
A_SPECIFICATION LANGUAGE

FOR DIGITAL SYSTEMS

by

PETER BLACKLEDGE

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy.

INTERDISCIPLINARY HIGHER DEGREES SCHEME

THE UNIVERSITY OF ASTON IN BIRMINGHAM

SEPTEMBER, 1982

The University of Aston in Birmingham

SUMMARY

A SPECIFICATION LANGUAGE
FOR DIGITAL SYSTEMS

Peter Blackledge

Submitted for the Degree of Ph.D.
1982

The work reported in this thesis is concerned with
the selection of a formal language for practical use in
industry for writing specifications of systems containing
both hardware and software. The aims of using such a lan-
guage are to improve the communication of reguirements
and to increase the number of errors detected at an early
stage of the design process. Due to the size of the au-
dience of writers and readers of these specifications,
one additional aim is to minimise the amount of training
which will be required by these people. Apart from its
formality, the language must therefore be able to
describe large and complex systems in a comprehensible
Manner.

Criteria for the evaluation of candidate languages
are derived from these needs and then used in a review of
a large number of languages from published sources. All
those reviewed were found to be deficient in some
respect, so a new language was designed to fulfill the
criteria. This language was named ASL, being an acronym
for "A Specification Language"; it is suitable for use in
specifying all information-processing systems where the
received and transmitted information can be treated as
discrete (i.e. digital) signals.

In order to confirm the suitability of ASL, a number
of practical trials of the language were carried out. Al-
though these were of limited size, they did cover both
hardware and software systems and personnel. The results
of these trials, including suggestions from the partici-
pants for improvements to ASL, are discussed as part of
the evaluation of the success of the project.

KEYWORDS: Specification Requirements

ACKNOWLEDGEMENTS

The author gratefully acknowledges the financial sup-

port of GEC Telecommunications Ltd. and the SERC, the

moral support of his supervisory team (Prof. J.E.Flood,

Mr. R.K.J.Ford, Dr. N.W.Horne and Mr. G.A.Montgomerie),

and the practical support of the participants in the tri-

als (Mr. P.J.Briggs, Mr. R.Caberwal, Mr. G.V.Geiger, Mr.

P.W.Gray, Mr. D.Simblet, Mr. H.B.Taylor, Mr. D.R.Thompson

and Dr. J.C.Woodcock) .

TITLE PAGE| 69s 9s % ae cia Stee | reads

SUMMARY On ethic eo bs . oun Ses. e

ACKNOWLEDGEMENTS . . . fete. Veale! enya et ene akn

LIST OF CONTENTS . . . spenee So is aera ee

LIST OF FIGURES eDMEtL.. igh) key) feu) Medicine Agr senha loan (6

LIST OF CONTENTS

LISU2OF. TABEBS, 265, 9s) cou Stee a MeL a) ee ee

1. INTRODUCTION eVeraie? |b, Ses reeede shegeriss © S24) ion Se

1.1.

152

1.5

The Proplem: 6 <3. 4) 2%) se eas Se

Analysis of the Problem

1.2.1. The Common Factor Hep te oo

1.2.2. The Current Situation ar

1.2.3. Proposed New Design Process

1.2.4. Long-term Prospects Se te

The Purpose of the Project een

esc. Background Wi. 2: 2 y.. 5 &

1.3.2. Initial Scope of the Project

1.3.3, Final Scope of the Project .

Direction Taken by the Project har.

1.4.1. General 5 ee eas ot eae

1.4.2. ASL (A Specification Language)

1.4.3. Expected Benefits SUE ay J era

Structure of the Thesis . . . «

18

21

24

2. REVIEW OF POSSIBLE CANDIDATE LANGUAGES

2.16

2.2.

2.9.

2.10.

2.11.

2ob2s

Introduction oy kee ce 8 ee

Requirements of a Specification

2,201. THe Starting Point ©. +

2.2.2. Comprehensibility pe is

Sedieds, ADPAUACYSr s “oes a. vs

2.2.4. Maintainability ales

2.2.5. Testability Ge ohne s) Clee

2.2.6. Structure SP Bes reteace!

2.2.7. Conciseness eS ah ew

2.2.8. Perceptual Cues is

2200. eMinimalityo . |. + ss

2.2.10. Separation of Concerns

Language

2.2.11. Suitability for Computerisation

Zoe dee) FOUMALLCY (Neue, 5 ule

Deo tS eC UMMALY alle Mieiens 6 rte re

The Types of Specification Language .

Universal Languages

2.4.1. Natural Languages — s

2.4.2. Programming Languages

Computer Hardware Description Languages

New Programming Languages . .

Derivations from Programming Languages

Blow Charts ("5 “3 os is 6 us

Hierarchic Description Methods

Finite State Machine Languages

Static Description Languages

Pre- and Post-condition Languages .

ece

38

38

38

.38

40

42

43

43

44

44

45

45

46

46

47

48

49

50

-50

51

52

53

53

54

55

56

57

58

Se

2.13. Event-triggered Languages -

2.14. Specification Analysers ons

2.15. Sequence Description Languages

ZelLOePPeGrieNets: pecs) elle. fe os) ~ @

2.17. Languages Using Axiomatics .

2.18. Conclusions ait Me apetenne ohne @

THE DESIGN OF A SPECIFICATION LANGUAGE

3.1. Introduction BS aa vet esa Lee ale)

3.2. General Approach ied eae

Bic IROL MA LD CV meee Set ee esl. ones

3.4. A System and its Environment 2

3.4.4. The Systeme et .) ss

3.4.2. The Environment = pti te

3.5. Communication by Message Passing

3.5.1. Messages . «. « « «

3.5.2. The Observer . «© «© «

3.5.3. Message Contents . . .

3.6. The "Black Box" View ses as

SGsb- Models 5). "59 2) = ae

3 Ged NESTE ACES =. i Gomes

3.7. Time oe rn) on varie ulate

3.7.1. Requirements

3.7.2. Time Stamps o, sh xen

3u/.3. crime Vaewpoint 9) <<

3.8. Memory Ce Si seers le 2) le pees:

3.9. Structuring the Specification .

3.10. Incompleteness) <2. 5. . ~%

Dilley EGQEMe te tus cap eke «ase 060 | eatike

« 60

3) 360

eo kLO.

74

* bo

3.12. Summary SE tel ete? Wes = “oy eph bet ims. EXO uamers

4. THE DETAILED DESIGN OF A SPECIFICATION LANGUAGE . 84

Aiwte ASige n= ¢ Bel eee va oe hee. (ot ae OS

4.2. The Surface Appearance of ASL 84

4.3. Consideration of Human Factors ee ana, ees OS

4.3.1. Consequences of Earlier Decisions eB

4.3.2. Order Within the Specification Text 287

4.3.3. Paragraph Numbers ge CBR

A268 (COMMENCES. isi 14s) slew es ge ees el OS

4.3.5. Alternatives in Behaviour es Boo uae OS

4.4. The General Appearance of ASL 89

4.4515) Introduction! =.9 si) 2). sass 2 89

4.4.2. Block Structure heat ie! ieee da ae) oss OO)

4.4.3. Names Bithic: ede Sele ee ee Meme sae ahh ce, Wee e

4.4045 uthevSvstem Block 5.9%) fj. 259s 3 92

424. Sco The Models “ents © he eo us) se sea! 98

4.4.6. Definition of Names and Messages . . 94

4.4.7. Behaviour and Rules Slee ewan es OS

4.458. Pattern=matching wis J 3 Be.te, « . 96

4.4.9. Definition of Common Operations 96

4.4.10. Incompleteness EMaah ol) (Slmgaese Beene eu aor

4.5. The Formal Definition of ASL | tnd rege oO

Ac Sele EHCLOGUCTION =.) Gini. Se. sulle oO

4.5.2. The Context-free Syntax ery sil yell, soso:

4.5.3. Context-sensitive Rules jt ne BP EE)

4,.5.4.0Gcope ‘Of Names 2 7. 0. sete «2 3800

4.5.5. Type Checking OG OB Ge CB Lt

4.5.6. Semantic Definition Pee) Fas eno LOS

aye

5.

6.

4.6.

4.5.7.

4.5.8.

The Semantic Model . .

IMGs Co veueeaiere: | ce) V6

Summary

LANGUAGE SUPPORT FACILITIES . . .

5.1.

5.2.

Introduction ee de Se Lee

Checking

5.2.1. The Types of Checking

5.2.2. Static Checking lets

5.2.3. Dynamic Checking . .

Changes: ahs) 6s Si ay em «

5.3.1. General om We tie ED

5.3.2. Introducing Changes 6

5.3.3. The History of Change

Validation oa eae Ten ee laaes

5.4.1.

5.4.2.

Suid 3s

5.4.4.

The Aims of Validation

Manual Translation into

Automatic Translation

Simulation

Verification tlh na Aare a oe

The Demonstration Facilities

Summar y

TRIALS AT GEC

6.1. Introduction oe Mae Ree meh ote

Trial

Trial

Trial

Trial

AEG

2:

iG

a:

The Data-rate Adaptor

A Disk Checking System

R2 Signalling System

Part of an Operating System

65

English

103

104

105

-106

106

107

107

108

109

ee

vy

2112

Lis

155

115

116

116

117

LS

121

122

123

123

124

126

128

129

6.6. Criticisms and Comments . . « « « «» 131

6.6.1. Sources of Comments oe Neigeac al ieret eul oo)

6.6.2. Unintentional Inconsistencies of ao

6.6.3. Simple Extensions eee oy Oe

6.6.4. Further Possible Extensions « os beets

6.6.5. Responses to the Questionnaire . . 134

Ota SUMMAL Vana Neil Meller \s0 "fe sa) Dich ste, seupesse MSO

7. EVALUATION se i i, eae as ~ 138

7.1. Introduction SPELLS Cetera! © CAelaeren iri se, gauien a LOO

7.2. Comparative Evaluation eee el ela. SO,

7.3. Feedback from the Trials Sa) lous. ae fee “es kas.

7.3.1. The Significance of the Results = wiles

7.3.2. The Pattern of the Results .+. . .145

8 \CONCEUSTONS os ae siplln oes ae wane . . . a eee:

8.1. Achievements Ae nef he ete ae ey sl) lene Day

8.2. Outstanding Problems cee) se se as te oO

8.3. Further, Developments ..+% sek i s os «telol

APPENDICES

A. REVIEW OF SPECIFICATION LANGUAGES . . . Att 5d be

A.1. General Layout Cee re tee hoes Bleue Loe

A.2. Columns for General Information 155

A.3. Values used in the Assessment 155

AotoSSuNMaryy Table. ie tees, ie sl one aa ete | 158

B. THE SYNTAX DEFINITIONS FOR ASL 6 eS a a LoS

B.1. Backus-Naur Form eats) ices ke Caren re rom eee OS:

B.2. Syntax Definitions ic) PYIy CSUR) Le

B.3. The Type-matching Rule Format . .

B.4. The Type-matching Rules

C. THE SEMANTIC DEFINITION OF ASL see eas

C.1. Introduction he ee ee DS

C.2. Transformation Sei ksae ce © om comms

CJS. Translation @ s. ile: Whee) vs. ees

C.4. Connection me ek [rere tel “Geto, 1m

C.5. The Firing Rules a ecugte tbe wor a

C.6. Semantic Checking of Specifications

D. THE STATIC CHECKING FACILITIES . . .

D.1. Introduction SMS co NA Seca 4

D.2, The Syntax Analyser $75.7. 4

D.2.1. Recursive-descent Analysis

D.2.2 The Syntax Rule Format . .

Di2a3. Error Recovery “2.0 <9.

D.2.4. The Input to the Analyser

D.2.5. The Output from the Analyser

D.3. The Consistency Checker . . % .

Dasels MEthod- . 9% er en es

D.3.2. The Rule Format Seer ee Ee

Deo.3. The Input Format, “c .7. | 6

D.3.4. The Output from the Checker

D.4. Cross-reference Listing

E. AN EXAMPLE SPECIFICATION aT Geshe e's

E.1. Introduction 2 ASW |S ate ero/eN een nis

—10—

s a70

© (epeO2

« 84

i ek OZ

op 182

<e go.

« « 206

* 9622403

a eeeeelS

ue 218

alg

eto

Agyene,

« 219

oor ese eek

+ ees:

a 226

ae eet

el geweaenn

a eed

~ + 228

ee eoe

. 233.

oy Be a8

- 240

- 240

E.2. The System CaO eNS abe! J coteihe Cee’. be aieecL ie = oe; ae eU:

E.o. TRE SASE ‘Spect fication © «<j ss of i us 6. «242

B.4. Errors in the Specification » «250

F. RESULTS OF THE TRIALS AT GEC « 256

F.1. Problems Arising During the Trials « « Ye 256

Biedsde The Categories "0 6° api sees 50 258

F.1.2. Inconsistencies Ss A ee a ES

F.1.3. Simple Alterations and Extensions 2 259

F.1.4. Missing Items ot othe SEM ctmee cle. ave COO.

F.1.5. Other Proposals for Alterations < se26L

F.2. The Questionnaire . . .». « « « » «s « 264

F.2.1. Design of the Questionnaire aaa 208

F.2.2. The Responses yma Selous wis ees.

Ge eGLOSSARY.OF “TERMSEs% Siem." ces 4) oom es eee + 209,

RERERENCES @ 0 Stee oe 6 camel 6 eee Niel a S00

-ll-

c.10.

eel).

LIST OF FIGURES

Current Design Process sigh a oo tla Lene omeac

The Design Hierarchy ct een eee eae Se

New Ideas on the Design Process

New Ideas on the Design Hierarchy . . .

Development of Selection Criteria . . .

The General Structure of a Specification «

The Structure of a Specification in ASL .

Replacement of Operations

Replacement of Fixed Relationships ee sane

Separation of Lists into Individuals on ae

Conversion of "select" Expressions oa

Conversion of "unless" Expressions eet as

Expansion of Local Definitions eos

Replacement of Local Variables fc) elas Says

Sequences of Actions <a ee & trek Sula: dare

Sequence Constraints ape Waheed ia) wate treo y eas

Conversion of Monitors . . ». »« « « «

Translation of Receipt of Messages . . .

=10—

-19

ee

+69

196

17,

+198

199

200

201

-202

- 203

- 204

205

207

C.12.

c.13.

c.14.

Treatment Of Multiple Arcs 5. . °s « <=» <« « 208

Translation of Other Behaviour, % js <5. 13 bk. 209

Translation of Timeouts Suess nee ies ese as tec

Treatment Of Iterators ©. esse. 9. Gat. ws se | SET

Treatment of Temporal Operators EES! in aera §

Format of the Syntax Rules Vues Mireur ae i « memeee

The

The

The

Listing Produced by the Analyser ol) vee

Static Checking Rules) ".5 2. 405. « eas 2229

Tables Used in Static Checking ese tees ese

Error Messages from Static Checking 237

The

The

The

The

The

The

Cross-reference Listing . . . ee Rs eet eee oo:

Structure of the Example Specification ~ 243

Example Specification © «» . +244

Errors Detected in the Specification re eae eoe

Net Model of the Specification Bie aod. Wate mee

Questionnaire ya) <a see ee tse a Sees) 209

-13-

A.4.

A.5.

A.6.

A.7.

A.8.

A.9.

A.10.

Boi.

A.12.

AvI3s

A.14.

A.15.

F.1. Responses to the Multiple-choice Questions

F.2.

LIST OF TABLES

Universal Languaqes) “oa. 5s “sas

Computer Hardware Description Languages

New Programming Languages

Derivations from Programming Languages

BVOW MCHA ES i. he: wiles) eile Few o ately: Coons

Hierarchic Description Methods es:

Finite State Machine Languages ulus:

Static Description Languages <li aaee ke

Pre- and Post-condition Languages . .

Event-triggered Languages Se ee es

Specification Analysers ey oe Ei.

Sequence Description Languages . .

PECTISNGUS el ts ee ol las ace au os ee

Languages Using Axiomatics

Summary ° or el ys oles oes . .

The Other Comments eg nae? tet es

=14—

e159

59

-160

160

161

-161

-162

163

163

164

~ 165

165

166

166

167

209

286

CHAPTER 1

INTRODUCTION

1.1. The Problem

The project reported here is concerned with the in-

troduction of disciplined methods into the design

process, and particularly with the use of formal lan-

guages for system specification. However, in order to

place the work in context, this chapter starts with a

discussion of the underlying problems to be solved. This

then leads to consideration of how the results of the

project contribute to the required solution. Due to _ the

number of words which are used with a particular techni-

cal meaning, a glossary of terms is included in Appendix

G.

This project relates to the development of digital

systems, and the word "system" is used throughout to

refer to the intended output of some design project. Such

a system is expected to be a purposeful information-

processor which enters into some communication with its

environment to fulfill that purpose (Ashby, 1969).

However, the system may be designed in the form of words

(e.g. instruction manuals or software), physical assem-

=15=—

blies (hardware) or integrated cicuits (hardware and/or

firmware) and so the word "system" has been used in order

to avoid implying any particular physical embodiment of

the information-processing entity. Advances in

technology, especially in the field of computing, have

led to a rapid growth in the complexity of systems. Pu-

blic awareness of these advances and of the decreasing

cost of computers provides a continual pressure to extend

the capabilities of existing products. In the telecommu-

nications industry this takes the form of new services

(e.g. Prestel) and new facilities (e.g. subscriber-

controlled redirection of calls to other numbers); but,

as in other industries, these additions have proved dif-

ficult and expensive to develop despite the theoretical

_capabilities of the underlying technology.

Three main factors have been proposed to account for

this difficulty :

(a) as the complexity of a system increases, the

documentation describing the required behaviour is

not increased in proportion (Jones, 1979) with the

consequence that it is incomplete and the resulting

systems often fail to meet their objectives,

(b) the scale of the projects concerned requires the in-

volvement of large groups of people, so that organi-

sational and communication difficulties often hamper

progress (Brooks, 1975),

(c) when the system involves significant amounts of sof-

tware or custom VLSI, there are currently no recog-

nised methods for producing prototypes of the design.

=16—

Hence, design or specification errors are often not

detected until late in the project timescale; thus

their correction is likely to result in a failure to

meet completion dates (Jones(b), 1980; Losleben,

1980).

Figures have been published showing the magnitude of the

consequent wastage of resources (Alberts, 1976; Lehman,

1979). These problems become even more important when the

systems being developed will take some responsibility for

human safety or privacy and the cost of error may not be

solely financial.

1.2. Analysis of the Problem

1.2.1. The Common Factor

The factors (a), (b) and (c) in Section 1.1 above

have a common basis, in that all derive from communica-

tion problems

factor (a) relates to the difficulty of achieving concise

and precise descriptions in English or any’ other

method based upon a natural language,

factor (b) is the result of communication difficulties

between groups of people, especially if the groupings

are based upon differing technical specialities,

factor (c) is a consequence of the lack of accepted in-

termediate forms of documentation to bridge the large

gap between a specification written in English and

the final design written in a programming language or

=i7—

in logic diagram form.

The most commonly proposed type of solution to the pro-

blem is therefore based upon improved methods of communi-

cation (e.g. Ross, 1977). The validity of such a solution

can best be demonstrated by considering first the type of

design process currently in use, and then a new form

which attempts to ensure improved communication between

those groups of people involved in the project.

1.2.2. The Current Situation

Figure 1.1 depicts a simplified version of the design

process which is typical of practice in British industry.

The stages of the process are:

(a) specification, where the customer and supplier devise

an agreed statement of the behaviour required of the

system,

(b) design, where the supplier decides upon the logical

and physical structure to be used to construct the

system,

(c) the physical construction of the system,

(d) testing, where the completed system is subjected to a

selected set of stimuli in an attempt to detect any

undesirable behaviour.

The terms "customer" and "Supplier" are used to indicate

the roles of the respective parties involved. However, in

many cases, both may be part of the same organisation and

there is unlikely to be an explicit legal contract raised

to cover the development of the system.

alee

FIGURE 1.1

Customer

Cag Tos al SPECTR = =
/

| supplier
! _¥

| DESIGN }*#————~

!
\ Feedback

¥ of errors
| CONSTRUCT
!

if
1
t TEST
\
SNe ee ee ew ew ee See ae

USE

FIGURE 1.2 THE DESIGN HIERARCHY

——_ 5)
j |SPECIFY| |

1
system ----| | |

| |
| | DESIGN \

--- -———
' y | tan
(| SPECIFY | | | | SPECIFY oy SPECIFY

| I! | ass
| | 1 at
| ! I [TET
| | DESIGN 1 | DESIGN { >] DESIGN
\ aa hemes < Sao aS) Saale = rie ee og

CURRENT DESIGN PROCESS

» \ 2
Sub-systems

E19=

S
e

ce

e
t
a
l
 o

o

e
e

a

e
e
e

The process depicted in Figure 1.1 can be repeated a

number of times within one project as the complete system

to be developed is divided into smaller and smaller sub-

systems until a level is reached where each sub-unit of

the system represents an acceptable unit of work for a

small group of people. This is the approach of "top-down"

or "structured" design (Yourdon & Constantine, 1979); it

results in an hierarchically-structured description of

the design as indicated in Figure 1.2.

In most engineering disciplines one early result of

the design activity is a prototype or scale model of the

proposed design, but this has not been common practice in

the design of information-processing systems. As depicted

in Figure 1.1, suppliers have tended to work from a spe-

cification which was (presumably) accepted by the

customer, but with no checks upon the correctness of the

interpretation of this document or upon the adequacy of

the design until the testing stage. As testing only oc-

curs after the construction of the system, the response

time of the design process when viewed as a feedback sys-

tem is very long in relation to the overall timescale of

any design project. Hence, the correction of deficiencies

detected during testing can require a large proportion of

the design and construction activities to be redone, with

the consequence of prolonged delays before the corrected

system becomes available (Alberts, 1976). Lehman (Lehman,

1979) and Brooks (Brooks, 1975) have both noted the ef-

fects of this in large software systems, and Lehman (op.

cit.) provides some estimate of the waste of resources

=20=

which results from such errors.

1.2.3. Proposed New Design Process

In recent years there have been numerous proposals

for new design methods (or "methodologies" as they are

often called in papers by American authors). Initially,

these were mainly related to software (e.g. Baker, 1972;

Naur & Randell, 1969) which was seen to be lagging behind

the engineering disciplines in the use of agreed methods

and notations. More recently, however, there has been

growing interest in the use of such methods in computer

hardware design, as the use of LSI and VLSI techniques

has indicated that existing methods may no longer be ade-

quate (e.g. Losleben, 1980). Recognition of the scale of

the problems has now led to the creation of a number of

national programmes backed by the governments of various

countries, in an attempt to hasten the development and

introduction of new methods (e.g. DoI(a), 1981; Redwine

et al, 1981).

The basis of most of these proposals is a modified

design process of the type shown in Figures 1.3 and 1.4.

The principal aim of the modifications is to make the

process more responsive and better-controlled by intro-

ducing rigorous checking between each pair of stages, so

that the length of the feedback loop is only one stage

rather than up to three (as shown in Figure 1.1). In the

design hierarchy (see Figure 1.4) this means that at each

level the equivalence of the design and the specification

=o} =

FIGURE 1.3

Customer

FIGURE 1.4

SPECIFY

DESIGN

y
CONSTRUCT

NEW IDEAS ON THE DESIGN PROCESS

ye ee ee
‘N

Checking
and feedback
of errors

ees ae

NEW IDEAS ON THE DESIGN HIERARCHY

=_- SPECIFY
oo 2 ~

Check design= | ~
specification Check sum

Pian a ae _.| DESIGN of sub-systems
= =system. “\,

— ae |
= ss

(SPECIFY SPECIFY SPECIFY v

Seis a, [ie Sa

DESIGN DESIGN DESIGN

j

}

DD

4

1

|

|

|
|
|
|
|
|
/

is checked, whilst between levels it is ensured that the

conjunction of the specifications of the sub-systems is

eguivalent to the specification at the level above. This

approach should result in errors being detected and cor-

rected at the earliest possible stage. Alford (Alford,

1979) provides figures showing that detecting an error

one stage earlier can reduce the cost of correcting that

error by an order of magnitude.

Amongst the implications of this new type of design

process are the following.

(a) A larger proportion of the timescale for a project is

to be spent in the more abstract stages of the design

process (i.e. in specification and design activities)

as these stages will involve more documentation and

checking than is currently undertaken (Aron, 1976).

As relatively few people are involved in these early

stages (Alberts, 1976), this does not represent a

significant increase in manpower costs.

(b) The proportion of the total timescale spent on the

abstract parts of the design process is increased.

However, the total timescale should be shorter, as

the emphasis on checking should lead to a _ reduction

in the overall time required to obtain a correct pro-

duct,

(c) In order to achieve reliable checking throughout the

design process, it is necessary to introduce standard

methods of presenting information. Otherwise, diff-

erent designers working on different levels of the

system (see Figure 1.4) may produce incompatible

-23-

documents, making the checking activity impracticable

(Lehman, 1981; Ramamoorthy & So, 1978). The use of

such standard methods of presentation has been

described as the introduction of engineering

discipline and professionalism into areas which cur-

rently rely upon individual creativity (ASTG, 1981).

Standardisation appears to be an essential feature in

tackling large problems, where more than 5 or 6

people are involved in the project (Weinberg, 1971).

1.2.4. Long-term Prospects

The adoption of a new more-disciplined design. method

not only has the immediate benefit of reducing the total

time required to develop new products, but it could

provide additional benefits in the long term.

(a) The use of rigorous notations at all stages of the

design process plus strict checking between stages

will allow the amount of testing of the final product

to be reduced (Mills, 1975). Any finite amount of

testing can never demonstrate the total absence of

errors in a complex system (Dijkstra, 1972), so it is

much better to expend effort on reducing the number

of errors likely to be present.

(b) Certain design stages may be delegated to computer-

based design facilities (i.e. CAD), given that the

input to these stages is expressed in a formal

notation. Such systems are under development for au-

tomatic programming (Wood, 1980) and automatic layout

=—o4 =

of VLSI (Lauther, 1979), but they are not yet ready

for use in a commercial environment.

(c) The notations used for writing specifications may

form a suitable input to a simulation system, allow-

ing the system's behaviour to be demonstrated to the

customer at each stage of development, thereby fur-

ther reducing the risk of error (Cohen, 1981; Lehman,

1981).

(d) The acceptance tests for the product can be derived

directly from such a specification (Alford, 1977).

All such benefits are dependent upon the full implementa-

tion of the new type of design process and the associated

disciplines. This must therefore be seen as the prime

task, to be undertaken before any of the benefits are

obtained, but with some of the effects being apparent

only in’ the long term.

1.3. The Purpose of the Project

1.3.1. Background

The project reported here was undertaken within the

Telephone Switching Group of GEC Telecommunications Ltd.,

and therefore reflects some bias towards the particular

problems of the British telecommunications industry.

These are not however unique to that industry (see e.g.

DoI(a), 1980), and the results reported here are of wider

applicability. Discussion of problems specific to that

industry are therefore kept to a minimum in this and sub-

= I5e

sequent chapters, with the exception of Chapter 6 which

covers work undertaken within the Company.

Although over the past few years the British telecom-

munications industry has introduced a significant number

of standards relating to the documentation of product

designs (e.g. System X, 1981), this has not been suffi-

cient to gain the benefits mentioned in Section 1.3.3

above. This is largely because the documentation stan-

dards still rely upon the unregulated use of English to

communicate meaning, which has proved to be unsatisfac-

tory for the very large specification and design docu-

ments concerned (e.g. the specification for a large Sys-

tem X telephone exchange covers approximately 300 pages

of A4-sized paper (POR 3231, 1976)).

With the continued increase in complexity of tele-

phone systems, it was recognised that new methods would

be necessary to avoid corresponding increases in the num-

ber of problems caused by poor communication. This pro-

ject is one of a number of efforts which the Company is

making in this direction.

1.3.2. Initial Scope of the Project

All the previous developments in methods within the

Company had centred around the design, construction and

testing stages, so the present project was intended to

take a different view. The (chronologically) first step

in the design process, that of specification, was

selected as the starting point for the project, in ac-

= 6=

cordance with the ideals of "top-down" design (e.g. Ross,

1977).

The terms of reference for the project were set as

follows:

(a) to investigate methods of specification and languages

used for writing specification documents (It should

be noted that "languages" was taken to include any

form of notation used in writing specifications,

whether based on text or diagrams.),

(b) to propose which, if any, of these languages were

adequate and suitable for use by the existing staff

of the Company,

(c) if no existing language was found to be adequate, to

design a new and more-suitable language,

(d) to introduce the chosen language and any essential

support facilities into the Company.

Stages (a) to (¢) were undertaken as a project under the

Interdisciplinary Higher Degrees scheme at the University

of Aston in Birmingham and are the subject of this

thesis.

1.3.3. Final Scope of the Project

An investigation into the content of typical specifi-

cation documents within the telecommunication industry

showed that they contained:

(a) descriptions of the desired behaviour of the product,

including such things as response times and maximum

capacities,

=27—

(b) constraints upon the physical construction of the

product, including power consumption, heat

dissipation, weight and size,

(c) the required behaviour under conditions of overload

or faults,

(a) relevant standards which must be met, such as docu-

mentation rules and health and safety standards.

This represents a mixture of information relating to

different levels and stages in the design process, but

the structure of the documents did not identify which

part of the information was appropriate to each individ-

ual stage. It was decided that the "top-down" viewpoint

which the project was intended to take would best be

served by concentrating upon that information which is

relevant to a "black box" specification (Ashby, 1969).

Hence, all the information which forms constraints upon

the design (such as constructional standards and power

dissipation) would be considered to be outside the range

of the investigation, and of any specification language.

This decision appears to have been taken by almost all

authors of articles on specification language (e.g.

Abrial, 1980; Alford, 1977; Balzer & Goldman, 1979;

CCITT, 1980; Goguen, 1979; Hemdal, 1973), although few

make an explicit statement to this effect.

Additionally, it was decided that all information-

processing systems could be described adequately without

having to consider the detection and decoding of analogue

signals. Thus, all signals can be treated as the instant-

aneous receipt of a packet of information, without ref-

=29>

erence to the physical encoding by which this information

is represented as a physical waveform. This results in

considerable simplification of the specification by

separating the behaviour caused by each signal from

details of physical representation; it is therefore poss-

ible to write a specification for a system without having

to define the physical form of any signal, leaving such

decisions to be taken by the designer.

The following definition therefore summarises the

view of specifications taken by the project.

'A specification is a statement of the reguired

behaviour of a system when that system is viewed as a

"black box". It is expressed in terms of the responses

which the system will make to external stimuli, and both

the stimuli and responses take the form of instantaneous

events, although there may be delay between a stimulus

and the conseguent response. Such a specification will

contain information about the speed of operation of the

system, any limits upon its capacity to respond and its

behaviour when overloaded; however, it should not intro-

duce any unnecessary constraints upon the design of pro-

ducts to meet that specification.'

Subject to this definition, the terms of reference in

Section 1.3.2 (a) to (d) were otherwise unchanged.

—29—

1.4. The Direction Taken by the Project

1.4.1. General

The developments in technology which have taken place

since the start of the project have confirmed the impor-

tance of behavioural specifications (sometimes called

"requirements specifications" (Lehman, 1981) or

"functional specifications" (Mackie, 1981)) in large

systems, especially when an existing product is to be re-

constructed using some new technology. Where no such spe-

cification existed, it has sometimes been found necessary

to create it before commencing the design of the updated

system (e.g. Henninger, 1979), in order to ensure compa-

tibility between the old and new versions.

However, over the same period of time the majority of

published work on specification languages has concen-

trated upon the use of formal mathematical languages and

the techniques of theorem proving (e.g. Abrial, 1980;

Goguen et al, 1978; Musser, 1979; Neumann et al, 1980).

This project has taken a different approach for the fol-

lowing reasons.

(a) A requirements specification cannot be proved correct

by mathematical methods, as it can only be compared

with the customer's mental model. Although a specifi-

cation can later be used in a proof that the system

design is correct, it is much more important to en-

sure that it is fully understood and accepted by the

customer.

=30=

(b) The main difficulty in commercial organisations is to

obtain the requirements information. Most specifica-

tions are incomplete in some parts for much of the

duration of a project; it is therefore essential to

accept and record incomplete information, allowing

the specification to be created incrementally.

(c) As a consequence of (b), axiomatic methods (e.g.

Goguen et al, 1978) may be impracticable, as they

reguire a complete understanding of the system being

specified. Their form also makes the incremental

creation of a specification more difficult, as they

achieve brevity by combining information about

separate parts of the system behaviour.

(d) A specification forms the main communication link

between the customer and the supplier; thus, it

should aim above all else to be comprehensible to

both parties. Mathematical elegance and tractability,

often seen as advantages by the proponents of the

more mathematical specification languages, do not

necessarily bear any relation to comprehensibility

(Green, 1977).

Hence the objectives of this project, which are outlined

in the next section, are based upon the adoption of a

simple model for specifications which sacrifices mathe-

matical tractability, wherever that becomes necessary, in

order to retain comprehensibility. In particular, the aim

has been to minimise the number of concepts which would

be unfamiliar to the staff of a telecommunications manu-

facturer and its customers.

=31—

1.4.2. ASL (A Specification Language)

A review of existing specification languages

(reported fully in Chapter 2) did not result in the iden-

tification of one which was considered adequate; a new

language was therefore designed in accordance with item

(c) of the terms of reference (see Section 1.3.2). In or-

der to avoid confusion when discussing the relationship

between this language and other languages it was given

the name "ASL", an acronym for "A Specification

Language". ASL is described in detail in Chapters 3 and

4, but its main objectives can be summarised as follows:

(a) A simple model of systems.

ASL uses the stimulus-response ("black box") model of

systems as described in Ashby (Ashby, 1969). This

maps directly onto the physical realisation of

information-processing systems, provides a discipline

which assists in the detection of omissions, and

helps to avoid a number of problems of semantics.

(These points are discussed in detail in Chapter 3)

(b) A limited number of simple primitive operations.

In ASL there are two basic operations: the sending

and receipt of messages. To offset this extreme

simplicity, a message is allowed to contain an arbi-

trarily large amount of information.

(c) Implicit specification of data transformations.

Transformations on information (i.e. functions in the

Mathematical sense) do not have to be specified as

algorithms which achieve the desired result; they can

=32-

be expressed directly in terms of the required rela-

tionship between the input and output values. This is

consistent with the "black box" view of systems, and

results in simple, comprehensible descriptions.

(d) Direct reference to past events.

There is no reason for a specification to be

concerned with the methods (and economics) of in-

formation storage. For simplicity and

comprehensibility, the specification writer should be

allowed to refer directly to all the events (i.e.

messages sent and received) which represent the

history of the system. This is in contrast to system

models such as those based upon finite-state machine

theory (e.g. Parnas, 1972), where past events are

summarised as if stored in a limited number of accu-

mulators in the memory of a computer, with consequent

loss of comprehensibility.

(e) Tolerance of incompleteness.

Incomplete specification is permitted in ASL by al-

lowing any part of the specification to be stated to

be "“undefined". In this way the specification con-

tains an explicit marker against every incomplete

portion so that these can easily be identified by

anyone reading the document.

Superficially, ASL has been kept simple; it uses English

words (e.g. "“send", "receive") rather than special

symbols, in order to reduce the amount of training

required to be able to read (rather than write) ASL

specifications. The syntax of the language (see Chapter

-33-

5.2) is suitable for the simplest type of recursive-

descent analysis (Davie & Morrison, 1981). This reduces

the complexity of the support facilities (see Chapter 5)

and may also be more acceptable to the users of the lan-

guage than a more complex grammar (Green, 1980).

1.4.3. Expected Benefits

In the initial stages of the introduction of ASL, it

is unlikely that any of the expected reduction in the

total timescale of a project will be achieved due to the

additional time taken to train personnel in the correct

use of the language. It might even lead to an increase in

the time taken for the first project on which any partic-

ular group of people uses the language, as the concept of

formal reguirements specifications will be new to them.

However, even in these initial projects, it should be

possible to detect a reduction in the number of errors

which are not identified until after the construction

stage.

Due to the long timescales for the types of projects

undertaken by GEC Telecommunications Ltd. it is not poss-

ible to report any significant evidence of such improve-

ments in this thesis, as the true value of formal specif-

ications will only become apparent over a period of

years. The few reports from organisations which have been

using formal methods for a number of years (e.g. Alford,

1979; Lattanzi, 1981) indicate that around 50 percent of

errors may be detected at the specification and design

=34-

stages due to the use of such methods. Although these

figures relate to the production of large software sys-

tems outside the telecommunications industry they are in-

dicative of the scale of the possible improvement.

Taking results from such sources together with some

figures from within the Company, it is possible to arrive

at an extremely approximate estimate of the benefits

which might be obtained. Because of the degree of approx-

imation involved, and the mixture of sources of the

figures, every attempt has been made to take a conserva-

tive view. Only the System X projects within the Company

have been included, as these are the only ones for which

the costs and numbers of changes per annum can easily be

obtained.

These figures are as follows:

(a) Current number of changes per year. 5000

(This is the number of change notes issued

on the System X project in the year 1981.)

(b) Average cost of each change on System X

within the Company (Dawkins, 1982). £280

(This represents the cost of engineering

effort and documentation in processing a

change, but does not include the cost of

rectification on existing equipment.

The cost is given at 1980 price levels.)

(c) Percentage of errors due to poor

specification (Jones, 1979). 15

(Analysis of large software projects

in the U.S.A..)

=35=

(d) Percentage of specification errors

detected by formal methods (Alford, 1979). 50

(Report on use of formal methods for

software development in T.R.W. Inc..)

(e) Estimated possible saving per year

GC Cae % ab) xe (Cc) / LOOK (a) 200" es £105000

It is quite possible that the elements for which esti-

mated savings could not be obtained (e.g. the rectifica-

tion of existing equipment, and changes on products other

than System X) represent a potential benefit many times

greater than the total shown above. Some managers in the

Company who have been involved in the development of Sys-

tem X consider the savings shown above to be a gross un-

derestimate of the likely effect; their experience indi-

cates that a very large amount of effort is wasted due to

incompleteness in the present specifications. However, it

was considered that the figures presented should be well-

justified, representing the minimum savings to be ex-

pected in practice.

1.5. Structure of the Thesis

The subsequent chapters follow the general

development of the project in chronological sequence,

with Chapter 2 covering the review of existing specifica-

tion languages and Chapters 3, 4 and 5 describing the

development of ASL. In Chapter 3 the fundamental deci-

sions behind the design of the language are explained,

=36=

then Chapter 4 covers the detailed definition of the lan-

guage and Chapter 5 describes the support which can be

provided by computer facilities. The initial trials of

the language are reported in Chapter 6 and evaluated in

Chapter 7, then Chapter 8 provides some conclusions and

proposals for further work.

Due to the volume of supporting material (e.g. tables

of comparisons between languages, formal definitions of

ASL) much of the detail appears as Appendices.

=< 37

CHAPTER 2

REVIEW OF POSSIBLE CANDIDATE LANGUAGES

2.1. Introduction

A wide variety of notations have been proposed for

use as specification languages, and in this Chapter a re-

presentative sample are reviewed. With such a large range

to evaluate it is essential to have an objective basis

for the assessment, so the first section of the Chapter

is concerned with the development of criteria, which are

then used in thé evaluation. One major guiding factor in

this review has been the suitability of the languages for

use by existing personnel without the need for extensive

retraining; this is reflected in the choice of criteria

used in the evaluation. An earlier and less detailéd ver-

sion of this review appeared in (Blackledge(a), 1981).

2.2. Reguirements of a Specification Language

2.2.1. The Starting Point

When viewed in the context of its intended purpose, a

good specification can be seen to be one which is:

sage

(a) comprehensible, to both the authors and the readers,

(b) testable, with all statements in the specification

being measureable attributes of the final product,

(c) adeguate, in that it contains all the appropriate

information,

(d) maintainable, with a structure which facilitates the

introduction of amendments.

However, these are not suitable criteria for an evalua-

tion of specification languages as they are compound

attributes, and can only be assessed subjectively. It is

therefore necessary to determine a set of objective

criteria which equate to the achievement of the above

aims. This can only be done on the basis of the available

evidence, which is limited and fragmentary (e.g. Green et

al, 1981), so that the final list of criteria must be

seen as a partial test, to be complemented by subjective

assessment.

The final list was the result of an iterative

process, where each item in the list was replaced by

those more detailed items which contribute to its

achievement, until a stage was reached where all items in

the list were amenable to objective evaluation. The level

of objectivity demanded was that it should be possible to

identify clearly the presence or absence of the appropri-

ate feature in a language; none of the criteria are suf-

ficiently quantifiable to permit the languages to be

placed in order.

Figure 2.1 shows, in the form of a hierarchy, the

stages by which the final criteria were reached; the ini-

-39-

tial aims appear at the top, connected by pointers to the

items by which they were replaced. In the figure each

item appears only as a brief title, but the following

paragraphs provide an explanation for each stage and for

the titles.

2.2.2. Comprehensibility

Comprehension of text or diagrams is enhanced by good

organisation of the material, using means such as_ those

listed below.

(a) Structure, such as paragraphs (Mills & Walter, 1978)

and appropriate sequencing of the content (Posner &

Strike, 1976), which are discussed in Section 2.2.6.

(b) Conciseness (Liskov & Zilles, 1978), which is

discussed in Section 2.2.7.

(c) Perceptual cues, such as headings, which direct the

reader's attention (Green et al, 1981; Hartley &

Burnhill, 1977; Thomas & Carroll, 1981), discussed in

Section 2.2.8.

(d) Descriptive and historical reference (Balzer &

Goldman, 1979), rather than the modes of reference

available in programming languages, where past in-

formation must be explicitly saved and cannot be ac-

cessed as "the last..." (Nylin & Harvill, 1976;

Schueler, 1977), and must be mentioned by name rather

than as “thes.« with)...

=40—

DEVELOPMENT OF THE SELECTION CRITERIA FIGURE 2.1

O
t
T
w
y
z
t
r
I
o
b
T
e
-
u
o
N
n

T2PpowW
o
T
J
u
e
u
e
s

x
e
q
u
d
s

A
q
r
p
e
w
s
o
g

e
t
d
u
t
s

S
f

u
o
t
z
e
s
t
a
a
q
n
d
u
o
)

azoy
A
R
T
T
T
Q
e
q
I
N
S

/ uot}zeeI
D

T
e
q
u
c
w
e
s
z
o
U
u
T

soentea
A
z
z
n
g

A
X
T
T
T
Q
e
3
s
e
L

(pe)

u
o
T
j
e
q
u
e
s
e
i
d
e
y

AQT
T
T
q
e
u
r
e
q
u
r
e
w
 s10}

TUOW

s
u
z
a
o
u
0
D
j

jo
u
o
t
j
z
e
r
e
d
a
s

auTL
Jo

(2)

u

AArTeurTutw

A
o
u
a
a
a
n
o
u
o
p

A
D
e
n
b
e
p
y

(q)

u
o
t

z
e
s
t
T
e
r
z
s
u
s
H

4

o
T
j
e
b
a
i
b
b
y

 s
u
o
t
q
o
y
w

jo

u
o
t
j
e
i
e
d
a
s

A
u
e

p
u
n
p
e
a

TeuotzeION

sang
T
e
n
j
d
a
o
i
e
g

 eanjonaq4s

3
x
O
L

a
o
u
e
r
e
y
e
y

a
a
t
q
d
t
a
o
s
e
q

pue
O
T
J
O
R
S
T
H

a
a
n
j
o
n
a
4
s

A
A
t
[
t
q
t
s
u
a
y
e
r
d
u
o
y

(e)

=41—

2.2.3. Adequacy

This covers those features which make a language

practical in a commercial environment on large projects

with large project teams.

(a)

(b)

(c)

(a)

(e)

Minimality, in permitting description of the required

behaviour without demanding any unnecessary details

(see Section 2.2.9).

Recognition of concurrency. Most large systems in-

volve actions occuring in parallel, and it is there-

fore appropriate to be able to represent this

directly (Kornfeld & Hewitt, 1981; Petri, 1979).

Representation of time. Although most properties of a

system can be analysed using only the concept of

sequence in time (Peterson, 1981), the omission of

time delays and time limits leads to inadeguate spe-

cifications (Winograd, 1979).

"Fuzzy" values. Despite the need for quantitative

statements which can be tested, there are likely to

be many values which cannot be stated as a single,

precise figure; if the author of the specification

has to make an arbitrary choice of a single figure,

this may result in unnecessary difficulties for the

designer (Estrin, 1978). The language should there-

fore allow imprecise information to be stated, but in

a way which indicates its nature (Balzer & Goldman,

1979).

Incremental creation. For a large specification, with

perhaps hundreds of pages, it is impractical to ex-

=—42—

pect that all the necessary information will be

available at the time when the specification is first

written. Specifications are usually elaborated in

discussion between customer and designer (Malhotra et

al, 1980), and the document should at all times re-

present the latest information, even though this may

be incomplete (Hewitt et al, 1979).

2.2.4. Maintainability.

Two identifiable factors which aid in the introduc-

tion of amendments are:

(a) separation of concerns, so that unrelated information

is physically separated in the specification, as

discussed in Section 2.2.10,

(b) computer-based support, to aid in locating the in-

formation to be changed and also in checking that the

changes are made correctly and uniformly throughout

the specification (see Section 2.2.11).

2.2.5. Testability.

The use of a formal language, which does not allow

purely qualitative statements, is a major contribution to

ensuring that the requirements are testable (Alford,

1977; Balzer & Goldman, 1979; Davis & Vick, 1977; Wass-

erman & Stinson, 1979).

a5 =

2.2.6. Structure...

Apart from the physical structure of the text, there

is also the organisation of the information for

presentation. Two extremely useful forms of this type of

structure are "generalisation" and "aggregation" (Smith &

Smith, 1977). "Generalisation" is the use of a general

object to represent the common characteristics of a col-

lection of specific objects, e.g. the use of the word

"dog" to represent the common features of a large set of

individual animals. "Aggregation" is the introduction of

a descriptive name for a group of associated objects,

e.g. an "address" is made up of a house number, a street,

a town and a postcode. These forms of structure provide a

significant reduction in the amount of information in a

specification, by allowing the use of the general names

and aggregate names as abbreviations.

2.2.7. Conciseness.

"Conciseness" refers to features which help to pro-

duce short specifications. Text structure,

generalisation, aggregation (see 2.2.6) and minimality

(see 2.2.9) all contribute to the removal of unnecessary

repetition of information; another feature which helps is

the use of "monitors" (also called "demons" in Artificial

Intelligence programs , e.g. Winston, 1976). A "monitor"

is a statement of some condition (e.g. an error

condition) and the action to be taken when that condition

=44—

occurs. It can be thought of as watching over the system,

monitoring everything which happens to see if its condi-

tion occurs; and when it does then the monitor performs

its action and afterwards returns to monitoring. An exam-

ple of the analogous form in English is "When you feel

hungry go and eat.".

2.2.8. Perceptual Cues.

Green et al (Green et al, 1981) point out the impor-

tance of visual cues to assist the reader.

(a) Text structure, such as paragraphs, headings, etc.,

to break the text into logical blocks (see 2.2.2(a)).

(b) Some redundancy in the notation, such as headings

(Bartley & Burnhill, 1977; Thomas & Carroll, 1981),

indentation of paragraphs (Green et al, 1981) and the

use of a notation which avoids extreme terseness

(Miller, 1967).

(c) Separate description of each action (Cleaveland,

1980), as this is more comprehensible than the in-

termingled form appearing in axiomatic descriptions

(e.g. Guttag, 1977).

2.2.9. Minimality.

"Minimality" does not refer to the size of the spe-

cification document, but to the ability of a language to

express exactly the reauired behaviour and no more

(Liskov & Zilles, 1978). To achieve this the language

-45-

must not force the inclusion of unnecessary information,

such as:

(a) an algorithm (detailed sequence of steps) for produc-

ing the required result, or

(b) a definition of the data to be stored within the

system.

Both of these can be avoided, by using non-algorithmic

languages for data transformations (e.g. Jones(a), 1980;

Guttag, 1977) and historic reference to data (see

2.2.2(d)), and in this way the specification does not in-

troduce unnecessary constraints upon the designer.

2.2.10. Separation of Concerns.

Correct use of text structure (Section 2.2.2(a)), in-

cluding generalisation and aggregation (Section 2.2.6),

monitors (Section 2.2.7) and the separate description of

each action (Section 2.2.8(c)) result in a specification

where each item of information occurs the minimum number

of times, and only in appropriate places (Balzer &

Goldman, 1979). This reduces the likelihood of some oc-

curences of an item remaining unaltered when a change is

introduced.

2.2.11. Suitability for Computerisation.

Goguen (Goguen, 1979) and Gerhart and Yelowitz

(Gerhart & Yelowitz, 1976) note the prevalence of trivial

errors in formal specifications, of types which can eas-

=46—

ily be detected by computer-based checking systems (e.g.

Alford, 1977; Davis & Rauscher, 1979; Goguen, 1979;

Teichrow & Hershey, 1977). For a language to be suitable

for this kind of computer-based support it must be:

(a) simple syntactically, so that it is amenable to

efficient, well-understood language processing tech-

nigues (e.g. Gries, 1971). Despite considerable pro-

gress in the processing of natural language (e.g. Bo-

brow et al, 1977), there are still many difficulties

in applying these techniques in practice (James,

1981),

(b) formal, so that every possible statement in the lan-

guage has a well-defined meaning. This is discussed

further in Section 2.2.12 below.

2.2.12. Formality

A language with a well-defined syntax is not neces-

sarily "formal", as without a sound semantic basis it is

still ambiguous or meaningless (Lewin, 1977). From the

point of view of this evaluation there are two types of

semantic model which could be used.

(a) Operational models, where the meaning of statements

in the language is "defined" by the operations which

result when it is processed by a particular computer

program (its "compiler").

(b) Theoretical models, where the meanings are defined in

terms of some abstract, mathematical model, indepen-

dent of any particular implementation on any particu-

aay

lar computer. —

Languages with theoretical models are preferable

(Demuynck & Meyer, 1979), as any computer support facili-

ties can use these theoretical models as an integral part

of the checking procedures, rather than having to rely

upon the integrity of a previous implementation.

2.2.13. Summary.

The final list of thirteen criteria, which provide

the necessary level of objectivity, are :

(a) block or paragraph structure,

(b) generalisation,

(c) aggregation,

(d) separate description of each action,

(e) monitors,

(£) historic and descriptive references,

(g) non-algorithmic description of transformations,

(h) representation of time duration,

(i) recognition of concurrency,

(j) acceptance of fuzzy values,

(k) notational redundancy,

(1) simple syntax,

(m) a well-defined semantic model.

Although this list is not a complete set of criteria, due

to the nature of the problem, the following sections will

show that it does provide a sufficiently stringent test

to indicate deficiencies in all the languages reviewed.

=48>

2.3. The Types of Specification Language

There are well over one hundred different languages

which have been put forward as suitable for use in writ-

ing specifications, but by choosing a single language to

represent groups which differ only slightly this has been

reduced to eighty-eight in the review. Even with this

reduction there is a need for some categorisation scheme

which permits common failings and strengths to be

identified. The categories which have been used are

listed below, and divide the languages on the basis of

their conceptual background, i.e. the source of the basic

structure of the language. Where there appeared to be

some choice over the appropriate category for any

language, it was placed with the group which represents

the major influence in its design. Many languages in-

tended for other stages in the design process

(Ramamoorthy & So, 1978) have been omitted; some of

these, which are called "specification languages" by

their authors, are much more concerned with the design of

systems than with their reguired behaviour.

The categories are covered in Sections 2.4 to 2.17,

as listed below, and then Section 2.18 summarises the

evaluation.

Section Category

2.4 Universal Languages

Ds5) Computer Hardware Description Languages

2.6 New Programming Languages

2.7 Derivations from Programming Languages

ices

Section . Category

20 Flow Charts

Zo? Hierarchic Description Methods

2.10 Finite State Machine Languages

vara lal Static Description Languages

2612 Pre- and Post-condition Languages

2213 Event-triggered Languages

2.14 Specification Analysers

2ei5 Seguence Description Languages

2016 Petri Nets

2el7 Languages using Axiomatics

Each of these categories is explained in more detail in

the appropriate section and is briefly evaluated against

the criteria given in Section 2.2.13. Tables showing the

full evaluation of the eighty-eight languages against the

thirteen criteria appear in Appendix A.

2.4. Universal Languages

The term "universal" is intended to indicate that

these languages were not specifically designed for use in

writing specifications, but have been used for that

purpose.

2.4.1. Natural Languages

English and other natural languages have been used

successfully as specification languages for many years,

but with the increasing size and complexity of the sys-

=50-

tems now being developed their disadvantages have become

more apparent (Alford, 1979; Jones(a), 1980; Lehman,

1981). The main problems relate to ambiguity (e.g. Hill,

1972) and the extensive use of implicit reference (Hobbs,

1977), which cannot always be fully resolved even in di-

alogue between the author and a supporting computer sys-

tem (Balzer et al, 1978). Careful use of a natural lan-

guage can produce good results (e.g. Naur, 1960), but the

consequent need to give clear and complete definitions of

all terminology can lead to verbose documents (e.g.

Holbeck-Hanssen et al, 1975) without ensuring the removal

of ambiguity.

2.4.2. Programming Languages

A number of proposals for specification languages

make direct use of computer programming languages, such

as APL (Jones & Kirk, 1980), and similar notations, e.g.

PDL (Caine & Gordon, 1975). This takes advantage of the

formal nature of these languages, with their simple syn-

tax and defined semantic model (although many programming

languages have only operationally-defined semantics - see

Section 2.2.12), to produce precise, unambiguous

specifications.

However, with few exceptions (see below) these lan-

guages are totally algorithmic, reguiring detailed

descriptions of the method for producing transformations

on data, and fail to meet criterion (g). They also have

been designed to operate efficiently on current computer

-51-

hardware, and so do not provide historic and descriptive

reference (criterion (f)) or monitors (criterion (e)),

cannot accept fuzzy values (criterion (j)), and provide

no direct representation of time (criterion (h)). Prolog

(Clocksin & Mellish, 1981) and SETL (Schwartz, 1973) both

suppress almost all algorithmic detail, leaving their in-

terpreter programs to organise the flow of control, and

therefore satisfy criterion (g), but they share the other

deficiencies mentioned above and fail to meet criteria

(e),(£), (h) and (3).

2.5. Computer Hardware Description Languages

Computer Hardware Description Languages (CHDLs) are

also known as Register Transfer Languages (RTLS) because

they model digital circuits at the level of physical

binary registers... Examples are AHPL (Hill & Peterson,

1973), DDL (Duley & Dietmeyer, 1968), HARTRAN (Bown,

1978), ISPS (Bell & Newell, 1971) and TEGAS6 (Szygenda,

1980). They are all extremely algorithmic as they

describe in terms of a detailed design; at least one lan-

guage (Bell et al, 1973) has been complemented by actual

hardware modules, so that statements in the language can

be directly translated into a design. Apart from the

failure to permit non-algorithmic descriptions (criterion

(g)), these languages are also restricted by their repre-

sentation of all data as registers of bits, and therefore

provide inadequate facilities for generalisation

(criterion (b)) and aggregation (criterion (c)).

=52-

2.6. New Programming Languages

As a consequence of growing interest in formal proofs

of correctness of computer programs (e.g. Mills, 1975) a

number of programming languages have been developed which

incorporate both the imperative features reguired to per-

form operations on a computer and non-imperative state-

ments in which to make assertions about the intended cor-

rect behaviour of the program (e.g. Hantler & King,

1976). The languages Ada (Ichbiah et al, 1979), Alphard

(Wulf et al, 1976) and Gypsy (Ambler & Good, 1977), and

the Gamma program development system (Falla, 1981) all

contain such features; however, as Krieg-Bruckner and

Luckham (Krieg-Bruckner & Luckham, 1980) point out, they

only provide sufficient features to verify the design,

not to act as a complete specification. Even the exten-

sions proposed by Krieg-Bruckner and Luckham (op. cit.)

fail to satisfy criteria (e), (f), (h), (i) and (3).

2.7. Derivations from Programming Languages

In a number of cases a specification language has

been derived from a programming language, either by the

relaxation of the syntax rules to allow informal descrip-

tions instead of algorithms or by the addition of feat-

ures such as a representation for time. As examples, RLP

(Davis & Rauscher, 1979) is based upon PL/I (IBM, 1976)

with added block structuring, Delta (Holbeck-Hanssen et

al, 1975) and Epsilon (Jensen et al, 1979) are based upon

-53-

SIMULA (Dahl & Nygaard, 1966) with the addition of non-

algorithmic constructs. SMSDL (Frankowski & Franta, 1980)

is also based upon SIMULA but uses informal descriptions

of processes rather than additional formal statements.

Others such as DDN (Riddle et al, 1979), SPECLE

(Biggerstaff, 1979) and SREM (Alford, 1977) have similar

forms, although they are not as closely modelled on any

one programming language. As a group these languages

still retain a large degree of the algorithmic nature of

programming languages (see Section 2.4.2), even those

which provide some non-algorithmic constructs; all repre-

sent data as stored variables rather than having descrip-

tive and historic reference (criterion (f)).

2.8. Flow Charts

Flowgrams (Karp, 1978), progression charts (System X,

1979) and flow charts (Wayne, 1973) all take the form of

diagrams containing boxes of various shapes connected by

directed arcs. The boxes represent processes and

decisions, and these charts are normally used to display

the structure of a computer program or similar level of

process (e.g. Sleight & Kossiakoff, 1974). The SX/1 sys-

tem (Corker & Coakley, 1976) makes practical use of this

by automatically producing computer program text from

flow chart input. Apart from SX/l, which is comparable to

the other programming languages in the evaluation (see

Section 2.4.2), the flow charts all use informal, un-

structured text as labels for their boxes and arcs. They

-54-

therefore fail to meet criteria (1) and (m), as they do

not have a defined syntax or semantics for these labels.

2.9. Hierarchic Description Methods

One method for describing large systems which is of-

ten suggested in manuals on technical writing (e.g. Mills

& Walter, 1978) is that of repeated subdivision into

smaller and smaller elements until a level is reached

when each element can be described in a few sentences.

The work of Miller (Miller, 1967) on the number of

"chunks" which can be stored in human short-term memory

was taken as supporting this type of method, and a number

of hierarchic specification languages appeared. These

ideas also form the basis of various "structured program-

ming methodologies" (e.g. Structured Systems Analysis

(Gane & Sarson, 1979)).

CORE (Mullery, 1979), HIPO (Stay, 1976), SADT (Ross,

1977) and Structured Systems Analysis all use block dia-

grams to depict the hierarchy, with unstructured natural

language text to describe processes. They therefore fail

to satisfy criteria (1) and (m); also, because of their

origins in commercial data processing, they have no re-

presentation of time or concurrency (criteria (h) and (i)

respectively). In contrast, CADIS (Bubenko & Kallhammer,

1971), HOS (Hamilton & Zeldin, 1976) and PSL (Teichrow &

Hershey, 1977) are based upon restricted languages with

simple syntaxes and are provided with extensive computer-

based support. However, PSL does not have any way of

-55-

describing data transformations, and all three fail to

satisfy criteria (h) and (i).

2.10. Finite State Machine Languages

State transition diagrams and finite state machine

theory have been used in the design of electrical cicuits

for many years (e.g. Moore, 1956), but interest in their

use for system specification appears to be more recent

(Kawashima et al, 1971). The initial proposals (e.g.

Hemdal, 1973; Kawashima et al, 1971) were based upon the

use of state transition diagrams with informal labelling

in natural language, and were therefore little more than

special forms of flow chart (see Section 2.8); even some

recent languages (e.g. Braek, 1979) have still retained

this level of informality.

Other languages have been fully formal, so that they

could be checked by computer and even in some cases au-

tomatically transformed into computer programs. Examples

of these are CDL (Dietrich, 1979), NPN (Boebert et al,

1979), the notation of Parnas (Parnas, 1972) which also

appears as SPECIAL (Robinson, 1976), and the notation

used by Wymore (Wymore, 1967). In order to obtain the

necessary formality in a cost-effective manner, all these

languages took the form of text rather than diagrams; the

CCITT Specification and Description Language (CCITT,

1980) has gone one stage further in having text and dia-

gram forms which are equivalent and can be converted into

each other automatically.

-56-

The main disadvantages of all these languages result

from the use of the finite state machine model. This

requires that every event and relevant state must be pre-

sent explicitly in the specification and, for any large

system, this involves a considerable number of states and

events. Any attempt to introduce aggregation (criterion

(ey), generalisation (criterion (b)) or monitors

(criterion (e)) in order to reduce the size of the spe-

cification destroys the link to the underlying theory

(Cohen, 1980), so that the resulting description no

longer has a semantic model (criterion (m)). Without

these features the specification has insufficient struc-

ture (criterion (a)).

2.11. Static Description Languages

The largest source of static description lan-

guages is the field of database systems, where the

concern is in ensuring that a database accurately repre-

sents the state of the "real world" at some instant of

time. In general, there is no attempt to describe the dy-

namic features which cause updates to the database, hence

the use of the term "static". The Entity-Relationship

model (Chen, 1976) was selected as a suitable representa-

tive of the database languages, but others which fall

into this category are LEGOL (Stamper, 1977) which has

been used in modelling statute law, SLICES (Steele &

Sussman, 1979) which can represent ordered sets of

constraints, and methods based upon invariants (e.g. Cun-

=57—

ningham & Kramer, .1977). By. concentrating upon static

aspects of a system, these languages provide a powerful

form of monitor (criterion (e)); however, they fail to

satisfy the criteria relating to dynamic behaviour (i.e.

(d), (£), (h) and (i)).

2.12. Pre- and Post-condition Languages

In these languages each action is specified by stat-

ing the conditions which are necessary for it to commence

(the "“pre-conditions") and the conditions which will ex-

ist when it finishes (the "“post-conditions"). For

example, a square-root function could be specified as:

Pre-condition: A number, X, greater than or

equal to zero, and some reguired

tolerance on the answer, Y.

Post-condition: A result, R, such that

[ee Rt <¥

This provides a good, non-algorithmic way of defining

transformations upon data (criterion (g)), as exemplified

in the work of Dijkstra (Dijkstra, 1976) which has been

continued by Cunningham and Kramer (Cunningham and

Kramer, 1977), the Vienna Development Language (Bjorner &

Jones, 1978) and the related work by Jones (Jones(a)

1980), and the language Z (Abrial, 1980). However, all

these languages provide no representation of time

(criterion (h)) and cannot deal with concurrent systems

(criterion (i)). Only the language Z has any form of text

structure.

-58-

2.13. Event-triggered Languages

This type is differentiated from the others by its

text form and the use of the concept of “events" without

necessitating the use of system states (as is the case in

finite state machine languages, Section 2.10). The Petri

net languages (Section 2.16) are also based on events,

but appear in a separate section because of their dia-

grammatic presentation.

There are a large variety of languages within this

type, canging from those not intended for computer

processing (e.g. Jackson, 1981) to formal and complex

ones with extensive computer support (e.g. Hewitt, 1977).

There are examples which satisfy each one of the

criteria, although no individual language satisfies all

the thirteen. The most interesting of the group, because

they provide features not found in other languages, are

AP2 (Balzer & Goldman, 1979) which allows fuzzy values

and historic references, and ACTORS (Hewitt, 1977) which

us designed to permit incremental creation of

specifications.

In general, the event-triggered view of systems of-

fers a clear method for developing specifications by

starting from the list of all possible events. However,

it is not possible to specify all behaviour (e.g. maximum

time delays between messages) solely in terms of external

events; also this approach provides no obvious method of

structuring large specification texts.

=50=

2.14. Specification Analysers

Although the languages of this type are not complete

specification languages, as their purpose is only to

analyse particular features of a specification, they have

been included for completeness. As an example, SPECK

(Quirk, 1978) deals only with the timing of messages, not

their content, and checks to ensure that no messages can

be missed due to time delays within the system.

2.15. Sequence Description Languages

The behaviour of a finite state automaton can be

described fully by the sequences of messages which it

will accept and send, this being an alternative to a fin-

ite state machine specification (Hopcroft & Ullman,

1969). By defining the seguences as regular expressions

(Harrison, 1974) or path expressions (Campbell &

Habermann, 1974), such a specification can be reduced to

an acceptable size.

Milner's Calculus of Communicating Systems (Milner,

1980) and COSY (Lauer et al, 1979) take this form, and

have been shown to produce useful theoretical results.

However, the disadvantages of sequence descriptions are

in their presentation; they have no text structure

(criterion (a)) and require all actions to be described

in sequences, not separately (criterion (d)).

-60-

2.16. Petri Nets

Petri nets (Petri, 1962) were devised as a visually

simple representation of event-triggered systems, amena-

ble to a variety of analyses (Peterson, 1981; Shaw,

1980). The original nets only had informal text

labelling; however, the combination of visual simplicity

and their ability to represent concurrency led to their

use with formalised labels in GRAFCET (Bouteille, 1978),

LOGOS (Rose et al, 1972), Pro-Nets (Noe, 1978) and SARA

(Estrin, 1978). These languages all have limited facili-

ties for aggregation but no facilities for generalisation

or monitors; thus, specifications written in them tend to

be large and lack structure. More recent work (e.g. Gen-

rich et al, 1980) has introduced limited forms of gen-

eralisation (criterion (b)) and monitors (criterion (e)),

but not a method of representing time (criterion (h)).

2.17. Languages using Axiomatics

The basic systems in mathematics, such as Euclidian

geometry and the natural numbers, are defined axiomati-

cally (Stewart, 1975), as this provides a concise and

minimal definition. A number of specification languages

have therefore used this approach in an attempt to obtain

the same benefits. Examples are ADJ (Goguen et al, 1978),

Affirm (Musser, 1979), CLEAR (Burstall & Goguen, 1977),

iota (Nakajima et al, 1977), OBJ (Goguen, 1979) and the

notation used by Schwartz and Melliar-Smith (Schwartz &

=61—

Melliar-Smith, 1981).

Axiomatic descriptions have the same disadvantages as

sequence descriptions (see Section 2.15). Since actions

are described in combinations rather than separately

(criterion (d)), it is difficult to provide any structure

to the specification (criterion (a)) without performing

part of the design. Additionally, there are practical

difficulties in constructing an adeguate set of axioms

which encapsulate exactly the required behaviour (Guttag,

1977); this casts doubt upon their suitability for use in

a commercial environment.

2.18. Conclusions

From the comments about each category, which appear

in sections 2.4 to 2.17, together with the detailed ta-

bles in Appendix A (see especially Table A.15, which

gives a summary of Tables A.1 to A.14), the following

conclusions can be drawn.

(a) No single language in the review satisfies all thir-

teen criteria. The event-triggered language, AP2, and

English come closest to satisfying all thirteen, but

English has no formal semantic model while AP2 has

only operationally-defined semantics and lacks text

structuring facilities.

(b) For the majority of languages with a well-defined

semantic model the emphasis placed upon theoretical

correctness appears to have resulted in a lack of

features to aid comprehension.

-62=

(c) There is often no clear differentiation drawn between

specification and design documentation. Almost all

the languages require some design information (either

algorithms or definitions of stored data) to be in-

cluded in the specification.

(d) Direct use of, or the extension of, a language

designed for other purposes (e.g. a programming

language) appears to retain many of the disadvantages

of that language as a result of the inclusion of

features which were appropriate for the base

language, but which are not necessary in

specifications.

On this basis it was decided that a new language should

be developed, which would attempt to combine the streng-

ths of a theoretical semantic model with those features

which had been noted as contributing to

comprehensibility. In the next chapter, the fundamental

decisions behind the design of this language are ex-

plained and then the language itself is introduced in

Chapter 4.

=63-—

CHAPTER 3

THE DESIGN OF A SPECIFICATION LANGUAGE

3.1. Introduction

The review of languages in the previous Chapter indi-

cated the wide variety of views of systems which can be

used in writing specifications. These views are similar

to the scientific paradigms proposed by Kuhn (Kuhn, 1970;

Floyd, 1979) in that, once a particular view has been

selected, it is difficult to change. To design a specifi-

cation language, it is necessary to select one view (or a

compatible set of views) as a consistent framework

(paradigm) for the language, whilst ensuring that this

framework is sufficiently powerful to deal with a wide

variety of types of system. This Chapter contains an ex-

planation of the framework which was chosen, leaving the

details of the language structure until Chapter 4.

3.2. General Approach

In Chapter 1.2 the role of specifications was

discussed in the context of current practice in the Brit-

ish telecommunications industry. Any specification lan-

=64—

guage developed for use in this environment must recog-

nise the practical need to minimise the degree of re-

training of existing staff. This stresses the need for a

language which:

(a) does not utilise new and complex symbols where exist-

ing English words would suffice,

(b) permits the use of terminology specific to each

project, rather than enforcing some restricted set of

terms,

(c) was designed with mathematical tractability being

treated as secondary to the achievement of a language

in which the necessary information can be easily

expressed.

Despite the emphasis which this places upon the need for

a language which appears acceptably familiar and readable

to existing staff, it is not the aim to produce a specif-

ication which can be read by someone new to the project

being specified. A specification is not intended to be

suitable training material for staff entering a project,

but forms the contractual definition of the work to be

done (Mackie, 1979). Hence, the objective of a specifica-

tion is the accurate definition of the reguired

behaviour, not the provision of a structured introduction

to the system.

3.3. Formality

In Chapter 2.2.12 a formal language was defined as

one having well-defined syntactic and semantic models, so

-65-

that a specification written in the language avoids the

problems of ambiguity found in natural languages. Formal-

ity in this sense is therefore an essential feature of

the new language; but it does imply that, if the new lan-

guage is to be small and simple, the resulting specifica-

tions will be less flowing than ones written in English.

Once the complexity of a language approaches that of

English, the fallible human ability to detect errors can-

not be adeguately supported by current computer-based

technigues (James, 1981; also see Balzer et al, 1978 and

Bobrow et al, 1977 for indications of the limitations of

current techniques).

Hence the detailed design of the language must at-

tempt to produce an acceptable compromise between flexi-

bility (for the writer) and simplicity (for checking) in

a manner which maintains the basic formality of the

language. The remaining sections of this chapter discuss

the main elements of the formal basis of the language in

an informal manner, with the formal definitions being

covered in Chapter 4.5.

3.4. A System and its Environment

3.4.1. The System

In Sections 1.2 and 1.3 a specification was shown to

be primarily a means of communication between customer

and supplier. This implies that much of the document will

be written prior to both design and manufacture, so that

=66—

it ‘forms a prediction of a future situation as it should

exist after the product has been delivered to the

customer (Lehman, 1981). In such circumstances, it is not

possible to describe the proposed system by presenting

details of its construction or internal operations,

because these are not yet known. The descriptions may be

couched in terms of an "abstract" design, not intended to

prejudge the actual design process. However, this intro-

duces the same type of problems as an "algorithmic" lan-

guage (see Chapter 2.2.9), because the resulting specifi-

cation cannot easily be separated into those details

which are essential and those which are only a result of

the choice of abstract design (Liskov & Zilles, 1978).

Such problems can be avoided by ensuring that the

specification represents the way in which the customer

will see the system, i.e. as a "black box" (Ashby, 1969;

Weinberg & Weinberg, 1979); thus, all possible designs

for the system are observationally equivalent (Milner,

1980) if they meet this external specification.

Observational equivalence and the "black box"

viewpoint both concentrate upon describing the

customer's world (as proposed in e.g. Jackson, 1981), not

upon details of the design, and are therefore likely to

result in documents which are comprehensible to the

customer.

=67=

3.4.2. The Environment

The specification must however contain a clear defin-

ition of the boundary between the system and its

environment, as this bounds the task to be performed

(Lattanzi, 1980; Thatte, 1980). This can most easily be

achieved by viewing the environment as a system also

(Balzer & Goldman, 1979); the only difference between the

system and its environment when viewed as systems is that

the supplier (designer) does not have to design or manu-

facture a product which implements the environment.

Hence a specification takes the form of two (or

more) descriptions of "black boxes" - at least one for

the environment and one for the system being specified -

linked together by a description of the connections

between them, as depicted in Figure 3.1. Although it

should always be possible to represent the system and the

envirgnment as one "black box" each, it is convenient to

allow the use of more where physical separation (e.g. as

of the subscribers of a telephone exchange) makes it dif-

ficult for a person reading the specification to view

this as one entity.

This general structure for the specification has sig-

nificant advantages for the semantic definition of the

language, as is explained in Sections 3.5 to 3.7 below.

It also captures the concepts of modularity (Stevens et

al, 1974; Parnas, 1972) and observational equivalence,

which provide independence from the particular

technology used to implement the system. In this

-68-

THE GENERAL STRUCTURE OF A SPECIFICATION FIGURE 3.1

q
u
o
w
u
o
r
t
a
u
g

eqL

S
s
u
o
T
}
9
9
U
U
0
N
I
S
4
U
T

/

we
3
s
k
s

e
q
L

=69—

way, the specification is able to act as a common ref-

erence for a number of implementations, to ensure that

they are equivalent.

3.5. Communication by Message Passing

3.5.1. Messages

The main consequence of the "black box" model of sys-

tems is that the only way of obtaining information about

a system is by sending messages to it and awaiting

the replies. The "black box" representing the en-

vironment cannot have direct access to stored informa-

tion in the system, as is the case in some other lan-

guages (e.g. SMSDL (Frankowski & Franta, 1980)); thus the

specifier is forced to state all communications

explicitly. This discipline can be strictly enforced as

pare of the checking facilities described in Chapter 5,

and results in a method of specification which is highly

"analogic" (as opposed to "Fregean" (Sloman, 1971)) in

restricting the specifier to the same type of message-

passing as will exist in the designed product. Sloman

(op. cit.) suggests that "“analogic" representations (such

as message passing in the case of information-processing

systems) are much more useful in problem solving situa-

tions than "Fregean" ones such as those covered in Sec-

tions 2.11, 2,12 and 2.17.

The sending and receiving of messages therefore

become primitive concepts within the language, having the

=70=—

following properties.

(a) A message is an instantaneous event involving the

transmission of information. Hence a physical method

of transmission which may represent a message as a

sequence of voltage variations over some period of

time is modelled in the language as a single, in-

stantaneous event (usually at the final instant of

the physical message). If the variation of a single,

continuous waveform is significant, then it has to be

modelled as a number of instantaneous messages.

(b) The transmission of a message is assumed to be in-

stantaneous and error-free; thus, any delays or noise

within the system are functions of the "black boxes",

and not of the transmission medium. (The treatment of

time is covered in more detail in 3.7 below.)

Any messages which are transmitted continuously for an

indeterminate length of time (hereafter called

"continuous messages") can be incorporated into this

framework by considering only their extremities. Thus,

the start and end of a continuous message are treated as

instantaneous messages with exactly the properties noted

above.

3.5.2. The Observer

The interconnections between the "black boxes" are

not visible to any one of them, only to a hypothetical

"observer" (Jensen et al, 1979), represented by the

reader of the specification; it is this observer who at-

a9 Tes

taches meanings to the names of the messages which pass

through these interconnections. In this way the problems

of ambiguity of names (Hayakawa, 1978) are resolved by

forcing the sole definition of the messages to reside

with the observer, and prohibiting each "black box" from

maintaining its own, separate version. Within each "black

box" the only "meaning" of a message is the response

which it triggers.

3.5.3. Message Contents

As each message is treated as an instantaneous event,

there is no need to introduce any detail of its physical

structure into the specification. Where the behaviour of

the system is dependent upon the content of a message,

this can be modelled without the necessity for any

description of how the content is encoded into the

message. Reference to message components is achieved by

naming each component, and these names may be organised

into a hierarchy of any level of complexity to provide

the required degree of discrimination between different

messages.

One significant advantage of this hierarchical struc-

turing of messages is that at any stage in the develop-

ment process the specification need only contain as many

levels of detail as are relevant to the current

state of the specification. If extra detail is) to be

inserted at a later stage, this may be added as

a further layer in the hierarchy.

=Jl=

3.6. The "Black Box" View

3.6.1. Models

Henceforth the word "model" will be used, instead of

"black box", to represent a closed object which communi-

cates by passing messages. A specification will there-

fore consist of a number of models, with at least one

model for the system being specified and at least one for

the environment. The term "model" was chosen to emphasise

the distinction between the level of detail in the spe-

cification and the true complexity of the "real world"

(as Hayakawa notes by frequent use of the phrase "the map

is not the territory" (Hayakawa, 1978)). Thus, the spe-

cification can only be a limited analogue of the real

world from some specific viewpoint (Kent, 1977).

3.6.2. Interfaces

The restrictions of message passing have been rein-

forced in the language by ensuring that models can only

communicate with each other via well-defined interfaces,

and that only the observer can see the interconnections

between these interfaces. Thus, each model cannot know to

which other models it is connected, and it must obtain

any information about its environment by an exchange of

messages. This ensures that the specification can contain

no hidden assumptions (as can be the case in languages,

such as SMSDL (Frankowski & Franta, 1980), which allow a

-73-

model direct access to information stored inside other

models). Because all information within a model must have

been obtained by an exchange of messages, the omission of

such an exchange from the specification is easily

detected.

BA model can have properties which differentiate it

from the other models within the specification (such as

the unigue telephone number of each subscriber on a tele-

phone exchange), but these are not visible to other

models, ._and cannot be directly updated or changed by

other models.

3.7. Time

3.7.1. Requirements

A further consequence of the "black box" view of sys-

tems is that the definition of the. required response

times of the system must also treat each model as a

closed object. Only the delay (or acceptable range of

delay values) between any received message and the subse-

quent output message can be stated. This means that the

model of time provided in a specification language can be

extremely simple; it can be limited to consideration of

"worst case" values and ignore the detailed timing pro-

blems which may arise during design.

ma A=

3.7.2. Time Stamps

With the restriction of time delays to the models,

transmission between models is assumed to be

instantaneous. Thus, the use of a notional observer of

the system (as discussed in 3.5.2) makes it possible to

avoid the difficulties of introducing absolute time

values into the specification (Lamport, 1978; Sernadas,

1979) as follows.

(a) Only the observer makes use of absolute values of

time, in attaching a "time stamp" (Lamport, 1978) to

each message transmitted between models.

(b) A model can introduce a delay between receipt of a

message and any subsequent response. However, this

delay is of a number of time intervals and does not

reguire the model to recognise some instant on an ab-

solute time scale.

(c) Messages are received by a model in absolute time

Sequence, but this takes the form of the value of the

"time stamp" in the message, placed there by the

observer.

Thus, models are only concerned with small time intervals

and the ordering of sequences of messages by the values

of their time stamps. As there is only a single observer

(see 3.5.2), there are no problems due to different in-

formation transmission delays to different observation

points. The only consequent deficiency in the lan-

guage is that, for those cases where transmission

delays are significant, extra models must be introduced

75

into the specification purely to represent this feature.

However, this appears to be acceptable when compared with

the advantages gained.

3.7.3. Time Viewpoint

Within the languages reviewed in Chapter 2 there are

represented a number of different viewpoints of time, of

which the following are examples.

(a) The static description languages (Chapter 2.11) ig-

nore time by describing behaviour rules which must be

true at all points in time.

(b) The pre- and post-condition language 2 (Abrial, 1980;

see also Chapter 2.12) is mainly used by its authors

as if looking back on the system behaviour from "the

end of time". Thus, the specification uses the

equivalent of the passive past tense in English.

(c) Finite state machine languages (Chapter 2.10)

describe actions at the time they are triggered, with

reference to the previous behaviour of the system.

This is analagous to the active current tense in

English.

The viewpoint chosen for inclusion in the new language is

the one which Sernadas calls “privileged initial time"

(Sernadas, 1979), and which is used in Systematics

(Grindley, 1975). It is identified by:

(i) specification of the behaviour as it appears at the

instant at which it is triggered, making reference to

past events,

=16—

(ii) all stored information within models being assumed

to have been initialised before any actions take

place, and thereafter only updated through message

passing.

Apart from the treatment of stored information, this is

eguivalent to the "current time" viewpoint. This,

together with a dynamic (active) rather than static

(passive) description, seems to be easier to understand

than other viewpoints (Hartley & Bunhill, 1977).

3.8. Memory

Having achieved an acceptable representation of time

which suffices to order the events being specified, there

is no need to resort to the explicit storage of informa-

tion (e.g. in the "system state variables") to main-

tain the history of the system. By extending the idea of

restricted access to past values (Nylin & Harvill, 1976)

to unlimited access to all previous events (Balzer &

Goldman, 1979; Schueler, 1977; Stamper, 1977), the need

for algorithmic descriptions is much reduced. At the same

time, the language moves closer to the natural mode of

expression in English (Elton & Messel, 1978).

e.g. as in: “the last"

or: "the value at the time when....."

Although Sernadas (Sernadas, 1979) argues that it is per-

missible to represent information as being stored in

memory and updated, this fails to recognise the problems

caused by algorithmic descriptions (see Chapter 2.2.9),

y=

as recognised by Balzer and Goldman (Balzer & Goldman,

1979), Grindley (Grindley, 1975) and Walters (Walters,

19379) -

Direct reference to history is not normally a feature

of practical designs, as it implies an extremely large

amount of storage, together with consequentially large

search times to extract the required information.

However, aS was pointed out in Chapter 1.4.1, the main

purpose of a specification is to communicate information

between people, not to demonstrate how the design could

be made efficient; thus, the implied computational inef-

ficiency is acceptable if it leads to improved

comprehensibility. In order to make the use of direct

reference to history easy for the specification writer,

it is necessary to design into the language adequate

modes of access to allow the extraction of individual

messages, groups of messages and the total history, using

terms such as "next", "last", etc., without direct ref-

erence to values of absolute time.

3.9. Structuring the Specification

The division of a specification into models for the

system and its environment plus the interconnections

provides a rudimentary structure to the document, but

fails to provide any organisation to the contents of each

model. A model contains the descriptions of the behaviour

which it should exhibit on receiving messages through its

-78-

interfaces, and in the simplest possible form (as in a

finite state machine model, see Chapter 2.10) this would

appear as a complete list of the responses appropriate

for each individual message which could be received.

In Chapter 2 the terms "aggregation" (Section 212.6).

"generalisation" (also in Section 2.2.6) and "monitors"

(Section 2.2.7) were introduced for types of structure

which are appropriate to specifications. Theseprovide

both briefer and more comprehensible descriptions by per-

mitting statements which apply to classes of entities or

events rather than just to individuals. Additionally

there must be the capability to represent blocks of text

which are repeated within a specification by some ab-

breviated references, as is done in computer programming

languages with subroutines, macros, functions, proce-

dures and similar devices. These must all be provided

ins a way which promotes their use, even at the

cost of added complication in any supporting computer

programs.

The surface form of a number of the languages

reviewed in the previous chapter appears to have resulted

from compromises in their design. These compromises were

aimed at limiting their structuring power to match the

capability of theorem proving systems or other manipula-

tive methods, although this is normally not admitted to

be one of the major parameters in their design (see for

example (Boute, 1981)). The difficulty in using methods

such as proofs of correctness, due to the NP-complete

nature of the proof process (Lehman, 1981; Wirth(a),

=7o=

1977) implies that this is likely to result in an unsa-

tisfactory loss of comprehensibility whilst not providing

any guarantee of mathematical tractability.

3.10. Incompleteness

A specification is only a model of part of the real

world (see 3.6.1 above), and therefore cannot be assumed

to be immutable; the real world will be changing

continuously, and the specification must reflect these

changes (Lehman, 1981; Liskov & Zilles, 1978). Addition-

ally the specification is normally developed over a

period of time by discussion between the customer and the

supplier (Malhotra et al, 1980), in a manner which ap-

pears to parallel Popper's view of the development of

scientific theories (Popper, 1974). Hence the specifica-

tion document at any point in time only represents the

latest available information, and may be incomplete or

incorrect or both.

The language in which the specification is written

must therefore permit incomplete information to be

recorded (Hewitt et al, 1979), but in a way which indi-

cates that it is incomplete. Hence it must be possible to

differentiate between:

(a) information currently missing from the specification,

but which is expected to be added as soon as it

becomes available,

(b) values which are represented as ranges because the

precise figures have not yet been decided,

-80-

(c) decisions where the input to the decision process may

or may not be stated precisely, but the conditions

under which the various outcomes are appropriate are

not known precisely,

(d) situations where the particular outcome of a decision

or the value of some piece of information is not im-

portant (like the "don't care" values in Boolean

logic design of digital circuits),

(e) uncontrolled factors, such as the timing or content

of messages from the environment, which must be

modelled by statistical methods,

(£) precise information.

Extensive use of these facilities to represent imprecise

information does however imply a high rate of change to

the specification during the development of the system.

This is one of the reasons why it is proposed that the

specification writer should be supported by a comprehen-

sive computerised facility as described in Chapter 5.

3.11. Form

Although a diagram can make obvious some aspects of

the structure of information in a way which is difficult

or impossible in text, there are considerable difficul-

ties in designing good diagrammatic notations (Fitter &

Green, 1979). In the case of specifications, one diffi-

culty is the representation of the forms of structure

(e.g. aggregation, generalisation and monitors) ina

diagram. For example, the finite state languages which

Ses

use diagrams (e.g. SDL, see Chapter 2.10) do not provide

sufficient structure and conseguently produce large dif-

fuse specifications.

Much of the information on a diagram must still ap-

pear as text labels upon the symbols, so it is still

necessary to define a text form as a major part of any

notation. This needs to be a formal, restricted language

in order to avoid the problems which languages such as

SADT (Ross, 1977) and PSL (Teichrow & Hershey, 1977)

suffer in allowing unrestricted and unformatted labelling

of their diagrams in English. It was therefore decided

that the primary aim would be to derive a language con-

sisting of text alone, leaving any diagrams to be pro-

duced manually as additions to the specification. This

also reduces the complexity of any initial computer sup-

port software significantly, by avoiding the need for

graphics input and output and permitting the use of

readily-available syntax analysis technigues (see Chapter

5.2).

3.12. Summary

Sections 3.4 to 3.11 above have presented the reason-

ing which led to the adoption of the following fundamen-

tal features in the language being designed.

(a) Message passing as the only method of communication.

(b) Instantaneous, error-free message transmission.

(c) The treatment of models as closed entities, so that

their information is only available by exchanges of

=oo=

messages.

(d) Separate descriptions of the system being specified

and its environment.

(e) Interconnections between the models only being visi-

ble to the single observer of the system.

(£) A simple model of time.

(g) Specification from a temporal reference of the

"current time" with access to all the events which

occured in the past.

(h) Direct access to past events, to avoid much of the

description of data storage within the system.

(i) Structuring facilities which allow the description of

the required behaviour in layers.

(j) Some shorthand reference for repeated behaviour.

(k) Facilities for recording imprecise information or

behaviour specification in a way which indicates its

_ nature.

(1) All information to be presented as text, with any di-

agrams being either derived from the text or produced

manually.

These features taken together provide a framework which

appears to be adequate for all information-processing

systems, and which implies a strong discipline for ensur-

ing consistency within a specification. In Chapter 4 the

detailed design of the language is described, showing in

4.3 and 4.4 how an attempt has been made to capture the

above features in a simple syntax, and then in 4.5 cover-

ing the formal definition of the language.

=e

CHAPTER 4

THE DETAILED DESIGN OF A SPECIFICATION LANGUAGE

4.1. ASL

In order to permit unambiguous discussion of the

relationship between the language being designed and

other languages, it was decided to give it a name. The

one chosen was 'ASL', this being an acronym for ‘A Spe-

cification Language'. Chapter 3 contained discussion of

the fundamental features of the language; the detailed

design of ASL is now described in this chapter. The asso-

ciated formal definitions of the language appear as

Appendices, due to their length.

4.2. The Surface Appearance of ASL

The most important decision in the design of the lan-

guage was that of its general appearance. The major fac-

tor affecting this decision was the size of the intended

audience of the specifications written in the language.

This involves hundreds of people of widely varying back-

grounds at the sponsoring Company and, if the Company's

customers are included, the numbers rise into the

-84-

thousands. Large-scale retraining of these people in the

use of an abstract mathematical notation (e.g. CCS

(Milner, 1980)) would be both difficult and time-

consuming. It would also delay the use of specification

languages, thereby losing some of the short-term benefits

to the Company (see Chapter 1.4.3). There is no evidence

to show that this loss is offset in the long-term as a

result of using such an abstract notation.

It was therefore decided that ASL should use words

from English wherever possible, and that the constructs

of the language should have a simple reading which con-

veyed much of their meaning. In this way the amount of

training reguired to read specifications written in ASL

is minimised. Although there is not a _ corresponding

reduction in the training reguired by specification

writers, this still represents a significant overall

reduction as readers are in the majority. Such simplicity

in the form of the language was also seen as a factor in

reducing any initial adverse reaction to the use of a

formal language.

4.3. Consideration of Human Factors

4.3.1. Consequences of Earlier Decisions

The basic design of the language (reported in Chapter

3) results in the main organisation of a specification as

two or more "black box" models (Chapter 3.6.1), communi-

cating with each other by passing messages (Chapter

=85—

Bi Bie k')) through interfaces (Chapter 3.6.2). This is

directly reflected in the structure of the specification

by requiring each model to be a separate identifiable

block of text. There is also one additional block, con-

taining details of the interconnections between the

models and other information which is relevant to the ob-

server (Chapter 3.5.2). As is explained in more detail in

4.5.4 below, this results in a simple relationship

between the position of any name appearing in the specif-

ication text and its visibility to different parts of the

system (often called the "scope" of the name),

The remaining portions of the language were rela-

tively unconstrained by these factors; they are the

result of an examination of a number of existing computer

programming languages such as Pascal (Jensen & Wirth,

1975), Ada (Ichbiah et al, 1979) and PL/I (IBM, 1976) and

of the few papers containing guidelines on language

design (Fitter & Green, 1979; Gannon & Horning, 1975;

Green et al, 1981; Hoare, 1973; Hobbs, 1977; Pratt, 1975;

Tennent, 1977; Wirth, 1974). A number of the choices made

during the design depart from the advice given in the

above references, mainly in relation to those points

where the design of programming languages appears to be

compromised in order to achieve efficient compilation.

The reasons for the particular choices which were made

are discussed in Sections 4.3.2 to 4.3.5 below, whilst

their detailed appearance is covered in 4.4.

=§6—

4.3.2. Order within the Specification Text

Programming languages such as Pascal require the pro-

gram text to appear in a particular sequence with, for

example, the first appearance of any name having to be

its definition. As has been noted (e.g. Peterson, 1980),

this seguence conflicts with the top-down approach to the

development of a system, where names are normally intro-

duced before their definition. The purpose of such res-

trictions on sequence is to simplify the work of the com-

piler or interpreter, by making it possible to analyse

the program fully in one pass over the text.

As ASL is not reguired to have a simple or efficient

compiler, this type of restriction can be avoided. The

non-algorithmic nature of ASL permits a further relaxa-

tion of restrictions, in that the order of the statements

within any block (i.e. model) has no significance in

terms of the semantics of the language. This allows a

specification writer to present the information in

whatever is the most comprehensible sequence.

4.3.3. Paragraph Numbers

One consistent difference between natural language

descriptions and computer programs is that the former use

paragraphs and paragraph numbers to organise the text

(e.g. Mills & Walter, 1978), whilst the latter use words

such as "BEGIN" and "END" to achieve the same effect. As

the BEGIN-END form offers much less of a perceptual cue

=67=

to the reader, much reliance has been placed on the use

of indentation (Rose & Welsh, 1981) and similar methods

(Green, 1980) in the presentation of programs.

ASL uses a paragraph numbering scheme, with the deci-

mal form of numbering (e.g. [1.3.15]). This has the fol-

lowing advantages:

(a) the structure is made visible without resorting to

indentation,

(b) sub-paragraphs (and sub-sub-paragraphs) are easily

identifiable from the number of levels in their para-

graph number,

(c) no explicit indication of the end of a paragraph is

needed; the next paragraph number is sufficient indi-

cation of the change of scope.

4.3.4. Comments

Examinations of the use of comments in computer pro-

grams (e.g. Weinberg, 1971) have shown that these are

not always used appropriately. Too little emphasis ap-

pears to be given to general comments, which explain the

overall structure and purpose of the program. It was

therefore decided to restrict the use of comments in ASL

to a few specific points in the language, in an attempt

to foster their correct use. These three points are at

the start of each block of text (i.e. model), in the

definition of new names, and in paragraph headings (i.e.

immediately after a paragraph number).

=9s—

4.3.5. Alternatives in Behaviour

Where the response to a stimulus is dependent upon

some conditions, it is more comprehensible if the normal

behaviour is presented first and the less-frequent situa-

tions afterwards (Mills & Walter, 1978). If there are a

number of optional responses, all equally likely, then it

should not be necessary to use nested IF-THEN-ELSE state-

ments to indicate the alternatives as this form can in-

volve the "dangling ELSE" ambiguity (Aho & Ullman, 1977).

ASL provides a different form for each of these cases.

(a) Where there is a normal response and one or more

other options, then the normal response is given

first followed by the word "unless" and the other

options. Each option consists of a response together

with the conditions under which it is appropriate.

(b) Where there is no obvious normal response, all the

options are shown as sub-paragraphs after the word

"select". Each sub-paragraph states the conditions

which must be met for that option to be selected.

As these two offer all the necessary facilities, the IF-

THEN-ELSE form which appears in most computer programming

languages has not been provided.

4.4. The General Appearance of ASL

4.4.1. Introduction

The formal definition of a language consists of com-

=$0=

prehensive syntactic and semantic rules, which usually

cover many pages of text; even informal presentations of

programming languages can take over 50 pages (e.g. Jensen

& Wirth, 1975). Thus, ASL has been documented in an in-

troductory report (Blackledge(b), 1981) and a _ language

reference manual (Blackledge(a), 1982), which cover the

language in much greater detail than is appropriate here.

The remainder of section 4.4 therefore contains an

outline of the surface appearance of ASL, and is. sup-

ported by the formal definitions, which appear in Appen-

dices B and C, and a small example specification in Ap-

pendix E.

4.4.2. Block Structure

A specification must consist of at least three blocks

of text, as explained in section 4.3.1. More blocks may

be used if this leads to a better representation of

either the system being specified or its environment; an

example would be the specification of a local telephone

exchange, where the environment is more comprehensible if

represented as a large number of copies of a subscriber

model. Each block takes the form of a sequence of state-

ments enclosed by a head and a tail, e.g.:

EXAMPLE BLOCK is

++.-seguence of statements....

end of example_block

The reasons for the words "EXAMPLE BLOCK" appearing in

capitals in the block head, and lower case letters in the

-90-

FIGURE 4.1

Heading or Paragraph Number

THE STRUCTURE OF A SPECIFICATION IN ASL

AN_ASL_ SPECIFICATION is

0)
(2]

03]

[6]

Statement of models and
their interconnections.

Definition of common items,
used in the models.

end of an_asl_specification

THE_ENVIRONMENT is

(1)
(2)

[3]
C4]

{5}
[6]

(7)
(8)

Interfaces.

Properties of the
environment, known
only to the environment.

Responses to situations
rather than messages.

Responses to particular
messages.

end of the_environment

THE SYSTEM is

(1)
(2)

(3)
(4)

(5)
(6)

er

etc.

Interfaces.

Properties of the model,
known only to the model.

Responses to situations
rather than messages.

Responses to particular
messages.

end of a_system

ao =

L

Comments

_ The system
block.

The
environment

model.

The
system
model.

block tail in the above example are explained in section

4.4.3 below. Figure 4.1 shows the structure of a specifi-

cation in terms of such blocks of text.

4.4.3. Names

A unigue name is given to each item (e.g. message,

piece of stored information) defined by the specification

writer; it takes the form of a sequence of characters or

underscores, and must start with a letter.

e.g. aname, another name, 2123.

To achieve the required flexibility in the order of

statements within a specification (see 4.3.2), it is es-

sential to have a simple method of recognising those

statements which define new names. Programming languages

such as PL/I (IBM, 1976) use an identifying word (e.g.

"DECLARE") at the start of each definition, but this is

only necessary because they do not make use of the full

character set available on most computers. ASL avoids the

need for such a word by requiring all names to appear in

lower case letters except in the statements where they

are defined, where they are written in capital letters.

This also has the advantage that definitions are conse-

guently highlighted in the specification text, making

them easier for the reader to detect.

4.4.4, The System Block

This block of the specification text contains all the

=92-

information which is external to the models and all the

information which is common to the models. For example,

it will include the definitions of all the valid message

names, definitions of any common data types and details

of the interconnections between the interfaces of the

models. Its role is therefore purely supportive, and it

contains no description of any part of the behaviour of

the system.

4.4.5. The Models

Each model is represented by a block of text which

contains:

(a) further definitions of names, but not of messages,

(b) a statement of the interfaces of the model, cate-

gorised into inputs, outputs and bothway

(bidirectional) interfaces,

(c) statements defining the behaviour of the model, in

the form described in 4.4.7 below,

(da) any operations used in describing the behaviour (see

4.4.9 below).

Names and operations defined inside a model are private

to that model, in that they cannot be referenced from the

system block or another model. This is a necessary con-

straint to achieve the correct form of "black box"

specification, as described in Chapter 3.6.1.

=93=

4.4.6. Definition of Names and Messages

Although the uses of names (i.e. data types or stored

values) and messages differ, the format of their defini-

tions has been kept the same for simplicity. Hence the

word "name" will be used throughout the remainder of this

section, but the comments apply egually to messages. A

mame can be defined in one of two ways:

(a) as an instance of a defined data type, e.g.

COUNT : integer

which defines "count" to be of type "integer", or:

WEEKDAY : { monday, tuesday,

wednesday, thursday, friday }

where the data type has been replaced by a list of

permitted (constant) values,

(b) as a structure, consisting of a tree of elements;

this form uses paragraph numbers to organise the

structure, as in the following example:

NAME is

(1) INITIALS is

(1.1] INITIAL_1 : character

[1.2] INITIAL_2 : character

[2] SURNAME : string of character

[3] TITLE’: { mr, ms }

Note that, in the case of a message, the elements of the

structure represent the information content of the

message. It is also possible to give any name or element

of a name any number of subscripts, so that it acts like

a multi-dimensional array.

=94—

4.4.7. Behaviour and Rules

The basic description of the behaviour of a model

consists of its responses to the stimuli which it can

receive; this appears in ASL as a series of statements of

the general form:

“on" STIMULUS "then" RESPONSE

where STIMULUS is a pattern for a received message (see

Section 4.4.8) and a RESPONSE can be a call to an opera-

tion (see Section 4.4.9) or the sending of a message. The

forms "start sending" MESSAGE and "stop sending" MESSAGE

are provided for those cases where a message is to be

sent continuously for a period. The above portion of the

syntax of ASL is given in a form of BNF, which is ex-

Plained in detail in Appendix B; for the examples in this

chapter it is sufficient to note that symbols surrounded

by. quote marks (" ") are part of the language, whilst

names in capitals represent parts where the specification

writer substitutes details of the system concerned.

In addition to these simple stimulus-response

statements, it is also possible to introduce rules which

act as general constraints or monitor for exception

conditions. These take the form:

"whenever" CONDITION "then" RESPONSE

where a CONDITION is some test on past and current mes-

sages and stored information; if the CONDITION becomes

true, then the RESPONSE will occur. As with the simple

stimulus-response statements, rules may contain

alternatives. Used correctly, rules provide a powerful

=95-

means for expressing behaviour in a concise and compre-

hensible way.

4.4.8. Pattern-matching

On receiving a message, a model usually needs to exa-

mine its contents in order to determine the appropriate

response. Hewitt (Hewitt, 1977) demonstrated how this

could be achieved in an elegant manner by the use of

pattern-matching, and made this one of the main features

of his ACTORS language. ASL includes a simple variant of

this idea, as demonstrated in the following example:

on ?x via input_line then

The question mark is used as a prefix to the variable

name, 'x', to indicate that this is a pattern-matching

variable, and whatever message is received will be asso-

ciated with the name, 'x'. Thus, in the remainder of the

statement, it is possible to refer back to the message as

'x' rather than as 'the message just received via

input_line'. Pattern-matching can also be used in con-

junction with another part of the language to produce ex-

tremely concise definitions of functions, as described in

Section 4.4.9.

4.4.9. Definition of Common Operations

In ASL, an "operation" represents a general method of

providing a shorthand for repeated behaviour. Unlike the

concept of a function in mathematics, it does not have

-96-

any restriction on the number of arguments or on the num-

ber of results to be returned. Hence it is permissible to

have an ASL operation with no arguments which returns no

result. The general form of a operation definition is:

"operation" OPERATION NAME

"(" ARGUMENTS "-->" RESULTS ")"

"is" SEQUENCE OF STATEMENTS.

For example:

[5] operation SQUARE_ROOT(x,t --> y) is

(5.1] X,T,Y : decimal

[5.2] y is ?z where abs(z*z - x) <= t

which also demonstrates the use of a pattern-matching

variable (?z) to achieve a brief, non-algorithmic defini-

tion of the square-root function in terms of the inverse

operation, squaring (represented as multiplication, z*z).

Note that 't' is the required accuracy of the answer.

4.4.10. Incompleteness

ASL permits three kinds of incompleteness, covering in-

formation which is not yet available, information which

will not become known, and also a "don't care" value. The

word "undefined" is used to indicate that information is

not at present available, but will become so later, while

"unknown" is reserved for those cases where more detailed

information is not expected to become available. Thus it

is possible to create an outline version of a_ specifica-

tion with some elements of the behaviour, contents of

messages or operations left "undefined", and then to add

=O 9

the missing information as it becomes available. In this

way the specification writer is not forced to wait for

the total information before starting to write a formal

specification, but any areas which are incomplete are

positively identified as such in the document.

4.5. The Formal Definition of ASL

4.5.1. Introduction

The preceding sections of this chapter have intro-

duced ASL informally, but it is essential that the lan-

guage is defined formally, as was pointed out in Chapter

2.2.12. This requires that the syntax (both context-free

and context-sensitive) and semantics are themselves

defined in some formal language. The following sections

4.5.2 to 4.5.8. provide an introduction to the methods

which have been used to provide these definitions; the

formal definitions themselves appear as Appendices B and

Cc.

4.5.2. The Context-free Syntax

The context-free syntax of a language provides a

method for identifying those seguences of characters

which are well-formed statements in the language. Thus,

it defines not only those statements which have a valid

meaning in the language, but a much larger class of

statements. Context-sensitive and semantic rules are

-98-

therefore reguired to identify from this class those

which are meaningful.

Context-free syntax definitions are normally given

as a set of productions which identify in a top-down

fashion the permitted construction of statements from

basic words and symbols. Although the

syntax analyser which has been used in the trials of the

language (see Chapter 5.6 and Chapter 6) takes in such

syntax productions, the format of these makes them diffi-

cult to understand. The definition of ASL in Appendix B

is therefore written in a variant of Backus-Naur Form

(BNF) suggested by Wirth (Wirth(b), 1977), which results

in a clearer, more concise definition.

4.5.3. Context-sensitive Rules

The BNF syntax definition of ASL can be used to

detect incorrectly formed statements, but is not suffi-

cient to identify any incorrect usage of names. This is

because, although it is possible to identify that a par-

ticular word is a name without making any reference to

more than one statement in a specification, the permitted

usage of the name depends upon its definition and this is

usually in another statement. There are two checks which

must be applied to each occurence of a name ina

specification:

(a) that the name has been defined in the appropriate

place,

(b) that the name is being used in accordance with its

-99-

definition.

These two checks are usually known as "Scope checking"

and "type checking" respectively, and they are discussed

in more detail in the next two sections. Due to the lack

of restrictions on the order of statements in an ASL spe-

cification (see Section 4.3.2), these checks cannot be

performed at the same time as the context-free syntax

analysis as they reguire all the definitions to have

previously been identified.

4.5.4. Scope of Names

The combination of block structure and paragraph num-

bering in ASL results in a simple definition of the scope

of any variable name. The scope of a name is the part of

the specification (i.e. blocks or paragraphs) in which it

is valid to make reference to that name because it has

been defined in that part of the specification. These

rules are:

(a) mames defined in the system block may be used

anywhere in the specification,

(b) names defined inside a model cannot be used outside

that model,

(c) a name defined in paragraph [x] is available

throughout the model which contains the statement.

(d) a mame defined in paragraph [xl.x2. ... xn] can be

used in any paragraph or sub-paragraph commencing

Ex0) X2ie x (nd nets lie

If a name is mentioned outside its valid scope, it is as-

-100-

sumed to be an occurence of a different mame which has

not been defined; this is treated as an error.

4.5.5. Type Checking

Type checking involves ensuring that, given an ex-

pression such as "a+b", both "a" and "b" represent

values which can be subjected to the operation of

addition; for example, it is assumed to be impossible to

add a number directly to a string of characters. For ASL,

it must also be ensured that messages are sent only via

defined interfaces of the model which is doing the

sending, and that conditions in rules (see Section 4.4.7

do evaluate to "true" or "false". The type checking rules

are therefore of a similar format to the syntax rules,

but for each position in the language which can be occu-

pied by a name they must identify the appropriate data

type. (To allow for statements in ASL where there are

fewer constraints upon the data types, it is necessary to

use the additional data types "void" and "any").

Unlike the use of BNF for context-free syntax, there

does not appear to be any standardised method of defining

type-checking rules. The rules for ASL, which appear in

Appendix B.4, are therefore in the format used by Davie &

Morrison (Davie & Morrison, 1981); this was chosen for

its simplicity and clarity. The rule format is explained

in Appendix B.3.

-101-

4.5.6. Semantic Definition

A semantic definition of a language provides the well-

formed statements of that language with meaning, by

relating those statements to some well-understood mechan-

ism or model (in the mathematical sense of 'model').

Without such a definition, the language is merely

sequences of words, open to any interpretation which a

reader may wish to impose upon it. Even with such a

model, formal proof procedures based upon it may still

fall into the category of NP-complete problems. As with

the type checking rules, there is no commonly-agreed form

for semantic definition, but there are two distinct

types:

(a) operational semantics, which define the language in

terms of the results obtained when a program in the

language is processed by some particular implementa-

tion of the language compiler,

(b) abstract semantics, which relate the language to some

well-defined mathematical model, independent from any

implementation of compilers or other tools.

As ASL is not a programming language, and is not expected

to have a compiler, it will not be possible to define its

semantics operationally. This probably is advantageous,

as abstract definitions appear to be both simpler and

more useful (Wirth(a), 1977). The semantic model used for

the definition of ASL is explained in 4.5.7 below, with

the treatment of timing information being covered in

4.5.8.

=102—-

4.5.7. The Semantic Model

Marcotty and Ledgard (Marcotty & Ledgard, 1976)

review a number of semantic models which have been used

in the definition of programming languages, but these all

have a strong algorithmic flavour which makes them un-

suitable for use on ASL. It was therefore decided to use

an alternative model, Petri nets, which has been used in

the definition of the Epsilon simulation language (Jensen

et al, 1979). Due to the expressive power of ASL, and

thus the complexity of the resulting nets, it was found

necessary to use a more expressive form of net, the

Predicate/Transition net (Genrich et al, 1980), in place

of that used for Epsilon. Rather than providing a re-

expression of Predicate/Transistion net theory in a form

which corresponds to the structure of ASL, the semantic

definition takes the form of a set of rules for the con-

version of ASL statements into a net. This translation is

undertaken in stages:

(a) expansion of abbreviated forms (e.g. lists, arrays

and structures) into individual items,

(b) unfolding of alternatives in behaviour, to produce an

extended list of simple stimulus-response statements,

(c) translation of each stimulus-response statement into

the equivalent net fragment,

(d) connection of the fragments into one single net, re-

presenting the whole system.

The detailed translation scheme is complex, and is there-

fore explained in Appendix C.

-103-

4.5.8. Time

Petri met models do not provide a direct representa-

tion for measured time, instead restricting themselves to

the treatment of sequences of events (Peterson, 1981).

This is not sufficient to represent the timing informa-

tion in ASL; so it was necessary to devise an extension

to the model to accomodate the additional information. As

discussed in Chapter 3.7, the timing model necessary for

adequate system specification in not as complex as that

for the detailed design of hardware, for example. The

Time Petri Net (TPN) model of Merlin (Merlin, 1974)

which adds minimum and maximum firing times to the tran-

sitions in the Petri net, is therefore adequate for this

purpose.

The arrival time of each message appears as an extra

element in the tuples (sets of values; equivalent to the

contents of a message in ASL) associated with tokens in

the Predicate/Transition net model, and this time value

is altered by the firing of a transition. One extra tran-

sition must also be added to the net to represent the ob-

server (see Chapter 3.5.2), as this is the sole absolute

time reference point. As a result of these additions,

time within the model of an ASL specification is not

continuous, but will always be represented by increasing

values of the time attributes of tokens (messages).

-104-

4.6. Summary

In this chapter the detailed design of ASL has been

described, showing how this was based upon the principles

laid down in Chapter 3. This has shown how the features

of the language are intended to satisfy the requirements

listed in Chapter 2.2.13, and has indicated how the ap-

pearance of the language has been biased towards its in-

tended audience. The formal definition of the language

has been outlined, and in Chapter 5 it will be shown how

this permits a wide range of computer-based support

facilities. To provide further demonstration of the

points made in this chapter, a complete example specifi-

cation appears in Appendix E, together with an introduc-

tory explanation of the system in English.

=105=

CHAPTER 5

LANGUAGE SUPPORT FACILITIES

5.1. Introduction

In Chapter 2 mention was made of the advantages of

restricting a specification language to the type of

simple, context-free syntax found in computer programming

languages. In this chapter those advantages are presented

in more detail, in the form of a description of the type

of computer-based facilities which can be provided to

support the specification writer. These facilities should

be provided as a single integrated system for the pre-

paration of specifications, as this will allow them to be

used in any combination and sequence; the alternative of

enforcing a particular sequence would be in direct con-

flict with the aim of capturing the specification in-

formation as it becomes available (see Chapter 3.10)

However, in order to provide some structure to this

chapter, the facilities have been divided into four cate-

gories on the basis of their purpose; these are listed in

the following table.

=106-

Section Content

52 Checking, this being the application of self-

consistency checks to the specification text.

a3 Changes, and controlling them.

5.4 Validation, which is the process of ensuring as

far as possible that the specification captures

the intentions of the customer.

Si Verification, where the design is shown to ful-

fill the specification.

Some of the static checking facilities (those covered in

Section 5.2.2) were implemented as explained in Section

5.6, so that limited support was available for trial uses

of ASL. Provision of the remaining facilities is

discussed in Chapter 8 as part of the proposals for fur-

ther work.

5.2. Checking

5.2.1. The Types of Checking

The checking of a specification can be considered to

consist of two parts:

(a) static checks, being those concerned with ensuring

the self-consistency of the specification as a piece

of text,

(b) dynamic checks, which attempt to detect inconsisten-

cies in the behaviour described by the specification.

These are covered in Sections Segee wand. 532.5

respectively.

=107=

5.2.2. Static Checking

Many of the static checks which can be performed on

ASL are identical to those applied in the compilation of

programming languages such as Pascal (Jensen & Wirth,

1975). Appropriate technigues and tools for such a check-

ing system have been widely published (e.g. Aho & Ullman,

1977; Johnson, 1979; Simpson, 1969). The main stages of

static checking are as follows.

(a) Syntax analysis, to ensure that the text conforms to

the syntax definition of the language. Although a

syntactically correct specification may still be

meaningless at the semantic level, this is a neces-

sary first stage in the checking. Simple. syntax er-

rors may result in extensive and useless lists of

"faults" being detected by the remaining stages of

checking.

(b) Redundancy and completeness checks, which ensure that

every name which has been defined (i.e. appears in

block capitals) in the specification is also used

(i.e. appears in lower case letters) within the ap-

propriate scope (see Chapter 4.5.4), and that every

name which has been used was also defined. The

"completeness" which these checks ensure is not

equivalent to a demonstration that the specification

includes all the customer's requirements (see 5.4

below on validation). They will fail to detect the

situation where all information relating to some

reguired feature has been omitted from the

=108-

specification.

(c) Consistency checks, to ensure that every name is used

in accordance with its definition and in the same

fashion throughout the specification. As examples,

every interface must be connected to another inter-

face of an appropriate type (e.g. an output cannot be

connected to another output), and arithmetic expres-

sions must be constructed from conformable types

(e.g. no attempts are made to add character data to

integers).

The printed output from the static checker could include

a formatted listing of the specification text, any appro-

priate error messages, a listing of any items which

remain undefined, and a cross-reference listing which in-

dicates all the places in the text where each name

appears.

5.2.3. Dynamic Checking

ASL permits the specification of complex behaviour in

a non-algorithmic manner (see Chapter 4.4), and the power

of the language is such that it is possible to specify

behaviour which is impossible to achieve. It is therefore

essential that the checking facilities provide some

analysis of the dynamic behaviour which is implied by the

specification text, even if this can only detect the most

severe errors or point to possible problems. Although

there are a number of techniques for dynamic checking

(see (DoI(a), 1981) for mention of some), none appear to

=L00=

offer comprehensive analysis. Three techniques which con-

form to the model of systems described in Chapter 3 are

as follows.

(a)

(b)

Exhaustive simulation against test cases. This in-

volves considerable human resources in the prepara-

tion of test cases and the evaluation of results as

well as large amounts of computer time; also, it only

demonstrates the absence of errors for the test

cases. It is therefore not an acceptable method of

checking, although it may be useful for other reasons

(see section 5.4 on validation).

Petri net analysis. If an ASL specification were

converted into a Petri net, then there are known

methods to check for deadlock, conflict and

reachability. Unfortunately, these may not be satis-

factory for analysing large specifications due to

the computational resources and time required to

produce the results. As with simulation, it may be

necessary to identify a probabalistic approach which

reduces the amount of computation required at the

expense of introducing some risk of inaccuracy in

the results.

However, standard Petri nets do not have a represen-

tation for the time duration of events; so they can

indicate the existence of a problem when the time

delays are actually sufficient to ensure that this

does not occur. Merlin (Merlin, 1974) presented an

= eLO=

extension of Petri nets which include time delays,

but the tools to analyse Time Petri Nets would have

to be developed from this theory.

(c) Flow Algebra. The Calculus of Communicating Systems

(Milner, 1980) is an algebraic approach to systems

analysis which appears to be of similar power to

Petri Nets. It has the additional advantage of having

simple, algebraic rules for combining the behaviour

descriptions of multiple systems or sub-systems. Its

disadvantage is that it is a relatively new notation,

so that there are no readily-available tools to per-

form the analysis. Also, like Petri Nets, it has no

representation for time delay.

As a form of Petri net is being used as the semantic

model for ASL (see Chapter 4.5.7), the adoption of the

same model for dynamic checking is likely to minimise the

amount of support software to be developed.

5.3. Changes

5.3.1. General

The need to make changes to a large specification is

inevitable (Lehman, 1981); so it is essential that the

specification writer receives sufficient support in:

(a) making the alterations correctly,

(b) retaining the history of changes to the document, in-

cluding the reasons for them.

The alternative to this is the continuation of existing

=111-

practice, where documents are often not updated (or only

updated infrequently) because of the difficulty of incor-

porating changes (Brooks, 1975).

5.3.2. Introducing Changes

Assuming that a specification is consistent (see

5.2.2) and has been validated (see 5.4), it is important

to ensure as far as possible that the incorporation of an

amendment does not introduce errors. The minimum require-

ment of the support system is therefore that it should

make the author of the change aware of all the places in

the specification which might be affected. This can be

done by the provision of a cross-reference listing, as

mentioned in section 5.2.2, leaving the author of the

change to investigate which parts of the specification

must be modified. This type of manual alterations has two

major disadvantages:

(a) the whole specification must be re-submitted for

checking, so that error messages may be produced for

faults which existed before the amendment and are not

due to it,

(b) checking takes place after the specification has been

modified (i.e. a new issue has been created), making

it more difficult to reverse the change if this

becomes necessary due to any inconsistencies which it

creates.

An improved system, providing interactive assistance of

the type suggested by Sandewall (Sandewall, 1978) and

=i 2=

found in the Designer/Verifier's Assistant (Moriconi,

1979) and INTERLISP (Teitelman, 1978), would:

(a) maintain a list of all occurrences of names affected

by the change, and prompt the user to make a positive

statement as to the effect of the change on each one,

(b) recheck only those portions of the specification

which have been changed, as they are changed,

(c) await the completion of the change (i.e. the ex-

haustion of the list of occurrences of affected names

and the removal of any errors introduced with the

change) before creating a new issue of the specifica-

tion document, unless the user specifically requests

that a new issue be created regardless of any out-

standing errors.

Such a facility would greatly reduce the tedium of intro-

ducing amendments into large specification documents, and

the consequent difficulties in ensuring that project

staff are aware of the latest requirements. Provision of

such facilities is discussed in Chapter 8.

5.3.3. The History of Change

Although many automated documentation support systems

provide facilities for creating new issues (e.g. the

PSL/PSA system (SDL, 1980)), few make any attempt to

highlight the differences between adjacent issues or to

record the reasons for the changes. The identification of

statements which have been changed (perhaps by a vertical

SHORES

line in the margins of the document) greatly assists the

reader. A note of the reason for the change may be essen-

tial later when the resulting additional costs have to be

apportioned between the customer and supplier. To provide

these features in a support system, it is necessary to

treat the specification not as a uniform sequential block

of text but as a set of relations which can be held ina

database. Changes to the specification are then viewed as

updates to the database, with each update adding to,

rather than overwriting, the earlier contents of the

database.

The general structure of such a database will be a

set of relations (Codd, 1970), each containing the date

(or issue number) at which it was introduced, the date

(or issue number) at which it was superseded by changed

information, and either the reason for the change or a

pointer to the reason. The original specification text

for any particular date can then be recreated from the

database by extracting all the relations which were valid

at that date and reassembling these into text form. This

method of handling changes to the specification over time

is analagous to the handling of messages in ASL (see

Chapter 3.8). It is also one of the major features of

some recent proposals for support facilities for computer

programmers, such as the Ada Programming Support Environ-

ment (DoI(b), 1981).

—114-—

5.4. Validation

5.4.1. The Aims of Validation

Validation is the process of ensuring as far as poss-

ible that the specification correctly captures the

customer's intentions. As there is no formal statement of

the requirements other than the specification itself, it

is not possible to use verification techniques (see sec-

tion 5.5) which involve the rigorous comparison of two

formal statements. Validation is a much weaker process

than verification, and involves the presentation of

the specification to the customer in an at=

tempt to elucidate any discrepancies between it and the

customer's mental model; this is an ill-defined process,

with no guarantee that it will identify all the

discrepancies. One of the main problems in validation is

that of ambiguity, in that the customer and supplier may

make different interpretations of the same statement. The

use of a restricted, well-defined language such as ASL

makes a large contribution to overcoming this problem.

A possible disadvantage of using ASL (or any other

formal specification language) is that it may not be ac-

ceptable to the customer, perhaps because of the overhead

of training large numbers of staff to read specifications

written in it. In these circumstances, the specification

would have to be converted into a format which is accept-

able to the customer, as it is essential that the specif-

ication is approved before design commences (Cohen &

=115=

Burns, 1978). In the remainder of this section a number

of possible conversions are discussed.

5.4.2. Manual Translation into English

One possibility is to use technical writers to trans-

late the formal specification into English for presenta-

tion to the customer. It may be that this would lead to a

clearer document in English, as it would be derived from

the unambiguous, formal document. Such translation is

however a labour-intensive, and therefore costly, process

which could introduce errors. Thus some form of automatic

translation would be preferable.

5.4.3. Automatic Translation

Given the restricted grammar of ASL, automatic trans-

lation into other similarly restricted notations is

possible, although it may involve the development of some

large computer programs. Translation into a stilted form

of English is also feasible, if more difficult. The two

most promising alternatives are discussed below.

(a) CCITT SDL (CCITT, 1980). The CCITT Specification and

Description Language has been adopted as a _ standard

by the telecommunications authorities of a signifi-

cant number of countries. SDL is however a finite

state machine model (see Chapter 2.10), and this

makes the translation from ASL complex. In particular

it may be impossible to generate satisfactory labels

=116—

for the system states automatically, as these are not

represented at all an ASL specification.

(b) English. Systems such as MARGIE (Schank et al, 1973)

GIST (Swartout, 1982) and SHRDLU (Winograd, 1972)

have adequately demonstrated the generation of ac-

ceptable English sentences from a limited formal

language, but large amounts of effort are required to

develop such programs. Thus the feasibility of such

translation has been noted, but there would have to

be sufficient demand for the facility to justify the

development costs.

5.4.4. Simulation

Where a system specification is very large, it may be

unreasonable to expect the customer to identify all the

nuances of behaviour implied by its contents, especially

if the system is to include completely new features which

are outside the customer's existing experience. One al-

ternative to total reliance upon human interpretation of

the text is the use of the specification as a simulation

model, so that the customer can obtain insight by in-

vestigating the operation of the system on a number of

test cases (Balzer & Goldman, 1979; Berild & Nachmens,

1978; Zurcher & Randell, 1968). As a specification is not

intended to describe an efficient implementation (see

Chapter 2.2.9), any simulation based upon it is likely to

make inefficient use of computer time. However, the num-

ber of test cases should be small enough to make this ac-

-117-

ceptable when compared with the possible cost of an un-

detected error in the specification.

The development of a simple simulation system which

would accept ASL specifications may not involve a large

amount of programming (Lindstrom & Skansholm, 1981)

There are however a number of features within ASL which

may prevent effective simulation, as follows.

(a) Undefined items. The language was designed to permit

the incremental creation of specifications; thus, at

any point in time there may be large portions of a

specification left "undefined" (see Chapter 3.10).

The simulation system would either have to reject at-

tempts to perform simulations on any specification

with any undefined items, or be capable of iden-

tifying these and requesting the appropriate informa-

tion from the human operator as reguired during the

simulation run.

(b) Non-determinate behaviour (see Chapter 3.10). The

"don't care" values and lists of possible alternative

actions in ASL (see Chapter 4.3) represent non-

deterministic choices. The simulation system would

either have to interpret these as a request to some

random selection mechanism, or interact with the

human operator to obtain a decision.

(c) Specification of results, not methods. As a specifi-

cation is intended to state the reguired results, ASL

was designed to simplify the description of opera-

tions in terms of their input-output relationship

alone (see Chapter 2.2.9). It is therefore likely

wrIs=

that a specification will contain one or more opera-

tions which are not described in terms of an

algorithm, but merely as a statement of the condi-

tions which apply to the output of the operation for

any given input. Such an operation can be simulated

by treating the conditions as a goal in an exhaustive

search through all the values in the range of the

function (the "British Museum Algorithm", (Balzer &

Goldman, 1979)); this may be acceptable if the range

of values to be searched is small. However, there are

cases (such as numeric functions operating on the

real numbers) where the range to be searched is so

large that this method is unacceptable. The simula-

tion system would have to be provided with some heu-

ristic rules to detect such cases before starting a

simulation run, so that the human operator can be

warned that an "endless" search may be involved.

5.5. Verification

Verification is the process of ensuring, by formal

reasoning, that a design or product does meet its specif-

ication (see e.g. Hantler & King, 1975). This is only

possible in situations where both the specification and

the design (or product) have been expressed in formal

languages, and usually requires the assistance of com-

puterised theorem-proving facilities (e.g. Boyer & Moore,

1979). However, verification has not been shown to be

practicable for large systems (Lehman, 1981; Wirth(a)

=119=

1977); much recent work has therefore been directed at an

alternative approach known as "transformational

implementation" (e.g. Balzer, 1981). This attempts to en-

sure the correctness of the design by restricting the

design process to a succession of small transformations

of the original specification, each of which converts it

into a slightly more algorithmic (and efficient) form. As

transformational methods are relatively new, there have

as yet been no demonstrations of the technigue on large

problems.

To convert an ASL specification into a suitable form

for either of these methods would involve considerable

manipulation of the specification. This is because ASL

was designed to simplify the job of writing

specifications; thus it allows such things as aggregation

and generalisation (see Chapter 3.9) which are not

directly expressible in the simple input languages used

by existing theorem provers and transformational systems.

The conversion would involve the dispersion of the

higher-level constructs of ASL, so that equivalent condi-

tions appeared in every individual item of behaviour.

This is not excessively difficult, being similar to the

translations involved in the semantic model of ASL (see

Appendix C). However, the conversion program would it-

self reguire extensive validation as any errors in this

would invalidate all subsequent verification using it.

-120-

5.6. The Demonstration Facilities

Given the range of computer-based facilities

discussed in the previous sections of this chapter, one

aim of the project was to provide some demonstration of

the value of these. However, the amount of programming

effort required to provide all of them was beyond the

capacity of the project. An examination of results pu-

blished by organisations using formal specification

methods (e.g. Alford, 1977; Lattanzi, 1980) indicated

that a large proportion of errors are likely to be triv-

ial and may be detected by static cross-checking of

the specification text. Thus, it was decided that the

static checking facilities (see Section 5.2.2) would form

a satisfactory part to demonstrate.

The methods used to provide these facilities are

described in detail in Appendix D. In outline, a number

of separate programs were developed to perform:

(a) syntax analysis,

(b) static cross-checking, and

(c) the production of a cross-reference list.

These operated as individual tools, rather than as an in-

tegrated set of facilities, as this maximised the number

of tools which could be developed within the available

time.

=121-

5.7. Summary

In this chapter a set of computer-based facilities

have been described which would provide considerable sup-

port to specification writers. The intention is that

these tools would make it practicable constantly to in-

corporate ‘changes (as these become necessary) without

creating the type of documentation control problems

reported by Brooks (Brooks, 1975). A subset of these

tools were implemented to provide a demonstration of

their usefulness, whilst involving only a limited amount

of programming; these have been used to support the tri-

als of ASL, as reported in Chapter 6.

The use of a formal language, together with checking

tools such as those described in 5.6 above, has been

reported to have resulted in the detection before the

start of design of over 50 percent of the errors in spe-

cifications for large software systems (Alford, 1977).

The cost of correcting an error was also reported to in-

crease by an order of magnitude if the error was not

detected until the design was in progress. The possibil-

ity of obtaining a similar detection rate in telecommuni-

cations systems provides considerable justification for

expenditure on checking tools.

-122-

CHAPTER 6

TRIALS AT GEC

6.1. Introduction

One of the terms of reference of the project (see

Chapter 1.3.2, item (d)) was to introduce the chosen spe-

cification language into the Company. This activity was

therefore combined with the need to obtain reactions to

the design of ASL, giving a requirement for a number of

initial trials of the language. These were each to in-

volve the use of ASL to specify a relatively small system

without reguiring the involvement of the Company's

customers; a total elapsed time per project of around one

month was considered suitable. This limitation on the

timescale was necessary because the effort expended on

preparing the ASL specification formed an additional

overhead on the projects concerned. As a consequence,

only a small number of people were involved in the trials

and recorded their opinions of ASL. These reactions do

however form a basis upon which to modify the language

and its computer-based support facilities before under-

taking any large-scale implementation.

The main problem encountered in organising the trials

=123-=

was that of identifying projects of a suitable size which

were at an appropriate stage in their development. One of

the projects chosen was subsequently delayed as a_ result

of changes in marketing priorities, so that a replacement

had to be found. Four trials have taken place, covering a

range of types of system and a variety of levels of

previous experience amongst the participants; these are

reported in Sections 6.2 to 6.5 below. In each trial, the

specification was reviewed by one or more people who had

not been involved in its creation; both the writers and

reviewers were then asked to complete a guestionnaire to

record their opinions. Their responses are discussed in

Section 6.6.5.

The syntax analyser and the other static checking

tools (see Chapter 5 and Appendix D) were used to aid the

writers.of the specifications. This acted as a check upon

their comprehension of the language and highlighted any

problems in this area. Difficulties encountered by the

writers during the creation of the specifications were

recorded as they occured, to provide further feedback.

The difficulties and criticisms are discussed in Section

6.6, whilst more detail of these and the responses to the

guestionnaires appears in Appendix F.

6.2. Trial 1: The Data-rate Adaptor

The system used for this trial is part of a range of

items being designed to support the Integrated Services

Digital Network (ISDN), which will extend the use of

-124-

digitally-coded signalling from telephone exchanges right

up to the subscribers' equipment. The particular item be-

ing specified in the trial is a data-rate adaptor, which

takes in digitally-encoded data (e.g. from computer

equipment), together with a digital carrier waveform at a

higher pulse rate, and encodes the data onto the carrier.

It also performs certain detailed modifications to the

bit-stream which it outputs, such as inserting check

digits. The intention is that this system, which has

previously been implemented using standard integrated

circuits, will be re-designed as a VLSI device.

No official specification for the system existed at

the start of the trial; there were a number of unofficial

documents which had been-created for the purpose of ex-

plaining the system to interested parties, but these

related to the larger entity of which the data-rate adap-

tor is only part. The personnel involved in the trial

were all hardware engineers, and the individual who wrote

the ASL specification had no previous experience of spe-

cification languages and limited experience of computer

programming languages. This lack of appropriate back-

ground experience meant that training in the use of ASL

took 2 weeks on a one student-one tutor basis. A _ simple

guide to the construction of ASL specifications was

created from the material used in this training period

(Blackledge(b), 1982).

The use of ASL did not result in the identification

of any errors which had previously been undetected; this

is not unexpected as an implementation of the system

==,

eo ae
already existed. One of the reviewers did, however, com-

ment that the structure of the specification had sug-

gested an alternative design approach which had not

previously been considered. Amongst a number of difficul-

ties which arose during the production of this

specification, only one reflected a significant failing

in ASL, although even this one did not make it impossible

to specify the required behaviour. This was in the han-

dling of long seguences of related messages, which is

common in the data-rate adaptor as it is handling

sequences of bits representing characters. ASL requires

that the specification mentions each bit individually,

and provides no convenient method of referring to the

sequence as a whole; this produces a large specification

and makes this part of the behaviour harder to

comprehend.

6.3. Trial 2: A Disk Checking System

The specification written in this trial was for a

computer program to help in the commissioning and~ main-

tenance of CAT 5 and CAT 6 test eguipment. CAT testers

were developed by the Company to perform automatic diag-

nostic testing of electronic circuit boards. Because of

the size of the test programs required for printed cir-

cuit boards containing up to 80 integrated circuits, the

CAT testers use fixed-head disks to provide large amounts

of magnetic storage. The first testers fitted with such

disks suffered from a considerable number of problems,

-126-

apparently caused by unreliability of the disks. Further

investigation, however, revealed that many of the pro-

blems were due to faults in the hardware which interfaced

the disks to the testers. Some method of exercising and

checking the disks was therefore required, to assist in

locating faults. Three programs were written to aid in

this checking, but these did not cover all the functions

of the disk unit; also, they were unable to continue with

the remaining tests after finding the first fault.

A new single utility to perform comprehensive checks

on the disks was specified in ASL; this was a completely

new specification as no other documentation had been

written about this new program. The writer of the specif-

ication had not previously used a formal specification

language, but had experience of writing specifications in

English. No serious problems were encountered during the

preparation of the specification. However, as this was

the first of the trials to occur, many small faults were

found in the definition of ASL; these are discussed in

Section 6.6. As the specifier was filling the roles of

"customer" and "supplier" (see Chapter 1.2.2), no major

errors or omissions were detected when the specification

was input to the static checking facilities or when it

was reviewed. The specifier did however report that the

use of ASL had forced the resolution of a number of minor

inconsistencies and omissions during the construction of

the specification.

-127-

6.4. Trial 3: R2 Signalling System

The R2 protocol for signalling between telephone ex-

changes is used in a number of countries (e.g. China,

India) which are potential export markets for the System

X family of exchanges. It uses pairs of audio tones,

selected from four possible frequencies, to encode the

digits 0 to 9 and certain control signals. Specifications

already existed in English (Galvin, 1981), in message

sequence charts (EODST, 1981) and in the finite state

specification language, FSIS (BTS, 1981 ; Taylor, 1981),

giving an opportunity to compare ASL with the type of

specifications already used in the telecommunications

industry.

Unfortunately, other target dates for the project

were too pressing to permit the personnel to invest two

weeks in learning ASL and then further time rewriting the

specification. It was therefore decided that the specifi-

cation would be produced by the designer of ASL (the

author) and then subjected to review by a member of the

project. The review would then provide a comparison of

specifications written in four languages, undertaken by

someone who had not written any one of them; criticisms

arising would therefore relate to the general comprehen-

sibility of the four forms.

During the preparation of the specification, it

became apparent that a number of elements of the behavi-

our were not sufficiently well-defined. As an example, no

information had been provided on how to recognise when

=128=

enough digits had been received to complete the telephone

number being called. On checking with the project person-

nel it was found that these elements were ill-defined,

and that this had already been recognised. However, both

the FSIS and English-language specifications give no in-

dication of this incompleteness. In contrast, the ASL

specification demanded the use of the word "undefined" in

each of the appropriate positions, making the incomplete-

ness explicit.

6.5. Trial 4: Part of an Operating System

The Telecommunications Research Laboratory at the GEC

Hirst Research Centre have been working for a number of

years on the development of a distributed system using a

number of microprocessors (Nissen & Geiger, 1979). The

aim of this work has been to produce a flexible system in

which both the processing power and the operating system

are distributed over the variable number of microproces-

sors involved. One central feature of this system is

therefore the organisation of the flow of messages

between the various processors, as there is no fixed al-

location of tasks to processors; this job is undertaken

by software modules known as "route-handlers".

This route-handler module was selected as the system

to be specified in ASL as it is not too large to be spe-

cified in a short period, but does include some reasona-

bly complex behaviour. The main difference between this

trial and the others is that the research engineer who

ri2o>

wrote the specification had previously made use of other

formal specification languages. These languages had in-

cluded ones based upon more mathematical notation than

ASL (e.g. Jones(a), 1980), so comments from this trial

would provide some evaluation of the comprehensibility of

ASL relative to these.

One problem which arose during the preparation of the

specification was a consequence of the writer's previous

experience, which caused him to misunderstand the object-

oriented view embodied in ASL. The initial version of the

specification treated a model as a mathematical function,

and attempted to call it recursively. Although this is a

technigue used in many other specification languages, it

is meaningless in ASL where the only way of communicating

with a model is by the transmission of messages. The oc-

currence of this difficulty does suggest that the res-

trictions imposed by the object-oriented view had not

been explained sufficiently well in the language ref-

erence manual. The trial produced a number of suggestions

for minor improvements to the language syntax, and also

the identification of four points where the language

definition was incomplete; these are discussed briefly in

Section 6.6, and listed in Appendix F.

~130-

6.6. Criticisms and Comments

6.6.1. Sources of Comments

As mentioned in Section 6.1 above, problems encoun-

tered during the preparation of the specifications were

recorded as they occurred. Then, after each specification

had been completed, it was reviewed by one or more people

and the immediate comments and criticisms again recorded.

Finally, each participant was asked to complete a

guestionnaire so that any further thoughts and general

opinions were captured. Sections 6.6.2 to 6.6.4 below

cover the problems which arose during the trials, and

then Section 6.6.5 covers the responses to the

questionnaire. All the results which are discussed relate

to the design of ASL. The documentation used to support

the trials (Blackledge(a), 1982; Blackledge(b), 1982) was

the subject of some criticism, but this is not directly

relevant to the evaluation of the language.

6.6.2. Unintentional Inconsistencies

As was pointed out in Chapter 4.3.1, there is very

little published material which gives constructive advice

on the process of language design. ASL was therefore the

result of a number of attempts at such a design; each at-

tempt was subjected to criticism, which formed the basis

for the next attempt. During the trials it became ap-

parent that the syntax definition still failed to capture

=131-=

the author's intentions in all cases, as in the following

examples.

(a) The syntax production for PREFIX allowed references

to the "first" and "last" messages matching a partic-

ular pattern, but not to the intermediate ones.

(b) A bothway interface might receive and send messages

with the same name, but there was no way to. select

messages in one particular direction from the history

of the model.

(c) Messages were forced to have at least one component

in order to allow values to be assigned to them;

hence a message with one component effectively had

two names where one would have sufficed.

(d) Pattern-matching variables could’not be used in place

of an interface name, and anonymous pattern-matching

variables (i.e. "?" with no name following it) could

not be used in the place of a stimulus.

There were also a number of other similar items, all of

which are listed in Appendix F.1.2. These points were all

treated as errors in the syntax definition, and therefore

corrected immmediately. The full syntax definitions in

Appendix B show only the corrected forms.

6.6.3. Simple Extensions

The specification writers taking part in the trials

made proposals for extensions to the language which they

felt would assist them in their task. Those extensions

which were simple and also consistent with the concepts

= Eee,

in ASL were added into the language as they arose. Some

of these are described below, whilst those which were not

incorporated are discussed in Section 6.6.4.

(a) The ability to use paragraph numbers with no para-

graph body (except perhaps a comment) provides a way

to organise the text within a single model. This use

of paragraphs as a means of introducing headings for

sections of the text is totally consistent with the

intentions of the paragraph numbering scheme (see

Chapter 4.3.3).

(b) Common operation definitions can be placed within the

system block, rather than having to appear within ev-

ery model which uses them.

(c) Sequences are necessary within the RESPONSE part of a

single behaviour statement. It is not practicable to

express all seguence constraints as general rules,

and there are many cases where arbitrary sequencing

is insufficient.

The complete list of these extensions appears in Appendix

F.1.3, and they are all included in the syntax defini-

tions in Appendix B.

6.6.4. Further Possible Extensions

A number of other points were raised during the

trials, but were not seen as simple alterations to the

language syntax and have therefore not been incorporated.

These are listed in Appendix F.1.4 and F.1.5. The main

reason why none were incorporated into the language was

=133=

that it still proved possible to complete the trial spe-

cifications without these features in the language,

whilst the time taken to extend the semantic model (see

Chapter 4.5.7) to include them would have delayed the

completion of the trials.

6.6.5. Responses to the Questionnaire

With only one exception, all the participants in the

trials completed the guestionnaire, so providing a record

of their comments and opinions after the completion of

their role in the exercise. The one exception was the

writer of the specification for the R2 signalling system;

as this role was filled by the designer of ASL (the

author), this would not have provided any additional

information. The design of the guestionnaire is covered

in more detail in Appendix F, but its intention was to

get the participants to record their views on as much of

the language as possible. To this end, it was based upon

a seguence of multiple-choice guestions, but with room

for free-form comments after each guestion. Additionally,

a number of other guestions were introduced which were

intended to elicit more general comments.

Due to the small number of participants (eight in

all) and the large number of uncontrolled variables in

the trials, the volume of data from the guestionnaires

was insufficient to submit to normal parametric statisti-

cal analysis. Analysis was further complicated by the

large proportion of the results which appeared as _ free-

-134-

form comments; however, this was a direct consequence of

attempting to ensure that the participants gave the maxi-

mum amount of information in their replies. Despite this,

there was a large degree of similarity in the content of

many of these comments. The discussion of results which

follows has therefore been based upon the number of par-

ticipants who answered positively, negatively or neu-

trally to the questions about ASL (see Appendix F.2.2 for

further details). This data was subjected to the

Kolmogorov-Smirnov nonparametric test (Siegel, 1956), as

this is suitable for small samples. The answers were then

re-analysed on the basis of two factors which divided the

participants into groups, to see if there was any signif-

icant correlation between the groupings and the opinions

expressed. The factors used were the role played by the

participant (writer or reader) and their previous ex-

perience of formal specification languages. Here the

Fisher exact probability test (Siegel, 1956) was used, as

this is a correlation test suitable for small samples.

Only one criticism of ASL was identified by these

analyses, and this was only significant at the 90 percent

level. This criticism was that, although the readers

found the paragraph numbering helpful, the writers did

not like the amount of repetitive writing which it

involved. One writer had wished to insert an additional

paragraph between two existing ones, and found that this

necessitated a large amount of writing.

In no other case was there a sufficiently distinct pat-

tern in the responses to form a sound basis for any crit-

3S

icism of ASL. There were, however, seven items on which

there was support for features of ASL (at the 90 percent

level or better, taking all participants together), these

being:

3.1(a), the block structure of an ASL specification,

3.1(b), the use of the system block for common

information,

3.1(c), the "black box" view of models,

3.1(g), the form of definitions,

3.1(h), the method of describing behaviour,

3.1(i), the use of "unless" for alternatives,

3.1(q), "whenever" as a way of describing conditional

actions.

Appendix Fo2.2 also contains details of those

responses which took the form of comments and _ therefore

were not suitable for the above analysis. From these

comments, two points are worthy of note. Firstly, the

writers with no previous experience of formal specifica-

tion languages found the specifications hard to write,

but this seemed to be due to the need to be rigorous

rather than to any features of ASL. Secondly, the use of

"black box" models was seen to be an advantage of ASL,

both in terms of the resulting style of the documents,

and of the method of constructing specifications which it

embodies.

6.7. Summary

One of the most important elements of the project was

=136=

seen to be the practical testing of the ideas which had

been developed in Chapters 2, 3 and 4. Despite the pro-

blems in arranging for a number of such tests to be car-

ried out in timescales to suit the project, four trial

specifications were successfully produced. The partici-

pants displayed considerable interest and enthusiasm, and

contributed a significant amount of constructive criti-

cism of ASL. Many of the difficulties which arose during

the trials can be traced back to deficiencies in the

documentation used to train the participants, but some

did relate to the design of the language. In the next

chapter these results are used in the evaluation of the

progress made by the project.

-137-

CHAPTER 7

EVALUATION

7.1. Introduction

The achievements of the project can be assessed on

two bases, by making use of the information from Chapter

2 (the evaluation of other specification languages) and

that from Chapter 6 (the trials within the Company). In

Section 7.2, ASL is considered in relation to the selec-

tion criteria which were developed in Chapter 2; this

produces a comparative evaluation of the language and

identifies the degree of success in meeting the design

criteria. Then, in Section 7.3, the reactions of the par-

ticipants in the trials are discussed and some deficien-

cies of the language noted.

7.2. Comparative Evaluation

To provide a meaningful comparison it is necessary to

evaluate ASL against the same criteria and in the same

way as the languages reviewed in Chapter 2 and Appendix

A. Thus, the comments which follow are shown against the

same headings and identification letters as were used in

=138=

Chapter 2.2.13 and throughout the tables in Appendix A.

It should also be noted that, under the categorisation

made in Chapter 2.3, ASL is an event-triggered language.

Preliminaries:

Form: ASL has only a text form.

Computer/Manual: Some computer facilities exist.

Use: The language is not in regular use, but has been

demonstrated on complete examples.

(a) Block or Paragraph Structuring.

An ASL specification is divided into blocks which re-

present models. Within each block, paragraph numbers may

be used to provide appropriate structure, as explained in

Chapter 4.3.3. This gives a greater structuring capabil-

ity than in any of the other formal languages reviewed in

Chapter 2.

(b) Generalisation

The language permits the definition of operations

with any number of arguments and results, by treating

these as a text "macro" (e.g. see Cole, 1980) rather than

as strict mathematical functions. Properties which are

common to a number of models, such as the format of

messages, are "factored out" and only defined once in the

system block. These provide comprehensive facilities for

generalisation which are much more powerful than those in

high-level programming languages such as Pascal, Ada or

PUT,

(c) Aggregation

Both messages and definitions can be hierarchical

structures with any number of levels, and for definitions

=139=

this applies to both data types and instances of objects.

It is not possible for one object to be an instance of

more than one data type; however, no case has so far been

encountered where this has been necessary.

(d) Separate Description of each Action

This is enforced by the language, in the shape of

the:

"on" STIMULUS "then" RESPONSE.

form of statements which describe behaviour.

(e) Monitors

The ASL form of a monitor is:

"whenever" CONDITION "then" RESPONSE.

and monitor actions take priority over simple behaviour

actions. Thus, a monitor can be used to represent behavi-

our under exceptional cicumstances, such as an overload.

(£) Historic and Descriptive Reference

ASL provides historic references by treating each in-

terface of each model as an infinite buffer, and descrip-

tive reference by allowing a message to be identified by

the values of its contents. One important factor in mak-

ing these facilities easy to use is pattern-matching:

e.g. sum(all ?z)

where (?y.size = z)

and (y = coin via coinslot)

which provides temporary names for patterns and the

selected values.

(g) Non-algorithmic

ASL does have a construct which can act as an assign-

ment statement; however, without the other control state-

-140-

ments found in programming languages (e.g. loop state-

ments and jumps), this is not sufficient to describe com-

plex behaviour algorithmically. Thus, the design of the

language makes it difficult to write algorithmic

descriptions, whilst the use of pattern-matching and

local definitions make non-algorithmic specification

easy.

e.g. a simple definition of a square root might be

{5] operation SQUARE_ROOT(x, t --> y) is

[5.1] X / THE INPUT : decimal

[5.2] T / REQUIRED ACCURACY OF ANSWER

: decimal

[5.3] y / THE ANSWER : decimal

[5.4] y is 22

where abs(z*z - x) <= t

(h) Representation of Time Duration

Time delays can be represented in behaviour state-

Ments as:

"within" TIME DELAY "of" STIMULUS "then" RESPONSE.

e.g. within 1 second of lift_handset

via subscriber_line(?x)

then start sending dial_tone

via subscriber _line(x)

and a timeout (i.e. a response to the non-arrival of a

message within a fixed time period after an event) can be

represented as a monitor:

"whenever" CONDITION "then" RESPONSE.

-141-

e.g. whenever 15’ seconds after (start of dial_tone

via subscriber_line(?x)) then

so that the language provides all the timing facilities

required for behavioural specifications.

(i) Recognition of Concurrency

Interfaces to models are treated as sequential

channels, but any number of interfaces may be active at

the same point in time. The language therefore allows

concurrent activities to be described; however, apart

from simply limiting the use of interfaces and local

variables to be sequential, it does nothing to restrict

the system behaviour to be safe. Thus, the onus of ensur-

ing this is upon the specification writer.

(j) Acceptance of Fuzzy Values

ASL provides three features which address this area:

the words "undefined", "unknown" and "dont care" can be

used to indicate incomplete knowledge; actions can be

specified non-deterministically, in terms of the desired

result; some values (e.g. time delays) can be stated as

ranges of acceptable values, rather than as_ single

guantities. This does not cover the type of "fuzzy"

values used in fuzzy logic (Gaines, 1976), but does

provide facilities equal to those in any of the other

specification languages reviewed in Chapter 2 (apart from

English).

(k) Notational Redundancy

Due to the extensive use of words from the English

language, as explained in Chapter 4.2, specifications

written in ASL have a similar level of notational redun-

-142=

dancy to Pascal programs. However, the paragraph number-

ing in ASL provides a high level of perceptual recoding

of the structure without producing verbose

specifications.

(1) A Simple Syntax

The syntax of the language (which appears in Appendix

B) has been shown to be suitable for recursive-descent

syntax analysis, and is simpler than the syntax of many

programming languages.

(m) A Semantic Model

The semantic model for ASL was described in Chapter

4.5.7, and is elaborated in Appendix C. Although this

does not give a complete formal definition of the lan-

guage from first principles (it relies upon the existing

definitions of Predicate/Transition nets (Genrich et al,

1980)), it is sufficient to ensure an unambiguous defini-

tion of the language.

Table A.15 in Appendix A shows a comparison of ASL and

the best language from each of the categories identified

in Chapter 2.3. From this table it can be seen that the

design of ASL has produced a language which does not have

the failings noted in the other languages which were

reviewed in Chapter 2.

7.3. Feedback from the Trials

7.3.1. The Significance of the Results

Although the comparative evaluation in Section 7.2

=143=

demonstrated that ASL had met its design criteria, it was

also necessary to obtain confirmation of this from prac-

tical trials of the language (as reported in Chapter 6).

This feedback provides a more detailed critique of the

usability and comprehensibility of the language to its

intended audience. As mentioned in Chapter 6, this in-

formation takes the form of both a record of problems

which arose during the writing of the specifications, and

the questionnaires which were completed by all _ the

participants.

Statistical analysis of the results was restricted to

simple nonparametric tests due to the composition of

the sample; only a small number of people

were involved, and it was not possible to select these to

ensure a proper cross-section of the total audience.

Analysis was further complicated by the impracticability

of performing parallel trials with control groups using

other specification methods. Such parallel trials are un-

common in experiments with languages (see e.g. Shiel,

1981; Weinberg, 1971) due to the number of additional

participants and considerable extra cost involved. The

small total number of participants also made it impracti-

cable to test the questionnaire on a sample of the

audience, as is normally suggested (e.g. Kornhauser &

Sheatsley, 1965). However, the backgrounds of the people

who did take part do between them cover many parts of the

total audience:

(a) hardware engineers, with no previous experience of

specification languages,

-144-

(b) systems engineers, with some experience of the use of

finite state languages and message sequence charts

for specifications,

(c) a research engineer who had previously used a number

of formal specification methods, and

(d) other systems people, with previous experience in the

use of programming languages.

There is sufficient general agreement in their responses

to provide confidence in the acceptability of a formal

language such as ASL to the wider audience. Although the

trials were undertaken within a telecommunications

company, only one (the R2 signalling system)was specific

to that industry. The success in the other trials indi-

cates the suitability of ASL for a wide range of

information-processing systems.

The problems which did arise during the trials fall

into three categories, those resulting from unintentional

inconsistencies in the syntax definition of the language,

those which reguired simple enhancements, and those which

involved significant changes to it. These three were cov-

ered in Section 6.6, which also contained details of the

guestionnaire and the responses which it elicited. Sec-

tion 7.3.2 below discusses the overall pattern of the

results.

7.3.2. The Pattern of the Results

The results reported in Chapter 6.6 indicate that ASL

was found to be satisfactory by the personnel participat-

~145-

ing in the trials. All of the specifications were com-

pleted to the level of detail which the participants

deemed appropriate, and in every case the language was

able to express the necessary behavioural description.

The spread of responses to some guestions in the

guestionnaire reflects the range of personal likes and

dislikes of the participants; however, there was general

support for almost all features of the language. There

were a number of items where either the role played by a

participant or any previous experience of specification

languages seemed to be related to the opinions expressed,

although only one was statistically significant (see

Chapter 6.6.5). However, in no case was there general

agreement that ASL was unsatisfactory. This provides

practical evidence to support the major decisions taken

in the design of the language, as described in Chapters 3

and 4.

Most of the minor difficulties which did arise during

the preparation of the specifications were resolved

immediately, in some cases by incorporating into the lan-

guage improvements suggested by the specification

writers. One feature which was reported to be extremely

useful was the "black box" view, with the associated

Message-passing semantics. This was found to act as a

strict discipline upon the writers, and formed a positive

method for constructing the specification (as described

in (Blackledge(b), 1982)).

-146-

CHAPTER 8

CONCLUSIONS

8.1. Achievements

The aims of the project were to identify a suitable

formal specification language, and to introduce this into

use within GEC Telecommunications Ltd.. This language

must be a practical tool for the construction of specifi-

cations of large and complex systems; it must also be

suitable for use by the existing staff of the Company af-

ter a limited amount of training.

Firstly, a comprehensive review of specification lan-

guages was undertaken. This involved the examination of

the large number of existing languages. From the analysis

of these and their use on small example problems, a_ set

of criteria was developed by which they could be

evaluated. The outcome of this review was that all the

languages were found to be deficient, the most frequent

failing being in the area of facilities for handling

complexity. There was also a noticeable separation into

two groups of languages, those using strict mathematical

notation and those using more natural methods of

expression; this was particularly relevant to the aim of

147 —

easy introduction into the Company.

As a conseguence of the review, a new specification

language was designed; this was called A Specification

Language (ASL). Its main advantages over the other lan-

guages are as follows.

(a) Comprehensive block and paragraph structuring

facilities, to provide perceptual cues to readers of

the resulting specifications. The use of paragraph

numbers to organise the text, although a common feat-

ure of documents written in English, was not a part

of any of the specification languages reviewed.

(b) A simple view of systems as "black boxes" which com-

municate by passing messages. This provides both a

suitable method for constructing specifications

and a strong, although not total, check upon

completeness.

(c) A simple model of time, sufficient to present the

main performance requirements for the system.

(d) The recognition that incomplete information must be

recorded, and that specifications are normally

created incrementally.

(e) Features which strongly promote non-algorithmic

specification, so that specifications do not contain

unnecessary information about possible design

decisions. These features include the ability to

refer to information by its description, rather than

by name, and unlimited access to the previous behavi-

our of the system.

(£) A simple syntax which is based upon the use of appro-

-148-

priate words and phrases rather than special symbols.

A limited set of computer-based facilities was con-

structed to support the use of the language, in recogni-

tion of the practical problems involved in the creation,

checking and maintenance of large specifications.

ASL was then used in the preparation of four specifi-

cations within the Company, in order to confirm its

suitability and to identify the type of training material

required for full implementation. These trials covered

both hardware and software systems, and were not specific

to the problems of the telecommunications industry. The

participants in these trials represented a wide range of

background experience. Thus, although the amount of data

collected is small, it provides a high degree of confi-

dence in the acceptability of the language within the

Company.

A number of problems did arise during the trials, but

none were sufficiently serious to prevent the specifica-

tions being written, and most were resolved immediately.

As a result, a number of worthwhile improvements have

been incorporated into the language. The participants in

the trials also recorded their opinions of ASL in a

questionnaire; their answers showed support for the main

features of the language, and no significant criticisms.

The work reported here has therefore sucessfully

achieved the aims of the project, although complete im-

plementation of the new specification method in an orga-

nisation of the size concerned can be expected to spread

over a number of years.

7L49=

8.2. Outstanding Problems

Although there are no difficulties which prevent the

use of ASL to gain the benefits outlined in Chapter

1.4.3, there are two problems worthy of note. These will

make it difficult to obtain all the theoretically possi-

ble benefits of using a formal specification language,

but do reflect areas which are still the subject of much

current research.

(a) Verifiability.

In order to ensure that the language was suitable for

practical use by existing personnel, its design was bi-

ased towards enhancing its expressive power. As a

consequence, it is much more difficult to use ASL in the

formal verification of the design of a system than to use

one of the more restricted languages associated with cur-

rent program-proving systems (e.g. Boyer & Moore, 1979).

However, there are no reports of the routine use of for-

mal verification methods on large systems, only on rela-

tively small individual programs. Hence, ASL seems to re-

flect the only approach which is currently practicable

for large systems.

(b) Time.

The simple model of time used in ASL specifications

is adequate for conveying gross timing information and

for "worst case" delay simulation. However, the language

does not provide a convenient method for representing ac~

tions which occupy a small, finite amount of time. It

can express the necessary constraints upon behaviour, but

=150-

only in a rather cumbersome and verbose manner. Thus,

this is an area which requires an appropriate change to

the syntax and to the semantic model. If this is not

done, then writers will tend to omit these details from

their specifications. Then it will not be possible to en-

sure that the system has no detailed timing problems by

analysing the ASL specification.

As there is no practical solution to these problems at

present, their existence is not sufficient reason to

delay the introduction of ASL into the Company. Such

delay would merely result in the loss of the financial

benefits associated with formal methods, whilst not

guaranteeing higher benefits in future.

8.3. Further Development

ASL has been demonstrated to be suitable for use

within the Company, but the facilities and documentation

developed to support the trials are not adequate for

full-scale implementation.

(a) Enhancements to the Language

A number of useful extensions to the language were

not incorporated merely to avoid delaying the trials.

These items, which are listed in Appendix F.1.4, should

therefore form the first step in the further development.

The improvements to the documentation suggested below

would then reflect these enhancements.

ao

(b) Documentation.

One of the criticisms made by most of the partici-

pants in the trials was of the format and content of the

Language Reference Manual (Blackledge(a), 1982). This

document needs to be expanded and reorganised to take ac-

count of these criticisms.

(c) Training Material.

The existing introductory guide (Blackledge(b), 1982

only covers the initial information reguired by the writ-

ers of specifications; there is no equivalent document

for people who will only read them. Both this and any

guide developed for readers need to be supported by a

progressive series of example specifications which cover

more complex uses of the language. For the training of

large numbers of people, it will also be necessary to

produce’ a number of lecture courses for different levels

of staff.

(d) Improved Support Facilities.

Support facilities, such as a simulation system which

works from the ASL code, are reguired in order to detect

as many specification errors as possible. The limited set

of facilities which were produced to support the trials

were only intended as prototypes, for demonstration

purposes. A completely new support system is reguired,

with an interface between the user and-the tools, such

that, as more facilities become available, they do not

appear as something separate and different from the

previous tools. One particular criticism which came from

the writers of the specifications was that the paragraph

152

numbering scheme involved much repetitive writing and

made the insertion of additional paragraphs very time-

consuming. The provision of more sophisticated editing

facilities may therefore be more important than was orig-

inally imagined.

Although it is possible that the use of ASL could conti-

nue without investment in the items listed above, it is

unlikely that specification writers would find it a suf-

ficiently rewarding tool. It was purposely designed to be

suitable for processing by computer, but it also relies

upon such support to provide many of the benefits to its

users.

= Logo

APPENDIX A

REVIEW OF SPECIFICATION LANGUAGES

1. General Layout

This appendix contains the detailed results of the

evaluation of candidate specification languages. Because

of the large number of languages to be presented, the in-

formation has been condensed into tabular form, using the

coding explained in the following notes. There are fif-

teen tables, numbered A.1 to A.15, with the first four-

teen corresponding to the fourteen language categories

identified in Chapter 2.3, and the fifteenth being a sum-

mary table as explained in Section 4 of this appendix.

Each table has the different languages displayed verti-

cally in the left-hand column, and then sixteen further

columns containing the results of the evaluation; the

first three of these record general information

(explained in Section A.2, below) and the remaining thir-

teen are for the criteria, (a) to (m), as-listed in Chap-

ter 2.2.13. The interpretation of the values placed in

these thirteen columns appears in Section A.3, below.

-154—

2. Columns for General Information

Three columns have been included to give a general

picture of the form and status of the language :

(a)

(b)

(c)

3.

Form (column headed "F")

Indicates the visible form of presentation:

T = text,

G = graphics,

X = tabular.

For the few languages which make use of multiple

forms, more than one symbol appears in the table.

Computer/Manual (column headed "C")

The reported status of computer support facilities,

as these may not exist even though a language is

suitable for computer processing:

M " only manual use; no computer facilities exist,

c some computer facilities exist.

Use (column headed "U")

Whether the language is in practical use anywhere:

P = proposal only,

E = has been used on complete examples,

A = in actual, regular use.

Values Used in the Assessment

In all cases except criterion (k), the failure of a

language to provide any facility under a particular head-

ing is denoted by a dash ("-"). Where numeric values are

given, the magnitude of the number is not intended to in-

=155=

dicate an order of acceptability amongst the

alternatives.

(a)

(b)

(c)

(da)

(e)

(£)

(g)

Criterion (a), Block or Paragraph Structuring

1 = has at least the facility to divide a specifica-

tion into blocks with headings or titles.

Criterion (b), Generalisation

L a simple facility, allowing the writer to define

common behaviour once (i.e. like "subroutines"

in programming languages).

2 = comprehensive facilities for "factoring out" com-

mon properties of all kinds.

Criterion (c), Aggregation

1 = permits the naming of collections of objects.

2 = permits one object to be a member of more than

one named collection.

Criterion (d), Separate Description of Each Action

l= possible, although not enforced by the structure

of the language.

2 = enforced.

Criterion (e), Monitors

1 = exception conditions can be represented by

monitors, separate from the description of in-

dividual actions.

Criterion (f), Historic and Descriptive Reference

1 = historic reference only.

u Z descriptive reference only.

3 = historic and descriptive reference.

Criterion (g), Non-algorithmic

1 = possible, although the language is mainly

-156-

(bh)

(i)

qd)

(k)

algorithmic in design.

2 = the design of the language makes algorithmic

description difficult, so non-algorithmic

predominates.

Criterion (h), Representation of Time Duration

1 timeouts only.

2 timeouts and time delays due to actions. u

3 = clocked, synchronous action only.

Criterion (i), Recognition of Concurrency

1 = yes.

Criterion (j), Acceptance of Fuzzy Values

1 = allows values to be stated as ranges.

2 = allows fuzziness and incompleteness to be indi-

cated as such.

Criterion (k), Notational Redundancy

As this is not a yes/no choice, the languages have

been compared to the level of redundancy represented

by a programming language such as Pascal , and

marked:

T = much terser than Pascal; this is taken to repre-

sent a very low level of redundancy, which is

likely to prove difficult for readers,

A = average; approximately the same level of redun-

dancy as Pascal, and likely to be readable and

reasonably brief,

V = verbose; a much higher level of redundancy than

in Pascal, likely to lead to large

specifications.

157

(1) Criterion (1), a Simple Syntax

1 = known to be acceptable to standard programming

language compiler techniques.

(m) Criterion (m), a Semantic Model

1 = operationally defined semantics (no theoretical

model exists, but computer facilities have been

developed to a stage which must effectively form

a semantic model).

2 = a theoretical semantic model exists.

4. Summary Table

Table A.15 contains the language from each category

which satisfies the largest number of the criteria (i.e.

has the least number of "-"s); where more than one lan-

guage satisfied the same number of criteria, an arbitrary

choice was made. ASL, the new language, has also been in-

cluded as the last item in the table. The purpose of this

table is merely to indicate the degree to which the thir-

teen criteria, even though not a complete test, were suc-

cessful in indicating deficiencies in the languages

reviewed. This suggests that the list of criteria was

sufficient for its purposes.

-158-

TABLE A.1 UNIVERSAL LANGUAGES

Criteria
Language FC.U a blGidice sfage hase.)

APL rece li-il------
(Jones & Kirk, 1980)

Decision Tables XCA eat 2 o> =
(Humby, 1973)

English TMA APD Gel ular oee2: 82 782

Pascal TCP eae AL cole eer celia
(Jensen & Wirth, 1975)

PDL TC A Til ==.--=-
(Caine & Gordon, 1975)

Prolog THC AP. = i= = = 212 == -
(Clocksin & Mellish, 1981)

SETL TC 2 SN ee
(Schwartz, 1973)

TABLE A.2 COMPUTER HARDWARE DESCRIPTION LANGUAGES

Criteria
Language Fac 10. ab ¢ de £ 9g hij

AHPL GU 1-82. 204 93 ==

(Hill & Peterson, 1973)

DDL TCA te a 2
(Duley & Dietmeyer, 1968)

HARTRAN TuGA Pete 2ie == 2"S =

(Bown, 1978)

ISPs TCA ----------
(Bell & Newell, 1971)

TEGAS6 T2C, E bel = 29S ee

(Szygenda, 1980)

=159=

TABLE A.3 NEW PROGRAMMING LANGUAGES

Criteria
Language ECW ab cra eft gh ivy

Ada ualton Led al aa Le
(Ichbiah et al, 1979)

Ada Extension (ANNA) TC iE DAZE dem aan) i=
(Krieg-Bruckner & Luckham, 1980)

Alphard TC 1211------
(Wulf et al, 1976)

Gamma T CoA l121l1l-----=--
(Falla, 1981)

Gypsy TC OA ADs Vhs em: Tem,
(Ambler & Good, 1977)

TABLE A.4 DERIVATIONS FROM PROGRAMMING LANGUAGES

: Criteria
Language FC. avbme die) f igubsi 23

DDN TCA Le fl =

(Riddle et al, 1979)

Delta TCA Taek 2a od La
(Holbeck-Hanssen et al, 1975)

Epsilon Tics heels 2) 2 bee bask: =
(Jensen et al, 1979)

RLP TCR Nee a 2 fe
(Davis & Rauscher, 1979)

SMSDL f MES 2) 2 ime tl 2
(Frankowski & Franta, 1980)

SPECLE TC A eel hee) eth Se 2)

(Biggerstaff, 1979)

SREM TCA bl) tea = Lee la

(Alford, 1977)

Mascot Tica Tie =) oie Set le
(RSRE, 1978) G

-160-

TABLE A.5 FLOW CHARTS

Language FCG

Flow Charts GMA
(Wayne, 1973)

Flowgrams GCA
(Karp, 1978)

Progression Charts GMA
(System X, 1979)

Sx/l1 GCA
(Corker & Coakley, 1976)

Criteria
a bic ‘duelftg hi 3k

TABLE A.6 HIERARCHIC DESCRIPTION METHODS

Language eC

CADIS TCA
(Bubenko & Kallhamer, 1971)

CORE GMA

(Mullery, 1979)

HIPO GMA

(Stay, 1976)

HOS Cec.

(Hamilton & Zeldin, 1976)

PSL TEC ek

(Teichrow & Hershey, 1977)

SADT GMA
(Ross, 1977)

SSA GMA

(Gane & Sarson, 1979)

—161=

TABLE A.7 FINITE STATE MACHINE LANGUAGES

Language F

CDL cc
(Dietrich, 1979)

FSIS T
(Taylor, 1981)

Function Flowchart G
(Hemdal, 1973) x

State Transitn Diagram G
(Kawashima et al, 1971)

NPN T
(Boebert et al, 1979)

= T

(Parnas, 1972)

SOM G
(Braek, 1979)

SPECIAL T

(Robinson, 1976)

SDL G
(CCITT, 1980) Tp

= -
(Wymore, 1967)

=162=

Criteria
bedef

2

TABLE A.8 STATIC DESCRIPTION LANGUAGES

notation.

=163—

Criteria
Language FCcuU abc dike fageh toyck Lem

Entity-Relation Model TCA --2-1-+2--2A12
(Chen, 1976)

LEGOL T CE =2 261712 <---A1 2
(Stamper, 1977)

SLICES TICE mae Qo) 1 = 2 —-s= Tl 1
(Steele & Sussman, 1979)

Invariants TCE Soe. b= et 2
(Cunningham & Kramer, 1977)

TABLE A.9 PRE- AND POST-CONDITION LANGUAGES

Criteria
Language FUCiy @ bic def g bt j sk 1m

- TME ele 2--2---+712
(Dijkstra, 1976)

VDL (Note 1) TMA eee ee eee er ee
(Bjorner & Jones, 1978)

Z TMA 1212e-=-2-+-+--T12

(Abrial, 1980)

Lambda Calculus TME Sao Regn ene eee) a Tee
(Cleaveland, 1980)

Note 1 Jones (Jones(a), 1980) uses a variant of this

TABLE A.10 EVENT~TRIGGERED LANGUAGES

Criteria
Language FCU Dred eat «gh oi

ACTORS TEC TR USE ge) ee 02 = Te
(Hewitt, 1977)

AP2 TCA 2.192° 1322 172
(Balzer & Goldman, 1979)

AUTOSATE TCs oe 2 a ma are
(Gatto, 1974)

BDL XCA = lee he
(Hammer et al, 1977) G

CASCADE TAC OR Seles eee ee

(Solvberg, 1973) G

DMTLT TM P Ln 2-126 1s
(Sernadas, 1979)

DATAFLOW Cy A = 1°2 = = = ae
(NCC, 1969)

EDDAP To Cak -l2-+-1---
(Lindgreen, 1973)

FDL TC) Ee 12 1 24 a =
(Marconi Radar, 1980)

Information Algebra TM P =Ae2 =< lL -<
(CODASYL, 1962)

JSD GMA tee eae eee pe

(Jackson, 1981)

Metaprogramming TCE l1li2--1---

(Lawson, 1977)

STREMA T Cex aL gee 2 ae te ee
(Clark, 1978)

Systematics TMA Pdi 2-12 == =

(Grindley, 1975)

Systematrix XCA = b= 2 -=-
(Jaderlund, 1980)

-164-

TABLE A.11 SPECIFICATION ANALYSERS

Criteria
Language PEC. aubechdsent Gohutejuk 2m

SPECK TCA ee a eae ad
(Quirk, 1978)

- TMP == = — TV 2--- T 12

(Laventhal, 1979)

TABLE A.12 SEQUENCE DESCRIPTION LANGUAGES

Criteria
Language FCU abe. dg e.£ qihedi.j ko lam

ccs TME =<] <== 2 = 1-712
(Milner, 1980)

cosy TCA Losh ial 2 eS
(Lauer et al, 1979)

Path Expressions TDM Pienaar 2 =e Pee
(Campbell & Habermann, 1974)

Regular Expressions TM ® Ss -ed eee = 208 he i= PID
(Harrison, 1974)

=165-

TABLE A.13 PETRI NETS

Criteria
abcdef

Language ELC.

GRAFCET GMA
(Bouteille, 1978)

LOGOS GCA
(Rose et al, 1972)

Petri Nets GCA
(Petri, 1962)

Pro-Nets GCA
(Noe, 1978)

Pre=T Nets GME
(Genrich et al, 1980)

SARA GCA
(Estrin, 1978) a

aa

TABLE A.14 LANGUAGES USING AXIOMATICS

Criteria

2

ea dic Ge. £

Language EECsU

ADJ TME

(Goguen et al, 1978)

Affirm TiC A
(Musser, 1979)

CLEAR TME
(Burstall & Goguen, 1977)

iota nu eaee 8

(Nakajima et al, 1977)

OBJ TCoK
(Goguen, 1979)

Se Ti P
(Hoare, 1969)

= T Con

tal

(Schwartz & Melliar-Smith, 1981)

=166-

a nL

TABLE A.15 SUMMARY

Criteria
Ca Sa pEo Gd evtig bh ig

Language FE

Universal
English 2

CHDL
TEGAS6 f

New Programming Language
ANNA ay

MA eeu

CE a a 2

CE dD 1.

Derivation from Programming Language

Epsilon z

Flow Charts
Sx/1 G

Hierarchic Descriptions
PSL ©

Finite State
SDL G

£

Static Description
LEGOL T

CE

Cee a ere

CA eee

CA ps 2

cE <o2n

Pre- and Post-Condition Language
Z ©

Event-Triggered
AP2 Tt

Specification Analysers
SPECK tT

Seguence Description
COSY y

Petri Nets
SARA G

MA G2 esd

CA ore eae

CA =e 2

Languages using Axiomatics
OBJ vt

The New Language
ASL T

CA La

-167-

APPENDIX B

THE SYNTAX DEFINITIONS FOR ASL

1. Backus-Naur Form

The modified form of Backus-Naur Form (BNF) used to

define formally the syntax of ASL is taken from a_ propo-

sal by Wirth, (Wirth(b), 1977); BNF was chosen as it is

the most commonly-used form of syntax definition. The

following paragraphs describe the main features of BNF,

but a more detailed explanation is given in Backhouse

(Backhouse, 1979).

(i) terminal symbols (i.e. reserved words and symbols

which are part of the language) appear surrounded by

quote marks,

e.g. "send" "connections"

(ii) non-terminals (i.e. words used to describe the

structures or patterns of the language) appear in up-

per case letters, and their names cannot contain

blanks. The underline character is used as a separa-

tor instead of a blank.

e.g. MESSAGE PARAGRAPH NUMBER

(iii) a seguence in BNF indicates a sequence in ASL,

e.g. PARAGRAPH NUMBER INTERFACE NAME

-168-

indicates that there must be a paragraph number fol-

lowed by an interface name, with one or more blanks

between them.

(iv) curly brackets, { }, indicate repetition,

e.g. { PARAGRAPH_NUMBER INTERFACE _NAME }

indicates a repetition of zero or more occurrences of

a paragraph number followed by an interface name.

(v) square brackets, [], indicate an optional item,

e.g. ["next"] MESSAGE

permits the word "next" to be present, or to be

omitted.

(vi) the OR symbol, |, indicates alternatives,

é@.g. “next" | "(" "+" INTEGER ")"

states that "next" and "(+1)" are permissible

alternatives.

(vii) parentheses, (), are used to group items to avoid

ambiguity,

27g. (2"on" 8) “within™ TIMEIDELAY Sof.)

ensures that the options are "on" and "within 1

second of", and that "on 1 second of" is not allowed.

(viii) a BNF statement is the name of the non-terminal

followed by an eguals sign ("="), followed by its

definition in terms of terminals or other non-

terminals, and ending in a full-stop.

e.g. PARAGRAPH NUMBER = "[" INTEGER

{ "2" INTEGER } "J".

which states that a PARAGRAPH_NUMBER is made up of:

(a) open square brackets, followed by

(b) an integer (a non-terminal, which would be

=169-

defined elsewhere in terms of digits), followed by

(c) a sequence of zero or more occurrences of a full-

stop in front of an INTEGER, followed by

(d) close square brackets.

2. Syntax Definitions

These are given in alphabetic sequence; the top level

in the set of productions is SPECIFICATION.

A_MESSAGE = ANY_NAME [CONTENTS] [ROUTE].

A_RESPONSE =

("send" | "start" "sending")

(ANY_NAME [CONTENTS J] ROUTE |

REPLIES }

LOOSE_END [ROUTE]) }

LOOSE_END }

"stop" "sending"

(ANY_NAME [CONTENTS J] ROUTE |

REPLIES |

LOOSE_END |

"current" "messages" ROUTE).

-170-

A_STIMULUS =

ANY_NAME [CONTENTS J] ROUTE }

("start" | "end") "of" ANY _NAME

({ CONTENTS] ROUTE }

LOOSE END [ROUTE].
it = = = ADD_OPERATOR =

ALTERNATIVES "any" "one" "of"

PARAGRAPH_NUMBER RESPONSE

{ PARAGRAPH_NUMBER RESPONSE }.

AN_INTERFACE = ANY_NAME "." ANY NAME.

AND = "g" | "and".

ANY_NAME =

NAME_IN_LOWER_CASE | "2?" [NAME_IN_LOWER_CASE].

ANY _QUALIFIED_NAME = ANY_NAME { "." ANY_NAME }.

ASSIGNMENT = "is" CONDITION [LOCAL_DEFINITION pe

BASIC_TYPE = "integer" | "decimal" | "character" |

"boolean" | "interface" | "message".

BEHAVIOUR = ("on"{| "within" TIME DELAY "of"

STIMULUS "then" RESPONSE [UNLESS].

-171-

BUILT_IN_ OPERATION = "sum" "(" EXPRESSION C ")" }

"count" "(" EXPRESSION_C ")" {

"min" "(" EXPRESSION _C "," EXPRESSION C ")" |

"max" "(" EXPRESSION _C "," EXPRESSION C ")".

GAPTTALCEEDTER (= MAT MB et MOM at EDN MEN MER St nGr ol!

SRO aes a TamueK Teter AMM URN CY

SORE PEUPSOuaRe einen) Gmpe | SUS!

YE Seer TAY EF Ze

COMMENT = "/" NAME_IN CAPITALS { COMMENT _WORD }.

COMMENT WORD = NAME _IN CAPITALS | NUMBER | ADD_OPERATOR {|

MULTIPLY OPERATOR | RELATIONAL OPERATOR.

CONDITION = EXPRESSION_A { OR EXPRESSION A }.

CONSTANT NAME_IN_LOWER_CASE | RANGE | EXPRESSION _C.

u CONTENTS

"=" EXPRESSION _C [LOCAL DEFINITION] |

"with" CONTENTS CONDITION [LOCAL DEFINITION ae

CONTENTS CONDITION = CONTENTS_EXPRESSION

{ OR CONTENTS EXPRESSION }.

CONTENTS EXPRESSION = CONTENTS EXPRESSION _B

{ AND CONTENTS_EXPRESSION B }.

-172-

CONTENTS_EXPRESSION_B = [NOT] CONTENTS NAME

RELATIONAL OPERATOR CONTENTS NAME.

CONTENTS NAME = ANY_QUALIFIED_NAME.

DEFINITION = NAME_IN CAPITALS [COMMENT]

{ "," NAME_IN CAPITALS [COMMENT] }

(":" (TYPE_NAME | SET DEFINITION) |

"is" (PARAGRAPH NUMBER DEFINITION

{ PARAGRAPH_NUMBER DEFINITION } }

DEFINITION)).

DIGIT = "O" }"1" Jmgn imgn ign tase

luge mqe tongn imgn,

END_OF_BLOCK = "end" "of" NAME_IN_LOWER_CASE.

EXCEPTION CONDITION =

"whenever" CONDITION "then" RESPONSE UNLESS.

EXPRESSION_A = EXPRESSION _B { AND EXPRESSION _B }.

EXPRESSION _B = [NOT] EXPRESSION _C

[RELATIONAL OPERATOR EXPRESSION C].

EXPRESSION_C = EXPRESSION_D { ADD_OPERATOR EXPRESSION_D }.

EXPRESSION_D = EXPRESSION_D

{ MULTIPLY_OPERATOR EXPRESSION _E he

=173>

EXPRESSION_E = ANY_NAME | LITERAL |

"(" CONDITION ")" | REF_TO PAST MESSAGES.

FIXED_RELATIONSHIP = (NAME _IN_LOWER_CASE | QUALIFIED_NAME)

"is" CONDITION.

GOAL = "take" "any" "action" "to" "achieve"

NAME_IN_CAPITALS [LOCAL DEFINITION].

INTEGER = DIGIT { DIGIT }.

INTERCONNECTIONS = "connections"

PARAGRAPH NUMBER INTERFACE LIST sto"

INTERFACE LIST [LOCAL_DEFINITION]

< PARAGRAPH NUMBER INTERFACE LIST "to"

INTERFACE LIST [LOCAL DEFINITION] he

INTERFACE = ("input" {| "output" | "bothway")

(NAME_IN_CAPITALS }

PARAGRAPH NUMBER NAME IN CAPITALS

{ PARAGRAPH NUMBER NAME_IN CAPITALS }).

INTERFACE_LIST =

"(" AN INTERFACE { "," AN INTERFACE } ")" }

QUALIFIED NAME.

INTERFACE NAME = NAME_IN LOWER_CASE.

-174-

ITERATOR = "for" "all" (EXPRESSION B | STIMULUS)

[LOCAL DEFINITION].

LIMITER = “approximately” } “<=" | "p=" ["*>" |

"opm fo weam fb omagn Fo myn tome,

LITERAL = LOOSE END | NUMBER.

LOCAL_DEFINITION = "where"

(| (DEFINITION | CONDITION) |

PARAGRAPH NUMBER (DEFINITION | CONDITION)

{ PARAGRAPH NUMBER (DEFINITION {

CONDITION) }).

LOOSE_END = "unknown" | "undefined" | "dont" "care".

MESSAGE DICTIONARY = "messages"

(| (DEFINITION | MESSAGE EQUIVALENCE) |

PARAGRAPH_NUMBER

(DEFINITION | MESSAGE EQUIVALENCE)

{ PARAGRAPH NUMBER

(DEFINITION | MESSAGE EQUIVALENCE) }).

MESSAGE EQUIVALENCE = QUALIFIED_NAME "is" QUALIFIED_NAME

("where" { PARAGRAPH_NUMBER

MESSAGE EQUIVALENCE }].

—his>

MODEL = START_OF_BLOCK

MODEL_ STATEMENT { MODEL_STATEMENT }

END_OF_BLOCK.

MODEL STATEMENT =

PARAGRAPH NUMBER (INTERFACE | DEFINITION {|

RULE | BEHAVIOUR | OPERATION DEFINITION |

MODEL_STATEMENT).

MULTIPLY OPERATOR = "##" | me” [myn,

NAME_IN_CAPITALS =

CAPITAL LETTER | CAPITAL_LETTER | DIGIT | "_" |

{ SUBSCRIPTS].

NAME_IN LOWER_CASE =

SMALL_LETTER | SMALL_LETTER | DIGIT | "_" }

{ SUBSCRIPTS].

NUMBER = DIGIT { DIGIT } ["." DIGIT { DIGIT }].

NUMBER_OF_MODELS = "created" "from"

PARAGRAPH NUMBER QUANTITY NAME_IN_LOWER_CASE

{ PARAGRAPH_NUMBER QUANTITY NAME_IN_LOWER CASE }.

=O

OPERATION _DEFINITION =

"operation" NAME_IN CAPITALS

{ "(" [NAME_IN_LOWER_CASE

{ "," NAME_IN_LOWER_CASE }]

["-->" NAME_IN_LOWER_CASE {","

NAME_IN_LOWER_CASE }] ")"] [COMMENT]

"is"

OPERATION STATEMENT { OPERATION STATEMENT }.

OPERATION NAME = NAME_IN LOWER_CASE.

OPERATION STATEMENT = DEFINITION | OTHER_BEHAVIOUR 1

RULE | PARAGRAPH NUMBER OPERATION STATEMENT.

OTHER_BEHAVIOUR = BEHAVIOUR | RESPONSE |

ITERATOR "then" RESPONSE.

PARAGRAPH NUMBER =

"C(" INTEGER { "." INTEGER } [COMMENT] "J" |

"(," INTEGER { "." INTEGER } [COMMENT J] ".)".

-177-

PREFIX =

("time™ | "start" {| "end" { "duration") “of”

{ "sending" | "receiving"])

(last il. "eivst } Ye" “INTEGERD)), {

"last" | “first” | "all" | "#" INTEGER |

"sending" | "receiving".

QUALIFIED NAME = NAME_IN LOWER CASE "." NAME_IN_LOWER_CASE

{ "." NAME_IN_LOWER_CASE }.

QUANTITY = LOOSE_END ["number"] |

LIMITER EXPRESSION _E | RANGE.

RANGE = EXPRESSION _E ["to" EXPRESSION _E].

REF_TO PAST MESSAGES = PREFIX

(ANY_NAME [CONTENTS] ROUTE | "message").

RELATIONAL OPERATOR = "<="_{ ">=" jo "=" |

Mepm fomem pomym bomen fp omeym 1 magn ft

Win™, |) “while*=! "after® |

Toe" “Same” “time” Yast.

REPLIES = "(" ANY_NAME [CONTENTS] [ROUTE J

{"," ANY NAME [CONTENTS] [ROUTE] } ")"

[ROUTE J.

-178-

RESPONSE = SELECTION | ALTERNATIVES | GOAL |

SIMPLE REPLY | LOOSE END | RESPONSE SEQUENCE.

RESPONSE SEQUENCE = "sequence"

PARAGRAPH NUMBER SIMPLE REPLY

{ PARAGRAPH NUMBER SIMPLE REPLY I

ROUTE = "via" ANY_NAME.

RULE = EXCEPTION CONDITION | FIXED_RELATIONSHIP {

SEQUENCE.

SELECTION = "select"

("(" CONDITION ")" { PARAGRAPH NUMBER

"(" VALUE ")" "when" RESPONSE } }

{ PARAGRAPH NUMBER "(" CONDITION ")"

"when" RESPONSE })

PARAGRAPH NUMBER "otherwise" RESPONSE.

SEQUENCE = "sequence" [ROUTE]

{ PARAGRAPH_NUMBER ["optional"]

["next" | "(" "+" INTEGER ")"]

A_MESSAGE }.

-179-

SET DEFINITION =

"{" CONSTANT [£ COMMENT]

{ "," CONSTANT [COMMENT] } "}" |

"(*" CONSTANT [COMMENT]

{"," CONSTANT [COMMENT] } "*)".

SIMPLE_REPLY = BUILT_IN OPERATION }

"(" R RESPONSE { "," A_RESPONSE } ")"

NAME_IN_LOWER_CASE [ASSIGNMENT J |

A_RESPONSE | "do" "nothing".

SMALL_LETTER = "a" fepm thon tugn twen imen tage 1

Hpm page pepe pipe page tame eye |

Hom PMpr tug tpn ingen men tage |

fay tmyn inyn tage

SPECIFICATION =

(SYSTEM_BLOCK MODEL MODEL |

MODEL SYSTEM_BLOCK MODEL |

MODEL MODEL SYSTEM_BLOCK) { MODEL }.

STANDARDS = "refers" "to"

(QUALIFIED_NAME |

PARAGRAPH NUMBER QUALIFIED_NAME

{ PARAGRAPH_NUMBER QUALIFIED_NAME }).

START_OF BLOCK = NAME_IN CAPITALS [COMMENT] "is".

-180-

STIMULUS = A_STIMULUS |

"(" A MESSAGE { "," A MESSAGE } ")" [ROUTE].

SUBSCRIPTS = "(" CONDITION { "," CONDITION } ")".

SYSTEM_BLOCK = START_OF_ BLOCK

SYSTEM_STATEMENT { SYSTEM_STATEMENT }

END_OF_BLOCK.

SYSTEM _STATEMENT = PARAGRAPH NUMBER

(NUMBER_OF MODELS | INTERCONNECTIONS |

MESSAGE DICTIONARY | OPERATION DEFINITION {

DEFINITION | STANDARDS | SYSTEM_STATEMENT).

TIME DELAY = LOOSE END | RANGE [UNITS].

TYPE NAME = (“subset" ["(" RANGE ")"] |

"string" | "set") "of"

ANY_NAME [LOCAL DEFINITION] |

LOOSE_END | BASIC_TYPE |

ANY_NAME [LOCAL DEFINITION].

UNITS = NAME_IN_LOWER_CASE.

-181-

UNLESS = "unless"

(_"(" CONDITION ")" "when" RESPONSE }

PARAGRAPH NUMBER "(" CONDITION ")"

"when" RESPONSE

{ PARAGRAPH NUMBER "(" CONDITION ")"

"when" RESPONSE }).

VALUE = ANY_QUALIFIED NAME |

LOOSE_END | NUMBER.

3. The Type-matching Rule Format

Each BNF production in the definition of ASL is fur-

ther qualified by a type-matching rule; this indicates

how the data types of the terminal and non-terminal sym-

bols in the production must be related to each other. As

there is no commonly-agreed standard presentation for

type-matching rules, a version of that used by Davie and

Morrison (Davie & Morrison, 1981) has been adopted. This

has a simple form, and introduces only a small amount of

extra notation as follows.

(a) Data type names are shown enclosed in angle braces

("<>"), with names in lower case letters indicating

defined types and names in capital letters indicating

type variables.

(b) Each type-matching rule produces a result (the "type"

of the statement or expression), which is shown after

the symbol "=>",

(c) The basic types in ASL are <boolean>, <character>,

=182>=

<constant>, - <decimal>, <integer>, <interface>,

<message>, <model>.

(d) In addition to the basic types it is necessary to

have <void> for expressions which do not produce a

result of any particular type, and <any> for items

such as "undefined" (see Chapter 4.4.10) which can be

used in place of various types.

(e) The type-matching rules take the same pattern as the

BNF productions, but with type names in the positions

previously occupied by terminals or non-terminals

which represent names, e.g.:

BNF production:-

CONDITION = EXPRESSION_A {OR EXPRESSION A}.

Type-matching rule:-

<boolean> {OR <boolean>} => <boolean>.

which states that , if two EXPRESSION A's are linked

by an OR, they must both be of type <boolean> and

will give a result of type <boolean>.

There are an infinite number of legal data types in

ASL, constructed from the basic types by recursive appli-

cation of the following rules.

(i) For any data type <T>, <*T> is the data type of a

vector with elements of type <T>.

(ii) A user-defined structure (see Chapter 4.4.6) is re-

presented as the data types of its elements, in the

form of a list of lists which mirrors the tree-

structure of the definition.

(iii) An operation with arguments of types <T1>, <T2>,

«.. <Tn> and results of types <TOl>, ... <TOm> has

=1o3=

the type (<TOl>, ... <TOm>) «

(iv) Enumeration types (i.e. lists of constants in

braces) have the type <set of constant>.

(v) A "subset" of a type <T> is treated as still being

of type <T>, whilst a "set" of <T> has type <set of

T>.

(vi) A "string" of elements of type <T> has type <string

of T>:.

4. The Type-matching Rules

In order to reduce the number of rules to be

presented, the following have not been included as their

elements all have type <void> and their result is also

<void>:

(a) productions relating to the construction of names

(e.g. CAPITAL LETTER, SMALL LETTER, DIGIT),

(b) terminals which are connectives in expressions (e.g.

the arithmetic and relational operators),

(c) comments,

(d) productions which merely offer a list of alternatives

which are themselves complete productions (e.g.

MODEL STATEMENT).

Also, some of the productions have been grouped together

as their type rules are identical. Where the options ina

BNF rule (i.e. the portions in square brackets ("[]") or

braces ("{}")) may cause the result to be different, mul-

tiple type-matching rules have been included to cover the

various cases. The rules are listed below in alphabetic

-184-

sequence.

A_MESSAGE, A_STIMULUS

(i) <message> => <message>.

(ii) <message> "=" <T> => <message>.

(iii) <message> "with" <boolean> => <message>.

(iv) <message> "via" <interface> => <void>.

A_RESPONSE

("send" {| "start" "sending" }

"stop" "sending") <T> => <T>.

ALTERNATIVES

"any" "one" "of" { <void> <void> }

=> <void>.

AN_INTERFACE

<model> "." <interface> => <void>.

ANY_NAME

(Ly <T> =>° <TD.

(ii) "2?" <void> => <any>.

CIT aye 2" => <any> «

ANY_QUALIFIED_NAME

(2) CUS" <5 => <)>,

CAD) VCE SOP rece Ys aR THO US, CIN

=185=

BEHAVIOUR

(i) "on" <void> "then" <void> => <void>.

(ii) "within" <integer> "of" <void> "then"

<void> => <void>.

CONDITION, CONTENTS CONDITION

(i) <boolean> £ OR <boolean> } => <boolean>.

(Ed) <TSKe> StS

CONTENTS EXPRESSION _A, EXPRESSION_A

(i) <boolean> { AND <boolean> } => <boolean>.

(RL =>. ,

CONTENTS EXPRESSION B

(i) NOT <T> RELATIONAL OPERATOR <T> => <boolean>.

(ii) <T> RELATIONAL OPERATOR <T> => <boolean>.

(iii) <T> => <TD.

DEFINITION

(Ay, <VoLd> ":". <T>"s>S<votd>,

(ii), <void> ":" “{" <constant> ",”

ata” Sconstant> “}"s => void>.

(iii) <vyoid> "2" "Subset" <T> "to" <P> "of" <T>

=> <void>.

(iv) <void> "2" "set" "of" <T> => <yoid>.

(¥) <void> ":" "string" of" <T> =<void>.

(vi) <void> "(" <integer> "to" <integer> ")"

We" KT> @> <void>.

(vid) <void> "is" <vold> <TL>

~186—

<void> <T2>

<void> <Tn> => <void>.

END_OF_BLOCK

"end" "of" <model> => <void>.

EXCEPTION CONDITION

"whenever" <boolean> "then" <void> => <void>.

EXPRESSION _B

(i) <T> RELATIONAL OPERATOR <T> => <boolean>.

(ii) NOT <boolean> => <boolean>.

(iid), <Ts => <TD>.

EXPRESSION_C

(i) <integer> { ADD_OPERATOR <integer> }

=> <integer>.

(ii) <decimal> { ADD_OPERATOR <decimal> }

=> <decimal>.

EXPRESSION_D

(i) <integer> { MULTIPLY_OPERATOR <integer> }

=> <integer>.

(ii) <decimal> { MULTIPLY_OPERATOR <decimal> }

=> <decimal>.

-187-

FIXED_RELATIONSHIP

<T> *is..<T> => <vyoid>.

GOAL

"take" "any" "action" "to" "achieve" <void>

=> <void>.

INTERCONNECTIONS

"connections" <void> <void> "to" <void>

<void> <void> "to" <void>

=> <void>.

INTERFACE

("input" | "output" | "bothway") <void> => <void>.

INTERFACE LIST

Da <voldD WOR 2. <vO1a> ah => x<vOLa>:.

ITERATOR

"for" “all" <boolean> => <boolean>.

LOCAL DEFINITION

(i) "where" <boolean> => <void>.

(ii) "where" <void> => <void>.

LOOSE_END

("undefined" | "unknown" | "dont care") => <any>.

-188-

MESSAGE DICTIONARY

"messages" <void> => <void>.

MESSAGE EQUIVALENCE

(i) <message> "is" <message> => <void>.

(ii) <message> "is" <message>

"where" <T> "is" <T> => <void>.

NUMBER_OF_MODELS

"created" "from"

<void> <integer> <model>

<void> <integer> <model>

<void> <integer> <model> => <void>.

OPERATION DEFINITION

(i) “operation” <void> "is" <void> => <void>.

(id) Soperation™ <void>: "= (" <TH > “7 " 2.6) <TENS.

nym Bio DK TOL I eis 8) S LON >

"is" <void> => <void>.

OTHER_BEHAVIOUR

<boolean> "then" <void> => <void>.

PARAGRAPH NUMBER

WO" <integerse. "ce. <integer> "}*

=> <void>.

= 189

QUALIFIED_NAME

(2) STIS ST 2>ee> <T25%

CLD) OCT ein (KIND => STN

QUANTITY

LIMITER <integer> => <integer>.

RANGE

<T>-"toO* <T> s> <T>.

REF_TO_PAST_MESSAGES

(i) PREFIX <message> "via" <interface>

=> <message>.

(ii) PREFIX <message> CONTENTS "via" <interface>

=> <message>.

REPLIES, STIMULUS

Ci) CR <votd> "7" iew <void>: ")™ =>o<void>.

(ii) "(" <message> "," ... <message> ")"

"via" <interface> => <void>.

RESPONSE SEQUENCE, SEQUENCE

"seguence" <void> <void>

<void> <void> => <void>.

7190=

SELECTION

(2) selecet (CF <toaty™

<vyold> "(" <f> *)" “when” <void>

<void> "otherwise" <void>.

(ii) "select"

<void> "(" <boolean> ")" "when" <void>

<void> "otherwise" <void>.

SIMPLE_REPLY

(i) "do" "nothing" => <void>.

(ii) Operation calls are treated as explained in

Section B.3, item 4.

STANDARDS

"refers" "to" <void> => <void>.

START_OF_BLOCK

<void> "is" => <void>.

UNLESS

(i) "unless" "(" <boolean> ")" "when" <void>

=> <void>.

(ii) "unless" <void> "(" <boolean> .")"

"when" <void>

<void> "(" <boolean> ")"

"when" <void> => <void>.

=19i=

APPENDIX C

THE SEMANTIC DEFINITION OF ASL

1. Introduction

The reasons for reguiring a formal semantic defini-

tion of ASL were covered in Chapter 4.5.6; this appendix

merely provides the details of the model which has been

used. In order to simplify the task of producing the

semantic definition, no attempt has been made to complete

this down to the level of basic mathematical logic. The

theory developed by the authors of Predicate/Transition

nets (Genrich et al, 1980) and Time Petri Nets (Merlin,

1974) has been assumed as primitives and the necessary

model constructed on top of these. Rather than presenting

the theory of this net model, it was felt to be appropri-

ate to describe the process of translating an ASL specif-

ication into an equivalent net. This is consistent with

taking Predicate/Transition net theory to be already

well-defined, but also provides the basis for the design

of a computer program to perform this translation. A

brief resume of the firing rules for Predicate/Transition

nets and Time Petri nets is given in Section 5 of this

appendix.

-192-

The aim of the model is to capture the intended

properties of the language as described in Chapters 3 and

4,

(a)

(b)

(c)

(da)

(e)

(£)

(g)

(h)

(i)

The following are a few examples of these properties.

Each model is a closed entity; information may only

be transfered between models by means of messages.

Message transmission is treated as instantaneous and

error-free.

Models may introduce a time delay between the receipt

of a message and the consequent response.

All the information ever sent to a model is always

available to that model for re-examination.

The interfaces of a model act as simple sequential

channels (except for "bothway" interfaces, which act

as a pair of channels in opposite directions), and

can therefore only receive or send one message at a

time.

Actions which do not use the same resource (e.g. the

same interface) can take place concurrently.

Absolute time information originates from the

observer; models only measure small intervals of time

from the receipt of messages.

Monitors (i.e. statements of the form "whenever...")

have priority over simple behaviour statements, so

that it is possible to use a monitor to override the

normal response in exceptional circumstances.

"undefined" and "unknown", which are used when it is

not (yet) possible to completely specify a system,

act like additional elements in all defined data

types. An operation given an "undefined" argument

=193=

will produce an "undefined" result.

These are only a small number of the properties which are

represented in the semantic model, and are listed only to

give an indication of the type of constraints which the

model contains.

The expressive power of ASL, for example in the use

of operations and pattern-matching, make it difficult to

provide a direct mapping from the syntax definition into

the modified Predicate/Transition nets. This has there-

fore been split into the three stages of transformation,

translation and connection; these are described in the

following three sections. From the complexity of each of

the three stages it will be seen that this process is not

suitable for manual operation. The development of a com-

puter program to perform this task is part of the further

work proposed in Chapter 8.

2. Transformation

The transformations described in this section operate

on ASL specifications at the syntactic level, reducing

the variety of statement types down to one basic form:

"if" CONDITION "then" "(" TIME DELAY ")" RESPONSE.

where the RESPONSEs are constrained to be of a very sim-

ple form. In order to provide identification of event-

triggered behaviour for the subsequent translation stage,

the CONDITIONS for messages take the form

"event (MESSAGE)". All the stimulus-response behaviour is

shown with a TIME DELAY; any behaviour which was in the

-194-

"on...then..." form will have a time delay of zero.

Figures C.1 to C.10 each describe one of these trans-

formations by showing the syntax form it deals with and

the result which it produces. These appear as simple ex-

amples only, not as the full BNF conversion rules; more

complex forms (such as nested "select" statements)

reguire recursive application of the transformations in

order to obtain complete simplification. In all cases

where repeated application of the rules is required this

is done by starting with the most deeply nested part of

the expression. Local definitions (of the form

"where...") and pattern-matching variables (i.e. those

prefixed by "?") are treated as a form of abstraction, as

in bracket abstraction (Turner, 1979) or lambda abstrac-

tion (Stoy, 1977). They can therefore normally be removed

by simple replacement of the appropriate names by the ex-

pressions to which they are equivalent; the comment above

about the ordering of repeated applications of the trans-

formations also applies in this case. One exception to

this is where a defined operation is used recursively; if

the recursion is local to an operation which defines some

Mathematical function (i.e. it does not send or receive

messages) then the recursive definition appears unchanged

as a recursively-defined predicate at the appropriate

location in the net model. Otherwise the recursion is

modelled as an iterative loop in the net, taking the same

form as the treatment of iterators in Figure C.15.

~195-

FIGURE C.1 REPLACEMENT OF OPERATIONS

(a)

(b)

(c)

An operation with no arguments:

«-..then signal

and its definition:

operation SIGNAL is
a_response

becomes:

+-.-then a_response

With arguments but no result:

....then dispense (x)

and:

operation DISPENSE(d) is
(1] D : contents
[2] send drink with

contents = recipe(d) via dispenser

becomes:

»...then send drink with contents=recipe(d)
via dispenser

AB value-returning operation, such as:

«.-.Sguare root(a, b)....

and:

operation SQUARE _ROOT(x, t --> r) is

(1) x, T, R :decimal
(2] r is ?y where abs(r*r-x) <= t

becomes:

.+..?Zl where (abs(zl*zl-a)<= b)....

where "zl" is a new unigue name created for
the purpose.

=190=

FIGURE C.2 REPLACEMENT OF FIXED RELATIONSHIPS

Given a fixed relationship definition:

a_name_in_lower_case is some_expression

and some mention of the same name:

+++. a_name_in_lower_case....

then the mention of the name transforms to:

«+s» (Some_expression)

Note
The name being replaced can be either a simple

name or a qualified name.

-197-

FIGURE C.3 SEPARATION OF LISTS INTO INDIVIDUALS

(a) Lists of responses.

on stimulus_x then (response 1,)

becomes:

if event (stimulus_x) then response 1

if event (stimulus_x) then response _2

etc..

(b) Lists of stimuli.

on (a_message 1,) then response x

becomes:

if event (a_message_1) then response_x

if event (a_message 2) then response _x

etc..

=198—

FIGURE C.4 CONVERSION OF "SELECT" EXPRESSIONS

(a) select (a_condition)
paragraph_ 1 (value_1) when response_1
Paragraph _ 25(value_| 2s) a besponsel 2

paragraph_n-1 « value_n-1) when response_n-1
paragraph_n otherwise response_n

becomes:

if (a_condition value_1) then response _1
if (a_condition value_ 2) then response 2

if (a_condition paler) then
response _n-1l

n
u

if (a_condition <> value_l)
and (a_condition <> value 2)

and (a_condition <> value_n-l)
then response_n

(b) select
- paragraph_1 (condition_1) when response_1
Paragraph_ aii conga one 2) when response _2

paragraph_ n=1 (eect eon n-1) when
response _n-1l

paragraph_n otherwise response _n

becomes:

if (condition_1) then response_1
if (condition_2) then response 2

if (condition_n-1) then response_n-1
if (not condition 1)

and (not condition 2)

and (not condition_n-l) then response_n

aD

FIGURE C.5 CONVERSION OF "UNLESS" EXPRESSIONS

A statement with an "unless" part:

on stimulus then normal_response

unless

paragraph_1 (condition_1) when response_1l

paragraph 2 (condition _2) when response _2

paragraph_n (condition_n) when response_n

becomes:

if event (stimulus) and condition_1 then response_1]

if event (stimulus) and condition_2 then response_2

if event (stimulus) and condition_n then response_n

if event (stimulus) and (not condition_1l

and (not condition _2)

and (not condition_n) then normal_response

-200-

FIGURE C.6 EXPANSION OF LOCAL DEFINITIONS

(a)

(b)

(e)

(d)

(e)

The expression:

ris” py:
where y*y = x

becomes: r= = x

so removing all references to "y".

"In-line" definitions, such as:

seis Yoseee Where Y + a type

are treated as if defined normally, so the "where"
part is merely left out of the transformation.

More complex uses of patterns, e.g.:

z is ?x where
(x in b_signals) and (encode(y) = x)

are simplified as:

((z is encode(y)) and (z in b_ signals))

Uses of names given simple values by local
definitions, e.g.:

cceeks eee, Where x = f(y)

become: Sicbete:t UYiigtetersce

Names given values by inverse operations, e.g.:

se ceKaes s where y=x*x

become: (Ge <sXen~s) “and (x*x=y))

-201-

FIGURE C.7 REPLACEMENT OF LOCAL VARIABLES

To reduce all references within a model to one con-

sistent form, all the uses of local variables inside a

model are replaced by the appropriate references to an

imaginary interface.

Thus:

+... then local_name is value_expression

becomes:

+... then send local _name = value_expression
via local_name_interface

and:

«++. local_name

becomes:

+. (last message sent via
local_name_interface)

=202 >

FIGURE C.8 SEQUENCES OF ACTIONS

This transformation only applies to the use of

"seguence" in the RESPONSE part of an "on...then...",

"within...then...", or "whenever...then.." statement.

For the treatment of global sequence constraints see

Figure C.9.

For this type of seguence:

-...then sequence

paragraph_1 action_1l

paragraph _2 action 2

paragraph_n action_n

becomes:

osssthen (action 1 ; action 2 ;

«ee. 7 action_n

=203—

FIGURE C.9 SEQUENCE CONSTRAINTS

These general constraints upon behaviour have to be

replaced by a set of monitors which have the same effect.

Thus:

paragraph_1 sequence

paragraph 2 action_1

paragraph 3 optional action_2

paragraph _4 action_3

paragraph_n action_n

will be transformed into a set of statements of the fol-

lowing form:

if event (action_3) and not

((last message via action_2 interface = action_2)

or (last message via action_1l interface =

action_1l)) then undefined

if event (action_2) and not

(last message via action_1_ interface = action_1l)

then undefined

etc..

-204-

FIGURE C.10 CONVERSION OF MONITORS

Monitor expressions, which have the form

"whenever....", are translated directly into the required

form with the exception those which represent timeouts.

(a) Simple monitors, such as:

whenever a_condition then a_response

become:

if a_condition then a_response

(b) Timeouts, such as:

whenever 15 seconds after lift_handset

via subs_line(x) then....

are represented as:

if timer (15 seconds after lift_handset

via subs_line(x)) then....

=205-

3. Translation

The translation of the behaviour statements into

fragments of Predicate/Transition nets uses five patterns

for net elements, as shown in Figures C.1l to C.15. These

patterns encapsulate the following concepts.

(a) (Figure C.11) There is one place in the net for each

interface of a model, except for bothway interfaces

which are treated as two interfaces. This place holds

a single token, to reflect the limitation that each

interface can only receive a single message at any

instant of time.

(b) (Figure C.12) As there may be a number of monitors

associated with one message, it is necessary to await

the decisions of all these monitors before proceeding

with any direct response to the message.

(c) (Figure C.13) The receipt of a message first causes

any monitor associated with that message to be

checked. After the monitor has decided whether to

take action, the message then may cause some

response.

(d) (Figure C.14) Timeouts in a monitor start the opera-

tion of a local clock, which may be terminated by the

arrival of some message or by the end of the appro-

priate period of time.

(e) (Figure C.15) A "for all" statement causes an itera-

tive loop to be entered, producing the set of

responses in some arbitrary sequence.

The conventions used in Figures C.11 to C.15 are taken

-206-

FIGURE C.11 TRANSLATION OF RECEIPT OF MESSAGES

Note

Message
awaiting
receipt/

is) (For.
infinity;
time and
statement

transmission

<message, time>

Accepted/sent
Message

P= null
t* = |See
t** =JNote 1 <message,time>

<message,time>

=
Message
history

The interface resource, shared
by all messages via that
interface.

all incoming messages, t* = 0 and t** =

for outgoing messages, t* = minimum delay
t** = maximum delay time from the ASL

concerned.

=207—

FIGURE C.12 TREATMENT OF MULTIPLE ARCS

Connections from inputs & monitors

Message
action

=208—

TRANSLATION OF OTHER BEHAVIOUR FIGURE C.13

(
a
n
o
t
a
e
q
a
q

p
e
r
e
b
b
t
1
3
-
j
u
a
a
s

IoOJ
p
e
a
z
t
n
b
a
a
z

3
0
N
)
-
-

<
e
a
t
z
o
e
u
t
T
‘
s
y
n
d
u
t

[
T
e
>

u
o
t
z
T
p
u
o
d

u
d
u

OF
s
y
n
d
u
f

s
e
s
u
o
d
s
e
i

a
t
d
u
t
s

A
u
e

3Jo
‘
a
d
u
e
n
b
e
s

e

ut
s
w
e
q
t

a
e
y
z
o

A
u
y
 <

a
a
t
q
z
o
e
/
s
z
n
d
u
t

[
T
e
>

suaeyxo3
p
e
u
i
n
j
e
y

uotqo0e

»43G3 4

=209=

TRANSLATION OF TIMEOUTS FIGURE C.14
jyun

wry
[

=
¥¥3

qqtun
outa

Tt
=

x9
T
t
a
u

a
d

 s
u
a
y
o

p
e
u
i
n
j
e
y

uort}0e
q
n
o
a
u
t
L

Trnu
u
o
T
z
T
p
u
o
d

q
n
o
o
u
t
y

ut
p
e
u
o
t
j
u
e
u

s
u
o
j
t

0
=

+37
(
u
o
T
A
T
p
u
O
d

z
N
o
s
U
I
T
Z
)

O
U

=
d

uot
ztpuoo
3
7
e
4
s

=210=

FIGURE C.15 TREATMENT OF ITERATORS

Iterator
active

Items used
in iterated
action

=2 1)

Action

from the Predicate/Transition net and Time Petri

net models unchanged. Each transition is

labelled with a predicate which controls

its firing; this is shown as "P =....". Also against

each transition are its minimum and maximum delays before

firing, shown as "t*" and "t**" respectively. The tuples

(lists of values) associated with the tokens are shown as

lists of names inside angle brackets ("<>") adjacent to

the arcs along which they pass.

Each statement is translated into one or more of

these patterns, with identifying labels being associated

with the places which will connect it to the remainder of

the net (see Section C.4, below). The transitions in the

net are all treated as timed and given a minimum and max-

imum firing time; these are initially set to zero and in-

finity respectively, giving the equivalent to an untimed

Predicate/Transition net. For any behaviour statement

with a positive time delay, this is placed on the transi-

tion which represents the associated response so that the

action of any monitors and the storage of the message in

the history buffer is treated as instantaneous in all

cases.

The arcs in the net fragments are labelled with the

format of the tuples which will flow along those arcs

(i.e. the structure of the appropriate messages). In or-

der to simplify the labelling process, the total content

of a message is always represented in the appropriate

tuples even if some of the elements of the message are

never used. Similarly, once the time-stamp has been at-

—ee—

tached by the "observer" this is treated as an extra ele-

ment in the message and carried everywhere. The condi-

tions in the statements representing the ASL specifica-

tion become the predicates attached to the transitions of

the net model; at this stage any of these conditions

which refer to the order of messages in time (e.g. by us-

ing "after" or "last") are converted into the eguivalent

arithmetic conditions upon the time-stamps in the

messages. This also involves the translation of conti-

nuous messages into instantaneous ones, by considering

only their start and end points; any references elsewhere

to these signals are then converted into equivalent ex-

pressions relating to the interval between the start and

end times of the signal. Figure C.16 indicates how these

temporal references are translated.

4. Connection

The collection of net fragments produced by the

translation process are connected together to form a sin-

gle net representing the whole system. This is achieved

by collapsing all the places which carry identical labels

(with two exceptions which are covered below) into a sin-

gle place for each label. This procedure will only be

successful if applied to a specification which has no

context-free or context-sensitive errors in it. The ex-

ceptions mentioned above relate to "unknown" and

"undefined" elements in the specification. If there are

multiple uses of these within the specification, it is

=213=

FIGURE C.16 TREATMENT OF TEMPORAL OPERATORS

operator

x at same time as

y after x

y after start of x

duration of x

time of x

sending x via y

receiving x via y

operator

last x (x1

first x (x1

tn x (xl
and

and

instantaneous continuous

x.time = y.

y.time > x.

n/a

n/a

x.time

n/a

n/a

time x.time = y.time

time n/a

y > x.start.time

x.end.time -
x.start.time

x.time

last message sent
via y = start of x

last message received
via y = start of x

instantaneous or continuous

in x) and ((?
and (xl.

in x) and ((?
and (xl.

in x) and (yl
(xl.time < yl.

not ((z in x)

— 2a

in x)
time > ?.time))

in x)

time < ?.time))

ing xj: and ..\..\(yn=1: in x)
time) and

(xl.time < yn-1l.time)
and (z.time >= xl.time))

not valid to collapse them down into a single place, as

they represent different unknowns.

Interconnections between the different models in the

specification act as a relabelling operation, so that

each interconnection appears as a single place in the

connected net; this place represents any message in tran-

sit between the models involved in the connection. Once

the net has been fully connected, it is then possible to

check that the information flowing out of each place in

the net is available to that place (i.e. is contained in

the tuples flowing along the arcs into that place).

5. The Firing Rules

This section contains a brief statement of the rules

for the firing of transitions in the timed

Predicate/Transition net model used here. Its purpose is

merely to show how the timing element has been added, and

not to provide a full mathematical treatment of this net

model.

A Predicate/Transition net has the following consti-

tuents (Genrich et al, 1980).

(i) A directed net, (S,T;F), where S is the set of predi-

cates (places), T is the set of transitions and F is

the set of arcs (i.e. F is some subset of the union

OL Sxt and 'Fxs)..

(ii) A set, U, of operators and predicates.

(iii) A labelling of arcs, assigning to all elements of F

a formal sum of n-tuples of variables where n is the

25 —

"arity' of the predicate associated with the arc.

(iv) An inscription on transitions, assigning to some

elements of T a logical formula built from equality

and the operators and predicates given in U. Any

variable occuring free in a transition must be pre-

sent in one or more of the adjacent arcs.

(v) A marking of places with n-tuples (tokens).

(vi) A natural number, K, which is the upper bound for

the number of copies of the same item which may occur

at a single place.

and the transition rule states that a transition may fire

when:

- all input places to the transition carry enough

tokens to satisfy the necessary predicates,

- the resulting number of tokens on the output places

of the transition will not exceed K after the

firing. -

In order to extend this untimed net to handle the

required time delays, the following additional consti-

tuents have to be added (Merlin, 1974).

(vii) Associated with each transition, i, is a-tuple,

(t*i, t**i]. The value of t*i is the time which must

elapse between the conditions of the untimed firing

rule (above) becoming true and the firing of the

transition, whilst t**i is the maximum time for which

firing can be delayed. So, for all i:

- t*i and t**i are real numbers,

= thi, £**i >°0,

= tei << thi.

=215-

(viii) Added to each tuple (token) is a time value, t,

and for any transition, i, with tokens on its input

places with time values tl, t2, tn, then the

time value, t', in the tokens which it puts on its

output places is given by:

ti = te +t dt

where t*i < dt ¢ t*i

anaatx = max(tl, t2,) ..25, ©niie

The transition rule is also changed by the addition of a

third condition, so that a transition will fire if:

- all input places to the transition carry enough

tokens to satisfy the necessary predicates,

- those tokens have been present for a period of time

egual to or greater than t*i,

- the firing of the transition will not cause the

number of tokens on any of the output places to

exceed K.

Under this model time does not operate as a continuous

variable, but increases irregularly; this is because time

is treated as an attribute of the tokens, and is only up-

dated when an event takes place.

6. Semantic Checking of Specifications

Although the net model has been taken to be complete

(see Section 1 of this Appendix), this does not neces-

sarily mean that there are practicable methods of ensur-

ing the "correctness" of a specification. Three main pro-

blems exist:

-217-

(a) even for specifications written in a subset of mathe-

matical logic, the task of proving particular proper-

ties of the system may demand human guidance to avoid

unbounded searches,

(b) such proofs of correctness are only undertaken for

those properties which the specifiers consider

important; there is no method for deciding which

properties should be shown to be correct,

(c) ASL was purposely designed to be provide expressive

power. It permits the specification of functions

which cannot be realised (by injudicious use of the

"where..." construct), and expects the specified sys-

tem to contain concurrent activities. Handling these

is beyond the capabilities of present program-proving

techniques.

The complexity of the net models for most real system

specifications may make it impracticable or impossible to

anatvee the nets for reachability, etc.. Simulation (see

Chapter 5.4.4) would then be the only recourse. The pro-

blems listed above make it unrealistic to attempt to

provide further assistance for formal semantic verifica-

tion at this time.

+218—

APPENDIX D

THE STATIC CHECKING FACILITIES

1. Introduction

The static checking facilities developed to support

the trials consist of a syntax analyser, a consistency

checker and a cross-reference list generator, as outlined

in Chapter 5.2.2. The particular computer programs used

are not worth detailed examination, as they were only in-

tended to be sufficient to demonstrate the value of

computer-based support. They provide the minimum level of

assistance for the practical trials, which are reported

in Chapter 6. The following sections therefore discuss

only the general structure of the programs, and the

format of their inputs and outputs.

2. The Syntax Analyser

2.1. Recursive Descent Analysis

Given the requirement to produce a syntax analyser

for a language (ASL) which was still being designed, the

use of a compiler-generator (e.g. Johnson, 1979) or a

2k

syntax-driven analyser (e.g.. Simpson, 1969) was seen as a

way to avoid significant re-programming whenever part of

the language syntax was changed. No suitable parser-

generator was readily available to the project, so it was

decided to write a syntax-driven analyser specifically

for ASL. Even though this involved some programming

effort, it freed the language from the paradigms of ex-

isting high-level languages and, given that the syntax

could be restricted to the simplest possible form, in-

volved only a few weeks of computer programming. The

analyser was therefore written to perform recursive-

descent analysis (Davie & Morrison, 1981); this reduces

the complexity of the analyser program at the expense of

run-time overheads caused by the extensive use of recur-

sive subroutines.

The. basic principle of this method is to treat each

production in the syntax as a call to a subroutine which

either reads the next token from the input or generates a

further call to the subroutine, depending upon the next

item in that production. The syntax productions can be

held as simple tables, with each row representing a pro-

duction and the entry in each column being the index of

another row (if that entry represents the name of another

production) or a call to a primitive operation (such as

reading in the next word from the specification being

analysed). This permits rapid and easy changes to the

syntax of the language by updating the table, whilst not

seriously affecting the efficiency of the program.

=220—

2.2. The Syntax Rule Format

The only significant disadvantage of the recursive-

descent method is that it does not permit repetition and

optional items to be represented directly as in BNF (See

Appendix B.1). It is instead necessary to use recursion

in place of repetition and to introduce extra rules to

represent options. For example the BNF production:

PARAGRAPH = "[" INTEGER | "." INTEGER | "]".

has to become two rules:

PARAGRAPH = "(" INTEGER PARAGRAPH TAIL.

PARAGRAPH TAIL = "." INTEGER PARAGRAPH TAIL Peat ts

In the case of an optional item, such as:

A_MESSAGE = ANY_NAME [CONTENTS] [ROUTE].

this has to be translated as:

A_MESSAGE = ANY_NAME A_ MESSAGE TAIL.

A_MESSAGE TAIL = CONTENTS A_MESSAGE_ END !

A_MESSAGE_END.

A_MESSAGE_END = ROUTE { EMPTY.

resulting in a much larger number of rules than in the

BNF eguivalent, and these rules are also much more diffi-

cult to understand. For this reason BNF was used in the

definition of ASL in Appendix B.

The final form of the rules input to the syntax

analyser is shown in Figure D.1. There are five sections

to these, as follows.

(a) One or more lines of text, which are read by the pro-

gram and then printed as a heading at the top of the

output listing (see Section D.2.5).

=221-

FIGURE D.1 FORMAT OF THE SYNTAX RULES

ASL Version 6. (a)

SPECIFICATION (b)

achieve, action, after,

: : : (c)

where, while, within.

A_MESSAGE = ANY_NAME A_MESSAGE_TAIL. ()

A_MESSAGE_TAIL = CONTENTS A_MESSAGE_END, ROUTE,

EMPTY.

A_MESSAGE_END = ROUTE, EMPTY.

VALUE = ANY QUALIFIED NAME, LOOSE_END, NUMBER.

A_MESSAGE = SYSTEM STATEMENT. ; (e)

A_MESSAGE_TAIL = SYSTEM _STATEMENT

VALUE = SYSTEM STATEMENT

=222-

(b) The name of the syntax rule which represents the top

level of the syntax definitions.

(c) A list of all the words which are part of the

language, and so cannot be re-defined within a

specification.

(d) The syntax rules.

(e) Alternative rules, to be used in attempts to recover

from syntax errors.

Of these, only the additional rules for error recovery

(item (e) above) are explained further, in Section D.2.3

below.

2.3. Error Recovery

Only the simplest form of error recovery has been

provided in the analyser; this is of the type which is

sometimes called "panic mode" (Aho & Ullman, 1977). Once

an error has been detected in the input, the analyser

program skips over the specification text until it finds

the start of the next paragraph (i.e. a "{["). Syntax

analysis can then recommence at the start of a new

statement, but this requires that the analyser be told

where in the syntax to restart. Hence, the syntax rules

contain an extra part, which gives for each production

the name of a suitable point at which to attempt to

restart. These points must be productions which have a

Paragraph number as their first item, to match the point

at which the analyser will restart.

Figure D.2 contains an example of the listing pro-

=223-

duced by the syntax analyser, showing an error recovery

action. Two sets of messages are inserted into the

listing.

(a) The first group indicate the position of the error,

by printing an asterisk ("*") beneath the first

character which has not been accepted. On the line

below this is printed the name of the syntax rule and

the item within that rule at which the error was

detected.

(b) The second group indicates, again by an asterisk, the

point at which the syntax analysis was restarted.

Thus, all the characters from the first asterisk up to

(but not including) the second asterisk have been ignored

by the analyser. This can lead to the reporting of

spurious errors in the remainder of the specification if

the portion which was ignored did contain some important

phrase (such as the end of one model and the start of

another). For most cases it does result in an acceptable

recovery from the error, and permits the analysis of the

remainder of the specification. More complex error recov-

ery techniques (e.g. James & Partridge, 1973) were

considered; however, these involved considerable extra

Programming effort to produce only a limited improvement

in the level of service to the user.

2.4. The Input to the Analyser

Specifications are prepared using the standard IBM

text editor (IBM, 1978) provided as part of the IBM Time

+224—

THE LISTING PRODUCED BY THE ANALYSER FIGURE D.2

sueabsz~notay
[z*nee]

0SZ000
azts

u
t
o
o
z
g
z
i
s

[i"n-e]
0nz000

st
boargy

[nee]
o£z7000

sueth:ynoram
(z°e*e])

0zz000
azqTs

u
j
o
o
:
a
z
i
s

[i-e-e]
0LzZ000

st
ranow

[ere]
002000

u
e
a
t
o
o
g
z
a
n
t
v
a

[z7z-e]
061000

abuer
y
o
e
t
e
s
:
y
n
t
u
d

[1°z7e]
osLo0o

st
souvis

[
z
e
]

OLL000
p
e
u
t
g
e
p
u
n
z
a
n
n
a
g
a

[it-e]
091000

sabessau
[€]

oSto000
OnLO000

sefecriesn
03

(
a
b
e
r

y
0
T
e
s
)

ZYHTT
s
n
z
e
q
s
*
o
u
t
T
y
s
e
m

vay
[9°7]J

o€L
000

p
u
e
y
*
r
a
s
n

03
J
a
s
u
a
d
s
t
p
-
a
u
r
y
o
e
u

v
a
q

[6-7]
0zt

000
p
u
r
y
*
z
e
s
n

03
9ynyo

p
u
n
y
e
r
*
e
u
t
y
o
e
m

e
a

[4-7]
OLL000

LNIOd
Lavisaa

=

u
o
}
}
n
q

p
u
n
j
z
a
r
*
o
u
t
T
y
o
e
m

v
a
y

03
S
a
e
b
u
t
T
z
Z
*
a
a
s
n

p
e
e
r
s

a
O
O
L
O
0
0
0

*
ONTYLS

YOd
ONTMOAHO

NAHM
N
O
I
L
O
I
N
N
O
D

WV
YTNY

NI
.

>yOuad
T
o
}
D
e
T
a
s
’
e
u
T
y
O
e
M

v
a
q

03
S
X
o
h
u
t
T
z
+
r
e
s
n

[
7
-
7
]

0
6
0
0
0
0

J
O
T
S
U
T
O
O
*
a
U
u
T
Y
D
e
W

P
e
z

03
S
I
e
h
u
T
y
*
I
J
e
s
N

C
i
s
Z
s

0
8
0
0
0
0

s
u
o
t
z
o
e
u
u
0
9

[7]
020000
090000

A
s
s
i
e
l
c

Py
0S0000

a
u
T
y
o
r
u
e
a
3

|
[ieL]

0n0000
worz

peqea1>
[LJ

o€0000
ke

0z0000
ST

ANIHOVW
DNIGNSA

VEL
/

WXLSKS
ONIGNAA

010000

*9
UOTSIeA

°T°S°Y

=225—

Sharing Option interactive computing service. This offers

simple program editting facilities which are not specific

to any particular language, but does not include format-

ting capabilities. This falls far short of the features

suggested in Chapter 5.3, but was readily available and

did not require the development of any computer programs.

2.5. The Output from the Analyser

The analyser produces two outputs, as follows.

(a) A listing of the specification

The analyser lists the specification text as it is

read in, printing it in the format shown in Figure D.2.

This displays each line of text exactly as typed, but

with the addition of a line of asterisks as separators

between. the blocks of text. It also shows any error

messages, as explained in Section D.2.3 above, and gives

at the end of the print a count of the number of errors

detected.

(b) Tables for input to the consistency checker

The second output from the analyser is not intended

to be presented to the writer of the specification, as it

is merely a set of table entries which are passed to the

checker program (see Section D.3, below). This is done

automatically, as the manual extraction of this informa-

tion for the checking process would be likely to _ intro-

duce errors which did not exist in the original

specification.

=226-

3. The Consistency Checker

3.1. Method

The checking to be performed was explained in Chapter

5.2.2; it consists of such things as ensuring that every

name used in the specification has been properly defined.

The checker program must therefore represent a body of

rules, each of which is nearly independent of the others.

Initial attempts to write a Pascal program to perform

this function showed that this was a significant program-

ming task in relation to the amount of time available. It

was therefore decided to use a higher-level language

called Prolog (Clocksin & Mellish, 1981) instead of

Pascal, as Prolog directly supports the programming of

functions as sets of rules.

As a consequence of this decision, the checker pro-

gram consists of less than 100 lines of Prolog code (see

Section D.3.2 below) and only took a few days to develop.

However, Prolog is an interpreted language and makes

relatively inefficient use of computer time when compared

with a Pascal program to do the same job. This has not

caused any operating difficulties for specifications of

the size created so far, but may make this particular im-

plementation of the checking system unacceptable in the

long-term.

-227-

3.2. The Rule Format

Individual rules are expressed as Prolog terms, using

the standard Prolog syntax. To get the checker to produce

helpful error messages, the rules define the conditions

which are invalid, as in the following example.

The rule: If, in paragraph P of model M, there is

an action which sends a message, X,

via an interface, Y, then X must have

been defined as a message.

is encoded as: error('message not defined',M,P,X,Y) :-

send(M,P,X,Y),

not (messages(_,_,X)).

where "send" and "messages" are the names of tables, as

described in Section D.3.3, below. Figure D.3 contains a

complete listing of the rules in Prolog; these make ref-

erence to the following functions, whose definitions have

not been included.

(a) basic_type(A), which is true if A is one of the

defined basic types in ASL (boolean, character,

decimal, integer, interface and message).

(b) in_scope_of (A,B), which determines whether the para- ~

graph number B is within the scope of paragraph num-

ber A.

(ie) interface(A,B,C), which checks to see if C is an

input, output or bothway interface of model A.

(d) loose_end(A), which is true if A is egual to

"undefined", "unknown" or "dont care".

(e) same_type(A,B), which determines whether the messages

=228—

THE STATIC CHECKING RULES FIGURE D.3

*
((a4a)

Jo
e
d
o
o
s

u
t
’

(9’a‘¥)

S
u
o
T
}
T
U
T
J
e
p
)

you
*
(
9
%
a
4
u
)
s
e
z
e
p
d
n
-
=

(
[
5
a
)
’
a
’
v
‘
,
e
3
e
p
d
n

T
e
b
a
T
{
T
,
)

1
0
1
1
8

s
n
o
t
i
a
a
s

*
(
(
q
)

w
a
g
s
k
s
’

(
9
4
7

4q)
s
u
o
t
z

e
t
a
d
o
)

y
o
u
’

(
(3%

*
¥
)

s
u
o
t
T
z
e
I
a
d
o
)

y
o
u

*
(
9
’
a
’
¥
)

s
a
s
n
”
 u
d
o
-
:

(
[
9
]
’
a
’
v
’
%
,
p
a
u
t
y
a
p

y
o
u

u
o
t
z
o
u
n
J
,
)

J
O
I
I
a

s
n
o
t
i
a
s

*
((94~4¥)

aoez1a3zUT)
you

“
(
9
°
7
’
a
’
v
)

a
t
u
x
g
-
2
(
L
o
]
’
a
’
v
’
%
,
2
0
e
F
T
A
a
4
q
U
T

p
a
u
T
y
a
p
u
n
,
)

I
o
a
’
I
a

s
n
o
t
i
a
s

*
(
(
9
%
a
7
¥
)

T
e
n

d
w
a
3
)

y
o
u

*
(
(
9
’
~
4
7
-
)

a
d
m
o
o

a
b
e
s
s
a
w
)

y
o
u
’

(p’q‘%y)
yar

y
d
u
w
o
o

b
s
u

-
:
(
(
o
]
’
a
’
v
’
,
3
u
a
u
0
d
u
0
9

e
f
e
s
s
a
u

p
a
u
t
y
a
p
u
n
,
)

1
0
1
1
8

s
n
o
t
i
a
e
s

*((09/~4-)
s
a
b
e
s
s
e
m
)

you
4 (

9
/
a
/
u
)

a
t
m
x
y
q
-
:

(
[
a
‘
a
’
o
)
’
a
’
¥
’
,
e
6
e
s
s
a
m

p
a
u
t
y
a
p
u
n
,
)

1
0
1
1
8

s
n
o
t
i
e
s

*
((a’~4a)

sandqzno’
(
a
q
*
~

49) syndz no
!
(
a
/
~
*
a
)
s
q
n
d
u
t
’

(
q
*
~

49) sandut)
*
((Ca}lal

‘(0a
Jlo)‘a’v)suotqzoauu0s

-:
(
(
a
’
a
’
a
‘
a
)
‘
a
‘
v
‘
,
u
o
t
T
Z
O
e
U
u
U
C
D

p
t
T
T
e
A
U
T
,
)
1
0
I
1
1
a

S
s
n
o
t
i
e
s

*
(((a‘~

4a)
a
o
e
z
1
a
q
U
T
)

you
!
((a’~ 49)

e
o
e
z
a
z
e
z
u
t
)

zou)
*
(
[
C
a
}
i
a
l
’
(
£
a

Jia
)
‘
a
‘
y
)
s
u
o
r
q
z
o
a
u
u
0
s

-
:
(
[
a
’
a
/
a
’
9
)
’
a
‘
v
‘
,
p
a
u
T
y
o
p
u
n

pus
o
u
o
,
)

I
O
o
I
1
a

s
n
o
t
i
s
e
s

geno
(
U
a

Jia)
*
(
C
a
l
t
o
}
’
a
’
v
)

s
u
o
t
z
o
a
u
u
0
9
-
:

([
4
9
°
4
9
)

/a4¥’,

¥
O
U
q
d
o
o
T
,
)

I
o
1
1
a

s
n
o
t
i
a
s

*
(
(
L
o
’
w
)
*
-

42-47)

s
u
o
t
z
o
a
u
u
0
5
)

y
o
u
’

(
(
~
4
[
9
4
v
]
*
%

4
)
s
u
o
t
z
2
e
u
U
0
D
)

you

“
(
9
4
a

/y)

e
o
e
z
z
a
q
u
t
—
=

(
[
D
]
’
a
q
’
v
’
,
p
e
q
z
o
a
u
u
o
s

y
o
u

e
o
e
y
T
e
z
U
T
,
)

1
O
I
I
a

S
n
o
t
T
i
e
s

*
((~4~4y)

skeny
og)

you
*
(
(
7
4
7
4
y
)

s
a
n
d
q
n
o
)

zou’

(y)
s
t
a
p
o
w
-
:

({
}‘[

]
4
v
%
,
0
}

s
y
n
d
y
n
o

o
u
,
)

1
o
1
1
e

s
n
o
t
i
e
s

+
((7474¥)

sKeay
o
q
)

you
*
(
(
"
4
~
4
¥
)

szndut)

you’
(vy)

stopouw-:
({

Jf
]*¥*,03

sandut
ou,)

101197
snoties

*
((3) S
T
@
p
o
w
)

zou
*
(
o
4
a
’
v
)

A
g
e
t
o
o
s
-
:
(
[
5
)
’
a
4
v
4
,
p
e
u
t
z
a
p

jou
T
e
p
o
w
,
)

I
o
T
I
e

s
n
o
t
s
z
a
s

*(a‘q)
e
d
o
o
s
a
w
e
s
’
q
=
=
-
g
’

(
9
’
q
‘
¥
)

s
u
O
T
y
T
U
T
J
e
p

“
(
9
’
a
’
¥
)

s
u
o
t
q
z
t
u
t
r
y
e
p
-
:

(
[
o
]
’
a
’
v
‘
,
u
o
t
y
t
u
r
s
e
p

a
z
e
o
t
t
d
n
p
,
)

I
o
1
1
e

s
n
o
t
i
a
s

contd.

—229-

FIGURE D.3 continued

*((94747)
y
a
r

ad 43) Jou
*

(
(
9
4
7
4
7
)

s
a
n
u
e
t
a
z
e
a
a
z
)

y
o
u
’

(
y
)

w
a
q
y
s
k
s

* (
9
4
a
)

s
u
o
t
z
t
u
r
g
e
p
-
:

(
L
a
)

‘
a
‘
v
%
,
p
a
s
n

T
a
a
o
u

u
o
t
z
y
T
U
T
y
J
e
p
,
)

J
o
T
I
e

u
e

*
(
(
(
9
4
7
4
y
)

s
e
o
u
a
e
t
a
z
a
q
)

y
o
u
’

(
(
9
4
~
*
y
)

s
e
s
n

u
d
o
)

zou

£
((94747)

s
a
n
u
a
r
a
z
e
r
)

y
o
u
’

(
(
9
4
~
*
-
)

s
a
s
n

u
d
o
)

y
o
u
’

(y)
w
a
y
s
k
s
)

4 (
9
4
q
4
y
)

s
u
o
t
z
e
r
e
d
o
-
=
:

(
[
a
]
’
q
‘
v
*
,
p
a
s
n

you
u
o
t
z
o
U
N
z
,
)

I
o
I
I
e

u
e

°((
“
E
E
S

]I0 1
%

*
)

a¥ux9)

you
*
(9%q‘y¥)

s
e
b
e
s
s
a
u
-
:
(
[
9
]
’
a
‘
v
*
,
p
a
s
n

T
e
a
a
u

a
f
e
s
s
a
u
,
)

101I1e
u
e

*
(
(
¥
2
—
4
7
)

A
z
a
t
D
0
s
)

y
o
u
’

(
y
)
s
t
T
e
p
o
u
w
-
=

({
]’[

]
*
v
‘
,
p
e
s
n

y
o
u

T
e
p
o
u
,
)

T
o
r
t
e

u
e

*(a’q)
e
d
o
o
s
a
u
e
s
’
q
=
=
+
g
*

(
9
’
q
‘
%
¥
)
3
d
w
o
5

a
b
e
s
s
e
u

*
(
9
4
a
‘
v
)

9
d
u
o
o
-

a
b
u
a
d
o
e
—

b
o
l

a
‘
y
’
,
}
U
e
u
o
0
d
w
o
s

s
b
e
s
s
a
u

T
d
n
p
,
)

1
0
1
1
9
:

s
n
o
t
i
e
s

*(q‘q)
a
d
o
o
s
a
u
e
s
 ‘
q
=
=
+
g
’

(
9
’
a
’
¥
)

J
a
p

z
u
a
u
o
d
u
o
o

*
(
9
’
q
’
¥
)

g
a
p

z
u
a
u
o
d
u
o
o
-
:

([a]’q‘v‘,sqzuauoduos
a
z
e
o
t
{
d
n
p
,
)

1
0
1
1
8

S
n
o
t
i
s
s

*
(
(
q
‘
a
)

yo
a
d
o
o
s

u
t
’

(
9
/
a
‘
¥
)

s
u
o
t
z
t
u
T
y
e
p
)

y
o
u
’

(
(
9
’
q
‘
y
)

s
u
r
e
d

d
o

t
(
9
4
q
4
v
)

s
u
z
e
d
~
d
t
)
-
:

(
[
a
]
’
a
‘
v
‘
.
p
e
u
r
y
e
p

z
o
u

w
i
e
d

o
u
n
j
,
)

1
0
1
1
9

s
n
o
t
i
e
s

*
(
(
q
)

w
a
z
s
k
s
!

(
9
4
~
%
q
)

S
u
o
t
3
t
u
t
T
y
a
p
)

y
o
u
’

(
(
a
%
q
)

Jo
a
d
o
o
s

u
t

*
(9a

*y)
s
u
o
t
z
t
u
t

yep)

you!
(

(3)
pus

e
s
o
o
T
)

you’

((5)
add}

oTseq)
Jou

*(94%aq’y)
yaa

e
d
k
y
-
:
(
[
9
]
’
a
%
u
*
,
a
w
e
u

a
d
k
y

p
e
u
t
y
z
a
p
u
n
,
)

t
o
r
a

s
n
o
t
i
e
s

*(
(94H)

e
d
X
k
y

7 a
u
e
s
)

y
o
u

yu
xa!

C
(
{
C
a
l
i
v
i
 ‘Clo

]la)*
~*~)

s
u
o
p
z
o
a
u
u
o
s

4
~
4
~
)
s
u
o
t
z
o
e
u
u
0
9
)

*
(
a
“
[
(
a
]
l
o
]
’
a
*
y
)
y
t
u
x
d

iB
g?

Ww’
.
3
9
T
T
J
U
O
D

adXkz
e
b
e
s
s
e
u
w
,
)

1
0
1
1
S
”

s
n
o
t
i
e
s

(a4~*v)
s
a
n
d
q
n
o
’

(a/((aJto)‘a’y)

a
a
t
a
s
e
r

$(a¢~4v)
sandut’

(
a
*
[
(
a
J
1
o
]
’
a
’
v
)

puas)
-
2
(
[
a
’
a
]
’
a
‘
v
/
,
U
0
T
}
9
e
I
T
p

b
u
o
r
m

ut
e
b
e
s
s
e
u
,
)

1
0
1
I
a

s
n
o
t
i
e
s

+
((a)

waqysks*
(9/~

4a)
yueysuod)

you’
((9*

*¥)
U
e
z
S
U
O
D
)

Jou
*

((9)
pua

e
s
o
o
q
)

you’
(
(
9
’
a
*
¥
)

e
A

d
w
a
y
)

you
*
(
(
a
q
)

w
e

y
s
k
s
*

(p4~4a) s
u
o
t
z
t
u
t
y
e
p
)

y
o
u
’

(
(
g
/
a
)

Jo
a
d
o
o
s

ut’

(9‘g’¥)
S
u
O
o
T
z
T
U
T

J
a
p
)

y
o
u

4 (94q4y)
s
o
o
u
a
t
e
z
e
r
-
:

(
(
[
2
]
’
a
’
v
‘
,
a
0
u
e
u

p
a
u
t
T
z
a
p
u
n
,
)

I
o
1
I
e

s
n
o
t
i
a
s

*
(
o
’
C
C
a
J
t
u
)
*

44a)3
+(CCo

Tbal*
(Calivl

s([9%a

contd.

=250—

FIGURE D.3 continued

*
1
5
o
F

v)
s
a
o
u
a
t
e
y
e
a
)

j
o
u
’

((y)
w
e
q
s
k
s
)

o
u
!

(
(
9
%

*-)
s
a
n
u
a
r
e
z
y
e
)

y
o
u
’

(y)
w
a
z
s
s
)

*
(
p
%
q
’
v
)

q
u
e
q
y
s
u
o
o
-
:

(
{
[
9
]
’
a
’
¥
’
,
p
a
u
o
T
j
U
a
w
W

T
a
A
a
u

z
U
e
z
p
S
U
O
D
,
)

H
u
T
u
I
e
A

*((a‘{
Lo

]
l
a
u
o
o
p
u
e

j*~*y)
pues)

you’
(q*(

[9]
1zu0931e43s8

J*a’y)
puas

-
2
(
(
a
’
9
]
’
a
‘
u
¥
’
.
5
5
O

p
a
y
o
a
t
T
a
s

J
o
a
s
u

a
f
h
e
s
s
o
e
u
,
)

b
u
t
u
r
e
r

*((a’L
£5]
1
,
u
0
0
3
3
e
4
s

J’
*y) p

u
e
s
)
 you’ (a

*
L
C
o

]
t
q
u
o
o
p
u
a

)
‘
a
‘
y
)

p
u
a
s
-
:

(
[
a
’
0
]
‘
q
’
*
¥
‘
.
u
0

p
a
y
s
y
t
T
a
S

J
a
n
o
u

a
f
e
s
s
o
u
,
)

b
u
t
u
r
e
a

*
(
(
0
4
7
4
v
)

Jar
z
u
e
u
o
d
w
o
d
)

z
o
u
‘

(
(y)

w
a
y
s
X
k
s
)

y
o
u
’

(
9
’
g
’
¥
)

Jap
y
u
e
u
o
d
w
o
d

-
:
(
(
a
]
’
a
‘
v
’
,
p
a
u
o
t
q
z
u
a
w

T
a
a
a
u

y
u
s
u
o
d
w
o
d

T
e
o
d
o
T
,
)

h
u
t
u
r
e
a

*
(
(
p
4
7
4
7
)

yea
q
u
e
u
o
d
u
o
s
)

y
o
u
’

(
(
9
%

4
)

Jax
y
d
w
o
o

b
s
)

you
*
(
9
/
a
4
v
)

y
d
w
o
o

e
b
e
s
s
a
u
-
:

(
[
9
]
’
‘
q
’
v
*
,
p
o
u
o
r
z
u
e
m

a
a
a
e
u

y
d
w
o
d

a
b
e
s
s
e
u
,
)

h
u
t
u
r
e
s
a

*
(
(
9
4
7

47)

yaa
q
u
s
u
o
d
w
o
s
)

y
o
u
’

(
y
)
w
a
q
s
k
s

*
(
9
’
a
4
v
)

J
a
p

q
u
a
u
o
d
u
o
s
-
:
(
[
3
)
’
a
’
%
v
*
%
,
p
a
u
o
t
q
u
a
w

AaaAcu
y
u
s
u
o
d
w
o
d
,
)

b
u
t
u
r
e
A

*
((a/q)

Jo
edoos

u
t
’

(
9
’
a
’
¥
)
S
a
z
e
p
d
n
)

you
*
(
9
/
a
’
y
)

s
u
z
e
d

d
o
-
s

([a]’a‘v’,anTea
e&

u
a
a
t
h

You
4
n
d
3
n
o

d
u
n
j
Z
,
)
O
I
I
a

u
e

+
((a‘a)

yo
e
d
o
o
s

u
t
’

(
9
4
q
’
¥
)

s
a
o
u
a
q
a
z
a
q
)

y
o
u

*
(
9
a

‘v)

S
a
o
t
z
e
r
o
d
w
a
3
-
:

(
[
a
)
/
a
’
v
%
,
p
a
s
n

y
o
u

A
r
e
r
0
d
u
a
4
,
)

1
0
1
1
8

u
e

+
((949)

od
437

ewes)
ou’

(
“
*
(
(
a
]
i
o
}
*

*
w
)
a
t
a
x
a

*
(
a
‘
(
f
a
J
l
o
]
’
a
’
v
)

a
t
m
x
z
-
=

(
(
a
’
9
]

a
v

4, q

u
e
g
s
t
s
u
o
s
u
t

e
d
d

e
f
e
s
s
e
u
,
)

10118

u
e

-
(
(
9
4
C
C
a

J
P

)*~ 4a) an taD07)

o
u

s
“
(
(
C
C
a
l
t
w
i
‘
C
C
o
]
l
a
y
’

4)

suotzoauu0s?
([{foltal

“
C
(
C
a
]
l
v
]
¢
~

4
)

s
u
o
t
q
z
o
a
u
u
o
s
)

4
(

(7
h
o
g
e
e

e
e

e
e

@
S
o
o
T
)

zou

ans
i
a
d
)

i
.

a
‘
v
)

p
u
s
s
-
:

(
(
9
’
a
’
a
’
a

)
’
a
’
v
’
,
p
a
a
t
e
a
s
a
r

y
o
u

a
b
e
s
s
e
u
,
)
I
o
1
I
s

u
e

*((a‘9a)
Jo
a
d
o
o
s

u
t

4
(
S
e

“y)
392

Tadk3!
((9’a

‘¥)
s
o
o
u
s
t
e
z
o
x
¢

(
9
’
a
‘
*
¥
)
s
e
3
e
p
d
n
)

)
you

*
((v)

wa3sks)
you’

(94a
4y)

s
u
o
t
z
t
u
r
y
z
e
p
-
:

(
L
o
)

‘a4¥4,pesn

you
omeu,)

I
o
I
I
a

ue

aod =

A and B are of the same message type (i.e. both are

instantaneous or both are continuous).

€£) temp_var(A,B,C), which is true if C is a temporary

variable (i.e. a pattern-matching variable; a name

preceded by "?") which was defined in model A such

that paragraph number B is within the scope of that

definition.

(g) txmit(A,B,C,D), which checks if C is a message which

was sent or received by model A via interface D, and

that D is not a "loose_end" (see (d) above).

3.3. The Input Format

To simplify the checker program as far as possible,

its input format was restricted to that of standard

Prolog .terms. The syntax analyser was therefore made to

produce a list of such terms, containing details of the

names found in the specification text and the mode in

which they are used. The general format for these terms,

expressed in BNF (see Appendix B.1), is:

TERM = TABLE NAME "(" MODEL NAME "," PARAGRAPH. NUMBER

{ ©," OTHER NAMES } ")".

although the full-stops (".") inside the paragraph num-

bers had to be replaced by commas to conform to Prolog

syntax. As an example:

messages(vending_ system, [1,1] , coin).

states that "coin" was defined as a "message" in para-

graph [1.1] of "vending_system". There are 25 of these

tables, and their formats are shown in Figure D.4. It

=232—

should be remembered that these tables are not produced

by the specification writer, but are an automatic output

from the syntax analyser and therefore do not need to be

in a readable form.

3.4. The Output from the Checker

The checker program produces a simple list of the er-

rors which have been detected, quoting the name of the

text block and the number of the paragraph which contains

the error. It also shows sufficient additional informa-

tion to identify the error within the paragraph. Figure

D.5 shows an annotated example of a few such messages. To

aid the user of this program, the errors are listed in

three categories.

(a) Serious errors, such as the use of names which have

not been defined. These are classified as serious

because they invalidate some portion of the

specification.

(b) Errors, such as_ the definition of a name which is

never used. These may not invalidate any part of the

specification, but do indicate incompleteness.

(c) Warnings, such as the lack of references to a compo-

nent of a message or a constant. As ASL permits

structured messages to be assigned values at the mes-

sage level, it may be valid for some components never

to be mentioned individually. However, the checker

program produces a warning message so that the _ spe-

cification writer is aware of this.

e233

FIGURE D.4 THE TABLES USED IN STATIC CHECKING

(a) For the system; one record generated for a

specification.

"system" "(" SYSTEM_NAME ")" "." ,

(b) For monitors; one record per monitor statement in the

specification.

"monitor" "(" BLOCK NAME "," PARAGRAPH NUMBER ")" ","

(c) For messages sent and received; one record per send

or receive action

("receive" | "send")

"(" BLOCK NAME "," PARAGRAPH NUMBER ","

"[" MESSAGE _TYPE "," MESSAGE_NAME "]" ","

INTERFACE NAME " aes

where MESSAGE TYPE indicates whether it is an in-

stantaneous message or the start or end of a con-

tinuous message.

contd.

—234-

FIGURE D.4 continued

(d) For the definition and use of names.

TABLE_NAME "(" BLOCK_NAME "," PARAGRAPH NUMBER ","

BEWAME “) 40 "ete

where TABLE NAME can take the following values:

Table Name

bothways
component_def
component_ref
constant
definitions
inputs

ip_parms
message_compt
messages
models
msg_compt_ref
op_parms
operations
opn_uses
outputs
references
society
temporaries
type_ref
updates

Record per

bothway interface definition
definition of a component of a name
use of a component name
name used as a constant in a definition
definition of a top-level name
input interface definition
argument in an operation definition
definition of a component of a message
definition of a top-level message name
definition of a model
use of a message component name
a result in an operation definition
the definition of an operation
a use of an operation
output interface definition
indeterminate reference to a name
model name being used in system block
use of a name after a "?"
use of a name as a data type
assignment of a value to a name

contd.

—23.5—

FIGURE D.4 continued

(e) For interconnections.

"connections" "(" BLOCK NAME "," PARAGRAPH NUMBER ","

"[" MODEL_NAME "," INTERFACE _NAME "]" ","

"[" MODEL_NAME "," INTERFACE NAME "J" ")" " ." ,

Note:

In all cases, the format for paragraph numbers is:

PARAGRAPH NUMBER = "[" INTEGER PARAGRAPH BODY.

PARAGRAPH BODY = "," INTEGER PARAGRAPH BODY

"yn

=236=

FIGURE D.5 ERROR MESSAGES FROM STATIC CHECKING

system name error message

/ 4.
ge ‘ text block

vending_system os is

‘ BA paragraph
‘ 4 ¢

/ 4 ‘
Z me ‘

coin_slot

one end undefined: vending_system 2.1.0.0.0.
user fingers tea_machine coinslot

undefined message component: user 5.0.0.0.0.
selected

message type ccnflict: tea_machine 7.1.0.0.0.
Status status_light user eyes

message type conflict: tea_machine 7.1.0.0.0.
status status_light user eyes

message type ccnflict: -tea_machine 7.2.0.0.0.
status status_light user eyes

errors

3-6.9.0.0.
fillup

message not received: user 4.0.0.0.0.
money fingers tea_machine coinslot

message not received: user 4.0.9.0.0.
money fingers tea_machine selector

message not received: user 4.0.0.0.0.
money fingers tea_machine trefund_button

— 230

4. Cross-reference Listing

The cross-reference listing is produced by a simple

Pascal program; this extracts all the occurences of names

from the table entries used by the consistency checker

and sorts them into alphabetic sequence. Figure D.6 shows

an example of the listing, which has columns for the

name, the type of appearance being reported (see below),

and the text block and paragraph number in which the name

appears. The types of appearance (the second column on

the listing) are:

(a) DEC. The declaration of a name which is not an opera-

tion or an interface.

(b) OPN. The declaration of an operation.

(6) REF. A reference to a name, other than to update its

value.

(d) IFC. The declaration of an interface.

(e) UPD. A reference to a name which involves updating

its value.

as this information may help in the task of making

changes to the specification (see Chapter 5.3.2).

=238—=

FIGURE D.6

CROSS-REFERENCE LISTING FOR vending_system
NAME

boolean
c
cm
cas
coffee
coin_size

coin_slot

coinslot
cs
cup
d

dispense

dispenser

drink
eyes

fillup

fingers

grams

TYPE

REF
REF
REF
REF
DEC
REF

IFC
REF
REF
REF
DEC
REF
DEC
REF

DEC
REF

REF

TFC
DEC
REF
LEC
REF
DEC
REF
REF

rec
REF

REF

THE CROSS-REFERENCE LISTING

BLOCK

vending_system
vending_system
vending_systenm
vending _system
vending_systen
vending system
vending_system
tea_machine
tea_machine
tea_machine
vending_system
vending_system
vending_system
tea_machine
tea_machine
tea_machine
tea_machine
vending_system
user
tea_machine
tea_machine
tea_machine
tea_machine
vending_system
tea_machine
tea_machine
vending_system
vending_systen
user
user
vending_system
tea_machine
vending system
vending_system
vending_systen
user
user
user
user
vending_system

239

PARAGRAPH

3.
5.
ae
5.
4.
3.
3.
5.
1.
8.
2.
5.
4.
1.

2.

1.
1.

APPENDIX E

AN EXAMPLE SPECIFICATION

1. Introduction

The purpose of this example is to display the general

appearance and style of ASL specifications, so a _ simple

system was chosen in order to minimise the need for in-

troductory explanation in English. Additionally, to

demonstrate the use of the existing syntax analyser and

checker. facilities (see Appendix D), the specification is

shown with one syntax error and a number of other errors.

This appendix therefore contains a brief introduction to

the system (section E.2), the listing of the specifica-

tion as produced by the syntax analyser (section E.3) and

the error messages from the checker (section E.4). Both

of the listings are supplemented by comments on some of

the points demonstrated.

2. The System

The system to be specified is a tea-vending machine,

treated at the level of the interface to the customer.

Thus, the ASL specification consists of two models, one

-240-

for the vending machine (the system model) and one for

the user (the environment model). In outline, the vending

machine is intended to operate as follows.

(a)

(b)

(c)

(a)

(e)

(£)

The

The machine supplies a range of drinks, and there is

some method (e.g. buttons or dials) by which the user

may select a particular drink.

For each drink there is a signal (e.g. a lamp) which

indicates if the machine contains sufficient ingre-

dients to provide that drink. This is intended to be

a positive indication, so that lack of ingredients

and lamp failure should both be visible to the user.

The user inserts coins into the machine to make up

the price of the drink required, and then operates

the selection mechanism to request that drink.

The machine will only accept a defined range of

coins, and will immediately reject any other denomi-

nations or any damaged coins.

The user must be provided with a facility to termi-

nate the transaction prematurely (e.g. a refund

button), and should then receive back all the coins

inserted since the start of the transaction.

If the user reguests a drink when the value of the

coins inserted is not equal to the price of that

drink, then all the coins should be refunded and no

drink provided.

ASL specification attempts to capture these concepts

without introducing unnecessary constraints upon. such

things as the range of drinks or the number of acceptable

denominations of coins.

-241-

3. The ASL Specification

As mentioned in Section E.2, there are two models in

this specification; thus, with the addition of the system

block, this produces three blocks of text. These are

shown in outline in Figure E.1, which also identifies the

purpose of the main paragraphs within each of these

blocks. The specification appears in Figure E.2 in the

form of the listing produced by the syntax analyser; the

line numbers down the left-hand side of the listing are

used in the following comments to identify the use of

some features of the language.

(a) (Line 000010) "VENDING SYSTEM" appears in capital

letters for its introduction (i.e. its definition).

The words in capitals after the obligue stroke ("/")

are.a comment, to give a brief description of the

system.

(b) (Lines 000150 to 000280) The messages include both

simple and structured definitions. Once again, the

names being defined appear in capitals, whilst the

data type names (which are defined elsewhere) . appear

in lower case letters.

(c) (Lines 000380 to 000450) "SELECT_RANGE" is used in

the system model, the environment and in the defini-

tion of messages, so it is defined only once in the

system block. Its data type is a list of all the

possible values which it can take, enclosed in braces

Cee

(d) (Line 000580) The word "unknown" is used to indicate

-242-

FIGURE E.1

Heading or Paragraph Number

THE STRUCTURE OF THE EXAMPLE SPECIFICATION

VENDING SYSTEM is

QJ
[2]

(31
[5]

Statement of models and
their interconnections.

Definition of common items,
used in both models.

end of vending system

USER is

f1)
(2]

(3]

(8]

end of user

Interfaces.

Responses to particular
messages.

TEA_MACHINE is

f1)
[2]

(3)

3
071

(9]

[10]

(11)

Interfaces.

Properties of the model,
known only to the model.

Responses to situations
rather than messages.

Responses to particular
messages.

The definition of an
operation.

end of tea_machine

mam

a

L

L

Comments

The system
block.

The
environment

model.

The
system
model.

FIGURE E.2 THE EXAMPLE SPECIFICATION

s
q
u
e
t
p
o
a
b
u
r
s
a
s
n
a
a
s
i
a

[2-¢]
s
q
y
o
t
p
e
r
b
u
t
:
a
a
t
t
i
a

[
o
-
e
]

efuer
y
o
o
t
e
s
z
y
n
i
u
d

a
s
a
n
d
a
y

[
s
e
]

s
u
e
i
b
:
u
H
o
r
g
e

[
Z
h
e
]

ezts
u
t
o
o
:
g
z
i
s

[
1
°
n
-
e
]

st
Logeaa

[
h
e
]

sueabiuuoray
[Z*ece]

®ZTs
U
p
o
o
z
a
z
t
s

[
L
°
e
°
e
]

st
xanon

[ere]
u
e
s
t
o
o
q
:
a
n
t
v
a

[2Z-z-e]
efuer

q
o
e
T
e
s
:
y
n
t
u
d

(
1
°
z
-
e
}

ST
snuivis

(z-e]
p
e
u
t
y
e
p
u
n
:
a
n
o
a
q
y

[L-e]
s
a
b
e
s
s
a
u

[ey]

s
o
k
a
c
i
e
s
n

03
(efhuer

y
o
e
t
e
s
)

qYyATT
s
n
q
z
e
q
s
*
e
u
t
y
o
e
m

v
a
y

p
u
e
y
e
i
e
s
n

0}
T
a
s
u
a
d
s
t
p
*
e
u
t
T
y
o
e
m

e
a
q

p
u
e
y
-
r
e
s
n

03
ayNYyD

p
u
n
y
o
r
a
u
T
y
o
e
w

e
3
q

u
o
4
3
n
q

p
u
n
j
z
e
r
*
e
u
t
T
y
o
e
u

e
a
}

OF
S
i
a
b
u
t
y
*
a
s
s
n

I
o
z
y
.
e
T
a
s
*
e
u
T
Y
y
O
e
U

P
a
y

OF
S
I
e
h
u
T
J
*
I
e
s
n

J
O
T
S
U
T
O
O
D
*
e
u
T
Y
D
e
M

e
o
}

03
S
i
e
b
u
T
y
J
*
I
A
s
N

s
u
o
t
z
o
a
u
u
0
9

[Zz]

ANANNAN

mAAAAR
K-amMseHoO

Wo

zasn
1

(
7
-
1

e
u
t
y
o
r
m

Paz
1

[iret]
wory

pezeasro
[1]

ST
@
N
I
H
O
W
N

O
N
I
G
N
S
A

V
A
L

/
W
I
L
S
A
S

O
N
I
G
N
G
A

*g
W
O
T
S
I
O
A

0
6
2
0
0
0

0
8
2
0
0
0

oLz7000
0972000
0
S
z
0
0
0

0
2
0
0
0

o
€
z
0
0
0

0
c
c
0
0
0

0
L
Z
0
0
0

0
0
2
0
0
0

0
6
1
0
0
0

0
8
1
0
0
0

OLLO000
0
9
1
0
0
0

OSLO0O0
Ot

L000
O€L

000
o
z
i
0
0
0

O
L
L
O
O
O

O
0
L
O
0
0

0
6
0
0
0
0

0
8
0
0
0
0

0
2
0
0
0
0

0
9
0
0
0
0

0
s
0
0
0
0

0
0
0
0
0

0
€
0
0
0
0

0
2
0
0
0
0

OLOO000

contd.

-244-

FIGURE E.2 continued

S
U
A
O
N
I
A

3
n
d
z
n
o

[z]J

anva
(z"tJ

saxq
(i°L]

gndut
[1]

st
u
g
s
o

JIG
I
O

O
G
I
O

I
I
O

I
O
R
I

IE
I

IBICI
G
G

I
G

C
I

O
R

I
O
I

I

R
I

i
k

aK

{
van

*avonS
HLIS

Val
*MTIN

HLIM
Wal

*avONS
ONY

MIIW
HLIM

V
L

*agqa0o
‘avons

HLIM
aa4d0o

“
M
I
I
W

HLIM
d
a
a
s
o
o

w
a
y
s
k
s

b
u
t
p
u
a
a

yo
pues

A
n
s

/
S84

7
uy

7suy
T
O

f
sS>

7
wo

‘avons
GNY

WIIW
HLIM

dadad09
/

sud
}:

gonva
L
o
a
t
a
s

[¢]

s
e
r
q
t
t
r
a
g
i
v
e
a

[orn]
a
z
e
b
e
z
u
t
z
a
n
o

[s°n]
S
o
a
q
t
I
r
:
y

i
W

Caen)
s
o
t
t
y
s
a
v
o
n
a
s

[evn]
sottytvaL

(z*nJ
s
o
t
t
y
:
a
a
d
a
o
o

[i-n}
ST

S
U
N
a
I
a
a
y
O
N
I

[4]

0
9
5
0
0
0

0
S
S
0
0
0

0
n
S
0
0
0

Q
€
s
o
0
0

0
z
S
0
0
0

OLSO0O0
0
0
5
0
0
0

0
6
4
0
0
0

o
s
h
o
o
o

0
L
n
0
0
0

0
9
n
0
0
0

osnoaoo
o
n
t
0
0
0

oehooo0
o
z
h
o
0
0

O
L
n
0
0
0

0
0
n
0
0
0

0
6
£
0
0
0

o
g
e
0
0
0

O
L
E
0
0
0

0
9
€
0
0
0

O
S
E
0
0
0

O
n
€
0
0
0

O0€€000
0
z
€
0
0
0

O
L
E
0
0
0

0
0
€
0
0
0

contd.

245 =

FIGURE E.2 continued

o€8000
s
q
u
e
t
p
e
r
b
u
t

=
ysots

([e]
0z8000
0
8
0
0
0

(efuer
q
o
e
T
o
s
)

LHOIT s
o
l
v
i
s

[e°z]
008000

u
g
s
n
z
a
s
i
a

(z°z]
062000

ALOHO
aNnnaay

(1-7)
082000

3nd3no0
[7]

oLL000
092000

No~Lod
a
n
o
a
a
u

C
e
t
)

0Sz000
uoLoatas

[271]
0
2
0
0
0

Lo1s
wrod

[i°1J
0€L000

andut
(tJ

o0z2000
OLL000

ST
A
N
I
H
O
Y
H

W
A
L

00L000
069000
089000

S
O
G

o
O

O
o
o

oi
e
o

i
o
c

loi
c
i

gai
icici

ak aia
i ack

tok
ak

ak ok ak ar

Issa
Jo

pus
0
1
9
0
0
0

0
9
9
0
0
0

u
m
o
u
y
u
n

uwayz
p
u
e
y

eta
y
o
a
f
a
r

uo
[
g
]

0
S
9
0
0
0

u
s
o
u
y
u
n

u
s
y
z

p
u
e
y

eta
a
s
u
a
d
s
t
p

uo
[
4
]

0
n
9
0
0
0

s
i
o
f
u
l
y

eTA
punjyaa

pues
usyy

u
m
o
u
y
u
n

uo
[9]

0
€
9
0
0
0

s
a
e
f
u
t
j

PTA
a
h
u
e
r

y
D
e
T
e
S

UT
p
a
y
e
T
e
s

yITA
y
U
T
I
p

y
s
a
n
b
e
r

0
z
9
0
0
0

pues
uayz

u
a
o
u
y
u
n

uo
[Gg]

019000
s
a
e
b
u
t
y

e
t
a

(
u
s
o
u
y
u
n
=
q
y
h
t
e
a
)

@
(
u
U
A
O
U
y
U
N
=
a
z
T
S
)

4
yTA

K
o
u
o
m

0
0
9
0
0
0

_
Pues

usyq
u
a
o
u
y
u
n

uo
[HJ

065000
u
s
o
u
y
u
n

u
a
y
z

S
e
X
e

eta
s
n
z
e
3
y
s

uo
[Ee]

0
8
S
0
0
0

0
2
5
0
0
0

contd.

-246-

FIGURE E.2 continued
Z
o
y
a
T
e
s

e
T
A

INIOd
LUVISHY

+
p
é
=
x
u
T
I
p

y
s
e
n
h
e
r

jo
p
u
o
s
s
s

Zz
oF

4
uTyata

[OL]

u
e
y
z

O
N
T
Y
L
S

Y
O

O
N
T
Y
O
T
H
D

N
A
H
M

a
N
O
T
A
V
H
a
d

*
K
e
u
o
w

p
u
n
g
z
e
r

u
o
z
y
n
q

p
u
n
y
e
r

era
p
u
n
y
e
a

uo
[
a
n
n
a
a
a

/
6]

a
y
n
y
s

p
u
n
j
e
r

eTA
x
=
9
Z
T
S

yytA
z9aefeT

pues
ueyrA

(
a
Z
T
S
*
s
U
u
T
O
D

p
T
{
T
e
A

ut
x)

you
s
s
a
t
u
n

b
u
t
y
z
o
u

op

uayz
O
T
S

U
T
O
S

eTA
x
z
=
0
Z
T
S

yzTA
Kouow

uo
[NIOD

yoIHD
/

BI

(x)
q
q
f
T
T

s
n
q
e
j
s

eta
(
a
n
a
z
=
e
N
n
T
e
a
A

Y
R
T
A

S
n
q
z
e
q
s

f
u
r
p
u
s
s

3
1
e
4
s

‘
a
s
T
e
y
=
o
n
T
e
a

yRTA
s
n
j
e
q
s

fhutTpues
d
o
y
s

)
u
e
y
3

e
d
t
o
a
r
-

(
x
z
)

s
u
o
t
y
D
e
T
e
s
=
<

y
o
o
y
s

T
e
x
a
u
s
y
n

[7°72]

(x)
3
y
H
T
T

s
n
q
z
e
q
s

e
T
A

(
a
s
T
e
y
=
e
n
T
e
A

YITA
Snjyeys

HhutTpues
jzaeys

f
a
n
a
z
=
e
n
T
e
A

YytsM
s
n
j
z
e
y
s

Hbutpuses
d
o
j
s

)
u
a
y
y

e
d
r
o
e
r
+

(
x
g
)

s
u
o
t
z
D
e
T
A
a
s
S

>
y
D
o
y
S

A
J
e
a
s
u
o
y
n

[1L°L]

{
S
I
N
G
I
G
S
U
O
N
I

JO
S
N
L
V
L
S

B
O
L
I
N
O
W

7
L]

(
e
s
u
a
d
s
t
p

Tre)
uns

-
(dnt

{TJ
T
r
e
)
w
n
s

sr
yo03s

[9]

aoued:
antva

[7°S]
azts

u
t
o
o
:

azrs
[1°s]

ST
(
p
e
u
t
y
z
e
p
u
n
)
s
n
r
o
d

a
r
t
v
a

[S]

aoued:
qyotua

[
Z
n
]

s
j
u
e
t
p
e
a
b
u
t
:

qgaroza
(1i°n]

st
(efuer

y
o
e
T
e
s
}
s
n
o
r
L
o
a
t
a
s

[4]

O
E
L
L
O
O

O
Z
L
L
O
O

O
L
L
L
O
O

aTNY
NI

y
o
u
d

O
O
L
L
O
O

0
6
0
L
0
0

O80Lo00
O
L
O
L
O
O

0
9
0
1
0
0

O
S
O
L
O
O

On0Lood
O
€
0
L
0
0

0
c
0
L
0
0

O
L
O
L
O
O

Q
O
O
L
0
0

0
6
6
0
0
0

0
8
6
0
0
0

0
4
6
0
0
0

0
9
6
0
0
0

0
5
6
0
0
0

0
1
6
0
0
0

0
€
6
0
0
0

0
c
6
0
0
0

0
1
6
0
0
0

0060090
0
6
8
0
0
0

0
8
8
0
0
0

0
2
8
0
0
0

0
9
8
0
0
0

0
5
8
0
0
0

0
8
0
0
0

contd.

-247-

FIGURE E.2 continued

A
T
I
N
A
S
S
A
D
D
N
S

G
A
L
A
T
I
W
O
D

O
N
T
Y
O
A
H
D

“sHwO0dua
Lb t
o
a

O
9
E
L
O
O

FAI CISISI
I
O

IICIIGICISI
ICG

ICICI
G
I

CIICIAIGI

O
C
I

O
O

I
S
O
C

I
A
I

AAI
II

e
u
T
y
o
r
m

voz
JO

pus
OGELOO
O
H
E
L
O
O

eyNnyoO
p
u
n
y
z
e
r

eTA
z
=
9
Z
T
S

YRTA
y
o
e
l
e
T

pues
ueyy

O
€
E
L
O
O

(
(
e
y
n
y
o

p
u
n
j
o
r

eTA
p
u
n
y
e
r

ySseT
Jo

|
u
t
y
)

O
Z
E
L
0
0

4
(
a
z
a
s
u
e
d
s
t
p

eta
e
s
u
a
d
s
t
p

4seT
Jo

ouwtz))
x
e
m

r
a
q
z
e

O
L
E
L
O
O

J
O
T
S

u
T
O
D

PTA
(
e
Z
T
S
*
s
U
T
O
D

PpTTRA
UT

Zz)
O
O
E
L
O
O

eg
(
z
é
=
e
z
t
s
)

yqata
A
o
u
o
w

[
T
e

o
J

0
6
z
2
L
0
0

ST
AUNOW

G
N
A
d
g
U

uoTyet|ado
[iL]

ogztod
O
L
Z
L
O
O

X
o
u
o
w

p
u
n
y
a
a
r

u
s
y
a

0
9
Z
L
0
0

(p)
3
y
H
t
T

s
n
q
e
q
s

PTA
a
s
T
e
y
=
o
n
T
e
a

o
s
z
L
o
o

y3ThA
snzeys

b
u
t
p
u
e
s

(
T
I
a
V
I
I
V
A
Y

LON
YNIUd

/
Z°0L)

onzLo0
K
e
u
o
w

p
u
n
j
e
t

u
e
y
a

O
E
Z
T
L
O
O

(
e
z
t
s
*
s
u
t
o
o

p
t
y
T
e
a

ut
x)

y
(
x
z
=
9
z
T
s
*
X
e
u
o
m
)

@
O
Z
Z
L
0
0

(
(
(
e
g
n
y
o

p
u
n
g
e
a
t

eta
punyezr

4seT
jo

a
u
t
)

O
L
z
L
o
o

4
(
z
a
s
u
e
d
s
t
p

eta
a
s
u
a
d
s
t
p

3
s
e
T

jo
o
u
t
3
)
)
x
e
u

0
0
Z
L
O
O

3
e
z
y
e

Y
O
T
S
U
T
O
D
S

e
T
A

a
n
T
e
a
*
X
a
u
o
w
=
z
)

O
6
L
L
O
0

a
r
o
y
n

O
B
L
L
O
O

a
o
t
a
d
*

(p)
s
u
o
t
y
z
o
e
T
e
s

O
L
L
L
O
O

=*
(zz)uns

[AgNoW
SNOUM

7
L*OLJ

ssatun
O9LLoo

J
e
s
u
e
d
s
t
p

eta
O
S
L
L
O
O

e
d
t
o
e
1
*

(p)
s
u
o
t
z
o
a
T
e
s
=
e
s
u
e
d
s
T
p

p
u
e
s

u
s
y
z

O
h
L
L
O
O

-248-

(e)

(£)

(g)

(b)

some information which will not become available. In

this case it is because the behaviour of the user

must be treated as random.

(Line 000920) "stock" is a continuously updated

value; it is defined as a relationship between the

amount of ingredients loaded into the machine

("fillups") and the amount of ingredients dispensed.

All three names in the equation ("stock", "fillup"

and "dispense") are structures with six components

(as defined in type "ingredients" in lines 000300 to

000360); they can be used in this way because they

have identical structure and component names.

(Lines 000940 to 000960) This expression uses

"whenever" to continuously monitor for a particular

condition (the stock of any ingredient falling below

the amounts required in the recipe for any of the

drinks). It uses a pattern-matching variable ("?x")

to stand for "any drink", so producing a _ succinct

specification of the reguired behaviour for all

drinks and all ingredients in a single statement.

(Lines 001050 to 001080) An example of the descrip-

tion of a direct response to a stimulus, written in

the "on...then..." form. It also demonstrates the use

of "unless" to deal with exceptions (in this case,

the rejection of invalid coins).

(Line 001100) A syntax error, due to the omission of

the word "then" between the stimulus and the appro-

priate response. This cause the specification text to

be skipped up to the restart point at the beginning

-249-

of line 001120.

(i) (Lines 001280 to 001330) Because the action of

refunding all the money inserted thus far occurs in

three situations (lines 001100, 001230 and 001260),

this behaviour has been defined as an operation. Note

that this operation is not a function, as it has has

no arguments and returns no result.

This example is not in any way representative of the spe-

cifications produced at GEC Telecommunications Ltd.;

however, as the above comments show, it does demonstrate

some of the power of the language. Any more realistic ex-

ample would have been significantly larger, and would

have reguired a considerable amount of introduction in

English to provide the necessary background information.

4, Errors in the Specification

After the correction of the one syntax error, the

specification was subjected to the static checks

(described in Appendix D.3). The serious errors and er-

rors which were identified appear in the listing in

Figure E.3; the warnings have not been included in order

to reduce the size of the figure. Some of the error mes-

sages have been annotated with letters which refer to the

comments in the paragraphs below.

(a) These two error messages are related, in that the

first refers to an interface named "coin_slot",

whilst the second refers to "coinslot". The omission

of the underscore character has resulted in there be-

=250-

FIGURE E.3 THE ERRORS

vending_systen

Groen Epil aes i ee es =

one end undefined:
user fingers

undefined message component:
selected— — — --——

message type conflict:
Status status_light

message type ccnflict:
status status_light

message typ? cenflict:
status status_light

message type ccnflict:
status status_light

message type ccnflict:
status eyes tea_machine

DETECTED IN THE SPECIFICATION

tea_machine 1.1.0.0.0.

.
vending_system 2.1.0.0.C.-*

tea_machine coinslot <—~-~

tea_machine 7.1.0.0.0.
user eyes

tea_machine 7.1.0.0.0.
user eyes

tea_machine 7.2.0.0.0.
user eyes

tea_machine 7.2.0.0.0.
user eyes

user 3.9.C.0.0.
status_light

te

-
=
=

4
,

--

-
-
-
-

(a)

user 5.0.0.0. 0. —-(b)

contd.

=254—

FIGURE E.3 continued

errors

messag2 never used: vending_system 326. 0.020. 3--(c)

fillup-~-----------------
<=

message not received: user 4.0.0.0.0.

money fingers tea_machine coinslot «-— - —=-(e)

message not received: user 4.0.0.0.0.

money fingers tea_machine selector

message not received: user 4.0.0.0.0.

_money fingers tea_machine refund_button

message not received: user 5.0.0.0.0.

reguest_drink fingers tea_machine coinslot

message not received: user 5.0.0.0.0.

reguest_drink fingers tea_machine refund_button

message not received: user 6.0.0.0.0.

refund fingers tea_machine coinslot

message not received: user 6.9.0.0.0.

refund fingers tea_machine selector

= 25 a=

ing two unigue names where only one should exist.

(b) The reference to “request_drink with selected..." in

line 000610 of Figure E.2 is not consistent with the

fact that in line 000260 “request_drink" is defined

as having no components.

(c) The "status" being sent via "Status_light" is a con-

tinuous message (i.e. sent by "start sending...")

when it leaves the "tea_machine", but the "user" is

not trying to receive it as "on start of....". Hence

there is a conflict between the behaviour descrip-

tions in the two models, which must be resolved and

corrected.

(d) No provision has been made in the specification for

the "tea_machine" to be refilled with ingredients,

and this is recognised as a message which has been

defined but is never used.

(e) Another error message which is a consequence of the

mis-spelling of "coin_slot", as mentioned in (a)

above.

Finally, as no computer facilities were available for the

semantic checking, a Predicate/Transition net model of

the system was derived manually from the specification.

Figure E.4 shows an incomplete version of this net; in

order to simplify the diagram only the tea_machine has

been shown, and almost all of the labels on places and

transitions have been omitted. The manual translation

which produced this net is likely to have introduced er-

rors itself, but it is still possible to identify errors

in the specification, as in the following examples.

2 oaen

(i) "refill" (shown in Figure E.4 as a place containing a

question mark) has no source. This had been identi-

fied by the static checks (see (d) above), but had

not been corrected.

(ii) Both a refund and the selection of a drink may take

place at the same time. As the specification states

no priorities, this will result in a drink and a

refund.

(iii) Similarly, there is nothing to cover the insertion

of a coin at the same time as a request for a refund.

-254-

=250=

APPENDIX F

RESULTS OF THE TRIALS AT GEC

1. Problems Arising During the Trials

1.1 The Categories

As a large proportion of the problems which arose

concerned errors and omissions in the original version of

the syntax definition, there was no particular pattern to

them. The complete list of problems which follows has

therefore been split into four categories based upon

their effect upon the definition of ASL. These categories

are:

(a) inconsistencies,

(b) simple alterations and extensions,

(c) missing constructs,

(d) other proposals for alterations,

and they appear as sections F.1.2 to F.1.5 respectively.

1.2. Inconsistencies

This category contains the largest number of items,

but all are of a minor nature. They all represent points

-256-

where the initial syntax definition of ASL contained un-

necessary restrictions or unintentionally awkward

constructions.

(a) Any results being returned by a defined operation

could only be given values in a fixed relationship

statement. Thus it was not possible to utilise the

"select" form to provide a more comprehensible

definition.

(b) Although it was possible to use:

Xein 2

where z is a defined data type, the form:

Rein tea, baton 1d sy

was not allowed.

(c) "first" and "last" were provided to refer to past

messages, but there was no similar method of refer-

ring to the intermediate messages.

(d) A bothway interface might be sending and receiving

identically-named messages, but it was not possible

to specify in a message-pattern that only one direc-

tion should be chosen.

(e) Additional brackets were required around message

patterns, eg:

send (x with y) via z

as the "via z" was being associated with the "y"

rather than with the "x".

(£) Messages could not have any information content un-

less they had at least one component. Thus, a message

with only one component had to have two names, one

for the message and one for the component. This was

=257—

both unnecessary and confusing.

(g) An anonymous pattern-match (i.e. "?" without a fol-

lowing variable name) could not be used in the place

of a received message.

(h) The name of an interface for either received or

transmitted messages could not be a pattern-matching

variable.

(i) "undefined" or "unknown" messages had to be sent via

"undefined" and "unknown" interfaces respectively. It

was not possible to have:

.»...send undefined via x

(j) Behaviour statements inside the definition of an

operation could not make use of the "unless" form for

representing alternatives.

(k) Names representing logical values (i.e. having the

values "true" and "false") had to be compared with a

logical constant to form a valid condition:

«---select (y=true).....

rather than allowing the simpler form:

seeeserect (y)i\c.~

(1) The first word in a comment had to be alphabetic, and

comments could not contain any special symbols.

All the items listed above were treated as errors in the

syntax definitions, and were therefore corrected as soon

as they were detected. Appendix B.2 shows only the cor-

rected version of the definitions.

-258-

1.3. Simple Alterations and Extensions

The participants in the trials suggested a number of

changes to ASL. Of these, some were simple to introduce

into the language, whilst others implied significant al-

terations to the formal definitions. The items listed

below fall into the category of simple changes, and have

all been included in the syntax shown in Appendix B.

(a) An extension to the paragraph numbering scheme al-

lowed paragraph numbers containing only a comment to

be used as headings. This improved the facilities for

structuring the text inside a model.

(b) Operations (see Chapter 4.4.9) were originally called

"functions", but this was felt to be confusing as

they are not restricted to being strict mathematical

functions.

(c) The symbol ":=" was originally used in fixed rela-

tionships instead of "is". This was changed to avoid

confusion with the use of the same symbol as an as-

signment operator in many programming languages (e.g.

Pascal (Jensen & Wirth, 1975)).

(d) "interface" and "message" were added as primitive

types in the language, so that arguments passed to

operations could be of these types.

(e) Definitions were allowed to make use of local sub-

definitions, of the form "where...." (see Chapter

4.4.9), e.g.:

X : interface where x in incoming_trunks

(f) Any defined operation which is common to a number of

spk

models may be placed in the system block, rather than

having to be repeated inside each model which uses

it.

(g) Limits of ranges may be shown as simple expressions,

rather than having to be written as constants, and

ranges may be used as a shorthand inside enumerated

data types.

(h) The response to a stimulus may be expressed as an or-

dered sequence, if necessary, by using the word

"sequence" followed by the appropriate actions as a

series of sub-paragraphs.

1.4. Missing Items

A number of the comments relate to features which are

definitely missing from ASL. However, the incorporation

of these would require extensions to the type-checking

rules (see Appendix B.3 and B.4) or the semantic model

(see Appendix C). They have therefore been left as part

of the further development of the language, as discussed

in Chapter 8.3.

(a) The use of number bases other than 10 (e.g. octal,

hexadecimal).

(b) Operators to work on data types constructed using

"string" (e.g. concatenation and sub-string

operators).

(c) A method of defining a data type as the union or in-

tersection of a number of other data types.

(d) The ability to give values to the whole of a data

-260-

structure in a single statement, without having to

mention each component by name.

(e) Some specific facility for initialising the models.

This would have to cover both the setting of initial

values of names and also the equivalent of switching

on the power supply.

(£) Extension of the domains represented by data types so

that references to non-existent interfaces or array

subscripts do not merely return "undefined". It may

be necessary to have some identifiable indicator for

each sort of error.

(g) Although a method of describing sequences of actions

was added to the language (see Section 1.3(h) of this

appendix), both this and references back to past mes-

sages became cumbersome when the sequences were long

and uniform (e.g. a seguence of bits making up a

character). This is mainly due to the amount of in-

formation which has to be repeated for each item in

the sequence. It should be possible to devise an im-

proved form of syntax which avoids this repetition.

1.5. Other Proposals for Alterations

. The remaining items, which are listed below, were not

as clearly defined as those covered in previous sections;

most of them arose as tentative suggestions, which their

proposers were unable to expand upon. They have therefore

not been incorporated into the language or included in

the proposals for further development, and some of them

-261-

are incompatible with the original design aims of ASL.

(a) One of the reviewers of the data-rate adaptor specif-

ication felt that this would have been easier to un-

derstand if the system block had contained a state-

ment of the relationship between the interconnections

and the messages. That is, he would have liked to see

the definitions of the messages passing through an

interconnection placed next to the statement of that

interconnection. Although this would have been simple

to arrange in the case which he was reviewing, other

specifications involved the same message name passing

over more than one interconnection. Enforcing this

linking of interconnections and messages would there-

fore lead to duplication of information in many

cases.

(b) Operations are permitted to return multiple results,

as in the following example:

x, y, z is three result(a, b)

but this syntax may not be particularly clear if the

list of names spreads over more than one line in the

specification text. Some form of bracketing may as-

sist the reader, but ASL already makes use of all the

normally available forms of bracket.

(c) The form "take any one of....", introduced to indi-

cate a non-deterministic choice, can be achieved by

using a "select" with the selection between the al-

ternatives based upon "undefined". This therefore re-

presents an unnecessary duplication of facilities in

the language, so that one form could be removed. It

—262—

(d)

(e)

is not obvious, however, whether the removal of this

type of redundancy would have any effect upon the

comprehensibility of specifications.

In the disk checking system (see Chapter 6.3) one

field in a message had two different meanings,

depending upon circumstances. The specification

writer suggested that ASL should allow the field to

be given more than one name, with these being treated

as aliases. This would add complexity to the checking

of specifications (see Chapter 5.2); it would be

necessary to ensure that there was no _ conflict

between the uses of the aliases, such as the concur-

rent assignment of different values to aliases for

the same name.

The existing implementation of the route-handler

module (see Chapter 6.5) involves the dynamic crea-

tion of new instances of the route handler as a

result of the module calling itself recursively. ASL

does not have any method of dynamically creating new

models, as this would violate two basic principles of

the language:

(i) models are not aware of the interconnections or

of the other models in the system, as they only

know about their own interfaces,

(ii) the system block, which contains details of the

interconnections, is not an active entity and

cannot receive messages.

The only way to describe the required situation in

ASL is to create the maximum number of route handlers

—263—-

which can ever exist, but with these remaining dorm-

ant until sent a message. However, this seems a

rather cumbersome method of achieving the desired

result, and further investigation is reguired into

possible alternatives.

2. The Questionnaire

2.1. Design of the Questionnaire

The small number of participants in the trials pre-

sented problems in the analysis of the results, as

discussed in Chapter 7.3.1. One further consequence was

that it was not possible to test the questionnaire on a

small sample of the audience, as is normally suggested

(e.g. Kornhauser & Sheatsley, 1965). It was therefore

decided to attempt to maximise the opportunities for the

participants to record their comments in any form which

they felt appropriate. Thus, the core guestions were pre-

sented in multiple choice form, to ensure that some an-

swer would be given on all the features of the language,

but with plenty of space left for free-form comments.

Other questions were then introduced which asked for

opinions and more general comments.

The questionnaire, which is shown in full in Figure

F.1, consisted of the six sections listed in the table

below. These progress from general questions about the

background of the participants to more particular

questions about their experiences with ASL. This is the

-264-

FIGURE F.1. THE QUESTIONNAIRE

QUESTIONNAIRE ON THE TRIAL USE OF ASL

INTRODUCTION

You have taken part, either as a specification writer
or reviewer, in one of the projects which have used ASL.
I would now like to have a record of your comments and
criticisms, in order to consider how ASL can be improved.
This questionnaire is therefore intended to act as a
guide, by listing a series of questions and possible
answers, so that the responses from all the people who
took part are in a consistent form. However, please note
that:

(a) The list of questions (and the alternative
answers) may not cover all the comments which you
wish to make. Space has been left between questions
for you to record any extra information, and if you
require even more space please use the reverse side
of the pages.

(b) If you do not feel thet the answers provided
cover your point of view, then add another answer or
give additional explenation in the space following
the question.

(c) If any question appears irrelevant, or if you
have no particular views on it, then don't answer
that one.

The questionnaire is in six sections, but Section 5 is
only appropriate to those people who have used other
specification languages aswell as ASL, and some of the
questions in Sections 3 and 4 are particular to people
who wrote (or in some cases, reviewed) specifications
Please ignore the questions which do not relate to the
role in which you contributed to the trials.

Thank you very much for your co-operation

P.Blackledge.

Extn, 3481

contd.

—265—

FIGURE F.1. continued

SECTION 1 GENERAL

1.1 Please give your name, in block capitals

1.2 Date completed:+.+40+ sees is

1.3 Have you previously been involved in the use of any
of the following specification languages ? (Please
tick as appropriate.)

English ae

Progression Charts Sate

Message Sequence Charts

CCITT SDL

FSIS / FCIS sees

Jones’ Rigorous Method

ces ree

Any Others (Please give names) ..

=266—

contd.

FIGURE F.1. continued

1.4 Have you personally used a high-level programming
language (e.g. Pascal, Coral, Fortran or some form of
program design language) in the projects on which you
have worked ? (Please tick.)

Yes .

HO soe.

1.5 Which ASL specification(s) were you involved with?

1.6 In what capacity were you involved?

Reader...

Writer

=—267)=

contd.

FIGURE F.1. continued

SECTION 2 SPECIFICATIONS

2.1 What do you feel will be the effect on project
progress of insisting that a formal specification is
written before design is commenced ? (Please tick.)

It will binder progress Seat

It will have no overall effect

It will save time in the end

2.2 Do you feel that the creation of a formal
specification will help by detecting errors which
would otherwise not have been noticed until much
later ?

Yes, it will

No, it won't

Don't know

contd.

=265—

FIGURE F.1. continued

2.

2.

3

4

Are there any other advantages or disadvantages of
formal specifications which you can think of?

(a) Is it advantageous to restrict all projects
within the company to one particular
specification language ?

Yes Ghse

No

Don't know ...-

(b) If your answer to (2) was 'No', please indicate
how many different languages you would allow.

=269-

contd.

FIGURE F.1. continued

Jal

(a)

(b)

{c)

(2

fe

(f

(g)

SECTION 3 ASL.

What did you think of each of the following
features of ASL? (Please tick & comment as
appropriate)

Awkward/
unclear Neutral

the block structure gene

The use of the system block
for common information seek wees

the "black box" models

the upper/lower case
distinction in names Sige noe

paragraph numbers Br tae

the siting of definitions ae bets

the form of definitions Bins eet

Gi =

20s

contd.

FIGURE F.1. continued

Awkward/
unclear Neutral Clear

(bh) the "on . then ..
way of describing behaviour Eo

G)

qi)

(k)

a

(m)

(n

(0)

the use of “unless” for
alternatives in behaviour sees eeu

the use of “select” Fes oe

the "2x" way of matching
against messages tide why

references to time delays eel Sas

the limitations on
the siting of comments Beets os

the method of describing
sequences of messages doc Pere

local definitions,
using "where” sees tee

-271-

contd.

FIGURE F.1. continued

Awkward/
unclear Neutral Clear

(p) functions as a shorthand eee rae snes

(g) the use of "whenever" to deal
with exception conditions eg vans naar

(rt) the difference between
instantaneous and continuous

messages si

(s) any other features on which you wish to comment..

contd.

s27 25

FIGURE F.1. continued

ae 2 (For reviewers only)

(a) How difficult did you find it to understand the
ASL specification ?

Very easy

Easy

OK

Bard tees

Very hard .

Other (Please explain) ...

(b) What did you find most difficult to understand?

ie

contd.

FIGURE F.1. continued

3.3 (For writers only)

(a) How difficult did you find it to write a
specification in ASL ?

Very easy

Easy 56

OK ee

Hard

Very hard

Other (Please explain) ..

(b) What did you find the most difficult feature of
the language to understand ?

(c) What did you find the most difficult feature to
use ?

ioe

contd.

-274-

FIGURE F.1. continued

(8) What did you find the most useful feature of
ASL ?

(e) Did writing the ASL specification uncover any
errors or problems which had not previously been
detected ?

3.4 Any other comments which you would like to make on
the use of ASL, or on the structure and layout of
specifications written in the language

a=

eso

contd.

FIGURE F.1. continued

SECTION 4 SUPPORT AND DOCUMENTATION

4.1 “The Language Reference Manual. Please comment upon

(a) general readability.

(b) ease of finding required information.

{c) does it contain the information which you
require?

=a2 =

=27.6—

contd.

FIGURE F.1. continued

(d) are there any items which ere not sufficiently
well explained ?

4.2. The guide, "An Outline Method for Writing
Specifications in ASL."

(a) general readibility.

(b) is the information presented in a useful
sequence?

(c) does it contain the information which you
require?

=277—

contd.

FIGURE F.1. continued

(8) are there any items which are not sufficiently
well explained ?

4.3 (For writers only)

(a) Please comment upon the existing computer-based
facilites (syntax analyser and checker).

(b) What additional facilities would you most like
to see ?

-278-

contd.

FIGURE F.1. continued

SECTION 5 COMPARISONS

NOTE: This section is only appropriate to those people
who have used another specification language, as it asks
for comparisons between ASL and other languages.

If you have not used another specification language,
then please go straight to Section 6

5.1 Please identify the other specification language(s)
with which you will be comparing ASL.

5.2 Please identify the merits/demerits of ASL when
compared with the other language(s). Five main areas
of comparison are listed below, but please add any
others which you feel are appropriate.

(a) The structure and sequence of the
specification.

25s

contd.

e213

FIGURE F.1. continued

(b) The method of describing behaviour.

(c) The language syntax.

(8) The underlying model of systems

i (e) The comprehensibility of the resulting
specifications.

eae
contd.

—280-

FIGURE F.1. continued

5.3 Any other points of comparison.

= ge
contd.

=281=

FIGURE F.1. continued

SECTION 6 ANY OTHER REMARKS

= 16 =

=282—

order suggested in Kornhauser and Sheatley (op cit).

Section Content

wy Name, etc., and previous ex-

perience of formal languages.

2 Attitudes to specifications

generally.

3 Detailed comments on ASL.

4 Comments on documentation sup-

porting ASL.

5 Comparisons of ASL and other

languages.

6 Any other remarks.

The covering note, giving instructions to the

participants, attempted to induce them to make full use

of the space for comments, opinions, etc..

2.2. The Responses

As a result of the emphasis placed upon the recording

of opinions, the responses have to be viewed in two

parts. Table F.1 covers those questions which had

multiple-choice answers, where the responses have been

analysed by counting the number of positive, negative and

neutral answers. This allowed points of general agreement

amongst the participants to be extracted; these were

discussed in Chapter 6.6.5. Many of the remainder of the

responses, which took the form of unstructured comments,

corresponded to the problems which had been recorded dur-

=250—

ing the trials. As these are covered in Sections 1.2 to

1.5 of this appendix, they have not been repeated here.

Table F.2 therefore contains a precis of the remaining

comments.

-284-

TABLE F.1 RESPONSES TO MULTIPLE-CHOICE QUESTIONS

Note: Throughout the table "Y" indicates a yes, "N" a no,
"+" indicates a positive response, "-" a negative
one, and "0" a neutral one.

Person

B
e

B
N

H
w

u
e

N
u

w
a

Trial - -

Question

3 Specn language experience
4 Programming experience
6 Role (Reader or Writer)
1 Effect of specn on progress
2 Effect of specn on errors
4 Better to use one language
1 The parts of ASL

(a) the block structure

(b) the system block
(c) "black box" models
(d) use of upper/lower case
(e) paragraph numbers
(£) siting of definitions
(g) the form of definitions
(h) “on....then...."
(i) "unless"
(j) the use of "select"
(k) pattern-matching
(1) time delays
(m) siting of comments
(n) description of seguences
(o) local definitions
(p) operations
(g) "whenever"
(cr) instant/contin. messages

3.2 (a) comprehensibility
3.3 (a) ease of use (writers)
4,1 The language reference manual

(a) readability
(b) ease of reference
(c) information content
(d) explained well

4,2 The outline method guide
(a) readability
(b) information sequence
(c) information content
(d) explained well

o
o
r
s
K
a

+
1
0
O
D
K
Z

o
+
r
o
v
7
a
Z
z

o
+
r
+
e
2
z

C
O
+
T
W
K
K

+
O
r
D
a
K

l
+
+
E
K
n
K

I
+
+

D
K
K

1
o
t
r
t
o
o
0
1
o
r
t
t
t

t
o
t
o
t

b
s

.1
 +
+

6

1
+
4
+
1

tL

t
F
O
O
C
O
I
T
+
O
F
+
F
4
+

0
0
4
0
4
4

C
O
t
F
F
O
l
1

+

O
0
0
0
0
F
H
4
+
1
0
0
4
F
0
F
+

L
t
t
t
t
t
F
O
H
F
O
O
H
H
F
O
I
L
+
F
O
F
H
H
E
H

T+

H
F
O
H
F
O
O
l
t
F
t
e
t

t
+

+
O
t
t
t

t
+
t
+
F
t
O
L
O
F
t
e
e
e

ee

t
e
e
t
e

C
O
F
O
H
F
O
I

H
F
O
H
H
F
+
F
H
F
O
H
O
H
O
H

1
+
+
o
o
1
o
t

1 1 Se

+
o
 °o

o
1
0

e
c
o
o
o

o
o
l

1
o
1
o

e
o
o
o

t
t

m
e

S
o
l
o

O
t
t

r
o
:

t
e

+
+
t
t
+

o
o
o
o

+
t
e
t

b
t
t
+

+
+
+
0

+
+
e
t

=285—

TABLE F.2 THE OTHER COMMENTS

Question Person Comment

2.3 (Advantages/disadvantages of formal languages)
i Many people need to be fluent in

the language before it is useful.
4,78 8 Permits validation and verification.
6 A single, standard language is

needed worldwide.

3.1(£) (Siting of definitions)
3 The freedom to site definitions

anywhere can easily be misused.

3.1(m) (Siting of comments)
2, Comments difficult to identify

because of different opening and
closing "brackets".

3.1(s) (Other comments on features of ASL)
2 It would be easier to read if

reserved words were highlighted.

3.2(b) (Most difficult feature for readers)
6 Recognition of reserved words.
8 Reference to history instead of

"state".

3.3(b) (Most difficult feature for writers)
iz Difference between instant and

continuous messages.
ui The method of expressing time delays

is awkward.

3.3(d) (Most useful feature for writers)
4 The block structure.
7 The "black-box" view.

3.4 (Any other comments on ASL)
8 The constructive methodology is very

useful.

4.1(a) (Reference manual - readability)
4 A reader unfamiliar with BNF may

find it very difficult to understand.

contd.

=286-

TABLE F.2 continued.

Question

4.1(b)

4.1(c)

4.1(d)

4.3(a)

4.3(b)

5.2(a)

5.2(b)

522(c)

Person Comment

(Ease of finding information)
- Bad to jump about between sections

to find things.

(Information content)
i Some of the “limited" syntax in the

text is misleading.

(Items insufficiently explained)
7 The linking of more than two models.

(The computer-based support facilities)
Error messages are too cryptic.

4 Better error recovery needed.

(Most urgent enhancements)

gf The ability to use the ASL code as
a simulation model.

4 A more sophisticated editor for

ASL text.

(Specification structure)
4 Little different from using English.
6 Not as obvious as in progression

charts or English, but better than
in FSIS.

(Method of describing behaviour
1 Stilted.
6 Does not seem to enforce complete

description.
7 Adequate and natural.

(The syntax)

a Possibility of misunderstandings due
to use of English words.

6 Discouraging when compared to
progression charts.

2 A more concise notation would be
better.

contd.

-287-

TABLE F.2 continued

Question Person Comment

5.2(e) (Comprehensibility)
7, Readable and comprehensible, but

verbose.

5.3 (Other points of comparison)
6 The flexibility of ASL leaves it

to the writer to achieve
comprehensibility.

a Unable to manipulate to perform
proofs.

6 (Any other comments)
2 Does not cover optional and

desirable features of a system.
4 Separation of behaviour part of

specification from design
constraints is beneficial.

6 Needs to be used on larger examples.
a No facilities for expressing

performance requirements.

-288-

APPENDIX G

GLOSSARY OF TERMS AND ABBREVIATIONS

This glossary contains an alphabetic list of words

which have been used with particular technical meanings,

plus the few abbreviations which appeared in the text. In

each definition, words which themselves appear in the

glossary are shown underlined.

abstract. (Applied to a description or specification.) At

amore general level; having much of the detail

removed, in order to produce a simpler description.

aggregation. A named collection of information.

algorithmic. (Applied to a language.) Requiring opera-

tions to be described in terms of a step-by-step

method (i.e. in the form in which that operation

might be performed by a computer).

analyser. (As in e.g. "syntax analyser".) A computer pro-

gram which performs some form of checking upon state-

ments in some language.

applicative. (Applied to a programming language.) A type

of programming language which avoids the use of vari-

ables and assignment statements, and instead follows

the style of pure mathematics.

=259-

ASL. An acronym for "A Specification Language".

assertion. A statement of conditions which must be true

at all points in time or at particular (named) points

in time.

assignment. (In a programming language.) The operation of

associating a new value with a name (known as a

variable). Any previous value associated with that

name is destroyed by an assignment operation.

axiomatic. (Of a specification language.) Describing the

behaviour by means of statements which define the

relationships between the various parts of that

behaviour.

Backus-Naur Form. A language which is used to define the

context-free syntax of a language.

behaviour. (Of a system.) The responses which the system

will make when subjected to external stimuli. Both

the stimuli and the responses take the form of

messages.

black box. (Of a system.) A term used in systems en-

gineering to signify that a system is being viewed

only in terms of its externally-visible behaviour,

and without considering any underlying mechanism

which might be producing that behaviour.

BNF. See "Backus-Naur Form".

change control. An administrative procedure which at-

tempts to ensure the compatibility of alterations to

different parts of a product.

CHDL. See "computer hardware description language".

chunk. A term used by psychologists to represent a single

-290-

"unit" of information in human memory.

computer hardware description language. A language which

describes digital computer operation in terms of the

transfer of data between hardware registers.

concurrent. (Of a system.) Having a number of parts of

its behaviour which may be taking place at the same

time.

conflict. (Of the behaviour of a system, particularly in

Petri net models of systems.) A situation where the

system has a number of possible responses to a

stimulus, and no way of identifying which of the al-

ternatives should be chosen. Hence, the behaviour in

this situation is non-deterministic.

context-free. (Of the syntax of a language.) A form of

syntax definition where the rules do not refer to the

context of a statement (i.e. other statements in the

text) in order to determine whether it is syntacti-

cally correct. The requirement to make a language

have a context-free syntax acts as a limitation on

the complexity of that language.

cross-reference. The equivalent of an index, being a list

of all the names used in a specification, indicating

every place where each name is used.

database. An organised, computer-based information

storage and retrieval system, which permits users to

access the information without having any knowledge

of the form in which it is physically stored.

data type. (In a programming language.) The name of a

class of objects; it identifies both the domain of

29d

values which can be taken by those objects, and the

operations which may be performed upon them. Often

abbreviated to "type".

deadlock. (Of a system.) A situation where a system fails

to respond to stimuli due to some unresolved conten-

tion for limited resources.

declaration. (In a programming language.) The statement

which introduces a new instance of a particular data

type.
denotation. (As in "denotational semantics".) The at-

tribution of meaning to statements in a language by

refering to ("denoting") one or more mathematical ex-

pressions which define the equivalent operation.

descriptive reference. A reference to an object by means

of a list of its attributes, and not by the use of

its unigue name.

editor. (In Ponpurer cased systems.) A program which al-

lows a user to create and modify blocks of text

through some kind of computer terminal.

environment. Everything which is not part of the system

being specified. Usually, only that very small part

of the total environment which is in direct communi-

cation with the system needs to be considered.

firmware. An integrated circuit device containing some

information which is not destroyed when the device is

switched off, but which can still be altered as

necessary.

formal. (Of a language.) Having well-defined syntax and

semantics. This requires that the syntax and seman-

E202=

tics are defined in terms of some mathematical model.

function. (In mathematics.) A relationship between the

members of two sets such that every member of the

first set has a relationship to one memeber of the

second set. Can be thought of as a subroutine in a

programming language which, when given some inputs,

will always return a result.

functional. (Of behaviour.) Concerned only with the

responses made to external stimuli, and not with the

mechanisms which create those responses. (See also

"black box".)

generalisation. (In the description of behaviour.)

Description of behaviour which is appropriate to

whole classes of events or objects rather than just

to individuals.

graphic. (Of a language.) Having pictures or diagrams as

its major form for presenting information.

hardware. The physical items (e.g. electrical

components, nuts, bolts, printed circuit boards,

metalwork) from which a product is constructed.

heuristic. (Of a method.) Consisting of guidelines or

"rules of thumb", and so not guaranteed to always

produce the desired result.

hierarchical. (Of the design or documentation of a

system.) Organised as an ordered set of levels, with

the top level being the most abstract, and with each

subseguent level adding more detail.

high-level language. A term usually taken to mean pro-

gramming languages such as FORTRAN, Pascal and Ada

-293-

(which are at a “high level" of abstraction when com-

pared with machine code).

imperative. (Of a programming language.) Indicates a type

of language which uses variables and assignment

statements. Used as the opposite of applicative.

implicit. (Of the specification of behaviour.) Not

directly describing a method by which the stimulus-

response behaviour of the system could be achieved.

Used as the opposite of algorithmic.

instance. (Refering to a data type.) An individual object

which is a member of that data type.

interface. A point of connection between a system and its

environment.

interpretation. (Of a model.) The method of providing

readers with a link between the abstract symbols in

the model and the real entities which they represent.

invariant. A peatenent defining a condition which must

not be violated by the system being specified. The

condition may be reguired to hold at particular

points in time or at all times.

issue. (Of a document.) The release of a particular ver-

sion of the document to its audience. Issues are

usually uniquely identified by an issue number, so

that readers are made aware that the content of the

document has been changed.

language. A _ set of symbols together with a set of rules

("grammar") which defines the meaningful sequences of

those symbols.

level. One of an ordered set of descriptions of a system

=-294-

with different degrees of abstraction. (See also

hierarchical.)

Message. An instantaneous transfer of information between

a system and its environment through one of the in-

terfaces of that system.

methodology. Used in the American sense, meaning a method

plus the appropriate organisational support.

minimality. (Of a specification.) Stating no more in-

formation than is necessary to define the required

behaviour precisely.

model. An abstract description of a system written in

some formal language.

modular. (Of a design.) Organised as a set of building

blocks, each of which can be replaced or redesigned

independently of the others.

natural. (Of a language.) Used in normal (i.e. written

and spoken) communication, unlike computer program-

ming languages which were designed for a particular

purpose and do not have a spoken form.

notation. A set of symbols and rules for their use. The

word is used to indicate a symbol system which is not

a complete language.

object. A model of a physical entity or concept, repre-

sented by the name of the object together with a col-

lection of properties which are relevant to the in-

tended use of that model.

operation. (In ASL.) A defined sequence of behaviour, or

a function. Used to avoid repeated writing of common

expressions.

=295-

operational. (Of the semantics of a language.) Defined in

terms of the operation of a particular implementation

of the language, rather than in terms of an abstract

mathematical model.

Parallel. Taking place at the same time. (See

concurrent.)

post-condition. One of a set of statements which will be

true after the completion of the operation to which

they refer, provided that the pre-conditions of that

operation were true when it commenced.

pre-condition. One of a set of statements which must be

true before a particular operation is invoked if that

operation is to produce the reguired result. (See the

related term, post-condition.)

primitive. (Of some term in a specification or program-

ming language.) Assumed as basic, and therefore not

defined in -terms of its construction from simpler

operations.

production. (In the definition of the syntax of a

language.) One of the rules which define the permit-

ted seguences of symbols taken from the alphabet of

the language.

program proving. The procedure of constructing a mathe-

matical proof which demonstrates that a computer pro-

gram performs precisely the operations required by

its specification.

proof. A constructive demonstration, in mathematical

logic, that one or more statements are the conse-

guences of a set of premisses.

=—296=

Property. An attribute of an object, which can be repre-

sented at any point in time by some value.

recursive-descent. A simple method of implementing the

syntax analysis of a language, using a set of subrou-

tines which call each other recursively during the

analysis of statements.

requirement. One part of the behaviour demanded of a sys-

tem by its specification.

rigorous. (Of a specification.) Expressed in a formal

language, but relying upon informal reasoning, rather

than a complete proof, for any demonstration of

correctness.

semantics. (Of a language.) The rules which identify

those statements conforming to the syntax of the lan-

guage which also have valid meaning.

software. Computer programs.

specification. A description of the required behaviour of

a system in terms of the responses which that system

will make to any stimuli which it receives.

Statement. A sequence of symbols in some language which

form a logical unit of meaning. Analagous to a_ sen-

tence in a natural language.

sub-system. Some portion of a system which has been iden-

tified as an element in the hierarchical description

of that system. At the next lower level in the hier-

archy that sub-system is treated as a system itself.

syntax. (Of a language.) The set of rules which define

the valid sequences of symbols taken from the al-

Phabet of the language. These rules are known as

=29 7 —

productions.

system. Some object which has been identified as separate

from its environment so that it can be treated as the

intended product from the design process.

textual. (OF a language.) Presented as strings of

characters, rather than as pictures or diagrams. The

opposite of graphic.

theorem proving. The mathematical methods used in program

proving.

top-down. (Of a design method.) Strictly following the

development of a hierarchical set of descriptions of

the system from the most abstract down to the most

detailed.

tractability. (Of a language.) Ease of manipulation, in

the way that algebraic equations may be manipulated

without affecting their meaning.

transformation.

(i) On data. Some manipulation performed by a system

upon the data.

(ii) As a method of implementing a system. The deri-

vation of a product from a specification by a

seguence of small improvements, each of whieh will

not affect the correctness of the system.

type. (In a programming language.) "type" is an abbrevia-

tion of data type.

validation. Checking which involves the comparison of a

model with a set of mental concepts, and which can

therefore never demonstrate total correctness. (See

verification, which covers formal checking.)

=—290=

variable. (In a programming language.) A name which is

associated with a single storage location. At any

point in time, a variable has only one value, and

when this value is changed by an assignment statement

any previous value is destroyed.

verification. Checking by the comparison of two

descriptions, both written in formal languages. Thus,

verification can show that one of the descriptions is

a correct representation of the other in a way that

validation cannot.

= 299 =

REFERENCES

(Abrial, 1980) J.R.Abrial, "The Specification Language
Z - Syntax and Semantics", Oxford University Program-
ming Research Group, April 1980.

(Aho & Ullman, 1977) A.V.Aho and J.D.Ullman, "Principles
of Compiler Design", Addison-Wesley, Reading, Ma.,
1977.

(Alberts, 1976) D.S.Alberts, "The Economics of Software
Quality Assurance", pp 433-432 in AFIPS National Com-
puter Conference, 1976.

(Alford, 1977) M.W.Alford, "A Requirements Engineering
Methodology for Real-time Processing Requirements",
IEEE Transactions on Software Engineering, Vol.SE-3,
No.1, pp 60-69, January 1977.

(Alford, 1979) M.W.Alford, Presentation on SREM at the
Symposium on Formal Design Methodology, Cambridge,
England, April 1979.

(Ambler & Good, 1977) A.L.Ambler and D.I.Good, "Gypsy -
A Language for Specification and Implementation of
Verifiable Programs", SIGPLAN Notices, Vol.12, No.3,
pp 1-10, March 1977.

(Aron, 1976) J.D.Aron, "Systems Development", Joint IBM
& University of Newcastle Seminar on Computing Sys-
tems Design, 1976.

(Ashby, 1969) W.R.Ashby, "An Introduction to
Cybernetics", University Paperbacks, England, 1969.

(ASTG, 1981) "Report of the Advanced Software Techniques
Group", British Telecom, July 1981.

(Backhouse, 1979) R.C.Backhouse, "Syntax of Programming
Languages", Prentice-Hall International, London,
1979.

(Baker, 1972) F.T.Baker, "Chief Programmer Team", IBM
Systems Journal, Vol.1l, No.1, pp 56-73, 1972.

(Balzer, 1981) R.Balzer, "Transformational
Implementation: An Example", IEEE Transactions on
Software Engineering, Vol.SE-7, No.l, pp 3-14, Janu-
ary 1981.

=300=

(Balzer et al, 1978) R.Balzer, N.Goldman and D.Wile,
"Informality in Program Specifications", IEEE Tran-
sactions on Software Engineering, Vol.SE-4, No.2, pp
94-103, March 1978.

(Balzer & Goldman, 1979) R.Balzer and WN.Goldman,
"Principles of Good Software Specification and Impli-

cations for Specification Language", pp 58-67 in
Proc. IEEE Conf. Specification of Reliable Software,
2979

(Bell et al, 1973) C.G.Bell, J.Grason and A.Newell,
"Designing Computer and Digital Systems" , Digital
Press, Maynard, Ma., 1973.

(Bell & Newell, 1971) G.Bell and A.Newell, "Computer
Structures: Readings and Examples", McGraw-Hill, New
York, L97L%

(Berild & Nachmens, 1978) S.Berild and S.Nachmens, "CS4 -
A Tool for Database Design by Infological
Simulation", in "Tutorial: Software Methodology",
eds. C.V.Ramamoorthy and R.T.Yeh, IEEE Computer
Society, 1978.

(Biggerstaff, 1979) E.d.Biggerstaff, "The Unified Design
Specification System (UDS*)", pp 104-118 in Proc.
IEEE Conf. on Specifications of Reliable Software,
1979).

(Bjorner & Jones, 1978) D.Bjorner and C.B.Jones (eds),
"The Vienna Development Method: The Meta-Language",
Lecture Notes in Computer Science, No.61, Springer-
Verlag, Berlin, 1978.

(Blackledge(a), 1981) P.Blackledge, "The Selection of a
Specification Language", pp 25-30 in Proc. 4th. IEE
Int. Conf. on Software Engineering for Telecommunica-
tion Switching Systems, Warwick, England, July 1981.

(Blackledge(b), 1981) P.Blackledge, "An Introduction to
Specifications, Specification Languages and ASL", GEC
Internal Report, October 1981.

(Blackledge(a), 1982) P.Blackledge, "A Specification Lan-
guage (ASL), Reference Manual", GEC Internal Report,
January 1982.

(Blackledge(b), 1982) P.Blackledge, "An Outline Method
for Writing Specifications in ASL", GEC Internal
Report, March 1982.

(Bobrow et al, 1977) D.G.Bobrow, R.M.Kaplan, M.Kay,

D.A.Norman, H.Thompson and T.Winograd, "GUS: A frame-
driven dialogue system", Artificial Intelligence,
Vol.8, pp 155-173, 1977.

=301=

(Boebert et al, 1979) W.E.Boebert, W.R.Franta and
H.Berg, "NPN: A Finite-State Specification Technique
for Distributed Software", pp 139-149 in Proc. IEEE
Conf. on Specifications of Reliable Software, 1979.

(Boute, 1981) R.T.Boute, "Towards a Theory of System
Semantics", Bell Telephone Mfg. Cy., Belgium, 1981.

(Bouteille, 1978) D.Bouteille, "Un Diagramme Fonctionnel
au Service des Automatismes Pnuematigues", Energie
Fluide, No.104, pp 29-34, June 1978.

(Bown, 1979) G.C.S.Bown, "HARTRAN: A Hardware Descrip-
tion Language for Digital System Design", Hirst
Research Centre Report No. 16447A, November 1978.

(Boyer & Moore, 1979) R.S.Boyer and J.S.Moore, "A Com-
putational Logic", Academic Press, London, 1979.

(Braek, 1979) R.Braek, "Functional Specification and
Description Languages as a Practical Tool for Im-
proved System Quality", pp 1.3.1.1-9 in Proc. Telecom
79, Geneva, September 1979.

(Brooks, 1975) F.P.Brooks Jr., "The Mythical Man-month:
Essays on Software Engineering", Addison-Wesley Inc.,
Reading, Ma., 1975.

(BTS, 1981) "Functional Signalling and Interface Specifi-
cation for R2 MFC as Used in China, Columbia, India
and- Portugal", Document TF.20.03.06, British Telecom-
munications Systems Ltd., August 1981.

(Bubenko & Kallhammer, 1971) J.Bubenko and O.Kallhammer,
"CADIS Computer Aided Design of Information Systems",
Proc. 1st. Scandinavian Workshop on Computer-aided
Information Systems Analysis and Design, Denmark,
April 1971.

(Burstall & Goguen, 1977) R.M.Burstall and J.A.Goguen,
"Putting Theories Together to Make Specifications",
pp 1045-1058 in Proc 5th Int. Jnt. Conf. on Artifi-
cial Intelligence, 1977.

(Caine & Gordon, 1975) S.H.Caine and E.K.Gordon, "PDL -
A tool for software design", pp 271-276 in AFIPS Con-
ference Proceedings, vol.44, National Computer
Conference, 1975.

(Campbell & Habermann, 1974) R.H.Campbell and
A.H.Habermann, "The Specification of Process Syn-
chronisation by Path Expressions",pp 89-102 in Lec-
ture Notes in Computer Science, No.16, Springer-
Verlag, Berlin.

(CCITT, ._ 1980) CCITT Plenary Assembly Document No.20
(Study Group XI, Contribution No.395), Draft Recom-

=302—

mendations 2101-2104, "Functional Specification and
Description Language (SDL)", June 1980.

(Chen, 1976) P.P.S.Chen, "The Entity-Relationship Model
- Towards a Unified View of Data", ACM Transactions
on Database Systems, Vol.1, No.l, pp 9-36, March

1976.

(Clark, 1978) I.A.Clark, "STREMA: Specifying Application
Processes Using Streams", Computer Journal, Vol.21,
No.1, pp 25-30, February 1978.

(Cleaveland, 1980) J.C.Cleaveland, "Mathematical
Specifications", SIGPLAN Notices, Vol.15, No.12,
pp31-42, December 1980.

(Clocksin & Mellish, 1981) W.F.Clocksin and C.S.Mellish,
"Programming in Prolog", Springer-Verlag, Berlin,
1981.

(CODASYL, 1962) CODASYL Language Structure Group, "An
Information Algebra, Phase I report", Communications
of the ACM, Vol.5, No.4, pp 190-204, April 1962.

(Codd, 1970) E.F.Codd, "A Relational Model of Data for
Large Shared Data Banks", Communications of the ACM,
Vol.13, No.6, pp 377-387, June 1970.

(Cohen, 1980) B.Cohen, "System Specification - Hardware
and Software - as Practised in the Telecommunications
Industry", CREST Course, Brunel University, July
1980.

(Cohen, 1981) B.Cohen, "Further Thoughts on the Contrac-
tual Model of Product Development", pp 61-68 in Proc.
System Design Seminar "Emerging Formalisms", S.T.L.
Ltd., Harlow, England, February 1981.

(Cohen & Burns, 1978) B.Cohen and G.Burns, "The Contrac-
tual Methodology", S.T.L. Internal Report, December
1978.

(Cole, 1980) A.J.Cole, "Macroprocessors", 2nd. Edition,
Cambridge University Press, England, 1980.

(Corker & Coakley, 1976) M.Corker and F.P.Coakley,
"Automatic Code Generation for SPC Call Processing",
pp 27-30 in Second Internat. IEE Conf. on Software
Engineering for Telecommunication Switching Systems,
1976.

(Cunningham & Kramer, 1977) R.J.Cunningham and J.Kramer,
"An Approach to the Design of Distributed Computer
Control System Software Using a Processor Module
Concept", pp 79-85 in Proc. IEE Int. Conf. on Dis-

tributed Control Systems, September 1977.

=305=

(Dahl & Nygaard, 1966) O-J.Dahl and K.Nygaard, "SIMULA An
Algol-based Simulation Language", Communications of
the ACM, Vol.9, No.9, pp 671-678, 1966.

(Davie & Morrison, 1981) A.J.T.Davie and R.Morrison,
"Recursive Descent Compiling", Ellis Horwood Ltd.,
Chichester, 1981.

(Davis & Rauscher, 1979) A.M.Davis and T.G.Rauscher,
"Formal Techniques to Ensure Correctness in Require-
ments Specifications", pp 15-35 in Proc. IEEE Conf.
on Specifications of Reliable Software, 1979.

(Davis & Vick, 1977) C.G.Davis & C.R.Vick, "The Software
Development System", IEEE Transactions on Software
Engineering, Vol SE-3, No.1, pp 69-84, January 1977.

(Dawkins, 1982) P.H.Dawkins, "Lead Time Reduction for New
Products", PhD dissertation, University of Aston in
Birmingham, 1982.

(Deen, 1977) S.M.Deen, "Fundamentals of Database
Systems", Macmillan Press, London, 1977.

(Demuynck & Meyer, 1979) M.Demuynck and B.Meyer, "Les
Langages de Specification", E.D.F.- Bulletin de la
Direction des Etudes et Recherches Serie C -
Mathematigues, Informatique, No.1, pp 39-60, 1979.

(Dietrich, 1979) R.Dietrich, "On a Compilable Call
Processing Specification", pp 1173-1179 in Proc.
Internat. Switching Symposium, Paris, 1979.

(Dijkstra, 1972) E.W.Dijkstra, in "Structured
Programming", ed. O-J.Dahl et al, Academic Press, New
York, 1972.

(Dijkstra, 1976) E.W.Dijkstra, "Rh Discipline of
Programming", Prentice-Hall, Englewood Cliffs, NJ,
1976.

(DoI(a), 1981) "Ada-based System Development Methodology
Study Report", Department of Industry, September
1981.

(DoI(b), 1981) "United Kingdom Ada Study Final Technical
Report", Department of Industry, July 1981.

(Duley & Dietmeyer, 1968) J.R.Duley and D.L.Dietmeyer, "A
Digital System Design Language", IEEE Transactions on
Computers, Vol.C-17, pp 850-861, 1968.

(Elton & Messel, 1978) L.R.B.Elton and H.Messel, "Time
and Man", Pergammon Press, England, 1978.

(EODST, 1981) "National R2 Signalling System (National
as Used in Bahrain", EODST CP(81)20, British Telecom-

-304-

munications Systems Ltd., 1981.

(Estrin, 1978) G.Estrin, "A Methodology for Design of
Digital Systems - Supported by SARA at the Age of
One", pp 313-326 in AFIPS Conference Proceedings,
Vol.47, 1978.

(Falla, 1981) M.Falla, "The Gamma Software Engineering
System", Computer Journal, Vol.24, No.3, pp 235-242,
August 1981.

(Fitter & Green, 1979) M.Fitter and T.R.G.Green, "When Do
Diagrams Make Good Computer Languages?", Int. J.
Man-Machine Studies, Vol.11, No.2, pp 235-261, 1979.

(Floyd, 1979) R.W.Floyd, "The Paradigms of Programming",
Communications of the ACM, Vol.22, No.8, pp 455-460,
August 1979.

(Frankowski & Franta, 1980) E.N.Frankowski and
W.R.Franta, "A Process Oriented Simulation Model Spe-
cification and Documentation Language", Software —
Practice & Experience, Vol.10, pp 721-742, 1980.

(Gaines, 1976) B.R.Gaines, “Poundations of Fuzzy
Reasoning", Int. J. Man-Machine Studies, Vol.8, pp

623-668, 1976.

(Galvin, 1981) J.L.Galvin, "Proposals for an All-purpose
R2 Signalling Specification to Permit a Wide Range of
R2 Variant Signalling Systems", Report input to
EODST, British Telecommunications Systems Ltd., Janu-

ary 1981.

(Gane & Sarson, 1979) C.P.Gane and T.Sarson, "Structured
Systems Analysis: tools and techniques", Prentice-
Hall Inc., Englewood Cliffs, NJ., 1979.

(Gannon & Horning, 1975) J.D.Gannon and J.J.Horning,
"Language Design for Programming Reliability", IEEE
Transactions on Software Engineering, Vol.SE-1l. No.2,
pp 179-191, June 1975.

(Gatto, 1974) O.T.Gatto, "AUTOSATE", Communications of
the ACM, Vol.7, No.7, pp 425-432, July 1964.

(Genrich et al, 1980) H.J.Genrich, K.Lautenbach and
P.S.Thiagarajan, "Elements of General Net Theory", pp
21-163 in Lecture Notes in Computer Science, No.84,
Springer-Verlag, Berlin, 1980.

(Gerhart & Yelowitz, 1976) S.Gerhart and L.Yelowitz,
"Observations of Fallibility in Applications of Mod-
ern Programming Methodology", IEEE Transactions on
Software Engineering, Vol.SE-2, No.3, pp 195-207,

September 1976.

=305-

(Goguen, 1979) -J.A.Goguen, "An Introduction to OBJ: A
Language for Writing and Testing Formal Algebraic
Program Specifications", pp 170-189 in Proc. IEEE
Conf. on Specifications of Reliable Software, 1979.

(Goguen et al, 1978) J.A.Goguen, J.W.Thatcher and
E.G.Wagner, "An Initial Algebra Approach to the
Specification, Correctness and Implementation of Ab-
stract Data Types", pp 80-149 in "Current Trends in
Programming Methodology , Vol.Iv", ed. R.T.Yeh,
Prentice-Hall Inc, Englewood Cliffs, NJ., 1978.

(Green, 1977) T.R.G.Green, in Panel Discussion, p. 179 in
"Software Engineering", ed. R.H.Perrott, Academic
Press, London, 1977.

(Green, 1980) T1T.R.G.Green. "Programming as a Cognitive
Activity", pp 271-320 in "Human Interaction with
Computers". eds. H.T.Smith & T.R.G.Green, Academic
Press, New York, 1980.

(Green et als. 1981) T.R.G.Green, M.E.Sime and
M.J.Fitter, "The Art of Notation", pp 221-251 in
"Computing Skills and the User Interface", eds.
M.J.Coombs and J.L.Alty, Academic Press, London,
1981.

(Gries, 1971) D.Gries, "Compiler Construction for Digi-
tal Computers", Wiley, New York, 1971.

(Grindley, 1975) K.Grindley, "Systematics - A New Ap-
proach to Systems Analysis", McGraw-Hill, London,
1975.

(Guttag, 1977) J.Guttag, "Abstract Data Types and the
Development of Data Structures", Communications of
the ACM, Vol.20, No.6, pp 396-404, June 1977.

(Hamilton & Zeldin, 1976) M.Hamilton and S.Zeldin, "High
Order Software: A Methodology for Defining
Software", IEEE Transactions on Software Engineering,
Vol.SE-2, No.1, pp 9-32, March 1976.

(Hammer et al, 1977) M.Hammer, W.G.Howe, V.J.Kruskal
andI.Wladawsky, "A Very High Level Programming Lan-
guage for Data Processing Applications", Communica-
tions of the ACM, Vol.20, No.11, pp 832-840, November
TOT.

(Hantler & King, 1975) S.L.Hantler and J.C.King, "An In-
troduction to Proving the Correctness of Programs",
Computing Surveys, Vol.8, No.3, pp 331-335, September
1976.

(Harrison, 1974) M.A.Harrison, "Some Linguistic Issues
in Design", pp 405-415 in "Basic Questions of Design
Theory", ed. W.R.Spillers, North-Holland, 1974.

-306-

(Hartley & Burnhill, 1977) J.Hartley and P.Burnhill,
"Fifty Guidelines for Improving Instructional Text",
Programmed Learning and Educational Technology,
Vol.14, pp 65-73, 1977.

(Hayakawa, 1978) S.I.Hayakawa, "Language in Thought and
Action", 4th. edition, Harcourt Brace Jovanovich, New
York, 1978.

(Hemdal, 1973) G.Hemdal, "The Function Flowchart: A Spe-
cification and Design Tool for SPC Exchanges", pp
262-270 in Proc. IEE Internat. Conf. on Software En-
gineering for Telecommunication Switching Systems,
1973.

(Henninger, 1979) K.L.Henninger, "Specifying Software
Requirements for Complex Systems : New Technigues and
their Application", pp 1-14 in Proc IEEE Conf. on
Specifications of Reliable Software, 1979.

(Hewitt, 1977) C.Hewitt, "Viewing Control Structures as
Patterns of Passing Messages", Artificial
Intelligence, Vol.8, pp 323-364, 1977.

(Hewitt et aly 1979) C.Hewitt, G.Attardi and
H.Lieberman, "Specifying and Proving Properties of
Guardians for Distributed Systems", MIT Artificial
Intelligence Laboratory, A.I. Memo 505, June 1979.

(Hill, 1972) I.D.Hill, "Wouldn't it be nice if we could
write computer programs in ordinary English - or
would it?", Computer Bulletin, Vol.16, No.6, pp 306-
312, June 1972.

(Hill & Peterson, 1973) F.J.Hill and G.R.Peterson,
"Digital Systems: Hardware Organisation and Design",
Wiley, New York, 1973.

(Hoare, 1969) C.A.R.Hoare, "An Axiomatic Basis for Com-
puter Programming", Communications of the ACM,
Vol.12, No.10, October 1969.

(Hoare, 1973) C.A.R.Hoare, "Hints on Programming Lan-
guage Design", Stanford University Technical Report

No CS-73-403, 1973.

(Hobbs, 1977) J.R.Hobbs, "What the Nature of Natural
Language Tells Us About How to Make Natural-language-
like Programming Languages More Natural", SIGPLAN
Notices, Vol.12, No.8, pp 85-93, August 1977.

(Holbeck-Hanssen et al, 1975) E.Holbeck-Hanssen,
P.Handlykken and K.Nygaard, "System Description and
the Delta Language", Delta Project Report No.4, Nor-
wegian Computer Centre Pub. No.523, Oslo, September

1975.

-307-

(Hopcroft & Ullman) J.E.Hopcroft and J.D.Ullman, "Formal
Languages and Their Relation to Automata", Addison-
Wesley, Reading, Ma., 1969.

(Humby, 1973) E.Humby, "Programs from Decision Tables",

Macdonald Ltd., London, 1973.

(IBM, 1976) "OS PL/I Checkout and Optimising Compilers:
Language Reference Manual", Fifth Edition, IBM
Corporation, October 1976.

(IBM, 1978) "OS/VS2 TSO Terminal Users Guide", Fifth
Edition, IBM Corporation, June 1978.

(Ichbiah et al, 1979) J.D.Ichbiah, B.Krieg-Bruckner,
B.Wichmann, H.F.Ledgard, J-C.Heliard, J-R.Abrial,
G.P.Barnes and O.Roubine, "Preliminary Reference Man-
ual for the Ada Programming Language", SIGPLAN
Notices, Vol.14, No.6, Part A, June 1979.

(Jackson, 1981) M.A.Jackson, "System Development Method:
JSD", IEE Colloquium on Formal Design Technigues for
Microprocessor Systems, May 1981.

(Jaderlund, 1980) C.Jaderlund, "Systematrix - Concepts",

Systematic AB, Stockholm, Sweden, 1980.

(James, 1981) E.B.James, "The User Interface: How We May
Compute", pp 337-371 in "Computing Skills and the
User Interface", eds. M.J.Coombs and J.L.Alty,
Academic Press, London, 1981.

(James & Partridge, 1973) E.B.James and D.P.Partridge,
"Adaptive Correction of Program Statements", Communi-
cations of the ACM, Vol.16, pp 27-37, 1973.

(Jensen et al, 1979) K.Jensen, M.Kyng and O.L.Madsen, "A
Petri Net Definition of a System Description
Language", pp 348-368 in Lecture Notes in Computer
Science, No.70, Springer-Verlag, Berlin, 1979.

(Jensen & Wirth, 1975) K.Jensen and N.Wirth, "Pascal
User Manual and Report", 2nd. edition, Springer-
Verlag, Berlin, 1975.

(Johnson, 1979) S.C.Johnson, "YACC - Yet Another Compiler
Compiler", UNIX Programmer's Manual, Volume 2, Sec-
tion 19, Digital Equipment Corp., 1979.

(Jones, 1979) T.C.Jones, "A Survey of Programming Design
and Specification Techniques", pp 91-103 in Proc.
IEEE Conf. on Specifications of Reliable Software,
1979

(Jones(a), 1980) C.B.Jones, "Software Development: A
Rigorous Approach", Prentice-Hall, London, 1980.

=303=

(Jones(b), 1980) T7.C.Jones, "Programming Quality and
Productivity: An Overview of the State of the Art",
I.T.T. Programming Technology Centre, June 1980.

(Jones & Kirk, 1979) W.T.Jones and S.A.Kirk, "APL as a
Software Design Specification Language", Computer
Journal, Vol.23, No.3, pp 230-232, June 1979.

(Karp, 1978) A.Karp, "Develop Software with Flowgrams",
Electronic Design, Vol.26, No.16, pp 110-
114,September 1978.

(Kawashima et al, - 1972) H.Kawashima, K.Futami and
S.Kano, "Functional Specification of Call Processing
by State Transition Diagram", IEEE Transactions on
Communication Technology, Vol.COM-19, No.5, pp 581-
587, October 1971.

(Kent, 1977) W.Kent, "Entities and Relationships in
Information", in "Architecture and Models in Data
Base Management Systems", ed. G.M.Nijssen, North Hol-
land Pub. Coy; 1977.

(Kornfeld & Hewitt, 1981) W.A.Kornfeld and C.Hewitt,
"The Scientific Community Metaphor", IEEE Transac-
tions on Systems, Man and Cybernetics, Vol.SMC-11,
No.1, pp 24-33, January 1981.

(Kornhauser & Sheatley, 1965) A.Kornhauser and
P.B.Sheatley, "Questionnaire Construction and Inter-
view Procedure", pp 546-587 in "Research Methods in
Social Relations", eds. CC. Sélitis, M.Jahoda,
M.Deutsch and S.W.Cook, Methuen & Co. Ltd., London,
1965.

(Krieg-Bruckner & Luckham, 1980) B.Krieg-Bruckner and
D.C.Luckham, "ANNA: Towards a Language for Annotating
Ada Programs", SIGPLAN Notices, Vol.15, No.1l, pp
128-138, November 1980.

(Kubn, 1970) .S.Kuhn, "The Structure’ of Scientific
Revolutions", 2nd. edition, Univ. of Chicago Press,
1970.

(Lamport, 1978) L.Lamport, "Time, Clocks and the Ordering
of Events in a Distributed System", Communications of
the ACM, Vol.21, No.7, pp 558-565, July 1978.

(Lattanzi, 1980) L.D.Lattanzi, "An Analysis of the Per-
formance of a Software Development Methodology", GTE
Automatic Electric Journal, pp 41-46, March 1980.

(Lauer et al, 1979) P.E.Laver, P.R.Torrigiani and
M.W.Shields, "COSY - A System Specification Language
Based on Paths and Processes", Acta Informatica,
Vol.12, pp 109-158, 1979.

=309=

(Lauther, 1979) U.Lauther, "A Min-cut Placement Algorithm
for General Cell Assemblies Based on a Graph
Representation", pp 1-10 in Proc. 16th Design Automa-
tion Conference, June 1979.

(Laventhal, 1979) M.S.Laventhal, "Synchronisation Spe-
cifications for Data Abstractions", pp 119-125 in
Proc. IEEE Conf. on Specifications of Reliable
Software, 1979.

(Lawson, 1977) H.W.Lawson Jr., "Programming, Architec-
ture and Complexity", Report LITH-MAT-R-1977-28,
Linkoping University, Sweden, 1977.

(Lehman, 1979) M.M.Lehman, "The Environment of Design
Methodology", keynote address to the Symposium on
Formal Design Methodology, Cambridge, England, April
19:79'9

(Lehman, 1981) M.M.Lehman, "The Environment of Program
Development and Maintenance - Programs, Programming
and Programming Support", Dept. of Computing Report
81/2, Imperial College, London, January 1981.

(Lewin, 1977) D.Lewin, "Computer-Aided Design of Digital

Systems", Edward Arnold, London, 1977.

(Lindgreen, 1973) P.Lindgreen, "The Development of a
Computerised Tool for Systems Design based on the
Qualitative Information Theory", pp 63-83 in
"Approaches to System Design", NCC, Manchester, 1973.

(Lindstrom & Skansholm, 1981) H.Lindstrom and
J.Skansholm, "How to Make Your Own Simulation
System", Software-Practice & Experience, Vol.1l,
No.6, pp 629-637, June 1981.

(Liskov & Zilles, 1978) B.Liskov and S.Zilles, "An In-
troduction to Formal Specifications of Data
Abstractions", pp 1-32 in "Current Trends in Program-
ming Methodology, Vol.I", ed. R.T.Yeh, Prentice-Hall
Inc., Englewood Cliffs, NJ., 1978.

(Losleben, 1980) P.Losleben, "Computer Aided Design for
VLSI", in "Very Large Scale Integration (VLSI) : Fun-
damentals and Applications", ed. D.F.Barbe, Springer-
Verlag, Berlin, 1980.

(Mackie, 1979) L.Mackie, "Software Reliability : Under-
standing and Improving It", pp 31-1 to 31-10 in Proc.
AGARD Conf. Avionics Reliability, its Technigues and
Related Disciplines, 1979.

(Mackie, 1981) L.Mackie, Presentation to the GEC Software
Engineering Group, February 1981.

(Malhotra et al, 1980) A.Malhotra, J.C.Thomas,

=310-

J.M.Carroll and L.A.Miller, "Cognitive Processes in
Design", Int. J. Man-Machine Studies, Vol.12, pp 119-
140, 1980.

(Marconi Radar, 1980) "FDL - Draft Issue", Marconi Radar
Systems Ltd., Chelmsford, September 1980.

(Marcotty & Ledgard, 1976) M.Marcotty and H.F.Ledgard, "A
Sampler of Formal Definitions", ACM Computing
Surveys, Vol.8, No.2, pp 191-276, June 1976.

(Merlin, 1974) P.M.Merlin, "A Study of the Recoverability
of Computing Systems", Ph.D. Thesis, The University
of California, Irvine, 1974.

(Miller, 1967) G.A.Miller, "The Psychology of
Communication: Seven Essays", Penguin Books Ltd.,
Harmondsworth, 1967.

(Mills, 1975) H.D.Mills, "How to Write Correct Programs
and Know it", Proc. IEEE Conf. on Reliable Software,
1975; appeared in SIGPLAN Notices, Vol.10, No.6, pp
363-370, June 1975.

(Mills & Walter, 1978) G.H.Mills and J.A.Walter,
"Technical Writing, 4th Edition", Holt Rinehart and
Winston, New York, 1978.

(Milner, 1980) R.Milner, "A Calculus of Communicating
Systems", Lecture Notes in Computer Science, No.92,
Springer-Verlag, Berlin, 1980.

(Moore, 1956) E.F.Moore, "Gedanken Experiments on
Sequential Machines", in "Automata Studies", Prince-
ton University Press, Princeton, NJ, 1956.

(Moriconi, 1979) M.S.Moriconi, "A Designer/Verifier's
Assistant", IEEE Transactions on Software
Engineering, Vol.SE-5, No.4, pp 387-401, July 1979.

(Mullery, 1979) G.P.Mullery, "CORE - A Method for Con-
trolled Requirement Specification", pp 126-136 in
Proc. 4th. Int. Conf. on Software Engineering, Sep-
tember 1979.

(Musser, 1979) D.R.Musser, "Abstract Data Type Specifi-
cation in the Affirm System", pp 47-57 in Proc. IEEE
Conf. on Specifications of Reliable Software, 1979.

(Nakajima et al, 1977) R.Nakajima, M.Honda_ and
H.Nakahara, "Describing and Verifying Programs with
Abstract Data Types", pp 527-555 in "Formal Descrip-
tions of Programming Concepts", ed. E.J.Neuhold,
North-Holland, 1977.

(Naur, 1960) P.Naur (ed), "Report on the Algorithmic
Language ALGOL60", Communications of the ACM, Vol.3,

—s =

pp 299-314, 1960.

(Naur & Randell, 1969) P.Naur and B.Randell (eds),
"Software Engineering", NATO Science Committee, Janu-
ary 1969.

(NCC, 1969) "“DATAFLOW - Project Evaluation Report", NCC,
Manchester, September 1969.

(Neumann et al, 1980) P.G.Neumann, R.S.Boyer,
R.J.Feiertag, K.N.Levitt and L.Robinson, "A Provably
Secure Operating System: The System, its Applications
and Proofs", Report CSL-116, SRI International [Inc.,
Menlo Park, CA, May 1980.

(Nissen & Geiger, 1979) J.C.D.Nissen and G.V.Geiger, "A
Fault-tolerant Multimicroprocessor for Telecommunica-
tions and General Applications", GEC Journal of
Science and Technology, Vol.45, No.3, pp 116-122,

1979.

(Noe, 1978) J.D.Noe, "Hierarchical Modelling with Pro-
Nets", pp 155-160 in Proc. National Electronics
Conference, 1978.

(Nylin &. Harvill, 1976) W.C.Nylin Jr. and J.B.Harvill,
"Multiple Tense Computer Programming", SIGPLAN
Notices, Vol.11l, No.12, pp 74-93, December 1976.

(Parnas, 1972) D.L.Parnas, "A Technique for Software
Module Specification with Examples", Communications
of the ACM, Vol.15, No.5, pp 330-336, May 1972.

(Peterson, 1980) J.L.Peterson, "Design for a Spelling
Program: An Experiment in Program Design", Lecture
Notes in Computer Science No. 96, Springer-Verlag,

Berlin, 1980.

(Peterson, 1981) J.L.Peterson, "Petri Net Theory and the
Modeling of Systems", Prentice-Hall Inc., Englewood
Cliffs, NU, 1981.

(Petri, 1962) C.A.Petri, "Communication with Automata",
Ph.D. dissertation, University of Bonn, 1962.

(Petri, 1979). C.A.Petri, "Concurrency", pp 251-260 in
Lecture Notes in Computer Science, No. 84, Springer-
Verlag, Berlin, 1980.

(Popper, 1974) K.R.Popper, “Conjectures and Refutations",
5th. edition, Routledge and Kegan Paul, London, 1974.

(POR 3231, 1976) Post Office Requirements for Telecommu-
nications No. 3231, "Digital Main Network Switching
Centre", Issue 4, British Post Office Telecommunica-
tions Headguarters, August 1976.

=—3 2

(Posner & Strike, 1976) G.J.Posner and K.A.Strike, "A
Categorisation Scheme for Principles of Sequencing
Content", Review of Educational Research, Vol.46, pp
685-690, 1976.

(Pratt, 1975) T.W.Pratt, "Programming Languages: Design
and Implementation", Prentice-Hall, Englewood Cliffs,

NJ., 1975.

(Quirk, 1978) W.d.Quirk, "The Automatic Analysis of For-
mal Real-time System Specifications", Report AERE-
R9046, U.K.A.E.A., Harwell (H.M.S.O.), 1978.

(Ramamoorthy & So, 1978) C.V.Ramamoorthy and H.H.So,
"Software Requirements and Specifications: Status and
Perspectives", pp 43-164 in "Tutorial: Software
Methodology", eds. C.V.Ramamoorthy and R.T.Yeh, IEEE

Computer Society, 1978.

(Redwine et al, 1981) S.T.Redwine, E.D.Siegel and
G.R.Berglass, "Candidate Thrusts for the Software
Technology Initiative", Report AD-A102180, United
States Department of Defence, May 1981.

(Riddle et al, 1979) W.E.Riddle, J.H.Sayer, A.R.Segal,
A.M.Stavely and J.C.Wileden, "Abstract Monitor
Types", pp 126-138 in Proc. IEEE Conf. on Specifica-
tions of Reliable Software, 1979.

(Robinson, 1976) L.Robinson, "Specification Techniques",
pp 470-478 in Proc. 13th. Annual Design Automation
Conference, 1976.

(Rose & Welsh, 1981) G.A.Rose and J.Welsh, "Formatted
Programming Languages", Software - Practice and
Experience, Vol. 11, pp 651-669, 1981.

(Rose et al, 1972) C.W.Rose, F.T.Bradshaw and

S.W.Katzke, "The LOGOS Representation System", pp

187-190 in IEEE Computer Conference Digest, September

19725

(Ross, 1977) D.T.Ross, "Structured Analysis (SA): A
Language for Communicating Ideas", IEEE Transactions
on Software Engineering, Vol.SE-3, No.l, pp 16-34,
January 1977.

(RSRE, 1978) "The Official definition of MASCOT",
R.S.R.E. L-303(S), Malvern, March 1978.

(Sandewall, 1978) E.Sandewall, "Programming in an In-
teractive Environment", Computing Surveys, Vol.10,
No.1, pp 35-71, 1978.

(Schank et al, 1973) R.C.Schank, N.Goldman, C.J.Rieger
III and C.Riesbeck, "MARGIE: Memory, Analysis,
Response Generation and Inference on English", pp

Si

255-261 in Proc. 3rd. Joint Int. Conf. on Artificial
Intelligence, August 1973.

(Schueler, 1977) B.M.Schueler, "Update Reconsidered", pp
149-164 in "Architecture and Models in Database
Systems", ed. G.M.Nijssen, North-Holland, 1977.

(Schwartz, 1973) J.T.Schwartz, "On Programming: An In-
terim Report on the SETL - Installment de
Generalities", Computer Science Dept., Courant Insti-
tue of Mathematical Sciences, New York University,

1973.

(Schwartz & Melliar-Smith, 1980) R.L.Schwartz and
P.M.Melliar-Smith, "Temporal Logic Specification of
Distributed Systems", pp 446-454 in Proc. 2nd. Int.

Conf. on Distributed Systems, Paris, April 1981.

(SDL, 1980) "A Technical Overview of the PSL/PSA Software
System", Systems Designers Ltd., Camberley, 1980.

(Sernadas, 1979) A.Sernadas, "Temporal Aspects of Logi-
cal Procedure Definition", London School of
Economics, December 1979.

(Shaw, 1980) P.D.Shaw, "Modelling of Telephone Call
Processing Using Petri Nets", Ph.D. dissertation,
University of Essex, July 1980.

(Shiel, 1981) B.A. Shiel, "The Psychological Study of
Programming", Computing Surveys, Vol.13, No.l, pp
101-120, March 1981.

(Siegel, 1956) S.Siegel, "Nonparametric Statistics",
McGraw-Hill, New York, 1956.

(Simpson, 1969) H.R.Simpson, "SAG: A Syntax Analyser
Generator", Technical Note 739, Royal Radar
Establishment, October 1969.

(Sleight & Kossiakoff, 1974) T.B.Sleight and
A.Kossiakoff, "Use of Graphics in Software Design,
Development and Documentation", Report No. APL-TG-

1242, John Hopkins University, Silver Spring, Md.,
April 1974.

(Sloman, 1971) A.Sloman, "Interaction Between Philosophy
and Artificial Intelligence: The Role of Intuition
and Non-logical Reasoning in Intelligence", Artifi-
cial Intelligence, Vol.2, Nos.3&4, pp 209-225, 1971.

(Smith & Smith, 1977) J.M.Smith and D.C.P.Smith,
"Database Abstractions = Aggregation and
Generalisation", ACM Transactions on Database
Systems, Vol.2, No.2, pp 105-133, June 1977.

(Solvberg, 1973) A.Solvberg, "Formal Systems Descrip-

-314-

tions in Information Systems Design", pp 85-93 in
"Approaches to System Design", NCC, Manchester, 1973.

(Stamper, 1977) R.K.Stamper, "The LEGOL 1 Prototype Sys-
tem and Language", Computer Journal, Vol.20, No.2, pp

102-108, 1977.

(Stay, 1976) J.F.Stay, "HIPO and Integrated Program
Design", IBM Systems Journal, Vol.15, No.2, pp 143-
154, 1976.

(Steele & Sussman, 1979) G.L.Steele Jr. and G.J.Sussman,
"Constraints", APL Quote Quad, Vol.9, No.1, Part 1,

pp 208-225, June 1979.

(Stevens et al, 1974) W.P.Stevens, G.J.Myers and
L.L.Constantine, "Structured Design", IBM Systems
Journal, 1974.

(Stewart, 1975) I.Stewart, "Concepts of Modern
Mathematics", Penguin Books Ltd., Harmondsworth,
1975):

(Stoy, 1977) J.Stoy, "Denotational Semantics", MIT
Press, Cambridge, Ma., 1977.

(Swartout, 1982) W.Swartout, "GIST English Generator",
USC/Information Sciences Institute, Marina del Rey,

CA., April 1982.

(System xX, 1979) System x Standards Document,
"Progression/Flow Chart Codes of Practice", Post Of-
fice Telecommunications, 1979.

(System X, 1981) "System X Engineering Handbook", British
Telecom, 1981.

(Szygenda, 1980) S.A.Szygenda, "Design Language/Register
Transfer Level Simulator (DL/RTL) Feasibility Study
Report", CCSS Inc., Austin, Texas, February 1980.

(Taylor, 1981) P.Taylor, "The Semantics of Signalling",
pp 69-82 in Proc. of System Design Seminar "Emerging
Formalisms", STL, Harlow, February 1981.

(Teichrow & Hershey, 1977) D.Teichrow and E.A.Hershey
III, "PSL/PSA: A Computer-Aided Technique for Struc-
tured Documentation and Analysis of Information
Processing Systems", IEEE Transactions on Software
Engineering, Vol.SE-3, No.1, pp 41-48, January 1977.

(Teitelman, 1978) W.Teitelman, "A Display Oriented Pro-
grammers Assistant", Int.J. Man-Machine Studies,

Vol.s11, No.2. pp 157-187, 1978.

(Tennent, 1977) R.D.Tennent "Language Design Methods
Based on Semantic Principles", Acta Informatica,

e3Lo—

Vol.8, pp 97-112, 1977.

(Thatte, 1980) P.P.Thatte, "Interface Agreement
Processor", GTE Automatic Electric Journal, pp 54-60,
March 1980.

(Thomas & Carroll, 1981) J.C.Thomas and J.M.Carroll,
"Human Factors’ in Communication", IBM Systems
Journal, Vol.20, No.2, pp 237-263, 1981.

(Turner, 1979) D.A.Turner, "Another Algorithm for Bracket
Abstraction", Journal of Symbolic Logic, Vol.44,
No.2, pp 267-270, June 1979.

(Walters, 1979) S.J.Walters, "Systems Specifications",
NCC Publications, Manchester, 1979.

(Wasserman & Stinson, 1979) A.I.Wasserman and
S.K.Stinson, "A Specification Method for Interactive
Information Systems", pp 68-79 in Proc. IEEE Conf. on
Specifications of Reliable Software, 1979.

(Wayne, 1973) M.N.Wayne, "Flowcharting Concept and Data
Processing Technigues", Canfield Press, 1973.

(Weinberg, 1971) G.M.Weinberg, "The Psychology of Com-
puter Programming", Von Nostrand Reinhold, New York,
1972

(Winograd, 1972) T.Winograd, “Understanding Natural
Language", Academic Press, London, 1972.

(Winograd, 1979) T.Winograd, “Beyond Programming
Languages", Communications of the ACM, Vol.22, No.7,
pp 391-401, July 1979.

(Winston, 1976) P.H.Winston, "Artificial Intelligence",
Addison-Wesley, Reading, Ma., 1976.

(Wirth, 1974) N.Wirth, “On the Design of Programming
Languages", pp 386-393 in Proc. Information Process-—
ing 74, North Holland Pub.Co., 1974.

(Wirth(a), 1977) N.Wirth, in Panel Discussion, pp 179-180
in "Software Engineering", ed. R.H.Perrott, Academic
Press, London, 1977.

(Wirth(b), 1977) N.Wirth, "What Can We Do About the Un-
necessary Diversity of Notation for Syntactic
Definitions?", Communications of the ACM, Vol.20,
No.11, pp 822-823, November 1977.

(Wood, 1980) R.J.Wood, "A Program Model and Knowledge
Base for Computer Aided Program Synthesis", pp 77-78

in Proc. Ist. Annual National Conf. on Artificial
Intelligence, Stanford, CA, August 1980.

=316=

(Wulf et al, 1976) W.A.Wulf, R.L.London and M.Shaw, "An
Introduction to the Construction and Verification of
Alphard Programs", IEEE Transactions on Software
Engineering, Vol.SE-2, No.4, pp 253-265, December

1976.

(Wymore, 1967) A.W.Wymore, "A Mathematical Theory of
Systems Engineering", John Wiley & Sons, New York,

1967.

(Yourdon & Constantine, 1979) E.Yourdon and
L.Constantine, "Structured Design", Prentice-Hall,
Englewood Cliffs, NJ, 1979.

(Zurcher & Randell, 1969) F.Zurcher and B.Randell,
"Tterative Multi-level Modelling - A Methodology for
Computer System Design", pp 138-142 in Proc. IFIP
Congress, 1968.

-317-

THE SEL

TION OF A SPECIFICATION LANGUAGE

Blackledge

lecommunications Ltd., UK

INTRODUCT LO!

The increasing complexity of telecommunica-
tions systems, together with the cost and
time required to develop the necessary hard-
ware and Software, highlight the waste of
effort which may result from attempts to de~
sign systems before customer requirements
have been adequately specified. However,
despite the variety of specification methods
which have been proposed, none have been
widely accepted and used. The investigation
reported in this paper examined a wide range
of existing methods in order to select the
most suitable one or failing that, to pro~
pose @ basis for the development of a new
one. Firstly, a rough sbecification for a
specification language is presented, and then
this is used as a set of selection criteria
in a critical review of existing languages.

THE ROLE OF A SPECIFICATION

What is a Specification?

For the purpose of the investigation, "spec-
ification" was taken te mean the rigorous
statement of the required input-output res~
ponse (functional behaviour) of a system.
This excludes all physical constraints (e.g.
maximum size, heat dissipation) and may ex-
clude many performance factors (e.g. degrad-
ation under overload), which would have to
appear as additional documents, in natural
language, attached to the behaviour specifi-
cation. Although this is quite a restrictive
definition, it does concentrate the invest~
igation upon the main purpose of a specific-
ation.

What is a System

The word "system" is used throughout this
paper to mean any artifact intended to ful-
fill some purpose; the interface between a
system and its ehivironment is the only place
at which the correct fulfillment of purpose
can be monitored. Under this view of a
“system”, any level of hardware, software or
combination of both can be treated as a com-
plete system, and specified in terms of its
interfaces with its envfronment.

The Role of a Specification

A Specification forms a contract between the
specifier (customer) and the designer (supp-
lier), although“it may not be a formal, legal
contract. The purpose of the specification
is to convey concepts from the mind of the
specifier to the designer, so that the result-
ing product will adequately meet the spec—
ifier's needs. ,It can also play an important
role in both acceptance testing and mainten-
ance, as a clear statement of the intended
behaviour of the system with which the actual
behaviour can be gompared.

THE INADEQUACY OF

GLISH

The simplest proposal to improve specifications
is to raise the standard of the natural lang-
uage (e.g. English) documents, avoiding the
introduction of a new specification method
with the associated retraining of staff

However, the British legal system provides a
very good example of the likely difficulties
over disputed interpretations of wording; Hill
(30) and Henderson & Snowden (28) give exam-
ples relating to software which only re-empha-
sise that natural language is:

Gi) too flexible in its use of context

(ai) ambigious

(iii) subject to changes in meaning
over time.

Attempts to define rigorously the exact inter-
pretation of each word as it is introduced run
into problems of the size and verbosity of
the document (as an example, see the Delta
Project report, Holbeck-Hanssen et al (32)),
and also of conflict with the reader's normal
interpretation of the words. (It is inter-
esting to note that the successor to Delta,
the Epsilon language (Jensen et al (40)), has
adopted a formal approach instead).

Hence, the use of natural language involves
limitations which cannot be overcome, and an
alternative is required which is more precise,
and offers the advantages of a formal notation
(see Iverson (37)).

GENERAL CHARACTERISTICS OF A SUITABLE LANGUA\

In this section, the major, general character-
istics required in a notation for specificat-
ions (a "specification language") are listed:
the use of the term "language" does not ex-
clude graphic notations from consideration
At this stage, there is purposely no discus-
sion of how these characteristics might be
included in a language, as that would be part
of the design of the language, not its spec~
ification,

The major characteristics are

Formality. The existence of a sound mathe-
maticl basis is necessary for semantic non~
ambiguity, and also aids in both computer
processing of specifications and their use in
proofs of correctness.

Comprehensibility. The notation of the lang-
uage must not itself be obscure or misleading,
so that the concepts embodied in a specifica-
tion can be clearly expressed. This does not
mean that the specification will be under
standable by either a person untrained in the
notation, or by someone trained in the nota-
tion but unfamiliar with the concepts being
represented. As Mackie (49) points out, a
specification should never be expected to act

Ath Int.Conf. on Software Engineering for Telecommunication Switching Systems, University of Warwick United Kingdom
20-24 July 1981.

as training material for the induction of new
project members.

Minimality. A specification should be mini-
mal in tWo ways: it should describe exactly
the required behaviour and no more ~ in part
icular it should say little or nothing about
how the behaviour may be achieved; it should
also avoid the verbosity introduced by
attempts to make the notation resemble nat
ural language.

Ability to Handle Complexity. Although the
requirement for formality implies restric-
tions, the language must be able to handle
large, varied and complex systems. In part-
icular, there must be methods of structuring
large specifications to improve comprehensib-
ility, by allowing the abstraction of detail-
ed information.

Ease of Change. The content of the specifi-
cation Will be subject to changes, either to
improve or correct the specification, and it
must be possible to incorporate these into
the specification easily. It is to be hoped
that a small change in the concepts would
only result in a small change to the spec-
ification.

tolerance of Incompleteness. If the lang-
uage can only be used when the system can be
specified in complete detail, this relegates
it toa very late stage in the timespan of a
project; also this would lead to other forms
of documentation being created to fulfil the
role of draft issues of the specification.
Hence the language must expect, and tolerate,
incompleteness and aid the later incorpora-
tion of the details as they become available.

SPECIFIC FEATURES

Although the general characteristics listed
above are requirements of the language, they
ape too broad and vague to be considered a
specification for a specification language,
and can only be assessed subjectively.

This section brings out a number of more
specific features which contribute to achiev~—
ing the general characteristics; the result
is still not a complete, rigorous specifica-
tion of a Specification language, but has
sufficient detail to indicate deficiencies
inmanyexisting languages, as will be seen
later.

Implicit Specifikation of Functions. Where
there is an input-output transformation upon
data, this should not: be specified by describ-
ing an algorithm for producing the transform=
ation; instead, the specification should
state the required relationship between the
input and output values. There may of course
be situations when it is necessary to specify
that a particular algorithm must be used but
this must not result in a language which al-
ways demands an algorithm, as this is often
a poor way to communicate a concept and may
unintentionally introduce extra constraints
upon the subsequent design. An example of
this type of implicit specification is the
tse of pre-conditions and post-conditions,
as in Jones (41).

Strong Data Typing. The association of a
permitted range of values with each variable
name as it is declared (as in Pascal and Ada
avoids the repetition of checks each time the
Value of a variable is changed; this there-

fore helps keep the specification small

Abstract Specification of Complex Data Types.
In the same way that implicit specification
of functions describes the results of the
transformation without detailing the means
complex organisations of data should be spec=
ified without describing a particular physica
data structure, The algebraic specification
of data types used by Zilles (72) is an ex-
ample of this approach.

Localisation of References. The aims of
minimisation of the size of the specification
and the ease of subsequent alterations both
Suggest that all information about an entity,
function, data type or relationship should be
held as a highly localised group, with con-
trolled references from other parts of the

ecification. The features of strong data
typing and abstract specification of data
types both contribute to this, but it can
also be applied on a wider scale.

Representation of Time. The language must
handle time, and particularly time sequence,
in an adequate manner, allowing the specifica-
tion of both sequential and parallel activi-
ties; this may not require the explicit in-
clusion of time in the language, given satis-
factory means of expressing both sequencing
and concurrency.

Computer Assistance. For a large specifica-
tion, the job of manually checking that lang-
uage rules have not been violated is extremely
tedious and difficult; Goguen (20) has point-
ed out that many small example specifications
in published papers are incorrect for want of
computer-based checking facilities. A spec-
ification language should permit computer
assistance in the form of syntax checking,
the detection of simple redundancy (repeated
information), inconsistency (different respon-

ses to the same input in the same state) and
ambiguity (use of undefined terms, or defini-

tion of terms which are not used), Formal

specifications in a "mathematical" notation
often include assertions of properties; in
such cases it is reasonable to demand computer-
assistance in checking proofs of the asser
tions. It may also be desirable to use the

specification as input to simulation software,
to allow checking by simulation

A REVIEW OF EXISTING LANGUAGES

The intention of this section is to provide a
review of a very wide range of alternatives
this means that it is impossible to discuss
the details of each language, and they are
therefore grouped into categories based upon
their primary features. Discussion of the
mertis and demerits is therefore in terms of
these categories:

«) documentation aids
(44) algorithmic languages
(iii) applicative languages
(iv) analytical tools
(v) state transition specifications
(vi) input-output relationships
(vii) axiomatic specifications.

Each is discussed below, and compared with the
criteria; Table 1 then summarises the findings.

Documentation Aids

The main aim of documentation aids is to pro~
Vide a good structure for a large specifica
tion; they normally centre round some graphic
display of data flow or system structure, but
do not provide a formal language for the
specification of functions, leaving this to
be done in natural language. Best known of
the type are HIPO (Stay (68)) and SADT (Ross
(61)), but there have been a number of others,
such, as AUTOSATE (Gatto (18))and Sleight and
Kossiakoff (65)
Although unsuitable as specification lang-
uages. some of the ideas on organising large
specifications may still be relevant to docu-
ments written in a more Suitable language

Algorithmic Languages

The languages in this category are mostly
attempts to extend the use of normal, high
level programming languages to the construc-
tion of a "skeleton" of the system, although
some usé graphic representation rather than
program text. Amongst the simplest are
pseude-code (IBM (34)), flowcharts (Wayne
(71)), and flowgrams (Karp (43)), but there
are many more sophisticated ones: LOGOS (Rose
and Albarran (60)), Pro-Nets (Noe (55)) and
SARA (Estrin (17)) which are based on Petri
Nets; the Delta project (32) and its success
or, Epsilon (40), based upon SIMULA67 (Dahl
& Nygaard (13)), and similar methods such as
Actors (Hewitt & Bishop (29)) and SREM (Al-
ford (2));RLP(Davis et al(1!)); methods such
as Gypsy (Ambler et al (3)) and MASCOT (RSRE
(62)). One different approach is the SAFE
project (Balzer et al (5)), which takes in a
natural language program specification and
attempts to resolve all ambiguities by man-
machine dialogue.

The formality of these languages can be ade-
quate, and some of the later ones provide
sophisticated abstraction and proof facili-

ties, but all are yeared towards description
by an algorithm rather than result specifica-
tion.

Applicative Languages

APL (1Verson (36)) sand LISP (McCarthy et al
(50)) provide facilities for combining fun-
ctions as in pure mathematics; these ideas
have led to proposals for higher level lang-
uages (e.g. Backus (4) and Schwartz (63)) and
the use of such notations fer specifications
(e.g. Jones & Kitk (42)).

All the applicative languages allow functions
to be stated concisely, but do not inherently
provide features such as strong data typing
or abstract data ‘types, which would form a

"higher level" language defined on the appli-~
cative language.

Analytical Tools

There area large number of languages which
enable specifications written in them to be
statically analysed, including flow algebra
(Milner (51)), path expressions (Campbell &
Haberman (8)), COSY (Lauer et al (45)), the
lambda calculus (Stoy (69)), Petri Nets (Holt
& Commoner (33)), regular expressions (Pulford
(57)) and SPECK (Quirk (58)), but all are in-
complete when viewed as specification langua-

. They all concentrate on some portion
P the specification (e.g. resource alloca-

tion or message sequencing), and do not
attempt te formalise the rest of the informa-
tion.

State Transition Specifications

The mathematical theory of finite state mach-
ines provides a method of specifying the res-
ponses to input stimuli without resorting to
algorithms; the theory also provide
of checking the completeness of the specific-
ation.

Early methods of this type used the state
transition diagram as their basic notation
(see Kawashima et al (44) and Hemdal (27)),
and this has been carried forward into later
notations such as SDL (CCITT (9))} however,
the lack of formality in the text associated
with the diagrams was a serious limiting
factor in their use. A number of finite state
methods avoid the use of diagrams for this
reason, e.g. CDL (Dietrich (15)), and the
notation due to Parnas (Parnas (56)).

All the above finite state methods have the
same disadvantage when applied to large
systems, especially those involving concurr-
ent activities - the number of possible
system states rises extremely rapidly with
the size of the system to be specified. This
"state explosion" (Cohen (11)) means that
specifications for large systems can become
incomprehensible.

The hierarchical design method and SPECIAL
language of Robinson (59) can overcome this
problem in cases where it is reasonable to
restructure the specification as a hierarchy
of abstract machines, each building upon the
next lower level machine.

Input-Output Relationships

This category includes the largest number of
languages, of a wide range of styles, but all
based upon specifying the relationship bet-
ween input stimuli and output responses with=
out describing an algorithm; in this they are
similar to the state transition methods, but
they do not demand unique identification of
each system state. There are three main sub-
divisions within the category: graphic, rel-
ational and pre- and post conditions.

Graphic. The most complete example of a
Graphic input-output specification is the
Predicate/Transition-Nets of Genrich and
Lautenbach (19); these are an extension of
the Petri Net which formalises the data t
sformation in mathematical notation.

Also of this type is the Jackson design tech-
nique (Jackson (38)), where the graphic dis-~
play of inter-process communication is pur-
posely Stressed more than the internal data
transformations performed by the processes.

Relational. BDL (Hammer et al (26)), CADIS
(Bubenko & Kallhammer (6)), CASCADE (Solvberg
(66)), DATAFLOW (NCC (54)), DMTLT (Sernadas
(64)), HOS (Hamilton & Zeldin (25)), Informa
tion Algebra (CODASYL (10)), LEGOL (Stamper
(67)), PSL (Teichrow (70)), Systematics
(Grindley (21)) and systematrix (Jaderlund
(39)) all treat the specification information
as relations in a text presentation.

Pre- and Post Conditions. The specification
of functions by the necessary pre-conditions
and post-conditions can assist in program
verification (Dijkstra (16)); Jones (41) and
Cunningham & Kramer (12) give examples of the
use of this method on reasonably large fun-
ctions. A similar type of specification, but
using rewriting rules rather than logic nota-

tion, is Metaprogramming (Lawson (46))

Not all the input-output relationship langua-
ges are sufficiently formal, despite having
rigorous definitions, and only the graphic
ones and DMTLT (63) and LEGOL (66) represent
time sequence adequately. Also, they are all
much better at the specification of data
transformations (functions) than of complex
data structures.

Axiomatic Specifications

Axiomatic specifications have been introduced
mainly as a way of providing abstraction for
data types, but as this is done by defining
the permitted operations on the data it can
be used for “systems”.

Two main forms of axiomatic specification
language have appeared: one uses first order
logic, as in the work by Hoare (31), the iota
language of Nakajima et al (53) and the Z
language of Abrial (1); the other form, which
has proved more popular, is based upon the

TABLE 1

theory of many-sorted algebras (Lawvere (47)).

Much of the development of the algebraic form
is due to Guttag (Guttag (22), Guttag &
Horowitz (23), Guttag (24)), but with similar

languages being proposed by Burstall & Goguen
(7), Liskov & Zilles (48) and Musser (52)
Goguen in particular reports upon the imple-
mentation of computer assistance for his

language, OBJ (Goguen (20))

The first order logic and algebraic forms are
equivalent in capability, and are good for
specifying complex data types; both suffer
from the difficulty of selecting a complete
and consistent set of axioms - there are only
heuristic rules to aid in this selection, with
no guarantee of success.

SUMMARY

table 1 draws together the appropriate points
from the review; in each case the comment re
lates to the best language in each category.

How the Language Measure up to the Specification

Category of Language

Characteristic Doc. Aids Algorithmic Applicative Analyt State 1/0 Axiomatic
or Feature Tools Transition Specn. —Specn.

Formality Bad Good Good Good Good Good Good

Comprehensi=
bility Good Poor Fair Poor Good Good Good

Minimality Poor Poor Fair * Good Good Good

Base of change Poor Poor Poor * Poor Good Good

Tolerance of
incompleteness Good Poor Poor * Fair Poor Poor

Strong data
typing No . yes Yes * No Yes Yes

Abstract spec. 4
of data types , No No No+ * No No Yes

Localisation of
References Poor Poor Poor * Poor Good Good

Representation + .
of time Poor Poor Poor * Poor Good Poor

Computer
Assistance Good Fair Pair Good Good Good Good

Handling
Complexity Good Poor Fair Good Bad Fair Poor

Note * = these are not applicable to the analytical tools

IONS 12, Cunnigham, R.J., and Kramer, J., 1977,
"An approach to the Design of Distributed

As Table 1 shows, none of the languages ful- Control System Software", Proc. IEEE
fil all the requirements; those which appear Internat. Conf, on Distrib. Control
to come closest (e.g, Predicate/Transition Systems.
nets, Z, axiomatic specifications) have not
yet been demonstrated on any large systems, 13, Dahl, 0.J., and Nygaard, K,, 1966, Comm.

so there is no evidence of the relevance of ACM, 9, 671-678.
their deficiencies in relation to practical
te ommunications problems. 14. Davis, A.M., Miller, T.J., Rhode, E,

x Taylor, B.J., 1979, "RLP-An Automated

The most practical course of action therefore Tool for the Processing of Requirements",
appears to be to provide a "toolkit" for the IEEE COMPSAC 79.
systems analyst, who can then choose a method
appropriate to the problem, or try several 15, Dietrich, R., 1979, "On a Compilable Call
until an acceptable specification results. Processing Specification", Proc. Internat.
However, in order to minimise training in the Switching Symposium, Paris.

use of notation, some kind of common, consis-

tent framework is needed for all the tools, 16. Dijkstra, E.W., 1976, "A Discipline of

as was developed for APL by Iverson (37). Programming", Prentice-Hall, Englewood

Cliffs, N.J.

ACKNOWLEDGEMENTS
17. Estrin, G., 1978, "A Methodology for the

This work, which is taking place under the Design of Digital Systems - Supported by
Interdisciplinary Higher Degrees scheme at SARA", AFIPS Conf. Proc., Vol, 47.

the University of Aston in Birmingham, is
supported by GEC Telecommunications and the 18, Gatto, 0.7.. 1964, Comm. ACM, 7, 425-432,
Science Research Council.

19, Genrich, H.J., and Lautenbach, K., 1979,
Particular thanks go to my supervisors (John "The Analysis of Distributed Systems by
Flood, Rex Ford, Nigel Horne and Alan Mont~ Means of Predicate/Transition-Nets", in
gomerie) and Bernie Cohen for constructive Lecture Notes in Computer Science 70,
criticism of the manuscript. Springer-Verlag, Berlin.

20, Goguen, J.A., 1979, "An Introduction to
OBJ; A language for writing and Testing

1. Abrial, J.R., 1980, "The Specification Formal Algebraic Program Specifications",
Language Z - Syntax and Semantics", Pro- Proc, IEEE Conf. on Specifications of
gramming Research Group, Univ, of Oxford, Reliable Software.

21. Grindley, C.B.B., 1975, "Systematics - A
New Approach to Systems Analysis", McGraw-
Hill Ltd, London, England.

2. Alford, M.W., 1977, IBEE Trani
ware Eng. .SE-3, 60-

on Soft

3. Ambler, A.L., Good, D.t., et al, 1977,

"GYPSY : A Language for Specification and 22. Guttag, J., 1977, Comm. ACM, 20, 396-404.
Implementation of Verifiable Programs".
Pr ACM Conf. on Language Design for 23. Guttag, J. and Horowitz, E., 1978, Comm.
Reliable Software. ACM, 21, 1048-1064,

4, Backus, J., 1978, Comm. ACM, 21, 613-641. 24. Guttag, J., 1979, "Notes on Type Abstra-
a £ ction" Proc. IEEE Conf. on Specifications

5. Balzer, R., Goldman, N.,and Wile, D.,1978, of Reliable Software.
SE: 94-10)

IEEE Trans. on Software Eng., 25, Hamilton, M., and Zeldin, S., 1976, IEEE
6. Bubenko, J., and Kallhammer, 0., 1971, debs) [on Soxtwane Ebay) Sea24) 8-oe~

"CADIS - Computer Aided Design of Inform-

ation Systems". Proc. first Scandinavian 26. Hammer, M.M., Howe, W.G. and Wledawsky,
Workshop on Computer aided Info.Sys. I., 1974, SIGPLAN Notices, 9 (4), 25-33.
Analysis and Design.

+ 27. Hemdal, G., 1973, "The Function Flowchart~-
7. Burstall, R.M., and Goguen, J.A., 1977, A Specification and Design Tool for 5.P.C.

"Putting Theories Together to Make Spec- Exchanges", Proc IEE SETSS Conf.
ifications", Proc. Internat. Jnt. Conf.

on Artif. Intell. 28, Henderson, P., and Snowden, R.A., 1972
; BIT, 12, 38-53.

8. Campbell, R.H., and Habermann, A.N., 1974,

"The Specification of Process Synchron- 29. Hewitt, C., and Bishop, P., 1973,"A Uni-

ization by Path Expressions” in Lecture versal Modular Actor Formalism for Art-
Notes in Computer Science 16, Springer- ificial Intelligence", Proc. 3rd Internat.

Verlag, Berlin. dnt. Conf. on Artif. Intell.

9. CCITT Working Party X-1/3-1, 1976 30. Hill, 1.D., 1972, BCS Computer Bulletin,
"Functional Specification and Description 16, 306-312.
Language, SDL", Temporary Document No.35E.

31. Hoare, C.A.R., 1972, Acta Information,
10. CODASYL Language Structure Group, 1962, 271-281.

som. ACM, 5.

32. Holbeck-Hanssen, £., Handlykken, P. and
li. Cohen, B., 1980, "System Specification Nygaard, K., 1975, “Delta Project Report

Hardware and Software - as Practiced in No.4", Norwegian Computer Centre Public-
the Telecommunications Industry", CREST ation Now: 9235 O51c-
Course, Brunel Univ., London, England.

40.

41.

43.

44,

49.

54,

55.

 Holt, A.W, and
and Conditions

commoner, F., 1970, "Events
Applied Data Research,

New York.
IBM, "Improved Programming Technologies:
An Overview!, IBM GHCZ0-1850.
Ichbiah, J.D., et al, 1979, SIGPLAN Not.
ices, 14 (6).
Iverson, K.E., 1962, "A programming Lang-
uage", Wiley & Sons, New York.
Iverson, K-E., 1980, Comm. ACM, 8),
444-465.
Jackson, M.A., 1978,"Information Systems

Modelling, Sequencing and Transforma~
tions", Proc. 3rd. IEE SETSS Conf..

1980, "Systematrix Con-
Stockholm, Sweden.

Jensen, kyng, M. and Nielsen, M.,1979,
"A Petri Net Definition of a System Des-
cription Language", in lecture notes in
Computer Science 70, Springer-Verlag,
Berlin.

Jaderlund, c.,
cepts”, Systematik AB,

Jones, C.B., 1980, "Software Development:
A Rigorous Approach", Prentice-Hall Inter-
national, Englewood Cliffs,

S.A
230:

Nudae
Jones, W.T. and Kirk,
Computer Journal, 23
Karp, A., 1978, Electronic Design,
84-88.

Kawashima, H., Futami, K. and Kano, S.,
1971, IEEE Trans. Comms, Technology ,COM-
41g, 581-587.
Lauer, P.E., Torpigiani, P.R. and Shields,
M.W., 1979, Acta Informatica, 12, 109-158.
Lawson Jr., H.W., 1977, "Programming,
Atchitecture and Complexity", Report
LITH-MAT-R-1977-28, Linkoping University,
Sweden.
Lawvere, F.W., 1963, Proc National Acad-
emy of Science, 50 869-872.
Liskov, B. and Zilles, S, 1977, "An In-
troduction to Formal Specifications of
Data Abstractions", in Current Trends in
Programming Methodology, Vol 1, ed-R.T.
Yeh, Prentice-Hall Inc, Englewood Cliff,
Ned <
Mackie, L., 1977, "Software Reliability-
Understanding and Improving It", Proc
AGARD Conf. on Avionics Reliability.
McCarthy, J. et al, 1965, "LISP 1.5 Pro-
yrammers Mankai", MIT Press.
Milner, R.,/1978, "Algebras for Communi-
cating Systems", Report CSR-25-78, Dept.
of Computer 5: Univ. of Edinburgh.
Musser, D., 1979, "Abstract Data Type
pecification in the Affirm System", Proc.

{EEE Conf. on Specifications of Reliable
Software.

 ence,

Nakajima, R., Honda, M. and Nakahara, Ho,
1978, "Describing and Verifying Programs
with Abstract Data Types", in "Formal
Descriptions of Programming Concepts",
ed. E.J. Neuhgld, North-Holland Pub. Co.
NCC Ltd., 1969, "DATAFLOW - Project Eval-
uation Report", Manchester,

Noe, J.D., 1975, "Pro-Nets, for Modelling
Processes and Processors", Conf. on Petri
Nets and Related Topics, M.I.T.
Parnas, D.L.,.1972, Comm. ACM, 14, 330-
336.
Pulford, B.J., 1979, "The Use of Graph

and Regular Expression Models in System Model-
ling",
nics Ltd, Borehamwood,
5B.

59.

60.

61.

62,

63.

64,

66.

67.

68.

63,

70.

71.

92 <

Report 317/SE/SARSA/WP1, Marconi Avio-
England.

Quirk, W.J., 1978,
of formal Real-time
Report AERE-R 9046,

"The Automatic Analysis
System: Specifications".
H.M.S.0., London.

Robinson, L., 1976, "Specification Tech-
niques", Proc. 13th Annual Design Auto-
mation Conference.
Rose, C.W. and Albarran, M., 1975, "Model-
ling and Design Description of Mierarchi-
cal Hardware/Software Systems", Proc.12th
Annual Design Automation Conference.
Ross, D.T., 1977,
Eng. SE-3, 6-15.
RSRE, 1978, "The Official Definition of
MASCOT", RSRE, Malvern, England.
Schwartz, J.T., 1973, "On Programming :
An Interim Report on the SETL Project",
Courant Institute of Mathematical Sciences,
New York University.
Sernadas, A., 1979, ‘Temporal Aspects of
Logi¢al Procedure Definition", report
from London School of Economics, England.

Sleight, T.P. and Kossiakoff, A., 1974,
"Use of Graphics in Software Design, Dev-
lopment and Documentation", Report APL/
JHU TG 1242, John Hopkins Univ., Maryland,
USA.
Solvberg, A., 1973, ‘Formal Systems Des-
cription in Information System Design",
in "Approaches to System Design", NCC Ltd,
Manchester, England.
Stamper, R.K., 1977, Computer Journal, 20
102-108.
Stay, J.F., 1976, IBM System Journal, 15,
143-154.
Stoy, J.E., 1977, "Denotational Semantics-
The Scott-Strachey Approach to Programm-
ing Language Theory", MIT Press.
Teichrow, D, and Herschey, E.A., 1977,
IEEE Trans. on Software Eng., SE-3, 41-48
Wayne, M.N., 1973, "Flowcharting Concepts
and Data Processing Techniques", Canfield
Press.

Zilles,

IEEE Trans. on Softwar

S., 1976, "Data Algebra : A spec-
ification Technique for Data Structures",

Cambridge, PhD thesis, MIT, Mass.

