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(i)

SUMMARY

Various finite difference systems were developed for the solution of the
unsteady flow equations, applicable to fluid flow in open channel networks.
Computer programs were written for these systems and comparisons were made
between the results obtained from these programs and also with recorded data.
Comperisons taken into account were accuracy, computer running time and com-
plexity with regard to programming. Results were collected for increasing
time steps of the finite difference grid and the time steps at which the systems
either became unstable or did not reach a solution were recorded.

Techniques of schematisation and data presentation were developed, so that
a general network might be considered. Each program has identical structures
with blocks that deal with these networks from the point of view of cross
referencing, input and output facilities etc., the only difference being
in the computational blocks.

The programs were run with four unsteady flow models; the first was a
purely hypothetical model which was used to eliminate programming errors; the
second an unbranched section of a tidal river; the third, a network of part of
a river delta and the fourth model was a small laboratory rig from which three
tests were analysed. The instrumentation of this latter model provided many
problems which required special attention.

Each finite difference scheme was analysed for its convergence and
stability properties and expressions found.for these criteria. Comparisons were
then made between analytical and numerical results. The relevant unsteady
formulae applicable to open channel networks were developed and a historical
review of their solution is presented. Also given is a literature survey of

previously developed finite difference methods.
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CHAPTER 1
INTRODUCTION

The use of mathematical models for the prediction of water levels and
discharges in rivers has become a widely used technique. Providing the river
has been modelled correctly, i.e., with regard to frictional resistance, survey
data, initial and boundary conditions then time varying flow changes may be
determined with reasonsable accuracy. There are several ways in which the basic
equations may be converted into a form suitable for numericel computation on a
digital computer. The most attractive method being finite differences in which
solutions are determined at specified positions along the river and st predetermined
instances in time,

Although a great deal of work has already been done on the solution of the
unsteady flow equations by finite differences for single open channels, there
appears to have been very little done on the schematisation and development of
methods to deal with open channel networks. The basic objectives of the author
were then two-fold; the first of which was to develop a suitable method of
schematisation of a general network system, which would allow for a large amount
of flexibility in referencing it and in presenting the data to the computer.

The second objective was to develop and then compare a set of finite difference
systems which were capable of solving the equations for the network. Methods of
solution were sought that would take advantage of the equation's sparseness,
both from the storage point of view and from the speed of solution.

A method of schematisation was aimed at that would allow random reference
numbering of the network and the feeding of date into the computer in an
arbitrary manner. Such a method would permit the subsequent insertion of extra
nodes into positions where greater detail was required. The schematisation
adopted was one in which discharge and depths of flow were determined at alter-
nate positions throughout the network. These positions, or nodes, are then

connected by channels that can have unequal lengths. Cross-sectional gecmetry



was determined at the discharge nodes only.

There are two basic ways of expressing differential equations in finite
difference form and these are commonly known a&s explicit and implicit methods,
both of which are used in the author's programs. The latter method, when
applied to the unsteady flow equations leads, in general to a set of nonlinear
simultaneous equations and various methods of solution of these were considered.
The alternatives available in solving such a system may be broken into two
types; the first of which is to linearise the nonlinear equations by keeping
constant, co-efficients that do not vary much and then to solve the resulting
system using sparse linear algebra techniques. The co-efficients may, if
necessary, be updated on an iterative basis. The second alternative is to
keep the equations nonlinear and to use techniques that are specifically
suited to solving such systems. Various methods based on these alternatives
are used by the asuthor and it is believed that this is the first time in which
the nonlinear techniques involved have been used in the solution of civil
engineering problems. When a single channel is considered "banded" structures
are produced upon which fast methods of solution can be used. Numerical pro-
cedures were sought that could take advantage of this when a network was not
being considered.

Investigations into the behaviour of the different finite difference
schemes were done by comparing the results obtained from the running of several
unsteady flow models. In order that the programs could be cempared with
realistic information, then tidal models of a single section of the River Aire
in Yorkshire and a network consisting of part of the Ganges Delta were pro-
grammed. Comparisons were made by noting the accuracy and running times of the
various numerical systems for different time steps. Also, observations were
mede of the time steps at which the systems either became unstable or did not
reach a solution. This provided useful information to be compared with
analytical predictions of instability and convergence. As a certain degree of

"fitting of results" is done when dealing with river data and also that errors



that occur may be attributed to irregularity and schematisation of the cross-
sectional geometry, a laboratory network was built and tested. This model
consisted of a network of rectangular channels with a constant surface rough-
ness. Unsteady flow situations were propagated in the model for the sole pur-
pose of comparing the accuracy of the finite difference programs.

The question of stability and convergence of finite difference systems
resulting from quasi-linear partial differential equations is an important but
complicated and involved subject. Techniques which have been suggested by
previous workers for the solution of this problem with respect to the unsteady
flow equations have not been complete and usually try to deal with only one
aspect, i.e., stability or convergence. The author has tried to clarify the
position and shown in the text is a procedure for evaluating both the stability
and convergence of finite difference equations solving a system of hyperbolic
equations. These techniques are applied to the finite difference schemes
developed and the results show a high degree of success.

The derivation of the basic partial differential equations describing
unsteady flow in open channels are discussed in Chapter 2. These are derived
from considerations of conservation of mass, momentum and energy. Slight
differences occur between the dynamic equation derived from momentum and energy
principles and these are discussed. Also presented in this chapter is a
historical review of methods that have been developed for the solution of these
equations.

The literature survey in Chapter 3 deals in detail with the finite differ-
ence systems that have been suggested and used by previous workers in this
field. Most are concerned with single channels, with only a few references to
networks. It is useful to review these main methods as they give a clear
insight to the problem. Also, they provide a basis upon which extensions
could have been made to handle networks. The survey starts by considering two
papers, which are themselves reviews of work prior to their publication,

written by well known authors who are acknowledged expeérbs on this subject.



Further work is then dealt with.

Chapter 4 gives in detail the finite difference systems developed by the
author, together with the various algebraic techniques used to solve these
systems. The analytical stability and convergence criteria of these are then
derived in Chapter 5.

The laboratory work itself posed many problems regarding instrumentation.
Because of the scale of the model unsteady flow situations had to be done
quickly and thus required devices that could monitor these changes accurately
on & time varying basis. Chapter 6 describes the laboratory apparatus and
techniques adapted, together with the unsteady flow tests recorded for numerical
computation.

The two physical models of the River Aire and part of the Ganges Delta
mentioned previously, together with a hypothetical model which was used in the
early stages of the research for program checking, are then described in
CI;apter T. Also given is the geometry and schematisation of the layout of each
model, together with the boundary conditions for the unsteady flow tests. In
both of the physical models some data was missing, either initial conditions
or channel friction, or both. The techniques used to determine these are des-—
eribed.

Chapter 8 gives the results of the unsteady flow tests and discusses these
with respect to accuracy, computer running time and general behaviour. Chapter

9 draws conclusions from the results of the research as a whole, together with

recommendations for further work.
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CHAPTER TWO

BASIC THEORY

2.0 Introduction

This section reviews the derivation of the equations of unsteady flow
in an open channel. The dynamic equation is derived from both energy and
momentum principles and the continuity equation from mass conservation.

Methods of solution of the equations are discussed, one method in parti-
cular leads to a classification of the equations.
2.1 Continuity Equation

Consider a section of channel shown in Fig. 2.1. Flow is between points
(1) and (2) distance Ax apart. The depth shown in full is at time t and
dotted at time t + At. A is the area of section 1 and Q is the flow entering
section 1. q is the lateral inflow per unit length, per unit time, which for
the purpose of this analysis is assumed constant over the time interval At.
The lateral inflow may teke the form of rainfall runoff or water from a pump-
ing station, reservoir or similar structure. When g>o then water is entering
the main stream and when g<o then water is taken from the main stream. Flow
from a tributary that is to be treated as independent of the main stream cal-
culations may also be introduced as a q value, in which case the flow is
distributed over a particular reach.

We now observe what happens at times t and t + At,
Time t :

Flow entering section .1 = Q, with area A.

flow leaving section 2 is Q + 3Q Ax and the area
9x
is A+ 3A Ax
ox
Time t + At :

flow entering section 1 is Q + 39 At
at

vith area A+ 34 At
at
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T'
flow leaving section 2 is (Q + 9Q &x) + Q__(Q + 0Q Ax)At
ax ot 9x
where the area is now (A + 3A Ax) ;e (A + _E}_Aﬂx) At,
9x 9t ox

It can now be stated that the average net amount of fluid entering the
element over the time interval At is equivalent to the average amount of
increase in storage in that element, thus on ocombining the above and neglect-

ing second order terms the following is produced :

[(A-i-_?r:bt)+(A+%£Ax+_aﬁAt)]A_x__|:A+(A+_gAax)]E

x ot 2 x 2
=[Q+(Q+3£At)]gg_[(q+ﬂax)+(Q+3_¢1Ax+i€lﬁtl} at
t 2 ax ox at 2
+ q Ax At
giving 9Ap L 9Q _ g
3t  3x {2:1.1)

which is the standard partial differential equation of mess continuity in
unsteady flow. It will be noticed that A is replaced by AT indicating that
this term represents the total area, i.e.,including flood plain.

In equetion (2.1.1) it is noted that 9A = By oh where Bp, as shown in
Fig. 2.2, is the total width, i.e., including flood plain. h is the depth of
water.

IEq. (2.1.1) then becomes B, 3h , 9Q _ g
™ (2.1.2)

2.2 Derivation of Dynamic Equation from Momentum Principles

At section 1 the parameters are :
A = convective area of cross section

P = yetted perimeter of convective area

h = depth of water

height above datum

distance to centroid of convective area

< <1
[}

= average velocity

6 = angle of bed slope

x = arbitrary distance
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At section 2 the parameters change to :

A+0A, P+AP, h+An, z +Az, y + A0y, V+AV and x + Ax.

The above diagram and parameters together with the following assumptions
are applicable to this section and the following section based on energy
principles.

Assumptions :

1. The flow is so gradually varied that vertical accelerations are neglected
and hence the pressure distribution is hydrostatic.

2. Slopes are sufficiently small such that sin 6 = tan 6 = ~Az/Ax and that
hydrostatic forces act in the direction of flow.

3. The velocity distribution in the channel may be represented by the average
velocity and that friction losses are proportional to the velocity squared,
i.e., a8 in steady flow.

k. The lateral inflow enters the main stream normally and so has no
velocity component in the direction of motion.

5. The transfer of energy and momentum to and from the flood plain is
neglected.

The general equation of momentum is now applied to flow between the sec-
tions 1 and 2 to cbtain

mvwﬂi'-*r(_ﬂ_;m Ax = p(Q + AQ)(V + AV) +

Az
Ax
Y(A + M) (y + &y) + To Ax (2P + AP)

2 (2.2.1)
the last term on the left of the equation is the component of the weight of
the water acting downstream.

To is the mean longitudinal shear stress acting over the convective
wetted perimeter.

y is the specific weight of the fluid and p its density.

If second order terms are ignored in eq. (2.2.1) then it reduces to :

0O = PQAV + pAQV + YAAY + YAAy + To Ax P + YA Az Ax
Ax (2.2.2)



now AQ = q Ax (2.2.3)
and from the following analysis it can be shown that
YAAy + YAAy = YAAh (2.2.4)
When K is increased by Ah the first moment of area about the new surface
becomes : (see Fig. 2.4)

A (y + 4n) + B, An (An)

2
and so (A + AA)(y + Ay) = A(y + Ah) + B.An?
2

When second order terms are ignored this equation becomes :

Aby +MAy = A An

The equations (2.2.3) and (2.2.4) are substituted into equation (2.2.2)
the result is divided by A, Y and Ax which when taken to the limit gives :

0=YdV , Vg . dh  dz . ToP
cax gttt yi (2.2.5)

The hydraulic radius R is defined as A/P so the friction term To P
YA

is replaced by VIE[ » where C is Chezy's C.
C°R
The modulus term is introduced so that the friction still apposes flow
when the velocity is in the reverse direction.
If the total differential terms are now examined in more detail it can
be shown from the theory of partial differentiation that :

Vav _ Vv, 19V

gdx gox gt (2.2.6)

dh _3h _ 13n

dx 9x V3t (2.2.7)

dz _23z 1 3z

dx ~ 9x V ot (2.2.8)

As vertical accelerations are ignored in the dynamic equation dh becomes

dx
dh and as the bed slope is assumed not to vary over the time concerned dz
ox dx
becomes 9z.
ox

The dynamic equation (2.2.5) then reduces to
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0=109V Vv _ 3h az-vlv| Vg
3%t Tgox T 9x ' 3x " CR T 1g (2.2.9)
i.e., the usual partial differentisl dynamic equation for unsteady flow.

2.3 Derivation of Dynamic Equation from Energy Principles

Reference is made to Fig. 2.3 and to the assumptions made prior to the
derivation of the dynamic equation in the previous section.

The general energy equation is now applied to either side of the element
to give the following :

YQ(V? + z + h) + qyAx(z+h) = y(Q+qlx) [(v+ AV)2+ (z+Az) + (h+&h)]
2g 2g _

+ To (2P_+ AP) Ax?

2 At (2.3.1)
where To.(2P ; AP) Q;? is the rate of doing work in overcoming the friction
around the perimeteg?

The lateral inflow is assumed to have potential energy before entering
the main stream but no kinetic energy, afterwards it has both.

Eq. (2.3.1) after ignoring second order terms becomes :

0 =YY AV + Az + An) _ vq Ax ¥2 | To P Ax?
g * 2z Tt (2.3.2)

which after dividing by Y, Q and Ax and taking to the limit gives :

0O=Vdv  dz  éh gv ToP

gax ax T & 2Ag YA (2.3.3)

when the arguments concerning the replacement of the total differentials with
partial differentials in the previous section are used again, together with

the substitution of To P for V|V| then eq. (2.3.3) becomes :

Y A C°R
0= __a_ _.a_ 92 _L_l.
b o ety (2.3.4)
In eq. (2.3.4) and (2.2.9) 3z , b may be replaced by gH where H, as
ax ox ox

defined in Fig. 2.3, = z+h,
2.4 Comparison of the Two Dynamic Equations
When equations (2.2.9) and (2.3.4) are compared it cen be seen that all

the terms correspond apart from the term involving the lateral inflow where
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there is a difference of & factor of one half. Yen and Wenzel [22], who have
done & detailed study of the differences of the two approaches for a steady
spatially varied flow, concluded that although both principles were derived
from Newtons second law the two methods are inherently different, the momen-
tum approach is a vector relationship and the energy approach a scalar one.

In the case of the lateral inflow, the momentum equation, according to
Henderson [ 9] is to be prefered, as although it does not take into account
‘the potential energy of the lateral inflow before entering the main stream it
is considered that energy losses will occur when the arriving flow mixes with
the flow already in the channel. However as the effect of the q term in the
dynamic equation is small and could be neglected altogether it is sufficient
to use the form as in the momentum equation.

If co-efficients had been introduced in the derivation of the equation
which took into account the non-uniform velocity distribution then further
differences would be evident. As these co-efficients are only slightly greater
than unity it is usual in mathematicel models to consider them just as unity.

2.5 Variations of the Basic Equations
For the reasons stated above it is decided that the dynamic equation

derived from momentum principles eq. (2.2.9) is the appropriate one to use,
this together with the continuity eq. (2.1.1) gives two quasi-linear hyper-
bolic equations in the two unknowns V and H.

The dependent variable V can, however, be expressed in terms of Q and the
convective area, Ac, in the following manner :

Q = V Ac, vhich on differentiating gives ;

29 A3V, V2A

ot at at (2.5.1)
and 9Q _ A9V ,  V 3Ac
ox ox 9 x (2.5.2)
After substituting for 1 3V and V 3V in eq. (2.2.9) and replacing V for
g ot g 9x

Q/Ac the following can be obtained :
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o=1 99 _Q 24 Q% dAc . dh . dz q2
Acg ot AGg ot T A%g ox  Adg ox T ox T 9x T CZA8R +,%%g (2.5.3)

It will be noticed that all areas in eq. (2.5.3) are replaced Ac.

In the second term above the partial differential 3A may be replaced by
ot

Bc 3h where Bc is the width of the convective channel, the third term
ot

involving 9Q may be replaced by q - %%_fTOm eq. (2.1.1). 1In this case, how-
9x

ever JA is BT‘%%_vhere Bnp is the total width, i.e., including the flood plain.
at '

Eq. (2.5.3) then becomes :

0=21 39 _Q (Be+B) 3h _ Q> A . 3E 9!2[ 2
Acg ot %EE o 5t ~Adg ox T 9x | C R+;§§ (2.5.4)

2.6 Solution of the Unsteady Flow Equations

The partial differential equations as such are far too complex for any
analytical solution. Even if the channels were so idealised, i.e., made into
equivalent rectangles, and an analytical solution found, then the solution
itself would still be a great deal more complex than numerical solutions of
the basic equations.

Before the advent of the modern digital computer solutions were obtained
by grossly simplifying the unsteady flow equations and then solving the resul-
ting equations graphically. Usually these methods revolved around evaluating
some form of the continuity equation (usually written as AS/At = I - 0, in
which S = storage, I = inflow, O = outflow). One such variation on this is
the Muskingum Method. Another variation is the graphical solution of the
Method of Characteristics by Schdnfeld, the theory of which will be dealt with
in more detail later.

Another well used method is the harmonic method, in which the wave motion
vwhether periodic or not, is considered to be composed of harmonic wave-comp—
onents. The basic equations are simplified by neglecting terms, usually the
convective ones, and then linearised. This means that a linear friction law

is used and that in some instances the friction term has been disregarded com-

pletely.
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Three of the later, more popular, methods of solution of the unsteady
flow equations in which there is no need to neglect terms are now described.

2.7 Power Series

This method according to Baltzer and Lai [h] was the first method to be
introduced, on the arrival of modern computers, for the solution of the
equations.

The basis of the method is that a function at a point X,, 88y, may be

expressed in terms of the function at a near-by point X, s by a Taylors Series,

ie., f(x) = £(x) + Z fn(xl) (x5 - "l)rl
i n! (2:T.1)

By selecting the reference point x, =0 and X, = X, = x the above
becomes a MacLaurins Series
oo
i.e., f(x) = £(o) + Z fn(o) =
n=1 (2.7.2)
If H and Q are chosen to be the dependent variables in the unsteady flow

equations then from eq. (2.7.2)

H, = H +x 0H, + x? azﬂl + x° asﬂl b mmmeee (2.7.3)
ox 2 axr 3 i

and  Q, =Q +x293Q +x?2%Q +x*3%Q + —- (2.7.4)
ox 20 %2 3T ax’

In eq. (2.5.3) q - 3Q is substituted for 9A to form the following :
ox at

0=1 3Q+24Q23Q-4Q2 8A+_§_I_1_+glg|
Ag ot A%g ox A%g ax ox CZA®R (2.7:5)
which after rearrasnging, and substituting lQ|/Q for A and C2A%R for K gives

9H =-19Q - 3Q +Q% 3A -A (Q)2
ox Ag 3t A®g 3x A’g ox K (2.7.6)

If eq. (2.7.6) is now differentiated with respect to x and the result,
together with eq. (2.7.6) itself, are then substituted into eq. (2.7.3) the

following is formed after neglecting third and higher order terms;
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Hy, = H -AQ% - x 3Q - 2ax 3Q + Q*x 3A -\ Qx* 93Q
K? Ag 3t A’g ox A'g 9x KZ ox

K
PA e M- x D (% T ) gk Bk

ox 2gA® 9x'0

= _Asi.(aﬂ)z -a9x? 3 oﬂg)
3 K2 '3x 3K2 3x ‘3x £247.7)
After rearranging this equation and simplifying by using the continuity

equation, eq. (2.1.2), the following is obtained :
= - 2 2 _ 2 nle 2
Hy=H -AQ@x+AQ&2 B3H -qy+B x* 9% - x23Q (1+1Bx?3Q

K K 9t 2Ag ot®  Ag ot 3kZ 3t

+ 2 Bx? Q2 A&) - A B2x3 (aﬂl)
3 K" 3k2 3t (2.7.8)

Again a similar expansion in terms of Q, and Q; may be found by using the

continuity equation in which the first derivative is :

=q-B
‘3% 35% (2.7.9)

(the subscript in By is dropped for simplicity), so Qi% =B 3 (BH _Q{QEJ,
ox

and by dirferentiating eq. (2.7.6) with respect to t the following is formed
= -xBgH+xq=-)QB xz'ag + 2\Q2B x2 35 - B xz 3 %
Qz Ql at K* K at

- QB x?
g A Szac{at (2.7.10)
When equation (2.7.7) is written in finite difference from for 93Q in

ot
terms of the other expressions, then

My ¢) = |8 AglHy —Hy)y =g A QFy ) + A8 Ay Qi) * By 881 ¢) 9
[ x K t K t ( E-t- )

+B, f (H(l,t-l-&t)- £ E(l.t) * H(;J-_b_ﬁt)) -8 At (:B_!_‘)2 x 2(AH:1 t§)
= A At
x At
#E B x iy g +1B x"
K K‘ (2.7.11)

vhere M(y ¢y = By vemr) = H(q,¢-a)
= e (2.7.12)
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Eq. (2.T7.11) expresses the increase in flow at point 1 uniquely in

terms of g_g_ and so Q(l,t+At) is found, i.e., Q(l,t) - ﬁql.

By reversing the subscript notations the increase in flow at point 2
may also be found providing the values of AH can be estimated there.

Thus if all the initial values at timgtt. are known and two boundary
conditions are also given it is possible to determine all the Q's and H's
throughout the reach by successive applications of eq. (2.7.11) and the
equivalent form of eq. (2.7.10) on an iterative basis.

By using equation (2.7.11) and the equivalent to eq. (2.7.10) it is
possible to use this procedure for a network of channels, although it is muth
more complicated than a method which simply replaces the derivatives by their

equivalent finite differences.

2.8 The Method of Characteristics

The continuity equation (2.1.1) may be expanded in the following manner:

29=A3V+V3A

9x ox 9% (2.8.1)
now A = 3A gh =B 9h = B _3(H-2)
9x 9h 3x ax ox (2.8.2)
and -3z = Sp, the bed slope, so (2.8.2) becomes :
ax
oA =B 3H + B S, :
%X ax (2.8.3)

To simplify matters for the purpose of the following derivations, the
channel is, again, considered to have no flood plain, and so

9A =B H
3t 3t (2.8.4)

the continuity eq. (2.1.1) then becomes :

AQgV+VBH+VBS,+B3 =g
ax ax ot (2.8.5)

vhich on dividing by B and rearranging gives :

AQVU+Vll+gi=g-VS§
B & ax 3t B (2.8.6)
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The dynamic eq. (2.2.9) may be rearranged to give :

OV + VIV + g dH = -('V vl + !3)
9t ox ox .C*R A

(8.8.7)

It can be shown that at every point in the solution domain of a set of
partial differential equations, there are two directions along which the
integration of the partial differential equations reduces to the integration
of equations involving total differentials only, i.e., in these directions
the equations are not affected by partial derivatives in other directions.
this leads to & natural classification of partial differential equations.

We now look for a curve in the x-t plane along which are given the
values of V and H and that their derivatives satisfy equations (2.8.6) and
(2.8.7), see Fig. 2.5.

Along this curve the following relationships must hold :

dv = 9V ax + 9V dt
9x ot (2.8.8)

and dH = OH dx + JH dt
3:: 3t (2.809)

These two equations together with equations (2.8.6) and (2.8.7) give a
set of four simultaneous equations in the four unknowns 9V, 3V, 9H and 9H,

ot o9x ot ox
which when expressed in matrix form, gives :

dx dt 0 0 v/ax av
A/B 0 s s § av/at (g/B = V 8p)
= (2.8.10)

v 1 4 0 9H/3x -(g\flv] + Vg
C°R A

E 0 dx  abh] aH/a_t_ aH

When considering a gene;;i set of li;;ar equati;;s A x = B then, by
Cramers rule for determinants, any unknown x,. in the vector x may be expressed
in the following manner
x, = Inrl, vhere |A| is the determinant of matrix A and

TaT |Ar| is the determinant of the matrix in which the r+h column

has been replaced by the wvector B.



i.e., 3V = |av at 0 0
ox
(g =V 8p) 0 v 1
B
—(gv!vl +Vq) 1 g 0
C“R
daHd 0 dx dt
(2.8.11)
dx at 0 0
A/B 0 v 1
v 1 g 0
0 0 dx dt
end so 3V, OH and 9H may be expressed in a similar form such that :
9t 3x ot
3'”3:: = av/at = 3H/ax = aH/Bt = _i

where A; is the determinant of A in which the first column has been replaced
by B, A2 is the determinant of A with the second column replaced by B and so
on for A; and Ay. As is |a].

If As # O then the values of the unknown partial derivatives may be
determined uniquely. If As = O then usually the values of the partial
derivatives are infinite and the known values V and H along the curve will
not satisfy the original partial differential equations. If, however As = 0
and Ay, A2, As and A4 are also equal to zero then the partial derivatives
can be finite and satisfy the eqns. (2.8.6) and £.6.7).

It can be shown that if As = 0 then, by manipulation of As, A1, Az, Aj
and Ay are also equal to zero.

As becomes:- dx> + VZat? - g at? - 2vaxdt = 0
B

(2.8.13)
vhich vhen divided by dt? gives
(ggaz -2Vax+ (vz - &l = 0
at dt B (2.8.14)
In the ancillary quadratic equation Ax® + Bx + C = 0 (2.8.15)
X).2 = -B + = 4AC

2A (2.8.16)
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and so dx = V + (gA)3. (2.8.17)
dt B

The above eq. (2.8.17) gives two curves in the x~t plane called
characteristic curves. When dx = V + (5&)5 the forward characteristic or
dat B

C+ curve is given, and when dx = V - (gA)3 then the backward characteristic
dt B

or C- curve is given.

The velocities dx are equivalent to the celerity at which an infinitesimal
dt

gravity wave would travel in an open channel. The value (gA)} is usually
B
denoted by the wave celerity c so that :

dx=V+e
dt (2.8.18)

Expansion of A1 gives :

QH + 1 dv (a&x - V) + 1(gV]v] + vg)(ax - V) - (g =V 8) = 0
= et vn ;

gt g dt adt dt B (2.8.19)
which on substitution of eq. (2.8.18) for dx gives :
at
dH + ¢ av+{vso¢cv!v| -gl1+W}r=0
at g dt C°R B c (2.8.20)

So if the set of partial differential ‘equations (2.8.6) and (2.8.7) are
made to run along the characteristic curves C+ and C-, given by eq. (2.8.18)
then they can be transformed into two total differential equations given by
eq. (2.8.20).

Along the C+ curve :

dt - d&x =0
V+c (2.8.21)

and dH + ¢ dV+ F, dt =0
- 4
g (2.8.22)

and along the C- curve :

it -dx =0
V-c (2.8.23)

and A = c dV+F_dt =0
(2.8.24)

]

inwhichFinvso_-_l-_cvlﬂ ~—a(1+Vv)
C'R B c (2.8.25)
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The four equations (2.8.21), (2.8.22), (2.8.23), and (2.8.24) are then
transformed into finite differences in which the values at the beginning
of the time At are related to the two unknowns at the end of the interval.

At is chosed so that At € Ax
|V_: ol (2.8.26)

There are two standard methods of solving the four above equations;:

‘The first uses & Characteristic grid in which the characteristics are allowed
to be projected into the solution domain until they intersect; the solutions
obtained are then interpolated to give values at specific points in space
and time. The second method uses a Rectangular grid in which at the
particular point & solution is sought, i.e., at time t + At, the two
characteristics are projected back to the time t line. Information on the
line at time t = t is then interpolated for insertion into the four equatioms
to give the desired solution at time t + At., Boundary conditions are
required at the ends of the channels to give complete solutions over the
entire reach.

Once a general partial differential equation or set of equations is
reduced to a characteristic equation similar to eq. (2.8.14) then depending
on the roots of this equation the original partial differential equation is
classified.

Thus referring to eq. (2.8.15):
if B®>LAC then the roots are real and unequal, and the partial differential
equation is then termed hyperbolic (as in unsteady flow), if Bz=hAc then
the roots are real and equal and the partial differential equation is then
termed parsbolic, if B°<4AC then the roots are complex and the partial
differential equation is elliptic.

It is noted that for non-linear equations the classification may be
dependent upon the solution.

The method of characteristics is considered by Liggett and Woolhiser[12]

to be the most accurate of all the methods, and is the standard by which
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others should be judged. However, because the solutions are displaced in
time and space, thus requiring interpolation procedures, other methods,
which give solutions at specifiéd points, become more attractive.

For a more general derivation of characteristic equations see the
Government Publication [1L].

2.9 Finite Differénces

In this section a particular variable u is considered, first as a functim
of one independent variable, and then later as & function of more than one
independent variable.

If u = £(x) then u at a poiﬁt x+h may be expressed in terms of u at x by
means of a Taylor Series expansion;

i.e., u(x+h) = u(x) + h du + h? d%u + h® a%u + 0o(n*)
ax 2! ax? 3! ax’ (2.9.1)

where O(h*) denotes the sum of terms involving fourth and higher powers of
h. (see Fig. 2.6).
Similarly, the value of the function at & point x-h may be expressed in

the following way :

u(x-h) = u(x) - h-du + h? d%u - h® d% + o(n")
ax 2! ax? 3! ax’ (2.9.2)

Addition of equations (2.9.1) and (2.9.2) gives :

u(x+h) + u(x-h) = 2u(x) + h?*d*u + O(n")
axz (2.9.3)

If the term O(h*) is assumed negligible in comparison with lower powers
of h then after dividing by h? (2.9.3) becomes :

2y [:u(m) - 2u(x) + u(x—h):l (2.9.4)
X=X

with an error of order h?.
When eq. (2.9.2) is subtracted from eq. (2.9.1) then the result is the

central difference formula for the approximation of a first derivative,

i.e., du &l [u(:&h - u(x-h)]
2h
W x=x (2.9.5)

again with an error of order h?, if terms of O(h®) are neglected.

Other approximations to du at x = x are given either by (2.9.1), giving
dx
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a forward difference forpula :

du = 1 |u(x+h - u(x)

& ey B (2.9.6)
or by ea. (2.9.2), giving a backward difference formula:

du £ 1 [u(x) - u(x-h

X yuy B (2.9.7)

Both equations (2.9.6) and (2.9.7) involve neglecting terms of O(h2?) and
thus have errors of approximation equal to O(h).

It can be seen that the right hand side of eq. (2.9.5) approximates the
tangent to P, in Fig. 2.6, by the chord AB and equations (2.9.6) and (2.9.7)
approximate the tangent by the chords PB and AP respectively.

The dependent variable u is now considered to be a function of the
independent variables x and t. .

As partial derivatives are constructed with only one variable at a time
changing, whilst the others are considered constant then it is clear that
equations (2.9.%4) to (2.9.7) for partial derivatives, say with respect to the

variable t become :

3%y = 1 [ulx,t+k) - 2u(x,t) + ulx,t-k
Wy Y I: ’

t (2.9.8)
du =1 E(x,t+k) - u(x,t—k]
% pay 2K (2.9.9)
du =1 [u(x,t+k) - u(x,t)
oy k| o (2.9.10)
du =1 [u(x,t) - u(x,t-k)|
3t k

t=t - | (2.9.11)

all with equivalent orders of approximation as their corresponding total dif-
ferential equations (2.9.4) to (2.9.7). In the same way finite difference
forms of partial derivatives with respect to the independent variable x can
also be comstructed, with t fixed and x at points x, x+h and x-h.

To illustrate the formation of a finite difference equation we will use,
as many writers do, the one diménaional héat flow equation in non-dimensional

form :
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2u = 3%u
at %zr (2.9.12)

The numerical solution of this equation as with other partial differen-
tial equations usually requires that the solution domain bé divided up into
a grid of points or finite difference net.

Then small changes in x and t, i.e., Ax and At, are equal to the sides
of the rectangles shown in Fig. 2.7, i.e., h and k respectively. The co-
ordinate system is then defined as x = i h and t = jk, where i and j are
integers.

The value of u at any point P is then up = u(ih, jk) or simply U s

The simplest scheme for transforming the heat equation (2.9.12) into a
numerical system is shown in Fig. 2.8(a) and is termed an explicit formation.
When %y:ia approximated by the forward difference eq. (2.9.10) and m{g.by
the gqﬁivalent central difference equation to eq. (2.9.4), at the g%:e level

j, then eq. (2.9.12) is transformed into :

T L e O Rl U2 9% Ml ¥F Bl o= ¥
k h‘ (2-9013)
giving v 541 =Y 5 Y X (g 5o = 2% 5 * Wy 5) (2.9.14)

and so the new value of u at point i and time t + At is expressed explicitly
in terms of values at time t. Further requirements are that the initial
conditions, i.e., u at time t = 0 for all i, and at the boundaries, i.e., u
at x = 0 and x = 1 for all j, must be specified. The solution may then be
"marched out" row by row.

All is not as simple as it first appears, however, as decisions, regard-
ing the choice of different schemes, the number of grid points, their pattern
and spacing depends on such things as stability, convergence and accuracy,
each of which will be dealt with in greater detail in Chapter 5,

In the above scheme it can be shown that the solution of the difference
equations (2.9.14) will converge to the solution of the differential equations

as the grid points move closer and closer together providing,
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0< At <1
Ax?2 2 (2.9.15)

The condition for stability for the explicit scheme is also that

At ¢ 1
Ax* 2

(2.9.16)
where stability means that errors introduced into the solution decay as the
solution proceeds.

Here the conditions for convergence and stability are the same, although
this is generally not so, in fact the stability requirement may be lifted if
an implicit solution of eq. (2.9.12) is used. In such solutions the unknowns
are expressed in terms of other unknowns to give a system of simultaneous
equations which may then be solved by a standard procedure.

Thus with reference to Fig. 2.8(b), if 9u is replaced by the backward
difference eq. (2.9.11) and_%i% replaced agag; by the equivalent to the
central difference equation tﬁ eq. (2.9.4), but this time at the time level

t + At, then eq. (2.9.12) is transformed into :

T L R Y e C o O T ke L M T L
k h (2.9.17)
then UWe = (1 + 21{) -k u. - -k u._ " = U. .
1,J+1 B2 5t 5 141,541 -El 1-1.3+1 133 (2.9.18)
if r ==k then eq. (2.9.18) becomes :
h?
. RS - : 3 # . e e = U. .
T Uig,i+ (1 -2r) Ui, 7T Bia1,541 T U, (2.9.19)

The problem then reduces to the solution of & tridiagonal matrix, where
the co-efficients of the matrix are r, (1 - 2r) and r. The solutions of such
equations can be acheived very efficiently by the Double Sweep or sometimes
the Gauss Seidel methods, providing the boundary conditions are included.

If the resulting finite difference equation, eq. (2.9.19), had involved )
non-linear terms then solutions may be obtained by applying non-linear tech-
niques, such as Newton-Raphson. In certain circumstances, i.e., unsteady

flow, solutions can be obtained by holding one of the non-linear terms
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constant (if the degree of non-linearality is two) and then treat the
system as linear, the constants are then updated at the ends of each
iteration.

Although the example chosen above is a simple one the principles in-
volved are those which are used in transforming the unsteady flow equations

into finite difference equations.
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'CHAPTER THREE

'LITERATURE SURVEY

3.0 Introduction

This section reviews the finite difference schemes and théir methods of
solution which have been devﬁloped by previous workers. Where such schemes
have been suggested for use in a channel network their applicability is
discussed.

The review starts with two papers that are themselves reviews of work up
until the dates of their publication. Further developments are discussed

afterwards.

3.1 Difference Solutions of the Shallow-Water Equation by J. A. Liggett and

D. A. Woolhiser

The above paper [12], published in April 1967 provides an excellent dis-
cussion of the difference solutions available at the time of publication. Its
Closure [13], published in February 1969 suggests a further scheme which
changed the writers views regarding explicit schemes. The authors object was
to present some of the acceptable numerical methods which could be used in
connection with the shallow water equations so that workers who are new to the
science may not make the same mistakes that have occurred in the past. The
investigation was primarily concerned with the overland flow application
although the methods suggested are applicable to unsteady flow in open channels.

The basic equations used are :

oh +udh +h du=gqg
at ox 9x (3.1.1)

and

du+udu+gdh=g(So-5f)-qu
ot ox ox h (3.1.2)

vhere h is the depth of flow, u the mean velocity, q the lateral inflow per
unit area per unit time, So the channel slope and Sf = u? where R is equal

- - 3 C R
to h, 1mplying & wlide channel or overland flow.
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The equations (3.1.1) and (3.1.2) are reduced to dimensionless form by
defining :

u* =u , h* =h , x* =x , t* =t Vo, Fo = Vo_, So = Vo?
Vo Ho Lo Lo JgHo CZHo

and k = So Lo, in which Lo = length of reach (see Fig. 3.1), Ho = normal
Fo’Ho
depth of flow for Qo = q Lo, Vo is the normal velocity of flow for Qo = g
Lo = HoVo, assuming the total inflow arises from a constant lateral inflow
ql
After substitution of the above into equations (3.1.1) and (3.1.2) the
following two dimensionless equations are obtained in which the asterisks

have been dropped :

gh +ugh+hgju=1

and
du +udu+ 1 dh =%k (1L -u?)-u
9t 9x TFo® 9%k h h (3.1.4)
The authors then introduce the concept of the difference operator L6
where :

gz (8 =g ® o
Z (%) is the solution of the finite difference scheme and r(a) is a function
at the particular grid points to which the solution applies.

To illustrate one of the short comings of finite differences the authors
chose as their first example an unstable explicit method in which h and u are
evaluated at the same grid points.

The subscript j is for referencing a node in the x direction and i in the
t direction (Fig. 3.2)

For the unstable scheme the left side of (3.1.5) becomes :

()]i - [,iv _ i 14 o1 ipi _ 4
Ls (z1) h. h. + uj(h'+l h._l) + hj (uj+l u._l)
J At 2 Ax 2 Ax (3.1.6)
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and

(8)|i _ | i+ _ i 1.4 1 i i
Ly (Z) . W U5 My -wg) 1 (g, - hs ) A
J At 2% Fo2 2px el

the function on the right side of eq. (3.1.4) is evaluated at the point i,j.
The approximation of the difference equation to the differential equation

. i 4 i+
can be determined by expanding each variable ul jl

3 hjil ete., in equations
(3.1.6) and (3.1.7) by a Taylors series, which on substitution into equatinns

(3.1.6) and (3.1.7) gives :

@i . )
E& (2,) ]j (B2, 4t p%n , Olar?), HE% o Olax?) h@i— + O(ﬁxﬂ(&l.s)

and
(614 =
Eﬁ (zz)( jl - {g% % g_t a: , 0at?) ug_:_ , 0(ax?) +F_:;r [% S o(axﬂ;l
J
-1.9)

- (
If At is now defined as yAx where y is a constant and Ax is allowed to

approach zero then equations (3.1.8) and (3.1.9) become :

L s (Zl)(fj]i = dh  udh hdu 0(Ax)

;0 %t oAt (3.1.10)
Ax * o
and
(8)|1
(2,) =9u , udu 1 9h , 0(Ax)
s (2, . e g—;'l-i:gz- 2+ (3.1.11)
Ax * o

and so the difference operator approximates the differential operator to the
first order. The approximation can, however be made second order by letting
At =Y A¥*. The disadvantage of the above scheme is that it is not stable and
therefore cannot be used. Some workers have found the scheme empirically
stable for supercritical flow only or if the right side of (3.1.4) is written
for the point i+l, j. However in this case it was found that over a long
period of time, inflow may be greater or less than the outflow plus the accum-

ulation of storage.
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The next scheme suggested by the authors is the Diffusing Method in
which different quotients with respect to time use averaged values of the

function before the time step, again h's and u's are evaluated at the same

nodes.
(6){i _ |, i+l _ i _ .4 i1 _ i i, i i
L, (2) R, %(hj+1 i g) +us (B, —np )+ By (us )= w5 ,)
J At 2 Ax 2 Ax
(3.1.12)
and
2 5] = ' Jn J-1 3 g+l J=1 Fol I+1 =1
j At 2 Ax 2 Ax
(3.1.13)

The right side of (3.1.4) is evaluated at the central point i,j.

There is one variation on this method and that is when averages are used
for the right side of (3.1.4) and 3 (u.h) is approximated by :

X

i i : .

(u h)j+1 (u hzifl and is known as the conservation form.
2 Ax
When the terms in (3.1.12) and (3.1.13) are expanded by a Taylors series

then :

ps (2) 0|1 = ah + px2 9%n 4w b + b gu + O(ax?, at)

» j 9t 2at ax 9x ox (3.1.14)
and

L (ze)m "= 5u+Ax? 3% +u gu+ _1_ b+ 0(Ax?, At)

B j ot 2At ax? 9x TFol 5x (3.1.15)

If At = y Ox? then the difference operator epproximates a different system
of differential equations than (3.1.3) and (3.1.4), or if At is taken very
small in relation to Ax the second term may assume considerable importance.

If the ratio of At to Ax satisfies the Courant condition i.e.,

At < 1
& Tul + ¢ (3.1.16)

then the diffusing method is theoretically stable but the solution to this
system of difference equations does not necessarily converge to the solution
of the differential equations because of the difference operator does not

approximate the differential operator.
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The third scheme suggested by the authors is again an explicit one and
is a version of the commonly known Leap Frog Method in which time derivatives
are approximated by central differences. Again the h's and u's are evaluated

at the same nodes.

(8711 _ i+l pi-1 i _ i
Ls (z,) (n ) + u (ni " h. ,) * b (u.+1 u;_,)
J 2 At 2 Ax 2 Ax (3.1.17)

(8§)]1 i+l i-1 i _ i
Ly (z,) (w, ™= uy, ") + J(u +1 ut_ D! (Enil hs )
J 2 At 2 Ax Fo? 2 Ax (3.1.18)

the right side of equation (3.1.L4) is evaluated at the central point i, j.

In this scheme the difference operator approximates the differential operator
to the second order, O(Ax2?), and is stable if the Courant condition is
satisfied. The leap frog method requires initial conditions at row t = to
and either t = to + At or t = to - At.

To conclude the explicit schemes suggested by the writers, they give two
Lax-Wendroff methods. The first is a two cycle scheme which first uses the
difference scheme of the diffusing method to advance the solutions one row
and then uses the leap frog differencing scheme for the second row. This gives
a method with second order approximation which should exhibit positive damping
of short wave disturbances. The second method is the Single Step Lax-Wendroff
method in which the dependent variables h and u.h are expanded as a Taylors
series. The finite difference scheme (outlined below) then estimates the
terms up to and including second order derivatives.

Equations (3.1.3) and (3.1.4) may be written in the form :

b +3m-1=
ot ax (3.1.19)

9 (h?) - xh (1 -m2) =0
3x n¥ (3.1.20)

a +3 (m?) +_1
. '5% oax h 2Fo?

in which m = u.h.
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In metrix notation (3.1.19) and (3.1.20) may be written as :

3t  3x (3.1.21)
where W=[m |, G = [m? _ h? and K = [ kh(1 - m?)
h h T 2Fo? n¥
m 1
now;
W(x,t + At) = Wx,t) At W, At2 W . o(at?) (3.1.22)
ot 2! 3t

If the truncation error 0(At®) is neglected and substitutions are made

for aW and 32W from (3.1.21), then (3.1.22) becomes :

3t 3t
Wix,t + At) = W(x,t) - At (3G , K) 9 [E(3G _ 9K
9% A—[ 3% 3% + 3t } (3.1.23)
where A= | 2mn _h - m?
h Fo? %) 3
1 0

The above eq. (3.1.23) is then transformed into finite differences in
vhich space differentials are approximated over the interval j+1 and j-1.

The only implicit scheme suggested by the writers is :

(6)|i+d - (h%+l

. | ~ - & 1+1 1+1
Lg (2;) W) i (5, - u e - nith
; =
i i i+l i+l
+ Ei(ui+1 - “j—l)+(uj+l - u-_l)}
b Ax (3.1.2k)
and
ACRIC U (T SRS T S, O oSy
§ 2 . SRSERG | P o T i
5 At b Ax
1 i+l 1+1

+ 1 (n 1)+(h S s )
Fol gt Lh mﬁ L (3.1.25)



3k.

where the right side of eq. (3.1.l4) is centred at i+3, j and where

-~ A.+ i b .’.
u ;_(u; s u}) and h = 1 (ﬁ1 1 h.)
2 2 ’ (3.1.26)
In the products @ h> , §u' or En', &% = hna st =n*t, m
-+ - - . . . . R
the products & h'Y, & ul*? or & b1, 61" = u! ana 8% = n! for the initial

advancement, and thereafter they are set to the recently obtained values, i.e.,

ﬁl+l 1 +1 and fi1-l-1 1+l

. In this way the equations are linearised to
facilitate the solution of the nonlinear equations by the Double Sweep method
(which will be dealt with in detail later) until the difference between sub-
sequent values of ui+1 and hi+1 fall within a tolerance.

As the two dependent variables u and h are evaluated at the same nodes
then if at a boundary only one of the variables is expressed as a function of
time then it is necessary to determine the other. One of the ways the authors
suggest of doing this is to assume the velocity at the boundary is zero and
thus the flow is then symmetrical about that boundary, i.e., u(x) = —u(-x),
So(x) = - So(-x) and h(x) = h(-x). When these symmetry conditions are sub-
stituted into the momentum equation, that equation is satisfied to the order
Ax without further computation. This gives & system in which the boundary is
approximated to a lower degree than the interior. The error produced is
actually of the order k.Ax so the approximation is considered satisfactory for
small k but may be unsatisfactory for large k. The resulting depth is higher
than it should be.

The implicit scheme approximates the differential operator to the second
order (neglecting boundaries) and the ratio At/Ax is not governed by the
Courant condition. However by increasing the time step further than this
inaccuracies would result at the boundaries and stability problems could occur.

A more accurate way of determining boundary conditions for finite

difference schemes which calculate the two dependent variables at each node is

to use, at the boundaries, the method of characteristics. There are two
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suggested ways to do this the most accurate of which is to build a
characteristic net from the last set of calculated points on line t, as shown
in Fig. 3.3. The net is continued until the desired point Q is included and
the net values are interpolated at that point. Usually two to twelve points
have to be computed to obtain the desired point.

The second method which is not so accurate as the first is to extend a
characteristic from the desired boundary point Q to the last known line of
values on line t, as shown in Fig. 3.k.

The process is an iterative one and the main steps are ;

(i) by using the value of u and h at the penultimate point before the boundary,
the approximate slope of PQ is determined,

(ii) PQ is projected down from Q to determine n,

(iii) u and h are found at P by interpolation along line t. Using these values
and the appropriate characteristic equation the value at the boundary Q is
determined. The slope PQ is then recalculated and the process repeated by
returning to step (ii) until there is no change at Q.

This method has the disadvantage that if the time steps are large thenthe
method is not very accurate, also that characteristics may bend sharply near
boundaries. If one is going to use the characteristic method for boundary
conditions then the program becomes complex and it is simpler to use the
characteristic method throughout.

In the examination of the stability and approximation of the difference
schemes the interior points only were considered i.e., ignoring the boundaries.
If the method of characteristics was used to determine the boundary values it
was assumed that this would be of a higher order of approximation than the
interior. Richtmyer ﬁE] determined the stability criteria of the differential
systems in linearised form, as no stability analysis exists that can deal with
totally non-linear partial differential systems.

To investigate the effects of instability and flexibility the authors con-

ducted a series of numerical experiments. The characteristic method was used
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to provide initial data as this method proved to be consistently most
accurate and not subject to convergence problems. Boundary conditions were;
u=oatx=oforallt 2oand u= vh/Foat x =1 (i.e., critical depth)
or no downstream boundary condition at all in supercritical flow.

It was observed during testing that instabilities often originated at or
near boundaries although it was not established whether the perturbations were
due to the boundary conditions or to the large curvature of depth and velocity
that occurs near a boundary.

Three steady state profiles were inserted into the different finite
difference schemes, each chosen to eliminate problems associated with the
difference method at the upstream boundary and to minimise curvature in the
depth profile near each boundary. Two perturbations were introduced into the
steady state profiles along the length of the reach to investigate their
damping and possible interaction with the boundaries. Tests were carried out |
with Fo varying from 1.0 to 2.0 and So.Lo/Ho varying from 0.1 to 22.5. A
further test was that of a rising hydrograph at the downstream boundary, again
observations were checked with the characteristic method.

The unstable method wﬁs found to be completely unsatisfactory as the
steady state profiles broke up into long waves with growing amplitudes. If
the time step was halved then this decreased the rate of growth of the oscil~
lations but they soon became unstable. The rising hydrographs followed the
solutions obtained by the characteristic method fairly well until the upstream
boundary wes felt at the downstream end, at which point the method then became
unstable.

Results showed that the diffusing method is empirically stable for all
cases except where it did not approximate the differential equations, in which
case saw-toothed waves were observed superimposed on the solution. This,
according to the authors is characteristic of theoretically stable but inflex-

ible methods (i.e., perturbations in the steady state profiles may damp out



38.

rapidly or, with some parameter values, may grow in magnitude). The authors
state that filtering schemes could be devised that would smooth out such
short wave disturbances, thus making an inflexible (but theoretically stable)
scheme useful for indefinite calculations.

The first Lax-Wendroff method and the leap frog method both proved to be
inflexible in some instances, as saw-toothed disturbances crept into the
solution. In some cases positive damping was observed but in others distur-
bances were so large that they prevented a continuation of the computation.
Again a filtering scheme could be used. However, the second single step
Lax-Wendroff method did give very good results in that it was able to retain
the steady state profiles and follow the rising hydrographs closely.

The implicit method also performed very well as it rapidly converged to
the steady state profiles. There was only one case in which it did not do well
and this was the rising hydrograph with a high Fo, however, the authors later
found that these irregularities were due to algebraic errors and not the
methods tried.

The initial conclusions which the authors came to were that efforts should
be concentrated on the characteristic and implicit methods due to the inflex-
ibility of the explicit methods. However, in their Closure [13] they found
that the single step Lax-Wendroff method was very flexible and accurate, also
they stated that inflexible methods can be made useful by properly averaging
the resistance term. Finally, that although a lpear stability analysis is a
very useful tool, the stability criteria developed are approximate for non-
linear equations and that a linearly stable difference scheme may fail com-
pletely when the non-linear terms become important.

3.2 Tidal Computations for Rivers, Coastal Areas and Seas by J. J. Dronkers

The above paper [ 8] published in January 1969 gives a review of one and
two-dimensional tidal computations by means of the computer and discusses their

practical applications. Although the paper is primarily concerned with tidal
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computations the schemes suggested are applicable to general unsteady flow
in open channels. The two dim ensional scheme will not be disucssed here.
Dronkers consideres it reasonable, as many workers do, to use the same
flow resistance term in unsteady flow as is used in steady flow, i.e., that
Chezy's Law and Manning's Law hold for tidal motion. Although Manning's Law
mey give a somewhat more accurate dependence on depth he has found no prefer-
ence of one over the other. In general, C, in Chezy's Law, also depends on
the schematization of the region (including the depth) as well as bottom
frictional resistance. Friction co-efficients are slightly modified to take
into account irregularities in the shampes of rivers including bends. When
the boundary conditions are measured then internal data should also be ecoll-
ected in terms of depth and velocity so that the chosen 'C' may be verified.
In the tidal calculations the mean water level is used, as shown in
Fig. 3.5. This is determined from observations over a full tidal cycle.

The basic one dimensional equations used are :

o(3u + u 3u) =—oe_ar-a§+1|£ + Wx
9t 9x 9x ¢ ao+h) a_+h (3:2.X)

and 9 (Au) +bgh+q=0
ax ot (3.2.2)

in which h* =z +a +h, 2 (x) = height of bed with respect to datum plane,
ao(x) = height of mean water level with respect to the bottom, h (x, t) =
height of the water level with respect to mean water level, u = mean velocity
in a cross section, Wx = x component along the river of the wind force on the
water surface, C is Chezy's co-efficient, p is the density of the water, g
the acceleration due to gravity, A is = b, (ab+h), where b_ (x,ao+h) and
1£;gb+h) are the stream widths and total widths (storage included) respect-
ively, q is the supplementary discharge per unit length. In the friction term
above it will be noticed that (a°+h) is used as the hydraulic radius, thus
implying & wide channel.

If Q is taken as the dependent variable instead of u then the basic

equations become :
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(dag + 9n) (1 -  aQ® ) - (bg +0b) Q 3h +1 23Q
ax  ox gla_+h)A° g A’ 3t Ag ot (3.2.3)

+ ' - W + I=0
clallaom) g(a_+h)

and 3@ + b 9h = 0
9x ot (3.2.4)

A
u’ A

in which I = bed slope and q is taken as zero. «o is defined 33/ ud aa
and takes into account the effect of the non-uniform velocity distribution on
the convective acceleration or Bernoulli term.

The above equations (3.2.1), (3.2.2), (3.2.3) and (3.2.4) are for grad-
ually varying cross sections and if a sudden narrowing or widening occurs then
a formula must be applied across the jump that takes into account the head
loss. For the case of subcritical flow this is :

n [g) - wtx)] = 2 [n0x) - nex,) (3.2.5)
in vhich X, is the narrowest part of the contraction and x, is downstream of
the jump. N depends on such factors as friction, irregularity and contrac-
tion of the flow ete.

If the flow is from x; to x, then n is very near 1, however if the flow
is from x, to x; then n could be much smaller. If accelerations and deceler-
ations are small, i.e., ch@ngea in velocity of less than lm/sec. then a modi-
fied C may be used as this also depends on uts I% may be necessary to have
dirférent 'C's for ebb and flood.

To analyse the stability of the finite difference schemes Dronkers formed
two equations for a geeral linearised finite difference system :

n+l

n+l _ n-r # (,0¥8 _ . n+s - * =

(“m “m sk m (hm+l hmrl) TR TR R (3.2.6)
n+w n n+l n+l

(Bpyy = Bpey) + 0% (g -9 ™) + % =0 (3.2.7)

in which a* to f* are co-efficients, some of which depend on u and h evaluated
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at the previous time steps. r, s and w are positive integers and m and n are
x and t grid spacings respectively. Stability is then analysed by a finite
Fourier analysis of errors introduced into the finite difference equation
(this method will be dealt with in more detail later).

In the general setting up of finite difference schemes Dronkers suggests
that difference quotients with respect to distance should be central
differences, although the central points for the h's may be different for the
Q's or u's. Also if an explicit scheme is to be used then again a central
difference is required with respect to time and if an implicit scheme is used
then a forward difference quotient is required. Dronkers is of the opinion
that by keeping the equations non-linear it is not only time consuming but also
that the higher accuracy obtained is not necessary for practical applications.
Also, particular attention should be paid to ensure that the values of the !
cross—-sectional area and breadth etc. used are representative of the section
to which the equations pertain.

The first scheme suggested for solution of the tidal equations is an
explicit one and is an adaption of the leap frog method. In this adaption
(see Fig. 3.6), the h and u nodes are displaced both in space and time.

The basic equations used are :

gu ,ugu _ -ggh -
ot 9x 9x (2 & th (3.2.8)

and 3(Au) , b gh =0
ax ot (3.2.9)

In eq. (3.2.8) daoldx and dzoldx, which do not depend on time have been
omitted. It is possible, however, to redefine h as the height with respect
to datum h*, in which case a, + h becomes h* - Zge

Equations (3.2.8) and (3.2.9) are transformed into finite difference form

to give :
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2n+l 2n-1

_ _ 2n+l 2n-1 _ 2n-1, _ 2n _ wen
= ug (_é'l‘k_) u, (u2m 42 " Uop +2) _gkl . (h2m+l h2m—l)
2n-1 2n+l1
-2g T |uy T |uy,
2n
C(agh) o (3.2.10)
2n+2 2n _ _ 2n+l 2n 2n+l 2n
and by g = Bopyy - L (oo Aopep = Uop Aoy
k(b)2m+l (3.2.11)

As the above system requires that initial values are given at t = to and
t =T then it is suggested that the values of h are taken at t = o0 and u is
either determined by u(x, T) = u(x,0) - gT h(x + k, o) - h(x-k, o)|, or
for practical applications simply as the izme at t = o. Boundary conditions
are usually given as h = ho(t) at the estuary end and u = uo(t) at the upstream
end of the river, although it is possible to have either at a particular
boundary.

After applying the stability analysis discussed previously in which r=1

s =0, w=2and c* = f* = 0 it was found that :

k > (ga)d (1 + %) -}
T b 2 (3.2.12)

in which

ezt | G- o
C2(a_+h)38 2k (3.2.13)

And so the scheme is stable providing the ratio of dx/dt complies with
(3.2.12). It can be seen that the friction influences the stability in a
favourable sense and that stability is maintained when it exceeds the Bernouli
term if the latter is negative.

The next scheme suggested is an implicit one in which the dependent
variables are staggered in space only. (see Fig. 3.7).

The finite difference equations then become :

.. n¥l +1 1 1
By ™ Ty = 20y~ uBy) -~ uwp ol | -1l i, - vy o)
T8 (ag+h)y (co,)? 28

(3.2.14)



L,

n+l
2m+2

_ n+l _ _ n n+l n
(Au)oy 2k 1oney (Bopyy = Bopyy)

T (3.2.15)

and (Au)

In equations (3.2,14) the Bernoulli term is evaluated over Lk, which
Dronkers says is a poor estimate unless short lengths are considered and that

a better one would be :
n-l-l(n _n)
Yom ‘Yomt2 T Vom
2g (3.2.16)
Also, in eq. (3.2.15) to avoid calculating A at 2m+2 and 2m at which h
is not computed, it is permissible to replace the left side with 3

n+l n+l

n
Aoms1 (iopep = Vo ) (3.2.17)

if in the river there is a relatively small amplitude of vertical tide with

respect to a,. If this is not possible then the equation of continuity must

be used in the form :

AQu +ubg 3h = -b 3h
ox 9x ot (3.2.18)

The above equations (3.2.14) and (3.2.15) form a system of simultaneous
linear tridiagonal equations which is solved by the Double Sweep Method.

When the stability of this system is considered with r = 0, 8 =1 and
w =1 in equations (3.2.6) and (3.2.7), it is found that providing the
friction term in b* exceeds the Bernoulli term then the scheme is uncondition-
ally stable. However, when the Bernoulli term is large it is recommended that
separate equations be applied such as eq. (3.2.5).

The second implicit scheme suggested by Dronkers is one in which Q is the
dependent variable instead of u. This allows a better finite difference
representation of the equation of continuity and the Bernoulli term.

The basic equations used are :

h = -1 - glgl B
o= C*A*(a_+h) +,ang§%

9x  Ag 3t (3.2.19)
and 3Q = -b gh
ax at (3.2.20)

in vhich B = bg + ab.
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If the same notation is used as in Fig. 3.7 then in (3.2.19)

n+1 _ ntl _ . n
Q h = ng l: o) By hﬁn-l-l]

n+l n+l
snd. 88 ® Rosen = Uy
% 2k (3.2.22)

(3.2.21)

which on substitution into eq. (3.2.19) and after rearrangement gives :

" n n+l _ n n+l -2k n+l n
- (;ﬂ) R (%9‘) S (O = )
g om g om Aam

‘21‘1%!‘%:1 k(3% (mg ., +hy )

(CzAza.);m Tg A% om (3.2.23)
and eq. (3.2.20) becomes :

n+l n+l n+l

Gy = Gy = ~2k by, (Byyy = b))

7 (3.2.24)

A, B and a (hydraulic radius) are average values at the Q nodes using the
depths h, , and hi-l at the time level nT.

The resulting set of simultaneous equations is again solved by the
Double Sweep Method which will now be briefly dealt with.

Equations (3.2.23) and (3.2.24) may be expressed as :

%m Boms1 ~ Pom Pomy * Yo Bp = Ion (3.2.25)
and €om hémﬂ. + Qém_z - Qém = Aam (3.2.26)
in vhich a, = %E(E)n 2m=l+%._(%)na'f2m'2k +2k|Q%nl '
- ¢t TR ToWTa)Y
Tom ‘%: Agm % (gg)n hgnd-l + h;m-l)’ €om = -2_1;;2@ .
Ao = 2 By Bome.

\

In equations (3.2.25) and (3.2.26) the unknown values at n+l are

represented by the primes;
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Which for m=1 and m = 2 the equations become :

oo hé - 8o hi *vo Q'é =30 (3.2.27)
ep By + Q) -4 =22 (3.2.28)
ay by ~ By B3 * Y Q) =0 (3.2.29)
€y by + Q¢ - Q) = Ay (3.2.30)
Now if h] is a boundary then Q) can be expressed in terms of hy s
i..e., Qé + q.2 h'3 382 (3-2-31)
in which aQ = 0ns and 8, = 0, + 32 hi s
T2 T2

If eq. (3.2.31) is now substituted into eq. (3.2.28) then hé may be

expressed in terms of Qﬁ H

1 ! =
thus hi + p; Q) = Ty (3.2.32)
in which py = 1 , andr, = A +s,.
L¥e, €%,

Eq. (3.2.32) may now be substituted into eq. (3.2.29) to give :

Q) + q, hs =5, (3.2.33)
in which qh = ah s and 8) = G’& + Bll- I‘a.
Th*ﬁh Py Y, * Bh P3

The above substitutions give rise to two general equations which effect-

ively reduce the system to an upper triangular matrix. These equations are :

' ' =
Bonsr * Pome1 Yome2 = Tomel (3.2.34)
{ ] 1 =
and Q', o * Yopus Pope3 = Sopao (3.2.35)
In which p2m+l = 1 N r2m+l #_Aam + Bam' q2m+2 = a2m+2
Un * €op €om * Yop YomsotPoms2 Pomsl
and 8omip = 040 +.ng+2.r2!Ei.whcre p, = 0 and r, = hi.

Yomiz * Bomeo Pops
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The process is then continued until the boundary QéM is reached ;

ieees Doy ) = Pony Qo * Topa (3.2.36)

Knowing QéM it is possible to calculate héM-l’ and using this it is
possible to obtain Q) , from (3.2.35) and so on back to hi.

As the finite difference equations are similar to the equations for the
first implicit system then a stability analysis is not given.

The third implicit system to be suggested by Dronkers is one in which the
Q's and h's are determined at the same node (see Fig. 3.8). This scheme then
allows the use of different grid lengths and & more flexible schematization.

The basic dynamic equation used is :

gh = 9431_ B, 8 99
Ag at C?A ATg b ax (3.2.37)

X a
and the continuity eq. is as eq. (3.2.20).

The finite difference equations become :

his1 ~ Bp = T A% (Quug = Qa1 H(Qg = Q)| — Axp[Q,y + QI (Qy, + Q)
2Tg A C: A &
m m m m
- By Qe * ) (Qp4y- Q)
2Te Ay Py (3.2.38)
&nd QA+1 - Qﬁ = -Efg_bm m}l hm+1)+(h' - h )
27 (3.2.39)

again the primes are for the unknowns at t = t + T and variables without
primes are the knowns at t = t.
As shown previously a general set of equations may be formed for solution

by the Double Sweep Method. These are :

hiyr = By + Ny Qpey + 8y Q = 1y (3.2.40)
and g (Bpyy +h) + Q) - Q=& (3.2.41)

If at a boundary either hi is specified or Qi then it is possible to

form two general equations similar to eq. (3.1.34) and eq. (3.1.35) these are;
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QUoa ™ "Y1 B Y Gt By (3.2.42)

S (3.2.43)

in which the recurrent formulae for the co-efficients are :

-1 = L ’ tm—l Fooo Mgy 9 Bpy F¥pg ¢ Hp—1 >
+
Pp-1 e:m—l Ppy * e1:|1--l Ppa * eIIJ.-l

Pp = O =1 tm.—l %3 and T = Epa * Im-1 ®m-1 _;g:l Tm-1°

Ooed. Tped ™ B Op-1 =1 ¥ Fm-d

where Op-1 = Pp-1 &m-1 + 1, P = 0 and r = hi.

This third implicit scheme may be extended to deal with river junctions
in the following manner. Instead of elimination h; and letting it equal e,
it is carried through the computations to give the expressions :

Uz ™ 91 B Tty Gt B by (3.2.44)

1 5 ' '
and hm P Qm * rm * am h1 (3.2.45)
where m is from 2 to k at the junction.

In the above :

& = o’m--l m-1 ;m-l m-1 end b m-1 ¥ a'm-l
Op-1 %1 * Cm—l P ¥ Oy (3.2.45%)

Also a8y =1 and r, = 0, so that at the junction :

U | — v
P % =% By Ty (3.2.46)
Now, if the decomposition process is started at the junction and worked
towards the boundary, keeping hi in the equations, then the following holds

for two successive sections n and n-l ;

Q= Buy T Qg sttty (3.2.47)

and by, =Pt Q) vt ek ny (3.2.48)

# = 0 and a* = 1. The co-effici O tH g . . e ™
vhere pk & icients qn. tn, an, bn, pn, rn and an-l

being determined in a similar manner Ly tm’ B bm ete.
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Thus for m = 2, eq. (3.2.48) becomes :

e e A (3.2.49)
and so two equations are obtained for a particular reach relating the depths
and flows at the ends, i.e., equations (3.2.46) and (3.2.49).

Thus for a particular network the system is broken up into single reaches
and sweeps are made up and down each reach to obtain two formulae per reach,
similar to equations (3.2.46) and 3.2.49). At a perticular junction, if the
Bernoulli term is neglected then the depth hy is assumed constant over the
junction and the algebraic sum of flow into the section is zero. At a bound-
ary ore value must be given so the system for the end conditions (including
junctions) reduces to a set of simultaneous equations in which the number of
unknowns equals the number of equations. Once this system is solved for the
end conditions the intermediate information may then be filled in, in the
normal manner.

The above method requires that the system be broken up into reaches and
nodes numbered consecutively within each reach. Also, that separate proced-
ures are required to handle the end conditions, which could become complicated
if there are a large number of junctions. The method however, appears to
have the advantage that very little extra storage is required over that which
would be required if all the reaches were placed end to end.

The stability of the third implicit system is not presented.

To compare the various schemes the tidal propagation of the river Lek,
one of the branches of the River Rhine was computed. The total length
considered was TO km. using section lengths of 5.6 km. except for the third
implicit scheme where different sized section lengths were considered. The
step size T was taken as 600 seconds for all schemes to ensure stability of
the explicit scheme and accuracy of the results. This time step keptwithin
the limit of TOO seconds derived from eq. (3.2.12) in which b* = 0 at slack

water. The boundary conditions were tide at the mouth and an upland discharge
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Differences between the results of the explicit method and the observed were
very small and differences between all methods and observed appeared to be
within the accuracy of the observations which was quoted as 5% of the maximum
discharges at a particular location.

3.3 Further Developments

Baltzer and Lai in their paper [ ] compute three different methods to
simulate unsteady flow in an open channel; these, as discussed in Chapter 2
are- the Power Series Method, the Method of Characteristics and an Implicit
method. Each method gave good agreement with recorded data. To illustrate
the behaviour of convergence they started each model off with different initial
conditions that were considerably in error and were then able to show that
each method produced results that rapidly converged to unique discharge curwes
owing to channel friction. If a channel has no friction whatsoever then
each different initial condition would produce a different discharge curve.

Abbott [1] showed that the two-step Lax-Wendroff method suggested by
Liggett and Woolhiser could be successfully applied to unsteady flow problems
that even contained bores. His adaptation of the method uses the diffusing
method to advance the solution to t + At/2 (the two dependent variables h and
u being calculated at the same node) and then uses the leap frog method to
determine the unknowns at time t + At. The difference between this applicatim
and Liggett and Woolhisers appears to be due to the estimate of the friction
term in which Abbott takes an average at time t + At/2. Liggett and Woclhiser
do not give any indication of how to eatimate this term but as mentioned
previously they say in their Closure ﬁ3] that inflexible schemes can be made
useful by the proper averaging of this term. Abbott states that this method
is fast, accurate and simple to program. In the chosen examples, which con-
tained bores, the jump was spread over sbout four times the difference space
step, with a slight but well damped oscillation in the solution behind it.

The methods ability to handle jumps without any special treatment is

attributed to the 3¥/3x® term in the diffusing part of the method which acts
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as an additional damping force. Boundary conditions were supplied by the
method of Characteristics.

Balloffet describes [3] how an adaption of the leap frog method may be
used to deal with Bridge or Dam constrictions and Confluences. The differ-
ence method used is similar to Dronkers in which the dependent variables are
staggered in space and time, using Q instead of u. Bridge or Dam constric-
tions and Confluences occur at Q nodes where the head loss is taken into
account by a factor k, obtained from the U. S. Bureau of Public Roads, this
is then added to the friction term. Confluences are solved by applying the
dynamic finite difference equation in a forward/vackward difference form to
each of the branches and then by eliminating the elevation at the branch to
produce a set of M - 1 equation, where M = number of branches. The M th
equation is that the algebraic sum of the flow at the node is zero and so
golutions are found for each branch discharge.

Other versions of the previously mentioned methods include a diffusing
scheme, suggested by Strelkoff EIQJ, in which the dependent variables are
staggered in the space direction only and en implicit scheme which uses all
the dependent variables on the t + At line except in evaluating the time
derivative. To linearise the friction term he cleverly expands it by a Taylas
series to give a truncation error of 0(At?) and so is then able to express
this at t + At in terms of its value at t.

Kemphuis [11] uses the third implicit scheme of Dronkers for a tidal
study of the St. Lawrence River with a bifurcation. The method of solution
of the simultaneous equations is basically the Double Sweep method. However,
to handle the off-diagonal elements two extra routines were required to
reduce the matrix to upper triangular form. This considerably increased the
complexity of the method and was not applicable to a general network.

There appears to have been very little investigation into the use of non-

linear methods. One reference is that of Amein and Fang [2], in which the
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authors set up the momentum and mass continuity equations as non-linear
implieit functions, which they then solve by Newtons method.

The velocities and depths of flow were determined at the same grid
points and a single channel only was considered. This gave rise to a system
that was banded around the main diagonal which is a property, the authors
said, eould be used to advantage in solving the resulting set of linear equa-
tions.

In a practical example tried by the authors, in which channel properties
changed significantly from section to section, the implicit method was the
only one, of three tried, (i.e., implicit, explicit and the method of charac-
teristics) in which no difficulty was experienced in obtaining a solution.

In addition, extremely large time steps could be used, even ones as great as
20 hours, as demonstrated by the authors.

The latter, also state that most data for flow studies is given in 3 hr.
to 6 hr. intervals so that smaller time steps than this will have no effect
on accuracy. Time steps of this order can be handled by the implicit method
tried, together with very economical computational times.

Shubinski, McCarty and Lindorf in their paper [16], discuss briefly the
schematization and programming of the Sacramento-San Joaquin Delta of
California's Central Valley, U.S.A. The total idealised network consisted of
572 junctions and 625 channels in which depths of flow were determined at the
junctions and velocities at the channel helf lengths. The finite difference
scheme adapted was an explicit one in which solutions were first obtained at
time t + At/2 by a modified Runge-Kutta procedure in which only two sub-inter—
vals were used. The values obtained were then treated as the average through-
out At and the computation was then continued for t + At. The authors do not
give any detail of how the §V/6x term is evaluated at junctions but it is
assumed that an average is determined about the junction and this is then

divided by an average length.
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The results of the authors work showed that good results were obtained
near the boundaries where they are under the boundaries strong influence.
However, the farther away the stations were from the boundaries then less
agreement was obtained. This was attributed to incorrect starting values and
inadequate determination of additional inflow and outflow from junctions.

It is worthwhile to note that Brutsaert [7] verified the unsteady flow

equations experimentally for a single straight channel.
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CHAPTER FOUR

NUMERICAL SYSTEMS

4.0 Introduction

This section deals with the different finite difference methods used by
the author to analyse the unsteady flow equations for channel networks.

First discussed is the generalised network layout and schematization of
the channel geometry. Following this iseach of the finite difference methods
and these are dealt with in detail.

Finally the framework of the basic program is presented and the purpose
of each block in the program is discussed.

4,1 Network Layout and Schematization

A generalised channel system may be considered as a series of inter-
connecting nodes with any number of branches as shown in Fig. 4.1,

The staggered layout in the space direction shown in this figure is used
in all methods. Solutions are not, however, staggered in the time direction
but are determined at every time increment.

It can be seen fraom the figures that junctions occur at 'head' nodes,
i.e., where the depth of flow is determined and that 'quantity' nodes,

i.e., where the rate of flow is determined, occur along the channels. By
applying this staggered system the aforementioned problems regarding boundaries
and flow around junctions is alleviated. In the chosen system no two nodes of
the same type may be next to each other. Also, each reach length ﬁ:k:may be
different and channel geometry needs only to be collected at quantity nodes.

The position of quantity nodes is chosen so that the channel geometry at
that point is representative of the reach between its two end head nodes.
Cross— sectional data may be stored as functions of the depth of flow, the
particular function depending on the irregularity of the cross-section. The
information required for computation is Ac and Be the convective areas and

breadths, Ay and By the total areas and breadths, R the hydraulic radius, which
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FIGURE 4.1

FIGURE 4.3
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uses the convective area and perimeter, Chezy 'C' which may also be expressed
as a function of the velocity of flow, and finally Ax which is the length
along the centre line of the channel between two nodes. The only information
that needs to be supplied at a head node is z, the height of its bottom above
a common datum.

Data that is likely to alter during the rumning of a program is the bound-
ary conditions and the sideflow function q. The former are identified by
their node number, type, and value at a particular time. The sideflow function
q may vary with locality, i.e., each reach and also with time.

4.2. First Explicit Method

This first explicit method utilizes central differences for the space
derivative and forward differences for the time derivative. The basic dynamic

equations used is as eq. (2.2.9) with.%% +‘§§ replaced by‘%%, i.e.,

0O = 139V _ Vav_ 3oH v!vi Vg '
g ot g ox  ox ' CPR T Acg (b.2.1.)

It is necessary to extend the equation of continuity to deal with a
junction and this may be done in the following manner. It can be stated that
the algebraic sum of flow into a node over a time interval At is equal to the

net volume stored, and so for any particular node j with M branches :

M

AH L Brsam Mcam = ;1 (G oy D%ay = Qup) A% (4.2.2)
The above equation implies the sign convention that channel flow leaving

the head node j is positive and entering it is negative, and that sideflow

entering is positive and leaving is negative. In the product BTj+m Axk+m’

BT is the total breadth at the Qjﬂm th node connected by the k+m th channel to

node j. This may be replaced by SA5+m, a surface area function and may be

determined independently of BT as a function of h.
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Eq. (4.2.2) then becomes :

Zl (G pn DXy = ,'-I-m)

(4.2.3)
zﬁlsa

Using the grid notation shown in Fig. 4.2 the finite difference form of

eq. (4.2.1) for this method, becomes :

LA i i i -
0. S___l+31wﬂ+%ﬂ 531+S,i
" vi."l|v1.|
CZR (k.2.4%)

In vhich ¥; = Ax + Ax, _, and is the total distance between the two end
head nodes for node Qj'

Equation (4.2.3) for the node H.,, in Fig. 3.2 becomes :

J*+l
i+l i
0= H;,+l ,] qk-m Axy i)
At mn0,2 5 SA:I. (4.2.5)
m=0,2,5 90

in which the sum of the flows is the algebraic sum so that their direction
has to be taken into account.

In eq. (4.2.4) Ac, C and R use the average of H;-l and H§+1, and a;

is the average of g, and gy .. Q; is Vs Acs. To evaluate the %_\1 term in
X

this equation for the node Qj_2 it is simply :

Vip ™ Vj V;—h
8x Ax _, + ¥ ot b ), (4.2.6)

To obtain the advance flow for the 6V/6x term say for Q; then averages

are taken of flows about node H;,, (excluding Q3) which are flowing in the
same direction as QE, unless they are all apposing in which case an average

of all the flows is taken (except Q}). For instance if Q§ is flowing from
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i

is flowing from H. 542 is flowing from

H, J+l

5-1 to H o end Q

1

to H. then :

H. j+3

J+l

A + A K. »
%"‘E 5 ﬁ+2 D sl R Axk 2 (h.a.T)

5
i - - i L] -
as Qj, i.e., if say Qj+5 is flowing from Hj+

If only one of the flows Q3+2 or Q3+ is flowing in the same direction

3 to Hj+l then :

L
85 = Vies = Vi-o
% B, * K+ bnp (4.2.8)

i i : .
If both Qs,, and Q;45 are flowing towards H; ., then eq. (4.2.7) is used.

The above procedure would be the same for the backward value in gV if there
6x

was & junction at Hj—l’

" FEarlier versions of this method simply took an average of the flows around
a junction (again except the flow under comsideration) irrespective of
direction but it was felt that the above procedure would eliminate problems
vhere the situation shown in Fig. 4.3 arose.
negative with respect to H§+1, and so if

i - - L3 i
Now Qj+2 is positive and Qj+3

averages were simply takemabout H3+1' 8V/8x would become :

GVE = VE__ _ v§+3 - ‘;5-2
o0x 2
- (4.2.9)

in which case V§+2 and V3+3 would tend to cancel each other out. If however,

the procedure as explained earlier is adopted then §V/8x becomes :
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i
8V, - .
+2 =2
EEJ = T J7e (4.2.19)

which would appear to be a better estimate of this term which in any case is
usually small compared with the others[:9 Jand[ll].
When a head controlled boundary is met with, as say Hs s in Fig. 4.2 then
a forward difference quotient is used to estimate the 8V/8x term. In this case
the term becomes
i i i
s, el gk (4.2.11)

6x Axk-B +IiAxk.—1+

It can be seen on examination of eq. (4.2.4) that the friction term is
linearised as the velocity after thetime interval multiplied by the velocity
before the time interval. Earlier models used the velocity before the time
interval for both values but oscillations were evident in the solution
similar to those described earlier by Liggett and Woolhiser.

4.3 Second Explicit Method

This method was developed so that some of the problems regarding the
evaluation of the 8V/8x term in the dynamic equation may be avoided.

It is clear that the continuity equation (2.1.2) may be expressed in the

following manner

BH + Ac 0V + V 3Ac =g
Pr ot ax 2x - (4.3.1)

dAc dA dh _ Bp 9h
BV o=— = T * Bx

ahd so (4.3.1) becomes

v = g - Br3E - V3B n
3% Ac Ac 3% Ac ax (k.3.2)

vhich on substitution into (4.2.1) gives
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19V _ VB, dH _V?Bedn  3H  V|v|]  2vq

o=_°" e e T e ¥ s F O
g3t Ac gdt Ac gox 9x C°R Ac g (4.3.3)

The above equation together with eq. (4.2.3) are the two basic equations for
this method. The procedure is to first sweep down the channel network to
evaluate all H]-' it using quantities of flow at time i in accordance with

eq. (k.2. 5). A second pass is then made down the system to evaluate all

q%"’l using the following finite difference form of eq. (4.3.3), (see Fig.h.2).

(V?‘l ) (v“l + v 1) By [ 1"1 + H.ﬂ)—(H ';+li|

0=
g fxt N Ac g
i+l i 1+1 i+l 1+l i i+l i, =
R V B h. + h. v, + V. =
o Vs [vil _ c |E‘]+1 Jﬂ) gL Pl Y Vi) s
C*R Ac g akj Ac g
i+l 1"'1
+ (Hj-l-l HJ+1) =th it * HJ 1) v
2 k; (4.3.4)
i+l _ it
& Ac
and Q Vj

In eq. (4.3.4) the parameters Ac, Bc, By, C and R are evaluated using

as an average depth, the value :

(H;ﬁ H”i + Hjil + H;—l) 11? (4.3.5)
and similerly 3; is (47" + ql] + qf +a 1) 2 (4.3.6)

4 4 Implicit Method using Gauss-Seidel
The basic dynamic equation used is eq. (2.5.4), which will be repeated

here :
g (Bc+ ) aH _Q* 3 3H g!gl 2
0' i Acgax+3x+CAcR+I§§g ( b.4.1)

The basic continuity equation is as eq. (4.2.3). For the system shown
jn Fig. 4.2 the finite difference form of these equations become :
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3 (Q.i"'l B Q"i) (Q.i i Q_i+1)(Bc + BT)EHi-l-l " Hi‘l‘l)_

0 R ghe S T
1 + H. 1+1 gl i+l
(H, ,3+1):| [Jﬂ 3+1) (H; 7 + H; 1) 1
Ac’g Ka 2k
@M et (g aigl g
_Q_T.-l]— N ) J L. L
C*Ac”R Ac? g (4.4.2)
in which 6A is the difference between the area at j using (H""’i + H. 1 )
1+1 1 - 2
and using (H. -1 *H:;), q is as eq. (4.3.6) and the parameters Bc, Bp, Ac,

2 4
C and R are calculated using an average depth according to eq. (4.3.5). The

continuity equation is

L 2 S _ i+l i i+l i
M * Z {(Yam * Yim)- (% * qlg!m) by ) (B.4.3)
At m=0,2,5 i+l )

m=0,2,5

Equation (%.4.2) may be reduced to

I8l _ 5dy o ikl o i+l _ :. i _ i+l i+l

d
i+l i+l +1 i
+ BEHJ'.EL "'l) (HJ 1 + HJ 1ﬂ ( 1 + le ) : 0 (h-h.h)
: (Be + BT)(Q.i + i.+1) = ghc At, 1 5A At q t
in which a = 1. 4 g n = s ;] &8a
E i s E‘]crfj_ Eﬂ—

end q = q.iﬂﬂ.t Rearranging (4.h.h) gives
C .

Q; l(l+u+q-n) _i' (a4g) - ;ﬁ @) =
05 (1-2) - Bsly @B) - B} ) (4.4.5)

If (L +p +a-n) =21 ot =ysa "B =g andl-q=, then eq. (4.L.5)

becomes
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G SRR R o
o = Qj z Hj_lc H, (L.4.6)

i+l i+l
. - H
Q A J+1 ¥

3 j=1 : b Hj+1
Equation (4.4.3) may be expressed as

YL $8A. . HYTT = q. - i i
z: Q; a1 Hjaq = Q4 B E: Uam * Shyuy H 5 (b.4.7)
n=0,2,5 m=0,2,5 At
. . i+1 a i+1 i
in which SA. = (SA7+ SA.> ) and q.,.Ax = 2: (g% q.% )
+m + Qs 4/ A%
5) n=0,3,5 J+m J+m J+1l n=0.2,5 J+m J4m +m

The right hand sides of equations (4.L4.6) and (4.4.7) may now be expressed in

terms the parameter B, in which Bj = leg - H

and B.+ = qj+l

SAj+1

where €. =

J+l

Ax_

m=0,2,5

i -—
=19

%
Hj+1

Y

n §
Qm * g5 5

Writing equations (L4.4.6) and (4.4.7) in matrix form gives

—

“Yi-2 Aj2 -2

1 Ej-l 2
-¥YJj AJ -0
1 €541

which gives the system

h §
A
q

j#2

-O'j+

2

1

Pet
]
=

jHl

OH o

j+2
2343
j+h
J+5

O Ol

—(i+1)-

— —

By
= Bj
Bj+1
Bj+2
B.
~J*+3
Bj+h
B.
J+5

-

(4.4.8)

(b.4%.9)

(4.4,10)

where the matrix A and vector B also depend on the vector of unknowns .

Gauss—Seidel

ITn A X=3 let A

=D -

L

- U in which D is a diagonal matrix whose

elements are the diagonal elements of A and all other elements are zero, L and

U are lower and upper triangular matrices respectively, with null diagonals.

The Gauss—-Seidel iteration is then defined as
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5 ) 254 T x4 (T (4.4.11)
and therefore x(r+l) =0-D)1 3T x(¥) + (D - L)-l B (4.%.12)

the superscript r refers to values of x that were calculated on the last

iteration and r+l to values that are to be calculated in the next iteration.

1

= i+l . :
In the implicit system above, the unknown le 18 then determined from

eq. (k.4.11) to be

Q:I+1 . % Ej + Y HJi.f:lL + 0 szﬂ (4.h.13)
in which the (r+l) th value of H}ji has been determined on the previous line.
Also,

dtel Fors™ o3 4]

where again, the (r+l) th value of le+1 has been determined onthe previous
line, by eq. (4.4.13). Again it is emphasised that the channel flows are to be
multiplied by +1 or -1 to take inbo account direction.

The iterative procedure is started off by first setting all sz+1 and
i+l

le+l equal to Hjl and le except at a boundary at which Hj and le+l is set

to its correct value at t + At and thus requires no iteration. The Gauss-
Hjl+1 and le+1 are

and leﬂ both for the actual

Seidel procedure is then entered and new values of
calculated, using the most recent values of Hji+l
calculation ie., equations (4.4,13) and (4.4.14) and in the evaluation of the
co-efficients y, A, 0 and €. The iteration procedure is recycled until the
difference between subsequent values of Hji+1 and jS+1 fall within a tolerance.

It can be seen that this method requires little storage and that junctions
can be handled as easily as a straight channel. Also, the method does not
require that the nodes are read into the computer consecutively but may be read
in a random manner, thus displacing elements away from the basic tridiagonal

structure.
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4.5 Implicit Method using Double Sweep

This method uses the same basic equations and finite difference schemes
as the previous section 4.4. The treatment of the finite difference equations
(4.4.2) and (4.%.3) is identical up to and including eq. (4.4.10), the only
difference is in the solution of this last equation.

As stated in section 3.2, it is possible to transform the resulting matrix
A into upper triangular form by the Double Sweep method. In this application

two vectors are sought, K and M which would reduce the system (4.4.9) to :

— e p— —

(1 - X, K

.-2 . Ko
1']- M. J-2 -2
J-1 X, K-_l
1 - M, J-1 J
13_ i 5 = Kj (4.5.1)
J+l X. K.
J+l J+l

1=,
= 1 L=y _ | Ky _

Once all Mj and Kj have been found then Xy can be determined, i.e.,

Xy = KN’ and 80 Xy, = Kﬁ—l + HN—l Xy can be found and so on back to X,

For a single channel in which the nodes are read into the computer

consecutively then this is no problem and the recursive relationships become

Kj = Bj - 8- K_j__l
b. + &. M.
SR TR (4.5.3)
and H& = _cj .
D. +a. M.
i¥ % % (4.5.4)

i ich a. = —y., b, = A. and C. = —-q, i .
in whic 3 Yh, 3 5 ob for a quantity node and ad = cj = ]



66.

and bj = Ej for a head node. If however, the nodes are not read into the
computer consecutively or junctions exist, then off diagonal elements owcur

such as in the system (4.4.9). In this case the off diagonal elements multi-
i+l o Qj:l.+l

over to the right hand side to join with B. For the node H;] +

plied by their latest unknown values, i.e., Hfl and are then taken
in Fig. k4.2,

eq. (4.5.3) becomes

- _ Al+ly _
Kisp = (B ~ Uas) ~ K5 (4.5.5)

+ M.
J

Ej+1

In general this equation is

Kj = (Bj - CONST) - ta.;j K:J_:J_-_ (4.5.6)
bj + aj Mj-l

If nodes are not read into the computer consecutively then socme of the

parameters a; or C 3 may be zero as they apply only to a tridiagonal system. The
perameter CONST in eq. (4.5.6) is equal to the sum of the off diagonal elements
multiplied by their latest values in x. The equation (4.5.L4) applies to all
cases.

The iterative process is thus; all xjiﬂ are set to xji, except for the
boundaries as described previously and the matrix A and vector B are calculated
accordingly.

The vectors K and M are determined on the downward sweep using equations
(4.5.4) and (4.5.6), and then all xjiﬂ are determined on the upward sweep. A
and B are then updated and the process is repeated until differences be?:ween

+1

calculated values of le fall within a tolerance. At boundaries, 35 is set to

the correct value of xj”l

4.6 Implicit Method using a Sparse Matrix Technique
This method is again identical to sections 4.4 and 4.5 up to the solution

and ‘raj is set to unity with a; = t.':‘i = 0,

of the system (L4.4.9). The method?gnversion of the matrix A uses a program writ-

ten by A. Jennings [10] and solves the matrix by a compact elimination technique
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specifically designed for sparse matrices. The matrix A is read as a one
dimensional array in which the last element of a row is the right hand side
Bj' To do this, procedures were written that presented the elements of the
system in the order required. Each row is preceded by minus its row number
and following this is the column number of an element and then its value.
The output vector x overwrites the matrix A. The iterative procedure for
this method is as section k4.5,

4.7 Nonlinear Method

The following forms the basis of the solution of the implicit finite
difference equations by nonlinear procedures. The method itself was abandoned,
early in the obtaining of results, in favour of the sparse nonlinear methods
which will be described in the next section.

Slight modifications to eq. (L4.4.2) gives rise to the following finite

difference equation

il _ iy /ad 1+l 1,g1 .
@ - a5+ a**) (a2 I:“ By (et Hjilzl -

i itly2 i+l i+
(@:1 + at*1)2 ea at +EHJ+1 md -t 4 5t g e bt

J J kj Ac 2 Kj
i +1 +1 i iy =
b @5+ ai™ats g e, (@5 4 @) G e =0 (4.7.1)
4 C°Ac R Ac

On comparison with eq. (4.4.2) it can be seen that the only differences
be in the nonlinear friction and 9A/3x terms and that the equation has been

multiplied throughout by g Ac At. Equation (4.4.3), on multiplication by At,

gives
il _ 1 isl +1 i
(Hj-a-l Hj-!-l * Z { (Q,j-rm %8 q;-rm * qk:m) Axkﬂn} &% 0

(sai*l 4 gp i)
.ﬁ?;&,s Jtm Jm (4.7.2)

Equation (4.7.1) is & nonlinear function, designated f5» of the unknown

. i+l i+l i+l " s
varisbles Q;" ', Hj-l and H. +1 @&nd eq. (4.7.2) is another nonlinear function,
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. i+l i+l :
fj+l’ of the unknown variables Qj+m and Hj+l where the number of Q variables

depends on the number of connecting channels to Hj 4 Solutions to the above

equations are found when the functions fj and f. either equal zero or are

J+l

sufficiently near to it, depending on the accuracy required.

If the above system is considered as a general system such that :

fl (xls x2) Tt xJ" TR TR o S xn) = 0

f2 (xls X5, xj xn) = 0
(4.7.3)

fj (xl, X5 Xs xn) = 0

fn (x—la xzs xj xn) = 0

written concisely as

£ (x) =0 (4.7.4)
A, 4l 4na ¥

in which x is the column vector of the unknown variables Q;j and Hj
the column vector of the functions fj. If each of the functions rj in (4.7.3)
are now expanded by a Taylors series about the points xl, x2 »— xj e xn’ then
. the following arises if terms of second and higher order are ignored

£, (3 #h) ==X 5¥h5,===x #h, )=f, (x) ,==x;==x )+ e e ¥ L U W
3%y axj 3x
fj (xl'l'h ,——-xj +hj _“xn"'hn)'fj ( Xq s --—xj —-xn) + ]:ll E_fi "'--hj _a_ii_ +"-'hn a_fi

axl axj azn

fn( X, +hy —X; +hj -_xn+hn )= : 4 ( Xp 5= X --xn) +hy ﬂ 'l'_-h.j 9 fn " -—hn af i

ax1 3xj axn
(k.7.5)
or in vector form
BB EY —_?é — 3 By :
fg f2 = -FJ aJ:n h2
g (=] G v Ee ¥y W (4.7.6)
B:lr.l ox 3 axn
Ly £ My ¥y ¥ | B
L _J I ___axl 9x. axn

(x+h) (x)
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The n x n matrix is the Jacobian J, so the above can be written as
F(x+h) = #(x) + J(x)h (4.7.7)
in which h is the vector of differences.

Solutions are sought such that £(x+h) = 0, at which eq. (4.7.7) becomes

£=-3%7 ) (4.7.8)

Now E = x.

141 = Ei’ in which Ei is the vector of unknowns obtained from the

last iteration, so that

.. =% - E(ii)‘l 2(x,) (4.7.9)
and ig Newtons n - dimensional method.

Newtons method as such suffers from two serious disadvantages from the point
of view of practical calculation. The first of which is that unlesé a suffi-
ciently good initial estimate of the solutions are known then the method shown
in eq. (4.7.9) may fail to converge. The second disadvantage is that in some
cases the Jacobian J may be difficult to estimate if the functions are complex
and also once it has been estimated it needs to be inverted.

Brayden [ 5] describes a class of methods in which the partial derivatives
are not estimated or evaluated directly, but corrections to an approximate

inverse of the Jacobian matrix are computed from values of the vector function

f.

If a vector p is defined as :

p =-B ¢ (4.7.10)

vwhere B is an estimate for the Jacobian J, then Newtons method can be written

as
TR R (4.7.11)
Convergence will only occur if we are close enough to the solution so a
simple modification to (k.7.11) gives
X0 T % Y oY Py (4.7.12)

where ti is a value between one and zero, chosen to prevent the process

diverging.



T0.

This parameter t is not to be confused with t for time. If the variable
x is now defined as

x = x, +t D: (4.7.13)
vhere Ei and ii will have particular values and t is a variable guantity.
The vector f will now be functions of the variable t and Broyden shows that
it is possible to use these functions to obtain an estimate of the Jacobian.

On differentiating each function with respect to t gives :

n
ar. _ af. dxk, for j = 1---n
&= L = & (4.7.14)
k=1
and so d4f =7 Ei- (4.7.15)

dt
from eq. (4.7.13).

It is now required to obtain an approximation to J at the point ;i+1’ g0

-5 fj is expanded as a Taylors series about the point ti'

; 2
£ (t; - 8) = £5(¢;) - s Efi(ti) + 0(s°) (4.7.16)
dt
and since §i+l = §(£i+1) = ?(ii +t, Ei) = f(ti) in which the vector f are
functions of t aloue, then

F(t;-8) « £,.41 - & & (4.7.17)

if second and higher order terms are neglected. On substitution of eq.(L.7.15)
into eq. (4.7.17) we obtain
T(t;-8) = f,0 - 8dpg (4.7.18)
Broyden now uses eq. (4.7.18) to find a better estimate to the approximate
Jacobian B, by chosing B;,, to satisfy the equation :

vhere s, is a particular value of g chosen at each iteration to minimise the
error of the estimate of gi, Broyden stated that it was his philoacphy to

dat
£ind an estimate of the inverse Jacobian and not the Jacobian itself. If we
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now define an estimate to the inverse Jacobian ﬁ, say, as
- - -1

and also define a vector §i’ such that
¥i = fia

so that eq. (4.7.19) becomes

- f (t; - 8) (4.7.21)

vy = 8 Bjy B3 (4.7.22)

If eq. (4.7.20) is substituted into equations (4.7.10) and (L4.7.22) we

obtain

p; = H; %, (4.7.23)
and ‘

Hi"'l yi = - Si pi (1"-7-2“)

the two above equations define a class of methods, based upon Newtons method,
for solving nonlinear algebraic equations. Different methods arise when

different assumptions are made on }-Ii £ OT B.

1410 U3 and 84,

Broyden concludes that one method is superior to the others and he calls
this the "full-step" reducing variation. In this t; is chosen to reduce the
norm of the residuals of E(:-:i) and s; is put equal to t;. It remains to place
restrictions on §i+1 8o that it may be defined uniquely in eq.(k.7.22). As
no information is available about the change in f when x is changed in a

direction other than 1_31, Ei 41 ie chosen so that the change in t predicted by

Ei 1 in a direction E_J_ orthogonal to p, is the same as would be predicted by
Bi. Symbolically, that is
T S (k.7.25)

where (E-li)T 55_ = 0.
This with eq.(4.7.22) is sufficient to define Ei-l'l uniquely as
- = - = - T
B:,, =B, + (y. -, B. p.) . (4.7.26)
i+l 1 i 171 %1 _BJT-— *
®i Pt Py
It is now possible to use Householders formula [5] to express ﬁi 4 the

inverse of Ei +1» in the same terms as above giving :

ﬁi"’l = Hi - (Ei Pi + Hi yi) pi H. (h.T.aT)
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which the "full-step" version gives

H —- - -o -u +

Ei'l'l = Hl (Hl y3l. v
=T
i

P

1

i 7id (4.7.28)

The algorithm for Broydens full-step method is :
1. Obtain an initial estimate X of the solution.
[¢]

2, Obtain an initial estimate of the negative inverse Jacobian H..

5. Select & value t. such that the norm of f (ii + b, Ei) is less than the

norm of f (xi). In the course of this calculation x; ., = x; + t. p; and

=f (Ei+l) will have been computed.

fin
6. Test §i+1 for convergence, if not then
T-

Compute y3 = F;,) = %
8. Compute §i+l using eq. (4.7.28).
9. Go to step L.

Each of the steps in the above algorithm will now be discussed in detail
with respect to its application to the solution of the finite difference
equations (L4.7.1) and (4.7.2).

(i) A1l the unknown depths and quantities of flow at the advance time step,
i.e., H-i+l and jS+l are set to the values obtained at the end of the last

dJ
time step, i.e., Hﬁl and le, except at the boundaries at which Hjl+1 and

le*l are set to their correct values.

(ii) The initial estimate of the matrix H is obtained by differentiating the
equations (4.7.1) and (4.7.2) with respect to each of the unknown variables.
It was necessary to treat Ac in eq. (4.7.1) as a function of the unknowns

i ‘+1 > . . . .
Eti and H;+1, the partial differentials for this equation becomes

. - (Be +Bp) |(3*1 4 gty (g i i 1,47
af- 1 - (Be +Br) [E 5.1 EJ+1) (Hj_l + Hj+l) + (qj + ﬁj ) gAt P

i+l

H

2C2pc?
i -
. SA At + .

+Q:7) Eﬁ_at

2 Ac” k. Ac (L.7.2¢
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and
(Be )( i + 1+1) _ A
Efi*" +mQj Q3 1-1 dAc |, gAc bt
aH’:"i 4 Ac Ac GH,, 2 k;
i+l i+l i+l i+l
(Q +Q.7) |Q -l-Q | gPAt dAe (Hj+l+HJ+l) (Hy_ 1+ H; 2))| Ebt aac
2,3 i+l 1+l
2 C2%Ac dﬂjﬂ 2k Ay
. (Qé*l + Q;%)’an A dhe _ EJ(Q3+1 +Q 1y At dae r30)
- 07'30
3 1+1 i+l
2Ac%k; QHYY Ac? Ly

In the above it will be noticed that R is replaced by Ac/p, where P is not
considered to be a function of H.i+l. Ac is, for the purpoae of the above

i+l i+l i
analysis, considered to be equal to %g (HJ+1 + HJ—l + Hj+l j-l)’ so that :

d Ac = Be
N (4.7.31)

a4l
d HJ +1

The inclusion of eq. (3.7.31) into eq. (3.7.30) gives

bty e o@D ] e el ¢ Y e
aH;:’i b he hAﬂ 8 CzAc2R

1+

i+l iy gi*l, il | oiy25, A
g.A;At +gAthEj+l H. ) -(Hy_ Hal]+(qj +Q;)°0A At Be

(4.7.32)

The differentiation of eq.(4.T7.2) with respect to the unknowns is :
of . =1 ' .
— (4.7.33)
3H:

J+l

and iy = s At

i+l (k.7.34)

NQ4m e 1

. . . i+l
in which Sﬂj+1 is not, for these purposes only, treated as a function of Hj+1'
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The reciprocal of minus the remaining values was then found and these
were inserted into the H matrix in their appropriate places to give the
initial estimate.

In the early stages of adopting this method a negative unit matrix was
used, which, as can be seen on examination, proved to be a very good guess
as far as equations (4.7.33) and (L4.7.34) were concerned. However, the
numerical value of the off diagonal partial derivatives eq. (4.7.32) are in
general much higher than the diagonal elements eq. (4.7.29) which was also
higher than one. This resulted in an estimate of H not being sufficiently
close to an estimate that would produce convergence and so the method failed
by not locating a lower norm. As there was a need to estimate off diagonal
elements the above analytical estimates were resorted to and these proved more
successful. Boundaries were dealt with by setting their diagonal elements in
g equal to one and their off diagonal elements equal to zero, also the value
of the function fj at a boundary was set to zero. This process ensured that
the boundary values once obtained in (i) were not affected by the iteration
process.

(iii) The vector of residuals Ei is estimated using the values shown in 1. In
the procedures which calculate these values the elements of H are also calcul-
ated.

(iv) P; is calculated as k.

(v) The norm chosen as a measure of the size of the vector of residuals f was
the square of the Euclidean Norm, i.e., jzl fja, where n is the total number
of nodes. For each value of t; chosen then §i+1 is tentively set to §i+ti Ei
and the norm of E(;i-l-l) is evaluated and tested to see if it is less than the
norm of f(ii). If this was so then §i+1 and §(§i+l) are the values calculated,
if not then another t. is chosen until the inequality is satisfied. The norm

reducing policy vhich proved most efficient was that t; was first set to one,

i.e., the full Newtonian step, t, was then calculated to be equal to
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3 _
t, (1 +_6.)__63e 1 (4.7.35)

vhere 60 = ¢(1) / ¢ (o), ¢(t) being the square of the Euclidean norm of f£(t).
Equation (L4.7.35) assumes that ¢(t) is a quadratic function of ¢(o) and a
cubic function of ¢(1). The resulting function is then differentiated to
obtain the minimum from which t, is then chosen tolie between O < t, <1.

If ¢(t,) is not less than ¢(o) then t3 is chosen to be 0.1, t) to be 0.0l and
so on until 10_9, after vwhich the H matrix was re-estimated according to (ii)
using the most up to date values of Hji+1 and jS+l, §i was then calculated
as in (4) and the norm reducing process re-entered. If a ti reached 102 on
this occasion then ii was set to -Ei and the norm reducing process was again
e=-entered. By this means a lower norm was usually located and the occasional
resetting of the H matrix in this manner actually speeded up the convergence
of the problem. The actual setting of Ei to _51 was only necessary with this
particular nonlinear method and was not found necessary with the following
sparse nonlinear methods. Steps (vi) to (ix) are as steps (6)to (7)in the

algorithm.

4.8 Sparse Non-Linear Method

The major disadvantage with the previous nonlinear method is the necessity
to store the full H matrix, which could present problems if large systems are
to be modelled. Another disadvantage, equally important as the first as far
as convergence is concerned, is in the iditial approximation of the H matrix,
as even by estimating the elements analytically and then finding their recipro-
cal, this was still not sufficient to provide convergence with large time steps.
WBroyden suggested a variation of his method described in section 4.7 which is
directly applicable to solving systems of nonlinear equations where the
Jacobian is sparse. In this method the inverse is not updated, as an inverse
to & sparse matrix is not generally sparse, but computations are based on an
approximation to the Jacobian itself. Broyden proves that corrections to this

approximation are also sparse. Finally, a comparison is made between this

¥ref [6].
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method and Newtons for a system of 600 sparse equations. Both methods
handled the mildly nonlinear problems well, with Broydens sparse method
coming out slightly better in that it required less computational work but
more iterations.

It is evident from the above that a sparse matrix inversion procedure
is required to evaluate the vector ii; The new algorithm, using the same
notation as in the previous section, is then :

1. Obtain an initial estimate, x_, of the solution.

2. Obtain an initial estimate of the Jacobian B. H

3. Compute fb = 50 (;o).

4, Compute Ei = -p~1 Ei using a sparse matrix routine.

5. Compute X =X + ti P; and fi

i = f(xi +t, pi). Chosing the value of

+1
t, such that ¢(Ei+l) < ¢(§i), as described in the previous section.
6. Test ¢(;i+l) for convergence.

T. Compute Y3 " Ly - fi'

8. Compute B, ,,, denoted by By, vhere B is

1
= = & s =T;E=-_=.-1, =T
B, =8 z; U; U7 Bp-yt7) p (4.8.1)
= -‘ e
Pj Pj

and the matrices and vectors without the subscript 1 have values obtained
from the vector Ei'

9. Go to k.

In step(8)§j = gj D s Where Sj is & set of diagonal matrices j=l---n,
where the kth diagonal element of Sj is zero iy it is known that afjfaxk- (o}
and unity otherwise, Uj is the jth column of the unit matrix of order n,
vhere n is the sizg of the matrix.

On examination of eq. (4.8.1) it can be seen thetthis equation follows
from eq. (4.7.26) with sy = t;, except that the sparseness of the matrix

§i+1 is preserved and that each row of the sparse correction is independently

s8aled so that on adding to 51, §i+1 will then satisfy the quesi-Newton
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equation (4.7.22).

The application of the above algorithm to the solution of the unsteady
flow equations is identical to the previous nonlinear method, except that the
updating formula is eq. (4.8.1) and the calculation of the vector Ei requires
a sparse matrix inversion technique. This latter requirement gives rise to
two variations of the sparse nonlineanhethod. The first used the "Double
Sweep" technique described in section 4.5 to invert the Jacobian, in which
elements that occurred off the tridiagonal structure were transferred to the
right hand side of the system, and an iteration procedure would then be used.
If no such elements occurred then no iterating would be necessary and the 51
vector would be obtained after the first back substitution. The second
variation used the sparse matrix inversion procedure described in section 4.6
in which the p; vector is, again, given directly after the first back suhsti-
tution.

In both the above inversion techniques a provision was made to allow for
any of the diagonal (pivotal) elements becoming small which would cause an
overflow on division and prevent the elimination from continuing. If such an
occasion arose then the B matrix would be re-estimated analytically as per
section 4.7, part (ii). This is the same as the initialisation procedu%%?%ggt
in this method the calculated values are inserted into the B matrix and not
their reciprocal. The process was then continued from step (k)

The total amount of store given to the B matrix was an array having
JUNCT + 1 dimensions, where JUNCT = the greatest number of nodes correcting
any one pa}ticular head node and the length of the array = TNN, where TNN is
the total number of nodes. Although this provides for more store than
required it was felt that a more exact determination was not required unless
storage became a problem. Boundaries were estimated as in the previous
section with unity in the diagonal elements and zeros in the off diagonal

elements, and again fj was set to zero. The update calculation eq. (L4.8.1)
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is however, avoided at boundaries due to P; being zero.

4.9 Program Layout

The computer programs were written so that one basic program would be
used and then different methods of solving the finite difference equations
could be inserted as procedures within the basic program. Thus there was no
differeﬁce between a non-linear program and an explicit program except for
the computational procedures. The flow diagram for the structure of the
basic program is as Fig. 4.4, The computational language used was ALGOL and
the programs were run on an ICL 1905E computer.

The cross-sectional information procedures, shown at the top of Fig. L.k,
supply such relevant information of a particular node to the computational
procedures as,the total and convective areas and breadths, the surface area
of a channel, the hydraulic radius and Chezy C. The two boundary procedures
H BOUND and Q BOUND provide depths of flow and quantities of flow depending on
the type of boundary and the procedure SIDEQ provides the lateral inflow
information.

In explicit methods the two procedures PARAM Q and PARAM H provide new
flows and depths of flow at the end of the time interval. These procedures
are simply called forward from the time varying computational and output block
for each node, depending on its type. In the Gauss-Seidel implicit method new
values obtained from the two above procedures will be compared in the comput-~
ational and output block with values obtained from the previous iteration.
When they compare within a tolerance they then become the depths and flows for
the end of the time interval. Although the workings of the two procedures
PARAM Q and PARAM H vary with each method of solution they are called by the
same name. In respect of the Double Sweep and Sparse Matrix methods they
produce the co-efficients of the sparse matrix which is then solved by an
additional procedure in each case for the unknowns. This additional procedure
is called from the computational block repeatedly until the unknowns have con-

verged. No such comparison is made in the final block for the Non-Linear
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methods as they contain convergence requirements within themselves. The two
procedures provide the values of the vector of residuals and also initial,and
when required, subsequent estimates of the Jacobian or its inverse. The pro-
cedures are again called from the procedure which solves the resulting non-
linear system, which is itself initially called forward from the final block.

The channel system is read int6 the computer by first reading in the node
reference number, then its type, i.e., the number 1 for a head hode and the
number 2 for a quantity node, followed by the number of connecting channels
to the node. If the number of connecting channels is one and so signifying a
boundary node then the type of boundary is read in, again & 1 is used for a
head boundary and a 2 if a quantity boundary. For each branch the reference
number of the node at the end of the branch is read in and then the branch
reference number, followed by its length. The channel system may be read into
the computer in any order and the node and channel reference numbers may be of
any positive integer value, not necessarily consecutive providing each one of
a kind is unique.

In order that each node knows where the nodes connecting to it are in the
computer the system must be cross referenced, and so for each node the position
vwhich each of the commecting nodes was read in is determined. The system is
then printed out. A sample output is shown in Fig. L.5.

Initial conditions are then read in, in the same order as the nodes. - If
the node is a head node then its height above & common datum and its initial
depth is read in. For a quantity node the quantity of flow per second is read
in with the sign convention that flow away from the connecting head node with
the smallest reference number is positive and towards it is negative. In the
case of the quantity node being a boundary then again the flow is positive if
moving away from the node (either the connecting head node or the boundary)
with the smallest reference number and vice versa. This sign convention is
also adapted with the output.

As no general method of handling the survey data has been developed then it

was necessary to have a specific procedure for certain systems. Data for two
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of the channel systems was read in as a bottom width and side slope for each
node, thus schematizing the cross-sections as trapeziums.

The data was written in the same order as the nodes were read into the
computer, although a simple sorting procedure could have been used. Other
models were rectangular in shape and having almost constant width, these did
not require data inserting separately but were handled by the cross-sectional
information procedures.

The last but one block assigns direction multipliers to quantity nodes
‘around a particular head node so that flow from that head node is positive and
towards it is negative. This is to ensure that the equations of continuity
are applied accurately.

Before the final block is entered then the time step DT and also the total
time of the computation is set. On entering the final block the values of the
veriables Qj and Hj are output for time t as per Fig. 4.6. The new values of
these variables for time t + At are calculated by calling the correct proced-
ures described above and the process is repeated by outputting these, and then
celculating for t + 2 At etc., until the total time of computation is reached.

Appendices A and B are copies of the computer programs for the Implicit

Gauss-Seidel and Nonlinear Sparse-Sweep methods respectively.
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CHAPTER 5
THEQORETICAL CONVERGENCE AND STABILITY

5.0 Introduction

Once the two basic partial differential equations for unsteady flow have
been transformed into finite difference form, one must consider (a) conver-

gence, i.e., that the solution of the finite difference equations approach
the solution of the partial differential equations as the difference steps

approach zero; and (b) stability, i.e., that errors introduced into the
solution of the finite difference equations due mainly to truncation but also,
to a lesser degree, rounding-off remain bounded as the computation progresses.

Where the basic equations have been converted into implicit and nonlinear
systems there has resulted, in each case, a set of nonlinear simultaneous
equations which require certain mathematical techniques to solve. The conver-
gence of these mathematical techniques depends upon the degree of nonlinearity
of the set of equations and also upon the values of the co-efficients in the
equations.

5.1 Convergence of the Finite Difference Solutions

Rigorous methods to analyse the convergence of the finite difference
approximations to nonlinear partial differential equations are not yet known
except for a few particular cases. It is therefore necessary to make certain
simplifications and assumptions regarding the nonlinearity, so that convergence
may be estimated. Such procedures usually involve linearising the equations
and then to applying the relevant techniques to these linearised forms.
Meaningful results can only then be expected for the linear systems and serve
only as an indication for the nonlinear case.

Strang, in his paper ELS] considers the convergence of first order quasi-
linear hyperbolic systems. He proves that convergence depends on the stability
of the linearised difference equation providing that the equations (a) possess

a certain degree of smoothness, which he considers the equations of gradually
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varied unsteady flow have, and (b) are consistent with the original partial
differential equations.

Smith [17] defines consistency to be when the finite difference equations
converge to the original partial differential equations as the grid steps tend
to zero. Its analysis is similar to the procedure adopted by Liggett and
Woolhiser in Section 2.1 in which the order of approximation was found. The
diffusing scheme suggested by them may be considered to be inconsistent owing
to the presence of the additional term as At#Ax approach zero,

5.2 Consistency

In the following treatments of consistency the sideflow terms and terms
involving channel geometry (i.e., areas and breadths etc.), are assumed, for
the sake of simplicity, to vary very little over the intervals considered and
can therefore take on average values,

If from a finite difference equation the original partial differential
equation is subtracted, then the result is termed the truncation error, T.

The first truncation error T, for the explicit scheme may then be obtained, for

the node j, in Fig. 4.2, by subtracting eq. (4.2.1) from eq. (4.2.4) to give -

341 _ o3y i [l iy i N |
T, = {(v. Vi) o, vi Ve, + vj+5) Vio| 4 (Hipq = H: o)
g At g Eiﬁxs -~ Axa) - Axl axk}l & AxK
v v, _ 1 av  vav , aE , v|v]
# '3 VT § N AT TN T Sk } (5.2.1)
C*“R g ot gdx 9x CZR

Equation (4.2.5) is nowwritten for the node Hs_) and eq. (2.1.2) is then

subtracted from it, to give the second truncation error for this system, i.e.

i+l i i 2 4
T, = {(H._l - B _,) . (Q; - Qj-a) } {a_H +3_EE}
At (SAJ *+SA; 5) 9t Bpdx (5.2.2)

The above equation assumes that for both the flows, Qj and Qj—e' the positive
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direction is from left to right of the Fig. 4.2. In equation (5.2.1) the

velocities V§+2 and V3+5 are both considered to be flowing away from the node
Hj+1' When each of the variables in this equation are expanded by a Taylor
series then the following relationships are found:

v;*’l = Vix;, t; + 86) =V + 4t _g% +§:!_2%21; + o(at?)
v§+5 = V(x; + bxg, ;) =V + Ax, % . %52 _aa_% 4 0(8x.?)
vi, =Vl - bu, t) =V Ax % é_a?lz g_;g - o(ax®)

-]
L}

: H(x. - 8x,_., t.)=H - A 9H _ Ax. 2. 3%H _o(aAx, b))
j-1 I < A KL 5+ L 537 - M (5.2.3)

where Ax, = Ax_, + Axe_qo bx, = Ax, + Axy ., 8nd ﬂxs = Ax, + ﬁxK+5, and the

right hand sides of the above relationships are centred at the point (i, j).

If these are substituted into eq. (5.2.1) then the following is obtained

- 2 2 2 5 2 2
T Atav+o(at)+%(Ax2 +Ax5) Ax, 1 9%y

l — —
2g at2 E(Axe + Axs) + Ax) 21 9x?
L1 (Ax, = Axe ) 3%H  O(Ax?) | At|v3 s
21 ax? C?R ot (5.2.4)

On examination of the above equation it can be seen that, by having
different section lengths, the aspproximation to the space derivatives become,

depending on the value of the differences in brackets, first order. If the



8rT.
section lengths were equal then the truncation error would be

T, = o(At) + 0(Ax?) (5.2.5)

otherwise it is
T, = 0(4t) + 0(Ax) (5.2.6)

If the variables in eq. (5.2.2) are expanded by & Taylor series then the

following is d tained

(41
H;—l = H(x;_y, t; + 4t) = H + At 3B At? 3%H + o(at?)
8 = 21 at?

Qi.“ =Q(x, .- A ,t.) =Q-A 2 a2 3

ot = Q(x;_,+0x ., ;) =Q+Ax_. 3Q 929 . o( x,°
3 J-1 1 Lt _13_ch+ %=1 (5.2.7)

in which the right hand sides are centred at the point (i, j-1). On substitu-

tion of eq. (5.2.7) into eq. (5.2.2) the value of the second truncation error

T_ is found to be

2

T, = At 9%H , 0(At?) -
2 =L+ - [(A’ﬁ{-l + Ay p) EE = (bxe’y - bxlp) g—;@

e

. O(Axa):| 1 _ 39
Bpj Axgoy + Bpyp A%,  3x (5.2.8)

Now if it is assumed that there is no change in depth between the Q nodes
around I-l‘j +1 and the node Hj +1 itself, and that it is further assumed that
Bps_p = Bpj = Bpjp € (5.2.8) then becomes

T, = 0(At) + ,é_J!._B__ (B, = Bx ) 3_23 + 0(Ax?)
T 9x (5.2.9)
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Again it can be seen that by having different section lengths then the
order of approximation to the space derivatives is either 0(Ax) or 0(Ax?)
depending on the values in the brackets. The order of approximstion of the
time derivative is one.

The first truncation error for the second explicit scheme may be obtained

by subtracting eq. (4.3.3) from eq. (4.3.4) to give

H
"

p = 3D - 0 e v B [(H“l wih) -l vul )]

.]+l -1 J+l
g At hAcg At

- v:_.-l-l V;' B I:(hlﬁ h;ﬂ)—(h;i + h;.'_l)] + 1
2(Ax.K - ﬁxK_l)

g + A

i+l i i+l i i+l 1
[(H b1 Hji)-(H -(H st Ha-l)] + V|, |}'. {i?_‘{ _v BTE _ VB Eli
C?R g% K gdt &_gox

3 . V|V
*x +E%L} (5.2.10)

As the continuity equation for this method is the same as that used in the

first explicit scheme the truncation error T, is also the same as eq. (5.2.9).

The variables h and H may be expanded by a Taylor series in the following

manner
i+l _ L+ t. + At) = H + O9H At 9H . 1 2 3%y
P R O e N

+2 At 3%E_+ At 3%H] + of At®)
AxK 3x ot 5l AXK

Rl = H(x, +0x ot +Ot) =H-A O, M3, 1 [A? 3%
J-l J K-1 1 K-l;; ?b- '2"'!" K

9x3t ot2

-2 At 92H + At2 32H| + o(Ax 3., At3)
P ] M (5.2.11)
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i+l

i l A i i
arly for h. T and h. - . . = imi
gnd simil Yy j+1 -1 Expansions for hJ+1 and h.J_l are similar to
i 1
Hj+1 and Hj-l'

Using the above and expansions from eq. (5.2.3) the following may be formed

i+l i-l-l gk i 2
(Eﬂ+1 j_l) (Hipy +H: ;) = 8H + l(AxK AxK L) 3%H + At 3%

2 At ot 2 x 9t 2 0otZ

+ 0(Ax2, At?) (5.2.12)

i+l i - i+l i - 2 2
(hipy * iy )-(B5 ) +Bs ;) =0h + 1(1\::.K Ax ,) 3%h + At 3n
2 (ﬂxK + AxK_l) x 2 ox? 9x 9t
+ O(Ax?, At?) (5.2.13)

and similarly

(H”l + B2 ) (H”l = 9 + 1(Axe - Axe ) 9%h + Ot 2%

)
j+l J_-_-_l_
2 (Ax + Ax;_f x 2 %z ?x ot

+ 0(Ax?, At?) (5.2.14)
and as before

(vit - v}) = av + At 3%V + O(At?)
At 3t 2 a2 (5.2.15)
On examination of the above it can be seen that first order terms exist,
not only owing to the difference (AxK - axK_l) but also in At owing to the
equations being centred on the time t. line. These terms would vanish (as will
be shown later) if the equations were centred at the point X t + At.

2
Substitution of the above equations (5.2.13) to (5.2.15) into eq. (5.2.10)

gives
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= 0(At, Ax*) - By (Axe - A ,) 9%H [V + 0(At)] - By VAt 3H
2Ac g 3x ot 2A g 3t

T

- VB, At 3%n [V +0(At)] - v B_ 3n o(At) + Ll - Axe ) 3% + At 9K
2.Ag313t Agax 2 % x ot

(5.2.16)

As stated previously the terms involving At would venish if the equations
were centred around the point xj, ti + gg, thus employing central differences
for the time derivative. The question then arises whether or not the dynamic
equation may be considered to be centred at b, + %g or just at ti’ as the new
values for h and H at time ti + At have only been approximated to first order.
If the equation is considered to be centred‘at time ti only, then it would
appear that the derivatives dh and 9H would be better approximated by using the
values on the line ti only agg not gzing values at ti + At as well. When the
gecond truncation error T2 is considered this is also of first order in At and
so the above problem would asppear to require no further consideration.

The first truncation error for the implicit scheme may be obtained by

subtracting equations (L4.4.1) from (L.k.2) to give

- 2 SRR TUPUE S 5 i, ity i
Ag At 4 A% g At
i+l i i+l i+l 1%l
-Q; QB (EJ + hj+1) (h.]__1 ni = E 4 (H.+1 + Hjﬂ)
e | e, | Wy
- (Hjj + H}_l)] + Q7 qt L % 8 (B 4By aE- qzn 3h
S
C°A,°R A g3t Ac’g 9t A g ox
+ oH + }

ax C"AR (5.2.17)
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The second truncation error T, is determined by subtracting eq. (2.1.2)

from eq. (4.4.3) written for the node H.

-1 in Fig. 4.2;

i+l i +1 1+1
m, = (- m ) + (@ 41) -(Q575 + @ L) - 3H - 1 3
g = 1_,,1 }{= }

v + SA ) + (SA + SA}'_Q) 3 B,dx (5.2.18)

At (SA

The variables in eq. (5.2.17) are expanded in a Taylor series about the

point j, i + 3 shown in Fig. 5.1 to give

i+l

Q- = Qlx., t' + At) = Q + At 3Q + At? 32Q + 0(At®)
J J’ 2 2 9t 5'1';9'
1 - 2 n2 3
Q: = Qx., t'-At) =Q - At 39 + At? 32%Q - o(At?)
J 2 9t 83_1:3'

i+l 2 a2
gt = H(x; + t+ﬁt)=H+ aE+a-taH 1 92K
3+l s Mk 2 3t 2! A =2

+ At 3% + At? 3%H] + o(Ax, B, At?®)
o B S L mr K

i+l 2 2
gt = H(x. - s t' +At) =H - 3H+At3H+__1_[ 2 9%
=1 e S 3 AxKlax > 3% 2! Axxlﬁf

- At 9%H +ﬁtz.32H]+0( S . At?®)
bogg 8% S T ] T O R

(5.2.19)

where t' =t + At. Similar expansions may be obtained for the remaining
2. -
i ivl

variables H 5410 HJ -1 h3+1’ hj + ete.

The following relationships may then be formed
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(@t - ql) = aq + o(At2)
At 3t (5.2.20)
141 - 2 a2 A
(Q] +Q-]) = Q + At? 3%2Q + 0(At"Y)
2 8 3t? (5.2.21)
Qitl ol = Q2 + At2 (32 g - 3Q) + O(At*)
Jd J T ot ot (5.2.22)
i+l :|.+1 - 2
(B3p) + H3Tp)- ~(a g ¥y ) = O+ (A - Axp ) 3%+ O(Ax?, At?)
2 At ot 2 ox 9t (5.2.23)
(Hiﬂ +HL)- (HJ.'+1 ) =3H + 1 ( ) 3%H + 0(Ax?, At?)
Hiw T %5a /5 ,] b = A ;) o
2 (b + bx 1) x 2 x (5.2.24)

Similar expressions to equations (5.2.23) and (5.2.24) may be obtained for the
terms involving h. On substitution of the above into eq. (5.2.17) the value of

s
Tl become

-0(.&::2 At?) - Q (B, * Bp)(Axy - Ax, ) 3%H +1(AxK Ar, o )323

Ac’g x ot 2 =x?

- Q° By (Axl{ B AJ‘:!'C-l) 3*h
aZ

“—Mc g 9x (5.2.25)

and so the approximation is second order apart from the terms involving the
difference (Ax, - A:«K_l).
Expressions for the variables in eq. (5.2.18) may be obtained by expanding

them from the point j-1, i+} (shown in Fig. 5.2); these then become
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i +
3_i=H(Jl,t'+ﬁt)=H+&t3H+§__ 2 + 0(At®)
2 2 3t 8 9t2
Hi.' = H(x. t' - At) = H - At 3H + At 3%H + 0(At®)
" | -1° e = =T ==
J J= ) 2 9t 8 0ot%

141
QJ’.“’ =Qx. o o i 6 +At)=Q+AxK1_Q+At_Q+
ax 2 3t

2 a2
3 [A"K—l g_xg +0x . Ot 9%Q  + %2 ___3] + 0(ax?. , At®)

dx 9t 9t

1+l t
Q(x -AxK st + At) =Q - 3Q + At 3@ +
o T -2 {14 M-K_ &9
% 2 23% 2 ot

2 2n o
_2%[%_2%;:3 Ax , At 3 g +At‘~‘_3:l-o(AxK2, At®)

(5.2.26)

end similarly for Q} and 6;4],3:_2

As stated at the beginning of this section, the geometrical properties are

assumed to vary very little compared with H and consequently take on average
values.

i+l i i+l i
s B . = % -
Hence T3 BT.] BTJ"2 = BTJ'2 = B‘I'j-l'

i+l i
2. (8A5.m + SAjuy) = 2 Bps ) (Axe ) + Ax )

20, =D (5.2.27)

Substitution of these together with equations (5.2.26) and similar into

eq. (5.2.18) gives

T, = 0(Ax?, At?) +1 _ ( 2
g =0 *-—5 Axgq = Axgp) [

(5.2.28)
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and again the conclusion is that T2 is of second order apart from the term
involving the differences in section lengths.

As stated in Chapter 4, the only difference between the nonlinear schemes,
eq. (4.7.1) and the implicit schemes, eq. (4.4.2) is in the 3A and friction

ox
terms. In the nonlinear methods the values Q? and Q|Q| are approximated by

(& + 67 s (G DI + o respstivery, sracns o 6 ¢ ana
I

q;+1|Q3| in the linear implicit methods. As the equations may again be
considered to be centred around the point j, i+3 the order of the approximation
i+l

QX + Q) .
-JL—E;—-J- is determined by eq. (5.2.21), and so

(@*? + q})2 = @ + At? Q 32 + o(At*)

% T (5.2.29)

which, 1ike the approximation to Q3+1 Q;, is second order. This means that the

truncation error Tl for the nonlinear system is the same as that for the
implicit system. Also, as the same equation of continuity is used then the
truncation error T, is also the same. Thus for all of the finite difference
gystems considered it has been shown that they are consistent with the original
partial differential equations.
5.3 Stebility

The stability analysis of linearised finite difference equations is
ngrmally-carried out by the von Neuman technique. The conditions developed
are however, considered necessary for stability, but not sufficient. The method
expresses an ititial line of errors in terms of a finite Fourier series and the
growth or decay of a function that reduces to this series for time t = 0 is
then investigated. The analysis is applied to a localised portion of the x - t

plane in which the co-efficients of the linearised system are given average

values for that portion of the plane and are then assumed constant. It is then
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hoped that if a scheme is proved stable in this simple linearised form when
applied to a localised portion of the plane then it will be alab stable in its
complex nonlinear form, for the whole system. Strelkoff [19] says this is
largely true, and also that stability analyses are carried out, not so much to
ensure that a given scheme will be stable, but to permit the researcher to
discard those schemes which can be shown unstable from the start. The following
analysis is thus applied to a straight portion of the channel system (i.e., not
including junctions) and that the portion is divided up into equal lengths.

The complex exponential form of the Fourier series is

e T (5.3.1)

where i = y-1 and L is the interval throughout which the junction is defined.

It is useful to use the notation Q(pl, gk) instead of Q;, then the value x/L
may be expressed as pl, (p = 0, 1, -—- N), where N1 = L. If the parameter op

N1

is then defined as np

inm ig_pl
Nl then Ahe becomes Ane n

The errors along the line t = 0, between x = 0 and N1 may now be expressed

by E(pl) = Ep, such that

N
_ iog_pl
Ep = E: Ahe n ( 55
n=0 2:3.

and gives (N+l) equations to determine the (N+l) unknown constants Ao' Al--—-An

uniquely. As the finite difference equations are now linear, and therefore
separate solutions are additive, it is sufficient to consider the propagation
of the error due to a single term only. The propagation of this error with

respect to time is then assumed to be

EP qQ =A eiol 8% = A eiol oBak A eial;q (5-3-3)
L]
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k ; 5
where § = eB and 0 18 a complex constant. The term eBt 18 chosen such that

it vanishes when t = 0. The error will not increase as t increases providing
| & | %%

Let the variables V, Q and H at a particular point be

V= v+ Velol®d
Q = Q% + ge*Ot%e
g = H* + He 9184 (5.3.4)

respectively, where V*, Q* and H* are the exact solutions of the difference
equations. When these are substituted into the difference equations there
arises a set of relations, involving the error terms only, that are identical
to the relations involving V, Q and H, as the equations are linear.

If the sideflow term is ignored then the finite difference equations for
the first explicit method, equations (4.2.4) and (4.2.5), may be linearised

in the following manner
i+l _ i i i i i+l
= - V.) + a®* V. * = - HT L i =
(Vi']' VJ) a V;‘ +b (H,}-l-l HJ_l) +4d Vj_l' 0 (5.3.5)

i+l i

H.

and c* (VL - V ) + (H.]+l a+1) =0 (5.3.6)

vhere a* = At &V 'b'=g d'sgg l!]a.ndc*-' A At.
8x

On substitution of the terms in eq. (5.3.4) into equations (5.3.5) and

(5.3.6), the following is given

V ; (14a%) + V(a%-1) + How(el0l. omi0ly o g (5.3.7)

2iol

and Ve*(e“ " -1) + Heim‘(c-l) =0 (5.3.8)

L] - "'ﬂ - L -
which on elimigtion of V and H and using the fact that e*%- % & 2f gin a1
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gives the following quadratic in Z

z2(1+a*) + z[(a*-1)-(1+a*)] + Le*b*sin?0l - (a*-1) = 0 (5.3.9)

If the solution of a general quadratic in Z is considered to be
L,o= P */P-B (5.3.10)

where B is real and positive and P is real, then for l z | € 1 it can be shown

that B and P have to satisfy the following inequalities

0<B€1 (5.3.11)
and
-(1#8) ¢ P& (14B)
2 2 {5.3.12)

In eq. (5.3.9) P and B are

P=gag*- k-2
2 (1+d%) (5.3.13)

and B = hc*b*sinzq% + (1-a*)
*

(1+d (5.3.14)

If it is assumed that a* € 1 when this term is positive then as d* is
always positive the result is B is positive and P is negative.

Eq. (5.3.11) gives

Le¥b*singl + (1-a®) <1
(1+d%) (5.3.15)

which after rearranging and substituting for a*, b*, c* and a* gives

R T
Ax ] (503016)

If At is taken out of the square root then
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{5.3.17)
As P is negative the only useful inequality from eq. (5.3.12) is
P 3> - (1+B)
2 (5.3.18)
and so
a* - d*% - 2 3 - |1+ hc*o*sincl+(1-a*)
1+d* (1+a%) (5.3.19)
to give
Lc*p*sin?ol > 0 (5.3.20)

which is always satisfied as c*, b* are both positive. The condition for
stability of this linearised system according to the above analysis is given by
the inequality eq. (5.3.17)

The second explicit method, equations (4.3.4) and (4.3.6) may be linearised

to give
+1 % i+l _(uitl i -
v1 &% = W, 1pe s (B3 Ha_ﬂ) (H;7) +H; ;) =0 (5.3.21)
_ 1+l - =
and c (VJ+2 v ) + (H Hj'l'l) 0 (5-3-22)

where a* = —Etg,rﬁ_-vatls gh + g At|V|| 4 Ax
[_ A, &t 2 A, ox

C“R g At
b* = (1 + At B, 8H| 4 Ax
[ A, 6{} g At
and A At
2 BT Ax
If the expressions for V and H given by eq. (5.3.4) are substituted into

equations (5.3.21) and (5.3.22) a quadratic in Z agein arises, in which P and

B are
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P = Le* sin %01 - (a* + b¥*)
2 ak (5.3.23)

and B = he* sin 201 + b*
a®* (5.3.24)

If it is assumed that a* and b* are positive, i.e., that

SH+VAtB éh < 1+ gAt]v At SH i
E—_T ———ﬂc-gz CoR and also that Gt > -

then B will also be positive as c* is positive.

For [ £] € 1 then from equations (5.3.11) and (5.3.12) it is found that

he* sin %0l + b* < 1
ak (5.3.25)

giving At _ 2g At)V] - At_nggg,- v At B 6h :
c C 6t

Ax < R A, 8x (5.3.26)
which when At is taken outside of the square root gives
Mo< (Axy? [2g||-_BTuSH—V :'
ry C’R 8x (5.3.27)
and -1 -hc*sin®cl + b* _ Uc*sin’l - (a*+b*) ¢ 1 + kc*sin’ol + pe
a* a* a* (5.3.28)

to give 8c*sin0l 3 O and 2(a*+b*)3 which are both satisfied. The stability
condition obtained for the second explicit system is then given by eq. (5.3.27).
The finite difference scheme for the implicit methods, equations (4.4.2)

and (%4.4.3) are linearised to give

QL aw - gl pe (g L gl @i s gl ) =0

J J J+l jH =<1 " i1 (5.3.29)
1+l i+l i+l i &
s [(Qah? QJ"'Q) (Q’.i *+Q; ):l + (HJ+1 H.i+1) 9 (5.3.30)

inwhicha-**[l-(B + Bp) Ot 6H-QA1: 6A+gAt|Q|]
2 A, &t Ac C*AR JA g At
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b* = |1 + (B +B ) At 8H| 4 Ax and c* = B At
[ e ™ Pr 24, 8t Kg At I Ax
When the expressions for Q and H, given by eq. (5.3.4), are substituted
into equations (5.3.29) and (5.3.30), then a quadratic in ¢ is again obtained
and the values of P and B are

P = 8c*sin’gl - (a*+b*)
2 Dc'alnzol + a*] (5.3.31)

and B = ULc*sin?cl + b*
Lc*sinZgl + a* (5.3.32)

The following assumptions are now made on a* and b*, similar to those made
for the second explicit method, to ensure that these are positive, i.e., that

(B + BT)2 it gg +Q At GA €l+g ﬁtlg] and also that (B + BT)2 it SH> - 1

when this term is negative. When the above assumptions are fulfilled then B
is also posgitive.

For |T | € 1 then from equations (5.3.11) and (5.3.12) the following

must hold

Lc*sin?gl + b* | 1
Lo*gin“cl + a* (5.3.33)

to give a%* 3 b*

i.e. g At |g] (B +B,,) At 6H + Q At
C7A_ R > Pe*Py A, A

(5.3.34)
and also that
- 1 - he*gin?0l + b* < 8c*sin’ol -(a*+b* < 1 + ke*sin’cl + b*
Le*sinZol + a* - Le%ginZol + a¥ Le¥*sinZol + a® (5.3.35)

to give 2(a* + b*) 3 O and 8c*sin2gl 3 0, which are both satisfied. The above
system is then stable providing eq. (5.3.34) holds. As stated previously these
inequalities are however, not likely to be meaningful in practice as the method

is primarily for linear systems.,
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If the nonlinear friction and 8A/8x terms in the Nonlinear finite
difference system are linearised as in the implicit methods, then similar

stability conditions to the implicit method arise. If they are broken up
into, say, Q?K and Q§+1K, where K = [%aggiﬁg% - g i: Gi], then this has
the result of adding K in a* and subtracting it in b*. This again gives
the condition shown by eq. (5.3.34).

In the above analyses it has been assumed that the Bernoulli term, or
variations of it, are small in comparison with other terms. This is similar
to Dronkers' argument in section 2.2, in which he states that if the Bernoulli
term is large then separate equations must be applied for a sudden change in
cross—section.

5.4 Convergence of the Numerical Procedures

Solutions to the implicit and nonlinear systems can only be obtained
providing the methods of solution of the resulting set of sparse nonlinear
simltaneocus equations are also convergent. The convergence of the mathe-
matical techniques depends on the functions and their degree of nonlinearity
and also on the value of the co-efficients.

It is possible in the case of the modified Gauss-Seidel method to find,
as will be shown later, an analytical expression which relates the co-effic-
ients of the resulting linearised system, eq. (4.4.9), to see if convergence
is guaranteed. However, similar expressions for the modified Double Sweep and
Sparse Matrix methods are extremely difficult to obtain. In the case of the
nonlinear methods Broyden describes, in his paper [6] a local convergence
proof of the sparse nonlinear method.

The convergence of an iterative system of linear equations may be inves-
tigated in the following manner;

The (r+l)th solution to the vector u is usually expressed as

= (r#1) g al®) o=

(5.4.1)
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vhere A is the iteration matrix and is independent of u. If the unknown

vector u has converged to the exact sblution then

u=Au+ (5.4.2)
is satisfied. The error vectors e(r+1) e( r) may be defined as
airl  glrd) _ 3, and at¥) = 3(¥) _ u, so that substraction of eq.(5.4.2)

from eq. (5.4.1) gives

;(r+l) s 5 E(r) = K[R E(r_l)] = Eﬁl e(O) (5.4.3)

If A has m linearly independent eigenvectors v_ corresponding to the

s
=(o)

eigenvalues As, then e may be expressed as & linear combination of the

eigenvectors in the form

m
alo) o z: e, v,
s=1 (5.4.%)
and therefore
E(l) i E(°) Z i ;_ Z Ay
= = e, v, (5.4.5)

as Av_= A ;B from the definition of an eigenvalue, and so
=) o r =
g Zea XB ¥
(5.4.6)

Hence if the modulus of the largest eigenvalue of As’ i.e,p the spectral
radius of A is < 1 then a°) win tend to zero as r increases.

The convergence of an iterative system applied to a set of linear
simultaneous equations may therefore be estimated providing the value of p
can be calculated. In certain simple cases it is possible to find analytical
expressions for the eigenvalues of a matrix but this is not usually possible
for complex sparse systems that occur in practise. Consequently numerical

techniques have to be used. In the case of the Gauss-Seidel method then
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convergence is more easily determined. For the modified Gauss-Seidel method

used in this thesis then convergence is gauranteed providing the initial

matrix A in eq. (4.4.10) is diagonelly dominant [20]. This means that the

modulus of the diagonal elements must be greater than, or equal to, the sum

of the modulii of the off-diagonal elements, with the further condition that

for at least one row it must be greater. To satisfy these requirements then

for the set of equations (4.4.9) the following two inequalities arise:

|le+|aj|‘|ljl

and Ej s N

(5.4.7)

(5.4.8)

where N = maximum number of connecting nodes at a particular junction and Ys»

05 Aj and €5 are defined in section 4.4. As the elements depend upon the

solutions then the inequalities must be fulfilled for each iteration.

(5.4.7) gives

|:1 + Qi. g At + q At - cﬁ SA At:| l:(Bci- BT)(Q% + Q§+1)
s - 3
C*A, R A, AT & A,

+g A, At + B, + BT)(Q; + Q§+1) -8 A, At
2Bk bxy_y LA (b, by

c

and eq. (5.4.12) gives the approximate relationship

A‘I:‘BTAK

Equation

(5.%.9)

(5.4.10)

Eq. (5.4.10) is usually fulfilled for nstural water courses, however eq.(5.4.9)

may not be, thus making the convergence conditional. It can be seen that

convergence of this method depends, not only upon the discharge, depths and

geometry of the model, but also upon the time step.
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" 'CHAPTER SIX

' LABORATORY ' EXPERIMENTS 'AND 'APPARATUS

6.0 Introduction

The schematization of a river network into a form suitable for numer-
ical computation introduces many errors. Firstly, points or nodes are chosen
along the particular reaches so that théir cross—sectional geometry is
assumed to be representative of the river, for up to a few miles before and
after each point. Secondly the cross-sections themselves are schematised
into easily computable shapes; these may be simply rectangles, or more
commonly, trapeziums. The exact levels of the river beds may be difficult
to obtain if a large amount of silt is present and even when they have been
determined they may vary considerably over a short distance, so that averages
would have to be obtained. If the Chezy 'C' values are not known for the
network then accurate initial conditions must be known so that they may be
calculated.

In order that reasonably'correct unsteady flow profiles are obtained,
then, accurate boundary conditions must be known. If these cannot be assumed
periodic then egain a set of correct initial conditions must be given.

In order to compare the accuracy of the finite difference systems a
laboratory rig was designed. This was done so that the errors mentioned
above no longer exist. With a laboratory rig the initial and boundary condi-
tions as well as the frictional resistance, may be determined more accurately
than in a real river system.

6.1 Laboratory Rig

The laboratory rig, shown in PLATE 1, was designed to simulate an unsteady
flow network, with two upstream quantity controlled boundary conditions and
one downstream head controlled boundary condition. The quantities of flow
into each upstream channel were recorded by 'turbine' type flow meters and
were governed by the valves shown in PLATE 2. Also shown on this plate is
the honeycomb baffle which reduced turbulence at the inflow points. The

depth of flow at the downstream end was governed by the adjustable weir shown
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in PLATE 3.

The basic channel construction was in plywood, coated with yacht
varnish and attached to rolled steel channels as shown in Fig. 6.1. The
entire construction was then supported on stands, positioned to minimise
deflection. Between the stands and the channel structure were jacks which
altered the tilt of the channel sections. The flow system, shown schematic-
ally in Fig. 6.2, was a closed one. Water from the top, constant head, tank
was fed through the flow meters to the channel system. After routing through
the channel network the flow was pumped from the bottom collecting tanks
along the bottom 6" pipe back up to the top tank. Overflow from the top cons-
tant head tank was drawn off via a 6" pipe to the bottom collecting tanks.

Originally glass fibre tanks were positioned above the two channel ends
to provide the flow controlled boundaries. These had central overflow pipes
(the level of which could be adjusted) inside each tank. When one was
suddenly shut off, the water would consequently rise in the tank, thus
increasing the flow out of the tank, and so providing an unsteady flow system.
The flow conditions from such an arrangement were, however, extremely
difficult to calibrate owing to large oscillations of the water level in the
tanks at fast flows; and also because of the variety of openings of the outlet
valves. The method also required an accurate method of measuring the flow
anyway in order to calibrate the system. The turbine meters which were
finally installed proved to be a very efficient means of providing and record-
ing unsteady flow boundaries.

6.2 Depth Gauge Development

The depth gauge shown in PLATE U4 and Fig. 6.3 is from a basic design
obtained from the Civil Engineering Department, Leeds University. There, the
gauge comprised of a complete copper tube which was stopped short of the none
conductive base so that water may enter upwards into the gauge, the base

being supported by metal strands.
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PLATE 3
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To reduce the disturbance caused by a full tube, in the relatively
fast flowing water of the laboratory rig, the design was modified, so that
the tube extended down to the base and four quarter slots were cut in its
length. However, this was still found to cause too much backing up of the
water in front of the gauge and so two opposite supports were removed. The
two remaining supports were al igned with the direction of flow and this
reduced the disturbance considerably, also, any time delay that may have
existed with the full tube would be eliminated.

The basic principle behind the working of the gauge is that if a const-
ant potential difference is applied between the central wire and the outer
copper supports, then a current will flow between these, when immersed in
ordinary water. With different depths of water the resistance to flow is
altered and so altering the current. The terminals from a particular gauge
are connected, via, the circuit shown in Fig. 6.4, to a U.V. recorder (shown
in PLATE 5). This then gives a time varying trace on light sensitive paper.
Several gauges are connected in par allel, as in Fig. 6.5 and the complete
electrical circuitary is housed in the box shown on the left in PLATE 5.

To prevent the formation of hydrogen bubbles on the central wire of the
depth gauge, when it is in use, an A.C. power supply was used. The lower
half of the supply was then rectified using the diode arrangement shown in
Fig. 6.4. The supply was then operated at a frequency of approximately
19,000 e¢/s to ensure that the galvanometers, whose inertia was capsble of
responding up to a frequency of 13,000 c/s, gave constant traces.

During the early experimental stages a more common, inexpensive oscill-
ator was use, but this gave problems of voltage drift. This was later
changed to & B & K oscillator which has an automatic gain control to ensure
that a set voltage output remains constant.

Owing to the high sensitivity of the gauges then even small ripples were
recorded on the U.V. trace. To try to damp out these oscillations a type of

integrating device was considered. However it was thought, that this would
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not only complicate the circuitary and require time to develop, but would
also create a time delay between occurrences in the channel and on the
recorder. Numerous attempts wéré made to fit capacitors into the galvano-
meter circuit to reduce the recording of the ripples but were to no avail.
It was therefore decided to obtain the depths by determining a mean through
the trace of the ripples. Fig. 6.6 shows a copy of the recording of the -
first unsteady flow test and PLATE 6 shows a gauge in shallow water in the

channel.

6.3 Depth Gauge Design

In Fig. 6.4 DG is the depth gauge, R, the resistance of the depth gauge

D is a 0 to 10 ohm variable resistor, G is the

1 3
galvanometer, S.E. Laboratories type Bl160, and R, is the resistance of the

and D, are diodes, R, and R

galvanometer. I,, I, and I, are the currents going through the parts of the
ecircuit shown.
From Ohm's Law :
RG + Rc (6.3.1)

where Vb voltage drop across the diode D., and Rc =R, + Rl Ry, V is the

3
R1+R2

supply voltage.
Providing R; >> R, then egq. (6.3.1) becomes :
I.=V - VD
RG (6.3.2)

If the gauge resistance RG is assumed to be inversly proportional to

G

the depth of flow, d, also the supply voltage and the voltage drop Vb are
constant, then :

IG ocd

(6.3.3)
Now IG = I1 + 12 (6.3.4)
and LR, = IR, (6.3.5)

By (6.3.6)
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On substitution of this equation into eq. (6.3.4) and then rearranging
gives :

I. = I

2 G

(1 + Re)
ﬁ; (6.3.7)

and so from eq. (6.3.3)

Tpxd (6.3.8)
Over a full range of depth of the gauge in static water the maximum and
minimum resistances were found, on average to be 500 ohms and 5000 ohms.
From these values, it was possible to calculate the corresponding meximum and
minimm values of I, and from these to determine the size of the variable
resistor required.

From eq. (6.3.7)

Ip=1I, (1 + E’e’.)
R, (6.3.9)
Now if I2 min = A and 12 max = A + u, where u = sensitivity of the

galvanometers X 12 cms, then

I. max = (A+u)(l +R2)

G
By (6.3.10)
and I, min =A (1 +qn_£
By (6.3.11)
giving I, max = I, min = u(l +R,)
R, (6.3.12)
which on rearranging gives :
R, = R
(IGmax - IGmin) -1
L (6.3.13)

Using an estimated mean voltage of 1.6 volts, I, max was 3.2 m A, I min

was 0.32 m A and u was 12 x 0.0056, to give R, as 2.5 ohms. Hence a 0 to 10

ohm variable resistor was adequate.
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6.4 Calibration of Depth Gauges

The geuges were initially checked for linearity in still water. This
was done by comparing actual depths with those recorded on the trace. The
procedure adopted was to first of all set the oscillator to give the required
output that would cover the range of depth required. Marks were then put on
the gauges at 3 cms and 15 cms above the base. Each gauge in turn was then
placed in still water up to the 3 ems mark and by turning the body of the
galvanometer the corresponding spot on the trace was also set to 3 cms. Water
was then added to the jar containing the gauge until it reached the 15 cms
mark and the varid le resistor was altered so that the spot coincided with

the 15 cms mark on the U.V, Recorder. If the variation given by the resistor
was not sufficient for the total deflection then the output voltage was

increased. Conversely, if only a small amount of resistance was required

then the adjustment was course, and so the output voltage was lowered. After
an adjustment had been made with a variable resistor then that would throw

the calibration for the 3 cms mark off and so this would have to be set again
by turning the galvanometer. The depth would then have to be checked again

at 15 cms and the process repeated until each gauge was correct for both marks.
Once this was done it was possible to compare results for intermediate

depths and these gave good agreement.

It was found however, that when the gauges were immersed in flowing water

the calibration was no longer true and that the flowing water seemed to offer
a different resistance to the flow of current than the still water. In order
to calibrate the gauges in flowing water a series of tests were devised, the
results of which are shown in TABLE 1. Each gauge was first calibrated for
still water by the procedure sbove and was then immersed in flowing water in
the channel network. For a series of different flows, ranging from small to
large, traces were obtained on the U.V. Recorder and the actual depths were
obtained with depth probes having vernier scales.

If the values obtained from the U.V. Recorder are y and the actual depths
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are x, then providing the current flowing through the galvanometer holds a
linear relationship with depth, then the depths from the U.V. recorder may
be considered to hold the following law :

y=mx+c (6.4.1)
shown in Fig. 6.7T.

In each of the three tests shown in TABLE 1, the initial and deepest

depths were used to determine the constants m end c, i.e.,

o yl B y2
o (6.4.2)
and c =yl —mxl (6."4.3)’

Once these values were obtained then x was determined by rearranging
eq. (6.4.1) to give :

x=y-¢
m (6.4.4)

These calculated depths (x) were compared with measured depths as shown
in the table. It can be seen that in all cases, except one, the differences
compare to within lmm.

In eq. (6.4.4) the variable x is differentiated with respect to each
of the three parameters y, c and m to give an estimate of its error. The

resulting expression is :

Sx=8y -8 -(y=-c)én
HEA TS T R (6.4.5)

Similarly eqs. (6.4.2) and (6.4.3) are differentiated with respect to

each of their components to give :

om = (—x;'%'-;ej Eyl =0, Ta Ry Gxa (6.4.6)

and 6c=8yl-x1&n-m6x1 (6.4.7)

Substitution of the two above equations into eq. (6.4.5) and rearranging gives

5% -'E{ + (xl_e.x) 8x,, gt ML (x - x2) &, - &,
n (x -x,) m (x, = x,) m (6.4.8)
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On examination of eq. (6.4.8) it can be seen that a linear relation-

ship connecting the two points x = x,and x = X, exists., At x = X, we have

6x =48y + le - Gyi

x=x, m m (6.4.9)
and at x = x2 we have
=X, m m (6.4.10)

On examination of TABLE 1 it can be seen that m is approximately one

and so

|ox| < |6y] + [6x,| + |&y,| (6.4.11)
and

|6x| < |8&y| + [8x,] + |&y,] (6.4.12)

whichever is the greater.

From examination of the traces it was felt that the value of the maximum
error involved in each of the elements was + 0.5 mm. This gives an overall
bound on the error of |8x| as < 1.5 mm.

6.5 Calibration of Flow Recorders

The flow recorders installed were two turbine type flow meters supplied
by Nixon Instrumentation, of Gloucester, England. The meters were made in
stainless steel and had a nominal bore of 13 inches. Electrical pulses from
each of the meters were sent to a visual flow indicator which gave a reading
of percentage of maximum flow (32 cubic meters / hr.). From this signals were
sent to the U.V. recorder to give a time varying trace of each of the boundary
flows. The supply to the flow indicator was from a constant voltage supply
box, set at 28v D.C.

In order that the flows may be recorded accurately the equivalent
sensitivities of the galvanometers were determined. This was done by compar-
ing readings of the U.V. trace with those on the visual indicator (the
galvanometers having first been zeroed with zero flow). TABLE 2 shows these
results. Meter A is on the right hand side of the apparastus (looking from

above) and meter B is on the left. The galvanometer connected to meter A was
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TABLE 2
INDI-| FLOW U.V. |SENSITIVITY| CALCUL~| = DIFFERENCE
CATOR) GIVEN BY| RECOR-|OF GALVANO-{ ATED |F-F, (F-F¢)100
(%) | INDI- |[DER |METER FLOWS | (M3/hr) ——
CATOR | d(cms)|s=F__ (m A)| F, (%)
F(M3/hr) 20d _cms | (M3/nr)

6.0 1.92 1.90 .0505 1.93 | -0.01 -0.52
10.0 3.20 3.15 .0507 3.21 | -0.01 -0.31
10.3 3.29 3.20 .051k4 3.26 | + .03 +0.91
10.8 3.45 3.25 0530 3.31 | + .14 +4.06
15.0 | 4.80 | 4.85 .0kol b9k | - k| -2.92
18.L 5.88 5.T5 .0511 5.85 | + .03 +0,51
20.0 | 6.40 | 6.k0 .0500 6.52| - .12 | -1.88
24,5 T.84 7.60 .0515 7.7 | + .10 +1,.28
25.0 | 8.0 7.90 .0506 8.0b | - .ok | -0.50
27,0 | 8.64 | 8.4 | .osuh | 8.5 | +.09 | +1.04
30.0 | 9.6 9 .45 .050T 9.62 | - .02 | -0.21
30.2 | 9.66 | 9.ko .0513 9.57T | + .09 | +0.93
32.8 | 10.49 [10.ko .0504 10.59 | - .10 -09 5

AVERAGE .0509

6.0 192 2.05 .0468 1.98 | - .06 -3.13

6.5 2.08 2.20 0472 2.13 | - .05 -2.40
10.0 3.20 3.30 .0L8Y4 3.191] + .01 40.31
15.0 k.80 5.05 .0LT5 4L.88 | - .08 -1.67
20.0 6.40 6.65 .0481 6.2 | - .02 -0.31
25.0 8.00 8.15 .0k90 7.87 | + .03 +0.38
29.5 9.4 9.50 . 0496 9.18 | + .26 +2.75
30.0 9.60 9.8 .0L89 9.47 | + .13 +1.35
35.0 | 11.20 |11.k4 .0491 11.01 | + .19 +1.70

AVERAGE .0483




123 -

an S.E. Laboratory type B420 and that to meter B a type B450.

If F = flow rate in M3/hr, s the sensitivity of the galvanometers in
mA / ems., k = current output constant of the flow indicator, set at
20 M3/hr. m A by the manufacturers and d = reading from the U.V. trace in
centimeters, then

F = s.d.k (6.5.1)
and therefore ;

s =_F_
20d (6.5.2)

From the set of results obtained (shown in TABLE 2) the average
sensitivity for each galvanometer (aa) was determined. Using these two

velues the equivalent flows from the U.V. recorder readings (F,) were obtained

using
F, =20 s,.d (6.5.3)
Differentiating eq. (6.5.2) with respect to F and 4 gives

ds = _dF - F dd
204 2042 (6.5.4)

The percentage error in s may then be expressed as :

§s 100 = §F 100 - §d 100
s F d (6.5.5)

The estimated accuracy in reading the flow off the visual indicator was
+ 0.5% of the maximum flow. With d approximately 10 cms (say) at the maxi-

mum flow case then §d 100 g #+ 0.5%. The percentage error in s then becomes
d

§s 100 ¢ 1.0%
8 (6.5.6)

However, the error in estimating sy will probably be much smaller than this
owing to the averaging process. Differentiating eq. (6.5.3) and putting in
difference form gives

§Fc = 20 8q &4 + 20d &sg (6.5.7)

giving §Fc 100 = d§d 100 + §s, 100
Fe a Sa (6.5.8)
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If 8s, 100 = 8s 100 € + 1.0% and 83 100 € 0.5% (as before) then :

Sg =] s

SF, 100 € + 1.5% (of the maximum flow)
Fe (6.5.9)

but, as stated previously, the error in Fp will probably be much less than
this owing to the averaging process.

On examination of TABLE 2 it can be seen that the differences between
F and F, compare to within + 0.5% of the maximum flow, i.e., * 0.16 M3/hr.
This, as stated previously is equal to the estimated accuracy in reading the
scale on the visual indicator.

For the rate of change of boundary flows required, the manufacturers
state that the meters are linear to within + 0.2% of the maximum flow. This
was considered small compared with that shown by eq. (6.5.9).

6.6 Determination of Channel Frictional Resistance

The Hydraulics Research Station in their publication "Charts for the
Hydraulic Design of Channels and Pipes", recommend the use of the Colebrook-
White equations as being the most accurate in determining the resistance
offered to flow. They say that the equation has been found to be applicable
to virtually any commercial surface and fluid, over a wide range of conditions

This equation, in the case of pipe flow, is :

1=-21log,, (kg +2.51)
A 10 5.8 % Re (6.6.1)

In which A is the Darcy-Weisbach friction factor = 2gD&/V? where D is
the diameter of circular section of slope s, kg is a linear measure of the
projection of the roughness elements above the channel wall, Re is the Reynolds
number, and R the hydraulic radius. Henderson [ 9], refers to slight modifi-
cations that have been made to this formula to render it applicable to open
channel flow, also he expresses the resistance in terms of an equivalent
Chezy 'C'. This equation is :

/88 12 R Re /og (6.6.2)
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To determine the value of k, a set of experiments were conducted.

The channel network was arrangéd so that water was flowing down one side
only, as in Fig. 6.8.

To do this barriers of the same wood and finish as the rest of the
network, were placed in the positions shown. Two depth gauges were then
placed in the long straight portion of the channel, a distance of 2.1865
meters apart. A series of results were obtained recording the depths at the
points (1) and (2) for different flows. Initially, and at each change in
slope, the relative difference in height of the bottom of the channels at the
two points were obtained, using an engineers level and a millimeter rule.

The gradually varied steady flow equation may be written as :
dA + oh + az £ Q =0
_3_ ?x  ox (6.6.3)

This may be rearranged to give :
C= Q
P E-E-%
Ag 3x Ox ax:] (6.6.4)

which may then be expressed in finite difference form as :

C =

(klh&_i R +R)[‘: g (Al-A)(Z—ZT(h hﬂ
(6.6.5)

in which the subscripts refer to the positions in Fig. 6.8.

A computer program was written in which the values of C were calculated
for the different flows and depths of flow using eq. (6.6.3). With each value
of C calculated the program then determined the value of kg required to give

that C using the following equation :
kg = 12R [tllog (- ¢ ) = 9,
R 7% (6.6.6)

which is simply eq. (6.6.2) rearranged.
Finally an average k; was determined for the complete set of results and
was found to be 0.055 cms . Using this, the program then calculated, on an

iterative basis, a new value of C for each flow and depth of flow using eq.
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(6.6.2). The results of the tests are shown in TABLE 3. It can be seen
that the friction co-efficients calculated using the average value of kg
compare well with those determined using the gradually varied flow equation.

6.7 Unsteady Flow Tests

Several unsteady flow tests were done with various boundary and initial
conditions. Of these, three have been chosen to illustrate the differences
between the computed and measured depths. The examples chosen are those
which had the greatest amount of varying conditions, i.e., from large depths
to small, snd vice versa.

The first unsteady flow test was with the downstream weir backing the
flow up to a relatively large depth and with constent inflows at the two top
boundaries. Unsteady conditions were then propagated by suddenly dropping
the weir. The second test waalagain with initially deep depths and large
boundary flows, but this time at approximately the same time the weir was
dropped, the valves controlling the boundary flows were also shut off. The
third test was with the initisl conditions of relatively shallow depths and
small flows. The two valves were then turned on full and after a short
period of time were then turned off completely, the level of the downstream
weir remsining unaltered.

In each of the tests steady state conditions were allowed to prevail
before the boundaries were altered. The second and third tests had different
slopes and cross slopes on the channel system than the first. To measure
these slopes the relative difference in height of the network was recorded
using an engineers level and steel millimeter rule. The flow gauges were
calibrated before each test by allowing steady conditions to arise for (a)
deep depths, and then measuring these depths accurately with vernier depth
probes, and then (b) for shallow depths which were again measured with the
probes. For the two steady conditions a length of trace was run off the U.V.

recorder to relate the actual depths with those recorded.
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TABLE 3
DEPTHS (CMS) | FLOW Q MEASURED VALUES | CHEZY 'C'
H1 H?2 (Litres/sec) | CHEZY'C'| Kg iﬁfggsfﬁs
(cms)
9.95| 9.36 4.1063 45.928 | 0.093 | 49.353
7.29 | 6.46 2.3172 49.453 | 0.043 | L48.048
3.66 | 2.68 0.5751 46.695 | 0.030 | 43.899
6.80 ] 6.05 2.4000 45.234 | 0.084 L7.972
6.10 | 5.25 1.9556 46.717 | 0.062 47.429
5.35 | 4.L5 1.5131 45.923 | 0.063 46.719
h.4s5 | 3.45 1.066T 48.174 | 0.03k 45.629
3.30 | 2.25 0.L4LLY b1.073 | 0.079 42.987
4.31 ]| 3.27 0.8889 L7.94%2 | 0.032 45.202
5.13 | 4.17 1.3333 47.128 | 0.048 46.398
6.61} 5.75 2.2222 48.338 | 0.050 47.787
7.26 | 6.43 2.6667 1;.9.51;5 0.0Lk4 | L48.235
AVERAGE | 0.055
NOTE: =zl =0, 22 = 1.05 cms for the first 3 results and

= 1,15 cms for the rest.
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The channel system was schematised according to Fig., 6.9 in which there
were a total of 26 nodes. Depth gauges were placed at the junctions, i.e.,
nodes 4, 8, 10, 18 and 22 and at the downstream boundary, node 14. The
computer program which was adapted for the laboratory results were programmed
to output the recorded depths as well as the calculated gepths at each time
step, and multiples of that. This was achieved by inputting as data the
constants for the gauges and flow meters and then the time varying results

off the U.V. traces.
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CHAPTER SEVEN

PHYSICAL NETWORKS

7.0 Introduction

To compare the accuracy, computational time and general behaviour of
the finite difference systems using more realistic data, a set of unsteady
flow situations were tested. The first of these was a purely hypothetical
channel with no branches and having a rectangular cross-section of constant
breadth. This was initially used to eliminate programming errors in the
development of the finite difference systems. The model was set to have
initial conditions that were inconsistent with the frictional resistance
term and the fixed boundary conditions. Results from the running of this
model illustrated the convergence tendencies of the finite difference systems.

The second example was an unbranched section of the River Aire in
Yorkshire. Approximately 16 miles of this river was programmed to investigste
its tidal propagation.

The last example is a schematization of part of the Ganges delta in
which the propagation of tides were again investigated.

T.1 Hypothetical Model

The layout of the model is as shown in Fig. T.l.

It can be seen that all the section lengths are equal to 100 meters and
that there is a constant slope of 1/200. Also it can be seen that the nodes
are numbered consecutively and that there are no junctions. The resulting
structure of the finite difference equations for this model is then tridiag-
onal. The breadth of the rectangular cross-sections was a constant 10,16 M
and the initial conditions were 1M for the 'H' nodes and 20 M3/sec. for the
'Q' nodes. Boundary conditions were fixed at 20 M3/sec. at node (1) and 1m
at node (20). The Chezy 'C' value was set at 20 M?/sec. For the stated
slope, boundary flow and friction, the critical depth and normal flow depth

are calculated to be 0.734 M and 1.348 M respectively.
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Using the above initial conditions the programs were run until steady
state conditions were reached. By using a large range of time steps it
was possible, from the results obtained, to determine the time steps at
which the systems (a) became unstable, in the case of the explicit methods
and (b) did not reach a solution, in the case of the implicit systems.
Observations were also made on the behaviour of the results when large time
steps were used.

7.2 River Aire

The general locality of the part of the river programmed is shown in
Fig. 7.2 and in more detail in Fig. 7.3. Initially 20 nodes were used, of
varying section lengths, from the junction with the River Ouse at Booth
Ferry Bridge up to the weir at Haddlesey. The positions of the 20 nodes
are shown in Fig. 7.2, again as the nodes are numbered consequtively and
there are no junctions then the structure of the finite difference systems
is tridiagonal.

The tide at Booth Ferry Bridge provided a downstream head controlled
boundary and although there was no recording station at Haddlesey, it was
initially thought that flows obtained from the Beal weir would suffice.
However, it was later found that the charts from which the flows at Beal
weir were recorded were inaccurate. The 'Q' node (20) was then abendoned
and the model was curtailed at node (19), making this a head controlled
boundary. The depth profile for this boundary and for Booth Ferry Bridge
were obtained from a chart of river profiles for the tide investigated,
i.e., Uth May 1962 and are shown in Fig. T.lL.

The author obtained the survey data for this model from his supervisor
who had studied the sediment transport in the river. The cross-sections
were schematized as trapeziums by taking measurements of the top width and
the width 20ft. below this at frequent intervals along the river. From
this data it was possible to obtain graphs of the bottom widths B, and the

overall side slopes m. Smooth curves were put through these points and
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values for the node positions are shown in TABLE 4. Bed levels were
obtained from echo soundings at different times in the period October 1961
to May 1962. As these levels fluctuated so much along the river at any
one time it was necessary for the researcher to do a least squares fit of
the results. From these graphs the author estimated the bed levels for the
time of the tide in question. The resulting levels are again shown in
TABLE L.

Initial depths were available for the tide of the 4th May 1962 but no
initial flows. Also lacking was the value of the Chezy factor 'C'. To
obtain this data the programs were first set at the correct initial depths
(obtained from the river profiles) and with estimated initial flows. Then
using the boundary conditions mentioned previously, the programs were run
and set to recycle at periods of 123 hrs. At the start of each recycle the
depths were set to the correct depths but the flows were set to those
recently obtained.

The boundary at node (1) was found to be periodic for the period stated
but at the upstream boundary, node (19), some smoothing was required (as
shown). It was found that results from the 3rd cycle were the seme as those
from the 2nd and so making further recycling unnecessary. For each value of
Chezy 'C' tried the results from the 3rd cycle were compared with the river
profiles and it was found that using values of 85fti/3ec. for the flow

3

upstream and T5ft*/sec. for flow downstream gave good agreement. It was
thought that even better agreement could probably still be obtained by furt-—
herfiodification of 'C' but was felt to be unnecessary. During the course of
these tests it was found that calculated water levels along the river reach
vere particularly sensitive to the boundary conditions, but not necessarily
to bed levels or to Chezy (',

The resulting initial conditions obtained at the end of the 3rd cycle

are shown in TABLE 4. With these values several programs were run using

different finite difference schemes and with varying time steps. The
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'TABLE k4
INITIAL CONDITIONS
BED LENGTH BED
TYPE | BOTTOM | SIDE LEVEL CON- OF LEVEL
OF WIDTH SLOPE | A.0.D.| NECTING | CHANNEL| FLOW K.0.D;
NODE | NODE | B.(FT) | m | (FT) | CHANNEL (Fr) |(FT3/SEC) (FT)
1 HB 90.45 6.50 -8.7 -0.4
1 3960
2 Q 87.28 5.80 -8.4 -1515
2 3960
3 H 80.95 5.25 -8.2 0.3
3 3960
L Q 76.84 4.80 -7.95 -1432
N 4280
5 H 70.35 k.50 -T.7 0.9
5 3960
6 Q 65.55 4.25 ~T.b4 -1332
6 3960
T H 63.20 4.00 -T.2 1.3
7 4700
8 Q 58.09 3.90 -6.9 -1226
8 4700
9 H 54,92 3.80 -6.6 1.8
9 4700
10 Q 80.3T5 1 3.75 -6.3 -1116
10 4700
11 H 48.80 3.70 -6.0 2.5
11 3440
12 Q 48.12 3.60 -5.8 -1025
12 3440
13 H 46,40 3.50 -5.6 3.0
13 3440
14 Q 45,54 3.L45 -5.35 -951
1k 3440
15 H Lk, 66 3.40 -5.1 : 3.5
15 4970
16 Q Lk,16 3.30 -4.8 -86Lk
16 4970
lT H h3-38 3-»25 -l{'-5 h-.ll-
17 L4970
18 Q 42,56 3.20 =4.2 -T64
18 4970
19 HB 43.91 3.10 -3.9 5.5
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results of these tests will be dealt with later.

T.3 Ganges Delta

The part of the Ganges delta programmed is shown in Fig. T7.5. Fig. T.6
shows this area in more detail whereas Fig. T.T7 shows the layout of the
node and channel system for numerical computation. It can be seen that a
total of 4T nodes were used to schematise this network with channel lengths
varying from 9,500 £t. to 29,500 ft. The channel cross-section was rep-
resented as a rectangle, the breadths of which are shown in TABLE 5. Also
shown in this table are the bed levels above water datum and the lengths of
the connecting nodes. Fig. 7.8 shows the arrangement of the matrix obtained
from the implicit solution of the network.

On examination of Fig. 7.7 it cen be seen that there are five boundaries
all of which are head controlled nodes. The profiles for the tide under
study, i.e., that of the Tth February 1968, are shown in Figures 7.9 and
7.10. As no initial conditons were given it was necessary to recycle a
program with smoothed boundary data using a tide cycle of 12 hrs. 223 mins.
Again it was found that the 3rd cycle gave the same results as the 2nd and
so making further recycling unnecessary. The value of Chezy 'C' recommended
to be used was BOft;/sec. The initial conditions obtained are shown in
TABLE 5. Once these had been obtained subsequent tests on the network were
done with the true boundary profiles, i.e., those shown in full in Figures
7.9 and T.10.

Tests made on this network were similar to those made on the River Aire
in that the finite difference systems were compared, with varying time
steps, with the recorded water levels. For this purpose actual water levels
were known at the stations Bamna, Mirzaganj and Amtali for the tide in

question. These locations are also shown in Fig. T.T.
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" TABLE 5
_INITIAL CONDITIONS |
TYPE | BREADTH| BRED CON- LENGTH WATER
OF OF LEVEL NECTING OF LEVEL
NODE | NODE | CHANNEL| P.W.D. | CHANNELS| CHANNEL FLOW P.W.D.
(FD) | (FD) (FT) (FT3/SEC) (FT)
1 HB L4600 -40.0 -1.100
1 24250
25 Q 4600 ho1k
2 24250
2 H 4200 -35.0 -2.038
3 21050
26 Q 3800 -T71257
I 21050
3 H 3580 -30.0 -2.237
5 20000
27 Q 3360 -85672
6 20000
L H 29%0 -27.0 -2.143
T 22150
28 Q 2520 -85135
8 22150
5 H 2310 -24.0 -1.585
9 24250
29 Q 2100 =T7546
10 24250
6 H 2100 -22.0 -0.590
11 13150
30 Q 2100 -69151
12 13150
T H 2000 -20.0 0.294
13 13150
31 Q 210 -7405
1k 13150
8 HB 210 -30.0 0.650
15 19750
32 Q 1900 -53983
16 19750
9 H 2000 -20.0 0.893
17 15750
33 Q 2100 -48122
18 15750
10 H 2210 -20.0 1.186
19 9500
3k Q 2320 -94062
20 9500
11 HB 2320 -20.0 1.700
21 23150
35 | Q 1680 53372
22 23150
12 H 1575 -20.0 0.324




36
13
37
14
38
15
39
16
4l
17
45
18
L6
19
L7
20
Lo
21
41
22
42
23
43
2l

o QDIII.DH-‘ID H o H £ =H o ®H o H o

=

apmp s o

1470
1785
2100
2310
2520
2840
3160
3475
2100
2210
2320
2420
2520
2625
2730
2730
3790
4000
k210
4315
k420
4315
k210

4210

" TABLE 5 (CONT'D)

bk,

-20 .0

-22.0

-24.0

-26.0

-2k.0

-24.0

=30.0

=35.0

-30.0

_35-0

-40.0

"',-I-0.0

23
2L
25
26
27
28
29
30
39
Lo
41
L2
43
N
45
46
31
32
33
3k
35
36
37
38

23150
23150
15800
15800
12600
12600
13700
13700
21050
21050
29500
29500
22100
22100
17900
17900
26400
26400
17900
17900
27400
27400
15800

15800

59842

66471

T2361

77697

34053

26134

-22795

-76320

50312

43636

21871

~T4988

=2.075

-2.424

-2.616

-2.634

-25237

=1.579

-0.850

_2 . 598

-2.452

-1.100
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CHAPTER 8
RESULTS

8.0 Introduction

In the following chapter the results obtained from the running of the
verious numerical systems, described in Chapter 4, on the laboratory and
physical models are presented. Comparisons are made, both between the results
themselves and, except for the hypothetical model, between recorded results.

It is proposed that these comparisons will then lead to recommendations as to
which systems may be suitable for the mathematical modelling of unsteady flow
situations in open channel networks, in general. Comparisons are made
between the systems on the basis of accuracy, economy, general behaviour and
stability end convergence.

The degree of accuracy obtained fram finite difference systems is
primarily a function of the lengths of the difference steps and in this respect
the time steps were chosen to be multiples of the Leap Frog stability criteria,
eq. (3.2.12). 1In general section lengths are usually chosen beforehand from
experience, with the aims that differences in geometry between consecutive nodes
are not great and also that the longitudinal profiles produced will correspond
to those recorded. In some instances, as in the Ganges model tested here, then
gsection lengths are determined by the availability of cross-sectional survey
data. A further consideration as regards to accuracy is that if time steps are
greater than those that can adequately represent the boundary, then again in-
accuracy is to be expected. Finally, as mentioned in Chapter 3, it is con-
gidered by Dronkers [8] not necessary to update co-efficients in implicit
systems, on an iterative basis, as the accuracy obtained is acceptable when
considering the inaccuracies inherent in the schematisation of survey data. In
this respect modifications were made to the Implicit systems, so that compari-
sons could then be made between the results from these systems, with constant

co-efficients, and with those of the Explicit systems and of the Implicit and

Nonlinear systems in which the co-efficients varied.
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In order to determine the economical aspect then the computer running
times were compared for different time steps. Such comparisons may not give
an entirely accurate picture as the running times of individual methods depend
upon such things @) the efficiency of the programming used (b) the type of
computer and also (c) upon changes in the computer system over the period of
time in which results were collected. However, it was thought thsat such times
would illustrate large differences between different methods, and for the same
method, illustrate savings in time when using larger time steps. In comparing
the running times between explicit, implicit and nonlinear systems then diffi-
culties arise because tolerances are placed on the results of the iterative
implicit and nonlinear procedures. The finer the degree of tolerance then
the larger is the computer time, whereas results are obtained automatically
from explicit systems, by definition.

In the following sections results for each model in turn are discussed,
together with the way in which the different systems behaved in general whilst
working.on each model. Finally, in the last section the numerical times at
which the systems either became unstable or did not converge to solutions for
each model are discussed in relation to Chapter 5.

8.1 Hypothetical Model

The purpose behind programming this model was, as stated previously, to
"iron-out" programming errors whilst developing the different numerical sys-
tems. However the results from conducting a series of tests on this moéel, do
provide information on the stability and convergence properties of the systems
together with insight into their general behaviour. To illustrate these
points, results from nodes 2 and 3 (see Fig. T.1l) were plotted, as it was
these nodes that were subject to the greatest amount of variation with time.

Figures 8.1 and 8.2 show the results for nodes 2 and 3, for the time step
of 25 seconds, in which results for all of the systems are plotted, i.e., Ex-
plicit, Implicit and Nonlinear. On examination of Fig. 8.2 it can be seen

that at the end of the first time step the flows are retarded owing to the
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channel friction (it is noted that the normal flow for a depth of lm with the
stated slope and friction is 13.13 M3/sec). Then, owing to the influence of
the constant boundary value of 20 M3/sec., it can be seen that there is a
gradual increase in depth of flow (see Fig. 8.1) and quantity of flow until

the steady state condition was reached. With the increase in depth at node 2
then the effect of the boundary was also gradually transmitted downstream until
the entire length reached a steady state condition. This consisted of depths
of 1.348 M, which as stated in Chapter 7 is the calculated normal depth of flow,
for nodes 2 to 12, and then a short length of backwater curve up to the bound-
ary node 20, where the depth was held constant at 1 M. Figures 8.1 and 8.2
show that all of the systems converged well to the steady state with perhaps,
the Implicit system with varying co-efficients and the Nonlinear system con-
verging at a slightly slower rate than the others.

Figures 8.3 and 8.4 show the results obtained for the time step of
125 seconds. Only results from the Implicit and Nonlinear systéms are plotted
as the Explicit systems become unstable at time steps less than this. Also
shown on these figures are the results obtained from the Implicit system with
varying co-efficients and Nonlinear system for the time step of 25 seconds, for
comparison purposes. The small differences that were present on the "rising
limbs" of these results were averaged. On examination of Figures 8.3 and 8.4
it can be seen that oscillations in the results are present owing to the use of
the relatively large time step. However, after a period of time, the results
converged to the steady state conditions for the entire reach.

In Figures 8.5 and 8.6 only the results for the Implicit system with
varying co-efficients and the Nonlinear system are plotted as the Implicit sys-
tem with constant co-efficients ﬂecame unstable at a smaller time step. Also
plotted on these figures are the results from the Nonlinear system and Implicit
system with varying co-efficients for the time step of 25 seconds. On examin-
ation it can be seen that the oscillations are greater and more persistent than

those for the time step of 125 seconds, but again they converge to the steady
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state conditions.

Figures 8.5 and 8.6 show that there is little difference in the results
obtained from the Nonlinear and Implicit schemes, with perhaps the Nonlinear
programs producing slightly less amplitude in oscillation. Figures 8.3 and
8.4 show that the results from the Implicit system with constant co-efficients
had larger oscillations initially but, as the others, they converged to the
steady state.

TABLE 6 shows, for each numerical system, the maximm number of iterations
required for the systems to converge to solutions, for the time steps shown.
Also shown are the time steps at which the systems either became unstable or
did not converge to solutions at all. In order to make comparisons with the
iterative procedures then an equal tolerance limit must be used and this was

3

arbitrarily set at a value of 10 - for the Implicit Methods and 10'“6 on the

norm for the Nonlinear Methods.

The perfq:mance of each of the numerical systems, both with reference to
the previously mentioned figures and with TABLE 6, will now be dealt with in
turn:

Explicit

The two explicit systems are shown to provide good results, in that they
follow the general trend of the results from the other systems and converge to
the steady state well, for the time step of 25 seconds. This time step is
below the numerical points of instability of the First and Second Explicit
systems which were found to be 55 and 111 seconds respectively.

Results from this program were obtained for the 25 second and 125 second
time steps but at 150 seconds the system failed by not converging to a solution
It can be seen that the maximum number of iterations required to reach solu-
tions rose sharply from 8 at At = 25 seconds to 31 at At = 125 seconds. At a
time step of 14T seconds, i.e., prior to the system failing at At = 150 seconds

it required, at one stage 98 iterations to reach a solution.
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TABLE 6
NUMERICAL SYSTEM TIME MAXIMUM NUMBER | APPROXIMATE TIME
STEP OF ITERATIONS STEP AT WHICH
(SECONDS) SYSTEM FAILED
FIRST %5 1 55
EXPLICIT
SECOND 25 Al 113
GAUSS- 25 8
150
SEIDEL 125 31
25 N
IMPLICIT DOUBLE- 125 10 375
(with varying SWEEP
co-efficients) 250 27
25 N
SPARSE- 125 10 375
SWEEP
250 27
DOUBLE~- 25 1
225
IMPLICIT SWEEP 125 1
(with constant
co-efficients) | SPARSE- 25 i
225
SWEEP 125 1
25 4
125 L
DOUBLE- 250 5 NOT REACHED
SWEEP
500 T
1000 8
2500 T
NONLINEAR
25 I
125 L
SPARSE- 250 5 NOT REACHED
SWEEP
500 T
1000 8
2500 T
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Implicit, Double-Sweep

Two variations of this method were tested, the first as described in
Chapter 4, was with the matrix A in eq. (4.4.10) being updated on an iterative
basis, and the second was with this matrix held constant. Results from the
first variation show that the system provided solutions up to the time step of
375 seconds after which the method failed by not o::onverging to a solution. At
a time step of 350 seconds this method required at one stage, 200 iterations
to converge to a solution. However, at smaller time steps the system can be
seen to require few iterations. The second variation of this method can be
seen to fail at a time step of 225 seconds by the system becoming unstable.
Implicit, Sparse-Sweep

Again the two variations described above were tried with this method. As
this method of inversion of the matrix A is identical to the sbove.double sweep
method, for tridiagonal structures, then it is expected that their behaviour
for this model will be the same and on examination of TABLE 6 this is seen to
be true.

Nonlinear

Both of the variations of this method described in Chapter 4 are con-
sidered here together as, as to be expected, the results are seen, on examin-
ation of TABLE 6, to be identical. Results were obtained for time steps up to
2500 seconds, i.e., 100 times greater than the basic time step of 25 seconds.
Further increases beyong this point were thought unnecessary. Also, the table
shows just how few iterations were required at these large time steps and
clearly show the effective convergence characteristics of this method. In
both of the variations, and for all the time steps used, it was not necessary
for the programs to enter the procedures which chose values of ti less than
one in order to reduce the norm. Thus the full Newtonian step of t; =1 vas
used throughout.

8.2 River Aire

In order to show and compare the results obtained for the River Aire model
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then these are presented for the two nodes 5 and 11, situated approximately
one third and two thirds along the reach programmed. On examination of

Fig. 7.3 these are seen to coincide approximately with the positions Newland
and Carlton. At both of these positions the depths of flow have been plotted
and also at Newland the discharge results are plotted, obtained by interpola-
tion between nodes 4 and 6.

Figures 8.7, 8.8 and 8.9 show the results for the two nodes for the time
step of 150 seconds. On these figures, however, it was necessary to show the
results from the First Explicit system with the time step of 75 seconds as
this system became unstable before 150 seconds. On examination of the figures
it can be seen that there is in general, good agreement between the calculated
depths from the Nonlinear and Implicit systems with those recorded. The com-
parison between the calculated discharges and those recorded is however, not
quite as good. This may be due to the fact that on the chart from which the
recorded discharge was obtained, it was difficult to relate the start of the
tide with the time scale used. A shift of the results to the right of approx-
imately % hour would appear to give better agreement. It can be seen from
Fig. 8.7 that the calculated points have "run-out" quicker than those recorded
and although a smaller value of Chezy 'C' was used for the downstream flow
than the flow upstream, it is thought that a smaller value still, could have
been used. This would then have the effect of retarding the flow. Further,
no allowance was made for the presence of bridge piers at Carlton, which would
also have the effect of retarding the flow.

As regards to the results obtained from the Explicit systems it can be
seen that there is good agreement between these and those obtained from the
Nonlinear and Implicit systems at the beginning and ends of the curves, but in
the centre, vhere the depths are greater, there is a large amount of diver-
gence. This, as will be explained later, is due to instability "creeping in"
at the deeper depths.

Figures 8.10, 8.11 and 8.12 show the results obtained when a time step of
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900 seconds was used. It can be seen that on the whole there is little
divergence between the calculated values and those recorded. However, there
is a small amount of divergence between the results from individual methods
and it will be noticed that the results from the Nonlinear programs follow
most closely the recorded values. Further, it is evident that a small amount
of oscillating is apparent in the results from the Implicit systems. As it
is difficult to show individual points that coincide on the figures, the con-
vention adopted was to use a circle with a dot in the centre where a Nonlinear
result and either or both, of the Implicit results coincided.

The calculated depths and discharges for a time step of 1800 seconds are
shown in Figures 8.13, 8.14 and 8.15. On examination of these figures it can
be seen that the difference between individual methods has become greater
during the periods of high rise and fall of depth. It is beginning to appear
that the Nonlinear Method gives results that are consistently closer to those
recorded than the others. Surprisingly, the Implicit Method with varying co-
efficients shows a greater amount of divergence from the recorded and Non-
linear results than those results from the Implicit system with constant co-
efficients, particularly with the discharge. Also shown on these figures are
the calculated depths and discharges obtained from the Nonlinear and Implicit
systems at the time step of 150 seconds. To avoid congestion these are shown
only where they differ appreciably from the results obtained from the Non-
linear method at the 3 hour time step. When comparing the above results it
must be remembered that the time stepof 3 hour overshoots the sharp rise in
boundary depth at node 1, occurring at 6i hours p.m. (see Fig.T.4). Because
of this, some differences must be expected on the rising curves, particularly
at node 5.

The calculated results for the time step of one hour are shown on
Figures 8.16, 8.1T7 and 8.18, these as expected, show even greater divergence
between individual methods and those recorded. The Nonlinear Method sgain

gives consistently the closest results to those recorded. This, together
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with what has been said previously, clearly shows the improvement obtained by
representing the nonlinear friction and 6A/6x terms in the manner described
in the section dealing with the formation of the nonlinear finite difference
systems. Further, although there is greater divergence between the results
obtained from the Implicit systems with those recorded, than the results from
the Nonlinear systems, there is little to choose between the results obtained
from the two variations of the Implicit Method as far as accuracy is con-
cerned. Hence it is becoming increasingly apparent that there is little to
be achieved in allowing the co-efficients of the Implicit systems to vary on
an iterative basis.

TABLE T shows the computer running times of each method for the tidal
cycle, together with the average number of iterations taken in reaching solu-
tions for the time steps shown. For time steps less than or equal to % hour
then the running times are for 12} hours of tide, but for time steps greater
than this then the running times are for 12 hours of tide only. Also shown
in the table are the approximate time steps at which the systems either became
unstable or did not converge to a solution. The degree of tolerance placed on
the iterative procedures was as in the Hypothetical model, 10 > and conse-
quently 10-6 for the Nonlinear methods.

The performance of each of the numerical systems are now discussed in
turn, both with reference to the previously presented results and with TABLE T:
Explicit

The First and Second Explicit systems-were as stated previously, con-
sidered to be unstable in that oscillations were apparent in the deeper depths,
at time steps of 75 and 150 seconds respectively. The computer running times
for the two systems are 174 and 98 seconds and as can be seen from the table,
this latter value is the smallest time when compared with the other systems for
the time step of 150 seconds. It is not until a time step of 3 hour is used

with the Double Sweep Implicit system is this rumnning time bettered.
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TABLE T
NUMERICAL SYSTEM |TIME STEP |[COMPUTER AVERAGE NUMBER |APPROXIMATE
(SECONDS) [RUNNING TIME [OF ITERATIONS/ |[FAILING TIME
(ML - TIME STEP  |OF SYSTEM
SECONDS)
FIRST 75 1Tk 1 T5
EXPLICIT
SECOND 150 98 - 1 : 150
GAUSS-
SETDEL 150 L2 9 600
150 330 L
900 119 6
' 1800 91 T ;
- |DOUBLE- ;
SWEEP 3600 78 9 P REACERD:
IMPLICIT
(with varying 7200 67 11
co—efficients) ;
21600 T 12
43200 Th . 13
150 1317 b
900 360 6
1800 233 f ;
SPARSE- NOT REACHED
SWEEP 3600 166 9
7200 128 11
21600 oL 12
43200 85 13
150 387 1
900 131 1
IMPLICIT 1800 106 i
(with constant|SPARSE- NOT REACHED
co—-efficients) | SWEEP 3600 9k ; |
T200 8l o |
21600 T4 1
43200 T3 1




TABLE 7 continued

NONLINEAR
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150 4o2 3
900 138 4
1800 110 5
DOUBLE- NOT REACHED
SWEEP 3600 90 T
7200 96 14
21600 86 10
43200 78 6
150 1184 3
900 323 .
1800 228 5 :
SPARSE- NOT REACHED
. |SWEEP 3600 174 7 :
7200 184 15
21600 113 10
43200 111 6
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Implicit, Gauss-Seidel

This system failed to converge to a solution at a time step of 600
seconds. At a time step of 150 seconds it can be seen that 442 seconds of
computation time was required for the full tide with an average number of
iterations of 9. These, when compared with the other methods, are by no means
good.

Implicit, Double Sweep

This system surprisingly converged to solutions up to and including 12
hours with very few iterations. At a time step of 900 seconds where it is
considered that results obtained from the Implicit systems are still suffici- -
ently accurate then the running time is comparable with that of the Second
Bxplicit system. On examination of TABLE T it can be seen that this system
when compared with the other Implicit and Nonlinear methods is the most econo-
mical for this model. However, it must be remembered that a network is not
modelled here and that this system is ideally suited to work on a single river
in which the elements do not diverge from the basic tridiagonal structure. If
this system had been operated with constant co-efficients then smaller running
times than those shown could be expected with (as previously shown) little or
no loss of accuracy. Such times would be more comparable with those of the
fecond Explicit system, but as a system was sought that would be capable of
handling networks there was therefore, little point in pursuing this further.

It is believed that the slightly larger running times for the time steps
of 6 hours and 12 hours were due to changes in the computer system.

Implicit, Sparse Sweep

Results were collected for two variations of this method; one in which
the co-efficients of the linearised matrix varied and the other where they
were held constant. The system where the co-efficients varied can, on examin-
ation of TABLE T, be seen to have the largest running times up to the time
step of 1 hour or over. This system behaves in exactly the same way, apart

from running time, that is, as the above Double gweep method for this model.
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The second variation of this method produced savings in computer time over
the sbove variation, but are not as economical as those of the Double Sweep
procedure operating on an iterative basis. It will be noticed that this version
also provides results for time steps up to and including 12 hours.

Nonlinear, Double-Sveep

This system, which uses the Double Sweep method to invert its Jacobian,
consequently has smaller running times that the following version of the Non-
lineer method which uses the Sparse Sweep technique. Both this variation and
the one below produced results with time steps up to and including 12 hours.

At a time step of 3 hour where the results of the Nonlinear systems are still
considered to be sufficiently accurate then this system has a running time com—
parable to that of the Second Explicit system at 150 seconds. The running
times can be seen to "drop off" considerably as the time steps increase and at
a value of 1 hour the method has a running time less than that of the Second
Explicit system. It is noticeable that the method requires fewer iterations
for the two largest time steps than at 2 hours. It is thought that this may
be due to the fact that the boundary values for these larger time steps are
nearer to the initial values than at 2 hours.

Nonlinear, Sparse-Sweep

This variation of the Nonlinear method which uses the Sparse Sweep tech-
nique, identical to that used in the Implicit scheme, to invert its Jacobian,
has the largest but one, running time for time steps up to 2 hours. After this
the system requires larger times, however, discrepancies appear to be evident
both here and in the above version which could be attributed to changes in the
computer system.

8.3 Ganges Delta

Figure 8.19 shows, for the three positions where recorded information was
available i.e., Mirzaganj, Amtali and Bamna, the calculated depths of flow.

On examination of this figure it can be seen that fairly good agreement is ob-

tained between the calculated results and the recorded curve for Mirzaganj.
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However, the agreement is not so good for the other two station, although the
calculated points do follow the general trend of the recorded curves. It is
noticed, particularly on the Bamna figure, that differences are evident in the
initial conditions and had these been determined more accurately then better
agreement would almost certainly have been obtained. It was felt however,
that little could be achieved by doing this. Further, although the differences
appear large when drawn to the shown scales, it must be remembered that the
actual depths of flow at zero hours were, for the three stations Mirzanganj,
Amtali and Bamna, 24.56 ft., 32.55 ft., and 26.31 £t respectively. The average
deviations between the recorded and calculated points then represent errors of
2.49%, 4.16% and 9.24% respectively.

Differences between the initial conditions and those recorded may be due
to a number of things. Firstly, it does not necessarily follow that the re-
cycling process described in Chapter T should produce the correct initial con-
ditions for the tide tested. The flow conditions leading up to the beginning
of the tide could be completely different altogether. Secondly, the region
programmed is subjected to a large amount of sediment transport meking the
accurate determination of the bed levels very difficult. This, together with
the fact that the widths of the rivers and the lengths between nodes were
determined by scaling off maps and also that the Chezy 'C' factor was set from
experience only to 80ftl/sec, could account not only for some of the differ-
ences in the initial conditions, but also in the subsequent computing of the
tide in question. On the experience gained with the initial running of the
River Aire model, in which both the friction and bed levels were altered to
obtain good agreement between the calculated and recorded results, it was
noticed that these altherations gave "fine" adjustment only and that larger
effects were obtained by the correct representation of the boundary data.

Thus on this basis it could be that the boundary curves themselves were in
error. Bench mark errors in the setting of the zeros of the recording gauges

would account, quite simply, for the differences present.
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On examination of Fig. 8.19 it can be seen that the calculated values
obtained from the Nonlinear and Implicit systems are plotted for a time step.
of 300 seconds. Results from the Explicit systems are however, plotted at
time steps less than this, owing to instability occurring at greater values.
It is noticed that there is good agreement between the results of the Non-
linear and Implicit systems with those of the Explicit systems, with only
very small variations occurring, mainly at the peaks of the curves.

On Fig. 8.20 where the depths are plotted for the time step 3 hour it can
be seen that identical results are obtained from the Nonlinear and Implicit
systems and that these values show a similar agreement to those recorded as
the previous Fig. 8.19. Also on Fig. 8.20 and on the following Figures 8.21
and 8.22 are plotted the results from the Nonlinear and Implicit systems for
the time step of 300 seconds, and these are shown as dotted lines. On exam-
ination of the curves of Fig. 8.20 it can be seen that a small degree of os-
cillation, owing to the use of the relatively larger time step, is becoming
evident in the calculated results.

Figure 8.21 shows the calculated results for the time step of 1 hour.
Again, there is no difference between the Nonlinear and Implicit systems, at
least they are too small to be shown on graphs of this scale and as such are
insignificant. Also, it is noticed that the oscillations have become more
pronounced but are by no means large.

Results for a time step of 2 hours are shown on Fig. 8.22. It is clearly
seen that the Nonlinear and Implicit systems no longer give the same values
and that the results on the whole show greater divergence from the dotted
curves. On examination of these curves it is again, apparent that the Non-
linear program gives results that compare most favoursbly with those at the
time step of 300 seconds and that there appears to be little to choose be-
tween the two variations of the Implicit systems, as far as accuracy is con-

cerned, at this time step,

TABLE 8 shows for the Ganges network, similar information as tables 6 and
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TABLE 8
NUMERICAL SYSTEMS TIME STEP |COMPUTER [AVERAGE NUMBER |APPROXIMATE
(SECONDS) [RUNNING TIME [OF ITERATIONS/ |FATLING TIME
(MILL TIME STEP OF SYSTEM
SECONDS)
FIRST 150 205 150
EXPLICIT
SECOND 300 117 1 300
GAUSS-
SETDEL 300 550 9 1000
300 599 8
DOUBLE-| 1800 294 20
SWEEP 8000
3600 257 3k
IMPLICIT T200 301 86
(with varying
co-efficients) 300 1709 L
1800 448 6
SPARSE-| 3600 281 6
SWEEP NOT REACHED
T200 186 T
21600 106 T
43200 114 8
300 516 1
1800 171 1
IMPLICIT SPARSE-| 3600 139 ¥ NOT REACHED
(with constant | SWEEP
co-efficients) T200 116 1
21600 100 1
43200 97 1
300 668 - 3
DOUBLE-| 1800 307 L
PAEGE 3600 270 5 21600
7200 Lo2 6
NONLINEAR
300 1535 3.
1800 Lok y




TABLE 8 continued
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INOT REACHED

3600 307 >
7200 22} 6
21600 155 8
43200 130 8
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T. The computer running times here though, are for 12 hours of tide. Again,

the degree of tolerance placed on the iterative procedures was 10!-3

Implicit systems and J.O"-6 for the norm in the Nonlinear systems.

for the

As before, the performance of each of the numerical systems will be dis-
cussed, in turn, both with reference to the previously mentioned figures and
with TABLE 8.

Explicit

Again, it was observed that good results were obtained from the Explicit
systems when time steps were used that were below their numerical points of
instability. These were approximately, 150 seconds for the first Explicit
system and 300 seconds for the second. On examination of TABLE 8 it can
again, be seen that the second Explicit system, at a time step of 300 seconds
gives the most economical running time of 117 seconds. This was not bettered
until a time step of 2 hours was computed with the Implicit, Sparse-Sweep
system with constant co-efficients. Results at this large time step are not
only widely spaced but are also inaccurate.

Implicit, Geuss—Seidel

It can be seen that this system failed at a time step of 1000 seconds
and was due to the fact that it did not converge to a solution. At this time
step the program completed 5 hours of computetion with a maximum number of
iterations of 81 and then failed to converge on the next iteration. For the
time step of 300 seconds however, a running time of 550 seconds is shown
which is good when compared with the other Implicit end Nonlinear systems,
but is still by no means good when compared with the running time of the
second Explicit system. The average number of iterations for the 300 second
time step was 9 which does not indicate a strongly convergent system.
Implicit, Double—Sweep

. The Double-Sweep Implicit system failed to converge to solutions at time
steps of approximately 8000 seconds. This was due to the inversion process

of the linearised finite difference system and is indicated by the large
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number of iterations at the time step of 2 hours. On examination of Figures
8.21 and 8.22 it can be seen however, that the use of time steps greater
than 1 hour produces too much divergence‘ of the calculated results from those
with a time step of 300 seconds and that, within the limits of acceptable
accuracy the system works quite adequately even though a large number of
iterations are required.

At time steps of 1 hour or less then this system has the second most
economical running times of the Implicit and Nonlinear systems. However, as
the time step increases then, owing to the large number of iterations required
then large smounts of computer time are necessary.

Implicit, Sparse-Sweep

As with the other models, then two variations of this method were also
tested. One in vhich the co-efficients of the matrix A in eq. (L4.4.10) were
held constant and the other in which they were allowed to vary on an iterative
basis. The performance of both of these variations can be seen on examination
of TABLE 8. It is noticed that both converged to solutions up to and
including 12 hours and so verifying that the reason why the two former Implicit
methods (i.e., Gauss—Seidel and Double Sweep) failed because of their parti-
cular methods of inversion of the finite difference system and not because of
the finite difference system itself.

The variation of this system with varying co-efficients can be seen to
have very large running times initially but they then tailed off to become
comparable to the other systems later. However, the results of the calculated
depths show that little or no improvement in accuracy is obtained whatsoever
by allowing the co-efficients to vary and that large savings in computer
running time can be achieved by keeping them constant. In fact, this latter
variation of the Implicit system using the sparse matrix inversion technique
described in section 4.6, gave the most economical running times of all the

systems (except the explicit) for no effective loss of accuracy.



188.

Nonlinear, Double-Sweep

On examination of TABLE 8 it can be seen that this variation of the
Nonlinear method failed to converge to solutions at time steps of 6 and 12
hours and is attributed to the technique of using the Double Sweep procedure
to invert the Jacobian to obtain the vector Si’ in eq. (4.8.1). This is
illustrated by the fact that an average of T9 iterations were required to
form this vector for the time step of 2 hours with a corresponding running
time of 402 mill seconds. For the time step of 1 hour an average of only 24
iterations was required, which is by no means good, but had the correspond-
ingly smaller computational time of 270 seconds. This system can be seen to
produce savings over the following veriation for time steps of 1 hour or
less, but as stated previously the normal Implicit systems produce identical
results to the Nonlinear systems and are more economical, at these time
steps.

Nonlinear, Sparse-Sweep

This variation of the Nonlinear technique provided solutions for all the
time steps tried but at no stage did it give econamical camputational times.
However, the Nonlinear method does give more accurate results for large time
steps and it is possible that if a model had been tested which had smooth
boundary curves over & large period of time, such as in flood routing, then
this system could provide economical running times for large time steps.

With the Ganges model, then at time steps of 6 hours and 12 hours the
6

tolerance on the norm had to be increased from 10 ° to 10 ° as round off
errors, owing to the computer's precision, were magnified by the dynamic func-
tion and so prevented convergence. This was attributed to the large time
steps used and the large dimensions of the Ganges rivers.

In both this, and the above variation, then solutions were obtained with
the parameter t. = 1 throughout, i.e., the full Neutonian step (see eq.(4.8.1))

except when a time step of 12 hours was used on the latter variation. Another

noticesble characteristic of the high convergence of these Nonlinear methods
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are the very small number of iterations required at the smaller time steps.
8.4 TLeboratory Model

In the foregoing tests it has been shown that the differences between the
computed results from the different Finite Difference systems was negligible
provided a relatively small time was used. With this in mind it was considered
only necessary to run one of the Finite Difference systems on the laboratory
tests and the one chosen was the Gauss-Seidel implicit system. The time step
used for all three tests was 0.5 seconds which was slightly greater than the
Leap Frog time step for the maximum depth and minimum section length.

To obtain the initial conditions it was first thought that by feeding into
the models the correct boundary data and arbitrary initial conditions the
systems would converge to the correct initial conditions. However, this proved
‘to be a difficult and lengthy process. A much more efficient method was
adopted where the author wrote a program based on the interval halfing tech-
nigque. The basic procedure was to compute backwater profiles around the net-
work working from the downstream head controlled boundary. To do this an
assumed value of the flow had to be made through the section spanning laterally
between the two main lengths. Successive estimates of the estimated and com-
puted flow at node 24, see Fig. 6.9, were compared and further estimates were
made using the interval halfing technique until sufficient accuracy was ob-
tained. The remaining two depths at nodes 2 and 16 were then calculated. To
utilise this procedure it was importent that the basic dynamic equation,
eq. (2.5.4) was used, minus the time varying terms.

When first the calculated value of the linear friction factor, l:El of
0.055 cms, whose obtaining was discussed in section 6.6, was used on the first
unsteady flow test, the calculated depths produced were much lower than those
recorded. As no measures had been taken to account for the effect of turbu-
lence and loss of momentum at the junctions it was decided to simulate this
effect by increasing the friction parameters local to the junctions. The basic

philosophy was to increase these values until good comparison was obtained with
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the first unsteady flow test. On obtaining these they would be held constant
and used for the second and third unsteady flow tests. After several runs

the final values of ks were chosen to be :

1 cms node 9

6 cms node 11
0.5 cms node 13
1.3 cms node 23
0.055 cms node rest

The computed and recorded results for the first unsteady flow test are
shown on Figures 8.23 and 8.24. 1In this test the boundary flows were held
constant at values of 0.611801 x 10-3 H3/sec at node 1 and 1.25836 x 10-3 M3/
sec. for node 15. Fig. 8.2k also shows the head varying boundary, node 1k,
obtained when the downstream weir was lowered. On examination of these
figures it can be seen that there is very good agreement between the calcul-
ated and recorded results. The initial conditions obtained using the pre-
viously mentioned backwater program and the above friction values, together
with the relative heights of the head nodes, are shown in TABLE 9 for the full
three tests.

The second unsteady flow test, &s previously described, had varying flow
boundaries as well as a varying downstream head controlled boundary. The
time varying flow curves for the nodes 1 and 15 are shown on Fig. 8.25, and
the depth boundary curve is shown on Fig. 8.26. Results obtained from the
running of this test are shown on Figures 8.26, 8.27 and 8.28. On examination
of these curves it can be seen that good agreement was obtained over approxi-
mately half of their lengths, but then the calculated and recorded values
began to diverge. In all the cases the computed results were higher than
those recorded. This suggested that the increased friction values arrived at
because of the turbulence were too large. The effect of such large values
would be less for the deeper depths than the smaller ones.

Results from the running of the third unsteady flow test are shown on
Figures 8.30 and 8.31. Again it can be seen that the adjusted friction values

used were too high, particularly with the initial and end conditions, although
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TABLE 9
UNSTEADY FLOW TESTS
NODE .
1 2 3
NUMBER| TYPE DEETH ggggcs gﬁguu DE§§H FIOM'.gigun D%E?H e 'gﬁgum
(M) (M) (M)

1 QB 0.612 2.603 0.60k

2 H |0.100 0.0315/0.09%4 0.041k |0.037 0.041k
3 Q 0.612 2.603 0.60k

4 H |{0.10k4 0.02750.102 0.0328 |0.045 0.0328
5 Q 0.957 2.645 1.020

6 H [0.107 0.0235/0.111 |0.0236 0.054 0.0236
" Q 0.957 2.645 1.020

8 % +0:11% 0.0195{0.118 0.016k [0.061 0.0164
9 Q 0.957 2.645 1.020
10 H [0.110 0.0205 [0.113 0.0196 [0.05T 0.0196
11 Q 1.870 4.865 1.876
12 H |0.120 0.Q@025/0.122 0.0098 |0.065 0.0098
13 Q 1.870 4.865 1.876
14 HB (0.130 0.0 0.132 0.0 0.075 0.0
15 Q 1.258 2,262 1.273

16 H [0.113 0.0178]0.119 0.0173 10.062 0.0173
17 Q 1.258 2.262 1.273
18 H |0.109 0.0225|0.114 0.0216 [0.057 0.0216
19 Q 0.913 2.220 0.856

20 | B |0.108 0.0234 [0.111 0.0234 {0.054 0.0234
21 Q 0.913 2.220 0.856
22 H |0.109 0.02190.112 0.022T [0.055 0.0227
23 Q -0 913 12,220 -0 856

PN Q 0.345 0.042 0.417

25 H [0.107 0.0245(0.108 0.0271 {0.051 0.0271
26 Q ~0 345 -0 Ok2 T°”17
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on the whole the agreement was good. The boundary curves for this test are
shown on Figures 8.29 and also on 8.31.

The above three tests show that the agreement between the computed and
recorded results was reasonably good. The degree of accuracy was however a
function of the damping factors which were increased to take into asccount the
turbulence at the junctions. Because of the size of the model these junctions
had large effects on the rest of the system. In retrospect it is thought that
a largernetwork should have been used with better designed junctions, so that
their effect on the system as a whole would only be local.

8.5 Numerical Stability and Convergence

In Chapter 5 it was stated that convergence of the Finite Difference
equations was dependant upon the stability of their linearised forms and also
upon their consistency, providing the equations possessed a certain degree of
smoothness. The necessary theoretical criteria for the stability of the sys-
tems were in that Chapter, developed and it was also shown that all of the
finite difference systems tested were consistent with their original partial
differential equations. With this latter point shown then'the theoretical
aspect of both stability and convergence depends only upon stability. The
first object of this section is then to compare the numerical points of in-
stability of the Finite Difference systems in relation to the criteria devel-
oped in Chapter 5. As regards the consistency requirement, then it has been
amply shown that smooth and reasonably accurate results were obtained from
the Systems when small time steps were used, but as the time steps increased
then divergence, in the form of oscillations, became evident.

The numerical stability of the four Finite Difference systems tested will
now be considered under their two basic headings, i.e., explicit and implicit
gystems.

In all the models tested then the Explicit methods became unstable at

relatively small time steps. The theoretical criteria for stability of the
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two systems are given by equations (5.3.17) and (5.3.27). On examination of
these equations it can be seen that they are virtually velocity dependant,
which therefore means that if the numerical points of instability of the two
Explicit systems comply with these equations, then the Finite Difference
systems themselves are unsound. For, even at slackwater, the theoretical time
step will be approximately zero.

The values calculated by the above mentioned equations are also related
to the stability criteria of the more stable Leap Frog methods, given by eq.
(3.2.12). These latter values also served the purpose of providing the basic
time step upon which results were collected from the various models.

As stated previously, the numerical points of instability of the first and
second Explicit methods for the Hypothetical model were, 55 and 111 seconds
respectively. On application of equations (5.3.17) and (5.3.27) to the initial
conditions of this model, the theoretical values were calculated to be 58.9 and
117.8 seconds, which gives very close agreement. The Leap Frog time step was
calculated to be 31.9 seconds, at slackwater. This then set the initial value
of the time step for this model to 25 seconds.

TABLE 10 shows the calculated theoretical points of instability for the
first Explicit system for six positions along the River Aire model. These
values were calculated for the three sets of conditions: initial, points of
maximum discharge, and final, using values obtained from an implicit program.
The value of the 6V/8x term was found to be of the order of 3 to 4% of the
friction term and was therefore neglected in the calculations. It can be seen
that the average theoretical wvalue of the time step starts at 94.03 seconds
and becomes hT;96 seconds at the maximmm flow conditions, this value then re-
turns to 122,31 seconds at the tide. The reduction at the deep depths is due
to the effect of the increase in the hydraulic radius being much greater than
the increase in velocity. This explains why instability is seen to be evident
at the high points in the curves of the results. The disturbances would then

be damped out as the depths dropped. Because of the large variation in depth
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the actual value at which instability occurred was difficult to determine
however, as stated previously, the first Explicit system was considered to be
unstable at & time step of T5 seconds. This value can be seen to compare
quite favourably with the figures shown in TABLE 10. As the additional terms
in the stability equations (5.3.17) and (5.3.27) have been neglected, then
the theoretical points of instability of the second Explicit system are twice
those shown for the first. Also, as the numerical point of instability was
considered to be 150 seconds for this second system then agein, this figure
compares favourably with the theoretical values.

Also shown on TABLE 10 are the Leap Frog stability values for the three
sets of conditions mentioned previously. These were calculated assuming zero
' velocity. It can be seen that these are much greater than those of the
first Explicit system and that the minimum value was 167.7 seconds for the
smallest length of 3440 ft. This then set 150 seconds as the basis of the
time steps for the River Aire model.

The first and second Explicit systems of the Ganges model are shown to
fail at time steps of 150 and 300 seconds respectively. At these walues
instability did not totally occur but oscillations of the order of 6 to T ft.
were evident between the results from these progréms vhen compared with those
from the Implicit systems. To determine the actual theoretical values of the
time steps at which instability occurred would be difficult as the flow con-
ditions varied so much. However, to give some idea of their order, then four
points were chosen as representative of the area, using the initiel conditions.
Although the flows varied greatly over the tidal period the depths, as shown
on the previous figures, do not vary very much. The four positions, together
with their section lengths, depths and flows are shown in TABLE 11. Also
shown are the calculated points of instability of the first and second Explicit
systems and the Leap Frog stability values at slackwater.

On examination of TABLE 11 it can be seen that the average theoretical

values of the time steps were 63.7 and 132.8 seconds for the first and second
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system respectively. These are then much smaller than the previously stated
numerical values. However, it must be remembered that the flows are velocity
dependant and that for instance the flow at node 46 becomes 89987 i‘t3/aec.
after only 1 hour with a corresponding increase in depth of only 1.5 f£t. This
represents an increase in the time step, for that point, by a factor of 4, It
would seem reasonable that these periods of high flow could lend stability to
periods of low flow with a subsequent continuing of the computation. Another
consideration is that had the computations been continued for periods greater
than 12 hours then instability may quite easily have occurred at time steps
smaller than those estimated.

It can be seen from TABLE 11 that the minimum value of the Leap Frog
stability time step is given as 361.6 seconds for node 34 which had the
smallest section length. This then set the basic time step for the Ganges
model to 300 seconds.

In order to appreciate the magnitude of size of the theoretical values of
the time steps given by the relevant stability criteria, for the laboratory
data, then a number of tests were conducted with data from the first unsteady
flov test only. Both the first and second Explicit systems ran with this
data which had initial conditions of 0.1 M and zero flow, and constant boundary
conditions set at their initial values. Calculation of theoretical values was
again complicated by the varying flow conditions produced, however, values
obtained were of the order of 0.03 seconds for the first Explicit system and
approximately twice this for the second Explicit system. Both of these values
compared well with those obtained numerically from the programs. In com—
parison the Leap Frog stability value for this test, for maximum depth and
minimum length, was approximately 0.37 seconds at zero flow.

Implicit

On examination of TABLES T and 8, it can be seen that, both for the

River Aire and Ganges Delta models, one form or another of both the Implicit

and Nonlinear systems converged to solutions for time steps up to and including
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12 hours. This, incidently, represented maximum time steps of 288 and 144
times the explicit Leap Frog steps for the River Aire and Ganges models res—
pectively. Because of the foregoing, where certain Implicit or Nonlinear
programs did fail, then their failure can be attributed to non-convergence of
the particular numerical procedures in solving the nonlinear simultaneous
equations and not the Finite Difference systems themselves. Furthermore it
was stated in the previous section dealing with the stability of the explicit
systems that for the River Aire model the 8V/8x term was approximately 3 to 4%
of the friction term in the stability eq. (5.3.17), also for the Ganges model,
TABLE 11 shows the values of the friction term to greatly exceed the values
of the other terms in the stability equations. The implication is that, as
the terms in eq. (5.3.34) may be reduced to those mentioned above, then the
inequality regarding the theoretical stability of the Implicit systems,
i.e., eq. (5.3.34) was held, at least for the small time steps from which the
results were collected. Further, this inequality was considered to be held
for the complete tides in question.

A plightly different picture is evident with the Hypothetical model.
Here, only the Nonlinear programs converged to results for atime step of
2500 seconds, i.e., 100 times the Leap Frog value. All the Implicit systems
failed at time steps less than this. The Double Sweep and Sparse Sweep pro-
grams which hed varying co-efficients failed, as stated previously, at a time
step of 375 seconds, and these programs with constant co-efficients failed at
a time step of 225 seconds. In order to investigate why these systems failed
then two things were done; the first was to program a nonlinear system with
the same finite difference equations as the Implicit systems, i.e., using
linearised friction and 8A/8x terms, and allowing the co-efficients to vary.
The second was to do exactly as the first but this time keep the co-efficients
constant. In other words solve the two variations of the Implicit Finite

Difference systems upon which the Double Sweep and Sparse Sweep methods worked

by the Nonlinear method.
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The results of this exercise were, that the system with the varying
co-efficients converged for time steps up to and including 2500 seconds, and
thus showed that the reason why the Double Sweep and Sparse Sweep methods
with varying co—efficients failed, at the time steps shown, was due to the
particular solution processes and not the Finite Difference system. However,
the variation where the co-efficients were held constant failed again, by
the system becoming unstable, at the smaller time step. This indicates that
it was the Finite Difference system that caused failure by instability for
this time step and had nothing to do with the inversion technique. This is
further illustrated by the fact that the Implicit system using the two in-
version methods in question, with varying co-efficients, failed by not con-
verging to a solution, whereas the Implicit system using the same inversion
techniques, but with constant co-efficients, failed by the solutions gradually
becoming unstable.

The results of the Double Sweep and Sparse Sweep Implicit methods with
constant co-efficients, at At = 225 seconds, were compared with the results
of the Tmplicit method with varying co-efficients, with At = 2500 seconds.
This showed that the former produced the larger oscillations initially. The
results of the latter did not vary greatly from those of the original Non-
linear Finite Difference systems which as stated previously, converged very
slowly to the steady state. The reason why instability occurred in the
former case may therefore be due to these large oscillations in depth and
discharge, and that in the second case, although the oscillations were not
large enough to produce instability, they were large enough to produce very
slow convergence to the steady state. Possibly, if a larger time step than
2500 seconds had been used on the original Nonlinear system, or the Nonlinear
system that had been modified to work on the Implicit system with varying
co-effients, then instability mey have occurred.

TABLE 12 shows, for nodes 3 and 5, the values of the variables in eq,

(5.3.34) both for the Implicit system with constant co-efficients at
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TABLE 12

IMPLICIT DOUBLE SWEEP SYSTEM WITH CONSTANT CO-EFFICIENTS,

AT = 225 SECONDS

NODE 3 NODE 5

TIME E%Il 2 ¢H Y éh 54!L 2 6H vV ¢éh
C<R h &t h &x. C*R h 6t h 6x

0 0.0576 0.0025 0 0.05T76. 0.0005 0
225 0.0215 0.0013 | -0.0012 0.0255: 0.0027 | =0.0003
450 0.0410 -0.0006 0.0006 | 0.0363 0.0012 | -0.0016
675 0.0246 | -0.0007 0.0013 | 0.0263 | -0.0011 0.0003

IMPLICIT NONLINEAR SYSTEM WITH VARYING CO-EFFICIENTS,
AT = 2500 SECONDS

0 0.0354 0.000% | -0.0001 | 0.0367 0.0004 | -0.0001

2500 | 0.0307 0.0003 0.0001 | 0.0289 | -0.0002 0
5000 | 0.0387 0.0002 | -0.0002 | 0.0431 0.0001 | -0.0002
7500 | 0.0291 | -0.0002 | -0.0001 } 0.0263 | -0.0001 | =0.0001
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At = 225 seconds and for the same system with varying co-efficients with

At = 2500 seconds. It will be noticed that the expressions in eq. (5.3.3L)
have been divided throughout by At and have been presented in terms of depth
and velocity only. Results were calculated for four time steps only as
further calculation was unnecessary owing to the fact that the system with s
time step of 225 seconds gradually became unstable and the other with & time
step of 2500 seconds converged to the steady state. Also, we are concerned
only with the conditions that produce either instability or convergence.

Two things are apparent from the examination of the table, the first is
that the inequality in eq. (5.3.34) is fulfilled in all cases, and secondly,
it can be seen that there is a larger fluctuation in the nonlinear terms of
the upper table than in those below. The first comparison means that the
stability condition for the Implicit systems was complied with in both cases.
However, it must be remembered that this criteria was developed for lin-
earised systems with gradually varying co-efficients and when this is not
true then the subsequent criteria may not yield reliable information.

As stated in the section dealing with the results from the laboratory
tests, it was felt that only one of the implicit methods need be used. Con-
sequently no detailed observations were made on the behaviour of the Implicit
systems as a whole, from a stability point of view. However, one of the
observations that was made was that when the programs were running to obtain
the initial conditions (using the method by which arbitrary initial and the
correct constant boundary values were used) then convergence to the steady
state was very slow indeed. The friction parameter used for these exercises
was the one obtained from direct measurement of the water slopes, as pre-
viously described, and no increase had been made, at that time, for the junc-
tions. Computation of the elements of the stability criteria, eq. (5.3.34),
yielded that the friction term was in fact less than the others and conse-

quently the inequality was not true.

Once the correct initial values had been obtained, the Gauss-Seidel
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method then computed the unsteady profiles and no problems were experienced.
The method took on average 5 to 6 iterations per 0.5 second time step.

Convergence of the Numerical Systems

In all of the foregoing results, each of the Implicit and Nonlinear
systems failed at least once by non-convergence of the numerical procedures
used to solve the resulting set of nonlinear simultaneous equations. The
reasons why these systems failed together with their general performance
with respect to convergence are now discussed.

Gauss—Seidel

This system has been shown to become unstable before all the other
Implicit and Nonlinear systems. The discussion in Chapter 5 showed that the
convergence of this method is dependant upon the spectral radius of the re-
sulting Geuss-Seidel iteration matrix. If this is greater than unity then
errors could propagate in the iteration process and so prevent convergence,
whilst if it is less than unity then errors will decrease and convergence
will take place. In Chapter 5 inequalities were developed, relating the
elements of the linearised system, to see if convergence was guaranteed. Tt
was shown that guaranteed convergence was only conditional; depending upon
the relative values of the elements and in particular, upon the time steps.

In order to investigate the above further, & comparison was made of how
the spectral radius varied with the number of iterations required to reach a
solution for a test on the Hypothetical model. A time step was chosen that
was relatively high but not too large to prevent convergence occurring at all.
Owing to the oscillatory nature of the results produced by the Hypothetical
model when a large time step was used then the discharges produced were either
very large or very small. When they were large then it would be expected that
eq. (5.4.9) is more fulfilled because of the friction term, and this, as
expected gave smaller eigenvalues, a correspondingly smaller spectral radius
and few iterations. However, when the flows were smell then the reverse, as

to be expected, occurred. TFigure 8.32 ghows the spectral radius for the
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Gauss-Seidel matrices constructed in determining the last iteration of a time
step, against the number of iterations taken to reach the solution. Although
the spectral radius may vary with each iteration for one timb step it is
expected to converge to one value if the iteration process is itself conver-
gent. The spectral radii themselves were calculated using & subroutine
written by the suthor, using the "Power Series" method, ref. [21].

On examination of Fig. 8.32 it can clearly be seen that as the spectral
radius (p)increased from O to 1 then so did the number of iterations increase
slowly. However, as p exceeded 1 then the number of iterations became very
large indeed, although convergence still occurred. Further, it is interesting
to note that p had a value of 2.59 for the matrix constructed in determining
the first iteration of the second time step, of the computed model. Also,
tests showed that when a time step was used that was too large for a parti-
cular model, then non-convergence was preceded by extremely large eigenvalues.
Double-Sweep

The convergence of this system must be considered for the two cases, one
in which all the elements of the linearised system lie on the tridiagonal band
and two, when they do not. The non-convergence of the first case, when the
gsystem is working in an iterative manner, can be attributed to the equations
being too nonlinear,and that the initial values of the variables were too much
in error. Here, the variables are assigned values on the first back subs-
titution which are too far removed from their correct value, and after feeding
back into the matrix to update the co-efficients, the variables are then ass-
igned values that are even more removed from their true value, and so on.
Another consideration is that round-off errors due to the elimination process
may become so large with the larger time steps that again the variables may
not be assigned values nearer their correct ones and the above may again, occur.
For the systems that work with constant co-efficients then round-off error is
the only consideration. Its effect here is simply to produce inaccurate

results, depending on its magnitude.
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The sbove discussions also apply to the second case where off diagonal
elements exist, but in addition there is the effect of the way in which these
were treated. For small time steps in which it is expected that the variables
do not vary much over the time considered then this method works reasonably
well. However, as the time step increases, as shown by the results of the
Genges model, then the system requires a large number of iterations prior to
failure. Further, it would seem likely that the method would be less conver-
gent with complex networks than with simple ones.

Sparse—-Sweep

As this method is for the direct solution of sparse matrices then the
factors governing its convergence on an iterative basis are the same as those
for the first case of the Double Sweep method. These are again, that conver-
gence will depend upon how close the initial values of the variables are to
their final value and secondly, round-off error may become large.

When the method does not work iteratively then, as before, round-off error
is the criteria.

Nonlinear Methods

Until the Jacobian was estimated in the analytical manner described in
Chapter 4 then a large amount of trouble was experienced with the convergence
of these methods. However, after adopting the measures described then the
method proved to be strongly convergent for a wide range of conditions. It can
be seen though that these analytical estimates are still functions of the un-
known variables and consequently if estimates of the latter are too much in
error then problems could be expected. This is likely to be the cause of the
relatively large number of iterations required for the time steps of 2 hours
and 4 hours in the River Aire model, which for these would give large variations
in depth at the boundary. This is further supported by the fact that the pro-
cedure which chose steps less than the full Newtonian step had to be entered
several times in order to reduce the norm. Whereas for all the Hypothetical

model tests and for all the Ganges model tests, except one using the 12 hour
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time step, the full Newtonian step was used.

However, non—convergence wag experienced with the version of this method
which used the Double Sweep procedure to invert the estimated Jacobian on an
iterative basis. This, as to be expected, was for the CGanges model and has
previously been discussed.

The variation which used the Sparse Sweep method to invert the Jacobian
proved to be very convergent for the Ganges network. Although, as stated
previously, problems arose owing to the round-off errors which were introduced

into the arithmetic by the computer being magnified to affect the norm.
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CHAPTER 9
CONCLUSIONS

The basic aim of the research, as stated in the introduction, was to
investigate the applicability of a set of finite difference schemes for the
solution of the unsteady flow equations, in open channel networks. In this
respect, conclusions are now drawn from the results presented in the previous
chapter. On the basis of these conclusions recommendations are made, both for
the subsequent use of the systems developed and also for further work.

Finally, conclusions are made on the general application of the procedures des-
cribed for the determination of the theoretical stability and convergence
criteria.

The Finite Difference systems tested gave reasonably accurate results, on
the whole. The results from the laborstory work, although limited in nature,
did show that the systems were basically accurate and the river models showed,
that depending upon the time step used, there was little divergence between
individual schemes. In the River Aire model a small degree of "fitting" of
the results was used, which is perfectly acceptable with mathematical modelling
This then produced excellent correl etion between calculated and recorded
values. Where the recorded information was incomplete, as in the Ganges network
then differences between calculated and recorded were obtained. Even though the
differences were not large it is expected that better data would produce more
accurate results.

Of the numerical systems themselves then it was shown that the Explicit
methods -gave accurate results within their stability limits. However, as these
limits were primarily & function of the velocity of flow then the systems are
basically unsound and should not be used. This is contrary to what was origin-
ally thought about these schemes from the initial running on the Hypothetical
Model.

The Implicit systems, i.e., not including the Nonlinear ones, providec

accurate results at time steps approximately six to twelve times greater,
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depending upon the rate of change of conditions, than the Explicit systems
(calculated using the Leap Frog stability criteria). Both of the two river
models clearly showed that there was no point in updating the co-efficients
of the linearised systems and that savings in computer time could be achieved
because of this.

The Nonlinear methods provided the most accurate results for the larger
time steps. Reasonably accurate results were still obtained at time steps
approximately twice those mentioned above for the Implicit systems. This, as
stated previously, shows the advantage of treating the friction and 8A/8x
terms in the manner described. In all the systems programmed no tests were
conducted on the effect of large differences in section lengths. However,
on considering the section on Consistency, it is suggested that differences
should not be large.

As far as economy was concerned, then the most important point was that
the Second Explicit system gave consistently the most économical running
times. The Implicit and Nonlinear methods only gave running times that were
comparable to these for the single River Aire and did not even give this for
the Ganges network. However, these considerations depend upon what one con-
siders is accurate and what is not, and if greater divergence had been accep-
table then the Implicit and Nonlinear methods would become more economical.

A point worth mentioning is that it was apparent from the River Aire results,
that had a double sweep system been tried with constant co-efficients, then
more economical running times than the Second Explicit system would probably
have been obtained with acceptable accuracy. This supports the method's
popularity with unbranched channels.

Of the Implicit and Nonlinear systems that worked on the Ganges network
then the Sparse Sweep Implicit Method, with constant co-efficients was the
most economical. This system gave a better running time than the Second Ex-
plicit system at & time step of two hours, but the results were considered to

be unacceptable from an accuracy point of view. It is felt that improvements
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could undoubtedly be made to this method to improve its efficiency.

When considering the performance of the individual numerical methods in
solving the Implicit and Nonlinear systems then it is clear that the Gauss-
Seidel method did not prove useful. The method not only gave uneconomical
running times but failed at time steps less than those from which accurate
results were still to be obtained. It was hoped that this method would prove
more useful as it is ideally suited to the sparse nature of the equations in
open channel networks. The reasons why the system failed have been clearly
stated.

The Double Sweep technique was shown to work well for the single River
Aire. However, when it worked on the Ganges network, on an iterative basis,
it gave uneconomical running times. An important point worth mentioning
though, is that the method did not fail by non-convergence when working on the
network, until a time step was used that was much greater than that from which
accurage resul?a were still just to be obtained. This itself supported the
tésting of this variation of the basic method, although it must be remembered
that a more complex network may alter this statement.

The Sparse Sweep technique which worked with constant co-efficients proved
to be the most efficient method of the Implicit and Nonlinear systems when
working with the Ganges network. Also, it was shown to converge for time steps
of twelve hours in length. The method is, itself, ideally suited for dealing
with complex networks. The variation which updated the co-efficients gave
grossly uneconomical running times.

The Nonlinear Methods were shown to be quite successful whilst working on
the Ganges model, in that they gave very accurate results and, on the whole,
converged well. However, the Double Sweep version did not gife the better
convergence characteristics of the Sparse Sweep version. It was also shown
that this latter system did not give economical running times even for very
large time steps. However, it is apparent that if a more efficient method was

used to invert the Jacobian, then the Nonlinear Method, as a whole may
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prove to provide econamical rumning times and accurate results for large time
steps in mildly varying flows. Further, it was shown that, although the
norm reducing step was rarely used with a value less than one, it did, at
times prove useful to include the procedure that chose a value less than one
to search for convergence. A final point against the use of these methods

is their complex nature and the subsequent complexity in pProgramming them.

In all, it is suggested that an explicit system would be the most
efficient method to model channel networks. Not only are these methods easy
to program, they have been shown to be economical with computer time. Also,
by virtue of the fact that they work with small time steps they not only
record rapid changes in the boundary data but also provide accurate results.
Explicit methods are suggested that revolve around the Leap Frog technigue.
An excellent one is the two-step Lax-Wendroff method as it offers the adyan-—
tages of speed and accuracy. Further, it has the ability to work in super-
eritical flow aﬁd can handle discontinuities in the form of bores ete.
However, the literature concerning this method only deals with the case where
velocity and depth of flow are determined at the same node, and it is there-
fore suggested, that modifications are made to deal with the staggered net in
the space direction. It is likely however, that this method and similar, may
give slightly larger running times than the Second Explicit system upon which
the above recommendations are made. Although such increases are thought to
be only small.

If an implicit method is to be preferred then a method which obtains
solutions by a direct means is to be recommended on the grounds of econamy and
convergence. The application of the Sparse Sweep technique used here proved
to be very encouraging and it is thought that improvements could be made to
make the application more efficient. However, to make the running times of
this system comparable to those of an explicit method, then larger time steps
mist be used vhich could provide inaccurate results in rapidly varying flow

gsituations. Such time steps would also, not record rapid changes at the
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boundaries. Again, it is repeated that there is no point in updating the
co-efficients of the linearised systems from an accuracy point of view. A
direct method would then obtain solutions after one inversion only.

It is concluded that the Nonlinear Methods developed here would only be
useful where very large time steps could be used, i.e., two hours or more,
in slowly varying flow situations, for instance in river floods. The basic
method does however, depend upon an efficient sparse matrix inversion tech-
nique and again improvements could be made in this respect. Further, com-
parisons could be done to campare this basic method with one that formed
the Jacobian directly in each iteration (as in Newton's method), but still
retained the facility of using a multiple of these steps less than one. The
Nonlinear Method itself however, may prove to be useful in other aspects of
hydraulics or civil engineering in general, here one thinks particularly of
the pipe network problem.

The theoretical stability criteria developed in Chapter 5 are seen to be
complied with on the whole, reasonably well by the Explicit systems. However,
instebility was experienced with the Implicit systems in certain cases where
the relevant criteria predicted that they should be stable. The reason for
this was thought to be due to the relatively rapid varying flow situations in
vhich the criteria do not necessarily apply. It is hoped that the treatment
given here may help to present a clearer and more complete picture of the

problem.
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APPENDIX A

Computer Program of the Implicit Gauss-Seidel Method.

(T2 X3 : b e

*BEGIN' 'COMMENT' rLPSF149 UNSTEADY FLOW NETWORKS,IMPLICIT SYSTEM:
"COMMENT' THE cOLLOWING BLOCK READS IN THE LAYOUT OF THE SYSTEM.
N IS THE HODE ARRAY, MCN IS THE NUMBER OF CONNECTING NODES, NNN
ARE THE NUMBERS OF THF CONNECTING NOPES, NNC ARE THE NUMRFERS 0F
THE CONNEFTING CHAANNEILS, TB [S THE TYPE OF BOUND&RY,TNN THE
TOTAL NUMRER OF NODES,TNC THE TOTAL NUMBER OF CHANNELS,NT IS
TYPE OF NODE.TF={ THEN HEAD,IF=2 THEN VELOCITY,TB IS =1 IF
HBOUND AND =2 IF QBOUND:
"INTEGER' 1, 1.KsT,TNN,TNC, XA/ XB,XJ,XI,CArCI1+CI2,CI1¢CI12/KCsSN,

0CK 1
8L TOT&LTIME.hT!SR!“S:F1aFZ!TOL!COUNT!HIAS!QSSTU:TXJTVJTZlJUNCTrUN:

'REAL' G/TWOG,<IDEFR,FLOW/SURA,QS,SA, @,voB,vBC,v0A,vVAC,VJI,
QEAVE;ENLﬂST:ﬂ!DX2:AC-CV:RlVJSBO&HIDZ:bH;DVIVuc:AC1fQ1lR2aBF'
BFE/BF1/RF2,.DVZH, FRT,81D,VSUM1,VSUM2,DVDX, DXV, DXSUMT,DXSUM2,
VAVE1,VAVF2,DaVEY,DAVE2/AC2/QDX/SAREAT/QS1,QS2, NEWH, NEWQ;
TNH:=READ:
TNC:uTNN=1;
JUNCT :=RFapD;

*BEGIN' '"INTEGER' "ARRAY' N/NCN/,TB,NTL1:TNN],NNN/NNC, NCA,NNJ,
BLOCK
DIRCI TN, 15 xT[1:16),YT(1:14), TIME[0:100):
"REAL' "ARRAY' Z,HR/+HA.QUE,KI,QB,QA/VR,VA,MUA,NUA,BETTAA,SUMQB,
SUR BO,MS(1:TNN),DX[T:TNN.1:5),

XQL1:16), VR4 414,124

"COMMENT' THE eOLLOWING PROCEDURE(S) ARE INSERTED FOR

THE NODE) ONLV;

"PRUCEDURE' ACON(NJ/H,AC):
BLOCK 3'INTE'::ER' MJ e

"REAL! Hsal:

AC:=(BOINIY +MSINII*u/2) aH:

'"PROCEDURE' ARFA(NJ,H,a);
BLOCK 4

VINTEGER' wy?

"REAL' HiA®
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A:=(BOINJT+MSTINJIwH/2)%H;
YPROCEDURE' SAREA(NJ DX H,SA):

"INTEGER' NJ:

"REAL' HsSA,DX:

 SA:=(BOINII+MEINJI*HY«DX
"PROCEDURE' LENGTH(KC,nX):

BLOCK 6. T —
"INTEGER' «C:
_ _YREAL' DX:
'BEGIN' DX:=2007 1'60T0' gTOp:
_ , "BEGIN' 'SWITCH' S8:=11,L2,L3,L4rL5/L6,LT7;
BLOCK NS . SR e L s v vis

BLOCK -- 5

'6oTO0" SSrKkC): st
. L1:DX:%250,0: 'GOTO' LE:
1.2:DX.2370,0: 'GOTO' LE:
. L%:DX.=680n.0: 'GOTO' LE;
 1LL:DX+=190,0: 'GOTO' LE;
_1.5:DXs=460,0: 'GOTO' LE:
o LA:DX+*=850.0: 'GOTO" LE;
. L7:DX.:=230,0: 'GOTO' LE:
LE:"END';
STOPS'END'; o _ .
'PROCEDURF' SIDEQ(NNC,T,QS);
BLOCK 8 B
~ VINTEGER' NNC,T:
- "REAL' QS:
. QS:=0.0; -
__ _'"PROCEDURE" CHFZY(NNC,H:C);
- BLOCK 4 o

"INTEGER'NNC?

"REAL' HsC:

Ce:= 80: . - -
"PROCEDURF' HRAD(NJ/H.R)?

LOCK 10 e
e "INTEGER' wNyJ:

REAL' HsR: _
 Re=(BOINJT+MSINJIaH/2 Y4H/(BOLINJI#2*HoSQART(1+MSINJI2MSINI]/Z&))
"PROCEDURE"' HBOUNDC(J N, TIY)? ,

BLOCK '

T VYV VED T WeOwr
1 ia !
|
I
i

]

TINTEGER" N, T,

'REAL' H?

‘BEGIN'

YINTEGER' tB,Jn!

"BEGIN' 'SWITCH' sw:=p101,L102;

BLOCK 12

n '6NTO' SW(RS):
& D L101:'enR" yB:=4 'STEP' 1 'UNTIL' 14 'DO°

h\ ; - "REGIN' YTrJB1:=READ*3600;

N "FOR' 1R:=1'STEP*1'UNTIL'4'DO' YHLJB,IB):=READ;
5 5 "END'; |

ls . Ro:=2:

tg L102: 1R =" JE'N21'OR'N=24 ' THEN"1'ELSE"'TF'N220 ' THEN'2'ELSE"

9 "IF'N=11'THEN'3'ELSE" 4!

\ "FOR'JAI=1 'SYFP' 1 'UNTIL' 14 ‘DO

[ "TF' YTLJRal) I1GE' T 'THEN!

3 "RFGIN' Hi=(YHIJB+1,IBI=YH(JB,IB))*(T=YT[JB]))/

R (YTryB+1)=yYTlJg])+yHlJB, 1B)=20y):

< . 'GoTO0' sTH;

) "END'; _

"END';

SYH:'END';
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'PROCEDURE"' QBOUNDC(N,T.BF):
BLOCK 13 . . R
_ YINTEGER' N, T:
"REAL' BF:
BF:=20 :
e '"PROCEDURE" BRFADTHC(NJ,H,B):
BLOCK 14 Gt e
"INTEGER"'NJ: _
"REAL' H.R:
t=BOINJIY+MSINJ I wH}
"PROCEDURF' BRFADTHT(NJ,H,B)?
- BLOCK 15 S
Bt VINTEGER' NJ:
"REAL' HsA: :
Be=BOINJT1+MSI(NJY%H;
'"PROCEDURE!' PARAMQO(J,NEWQ):
BLOCK = 16 . -
"REAL' NEun:
"INTEGER' g .
"BEGIN®
'REﬂL. DH1 -0H2|HUJNUI'AI.PH“J BETTA.,QU., L“MIGAM;DHT'
SIG/,RHO+RC,BT.DELTAA,081,QS82;
YCOMMENT' %B 1S ASSOCt1ATED WITH H[I+11 AND XA WITH Hll=1);
'BEGIN' 'SWITCH' s:=L4.L2: - - .

BLOCK AT e e
R i '6OTO" Sls8):

e L1 IMUALI YV :mARS(QRLJ))*GDT
R NiIJALJYsmQrlJY1eDT/KILY];
e .. BETTAA[J):2G«DT/(2,.0+KI[J]):

STDEQ(N[JUY,T.087):
SIDEQ¢NLIV,T4nT ., NS2);
OUELJ1:2(051+n82)*DT/2.0:¢
L2:'1F" NNNLJ.1I>NNN[J,2] *THEN' 'BEGIN' XB:=NNJ[J,11:
T o XAi=NNJ(J,2)}
R . TEND!
: . _ 'ELSE' 'BEGIN' XA:=sNNJ(J,1);
e . XB:=NNJ[J,2):
YEND':
AH:=(HB[ %AJ+uB[ XBI+HA[ XAJ«HA[ XBI)/4.0:
DH1:=(HA[ XBJ1+HB[ XB1)/2,0:
DH2:=(HAL XAY«HB[ XAJ)/2.0:
CHEZY (J tAH,C)
HPADC(J JAH,R):
RREADTHC (4 +AH,BC);
BREADTHT (4 +AH,BT);
ACONCJ .DH1,AC1):
ACONC. DH2,AC2);
ACONC . JAH,AC);
DELTAA:=ACT=AC2?
Mit: sMUALJ 1/ (ceC*AC*R) ¢
NUe=NUALJI*DFLTAA/ (AC*AC)
AlPHA=(aRLJY+QA[J))*(BC+RT) /(4. 0%AC);
RFTTA=BETTAATJIwAC?
QU:=QUELJ1/AC:
LAM:=1+MIJ+QULNU:
GAM:=zALPHA+BETTA;
S1G:=ALPHA=BETTA:
RHO:=1=0Q1)*
NFWQ: 2 (STa*((HALXBI+ZIXBI)=C(HBIXAT#ZIXAT))+GAM((
HALXAY*Z2I[xAl)=(HR[XB)+2Z(XR1I))*RHO*QB(J])/LAM!

OOXX VAN = I OB VIS NN =0 OXF

YEND';
YEND';
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"PROCEDURE' PARAMH(J,NEWH);

18 .
'REAL' NEWH:
_YINTEGER' a3
.. 'BEGIN! :
__VREAL' QDX,SARFAT,sUMq:
_ VINTEGER' a: _
YBEGIN' 'SWITECM' suwi=yl,W2;
19
) '60TO" SWIWSl:s

W1:QUELJY:asuMQRrd) :=SURLJT:=0,0; O

___'EOR! TeE{ 'STEP' 9 YUNTIL® NeN[J)Y 'DOY

_'BEGIN' A:aNNyrJdo1);

g SINEQ(NLAI,T/QS1):

SInEQ(N{AY,T*#DT,QS2):
QUE(J):2QUELJ]1+(QS1+QS2)*#pX(J,1)/2.03
_SUMOBr.):=SUMQB(J)+QBLAIwDIRIJ,1]:
SAREA(NNJI(J 1]+DX(Jr 1), HB(J]sSA):
e . SURLYY«mSUR[J)+SA; R
i . JVEND Y . A A R R T s e
e M23SAREAT:=SUR[ 1} e e v e s s poBiany
. SUMQ:=SUMoB([J1: .
. YEOR' 73®1 'SyYEP' 1 'UNTIL' NCN[J) ‘DO e
oo "BEGIN' A:=NNJrJ,1): .
o SAkEA(NNJ{Jrl]rOX[J:I] HACJYoSAY:
e ... SAREAT «mS AREAT*SA; e
_______ 5 SUMQ:=SUMQ+QA[AI*DIRLy,1]; e

o NFHH -(QUFIJ]-SUMQ)*DT/SAREAT¢HBEJJ:
" IEND!:
YEND'; ,
_ _YCOMMENT! THE NODAL AND CHANNEL SYSTEM IS NOW READ IN INCLUDING
 _THE LENGTHS 0t THE CHANNELS,KI IS THE LENGTH OF REACH BETWEEN
~____TWO HEAD NODES: L )
_ _"FOR' J:=1 'STEP' 1 'UNTIL®' TNN 'DO' R e _.
- "BEGIN' NrJ)l:=nrEAD: L R :
__NtrJ):=REaAn; e e e e
__NCN[J)+=READ:
"IE' NCN(J1=1 *THEN' TBCJ):=READ?
"FPOR' p.=1 oSTep' 1 'UNTIL® NCNCJ] 'DO!
___'BFGIN' NNNrJ,11:=READ;
L . NNCrJ,1131=READ;
R o DXUtJel1s=mREAD?
"EnNn':
"IpY NCN(J)a2 'THEN® KILJ):mDX[J,1)eDXCU,218

YEND';
"COMMENT' THE rHANNEL SYSTEM IS NOW CROSS REFERENCED.
NNJCJ,I) FONTAINS THF VALUE OF J OF THE NODE NNN(J,I11}
CYEOR' J:®mq4 'STEP' 4 T'yUNTIL' TNN 'DO°
"POR' I:=9 'STEP' ¢4 "yUNTIL' NCN(J] 'DO!
"BEGIN' XA.aNNN[J,T):
'FOR' M«.31 *STEp' 1 'UNTIL®' TNN 'DO'
"IE* NrM)=xa 'THEN' 'BEGIN®' NNJCJ,1):mM;
B 'GOTO" M1
_ YEND'}
M1:"END';
YCOMMENT' THE rHANNEL SYSTEM IS NOW OUTPUTED:
WRITETEXT (P (v 1 (120S"y ' NODE'('47S') 'CONNECTING!) ")
NEWLINECY):
WRITETEXT (' (' 1 ('6nS") *NOPE(S)*("5S") ' CHANNELC(S) ' ('S5S')"LENGTH
2°3;:
NEWLINE(2y:;

DYV VA P, >



225.

YFOR" J:=1 'STEP' 4 'UNTIL' TNN 'DO°
YBEGIN' SpACE(17): _
PRINT(NLJ1,.3,0):
_VIFY NCNCJI=T 'THEN® '"BEGIN' '1F' NT[J)=1 'THEN'
WRITETEXT('('HB') ")
"ELSE' WRITETEXT('('QB!)");
SPACE(34);

YEND'
"ELSE' 'BEGIN' 'IF' NTCJ)=1 'THEN'
WRITETEXT('(tH')1)
o YELSE* WRITETEXT('('Q')');
SPACE(35);
S . "END':
"For' 131 STEp' 1 'UNTIL' NCNLJ]Y 'DO!
*BEGIN' PRINT(NNNE[J,13,3,0):
SPACE(9);
~ PRINT(NNC[4,11,3,0);
.. SPACE(R):
oo ... PRINT(pXI[JV,13:3:0);
NEWI INpc1);
_ - SPACE(s59):
YEND'; )
o NEWLINF(1): - e
YEND';
YCOMMENT' THE INITTAL CONDITIONS ARE NOW READ IN.
VELOCITIES ARF POSITIVE LEAVING THE NODE WHICH HAS THE
~ SMALLEST REF. NUMRER TE.N[J); _ o
"FPOR' J:=1 'STEP' 4 'yUNTIL' TNN 'DO’
YIF' NT(JY=1 *THEN® ) _ .
"BEGIN' 2ri):=rEAD:
KRTJY:=READ=2TJ]:
HATJ):=HB(U]):

YEND'

"ELSE!

'BEGIN' QRFJ):=READ:

QArJ):=QBLJ]);

YEND'; )

YCOMMENT' THE TDEALISEN CROSS=-SECTIONAL CHANNEL
DATA 1S NNW RFAD TN,1N TERMS OF A BOTTOM WIDTH
BO AND AN AVERAGE SInF SLOPE MS:

YFOR' J:=1 *STEP' 9 'yNTIL' TNN 'pO°
'"BEGIN' BorJl.=REAn;

MSrJJ:aREAN?

"END';

YFOR' J:=1 ¢STEP' 4 'yNTIL' TNN 'DO'

YIF' NT[J1=2 'THEN!

"BEGIN' XA«zNNI[J,1):

¢*IFv NCNCJI=1 'THEN' AH:=HB[XAY

YELSE!

'BEGIN' XB:=NNyrJ,23;
AH:=(HRIXAJ+HB[XB1)/2.0:

'ENH':
hCON( J -ﬂHpAC):
VRFJ1:=QBr )/

YEND';

YCOMMENT' THE FOLLOWINA BLOCK ASSIGNS DIRECTION MULTIPLIERS
TO QUANTTITY NODES AROUND A PARTICULAR HEAD NODE, SO THAT
FLOW FROM THAT NORE 1S POSITIVE AND TOWARDS IT IS NEGATIVE,
1.E. FLOW FRO™ NONE mrJd) IS QBLJ«N)*DIR[J,I);

"FOR" J:=1 'STEP' 4 '"yUNTIL' TNN 'poO°

YIF' NTLJ1=1 'THEN?

*BEGIN' '"FOR' 1:24 V'Syep! 1 "UNTIL' Nen(JY DO

VYV AP rem covirr = & & O
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"BEGIN' A:aNNJrJd,13;
R YIF' NONLAY=1 'THEN!
"YBEGINY DIRCJI):= "IFY NLJISNLAY 'THEN' 1
e T M M TR e . . . VELSE'=1;
: . 'GOTO' BTM;

~ VYEND':
e "IFY NCJISNNNCA,1)
"THEN?
—~ .. "BEGIN' DIRLJ,IJ:='1F' NUJ) < NNN[A.2)
o ) _ TTHEN! 1
e o VEBLSE'=1;; _
s . .. YEnD' s
e "ELSE? .
"BEGIN' DIRLJ,ID:2"TF' N[J) < NNNC[A.1)
e e e .. YTHEN' 9
_— i _ _ 'ELSE'=1; <
o _ YEND': ’ ,
BTM: _
; CENDT -
YEND'; .
DT:=1000:

TOTALTIME.= 43200:

. 631332.175:

" RECYCLE;

*IF' ENTIER(T/3600y=(7/3600) 'NR' T=44550 'THEN'

*BEGIN'

COUNT:=0;

TWOG:22. (%G}
AS:=BS:=4:

TU:=TZ2:20:TY:=0;
YCOMMENT' THE rOLLOWING 1S THE TIME VARYING
COMPUTATYNNAL AND OUTPUT BLOCK:

VFOR' T:an 1STEP! nT +UNTIL' TOTALTIME 'DO!?
"BEGIN' -

PAPERTHROW:
NFWLINE(L)Y s
WRITETFXT('('TIME[TI=')");
PRINT(T¢3,0):
SPACE(10):
T «=T/60=T7%60: .
"Ipe TX=60 1THEN' 'BEGIN' TY:=TY+1; TZ:=TZ¢1;TX:=20;'END ;
"IE' TY>12 'THEN' 'BEGIN' TY:=TY=12; TU:=1: 'END':
PRINTC(TY,2,0):
WRITETEXT(1(' 1)'y;
PRYINT(TX,1,0):
SpACE(10);
PRINT(rQUNT 3,n);
NEWLINE (&) ;
WRITETEXTC(' (' " ("18S")"NODE' ("148")'QUANTITY! (?
14S") 'DEPTH'("16S ') '"BEDXA,0.D,"("12S")'"TOTALY
“'O.Do')l):
NEULINF(1)Y
'Foe' J.=1 1STEp' 1 'UNTIL' TNN 'DO!
'BEGIN®
NEWLINF(1):
SPACE(17):
PRINT(N[J],3,0);
YIF' NTrJ)=q YTHEN' 'BEGIN' SPACE(3S5):
PRINT(KALJ],2,3):
SPACE(14);
PRINTC2(J)r2:3);
SPACE(14);
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PRINTCHACJ)+2[J),2,3):
TENNDT
TELSE' 'BEGIN' SPACE(12):

PRINTC(QAL[J),6,3):

; TEND '}
lEnnl:
. “END':
_ YIgY T=TOTALTIMF 'THEN' 'GOTO' EN3:
S§+=WS 2F1:2F2.21;
COUNT.=0;
'Ter F1z21 'THEN
TEQR' J.=21 +»STEp' 4 'UNTIL' TNN 'DO!
'IRY NTrdl=1 "THEN' HB[J]:=HA([J]
"ELSEY QB[J]:=QALJ1?
VIF' T=44550  'THEN' 'GOTO' RECYCLE: L
*IF' T=44400 'THEN' NT:=150:

EN1:TO) =1
COUNT:=rOUNT*1:
'FoRr' J.=1 +STept' 9 'UNTIL' TNN 'DO!
'BEGIN'
YIF' Nenldl=d
"THEN" 'BEGIN' '"1F' F122 'THEN' 'GOTO' EN2:
. o "1Fy TBrJ)=1
. "THEN' HBOUNDCJ,NL[J) T*DT,HATJ])
SV — . YELSE' QBOUND(NCJ],T+DT,QA[U]);
o e : 'GOTO"' gN2:
L L s S L TEND'; .
. . Y1F' NTrJlat
_ ; "THEN' 'BEGIN' PARAMH(J,NEWH)?
R . _ ~ VIF' ABS(HA[J)= NEWN)>O0.001
s _ "THEN' ToL:=2:
HALJ]:=NEWH;
*END!
YELSE!
'BEGIN' PARAMQ(J ,NEWQ);
t1F' ABS(QA[J])= NEWQR)>0,001
TTHEN' TOL:=2:
QA[J):=NEWQ;
"END':
ENZ2:YEND';
Wg«=88+3F1.,52,
‘Ipr TOL=2 *THeN' +GOTO' EN1’
EN3:'END";
"END":
PEND'
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APPENDIX B

Computer Program of the Nonlinear Sparse Sweep Method.

T hw
“YBEGIN' 'COMMENT' CLPSF149 UNSTEADY FLOW NETWORKS,IMPLICIT SYSTEM: !
' ~ YCOMMENT' THE rOLLOWING BLOCK READS IN THE LAYOUTY OF THE SYSTEM.!
.N IS THE NODE ARRAY, NCN IS THE NUMBER OF CONNECTING NODES, NNN.
ARE THE NIUMBERS OF THF CONNECTING NOnES, NNC ARE THE NUMBERS OF
THE CONNEARTING CHANNEILS, TB IS THE TYPE OF BOUNDARY,TNN THE
TOTAL NUMRER OF NODES,TNC THE TOTAL NUMBER OF CHANNELS.,NT IS
TYPE OF NODE,YF=u1 THeN HEAD/.I1F=2 THEN VELOCITY,TR IS =1 If i
~ HBOUND AND =2 IF QBOUND; i
"INTEGER" 0ol KeT,TNN,TNC,XArXBsXJsX1,ITER,INTB.,NRSTB.WN,KC/SN,

0CK 1 . S
8l © TOTALTIME,.DT,SS,WS+F1,F2,TOL,COUNT/M,AS,BS,TU,TX,TY,T2,JUNCT;
VREAL' GsTWOG,SIDEF,F)LOW,SURA,QS/SAY Q,vOB,VRC,VOA,VAC,VJI,
QEAVEIEN{.OSTaﬂlDXQJAﬂucv:RfVJSB!ﬁHlDZrDHpDVIVIC'AC1!R1!RI?IBFp
BFE/BF1+RE2,DVZH,ERT,SID,VSUNT,VSUM2,DVDX,DXV,DXSUM1,DXSUM2,
VAVE1 ,VAVF2,DaAVET ,DAVE2,AC2,QDX QS1,QS2/NEWH, NEWQ,WMIN:
 TNH:=READ: '
TNC:=TNN=1;
JUNCT:=z2:
"BEGIN' '"INTEGER' 'ARRAY'! NeNeN,TB,NT{1:TNNI,NNN/NNC, NCA,NNJ,
BLOCK 2
DIRCTITNN,1+5),XT(4:+15),YT(1:35), TIME([0:100):

"REAL'"ARPAY'IH,2,HB,HA,QUE,K]I,QB,QA,VB/VA,MUA,NUA.BETTAA,SUMQBR,
SUR,DLX., _ GAM, LAM,STG,RHO,B),MS(1 sTNNT DXL :TNN,1:5),
XQU1:30) ., vHI4:351,XHr1:153,BC1:TNN/T1:JUNCT#1;
"COMMENT' THF rOLLOWING PROCEDURE(S) ARE INSERTED FOR
THE MODE)L OfLv:
'"PROCEDURF' SAREA(NJ,NDX,H,SA);
BLOCK 3
"INTEGER' NJ:
"REAL' HsSA,DX:
SA:=(BOIN.II+MRINYT*H)wDX:
"PROCEDURE' SINEQ(NNC,T,QS8):
BLOCK 4 :
"INTEGER' NNC,T!
"REAL' QS: -
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. QaS:=0,07 e e T
___LmiPRQGEDUREJ,QBQDND(N'T»BF)i,
5 -
~_VINTEGER' N, T:
- 'REAL' BF:
~__'BEGIN'"
__ "INTEGER' Ay o
. 'BEGIN' 'SWITCH' s$8S:=1100,1200;
6

 'GOTO' SSSIAST: _
L100:"FOR' JA3=1 'STEP' 1 YUNTIL' 13 'po'
__'BFGIN' XTrJA1:=READ:

. _Ase=2y

ST U ITILA00: R0y GAv=t YSTERY 1 (UNTILY 13 'pot

B O VIEY XTIJA+1) 'GE' T YTHEN!

e L "BFGIN' BE:=(X0LJA+1)=XQLJAIIw(TXTIJA))/54004XQLUA);

'60T0' sTQ;

.. i s CEMORE T T
: TENDY:

_STQ:'END'; OUND (N, 7. H)
T T T YPROCEDURE' HROUND(N,T.H);

_VINTEGER' N, T;
------ o 'REAL' Hi

e W TEGRR R e
T YBEGIN' 'SWITCH' Sw:im(101,1L102;

~__'6OoT0' SWrRS): :
_LY01:'FOR' 4Br=1 'STEP' 1 'UNTIL' 35 ‘DO’
_'BFGIN' YT[JBY:=READ;
- _ YHIJBY:3READ;
i . 'EnD': _ _
T YEOR' Bi=1 'STEP' 1 TUNTIL' 15 'DO°’
T "BEGIN' XTrJB1.3READ#3600;
e __ XHrJBY:=READ:
o ' '"END':
Bs.=2:
L1v2:"rer N=1 t'yHEN!
‘REGIN®
‘"FOR' JB:=1 'QTEP' 1 'UNTIL' 35 'po°
"IF' YTLJR4TI'GE' T '"THEN!
"REGIN'Hy=(YHIJB+1)=YHIJBD) *(T=YTIJBI) /(YTCJB+1)=YTLJR])
+YHIJBYI=2[NY;
'GOTO" QTH:
YEnND':
'"END' TELSE!
'REGIN?
'FOR' JB1=1 'QTEP' 1 'UNTIL' 15 'pO’
"1e' XTLJR+1I'GE' T 'THEN!
"RFGIN'He=(XHIJB+1)=XHIJBI)#(T=XT(JBI) /(XTIJIB+1I=XT[JB))
+XHIJBI1~2[NI;
'6OTO0"' STH:
"END!;
YEND':
YEND';
STH:'END';
'"PROCEDURF' HRAD(NJ+H,R):
BLOCK 9
"INTEGER' wNJ: T
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"REALY H,R:

1= (BOINJT+MSTNJIWH/2)#H/ (BOINJI+2%HwSQRTC1+MSENJI*MSINJIY /4)) s
'"PROCEDURE" ACON(NJ+H,AC):
TBLOCK 10 bt atiat
- A VINTEGER" NJ:
AL YREAL' HoaC; -
o AC:=(BOINI) +MSINJI*H/2)wH;
T _ 'PROCEDURF' ARFA(NJ/N,A):
ST BLock M

T "INTEGER' MJ:
 'REAL' H.,aA:

CA:=(BOINIT+MSINJYuH/ ) wH; .
S ~_ _"PROCEDURE' CHFZY(NNC,H:C);
T BLOCK 12 B
- "INTEGER'NNC:
SiEree—— "REAL' HsC: o _
i - Ci="IF' T'GE'14400 'THEN' 75 'ELSE' 85;
S T 'pROCEDURE: BRFADTHC(NJ,H,B);
BLOCK 13
o3 25 _ VINTEGER'NJ;
S "REAL' HoR: |
ST T T Br=BOINJY+MSINI TN
: ©__ 'PROCEDURF' BREADTHT(NJ,H,B): B
TBLOCK 14 _ e e e R s e SRRSO v
BLEPR oo s YINTEGER' NJ:
i "REAL' HsR: _
~ B:1=BOCNJ)I+MSINJIwH}
"PROCEDURE' PARAMQ(J,£);

oc 15 s AT
BLE N 'REAL' F:
"INTEGER' i3
YREGIK®
"REAL’ DH1.DHZ.DQDT:DHDT:D&DX:DHDX:FRT:SDF;
RC,BT.DELTAA,.0S1,Q05S2,XB1,XB2;
"INTEGER' XA,XR,XB3;
"BEGIN' "QWITCH' S+s3L1,L2:
BLOCK 16
' , '64nT0' S([s8];
L1:SIDEQ(NLJ1/T.0S81):
SIDEQ(NLJYI+T4nT,q82);
QUELJT1:=(0814082)/2.0:
L2:'tE" NNNCJLTISNNNLJr2] 'THEN' "BEGIN' XB:=NNJCJo11:
XA:=NNJ(J:.2):

TEND!
YELSE' 'BEGIN' XA:=NNJ(J¢1);
XB:aNNJ[J,2);
YEND':
AH:= (HBL XAJ4HB[ XBI+HAL XA)4HA[ XBlY/4.0:
PHY t=¢HA[ XBI+HB[ XB1)/2,0:
DH2:=(HAT XA1+HB[ XAJ)/2.,0;
CHEZY () !AHiC);
HRAD(J JAH,R);
RREADTHC (. AN ,BC);
RREADTHT (4 «AH,BRT);
ACONC. +DH1,ACT1):
ACONC. «DHD>,AC2):;
ACONCAT  ,AH,AC):
DFLTAA:aAC T=aC2:
DADT:=(QArJ)=aBLJ))/ (G*AC*DTY?
PHDT :=(BC+BTI* (QRLJI+QALJIIw (CHACXBI+HAIXAD)
. ~(HRLXBI+NBIXA))) /(4LwAC&AC*G*DT);
PADX:=(QATJ)+nBlUI)*(QALJI+QREJI)IDELTAA/

T TS O VO A=
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_ (bwACt3«GwikI[J]); .
. DHOX:=s((HRIXRI+HALXBI+2*2(XBI)~(HBIXAI+HALXA)
+2%71XAYY)/(2%K1[J)):
FRY:=(QBTI]+0AlJ])*ABS(ABIJI40QALU])/(4wCuCeACRACR);
SAF:=0UELI)w(QBLJI+RA[JI)/ (AC*ACHG)
Fez(DODT=nNHDT=DADX+DADX+FRT+§DF) «G*AC#DT:
"1E'INTRB=O'THEN'"BEGIN'
BlJr1):=14(=DHDT=2+DADX+2*FRT+SDF)
wG*AC*DT/(QB[JI*QA[J));

XR1:=2=(BC+BTIW(QBLJI+QALID)I % (1=BC/ (4wAC))/ (4%AC) s
(DHDX=2%FRT+2«DADX=SDF)*(G*DT*BC/4);
T XB2:2 GWACHDT/(2#K1LJ]):
e XB3:1='[F' NNN[J,11<NNNCJ,2)
T UTHEN'Y YELSE'et;

- o BlJ,2):aXB1=XB3wXB2;

BLJ,3):2XB1eXB3wXB?!

o ~ _YEND';

"END';
CYEND'; _

'"PRUOCEDURE!' PARAMH(J,F);

o
'REAL' F: N
VINTEGER' 4;
~ 'BEGIN! _
'REAL' QDX,SARFAT,sUMa, - BB,BA:
__"INTEGER' a,1:
© YBEGIN' 'SWITCH' swi=uyi,W2;

18

~_'a0TO' SWrwsSl:
W1:QUELJ1:3SUMQRIJ)=SURCJI 0.0}
"POR' 1:=1 'SyEp' 1 'UNTIL' NeNLJY 'po
"REGIN' Ae=NN)rJ,13; '
SINDEQ(N[AY,T/QS1);
SINEQ(N[A),T+DT,QS82):
QUELJ )+ =QUELJ])+(QS1+QS2)*DX[J,1];
SUMQBTJ]:aSUMQBLJI+QBTAI*DIR(J,1Y:
SAREﬂ(NNJ[JJ!]!DX[J!I1|H8{J]:S&)=
SuprlJ1+2SURLJ])+SA;

_ "FuD':
W2ISAREAT:3SURL[ Y
SUMQ:=SUM@B(y1:
'EORT vY:=1 'STEP' 1 'UNTIL' NeNCJ)Y DO
"REGIN' Av=NNyrJ,13;
SAREA(NNJITJ,I]1,DX[Jr1),HALJI,SA):
SAREAT =SAREAT+SA:
SUMQ: =SUMQ+QA[Al*DIRCJ,I];

"EnD':
Fez(HALJY1=HBIJ)) =(QUELJ]I=SUMQ)«DT/SAREAT;
"IF' INTB=0 '"THEN!
"FOR' ti=m1 'Syep' 9 YUNTIL' NeNCJD 'DO?
RIJ+141):aDInrJd,1)*0T/SAREAT;

YEND':

"END';

"PROCEDURE» BROYDENCNN,TOL,ITER);

BLOCK 19

'REAL' YO«

YINTEGER'NN,ITER; '

"COMMENT' THIS PROCEDIRE SOLVES A SYSTEM OF SPARSE NON=LINEAR

EQUATIONS BY RROYNENS FULL=STEP METHOD:

"REGIN!

"REAL' TE +NORM,PITPJ,LASTT:

YINTEGER' v,J,a:

- S LI LW G S

e g
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"ARRAY'YsE.PL1+NNY:
: o "PROCEDURF' LOWERNORM(NORM);
o BLOCK 20 _
o ~ _"REAL'NORM: _
T YBEGIN' "INTEGER' cOUNT:
Lo e  "RFAL' NEWNORM: _
‘ Tt "PRUCENPURE" NFWT(COUNT);

~ VINTEGER' pOUNT:
~ _"BREGIN' 'RpAL' THETA]
i . VINTEGFR' INT; iy
e "SWITEH!' SWH:=L2,L3: |
. INT:=COUNT=1;
. L - "IF' INT>2 'THEN' *GOTO' L3;
T 'GoTO0' SWHLINT);
{ T o 1R:THETA:=NFWUNORM/NORM:
o o TF :1=(SQRT(1+6«THETA)=1)/(3THETA): 'GOTO' FIN:
e V39TF $210/(¢10TINT); 'GOTO' FIN:
s FIN: _
_ "END' OF NEVWT,
. _START OF 1 OWERNORM;
. LO:TF:=1_0:
LASTT»20.0;
.. COUNT.=1:
o _L:COMPUTE Xp(Tg)? ) o
o “1EY COUNT=11 'THEN'
e .. ___. "BFGIN''COMMENT' FAILED TO FIND A LOWER NORM SO THE B8
ppE————— e _ MATRIX IS RESTIMATED ANALYTICALLY:
{ S e __'IFEv NRSTB>1 'OR' ITER =0 'THENY
s AR 4 e "BEGINe 'FOR' J:=1 'STEP' 1 TUNTIL' NN'DO'
PLJY:==P(J]; 'GOTO' LO;
YEND' 'ELSE!

RESETR:
4 o . 'END': ;
| _ . FHCLINCF,NN/NFWNORM);
. D YIF' NFWNORMSNNRM 'THEN' NORM,=NEWNORM
- o e YELSE''BEGIN' COUNT:=COUNT#1}
- | ) , LASTT:=TE:
e . NEWT(COUNT);

'GOTO' L;
YEND':
sEmeE "END' OF LOWERNORM:
) '"PROCEDURE' RESETR:
BLOCK 22 _
"BEGIHN® INTR:=0;
"EOR® J:=1 "STEP' 1 sUNTIL' NN 'pO?
YIFY NTLJ)=1 'ORY' NCNCJ)=1 'THEN!
"REGIN' B[J,1):%1,0;
} "1F' NCN[J)=1 CTHEN'
{ "ELSE' PARAMH(J,F[J])
YENDY YELSE' PARAMQCJ,FLJY);
160Tn' AGAIN;

B[JIZIIIOUO

YEND'; _
'*PROCEDURE EUCIID(E/NN,NORM) !
C 73

BLOSN "INTEGER'NN:
TREAL' NORM:
"ARRAY' F:
'CUMHENT' THIS PROCEDURE EVALUATES THE SQUARE 0g
THE EUCLINFAN NORM OF ¢
"BEGIN' YINTEGER' .

NORM:=0,0:

—




"éreE,'Vdiﬁhﬁivnldqs

. _"PROCEDURE* WRFAD(R);
_26

"_i_m(BEG!N' x!=X¢1}.'”

et
~_ 'REAL' E:
28

. _VINTEGER' w:
_'BEGIN' 'RPAL' X,Q.RX,S:Y ,DsFRACPT;
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"FOR' 1.1 1STEp'MIUNTIL' NN'DO NORM:=NORM+FLII*F([]]);
TEND' OF EurLlp:
"PROCEDURF' GAUSSELIM(P,B,F):

24

"ARRAY' P,n,F;

"BEGIN!
_ VINTEGER' WM,X.K,M,XK,M1;
WM:=UN*2;
"BEGIN?
~ 'ARRAY' Wrn:uwmy;
es. . . _
"INTEGER' 'ARRAY" WwS[0:3),XI[1:JUNCT+1):

R

penn s WOemRy
'END';
"INTEGER"' 'PROCEDURE' INT(E):

INT:=ENT1eR(E+0,5y;
"PROCEDURE" WpIV(HY:

vt . N

YWALUE" H:

"INTEGFRY eXo1,Jok,LeMiNsP,TX, ViU, K10L1,A:
__ AsmH; CX.=WSTA+1]; RX:=S:21;
Ye=R:=2Vizyr=ps
WSOV +=A: ArzwS[AY; K1=3=2) Teadimi;
Me2Au3] Tx:z=A+1]
CUTEY WITX=1)'NE' -1 'THEN' 'GOTO' L9:
WICXYemm1,
_ WIWMY o= 4
L8:Ns=INT (Wlrtx) )
VUR' M=zA=3 TTHEN' GOTO' LLY:
o "FOR' 1:=A 'STEP' 3 'UNTIL' M 'DO"
~ "BFGIN® D:=W[;e1];
"IFt O<n "AND' D<N 'THEN' Ni=INT(D)!?
"IFY N'LE'Q 'AND' 0<D 'THEN' N:=INT(D):

"END':
LLY:'TF' N "LE' 0 'THEN' 'GOTO' (11;

¥e:2(0:

YTF' N O'WE' INTCWETX))'THEN' 'GOTO' 12:

Xe=UrTX+1]:

TX:=TX+2:

"TF' M3A-T  THEN' "GOTO' L3:
L2:'FOR' Li=a 'gTEP' 3 'UNTIL' M 'DO?

"REGIN' C[F' N "NE' INTCUCL*1)) 'THEN' 'GOTO'LG;

K1t=i1¢2: '

PraINT(YCKTY)Y?

Xemml L 1wWlax+P+1)+X;

DeapPL2;

WlK113=p;

WwiL+1):=ylCx+P);
L4 'END' s .
L3:YTF'Ks =2 'TyueN' 1GOTO' L18;

"TF'N "GEY 1 tTHEN' 'GOTO' Lé?

MexEMa3; ,

WIM).=X}

PemINT(UIWMaN+1]):
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WlM+?):=p;
o WiMe1)i=wlCx+Pl;
'q0T0' LB:

LE:rYE" o "NE' v 'THEN' 'GOTO'L?7:
CYyE' y=0 'THeEN' 1GOTO" L9
0:=X: :
nX:=pXwn:
De=ARS(Q/WIlTX=11);
YTF' n<S *THEN' §:=D;
. - "YTFE' 1>1.1 'THEN' 'GOTO' L1500;
e o L1500,
T FRACPT:iSNIET(A,2#1)50 'THEN'(0,2¢1)=eNTIER(D, 2#1)
& R VELSE'=((0,2%1)=(ENTIERCO,2%1)+1));
& T C VTF'RX<0 YTHEN' RX:==1;
' s TIF'RY'GE'0 tTHEN' RX:=1;
YTE' V/X <0 vTHEN' Vi=Ve1:
YezX!

afdh-ﬂ-u—1r
{ oy
cod
| ] .
F 4 :

o

N ) ~ L7:v1F' exX+de3<um=1 'THEN' '6OTO' L10;
. - L1221 +=TXeA=3ul;

CYTEY L OYLEY O CTHEN! 'GOTO' L14:
 L1sETX=L: '
. KlizCX+ )=}
"EOR' prmTX 'QTEP' 1 'UNTIL' k1 'DO!
"REGIN' WL11)e=UWlp);
kY eEmL 42
YEND':
CYXex=CX=L:
_ TXr=TY=L:
'TE'VITX]I=0 "THEN! 'GOTO' L13:
L10:L1.=CxaJ;
LR B EFYH
WEr1+11:8x/Q;
JeaJeD:
'Goro' 18;
LY «:NEwi INEC¢1):
 PRINT(0.3,6):
epmmmEEEE PRINTIX.3,4);
PRINT(WITXwq1],3,6):
PRINTC(WITXY.3,8):
WRITETEXTC! ("X%DIVAXFAILSXXOXXPIVOTXONXROWXX") 1)
PRINTC(I.3,0):
NE1I INE(2): .
URITETFNT('(‘RHN%%F#ILURE%XDUE%!TO%XABOVE%!CONDITION
AXIGNORFAXeOLLOWINGXXOUTPUTXXXX") ") ;
NEwI INEr12) ¢

ST e
“-I'-i.1|
..ll -
|
i
| ST
VRS L L
|
1
1
]

Kex1/0G:
L1G:WRITFYEXT (' (1 %%MOREX%STOREXXREQUIREDYX') ')

NEWLINEC(2) ¢ '

L11:"TE'K'NE'=2 "THEN' 'GOTO' L20:
NICX+0]izm]l=1:
Jez=Jan;
WIWMat]le=;
YIF'WITX]=n 'THENY 'GOTO' L12:
tlﬂll"Q:
Y1E' INTC(-wlTx]) 'NE' I 'OR' @20 'THEN' 'GOTO'LY;
Nez=Nes -
TY:=TX+1;
MizA=T;
'GOTO' L8:

L13: Ke=1-9;
LY esliM=K

=
i WO LT S LA — i

e
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K1:=INT(WILYIYY:

- CX:=CX*Ki:

J'=J"'K1;

WILYY:e=WIyM=11=WILT1];

o WIWMat) =0

L15:"tF?' k=0 rTHEN' 'GOTO' L21;

2 M0=A-t=

THY:SINTCUIWMak+1])+3%l+14A;

CL17: pe=wrTX):

're' psl taR' n<0 'THEN' '6O0TO' L8:

. Me=Ma g _

L WIMYe=WlTX*1:

Pe=INT(WlWM=INT(D)]):

CWIM+2Y:mp: B

WIM+11:=2WrCxepl:
TXe=TX+2:
. 'anTor L17: _
L18:"TE'CXaJe3<WMaT "THEN''GOTO' L19:
o LesINT(CX=A=Ze =W [WM=K])
. WRITETEXT('(r¥R:X')');
. PRINT(L,2,0): o
o CYTET LYLEY O veHEN' 'GOTO' L14:
K1:2Cx+Jam1}
_'FOR' pr=CX "STEP' 1 YUNTIL' k1 'pO?
WIP=LY:=UIP);
... CYi=CY=L:
L19: x1:=2Cxey:
CWIKT)e=Ng

WIKT «11:eX;
drz=Je2;

'GOTO' L&:

L20 :wWrCX+))s=aKeq:
Jezleq)
WIWM=k®T) o=y
Ke=K=1;

'G0TO0' L1S5:

L2t Je=A;

Kezl:

Leé: q:.=0;

TYX ez INT(WIWMayg )}

L23: kt:=vx+CX:
1E' WrK1Y 'LEtO 'THEN' '60TO' L22:

"1EY WrK149)=n 'THEN' 'GOTO' (27:

"IFY QUNE'n 'THEN' 'GOTO' L24:

Wrd)es =g
desdeq;
Ne=1:

L2b: wryleawlkqday:

Urd+1v:=wrkK1413;

Jez=Je2;

L27: Tx:=Tx+2:

"UE' Jeb<ox'THEN' 'GOTO' L23;
LesINT(WUMal=py=WlWM=K+1]=1,0)}
URITETEXT('(rqC:%")");

PRINTC(L,2,0),

"FOR' pima 'STEP' 4 'UNTIL' INT(W[WM=K)) 'po"
IJfP‘l—C)H'L'I g'UrpttC)(];

CXe=Cy+L;

'60TO' L23»

L22:"1F'K=1 'THEN' 1GOTO' L25:

KeskK+1;

e
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. '60TOY L26:

L25;: wrJl:=0;

- WslwWwsrol«rl
WIWM=3] =g
WIWM=2)s=y;
WIWM=1 ) s=pX
WrWMYe=U?

t=0+1:

. 'END'; i o
t==12
PSSP Hs [1 ) ’ 30 H
WS[2):=WNat:
'FOR' J:=1 'STep'! 4 'yNTIL' TNN 'DO’

"BEGIN' WRFAD(=J):
"FOR' k=1 'STEP' 1 'UNTIL' NCNCJ] 'DO!
. "BEGIN' XI[K).=1;
Me='Tgy K=1 'THEN' O 'ELSE' NNJLJ,XI[K=1]);
i MY:20: )
__"FOR' 1«31 'STEP' 1 'UNTIL' NCNI[J) 'DO’
e YIFY NNJOJ,I)>M *THEN'
CYBEGINY'IF' NNJCJ,TISNNJEJ,XILKD)
'"THEN' X1(K):=1:
MY:=21;
YEND' TELSE' 'IF' M1=0
CYTHEN' XI[K):=141;

~__ "EnND': )

. M=0:

e . "FOR' w:imq 'SyYgP' 4 'UNTIL' NGNLJI 'DO?

] - "BEGINY XK.=NNJCJ,XICK)D!

C YIFYXK>J) "THEN' 'BEGIN' 'IF' M=0 'THEN!
"BEGIN' WREADCJ):

WREAD(BI[J,1)):
M=t

YEND':
YEND':
WRFAD (XK);
WREAD(RLJ,XI[KI+11):
"TR'(XK<I"AND'NCNIJI=1) "THEN' 'BEGIN'WREAD(J)
WREAD(BLJ,1])):
YEND':
YEnND':
WREAD(TNN+1);
WREAD(=Fr.1));
YEND';
YREAD(O) ¢
Wwbivet):
1:=0;
"FOR' J:=1 'STEP' 4 '_NTIL' TNN 'DO’
"BEGIN' "1F* NENCJU1=1 'THEN' 'BEGIN' P(J):=0,0; [:=1+1;
YEND' TELSE' PLJY:s=wl(3w(i=1))=1);: :
YEND';
YEND';
YEND';
: 'PROCEDURF' COMPUTE XF(TE);
BLOCK 29
'REAL' TE:
‘COMMENT' THIS PROCEDURE UPDATES THE UNKNOWN VALUES

AA(J] AND GACU) anD ASLO CALCULATES THE VECTOR Of
RESIDUALS F:

*BEGIN' "INTEGER! Je
YFPOR" J:=29 'STeP!' 4 YUNTIL' TNN 'po?

"BEGIN' 10 NPNIJ]=1
"THEN' 'BFEGINvIIFr F1=2 '"THEN' 'GOTO' EN2:
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"I1F!' TBLJ)=1
"THEN' HBOUND(NCJ),T+DT,.HA[J]
L _ VELSE' QBOUNDIN(J),T+DT.QAC[J])
R o '*GOTO"' ENZ:
YENR';
C"TE'TE<Y.5 "THEN'IBEGIN' 'IF' NT[J1=1
"THEN'HATJ] :=HA[J)+(TE=LASTT)*P[J]
D'ELSE'QA[J1==0A[J1+(TE-LAS?T}*P[J):
YEND';

)
)i

ENZ:
YEND' OF 100P TO SET P QA AND VA:
CYFOR' J:=4 *STFP' 4 'yNTIL' TNN 'DO'
YIF' HONCO1=1 vTHEN' ErJ):=0,0
CELSE' +IF' NTLJ)=1 "THEN' PARAMH(J,FLJ))
o _ "ELSE' PARAMQCJ,F[J])):
- WS:=58:=p1:=22:
~ YEND' OF roMPUTE XEF,
~ _START OF RROYDEN:
NRSTB:=ITFR:=1INTR,=0:
~ YFOR" J:=q 'STEP' 4 'UNTIL® NN 'DO!
CVIFY NT(J1=1 *OR' NCNra3=1 'THEN'
"BEGIN' Brua,13¢21.0: .
- "FORY 1.22 1STEP' 4 'YUNTIL' NCNCJ)¢1 'DO' BCLJ,1):=20,0;
~_ YEND' OF 1.00P 10 ST UP B:
_COMPUTE XEe(2):
~ EUCLID(F,NN,NORM)
"IF' NORMLTOL *THEN' 160TOQ' BTM:
AGAIN:'FOR' J:31 'STEP' 4 'yUNTIL® NN'DO?
"BEGIN' Pru):=n,0:
Yrade=elJ):
YEND' OF 1n0oP TO SET o P AND VY
GAUSSELIMep,R,F):
HRSTR:=NQQTR+1
LOWERNURM(NORM)
NRSTB:=0;
ITER:=ITFR+1:;
INTB:=1TFR; ’
~"IF' NORM<TOL 'THEN' +60TO' BTM;
YFPOR' J:=1 'STYFP' q4 "ynNTIL' NN'DO!
"BEGIN' "TE' NAN[J1=1 'THEN' 'GOTO' STOP;
PUITPI«=0_0;
"FOR' 1:=19STEo?1vUNTIL® NCNCJ1'DO!
'REGIN' As=NN rJ,1);
PITPJ)e=PJTPJ+P[A*p[A]):

YEND';
PITPI+=PITPI4PLJI*P[JV];
"FOR' 7:s1vSTEp'T1UNTILY NCN[JI+1 'DO!
"RFGIN' A:s="1g' I=1 '"THEN' J *ELSE' NNJCJ,1=1):
. ' REJo11:3BLJ, LI CYLII#CFLJI=YLUY)/TEX*PLA)/PITPY:

_ END':

STOP:'END';
'GOTO'AGAYN;
BTM:

YEND' OF RROYDEN';

'COHMENT' THF MODAL AND CHANNEL SYSTEM IS NOW REANM IN INCLUDING
THE LENGTHS Or THF CHANNELS/K! 1S THE LENGTH OF REACH BETWEEN
TWO HEAD mMODESq:

"POR' J:=1 'STEP' 9 *'ynTIL' TNN 'DO°’

"BEGIN®' Nriale:=pEAD:
NYrJl:=READ:
NEN[J)Y.=RFAD;
"IfF' NCNDJY21 vTHEN' TBLJ):=READ/

:
|
,t
|
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"FPOR' 1.=1 +STEP' 4 'UNTIL' NCNCJY ‘DO
_ _"BEGIN' NNNrJ,1):=READ:
NNCPJ,1Y:=READ;
. DXL.JeI1:=READ/
YEnn':
. _ 'TF' NCN[J1=2 sTHEN' KICJ)e=DX[J,134DXCJ,2):
YEND';
__"COMMENT' THE cHANNEL SYSTEM IS NOW CROSS REFERENCED.
NNJLJ,I] CONTAINS THE VALUE OF J OF THE NODE NNNI[J,I11:
_ "FOR' J:=1 'STEP' 1 'yUNTIL' TNN 'pO’
"FOR' T:=1 'QTEP' 4 ' UNTIL' NCNLJI 'Do!
"BEGIH' XAa.=NNN[J,1]);
~ YFor' M.=1 «STEp' 1 'UNTIL' TNN 'DO!
~ VIFY NrMI=XA 'THEN' 'BEGIN' NNJ[J,17:2M;
B 1GOTO' MY
. YEND';
M1:'END';
. 'COMMENT' THE fHANNEL SYSTEM IS NOW OUTPUTED;
WRITETEXT (" (' ('20S"Y 'NODE"('47S')Y'CONNECTING') ")
 NEWLINECA):
WRITETEXT (' (€1 ('60S")y'NODE(S) " ("'5S") ' CHANNEL(S) ' ("SS")'LENGTH
I)I): ) .
~ NEWLINE(2y:
_YFOR' J:31 STEP' 1 'unNTIL' TNN 'pO’
_'BEGIN' SpACE(17):
o PRINT(N[JI,3,0):
__"Ipv NCN[JI=1 'THEN' "BEGIN' 'IF' NT[J1=1 'THEN!
o ' WRITETEXT('('HB') ")
' "ELSE' WRITETEXT('('QB') ")}
SPACE(34)

'END'
'*FLSE" 'BEGIN' "IF' NTL[J1=1 'THEN'
' WRITETEXT('('H') ")
'"ELSE' WRITETEXT(r('Q')*):
SPACE(35):

YEND';
"For' 1:=1 1STEp' 1 YUNTIL' NCNEJ] 'DO!
'BEGIN' PRINT(NNNCJ,13,3,0):
SPACE(0)Y:
PRINT(HNCLY,10,3.0):
SPACE(R)Y;
PRINT(nX[J,11:,3,0);
NEWLINg(1):
SPACE(59);
TEND'
NFWLINF(1)Y:
"LNDY;
"CONMENT' THE INITTIAL rONDITIONS ARE NOW READ 1IN,
VELOCITIF® ARF POSITIVE LEAVING THE NODE WHICH HAS THE
SHMALLEST pFF. NUMRER 1E.N[J]):
"FOR' J:=4 'STEP' 4 'ynTIL' TNN 'DO’
YIF' NTLJ1=1 'THEN!
"BEGIN' 2r.u):=nEAD:
HRTJY:=2READ;
HBIJ):=HB[JI=21J];
THOJY:=HBLJD?

Ll

P -4

HATJUY:=HBI[ 4]

YEND'

'ELSE’

'"6EGIN' QRrJ):=REAN;
Zri):=REAN:
QArJy):=QBr, 1;

AN A e
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"END';

'"COMMEHNT' THE TDEALISFD CROSS=-SECTIONAL CHANNEL
DATA IS MOW READ IN,IN TERMS OF A BOTTOM WIDTH
BO AND AN AVERAGE SIpeE SLOPE MS:

NEWLINE(6):
"FOR' J:=1 'STFP' 1 'UNTIL' TNN ‘'DO!
'"BEGIN' WMIN .=READ;
MSrJJl:=READ;
BOrd):=WMIN+MSTJIIw2J);

0
PRINT(MSIJ]
PRINT(RO(J]
NEWLINEC1):
__YEND'; e o . :
YFOR' J:=q 'STEP' 1 TyUNTIL' TNN 'DO'
CYIFY NT(CJd1=2 'YTHEN? .
o ~ "BEGIN' XA:.=NNI[J,1];
. vIfpv NCN[JY=1 THEN' AH:=HBIXA)
YELSE!
"BFGIN' XB:aNNyrJ,231;
AH:=(HRITXA)J+HB[XB])/2,0:
___"Enpn':
~ ACON(NTIJ),AH,AC)
_VarJl.=GBryl/ac:
VATJ):=VBLY]:

"END';

'COMMENT' THE FOLLOWING BLOCK ASSIGNS DIRECTION MULTIPLIERS
.. ..TO QUANTITY NODES AROUND A PARTICULAR HEAD NODE, SO THAT
... FLOW FROM THAT NOpE 1§ POSITIVE AND TOWARDS IT IS NEGATIVE,
_ T.E, FLOW FROM NODE NrfJ) IS QBLJ+NI#pIR[J,1]:

"POR' J:=q 'STEP' 4 TyNTIL' TNN 'DO’

"IF' NTLJY1=1 'THEN!

"BEGIN' 'FOR' 1:=1 'STEP' 1 'UNTIL' NCN[J] ‘DO

'RFGIN' A:=NNJrJd,11;
"IF' NeNCAY=1 'THEN!
.~ ... "BEGIN' DIRCJ,IJ:= '"IF' NLJISNCA] 'THEN' 1

B e : _ "ELSE'-1;
e L o S 1GOTO' BTM:

YENn';
YIEY NrJY=NNNLA,1)
"THEN!
. "BEGIN' DIR[J,I):S'IF" NDJ) < NNNLA,2]
N - "THEN' 1
: © VELSE'=1;
YEND' '
YELSE!
"BEGIN' DIRCJ+1):="IF" N[J) < NNNCA,1]
ITHEN! 1
"ELSE'=1;
YEND'?
BTM:
'"END';
. "END';
WN:=0;

'FOR' J:=s1 "STYEP' 1 tyUNTIL' TNN 'DO' WNi=WN+S5+2«NCN[J]:
DT:=1800:
TOTALTIME.= 45000
6:=232,175¢
THOG:=2.0#G?
AS:=BS:=1
RECYCLE:
COUNT =0
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TU:=TZ:20:TY: 267 _

'COMMENT' THF pOLLOWING IS THE TIME VARYING
) COMPUTATIONAL AND QUTPUT RLOCK;
__"FOR' T:=0 'STEP' nT tUNTIL' TOTALTIME 'DO'

'BEGIHN'

ENTIER(T/3600)=(T/73400) '0R' T=45000 'THEN'

~ 'BEGIN'

*END';

l!Fl

T=45000

"COMMENT' OUTPUT BLOCK:
PADERTHROY

NFWULINE(R)Y s
WRYTETEXT(' (' TIME[TI=!)");

CPRINT(T,3,0):

SPACE(10); ,
TXe=T/60=T7%60:

CVIEY TX=60 sTHEN' VBEGIN' TY:aTy+l: TZe2T2+¢1;TX:=0:'END;
PIFY TYS12 «THEN' 'BEGIN' TY:sTY=127 TUr=1: 'END';

PRINT(TY,2,0):
WRYITETEXT (VY (' 1)1y,
PRINT(TX,1,0):
'IF'TU=0 "THEN' WRITETEXT('('PMI)")
"EISEY WRYTETEXT('('AM") ")
SPACE(10): :
WRITETEXT (' (' TTERATIONS') ')}
PRINT(rOUNT,3,0);
NEWLIMNEC(G) :
- WRITETEXT('(""("18S")'NODE"("16S")'QUANTITY" (!
CY4SY) ' NEPTHI('16S")'"BEDXA,0,D,"("12SV) ITOTALX
A,0.D,1y?"):
NEWLINF(Y):
'FoR' J.=1 +STEP' 4 'UNTIL' TNN 'DO°
'BFEGIN'
NEWI INFC¢1);
SPACE(17);
PRINT(N[J],3,0):
"IFY NTrJJ=1 "THEN' 'BEGIN' SPACE(35):
PRINT(HA[J],2,3);
SPACE(14);
PRINT(2(J)+2:3);
SPACEC(14):

PRINT(HATJ)+2(J1,2,3)

: NEWLINE(1)?
IENDI
TELSE' 'BEGIN! SPACE(12);
PRINTC(QALJ],.5,3):
SPACEC(34):;
PRINT(2[J)12:3):
NEWLINEC1):
"END';
YEnNn': '

"IFY T=YOTALYIME 'THEN' 'GOTO' EN3;
$Se=US . =F1,2F),21; -

COUNT: =0
"IF' F1=1 tyHENS
'FOR' J.=1 +STep! 1 'UNTIL® TNN 'DO!
'TE® NTrJ)=1 *THEN' HB[J]:=HA[J]
"FLSE' 'BEGIN' QB[J):=QA[J];
VBrJle=VALJY:
TEND';

"THEN' 'BEGIN' 'gOR' J:=1 *'STEP' 1 'UNTIL' TNN 'po!?

‘1EY NT[JI=1 'THEN' HAC[J):aHBrJl:=IN(J):
'60TO' RECYCLE:
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[ CYEND':
T EN1:TOL:=1:
... .. __CounNT:=ITER:
g EN3;'END';

B
t‘“""" IENDI:

BROYDEM(TNN:1RQ-61175R)F.-
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