFICATION LANGUAGE
3.1. Introduction TRET R ik R
3.2. General Approach nc i o d Y o
3.3 Formality® oo . & i 4 e s
3.4, A System and its Environment 3

3.4, 1, The BYstem o . o o @« =
3.4.2. The Environment 5 oty il
3.5. Communication by Message Passing
3eDvls MEERAYRS "5 v v m e
3:9.2s The QObserver .« & o o
3.5.3. Message Contents . . .
3.6. The "Black Box" View s P
3.6:1; Models “ i« v & s 5 e

3.0.2. Interfaces -, = R 2

3. Pime e o T B s
3:7:1< Reguirements .« s+ =&
3.7.2. Time Stamps T

7.3, Time Viewpoint =& . .
3.8. Memory A T e
3.9. Structuring the Specification .
3.10. Incomplieteness .« 4 u s s

.11 Forme . . g e . Sl e .

« 59

- I60

- .60

. 61

. 64

- .64

- 70

- .71

74

- .75

3.12. Summary e - SRS o QU Y SRR P8

4. THE DETAILED DESIGN OF A SPECIFICATION LANGUAGE . 84
Bl BEERT oS0 Bal e Cwl S meilh e e wal e alpes t i o
4.2. The Surface Appearance of ASL 84
4.3. Consideration of Human Factors N e e LRGBS
4.3.1. Consequences of Earlier Decisions Pl e
4,3.2, Order Within the Specification Text =87
4,.3.3. Paragraph Numbers o e e S U
B«3ail e COMBENEE o v ofosSr el ans "Il g - i B8
4.3.5. Alternatives in Behaviour TS 3090 0 09

4.4. The General Appearance of ASL. 89
4.4.1s Introduetion « & e in v s w89
4.4.2. Block Structure § ot N L R B e 90
4.4.3. Names 3T e S el SUEMRT R T S, SRR
4454 wEhe Systen Block BV aidaa e TN o 92

el 5. The MOGEIE " "ol & Seib o s R e 98

4.4.6, Definition of Names and Messages . . 94

4.4.7. Behaviour and Rules Sl w e bt e g9
§:458, Pattern~matching .4 & o » 8% e @« 96
4.4.9. Definition of Common Operations o e UG

4.4.10. Incompleteness PABIGT e 1 g 97I
4.5. The Formal Definition of ASL B | A e e a2
4.521. Introduetion’ . woF. JSATELL .98
4,5.2. The Context-free Syntax @ W el aae s
4.5.3. Context-sensitive Rules o e ottt Dke 90
1.5.4., Scope of Hames o v Ve w0 e e 300
4.5.5. Type Checking S s e Do g e s O)

4.5.6. Semantic Definition . . R g [e i e

e 0

5.

6'

4.5.7. The Semantic Model . . . -
4508 Pime. o v wiVa

B8 BURBATY @5 3 Ll Saraih padea e 7L W

LANGUAGE SUPPORT FACILITIES . . . SR
5.1. Introduction HER R s eI T R
5.2. Checking R U R o S

5.2.1. The Types of Checking T e
.22 Btatic Checking e e R
52.3s Dynamic Cheecking « & s "% i«
5.3 ChARNGeSE Gl S e e SRS e T L)
5.3.1. General ow e B eIl ey o
5.3.2. Introducing Changes el TR
5.3.3. The History of Change ¥ | Ty
5.4. Validation o R - SN O R R LR LAl s
5.4.1. The Aims of Validation . . .
5.4.2. Manual Translation into English
5.4.3. Automatic Translation S R

B S s imulation O e e G e e

5ab. Nerification R : = 5 = . g
5.6. The Demonstration Facilities . 4 &
Sl SUNMBEYS id e ¥ | st a0 gh te s gl Re L wl e
TRIALS AT GEC . . . " . . . - > 3
6.1. Introduction o MR RN o . . s

6.2, Trial 1: The Data-rate Adaptor e
6.3. Trial 2: A Disk Checking System . .
6.4, Trial 3: R2 Signalling System <« &

6.5. Trial 4: Part of an Operating System

B

103
104
105

.106
106
.107
107
108
109
111
»d11
2112
133
115
115
» L1
116
117
119
121

122

123
123
124
126
128

129

6.6. Criticiems and Comments &8 « : & @ « » 131
6.6.1. Sources of Comments PR o R L W R B 1 |
6.6.2. Unintentional Inconsistencies ol ol [
6.6.3. Simple Extensions A T TR Sy SRR 5
6.6.4. Further Possible Extensions « o 133
6.6.5. Responses to the Questionnaire . o134

6‘7. Summary - - - - - - - - - - - - 136

7. EVALUATION e B S NS e . . . i S H3B
7.1. Introduction i T el A A e R b T GRIR -
7.2. Comparative Evaluation oy D e e e 13D
7.3. Feedback from the Trials soh et AR e s e B E3

7.3.1. The Significance of the Results SEa

7.3.2. The Pattern of the Results . . . 145

8. CONCLUSIONS . 5 E - - . . 5 ST
8.1. Achievements R el RS M i S k- wee EERY
8.2, Outstanding Problems T e s ol o e e e 150

f.3. Porther Development: . & .o s s % a1 & 151

APPENDICES
A. REVIEW OF SPECIFICATION LANGUAGESl54
A.l. General Layout S B A Sk T G

A.2. Columns for General Information 3 . . o 155
A.3. Values used in the Assessment . - - 5 s 155

Kol Sumpary . BabBle " ol v Tason s e e e Bidt e ADB

B. THE SYNTAX DEFINITIONS FOR ASL Nl ;)

B-l- BaCkUS—Naur FOL’m - 168

B.2. Syntax Definitions SR B i I
B.3. The Type-matching Rule Format . .

B.4. The Type-matching Rules . .« =+ .

C. THE SEMANTIC DEFINITION OF ASL 2 5 5
C.Y, Introduction < e e 1

C.2. Transformation e L e 1 Rt

C.3. 'Translatiolhy = = . e o . .
C.4. Connection . o fa - . .
C.5. The Firing Rules R il e LY

C.6. Semantic Checking of Specifications

D. THE STATIC CHECKING FACILITIES . . .
D.1l. Introduction R S R T N
D.2. The Syntax Analyser« .

D.2.1. Recursive-descent Analysis
D.2.2 The Syntax Rule Format . .
D.2:3. EXTOor Recovery =« - « o
D.2.4. The Input to the Analyser
D.2.5. The Output from the Analyser
D.3. The Contgistency Checker . . « &
Dedels Mathod " %l & G e, s
D.3.2, The Rule Format sl e Rl s
Dsde3. The Inpat EBormat & =+ & s
D.3.4. The Output from the Checker

D.4, Cross-reference Listing . .

E. AN EXAMPLE SPECIFICATION ok el e ix - i

E.l. Introduction o P M i .

-10-

-

+ SO

« & 182
« w184
« 192

o 4192

R
¢« « 206
SRR
T I
« . s 218
s ALY

A s &

¢« 219
0
o w221
¢ o223
s 2226
s . AED
o wradit
% SLed

o | 1w 228
e A3e
2 2RSS
3 = 238
. 240

. 240

E.2. The System Cal et g R S T = s M)
E.3: The ASL Specificaltion . .« o s o & = =282

E.4. Errors in the SBpecification . .« . '« .« 250

F. RESULTS OF THE TRIALS AT GEC 2B
F.l. Problems Arising During the Trials s & w 4Db
¥l The Categories "5 L « & e & "or.a. wdbb

F.1l.2. Inconsistencies Sl S R - S e

F.1.3. Simple Alterations and Extensions 0 259

F.1l.4. Missing Items N T BRI et ng S e)

F.l1.5. Other Proposals for Alterations « w26l

F.ds The Questionnaire . & s « % « & = » 264
F.2.1. Design of the Questionnaire s« 408

F.2.2. The Responses e i e e R E

@y *GLOSHARY "OF TERMSOES o LG S lg —ud 3 23 W e e R . 289

REFERERCES @ « " & s a™ & @ e 9 » . . « @« & N0

-11-

LIST OF FIGURES

1.1. Current Design Process SIS T S S S S e i i
1.2. The Design Hierarchy e e T e S SRR
1.3, MNew Ideas on the Design Process ., & & v e w 22

1.4. New Ideas on the Design Hierarchy 22

2.1. Development of Selection Criteria 41

3.1. The General Structure of a Specification 7 S R)

4.1. The Structure of a Specification in ASL . . . 091

Cvl. Replacement of Operations . .« o o s ¢ o+ 196
C.2. Replacement of Fixed Relationships S A £
C.3. Separation of Lists into Individuals i) a8
C.4. Conversion of "select" Expressions of s prwE s =SS
C.5. Conversion of "unless" Expressions o ST W S 5
C.6. Expansion of Local Definitions o & waiioks 1wk te2QL
C.7. Replacement of Local Variables SRy R N TR s

C.8. Sequences of Actions o OBl o e B e el S e de wad

C.9. Sequence Constraints o Yot e e U e o B R0%
C«10., Conversion of Monitors . ' & & o te w .. s 20D
€.11. Translation of Receipt of Messages . s+ » =« 207

=12

C.12,
C.13.
C.14.
C.15.

C.16.

Treatment of Multiple Are8 v & "% @« = s & 208
Translation of Other Behaviour . 'y A . 5 . 209
Translation of Timeouts < S . A . A 210

Treatment of Iterators . i . . g . o 2T

Treatment of Temporal Operators SR T T SR

Format of the Syntax Rules s R Pl L

The
The

The

Listing Produced by the Analyser o« 'l s mddb
Static Checkilig Rules’ v & & s« » "wu +229

Tables Used in Static Checking C PR = el I S

Error Messages from Static Checking 237

The

The
The
The

The

The

Cross-reference Listing . . . S R S
Structure of the Example Specification "ty ad3
Exanple Specification & .+« .« & s ». = o244
Errors Detected in the Specification s 293

Net Model of the Specification SR, SR ARs

Questionnaire . . 5 o T . - . = o o265

-13-

LIST OF TABLES

Avle sUniversal Languages); "o o M f ae s e n e T
A.2. Computer Hardware Description Languages . .
A.3. New Programming Languages . . +« =« + &
A.4. Derivations from Programming Languages A Lt
BBy Flow CRHAETE o 0 o A e et e e e
A.6. Hierarchic Description Methods Ll e | B L
A.7. Finite State Machine Languages Al W ek
A.8. Static Description Languages A e T e
A.9. Pre- and Post-condition Languages
A.10. Event-triggered Languages Co e P M
A.l11., Specification Analysers S e W BN i e
A.12. Sequence Description Languages
Rold3s POEri-WaES & "o % o 5 8 w5l @ e
A.l14. Languages Using Axiomatics

A.15. Summary TR T e P e R S SN e

F.1l. Responses to the Multiple-choice Questions .

F.2. The Other Comments v . . - : 2 : 7 :

=14~

.159
159
.160
160
161
.161
«162
163
163
164
.165
.165
166
166

167

« 285
.286

CHAPTER 1

INTRODUCTION

l1.1. The Problem

The project reported here is concerned with the in-
troduction of disciplined methods into the design
process, and particularly with the use of formal lan-
guages for system specification. However, in order to
place the work 1in context, this chapter starts with a
discussion of the underlying problems to be solved. This
then leads to consideration of how the results of the
project contribute to the required solution. Due to the
number of words which are used with a particular techni-
cal meaning, a glossary of terms is included in Appendix
G.

This project relates to the development of digital
systems, and the word "system" is wused throughout to
refer to the intended output of some design project. Such
a system is expected to be a purposeful information-
processor which enters into some communication with its
environment to fulfill that purpose (Ashby, 1969).
However, the system may be designed in the form of words

(e.g. instruction manuals or software), physical assem-

P

blies (hardware) or integrated cicuits (hardware and/or
firmware) and so the word "system" has been used in order
to avoid implying any particular physical embodiment of
the information-processing entity. Advances in
technology, especially in the field of computing, have
led to a rapid growth in the complexity of systems. Pu-
blic awareness of these advances and of the decreasing
cost of computers provides a continual pressure to extend
the «capabilities of existing products. In the telecommu-
nications industry this takes the form of new services

(e.g. Prestel) and new facilities (e.g. subscriber-

controlled redirection of calls to other numbers); but,

as 1in other industries, these additions have proved dif-
ficult and expensive to develop despite the theoretical
~capabilities of the underlying technology.

Three main factors have been proposed to account for
this difficulty :

(a) as the complexity of a system increases, the
documentation describing the required behaviour is
not increased in proportion (Jones, 1979) with the
consequence that it is incomplete and the resulting
systems often fail to meet their objectives,

(b) the scale of the projects concerned requires the in-
volvement of large groups of people, so that organi-
sational and communication difficulties often hamper
progress (Brooks, 1975),

(c) when the system involves significant amounts of sof-
tware or custom VLSI, there are currently no recog-

nised methods for producing prototypes of the design.

=16=

Hence, design or specification errors are often not
detected until 1late 1in the project timescale; thus
their correction is likely to result in a failure to
meet completion dates (Jones(b), 1980; Losleben,
1980).
Figures have been published showing the magnitude of the
conseguent wastage of resources (Alberts, 1976; Lehman,
1979) . These problems become even more important when the
systems being developed will take some responsibility for
human safety or privacy and the cost of error may not be

solely financial.

1.2. Analysis of the Problem

1.2.1. The Common Factor

The factors (a), (b) and (c) in Section 1.1 above
have a common basis, in that all derive from communica-
tion problems
factor (a) relates to the difficulty of achieving concise

and precise descriptions in English' or any’ other

method based upon a natural language,
factor (b) 1is the result of communication difficulties
between groups of people, especially if the groupings
are based upon differing technical specialities,
factor (c) 1is a consequence of the lack of accepted in-
termediate forms of documentation to bridge the large
gap between a specification written in English and

the final design written in a programming language or

=17~

in logic diagram form.
The most commonly proposed type of solution to the pro-
blem is therefore based upon improved methods of communi-
cation (e.g. Ross, 1977). The validity of such a solution
can best be demonstrated by considering first the type of
design process currently in use, and then a new form
which attempts to ensure improved communication between

those groups of people involved in the project.

1.2.2. The Current Situation

Figure 1.1 depicts a simplified version of the design
process which is typical of practice in British industry.
The stages of the process are:

(a) specification, where the customer and supplier devise
an agreed statement of the behaviour required of the
system,

(b) design, where the supplier decides upon the logical
and physical structure to be used to construct the
system,

(c) the physical construction of the system,

(d) testing, where the completed system is subjected to a
selected set of stimuli in an attempt to detect any
undesirable behaviour.

The terms "customer" and "supplier" are used to indicate

the roles of the respective parties involved. However, in

many cases, both may be part of the same organisation and
there is unlikely to be an explicit legal contract raised

to cover the development of the system.

-18-

FIGURE 1.1 CURRENT DESIGN PROCESS

Customer

i i e SPECIED RS s oS S ~

y
DESIGN

Feedback
of errors

|
CONSTRUCT

1
1
1
|
|
1
|
|
1 s
‘\... ________ __._1__._ ______ ___.-'/

FIGURE 1.2 THE DESIGN HIERARCHY

-~
/

‘ 1

| |SPECIFY | |

|

System - - --: I

| y |

| |DESIGN :

\.____,______.l
lf_- sy lf——-——-x (--—*--H\
I I i
| | SPECIFY | | | | SPECIFY | | | SPECIFY | ,
I 1 I | sl 1 I
| | | | | 1
| | | L RS l
| DESIGN | | DESIGN I | DESIGN |

\
S p— { \—_.‘.__ s R Vs e (e s
Pl ule
N \ o

Sub-systems

-19-

The process depicted in Figure 1.1 can be repeated a
number of times within one project as the complete system
to be developed is divided into smaller and smaller sub-
systems until a level is reached where each sub-unit of
the system represents an acceptable unit of work for a
small group of people. This is the approach of "top-down"
or "structured" design (Yourdon & Constantine, 1979); it
results in an hierarchically-structured description of
the design as indicated in Figure 1.2.

In most engineering disciplines one early result of
the design activity is a prototype or scale model of the
proposed design, but this has not been common practice in
the design of information-processing systems. As depicted
in Figure 1.1, suppliers have tended to work from a spe-
cification which was (presumably) accepted by the
customer, but with no checks upon the correctness of the
interpretation of this document or upon the adequacy of
the design until the testing stage. As testing only oc-
curs after the construction of the system, the response
time of the design process when viewed as a feedback sys-
tem is very long in relation to the overall timescale of
any design project. Hence, the correction of deficiencies
detected during testing can require a large proportion of
the design and construction activities to be redone, with
the conseguence of prolonged delays before the corrected
system becomes available (Alberts, 1976). Lehman (Lehman,
1979) and Brooks (Brooks, 1975) have both noted the ef-
fects of this in large software systems, and Lehman (op.

cit.) provides some estimate of the waste of resources

=20=

which results from such errors.
1.2.3. Proposed New Design Process

In recent years there have been numerous proposals
for new design methods (or "methodologies"™ as they are
often called in papers by American authors). Initially,
these were mainly related to software (e.g. Baker, 1972;
Naur & Randell, 1969) which was seen to be lagging behind
the engineering disciplines in the use of agreed methods
and notations. More recently, however, there has been
growing interest in the use of such methods in computer
hardware design, as the use of LSI and VLSI techniques
has indicated that existing methods may no longer be ade-
quate (e.g. Losleben, 1980). Recognition of the scale of
the problems has now led to the creation of a number of
national programmes backed by the governments of various
countries, in an attempt to hasten the development and
introduction of new methods (e.g. DoI(a), 1981; Redwine
et al, 1981).

The basis of most of these proposals is a modified
design process of the type shown in Figures 1.3 and 1.4.
The principal aim of the modifications is to make the
process more responsive and better-controlled by intro-
ducing rigorous checking between each pair of stages, so
that the length of the feedback loop is only one stage
rather than up to three (as shown in Figure 1.1). In the
design hierarchy (see Figure 1.4) this means that at each

level the equivalence of the design and the specification

-]

FIGURE

FIGURE

Check

— e = = o mmm o e m—

1.3

NEW IDEAS

ON THE DESIGN PROCESS

specification
—

/

[

\

N

Customer
o e i e s e e SPECIFY | m— = — = — =i
/
Sugglier
L
DESIGN
Checking
CONSTRUCT and feedback
of errors
A J
TEST
s RPOLIE T 0 DR 5 J) o SO TN LS R A e) i
USE
1.4 NEW IDEAS ON THE DESIGN HIERARCHY
e SPECIFY 1
- ~
i &
design= l N
Check sum
e _.| DESIGN of sub-systems
> =system.'\\
o e fem e — e ey (e e e wmm e e J -———-;\l
SPECIFY SPECIFY SPECIFY ’
v
DESIGN DESIGN DESIGN

!

!

-22-

f

|
I
|
l
I
I
I
|
|

/

is checked, whilst between levels it is ensured that the

conjunction of the specifications of the sub-systems is

eguivalent to the specification at the level above. This
approach should result in errors being detected and cor-
rected at the earliest possible stage. Alford (Alford,

1979) provides figures showing that detecting an error

one stage earlier can reduce the cost of correcting that

error by an order of magnitude.
Amongst the implications of this new type of design
process are the following.

(a) A larger proportion of the timescale for a project is
to be spent in the more abstract stages of the design
process (i.e. in specification and design activities)
as these stages will involve more documentation and
checking than 1is currently undertaken (Aron, 1976).
As relatively few people are involved in these early
stages (Alberts, 1976), this does not represent a
significant increase in manpower costs.

(b) The proportion of the total timescale spent on the
abstract parts of the design process is increased.
However, the total timescale should be shorter, as
the emphasis on checking should lead to a reduction
in the overall time required to obtain a correct pro-
duct,

(c) In order to achieve reliable checking throughout the
design process, it is necessary to introduce standard
methods of presenting information. Otherwise, diff-
erent designers working on different levels of the

system (see Figure 1.4) may produce incompatible

-23-

documents, making the checking activity impracticable
(Lehman, 1981; Ramamoorthy & So, 1978). The use of
such standard methods of presentation has been
described as the introduction of engineering
discipline and professionalism into areas which cur-
rently rely upon individual creativity (ASTG, 1981).
Standardisation appears to be an essential feature in
tackling 1large problems, where more than 5 or 6

people are involved in the project (Weinberg, 1971).

1.2.4. Long-term Prospects

The adoption of a new more-disciplined design method
not only has the immediate benefit of reducing the total
time required to develop new products, but it could
provide additional benefits in the long term.

(a) The wuse of rigorous notations at all stages of the
design process plus strict checking between stages
will allow the amount of testing of the final product
to be reduced (Mills, 1975). Any finite amount of
testing can never demonstrate the total absence of
errors in a complex system (Dijkstra, 1972), so it is
much better to expend effort on reducing the number
of errors likely to be present.

(b) Certain design stages may be delegated to computer-
based design facilities (i.e. CAD), given that the
input to these stages 1is expressed in a formal
notation. Such systems are under development for au-

tomatic programming (Wood, 1980) and automatic layout

-24 -

of VLSI (Lauther, 1979), but they are not yet ready
for use in a commercial environment.

(c) The notations wused for writing specifications may
form a suitable input to a simulation system, allow-
ing the system's behaviour to be demonstrated to the
customer at each stage of development, thereby fur-
ther reducing the risk of error (Cohen, 1981; Lehman,
1981).

(d) The acceptance tests for the product can be derived
directly from such a specification (Alford, 1977).

All such benefits are dependent upon the full implementa-

tion of the new type of design process and the associated

disciplines. This must therefore be seen as the prime
task, to be undertaken before any of the benefits are
obtained, but with some of the effects being apparent

only in the long term.

1.3. The Purpose of the Project

1.3.1. Background

The project reported here was undertaken within the
Telephone Switching Group of GEC Telecommunications Ltd.,
and therefore reflects some bias towards the particular
problems of the British telecommunications industry.
These are not however unique to that industry (see e.g.
DoI(a), 1980), and the results reported here are of wider
applicability. Discussion of problems specific to that

industry are therefore kept to a minimum in this and sub-

-g Bk

sequent chapters, with the exception of Chapter 6 which
covers work undertaken within the Company.

Although over the past few years the British telecom-
munications industry has introduced a significant number
of standards relating to the documentation of product
designs (e.g. System X, 1981), this has not been suffi-
cient to gain the benefits mentioned in Section 1.3.3
above. This is largely because the documentation stan-
dards still rely upon the unregulated use of English to
communicate meaning, which has proved to be wunsatisfac-
tory for the very large specification and design docu-
ments concerned (e.g. the specification for a large Sys-
tem X telephone exchange covers approximately 300 pages
of A4-sized paper (POR 3231, 1976)).

With the <continued increase in complexity of tele-
phone systems, it was recognised that new methods would
be necessary to avoid corresponding increases in the num-
ber of problems caused by poor communication. This pro-
ject 1is one of a number of efforts which the Company is

making in this direction.

1.3.2. Initial Scope of the Project

All the previous developments in methods within the
Company had centred around the design, construction and
testing stages, so the present project was intended to
take a different view. The (chronologically) first step
in the design process, that of specification, was

selected as the starting point for the project, in ac-

=26=

cordance with the ideals of "top-down" design (e.g. Ross,

1977) .

The terms of reference for the project were set as
follows:

(2) to investigate methods of specification and languages
used for writing specification docuhents (It should
be noted that "languages" was taken to include any
form of notation wused in writing specifications,
whether based on text or diagrams.),

(b) to propose which, if any, of these languages were
adeguate and suitable for use by the existing staff
of the Company,

(c) 1if no existing language was found to be adeguate, to
design a new and more-suitable language,

(d) to introduce the chosen language and any essential
support facilities into the Company.

Stages (a) to (c) were undertaken as a project under the

Interdisciplinary Higher Degrees scheme at the University

of Aston in Birmingham and are the subject of this

thesis.
1.3.3. Final Scope of the Project

An investigation into the content of typical specifi-
cation documents within the telecommunication industry
showed that they contained:

(2) descriptions of the desired behaviour of the product,
including such things as response times and maximum

capacities,

=27 =

(b) constraints upon the physical construction of the
product, including power consumption, heat
dissipation, weight and size,

(¢) the reguired behaviour under conditions of overload
or faults,

(d) relevant standards which must be met, such as docu-
mentation rules and health and safety standards.

This represents a mixture of information relating to

different levels and stages in the design process, but

the structure of the documents did not identify which
part of the information was appropriate to each individ-
ual stage. It was decided that the "top-down" viewpoint
which the project was intended to take would best be
served by concentrating upon that information which is

relevant to a "black box" specification (Ashby, 1969).

Hence, all the information which forms constraints upon

the design (such as constructional standards and power

dissipation) would be considered to be outside the range
of the investigation, and of any specification language.

This decision appears to have been taken by almost all

authors of articles on specification 1language (e.gq.

Abrial, 1980; Alford, 1977; Balzer & Goldman, 1979;

CCITT, 1980; Goguen, 1979; Hemdal, 1973), although few

make an explicit statement to this effect.

Additionally, it was decided that all information-
processing systems could be described adeguately without
having to consider the detection and decoding of analogue
signals. Thus, all signals can be treated as the instant-

aneous receipt of a packet of information, without ref-

T s

erence to the physical encoding by which this information
is represented as a physical waveform. This results in
considerable simplification of the specification by
separating the behaviour caused by each signal from
details of physical representation; it is therefore poss-
ible to write a specification for a system without having
to define the physical form of any signal, 1leaving such
decisions to be taken by the designer.

The following definition therefore summarises the
view of specifications taken by the project.

'"A specification is a statement of the reguired

behaviour of a system when that system is viewed as a
"black box". It 1is expressed in terms of the responses
which the system will make to external stimuli, and both
the stimuli and responses take the form of instantaneous
events, although there may be delay between a stimulus
and the consequent response. Such a specification will
contain information about the speed of operation of the
system, any limits upon its capacity to respond and its
behaviour when overloaded; however, it should not intro-
duce any unnecessary constraints upon the design of pro-
ducts to meet that specification.'

Subject to this definition, the terms of reference in

Section 1.3.2 (a) to (d) were otherwise unchanged.

20

l.4. The Direction Taken by the Project

1.4.1. General

The developments in technology which have taken place
since the start of the project have confirmed the impor-
tance of behavioural specifications (sometimes called
"requirements specifications" (Lehman, 1981) or
"functional specifications" (Mackie, 1981)) in 1large
systems, especially when an existing product is to be re-
constructed using some new technology. Where no such spe-
cification existed, it has sometimes been found necessary
to create it before commencing the design of the updated
system (e.g. Henninger, 1979), in order to ensure compa-
tibility between the o0ld and new versions.

However, over the same period of time the majority of
published work on specification languages has concen-
trated wupon the use of formal mathematical languages and
the techniques of theorem proving (e.g. Abrial, 1980;
Goguen et al, 1978; Musser, 1979; Neumann et al, 1980).
This project has taken a different approach for the fol-
lowing reasons.

(a) A reguirements specification cannot be proved correct
by mathematical methods, as it can only be compared
with the customer's mental model. Although a specifi-
cation can later be used in a proof that the system
design 1is correct, it is much more important to en-
sure that it is fully understood and accepted by the

customer.

=30~

(b) The main difficulty in commercial organisations is to
obtain the regquirements information. Most specifica-
tions are incomplete in some parts for much of the
duration of a project; it is therefore essential to
accept and record incomplete information, allowing
the specification to be created incrementally.

(c) As a conseqguence of (b), axiomatic methods (e.gq.
Goguen et al, 1978) may be impracticable, as they
reguire a complete understanding of the system being
specified. Their form also makes the incremental
creation of a specification more difficult, as they
achieve brevity by combining information about
separate parts of the system behaviour.

(d) A specification forms the main communication link
between the customer and the supplier; thus, it
should aim above all else to be comprehensible to
both parties. Mathematical elegance and tractability,
often seen as advantages by the proponents of the
more mathematical specification 1languages, do not
necessarily bear any relation to comprehensibility
(Green, 1977).

Hence the objectives of this project, which are outlined -

in the next section, are based upon the adoption of a

simple model for specifications which sacrifices mathe-

matical tractability, wherever that becomes necessary, in
order to retain comprehensibility. In particular, the aim
has been to minimise the number of concepts which would
be wunfamiliar to the staff of a telecommunications manu-

facturer and its customers.

=-3]=

1.4.2. ASL (A Specification Language)

A review of existing specification languages
(reported fully in Chapter 2) did not result in the iden-
tification of one which was considered adequate; a new
language was therefore designed in accordance with item
(c) of the terms of reference (see Section 1.3.2). In or-
der to avoid confusion when discussing the relationship
between this 1language and other languages it was given
the name "ASL", an acronym for "A Specification
Language". ASL 1is described in detail in Chapters 3 and
4, but its main objectives can be summarised as follows:
(a) A simple model of systems.

ASL uses the stimulus-response ("black box") model of

systems as described in Ashby (Ashby, 1969). This

maps directly onto the physical realisation of
information-processing systems, provides a discipline
which assists in the detection of omissions, and
helps to avoid a number of problems of semantics.

(These points are discussed in detail in Chapter 3).
(b) A limited number of simple primitive operations.

In ASL there are two basic operations: the sending

and receipt of messages. To offset this extreme

simplicity, a message is allowed to contain an arbi-
trarily large amount of information.
(c) Implicit specification of data transformations.

Transformations on information (i.e. functions in the

mathematical sense) do not have to be specified as

algorithms which achieve the desired result; they can

=-32=

be expressed directly in terms of the required rela-
tionship between the input and output values. This is
consistent with the "black box" view of systems, and
results in simple, comprehensible descriptions.

(d) Direct reference to past events.
There is no reason for a specification to be
concerned with the methods (and economics) of in-
formation storage. For simplicity and
comprehensibility, the specification writer should be
allowed to refer directly to all the events (i.e.
messages sent and received) which represent the
history of the system. This is in contrast to system
models such as those based upon finite-state machine
theory (e.g. Parnas, 1972), where past events are
summarised as if stored in a limited number of accu-
mulators in the memory of a computer, withlconsequent
loss of comprehensibility.

(e) Tolerance of incompleteness.
Incomplete specification 1is permitted in ASL by al-
lowing any part of the specification to be stated to
be "undefined". 1In this way the specification con-
tains an explicit marker against every incomplete -
portion so that these «can easily be identified by
anyone reading the document.

Superficially, ASL has been kept simple; it uses English

words (e.g. "send", ‘"receive") rather than special

symbols, 1in order to reduce the amount of training

required to be able to read (rather than write) ASL

specifications. The syntax of the language (see Chapter

-33-

5.2) is suitable for the simplest type of recursive-
descent analysis (Davie & Morrison, 1981). This reduces
the complexity of the support facilities (see Chapter 5)
and may also be more acceptable to the users of the lan-

guage than a more complex grammar (Green, 1980).

1.4.3. Expected Benefits

In the initial stages of the introduction of ASL, it
is unlikely that any of the expected reduction in the
total timescale of a project will be achieved due to the
additional time taken to train personnel in the <correct
use of the language. It might even lead to an increase in
the time taken for the first project on which any partic-
ular group of people uses the language, as the concept of
formal reguirements specifications will be new to them.
However, even in these initial projects, it should be
possible to detect a reduction in the number of errors
which are not identified until after the construction
stage.

Due to the long timescales for the types of projects
undertaken by GEC Telecommunications Ltd. it is not poss-
ible to report any significant evidence of such improve-
ments in this thesis, as the true value of formal specif-
ications will only become apparent over a period of
years. The few reports from organisations which have been
using formal methods for a number of years (e.g. Alford,
1979; Lattanzi, 1981) indicate that around 50 percent of

errors may be detected at the specification and design

oy

stages due to the wuse of such methods. Although these
figures relate to the production of large software sys-
tems outside the telecommunications industry they are in-

dicative of the scale of the possible improvement.

Taking results from such sources together with some
figures from within the Company, it is possible to arrive
at an extremely approximate estimate of the benefits
which might be obtained. Because of the degree of approx-
imation involved, and the mixture of sources of the
figures, every attempt has been made to take a conserva-
tive wview. Only the System X projects within the Company
have been included, as these are the only ones for which
the costs and numbers of changes per annum can easily be
obtained.

These figures are as follows:

(a) Current number of changes per year. 5000

(This is the number of change notes issued
on the System X project in the year 1981l.)
(b) Average cost of each change on System X
within the Company (Dawkins, 1982). £280
(This represents the cost of engineering
effort and documentation in processing a
change, but does not include the cost of
rectification on existing equipment.
The cost is given at 1980 price levels.)
(c) Percentage of errors due to poor
specification (Jones, 1979). 15
(Analysis of large software projects

in the U.S.A..)

A

(d) Percentage of specification errors
detected by formal methods (Alford, 1979). 50
(Report on use of formal methods for
software development in T.R.W. Inc..)

(e) Estimated possible saving per year

{ {a) = b x (6)/7100°x (4),/100D) £105000

It 1is gquite possible that the elements for which esti-
mated savings could not be obtained (e.g. the rectifica-
tion of existing equipment, and changes on products other
than System X) represent a potential benefit many times
greater than the total shown above. Some managers in the
Company who have been involved in the development of Sys-
tem X consider the savings shown above to be a gross un-
derestimate of the likely effect; their experience indi-
cates that a very large amount of effort is wasted due to
incompleteness in the present specifications. However, it
was considered that the figures presented should be well-
justified, representing the minimum savings to be ex-

pected in practice.

1.5. Structure of the Thesis

The subsequent chapters follow the general
development of the project in chronological seguence,
with Chapter 2 covering the review of existing specifica-
tion languages and Chapters 3, 4 and 5 describing the
development of ASL. In Chapter 3 the fundamental deci-

sions behind the design of the 1language are explained,

-36-

then Chapter 4 covers the detailed definition of the lan-
guage and Chapter 5 describes the support which can be
provided by computer facilities. The initial trials of
the language are reported in Chapter 6 and evaluated in
Chapter 7, then Chapter 8 provides some conclusions and
proposals for further work.

Due to the volume of supporting material (e.g. tables
of comparisons between languages, formal definitions of

ASL) much of the detail appears as Appendices.

= P

CHAPTER 2

REVIEW OF POSSIBLE CANDIDATE LANGUAGES

2.1. Introduction

A wide variety of notations have been proposed for
use as specification languages, and in this Chapter a re-
presentative sample are reviewed. With such a large range
to evaluate it is essential to have an objective basis
for the assessment, so the first section of the Chapter
is concerned with the development of criteria, which are
then wused in the evaluation. One major guiding factor in
this review has been the suitability of the languages for
use by existing personnel without the need for extensive
retraining; this is reflected in the choice of <criteria
used in the evaluation. An earlier and less detailed ver-

sion of this review appeared in (Blackledge(a), 1981).

2.2. Requirements of a Specification Language

2.2.1. The Starting Point

When viewed in the context of its intended purpose, a

good specification can be seen to be one which is:

-38-

(a) comprehensible, to both the authors and the readers,
(b) testable, with all statements in the specification
being measureable attributes of the final product,

(c) adeguate, 1in that it contains all the appropriate

information,

(d) maintainable, with a structure which facilitates the

introduction of amendments.

However, these are not suitable criteria for an evalua-
tion of specification 1languages as they are compound
attributes, and can only be assessed subjectively. It is
therefore necessary to determine a set of objective
criteria which equate to the achievement of the above
aims. This can only be done on the basis of the available
evidence, which is limited and fragmentary (e.g. Green et
al, 1981), so that the final list of criteria must be
seen as a partial test, to be complemented by subjective
assessment.

The final 1list was the result of an iterative
process, where each item in the 1list was replaced by
those more detailed 1items which contribute to its
achievement, until a stage was reached where all items in
the list were amenable to objective evaluation. The level
of objectivity demanded was that it should be possible to
identify clearly the presence or absence of the appropri-
ate feature in a language; none of the criteria are suf-
ficiently quantifiable to permit the languages to be
placed in order.

Figure 2.1 shows, in the form of a hierarchy, the

stages by which the final criteria were reached; the ini-

-390~

tial aims appear ‘at the top, connected by pointers to the
items by which they were replaced. In the figure each
item appears only as a brief title, but the following
paragraphs provide an explanation for each stage and for

the titles.

2.2.2. Comprehensibility

Comprehension of text or diagrams is enhanced by good
organisation of the material, using means such as those
listed below.

(a) Structure, such as paragraphs (Mills & Walter, 1978)
and appropriate sequencing of the content (Posner &
Strike, 1976), which are discussed in Section 2.2.6.

(b) Conciseness (Liskov & Zilles, 1978), which |is
discussed in Section 2.2.7.

(c) Perceptual cues, such as headings, which direct the
reader's attention (Green et al, 1981; Hartley &
Burnhill, 1977; Thomas & Carroll, 1981), discussed in
Section 2.2,8.

(4d) Descriptive and historical reference (Balzer &
Goldman, 1979), rather than the modes of reference'
available in programming languages, where past in-
formation must be explicitly saved and cannot be ac-
cegged as’ "the" last.d,™ [(Nylin & Harvill, '1976;

Schueler, 1977), and must be mentioned by name rather

than as "thevsos with el

-40-

DEVELOPMENT OF THE SELECTION CRITERIA

FIGURE 2.1

AytTRWIOY

N /

uor3eai)
[e3judwaidur

A3yt11gqe3sag
(p)

SoTwyl

T2PON
DoTjuewWas

xejuls
arduts

uorjestaajindwo)
103 A3TrIqQe3Ing

sanieA
Azzng

T10HbTE-UON uorjesteIaUSd
A
21In3oNn138s
S103TUOWR coﬂummwummd uMmE
aouai1ajay
sSuo13loy 3o aatjdraonsad
uotjeaedss pue DII03STH
AJTTRWTIUTK
suiaouo) Jo Aouepunpay
uotjeiedas TeUOT3E]0N
Adus1anduo) 9sTouo)
[J
awry Jo san)
uotijejuasaiday 1en3daoisg 21n3o5ni13s
Ajrriqeurejutey Aoenbapy Aytrrqrsuayaadwo)

() (q)

(e)

—d T

2.2.3. Adegquacy

This covers those features which make a language

practical in a commercial environment on large projects

with large project teams.

(a)

(b)

(c)

(d)

(e)

Minimality, in permitting description of the required
behaviour without demanding any unnecessary details
(see Section 2.2.9).

Recognition of concurrency. Most large systems in-
volve actions occuring in parallel, and it is there-
fore appropriate to be able to represent this
directly (Kornfeld & Hewitt, 1981; Petri, 1979).
Representation of time. Although most properties of a
system can be analysed using only the concept of
sequence in time (Peterson, 1981), the omission of
time delays and time limits leads to inadeguate spe-
cifications (Winograd, 1979).

"Fuzzy" values. Despite the need for gquantitative
statements which can be tested, there are 1likely to
be many values which cannot be stated as a single,
precise figure; if the author of the specification
has to make an arbitrary choice of a single figure,'
this may result in unnecessary difficulties for the
designer (Estrin, 1978). The language should there-
fore allow imprecise information to be stated, but in
a way which indicates its nature (Balzer & Goldman,
1979) «

Incremental creation. For a large specification, with

perhaps hundreds of pages, it is impractical to ex-

-42-

pect that all the necessary information will be
available at the time when the specification is first
written. Specifications are wusually elaborated in
discussion between customer and designer (Malhotra et
al, 1980), and the document should at all times re-
present the latest information, even though this may

be incomplete (Hewitt et al, 1979).

2.2.4. Maintainability.

Two identifiable factors which aid in the introduc-
tion of amendments are:

(a) separation of concerns, so that unrelated information
is physically separated in the specification, as
discussed in Section 2.2.10,

(b) computer-based support, to aid in locating the in-
formation to be changed and also in checking that the
changes are made correctly and uniformly throughout

the specification (see Section 2.2.11).

2.2.5. Testability.

The use of a formal language, which does not allow
purely qualitative statements, is a major contribution to
ensuring that the reguirements are testable (Alford,
1977; Balzer & Goldman, 1979; Davis & Vick, 1977; Wass-

erman & Stinson, 1979).

-43-=

2.2.6. Structure..

Apart from the physical structure of the text, there
is also the organisation of the information for
presentation. Two extremely useful forms of this type of
structure are "generalisation" and "aggregation" (Smith &
Smith, 1977). "Generalisation" 1is the use of a general
object to represent the common characteristics of a col-
lection of specific objects, e.g. the use of the word
"dog" to represent the common features of a large set of
individual animals. "Aggregation" is the introduction of
a descriptive name for a group of associated objects,
e.g. an "address" is made up of a house number, a street,
a town and a postcode. These forms of structure provide a
significant reduction in the amount of information in a
specification, by allowing the use of the general names

and aggregate names as abbreviations.

2.2.7. Conciseness.

"Conciseness" refers to features which help to pro-
duce short specifications. Text structure,
generalisation, aggregation (see 2.2.6) and minimality
(see 2.2.9) all contribute to the removal of unnecessary
repetition of information; another feature which helps is
the use of "monitors" (also called "demons" in Artificial
Intelligence programs , e.g. Winston, 1976). A "monitor"
is a statement of some condition (e.g. an error

condition) and the action to be taken when that condition

-44-

occurs. It can be thought of as watching over the system,
monitoring everything which happens to see if its condi-
tion occurs; and when it does then the monitor performs
its action and afterwards returns to monitoring. An exam-
ple of the analogous form in English is "When you feel

hungry go and eat.".

2.2.8. Perceptual Cues.

Green et al (Green et al, 198l) point out the impor-

tance of visual cues to assist the reader.

(a) Text structure, such as paragraphs, headings, etc.,
to break the text into logical blocks (see 2.2.2(a)).

(b) Some redundancy in the notation, such as headings
(Bartley & Burnhill, 1977; Thomas & Carroll, 1981),
indentation of paragraphs (Green et al, 1981) and the
use of a notation which avoids extreme terseness
(Miller, 1967).

(c) Separate description of each action (Cleaveland,
1980), as this is more comprehensible than the in-
termingled form appearing in axiomatic descriptions

(e.g. Guttag, 1977).

2.2.9. Minimality.

"Minimality" does not refer to the size of the spe-
cification document, but to the ability of a language to
express exactly the reguired behaviour and no more

(Liskov & Zilles, 1978). To achieve this the 1language

T

must not force the inclusion of unnecessary information,

such as:

(a) an algorithm (detailed sequence of steps) for produc-
ing the required result, or

(b) a definition of the data to be stored within the
system.

Both of these <can be avoided, by using non-algorithmic

languages for data transformations (e.g. Jones(a), 1980;

Guttag, 1977) and historic reference to data (see

2.2.2(d)), and in this way the specification does not in-

troduce unnecessary constraints upon the designer.

2.2.10. Separation of Concerns.

Correct use of text structure (Section 2.2.2(a)), in-
cluding generalisation and aggregation (Section 2.2.6),
monitors (Section 2.2.7) and the separate description of
each action (Section 2.2.8(c)) result in a specification
where each item of information occurs the minimum number
of times, and only in appropriate places (Balzer &
Goldman, 1979). This reduces the likelihood of some oc-
curences of an item remaining unaltered when a change is

introduced.

2.2.11, Suitability for Computerisation.

Goguen (Goguen, 1979) and Gerhart and Yelowitz
(Gerhart & Yelowitz, 1976) note the prevalence of trivial

errors in formal specifications, of types which can eas-

46~

ily be detected by computer-based checking systems (e.q.
Alford, 1977; Davis & Rauscher, 1979; Goguen, 1979;
Teichrow & Hershey, 1977). For a language to be suitable
for this kind of computer-based support it must be:

(a) simple syntactically, so that it 1is amenable to
efficient, well-understood language processing tech-
nigues (e.g. Gries, 1971). Despite considerable pro-
gress in the processing of natural language (e.g. Bo-
brow et al, 1977), there are still many difficulties
in applying these techniques in practice (James,
1981),

(b) formal, so that every possible statement in the lan-
guage has a well-defined meaning. This is discussed

further in Section 2.2.12 below.
2.2.12. Formality

A language with a well-defined syntax is not neces-
sarily "formal", as without a sound semantic basis it is
still ambiguous or meaningless (Lewin, 1977). From the
point of view of this evaluation there are two types of
semantic model which could be used.

(a) Operational models, where the meaning of statements
in the language is "defined" by the operations which
result when it is processed by a particular computer
program (its "compiler").

(b) Theoretical models, where the meanings are defined in
terms of some abstract, mathematical model, indepen-

dent of any particular implementation on any particu-

N P

lar computer.
Languages with theoretical models are preferable
(Demuynck & Meyer, 1979), as any computer support facili-
ties can use these theoretical models as an integral part
of the checking procedures, rather than having to rely

upon the integrity of a previous implementation.

2.2.13. Summary.

The final 1list of thirteen criteria, which provide
the necessary level of objectivity, are :

(a) block or paragraph structure,

(b) generalisation,

(c) aggregation,

(d) separate description of each action,

(e){monitors,

(£) historic and descriptive references,

(g) non-algorithmic description of transformations,

(h) representation of time duration,

(i) recognition of concurrency,

(j) acceptance of fuzzy values,

(k) notational redundancy,

(1) simple syntax,

(m) a well-defined semantic model.
Although this list is not a complete set of criteria, due
to the nature of the problem, the following sections will
show that it does provide a sufficiently stringent test

to indicate deficiencies in all the languages reviewed.

-48-

2.3. The Types of Specification Language

There are well over one hundred different languages
which have been put forward as suitable for use in writ-
ing specifications, but by choosing a single language to
represent groups which differ only slightly this has been
reduced to eighty-eight in the review. Even with this
reduction there is a need for some categorisation scheme
which permits common failings and strengths to be
identified. The <categories which have been used are
listed below, and divide the languages on the basis of
their conceptual background, i.e. the source of the basic
structure of the 1language. Where there appeared to be
some choice over the appropriate category for any
language, it was placed with the group which represents
the major influence in its design. Many languages in-
tended for other stages in the design process
(Ramamoorthy & So, 1978) have been omitted; some of
these, which are called "specification 1languages" by
their authors, are much more concerned with the design of
systems than with their required behaviour.

The categories are covered in Sections 2.4 to 2.17,
as listed below, and then Section 2.18 summarises the

evaluation.

Section Category

2.4 Universal Languages

7 Computer Hardware Description Languages
2.6 New Programming Languages

2ol Derivations from Programming Languages

-49 -

Section . Category

2.8 Flow Charts

29 Hierarchic Description Methods
230 Finite State Machine Languages
25311 Static Description Languages

il Pre- and Post-condition Languages
2+13 Event-triggered Languages

2.14 Specification Analysers

2:15 Sequence Description Languages
2+46 Petri Nets

217 Languages using Axiomatics

Each of these categories is explained in more detail in
the appropriate section and is briefly evaluated against
the criteria given in Section 2.2.13. Tables showing the
full evaluation of the eighty-eight languages against the

thirteen criteria appear in Appendix A.

2.4. Universal Languages

The term "universal" 1is intended to indicate that
these languages were not specifically designed for use in
writing specifications, but have been used for that

purpose.

2.4.1. Natural Languages

English and other natural languages have been used
successfully as specification languages for many years,

but with the increasing size and complexity of the sys-

=B0=

tems now being developed their disadvantages have become
more apparent (Alford, 1979; Jones(a), 1980; Lehman,
1981). The main problems relate to ambiguity (e.g. Hill,
1972) and the extensive use of implicit reference (Hobbs,
1977), which cannot always be fully resolved even in di-
alogue between the author and a supporting computer sys-
tem (Balzer et al, 1978). Careful use of a2 natural lan-
guage can produce good results (e.g. Naur, 1960), but the
conseguent need to give clear and complete definitions of
all terminology can lead to verbose documents (e.g.
Holbeck-Hanssen et al, 1975) without ensuring the removal

of ambiguity.

2.4.2. Programming Languages

A number of proposals for specification languages
make direct use of computer programming languages, such
as APL (Jones & Kirk, 1980), and similar notations, e.g.
PDL (Caine & Gordon, 1975). This takes advantage of the
formal nature of these languages, with their simple syn-
tax and defined semantic model (although many programming
languages have only operationally-defined semantics - see
Secticn 2.2.12); to produce precise, unambiguous
specifications.

However, with few exceptions (see below) these lan-
guages are totally algorithmic, reguiring detailed
descriptions of the method for producing transformations
on data, and fail to meet criterion (g). They also bhave

been designed to operate efficiently on current computer

-51-

hardware, and so do not provide historic and descriptive
reference (criterion (f)) or monitors (criterion (e)),
cannot accept fuzzy values (criterion (j)), and provide
no direct representation of time (criterion (h)). Prolog
(Clocksin & Mellish, 1981) and SETL (Schwartz, 1973) both
suppress almost all algorithmic detail, leaving their in-
terpreter programs to organise the flow of control, and
therefore satisfy criterion (g), but they share the other
deficiencies mentioned above and fail to meet criteria

(e),(£), (h) and (3).

2.5. Computer Hardware Description Languages

Computer Hardware Description Languages (CHDLs) are
also known as Register Transfer Languages (RTLs) because
they model digital circuits at the level of physical
binary registers. Examples are AHPL (Hill & Peterson,
1973), DDL (Duley & Dietmeyer, 1968), HARTRAN (Bown,
1978), ISPS (Bell & Newell, 1971) and TEGAS6 (Szygenda,
1980). They are all extremely algorithmic as they
describe in terms of a detailed design; at least one lan-
guage (Bell et al, 1973) has been complemented by actual
hardware modules, so that statements in the language can
be directly translated into a design. Apart from the
failure to permit non-algorithmic descriptions (criterion
(g)), these languages are also restricted by their repre-
sentation of all data as registers of bits, and therefore
provide inadequate facilities for generalisation

(criterion (b)) and aggregation (criterion (c)).

<E0a

2.6. New Programming Languages

As a consequence of growing interest in formal proofs
of correctness of computer programs (e.g. Mills, 1975) a
number of programming languages have been developed which
incorporate both the imperative features required to per-
form operations on a computer and non-imperative state-
ments in which to make assertions about the intended cor-
rect behaviour of the program (e.g. Hantler & King,
1976) . The languages Ada (Ichbiah et al, 1979), Alphard
(Wulf et al, 1976) and Gypsy (Ambler & Good, 1977), and
the Gamma program development system (Falla, 1981) all
contain such features; however, as Krieg-Bruckner and
Luckham (Krieg-Bruckner & Luckham, 1980) point out, they
only provide sufficient features to verify the design,
not to act as a complete specification. Even the exten-
sions proposed by Krieg-Bruckner and Luckham (op. cit.)

fail ‘to satisfy criteria (e), (£)+ (h)., (1) and {73).

2.7. Derivations from Programming Languages

In a number of cases a specification language has
been derived from a programming language, either by the
relaxation of the syntax rules to allow informal descrip-
tions instead of algorithms or by the addition of feat-
ures such as a representation for time. As examples, RLP
(Davis & Rauscher, 1979) is based upon PL/I (IBM, 1976)
with added block structuring, Delta (Holbeck-Hanssen et

al, 1975) and Epsilon (Jensen et al, 1979) are based upon

-53-~

SIMULA (Dahl & Nygaard, 1966) with the addition of non-
algorithmic constructs. SMSDL (Frankowski & Franta, 1980)
is also based upon SIMULA but uses informal descriptions
of processes rather than additional formal statements.
Others such as DDN (Riddle et al, 1979), SPECLE
(Biggerstaff, 1979) and SREM (Alford, 1977) have similar
forms, although they are not as closely modelled on any
one programming language. As a group these languages
still retain a large degree of the algorithmic nature of
programming languages (see Section 2.4.2), even those
which provide some non-algorithmic constructs; all repre-
sent data as stored variables rather than having descrip-

tive and historic reference (criterion (f)).

2.8. Flow Charts

Flowgrams (Karp, 1978), progression charts (System X,
1979) and flow charts (Wayne, 1973) all take the form of
diagrams containing boxes of various shapes connected by
directed arcs. The boxes represent processes and
decisions, and these charts are normally used to d}splay
the structure of a computer program or similar 1level of
process (e.g. Sleight & Kossiakoff, 1974). The SX/1 sys-
tem (Corker & Coakley, 1976) makes practical use of this
by automatically producing computer program text from
flow chart input. Apart from SX/1, which is comparable to
the other programming 1languages in the evaluation (see
Section 2.4.2), the flow charts all use informal, un-

structured text as labels for their boxes and arcs. They

-54-

therefore fail to meet criteria (1) and (m), as they do

not have a defined syntax or semantics for these labels.

2.9. Hierarchic Description Methods

One method for describing large systems which is of-
ten suggested in manuals on technical writing (e.g. Mills
& Walter, 1978) 1is that of repeated subdivision into
smaller and smaller elements until a 1level 1is reached
when each element can be described in a few sentences.
The work of Miller (Miller, 1967) on the number of
"chunks" which can be stored in human short-term memory
was taken as supporting this type of method, and a number
of hierarchic specification languages appeared. These
ideas also form the basis of various "structured program-
ming methodologies" (e.g. Structured Systems Analysis
(Gane & Sarson, 1979)).

CORE (Mullery, 1979), HIPO (Stay, 1976), SADT (Ross,
1977) and Structured Systems Analysis all use block dia-
grams to depict the hierarchy, with unstructured natural
language text to describe processes. They therefore fail
to satisfy criteria (1) and (m); also, because of their
origins in commercial data processing, they have no re-
presentation of time or concurrency (criteria (h) and (i)
respectively). In contrast, CADIS (Bubenko & Kallhammer,
1971), HOS (Hamilton & Zeldin, 1976) and PSL (Teichrow &
Hershey, 1977) are based upon restricted languages with
simple syntaxes and are provided with extensive computer-

based support. However, PSL does not have any way of

-55-—

describing data transformations, and all three fail to

satisfy criteria (h) and (i).

2.10. Finite State Machine Languages

State transition diagrams and finite state machine
theory have been used in the design of electrical cicuits
for many years (e.g. Moore, 1956), but interest in their
use for system specification appears to be more recent
(Kawashima et al, 1971). The initial proposals (e.g.
Hemdal, 1973; Kawashima et al, 1971) were based upon the
use of state transition diagrams with informal labelling
in natural language, and were therefore little more than
special forms of flow chart (see Section 2.8); even some
recent languages (e.g. Braek, 1979) have still retained
this level of informality.

Othér 1anguages have been fully formal, so that they
could be checked by computer and even in some cases au-
tomatically transformed into computer programs. Examples
of these are CDL (Dietrich, 1979), NPN (Boebert et al,
1979), the notation of Parnas (Parnas, 1972) which also
appears as SPECIAL (Robinson, 1976), and the notation
used by Wymore (Wymore, 1967). In order to obtain the
necessary formality in a cost-effective manner, all these
languages took the form of text rather than diagrams; the
CCITT Specification and Description Language (CCITT,
1980) has gone one stage further in having text and dia-
gram forms which are equivalent and can be converted into

each other automatically.

i~

The main disadvantages of all these languages result
from the use of the finite state machine model. This
requires that every event and relevant state must be pre-
sent explicitly in the specification and, for any large
system, this involves a considerable number of states and
events. Any attempt to introduce aggregation (criterion
{c))i generalisation (criterion (b)) or monitors
(criterion (e)) in order to reduce the size of the spe-
cification destroys the 1link to the underlying theory
(Cohen, 1980), so that the resulting description no
longer has a semantic model (criterion (m)). Without
these features the specification has insufficient struc-

ture (criterion (a)).

2.11, Static Description Languages

The largest source of static description lan-
guéges is the field of database systems, where the
concern 1is in ensuring that a database accurately repre-
sents the state of the "real world" at some instant of
time. In general, there is no attempt to describe the dy-
namic features which cause updates to the database, hence
the use of the term "static". The Entity-Relationship
model (Chen, 1976) was selected as a suitable representa-
tive of the database languages, but others which fall
into this category are LEGOL (Stamper, 1977) which bhas
been used in modelling statute 1law, SLICES (Steele &
Sussman, 1979) which can represent ordered sets of

constraints, and methods based upon invariants (e.g. Cun-

=g

ningham & Kramer, .1977). By concentrating upon static
aspects of a system, these languages provide a powerful
form of monitor (criterion (e)); however, they fail to
satisfy the criteria relating to dynamic behaviour (i.e.

(@), (£), (h) and (i)).

2.12. Pre- and Post-condition Languages

In these languages each action is specified by stat-
ing the conditions which are necessary for it to commence
(the "pre-conditions") and the conditions which will ex-
ist when it finishes (the "post-conditions"). For
example, a sguare-root function could be specified as:

Pre-condition: A number, X, greater than or

eqgual to zero, and some reguired

tolerance on the answer, Y.

Post-condition: A result, R, such that

X ~ B%] ¢ Y.
This provides a good, non-algorithmic way of defining
transformations upon data (criterion (g)), as exemplified
in the work of Dijkstra (Dijkstra, 1976) which has been
continued by Cunningham and Kramer (Cunningham and
Kramer, 1977), the Vienna Development Language (Bjorner &
Jones, 1978) and the related work by Jones (Jones(a),
1980), and the 1language Z (Abrial, 1980). However, all
these 1languages provide no representation of time
(criterion (h)) and cannot deal with concurrent systems
(criterion (i)). Only the language Z has any form of text

structure.

-58-

2.13. Event-triggered Languages

This type 1is differentiated from the others by its
text form and the use of the concept of "events" without
necessitating the use of system states (as is the case in
finite state machine languages, Section 2.10). The Petri
net languages (Section 2.16) are also based on events,
but appear in a separate section because of their dia-
grammatic presentation.

There are a large variety of languages within this
type, ranging from those not intended for computer
processing (e.g. Jackson, 1981) to formal and complex
ones with extensive computer support (e.g. Hewitt, 1977).
There are examples which satisfy each one of the
criteria, although no individual language satisfies all
the thirteen. The most interesting of the group, because
they provide features not found in other 1languages, are
AP2 (Balzer & Goldman, 1979) which allows fuzzy values
and historic references, and ACTORS (Hewitt, 1977) which
is designed to permit incremental creation of
specifications.

In general, the event-triggered view of systems of-
fers a clear method for developing specifications by
starting from the list of all possible events. However,
it is not possible to specify all behaviour (e.g. maximum
time delays between messages) solely in terms of external
events; also this approach provides no obvious method of

structuring large specification texts.

-50-

2.14. specification Analysers

Although the languages of this type are not complete
specification languages, as their purpose 1is only to
analyse particular features of a specification, they have
been included for completeness. BAs an example, SPECK
(Quirk, 1978) deals only with the timing of messages, not
their content, and checks to ensure that no messages can

be missed due to time delays within the system.

2.15. Sequence Description Languages

The behaviour of a finite state automaton can be
described fully by the sequences of messages which it
will accept and send, this being an alternative to a fin-
ite state machine specification (Hopcroft & Ullman,
1969). By defining the seguences as regular expressions
(Harrison, 1974) or path expressions (Campbell &
Habermann, 1974), such a specification can be reduced to
an acceptable size.

Milner's Calculus of Communicating Systems (ﬁilner,
1980) and COSY (Lauer et al, 1979) take this form, and
have been shown to produce useful theoretical results.
However, the disadvantages of seguence descriptions are
in their presentation; they bhave no text structure
(criterion (a)) and reguire all actions to be described

in sequences, not separately (criterion (d)).

-60-

2.16. Petri Nets

Petri nets (Petri, 1962) were devised as a visually
simple representation of event-triggered systems, amena-
ble to a variety of analyses (Peterson, 1981; Shaw,
1980). The original nets only had informal text
labelling; however, the combination of visual simplicity
and their ability to represent concurrency led to their
use with formalised labels in GRAFCET (Bouteille, 1978),
LOGOS (Rose et al, 1972), Pro-Nets (Noe, 1978) and SARA
(Estrin, 1978). These languages all have limited facili-
ties for aggregation but no facilities for generalisation
or monitors; thus, specifications written in them tend to
be large and lack structure. More recent work (e.g. Gen-
rich et al, 1980) has introduced limited forms of gen-
eralisation (criterion (b)) and monitors (criterion (e)),

but not a method of representing time (criterion (h)).

2.17. Languages using Axiomatics

The basic systems in mathematics, such as Euclidian
geometry and the natural numbers, are defined axiomati-
cally (Stewart, 1975), as this provides a concise and
minimal definition. A number of specification languages
have therefore used this approach in an attempt to obtain
the same benefits. Examples are ADJ (Goguen et al, 1978),
Affirm (Musser, 1979), CLEAR (Burstall & Goguen, 1977),
iota (Nakajima et al, 1977), OBJ (Goguen, 1979) and the

notation used by Schwartz and Melliar-Smith (Schwartz &

Y

Melliar-Smith, 1981).

Axiomatic descriptions have the same disadvantages as
sequence descriptions (see Section 2.15). Since actions
are described in combinations rather than separately
(criterion (d)), it is difficult to provide any structure
to the specification (criterion (a)) without performing
part of the design. Additionally, there are practical
difficulties in constructing an adeguate set of axioms
which encapsulate exactly the required behaviour (Guttag,
1977); this casts doubt upon their suitability for use in

a commercial environment.

2.18. Conclusions

From the comments about each category, which appear
in sections 2.4 to 2.17, together with the detailed ta-
bles in Appendix A (see especially Table A.15, which
gives a summary of Tables A.1 to A.14), the following
conclusions can be drawn.

(a) No single language in the review satisfies all thir-
teen criteria. The event-triggered language, AP2, and
English come closest to satisfying all thirteen, but
English has no formal semantic model while AP2 has
only operationally-defined semantics and lacks text
structuring facilities.

(b) For the majority of languages with a well-defined
semantic model the emphasis placed upon theoretical
correctness appears to have resulted in a lack of

features to aid comprehension.

Y

(c) There is often no clear differentiation drawn between
specification and design documentation. Almost all
the languages require some design information (either
algorithms or definitions of stored data) to be in-
cluded in the specification.

(d) Direct use of, or the extension of, a language
designed for other purposes (e.g. a programming
language) appears to retain many of the disadvantages
of that language as a result of the inclusion of
features which were appropriate for the base
language, but which are not necessary in
specifications.

On this basis it was decided that a new language should

be developed, which would attempt to combine the streng-

ths of a theoretical semantic model with those features
which had been noted as contributing to
comprehensibility. In the next chapter, the fundamental
decisions behind the design of this 1language are ex-
plained and then the 1language itself is introduced in

Chapter 4.

-63-

CHAPTER 3

THE DESIGN OF A SPECIFICATION LANGUAGE

3.1. Introduction

The review of languages in the previous Chapter indi-
cated the wide variety of views of systems which can be
used 1in writing specifications. These views are similar
to the scientific paradigms proposed by Kuhn (Kuhn, 1970;
Floyd, 1979) in that, once a particular view has been
selected, it is difficult to change. To design a specifi-
_cation language, it is necessary to select one view (or a
compatible set of views) as a consistent framework
(paradigm) for the 1language, whilst ensuring that this
framework is sufficiently powerful to deal with a wide
variety of types of system. This Chapter contains an ex-
planation of the framework which was chosen, leaving the

details of the language structure until Chapter 4.

3.2. General Approach

In Chapter 1.2 the role of specifications was
discussed in the context of current practice in the Brit-

ish telecommunications industry. Any specification lan-

-64-

guage developed for use in this environment must recog-

nise the practical need to minimise the degree of re-

training of existing staff. This stresses the need for a

language which:

(a) does not utilise new and complex symbols where exist-
ing English words would suffice,

(b) permits the use of terminology specific to each
project, rather than enforcing some restricted set of
terms,

(c) was designed with mathematical tractability being
treated as secondary to the achievement of a language
in which the necessary information can be easily
expressed.

Despite the emphasis which this places upon the need for

a language which appears acceptably familiar and readable

to existing staff, it is not the aim to produce a specif-

ication which can be read by someone new to the project
being specified. A specification is not intended to be
suitable training material for staff entering a project,
but forms the contractual definition of the work to be
done (Mackie, 1979). Hence, the objective of a specifica-
tion is the accurate definition of the required
behaviour, not the provision of a structured introduction

to the system.

3.3. Formality

In Chapter 2.2.12 a formal language was defined as

one having well-defined syntactic and semantic models, so

-65~-

that a specification written in the language avoids the
problems of ambiguity found in natural languages. Formal-
ity in this sense is therefore an essential feature of
the new language; but it does imply that, if the new lan-
guage is to be small and simple, the resulting specifica-
tions will be less flowing than ones written in English.
Once the complexity of a language approaches that of
English, the fallible human ability to detect errors can-
not be adeguately supported by current computer-based
technigues (James, 1981; also see Balzer et al, 1978 and
Bobrow et al, 1977 for indications of the limitations of
current techniques).

Hence the detailed design of the language must at-
tempt to produce an acceptable compromise between flexi-
bility (for the writer) and simplicity (for checking) in
a manner which maintains the basic formality of the
language. The remaining sections of this chapter discuss
the main elements of the formal basis of the language in
an informal manner, with the formal definitions being

covered in Chapter 4.5.

3.4. A System and its Environment

3.4.1. The System

In Sections 1.2 and 1.3 a specification was shown to
be primarily a means of communication between customer
and supplier. This implies that much of the document will

be written prior to both design and manufacture, so that

=66~

it ‘forms a prediction of a future situation as it should
exist after the product has been delivered to the
customer (Lehman, 1981). In such circumstances, it is not
possible to describe the proposed system by presenting
details of its construction or internal operations,
because these are not yet known. The descriptions may be
couched in terms of an "abstract" design, not intended to
prejudge the actual design process. However, this intro-
duces the same type of problems as an "algorithmic" lan-
guage (see Chapter 2.2.9), because the resulting specifi-
cation cannot easily be separated into those details
which are essential and those which are only a result of
the choice of abstract design (Liskov & Zilles, 1978).
Such problems can be avoided by ensuring that the
specification represents the way in which the customer
will see the system, i.e. as a "black box" (Ashby, 1969;
Weinberg & Weinberg, 1979); thus, all possible designs

for the system are observationally equivalent (Milner,

1980) if they meet this external specification.
Observational eguivalence ‘and the "black box"
viewpoint both concentrate upon describing the

customer's world (as proposed in e.g. Jackson, 1981), not
upon details of the design, and are therefore likely to
result in documents which are comprehensible to the

customer.,

Yy

3.4.2. The Environment

The specification must however contain a clear defin-
ition of the boundary between the system and its
environment, as this bounds the task to be performed
(Lattanzi, 1980; Thatte, 1980). This can most easily be
achieved by viewing the environment as a system also
(Balzer & Goldman, 1979); the only difference between the
system and its environment when viewed as systems is that
the supplier (designer) does not have to design or manu-
facture a product which implements the environment.

Hence a specification takes the form of two (or
more) descriptions of "black boxes" - at 1least one for
the environment and one for the system being specified -
linked together by a description of the connections
between them, as depicted in Figure 3.1. Although it
should always be possible to represent the system and the
en;ironment as one "black box" each, it is convenient to
allow the use of more where physical separation (e.g. as
of the subscribers of a telephone exchange) makes it dif-
ficult for a person reading the specification to view
this as one entity.

This general structure for the specification has sig-
nificant advantages for the semantic definition of the
language, as is explained in Sections 3.5 to 3.7 below.
It also captures the concepts of modularity (Stevens et
al, 1974; Parnas, 1972) and observational eguivalence,
which provide independence from the particular

technology used to implement the system. In this

s .

THE GENERAL STRUCTURE OF A SPECIFICATION

FIGURE 3.1

?]
’
/!
SUOT3DaUU0DIdJUT /
/

juswuoiITAUY 3YL ¢

= |
/

saoejiajur

wailsAs =4l

-60=—

way, the specification is able to act as a common ref-
erence for a number of implementations, to ensure that

they are equivalent.

3.5. Communication by Message Passing

3.5.1. Messages

The main consequence of the "black box" model of sys-
tems is that the only way of obtaining information about
a system is by sending messages to it and awaiting
the replies. The "black box" representing the en-
vironment cannot have direct access to stored informa-
tion in the system, as is the case in some other lan-
guages (e.g. SMSDL (Frankowski & Franta, 1980)); thus the
specifier 1is forced to state all communications
explicitly. This discipline can be strictly enforced as
paét of the checking facilities described in Chapter 35,
and results in a method of specification which is highly
"analogic" (as opposed to "Fregean" (Sloman, 1971)) in
restricting the specifier to the same type of message-
passing as will exist in the designed product. Sloman
(op. cit.) suggests that "analogic" representations (such
as message passing in the case of information-processing
systems) are much more useful in problem solving situa-
tions than "Fregean" ones such as those covered in Sec-
Eions: 2,00, 2812 ands 2l ls

The sending and receiving of messages therefore

become primitive concepts within the language, having the

=T0=

following properties,

(a) A message 1is an instantaneous event involving the
transmission of information. Hence a physical method
of transmission which may represent a message as a
seguence of voltage variations over some period of
time is modelled in the language as a single, in-
stantaneous event (usually at the final instant of
the physical message). If the variation of a single,
continuous waveform is significant, then it has to be
modelled as a number of instantaneous messages.

(b) The transmission of a message is assumed to be in-
stantaneous and error-free; thus, any delays or noise
within the system are functions of the "black boxes",
and not of the transmission medium. (The treatment of
time is covered in more detail in 3.7 below.)

Any messages which are transmitted continuously for an

indeterminate length of time (hereafter called

"continuous messages") can be incorporated into this

framework by considering only their extremities. Thus,

the start and end of a continuous message are treated as

instantaneous messages with exactly the properties noted

above.

3.5.2. The Observer

The interconnections between the "black boxes" are
not visible to any one of them, only to a hypothetical
"observer" (Jensen et al, 1979), represented by the

reader of the specification; it is this observer who at-

=73

taches meanings to the names of the messages which pass
through these interconnections. In this way the problems
of ambiguity of names (Hayakawa, 1978) are resolved by
forcing the sole definition of the messages to reside
with the observer, and prohibiting each "black box" from
maintaining its own, separate version. Within each "black
box" the bnly "meaning" of a message is the response

which it triggers.
3.5.3. Message Contents

As each message is treated as an instantaneous event,
there is no need to introduce any detail of its physical
structure into the specification. Where the behaviour of
the system is dependent upon the content of a message,
this can be modelled without the necessity for any
degcription of how the content is encoded into the
message. Reference to message components is achieved by
naming each component, and these names may be organised
into a hierarchy of any level of complexity to provide
the required degree of discrimination between different
messages.

One significant advantage of this hierarchical struc-
turing of messages is that at any stage in the develop-

ment process the specification need only contain as many

levels of detail as are relevant to the current
state of the specification. If extra detail ig to be
inserted at a later stage, this may be added as

a further layer in the hierarchy.

o £

3.6. The "Black Box" View

3.6.1. Models

Henceforth the word "model" will be used, instead of
"black box", to represent a closed object which communi-
cates by passing messages. A specification will there-
fore consist of a number of models, with at 1least one
model for the system being specified and at least one for
the environment. The term "model" was chosen to emphasise
the distinction between the level of detail in the spe-
cification and the true complexity of the "real world"
(as Hayakawa notes by freguent use of the phrase "the map
is not the territory" (Hayakawa, 1978)). Thus, the spe-
cification can only be a limited analogue of the real

world from some specific viewpoint (Kent, 1977).

3.6.2. Interfaces

The restrictions of message passing have been rein-
forced in the language by ensuring that models can only
communicate with each other via well-defined interfaces,
and that only the observer can see the interconnections
between these interfaces. Thus, each model cannot know to
which other models it is connected, and it must obtain
any information about its environment by an exchange of
messages. This ensures that the specification can contain
no hidden assumptions (as can be the case in languages,

such as SMSDL (Frankowski & Franta, 1980), which allow a

-73-

model direct access to information stored inside other
models) . Because all information within a model must have
been obtained by an exchange of messages, the omission of
such an exchange from the specification is easily
detected.

A model <can have properties which differentiate it
from the other models within the specification (such as
the unigque telephone number of each subscriber on a tele-
phone exchange), but these are not visible to other
models, and cannot be directly updated or changed by

other models.

3.7. Time

3.7.1. Reguirements

A further conseguence of the "black box" view of sys-
tems is that the definition of the. required response
times of the system must also treat each model as a
closed object. Only the delay (or acceptable range of
delay values) between any received message and the subse-
guent output message can be stated. This means that the
model of time provided in a specification language can be
extremely simple; it can be limited to consideration of
"worst case" wvalues and ignore the detailed timing pro-

blems which may arise during design.

", I

3.7.2. Time Stamps

With the restriction of time delays to the models,
transmission between models is assumed to be
instantaneous. Thus, the use of a notional observer of
the system (as discussed in 3.5.2) makes it possible to
avoid the difficulties of introducing absolute time
values into the specification (Lamport, 1978; Sernadas,
1979) as follows.

(a) Only the observer makes use of absolute values of
time, in attaching a "time stamp" (Lamport, 1978) to
each message transmitted between models.

(b) A model can introduce a delay between receipt of a
message and any subsequent response. However, this
delay is of a number of time intervals and does not
reguire the model to recognise some instant on an ab-
solute time scale.

(c) Messages are received by a model in absolute time
sequence, but this takes the form of the value of the
"time stamp" in the message, placed there by the
observer.

Thus, models are only concerned with small time intervals

and the ordering of sequences of messages by the values

of their time stamps. As there is only a single observer

(see 3.5.2), there are no problems due to different in-

formation transmission delays to different observation

points. The only consequent deficiency in the lan-
guage is that, for those cases where transmission

delays are significant, extra models must be introduced

e

into
Howe

the

3.7

repr

the specification purely to represent this feature.
ver, this appears to be acceptable when compared with

advantages gained.

3. Time Viewpoint

Within the lanquages reviewed in Chapter 2 there are

esented a number of different viewpoints of time, of

which the following are examples.

(a)

The static description languages (Chapter 2.11) ig-
nore time by describing behaviour rules which must be

true at all points in time.

(b) The pre- and post-condition language Z (Abrial, 1980;

Re)

The
the
(Ser
(Gri

(1)

see also Chapter 2.12) is mainly used by its authors
as if looking back on the system behaviour from "the
end of time". Thus, the specification uses the
eguivalent of the passive past tense in English.

Finite state machine languages (Chapter 2.10)
describe actions at the time they are triggered, with
reference to the previous behaviour of the system.
This is analagous to the active current tense in
English.
viewpoint chosen for inclusion in the new language is
one which Sernadas calls ‘"privileged initial time"
nadas, 1979), and which is wused 1in Systematics
ndley, 1975). It is identified by:

specification of the behaviour as it appears at the
instant at which it is triggered, making reference to

past events,

s

(ii) all stored information within models being assumed
to have been initialised before any actions take
place, and thereafter only updated through message
passing.

Apart from the treatment of stored information, this is

equivalent to the "current time" viewpoint. This,

together with a dynamic (active) rather than static

(passive) description, seems to be easier to understand

than other viewpoints (Hartley & Bunhill, 1977).

3.8. Memory

Having achieved an acceptable representation of time
which suffices to order the events being specified, there
is no need to resort to the explicit storage of informa-
tion (e.g. in the "system state variables") to main-
tain the history of the system. By extending the idea of
restricted access to past values (Nylin & Harvill, 1976)
to unlimited access to all previous events (Balzer &
Goldman, 1979; Schueler, 1977; Stamper, 1977), the need
for algorithmic descriptions is much reduced. At the same
time, the language moves closer to the natural mode of
expression in English (Elton & Messel, 1978).

e.g; as ipn: "the last"

or: "the value at the time when....."
Although Sernadas (Sernadas, 1979) arques that it is per-
missible to represent information as being stored in
memory and updated, this fails to recognise the problems

caused by algorithmic descriptions (see Chapter 2.2.9),

=

as recognised by Balzer and Goldman (Balzer & Goldman,
1979), Grindley (Grindley, 1975) and Walters (Walters,
1959 .

Direct reference to history is not normally a feature
of practical designs, as it implies an extremely large
amount of storage, together with consequentially large
search times to extract the required information.
However, as was pointed out in Chapter 1.4.1, the main
purpose of a specification is to communicate information
between people, not to demonstrate how the design could
be made efficient; thus, the implied computational inef-
ficiency is acceptable if it leads to imbroved
comprehensibility. In order to make the use of direct
reference to history easy for the specification writer,
it is necessary to design into the 1language adequate
modes of access to allow the extraction of individual
messages, groups of messages and the total history, using
terms such as "next", "last", etc., without direct ref-

erence to values of absolute time.

3.9. Structuring the Specification

The division of a specification into models for the
system and its environment plus the interconnections
provides a rudimentary structure to the document, but
fails to provide any organisation to the contents of each
model. A model contains the descriptions of the behaviour

which it should exhibit on receiving messages through its

-

interfaces, and in the simplest possible form (as in a
finite state machine model, see Chapter 2.10) this would
appear as a complete list of the responses appropriate
for each individual message which could be received.

In Chapter 2 the terms "aggregation" (Section 2.2.6).,
"generalisation" (also in Section 2.2.6) and "monitors"
(Section i.2.7) were introduced for types of structure
which are appropriate to specifications. Theseprovide
both briefer and more comprehensible descriptions by per-
mitting statements which apply to classes of entities or
events rather than Jjust to individuals. Additionally
there must be the capability to represent blocks of text
which are repeated within a specification by some ab-
breviated references, as is done in computer programming
languages with subroutines, macros, functions, proce-
dures and similar devices. These must all be provided
in' a way which promotes their use, even at the
cost of added complication in any supporting computer
programs.

The surface form of a number of the languages
reviewed in the previous chapter appears to have resulted
from compromises in their design. These compromises were
aimed at limiting their strﬁcturing power to match the
capability of theorem proving systems or other manipula-
tive methods, although this is normally not admitted to
be one of the major parameters in their design (see for
example (Boute, 1981)). The difficulty in using methods
such as proofs of correctness, due to the NP-complete

nature of the proof process (Lehman, 1981; wirth(a),

-7 G

1977) implies that this is likely to result in an unsa-

tisfactory loss of comprehensibility whilst not providing

any guarantee of mathematical tractability.

3.10. Incompleteness

A specification is only a model of part of the real
world (see 3.6.1 above), and therefore cannot be assumed
to be immutable; the real world will be changing
continuously, and the specification must reflect these
changes (Lehman, 1981; Liskov & Zilles, 1978). Addition-
ally the specification is normally developed over a
period of time by discussion between the customer and the
supplier (Malhotra et al, 1980), in a manner which ap-
pears to parallel Popper's view of the development of
scientific theories (Popper, 1974). Hence the specifica-
tion document at any point in time only represents the
latest available information, and may be incomplete or
incorrect or both.

The language in which the specification is written
must therefore permit incomplete information to be
recorded (Hewitt et al, 1979), but in a way which indi-
cates that it is incomplete. Hence it must be possible to
differentiate between:

(a) information currently missing from the specification,
but which is expected to be added as soon as it
becomes available,

(b) wvalues which are represented as ranges because the

precise figures have not yet been decided,

-80-

(c) decisions where the input to the decision process may
or may not be stated precisely, but the conditions
under which the various outcomes are appropriate are
not known precisely,

(d) situations where the particular outcome of a decision
or the value of some piece of information is not im-
portant (like the "don't care" wvalues in Boolean
logic design of digital circuits),

(e) uncontrolled factors, such as the timing or content
of messages from the environment, which must be
modelled by statistical methods,

(f) precise information.

Extensive use of these facilities to represent imprecise

information does however imply a high rate of change to

the specification during the development of the system.

This is one of the reasons why it is proposed that the

specification writer should be supported by a comprehen-

sive computerised facility as described in Chapter 5.

3.11: Form

Although a diagram can make obvious some aspects of
the structure of information in a way which is difficult
or impossible in text, there are considerable difficul-
ties in designing good diagrammatic notations (Fitter &
Green, 1979). 1In the case of specifications, one diffi-
culty is the representation of the forms of structure
(e.g. aggregation, generalisation and monitors) in a

diagram. For example, the finite state languages which

R

use diagrams (e.g. SDL, see Chapter 2.10) do not provide
sufficient structure and consequently produce large dif-
fuse specifications.

Much of the information on a diagram must still ap-
pear as text labels upon the symbols, so it is still
necessary to define a text form as a major part of any
notation. This needs to be a formal, restricted language
in order to avoid the problems which languages such as
SADT (Ross, 1977) and PSL (Teichrow & Hershey, 1977)
suffer in allowing unrestricted and unformatted labelling
of their diagrams in English. It was therefore decided
that the primary aim would be to derive a language con-
sisting of text alone, leaving any diagrams to be pro-
duced manually as additions to the specification. This
also reduces the complexity of any initial computer sup-
port software significantly, by avoiding the need for
graphics input and output and permitting the use of
readily—-available syntax analysis technigues (see Chapter

Sed) o

3.12., Summary

Sections 3.4 to 3.11 above have presented the reason-
ing which led to the adoption of the following fundamen-
tal features in the language being designed.

(a) Message passing as the only method of communication.
(b) Instantaneous, error-free message transmission.
(c) The treatment of models as closed entities, so that

their information is only available by exchanges of

-82~-

messages.

(d) Separate descriptions of the system being specified
and its environment.

(e) Interconnections between the models only being visi-
ble to the single observer of the system.

(f) A simple model of time.

(g) Specification from a temporal reference of the
"current time" with access to all the events which
occured in the past.

(h) Direct access to past events, to avoid much of the
description of data storage within the system.

(i) Structuring facilities which allow the description of
the required behaviour in layers.

(j) Some shorthand reference for repeated behaviour.

(k) Facilities for recording imprecise information or
behaviour specification in a way which indicates its

] nature.

(1) All information to be presented as text, with any di-
agrams being either derived from the text or produced
manually.

These features taken together provide a framework which

appears to be adequate for all information-processing

systems, and which implies a strong discipline for ensur-
ing consistency within a specification. In Chapter 4 the
detailed design of the language is described, showing in

4.3 and 4.4 how an attempt has been made to capture the

above features in a simple syntax, and then in 4.5 cover-

ing the formal definition of the language.

=R 3=

CHAPTER 4

THE DETAILED DESIGN OF A SPECIFICATION LANGUAGE

4,1. ASL

In order to permit unambiguous discussion of the
relationship between the language being designed and
other 1languages, it was decided to give it a name. The
one chosen was 'ASL', this being an acronym for 'A Spe-
cification Language'. Chapter 3 contained discussion of
the fundamental features of the 1language; the detailed
design of ASL is now described in this chapter. The asso-
ciated formal definitions of the 1language appear as

Appendices, due to their length.

4.2, The Surface Appearance of ASL

The most important decision in the design of the lan-
guage was that of its general appearance. The major fac-
tor affecting this decision was the size of the intended
audience of the specifications written in the language.
This involves hundreds of people of widely varying back-
grounds at the sponsoring Company and, if the Company's_

customers are included, the numbers rise into the

-84~

thousands. Large-scale retraining of these people in the
use of an abstract mathematical notation (e.g. CCS
(Milner, 1980)) would be both difficult and time-
consuming. It would also delay the use of specification
languages, thereby losing some of the short-term benefits
to the Company (see Chapter 1.4.3). There is no evidence
to show that this loss is offset in the long-term as a
result of using such an abstract notation.

It was therefore decided that ASL should use words
from English wherever possible, and that the constructs
of the 1language should have a simple reading which con-
veyed much of their meaning. In this way the amount of
training required to read specifications written in ASL
is minimised. Although there 1is not a corresponding
reduction in the training required by specification
writers, this still represents a significant overall
reduction as readers are in the majority. Such simplicity
in the form of the language was also seen as a factor in
reducing any initial adverse reaction to the use of a

formal language.

4,3, Consideration of Human Factors

4.3.1. Conseguences of Earlier Decisions

The basic design of the language (reported in Chapter
3) results in the main organisation of a specification as
two or more "black box" models (Chapter 3.6.1), communi-

cating with each other by passing messages (Chapter

-85~

3l Bielt) through interfaces (Chapter 3.6.2). This is
directly reflected in the structure of the specification
by requiring each model to be a separate identifiable
block of text. There is also one additional block, con-
taining details of the interconnections between the
models and other information which is relevant to the ob-
server (Chapter 3.5.2). As is explained in more detail in
4.5.4 below, this results in a simple relationship
between the position of any name appearing in the specif-
ication text and its visibility to different parts of the

system (often called the “"scope" of the name),

The remaining portions of the language were rela-
tively unconstrained by these factors; they are the
result of an examination of a number of existing computer
programming languages such as Pascal (Jensen & Wirth,
1975) , Ada (Ichbiah et al, 1979) and PL/I (IBM, 1976) and
of the few papers containing gquidelines on language
design (Fitter & Green, 1979; Gannon & Horning, 1975;
Green et al, 1981; Hoare, 1973; Hobbs, 1977; Pratt, 1975;
Tennent, 1977; Wirth, 1974). A number of the choices made
during the design depart from the advice given in the
above references, mainly in relation to those points
where the design of programming languages appears to be
compromised in order to achieve efficient compilation.
The reasons for the particular choices which were made
are discussed in Sections 4.3.2 to 4.3.5 below, whilst

their detailed appearance is covered in 4.4,

=l

4.,3.2. Order within the Specification Text

Programming languages such as Pascal regquire the pro-
gram text to appear in a particular sequence with, for
example, the first appearance of any name having to be
its definition. As has been noted (e.g. Peterson, 1980),
this sequence conflicts with the top-down approach to the
development of a system, where names are normally intro-
duced before their definition. The purpose of such res-
trictions on sequence is to simplify the work of the com-
piler or interpreter, by making it possible to analyse
the program fully in one pass over the text.

As ASL is not required to have a simple or efficient
compiler, this type of restriction can be avoided. The
non-algorithmic nature of ASL permits a further relaxa-
tion of restrictions, in that the order of the statements
within any block (i.e. model) has no significance in
terms of the semantics of the language. This allows a
specification writer to present the information in

whatever is the most comprehensible seguence.

4.3.3. Paragraph Numbers

One <consistent difference between natural language
descriptions and computer programs is that the former use
paragraphs and paragraph numbers to organise the text
(e.g. Mills & Walter, 1978), whilst the latter use words
such as "BEGIN" and "END" to achieve the same effect. As

the BEGIN-END form offers much less of a perceptual cue

-87=-

to the reader, much reliance has been placed on the use

of indentation (Rose & Welsh, 1981) and similar methods

(Green, 1980) in the presentation of programs.

ASL uses a paragraph numbering scheme, with the deci-
mal form of numbering (e.g. [1.3.15]). This has the fol-
lowing advantages:

(a) the structure is made visible without resorting to
indentation,

(b) sub-paragraphs (and sub-sub-paragraphs) are easily
identifiable from the number of levels in their para-
graph number,

(c) no explicit indication of the end of a paragraph is
needed; the next paragraph number is sufficient indi-

cation of the change of scope.

4,3.4, Comments

Examinations of the use of comments in computer pro-
grams (e.g. Weinberg, 1971) have shown that these are
not always used appropriately. Too little emphasis ap-
pears to be given to general comments, which explain the
overall structure and purpose of the program. It was
therefore decided to restrict the use of comments in ASL
to a few specific points in the language, in an attempt
to foster their correct use. These three points are at
the start of each block of text (i.e. model), in the
definition of new names, and in paragraph headings (i.e.

immediately after a paragraph number).

-88-~-

4.3.5. Alternatives in Rehaviour

Where the response to a stimulus is dependent upon
some conditions, it is more comprehensible if the normal
behaviour is presented first and the less-freguent situa-
tions afterwards (Mills & Walter, 1978). If there are a
number of optional responses, all equally likely, then it
should not be necessary to use nested IF-THEN-ELSE state-
ments to indicate the alternatives as this form can in-
volve the "dangling ELSE" ambiguity (Aho & Ullman, 1977).
ASL provides a different form for each of these cases,

(a) Where there 1is &a normal response and one or more
other options, then the normal response 1is given
first followed by the word "unless" and the other
options. Each option consists of a response together
with the conditions under which it is appropriate.

(b) Where there is no obvious normal response, all the
options are shown as sub-paragraphs after the word
"select". Each sub-paragraph states the conditions
which must be met for that option to be selected.

As these two offer all the necessary facilities, the IF-

THEN-ELSE form which appears in most computer programming

languages has not been provided.

4.4, The General Appearance of ASL

4.4.1. Introduction

The formal definition of a language consists of com-

-89~

prehensive syntactic and semantic rules, which usually
cover many pages of text; even informal presentations of
programming languages can take over 50 pages (e.g. Jensen
& Wirth, 1975). Thus, ASL has been documented in an in-
troductory report (Blackledge(b), 1981) and a 1language
reference manual (Blackledge(a), 1982), which cover the
language in much greater detail than is appropriate here.
The remainder of section 4.4 therefore contains an
outline of the surface appearance of ASL, and is sup-
ported by the formal definitions, which appear in Appen-
dices B and C, and a small example specification in Aap-

pendix E.

4.4.2. Block Structure

A specification must consist of at least three blocks
of text, as explained in section 4.3.1. More blocks may
be wused if this 1leads to a better representation of
either the system being specified or its environment; an
example would be the specification of a local telephone
exchange, where the environment is more comprehensible if
represented as a large number of copies of a subscriber
model. Each block takes the form of a seguence of state-
ments enclosed by a head and a tail, e.g.:

EXAMPLE BLOCK is
....Sequence of statements....
end of example_ block
The reasons for the words "EXAMPLE BLOCK" appearing in

capitals in the block head, and lower case letters in the

-90-

FIGURE 4.1 THE STRUCTURE OF A SPECIFICATION IN ASL

Heading or Paragraph Number Comments
-
AN_ASL_SPECIFICATION is
[1] Statement of models and
(2] their interconnections. L The system
block.
E33 Definition of common items,
: used in the models.
6]
end of an asl specification
- il -
THE*ENVIRONMENT is
[1] Interfaces.
2]
[3] Properties of the The
[4] environment, known >~ environment
only to the environment. model.
[5] Responses to situations
[6] rather than messages.
[71 Responses to particular
(el messages.
end of the_environment J
-
THE_SYSTEM is
[11 Interfaces.
2]
[3] Properties of the model,
[4] known only to the model.
The
[5] Responses to situations -~ system
[6] rather than messages. model.
[7] Responses to particular
: messages.
etc.
end of a_system

s

block tail in thé above example are explained in section
4.4.3 below. Figure 4.1 shows the structure of a specifi-

cation in terms of such blocks of text.

4.,4.3. Names

A unigue name is given to each item (e.g. message,
piece of stored information) defined by the specification
writer; it takes the form of a segquence of characters or
underscores, and must start with a letter.

e.g. aname, another name, z123.

To achieve the required flexibility in the order of
statements within a specification (see 4.3.2), it is es-
sential to have a simple method of recognising those
statements which define new names. Programming languages
such as PL/I (IBM, 1976) use an identifying word (e.g.
"DECLARE") at the start of each definition, but this is
only necessary because they do not make use of the full
character set available on most computers. ASL avoids the
need for such a word by requiring all names to appear in
lower case letters except in the statements where they
are defined, where they are written in capital letters.
This also has the advantage that definitions are conse-
guently highlighted in the specification text, making

them easier for the reader to detect.

4.4,.4, The System Block

This block of the specification text contains all the

-92-

information which is external to the models and all the
information which is common to the models. For example,
it will include the definitions of all the valid message
names, definitions of any common data types and details
of the interconnections between the interfaces of the
models. Its role is therefore purely supportive, and it
contains no description of any part of the behaviour of

the system.

4.4.5. The Models

Each model 1is represented by a block of text which
contains:

(a) further definitions of names, but not of messages,

(b) a statement of the interfaces of the model, cate-
gorised into inputs, outputs and bothway
(bidirectional) interfaces,

(c) statements defining the behaviour of the model, in
the form described in 4.4.7 below,

(d) any operations used in describing the behaviour (see
4.4.9 below).

Names and operations defined inside a model are private

to that model, in that they cannot be referenced from the

system block or another model. This is a necessary con-
straint to achieve the <correct form of "black box"

specification, as described in Chapter 3.6.1.

-03-

4.4.6. Definition of Names and Messages

Although the uses of names (i.e. data types or stored
values) and messages differ, the format of their defini-
tions has been kept the same for simplicity. Hence the
word "name" will be used throughout the remainder of this
section, but the comments apply equally to messages. A
name can be defined in one of two ways:

(a) as an instance of a defined data type, e.g.

COUNT : integer
which defines "count" to be of type "integer", or:
WEEKDAY : { monday, tuesday,
wednesday, thursday, friday }
where the data type has been replaced by a list of
permitted (constant) values,

(b) as a structure, consisting of a tree of elements;
this form usés paragraph numbers to organise the
structure, as in the following example:

NAME is
(1] INITIALS is
(1.1] INITIAL_1 : character
[1.2] INITIAL 2 : character
[2] SURNAME : string of character
[3] TITLE : { mr, ms }

Note that, in the case of a message, the elements of the

structure represent the information content of the

message. It is also possible to give any name or element
of a name any number of subscripts, so that it acts 1like

a multi-dimensional array.

-04-

4.4.7. Behaviour and Rules

The basic description of the behaviour of a model
consists of its responses to the stimuli which it can
receive; this appears in ASL as a series of statements of
the general form:

"on" STIMULUS "then" RESPONSE
where STIMULUS 1is a pattern for a received message (see
Section 4.4.8) and a RESPONSE can be a call to an opera-
tion (see Section 4.4.9) or the sending of a message. The
forms "start sending" MESSAGE and "stop sending" MESSAGE
are provided for those cases where a message is to be
sent continuously for a period. The above portion of the
syntax of ASL is given in a form of BNF, which is ex-
plained in detail in Appendix B; for the examples in this
chapter it is sufficient to note that symbols surrounded
by. guote marks (" ") are part of the language, whilst
names in capitals represent parts where the specification

writer substitutes details of the system concerned.

In addition to these simple stimulus-response
statements, it is also possible to introduce rules which
act as general constraints or monitor for exception
conditions. These take the form:

"whenever" CONDITION "then" RESPONSE
where a CONDITION is some test on past and current mes-
sages and stored information; if the CONDITION becomes
true, then the RESPONSE will occur. As with the simple
stimulus-response statements, rules may contain

alternatives. Used correctly, rules provide a powerful

-95~

means for expressing behaviour in a concise and compre-

hensible way.

4,.4.8. Pattern-matching

On receiving a message, a model usually needs to exa-
mine its contents in order to determine the appropriate
response. Hewitt (Hewitt, 1977) demonstrated how this
could be achieved in an elegant manner by the use of
pattern-matching, and made this one of the main features
of his ACTORS language. ASL includes a simple variant of
this idea, as demonstrated in the following example:

on ?x via input_line then
The gquestion mark 1is used as a prefix to the variable
name, 'x', to indicate that this 1is a pattern-matching
variable, and whatever message is received will be asso-
ciated with the name, 'x'. Thus, in the remainder of the
statement, it is possible to refer back to the message as
'x' rather than as 'the message Jjust received via
input_line'. Pattern-matching can also be used in con-
junction with another part of the language to produce ex-
tremely concise definitions of functions, as described in

Section 4.4.9.

4,4.9, Definition of Common Operations

In ASL, an "operation" represents a general method of
providing a shorthand for repeated behaviour. Unlike the

concept of a function in mathematics, it does not have

-96-

any restriction on the number of arguments or on the num-
ber of results to be returned. Hence it is permissible to
have an ASL operation with no arguments which returns no
result. The general form of a operation definition is:
"operation" OPERATION NAME

"(" ARGUMENTS "-->" RESULTS ")"

"is" SEQUENCE_OF STATEMENTS.
For example:

[5] operation SQUARE_ROOT(x,t --> y) is

[5.1] X,T,Y : decimal

[5.2] y is ?z where abs(z*z - x) <= t
which also demonstrates the use of a pattern-matching
variable (?z) to achieve a brief, non-algorithmic defini-
tion of the sguare-root function in terms of the inverse
operation, squaring (represented as multiplication, z*z).

Note that 't' is the required accuracy of the answer.

4.4.10. Incompleteness

ASL permits three kinds of incompleteness, covering in-
formation wh{ch is not yet available, information which
will not become known, and also a "don't care" value. The
word "undefined" is used to indicate that information is
not at present available, but will become so later, while
"unknown" is reserved for those cases where more detailed
information is not expected to become available. Thus it
is possible to create an outline version of a specifica-
tion with some elements of the behaviour, contents of

messages or operations left "undefined", and then to add

=T

the missing information as it becomes available. In this
way the specification writer is not forced to wait for
the total information before starting to write a formal
specification, but any areas which are incomplete are

positively identified as such in the document.

4.5, The Formal Definition of ASL

4.5.1., Introduction

The preceding sections of this chapter have intro-
duced ASL informally, but it is essential that the lan-
guage 1is defined formally, as was pointed out in Chapter
2.2.12. This requires that the syntax (both context-free
and context-sensitive) and semantics are themselves
defined in some formal language. The following sections
4.5.2 to 4.5.8 . provide an introduction to the methods
which have been used to provide these definitions; the
formal definitions themselves appear as Appendices B and

C.

4.5.2. The Context-free Syntax

The context-free syntax of a 1language provides a
method for identifying those seguences of characters
which are well-formed statements in the language. Thus,
it defines not only those statements which have a wvalid
meaning in the 1language, but a much larger class of

statements. Context-sensitive and semantic rules are

-98-~

therefore reguired to identify from this class those
which are meaningful.

Context-free syntax definitions are normally given
as a set of productions which identify in a top-down
fashion the permitted construction of statements from
basic words and symbols. Although the
syntax anélyser which has been used in the trials of the
language (see Chapter 5.6 and Chapter 6) takes in such
syntax productions, the format of these makes them diffi-
cult to understand. The definition of ASL in Appendix B
is therefore written in a variant of Backus-Naur Form
(BNF) suggested by Wirth (Wirth(b), 1977), which results

in a clearer, more concise definition.
4.5.3. Context-sensitive Rules

The BNF syntax definition of ASL can be used to
detect incorrectly formed statements, but is not suffi-
cient to identify any incorrect usage of names. This is
because, although it is possible to identify that a par-
ticular word is a name without making any reference to
more than one statement in a specification, the permitted
usage of the name depends upon its definition and this is
usually in another statement. There are two checks which
must be applied to each occurence of a name in a
specification:

(a) that the name has been defined in the appropriate
place,

(b) that the name is being used in accordance with its

-90 -

definition.
These two checks are usually known as "scope checking"
and "type checking" respectively, and they are discussed
in more detail in the next two sections. Due to the lack
of restrictions on the order of statements in an ASL spe-
cification (see Section 4.3.2), these checks cannot be
performed at the same time as the context-free syntax
analysis as they require all the definitions to have

previously been identified.
4.5.4. Scope of Names

The combination of block structure and paragraph num-
bering in ASL results in a simple definition of the scope
of any variable name. The scope of a name is the part of
the specification (i.e. blocks or paragraphs) in which it

is wvalid to make reference to that name because it has

.been defined in that part of the specification. These

rules are:

(a) names defined in the system block may be used
anywhere in the specification,

(b) names defined inside a model cannot be used outside
that model,

(ic) a name defined in paragraph [x] 1is available
throughout the model which contains the statement.

(d) a name defined in paragraph [x1.x2. ... xn] can be
used in any paragraph or sub-paragraph commencing
gl . x2. cex(n=1)sveln

If a name is mentioned outside its valid scope, it is as-

-100-

sumed to be an occurence of a different name which has

not been defined; this is treated as an error.

4.5.5. Type Checking

Type checking involves ensuring that, given an ex-
pression such as "a + b", both "a" and "b" represent
values which can be subjected to the operation of
addition; for example, it is assumed to be impossible to
add a number directly to a string of characters. For ASL,
it must also be ensured that messages are sent only via
defined interfaces of the model which 1is doing the
sending, and that conditions in rules (see Section 4.4.7)
do evaluate to "true" or "false". The type checking rules
are therefore of a similar format to the syntax rules,
but for each position in the language which can be occu-
pied by a name they must identify the appropriate data
type. (To allow for statements in ASL where there are
fewer constraints upon the data types, it is necessary to
use the additional data types "void" and "any").

Unlike the use of BNF for context-free syntax, there
does not appear to be any standardised method of defining
type-checking rules. The rules for ASL, which appear in
Appendix B.4, are therefore in the format used by Davie &
Morrison (Davie & Morrison, 198l); this was chosen for
its simplicity and clarity. The rule format is explained

in Appendix B.3.

-101-

4.5.6. Semantic Definition

A semantic definition of a language provides the well-
formed statements of that 1language with meaning, by
relating those statements to some well-understood mechan-
ism or model (in the mathematical sense of 'model').
Without such a definition, the language is merely

sequences of words, open to any interpretation which a

reader may wish to impose wupon it. Even with such a
model, formal proof procedures based upon it may still
fall into the category of NP-complete problems. As with
the type checking rules, there is no commonly-agreed form
for semantic definition, but there are two distinct
types:

(a) operational semantics, which define the language in
terms of the results obtained when a program in the
language 1is processed by some particular implementa-
tion of the language compiler,

(b) abstract semantics, which relate the language to some
well-defined mathematical model, independent from any
implementation of compilers or other tools.

As ASL is not a programming language, and is not expected

to have a compiler, it will not be possible to define its

semantics operationally. This probably is advantageous,
as abstract definitions appear to be both simpler and
more useful (Wirth(a), 1977). The semantic model used for
the definition of ASL is explained in 4.5.7 below, with
the treatment of timing information being covered in

4.5.8,

=102~

4.5.7. The Semantic Model

Marcotty and Ledgard (Marcotty & Ledgard, 1976)
review a number of semantic models which have been used
in the definition of programming languages, but these all
have a strong algorithmic flavour which makes them un-
suitable for use on ASL. It was therefore decided to use
an alternative model, Petri nets, which has been used 1in
the definition of the Epsilon simulation language (Jensen
et al, 1979). Due to the expressive power of ASL, and
thus the complexity of the resulting nets, it was found
necessary to use a more expressive form of net, the
Predicate/Transition net (Genrich et al, 1980), in place
of that used for Epsilon. Rather than providing a re-
expression of Predicate/Transistion net theory in a form
which corresponds to the structure of ASL, the semantic
definition takes the form of a set of rules for the con-
version of ASL statements into a net. This translation is
undertaken in stages:

(a) expansion of abbreviated forms (e.g. lists, arrays
and structures) into individual items,

(b) unfolding of alternatives in behaviour, to produce an
extended list of simple stimulus-response statements,

(c) translation of each stimulus-response statement into
the equivalent net fragment,

(d) connection of the fragments into one single net, re-
presenting the whole system.

The detailed translation scheme is complex, and is there-

fore explained in Appendix C.

-103-

4,5.8., Time

Petri net models do not provide a direct representa-
tion for measured time, instead restricting themselves to
the treatment of sequences of events (Peterson, 1981).
This is not sufficient to represent the timing informa-
tion in ASL; so it was necessary to devise an extension
to the model to accomodate the additional information. As
discussed 1in Chapter 3.7, the timing model necessary for
adequate system specification in not as complex as that
for the detailed design of hardware, for example. The
Time Petri Net (TPN) model of Merlin (Merlin, 1974),
which adds minimum and maximum firing times to the tran-
sitions in the Petri net, is therefore adeguate for this
purpose.

The arrival time of each message appears as an extra
element in the tuples (sets of values; eguivalent to the
contents of a message in ASL) associated with tokens in
the Predicate/Transition net model, and this time wvalue
is altered by the firing of a transition. One extra tran-
sition must also be added to the net to represent the ob-
server (see Chapter 3.5.2), as this is the sole absolute
time reference point. As a result of these additions,
time within the model of an ASL specification is not
continuous, but will always be represented by increasing

values of the time attributes of tokens (messages).

-104-

4,6. Summary

In this chapter the detailed design of ASL has been
described, showing how this was based upon the principles
laid down in Chapter 3. This has shown how the features
of the language are intended to satisfy the requirements
listed 1in Chapter 2.2.13, and has indicated how the ap-
pearance of the language has been biased towards its in-
tended audience. The formal definition of the language
has been outlined, and in Chapter 5 it will be shown how
this permits a wide range of computer-based support
facilities. To provide further demonstration of the
points made in this chapter, a complete example specifi-
cation appears in Appendix E, together with an introduc-

tory explanation of the system in English.

-105-

CHAPTER 5

LANGUAGE SUPPORT FACILITIES

5.1. Introduction

In Chapter 2 mention was made of the advantages of
restricting a specification 1language to the type of
simple, context-free syntax found in computer programming
languages. In this chapter those advantages are presented
in more detail, in the form of a description of the type
of computer-based facilities which can be provided to
support the specification writer. These facilities should
be provided as a single integrated system for the pre-
paration of specifications, as this will allow them to be
used in any combination and sequence; the alternative of
enforcing a particular seguence would be in direct con-
flict with the aim of capturing the specification in-
formation as it becomes available (see Chapter 3.10).
However, in order to provide some structure to this
chapter, the facilities have been divided into four cate-
gories on the basis of their purpose; these are listed in

the following table.

-106-

Section Content

B Checking, this being the application of self-
consistency checks to the specification text.

5%d Changes, and controlling them.

5.4 Validation, which is the process of ensuring as
far as possible that the specification captures
the intentions of the customer.

5L5 Verification, where the design is shown to ful-
£fill the specification.

Some of the static checking facilities (those covered in
Section 5.2.2) were implemented as explained in Section
5.6, so that limited support was available for trial uses
of ASL. Provision of the remaining facilities is
discussed in Chapter 8 as part of the proposals for fur-

ther work.

5.2. Checking

5.2.1. The Types of Checking

The checking of a specification can be considered to
consist of two parts:

(a) static <checks, being those concerned with ensuring
the self-consistency of the specification as a piece
of text,

(b) dynamic checks, which attempt to detect inconsisten-
cies in the behaviour described by the specification.

These are covered in Sections he.2:2 " A0Ad 5.2.3

respectively.

=107-=

5.2.2. Static Checking

Many of the static checks which can be performed on

ASL are identical to those applied in the compilation of

programming languages such as Pascal (Jensen & Wirth,

1975) . Appropriate techniques and tools for such a check-

ing system have been widely published (e.g. Aho & Ullman,

1977; Johnson, 1979; Simpson, 1969). The main stages of

static checking are as follows.

(a) Syntax analysis, to ensure that the text conforms to
the syntax definition of the language. Although a
syntactically correct specification may still be
meaningless at the semantic level, this is a neces-
sary first stage in the checking. Simple syntax er-
rors may result in extensive and wuseless 1lists of
"faults" being detected by the remaining stages of
checking.

(b) Redundancy and completeness checks, which ensure that
every name which has been defined (i.e. appears in
block capitals) in the specification is also used
(i.e. appears in lower case letters) within the ap-
propriate scope (see Chapter 4.5.4), and that every
name which has been wused was also defined. The
"completeness" which these checks ensure 1is not
eqguivalent to a demonstration that the specification
includes all the <customer's regquirements (see 5.4
below on validation). They will fail to detect the
situation where all information relating to some

reguired feature has been omitted from the

-108-

specification.

(c) Consistency checks, to ensure that every name is used
in accordance with its definition and in the same
fashion throughout the specification. As examples,
every interface must be connected to another inter-
face of an appropriate type (e.g. an output cannot be
connected to another output), and arithmetic expres-
sions must be constructed from conformable types
(e.g. no attempts are made to add character data to
integers).

The printed output from the static checker could include

a formatted listing of the specification text, any appro-

priate error messages, a 1listing of any items which

remain undefined, and a cross-reference listing which in-
dicates all the places in the text where each name

appears.

5.2.3. Dynamic Checking

ASL permits the specification of complex behaviour in
a non-algorithmic manner (see Chapter 4.4), and the power
of the 1language is such that it is possible to specify
behaviour which is impossible to achieve. It is therefore
essential that the checking facilities provide some
analysis of the dynamic behaviour which is implied by the
specification text, even if this can only detect the most
severe errors or point to possible problems. Although
there are a number of techniques for dynamic checking

(see (DoI(a), 1981) for mention of some), none appear to

=108~

offer comprehensive analysis. Three techniques which con-

form to the model of systems described in Chapter 3 are

as follows.

(a)

(b)

Exhaustive simulation against test cases. This in-
volves considerable human resources in the prepara-
tion of test cases and the evaluation of results as
well as large amounts of computer time; also, it only
demonstrates the absence of errors for the test
cases. It is therefore not an acceptable method of
checking, although it may be useful for other reasons

(see section 5.4 on validation).

Petri net analysis. If an 2SL specification were
converted into a Petri net, then there are known
methods to check for deadlock, conflict and

reachability. Unfortunately, these may not be satis-

factory for analysing large specifications due to

the computational resources and time required to
produce the results. As with simulation, it may be
necessary to identify a probabalistic approach which
reduces the amount of computation reguired at the
expense of introducing some risk of inaccuracy in

the results.

However, standard Petri nets do not have a represen-
tation for the time duration of events; so they can
indicate the existence of a problem when the time
delays are actually sufficient to ensure that this

does not occur. Merlin (Merlin, 1974) presented an

-110-

extension of Petri nets which include time delays,
but the tools to analyse Time Petri Nets would have
to be developed from this theory.

(c) Flow Algebra. The Calculus of Communicating Systems
(Milner, 1980) is an algebraic approach to systems
analysis which appears to be of similar power to
Petri Nets. It has the additional advantage of having
simple, algebraic rules for combining the behaviour
descriptions of multiple systems or sub-systems. 1Its
disadvantage is that it is a relatively new notation,
so that there are no readily-available tools to per-
form the analysis. Also, like Petri Nets, it has no
representation for time delay.

As a form of Petri net is being used as the semantic

model for ASL (see Chapter 4.5.7), the adoption of the

same model for dynamic checking is likely to minimise the

amount of support software to be developed.

5.3. Changes

5.3.1. General

The need to make changes to a large specification is
inevitable (Lehman, 1981); so it is essential that the
specification writer receives sufficient support in:

(a) making the alterations correctly,
(b) retaining the history of changes to the document, in-
cluding the reasons for them.

The alternative to this is the continuation of existing

-111-

practice, where documents are often not updated (or only
updated infrequently) because of the difficulty of incor-

porating changes (Brooks, 1975).

5.3.2. Introducing Changes

Assuming that a specification is consistent (see
5.2.2) and has been validated (see 5.4), it is important
to ensure as far as possible that the incorporation of an
amendment does not introduce errors. The minimum reguire-
ment of the support system is therefore that it should
make the author of the change aware of all the places in
the specification which might be affected. This can be
done by the provision of a <cross-reference 1listing, as
mentioned 1in section 5.2.2, 1leaving the author of the
change to investigate which parts of the specification
must be modified. This type of manual alterations has two
major disadvantages:

(a) the whole specification must be re-submitted for
checking, so that error messages may be produced for
faults which existed before the amendment and are not
due to it,

(b) checking takes place after the specification has been
modified (i.e. a new issue has been created), making
it more difficult to reverse the <change if this
becomes necessary due to any inconsistencies which it
creates.

An improved system, providing interactive assistance of

the type suggested by Sandewall (Sandewall, 1978) and

-112-

found 1in the Designer/Verifier's Assistant (Moriconi,

1979) and INTERLISP (Teitelman, 1978), would:

(a) maintain a list of all occurrences of names affected
by the change, and prompt the user to make a positive
statement as to the effect of the change on each one,

(b) recheck only those portions of the specification
which have been changed, as they are changed,

(c) await the completion of the change (i.e. the ex-
haustion of the list of occurrences of affected names
and the removal of any errors introduced with the
change) before creating a new issue of the specifica-
tion document, unless the user specifically reguests
that a new issue be created regardless of any out-
standing errors.

Such a facility would greatly reduce the tedium of intro-

ducing amendments into large specification documents, and

the consequent difficulties in ensuring that project
st;ff are aware of the latest requirements. Provision of

such facilities is discussed in Chapter 8.

5.3.3. The History of Change

Although many automated documentation support systems
provide facilities for creating new issues (e.g. the
PSL/PSA system (SDL, 1980)), few make any attempt to
highlight the differences between adjacent issues or to
record the reasons for the changes. The identification of

statements which have been changed (perhaps by a vertical

~113~

line in the margins of the document) greatly assists the
reader. A note of the reason for the change may be essen-
tial later when the resulting additional costs have to be
apportioned between the customer and supplier. To provide
these features 1in a support system, it is necessary to
treat the specification not as a uniform seguential block
of text but as a set of relations which can be held in a
database. Changes to the specification are then viewed as
updates to the database, with each update adding to,
rather than overwriting, the earlier contents of the
database.

The general structure of such a database will be a
set of relations (Codd, 1970), each containing the date
(or issue number) at which it was introduced, the date
(or issue number) at which it was superseded by changed
information, and either the reason for the change or a
pointer to the reason. The original specification text
for any particular date can then be recreated from the
database.by extracting all the relations which were valid
at that date and reassembling these into text form. This
method of handling changes to the specification over time
is analagous to the handling of messages in ASL (see
Chapter 3.8). It is also one of the major features of
some recent proposals for support facilities for computer
programmers, such as the Ada Programming Support Environ-

ment (DoI(b), 1981).

-114-

5.4. Validation
5.4.1. The Aims of Validation

Validation is the process of ensuring as far as poss-
ible that the specification correctly captures the
customer's intentions. As there is no formal statement of
the reguirements other than the specification itself, it
is not possible to use verification technigques (see sec-
tion 5.5) which involve the rigorous comparison of two
formal statements. Validation is a much weaker process
than verification, and involves the presentation of
the specification to the customer in an at-
tempt to elucidate any discrepancies between it and the
customer's mental model; this is an ill-defined process,
with no guarantee that it will identify all the
discrepancies. One of the main problems in validation is
that of ambiguity, in that the customer and supplier may
make different interpretations of the same statement. The
use of a restricted, well-defined language such as ASL
makes a large contribution to overcoming this problem.

A possible disadvantage of using ASL (or any other
formal specification language) is that it may not be ac-
ceptable to the customer, perhaps because of the overhead
of training large numbers of staff to read specifications
written in it. In these circumstances, the specification
would have to be converted into a format which is accept-
able to the customer, as it is essential that the specif-

ication is approved before design commences (Cohen &

-115=

Burns, 1978). 1In the remainder of this section a number

of possible conversions are discussed.

5.4.2. Manual Translation into English

One possibility is to use technical writers to trans-
late the formal specification into English for presenta-
tion to the customer. It may be that this would lead to a
clearer document in English, as it would be derived from
the unambiguous, formal document. Such translation is
however a labour-intensive, and therefore costly, process
which could introduce errors. Thus some form of automatic

translation would be preferable.

5.4.3. Automatic Translation

Given the restricted grammar of ASL, automatic trans-
lation into other similarly restricted notations is
possible, although it may involve the development of some
large computer programs. Translation into a stilted form
of English is also feasible, if more difficult. The two
most promising alternatives are discussed below.

(a) CCITT SDL (CCITT, 1980). The CCITT Specification and
Description Language has been adopted as a standard
by the telecommunications authorities of a signifi-
cant number of countries. SDL is however a finite
state machine model (see Chapter 2.10), and this
makes the translation from ASL complex. In particular

it may be impossible to generate satisfactory labels

-116~-

for the system states automatically, as these are not
represented at all an ASL specification.

(b) English. Systems such as MARGIE (Schank et al, 1973),
GIST (Swartout, 1982) and SHRDLU (Winograd, 1972)
have adegquately demonstrated the generation of ac-
ceptable English sentences from a 1limited formal
language, but large amounts of effort are required to
develop such programs. Thus the feasibility of such
translation has been noted, but there would have to
be sufficient demand for the facility to justify the

development costs.

5.4.4. Simulation

Where a system specification is very large, it may be
unreasonable to expect the customer to identify all the
nuances of behaviour implied by its contents, especially
if the system is to include completely new features which
are outside the customer's existing experience. One al-
ternative to total reliance upon human interpretation of
the text is the use of the specification as a simulation
model, so that the customer can obtain insight by in-
vestigating the operation of the system on a number of
test cases (Balzer & Goldman, 1979; Berild & WNachmens,
1978; Zurcher & Randell, 1968). As a specification is not
intended to describe an efficient implementation (see
Chapter 2.2.9), any simulation based upon it is likely to
make inefficient use of computer time. However, the num-

ber of test cases should be small enough to make this ac-

-117-

ceptable when compared with the possible cost of an un-

detected error in the specification.

The development of a simple simulation system which
would accept ASL specifications may not involve a large
amount of programming (Lindstrom & Skansholm, 1981).
There are however a number of features within ASL which
may prevent effective simulation, as follows.

(a) Undefined items. The language was designed to permit
the incremental creation of specifications; thus, at
any point in time there may be large portions of a
specification left "undefined"™ (see Chapter 3.10).
The simulation system would either have to reject at-
tempts to perform simulations on any specification
with any undefined items, or be capable of iden-
tifying these and requesting the appropriate informa-
tion from the human operator as required during the
simulation run.

(b) Non-determinate behaviour (see Chapter 3.10). The
"don't care" values and lists of possible alternative
actions in ASL (see Chapter 4.3) represent non-
deterministic choices. The simulation system would
either have to interpret these as a request to some
random selection mechanism, or interact with the
human operator to obtain a decision.

(c) Specification of results, not methods. As a specifi-
cation is intended to state the required results, ASL
was designed to simplify the description of opera-
tions in terms of their input-output relationship

alone (see Chapter 2.2.9). It is therefore likely

=118=

that a specification will contain one or more opera-
tions which are not described 1in terms of an
algorithm, but merely as a statement of the condi-
tions which apply to the output of the operation for
any given input. Such an operation can be simulated
by treating the conditions as a goal in an exhaustive
search through all the values in the range of the
function (the "British Museum Algorithm", (Balzer &
Goldman, 1979)); this may be acceptable if the range

of values to be searched is small. However, there are
cases (such as numeric functions operating on the
real numbers) where the range to be searched is so
large that this method is unacceptable. The simula-
tion system would have to be provided with some heu-
ristic rules to detect such cases before starting a
simulation run, so that the human operator can be

warned that an "endless" search may be involved.

5.5. Verification

Verification is the process of ensuring, by formal
reasoning, that a design or product does meet its specif-
ication (see e.g. Hantler & King, 1975). This is only
possible in situations where both the specification and
the design (or product) have been expressed in formal
languages, and usually requires the assistance of com-
puterised theorem-proving facilities (e.g. Boyer & Moore,
1979). However, verification has not been shown to be

practicable for 1large systems (Lehman, 1981; Wirth(a),

=]]9=

1977); much recent work has therefore been directed at an
alternative approach known as "transformational
implementation" (e.g. Balzer, 1981). This attempts to en-
sure the <correctness of the design by restricting the
design process to a succession of small transformations
of the original specification, each of which converts it
into a slightly more algorithmic (and efficient) form. As
transformational methods are relatively new, there have
as yet been no demonstrations of the technique on large
problems.

To convert an ASL specification into a suitable form
for either of these methods would involve considerable
manipulation of the specification. This is because ASL
was designed to simplify the job of writing
specifications; thus it allows such things as aggregation
and generalisation (see Chapter 3.9) which are not
directly expressible in the simple input languages used
by existing theorem provers and transformational systems.
The conversion would involve the dispersion of the
higher-level constructs of ASL, so that eguivalent condi-
tions appeared in every individual item of behaviour.
This is not excessively difficult, being similar to the
translations involved in the semantic model of ASL (see
Appendix C). However, the conversion program would it-
self reguire extensive validation as any errors in this

would invalidate all subsequent verification using it.

-120-

5.6. The Demonstration Facilities

Given the range of computer-based facilities
discussed in the previous sections of this chapter, one
aim of the project was to provide some demonstration of
the value of these. However, the amount of programming
effort required to provide all of them was beyond the
capacity of the project. An examination of results pu-
blished by organisations using formal specification
methods (e.g. Alford, 1977; Lattanzi, 1980) indicated
that a large proportion of errors are likely to be triv-
ial and may be detected by static cross-checking of
the specification text. Thus, it was decided that the
static checking facilities (see Section 5.2.2) would form
a satisfactory part to demonstrate.

The methods used to provide these facilities are
described in detail in Appendix D. In outline, a number
of.separate programs were developed to perform:

(a) syntax analysis,

(b) static cross-checking, and

(c) the production of a cross-reference list.

These operated as individual tools, rather than as an in-
tegrated set of facilities, as this maximised the number
of tools which could be developed within the available

time.

-121-

5.7. Summary

In this chapter a set of computer-based facilities
have been described which would provide considerable sup-
port to specification writers. The intention is that
these tools would make it practicable constantly to in-
corporate -changes (as these become necessary) without
creating the type of documentation control problems
reported by Brooks (Brooks, 1975). BA subset of these
tools were implemented to provide a demonstration of
their usefulness, whilst involving only a limited amount
of programming; these have been used to support the tri-

als of ASL, as reported in Chapter 6.

The use of a formal language, together with checking
tools such as those described in 5.6 above, has been
reported to have resulted in the detection before the
start of design of over 50 percent of the errors in spe-
cifications for large software systems (Alford, 1977).
The cost of correcting an error was also reported to in-
crease by an order of magnitude if the error was not
detected until the design was in progress. The possibil-
ity of obtaining a similar detection rate in telecommuni-
cations systems provides considerable justification for

expenditure on checking tools.

-122-

CHAPTER 6

TRIALS AT GEC

6.1. Introduction

One of the terms of reference of the project (see
Chapter 1.3.2, item (d)) was to introduce the chosen spe-
cification 1language into the Company. This activity was
therefore combined with the need to obtain reactions to
the design of ASL, giving a reguirement for a number of
initial trials of the language. These were each to in-
volve the use of ASL to specify a relatively small system
without requiring the involvement of the Company's
customers; a total elapsed time per project of around one
month was considered suitable. This 1limitation on the
timescale was necessary because the effort expended on
preparing the ASL specification formed an additional
overhead on the projects concerned. As a consequence,
only a small number of people were involved in the trials
and recorded their opinions of ASL. These reactions do
however form a basis upon which to modify the language
and its computer-based support facilities before under-
taking any large-scale implementation.

The main problem encountered in organising the trials

-123-

was that of identifying projects of a suitable size which
were at an appropriate stage in their development. One of
the projects chosen was subseguently delayed as a result
of changes in marketing priorities, so that a replacement
had to be found. Four trials have taken place, covering a
range of types of system and a variety of levels of
previous experience amongst the participants; these are
reported in Sections 6.2 to 6.5 below. In each trial, the
specification was reviewed by one or more people who had
not been involved in its creation; both the writers and
reviewers were then asked to complete a guestionnaire to
record their opinions. Their responses are discussed in
Section 6.6.5.

The syntax analyser and the other static checking
tools (see Chapter 5 and Appendix D) were used to aid the
writers.of the specifications. This acted as a check upon
their comprehension of the language and highlighted any
problems in this area. Difficulties encountered by the
writers during the creation of the specifications were
recorded as they occured, to provide further feedback.
The difficulties and criticisms are discussed in Section
6.6, whilst more detail of these and the responses to the

guestionnaires appears in Appendix F.

6.2. Trial 1l: The Data-rate Adaptor

The system used for this trial is part of a range of
items being designed to support the Integrated Services

Digital Network (ISDN), which will extend the use of

-124-

digitally-coded signalling from telephone exchanges right
up to the subscribers' equipment. The particular item be-
ing specified in the trial is a data-rate adaptor, which
takes 1in digitally-encoded data (e.g. from computer
equipment), together with a digital carrier waveform at a
higher pulse rate, and encodes the data onto the carrier.
It also performs certain detailed modifications to the
bit-stream which it outputs, such as inserting check
digits. The intention is that this system, which bhas
previously been implemented wusing standard integrated
circuits, will be re-designed as a VLSI device.

No official specification for the system existed at
the start of the trial; there were a number of unofficial
documents which had been created for the purpose of ex-
plaining the system to interested parties, but these
related to the larger entity of which the data-rate adap-
tor is only part. The personnel involved in the trial
were all hardware engineers, and the individual who wrote
the ASL specification had no previous experience of spe-
cification 1languages and limited experience of computer
programming languages. This lack of appropriate back-
ground experience meant that training in the use of ASL
took 2 weeks on a one student-one tutor basis. A simple
guide to the <construction of ASL specifications was
created from the material used in this training period
(Blackledge (b), 1982).

The use of ASL did not result in the identification
of any errors which had previously been undetected; this

is not wunexpected as an implementation of the system

-125-

JRSRRRNES Ve e e

already existed. One of the reviewers did, however, com-
ment that the structure of the specification had sug-
gested an alternative design approach which bhad not
previously been considered. Amongst a number of difficul-
ties which arose during the production of this
specification, only one reflected a significant failing
in ASL, although even this one did not make it impossible
to specify the required behaviour. This was in the han-
dling of long sequences of related messages, which |is
common in the data-rate adaptor as it 1is handling
sequences of bits representing characters. ASL regquires
that the specification mentions each bit individually,
and provides no convenient method of referring to the
segquence as a whole; this produces a large specification
and makes this part of the behaviour harder to

comprehend.

6.3. Trial 2: A Disk Checking System

The specification written in this trial was for a
computer program to help in the commissioning and-' main-
tenance of CAT 5 and CAT 6 test equipment. CAT testers
were developed by the Company to perform automatic diag-
nostic testing of electronic circuit boards. Because of
the size of the test programs reguired for printed cir-
cuit boards containing up to 80 integrated circuits, the
CAT testers use fixed-head disks to provide large amounts
of magnetic storage. The first testers fitted with such

disks suffered from a considerable number of problems,

=126-

apparently caused by unreliability of the disks. Further
investigation, however, revealed that many of the pro-
blems were due to faults in the hardware which interfaced
the disks to the testers. Some method of exercising and
checking the disks was therefore regquired, to assist in
locating faults. Three programs were written to aid in
this checking, but these did not cover all the functions
of the disk unit; also, they were unable to continue with
the remaining tests after finding the first fault.

A new single utility to perform comprehensive checks
on the disks was specified in ASL; this was a completely
new specification as no other documentation had been
written about this new program. The writer of the specif-
ication had not previously used a formal specification
language, but had experience of writing specifications in
English. No serious problems were encountered during the
preparation of the specification. However, as this was
the first of the trials to occur, many small faults were
found in the definition of ASL; these are discussed in
Section 6.6. As the specifier was filling the roles of
"customer" and "supplier" (see Chapter 1.2.2), no major
errors or omissions were detected when the specification
was input to the static checking facilities or when it
was reviewed. The specifier did however report that the
use of ASL had forced the resolution of a number of minor
inconsistencies and omissions during the construction of

the specification.

-127-

6.4. Trial 3: R2 Signalling System

The R2 protocol for signalling between telephone ex-
changes is used in a number of countries (e.g. China,
India) which are potential export markets for the System
X family of exchanges. It uses pairs of audio tones,
selected from four possible frequencies, to encode the
digits 0 to 9 and certain control signals. Specifications
already existed in English (Galvin, 1981), in message
sequence charts (EODST, 1981) and in the finite state
specification language, FSIS (BTS, 1981 ; Taylor, 1981),
giving an opportunity to compare ASL with the type of
specifications already used in the telecommunications
industry.

Unfortunately, other target dates for the project
were too pressing to permit the personnel to invest two
weeks in learning ASL and then further time rewriting the
specification. It was therefore decided that the specifi-
cation would be produced by the designer of ASL (the
author) and then subjected to review by a member of the
project. The review would then provide a comparison of
specifications written in four languages, undertaken by
someone who had not written any one of them; criticisms
arising would therefore relate to the general comprehen-
sibility of the four forms.

During the preparation of the specification, it
became apparent that a number of elements of the behavi-
our were not sufficiently well-defined. As an example, no

information had been provided on how to recognise when

~128=

enough digits had been received to complete the telephone
number being called. On checking with the project person-
nel it was found that these elements were ill-defined,
and that this had already been recognised. However, both
the FSIS and English-language specifications give no in-
dication of this incompleteness. In contrast, the ASL
specification demanded the use of the word "undefined" in
each of the appropriate positions, making the incomplete-

ness explicit.

6.5. Trial 4: Part of an Operating System

The Telecommunications Research Laboratory at the GEC
Hirst Research Centre have been working for a number of
years on the development of a distributed system using a
number of microprocessors (Nissen & Geiger, 1979). The
aim of this work has been to produce a flexible system in
which both the processing power and the operating system
are distributed over the variable number of microproces-
sors involved. One central feature of this system Iis
therefore the organisation of the flow of messages
between the various processors, as there is no fixed al-
location of tasks to processors; this job is undertaken
by software modules known as "route-handlers".

This route-handler module was selected as the system
to be specified in ASL as it is not too large to be spe-
cified in a short period, but does include some reasona-
bly complex behaviour. The main difference between this

trial and the others is that the research engineer who

-129-

wrote the specification had previously made use of other
formal specification 1languages. These languages had in-
cluded ones based upon more mathematical notation than
ASL (e.g. Jones(a), 1980), so comments from this trial
would provide some evaluation of the comprehensibility of
ASL relative to these.

One problem which arose during the preparation of the
specification was a consequence of the writer's previous
experience, which caused him to misunderstand the object-
oriented view embodied in ASL. The initial version of the
specification treated a model as a mathematical function,
and attempted to call it recursively. Although this is a
technigue wused in many other specification languages, it
is meaningless in ASL where the only way of communicating
with a model is by the transmission of messages. The oc-
currence of this difficulty does suggest that the res-
trictions imposed by the object-oriented view had not
been explained sufficiently well in the 1language ref-
erence manual. The trial produced a number of suggestions
for minor improvements to the language syntax, and also
the identification of four points where the language
definition was incomplete; these are discussed briefly in

Section 6.6, and listed in Appendix F.

-130-

6.6. Criticisms and Comments

6.6.1. Sources of Comments

As mentioned in Section 6.1 above, problems encoun-
tered during the preparation of the specifications were
recorded as they occurred. Then, after each specification
had been completed, it was reviewed by one or more people
and the immediate comments and criticisms again recorded.
Finally, each participant was asked to complete a
guestionnaire so that any further thoughts and general
opinions were captured. Sections 6.6.2 to 6.6.4 Dbelow
cover the problems which arose during the trials, and
then Section 6.6.5 covers the responses to the
guestionnaire. All the results which are discussed relate
to the design of ASL. The documentation used to support
the trials (Blackledge(a), 1982; Blackledge(b), 1982) was
the subject of some criticism, but this is not directly

relevant to the evaluation of the language.

6.6.2. Unintentional Inconsistencies

As was pointed out in Chapter 4.3.1, there is very
little published material which gives constructive advice
on the process of language design. ASL was therefore the
result of a number of attempts at such a design; each at-
tempt was subjected to criticism, which formed the basis
for the next attempt. During the trials it became ap-

parent that the syntax definition still failed to capture

=131~

the author's intentions in all cases, as in the following

examples.

(a) The syntax production for PREFIX allowed references
to the "first" and "last" messages matching a partic-
ular pattern, but not to the intermediate ones.

(b) A bothway interface might receive.and send messages
with the same name, but there was no way to select
messages in one particular direction from the history
of the model.

(c) Messages were forced to have at least one component
in order to allow values to be assigned to them;
hence a message with one component effectively had
two names where one would have sufficed.

(d) Pattern-matching variables could not be used in place
of an interface name, and anonymous pattern-matching
variables (i.e. "?" with no name following it) could
not be used in the place of a stimulus.

There were also a number of other similar items, all of

which are listed in Appendix F.l.2. These points were all

treated as errors in the syntax definition, and therefore
corrected immmediately. The full syntax definitions 1in

Appendix B show only the corrected forms.
6.6.3. Simple Extensions

The specification writers taking part in the trials
made proposals for extensions to the language which they
felt would assist them in their task. Those extensions

which were simple and also consistent with the concepts

=132m

in ASL were added into the language as they arose. Some

of these are described below, whilst those which were not

incorporated are discussed in Section 6.6.4.

(a) The ability to use paragraph numbers with no para-
graph body (except perhaps a comment) provides a way
to organise the text within a single model. This use
of paragraphs as a means of introducing headings for
sections of the text is totally consistent with the
intentions of the paragraph numbering scheme (see
Chapter 4.3.3).

(b) Common operation definitions can be placed within the
system block, rather than having to appear within ev-
ery model which uses them,

(c) Sequences are necessary within the RESPONSE part of a
single behaviour statement. It is not practicable to
express all sequence constraints as general rules,
and there are many cases where arbitrary seguencing
is insufficient.

The complete list of these extensions appears in Appendix

F.1.3, and they are all included in the syntax defini-

tions in Appendix B.

6.6.4, Further Possible Extensions

A number of other points were raised during the
trials, but were not seen as simple alterations to the
language syntax and have therefore not been incorporated.
These are listed in Appendix F.1.4 and F.1.5. The main

reason why none were incorporated into the language was

=133+

that it still proved possible to complete the trial spe-
cifications without these features 1in the language,
whilst the time taken to extend the semantic model (see
Chapter 4.5.7) to include them would have delayed the

completion of the trials.

6.6.5. Responses to the Questionnaire

With only one exception, all the participants in the
trials completed the guestionnaire, so providing a record
of their comments and opinions after the completion of
their role in the exercise. The one exception was the
writer of the specification for the R2 signalling system;
as this role was filled by the designer of ASL (the
author), this would not have provided any additional
information. The design of the guestionnaire 1is covered
in more detail 1in Appendix F, but its intention was to
get the participants to record their views on as much of
the 1language as possible. To this end, it was based upon
a sequence of multiple-choice guestions, but with room
for free-form comments after each guestion. Additionally,
a number of other guestions were introduced which were
intended to elicit more general comments.

Due to the small number of participants (eight in
all) and the large number of uncontrolled wvariables in
the trials, the volume of data from the guestionnaires
was insufficient to submit to normal parametric statisti-
cal analysis. Analysis was further complicated by the

large proportion of the results which appeared as free-

-134-

form comments; however, this was a direct consequence of
attempting to ensure that the participants gave the maxi-
mum amount of information in their replies. Despite this,
there was a large degree of similarity in the content of
many of these comments. The discussion of results which
follows has therefore been based upon the number of par-
ticipants who answered positively, negatively or neu-
trally to the guestions about ASL (see Appendix F.2.2 for
further details). This data was subjected to the
Kolmogorov-Smirnov nonparametric test (Siegel, 1956), as
this is suitable for small samples. The answers were then
re-analysed on the basis of two factors which divided the
participants into groups, to see if there was any signif-
icant correlation between the groupings and the opinions
expressed. The factors used were the role played by the
participant (writer or reader) and their previous ex-
perience of formal specification languages. Here the
Fisher exact probability test (Siegel, 1956) was used, as
this is a correlation test suitable for small samples.
Only one criticism of ASL was identified by these
analyses, and this was only significant at the 90 percent
level. This «criticism was that, although the readers
found the paragraph numbering helpful, the writers did
not 1like the amount of repetitive writing which it
involved. One writer had wished to insert an additional
paragraph between two existing ones, and found that this
necessitated a large amount of writing.
In no other case was there a sufficiently distinct pat-

tern in the responses to form a sound basis for any crit-

«135~

icism of ASL. There were, however, seven items on which
there was support for features of ASL (at the 90 percent
level or better, taking all participants together), these
being:

3.1(a), the block structure of an ASL specification,

3.1(b), the use of the system block for common

information,

3.1(c), the "black box" view of models,

3.1(g), the form of definitions,

3.1(h), the method of describing behaviour,

3.1(i), the use of "unless" for alternatives,

3.1(g), "whenever" as a way of describing conditional

actions.

Appendix Pe2.2 also contains details of those
responses which toock the form of comments and therefore
were not suitable for the above analysis. From these
comments, two points are worthy of note. Firstly, the
writers with no previous experience of formal specifica-
tion languages found the specifications hard to write,
but this seemed to be due to the need to be rigorous
rather than to any features of ASL. Secondly, the use of
"black box" models was seen to be an advantage of ASL,
both in terms of the resulting style of the documents,
and of the method of constructing specifications which it

embodies.

6.7. Summary

One of the most important elements of the project was

-136-

seen to be the practical testing of the ideas which had
been developed 1in Chapters 2, 3 and 4. Despite the pro-
blems in arranging for a number of such tests to be car-
ried out in timescales to suit the project, four trial
specifications were successfully produced. The partici-
pants displayed considerable interest and enthusiasm, and
contributed a significant amount of constructive criti-
cism of ASL. Many of the difficulties which arose during
the trials can be traced back to deficiencies in the
documentation wused to train the participants, but some
did relate to the design of the 1language. In the next
chapter these results are used in the evaluation of the

progress made by the project.

-137-

CHAPTER 7

EVALUATION

7.1+ Introduction

The achievements of the project can be assessed on
two bases, by making use of the information from Chapter
2 (the evaluation of other specification languages) and
that from Chapter 6 (the trials within the Company). 1In
Section 7.2, ASL is considered in relation to the selec-
tion criteria which were developed in Chapter 2; this
produces a comparative evaluation of the language and
identifies the degree of success in meeting the design
criteria. Then, in Section 7.3, the reactions of the par-
ticipants in the trials are discussed and some deficien-

cies of the language noted.

7.2. Comparative Evaluation

To provide a meaningful comparison it is necessary to
evaluate ASL against the same criteria and in the same
way as the languages reviewed in Chapter 2 and Appendix
A. Thus, the comments which follow are shown against the

same headings and identification letters as were used in

=138~

Chapter 2.2.13 and throughout the tables in Appendix A.
It should also be noted that, under the categorisation
made in Chapter 2.3, ASL is an event-triggered language.
Preliminaries:

Form: ASL has only a text form.

Computer/Manual: Some computer facilities exist.

Use: Tﬁe language is not in regular use, but has been

demonstrated on complete examples.
(a) Block or Paragraph Structuring.

An ASL specification is divided into blocks which re-
present models. Within each block, paragraph numbers may
be used to provide appropriate structure, as explained in
Chapter 4.3.3. This gives a greater structuring capabil-
ity than in any of the other formal languages reviewed in
Chapter 2.

(b) Generalisation

The language permits the definition of operations
with any number of arguments and results, by treating
these as a text "macro" (e.g. see Cole, 1980) rather than
as strict mathematical functions. Properties which are
common to a number of models, such as the format of
messages, are "factored out" and only defined once in the
system block. These provide comprehensive facilities for
generalisation which are much more powerful than those in
high-level programming languages such as Pascal, Ada or
PL/T.

(c) Aggregation
Both messages and definitions can be hierarchical

structures with any number of levels, and for definitions

-139-~

this applies to both data types and instances of objects.
It is not possible for one object to be an instance of
more than one data type; however, no case has so far been
encountered where this has been necessary.
(d) Separate Description of each Action

This 1is enforced by the language, in the shape of
the:

"on" STIMULUS "then" RESPONSE.

form of statements which describe behaviour.
(e) Monitors

The ASL form of a monitor is:

"whenever" CONDITION "then" RESPONSE.

and monitor actions take priority over simple behaviour
actions. Thus, a monitor can be used to represent behavi-
our under exceptional cicumstances, such as an overload.
(f) Historic and Descriptive Reference

ASL provides-historic references by treating each in-
terface of each model as an infinite buffer, and descrip-
tive reference by allowing a message to be identified by
the values of its contents. One important factor in mak-
ing these facilities easy to use is pattern-matching:

e.qg. sum(all ?z)

where (?y.size = z)
and (y = coin via coinslot)

which provides temporary names for patterns and the
selected values.
(g) Non-algorithmic

ASL does have a construct which can act as an assign-

ment statement; however, without the other control state-

-140-

ments found in programming languages (e.g. loop state-
ments and jumps), this is not sufficient to describe com-
plex behaviour algorithmically. Thus, the design of the
language makes it difficult to write algorithmic
descriptions, whilst the use of pattern-matching and
local definitions make non-algorithmic specification
easy.
e.g. a simple definition of a square root might be
[5] operation SQUARE_ROOT (x, t --> y) is
[5.1)] X / THE INPUT : decimal
[5.2] T / REQUIRED ACCURACY OF ANSWER
: decimal
(5.3] Y / THE ANSWER : decimal
15:4] v is 72
where abs(z*z - x) <= t
(h) Representation of Time Duration
Time delays can be represented in behaviour state-
ments as:
"within" TIME DELAY "of" STIMULUS "then" RESPONSE.
e.g. within 1 second of 1lift handset
via subscriber_line (?x)
then start sending dial_tone

via subscriber line (x)

and a timeout (i.e. a response to the non-arrival of a
message within a fixed time period after an event) can be
represented as a monitor:

"whenever" CONDITION "then" RESPONSE.

-141-~-

e.g. whenever 15 seconds after (start of dial tone
via subscriber line(?x)) then

so that the language provides all the timing facilities
required for behavioural specifications.
(i) Recognition of Concurrency

Interfaces to models are treated as seguential
channels, but any number of interfaces may be active at
the same point in time. The language therefore allows
concurrent activities to be described; however, apart
from simply 1limiting the use of interfaces and local
variables to be seqguential, it does nothing to restrict
the system behaviour to be safe. Thus, the onus of ensur-
ing this is upon the specification writer.
(j) Acceptance of Fuzzy Values

ASL provides three features which address this area:
the words "undefined", "unknown" and "dont care" can be
used to indicate incomplete knowledge; actions can be
specified non-deterministically, in terms of the desired
result; some values (e.g. time delays) can be stated as
ranges of acceptable values, rather than as single
guantities. This does not cover the type of "fuzzy"
values used in fuzzy logic (Gaines, 1976), but does
provide facilities egual to those in any of the other
specification languages reviewed in Chapter 2 (apart from
English).
(k) Notational Redundancy

Due to the extensive use of words from the English
language, as explained in Chapter 4.2, specifications

written in ASL have a similar level of notational redun-

=142~

dancy to Pascal programs. However, the paragraph number-
ing in ASL provides a high level of perceptual recoding
of the structure without producing verbose
specifications.
(1) A Simple Syntax

The syntax of the language (which appears in Appendix
B) has beeﬁ shown to be suitable for recursive-descent
syntax analysis, and is simpler than the syntax of many
programming languages.
(m) A Semantic Model

The semantic model for ASL was described in Chapter
4.5.7, and is elaborated in Appendix C. Although this
does not give a complete formal definition of the lan-
guage from first principles (it relies upon the existing
definitions of Predicate/Transition nets (Genrich et al,
1980)), it is sufficient to ensure an unambiguous defini-
tiqn of the language.
Table A.l15 in Appendix A shows a comparison of ASL and
the best language from each of the categories identified
in Chapter 2.3. From this table it can be seen that the
design of ASL has produced a language which does not have
the failings noted in the other languages which were

reviewed in Chapter 2.

7.3. Feedback from the Trials

7.3.1. The Significance of the Results

Although the comparative evaluation in Section 7.2

-143-

demonstrated that ASL had met its design criteria, it was
also necessary to obtain confirmation of this from prac-
tical trials of the language (as reported in Chapter 6).
This feedback provides a more detailed critique of the
usability and comprehensibility of the language to its
intended audience. As mentioned in Chapter 6, this in-
formation takes the form of both a record of problems
which arose during the writing of the specifications, and
the gquestionnaires which were completed by all the
participants.

Statistical analysis of the results was restricted to
simple nonparametric tests due to the composition of
the sample; only a small number of people
were involved, and it was not possible to select these to
ensure a proper cross-section of the total audience.
Analysis was further complicated by the impracticability
of performing parallel trials with control groups using
other specification methods. Such parallel trials are un-
common in experiments with languages (see e.g. Shiel,
1981; Weinberg, 1971) due to the number of additional
participants and considerable extra cost involved. The
small total number of participants also made it impracti-
cable to test the guestionnaire on a sample of the
audience, as is normally suggested (e.g. Kornhauser &
Sheatsley, 1965). However, the backgrounds of the people
who did take part do between them cover many parts of the
total audience:

(a) hardware engineers, with no previous experience of

specification languages,

-144-

(b) systems engineers, with some experience of the use of
finite state languages and message seguence charts
for specifications,

(c) a research engineer who had previously used a number
of formal specification methods, and

(d) other systems people, with previous experience in the
use of programming languages.

There 1is sufficient general agreement in their responses
to provide confidence in the acceptability of a formal
language such as ASL to the wider audience. Although the
trials were undertaken within a telecommunications
company, only one (the R2 signalling system)was specific
to that industry. The success in the other trials indi-
cates the suitability of ASL for a wide range of
information-processing systems.

The problems which did arise during the trials fall
into three categories, those resulting from unintentional
inconsistencies in the syntax definition of the language,
those which required simple enhancements, and those which
involved significant changes to it. These three were cov-
ered in Section 6.6, which also contained details of the
guestionnaire and the responses which it elicited. Sec-
tion 7.3.2 below discusses the overall pattern of the

results.

7.3.2. The Pattern of the Results

The results reported in Chapter 6.6 indicate that ASL

was found to be satisfactory by the personnel participat-

-145~

ing in the trials. All of the specifications were com-
pleted to the level of detail which the participants
deemed appropriate, and in every case the language was
able to express the necessary behavioural description.
The spread of responses to some gquestions in the
guestionnaire reflects the range of personal 1likes and
dislikes of the participants; however, there was general
support for almost all features of the 1language. There
were a number of items where either the role played by a
participant or any previous experience of specification
languages seemed to be related to the opinions expressed,
although only one was statistically significant (see
Chapter 6.6.5). However, in no case was there general
agreement that ASL was unsatisfactory. This provides
practical evidence to support the major decisions taken
in the design of the language, as described in Chapters 3
and 4.

Most of the minor difficulties which did arise during
the preparation of the specifications were resolved
immediately, in some cases by incorporating into the lan-
guage improvements suggested by the specification
writers. One feature which was reported to be extremely
useful was the "black box" wview, with the associated
message-passing semantics. This was found to act as a
strict discipline upon the writers, and formed a positive
method for constructing the specification (as described

in (Blackledge(b), 1982)).

=146~

CHAPTER 8

CONCLUSIONS

8.1. Achievements

The aims of the project were to identify a suitable
formal specification language, and to introduce this into
use within GEC Telecommunications Ltd.. This language
must be a practical tool for the construction of specifi-
cations of 1large and complex systems; it must also be
suitable for use by the existing staff of the Company af-
ter a limited amount of training.

Firstly, a comprehensive review of specification lan-
guages was undertaken. This involved the examination of
the large number of existing languages. From the analysis
of these and their use on small example problems, a set
of criteria was developed by which they could be
evaluated. The outcome of this review was that all the
languages were found to be deficient, the most fregquent
failing being in the area of facilities for bhandling
complexity. There was also a noticeable separation into
two groups of languages, those using strict mathematical
notation and those wusing more natural methods of

expression; this was particularly relevant to the aim of

-147-

easy introduction into the Company.

As a consegquence of the review, a new specification

language was designed; this was called A Specification

Language (ASL). Its main advantages over the other lan-

guages are as follows.

(a)

(b)

(c)

(d)

(e)

Comprehensive block and paragraph structuring
facilities, to provide perceptual cues to readers of
the resulting specifications. The use of paragraph
numbers to organise the text, although a common feat-
ure of documents written in English, was not a part
of any of the specification languages reviewed.

A simple view of systems as "black boxes" which com-
municate by passing messages. This provides both a
suitable me thod for constructing specifications
and a strong, although not total, check upon
completeness.

A simple model of time, sufficient to present the
main performance requirements for the system.

The recognition that incomplete information must be
recorded, and that specifications are normally
created incrementally.

Features which strongly promote non-algorithmic
specification, so that specifications do not contain
unnecessary information about possible design
decisions. These features include the ability to
refer to information by its description, rather than
by name, and unlimited access to the previous behavi-

our of the system.

(£) A simple syntax which is based upon the use of appro-

-148-

priate words and phrases rather than special symbols.
A limited set of computer-based facilities was con-
structed to support the use of the language, in recogni-
tion of the practical problems involved in the creation,
checking and maintenance of large specifications.

ASL was then used in the preparation of four specifi-
cations within the Company, in order to confirm its
suitability and to identify the type of training material
required for full implementation. These trials covered
both hardware and software systems, and were not specific
to the problems of the telecommunications industry. The
participants in these trials represented a wide range of
background experience. Thus, although the amount of data
collected is small, it provides a high degree of confi-
dence in the acceptability of the language within the
Company.

A number of problems did arise during the trials, but
none were sufficiently serious to prevent the specifica-
tions being written, and most were resolved immediately.
As a result, a number of worthwhile improvements have
been incorporated into the language. The participants in
the trials also recorded their opinions of ASL in a
guestionnaire; their answers showed support for the main
features of the language, and no significant criticisms.

The work reported here has therefore sucessfully
achieved the aims of the project, although complete im-
plementation of the new specification method in an orga-
nisation of the size concerned can be expected to spread

over a number of years.

~149~

8.2. Outstanding Problems

Although there are no difficulties which prevent the
use of ASL to gain the benefits outlined in Chapter
1.4.3, there are two problems worthy of note. These will
make it difficult to obtain all the theoretically possi-
ble benefits of using a formal specification language,
but do reflect areas which are still the subject of much
current research.

(a) Verifiability.

In order to ensure that the language was suitable for
practical use by existing personnel, its design was bi-
ased towards enhancing its expressive power. As a
conseguence, it is much more difficult to use ASL in the
formal verification of the design of a system than to use
one of the more restricted languages associated with cur-
rent program-proving systems (e.g. Boyer & Moore, 1979).
However, there are no reports of the routine use of for-
mal verification methods on large systems, only on rela-
tively small individual programs. Hence, ASL seems to re-
flect the only approach which is currently practicable
for large systems.

(b) Time.

The simple model of time used in ASL specifications
is adeguate for conveying gross timing information and
for "worst case" delay simulation. However, the language
does not provide a convenient method for representing ac-
tions which occupy a small, finite amount of time. It

can express the necessary constraints upon behaviour, but

=150~

only in a rather cumbersome and verbose manner. Thus,
this is an area which requires an appropriate change to
the syntax and to the semantic model. If this is not
done, then writers will tend to omit these details from
their specifications. Then it will not be possible to en-
sure that the system has no detailed timing problems by
analysing the ASL specification.

As there 1is no practical solution to these problems at
present, their existence 1is not sufficient reason to
delay the introduction of ASL into the Company. Such
delay would merely result in the loss of the financial
benefits associated with formal methods, whilst not

guaranteeing higher benefits in future.

8.3. Further Development

ASL has been demonstrated to be suitable for use
within the Company, but the facilities and documentation
developed to support the trials are not adeguate for
full-scale implementation.

(a) Enhancements to the Language

A number of useful extensions to the language were
not incorporated merely to avoid delaying the trials.
These items, which are listed in Appendix F.1l.4, should
therefore form the first step in the further development.
The improvements to the documentation suggested below

would then reflect these enhancements.

=191~

(b) Documentation.

One of the criticisms made by most of the partici-
pants in the trials was of the format and content of the
Language Reference Manual (Blackledge(a), 1982). This
document needs to be expanded and reorganised to take ac-
count of these criticisms.

(c) Training Material.

The existing introductory guide (Blackledge(b), 1982)
only covers the initial information required by the writ-
ers of specifications; there is no eguivalent document
for people who will only read them. Both this and any
guide developed for readers need to be supported by a
progressive series of example specifications which cover
more complex uses of the language. For the training of
large numbers of people, it will also be necessary to
produce - a number of lecture courses for different levels
of staff.

(d) Improved Support Facilities.

Support facilities, such as a simulation system which
works from the ASL code, are required in order to detect
as many specification errors as possible. The limited set
of facilities which were produced to support the trials
were only intended as prototypes, for demonstration
purposes. A completely new support system is reguired,
with an interface between the user and the tools, such
that, as more facilities become available, they do not
appear as something separate and different from the
previous tools. One particular criticism which came from

the writers of the specifications was that the paragraph

=152~

numbering scheme involved much repetitive writing and
made the insertion of additional paragraphs very time-
consuming. The provision of more sophisticated editing
facilities may therefore be more important than was orig-
inally imagined.

Although it is possible that the use of ASL could conti-
nue without investment in the items listed above, it is
unlikely that specification writers would find it a suf-
ficiently rewarding tool. It was purposely designed to be
suitable for processing by computer, but it also relies
upon such support to provide many of the benefits to its

users.

=153~

APPENDIX A

REVIEW OF SPECIFICATION LANGUAGES

l. General Layout

This appendix contains the detailed results of the
evaluation of candidate specification languages. Because
of the large number of languages to be presented, the in-
formation has been condensed into tabular form, using the
coding explained 1in the following notes. There are fif-
teen tables, numbered A.l to A.l15, with the first four-
teen corresponding to the fourteen language categories
identified in Chapter 2.3, and the fifteenth being a sum-
mary table as explained in Section 4 of this appendix.
Each table has the different languages displayed verti-
cally in the left-hand column, and then sixteen further
columns containing the results of the -evaluation; the
first three of these record general information
(explained in Section A.2, below) and the remaining thir-
teen are for the criteria, (a) to (m), as-listed in Chap-
ter 2.2.13. The interpretation of the values placed in

these thirteen columns appears in Section A.3, below.

~154~

2'

Columns for General Information

Three columns have been included to give a general

picture of the form and status of the language :

(a)

(b)

(c)

3.

Form (column headed "F")

Indicates the visible form of presentation:

T = text,
G = graphics,
X = tabular.

For the few languages which make use of multiple
forms, more than one symbol appears in the table.
Computer/Manual (column headed "C")

The reported status of computer support facilities,
as these may not exist even though a language is
suitable for computer processing:

M

I

only manual use; no computer facilities exist,

C

some computer facilities exist.

Use (column headed "U")

Whether the language is in practical use anywhere:
P = proposal only,

E = has been used on complete examples,

A in actual, regular use,.

Values Used in the Assessment

In all cases except criterion (k), the failure of a

language to provide any facility under a particular head-

ing

is denoted by a dash ("-"). Where numeric values are

given, the magnitude of the number is not intended to in-

=155~

dicate an order of acceptability amongst the

alternatives.

(a)

(b)

(c)

(d)

(e)

(£)

(9)

Criterion (a), Block or Paragraph Structuring
1 = has at least the facility to divide a specifica-
tion into blocks with headings or titles.

Criterion (b), Generalisation

1 = a simple facility, allowing the writer to define
common behaviour once (i.e. like "subroutines"
in programming languages).

2 = comprehensive facilities for "factoring out" com-

mon properties of all kinds.

Criterion (c), Aggregation

1 = permits the naming of collections of objects.

2 = permits one object to be a member of more than
one named collection.

Criterion (d), Separate Description of Each Action

1 = possiblé, although not enforced by the structure
of the language.

2 = enforced.

Criterion (e), Monitors

1 = exception conditions can be represented by
monitors, separate from the description of in-
dividual actions.

Criterion (f), Historic and Descriptive Reference

1l = historic reference only.

Il

2 descriptive reference only.

3

historic and descriptive reference.
Criterion (g), Non-algorithmic

1

]

possible, although the language is mainly

-156~

(h)

(i)

(1)

(k)

algorithmic in design.

2 = the design of the language makes algorithmic
description difficult, so non-algorithmic
predominates.

Criterion (h), Representation of Time Duration

1 = timeouts only.
2 = timeouts and time delays due to actions.
3 = clocked, synchronous action only.

Criterion (i), Recognition of Concurrency

1 = yes.

Criterion (j), Acceptance of Fuzzy Values

1 = allows values to be stated as ranges.

2 = allows fuzziness and incompleteness to be indi-
cated as such.

Criterion (k), Notational Redundancy

As this 1is not a yes/no choice, the languages have

been compared to the level of redundancy represented

by a programming language such as Pascal , and
marked:
T = much terser than Pascal; this is taken to repre-

sent a very low level of redundancy, which is
likely to prove difficult for readers,

A = average; approximately the same level of redun-
dancy as Pascal, and likely to be readable and
reasonably brief,

V = verbose; a much higher level of redundancy than
in Pascal, likely to lead to large

specifications.

=157 =

(1) Criterion (1), a Simple Syntax
1 = known to be acceptable to standard programming
language compiler technigues.

(m) Criterion (m), a Semantic Model

1 = operationally defined semantics (no theoretical
model exists, but computer facilities have been
developed to a stage which must effectively form
a semantic model).

2 = a theoretical semantic model exists.

4, Summary Table

Table A.15 contains the language from each category
which satisfies the largest number of the criteria (i.e.
has the least number of "-"s); where more than one lan-
guage satisfied the same number of criteria, an arbitrary
choice was made. ASL, the new language, has also been in-
cluded as the last item in the table. The purpose of this
table is merely to indicate the degree to which the thir-
teen criteria, even though not a complete test, were suc-
cessful in indicating deficiencies in the languages
reviewed. This suggests that the 1list of criteria was

sufficient for its purposes.

-158~

TABLE A.l UNIVERSAL LANGUAGES

Criteria

Language P CDUO abhede.fghi i

APL T.C P 11-1--=====
(Jones & Kirk, 1980)

Decision Tables Sl -—-_-—2 - =2 - - -
(Humby, 1973)

English TM A 3 [M S B b R it e

Pascal TECNE 1111 --= ===
(Jensen & Wirth, 1975)

PDL e A 1111 --- - ==
(Caine & Gordon, 1975)

Prolog TP -]l ===22 = = =
(Clocksin & Mellish, 1981)

SETL T C P -1 -===2 = = =
(Schwartz, 1973)

TABLE A.2 COMPUTER HARDWARE DESCRIPTION LANGUAGES

Criteria

Language FPCU abcdefaghij

AHPL TC A l --2-==3 - -
(Hill & Peterson, 1973)

DDL T C A l] = =2 = == 3 = =
(Duley & Dietmeyer, 1968)

HARTRAN TG A l--2===-3 - -
(Bown, 1978)

ISPS TCA - - === === ==
(Bell & Newell, 1971)

TEGASS6 T C E 11 -2-===2 = =

(Szygenda, 1980)

-159-

TABLE A.3 NEW PRdGRAMMING LANGUAGES

Criteria
Language pCD abeda't ab i)
ada eI Lo 2 45] i=iimn s 0]
(Ichbiah et al, 1979)
Ada Extension (ANNA) il g o S (o [S ST

(Krieg-Bruckner & Luckham, 1980)

Alphard T eoR 1211-=--=-+== ==
(Wulf et al, 1976)

Gamma TCA 1211 -+=-= == =
(Falla, 1981)

Gypsy T QA 1551 e it e]
(Ambler & Good, 1977)

TABLE A.4 DERIVATIONS FROM PROGRAMMING LANGUAGES

. Criteria

Language FCU a'bic'd e £ gbd

DDN A 121 21 -3 -1 =
(Riddle et al, 1979)

Delta T C A i, (2 1 e S P o g BB 2 D
(Holbeck-Hanssen et al, 1975)

Epsilon T B -3 2 3~ 3k -
(Jensen et al, 1979)

RLP PIETA l--2=-=-2-=--
(Davis & Rauscher, 1979)

SMSDL TME T2l A 2 3 el $2h] 2
(Frankowski & Franta, 1980)

SPECLE ™C A I i a) v 2] et = D
(Biggerstaff, 1979)

SREM TRC A I 1712 -"="1 2 %=
(AlEord, 1977)

Mascot e A 11 -1---=-=1 -

(RSRE, 1978) G

-160-

TABLE A.5 FLOW CHARTS

Language ek n)

Criteria
abecde'f'qghi ik

Flow Charts GMA
(Wayne, 1973)

Flowgrams GCaA

(Karp, 1978)

Progression Charts GMA
(System X, 1979)

SX/1 G CA
(Corker & Coakley, 1976)

TABLE A.6 HIERARCHIC DESCRIPTION METHODS

Language 0

CADIS A
(Bubenko & Kallhamer, 1971)

CORE GMA
(Mullery, 1979)

HIPO GMA
(Stay, 1976)

HOS T.C A
(Hamilton & Zeldin, 1976)
PSL TR
(Teichrow & Hershey, 1977)
SADT GMA

(Ross, 1977)
SSA GMA

(Gane & Sarson, 1979)

=161~

TABLE A.7 FINITE STATE MACHINE LANGUAGES

Criteria

bedef

Language F

CDL T
(Dietrich, 1979)

FSIS T
(Taylor, 1981)

Function Flowchart G
(Hemdal, 1973) X

State Transitn Diagram G
(Kawashima et al, 1971)

NPN T
(Boebert et al, 1979)

- i 5
(Parnas, 1972)

SOM G
(Braek, 1979)

SPECIAL T
(Robinson, 1976)

SDL g G
(OCITT, "1980) . 4y

- T

(Wymore, 1967)

-162~

2

TABLE A.8 STATIC DESCRIPTION LANGUAGES

notation.

-163~

Criteria

Language FCU abecdefaghbhiikln

Entity-Relation Model T C A -=-2-1-2-=-2212
(Chen, 1976)

LEGOL e R el 2=) 2= es= R D
(Stamper, 1977)

SLICES Tic B a2 e Y e A e e L T
(Steele & Sussman, 1979)

Invariants TICE N N TS R TR R
(Cunningham & Kramer, 1977)

TABLE A.9 PRE- AND POST-CONDITION LANGUAGES

Criteria

Language FCU abcdefghi i kln

- T ME -1-2-=2-==1T12
(Dijkstra, 1976)

VDL (Note 1) TM A -212--2-=--=-1712
(Bjorner & Jones, 1978)

Z ™ ™M A 121 2==2===17.9 2
(Abrial, 1980)

Lambda Calculus T M.E = 20 . 2 st Q0 e el i) D
(Cleaveland, 1980)

Note 1 Jones (Jones(a), 1980) uses a variant of this

TABLE A.10 EVENT-TRIGGERED LANGUAGES

Language

Criteria
bod et qgb i3

ACTORS
(Hewitt, 1977)

AP2
(Balzer & Goldman,

AUTOSATE
(Gatto, 1974)

BDL

(Hammer et al, 1977)

CASCADE
(Solvberg, 1973)

DMTLT
(Sernadas, 1979)

DATAFLOW
(NCC, 1969)

EDDAP
(Lindgreen, 1973)

FDL

(Marconi Radar, 1980)

Information Algebra
(CODASYL, 1962)

JSD
(Jackson, 1981)

Metaprogramming
(Lawson, 1977)

STREMA
(Clark, 1978)

Systematics
(Grindley, 1975)

Systematrix
(Jaderlund, 1980)

TCA

T C A

-164-

1

1

2

¢ B e SR

_ = = = = =

TABLE A.l1 SPECIFICATION ANALYSERS

Criteria
Language P C B abedefaghijgkilin
SPECK T CA e Tl N, O S Al IR i O |
(Quirk, 1978)
- i i -l =]] D= =] 2

(Laventhal, 1979)

TABLE A.l12 SEQUENCE DESCRIPTION LANGUAGES

Criteria

Language FCU abecde faoahdidk lmn

CCS TME =0 1 = a2 =t Twt] 2
(Milner, 1980)

COsY P C.A 1 = 1 &7 « 2= F 0202
(Lauer et al, 1979)

Path Expressions TMP == === = 2 =i dy= PACY
(Campbell & Habermann, 1974)

Regular Expressions TMP - =] == =2 = ==71] 2

(Harrison, 1974)

-165-

TABLE A.13 PETRI NETS

Criteria

abcdef

Language FCU

GRAFCET GMA
(Bouteille, 1978)

LOGOS G C A
(Rose et al, 1972)

Petri Nets GCa
(Petri, 1962)

Pro-Nets GCA
(Noe, 1978)

Pre-T Nets GME
(Genrich et al, 1980)

SARA GCa
(Estrin, 1978) i

i

TABLE A.14 LANGUAGES USING AXIOMATICS

Criteria

2

a.ple g g .k

Language FCU

ADJ T M B
(Goguen et al, 1978)

Affirm T C A
(Musser, 1979)
CLEAR T M E
(Burstall & Goguen, 1977)
iota T C&A
(Nakajima et al, 1977)

ORJ TCA
(Goguen, 1979)

- T NP
(Hoare, 1969)

- T CE

L ad

(Schwartz & Melliar-Smith, 1981)

-166-

1

1

TABLE A.15 SUMMARY

Criteria
Language FCU apbecdefghij
Universal
English T M A 1 2 2 L BV 0 N il I
CHDL
TEGAS6 T CE 11~ e B
New Programming Language
ANNA TG E L2 21 Jlim e
Derivation from Programming Language
Epsilon TC B . O 3 =3 171 =
Flow Charts
SX/1 GCaA l11l-=-1==== ==
Hierarchic Descriptions
PSL TC A 1513 -=-1 - -2
Finite State
SDL GCaA l -« - - =21 - -
T
Static Description
LEGOL T CE - 12 'l 2 = =
Pre- and Post-Condition Language
Z TMA ;A | - -2 = = =
Event-Triggered
AP2 TCA - 21 o A IR .
Specification Analysers
SPECK T C A - 0 Dl e O
Sequence Description
COsY THC A l1 -1 l-2-1=-
Petri Nets
SARA GCA 1 Bl O | - =1 -1 =
i
Languages using Axiomatics
OBJ TPEC e U8l L 1= 2 e
The New Language
ASL T COE e @il 33 22 1.2

-167-

APPENDIX B

THE SYNTAX DEFINITIONS FOR ASL

1. Backus-Naur Form

The modified form of Backus-Naur Form (BNF) used to
define formally the syntax of ASL is taken from a propo-
sal by Wirth, (Wirth(b), 1977); BNF was chosen as it is
the most commonly-used form of syntax definition. The
following paragraphs describe the main features of BNF,
but a more detailed explanation 1is given 1in Backhouse
(Backhouse, 1979).

(i) terminal symbols (i.e. reserved words and symbols
which are part of the language) appear surrounded by
gquote marks,

e.g. "send" "connections"

(ii) non-terminals (i.e. words used to describe the
structures or patterns of the language) appear in up-
per case letters, and their names cannot contain
blanks. The underline character is used as a separa-
tor instead of a blank.

e.g. MESSAGE PARAGRAPH_NUMBER
(iii) a segquence in BNF indicates a sequence in ASL,

e.g. PARAGRAPH_NUMBER INTERFACE_NAME

-1 68=

indicates that there must be a paragraph number fol-
lowed by an interface name, with one or more blanks
between them.
(iv) curly brackets, { }, indicate repetition,
e.g. { PARAGRAPH_NUMBER INTERFACE_ NAME }
indicates a repetition of zero or more occurrences of
a paragraph number followed by an interface name.
(v) sguare brackets, [], indicate an optional item,
e.g. ["next"] MESSAGE
permits the word "next" to be present, or to be
omitted.
(vi) the OR symbol, |}, indicates alternatives,
@€.g. "next™ | “(® "+® INTEGER ")"
states that "next" and "(+1)" are permissible
alternatives.

(vii) parentheses, (), are used to group items to avoid

ambiguity,
e.gs ("on" | “within® TIME DELAY %of")
ensures that the options are "on" and "within 1

second of", and that "on 1 second of" is not allowed.
(viii) a BNF statement is the name of the non-terminal

followed by an equals sign ("="), followed by its

definition in terms of terminals or other non-

terminals, and ending in a full-stop.

e.g. PARAGRAPH_NUMBER = "[" INTEGER

§ “<" INTEGER } ™]".
which states that a PARAGRAPH NUMBER is made up of:
(a) open square brackets, followed by

(b) an integer (a non-terminal, which would be

-169~

defined elsewhere in terms of digits), followed by
(c) a sequence of zero or more occurrences of a full-

stop in front of an INTEGER, followed by

(d) close sguare brackets.

2. Syntax Definitions

These are given in alphabetic seguence; the top level

in the set of productions is SPECIFICATION.

A MESSAGE = ANY NAME [CONTENTS] [ROUTE].

A_RESPONSE =
("send" |} "start" "sending”)
(ANY NAME [CONTENTS] ROUTE |
REPLIES |
LOOSE_END [ROUTE]) |
LOOSE_END |

"stop" "sending"
(ANY NAME [CONTENTS] ROUTE |
REPLIES |
LOOSE_END |

"current" "messages" ROUTE).

-170-

A_STIMULUS =
ANY NAME [CONTENTS] ROUTE |
("start" | "end") "of" ANY NAME
[CONTENTS] ROUTE |

LOOSE_END [ROUTE].

I
o

=

=

ADD_OPERATOR =

ALTERNATIVES "any" "one" "of"

PARAGRAPH NUMBER RESPONSE

{ PARAGRAPH_NUMBER RESPONSE }.

AN INTERFACE = ANY NAME "." ANY NAME.

AND = "&" | "and".

ANY NAME =

NAME_IN _LOWER CASE | "?" [NAME_IN_LOWER_CASE].

ANY QUALIFIED NAME = ANY NAME { "." ANY NAME }.

ASSIGNMENT = "is" CONDITION [LOCAL_DEFINITION 1.
BASIC_TYPE = "integer" | "decimal" | "character" |
"boolean" | "interface" | "message".

BEHAVIOUR = ("on"| "within" TIME_DELAY "of")

STIMULUS "then" RESPONSE [UNLESS].

=R

BUILT IN OPERATION = "sum" " (" EXPRESSION C ")" |
"count" " (" EXPRESSION C ")" |
ltminll n (l'l EXPRESSION_C ll"Il EXPRESSION_C |I} n :

"max" " (" EXPRESSION C "," EXPRESSION C ")".

CAPITAL_LETTER = "A" : l!Bll : 1'ICI'I : HD!I : IIEII : IIFI'I : l'!(;l!I :
"H“ :lqu :llJn :llKll :llLl! :llMll :ﬂNll :
"0" :tlpll‘ :"Qn :HRII' :I‘!SII :l‘!TII :llUn :
Ilvtl }llwl'l }tlxl‘l :IIYIT :Ilz!‘l.

COMMENT = "/" NAME_IN_CAPITALS { COMMENT_WORD }.

COMMENT WORD = NAME IN CAPITALS |} NUMBER | ADD_OPERATOR |

MULTIPLY OPERATOR | RELATIONAL_ OPERATOR.

CONDITION = EXPRESSION A { OR EXPRESSION_A }.

CONSTANT

NAME_IN LOWER CASE | RANGE | EXPRESSION_C.

]

CONTENTS
"=" EXPRESSION C [LOCAL DEFINITION] |

"with" CONTENTS CONDITION [LOCAL_ DEFINITION e

CONTENTS_CONDITION = CONTENTS_EXPRESSION

{ OR CONTENTS EXPRESSION }.

CONTENTS_EXPRESSION = CONTENTS_EXPRESSION_B

{ AND CONTENTS_ EXPRESSION B }.

-172-

CONTENTS EXPRESSION B = [NOT] CONTENTS NAME

RELATIONAL OPERATOR CONTENTS NAME.

CONTENTS NAME = ANY QUALIFIED NAME.

DEFINITION = NAME IN CAPITALS [COMMENT]
{ "," NAME IN CAPITALS [COMMENT] }
(":" (TYPE NAME | SET DEFINITION) |
"is" (PARAGRAPH NUMBER DEFINITION
{ PARAGRAPH_NUMBER DEFINITION } |

DEFINITION)).

DIGIT = ll'oll :ll‘lll =II2I'I' :ll3l‘l :I‘Iqll :1!5"
:!lsn :rl‘?ll : ?IBN :ngrl.
END OF BLOCK = "end" "of" NAME IN LOWER_CASE.

EXCEPTION CONDITION =

"whenever" CONDITION "then" RESPONSE UNLESS.

EXPRESSION_A

EXPRESSION B { AND EXPRESSION_ B }.

EXPRESSION B

[NOT] EXPRESSION C

[RELATIONAL OPERATOR EXPRESSION_C)

EXPRESSION_C EXPRESSION D { ADD OPERATOR EXPRESSION D }.

]

EXPRESSION D EXPRESSION D

{ MULTIPLY OPERATOR EXPRESSION E }.

=173~

EXPRESSION_E = ANY NAME | LITERAL

"(" CONDITION ")" | REF_TO_PAST MESSAGES.

FIXED_RELATIONSHIP = (NAME_IN_LOWER CASE | QUALIFIED NAME)

"is" CONDITION.

GOAL = "take" "any" "action" "to" "achieve"

NAME_IN_CAPITALS [LOCAL_DEFINITION].

INTEGER = DIGIT { DIGIT }.

INTERCONNECTIONS = "connections"
PARAGRAPH_NUMBER INTERFACE_LIST "to" -
INTERFACE _LIST [LOCAL_DEFINITION]
{ PARAGRAPH_NUMBER INTERFACE_LIST "to"

INTERFACE_LIST [LOCAL DEFINITION] i o

INTERFACE = ("input" | "output" | "bothway")
(NAME_IN CAPITALS |
PARAGRAPH_NUMBER NAME IN_CAPITALS

{ PARAGRAPH_NUMBER NAME_IN_CAPITALS }).
INTERFACE_LIST =
"(" AN_INTERFACE { "," AN INTERFACE } ")" |

QUALIFIED NAME.

INTERFACE_NAME = NAME_IN LOWER _CASE.

-174-

ITERATOR = "for" "all" (EXPRESSION B | STIMULUS)

[LOCAL DEFINITION].

LIMITER = “approximately® | "<=¥ | "xe=w "1 weys |
lt<>rl : n“=|| : n"‘<|| : lll)lt : ll'(l'l.
LITERAL = LOOSE_END | NUMBER.

LOCAL DEFINITION = "where"
((DEFINITION | CONDITION) !
PARAGRAPH_NUMBER (DEFINITION | CONDITION)
{ PARAGRAPH_NUMBER (DEFINITION |

CONDITION)}) .

LOOSE_END = "unknown" | "undefined" | "dont" "care".

MESSAGE_DICTIONARY = "messages"
((DEFINITION | MESSAGE_EQUIVALENCE) |
PARAGRAPH_NUMBER
(DEFINITION | MESSAGE_EQUIVALENCE)
{ PARAGRAPH_NUMBER

(DEFINITION | MESSAGE_ EQUIVALENCE) 0
MESSAGE_EQUIVALENCE = QUALIFIED NAME "is" QUALIFIED_ NAME

("where" { PARAGRAPH NUMBER

MESSAGE_EQUIVALENCE } J.

~375=

MODEL = START_OF BLOCK
MODEL _ STATEMENT { MODEL STATEMENT }

END_OF BLOCK.

MODEL_STATEMENT =
PARAGRAPH NUMBER (INTERFACE | DEFINITION |
RULE | BEHAVIOUR | OPERATION_ DEFINITION |

MODEL_STATEMENT).
MUOLTIPLY OPERATOR = S#kb ol S&wil W %,
NAME IN CAPITALS =
CAPITAL LETTER | CAPITAL_LETTER R R e R S T

[SUBSCRIPTS].

NAME_IN LOWER_CASE =

SMALL LETTER | SMALL LETTER | DIGIT | "_"

[SUBSCRIPTS].
NUMBER = DIGIT { DIGIT } ["." DIGIT { DIGIT }].
NUMBER_OF_MODELS = "created" "from"

PARAGRAPH NUMBER QUANTITY NAME_IN_ LOWER_CASE

{ PARAGRAPH NUMBER QUANTITY NAME_IN_LOWER CASE }.

=176~

OPERATION DEFINITION =
"operation" NAME IN CAPITALS
("(" [NAME_IN LOWER_CASE
{ "," NAME IN LOWER _CASE }]
["-->" NAME _IN LOWER_CASE {","
NAME IN LOWER CASE }] ")"] [COMMENT]
mign

OPERATION STATEMENT { OPERATION_STATEMENT }.

OPERATION NAME = NAME_IN LOWER_CASE.

OPERATION STATEMENT = DEFINITION ; OTHER BEHAVIOUR |

RULE | PARAGRAPH_NUMBER OPERATION_STATEMENT.

OTHER_BEHAVIOUR = BEHAVIOUR ; RESPONSE :

ITERATOR "then" RESPONSE.
PARAGRAPH NUMBER =

"[" INTEGER { "." INTEGER } [COMMENT] "]" |

"(," INTEGER { "." INTEGER } [COMMENT] ".)".

-177-

PREFIX =

("time™ | "start" | "end" : "duration") “of"
["sending" | "receiving"])
{™lase™ I "firse® | "~ INTECER).}
®"lask"™ | SEirst”™ & “all"™ . ."%” IRTEGER -
"sending" | "receiving".

QUALIFIED NAME = NAME IN LOWER CASE "." NAME_IN LOWER CASE

{ "." NAME IN LOWER CASE }.

QUANTITY = LOOSE END ["number"] |

LIMITER EXPRESSION E | RANGE.

RANGE = EXPRESSION E ["to" EXPRESSION_E ji B5

REF_TO PAST MESSAGES = PREFIX

(ANY NAME [CONTENTS] ROUTE | "message").
RELATIONAL OPERATOR = "<=" | ">=" | e

Mesn : m_n : ny " : nen : ||"‘>|| : !l“(ﬂ :

in% .l "whilets! "sfter™ |

llatll llsame" “time" l!as!l.
REPLIES = " (" ANY NAME [CONTENTS] [ROUTE]

{ "," ANY NAME [CONTENTS] [ROUTE] } ")"

[ROUTE J].

~178-

RESPONSE = SELECTION ! ALTERNATIVES ! GOAL !

SIMPLE REPLY | LOOSE_END | RESPONSE_SEQUENCE.

RESPONSE SEQUENCE = "sequence"
PARAGRAPH_NUMBER SIMPLE_REPLY

{ PARAGRAPH_NUMBER SIMPLE_REPLY }.

ROUTE = "via" ANY NAME.

RULE = EXCEPTION_CONDITION i FIXED RELATIONSHIP l

SEQUENCE.

SELECTION = "select"
("("™ CONDITION ")" { PARAGRAPH_NUMBER
"(" VALUE ")" "when" RESPONSE } |
{ PARAGRAPH_NUMBER " (" CONDITION ")"
"when" RESPONSE })

PARAGRAPH NUMBER "otherwise" RESPONSE.

SEQUENCE = "seguence" [ROUTE]
{ PARAGRAPH NUMBER ["optional"]
[“next" : n (ll Il+ll INTEGER !l) "]

A MESSAGE }.

-179-

SET_DEFINITION =
"{" CONSTANT [COMMENT]
{ "," CONSTANT [COMMENT] } "}" |
" (*" CONSTANT [COMMENT]

{ "," CONSTANT [COMMENT] } nEym

SIMPLE_REPLY = BUILT_ IN_OPERATION |
"(" A RESPONSE { "," A_RESPONSE } ")"

NAME _IN LOWER_CASE [ASSIGNMENT] |

A RESPONSE " "do" "nothing".
SMALL_LETTER = |lal1 : l!bl’l : llcll :Ildll :llel'l : l|f|l : |lgll :
l!hl! :llill :I‘Ij'fl :l!kll :l‘ll!l :l!mli :llnll' }
!lol! l llplt : llql'l' :tlr!l :!lsll :ilt!l : llutl :
Itv" ':!lwll Ellxtl :llyll :llz"‘
SPECIFICATION =

(SYSTEM BLOCK MODEL MODEL |
MODEL SYSTEM BLOCK MODEL |

MODEL MODEL SYSTEM BLOCK) { MODEL }.
STANDARDS = "refers" "to"

(QUALIFIED NAME |

PARAGRAPH NUMBER QUALIFIED_NAME

{ PARAGRAPH NUMBER QUALIFIED NAME }).

START OF BLOCK = NAME_IN_CAPITALS [COMMENT] "is".

-180~-

STIMULUS

A_STIMULUS |

"(" A_MESSAGE { "," A MESSAGE } ")" [ROUTE].

SUBSCRIPTS = " (" CONDITION { "," CONDITION } ")".

SYSTEM_BLOCK = START OF BLOCK
SYSTEM_STATEMENT { SYSTEM_STATEMENT }

END_OF BLOCK.

SYSTEM_STATEMENT = PARAGRAPH_NUMBER
(NUMBER_OF MODELS | INTERCONNECTIONS |
MESSAGE_DICTIONARY | OPERATION DEFINITION '

DEFINITION | STANDARDS | SYSTEM_ STATEMENT).
TIME_DELAY = LOOSE_END | RANGE [UNITS].
TYPE_NAME = ("subset" ["(" RANGE ")"] |
"Stril’lg" : HSet!I) llofl'l'
ANY NAME [LOCAL DEFINITION] |
LOOSE_END | BASIC_TYPE |

ANY NAME [LOCAL DEFINITION].

UNITS = NAME IN LOWER CASE.

-181-

UNLESS = "unless"
("(" CONDITION ")" "when" RESPONSE |
PARAGRAPH_NUMBER " (" CONDITION ")"
"when" RESPONSE
{ PARAGRAPH_NUMBER " (" CONDITION ")"

"when" RESPONSE }).

VALUE = ANY QUALIFIED NAME |

LOOSE_END | NUMBER.

3. The Type-matching Rule Format

Each BNF production in the definition of ASL is fur-
ther gualified by a type-matching rule; this indicates
how the data types of the terminal and non-terminal sym-
bols in the production must be related to each other. As
there 1is no commonly-agreed standard presentation for
type-matching rules, a version of that used by Davie and
Morrison (Davie & Morrison, 1981) has been adopted. This
has a simple form, and introduces only a small amount of
extra notation as follows.

(a) Data type names are shown enclosed in angle braces
("<>"), with names in lower case letters indicating
defined types and names in capital letters indicating
type variables.

(b) Each type-matching rule produces a result (the "type"
of the statement or expression), which is shown after
the symbol "=>",

(c) The basic types in ASL are <boolean>, <character>,

-182~

<constant>, - <decimal>, <integer>, <interface>,

<message>, <model>.

(d) In addition to the basic types it is necessary to
have <void> for expressions which do not produce a
result of any particular type, and <any> for items
such as "undefined" (see Chapter 4.4.10) which can be
used in place of various types.

(e) The type-matching rules take the same pattern as the
BNF productions, but with type names in the positions
previously occupied by terminals or non-terminals
which represent names, e.g.:

BNF production:-

CONDITION = EXPRESSION A {OR EXPRESSION A}.

Type-matching rule:-

<boolean> {OR <boolean>} => <boolean>.

which states that , if two EXPRESSION A's are linked

by an OR, they must both be of type <boolean> and

will give a result of type <boolean>.

There are an infinite number of legal data types in
ASL, constructed from the basic types by recursive appli-
cation of the following rules.

(i) For any data type <T>, <*T> is the data type of a
vector with elements of type <T>.

(ii) A user-defined structure (see Chapter 4.4.6) is re-
presented as the data types of its elements, in the
form of a 1list of 1lists which mirrors the tree-
structure of the definition.

(iii) An operation with arguments of types <T1>, <T2>,

«+s <Tn> and results of types <TO0l>, ... <TOm> has

=383~

the type (<TO1l>, ... <TOm>).

(iv) Enumeration types (i.e. 1lists of constants in

braces) have the type <set of constant>.
(v) A T"subset" of a type <T> 1is treated as still being

of type <T>, whilst a "set" of <T> has type <set of

T>.

(vi) A "string" of elements of type <T> has type <string

of P>

4. The Type-matching Rules

In order to reduce the number of rules to be
presented, the following have not been included as their
elements all have type <void> and their result is also
<void>:

(a) productions relating to the construction of names
(e.g. CAPITAL_LETTER, SMALL LETTER, DIGIT),

(b) terminals which are connectives in expressions (e.g.
the arithmetic and relational operators),

(c) comments,

(d) productions which merely offer a list of alternatives
which are themselves complete productions (e.qg.
MODEL_STATEMENT) .

Also, some of the productions have been grouped together

as their type rules are identical. Where the options in a

BNF rule (i.e. the portions in square brackets ("[]") or

braces ("{}")) may cause the result to be different, mul-

tiple type-matching rules have been included to cover the

various cases. The rules are listed below 1in alphabetic

-184-

sequence.

A_MESSAGE, A_STIMULUS
(i) <message> => <message>.
(ii) <message> "=" <T> => <message>.
(iii) <message> "with" <boolean> => <message>.

(iv) <message> "via" <interface> => <void>.

A RESPONSE
("send" | "start" "sending" |

"stop" "sending") <T> => <T>.

ALTERNATIVES

"any" "one" "of" { <void> <void> }

=> <yoid>.

AN_INTERFACE

<model> "." <interface> => <void>.

ANY NAME
(i) <T> => <T>.
(ii) "?2" <void> => <any>.

(311 "2 => Canva.

ANY QUALIFIED NAME
(1) <CEI> P % <125 =5 P05,

5 1 (< o e S RO SRR B 4 B <

-185~-

BEHAVIOUR
(i) "on" <void> "then" <void> => <void>.
(ii) "within" <integer> "of" <void> "then"

<void> => <void>.

CONDITION, CONTENTS_CONDITION
(i) <boolean> { OR <boolean> } => <boolean>.

({1%) Py ia> Py,

CONTENTS EXPRESSION A, EXPRESSION A
(i) <boolean> { AND <boolean> } => <boolean>.

(11) '<T> =5 . CT>,

CONTENTS_EXPRESSION_B
{1) NOT <T> RELATIONAL_QPERATOR <T> => <boolean>.
(ii) <T> RELATIONAL OPERATOR <T> => <boolean>.

(1il) <T> =) <>,

DEFINITION
(1) <void> ":® <T> => <yvoia>,
(1i) <void> ":" 4" <constant> *,"
v e T <congtanty "} =y <Lyoid>,

(A Kyoidd> et ataihaerll CIRBNEGR LS BN LR
=> <void>.

(iv) <void> "™ Vget® Yof" <T> => <void>.

(v) <void> ":" "string" "of" <T> =<void)>.

(vi) <void> " (" <integer> "to" <integer> ")"
Rt CT> =D <wold>.

(vii) <void> "is" <void> <T1>

-186-

<void> <T2>

<void> <Tn> => <void>.

END OF BLOCK

"end" "of" <model)> => <void>.

EXCEPTION_CONDITION

"whenever" <boolean> "then" <void> => <void>.

EXPRESSION_B
(1) <D RELATIONAL_QPERATOR <T> => <boolean>.
(ii) NOT <boolean> => <boolean>.

(iii) <T> => Ty,

EXPRESSION_C
(i) <integer> { ADD OPERATOR <integer> }
=> <integer>.
(ii) <decimal> { ADD OPERATOR <decimal> }

=> <decimal>.

EXPRESSION D
(i) <integer> { MULTIPLY OPERATOR <integer> }

=> <integer>.
(ii) <decimal> { MULTIPLY OPERATOR <decimal> }

=> <decimal>.

-187-

FIXED RELATIONSHIP

eP> Sislh P> =% <void>,

GOAL
"take" "any" "action" "to" "achieve" <void>

=> <void>.

INTERCONNECTIONS
"connections" <void> <void> "to" <void>
<void> <void> "to" <void>

=> <void>.

INTERFACE

("input" | "output" | "bothway") <void> => <void>.

INTERFACE_LIST

B cnvpoddy MEral o Craldse M =5 dvoids,

ITERATOR

"for" "all" <boolean> => <boolean>.

LOCAL_DEFINITION
(i) "where" <boolean> => <void>.

(ii) "where" <void> => <void>.

LOOSE_END

("undefined" | "unknown" | "dont care") => <any>.

-188~-

MESSAGE_DICTIONARY

"messages" <void> => <void>.

MESSAGE_EQUIVALENCE

(i) <message> "is" <message> => <void>.

(ii) <message> "is" <message>

"where® <I'> "31s8% P> => <void>.

NUMBER_OF_MODELS
"created" "from"
<void> <integer> <model>
<void> <integer> <model>

<void> <integer> <model> =>

OPERATION DEFINITION
(i) "operation" <void> "is" <void> =>

(ii) “"operation" <void> " (" <TIl> ","

Veud® LTOI> ®,% .. <TOn> ")

"isg" <void> => <void>.

OTHER_BEHAVIOUR

<boolean> "then" <void> => <void>.

PARAGRAPH_NUMBER

nir Cintagar ot weees Cintegerd> “}®

=> <void>.

=189~

<void>.

<void>.

<TIn>

QUALIFIED NAME
(1) <T1> "." <T2> => <T2>.

f11) <P1> "5 U g (KT =3 <D,

QUANTITY

LIMITER <integer> => <integer>.

RANGE

LG e Bl o AR G i T 5 T 1 S

REF_TO_ PAST MESSAGES
(i) PREFIX <message> "via" <interface>
=> <message>.
(ii) PREFIX <message> CONTENTS "via" <interface>

=> <message>.

REPLIES, STIMULUS
(1) NP Cyaid> SN Cvaidy NPl =R cuodds .
(ii) "(" <message> "," ... <message> ")"

"yia" <interface> => <void>.

RESPONSE_SEQUENCE, SEQUENCE
"seqguence" <void> <void>

<void> <void> => <void>.

-190-

SELECTION
(L) "select! " (" <T>)"
<yold> " (" <> ") “when" <void>
<void> "otherwise" <void>.
(ii) "select"
<void> " (" <boolean> ")" "when" <void>

<void> "otherwise" <void>.

SIMPLE_REPLY
(1) "do"™ "nothing™ => <voeid>.
(ii) Operation calls are treated as explained

Section B.3, item 4.

STANDARDS

Srefars™ “"eko" <woild>i=b <yvoidd.

START OF BLOCK

<void> "is" => <void>.

UNLESS
(i) "unless"™ " (" <booalean> ")" "when™ <void>
=> <void>.
(ii) “unless" <void> "(" <boolean> .M)"
"when" <wvoid>
<void> " (" <boolean> ")"

"when" <void> => <void>.

=191~

in

APPENDIX C

THE SEMANTIC DEFINITION OF ASL

1. Introduction

The reasons for requiring a formal semantic defini-
tion of ASL were covered in Chapter 4.5.6; this appendix
merely provides the details of the model which has been
used. In order to simplify the task of producing the
semantic definition, no attempt has been made to complete
this down to the level of basic mathematical 1logic. The
theory developed by the authors of Predicate/Transition
nets (Genrich et al, 1980) and Time Petri Nets (Merlin,
1974) has been assumed as primitives and the necessary
model constructed on top of these. Rather than presenting
the theory of this net model, it was felt to be appropri-
ate to describe the process of translating an ASL specif-
ication into an eguivalent net. This is consistent with
taking Predicate/Transition net theory to be already
well-defined, but also provides the basis for the design
of a computer program to perform this translation. A
brief resume of the firing rules for Predicate/Transition
nets and Time Petri nets is given in Section 5 of this

appendix.

-192-

The aim of the model 1is to capture the intended

properties of the language as described in Chapters 3 and

4.

(a)

(b)

(c)

(d)

(e)

(£)

(9)

(h)

(1)

The following are a few examples of these properties.

Each model is a closed entity; information may only
be transfered between models by means of messages.

Message transmission is treated as instantaneous and
error-free.

Models may introduce a time delay between the receipt
of a message and the consequent response.

All the information ever sent to a model is always
available to that model for re-examination.

The 1interfaces of a model act as simple sequential
channels (except for "bothway" interfaces, which act
as a pair of channels in opposite directions), and
can therefore only receive or send one message at a
time.

Actions which do not use the same resource (e.g. the
same interface) can take place concurrently.

Absolute time information originates from the
observer; models only measure small intervals of time
from the receipt of messages.

Monitors (i.e. statements of the form "whenever...")
have priority over simple behaviour statements, so
that it is possible to use a monitor to override the
normal response in exceptional circumstances.

"undefined" and "unknown", which are used when it is
not (yet) possible to completely specify a system,
act 1like additional elements in all defined data

types. An operation given an "undefined" argument

-193-

will produce an "undefined" result.

These are only a small number of the properties which are
represented in the semantic model, and are listed only to
give an indication of the type of constraints which the
model contains.

The expressive power of ASL, for example in the use
of operations and pattern-matching, make it difficult to
provide a direct mapping from the syntax definition into
the modified Predicate/Transition nets. This has there-.
fore Dbeen split into the three stages of transformation,
translation and connection; these are described in the
following three sections. From the complexity of each of
the three stages it will be seen that this process is not
suitable for manual operation. The development of a com-
puter program to perform this task is part of the further

work proposed in Chapter 8.

2. Transformation

The transformations described in this section operate
on ASL specifications at the syntactic 1level, reducing
the variety of statement types down to one basic form:

"if" CONDITION "then" "(" TIME DELAY ")" RESPONSE.
where the RESPONSEs are constrained to be of a very sim-
ple form. In order to provide identification of event-
triggered behaviour for the subseguent translation stage,
the CONDITIONS for messages take the form
"event (MESSAGE)". All the stimulus-response behaviour is

shown with a TIME DELAY; any behaviour which was in the

-194-

Yon: w.then. : "

form will have a time delay of zero.
Figures C.1 to C.10 each describe one of these trans-
formations by showing the syntax form it deals with and
the result which it produces. These appear as simple ex-
amples only, not as the full BNF conversion rules; more
complex forms (such as nested "select" statements)
require recursive application of the transformations in
order to obtain complete simplification. In all cases
where repeated application of the rules is required this
is done by starting with the most deeply nested part of
the expression. Local definitions (of the form
"where...") and pattern-matching variables (i.e. those
prefixed by "?") are treated as a form of abstraction, as
in bracket abstraction (Turner, 1979) or lambda abstrac-
tion (Stoy, 1977). They can therefore normally be removed
by simple replacement of the appropriate names by the ex-
pressions to which they are equivalent; the comment above
about the ordering of repeated applications of the trans-
formations also applies in this case. One exception to
this is where a defined operation is used recursively; if
the recursion is local to an operation which defines some
mathematical function (i.e. it does not send or receive
messages) then the recursive definition appears unchanged
as a recursively-defined predicate at the appropriate
location in the net model. Otherwise the recursion is
modelled as an iterative loop in the net, taking the same

form as the treatment of iterators in Figure C.15.

-195-

FIGURE C.1 REPLACEMENT OF OPERATIONS

(a)

(b)

(c)

An operation with no arguments:
....then signal
and its definition:

operation SIGNAL is
: a_response

becomes:

....then a_response

With arguments but no result:

.+..then dispense(x)

and:
operation DISPENSE (d) is
[1] D : contents
[2] send drink with
contents = recipe(d) via dispenser
becomes:

....then send drink with contents=recipe(d)
via dispenser

A value-returning operation, such as:

«sss8quare_root(a, b)....

and:
operation SQUARE ROOT (x, t --> r) is
(1] X, T, R :d8ecimal
[2] r is ?y where abs(r*r-x) <= t
becomes:

es+.221 where (abs(zl*zl-a)<= b)....

where "zl1" is a new unigue name created for
the purpose.

=196~—

FIGURE C.2 REPLACEMENT OF FIXED RELATIONSHIPS

Given a fixed relationship definition:
a_name_in_lower_case is some_expression
and some mention of the same name:
«es.e a_name_in lower_case....
then the mention of the name transforms to:
.es. (some_expression)
Note

The name being replaced can be either a simple

name or a qualified name.

-197-

FIGURE C.3 SEPARATION OF LISTS INTO INDIVIDUALS

(a) Lists of responses.

on stimulus_x then (response 1 ,)

becomes:
if event (stimulus_x) then response_ 1
if event (stimulus_x) then response_2

etc. -

(b) Lists of stimuli.

on (a_message_1 ,) then response_x

becomes:

if event (a_message_1l) then response_x

if event (a_message_2) then response_x

etc. -

=188~

FIGURE C.4 CONVERSION OF "SELECT" EXPRESSIONS

(a) select (a_condition)
paragraph_1 (value_l) when response_l
paragraph_2 (value_2) when response_2

paragraph_n-1 (value_n-1) when response_n-1
paragraph n otherwise response n

becomes:
if (a condition

if (a_condition

-

value_1) then response_l
value_2) then response_2

value_n-1) then
response n-1

if (a_condition

if (a_condition <> value_1l)
and (a_condition <> value_2)

and (a_condition <> value_n-1)

then response n

(b) select
. paragraph 1 (condition_1) when response_1l
paragraph_2 (condition_2) when response_2
paragraph n-1 (condition n-1) when
& N response_n-1
paragraph n otherwise response_n

becomes:

if (condition_1) then response_l
if (condition_2) then response_2

if (condition n-1) then response n-1
if (not condition_1)
and (not condition_2)

and (not condition_n-1) then response_n

e o

FIGURE C.5 CONVERSION OF "UNLESS" EXPRESSIONS

A statement with an "unless" part:

on stimulus then normal_response
unless
paragraph 1 (condition_1l) when response_1
paragraph_2 (condition_2) when response_2

paragraph n (condition_n) when response_n

becomes:

if event (stimulus) and condition_l then response_l

if event (stimulus) and condition_2 then response_2

if event (stimulus) and condition_n then response_n
if event (stimulus) and (not condition 1)

and (not condition_2)

and (not condition_n) then normal_ response

=200~

FIGURE C.6 EXPANSION OF LOCAL DEFINITIONS

(a) The expression:

(b)

(c)

(d)

(e)

r is 29
where y*y = x

becomes: r*r = x

so removing all references to "y".

"In-line" definitions, such as:
cesis. ¥ sees wWhere ¥ : a type

are treated as if defined normally, so the "where"
part is merely left out of the transformation.

More complex uses of patterns, e.g.:

z is ?x where
(x in b_signals) and (encode(y) = Xx)

are simplified as:

((z is encode(y)) and (z in b signals))

Uses of names given simple values by local
definitions, e.qg.:

cemin e ss. Where X = £ (y)

become: s rere TN sl elertuia

Names given values by inverse operations, e.g.:

A where y=x*x

become: (5o ceXumn) and (x*x=v))

-201-

FIGURE C.7 REPLACEMENT OF LOCAL VARIABLES

To reduce all references within a model to one con-
sistent form, all the uses of local variables inside a
model are replaced by the appropriate references to an

imaginary interface.

Thus:
.... then local_name is value_expression
becomes:

.... then send local name = value_expression
via local_name_interface

and:

«+sss local name

becomes:

.... (last message sent via
local_name_interface)

=202~

FIGURE C.8 SEQUENCES OF ACTIONS

This transformation only applies to the use of
"seqguence" in the RESPONSE part of an "on...then...",
teithins.-thens.a”; or "whenever,..then.." statement.
For the treatment of global sequence constraints see

Figure C.9.

For this type of seguence:

....then seguence
paragraph_1 action_l
paragraph_2 action_2

paragraph_n action_n

becomes:

.sssthen (action 1 ; action 2 ;

swss § @ction n)

=203~

FIGURE C.9 SEQUENCE CONSTRAINTS

These general constraints upon behaviour have to be

replaced by a set of monitors which have the same effect.

Thus:

will

paragraph 1 seguence
paragraph_2 action_1
paragraph 3 optional action_2
paragraph 4 action_3

paragraph_n action_n

be transformed into a set of statements of the fol-

lowing form:

if event (action_3) and not
((last message via action_2 interface = action_2)
or (last message via action_l interface =
action_1)) then undefined
if event (action_2) and not
(last message via action_l interface = action_1)
then undefined

etc. -

w204~

FIGURE C.10 CONVERSION OF MONITORS

Monitor expressions, which have the form
"whenever....", are translated directly into the reguired

form with the exception those which represent timeouts.

(a) Simple monitors, such as:

whenever a condition then a_response

become:

if a_condition then a_response

(b) Timeouts, such as:

whenever 15 seconds after 1lift handset

via subs_line(x) then....

are represented as:

if timer (15 seconds after lift handset

via subs_line(x)) then....

=205~

3-

Translation

The translation of the behaviour statements into

fragments of Predicate/Transition nets uses five patterns

for

net elements, as shown in Figures C.11 to C.15. These

patterns encapsulate the following concepts.

(a)

(b)

(c)

(d)

(e)

The

(Figure C.11l) There is one place in the net for each
interface of a model, except for bothway interfaces
which are treated as two interfaces. This place holds
a single token, to reflect the limitation that each
interface can only receive a single message at any
instant of time.

(Figure C.12) As there may be a number of monitors
associated with one message, it is necessary to await
the decisions of all these monitors before proceeding
with any direct response to the message.

(Figure C.1l3) The receipt of a message first causes
any monitor associated with that message to be
checked. After the monitor has decided whether to
take action, the message then may cause some
response.

(Figure C.14) Timeouts in a monitor start the opera-
tion of a local clock, which may be terminated by the
arrival of some message or by the end of the appro-
priate period of time.

(Figure C.15) A "for all" statement causes an itera-
tive 1loop to be entered, producing the set of
responses in some arbitrary segquence.

conventions used in Figures C.11 to C.15 are taken

-206-

FIGURE C.11 TRANSLATION OF RECEIPT OF MESSAGES

Accepted/sent
Message

Message

awaiting P = null

receipt/ t* = 1 See

transmission t** =/Note 1 <message,time>

{message,time>

<{message,time>

Message
history

The interface resource, shared
by all messages via that
interface.

l: For all incoming messages, t* = 0 and t** =

infinity; for outgoing messages, t* = minimum delay

time and t** = maximum delay time from the ASL
statement concerned.

-207-

FIGURE C.12 TREATMENT OF MULTIPLE ARCS

Connections from inputs & monitors
A

r i

= null
t: = dt t* = dt
null null
)
Message
action

=208~

TRANSLATION OF OTHER BEHAVIOUR

FIGURE C.13

Aue 10

s

(1notaey3q

pei1abbrij-jusas 103
pa2atnbsi1 j0N)- - ~

sosuodsaa ardurs

‘3pouanbss e

utr swa3lT I3yjzo Auy

1 ®

<aaT3doeuT‘sandut

<aanr1joe‘sandut I1e>

suay03
pauainiay

uorjoe
-cwrﬂ“ u

rre>

UOT3TPUOD

-M..H- 0“
sandug

=209-

TRANSLATION OF TIMEOUTS

FIGURE C.14

UOTITPUOD 3NOBUWT] = d

uotT3oe
jnoauTty

T[nu

(UOT3TPUOD 3NOSBWTZ) Jou

ATUN [WTIY [= xx3
3TUn BWI3 T = %3
.HH_UC._ = d

Suay03
pauiniay

=210~

UOT3TPUOD
j1e3s

UOT3TPUOD
Jnoawry
Ul pauorjuau

swall

FIGURE C.15 TREATMENT OF ITERATORS

Action

more
to do

Iterator
active

null

none
left

|
Items used
in iterated
action

-211-

from the Predicate/Transition net and Time Petri
net models unchanged. Each transition is
labelled with a predicate which controls
its firing; this is shown as "P =". Also against
each transition are its minimum and maximum delays before
firing, shown as "t*" and "t**" respectively. The tuples
(lists of values) associated with the tokens are shown as
lists of names inside angle brackets ("<>") adjacent to
the arcs along which they pass.

Each statement 1is translated into one or more of
these patterns, with identifying labels being associated
with the places which will connect it to the remainder of
the net (see Section C.4, below). The transitions in the
net are all treated as timed and given a minimum and max-
imum firing time; these are initially set to zero and in-
finity respectively, giving the eguivalent to an untimed
Predicate/Transition net. For any behaviour statement
with a positive time delay, this is placed on the transi-
tion which represents the associated response so that the
action of any monitors and the storage of the message in
the history buffer is treated as instantaneous in all
cases.

The arcs in the net fragments are labelled with the
format of the tuples which will flow along those arcs
(i.e. the structure of the appropriate messages). In or-
der to simplify the labelling process, the total content
of a message 1is always represented in the appropriate
tuples even if some of the elements of the message are

never wused. Similarly, once the time-stamp has been at-

-212~

tached by the "observer" this is treated as an extra ele-
ment in the message and carried everywhere. The condi-
tions in the statements representing the BASL specifica-
tion become the predicates attached to the transitions of
the net model; at this stage any of these <conditions
which refer to the order of messages in time (e.g. by us-
ing "after" or "last") are converted into the egquivalent
arithmetic conditions upon the time-stamps in the
messages. This also involves the translation of conti-
nuous messages into instantaneous ones, by considering
only their start and end points; any references elsewhere
to these signals are then converted into eguivalent ex-
pressions relating to the interval between the start and
end times of the signal. Figure C.16 indicates how these

temporal references are translated.

4. Connection

The <collection of net fragments produced by the
translation process are connected together to form a sin-
gle net representing the whole system. This is achieved
by collapsing all the places which carry identical labels
(with two exceptions which are covered below) into a sin-
gle place for each label. This procedure will only be
successful if applied to a specification which has no
context-free or context-sensitive errors in it. The ex-
ceptions mentioned above relate to "unknown" and
"undefined" elements in the specification. If there are

multiple uses of these within the specification, it is

-213~

FIGURE C.16

TREATMENT OF TEMPORAL OPERATORS

ogerator

x at same time as

y after x

y after start of x

duration of x

time of x

sending x via y

receiving x via y

operator

last x

first x

$n x

(x1

(x1

(%1

and

and

instantaneous

X.time = y.time
y.time > x.time
n/a
n/a

X.time

n/a

n/a

continuous

Xx.time = y.time

n/a

y > x.start.time

x.end.time -

X.start.time

X.time

last message sent

= start of x

last message received
via y = start of x

instantaneous or continuous

inoar)s and (T in)

and (xl.time > ?.time))

in . x) anda ({2 in x)

and (xl.time < 2.time))

in x) and (yl in x) and
(xl.time < yl.time) and

sseatyn=1:4n %)

(xl.time < yn-=l.time)
((z in %) and (z.time >= xl.time))

~2)4-

not valid to collapse them down into a single place, as
they represent different unknowns.

Interconnections between the different models in the
specification act as a relabelling operation, so that
each interconnection appears as a single place in the
connected net; this place represents any message in tran-
sit between the models involved in the connection. Once
the net has been fully connected, it is then possible to
check that the information flowing out of each place in
the net is available to that place (i.e. is contained in

the tuples flowing along the arcs into that place).

5. The Firing Rules

This section contains a brief statement of the rules
for the firing of transitions in the timed
Predicate/Transition net model used here. Its purpose is
merely to show how the timing element has been added, and
not to provide a full mathematical treatment of this net
model.

A Predicate/Transition net has the following consti-
tuents (Genrich et al, 1980).

(i) A directed net, (S,T;F), where S is the set of predi-
cates (places), T is the set of transitions and F is
the set of arcs (i.e. F is some subset of the union
of SxT and "TxS).

(ii) A set, U, of operators and predicates.

(iii) A labelling of arcs, assigning to all elements of F

a formal sum of n-tuples of variables where n is the

=215~

'arity' of the predicate associated with the arc.

(iv) An inscription on transitions, assigning to some
elements of T a logical formula built from equality
and the operators and predicates given in U. Any
variable occuring free in a transition must be pre-
sent in one or more of the adjacent arcs.

(v) A marking of places with n-tuples (tokens).

(vi) A natural number, K, which is the upper bound for
the number of copies of the same item which may occur
at a single place.

and the transition rule states that a transition may fire

when:

- all input places to the transition carry enough
tokens to satisfy the necessary predicates,

- the resulting number of tokens on the output places
of the transition will not exceed K after the
firing. -

In order to extend this untimed net to handle the

required time delays, the following additional consti-

tuents have to be added (Merlin, 1974).

(vii) Associated with each transition, i, is a-tuple,
[t*i, t**i]. The value of t*i is the time which must
elapse between the conditions of the untimed firing
rule (above) becoming true and the firing of the
transition, whilst t**i is the maeximum time for which
firing can be delayed. So, for all i:

- t*1i and t**i are real numbers,

- t*i, t**i > 0,

- £EY < ER%3

-216-

(viii) Added to each tuple (token) is a time value, t,
and for any transition, i, with tokens on its input
places with time wvalues ¢t1, t2, tn, then the
time value, t', in the tokens which it puts on its
output places is given by:

Y = £x + 4t
where t*i < dt ¢ t*i
andotx = maxi(tl, t2, ., Tthl.

The transition rule is also changed by the addition of 2

third condition, so that a transition will fire if:

- all input places to the transition carry enough

tokens to satisfy the necessary predicates,

those tokens have been present for a period of time
egual to or greater than t*i,

- the firing of the transition will not cause the
number of tokens on any of the output places to

exceed K.
Under this model time does not operate as a continuous
variable, but increases irregularly; this is because time
is treated as an attribute of the tokens, and is only up-

dated when an event takes place.

6. Semantic Checking of Specifications

Although the net model has been taken to be complete
(see Section 1 of this Appendix), this does not neces-
sarily mean that there are practicable methods of ensur-
ing the "correctness" of a specification. Three main pro-

blems exist:

=217=

(a) even for specifications written in a subset of mathe-
matical logic, the task of proving particular proper-
ties of the system may demand human guidance to avoid
unbounded searches,

(b) such proofs of correctness are only undertaken for
those ©properties which the specifiers consider
important; there is no method for deciding which
properties should be shown to be correct,

(c) ASL was purposely designed to be provide expressive
power. It permits the specification of functions
which cannot be realised (by injudicious use of the
"where..." construct), and expects the specified sys-
tem to contain concurrent activities. Handling these
is beyond the capabilities of present program-proving
technigues.

The complexity of the net models for most real system

specifications may make it impracticable or impossible to

anélyse the nets for reachability, etc.. Simulation (see

Chapter 5.4.4) would then be the only recourse. The pro-

blems listed above make it unrealistic to attempt to

provide further assistance for formal semantic verifica-

tion at this time.

~218-

APPENDIX D

THE STATIC CHECKING FACILITIES

1. Introduction

The static checking facilities developed to support
the trials consist of a syntax analyser, a consistency
checker and a cross-reference list generator, as outlined
in Chapter 5.2.2. The particular computer programs used
are not worth detailed examination, as they were only in-
tended to be sufficient to demonstrate the value of
computer-based support. They provide the minimum level of
assistance for the practical trials, which are reported
in Chapter 6. The following sections therefore discuss
only the general structure of the programs, and the

format of their inputs and outputs.

2. The Syntax Analyser

2.1. Recursive Descent Analysis

Given the requirement to produce a syntax analyser
for a language (ASL) which was still being designed, the

use of a compiler-generator (e.g. Johnson, 1979) or a

-219-

syntax-driven analyser (e.g. Simpson, 1969) was seen as a
way to avoid significant re-programming whenever part of
the language syntax was changed. No suitable parser-
generator was readily available to the project, so it was
decided to write a syntax-driven analyser specifically
for ASL. Even though this involved some programming
effort, it freed the language from the paradigms of ex-
isting high-level languages and, given that the syntax
could be restricted to the simplest possible form, in-
volved only a few weeks of computer programming. The
analyser was therefore written to perform recursive-
descent analysis (Davie & Morrison, 1981); this reduces
the complexity of the analyser program at the expense of
run-time overheads caused by the extensive use of recur-
sive subroutines.

The basic principle of this method is to treat each
production in the syntax as a call to a subroutine which
either reads the next token from the input or generates a
further call to the subroutine, depending upon the next
item in that production. The syntax productions can be
held as simple tables, with each row representing a pro-
duction and the entry in each column being the index of -
another row (if that entry represents the name of another
production) or a call to a primitive operation (such as
reading in the next word from the specification being
analysed). This permits rapid and easy changes to the
syntax of the language by updating the table, whilst not

seriously affecting the efficiency of the program.

-220~

2.2. The Syntax Rule Format

The only significant disadvantage of the recursive-
descent method is that it does not permit repetition and
optional items to be represented directly as in BNF (See
Appendix B.1l). It is instead necessary to wuse recursion
in place of repetition and to introduce extra rules to
represent options. For example the BNF production:

PARAGRAPH = "[" INTEGER | "." INTEGER | "]".
has to become two rules:

PARAGRAPH = "[" INTEGER PARAGRAPH_TAIL.

PARAGRAPH_TAIL = "." INTEGER PARAGRAPH_TAIL L e
In the case of an optional item, such as:

A MESSAGE = ANY NAME [CONTENTS] [ROUTE].
this has to be translated as:

A MESSAGE = ANY NAME A MESSAGE_TAIL.

A _MESSAGE_TAIL = CONTENTS A MESSAGE_END :

A MESSAGE_END.

A MESSAGE_END = ROUTE | EMPTY.
resulting in a much larger number of rules than in the
BNF eqguivalent, and these rules are also much more diffi-
cult to understand. For this reason BNF was used in the
definition of ASL in Appendix B.

The final form of the rules input to the syntax
analyser is shown in Figure D.l. There are five sections
to these, as follows.

(a) One or more lines of text, which are read by the pro-
gram and then printed as a heading at the top of the

output listing (see Section D.2.5).

-221-

FIGURE D.1 FORMAT OF THE SYNTAX RULES

ASL Version 6.

#
SPECIFICATION
achieve, action, after,

where, while, within.

A_MESSAGE = ANY NAME A MESSAGE TAIL.
A_MESSAGE_TAIL = CONTENTS A MESSAGE_END, ROUTE,
EMPTY.

A MESSAGE_END = ROUTE, EMPTY.

VALUE = ANY QUALIFIED NAME, LOOSE_END, NUMBER.

A MESSAGE = SYSTEM STATEMENT.
A MESSAGE_TAIL = SYSTEM STATEMENT

VALUE = SYSTEM STATEMENT

=222~

(a)

(b)

{ci)

1—(6}

-1—(e)

(b) The name of the syntax rule which represents the top
level of the syntax definitions.

(c) A 1list of all the words which are part of the
language, and so cannot be re-defined within a
specification.

(d) The syntax rules.

(e) Alternative rules, to be used in attempts to recover
from syntax errors.

Of these, only the additional rules for error recovery

(item (e) above) are explained further, in Section D.2.3

below.

2.3. Error Recovery

Only the simplest form of error recovery has been
provided in the analyser; this is of the type which is
sometimes called "panic mode"™ (Aho & Ullman, 1977). Once
an error has been detected in the input, the analyser
program skips over the specification text until it finds
the start of the next paragraph (i.e. a "["). Syntax
analysis can then recommence at the start of a new
statement, but this reguires that the analyser be told
where in the syntax to restart. Hence, the syntax rules
contain an extra part, which gives for each production
the name of a suitable point at which to attempt to
restart. These points must be productions which have a
paragraph number as their first item, to match the point
at which the analyser will restart.

Figure D.2 contains an example of the listing pro-

=228~

duced by the syntax analyser, showing an error recovery

action. Two sets of messages are inserted into the

listing.

(a) The first group indicate the position of the error,
by printing an asterisk ("*") beneath the first
character which has not been accepted. On the line
below this is printed the name of the syntax rule and
the 1item within that rule at which the error was
detected.

(b) The second group indicates, again by an asterisk, the
point at which the syntax analysis was restarted.
Thus, all the characters from the first asterisk up to
(but not including) the second asterisk have been ignored
by the analyser. This can 1lead to the reporting of
spurious errors in the remainder of the specification if
the portion which was ignored did contain some important
phrase (such as the end of one model and the start of
another). For most cases it does result in an acceptable
recovery from the error, and permits the analysis of the
remainder of the specification. More complex error recov-
ery techniques (e.g. James & Partridge, 1973) were
considered; however, these involved considerable extra
programming effort to produce only a limited improvement

in the level of service to the user.

2.4. The Input to the Analyser

Specifications are prepared using the standard IBM

text editor (IBM, 1978) provided as part of the IBM Time

-224-

THE LISTING PRODUCED BY THE ANALYSER

FIGURE D.2

sweiab:guoTan [Z°n°€] 062000

@zTs ut02:32I1S5 [L°n-f] 0hZ000

st Lyac3g [h-e] 0€Z000

sueabh:ruoraM [z €-¢c] 022000

22Ts ut102:321IS [L°E-€] 0LZ000

st XaNow [€-¢] 002000

ueatooq:4nTvA [Z-Z €] 061000

obuer joeTes:yNTa [L°Z°€] 08L000

sT sno1vis [z-¢]) 0LL000

pautjepun:zgNndiyg [L-c]) 09L000

sabessau [g€] 0SL000

OtL000

soka+1esn 03 (ebhuei 3doo0T7es)IYbTT sniezs-autyosea ea3 [9°7] 0€L 000

puey-I1asn o3 IasuadsTtp- auryoeu 33 16z} 0ZL00G

puey-Iesn o3 @3nys punjeli-aurydem ea} [#-7] 0LL000
_ LNIOd L¥vV1Sdy *

uo3l3ng punjai-euryoen eajl o3 sieburjciasn [g°7] e 00L000

* ONINLS 90J ONIMNDUHD NIHM NOILDINNOD ¥ d47Tnd NI

. THONHE

T0308T3s’2uTyoRU_©3] 03 sIabury-Iesn [(z°Z] 060000

JolsuTods*auTysPW B33} 03 sIsbury-iesn iz} 080000

suotr3deuuod [Z] 0L0000

090000

assn | [z°1] 060000

autyoeu ea3 | [[*1] 0h0000

woxj peizeaid [L] 0€0000

5 020000

ST ANIHDVW ONIANIA YL 7/ HILSKS ONIANZA 0L0000

=g HOESIDA ISV

-225-

Sharing Option interactive computing service. This offers
simple program editting facilities which are not specific
to any particular language, but does not include format-
ting capabilities. This falls far short of the features
suggested in Chapter 5.3, but was readily available and

did not require the development of any computer programs.

2.5. The Output from the Analyser

The analyser produces two outputs, as follows.
(a) A listing of the specification

The analyser 1lists the specification text as it is
read in, printing it in the format shown in Figure D.2.
This displays each 1line of text exactly as typed, but
with the addition of a line of asterisks as separators
between- the blocks of text. It also shows any error
messages, as explained in Section D.2.3 above, and gives
at the end of the print a count of the number of errors
detected.
(b) Tables for input to the consistency checker

The second output from the analyser is not intended
to be presented to the writer of the specification, as it
is merely a set of table entries which are passed to the
checker program (see Section D.3, below). This is done
automatically, as the manual extraction of this informa-
tion for the checking process would be likely to intro-
duce errors which did not exist in the original

specification.

-226~

3. The Consistency Checker

3.1. Method

The checking to be performed was explained in Chapter
5.2.2; it consists of such things as ensuring that every
name used in the specification has been properly defined.
The checker program must therefore represent a body of
rules, each of which is nearly independent of the others.
Initial attempts to write a Pascal program to perform
this function showed that this was a significant program-
ming task in relation to the amount of time available. It
was therefore decided to use a higher-level language
called Prolog (Clocksin & Mellish, 1981) instead of
Pascal, as Prolog directly supports the programming of
functions as sets of rules.

As a consequence of this decision, the checker pro-
gram consists of less than 100 lines of Prolog code (see
Section D.3.2 below) and only took a few days to develop.
However, Prolog is an interpreted 1language and makes
relatively inefficient use of computer time when compared
with a Pascal program to do the same job. This has not
caused any operating difficulties for specifications of
the size created so far, but may make this particular im-
plementation of the checking system unacceptable in the

long-term.

-227-

3.2. The Rule Format

Individual rules are expressed as Prolog terms, using
the standard Prolog syntax. To get the checker to produce
helpful error messages, the rules define the conditions
which are invalid, as in the following éxample.

The rule: If, in paragraph P of model M, there is

an action which sends a message, X,
via an interface, ¥, then X must have
been defined as a message.

is encoded as: error('message not defined',M,P,X,Y) :-

send (M,P,X,Y),
not (messages(_,_,X)).

where "send" and "messages" are the names of tables, as

described in Section D.3.3, below. Figure D.3 contains a

complete 1listing of the rules in Prolog; these make ref-

erence to the following functions, whose definitions have
not been included.

(a) Dbasic_type(d), which 1is true if A is one of the
defined basic types in ASL (boolean, character,
decimal, integer, interface and message).

(b) in_scope_of (A,B), which determines whether the para- =
graph number B is within the scope of paragraph num-
ber A.

(c) interface(a,B,C), which <checks to see if C is an
input, output or bothway interface of model A.

(d) loose _end(A), which is true if A 1is egual to
"undefined", "unknown" or "dont care".

(e) same_type (A,B), which determines whether the messages

~228-

THE STATIC CHECKING RULES

FIGURE D.3

*((g’q) 3o edoos™ut’(D’a“y)suorjTUTIap) 30U
* (h*’g*’y)sajepdn-:z([n]“g’v*,23epdn TebaTIT,) J011I®8 SnoTI3S
((g)wa3isds’ (D “qg)suorzeirado)jou’ ((d* “y)suorjierado) jou
*(D*g”’y)sosn udo-: ([D]’d’Y *,paurjyap 30U uOT3IOUNY,) JOIID SNOTIIS
((d *y)eoe3iajur)jou
‘(0 ’g’v)3tux3z-:([>]1’g’v”,90e3I83UT paurjeapun,)I01I3 SNOTIIS
*((>’ag”v) xea "duwaj) jou
4 ((h* *7)3duoo abessau) 3ou”’ (H’g*y) 321 3duoo” bsu
-2([0]1%a’y’ ,3usauoduwoo abessaw pauryapun,) I0IId8 SNOTIIS
({(D *“")sabessam) jou
‘(O’g’y)atuxy-: ((3*a’D]’a’v’,obessam paurjyapun,) 10113 SNOTI3S
*((3’ ‘d)sandyno’ (a’ “d)s3indino
$ (4 *3)syndutr’ (a* " “d)sandut) “([([(a]1al’[[a]ll>o]’g’v)suor3ioauuod
-2 ([(2’3’a“>]’a’v’,u0T3D09UU0D PITRAUT,) 10113 SNOTIdS
(((3 *3)od0e3133UT) 30U
t((a* “d)eoezaejzur)iou) “([[(allal’([alio]l“a“v)suoTrioauuod
-:([d4’3“a’>]*g*v*,pauTjapun pus auo,)I0IId SNOTISS
*g==3"([l'a izl
‘[[alld]’g’v)suot3iosuuod-:([d°d3’a’Dd]’g’v’,yoeqdooT,) 10112 SnoTIa8S
(([D’¥] *"*")suot3zoauuod)jou’(("“[o*vY]* *)suoTidoauuod) jou
‘(pD’d’vy)soeziajzur-:([D]’a“’v’,pe302Uuod 3JOU 250 JISIUT,) I0I1Id SNOTIAS
*((T*7’v)skeny3zoq) j3ou

*(("*7*v)s3ind3ino)jou’ (v) stapou-: ([J’[1*v’,03 s3indino ou,) 10118 snoties

*((T*7*y)skenyjoq) jou
((""*v)s3ndur)jou”’ (y) syapou-: ([J*[]J’v“,03 s3nduT ou,) 301197 SNOTI3S

* ((3) sTapou) jou
‘(0*’g’v)Kk3etoos-:([D]’g*v’,pouTyap 30U Tapoll,) I0II3 SNOTISS

(a’g) @doosaues’g==-4 (D*q*y)suor3TuUTiyap
‘(O’g’v¥)suotiTuriep-=([D]’a’w *,uor3Turyep aj3enstrdnp,) 30118 snoraas

contd.

229~

FIGURE D.3 continued

*((0*7*7) 3817 ad43) 30u
* ((p*~ %7)saduaiajai)jou’ (y)uwaiysis

4 (5*’g*y)suorzturiep-: ([D]“g‘v’,p3Sn JIaA3U UOTITUTIOP,) J01I3 ue
{(((h *y)seouaiazai)jou’ ((p’ *y)sesn udo) jou
$((h*~*7)seouazaiai)jou’ ((D*~*")sesn"udo) 3ou’ (y)waiysis)

t (h*g?y)suotyeaado-: ([D]’g’¥Y’,pa2Sn 30U UOT3}DUNT,) I0I1d U®
{21) atana) a0y

#(p*’g*y)sabessau-:([D]’d’y*,pesn 1sadu abessam,) 10113 UL

((¥’~")K39100s) 30u’ (y)stepou-: ([J’[J*v“.,pesn jou [apou,)Iolia ue

(a’g) edoosaues ‘q==-g9 (D*q“v) 3duoo e2bessan
* (*g*y)3duod abessau-:([2]’a‘v’,3uauoduod sbessau 1dnp,) 103313 snotraes
(a’g) odoosauwes ’g==-g (D*q’v) 32p 3usauodwod
4 (o*g’y) 3op 3uauoduwoo-:([0]’d“y "’ ,s3usauoduod 23edTTdnp,) 10113 SNOTISS
- ((g*a) 30 adoos ut’ (D’q“v) suor3Turyep) 30u’ ((D*g*y) sured do
t(0’g*y)suaed dr)-:([D]*g*v’.paurjgep 3jou wied dSunj,) 10113 Snories
((q)yusishs (H* *g)suor3zTuriap) 3ou’ ((g“d) 3o adods ut
4 (n*3*y)suor3Turyap) zou’ ((D) pua a@sooT)3iou’ ((d) add3 orseq) jou
s (o*g*y)3931 adkr-:([D]’g*v*,aueu adk3 paurjepun,) I0II3 SNOTIAS
*((>’y) @dk3 “awes) jou
“(o’[faltul* a)ytux3“(([[allv]’[[9]13]*"*")suor3oauuod
t([[911al[[3]Iv]’"“)suotyoeuuod) “ (2*[[alIdD]*a“v)3iTux]
—:([9*3*3*a)’g“y’301T3U0D0 3dL3} abessauw,) 10113 SNOTIAS
((z"*y)sandyno’ (3“[[a]iD]’a’y) aaTadax
(2’7 *y)sandur’ (2“[[(alin]l’a’v)puas)
-z ([3’al’g’v’,uot3oa1Tp buoam utr abessauw,)I0IIS SNOTISS
- ((3)uwa3sks* (2’ *3)3ue3zsuod) jou’ ((2* “y¥)3ueisuod) jou
* ((D)pua asooT)3ou’ ((D’g“v) aea dual) jou
*((@)ua3sks’ (0’7 “a)suoryTuryep) jou’ ((g’g) 3o adoos ur’ (D’3’y)suoriTuryap) jou
“ (H%g*y)saouaiagoi-:([H]’d’y*,aueu paurjapun,) I0IId SNOTIIS

contd.

-230~

FIGURE D.3 continued

o 8 Rl

‘y) seouaiajei) jou’ ((v)waishs)joul ((D’ *")seouaiajei)iou’(y)uwsisis)
4 (H*g’y)3ue3suoo-:([D]‘g“v’,p2uoTIUBW IBA3U 3JUL}ISUO0D,) buTuIen
*((a’([>]l3uoopua]’ “y)puas)iou’ (g‘[[D]I3uod3ae3s]*g’y)puss
-z ([a’D]’a“y*,330 pPa2Y>3TAS 12A5u a2bessaum,) butuien
*((a’[[p]l3uod3aeys]’ “y)puas) jou’(q
‘[[o]l3uoopua]’g‘y)puas-: ([a*D]“g’v*.,uo payd3Tas Iaasu abessauw,)butuien
((D"*y) 321 3uduoduwod) jou’ ((y)waysks)jou’ (3’a“y) 39p 3usuoduwod
-2 ([0]’a*v’,p3uor3juau I2aau juauvodwod T[ed0T,) buturea
((D”*7) 3oa 3uauodwod) jou’((D* *7) 321 3dwod bsu)3ou
(H’g*y)yduoo obessau-: ([2]’g’yv*,pauorjusm 13aau 3dwoo abesseu,)butuiea
((O *7) 331 3uauodwod)jou’ (y)meisks
(H’g?y) 3ep 3usauodwoo-:([D])’g*v*,pauoT3juauw I12a9u jusauodwon,)burtuiena

*((g’a) 3o adoos ur’(0“a’v)sazepdn)jou

* (r'g’y)suzed do-:z([D]*3“¢’,anTea © uaa1b j0u 3nd3ino dunj,)Iolid ue
*((3’a)30o edoos™ur’ (D’q“y) sadu3i1ajai) jou

* (b*g’y)soataerodus3i-: ([D]’g“v”,pasn jou Lieiodws3l,) 01313 UeE
((n’d)adX3 euwes)3zou’ ("[[alio]’ “v)arTuxy

s(g°[[allol’a’v)3Tux3i-=([a’D]’a’v*,3ua3srsuoour 2d43 abessau,) 10133 UL
“((*[[alrt”)*"*a)satad01) 30U

(((Caliel’[(9]la] “7)suoryoauuodt ([[o]la]
.mhmu_mm. umcoauowccco_.nﬁ vﬁcw mwooﬂvuon.ﬁgnuccw 3s00T) 30U
(@[[ali” J*a*v)puss-:([(9°2%3°a)’a’v”’,p2AT2031 jou abessSeu,)I0IIs Ue

*((g’g) 30 adoos urt

*((>*a’y) 321 2adkyt ((H*a ¢_mwu=mumumu (b*g”y)sajepdn)) jou
4 ((y)uazsis)jou’ (h*g’y)suorzturyap-:([D]“g’v“,pasn 3ou a2uweu,)Jolid ue

=231~

A and B are of the same message type (i.e. both are
instantaneous or both are continuous).

(£) temp_var (A,B,C), which 1is true if C is a temporary
variable (i.e. a pattern-matching variable; a name
preceded by "?") which was defined in model A such
that paragraph number B is within the scope of that
definition.

(g) txmit(A,B,C,D), which checks if C is a message which
was sent or received by model A via interface D, and

that D is not a "loose_end" (see (d) above).
3.3. The Input Format

To simplify the checker program as far as possible,
its input format was restricted to that of standard
Prolog . terms. The syntax analyser was therefore made to
produce a list of such terms, containing details of the
names found in the specification text and the mode in
which they are used. The general format for these terms,
expressed in BNF (see Appendix B.1l), is:

TERM = TABLE_NAME " (" MODEL_ NAME "," PARAGRAPH. NUMBER

{ "," OTHER NAMES }» ")".
although the full-stops (".") inside the paragraph num-
bers had to be replaced by commas to conform to Prolog
syntax. As an example:

messages (vending_ system, 111 & .coin).
states that "coin" was defined as a "message" in para-
graph [1.1] of "vending system". There are 25 of these

tables, and their formats are shown in Figure D.4. It

=232~

should be remembered that these tables are not produced
by the specification writer, but are an automatic output
from the syntax analyser and therefore do not need to be

in a readable form.

3.4. The Output from the Checker

The checker program produces a simple list of the er-
rors which have been detected, guoting the name of the
text block and the number of the paragraph which contains
the error. It also shows sufficient additional informa-
tion to identify the error within the paragraph. Figure
D.5 shows an annotated example of a few such messages. To
aid the wuser of this program, the errors are listed in
three categories.

(a) Serious errors, such as the use of names which have
not been defined. These are classified as serious
because they invalidate some portion of the
specification.

(b) Errors, such as the definition of a name which is
never used. These may not invalidate any part of the
specification, but do indicate incompleteness.

(c) Warnings, such as the lack of references to a compo-
nent of a message or a constant. As ASL permits
structured messages to be assigned values at the mes-
sage level, it may be valid for some components never
to be mentioned individually. However, the checker
program produces a warning message so that the spe-

cification writer is aware of this.

=233~

FIGURE D.4 THE TABLES USED IN STATIC CHECKING

(a) For the system; one record generated for a

specification.

"system" " (" SYSTEM NAME ")" " v |

(b) For monitors; one record per monitor statement in the

specification.

"monitor"™ " (" BLOCK_NAME "," PARAGRAPH_NUMBER ")" ", "

(c) For messages sent and received; one record per send

or receive action

{ "receive" | "send")
"(" BLOCK_NAME "," PARAGRAPH_NUMBER ","
"[" MESSAGE_TYPE "," MESSAGE_NAME "]" ","

INTERFACE_NAME ")" ".," ,

where MESSAGE_TYPE indicates whether it is an in-
stantaneous message or the start or end of a con-

tinuous message.

contd. .

-234-

FIGURE D.4 continued

(d) For the definition and use of names.

TABLE_NAME " (" BLOCK_NAME "," PARAGRAPH_NUMBER " ,b"

A—NAME LU) n n o L] .

where TABLE_NAME can take the following values:

Table Name

bothways
component_def
component_ref
constant
definitions
inputs
ip_parms
message_compt
messages
models
msg_compt_ref
op_parms
operations
opn_uses
outputs
references
society
temporaries
type_ref
updates

Record per

bothway interface definition
definition of a component of a name
use of a component name

name used as a constant in a definition
definition of a top-level name

input interface definition

argument in an operation definition
definition of a component of a message
definition of a top-level message name
definition of a model

use of a message component name

a result in an operation definition
the definition of an operation

a use of an operation

output interface definition
indeterminate reference to a name
model name being used in system block
use of a name after a "?"

use of a2 name as a data type
assignment of a value to a name

contd.

=235~

FIGURE D.4 continued

(e) For interconnections.

"connections" "(" BLOCK NAME "," PARAGRAPH NUMBER " ,"
"[" MODEL_NAME "," INTERFACE NAME "]" ","

" [tl MODEL_NAME " ' L] INTERFACE_NAME IIJ " ") n omn : n ¥
Note:
In all cases, the format for paragraph numbers is:
PARAGRAPH_NUMBER = "[" INTEGER PARAGRAPH_BODY.

PARAGRAPH_BODY = "," INTEGER PARAGRAPH BODY |

IT]“ =

-236~

FIGURE D.5 ERROR MESSAGES FROM STATIC CHECKING

system name error message
/ %
/
/ text block
vending_systen ,’ R
< Sy e L e / N paragraph
4 7 ’

serious errors // ,’ ’

s e e g e e !

coin_slot

one end undefined: vending_system 2.1.0.0.0.
user fingers tea_machine coinslot

undefined message component: user 5.0.0.0.0.
selected

message type ccnflict: tea_machine 7.1.0.0.0.
status status_light user eyes

message type copflict: tea_machine 7.1.0.0.0.
status status_light user eyes

message type ccnflict: tea_machine 7.2.0.0.0.
status status_light user eyes

errLors

message never used: vending_system 3.6.0.0.0.
fillup

message not received: user 4.0.0.0.0.
money fingers tea_machine coinslot

message not received: wuser 4.0.0.0.0.
money fingers tea_machine selector

message not received: user 4.0.0.0.0.
money fingers tea_machine rtefund_button

-237-

4. Cross-reference Listing

The cross-reference 1listing is produced by a simple
Pascal program; this extracts all the occurences of names
from the table entries used by the consistency checker
and sorts them into alphabetic sequence. Figure D.6 shows
an example of the 1listing, which has columns for the
name, the type of appearance being reported (see below),
and the text block and paragraph number in which the name
appears. The types of appearance (the second column on
the listing) are:

(a) DEC. The declaration of a name which is not an opera-
tion or an interface.

(b) OPN. The declaration of an operation.

(c) REF. A reference to a name, other than to update its
value.

(d) IFC. The declaration of an interface.

(e) UPD. A reference to a name which involves updating
its value.

as this information may help in the task of making

changes to the specification (see Chapter 5.3.2).

~238-

FIGURE D.6

CROSS-REFERENCE LISTING FOR vending_systenm

NA ME
boolean

c

cm

cms
coffee
coin_size
coin_slot
coinslot
(o

cup
d

dispense

dispenser

drink
eyes

fillup

fingers

grams

THE CROSS-REFERENCE LISTING

TYPE

REF
REF
REF
REF
DEC
REF

IFC
REF
REF
REF
DEC
REF
DEC
REF

DEC
REF

REF

IFC
DEC
REF
IEC
REF
DEC
REF
REF

IFC
REF

REF

BLOCK

vending_systen
vending_systen
vending_systenm
vending_systen
vending_systen
vending_systen
vending_systen
tea_machine
tea_machine
tea_machine
vending_systenm
vending_systenm
vending_system
tea_machine
tea_machine
tea_machine
tea_machine
vending_system
user
tea_machine
tea_machine
tea_machine
tea_machine
vending_systen
tea_machine
tea_machine
vending_systenm
vending_systen
user

user
vending_system
tea_machine
vending_systen
vending_systenm
vending_systen
user

user

user

user
vending_systenm

=239

PARAGRAPH

35 2 2o
S5e

5.

5.

4. 1.

3. 3. 1.
3. n- 1.
5. 1.

T

B.

2. 1.

5.

u- S.

1-

g

1. 1.

1. 2.

3. 7.

7.

1.

f TS

6.
11.

s D3

1.

2. 2.

2 A I I
2, 6.

: P

3.

3. 6.

6.

I 1

2" 2.

Zs 3e

2.

4.

5.

6‘

3. 3= 2»

APPENDIX E

AN EXAMPLE SPECIFICATION

l. Introduction

The purpose of this example is to display the general
appearance and style of ASL specifications, so a simple
system was chosen in order to minimise the need for in-
troductory explanation in English. Additionally, to
demonstrate the wuse of the existing syntax analyser and
checker. facilities (see Appendix D), the specification is
shown with one syntax error and a number of other errors.
This appendix therefore contains a brief introduction to
the system (section E.2), the listing of the specifica-
tion as produced by the syntax analyser (section E.3) and
the error messages from the checker (section E.4). Both
of the listings are supplemented by comments on some of

the points demonstrated.

2. The System

The system to be specified is a tea-vending machine,
treated at the level of the interface to the customer.

Thus, the ASL specification consists of two models, one

-240-

for the vending machine (the system model) and one for

the user (the environment model). In outline, the vending

machine is intended to operate as follows.

(a)

(b)

(c)

(d)

(e)

(f)

The

The machine supplies a range of drinks, and there is
some method (e.g. buttons or dials) by which the user
may select a particular drink.

For each drink there is a signal (e.g. a lamp) which
indicates if the machine contains sufficient ingre-
dients to provide that drink. This is intended to be
a positive indication, so that 1lack of ingredients
and lamp failure should both be visible to the user.

The wuser 1inserts coins into the machine to make up
the price of the drink regquired, and then operates
the selection mechanism to request that drink.

The machine will only accept a defined range of
coins, and will immediately reject any other denomi-
nations or any damaged coins.

The wuser must be provided with a facility to termi-
nate the transaction prematurely (e.g. a refund
button), and should then receive back all the coins
inserted since the start of the transaction.

If the wuser reguests a drink when the value of the
coins inserted is not egual to the price of that
drink, then all the coins should be refunded and no
drink prowvided.

ASL specification attempts to capture these concepts

without introducing unnecessary constraints upon such

things as the range of drinks or the number of acceptable

denominations of coins.

-241-

3. The ASL Specification

As mentioned in Section E.2, there are two models in
this specification; thus, with the addition of the system
block, this produces three blocks of text. These are
shown in outline in Figure E.l, which also identifies the
purpose of the main paragraphs within each of these
blocks. The specification appears in Figure E.2 1in the
form of the listing produced by the syntax analyser; the
line numbers down the left-hand side of the 1listing are
used in the following comments to identify the use of
some features of the language.

(a) (Line 000010) "VENDING SYSTEM" appears in capital
letters for its introduction (i.e. its definition).
The words in capitals after the obligue stroke ("/")
are. a comment, to give a brief description of the
system.

(b) (Lines 000150 to 000280) The messages include both
simple and structured definitions. Once again, the
names being defined appear in capitals, whilst the
data type names (which are defined elsewhere) . appear
in lower case letters.

(c) (Lines 000380 to 000450) "SELECT_ RANGE" is used in
the system model, the environment and in the defini-
tion of messages, so it is defined only once in the
system block. Its data type is a 1list of all the
possible values which it can take, enclosed in braces
("4

(4d) (Line 000580) The word "unknown" is used to indicate

-242-

FIGURE E.1 THE STRUCTURE OF THE EXAMPLE SPECIFICATION

Heading or Paragraph Number Comments
-~
VENDING_SYSTEM is
[1] Statement of models and
[2] their interconnections. r The system
block.
[3] Definition of common items,
$ used in both models.
(5]
end of vending system 9
USER is)
[1) Interfaces.
(2]
L The
[3] Responses to particular environment
: messages. model.
(el
end of user h
: 3
TEA_MACHINE is
[1] Interfaces.
[2]
(3] Properties of the model,
: known only to the model.
(5] The
[6] Responses to situations >~ system
: rather than messages. model.
(7]
[9] Responses to particular
: messages.
(10]
[11] The definition of an
operation.
end of tea_machine

-243~

FIGURE E.2 THE EXAMPLE SPECIFICATION

sjuatpaabur:asnidsia [c-€]
sjuetTpeIbutr:inTIIrd (9°¢]
afuea 3oaTes:yNINA 15Ind3¥ [s° €]
suerb:Lgoxdn [z n-g]
92Ts utoo:3Z21Ss [L*h-€]
sT 123ra8 [n-c]
sweib:ryoram [z c-c]
92715 Uroo23zIs [L°e~¢]
ST XdANOR [€°€]
ueatooq:anTvA [Zz-Z-c]
abuea yoeTes:yNTINa [L-Z°c]
st snivis [z°¢]
pautjspun:gNndIy [L°¢]
sabessauw [¢g]

saeko-aesn 03 (sbhuer 308T9s)3yhTT Snjzejs asuryoeun e3)y
puey*iasn 03 IosuadsTp*auTyoem ed)}

pUEY*I8&sn 03 23NYD punjsI*auTyoew es)

U033 ng punjal*surydeuw eaj o3 siaburycassn
I03D@T@s"2UTyYoRW ®D3} 03} sIabury-aesn
JOoTSuTOoD*aUTYORW eaj3 03 siabury-assn

suotr3oauuod [z]

Lo R L o Lo L
—MNMmoTwn o
.
CNONONONONON
L L s S

assn | (z°L]
sutyoew ea3 | [t]

wol3j pajedio []

062000
082000
0LZ00C
092000
062000
0hZ 000
0€2000
G2Zo0a
oLeoo0
00Z000
06L000
08L 000
0LLOO0O
091000
051000
0nL000
CELOOO
0ZL000
0LLOOO
00LOO0D
060000
080000
0L0000
090000
050000
0h0000
CEQ0OOO
020000

ST @NIHDYW OSNIANHA VEL 7/ WILSAS ONIANZA 0LOQOOC

*g UOTSIap

BTSN

contd.

-244-

FIGURE E.2 continued

s¥d9NId 3nd3no [Z]
anvd [z-1]
sax¥ [1L-1]

3ndut []

ST ¥dS0o

s ok o o o o ok o o ool ok ok el o i o oKk o KK K KK K s o A o oKk 3 ok o ok kK R R K R OK K KOk koK

{ vas

“4¥9NS HLIM VAL

MTIN HLIM VAL

fYY95NS ANV MIIW HLIM VIL
‘333400

‘9¥5nS HLIM FTJI40D

‘YTIW HLIM d34J0D

wajsks burtpuaa Jo pus

Aok %
/ s3
/ u3
/sujy
fD
LSS
/ ud

"9¥9NS ORY MTIWN HLIM 994400 /7 sud)} : gonva 12311s [g]

SOIFTT-HILYM [9°1]
aebajursgnd [G°n]
S8IFTTNTIN [(nw-th]
soTtY:8¥905 [€°n]

SsoTTY:v¥aL [Z°n]

soTT®:333400 [L-n]

ST SINIIQaYONI [4]

095000
055000
0hsQ00
0€S000
0ZS000
0LSCOO
005GC00
06t000
081000

0LNh000
09h000
05h000
0ht000
0EROQO
0Z¢h000
0Lh00C
00h000
06ED00
08EQQO
0LEQOO
09£000
0GSE000
OneEQ0o
0C€E000
0ZE00O0
0LEQOO
00€000

contd.

=245~

FIGURE E.2 continued

0€8000

squatrpaiabur = yooLs (€] 028000
0L8000

Ammnmu 109T0Ss) LH9IT sa1vis (€°z]) 008000
4asNidsIa (z-z] 06L000
FILOHD annddyg (L-z] 08L000
3nd3no [z] 0LLOOD

Y 09L000

NoLLnE anNnddy [g-1] 0G6L000
¥01L2313s [z-L] 0he000

4035 ®Eo> L1} 0€EL000C
andaut [] 0ZL000

0LLOGO

ST INIHOVMW ¥IL 00L00O

069000

089000

3 sk o ok ok o o ok ok ot ok ok e ook o s ok o ok o o o o o oo ok 3ok o ok e 3 ok o o sk ok ok sk ok ok ok ok ok ok ok

Iasn JO pu@ 0L9000

099000

umouyun uayjl puey etva 3d3fax wo [g] 069000

usouyun usayyl puey eta asuadstp uo [] 009000

s12huUTl eTA punjyal puss usyjl umouyun uo [9] 0E9000

si1abutrj ©TA @huel 309T8S UT pPoO3IdLTAS YirTma Yutlip 3sanbai 029000
puas uay3 umouyun uo [G] QL9000

s1obuty eTA (umouyun=3ybHrom) ¥ (umouyun=09zTs) 43tm Lauowm 009000
. pues uayj umouyun uo [#] 065000

umouyun uoayyz seke era snie3ys uo [g] 085000

0L5000

contd.

-246-

FIGURE E.2 continued

J103}D9T8S PTA
INIOd LHVISIN %
pé=)utIp 3senbex 3Jo puodes g o3 | uryzTa [01]

uayl ONI¥LS ¥O0d ONIHDIHD NIHM gN0TIAVHIH

*
Fsuow punjyaI wuo33ng punjal BIA pungysa uo [awnndday / 61

23ny> punjeI eTA X=32ZTS Y3Ta 3d03lea1 puss
ueyn (IZTS*SUTOD pTTEA UT X) 30U Ssayun
putyzou op
usay3 3O0TS UTOD ®TA X;=9ZTS Y3Ta Aauow uo [NIOD ¥D3IHD / 8]

(x)3ghTT Snie3ls eTA
(eni13=2nTeA Y3TA snje3}s Hurpuss 3jie3s
‘asTej=anTea Y3Tm sniels bhutpuas do3js
) uayy adroa1- (x.)suorjioalas=<¢)YD03}s IoA3UdYA fz*7 1

(x) 3ybTIT Snizeis eIA
(esTej=anTeA y3TA sniels hurpuas 3iels
‘snij=onTeA Y3Tm snijeis burpuss dojis
) usayl adroe1* (xi)sSuUoT3da[as > YDo3s Isaauaya [L-(]
[SINAIAIYONI 40 SALVLS HOLINOK 7/ L]

(esuadstp Tre)wns - (dnITTJ [Te)uns st y203s [9]

aouad: InTvA [Z°6]
azts utoo: 3zIS [L°6]
st (peurjepun)sNIOd aITvA [G]

eouad: 70184 [Z°n]
sjuasTpoabuTt: 331038 [L°n]
st (sbuea 308T18s)SNOILOATES []

0ELLOO

021100
OLLLOQ
dTINY NI
sgoy¥yd
00LLOO
060L00
¢80L0O0
0L0LOO
090L00
0S0L00
0n0L00
0EO0LOO
0ZoL00
0LOLOO
000L0O0
066000
086000
0L6000
096000
056000
016000
0E6000
0¢6000
0L6000
006000
068000
088000
0L8000
098000
058000
0h8000

contd.

-247-

FIGURE E.2 continued

ATINASSE3ONS AALATARNOD ONINDEHOD
=SE0393 |

e (e) ol e 4,
sk 35 o e ook o ok ok ok ok ok ok ok ol ke ok ok o o o sk o s e ok ok ol Sk ok kb ok i ok ok e o e i Okl ok o Ok Kok

suTyoem B2} JO PUd (QGELOO

OhELOO

23NYD puUNIaI BTA Z=9ZTS Y3TA 30al3x puss uayl 0EELOO
((23nyos punja1 ®BTA punjal 3sSel Jo autrjl) 0ZELOO
* (1osuadsTp eTA osuadsTp 3sel Jo awT3l)) xeu Ja233je OLELOO
30TS uTOD PTA (2ZTS*SUTOD pPTITRA UT 2) 00ELQD

v (zi=2z71Ss) yatm Lsuow TTe 103 06ZL00

ST A4NOW anpddy uorizexado [] 082100

0LCLOO

fauouw punyax usaym 092100

(p) 3ybTT Sniels vTA 8sTej=on|eaA 0scLoo0

y3TM snze3s butpuas [FTAVIIVAY LON MNI¥d 7/ Z°0L] 0hZ1L00
Ksuou punjaI uaym 0ECLOO

(ezTs *sutodo prIea ut x) ¥ (x¢=3zrs*fauouw) ¥ 02ZL00
(((23ny>~ punj@1 eTA punjyax 3ISeT JO BUTI}) 0LZL00
s (xosuadsTp eTA asuadsTp IseT Jo auTl))xem 00ZLO0
1833Je 3OTSUTOD eTA anTea-fasuou=z) 06LLOO

21aynm 08LLOO

ao1i1d* (p) suoTioeras 0LLLOO

=~ (z¢)uns [XaNOW 9NO¥M / L°Q0L] ssarun 09LL00

JesuadsTp BTA 0SL100

adtoai1- (p) suorjoales=osuadstp puss uayj ohLLOO

-248-

(e)

(f)

(9)

(h)

some information which will not become available. 1In
this case it 1is because the behaviour of the user
must be treated as random.

(Line 000920) “"stock" 1is a continuously updated
value; it is defined as a relationship between the
amount of ingredients 1loaded into the machine
("fillups") and the amount of ingredients dispensed.
All three names in the equation ("stock", "fillup"
and "dispense") are structures with six components
(as defined in type "ingredients" in lines 000300 to
000360); they can be used in this way because they
have identical structure and component names.

(Lines 000940 to 000960) This expression uses
"whenever" to continuously monitor for a particular
condition (the stock of any ingredient falling below
the amounts required in the recipe for any of the
drinks). It wuses a pattern-matching variable ("?x")
to stand for "any drink", so producing a succinct
specification of the required behaviour for all
drinks and all ingredients in a single statement.

(Lines 001050 to 001080) An example of the descrip-
tion of a direct response to a stimulus, written 1in
the "on...then..." form. It also demonstrates the use
of "unless" to deal with exceptions (in this case,
the rejection of invalid coins).

(Line 001100) 2 syntax error, due to the omission of
the word "then" between the stimulus and the appro-
priate response. This cause the specification text to

be skipped up to the restart point at the beginning

-249-

of line 001120.

(i) (Lines 001280 to 001330) Because the action of
refunding all the money inserted thus far occurs in
three situations (lines 001100, 001230 and 001260),
this behaviour has been defined as an operation. Note
that this operation is not a function, as it has has
no arguments and returns no result.

This example is not in any way representative of the spe-

cifications produced at GEC Telecommunications Ltd.;

however, 'as the above comments show, it does demonstrate
some of the power of the language. Any more realistic ex-
ample would have been significantly larger, and would
have reguired a considerable amount of introduction in

English to provide the necessary background information.

4, Errors in the Specification

After the correction of the one syntax error, the
specification was subjected to the static checks
(described in Appendix D.3). The serious errors and er-
rors which were 1identified appear in the 1listing in
Figure E.3; the warnings have not been included in order
to reduce the size of the figure. Some of the error mes-
sages have been annotated with letters which refer to the
comments in the paragraphs below.

(a) These two error messages are related, in that the
first refers to an interface named "coin_slot",
whilst the second refers to "coinslot". The omission

of the underscore character has resulted in there be-

-250~-

FIGURE E.3 THE ERRORS DETECTED IN THE SPECIFICATION

vending_systen

serious €rrors

interface not connected: tea_machine 1.1.0.0.0.
cotneslatael 000 O e
W e e e Syl

one end undefined: vending_systen 2.1.0.0.C=,’
user fingers tea_machine coinslot=——"

undefined message component: user 5.0.0.0.0. _—-(b)
BRlectadus - — = c i o o e e ==

-

message type ccnflict: tea_machine 7.1.0.0.0.
status status_light user eyes

message type ccnflict: tea_machine 7.1.0.0.0.
status status_light wuser eyes

a

message typs ccnflict: tea_machine 7.2.0.0.0.
status status_light user eyes
message type ccnflict: tea_machine 7.2.0.0.0.
status status_liqht wuser eyes
message type ccnflict: wuser 3.0.C.0.0.
status eyes tea_machine status_light
contd.

=253 =

FIGURE E.3 continued

€LCOIS

message never used: vending_system 3.6.0.0.0._--(d)
fillup= = =-=—= - = = — = - = = = = = — RS R

message not received: wuser 4.0.0.0.0.
money fingers tea_machine coinslot <~ - - —~~(€)

message not received: wuser 4.0.0.0.0.
money fingers tea_mwachine selector

message not received: user 4.0.0.C.0.
~money fingers tea_machine refund_button

message not received: user 5.0.0.C.0.
reguest_drink fingers tea_machine coinslot

message not received: user 5.0.0.0.0.
request_drink fingers tea_machine refund_button

message not received: wuser 6.0.0.0.0.
refund fingers tea_prachine coinslot

message not received: wuser 6.0.0.0.0.
refund £fingers tea_rmachine selector

=25d=

ing two unique names where only one should exist.

(b) The reference to "reguest drink with selected..." in
line 000610 of Figure E.2 is not consistent with the
fact that in line 000260 "request_drink" is defined
as having no components.

(c) The "status" being sent via "status light" is a con-
tinuoué message (i.e. sent by "start sending...")
when it 1leaves the "tea_machine", but the "user" is
not trying to receive it as "on start of....". Hence
there is a conflict between the behaviour descrip-
tions in the two models, which must be resolved and
corrected.

(d) No provision has been made in the specification for
the "tea machine" to be refilled with ingredients,
and this 1is recognised as a message which has been
defined but is never used.

(e? Another error message which is a conseguence of the
mis-spelling of "coin slot", as mentioned in (a)
above.

Finally, as no computer facilities were available for the

semantic checking,.a Predicate/Transition net model of

the system was derived manually from the specification.

Figure E.4 shows an incomplete version of this net; in

order to simplify the diagram only the tea machine has

been shown, and almost all of the labels on places and
transitions have been omitted. The manual translation
which produced this net is likely to have introduced er-
rors 1itself, but it is still possible to identify errors

in the specification, as in the following examples.

=253~

(i) “refili”
guestion
fied by
not been

(ii) Both a

place at

(shown in Figure E.4 as a place containing a

mark) has no source. This had been identi-
the static checks (see (d) above), but had

corrected.

refund and the selection of a drink may take

the same time. As the specification states

no priorities, this will result in a drink and a

refund.

(iii) Similarly, there is nothing to cover the insertion

of a coin at the same time as a request for a refund.

=254<

THE NET MODEL OF THE SPECIFICATION

FIGURE E.4

ANIHOVYW YaL

(p?303s 21e sabessou 1sed a1aym ‘193304 K103S§ll = .8BH. * 9IO0N)

O

[InN (13

=) . O O paufjapun 7 (@)

B paut japun

abuey)

d0LD
=3143s

a10w ON
() ®
11NN

punjal
03 <10

. Gjoo

ped
ujod

LION poon
pauy japun O

=255~

APPENDIX F

RESULTS OF THE TRIALS AT GEC

l. Problems Arising During the Trials

1.1 The Categories

As a large proportion of the problems which arose
concerned errors and omissions in the original version of
the syntax definition, there was no particular pattern to
them. The complete list of problems which follows has
therefore been split into four categories based upon
their effect upon the definition of ASL. These categories
are:

(a) inconsistencies,

(b) simple alterations and extensions,

(c) missing constructs,

(d) other proposals for alterations,

and they appear as sections F.l.2 to F.1l.5 respectively.

1.2. Inconsistencies

This category contains the largest number of items,

but all are of a minor nature. They all represent points

-256~-

where the initial syntax definition of ASL contained un-

necessary restrictions or unintentionally awkward

constructions.

(a)

(b)

(c)

(d)

(e)

(f)

Any results being returned by a defined operation
could only be given values in a fixed relationship
statement. Thus it was not possible to utilise the
"select" form to provide a more comprehensible
definition.

Although it was possible to use:
x:in 2

where z is a defined data type, the form:
Foih f98, Diler @3

was not allowed.

"first" and "last" ~were provided to refer to past
messages, but there was no similar method of refer-
ring to the intermediate messages.

A2 bothway interface might be sending and receiving
identically-named messages, but it was not possible
to specify in a message-pattern that only one direc-
tion should be chosen.

Additional brackets were required around message
patterns, eg:

send (x with y) wvia z
as the "via z" was being associated with the "y"
rather than with the "x".

Messages could not have any information content un-
less they had at least one component. Thus, a message
with only one component had to have two names, one

for the message and one for the component. This was

-257=~

(9)

(h)

(i)

(3)

(k)

(1)

All

both unnecessary and confusing.

An anonymous pattern-match (i.e. "?" without a fol-
lowing variable name) could not be used in the place
of a received message.

The name of an interface for either received or
transmitted messages could not be a pattern-matching
variable.

"undefined" or "unknown" messages had to be sent via
"undefined" and "unknown" interfaces respectively. It
was not possible to have:

«.+..5end undefined via x

Behaviour statements inside the definition of an
operation could not make use of the "unless" form for
representing alternatives.

Names representing 1logical values (i.e. having the
values "true" and "false") had to be compared with a
logical constant to form a valid condition:

s s8elect | y=true)isees
rather than allowing the simpler form:

saensedect (v)ue.s
The first word in a comment had to be alphabetic, and
comments could not contain any special symbols.

the items listed above were treated as errors in the

syntax definitions, and were therefore corrected as soon

as

they were detected. Appendix B.2 shows only the cor-

rected version of the definitions.

=258~

1.3. Simple Alterations and Extensions

The participants in the trials suggested a number of
changes to ASL. Of these, some were simple to introduce
into the language, whilst others implied significant al-
terations to the formal definitions. The items 1listed
below fall into the category of simple changes, and have
all been included in the syntax shown in Appendix B.

(a) An extension to the paragraph numbering scheme al-
lowed paragraph numbers containing only a comment to
be used as headings. This improved the facilities for
structuring the text inside a model.

(b) Operations (see Chapter 4.4.9) were originally called
"functions", but this was felt to be confusing as
they are not restricted to being strict mathematical
functions.

(¢) The symbol ":=" was originally used in fixed rela-
tionships instead of "is". This was changed to avoid
confusion with the use of the same symbol as an as-
signment operator in many programming languages (e.g.
Pascal (Jensen & Wirth, 1975)).

(d) "interface" and "message" were added as primitive
types in the language, so that arguments passed to
operations could be of these types.

(e) Definitions were allowed to make use of local sub-
definitions, of the form "where...." (see Chapter
4.4 .90 6,0

X : interface where x in incoming_trunks

(f) Any defined operation which is common to a number of

=259~

models may be placed in the system block, rather than
having to be repeated inside each model which uses
1€,

(g) Limits of ranges may be shown as simple expressions,
rather than having to be written as constants, and
ranges may be used as a shorthand inside enumerated
data types.

(h) The response to a stimulus may be expressed as an or-
dered sequence, if necessary, by wusing the word
"sequence" followed by the appropriate actions as a

series of sub-paragraphs.

1.4, Missing Items

A number of the comments relate to features which are
definitely missing from ASL. However, the incorporation
of these would require extensions to the type-checking
rules (see Appendix B.3 and B.4) or the semantic model
(see Appendix C). They have therefore been left as part
of the further development of the language, as discussed
in Chapter 8.3.

(a) The wuse of number bases other than 10 (e.g. octal,.
hexadecimal) .

(b) Operators to work on data types constructed using
"string" (e.qg. concatenation and sub-string
operators).

(c) A method of defining a data type as the union or in-
tersection of a number of other data types.

(d) The ability to give values to the whole of a data

-260-

structure in a single statement, without having to
mention each component by name.

(e) Some specific facility for initialising the models.
This would have to cover both the setting of initial
values of names and also the eguivalent of switching
on the power supply.

(f) Extension of the domains represented by data types so
that references to non-existent interfaces or array
subscripts do not merely return "undefined". It may
be necessary to have some identifiable indicator for
each sort of error.

(g) Although a method of describing seguences of actions
was added to the language (see Section 1.3(h) of this
appendix), both this and references back to past mes-
sages became cumbersome when the sequences were long
and uniform (e.g. a segquence of bits making up a
character). This is mainly due to the amount of in-
formation which has to be repeated for each item in
the sequence. It should be possible to devise an im-

proved form of syntax which avoids this repetition.

1.5. Other Proposals for Alterations

. The remaining items, which are listed below, were not
as clearly defined as those covered in previous sections;
most of them arose as tentative suggestions, which their
proposers were unable to expand upon. They have therefore
not been incorporated into the language or included in

the proposals for further development, and some of them

-261-

are incompatible with the original design aims of ASL.

(a) One of the reviewers of the data-rate adaptor specif-
ication felt that this would have been easier to un-
derstand if the system block had contained a state-
ment of the relationship between the interconnections
and the messages. That is, he would have liked to see
the definitions of the messages passing through an
interconnection placed next to the statement of that
interconnection. Although this would have been simple
to arrange in the case which he was reviewing, other
specifications involved the same message name passing
over more than one interconnection. Enforcing this
linking of interconnections and messages would there-
fore 1lead to duplication of information in many
cases.

(b) Operations are permitted to return multiple results,
as in the foilowing example:

X, Yo 2 is three_result(a, b)
but this syntax may not be particularly clear if the
list of names spreads over more than one line in the
specification text. Some form of bracketing ﬁay as-
sist the reader, but ASL already makes use of all the
normally available forms of bracket.

(c) The form "take any one of....", introduced to indi-
cate a non-deterministic choice, can be achieved by
using a "select" with the selection between the al-
ternatives based upon "undefined". This therefore re-
presents an unnecessary duplication of facilities in.

the language, so that one form could be removed. It

~2062~

(d)

(e)

is not obvious, however, whether the removal of this

type of redundancy would have any effect upon the

comprehensibility of specifications.

In the disk checking system (see Chapter 6.3) one
field in a message had two different meanings,
depending upon circumstances. The specification
writer suggested that ASL should allow the field to
be given more than one name, with these being treated
as aliases. This would add complexity to the checking
of specifications (see Chapter 5.2); it would be
necessary to ensure that there was no conflict
between the uses of the aliases, such as the concur-
rent assignment of different values to aliases for
the same name.

The existing implementation of the route-handler
module (see Chapter 6.5) involves the dynamic crea-
tion of new instances of the route handler as a
result of the module calling itself recursively. ASL
does not have any method of dynamically creating new
models, as this would violate two basic principles of
the language:

(i) models are not aware of the interconnections or
of the other models in the system, as they only
know about their own interfaces,

(ii) the system block, which contains details of the
interconnections, is not an active entity and
cannot receive messages.

The only way to describe the required situation in

ASL is to create the maximum number of route handlers

-263-

which can ever exist, but with these remaining dorm-
ant until sent a message. However, this seems a
rather cumbersome method of achieving the desired
result, and further investigation 1is required into

possible alternatives.

2. The Questionnaire

2.1. Design of the Questionnaire

The small number of participants in the trials pre-
sented problems in the analysis of the results, as
discussed in Chapter 7.3.1. One further consequence was
that it was not possible to test the questionnaire on a
small sample of the audience, as is normally suggested
(e.g. Kornhauser & Sheatsley, 1965). It was therefore
decided to attempt to maximise the opportunities for the
participants to record their comments in any form which
they felt appropriate. Thus, the core guestions were pre-
sented in multiple choice form, to ensure that some an-
swer would be given on all the features of the lahguage,
but with plenty of space 1left for free-form comments.
Other guestions were then introduced which asked for
opinions and more general comments.

The guestionnaire, which is shown in full in Figure
F.1l, consisted of the six sections listed 1in the table
below. These progress from general guestions about the
background of the participants to more particular

guestions about their experiences with ASL. This is the

-264-

FIGURE F.1l.

THE QUESTIONNAIRE

QUESTIONNAIRE ON THE TRIAL USE OF ASL.

INTRODUCTION

You have taken part, either as a specification writer
or reviewer, in one of the projects which have used ASL.
I would now like to have a recerd of your comments and
criticisms, in order to consider how ASL can be improved.
This guestionnaire is therefore intended to act as a
guide, by listing a series of guestions and possible
answers, so that the responses from all the pecple who
took part are in a consistent form. However, please note
that:

{a) The list of guestions (and the alternative
answers) may not cover all the comments which you
wish to make. Space has been left between guestions
for you to record any extra information, and if you
require even more space please use the reverse side
of the pages.

(b) If you do not feel that the answers provided
cover your point of view, then add another answer or
give additional explanation in the space following
the guestion.

(c) If any guestion appears irrelevant, or if you
have no particular views on it, then don't answer
that one.

The cuestionnaire is in six sections, but Section 5 is
only appropriate to those people whe have used other
specification languages aswell as ASL, and some of the
guestions in Sections 3 and 4 are particular to people
who wrote (or in some cases, reviewed) specifications.
Please ignore the guestions which do not relate to the
role in which you contributed to the trials.

Thank you very much for your co-cperation.

P.Blackledge.

Extn, 3481

contd.

=265~

FIGURE F.1. contiqued

SECTION 1 GENERAL

: O Please give your name, in block capitals:

1.2 Date completed: ..csovsscnsons sessmans

1.3 Have you previously been involved in the use of any
of the following specification languages 7?7 (Please
tick as appropriate.)

English - i
Progression Charts I
Message Seguence Charts

CCITT SDL e
FSIS / FCIS v esa

Jones' Rigorous Method

ccs S

contd.

=266~

FIGURE

F.l. continued

1.4 Have you personally used a high-level programming
language (e.g. Pascal, Coral, Fortran or some form of
program design language) in the projects on which you
have worked ? (Please tick.)

Yes ...

Ho sses

i Which ASL specification(s) were you involved with?

1.6 In what capacity were you involved?

Reader

Writer

=26~

contd.

FIGURE

F.l. continued

SECTION 2 SPECIFICATIONS

21 What do you feel will be the effect on project
progress of insisting that a formal specification is
written before design is commenced ? (Please tick.)

It will hinder progress IS
It will have no overall effect

It will save time in the end e ue

2.2 Do you feel that the creation of a formal
specification will help by detecting errors which
would otherwise not have been noticed until much
later 7

Yes, 1t will .
Mo, e won™E el

Don't know

contd.

-268-

FIGURE F.l.

continued

2.

24

3

4

Are there any other advantages or disadvantages of
formal specifications which you can think of?

(a) 1Is it advantageous to restrict all projects
within the company to one particular
specification language ?

Yes L
No leraln

Don't know

(b) 1If your answer to (a) was 'No', please indicate
how many different languages you would allow.

=269-

contd.

FIGURE F.l. continued

SECTION 3 ASL.

-270-

S § What did you think of each of the following
features of ASL? (Please tick & comment as
appropriate)
Awkward/
unclear Neutral Clear
(a) the block structure .
(b} The use of the system block
for common information & iae S e
(c) the "black box" models
(d) the upper/lower case
distinction in names e sl A oli%
(e) paragraph numbers
(f) the siting of definitions v o ey .
(g) the form of definitions S SR
- B -
contd.

FIGURE F.1.

continued

(h)

(1)

(3)

(k)

(m)

(n)

(o}

the “on L 11 % s [S i
way of describing behaviour

the use of "unless" for
alternatives in behaviour

"select”

the use of

the "?x" way of matching
against messages

references to time delays

the limitations on
the siting of comments

the method of describing
seguences of messages

local definitions,
using "where"

Awkward/
unclear

Neutral

Clear

D

-271-

contd.

FIGURE F.l. continued

=272~

Awkward/
unclear Neutral Clear
(p) functions as a shorthand e e e
(g) the use of "whenever" to deal
with exception conditions Wkars alan i
(r) the difference between
instantaneous and continuous
messages e et -
(s) any other features on which you wish to comment..
= B =
contd.

FIGURE F.l. continued

3.2 (For reviewers only)

(a) How difficult did you find it to understand the
RSL specification ?

Very easy

Easy

OK

Bard .sia
Very hardievss

Other (Please explain) ...

(b) What did you find most difficult to understand?

contd.

-273-

FIGURE F.l. continued

3.3 (For writers only)

(a) How difficult did you find it to write a
specification in ASL ?

Very easy

Easy cess
OFK PR
Hard

Very hard

Other (Please explain) ..

(b) What did you find the most difficult feature of
the language to understand ?

(c) What did you find the most difficult feature to
use ?

= 10 =

contd.

-274-

FIGURE

F.1l. continued

(@) What did you find the most useful feature of
ASL ?

(e) Did writing the ASL specification uncover any
errors or problems which had not previously been
detected ?

3.4 Any other comments which you would like to make on
the use of ASL, or on the structure and laycut of
specifications written in the language.

=273~

contd.

FIGURE

F.1l. continued

SECTION 4 SUPPORT AND DOCUMENTATION

4.1 The Language Reference Manual. Please comment upon:

(a) general readability.

(b) ease of finding reguired informatien.

(c) does it contain the information which you
reguire?

e

contd.

-276-

FIGURE

F.l. continued

(@} are there any items which are not sufficiently

well explained ?

4,2 The guide, "An Outline Method for Writing
Specifications in ASL."™

(a) general readibility.

(b) is the information presented in a useful
seguence?

(c) does it contain the information which you
require?

-277-

contd.

FIGURE

F.l. continued

{d) are there any items which are not sufficiently
well explained ?

4.3 (For writers only)

(a) Please comment upon the existing computer-based
facilites (syntax analyser and checker).

{(b) what additional facilities would you most like
to see ?

-278-

contd.

FIGURE

F.l. continued

SECTION 5 COMPARISONS

NOTE: This section is only appropriate to those people
who have used another specification language, as it asks
for comparisons between ASL and other languages.

If you have not used another specification language,
then please go straight to Section 6.

=l Please identify the other specification language(s)
with which you will be comparing ASL.

5.2 Please identify the merits/demerits of ASL when
compared with the other language(s). Five main areas
of comparison are listed below, but please add any
others which you feel are appropriate.

{a) The structure and seguence of the
specification.

contd.

=219=

FIGURE F.1l. continued

(b) The methed of describing behaviour.

(c) The language syntax.

(d) The underlying model of systems.

(e) The comprehensibility of the resulting
specifications.

- 16 =

contd.

-280~-

FIGURE F.l. continued

S i3 Any other points of comparison.

e

contd.

=281~

FIGURE F.1.

continued

SECTION 6

ANY OTHER REMARKS

=]88 =

=282~

order suggested in Kornhauser and Sheatley (op cit).

Section Content
1 Name, etc., and previous ex-

perience of formal languages.

2 Attitudes to specifications
generally.

3 Detailed comments on ASL.

4 Comments on documentation sup-

porting ASL.
5 Comparisons of ASL and other
languages.
6 Any other remarks.
The covering note, giving instructions to the
participants, attempted to induce them to make full |use

of the space for comments, opinions, etc..

2.2. The Responses

As a result of the emphasis placed upon the recording
of opinions, the responses have to be viewed in two
parts. Table F.l1 covers those gquestions which had
multiple-choice answers, where the responses have been
analysed by counting the number of positive, negative and
neutral answers. This allowed points of general agreement
amongst the participants to be extracted; these were
discussed in Chapter 6.6.5. Many of the remainder of the
responses, which took the form of unstructured comments,

corresponded to the problems which had been recorded dur-

=283~

ing the trials. As these are covered in Sections 1.2 to

1.5 of this appendix, they have not been repeated here.

Table F.2 therefore contains a precis of the remaining

comments.

-284-

TABLE F.l1 RESPONSES TO MULTIPLE-CHOICE QUESTIONS

Note: Throughout the table "Y" indicates a yes, "N" a no,
"+" indicates a positive response, "-" a negative
one, and "0" a neutral one.

Person

B

—
- N
- W
N,
w
|
> 00

Trial
Question

Specn language experience
Programming experience
Role (Reader or Writer)
Effect of specn on progress
Effect of specn on errors
Better to use one language
The parts of ASL
(a) the block structure
(b) the system block
(c) "black box" models
(d) use of upper/lower case
(e) paragraph numbers
(f) siting of definitions
(g) the form of definitions
(B} “"on.. . Ehene . e
(i) "unless"
(j) the use of "select"
(k) pattern-matching
(1) time delays
(m) siting of comments
(n) description of seguences
(0) local definitions
(p) operations
(g) "whenever"
(r) instant/contin. messages
3.2 (a) comprehensibility
3.3 (a) ease of use (writers)
4.1 The language reference manual
(a) readability
(b) ease of reference
(c) information content
(d) explained well
4.2 The outline method guide
(a) readability
(b) information seguence
(c) information content
(d) explained well

WM
T
CO+ X K2
+ 1 o=
o+owZ 2
O+ +FHZZ
OO+ WK
+ O+ W =K
1+ + S KK
1+ + 0K

Il o+ +o00 | O+ + +
(= ilen B, J8H BN B L =)

I+ + 1

OO0+ +0 1 +000O0+ 4+ 1| OO+ O +
+ 1 0001l +o+++00+0+ +
l+++++0+00++0 1 +O+ + +
l ++0+00 1l +++++++0+ + +
++++0 1 0O++++++ 1 +++ +

co+o0+0l +o++++0+0+0+

I ++00 1 © |

I
1
+

+ D
o

=0 60 O = |
D00
(= e Y |
ol o
OO0 00O
kB
kol CR
oo |l o

o+ + +
1l ol o
+ 4+ + +
(= [Il e B o
+ + + +
I+ + +
++ +0
+ 4+ + +

-285-

TABLE F.2 THE OTHER COMMENTS

Question

Person Comment

2.3 (Advantages/disadvantages of formal languages)
1

J1{E)

3.1(m)

3.1(s)

3.2(b)

3.3(b)

33 (d)

Many people need to be fluent in
the language before it is useful.
4, 7 & 8 Permits validation and verification.
6 A single, standard language is
needed worldwide.

(Siting of definitions)
5 The freedom to site definitions
anywhere can easily be misused.

(Siting of comments)
2 Comments difficult to identify
because of different opening and
closing "brackets".

(Other comments on features of ASL)
2 It would be easier to read if
reserved words were highlighted.

(Most difficult feature for readers)

6 Recognition of reserved words.
8 Reference to history instead of
"state",

(Most difficult feature for writers)

i Difference between instant and
continuous messages.
1 The method of expressing time delays

is awkward.

(Most useful feature for writers)
4 The block structure.
7 The "black-box" view,

3.4 (Any other comments on ASL)
8

4.1 (a)

The constructive methodology is very

useful.
(Reference manual - readability)
4 A reader unfamiliar with BNF may

find it very difficult to understand.

contd.

~286~

TABLE F.2 continued.

Question Person Comment
4.1(b) (Ease of finding information)
7 Bad to jump about between sections
to find things.
4.1(c) (Information content)
7 Some of the "limited" syntax in the
text is misleading.
4.1(d) (Items insufficiently explained)
7 The linking of more than two models.
4.3(a) (The computer-based support facilities)
Error messages are too cryptic.
4 Better error recovery needed.
4.3 (b) (Most urgent enhancements)
1 The ability to use the ASL code as
a simulation model.
4 A more sophisticated editor for
ASL text.
5.2(a) (Specification structure)
4 Little different from using English.
6 Not as obvious as in progression
charts or English, but better than
in FSIS.
5.2(b) (Method of describing behaviour)
1 Stilted.
6 Does not seem to enforce complete
description.
7 Adequate and natural.
5.2(c) (The syntax)

1 Possibility of misunderstandings due
to use of English words.
6 Discouraging when compared to
progression charts.
7 A more concise notation would be
better.
contd.

-287-

TABLE F.2 continued

Question Person Comment

5.2(e) (Comprehensibility)
7 Readable and comprehensible, but
verbose.

5.3 (Other points of comparison)

6 The flexibility of ASL leaves it
to the writer to achieve
comprehensibility.

7 Unable to manipulate to perform
proofs.

6 (Any other comments)

2 Does not cover optional and
desirable features of a system.
- Separation of behaviour part of

specification from design
constraints is beneficial.

Needs to be used on larger examples.
No facilities for expressing
performance reguirements.

e =)

-288-

APPENDIX G

GLOSSARY OF TERMS AND ABBREVIATIONS

This glossary contains an alphabetic list of words
which have been used with particular technical meanings,
plus the few abbreviations which appeared in the text. In
each definition, words which themselves appear in the

glossary are shown underlined.

abstract. (Applied to a description or specification.) At

a more general level; having much of the detail
removed, in order to produce a simpler description.

aggregation. A named collection of information.

algorithmic. (Applied to a language.) Reguiring opera-

tions to be described in terms of a step-by-step
method (i.e. in the form in which that operation
might be performed by a computer).

analyser. (As in e.g. "syntax analyser".) A computer pro-
gram which performs some form of checking upon state-
ments in some language.

applicative. (Applied to a programming language.) A type

of programming language which avoids the use of vari-

ables and assignment statements, and instead follows

the style of pure mathematics.

-289~-

ASL. An acronym for "A Specification Language".

assertion. A statement of conditions which must be true
at all points in time or at particular (named) points
in time.

assignment. (In a programming language.) The operation of

associating a new value with a name (known as a
variable). Any previous value associated with that
name is destroyed by an assignment operation.

axiomatic. (Of a specification language.) Describing the

behaviour by means of statements which define the

relationships between the various parts of that
behaviour.

Backus-Naur Form. A language which is used to define the

context-free syntax of a language.

behaviour. (Of a system.) The responses which the system
will make when subjected to external stimuli. Both
the stimuli and the responses take the form of

messages.

black box. (Of a system.) A term used in systems en-

gineering to signify that a system is being viewed
only in terms of its externally-visible behaviour,
and without considering any underlying mechanism
which might be producing that behaviour.

BNF. See "Backus-Naur Form".

change control. An administrative procedure which at-

tempts to ensure the compatibility of alterations to
different parts of a product.
CHDL. See "computer hardware description language".

chunk. A term used by psychologists to represent a single

-290~

"unit" of information in human memory.

computer hardware description language. A language which

describes digital computer operation in terms of the
transfer of data between hardware registers.

concurrent. (Of a system.) Baving a number of parts of

its behaviour which may be taking place at the same
time.

conflict. (Of the behaviour of a system, particularly in
Petri net models of systems.) A situation where the
system has a number of possible responses to a
stimulus, and no way of identifying which of the al-
ternatives should be chosen. Hence, the behaviour in
this situation is non-deterministic.

context-free. (Of the syntax of a language.) 3 form of

syntax definition where the rules do not refer to the
context of a statement (i.e. other statements in the
text) in order to determine whether it is syntacti-
cally correct. The requirement to make a language
have a context-free syntax acts as a limitation on
the complexity of that language.

cross-reference. The equivalent of an index, being a list

of all the names used in a specification, indicating
every place where each name is used.

database. An organised, computer-based information
storage and retrieval system, which permits users to
access the information without having any knowledge

of the form in which it is physically stored.

data type. (In a programming language.) The name of a

class of objects; it identifies both the domain of

=291~

values whicﬁ can be téken by those objects, and the
operations which may be performed upon them. Often
abbreviated to "type".

deadlock. (Of a system.) A situation where a system fails
to respond to stimuli due to some unresolved conten-
tion for limited resources.

declaration. (In a programming language.) The statement

which introduces a new instance of a particular data

type.

denotation. (As in "denotational semantics".) The at-

tribution of meaning to statements in a language by

refering to ("denoting") one or more mathematical ex-
pressions which define the equivalent operation.

descriptive reference. A reference to an object by means

of a list of its attributes, and not by the use of
its'unique name.

editor. (In combuter-based systems.) A program which al-
lows a user to «create and modify blocks of text
through some kind of computer terminal.

environment. Everything which is not part of the system

being specified. Usually, only that very smali part
of the total environment which is in direct communi-
cation with the system needs to be considered.

firmware. An integrated «circuit device containing some
information which is not destroyed when the device is
switched off, but which can still be altered as
necessary.

formal. (Of a language.) Having well-defined syntax and

semantics. This requires that the syntax and seman-

=292<

tics are defined in terms of some mathematical model.

function. (In mathematics.) A relationship between the
members of two sets such that every member of the
first set has a relationship to one memeber of the
second set. Can be thought of as a subroutine in a
programming language which, when given some inputs,
will always return a result.

functional. (Of behaviour.) Concerned only with the

responses made to external stimuli, and not with the
mechanisms which <create those responses. (See also
“Dlack i box®s)

generalisation. (In the description of behaviour.)

Description of behaviour which 1is appropriate to
whole classes of events or objects rather than just
to individuals.

graphic. (Of a langquage.) Having pictures or diagrams as
its major form for presenting information.

hardware. The physical items (e.qg. electrical
components, nuts, bolts, printed circuit boards,
metalwork) from which a product is constructed.

heuristic. (Of a method.) Consisting of guidelines or
"rules of thumb", and so not guaranteed to always
produce the desired result.

hierarchical. (Of the design or documentation of a

system.) Organised as an ordered set of levels, with
the top level being the most abstract, and with each
subseqguent level adding more detail.

high-level language. A term usually taken to mean pro-

gramming languages such as FORTRAN, Pascal and Ada

-293-

(which are at a "high level" of abstraction when com-
pared with machine code).

imperative. (Of a programming language.) Indicates a type

of language which uses variables and assignment

statements. Used as the opposite of applicative.

implicit. (Of the specification of behaviour.) Not

directly describing a method by which the stimulus-
response behaviour of the system could be achieved.

Used as the opposite of algorithmic.

instance. (Refering to a data type.) An individual object
which is a member of that data type.
interface. A point of connection between a system and its

environment.

interpretation. (Of a model.) The method of providing

readers with a link between the abstract symbols in
the model and the real entities which they represent.

invariant. A s£atement defining a condition which must
not be violated by the system being specified. The
condition may be required to hold at particular
points in time or at all times.

issue. (Of a document.) The release of a particulér ver=:
sion of the document to its audience. Issues are
usually uniquely identified by an issue number, so
that readers are made aware that the content of the
document has been changed.

language. A set of symbols together with a set of rules
("grammar") which defines the meaningful seguences of
those symbols.

level. One of an ordered set of descriptions of a system

-294-

with different degrees of abstraction. (See also

hierarchical.)

message. An instantaneous transfer of information between

a system and its environment through one of the in-

terfaces of that system.

methodology. Used in the American sense, meaning a method

plus the appropriate organisational support.

minimality. (0Of a specification.) Stating no more in-

formation than is necessary to define the required
behaviour precisely.
model. An abstract description of a system written in

some formal language.

modular. (Of a design.) Organised as a set of building
blocks, each of which can be replaced or redesigned
independently of the others.

hatural. (Of a language.) Used in normal (i.e. written
and spoken) communication, unlike computer program-
ming languages which were designed for a particular
purpose and do not have a spoken form.

notation. A set of symbols and rules for their use. The
word is used to indicate a symbol system which is not
a complete language.

object. A model of a physical entity or concept, repre-
sented by the name of the object together with a col-

lection of properties which are relevant to the in-

tended use of that model.
operation. (In ASL.) A defined sequence of behaviour, or
a function. Used to avoid repeated writing of common

expressions.

=295=

operational. (Of .the semantics of a language.) Defined in

terms of the operation of a particular implementation
of the language, rather than in terms of an abstract
mathematical model.

parallel. Taking place at the same time. (See

concurrent.)

post-condition. One of a set of statements which will be

true after the completion of the operation to which

they refer, provided that the pre-conditions of that

operation were true when it commenced.

pre-condition. One of a set of statements which must be

true before a particular operation is invoked if that
operation is to produce the reguired result. (See the

related term, post-condition.)

primitive. (Of some term in a specification or program-

ming language.) Assumed as basic, and therefore not
defined 1in .terms of its construction from simpler
operations.

production. (In the definition of the syntax of a

language.) One of the rules which define the permit-
ted segquences of symbols taken from the alphabet of
the language.

program proving. The procedure of constructing a mathe-

matical proof which demonstrates that a computer pro-
gram performs precisely the operations reguired by

its specification.

proof. A constructive demonstration, in mathematical

logic, that one or more statements are the conse-

guences of a set of premisses.

=296~

property. An attribute of an object, which can be repre-
sented at any point in time by some value.

recursive-descent. A simple method of implementing the

syntax analysis of a language, using a set of subrou-
tines which call each other recursively during the

analysis of statements.

requirement. One part of the behaviour demanded of a sys-

tem by its specification.

rigorous. (Of a specification.) Expressed in a formal

language, but relying upon informal reasoning, rather

than a complete proof, for any demonstration of

correctness.
semantics. (Of a language.) The rules which identify

those statements conforming to the syntax of the lan-

guage which also have valid meaning.
software. Computer programs.

specification. A description of the reguired behaviour of

a system in terms of the responses which that system
will make to any stimuli which it receives.

statement. A seguence of symbols in some language which
form a logical unit of meaning. Adnalagous to a sen-
tence in a natural language.

sub-system. Some portion of a system which has been iden-

tified as an element in the hierarchical description

of that system. At the next lower level in the hier-
archy that sub-system is treated as a system itself.
syntax. (Of a language.) The set of rules which define
the valid sequences of symbols taken from the al-

phabet of the 1language. These rules are known as

=297=

productions.

system. Some object which has been identified as separate

from its environment so that it can be treated as the

intended product from the design process.
textual. (Of a language.) Presented as strings of
characters, rather than as pictures or diagrams. The

opposite of graphic.

theorem proving. The mathematical methods used in program

proving.
top-down. (Of a design method.) Strictly following the

development of a hierarchical set of descriptions of

the system from the most abstract down to the most
detailed.

tractability. (Of a language.) Ease of manipulation, in

the way that algebraic equations may be manipulated
without affecting their meaning.

transformation.

(i) On data. Some manipulation performed by a system

upon the data.
(ii) As a method of implementing a system. The deri-

vation of a product from a specification by a

sequence of small improvements, each of whiéh will.
not affect the correctness of the system.

type. (In a programming language.) "type" is an abbrevia-
tion of data type.

validation. Checking which involves the comparison of a

model with a set of mental concepts, and which can
therefore never demonstrate total correctness. (See

verification, which covers formal checking.)

-298~=

variable. (In a programming language.) A name which is
associated with a single storage 1location. At any
point in time, a wvariable has only one value, and

when this value is changed by an assignment statement

any previous value is destroyed.

verification. Checking by the comparison of two

descriptions, both written in formal languages. Thus,

verification can show that one of the descriptions is
a correct representation of the other in a way that

validation cannot.

-299-

REFERENCES

(Abrial, 1980) J.R.Abrial, "The Specification Language
Z - Syntax and Semantics", Oxford University Program-
ming Research Group, April 1980.

(Aho & Ullman, 1977) A.V.Aho and J.D.Ullman, "Principles
of Compiler Design", Addison-Wesley, Reading, Ma.,
1977 .

(Alberts, 1976) D.S.Alberts, "The Economics of Software
Quality Assurance", pp 433-432 in AFIPS National Com-
puter Conference, 1976.

(Alford, 1977} M.W.Alford, "A Requirements Engineering
Methodology for Real-time Processing Requirements",
IEEE Transactions on Software Engineering, Vol.SE-3,
No.l, pp 60-69, January 1977.

(Alford, 1979) M.W.Alford, Presentation on SREM at the
Symposium on Formal Design Methodology, - Cambridge,
England, April 1979.

(Ambler & Good, 1977) A.L.Ambler and D.I.Good, "Gypsy -
A Language for Specification and Implementation of
Verifiable Programs", SIGPLAN Notices, Vol.l2, No.3,
pp 1-10, March 1977.

(Aron, 1976) J.D.Aron, "Systems Development", Joint IBM
& University of Newcastle Seminar on Computing Sys-
tems Design, 1976.

(Ashby, 1969) W.R.Ashby, "An Introduction to
Cybernetics”, University Paperbacks, England, 1969.

(ASTG, 1981) "Report of the Advanced Software Technigues .
Group", British Telecom, July 1981.

(Backhouse, 1979) R.C.Backhouse, "Syntax of Programming
Languages”", Prentice-Hall International, London,
1979.

(Baker, 1972) F.T.Baker, "Chief Programmer Team", IBM
Systems Journal, Vol.ll, No.l, pp 56-73, 1972.

(Balzer, 1981) R.Balzer, "Transformational
Implementation: An Example", IEEE Transactions on
Software Engineering, Vol.SE-7, No.l, pp 3-14, Janu-
ary 1981.

-300-

(Balzer et al, 1978) R.Balzer, N.Goldman and D.Wile,
"Informality in Program Specifications", IEEE Tran-
sactions on Software Engineering, Vol.SE-4, No.2, pp
94-103, March 1978.

(Balzer & Goldman, 1979) R.Balzer and N.Goldman,
"Principles of Good Software Specification and Impli-
cations for Specification Language", pp 58-67 in
Proc. IEEE Conf. Specification of Reliable Software,
1979.

(Bell. ef wal, »19%73) C.G.Bell, J.Grason and A.Newell,
"Designing Computer and Digital Systems" , Digital
Press, Maynard, Ma., 1973.

(Bell & Newell, 1971) G.Bell and A.Newell, "Computer
Structures: Readings and Examples", McGraw-Hill, New
York, 1971

(Berild & Nachmens, 1978) S.Berild and S.Nachmens, "CS4 -
A Tool for Database Design by Infological
Simulation”, in "Tutorial: Software Methodology",
eds. C.V.Ramamoorthy and R.T.Yeh, IEEE Computer
Society, 1978.

(Biggerstaff, 1979) E.J.Biggerstaff, "The Unified Design
Specification System (UDS?)", pp 104-118 in Proc.
IEEE Conf. on Specifications of Reliable Software,
1979.

(Bjorner & Jones, 1978) D.Bjorner and C.B.Jones (eds),
"The Vienna Development Method: The Meta-Language",
Lecture Notes 1in Computer Science, No.61, Springer-
Verlag, Berlin, 1978.

(Blackledge(a), 1981) P.Blackledage, "The Selection of a
Specification Language", pp 25-30 in Proc. 4th. 1IEE
Int. Conf. on Software Engineering for Telecommunica-
tion Switching Systems, Warwick, England, July 1981.

(Blackledge(b), 1981) P.Blackledge, "An Introduction to
Specifications, Specification Languages and ASL", GEC
Internal Report, October 1981,

(Blackledge(a), 1982) P.Blackledge, "2 Specification Lan-
guage (ASL), Reference Manual", GEC Internal Report,
January 1982.

(Blackledge(b), 1982) P.Blackledge, "An Outline Method
for Writing Specifications in ASL", GEC 1Internal
Report, March 1982,

(Bobrow et al, 1977) D.G.Bobrow, R.M.Kaplan, M.Kay,
D.A.Norman, H.Thompson and T.Winograd, "GUS: A frame-
driven dialogue system", Artificial Intelligence,
Vol.8, pp 155-173, 1977.

=301~

(Boebert gt earlk,; 1979) W.E.Boebert, W.R.Franta and
H.Berg, "NPN: A Finite-State Specification Technique
for Distributed Software", pp 139-149 in Proc. IEEE
Conf. on Specifications of Reliable Software, 1979.

(Boute, 1981) R.T.Boute, "Towards a Theory of System
Semantics", Bell Telephone Mfg. Cy., Belgium, 1981,

(Bouteille, 1978) D.Bouteille, "Un Diagramme Fonctionnel
au Service des Automatismes Pnuematigues", Energie
Fluide, No.104, pp 29-34, June 1978.

(Bown, 1979) G.C.S.Bown, "HARTRAN: A Hardware Descrip-
tion Language for Digital System Design", Hirst
Research Centre Report No. 16447A, November 1978.

(Boyer & Moore, 1979) R.S.Boyer and J.S.Moore, "A Com-
putational Logic", Academic Press, London, 1979,

(Braek, 1979) R.Braek, "Functional Specification and
Description Languages as a Practical Tool for Im-
proved System Quality", pp 1.3.1.1-9 in Proc. Telecom
79, Geneva, September 1979.

(Brooks, 1975) F.P.Brooks Jr., "The Mythical Man-month:
Essays on Software Engineering", Addison-Wesley Inc.,
Reading, Ma., 1975.

(BTS, 1981) "Functional Signalling and Interface Specifi-
cation for R2 MFC as Used in China, Columbia, 1India
and- Portugal", Document TF.20.03.06, British Telecom-
munications Systems Ltd., August 1981.

(Bubenko & Kallhammer, 1971) J.Bubenko and O.Kallhammer,
"CADIS Computer Aided Design of Information Systems",
Proc. 1lst. Scandinavian Workshop on Computer-aided
Information Systems Analysis and Design, Denmark,
April 1971.

(Burstall & Goguen, 1977) R.M.Burstall and J.A.Goguen,
"Putting Theories Together to Make Specifications”",
pp 1045-1058 in Proc 5th Int. Jnt. Conf. on Artifi- .
cial Intelligence, 1977.

(Caine & Gordon, 1975) S.H.Caine and E.K.Gordon, "PDL -
A tool for software design", pp 271-276 in AFIPS Con-
ference Proceedings, Vol.44, National Computer
Conference, 1975.

(Campbell & Habermann, 1974) R.H.Campbell and
A.H.Habermann, "The Specification of Process Syn-
chronisation by Path Expressions",pp 89-102 in Lec-
ture Notes in Computer Science, No.l6, Springer-
Verlag, Berlin.

(CCITT, 1980) CCITT Plenary Assembly Document No.20
(Study Group XI, Contribution No.395), Draft Recom-

=302~

mendations 2101-2104, "Functional Specification and
Description Language (SDL)", June 1980.

(Chen, 1976) P.P.S.Chen, "The Entity-Relationship Model
- Towards a Unified View of Data", ACM Transactions
on Database Systems, Vol.l, No.l, pp 9-36, March
1976.

(Clark, 1978) 1I.A.Clark, "STREMA: Specifying Application
Processes Using Streams", Computer Journal, Vol.21,
No.l, pp 25-30, February 1978.

(Cleaveland, 1980) J.C.Cleaveland, "Mathematical
Specifications™, SIGPLAN Notices, Vol.15, No.l2,
pp31-42, December 1980.

(Clocksin & Mellish, 1981) W.F.Clocksin and C.S.Mellish,
"Programming in Prolog", Springer-Verlag, Berlin,
1981.

(CODASYL, .1962) CODASYL Language Structure Group, "An
Information Algebra, Phase I report", Communications
of the ACM, Vol.5, No.4, pp 190-204, April 1962.

(Codd, 1970) E.F.Codd, "A Relational Model of Data for
Large Shared Data Banks", Communications of the ACM,
Vol.l3, No.6, pp 377-387, June 1970.

(Cohen, 1980) B.Cohen, "System Specification - Hardware

and Software - as Practised in the Telecommunications
Industry", CREST Course, Brunel University, July
1980.

(Cohen, 1981) B.Cohen, "Further Thoughts on the Contrac-
tual Model of Product Development", pp 61-68 in Proc.
System Design Seminar "Emerging Formalisms", S.T.L.
Ltd., Harlow, England, February 1981.

(Cohen & Burns, 1978) B.Cohen and G.Burns, "The Contrac-
tual Methodology", S.T.L. Internal Report, December
19785

(Cole, 1980) A.J.Cole, "Macroprocessors", 2nd. Edition,
Cambridge University Press, England, 1980.

(Corker & Coakley, 1976) M.Corker and F.P.Coakley,
"Automatic Code Generation for SPC Call Processing",
pp 27-30 in Second Internat. IEE Conf. on Software
Engineering for Telecommunication Switching Systems,
1976.

(Cunningham & Kramer, 1977) R.J.Cunningham and J.Kramer,
"An Approach to the Design of Distributed Computer
Control System Software Using a Processor Module
Concept", pp 79-85 in Proc. IEE Int. Conf. on Dis-
tributed Control Systems, September 1977.

=303=

(Dahl & Nygaard, ‘1966) O-J.Dahl and K.Nygaard, "SIMULA An
Algol-based Simulation Language", Communications of
the ACM, Vol.9, No.9, pp 671-678, 1966.

(Davie & Morrison, 1981) A.J.T.Davie and R.Morrison,
"Recursive Descent Compiling", Ellis Horwood Ltd.,
Chichester, 1981.

(Davis & Rauscher, 1979) A.M.Davis and T.G.Rauscher,
"Formal Techniques to Ensure Correctness in Require-
ments Specifications", pp 15-35 in Proc. IEEE Conf.
on Specifications of Reliable Software, 1979.

(Davis & Vick, 1977) C.G.Davis & C.R.Vick, "The Software
Development System", IEEE Transactions on Software
Engineering, Vol SE-3, No.l, pp 69-84, January 1977.

(Dawkins, 1982) P.H.Dawkins, "Lead Time Reduction for New
Products", PhD dissertation, University of Aston in
Birmingham, 1982.

(Deen, 1977) S.M.Deen, "Fundamentals of Database
Systems”, Macmillan Press, London, 1977.

(Demuynck & Meyer, 1979) M.Demuynck and B.Meyer, "Les
Langages de Specification", E.D.F.- Bulletin de 1la
Direction des Etudes et Recherches Serie C -
Mathematiques, Informatique, No.l, pp 39-60, 1979.

(Dietrich, 1979) R.Dietrich, "On a Compilable Call
Processing Specification", pp 1173-1179 1in Proc.
Internat. Switching Symposium, Paris, 1979.

(Dijkstra, 1972) E.W.Dijkstra, in "Structured
Programming", ed. O0-J.Dahl et al, Academic Press, New
Yor, L9y

(Dijkstra, 1976) E.W.Dijkstra, "A Discipline of
Programming”, Prentice-Hall, Englewood Cliffs, NJ,
1976.

(DoI(a), 1981) "Ada-based System Development Methodology .
Study Report", Department of Industry, September
1981.

(DoI(b), 1981) "United Kingdom Ada Study Final Technical
Report", Department of Industry, July 1981.

(Duley & Dietmeyer, 1968) J.R.Duley and D.L.Dietmeyer, "A
Digital System Design Language", IEEE Transactions on
Computers, Vol.C-17, pp 850-861, 1968.

(Elton & Messel, 1978) L.R.B.Elton and H.Messel, "Time
and Man", Pergammon Press, England, 1978.

(EODST, 1981) "National R2 Signalling System (National)
as Used in Bahrain", EODST CP(81)20, British Telecom-

-304-

munications Systems Ltd., 1981.

(Estrin, 1978) G.Estrin, "A Methodology for Design of
Digital Systems - Supported by SARA at the Age of
One", pp 2313-326 in AFIPS Conference Proceedings,
Vol.47, 1978.

(Falla, 1981) M.Falla, "The Gamma Software Engineering
System", Computer Journal, Vol.24, No.3, pp 235-242,
August 1981.

(Fitter & Green, 1979) M.Fitter and T.R.G.Green, "When Do
Diagrams Make Good Computer Languages?", Int. J.
Man-Machine Studies, Vol.1ll, No.2, pp 235-261, 1979.

(Floyd, 1979) R.W.Floyd, "The Paradigms of Programming",
Communications of the ACM, Vol.22, No.8, pp 455-460,
August 1979.

(Frankowski & Franta, 1980) E.N.Frankowski and
W.R.Franta, "A Process Oriented Simulation Model Spe-
cification and Documentation Language", Software -
Practice & Experience, Vol.1l0, pp 721-742, 1980.

(Gaines, 1976) B.R.Gaines, "Foundations of Fuzzy
Reasoning”", Int. J. Man-Machine Studies, Vol.8, pp
623-668, 1976. ;

(Galvin, 1981) J.L.Galvin, "Proposals for an All-purpose
R2 Signalling Specification to Permit a Wide Range of
R2 Variant Signalling Systems", Report input to
EODST, British Telecommunications Systems Ltd., Janu-
ary 1981.

(Gane & Sarson, 1979) C.P.Gane and T.Sarson, "Structured
Systems Analysis: tools and techniques", Prentice-
Hall Inc., Englewood Cliffs, NJ., 1979.

(Gannon & Horning, 1975) J.D.Gannon and J.J.Horning,
"Language Design for Programming Reliability", IEEE
Transactions on Software Engineering, Vol.SE-1. No.2,
pp 179-191, June 1975.

(Gatto, 1974) 0.T.Gatto, "AUTOSATE", Communications of
the ACM, Vol.7, No.7, pp 425-432, July 1964.

(Genrich et al, 1980) BH.J.Genrich, K.Lautenbach and
P.S.Thiagarajan, "Elements of General Net Theory", pp
21-163 in Lecture Notes in Computer Science, No.84,
Springer-Verlag, Berlin, 1980.

(Gerhart & Yelowitz, 1976) S.Gerhart and L.Yelowitz,
"Observations of Fallibility in Applications of Mod-
ern Programming Methodology", IEEE Transactions on
Software Engineering, Vol.SE-2, ©No.3, pp 195-207,
September 1976.

=305~

(Goguen, 1979) . J.A.Goguen, "An Introduction to OBJ: A
Language for Writing and Testing Formal Algebraic
Program Specifications", pp 170-189 in Proc. IEEE
Conf. on Specifications of Reliable Software, 1979,

(Goguen et al, 1978) J.A.Goguen, J.W.Thatcher and
E.G.Wagner, "An Initial Algebra Approach to the
Specification, Correctness and Implementation of Ab-
stract Data Types", pp 80-149 in "Current Trends 1in
Programming Methodology , Vol.IV", ed. R.T.Yeh,
Prentice-Hall Inc, Englewood Cliffs, NJ., 1978.

(Green, 1977) T.R.G.Green, in Panel Discussion, p. 179 in
"Software Engineering", ed. R.H.Perrott, Academic
Press, London, 1977.

(Green, 1980) T.R.G.Green. "Programming as a Cognitive
Activity", pp 271-320 in "Human Interaction with
Computers". eds. H.T.Smith & T.R.G.Green, Academic
Press, New York, 1980.

(Green et al, 1981) T.R.G.Green, M.E.Sime and
M.J.Fitter, "The Art of ©Notation", pp 221-251 in
"Computing Skills and the User Interface", eds.
M.J.Coombs and J.L.Alty, Academic Press, London,
1981.

(Gries, 1971) D.Gries, "Compiler Construction for Digi-
tal Computers", Wiley, New York, 1971.

(Grindley, 1975) K.Grindley, "Systematics - A New Ap-
proach to Systems Analysis", McGraw-Hill, London,
1975 ;

(Guttag, 1977) J.Guttag, "Abstract Data Types and the
Development of Data Structures", Communications of
the ACM, Vo0l.20, No.6, pp 396-404, June 1977.

(Hamilton & Zeldin, 1976) M.Hamilton and S.Zeldin, "High
Order Software: A Methodology for Defining
Software", IEEE Transactions on Software Engineering,
Vol.SE-2, No.l, pp 9-32, March 1976.

(Hammer et al, 1977) M.Hammer, W.G.Howe, V.J.Kruskal
andI.Wladawsky, "A Very High Level Programming Lan-
guage for Data Processing Applications", Communica-
tions of the ACM, Vol.20, No.ll, pp 832-840, November
1971

(Hantler & King, 1975) S.L.Hantler and J.C.King, "An In-
troduction to Proving the Correctness of Programs",
Computing Surveys, Vol.8, No.3, pp 331-335, September
1976.

(Harrison, 1974) M.A.Harrison, "Some Linguistic Issues

in Design", pp 405-415 in "Basic Questions of Design
Theory", ed. W.R.Spillers, North-Holland, 1974.

=306~

(Hartley & Burnhill, 1977) J.Hartley and P.Burnhill,
"Fifty Guidelines for Improving Instructional Text",
Programmed Learning and Educational Technology,
Vol.1l4, pp 65-73, 1977.

(Hayakawa, 1978) S.I.Hayakawa, "Language in Thought and
Action", 4th. edition, Harcourt Brace Jovanovich, New
York, 19i18.

(Hemdal, 1973) G.Hemdal, "The Function Flowchart: A Spe-
cification and Design Tool for SPC Exchanges", pp
262-270 in Proc. IEE Internat. Conf. on Software En-
gineering for Telecommunication Switching Systems,
1973.

(Henninger, 1979) K.L.Henninger, "Specifying Software
Requirements for Complex Systems : New Techniques and
their Application", pp 1-14 in Proc IEEE Conf. on
Specifications of Reliable Software, 1979.

(Hewitt, 1977) C.Hewitt, "Viewing Control Structures as
Patterns of Passing Messages", Artificial
Intelligence, Vol.8, pp 323-364, 1977.

(Hewitt et al, 1979) C.Hewitt, G.Attardi and
H.Lieberman, "Specifying and Proving Properties of
Guardians for Distributed Systems", MIT Artificial
Intelligence Laboratory, A.I. Memo 505, June 1979.

(Hill, 1972) 1I.D.Hill, "Wouldn't it be nice if we could
write computer programs in ordinary English - or
would it?", Computer Bulletin, Vol.1l6, No.6, pp 306-
312, June 1972.

(Bill & Peterson, 1973) F.J.Hill and G.R.Peterson,
"Digital Systems: Hardware Organisation and Design",
Wiley, New York, 1973.

(Hoare, 1969) C.A.R.Hoare, "An Axiomatic Basis for Com-
puter Programming"”, Communications of the ACM,
Vol.l2, No.l0, October 1969.

(Hoare, 1973) C.A.R.Hoare, "Hints on Programming Lan-
guage Design", Stanford University Technical Report
No CS-73-403, 1973.

(Hobbs, 19771 J.R.Hobbs, "What the Nature of Natural
Language Tells Us About How to Make Natural-language-
like Programming Languages More Natural", SIGPLAN
Notices, Vol.12, No.8, pp 85-93, August 1977.

(Holbeck-Hanssen et al, 1975) E.Holbeck-Hanssen,
P.Handlykken and K.Nygaard, "System Description and
the Delta Language", Delta Project Report No.4, Nor-
wegian Computer Centre Pub. No.523, Oslo, September
1995,

=307~

(Hopcroft & Ullman) J.E.Hopcroft and J.D.Ullman, "Formal
Languages and Their Relation to Automata", Addison-
Wesley, Reading, Ma., 1969.

(Humby, 1973) E.Humby, "Programs from Decision Tables",
Macdonald Ltd., London, 1973.

(IBM, 1976) "OS PL/I Checkout and Optimising Compilers:
Language Reference Manual", Fifth Edition, IBM
Corporation, October 1976. '

(IBM, 1978) "0S/VS2 TSO Terminal Users Guide", Fifth
Edition, IBM Corporation, June 1978.

(Ichbiah et al, 1979) J.D.Ichbiah, B.Krieg-Bruckner,
B.Wichmann, H.F.Ledgard, J-C.Heliard, J-R.Abrial,
G.P.Barnes and O.Roubine, "Preliminary Reference Man-
ual for the Ada Programming Language", SIGPLAN
Notices, Vol.1l4, No.6, Part A, June 1979.

(Jackson, 1981) M.A.Jackson, "System Development Method:
JSD", IEE Colloguium on Formal Design Technigues for
Microprocessor Systems, May 1981.

(Jaderlund, 1980) C.Jaderlund, "Systematrix - Concepts",
Systematic AB, Stockholm, Sweden, 1980.

(James, 1981) E.B.James, "The User Interface: How We May
Compute", pp 337-371 in "Computing Skills and the
User Interface", eds. M.J.Coombs and J.L.Alty,
Academic Press, London, 1981.

(James & Partridge, 1973) E.B.James and D.P.Partridge,
"Adaptive Correction of Program Statements”", Communi-
cations of the ACM, Vol.l6, pp 27-37, 1973.

(Jensen et al, 1979) K.Jensen, M.Kyng and O.L.Madsen, "A
Petri Net Definition of a System Description
Language", pp 348-368 in Lecture Notes in Computer
Science, No.70, Springer-Verlag, Berlin, 1979.

(Jensen & Wirth, 1975) K.Jensen and N.Wirth, "Pascal .
User Manual and Report", 2nd. edition, Springer-
Verlag, Berlin, 1975.

(Johnson, 1979) S.C.Johnson, "YACC - Yet Another Compiler
Compiler", UNIX Programmer's Manual, Volume 2, Sec-
tion 19, Digital Egquipment Corp., 1979.

(Jones, 1979) T.C.Jones, "A Survey of Programming Design
and Specification Techniques", pp 91-103 in Proc.
IEEE Conf. on Specifications of Reliable Software,
1979

(Jones(a), 1980) C.B.Jones, "Software Development: A
Rigorous Approach", Prentice-Hall, London, 1980.

=308=

(Jones(b), 1980) T.C.Jones, "Programming Quality and
Productivity: An Overview of the State of the Art",
I.T.T. Programming Technology Centre, June 1980.

(Jones & Kirk, 1979) W.T.Jones and S.A.Kirk, "APL as a
Software Design Specification Language", Computer
Journal, Vol.23, No.3, pp 230-232, June 1979.

(Karp, 1978) A.Karp, "Develop Software with Flowgrams",
Electronic Design, Vol. 26, No.16, PP 110~
114,September 1978.

(Kawashima ekt al - 19710 H.Kawashima, K.Futami and
S.Kano, "Functional Specification of Call Processing
by State Transition Diagram", IEEE Transactions on
Communication Technology, Vol.COM-19, No.5, pp 581~
887, October 1971

(Kent, 1977) W.Kent, "Entities and Relationships 1in
Information", in "Architecture and Models in Data
Base Management Systems", ed. G.M.Nijssen, North Hol-
land Pub. Co., 1977.

(Kornfeld & Hewitt, 1981) W.A.Kornfeld and C.Hewitt,
"The Scientific Community Metaphor", IEEE Transac-
tions on Systems, Man and Cybernetics, Vol.SMC-11,
No.l, pp 24-33, January 1981.

(Kornhauser & Sheatley, 1965) A.Kornhauser and
P.B.Sheatley, "Questionnaire Construction and Inter=-
view Procedure", pp 546-587 in "Research Methods in

Social Relations", eds. C.Selltiz, M.Jahoda,
M.Deutsch and S.W.Cook, Methuen & Co. Ltd., London,
1965.

(Krieg-Bruckner & Luckham, 1980) B.Krieg-Bruckner and
D.C.Luckham, "ANNA: Towards a Language for Annotating
Ada Programs", SIGPLAN Notices, Vol.1l5, No.ll, pp
128-138, November 1980.

(Kuhn, 1970) T.S.KRuhn, ™"The Structure of Scientifie
Revolutions", 2nd. edition, Univ. of Chicago Press,
1970.

(Lamport, 1978) L.Lamport, "Time, Clocks and the Ordering
of Events in a Distributed System", Communications of
the ACM, Vol.21, No.7, pp 558-565, July 1978,

(Lattanzi, 1980) L.D.Lattanzi, "An Analysis of the Per-
formance of a Software Development Methodology", GTE
Automatic Electric Journal, pp 41-46, March 1980.

(Lauer et al, 1979) P.E.Lauer, P.R.Torrigiani and
M.W.Shields, "COSY - A System Specification Language
Based on Paths and Processes", BActa Informatica,
Vol.l2, pp 109-158, 1979.

~309=

(Lauther, 1979) U.Lauther, "A Min-cut Placement Algorithm
for General Cell Assemblies Based on a Graph
Representation", pp 1-10 in Proc. 1l6th Design Automa-
tion Conference, June 1979.

(Laventhal, 1979) M.S.Laventhal, "Synchronisation Spe-
cifications for Data Abstractions", pp 119-125 in
Proc. IEEE Conf. on Specifications of Reliable
Software, 1979,

(Lawson, 1977) H.W.Lawson Jr., "Programming, Architec~-
ture and Complexity", Report LITH-MAT-R-1977-28,
Linkoping University, Sweden, 1977.

(Lehman, 1979) M.M.Lehman, "The Environment of Design
Methodology", keynote address to the Symposium on
Formal Design Methodology, Cambridge, England, April
1979.

(Lehman, 1981) M.M.Lehman, "The Environment of Program
Development and Maintenance - Programs, Programming
and Programming Support", Dept. of Computing Report
81/2, Imperial College, London, January 1981.

(Lewin, 1977) D.Lewin, "Computer-Aided Design of Digital
Systems", Edward Arnold, London, 1977.

(Lindgreen, 1973) P.Lindgreen, "The Development of a
Computerised Tool for Systems Design based on the
Qualitative Information Theory", PP 63-83 1in
"Approaches to System Design", NCC, Manchester, 1973.

(Lindstrom & Skansholm, 1981) H.Lindstrom and
J.Skansholm, "How to Make Your Own Simulation
System", Software-Practice & Experience, Vol.ll,
No.6, pp 629-637, June 1981.

(Liskov & Zilles, 1978) B.Liskov and S.Zilles, "An In-
troduction to Formal Specifications of Data
Abstractions", pp 1-32 in "Current Trends in Program-
ming Methodology, Vol.I", ed. R.T.Yeh, Prentice-Hall
Inc., Englewood Cliffs, NJ., 1978.

(Losleben, 1980) P.Losleben, "Computer Aided Design for
VLSI", in "Very Large Scale Integration (VLSI) : Fun=-
damentals and Applications", ed. D.F.Barbe, Springer-
Verlag, Berlin, 1980.

(Mackie, 1979) L.Mackie, "Software Reliability : Under-
standing and Improving It", pp 31-1 to 31-10 in Proc.
AGARD Conf. Avionics Reliability, its Technigues and
Related Disciplines, 1979.

(Mackie, 1981) L.Mackie, Presentation to the GEC Software
Engineering Group, February 1981.

(Malhotra et al, 1980) A.Malhotra, J.C.Thomas,

=310~

J.M.Carroll and L.A.Miller, "Cognitive Processes 1in
Design", Int. J. Man-Machine Studies, Vol.l12, pp 119-
140, 1980.

(Marconi Radar, 1980) "FDL - Draft Issue", Marconi Radar
Systems Ltd., Chelmsford, September 1980.

(Marcotty & Ledgard, 1976) M.Marcotty and H.F.Ledgard, "A
Sampler of Formal Definitions”, ACM Computing
Surveys, Vol.8, No.2, pp 191-276, June 1976.

(Merlin, 1974) P.M.Merlin, "A Study of the Recoverability
of Computing Systems", Ph.D. Thesis, The University
of California, Irvine, 1974.

(Miller, 1967) G.A.Miller, "The Psychology of
Communication: Seven Essays", Penguin Books Ltd.,
Harmondsworth, 1967.

(Mills, 1975) H.D.Mills, "How to Write Correct Programs
and Know it", Proc. IEEE Conf. on Reliable Software,
1975; appeared in SIGPLAN Notices, Vo0l.10, No.6, pp
363-370, June 1975.

(Mills & Walter, 1978) G.H.Mills and J.A.Walter,
"Technical Writing, 4th Edition", Holt Rinehart and
Winston, New York, 1978.

(Milner, 1980) R.Milner, "A Calculus of Communicating
Systems", Lecture Notes in Computer Science, No0.92,
Springer-Verlag, Berlin, 1980.

(Moore, 1956) E.F.Moore, "Gedanken Experiments on
Sequential Machines", in "Automata Studies", Prince-
ton University Press, Princeton, NJ, 1956.

(Moriconi, 1979) M.S.Moriconi, "A Designer/Verifier's
Assistant", IEEE Transactions on Software
Engineering, Vol.SE-5, No.4, pp 387-401, July 1979.

(Mullery, 1979) G.P.Mullery, "CORE - A Method for Con-
trolled Requirement Specification", pp 126-136 in °
Proc. 4th. Int. Conf. on Software Engineering, Sep-
tember 1979.

(Musser, 1979) D.R.Musser, "Abstract Data Type Specifi-
cation in the Affirm System", pp 47-57 in Proc. IEEE
Conf. on Specifications of Reliable Software, 1979.

(Nakajima et al, 1977) R.Nakajima, M.Honda and
H.Nakahara, "Describing and Verifying Programs with
Abstract Data Types", pp 527-555 in "Formal Descrip-
tions of Programming Concepts", ed. E.J.Neuhold,
North-Holland, 1977.

(Naur, 1960) P.Naur (ed), "Report on the Algorithmic
Language ALGOL60", Communications of the ACM, Vol.3,

-311-

pp 299-314, 1960.

(Naur & Randell, 1969) P.Naur and B.Randell (eds) ,
"Software Engineering", NATO Science Committee, Janu-
ary 1969.

(NCC, 1969) "DATAFLOW - Project Evaluation Report", NCC,
Manchester, September 1969.

(Neumann et gl 1980) P.G.Neumann, R.S.Boyer,
R.J.Feiertag, K.N.Levitt and L.Robinson, "A Provably
Secure Operating System: The System, its Applications
and Proofs", Report CSL-116, SRI International Inc.,
Menlo Park, CA, May 1980.

(Nissen & Geiger, 1979) J.C.D.Nissen and G.V.Geiger, "A
Fault-tolerant Multimicroprocessor for Telecommunica-
tions and General Applications", GEC Journal of
Science and Technology, Vol.45, No.3, pp 116-122,
1979.

(Noe, 1978) J.D.Noe, "Hierarchical Modelling with Pro-
Nets", pp 155-160 in Proc. National Electronics
Conference, 1978.

(Nylin & Harvill, 1976) W.C.Nylin Jr. and J.B.Harvill,
"Multiple Tense Computer Programming”, SIGPLAN
Notices, Vol.1ll, No.1l2, pp 74-93, December 1976.

(Parnas, 1972) D.L.Parnas, "A Technigque for Software
Module Specification with Examples", Communications
of the ACM, Vol.1l5, No.5, pp 330-336, May 1972.

(Peterson, 1980) J.L.Peterson, "Design for a Spelling
Program: An Experiment in Program Design", Lecture
Notes in Computer Science No. 96, Springer-Verlag,
Berlin, 1980.

(Peterson, 1981) J.L.Peterson, "Petri Net Theory and the
Modeling of Systems", Prentice-Hall 1Inc., Englewood
gliffs, NI, 198%,

(Petri, 1962) C.A.Petri, "Communication with Automata",
Ph.D. dissertation, University of Bonn, 1962.

(Petri, 1979) C.A.Petri, "Concurrency", pp 251-260 in
Lecture Notes in Computer Science, No. 84, Springer-
Verlag, Berlin, 1980.

(Popper, 1974) K.R.Popper, "Conjectures and Refutations",
5th. edition, Routledge and Kegan Paul, London, 1974,

(POR 3231, 1976) Post Office Requirements for Telecommu-
nications No. 3231, "Digital Main Network Switching
Centre", Issue 4, British Post Office Telecommunica-
tions Headguarters, August 1976.

=312-

(Posner & Strike, 1976) G.J.Posner and K.A.Strike, "A
Categorisation Scheme for Principles of Sequencing
Content", Review of Educational Research, Vol.46, pp
685-690, 1976.

(Pratt, 1975) T.W.Pratt, "Programming Languages: Design
and Implementation", Prentice-Hall, Englewood Cliffs,
Ndwiy: 19755

(Quirk, 1978) W.J.Quirk, "The Automatic Analysis of For-
mal Real-time System Specifications", Report AERE-
R9046, U.K.A.E.A., Harwell (H.M.S.0.), 1978.

(Ramamoorthy & So, 1978) C.V.Ramamoorthy and H.H.So,
"Software Requirements and Specifications: Status and
Perspectives", pp 43-164 in "Tutorial: Software
Methodology", eds. C.V.Ramamoorthy and R.T.Yeh, IEEE
Computer Society, 1978.

(Redwine et al, 1981) S.T.Redwine, E.D.Siegel and
G.R.Berglass, "Candidate Thrusts for the Software
Technology Initiative", Report AD-A102180, United
States Department of Defence, May 1981.

(Riddle et al, 1979) W.E.Riddle, J.H.Sayer, A.R.Segal,
A.M.Stavely and J.C.Wileden, "Abstract Monitor
Types", pp 126-138 in Proc. IEEE Conf. on Specifica-
tions of Reliable Software, 1979.

(Robinson, 1976) L.Robinson, "Specification Techniques”,
pp 470-478 in Proc. 13th. Annual Design Automation
Conference, 1976.

(Rose & Welsh, 1981) G.A.Rose and J.Welsh, "Formatted
Programming Languages", Software - Practice and
Experience, Vol. 11, pp 651-669, 1981.

(Rose et al, 1972) C.W.Rose, F.T.Bradshaw and
S.W.Katzke, "The LOGOS Representation System", pp
187-190 in IEEE Computer Conference Digest, September
1512,

(Ross, 1977) D.T.Ross, "Structured Analysis (SA): 2
Language for Communicating Ideas", IEEE Transactions
on Software Engineering, Vol.SE-3, No.l, pp 16-34,
January 1977.

(RSRE, 1978) "Phe Official definition of MASCOT",
R.S.R.E. L-303(S), Malvern, March 1978.

(Sandewall, 1978) E.Sandewall, "Programming in an In-
teractive Environment", Computing Surveys, Vol.l1l0,
No.l, pp 35-71, 1978.

(Schank et al, 1973) R.C.Schank, N.Goldman, C.J.Rieger

III and C.Riesbeck, "MARGIE: Memory, Analysis,
Response Generation and Inference on English", pp

=313~

255-261 in Proc. 3rd. Joint Int. Conf. on Artificial
Intelligence, August 1973.

(Schueler, 1977) B.M.Schueler, "Update Reconsidered", pp
149-164 in "Architecture and Models 1in Database
Systems", ed. G.M.Nijssen, North-Holland, 1977.

(Schwartz, 1973) J.T.Schwartz, "On Programming: An In-
terim Report on the SETL - Installment 1:
Generalities", Computer Science Dept., Courant Insti-
tue of Mathematical Sciences, New York University,
1973.

(Schwartz & Melliar-Smith, 1980) R.L.Schwartz and
P.M.Melliar-Smith, "Temporal Logic Specification of
Distributed Systems", pp 446-454 in Proc. 2nd. Int.
Conf. on Distributed Systems, Paris, April 1981.

(SDL, 1980) "A Technical Overview of the PSL/PSA Software
System”, Systems Designers Ltd., Camberley, 1980.

(Sernadas, 1979) A.Sernadas, "Temporal Aspects of Logi-
cal Procedure Definition", London School of
Economics, December 1979.

(Shaw, 1980) P.D.Shaw, "Modelling of Telephone Call
Processing Using Petri Nets", Ph.D. dissertation,
University of Essex, July 1980.

(Shiel, 1981) B.A. Shiel, "The Psychological Study of

Programming", Computing Surveys, Vol.1l3, WNo.l, pp
101-120, March 1981.

(Siegel, 1956) S.Siegel, "Nonparametric Statistics",
McGraw-Hill, New York, 1956.

(Simpson, 1969) H.R.Simpson, "SAG: A Syntax Analyser
Generator", Technical Note 739, Royal Radar
Establishment, October 1969.

(Sleight & Kossiakoff, 1974) T.B.Sleight and
A.Kossiakoff, "Use of Graphics 1in Software Design,
Development and Documentation", Report No. APL-TG-
1242, John Hopkins University, Silver Spring, Md.,
April 1974.

(Sloman, 1971) A.Sloman, "Interaction Between Philosophy
and Artificial Intelligence: The Role of Intuition
and Non-logical Reasoning in Intelligence", Artifi-
cial Intelligence, Vol.2, Nos.3&4, pp 209-225, 1971.

(Smith & Smith, 1977) J.M.Smith and D.C.P.Smith,
"Database Abstractions - Aggregation and
Generalisation", ACM Transactions on Database
Systems, Vol.2, No.2, pp 105-133, June 1977.

(Solvberg, 1973) A.Solvberg, "Formal Systems Descrip-

-314-

tions in Information Syétems Design", pp 85-93 in
"Approaches to System Design", NCC, Manchester, 1973.

(Stamper, 1977) R.K.Stamper, "The LEGOL 1 Prototype Sys-
tem and Language", Computer Journal, Vol.20, No.2, pp
102-108, 1977.

(Stay, 1976) J.FP.Stay, "HIPO and 1Integrated Program
Design", IBM Systems Journal, Vol.1l5, No.2, pp 143-
154, 1976.

(Steele & Sussman, 1979) G.L.Steele Jr. and G.J.Sussman,
"Constraints", APL Quote Quad, Vol.9, No.l, Part 1,
pp 208-225, June 1979.

(Stevens et al, 1974) W.P.Stevens, G.J.Myers and
L.L.Constantine, "Structured Design", IBM Systems
Journal, 1974.

(Stewart, 1975) I.Stewart, "Concepts of Modern
Mathematics", Penguin Books Ltd., Harmondsworth,
1975.

(Stoy, 1977) J.Stoy, "Denotational Semantics", MIT
Press, Cambridge, Ma., 1977.

(Swartout, 1982) W.Swartout, "GIST English Generator",
USC/Information Sciences Institute, Marina del Rey,
Ch.; April 1982.

(System X, 1979) System X Standards Document,
"Progression/Flow Chart Codes of Practice", Post Of-
fice Telecommunications, 1979.

(System X, 1981) "System X Engineering Handbook", British
Telecom, 1981.

(Szygenda, 1980) S.A.Szygenda, "Design Language/Register
Transfer Level Simulator (DL/RTL) Feasibility Study
Report", CCSS Inc., Austin, Texas, February 1980.

(Taylor, 1981) P.Taylor, "The Semantics of Signalling",
pp 69-82 in Proc. of System Design Seminar "Emerging
Formalisms", STL, Harlow, February 1981.

(Teichrow & Hershey, 1977) D.Teichrow and E.A.Hershey
III, "PSL/PSA: A Computer-Aided Technigue for Struc-
tured Documentation and Analysis of Information
Processing Systems", IEEE Transactions on Software
Engineering, Vol.SE-3, No.l, pp 41-48, January 1977.

(Teitelman, 1978) W.Teitelman, "A Display Oriented Pro-
grammers Assistant”, 1Int.J. Man-Machine Studies,
Vol.ll, No.2. pp 157-187, 1978.

(Tennent, 1977) R.D.Tennent "Language Design Methods
Based on Semantic Principles", Acta Informatica,

=315~-

Vol.8, pp 97-112, 1977.

(Thatte, 1980) P.P.Thatte, "Interface Agreement
Processor", GTE Automatic Electric Journal, pp 54-60,
March 1980.

(Thoma=s. & Carroll,; - 1981) J.C.Thomas and J.M.Carroll,
"Human Factors in Communication", IBM Systems
Journal, Vol.20, No.2, pp 237-263, 1981.

(Turner, 1979) D.A.Turner, "Another Algorithm for Bracket
Abstraction", Journal of Symbolic Logic, Vol.44,
No.2, pp 267-270, June 1979.

(Walters, 1979) S.J.Walters, "Systems Specifications",
NCC Publications, Manchester, 1979.

(Wasserman & Stinson, 1979) A.I.Wasserman and
S.K.Stinson, "B Specification Method for 1Interactive
Information Systems", pp 68-79 in Proc. IEEE Conf. on
Specifications of Reliable Software, 1979.

(Wayne, 1973) M.N.Wayne, "Flowcharting Concept and Data
Processing Technigques", Canfield Press, 1973.

(Weinberg, 1971) G.M.Weinberg, "The Psychology of Com-
puter Programming", Von Nostrand Reinhold, New York,
1971,

(Winograd, 1972) T.Winograd, "Understanding Natural
Language", Academic Press, London, 1972.

(Winograd, 1979) T.Winograd, "Beyond Programming
Languages", Communications of the ACM, Vo0l.22, No.7,
pp 391-401, July 1979.

(Winston, 1976) P.H.Winston, "Artificial Intelligence",
Addison-Wesley, Reading, Ma., 1976.

(Wirth, 1974) N.Wirth, "On the Design of Programming
Languages", pp 386-393 in Proc. Information Process-
ing 74, North Holland Pub.Co., 1974.

(Wirth(a), 1977) N.Wirth, in Panel Discussion, pp 179-180
in "Software Engineering", ed. R.H.Perrott, Academic
Press, London, 1977.

(Wirth(b), 1977) N.Wirth, "What Can We Do About the Un-
necessary Diversity of Notation for Syntactic
Definitions?", Communications of the ACM, Vo0l.20,
No.1l1l, pp 822-823, November 1977.

(Wood, 1980) R.J.Wood, "A Program Model and Knowledge
Base for Computer Aided Program Synthesis", pp 77-78
in Proc. lst. 3Annual National Conf. on Artificial
Intelligence, Stanford, CA, August 1980.

-316~-

(Wulf et al, 1976) W.A.Wulf, R.L.London and M.Shaw, "An
Introduction to the Construction and Verification of
Alphard Programs", IEEE Transactions on Software
Engineering, Vol.SE-2, No.4, pp 253-265, December
1976.

(Wymore, 1967) A.W.Wymore, "A Mathematical Theory of
Systems Engineering", John Wiley & Sons, New York,

1967.
(Yourdon & Constantine, 1979) E.Yourdon and
L.Constantine, "Structured Design", Prentice-Hall,

Englewood Cliffs, NJ, 1979.

(Zurcher & Randell, 1969) F.Zurcher and B.Randell,
"Iterative Multi-level Modelling - A Methodology for
Computer System Design", pp 138-142 in Proc. IFIP
Congress, 1968.

-317-

THE SELECTION OF A SPECIFICATION LANGUAGE

P. Blackledge

GEC Telecommunications Ltd.; UK

INTRODUCTION

The increasing complexity of telecommunica-
tions systems, together with the cost and
time required to develpp the necessary hard-
ware and software, highlight the waste of
effort which may result from attempts to de-
sign systems before customer requirements
have been adequately specified. However,
despite the variety of specification methods
which have been proposed, none have been
widely accepted and used. 7The investigation
reported in this paper examined a wide range
of existing methods in order to select Lhe
most suitable one or failing that, to pro-
puse a basis for the development of a new
one. Firstly, a rough sbecification for a
specification language is presented, and then
this is used as a set of selection criteria
in a eritical review of existing languages.

THE ROLE OF A SPECIFICATION

What is a SQacificatioﬁ?

For the purpose of the investigation, "spec-
ification" was taken te mean the rigorous
statement of the required input-output res-
ponse (functipnal behaviour) of a system.
This excludes all physical constraints (e.g.
maximum size, heat dissipation) and may ex-
clude many performance factors (e.g. degrad-
ation under overload), which would have to
appear as additional documents, in natural
language , attached to the behavicur specifi-
cation. Although this is quite a restrictive
definition, it does concerntrate the invest-
igation upon the main purpose of a specific-
ation.

wWhat 15 a System?

The word "system!" is used throughout this
paper to mean any artifact intended to ful-
fill sume purpose; the intgriace between a
system and its ehvironment is the only place
at which the correct fulfillment of purpose
can be monitored. Under this view of a
Ysystem', any level of hardware, software or
combination of both can be treated as a com-
plete system, and specified in terms of its
interfaces with its enviponment.

The Role of a Specification

A specification forms a contract between the
specifier (customer) and the designer (supp-
lier), although’ it may not be a formal, legal
contract. The purpose of the specification
is to convey concepts from the mind of the
specifier to the designer, so that the result-
ing product will adeguately meet the spec-
ifier's needs. ,It can also play an important
role in both acceptance testing and mainten-
ance, as a clear statement of the intended
behaviour of the system with which the actual
behaviour can be compared.

THE INADEQUACY OF ENGLISH

The simplest proposal to improve specifications
is to raise the standard of the natural lang-
uage (e.g. English) documents, avoiding the
introduction of a new specification method

with the associated retraining of staff.

However, the British legal system provides a
very good example of the likely difficulties
over disputed interpretations of wording; Hill
(30) and Henderson & Snowden (28) give exam-
ples relating to software which only re-empha-
sise that natural language is:

(1) too flexible in its use of context
(1) ambigious
e e subject to changes in meaning

over time.

Attempts to define rigorously the exact inter-
pretation of each word as it is introduced run
into problems of the size and verbesity of

the document (as an example, see the Delta
Froject report, Holbeck-Hanssen et al (32)),
and alseo of conflict with the reader's normal
interpretation of the words. (It is inter-
esting to note that the successor to Delta,
the Epsilon language (Jensen et al (40)), has
adopted a formal approach instead).

Hence, the use of natural language involves
limitations which cannot be overcome, and an
alternative is required which is more precise,
and offers the advantages of a formal notation
(see lverson (37)).

GENERAL CHARACTERISTICS OF A SUITABLE LANGUAGE

In this section, the major, general character-
istics required in a notation for specificat-
ions (a 'specification language!) are listed:
the use of the term '"language' does not ex-
clude graphic notations from consideration.

At this stage, there is purposely no discus-
sion of how these characteristics might be
included in a language, as that would be part
of the design of the language, not its spet-
ification,

The major characteristics are:

Formality. The existence of a sound mathe-
maticl basis is necessary for semantic non-
ambiguity, and also aids in both computer
processing of specifications and their use in
proofs of correctness.

Comprehensibility, The notation of the lang-
uage must not itself be obscure or misleading,
so that the concepts embodied in a specifica-
tion can be clearly expressed. This does not
mean that the specification will be under-
standable by either a person untrained in the
notation, or by someone trained in the nota-
tion but unfamiliar with the concepts being
represented., As Mackie (49) points out, a
specification should never be expected to act

Ath Int.Conf. on Software Enginedring for Telecommunication Switching Systems, University of Warwick,United Kingddm.

20-24 July 1981,

as training mateprial l'or the induction of new
project members.,

Minimality. A specification should be mini-
mal in two ways: it should describe exactly
the required behaviour and no more - in part-
icular it should say little or nothing about
how the behaviour may be achieved; it should
also aveid the verbosity introduced by
attempts to make the notation resemble nat-
ural language.

Ability to Handle Complexity. Although the
requirement for formality implies restric-—
tions, the language must be able to handle
large, varied and complex systems. In part-
ieular, there must be methods of structuring
large specifications to improve comprehensib-
ility, by allowing the abstracticon of detail-
ed information.

Ease of Change. The content of the specifi-
cation will be subject to changes, either to
improve or correct the specification, and it
must be possible to incorporate these into
the specification easily. 1t is to be hoped
that a small change in the concepts would
only result in a small change to the spec-
ification. ‘

folerance of Incompleteness. I1f the lang-
pwage can only be used when the system can be
specified in complete detail, this relegates
it to a very late stage in the timespan of a
project; also this would lead to other forms
of documentation being created to fulfil the
role of draft issues of fthe specification.
Hence the language must expect, and tolerate,
incompleteness and aid the later incorpora-
tion of the details as they become available.

SPECIFIC FEATURES

Although the general characteristics listed
above are reqguirements of the language, they
are too broad and vague to be considered a
specification for a specification language,
and can only be assessed subjectively.

This section brings out a number of more
specific features which contribute to achiev-
ing the general characteristicsj the result
is still not a complete, rigorous specifica-
tion of a specification language, but has
sufficient detail to indicate deficiencies
inmany existing languages, as will be seen
later. .

a
Implicit SEeciri%ution of Functions. Where
there is an input-output transformation upon
datp, this should not be specified by describ-
ing an alyerithm For producing the transform-
ation: instead, the specification should
state the required relationship between the
input and output values. There may of course
be situations when it is necessary to specify
that @ particular algorithm must be used but
this must not result in a language which al-
ways demands an algorithm, as this is often
a poor way to communicate a concept and may
unintentionally introduce extra constraints
upon the subsequent design. An example of
this type of implicit specification is the
tise of pre-conditions and post-conditions,
as in Jones (41)
Strong Data Typing. The association of a
permitted range of values with each variable
name as it is declared (as in Pascal and Ada)
avoids the repetition of checks each time the
value of a variable is changed; this there-

fore helps keep the specification small,

Abstract Specification of Complex Data Types.
In the same way that implicit specification
of functions describes the results of the
transformation without detailing the means,
complex organisations of data should be spec-
ified without describing a particular physical
data structure. The algebraic specification
of data types used by Zilles (72) is an ex-
ample of this approach.

Localisation of References. The aims of
minimisation of the size of the specification
and the ease of subsequent alterations both
suggest that all information about an entity,
function, data type or relationship should be
held as a highly localised group, with con-
trolled references from other parts of the
specification. The features of strong data
typing and abstract specification of data
types both contribute to this, but it can
also be applied on a wider scale.

Representation of Time. The language must
handle time, and particularly time seguence,
in an adequate manner, allowing the specifica-
tion of both sequential and parallel activi-
ties; this may not require the explicit in-
clusion of time in the language, given satis-
factory means of expressing both sequencing
and concurrency.

Computer Assistance. For a large specifica-
tion, the job of manually checking that lang-
uage rules have not been violated is extremely
tedious and difficult; Goguen (20) has peint-
ed ocut that many small example specifications
in published papers are incorrect for want of
computer-based checking facilities. A spec-
ification language should permit computer
assistance in the form of syntax checking,

the detection of simple redundancy (repeated
information); inconsistency (different respon-
ses to the same input in the same state) and
ambiguity (use of undefined terms, or defini-
tion of terms which are not used). Formal
specifications in a "mathematical™ notation
often include assertions of properties; in
such cases it is reasonable to demand computep-
assistance in checking proofs of the asser-
tions. 1t may also be desirable to use the
specification as input teo simulation software,
to allow checking by simulation.

A REVIEW OF EXISTING LANGUAGES

The intention of this section is to provide a
review of a very wide range of alternatives;
this means that it is impossible to discuss
the details of each language, and they are
therefore grouped into categories based upon
their primary features. BDiscussion of the
mertis: and demerits is therefore in terms of
these categories:

(i) documentation aids
(i1) algorithmic languages

(iii) applicative languages

(1wv) analytical tools
(wv) state transition specifications
(vi) input-sutput relationships

{vii) axiomatiec specifications.

Each is discussed below, and compared with the
criteria; Table 1 then summarises the findings.

Decumentalion Alds

e main aim of documentation aids is to pro-
vide a good structure for a large specifica-
tiun: they normally centre round some graphic
display of data Flow or system structure, but
do not provide a formal language for the
specifiication of functions, leaving this to
be done in natural language. Best known of
the type are HIPO (Stay (68)) and SADT (Ross
(1)), but there have been a number of others,
such as AUTOSATE (Gatt] i 3
g;ﬁégakoff (65) { to (18))ana Sleight and
Although unsuitable as specification lang-
uages, some of the ideas on organising large
specifiications may still be relevant to docu-
ments written in a more suitable language.

Algorithmic Languages

The languages in this category are mostly
attempts to extend the use of normal, high
level programming languages teo the construc-
tion of a "skeleton" of the system, although
some use graphic representation rather than
program text. Amongst the simplest are
pseudo-code (IBM (34)), Flowcharts (Wayne
{71)), and flowgrams (Karp (43)), but there
are many more sophisticated ones: LOGOS (Rose
and Albarran (60)), Pro-Nets (Noe (55)) and
SARA (Estrin (17)) which are based on Petri
Nets; the Delta project (32) and its success-
or, Epsilon (40), based upon SIMULAGT (Dahl
& Nygaprd (13)), and similar methods such as
Actors (Hewitt & Hishop (29)) and SREM (Al-
ford (2));RLP(Davis et al(14)); methods such
as Gypsy (Ambler et al (3)) and MASCOT (RSRE
(62)). One different approach is the SAFE
project (Balzer et al (5)), which takes in a
natural language program specification and
attempts to resolve all ambiguities by man-
machine dialogue,

The formality of these languages can be ade-
quate, and some of the later ones provide
sophisticated abstraction and proof facili-
ties, but all are geared towards description
by an algorithm rather than result specilica-
tion.

Applicative Languages

APL (Iverson (36)) and LISP (McCarthy et al
(50)) praovide facilities for combining fun-
ctions as in pure mathematics; these ideas
have led to propesals for higher level lang-
uages (e.g. Backus (4) and Schwartz (63)) and
the use of such potations fer specifications
(e.g. Jones & Kirk (42)).

All the applicative languages allow functions
to be stated concisely, but do not inherently
provide features such as strong data typing
or ahstract data ‘types, which would form a
Thigher level" language defined on the appli-
cative language.

Analytical Tools

There are a large number of languages which
enable specifications written in them to be
statically analySed, including flow algebra
{Milner (51)), path expressions (Campbell &
Haberman (8)), COSY (Lauer et al (45)), the
lambda caleulus (Stoy (69)), Petri Nets (Holt
& Commoner (33))4 regular expressions (Pulford
(57)) and SPECK (Quirk (58)), but all are in-
complete when viewed as specification langua-
ges. They all concentrate on some portion

of the specification (e.g. rescurce alloca-
tion or message sequencing), and do not
attempt teo formalise the rest of the informa-
tion.

State Transition Specifications

The mathematical theory of finite state mach-
ines provides a method of specifying the res-
ponses to input stimuli without resorting to
algorithms; the theory also provides a method
of checking the completeness of the specific-
ation,

Early methods of this tyvpe used the state
transition diagram as their basic notation
(see Kawashima et al (44) and Hemdal (27)).
and this has been carried forward inte later
notations such as SDL (CCITT (9)); however,
the lack of formality in the text associated
with the diagrams was a serious limiting
factor in their use. A numbepr of Tinite state
methods avoid the use of diagrams for this
reason,; e.g. CDL (Dietrich (15)), and the
notation due to Parnas (Parnas (56)).

All the above finite state methods have the
same disadvantage when applied to large
systems, especially these inveolving concurr-
ent activities - the number of possible
system states rises extremely rapidly with
the size of the system to be specified. This
"state explosion" (Cohen (11)) means that
specifications for large systems can become
incomprehensible.

The hierarchical design method and SPECIAL
language of Robinson (59) can overcome this
problem in cases where if is reasonable to
restructure the specification as a hierarchy
of abstract machines, each buillding upon the
next lower level machine.

Input-Output Helationships

This category includes the largest number of
languages, of a wide range of styles, but all
based upon specifying the relationship bet-
ween input stimuli and output responses with-
out describing an algorithm; in this they are
similar to the state transition metheds, but
they do not demand unique identification of
each system state. There are three main sub-
divisions within the eategory: graphic, rel-
ational and pre- and post conditions.

Graphic. The most complete example of a
graphic input-cutput specification is the
Predicate/Transition-Nets of Genrich and
Lautenbdch (19); these are an extension of
the Petri Net which fermalises the data tran-
sformation in mathematical notation.

Alsoc of this type is the Jackson design tech-
nique (Jackson (38)), where the graphic dis-
play of inteér-process communication is pur-
posely stressed more than the internal data
transformations performed by the processes.

Helational. BDL (Hammer et al (26)), CADIS
(Bubenko & Kallhammer (6)), CASCADE (Sclvbery
(66)), DATAFLOW (NCC (54)), DMTLT (Sernadas
(64)), HOS (Hamilton & Zeldin (25)), Informa-
tion Algebra (CODASYL (10)), LEGOL (Stamper
(67)), PSL (Teichrow (70)), Systematics
(Grindley (21)) and Systematrix (Jaderlund
(39)) all treat the specification information
as relations in a text presentation.

Pre- and Post Conditions. The specification
of functions by the necessary pre-conditions
and post-conditions can assist in program
verification (Dijkstra (16)); Jones (41) and
Cunningham & Kramer (12) give examples of the
use of this method on reasonably large fun-
ctions. A similar type of specification, but
using rewriting rules rather than logic nota-

tion; 1s Metaprogramming (Lawson (46)).

Not all the input-output relatienship langua-
ges gre sufficiently formal, despite having
rigorous delinitions, and only the uraphie
ones and DMTLT (63) and LEGOL (66) represent
time sequence adegquately. Also, they are all
much better at the specification of data
transformations (functions) than of complex
data structures.

Axiomatiec Specifications

Axiomatic specifications have been introduced
mainly as a way of providing abstraction for
data types, but as this is done by defining
the permitted operations on the data it can
be used for 'systems!.

Twe main forms of axiomatic specification
language have appeared: one uses first order
logic, as in the work by Hoare (31), the iota
language of Nakajima et al (53) and the Z
lLanguage of Abrial (1); the other form, which
has proved more popular, is based upon the

theory of many-sorted algebras (Lawvere (47)).

Much of the development of the algebraic form
is due to Guttag (Guttag (22), Guttag &
Horowitz (23), Guttag (24)), but with similar
languages being proposed by Burstall & Goguen
(7), Liskov & Zilles (48) and Musser (52).
Goguen in particular reports upon the imple-
mentation of computer assistance for his
language, OBJ (Goguen (20)).

The first order logic and algebraic forms are
equivalent in capability, and are good for
specifying complex data types; both suffer
from the difficulty of selecting a complete
and consistent set of axioms - there are only
heuristic rules to aid in this selection, with
no guarantee of success.

SUMMARY

Table 1 draws together the appropriate points
from the review; in each case the comment re-
lates to the best language in each category.

TAHLE 1 Hew the Language Measure up to the Specification

Category of Language

Characteristic Boc. Aids Algorithmic Applicative Analyt State I/0 Axiomatic
or Feature Tools Transition Specn., Specn.

Formality Bad Good Good Good Good Good Good

Comprehensi=

bility Good Poor Fair Poor Good Good Good

Minimality Poor Poor Fair * Good Good Good

Ease of change Foor Foor Poor * Poor Good Good

Tolerance of

incompleteness Good Poor Poor * Fair Poor Poor

Strong data

typing No . Yes Yes * No Yes Yes

Abstract spec. 1

of data t pes No No No» * No No Yes

Localisation of

References Poor Poor Poor * Poor Good Good

Representation . M

of time cPoor Foor Poor * Foor Good Poor

Computer

Assistance Good Fair Fair Good Good Good Good

Handling

Complexity Good Foor Fair Goad Bad Fair Poor

Note % - these are not applicable to the analytical teols.

CONCLUSTIONS

As Table 1 shows, none of the languages ful-
il all the reguirements; those which appear
to come closest (e.g. Predicate/Transition
nets, £, axiomatic specifications) have not
yet been demonstrated on any large systems,
so there is no evidence of the relevance of
their deficiencies in relation to practical
telecommunications problems.

The most practical course of action therefore
appears to be to provide a "toolkit" fer the
systems analyst, who can then choose a method
appropriate to the problem, or try several
until an acceptable specification results,
However, in order to minimise training in the
use of netation, some kind of common, consis-
tent framework is needed for all the tools,
as was developed for APL by Iverson (37).

ACKNOWLEDGEMENTS

This work, which is taking place under the
Interdisciplinary Higher Degrees scheme at
the University of Aston in Birmingham, is
supperted by GEC Telecommunications and the
Science Research Council.

rParticular thanks go to my supervisors (John
Floud, Rex Ford, Nigel Horne and Alan Mont-
gomerie) and Bernic Cohen for constructive
epiticism of the manuscript.

REFERENCES

1. Abrial, J.H., 1980, "The Specification
Language Z - Syntax and Semantics', Pro-
gramming Research Group, Univ, of Dxford,

2, Alford, M.W., 1977, 1EEE Trans. on Soft-
ware Eng. ,SE-3, 60-69.

3. Anmbler, A.lL., Good;, D.E.; et al; 1977,
"GYPSY : A Language For Specification and
Implementation of Verifiable Programs'.
Proc. ACM Conf. on Language Design for
Reliable Software.

4, Backus, J,., 1978, Comm. ACM, 21, 613-~641,

5. Balzer, R., Goldman, N..and Wile, D.,1978,
IEEE Trans. on Sof'tware Eng., SE-4, 94-103.

6. Bubenko, J., and Kallhammer, 0,, 1971,
"CADIS - Computer Aided Design of Inform-
ation Systems". Proc. first Scandinavian
Workshop on Cémputer aided Inflo.Sys.
Analysis and Design.

7. Burstall, R.M., and Goguen, J.A.; 1877,
"Putting Theories Together to Make Spec-
ifications", Proec. Internat. Jnt. Conf.
o Artif, Intell.

8. Campbell, R.H., and Habermann, A.N., 1974,
"The Specification of Process Synchron-
ization by Path Expressions' in Lecture
Notes in Computer Science 16, Springer-
Verlag, Berlin.

9, CCITT Werking Party X-1,/3-1, 1576
Y"Functional Specification and Description
Language, SDL"; Temporary Document No.35E.

10. CODASYL Langyage Structure Group, 1962,
Comm. ACM, 5.

11. Cohen, B., 1980, "System Specilication
Hardware and Software - as Practiced in
the Telecommunications Industry'", CREST
Course, Brunel Univ., London, England.

L2,

13,

14,

155

16.

P4y

18,

19,

20..

21.

22

23.

24,

25,

26.

27,

28,

29

a0,

31.

32.

Cunnigham, R.J., and Kramer, J., 1977,
""An approach to the Design of Distributed
Control System Software', Proc. IEEE
Internat. Conf. on Distrib. Control
Systems.

Dahl, 0.J., and Nygaard, K., 1966, Comm.
ACM, 9, B71-678.

Davis, A.M., Miller, T.J., Rhode, E.
Tayler, B.J., 1879, "RLP-An Automated
Tool for the Processing of Requirements',
IEEE COMPSAC 79,

Dietrich, R,, 1979, "On a Compilable Call
Proteasing Specification', Froc. Internat.
Switching Symposium, Paris,

Dijkstra, E.W.,
Programming",
Cliffs, N.Jd.

1976, "A Discipline of
Prentice-Hall, Englewocod

Estprin, G., 1978, "A Methodology for the
Design of Digital Systems - Supported by
SARA", AFIPS Conf. Proc., Vol. 47.

Gatto, ©.T.. 1964, Comm. ACM, 7, 425-432,

Genrich, H.J., and Lautenbach, K., 1979,
"The Analysis of Distributed Systems by
Means of Predicate/Transition-Nets'", in
Lecture Notes in Computer Science 70,
Springer-Verlag, Berlin.

Goguen, J.A., 1979, "An Introduction to
0BJ; A language for writing and Testing
Formal Algebraic Program Specifications",
Proc. IEEE Conf. on Specifications of
Reliable Software.

Grindley, C.B.B., 1975, '"Systematics - A
New Approach to Systems Analysis', MchGraw-
Hill Ltd,; London,; England.

Guttag, J., 1977, Comm. ACM, 20, 396-404.

Guttag, J. and Horowitz, E,, 1978, Comm.
ACM , él- 1048-1064,

Guttag, J., 1979, "Notes on Type Abstra-
ction'! Prec. IEEE Conf.. g¢n Specifications
of Reliable Software.

Hamilton, M., and Zeldin, 5., 1976, IEEE
Trans. on Software Eng., SE-2, 9-32,

Hammer, M.M., Howe, W.G. and Wledawsky,
1., 1974, SIGPLAN Notices, 9 (4), 25-33.

Hemdal, G., 1973, "The Function Flowchart-
A Specification and Design Tool for S5.P.C.
Exchanges', Proc IEE SETSS Conf.

Henderson, P., and Snowden, R.A., 1972,
BIT, 12, 38-53.

Hewitt, €., and Bishop, P., 1973,"A Uni-
versal Modular Actor Formalism for Art-
ificial Intelligence", Proc. 3rd Internat.
Jat: Conf. on Artif. Intell.

Hill, 1.D., 1972, BCS Computer Bulletin,
16, 306-312.

Hoare, C.A.R., 1972, Acta Information, 1,
271-281.

Holbeck-Hanssen, E., Handlykken, P. and
Nygaard, K., 1975, "Delta Project Report
No.4'", Norwegian Computer Centre Public-
ation No. 523, Oslo.

33.

34,

41

43.

44

49.

52,

Holt, A.W,. and Commoner,
and Conditions",
New York.

F., 1970,"Events
Applied Data Research,

I18M, "Improved Programming Technologies:
An Overview'!'; I[BM GHC20-1850,

Ichbhiah, J.D., et al, 1979, SIGPLAN Not-
ices, 14 (6).

Iverson, K.E., 1962, "A programming Lang-
uage', Wiley & Sons, New York,

Iverson, K.E., 1980, Comm. ACM, 23(8),
A4did-465.

Jackson, M.A.; 1978,"Information Systems

: Modelling, Sequencing and Transforma-
tions'', Prec. 3pd: IEE SETSS Confin

1980, "Systematrix Con-
cepts", Systematik AB, Stockholm, Sweden.

Jensen, K., Kyvng, M. and Nielsen, M.,1878,
"A Petri Net Definition of a System Des-
cription Language", in lecture notes in
Computer Science 70, Springer-Verlag,
Berlin.

Jaderlund; Ci,

Jones, C.B.,, 19380, "Seftware Development:
A Rigorous Approach", Prentice-Hall Inter-
national, Englewood Cliffs, N.J..

Jones, W.T. and Kirk; S.A., 1980,
Computer Journal, 23, 230-232,

Karp, A., 1978, Electronic Design, 26,
84-88.

Kawashima, HW., Futami, K. and Kanao, S.,
1971, 1EEE Trans. Comms. Technology,COM-
19, 581-587.

Lauer,
M.W..

P.E., Torrigiani, P.R. and Shields,
1979, Acta Informatica, 12, 109-158.

Lawsen Jr., H.W., 197%, "Programming,
Atehitecture and Complexity', Report
LITH-MAT-R-1977-28, Linkoping University,
Sweden.

Lawvere, F.W., 1963, Proc National Acad-

emy of Science, 50 B69-872.

Liskov, B. and Zilles, S, 1977, "An In-
troduction te Formal Specifications of
bata Abstractions", in Current Trends in
Programming Methodology, Vol 1, ed.R.T.

Yeh, Prentice-Hall Ine, Englewood Cliff,
MNadl. .
Mackie, L., 1977, "Software Reliability-

Understanding and Improving It", Proc
AGARD Conf . on Avionics Reliability.

McCarthy, J, et al, 1965, "LISP 1.5 Pro-
grammers Manhal', MIT Press.
Milner, H., 1978, "Algebras for Communi-

cating Systems",
of Computer Science,

feport CSR-26-78, Dept.
lUniv. of Edinburgh.

Musser, D., 1979, "Abstract Data Type
Specification in the Affirm System', Proc.
LEEE Conf. on Specilications of Reliable
Sof'tware.

Nakajima, K., Honda, M. and Nakahara, H.,
1978, "Describing and Verifying Programs
with Abstract Data Types", in "Formal
Descriptions of Programming Concepts',
ed. E.J. Neuhgld, North-lolland Pub. Co.
NCC Ltd., 1969, "DATAFLOW - Project Eval-
uation Heport", Manchester, England.

Noe, J.D., 1975, "Pro-Nets, for Modelling
Processes and Processors", Conf. on Petri
Nets and Helated Topics, M.I.T.

Dili.y 1972 ACM, 14,

Parnas, Comm . 330-

336.
Pulford; B.d.,

v

1979, "The Use of Graph

and Regular Expression Models in System Model-

ling",
nics

58,

59.

60,

615

62.

63.

64,

66.

67.

68.

69,

70.

71.

T2,

Report 317/5E/S5ARSA/WP1, Marconi Avio=-
Ltd, Borehamwood, England.

Quirk, w.J., 1978,
of formal Real-time
Report AERE-R 9046,

Robinscn, L., 1976,
niques'', Proc. 13th
mation Conference,

Rose, C.W. and Albarran, M., 1975, "Model-
ling and Design Description of Hierarchi-
cal Hardware/Sof'tware Systems', Proc.l2th
Annual Design Automation Conference.

Ross, D.T., 1977, IEEE Trans.
Eng. SE-3, 6-15.

RSRE, 1978, '"The Official Definition of
MASCOT", RSHRE, Malvern, England.

Schwartz, J.T., 1973, "On Programming :

An Interim Repont on the SETL Project"™,
Courant Institute of Mathematical Sciences,
New York University.

Serpadas, A., 1879, "Temporal Aspects of
Logiecal Procedure Definition'", report
from Lendon School of Economics, England.

Sleight, T.P. and Kossiakeff, A., 1974,
"Use of Graphics in Software Design, Dev-
elopment and Documentation', Report APL/
JHU TG 1242, John Hopkins Uniwv., Maryland,
UsSA.

Solvberg, A., 1973, '"Formal Systems Des-
eription in Information System Design',

in "Approaches to System Design', NCC Ltd,
Manchester, England,

R.K., 1977,

"The Automatic Analysis
System: Specifications’.
H.M.§.0., London.

"@pecification Tech-
Annual Design Auto-

an Software

Stamper,
102-108.

Stay, J.F.,
143-154.

Stoy,; J.E., 1977, "Denctational Semantics-
The Scott-Strachey Approach to Programm-
ing Language Theory'", MIT Press.

E.A., 1977,

SE-3, 41-48.
"Flowcharting Concepts
Canfield

Computer Journal, 20

1976, IBM System Journal, 15,

Telchrow, D, and Herschey,

IEEE Trans. on Software Eng.,

Wayne, M.N,, 1973,
and Data Processing Technigues',
Press.

Zilles, 5., 1976, "Data Algebra : A spec-
ification Technique for Data Structures",
PhD thesis, MIT, Cambridge, Mass.

