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SYNOPSIS 

This thesis is mainly concerned with two fields of investigation; 

the viscoelastic behaviour of plastics, and the numerical solution of 

engineering problems by means of finite element methods. 

The basic equations describing linear elastic behaviour are 

modified to give corresponding equations for linear viscoelastic 

materials, and various theoretical models are used to describe 

viscoelastic behaviour. 

The stiffness matrix for a tapered element of a beam is derived 

for cases where the shear stress is neglected and where its effect is 

allowed for, and S melebee solutions are obtained for various bending 

problems. Bending is also considered as a plane stress problem, using 

triangular elements. 

By combining the results obtained from linear viscoelastic theory 

and finite element methods theoretical solutions are obtained for a 

number of more difficult viscoelastic problems, and the results are 

compared with those obtained by experiment. Theoretical and experimental 

results are also given for certain non-linear viscoelastic problems. 

Finally methods of designing in plastics are discussed in 

relation to the results previously obtained. 

Throughout, extensive use is made of computer solutions, and the 

development of the programs is detailed in the Appendix.
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CHAPTER 1 

INTRODUCTION 

With the increasing use of plastics as stressed members, as for 

example in the case of pressure vessels, some relatively simple but 

reasonably accurate design methods are highly desirable. It was 

intended that the work recorded here would eventually show possible 

ways in which the problems of designing in plastics could be approached. 

Before dealing with the relatively difficult problems to be 

solved for plastics it was first necessary to consider the fundamental 

behaviour of a material and to be able to describe the states of 

stress and strain. By introducing the simple stress-strain relations 

for a linear elastic material, elasticity theory then provided a method 

of finding an exact solution for elastic problems. 

It was then necessary to be able to deserite the time-dependent 

behaviour of plastics, and by assuming that this behaviour is linearly 

viscoelastic various mathematical models may be introduced to describe 

this type of behaviour. By choosing suitable models the behaviour of 

a real material (Perspex) was described in mathematical form and it 

was seen that, by using the correspondence rule, a solution to a 

particular problem for a viscoelastic material could be obtained from 

the solution of the corresponding problem with an elastic material.



At a fairly early stage it became obvious that, because of the 

complexity of the exact solutions for any except the most simple 

examples, some form of numerical solution would be worth considering. 

Of the methods investigated the finite element method appeared to be 

best suited to the work in hand, and this method was used almost 

exclusively thereafter. 

The finite element method using beam-type elements was applied to 

examples on elastic beams and frames, and the stiffness matrix was 

derived for a tapered element. To increase the accuracy of this 

method in cases where shear stresses are not negligible, the stiffness 

matrices for both uniform and tapered elements were modified to allow 

for shear effects. 

An alternative finite element method was applied to bending 

problems by using triangular constant-strain triangles, treating the 

beam as a two-dimensional continuum, and the effect of varying the 

number of elements was investigated. 

Finite element methods were then applied to various problems for 

a linear viscoelastic material. These were (i) a frame (ii) a 

pressurised cylinder with a rigid end and (iii) a square plate 

subjected to compressive stresses. The material was Perspex in each 

case, and theoretical and experimental results were compared. 

Since the behaviour of any real plastic is non- linearly visco- 

elastic except at low stresses, a method of calculating deflections of 

beams of non-linear elastic and non-linear viscoelastic materials was



developed. The theoretical results were again compared with experi- 

mental values for the deflection of a tapered Perspex beam. 

A solution was also obtained for a second non-linear problem. 

This was the case of a member subjected to intermittent loads, and 

theoretical and experimental values of strain were compared. 

As a result of the theoretical investigations and experimental 

work, it was possible to make certain suggestions concerning the 

problems of designing in plastics, and these are given in Chapter 9. 

In the numerical methods extensively used, large numbers of linear 

equations had to be solved. The coefficients were most conveniently 

evaluated by using a digital computer, and various programs were 

written to evaluate and store these coefficients and to solve the 

equations. Details of the development of these programs together 

with. the programs themselves are given in the Appendix.



CHAPTER 2 

NOTATION 

Coefficients 

Matrix of coefficients 

Element width 

= Ye.7 Va Src. 

Matrix of coordinates 

= X3 - Xo etc. 

Coefficient 

Viscoelastic parameter = ag (L- 

Depth of element 

= Eh?/[12(1 - v*)] 

Matrix of elastic constants 

Component of deviatoric strain 

Young's modulus 

Time-dependent value of E 

= 1/C(1 - e /5*) 

Force 

Generalized force 

Modulus of rigidity 

Thickness 

Second moment of area 

Stiffness 

Stiffness matrix 

Bulk modulus



Ps q 

P, Q 

Yis,Yo;5 

Y35ly, 

Length of element 

Length of beam 

Matrix of coefficients 

Viscoelastic parameter = 8(1 ty)3 

Taper of element = (di-da)/2 

1 i 
me { oede 

Vag 

Moment 

Index in non-linear stress-strain law 

Rate of loading, pressure 

Force 

Coefficients 

Differential operators 

Radius 

Rate: of application of stress 

Ratio do/dy 

Elements of flexibility: matrix 

Radius of curvature 

Laplace transform parameter 

Component of deviatoric stress 

Time 

Component of displacement 

Generalized displacement 

Strain energy 

Complementary strain energy 

Component of displacement



\y* 

6182 

v(t) 

' Total potential energy 

Total complementary energy 

Deflection 

Distance from end of element 

Distance from neutral axis 

Angle 

Coefficient 

Elastic parameter = (k/4E1)* 

= Gf 

Engineering shear strain 

Kronecker delta 

Component of strain tensor 

Spherical strain 

Viscoelastic parameter 

Viscosity 

Angle 

Viscoelastic parameters = E/3n 

Poisson's ratio 

Time-dependent value of v 

" "Poisson's" ratio for distortion = 0.5 

Normal stress 

Component of stress tensor 

Spherical stress 

Stress function 

Potential energy of generalized forces.



CHAPTER 3 

CONTINUUM MECHANICS 

Since the ultimate aim of the work recorded here was the solution 

of problems concerned with design in plastics, it was first necessary 

to study the fundamental behaviour of a material subjected to a number 

of stresses. The states of stress and strain at any point in a 

continuum are most conveniently described by using the stress and strain 

tensors, both of which may be used for any type of material. To 

determine the strains due to prescribed stresses (or vice versa) in a 

real material it is then necessary to introduce a stress-strain 

relationship. The simplest form of this relationship is Stress/Strain 

= Constant which applies to a linear elastic material, and so many of 

the earlier results recorded below (in particular in Chapter 6) were 

obtained for this type of material. 

For a linear viscoelastic material, the stress-strain ratio is 

a function of time, but by using a Laplace transformation, equations 

connecting stress and strain are obtained similar to those for a linear 

elastic material. Subsequent analysis may then proceed making use of 

a correspondence rule as explained in 3.4. By using this method, the 

more complicated equations encountered in linear viscoelastic problems 

may usually be solved. 

In the case of non-linear viscoelastic materials, the stress- 

strain ratio is a function of stress (or strain) and time, and no



general method of stress analysis for this type of material seems to 

be in use at present. This is unfortunate as all plastics exhibit a 

considerable amount of non-linearity except at very low stresses. 

In this thesis, some basic investigations are described. 

3.1 Stress and strain 

The state of stress at any point in a 3-dimensional continuum 

will in general be described by the 9 stress components. These will 

be the 3 normal components and 6 shear components corresponding to 

any 3 mutually perpendicular axes. These stresses are conveniently 

represented as Ta (i,j = 1,2,3) where i = j denotes a normal stress 

and i # j denotes a shear stress. By considering a rotation of the 

reference axes it may be shown that TH satisfies the law of 

transformation for the components of a second order tensor, and that 

therefore t;. iS a second-order tensor. In matrix form the components 
VJ 

are shown as:- 

ca T12 T13 

T21 T22 T23 

T31 T32 T33 

If t is a principal stress then 

rie °C T12 T13 

T21 T33-T T23 = 0 

T31 T32 T 99(5:..T 

Expanding this determinant gives a cubic equation 

t - 1177 + lat - I, = 0 

where I,I, and I; are the invariants of the matrix.



There will be 3 roots of this cubic equation giving the 3 

principal stresses, and it may be shown that their directions are 

orthogonal. 

A given stress tensor may be decomposed into deviatoric and 

spherical components showing shearing and hydrostatic stressing 

separately. Thus:- 

Ti. T12 T13 Timm Th Epo" 1G. Th 0 0 

Te) 326 see ca ed, (2a ee + | 0 Tr 0 

a 0. 0 T31 T32 T33 T31 T32 133 Th Th 

or Sg Sie th Ose 
eee ij ij'm 

1 era 
where a ENE 

This decomposition is of great use when modelling material 

behaviour. It is often found that inelastic behaviour is related to 

the deviator as in the viscoelastic behaviour of plastics. 

There will also be, in general, nine components of strain at a 

point. It should be noted that whilst €i5 (i=j) is a ratio of a 

change of length to the original length, e,; (143) is the change of a 

right angle, and the usual engineering shear strain Yaa." 2e. 5 being 
j 

the sum of two equal angles eij and es; 

The strain tensor will also have principal values in 3 

perpendicular directions.



Of particular importance later, is the fact that the strain tensor 

may be decomposed into deviatoric and spherical components. 

ei; = eij + 85 5&m i 

tortie) 

where ¢ 
: m 

In a continuum, stresses and strains will usually vary from point 

to point, but their variations are not arbitrary as various conditions 

have to be satisfied. 

These are:- 

(a) Equilibrium of stresses 
  

There are two conditions here 

(i) T; = 1340, on the surface where T, is the component of 

the surface traction. (3.1.3) 

(i7) Tag + F. = 0 within the continuum where F is a body force. 

It may also be shown that t.; = (i.e. the stress tensor is 
ap 4 

symmetric), so that there will be in general 6 unknown stress components 

at any point and only 3 equations from (i) or (ii) above, so that the 

problem is statically indeterminate. 

(b) Compatibility of strains 
  

If VF (i = 1,2,3) are the components of a small displacement then 

the strains are:- 

] 

Also the strain may be found from:- 

= A. a 6A; e454; + W454, where the A, are the components of 

a radius vector, and the 6A. are the components of the change of the 

vector.



Here the second term denotes rigid body motion, so the remaining term 

6A. 
gives €.. = pe which is a pure strain effect. It follows that 

ial j 

ig = esq? so that there will be six strain components to be determined 

from only three displacements. The strains may not therefore be 

chosen arbitrarily, but must satisfy the conditions of compatibility. 

These conditions ensure that adjacent parts of the continuum continue 

to fit together after straining, and result in six equations connecting 

the different strains which always apply providing the strains are 

smal] 

ae Oe 
a 

x ae 3 Y xy 
ay? ox? dxoy 
      is one of the six equations[1] 

  

(c) Stress-strain relationship 

Although the six strains may be expressed in terms of only three 

displacements, these cannot be determined without equations connecting 

stress and strain. 

3.2 Linear elasticity 

The well-known relationships between normal and shear stresses 

and strains may be used here. The general form of Hooke's law is 

E.. = any. Cig oe Tee ij E eo Eee (322.1) 

but by using the deviatoric and spherical components of stress and 

strain an alternate form is:- 

o
 

. ij 
{ieee 

Cn (ace) 

Oe
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By using either 3.2.1 or 3.2.2 together with 3.1.3 and.3.1.4 | 

the stresses and displacements may be found. 

3.3 Stress functions 

In the general case of a 3-dimensional problem the 9 stress 

and 9 strain components will vary from point to point within the 

material, and these stresses and strains must satisfy equilibrium 

conditions (3 equations) compatibility conditions (6 equations) and 

the specified stress-strain relationship (9 equations) at each point. 

In addition, specified stress and/or displacement conditions must be 

satisfied on the boundary.’ The general solution will therefore 

involve the solution of a very large number of simultaneous partial 

differential equations, and an exact solution is virtually impossible. 

Even in a two-dimensional system with only 3 stress and strain 

components at each point there are still too many equations for ease 

of solution. If, however, the stresses are embodied in a single 

stress function in such a way that equilibrium and compatibility 

conditions are automatically satisfied, then by carrying out prescribed 

operations on the stress function the 3 stresses of a 2-dimensional 

system are easily found, and by introducing the stress-strain 

relationship the corresponding strains may be found from only 3 

equations. 

It may be shown A] that for a 2-dimensional system, the stress 

function $ must satisfy the condition ial Pe Oty and since also 

V? (0,40) = 0 for compatibility it follows that V*p = 0. A stress
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function for a particular set of conditions must satisfy this condition 

and also give the correct stresses at the boundaries. 

For plane stress problems using Cartesian coordinates the 3 

stresses are found from the stress function 9 

ou et 
xX ay? 

- 2° 
Oy aye: (2.3.5) 

ee 
Xy  dxXoy 

Similarly, using polar coordinates 

eee DY: 8% 
: Op FOr | TZ DOr 

ao oO = 

Os rar* (2.3.4) 

oy 5s ) 
The * or (F 90) 

Also in polar coordinates the strains are found from the radial 

and tangential displacements u and v respectively by:- 

aT OMe a a 
Cn ote 

a OU 
er - or (3.3.3) 

¥ gL Bue 
ré r 06 or r 

An example illustrating the use of a stress function is shown 

-on the next page. This particular example was chosen as it was later 

to be used for checking the finite element solution in 6.8.
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Example » 

  

N
S
S
 
H
W
 
S
e
 

      
It was required to find the end deflection of a uniform wedge 

of unit width clamped at one end and carrying a uniformly distributed 

load along its topedge For small angles of taper conventional beam 

theory can be expected to give reasonable results, but for larger 

angles the effect:-of shear stress will become more important and must 

be allowed for. The use of a stress function will of course auto- 

matically include the effect of shear stress. 

Using polar coordinates, Timoshenko and Goodier’! suggest the 

stress function . 

@ = C[r?(a-6)+ r2sindcos6-r*cos” etana] 
(3.3.4) 

where C = p/[2(tana-a) ] 

The three stresses are then found by using equations @.3.2) and 

are given by 

ae C[2(a-6)-sin26+cos26tana-tana] 

Oy = C[2(a-6)+sin26-2cos’ 6tana] (353.5) 

t_, =-C[-l+cos26+s in26tano]



Tee 

By using equations3.3.3 together with the usual stress-strain 

relations for an elastic material, integration gives 

ap " U=E [o., Von] + £(0) 

v= EF (14y) (~cos26-sin2e tano)-S £(6)dd+g(r) 

: The 

From the shear strain relationship Vou ecee it is found that 

#(8) = M sind +N cose 

and g(r) = = r gnr + Lr + K where K =/f(6)do+f' (6) 

It is then found that 

u= & [2(1-v) (a-6)-(1+v)sin26+(1+v)cos2etana-(1-v) tana] 

+ Msind + Ncosé 

_¢r AC ; 
ye (1+v) (-cos26-sin26tana)+ =r an r+Mcos@ - Nsiné + Lr. 

The values of the constants L, M, N will depend on the constraints 

applied. These were taken to be 

(i) u=0 wheno=0 andr = 2 

(11}"¥5=:0 . si 

(iii) ucosé-vsin6 = 0 when@=a and r =£seca 

i.e. at the fixed end of the wedge, no horizontal or vertical 

movement was permitted at the top, and no horizontal movement was 

allowed at the bottom edge.



- 15 - 

The expressions found were:-~ 

* E Rlay)+ 4gn(2seca)+ 2(1-v 
a 

L ) tana 
" 

+ 22n(seca) ]   m= 2&2 (14y)4(1-v) a 
E tana 

N wok (l+v)a -vtana] 

The end deflection of the wedge was then found by substituting 

the values 6 = 0 and r = 0 in the above expression for v i.e. 

(Vocrep = ETenOZa [(14v)+(1-v) ‘any + 22n(seca) ] (3.355) 

  

It was also found that by imposing the vertical constraint at 

the bottom face instead of the top face of the wedge only the last 

term of equation 3.3.6 was affected and this now became tan7a. 

For angles up to about 30° there is little difference between the 

values of 2%n(seca) and tan?a, but for larger angles the difference 

is measurable, but the effect on the deflection is small. 

3.4 Linear Viscoelasticity 

Unlike linear elastic materials for which the stress-strain, 

load-deflection etc. relations are not time-dependent, a viscoelastic 

material can only have its behaviour fully described by including 

time as an independent variable [2] [3] [4]. 

Considering first the uniaxial stress-strain relation, a 

convenient formsuggestedby a spring-damper model is



sn OAs 

Po = Qe 

where P and Q are differential operators 

m qk n dk 
Posto Qa $i4.1) 

0K at® odes 

By choosing suitable values for m, n, Py and QR various 

mechanical models consisting of springs and dampers may be 

represented by this equation. 

series 

For example, a system comprising a spring and damper in -parattel 

gives a Maxwell body having the equation 

Oo + pio = qie (3.4.2) 

Kelvin 
The addition of a series spring to the MaxweH combination 

produces the 3-parameter solid (Standard Linear Solid) 

o+pis = qe + que (3.4.3) 

The coefficients Py and q will be functions of the elastic and 

viscous properties for the material under consideration. 

The viscoelastic stress-strain equation for a particular 

material is thus found as follows:- 

(a) A suitable model is chosen to describe the type of behaviour 

for a certain stress or strain pattern (e.g. In a simple creep 

test the stress is constant while strain varies with time). 

(b) Values of Py and q, are then found to give the best agreement 

with experimental results.
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These values of Py and q, may then be used when the same 

material is stressed in a different way (e.g. in a beam where the 

stress varies with depth). The differential equation for the 

particular problem must be formulated in terms of Py and qpe and 

its solution will give the fifartetion required ~ perhaps the 

relation between deflection and time. 

Correspondence rule 

It can be seen that when the differential equation for any 

viscoelastic problem is subjected to a Laplace transformation with 

respect to time, the coefficients are a combination of elastic and 

viscous constants and the transform parameter s. It may also be 

shown that the equation giving the solution of the viscoelastic 

problem is of exactly the same form as that for the corresponding 

elastic problem, but with elastic constants replaced by equivalent 

combinations of viscoelastic constants and s. 

For example, consider the case of a body subjected to a shear 

stress T. 

Then for an elastic materiale = ot 

and the Laplace transform ise = ot 

Now for a Maxwell body equation 3.4.2 may be written as 

tog et = Ee UI 

where n is the viscosity of the material.



~ te 

The Laplace transform of this is (= + ag) = Se 

and € = eek or Pt =Qe where in this case 

G 
® - $5 it and Q=1 

This is of exactly the same form as the expression for an elastic 

Gs 

st = 
n 

material with G replaced by 

The stress-strain relation may therefore be expressed as 

Gs 

st= 
n 

= 2G(s) where in this case G(s) = 

Mi
fa
r 

wi
e 

If the solution of an elastic problem is known the solution 

of the corresponding viscoelastic problem is then found by using the 

correspondence rule as follows:- 

(i) Take the Laplace transform of the elastic solution 

(ii) Replace the elastic constants by the appropriate equivalents 

as noted above (These equivalents will depend on the particular 

model of material behaviour chosen, but will always be the same 

‘for that model). 

(iii) Invert the modified transformed equation. 

A good example of the use of the correspondence rule is given 

in obtaining equation 3.4.7 below for a creep test. 

In order to relate Py and q to the elastic and viscous 

constants, fundamental assumptions must be made about the behaviour



ise 

of the material. Since viscous effects seem to be mainly associated 

with a shearing action, it is convenient to decompose the original 

stress system into spherical and deviatoric components as noted in 

3.1.1. The corresponding spherical strain (dilatation) and deviatoric 

strain (distortion) are given by 3.1.2. 

Two sets of equations are therefore obtained and these are 

most easily expressed as Laplace transforms. 

; : (= ide 
Distortion Sj y] Gj 

(3.4.4) 
. . a att a Dilatation Mo,. = Q'e., 

A relatively simple, but usually quite adequate form of the sec- 

ond set of these equations is obtained by assuming elastic dilatation 

In this case ®" = 1 and Q" = 3K. [3] 

This assumption was therefore made for all subsequent work, 

with the exception of 4.3(a). 

Since both uniaxial and two-dimensional systems were to be 

studied, the following results were required:- 

“Assuming Maxwell distortion the usual form of the equation 

eho is 1 
S44. ETP il 

where n is the viscosity of the material may be re-written as 

0 th eo 
ae Sig = OE Fi; (1 + j j 

vi
th

 

P ‘ 

3
|
>
 

so that P' = 1+ and Q' = 2ns_ where y = 

<



a OO a 

It may also be shown [3] that 

Seite gael ie ekGs 
29'2"+ 2'D" (3K+G)s+3Ky 

S+ 3K v Pg" -a'p 2 3K-2G 3KS76 Yi 

and rt = 
3X2" 18KG s 
  

Assuming 3-parameter distortion 
  

. ao ] 
ij + 6e; j = 36 Sij + 2m 943 

or . : 
So o4— S$. 58 Se ae at S34 2nt eij 2n ery 

nn
 

and by comparison P' = 1 + 7 Q' = 2n(tts) 

9KG(tT+s 
ee THe ie = 

v 3K-2G. f 4 3ky-3ke° 1 
and F&F > eK “3K2G Tas 

Uni-axial constant stress (Creep condition) 
  

The solution of the elastic problem is 

a 
= Er 

Maxwell distortion 

(3:44) 

( 3.4.6) 

Taking the Laplace transform of the above and replacing E by the | 

appropriate combination gives



cat 

a (3K4+G)s+3Ky = 
9KGs 

3ky 
_ 3Kk+G S * 3K+G - 

9KG s 
  

and since o is constant 

_ 3K46 3Ky 
GO a shear 

which simplifies to © = (F +) (3.4.7) 

3-parameter distortion 
  

The result is obtained by replacing E by the combination appro- 

priate to a 3-parameter solid 

m
1
 - (3K+G)s+3Ky+6z x 

9KG(z+s ) 

and hence e = { | + ees 1)Q - e ot) y46 when o is a constant 
E362 . 
  

  

or c= {Pec(l-e ")}o (3.4.8) 

eee e where C = am ( _ 1) 

Two-dimensional stress system (stresses constant) 
  

The results are obtained in the same way as for a single stress 

except that both E and r must be replaced by their appropriate 

equivalents, and the net strain in a given direction is now the sum



a eS 

of the strains in this direction due to the two stresses providing 

strains are small. This linear superposition may be used since 

linear viscoelasticity is being considered. 

Consider now a system of two perpendicular stresses o, and oy 

for two types of material. 

Maxwell distortion 

tee t ; : 
Due to ce Sy” (F + hoy if o, is constant 

: ‘ ae 
Due to oy for an elastic material Ear eo 

- 

The Laplace transform of the viscoelastic solution is then obtained 

using the correspondence rule 

3K 
= | eG * = 

ie ee 

and since o, is constant 

e, *-lag- 2) ta) 
  

Hence the net strain in this direction is 

1 e t : ed t 
cys (r + Th)?x Une rE) + ony (3.4.9) 

  

The corresponding expression for e, is obtained by interchanging 
‘ 

y 

oO, and Oy



i OE 

3-parameter distortion 
  

‘ Again E and F are replaced by their appropriate equivalents and 

the strains due to the two stresses are added. 

~ _ (3K+G)s+3ky+6z =, , 3K-26 3Kky-3Kz 1 
€. = oc + {]l + —t}ooa 

A eokG cre), oe she ras 

and since oy and oy are constants 

c= (eta G- U- eS hoy = Ugg - Blt aot -W(I-e 

(3.4.10) 

-tt 
Yio, 

  

Again ey may be found by interchanging om and Oy 

It will be seen that providing the stresses remain constant 

exact values of the strains may be found by using time-dependent 

values of E and F which are respectively the reciprocals of the 

coefficient of oy and the coefficient of oy above. It should be 

noted that E and G are initial or elastic values and since K has 

been assumed constant, the usual relations between the elastic 

constants may be used. Denoting a time-dependent "constant" by 

~(t) and using the expressionsfor E(t) and F(t) = rH it may also 

be confirmed that these time-dependent values are subject to the 

same connections. 

Then for the 3-parameter solid 

E(t) = Wf ¢ + c(1-e >*)} 
  

(3.4.11)
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If the initial value of Poisson's ratio is known the value of 

K may be calculated and so the value of v(t) may be found from the 

time dependent form of E = 3K(1-2v) giving 

Sites Ey (3.4.12) 

The expression for E(t) in 3.4.11 is in fact the reciprocal of 

‘ ; Strain(varying . Strain(varying) the creep compliance defined as Stress (constant) 

It should be noted that E(t) is not the relaxation modulus 

which is ayItes pur which will differ from the reciprocal 
Strain(constant) 

of the creep compliance owing to the differing behaviour of the 

material when stress and strain are varied separately. 

Using the parameters of 4.1 for Perspex these two quantities 

were compared in Table 3.1. It was found that:- 

1 E 

Creep compliance ++ ECE» e Sty 

(3.4.13) 

eTi-ethi ete te Relaxation modulus



OS 

Values for Perspex 
  

  

  

hots E xCreep eee a ee ae . “100 

0 1 1 0 

1 0.9266 0.9108 “12 

2 0.8900 0.8658 ~2.7 

3 0.8708 0.8431 ~3.2 

4 0.8604 0.8317 i -3.4 

5 0.8546 0.8259 -3.4 

6 0.8515 9.8230 -3.4 

8 0.8487 0.8208 -3.3 

TABLE 3.1 

It will be seen that the relaxation modulus has a maximum 

difference of 3.4% from E(t) at about 5 hours. This error then 

diminishes to -2.7/% as two. 

Similarly using the result of 4.2.1 for a stress which increases 

uniformly from zero (ramp) it may be shown that in this case 

ge E c= (3.4.14) es (14EC)- Se (I-e oh, 
  

This gave a maximum difference of +4.8% from the value of 

E(t) for a constant stress. This occurs at about 3 hours, and 

for longer times the difference diminishes and approaches zero for 

large values of t.
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CHAPTER 4 

SOLUTION OF PROBLEMS IN LINEAR VISCOELASTICITY 
  

In Section 3.4 various theoretical viscoelastic models were 

studied, but no reference was made to any particular material. Before 

proceeding with any further theoretical investigations it was decided 

to obtain some experimental results for a particular material and then 

to choose a suitable theoretical model to fit these results. The 

material chosen was Perspex, as for moderate stresses its behaviour 

is approximately linear [6]; it is also readily available and is 

easily machined. Its mechanical properties are also little affected 

by smal] temperature changes and by contact with water or oil. 

Since theoretical solutions had already been obtained for a 

constant uni-axial stress creep test for both Maxwell and 3-parameter 

distortion models (and elastic dilatation) in 3.4.7 and 3.4.8 and 

because this was a relatively straightforward test to carry out, a number 

of creep tests were carried out on Perspex test pieces for a number of 

different stresses. It was then possible, from the type of results 

obtained, to choose a suitable theoretical model and to find the 

values of the parameters necessary to fit the experimental results 

to the behaviour of this model. Because of the practical impossibility _ 

of applying the stress instantaneously the effect of applying the 

stress as a ramp was investigated theoretically. It was found that 

no correction was needed to allow for the manner in which the stress 

was applied in the tests.



= eee 

Theoretical solutions were then obtained for two more difficult 

problems, initially using simple viscoelastic models because of the 

increased difficulty of the problems, but finally solutions were 

found using the theoretical model which was found to fit the results 

for Perspex. These results could then have been applied to Perspex. 

The second of these problems, the viscoelastic cylinder of 4.4, was 

capable of experimental investigation, and a more general theoretical 

solution obtained by using a finite element method was compared with 

experimental results in 7.2. 

4.1 Creep tests on Perspex 

A number of creep tests were carried out on specimens cut from 

a Perspex sheet of 1/4 in nominal thickness, the actual cross- 

sectional dimensions of the specimens being 12.6 mm x 6.0 mm. A 

Denison creep testing machine was used to apply a constant axial 

pull, and the extension was measured with a Philips Type PR 9312 

extensometer using a gauge length of 50 mm. 

Fig. 4.1 shows how the strain varies with time for different 

values of the constant stress, and it is obvious that the strain- 

time relation is far from linear for the period considered, and 

accordingly the assumption of Maxwell distortion will fit the 

experimental data very imperfectly. The shape of the curves does, 

however, suggest that 3-parameter distortion may give a much better 

fit. Since a linear stress-strain relation was to be assumed the 

values of the 3 parameters must be independent of stress, and it was 

found that a reasonable representation of the experimental results
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could be obtained with :- 

E = 3000 MN/m? 

oT vale Be -3 2 C= gg %- 1) = 0.06 x 10°? n/t 
ea 

r= 0.58 h 

oe : 
or = "tay + Oe xD (me D0 (4.1.1) 
  

where t is the time in hours and o is the stress in MN/m?. 

It will be seen that the assumption of linearity gives quite 

good results for stresses up to about 20 MN/m?, but at higher stresses 

(the results for 25 MN/m? only are shown) this assumption is hardly 

justifiable. 

These results were used below in 7.1 and 7.2. - 

4.2 The effect of loading rate in a creep test 

In the creep tests of 4.1 it was not possible to apply the stress 

as a true step function as several seconds were required to increase 

the stress from zero to its final value. In order to determine if 

this finite loading time had any effect on the strains, a theoretical 

solution was obtained for a uniformly increasing stress giving the 

ramp function shown in Fig. 4A.



ei CO ce 

  

  

  

o & _ do 
| tes = rt where r = ni 

r E 

Fig. 4A 

tat Y 

: : : a ee 
The solution of the elastic problem is e€ = ar 

fe r i, since r and E are constants. 

For the viscoelastic problem considering 3-parameter distortion 

ot (3K+G)s+3Ky+Gz 1 

QKG(t+s)  s? 

Bf ¥ *ot 
Hence es (F + Cyrt - C cl +a." °) (4.2.1) 

  

Now. a ramp may be obtained by superimposing on the original 

stress rt a negative stress of -r(t-T) when t >T. 

  

  
Fig. 4B.
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Then for values of t 3 T the strain due to a stress applied as 

a ramp is the sum of the strains due to stresses rt and -r(t-T) 

T.e,.¢ ® (r+ Crete G = 4 e ota + C)4-r(t-T)} -C Cre S(T) 

and since @ = rT 

] . [b+ Cil- ot eet eo 13376 (4.2.2) 

  

For a step function as shown in 3.4.8. ¢€ = i +C(l- e Sty Ig 

  

The strains will therefore vary in the manner shown in Fig. 4C. 

q 

m|
§>
 

    

  

Fig. 4C 

If the step stress is applied at t = 0, and the ramp stress 

begins to be applied at t = 0, there will obviously be considerable 

differences between the resulting strains for t < T. However when 

t 3 T the results may not differ so much. 

Thus Ae = Estep Cramp = ce Sty ar(e*!-1)-116 | (4.2.3)
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It‘is fairly obvious that Ae = 0 when T = O (i.e. the ramp then 

becomes a step) and when T=, Inspection of the expression for Ae 

will also show that its value decreases as t increases, for a given value 

of T. The maximum value of Ae will therefore occur at the least value 

of t i.e. when t =T. 

* + 1)e75"] 6 (4.2.4) 
  

It is found that the maximum value of Acna is approximately 
x 

GO. 3G6.at. zt @ Z-, 

This result was confirmed by calculating values of be ax for 

various values of T using the parameters previously found for Perspex. 

These results are shown in Table 4.2. 

3 as Eo 

Perspex E = 3 x 103MN/m* C = 0.06x10 m?/MN G= 0.58h 

  

  

eo 7 E 

ol T approx Ae/e , 

0.01 1 min 0.1% 

~ 0.05 5 min 0.4% 

0.1 10 min 0.85% 

0.5 Ph 3 3.2% 

1 2h. 4.7% 

1.5 2.5 h. 5.3% 

a 3.578; 5.34% 

5 8.5 h. 3.5% 
  

Table 4.2 ;
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It will be seen that in this case, loading times of up to 10 min 

will give a maximum error of less than 1% in the strain, and the few 

seconds actually required to apply the maximum stress will have a 

negligible effect on the strain. It should be noted that this maximum 

error will in any case occur only at the end of the loading period, 

and will thereafter diminish. 

4.3 Viscoelastic beam on a flexible base 
  

Since it was intended that later the effect of local bending 

stresses in a viscoelastic cylinder were to be studied, the simplest 

possible form of this problem was required. It is shown below that 

the cylinder problem may be solved by analogy with a beam on a 

flexible base. Timoshenko gives a solution of this problem for an 

elastic beam on an elastic base. [5]. 

Various types of beam and base were considered in the present 

report. 

  

(a) Elastic base: Maxwell distortion and no dilatation for beam 

Since there is no dilatation (i.e. K = ~) only deviatoric 

stresses and strains need be considered. 

For a single stress o and a single strain e equations 3.1.1 

and 3.1.2 reduce to 

$11 =40 : 

(46359) 

C11 = E1av)e ‘
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In ‘this first case the correspondence rule was not used, to 

demonstrate that although it is helpful in obtaining a solution, its 

use is not essential. Accordingly the stress-strain relationship 

for a Maxwell body is used i.e. 

] 
(ag et es = en [4] 

When the expressions 4.3.1 are used, and noting that for bending 

2 

ty ande = y ow we find that 
OX 

0 

3 M 3 ee Egy oH 

2 

Differentiating twice with respect to x and noting that a p 
X 

and that for an elastic base p = -kw 

<M +w) = -yw 

This partial differential equation is conveniently solved by 

using Laplace transforms, and using the condition of initial equilibrium 

dx" EI 
  

- d*w key (4.3.2) 
S 

This is of exactly the same form as the equation for an elastic 

beam, except that E is replaced by e. 

By using the correspondence rule, the solution could therefore 

have been started at this point.



The solution of this differential equation is 

w =e (Acosmx+Bsinmx)+e"* (Ecosmx+Ds inmx) (4.3.3) 

where m = B(14y)? and B = (ger)? 

The values of the constants will depend on the end conditions 

for the beam. 

Considering the case of an infinitely long beam with a single 

point load P at the origin, these conditions are:- 

i dw _ oP 
x = 0 We Q = 5 

- ' -~ a 

Hence w = . (1 +L) e ™*(cosmx + sin mx) 

P 

8EIg3 

  where A' = 

mx 
4 . : 

By expanding (1 + t) ce and cosmx + sinmx as infinite series 

n
j
x
>
 

W = 

n
f
i
<
 

‘+g : 3 ay" dl l-{l+5t- 1idy'+ ps Fe (Bere 

v - Savye ... 4 6x)! 

eo Gee uae ys gd 

By multiplying these series together and inverting the result 

term by term an expression for wis finally obtained
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; Py 
we gig LO tot - Rt) +. 2 

“{l+pyt- Zot) +. .}@x? (4.3.4) 

+3 - 1pyt- g et) + Ce a ee 

In practice, the value of yt will usually be small and so only 

a few terms are needed in each t series, but for large values of x 

many x terms must be used to give an accurate answer. Fortunately 

the area of most interest is near the load where deflection and 

stress change most rapidly, and values of x are small here. 

(b) Elastic base; Maxwell distortion, elastic dilatation for beam 

This model is more likely to fit the actual behaviour of a 

plastic than the model of (a). Since it was seen that in (a) 

equation 4.3.2 could have been obtained directly by using the 

correspondence rule, this method was used here. 

It was seen in 3.4 above that for this model the viscoelastic 

equivalent of E is CHOSE . ih + gh. 

When E is replaced by this equivalent in the Laplace trans form of 

the differential equation for an elastic beam, the corresponding 

equation becomes 

dw k PM ese ) 
ae =e er! + ans) Ww ; (4.3.5) 

This could have been obtained from 4.3.2 by replacing y by - 

and so the solution for this model may be found from 4.3.4 by the same 

substitution.
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(c) Viscoelastic beam and base, Maxwell distortion, elastic 
  

dilatation for both 

This model differs from that of (b) only in the behaviour of the 

base. It was seen in (b) that the 1/E of an elastic solution is 

replaced by f, + get) = F, (8 + 6,) where the suffix 4 denotes a 

property of the beam, and 6, = =. 

Similarly, for the base, since ko E>. 

k will be replaced by STS) where 6) = ~ and the suffix 2 

applies to the base. 

Equation 4.3.5 now becomes 

dw a k (S482 )0 

Oe kh eee 

or dw eck ae Res 8 (4.3.6) 

This is the same as equation 4.3.5 except that is replaced by 

6, - 82 

S40 on 

The solution may still be obtained from equation 4.3.3 providing 

  By expanding this as a series and inverting 

each term separately, a solution may be obtained as in (a). Only the 

first few terms were derived giving:-



sys 

  

3 2 2 ( 

w= — 3 [{1+(461+362) Ce (S,01- 3791 82+ Gqe2)t ae. ok 

+{14+(4014370.)t +... } (Bx)? 

+{ }(Bx) 3 

+{ } 

] (4.3.7) 

There will also be terms of the type $-(1 - @ 82t) which will 

normally be small. 

It will therefore be seen that the general solution requires the 

evaluation of a large number of terms, which would be a tedious process. 

There is however a special case of this solution. When the 

beam and base are of the same material, as they are for the visco- 

elastic cylinder of 4.4 where in effect the cylinder is both beam 

and base, 6, = 62. Equation 4.3.7 then gives an exact solution 

gee P es PA 

8E 1B 3 

  

; : 

cosgx + singx)(1 + 7h t) 

On Wee) (1 hat )w 
elastic (4.3.8) 

(d) Viscoelastic beam on viscoelastic base of the same material, 

3-parameter distortion, elastic dilatation 

It has been shown in 4.1 that this model describes the actual 

behaviour of Perspex quite we?l. The solution in this case therefore 

may be used When the results for a viscoelastic cylinder derived in 4.4 

below are applied to Perspex.
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Since por and here, as in (c) k and E vary in exactly the same 

way, the value of 8 is constant. The variation inw therefore 

depends solely on the variation of E and may be found from 

w= ——-_. e BX (cosgx + singx) . (4.3.9) 
~ E(t) IB? 

1 -Ct 
where ITE oe C(l =e ”’) from 3.4.11- 

4.4 Thin viscoelastic cylinder with internal pressure 

This problem may be conveniently solved by considering two 

separate effects. At points remote from any ring loads or couples, 

the cylinder will be subjected to the usual hoop and longitudinal 

membrane stresses which will be uniform in the case of a thin 

cylinder. Any local effects (e.g. a ring load and couple at a 

rigid end) will cause a longitudinal slice of the cylinder to bend, 

and so produces bending stresses which vary across the thickness 

of the shell and must be added to the membrane stresses. This 

local bending effect is analogous to a beam on an elastic base since 

the radial movement at any point on a longitudinal slice is opposed 

by the adjacent parts of the cylinder. Since the same material is 

involved whether its behaviour as a beam or as a base is under 

consideration, the local deflections may be derived from 4.3.9 which 

applies only if the properties of the beam and base are the same. 

Consider, first, the membrane stresses 

oe 
Hoop stress oy = i 

° . A r 

Longitudinal stress os a



ey oe 

Then assuming 3-parameter distortion and elastic dilatation 

equation 3.4.10 gives 

: is Lut Le ae’ 
Hoop strain ey = i C E(- 5) BG(l-e = )] 

and Increase of radius =r ey 

(1 = By - ac(i-eF*) J (4.4.1) 1 

7
 

m
i
m
 

It is interesting to note that the longitudinal strain found 

by interchanging o, and o, gives 
X y 

3 1 ag Pa 
eS 7 (or - 5¢) which is constant. 
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NI 
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Fig. 4.D. 

Assume now that the end of the cylinder is perfectly rigid. 

The slope and displacement at this end will then be zero. 

These end conditions may be imposed by first assuming that 

the end of the cylinder is allowed to expand freely in a radial 

direction due to the internal pressure, and that a ring load Rg 

and moment Mo are then applied to return the end of the cylinder 

to its original position and to make the slope zero. The cylinder
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is then equivalent to a beam on a flexible base where the unloaded 

position of the beam corresponds to the "free" expanded position of 

the cylinder (i.e. at a considerable distance from the end). 

Because any bending of the wall of a cylinder produces two 

perpendicular stresses the usual flexural rigidity EI of a beam 

must be replaced by 

D E(t)h3/[12(1-{v(t)}?)] per unit width; 

and k = E(t)h/r* [5] 

‘Then 8 - eee 
rh? (4.4.2) 

It may be shown that the reduction of radius due to FS and 

Mo is given by 

FET @ PAE P cosBx - BM, (cosBx - sinBx)] [5] W=   

If Ar is the "free" expansion (outwards) as found from 4.4.1, 

then applying the end conditions x = 0, w = Ar(inwards) and oe = 0 

gives Fa = 48°D Ar and As 2e°D Ar 

and hence Ww = Are ’*(cos6x + sinBx). Se (4.4.3) 

Now the variation of Ar with time as given by (4.4.1) presents 

no problem, but unlike the beam on a flexible base of 4.3(d) where 

8 is constant, B is now a function of v(t) which will also vary with 

time. To determine whether this effect is important the parameters 

found for Perspex in 4.1 were used to calculate the changes in E(t) 

and v(t). It was found that in a period of 6 hours the value of
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E(t) decreases by 20%, and taking an initial value for v of 0.35, 

the value of v(t) increases by 8% during the same interval. The 

value of 8, which is proportional to (1-{v(t)}2) changes by only 

-0.5%, and it was thought that with a change of this magnitude a 

constant value could be assumed for 8 as this gave a much simpler 

solution. (It may be noted that the finite element solution of 7.2 

below was obtained without making this assumption, and gave almost 

identical results.) 

A further possible difficulty arose because 4.4.1 strictly 

only applies if stresses are constant, althoughin 3.4 it is shown 

that small variations of stress will have little effect on the 

value of E(t). However, to determine whether there is an appreciable 

stress variation with time in the cylindrical shell, the position and 

magnitude of the maximum bending moment were investigated. The 

maximum bending stress is proportional to this moment and is thus 

easily found. 

2 

Now Mac D2 , so from 4.4.3 ax 

M cc Deze 8*(cosgx - singx) 

This expression has a maximum value at x = 1/28, and since 

| i 
B oc (1-{v(t)}?) the variation in x for a given change of 8, is 

easily found. As noted above, when the value of v(t) increases 

by 8%, B changes by -0.5% and therefore x changes by +0.5%.
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Also M may be shown to be proportional to Dg? 

Moe (1=f0(t)}2) 
and for the +8% change in v previously calculated the change in M, 

and therefore in the maximum bending stress is only +1.2%. Since this 

bending stress is added to a constant longitudinal membrane stress 

the Zchange in the net stress must be less than 1.2%, and may be much 

less if the bending stress is appreciably smaller than the membrane 

stress. 

There will be a further maximum bending moment of opposite sign 

to that found above at x = 0. There will this time be no variation in 

x, but as before M c¢D 2 resulting in the same 1.2% change in stress 

as before. 

A constant value of 8 is therefore assumed and the increase in 

radius is the difference between the "free" expansion and the inward 

deflection given by 4.4.3. 

ice. u= Ar [1 - e ©*%(cosgx + singx)] (4.4.4) 

where the value of Ar is found from 4.4.1 at any time t.. 

The local hoop stress due to bending effects may be found 

separately and added to the membrane stress, but the net hoop stress 

is easily found from the hoop strain. 

Since ey = rey (oy -v(t)o,) and also ey = ~ where u is given 

by 4.4.4, the hoop stress is given by o ve E(t)e, + v(t)o, where o x 

is the net longitudinal stress.
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The expression 4.4.4 is easily evaluated for various values of x 

and t, and so, using values p = 1.5 MN/m?, r = 75 mm, h = 6.25 mm 

together with the previous values of E, C and ¢ for Perspex and 

taking v as 0.35, Prog.1* was written to find the changes of radius 

in a Perspex cylinder. 

The theoretical results are shown in Fig. 4.4.1 where each 

column shows the change of radius in mm at a distance of X mm from 

the fixed end of the anther at T hours after the application of the 

pressure. It will be seen that at any time the cylinder takes up 

the shape of a damped sine wave which dies out at about 150 mm or 

one diameter from the end. There is also a steady increase in the 

deflections with increasing time, and it will be found that in a 

given time interval there is the same fractional increase in 

deflection for all values of X. This latter results from the 

assumption that ® is constant, and will be referred to later in 7.2 

where a finite element solution is obtained. 

  

* Details of all computer programs are given in the Appendix.
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CHAPTER 5 

NUMERICAL SOLUTION OF ENGINEERING PROBLEMS 
  

In Section 4, theoretical solutions were obtained for several 

viscoelastic problems. In the last of these (the viscoelastic 

cylinder), a solution was obtained by assuming that the parameter B 

was constant. While it was shown that this assumption was reasonable 

in the case mentioned, simplifications of this sort may not always 

be justifiable. For example, if the wall thickness of the cylinder 

is not constant, then the value of 8 may vary very considerably. In 

cases of this type it is not easy to invert the Laplace transform 

which is introduced by the use of the correspondence rule. 

It was therefore decided that for more difficult examples of 

the type encountered in 4.4, the ae of some form of numerical solution 

would enable a solution to be obtained more directly than by using an 

exact method. It is shown in Chapters 6 and 7 that numerical 

solutions of both elastic and viscoelastic prob lems are readily obtained. 

Some of the possible numerical methods are considered below 

together with typical applications for elastic materials. The further 

application of a numerical method to linear viscoelastic materials is 

described in Chapter 7.
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5.1 Methods of Solution 

An exact solution to a problem will normally consist of two 

main steps:- 

(i) the derivation of the governing. partial differential equation 

(except in very simple cases), 

(ii) the solution of this equation. 

The use of a stress function may be helpful in some cases. 

An example of this approach is shown in 3.3 where the deflection at 

the end of a loaded wedge is obtained, but even when a suitable 

stress function is known, the determination of all the constants of 

integration is usually a lengthy process. 

In some of the more standard problems (e.g. the torsion of 

non-circular bars) the differential equation is the same for any 

section and the difficulty lies in its solution. In this case some 

form of numerical solution may be used, and if a digital computer is 

used to solve the linear equations usually obtained a large number of 

these equations may be used so that an accurate answer is readily 

obtained. Two of the possible methods are:- 

(a) Point matching 

Using this method, a series solution of the partial 

differential equation is obtained. The solution would be exact with 

an infinite number of terms, but in practice only a finite number of 

terms can be considered. To find the coefficients in these terms, 

an equal number of points on the boundary are chosen, and the truncated
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series is made to satisfy the boundary conditions exactly at the chosen 

points. In general the boundary conditions will not be satisfied 

exactly elsewhere. 

An algebraic equation will thus be obtained for each point 

considered, and the solution of these simultaneous equations wil] 

give the required coefficients. 

Example. Torsion of a square bar 
  

  

Here V7 +2Ga = 0 

within the region 

and @ = 0 on the boundary 

[1] 
2a   

x et 
re

s}
 

7
 

oe
 

        
rag, SA, 

A possible solution of the differential equation is 

“5 Gaye 4 8 a i > = : + A + Brtcos4e + Cr°cos86+ ..... : 

By choosing three points such as P, Q and R on the boundary 

and making @ = 0 in each case, three simultaneous equations in A, B 

and C will be obtained, and the solution of these will give the 

required approximate result. 

In this case A = 0.58983 Gaa? 

G 
B =-0.09237 ar 

C = 0.00254 oo
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It will be seen that the values of the coefficients are 

diminishing rapidly, and that a quite accurate result is likely with 

only a few terms in the series. 

Once the values of A, B and C have been found the torsional 

stiffness is found from M, = 2/Sor dr dé and the shear stresses 
it 

_ 139 _ 6 
Tar ~ FOr and tog) cop? 

(b) Finite difference method 
  

If a mesh (usually square) is superimposed on the region under 

consideration, the governing partial differential equation will apply 

exactly at each node (i.e. point of intersection of two perpendicular 

lines). If, however, every partial derivative is replaced by its 

finite difference approximation, a separate algebraic equation, which 

satisfies the differential equation only approximately, will be 

obtained for each node. These approximate linear equations are then 

solved exactly. 

  

  

          

2 For example at point 0 in the mesh 

3 oi vty 
h shown V7o(ditdotdstbu-4b0)/h? the 

4 error being of the order of h? 
+ 

Example. Torsion of non-circular bars 
  

As before V*¢ + 2G = 0 within the region 

¢ = 0 on the boundary



ahh o 

The approximate equation for each node will now be of the form 

ditde-4¢ t+hatoa = ~2Gah? 

and the unknowns will be the values of 9. 

Because there may be several hundred equations to solve, the 

use of a digital computer is almost essential. Fortunately, if the 

equations are written in matrix form, the matrix of coefficients of 

@ is banded and symmetric, thus greatly reducing the computer storage 

space required. 

As with the point matching method, accuracy is increased by 

using more nodes, but alternatively a better finite difference 

approximation could be used by introducing more of the surrounding 

nodes. By using this method, errors in each equation may be reduced 

from the order of h? to say h*, but each equation will now be more 

complicated and there may be difficulties near the edge. 

Difficulties will also occur with irregular boundaries. 

Approximations for the partial derivatives may be obtained in terms 

of the appropriate fractions of h between the central node and the 

boundary, but the matrix of coefficients is no longer symmetric, and 

so requires more computer storage space. 

A third approach is:- 

(c) Energy methods 

In (b) it is shown that an approximate solution is obtained 

for an exact differential equation. In an energy method, a 

deflected shape or stress pattern in terms of unknown parameters is
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initially assumed. For example, the deflected shape of a beam may 

be assumed to be given by w= 125 C5, (x) where the $'s are known 

functions of x. 

It is then possible to determine the strain energy of the 

solid and potential energy of the applied loads in terms of the 

unknown coefficients Cis and by using the principle of stationary total 

potential energy (or complementary energy in the case of an assumed 

stress variation) the values of these coefficients may be found. 

Problems on plate deflection are very satisfactorily handled 

by energy methods, and one example is shown below. 

yao a 
  

        

rig. 5p 

Consider a rectangular plate of uniform thickness which is 

simply supported at all edges and subjected to a uniform pressure p. 

In this case an infinite series is to be used and the chosen shape 

must satisfy the geometric boundary conditions, i.e. w= 0 at x =0 

and a, and at y = 0 and b. 

A possible shape is then:- 

pe aK og UY sin-—— Ss Sq, 810 = eee 
n



on: Res 

For plates of polygonal form which are supported along their edges 

the strain energy U = D ret Sy Ee ]? dx dy 

3 

where D = TO 

2 
  

4 Dab 2 2 

Hence U = 4 5 be Sree L a> + pr 

Also the potential energy of the loads 2 = ~- SS By dx dy 

gives 2 =-p YY = - “BD. (cosimn - 1)(cosnm - 1) which is zero for even 

values of m and n. 

The total potential energy V = U +2 

and for 6V to be zero oY = 0 
0 Con 

: ; _ 16pa* 1 
which gives Can al mngm=+ (2)? J where r 5 

a 

The deflection at the centre of the plate is then 

i: beg “ Mr oa. hy: w=) ) Co, Sinz sins 

m=1,3 n=1,3 

m+n es ‘ a 

Sel ee, tO 
  

A simple computer program was written to determine the values 

of Con and the central deflection from their summation. It was 

found that the coefficients decay rapidly and only 25 were taken 

(i.e. mn = 1,3... 9). The results obtained for plates of 

various shapes are given below.
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b/a - Central deflection 

1.0 0.00406 PF 

lee 0.00565 

1.4 0.00709 

1.6 0.00831 

1.8 0.00932 

aye 0.01013 

3.0 0.01224 

4.0 0.01300 

5.0 0.01322 

  

TABLE 5.1 

These results are almost identical with those given by 

Timoshenko [5]. 

The results given in Table 5.1 were obtained from an exact 

-solution containing an infinite number of terms, although, of course, 

only a finite number can be evaluated. 

; Alternatively the Rayleigh-Ritz method may be ee give a 

series solution which contains a finite number of terms each of which 

must satisfy the geometrical boundary conditions. The number of 

terms required is first decided, and it is then only necessary to find 

the coefficient of each term. For example, in the plate bending 

problem already considered, a deflected shape described by
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- ee. a ee: Seek ROT, . 
W =Cx81n S18 eit CoSin oes Sine could be chosen. By using 

eae : ’ aU OU Sh. 
the principle stationary total potential energy oe 0 and Sate 0; 

and hence c, and cy may be found. 

It is not even necessary for the series to be of the same type 

as the exact solution, so that in the plate bending problem, instead 

of a trigonometrical series the very simply described shape 

Ww = c(s - x)? (B - y)? could be assumed. Then, as before, c is found 

OU _ 
from Ta 0. 

Similarly the deflected shape of a beam could be assumed to 

be given by the 4-term polynomial series w = Aa (i=0,1,2,3) and 

again the values of c; are found from a0 = 0, 
j 

With a good choice of shape function, the Rayleigh-Ritz method 

can give extremely accurate results, and this is the basis of the 

finite element methods described below and used extensively in 

Chapter 6. 

(d) The finite element method 
  

Instead of choosing a particular deflection shape for the whole 

solid, the region may be considered to consist of a number (usually 

large) of separate finite elements , for each of which the shape 

function is of the same type. For example, in a plane stress 

situation an assumed deflection pattern u = a,+a2Xxta3y, and 

V = a,tasxtagy could be assumed. This will apply to each element
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but the values of ai, a2 and a3 will, in general, be different for 

each element, and their values are found by using the principle of station- 

ary total potential energy. 

In addition to considering the deflection within each element 

it is also necessary to ensure compatibility between that element and 

surrounding elements. Also, by using the principle of stationary 

total potential energy, equilibrium is satisfied on the average SO 

that it is violated across a typical boundary.
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CHAPTER 6 

SOLUTION OF ELASTIC PROBLEMS USING FINITE ELEMENT METHODS 
  

A solution of the cylinder problem of 4.4 was obtained in terms 

of the parameter 8. While 6 is constant for a uniform elastic 

cylinder, its value varies slightly for a viscoelastic waveriay, and 

an "exact" solution was only obtained by neglecting this change in 8. 

For both elastic and viscoelastic materials any change in the wall 

thickness will affect the value of 8, and the use of a constant value 

can no longer be justified. An exact solution will then be much more 

difficult, but as the membrane stresses are easily found even when 

the wall thickness varies, a solution is possible if the problem of a 

non-uniform beam on a non-uniform flexible base can be solved. Because 

of the nature of this problem, it was thought that a finite element 

method using beam-type elements offered the best method of approach. 

To obtain experience in finite element methods, uniform beams 

were first considered, and later the same methods were applied to a 

tapered beam. 

6.1 Finite element of a uniform beam 
  

Consider an element of length 2 of a beam of uniform flexural 

rigidity EI.
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Fig. 6A. 

As M = -My+ Fix 

The total complementary energy V* = U* + 0* 

or V* 

0 

Po 
(-Mit+F 1x) dx 

The complementary strain energy of the element U* = Js 2E 1 

= ale (MER-MiF 1 2243F322)-Fiws - Fows - MiO1 - M202 

For equilibrium Fo = -F, and Mo = -M, + F,2 

Hence V* may be expressed in terms of F, and M,. 

‘Qyx 
For. stationary total complementary energy a = 0 and ot 0 

Hence equations are obtained giving F,; and M, in terms of the nodal 

displacements. 

Similar expressions are obtained for F2 and M2. 

These equations are best expressed in matrix form 

or 

co * é R be Sates 

: 23 Re 23 Re 

M 6 ee 2. 
ve EEE g = g 

F 12 —6_ he son? 
: 23 2? 23 22 

6 2 6 4 M i [ae beagle a 
L 92 Q 22 ed     

“tho =e PRI. 

< 

c \ 

W) 

6, 

W2 

    L 82 J 

ov* 

oMy 

(6.1.1)



The same stiffness matrix is obtained by the principle of 

stationary total potential energy as a special case of the stiffness 

matrix of a tapered element of 6.4 below. 

If the beam is adequately supported it will be possible to 

invert the stiffness matrix [K] to give the inverse matrix KT"! 

then. duh IM. AFF 

and if the nodal forces are known the nodal displacements may be 

calculated. [9] 

It will be seen that the stiffness matrix of 6.1.1 is 

symmetric. If a beam is divided into several elements joined at 

the nodes, then at each node common to two elements the conditions 

of equilibrium and compatibility must apply. This means that the 

nodal forces for the two elements must be added, and the nodal 

displacements must be the same for the two elements (otherwise there 

will be a discontinuity in the beam). The separate stiffness 

matrices for the two elements may therefore be combined by adding 

appropriate rows and columns, thus forming the combined stiffness. 

matrix which is still symmetric. The formation of this combined 

matrix is more fully described below in 6.3 and in the Appendix. 

6.2 Elastic structures 

A structure may be regarded as an assemblage of separate 

members, each of which will in general have flexural and extensional 

deformations due to applied forces. Each of these members may be 

treated as a separate finite element joined to other elements at
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the nodes. Equilibrium and compatibility conditions will apply 

at each node, so that a combined stiffness matrix for the whole 

structure may be formed as noted in 6.1. [10] 

With certain types of structure, changes of length of the 

elements are small in comparison with the displacements due to 

bending, and under these conditions only bending effects need be 

considered. 

Example 

A typical example of this type of structure is the Portal 

frame shown in Fig. 6B, where each member has a length & and a 

flexural rigidity EI. It is required to find the slopes and 

deflections at B and C due to a horizontal force applied at C. 

  

    A D \ 
“SASS SSN 

Fig. 6B. 

The structure may be regarded as an assemblage of 3 separate 

elements joined at B and C as shown in Fig. 6C, and changes of length 

of these elements will be neglected.



She 

  A db 
Le) N 

Fig. 6C 

For element AB Uo = 6, =O, Uy = Ups 6, = 0, 

otek & 6EI 6 
Then from 6.1.1 Fy = “ya eg + “ee b 

_ 6EI 4EI 
and My pet eo 

Hence at a distance x from B, the bending moment 

  

te Miekek = hu, iM =o, ss (oem % oto. )x 

$° g a os 

& yo re 
Then the strain energy of AB, Ung = f FT o% may be expressed in 

5 

terms of U, and 6B 

For element CD in. 0. = 0, Uy = U 6, = 60 
c* Ces 

Since the change of length of BC is assumed to be negligible UL = Ub 

and hence the strain energy of CD is found from an identical expression 

to that for Unp> except that ce is replaced by 8o:



= 60 '< 

For element BC V; = V2 = 0 (since changes of length of AB and CD 

are neglected) 6; = OO @ = 6. (compatibility conditions for rigid 

joints at B and C). 

Gein ert 
Then Fy = ged 48 uate 

ak Zed 
and My = ors On 1 °c 

M = M, ~ F,x may then be used to find the strain energy of BC, 

BC’ 

Then the total potential energy of the system is given by 

V=Q+U 

ele geen Ce ap ope “ep 

where rs is the horizontal force applied at C, and M. and Mo are the 

couples applied at B and 7 

Then by using the principle of stationary total potential 

energy 

  

av 24EI 6EI 6EI 
—-= 0 gives F_ = Le. eee 6. + Sep 

oF. 9 Cit g8 ei eee Oe eee Ce 

and similar expressions may be obtained for M. and Mo from 

ay = 0 and 2 = 0 
b C 

_Expressed in matrix form the three equations give 

M 8 6 2 

’ se Ere ke u 
ot = EJ we a Re Cc 

2 6 8 
np , et 8



Since, in the case considered, M. = Mo = 0 these equations 

are easily solved giving 
3 

os ee 
c  BGy-a2 

ha pers (6.2.1) 
pb.” Seve? aery 

Once the values of Uos ce and 6. have been found 6.1.1 may be used 

to calculate the values of Me and M. (which by symmetry are respectively equal 

equal to Ma and Mo). 

_ 6ET 2EI ee 
he amb ie . b Toe 

u = Lo, + SP oe o3 py bs 2 L oe 

These results were checked by using conventional beam deflection methods, 

by treating AB and CD as cantilevers subjected to end forces and couples and 

joined by a third beam BC. The conditions of equilibrium and compatibility 

must again be used for B and C. The results obtained were identical with 

those found by the finite element method. 

6.3 Elastic beams 

So far, each beam considered has been treated as a single finite 

element. In order to obtain more experience in the use of the finite 

element method, types of beam which are divided into several elements 

were next considered and the examples in this section show how the 

stiffness matrices for the whole beam are assembled,and check the 

accuracy of this method 

As noted in 6.1, the stiffness matrix for an element of a 

uniform beam derived shes may also be obtained by using the principle 

of stationary total potential energy. This method is used below 

in 6.4, and begins with an assumed deflection shape described by 

W = a, + aX + a3x7+ a,x°. Now if a uniform beam is subjected to 

end forces and couples only, conventional beam theory shows that
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the deflected shape is represented exactly by this equation, and, 

given the values of the forces and couples aiid the fad cont een, 

the values of the coefficients a, may be determined. Since the 

stiffness matrix for one element is derived from an assumed (correct) 

shape which applies to the whole beam, the beam may be considered as 

a single finite element. This method was in fact used for the 

frame of 6.2. 

If, however, point loads or couples are applied at points 

other than the ends to use previous results the beam must be divided 

into separate elements so that these forces may act at nodes which 

are common to adjacent elements. The stiffness matrix for the whole 

beam is then obtained by adding the stiffness matrices of the 

separate elements correctly and since the matrix for.each element 

contains only 4 rows and columns, the resultant matrix will be 

banded with a band width of 7 elements. Again there will be no 

difference between the results obtained by this method and beam 

theory. 

Distributed loads can, however, be only approximately 

represented by a system of point loads at the nodes. In the case , 

of a uniformly distributed load the force on each element will be 

proportional to the length of the element, and could be equally 

divided between its ends. 

This is simple "static" lumping of the distributed load. 

More accurate results should be obtained by sharing out the load
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from work consideration, i.e. the work done by the approximate 

lumped system must be equal to the work done by the distributed load. 

If, however, a sufficient number of elements are used the 

simpler "static" lumping should give sufficiently accurate results. 

  

  

        

Example 1 

ree fre Y / 
/ 

A B cv 

Consider a uniform cantilever of length L(=22). If this 

beam is divided into two elements of length 2, AB and BC, their 

stiffness matrices will be identical. For equilibrium at node B, 

iy = 0 and =M, = 0 and for compatibility of adjacent elements 
b 

(Wap and (@)a_ must be equal to (w.)p- and (6 )p- respectively. 

Both these sets of conditions are satisfied if the third and fourth 

rows and columns of [Kp are added to the first and second rows 

and columns respectively of [K]pc: 

Using the stiffness matrix of 6.1.1 for each element, the 

combined stiffness matrix is:-



«632 

Re Veh AG A Ba a 
- ga ee ae 

a Boe ee eh 0 
& 2 & 

Te 6 24 Da apg Oe 
EI ae Qe Q3 L 

oe Ok 0 Bree £ 
£* Q 2 a £ 

12 6 12. 8 
Meee 2 eee 

6 2 6 4 0 wee — a geo — 

E : S* g 4? £5)     
which is still symmetric, as noted in 6.1. 

Since ‘in this case C is a fixed end, W, = 0. = 0, so that the 

last two rows and columns of the stiffness matrix may be deleted 

giving the equations:- 

          

ey rep 6 12 eet. 3 
Fa oe Ce rh Wa 

6 4 6 9 9 
Ma io Ria S a 

7 s, €} 4 r (6,3:4) 

ws "24 

6 2 8 M O. 2 8 
L bd ee g : ea Pb   

If an end load -F is applied at A, then the nodal forces are 

ZS = -F, M. = FA = M. = 0. Solution of the four equations above then 

; ae ark von SPOS oe 

ONES Mat * Gere ta ORE? any 84 ET oe ee I cit A as
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which agree exactly with conventional beam theory. For this particular 

example, as only end forces are applied, one finite element would have 

given exactly the same end deflection and slope, so there is no 

increase in accuracy due to increasing the number of elements. 

Example 2 

If the beam of Example 1 carries a uniformly distributed load 

of p per unit length along its whole length, by using "static" lumping 

-a single finite element would approximate the distributed load by 

L ae ; pL* 
a force of - a at each end. This gives an end deflection of - 6ET 

which is 33% high compared with the result from beam theory, and an 

8 

end slope of - pu which is 50¢high. 
4EI 

However, using two equal elements in Example 1, the nodal 

forces and moments at A and B are now {- c, 0, - Pe, 0 } and the end 

4 

deflection and slope by solving equations 6.3.1 are - ser (8 % 

3 

high) and Se Pr (12.5% high). By doubling the number of elements, 

the errors have therefore been reduced to about a quarter of their 

opaviuts! values. This is because the finite element method cannot 

exactly represent the deflected shape of a beam carrying a distributed | 

load, but by increasing the number of elements the difference in any 

one element between the actual shape of the beam and the shape Sivan 

by the finite element method is drastically reduced. 

To obtain an even higher degree of accuracy the cantilever was . 

divided into -5 equal elements, and since there are 2 constraints only
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10 displacements and forces need be considered giving a 10 x 10 

stiffness matrix. For simplicity EI is taken as unity, the length 

of each element 2 and the total load on the beam are also taken as 

unity. A uniformly distributed load is replaced by the nodal forces 

shown 

  
  

E-0 i 

. A ha, FEZ elc. 
  

  

      

O
N
 

o
e
 

      = Ot f-0-2 Fz2=O-2 Rees. s0-2 | 

NOUS Foes ow eee F, are forces 

Pea i ga ee Fy, 9 are moments (all zero here) 

Ujtly -. » . + « Uy are deflections 

eta oe es Uio are slopes 

Foy <1 a2 6-12.56 | far) 

0 6 pee 62s 0 Us 

0.2} |-2 -6 24 0 -12 6 us 

0 Gee Oe Boke B20 Uy 

10.21. 0-12 -6 24 0 -12 6 Je 

0 ee ae Uc 

0.2 QO .-127 -6 2490-12. 6 | 1% 

0 Be Og ee 2 ET oe 

0.2 ORE, 6 80h 0 Lbus 
Pos 62 a Seen            
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A computer program [Prog. 2] was written to read in the forces and the 

non-zero elements of the stiffness matrix given above (all other 

elements were zero) and to solve the equations by the Gaussian 

elimination method, finding u,y first and then substituting back to 

find the other displacements in turn (7)... the factors €, Ijs% and fF 

may then be re-introduced. 

The results obtained from the computer program were :- 

Node ] 2 3 4 5 

Deflection . 16:83 = 11.60. 7.50 3.83 Le t® x us 

Slope a PRs 24.90 33.95 © =3:30 . SRbs xe 

where F is the total load on the beam and 2 is the length of each 

element. 

The end deflection and slope are easily found from beam theory 

3 a 2 2 

being fe = 15.625 oo and - ae) = - 4,167 oe respectively. 

_ The end deflection is therefore 1.3%high and the end slope 1.6% high. 

These figures are acceptable for most purposes, but even more accurate 

values could be obtained by using more elements. 

The computer program used to solve this problem is limited to 

cases where the beam has a uniform cross-section and all elements are 

of the same length. In 6.4 a finite element method is developed to 

allow for variation in both the depth and length of the element.
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6.4 Finite element method applied to a tapered beam 

Consider a beam of rectangular cross-section of uniform width b, 

but varying depth d. Let w, 6; and wy 62 be the deflections and 

slopes at the two ends of an element of length 2 and let x = 0 at the 

left hand end of this element. 

    

  

Fig. 6D. 

Assume that at a distance x from this end the deflection w is given by:- 

W = a, + aX + a3x? + a,x? 
; ss (6.4.1) 
Then 6 = ee ag 2a3X + 3a,Xx? 

Then by substituting x = 0 and x = 2 in these two equations, 

expressions for w; 6; We and 62 are obtained. 

These may be written as 

fue” [LY fat 

where [L] is a 4 x 4 matrix, the elements of which are functions of 

the length of the element &. 

Hence {a} = [A] {u} where [A] = ty" 

The deflection at any point in the element is



~ Gate 

wee tle *. x*L fa} 

et ke Re er [Al at 

a 

Also the curvature of the neutral surface r = ow and the strain 

at a distance y from the neutral surface e =F it follows that 

< 6 12x 4 O Ten 
Se “YL (- + uM (= we 2) +a aoe are (-é as oF) 02] 

For a linear elastic material o = Ee and the strain energy of the 

element U 5 S {o}*{e}d (vol). 

O' Tax 
22. Qo. 

2.6 * = + a2)02] dx dy 

+ 12%), +(- . + 270, + —— ty Hence U = F Sytl(- Se + 3 ; 

+(- 

or U = 2 Ss y?[G(x,u)]? dx dy : es (6.4.2) 

Now consider the element of Fig. 6£ tapering uniformly in depth 

from d,; to d2 . Then d = d, -mx where m = (d) - do )/2 

  

j 4 

ee ae 
p<t——— Ko} 

  

  Q
e
 
P
y
 

    
Fig..6E.
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Hence in 6.4.2 the limits for y are +(d, -mx)/2 and for x, 0 and & 

Eb : : | 
Then U = 35 i. (d, -mx)?[G(x,u) ]*dx 7 (6.4.3) 

or U ; Tu,) 

Also the potential energy of the nodal forces and couples 

Q =-Fiwy - M161 ~ Fow2 - Mo@2 . (6.4.4) 

and the total potential energy of the element V=U+2 or 

V oF u, + Hu,) 7 #:1,273,4 (6.4.5) 

Then using the principle of stationary total potential energy 

-6V = 0 

and hence F, ay {Y(4)| (6.4.6) 

Initially, because of the complicated expressions obtained when 

the two terms in 6.4.3 are multiplied together, it was thought that, 

for small tapers, the m? and m*? terms could be neglected. After 

multiplying other terms (i.e. terms containing d, and m) together and 

integrating 6.4.3 gives an expression in terms of usu. (7,3 = lh2s4s4). 

The partial differentiation of 6.4.6. then results in an expression for 

each nodal force (or moment) in turn, each being a function of the u,'s. 

The 4 coefficients so obtained are the elements of one row of the stiff- 

ness matrix. Since there are 4 partial differentiations, all 4 

rows of the stiffness matrix are obtained. 

In matrix form this stiffness matrix is:-



(18d2-6d, ) 

TL
S 

IK] = 53 

Symmetric   

  

e
h
 

(18d2~6d: ) 

oa
ce
 

w 

_ 6déd 
Q2 

G3 (194, -6¢ wD _ 1) ma 

: 

di (12d,-6d a! 276d; ) 

Bi a,- di) 

2 

St (12d2~6d, ) 

Giigd,- 5d 7. 2~ 5di)   
(6.4.7) 

As far as the author is aware, such a stiffness matrix has not 

previously been presented. 

Example ] 

As an initial check on the stiffness matrix of 6.4.7 a tapered 

cantilever with an end load was considered 

  

  

  
  

ys € 
L = 4 4 de = 0.94) 

4.5 a 

eal 

Since w; = 6; = 0 

3 

F, “ike Nees SoANeedkey = > 10.2 a 

E oaa kay = £5. (4.8 ob 

Mp = ky 3We 46 ky 402 where ku = k3y 

ee | 

fe 7 3.1 a
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Since in this case M, = 0, Ga: 2.- pew 
uy ‘ 

3 

and hence we = oe where I, = Tdi 

In this case, conventional beam theory gives the solution 

: d Ory ee 

weep a ang) a laaG) “Pad! 

and when dp = 0.9d, 

wp = 023605F22* 
2 he ree. 

  

The finite element result is therefore about 0.1% low which 

seems very satisfactory. 

Example 2 

As a further check it was decided to apply this method to a 

cantilever of parabolic profile so that by varying the lengths of 

the individual elements different values of the ratio d,/d,would be 

  
  

  

    
  

  

used. 

L. tm 

4) po x* \ f $ # 
\ 7 9 : 

\ & i 

- . 
— 

a 

= 20(1-d)? . X (1-d) 
\ z 

  
  

Qu
.
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The beam was divided into 5 elements as shown. 

For convenience d, was taken as 1 so that L = 5, but any other pair of 

values having the same ratio could be used as the deflection involves 

the non-dimensional factor r). Similarly the end load Fgis also 

taken as unity. 

A computer program (Prog.3) was written to evaluate the individual 

elements of the stiffness matrix, to assemble the stiffnessmatrix for the 

beam and to calculate the values of the displacements. After re- 

introduction of F, E and b the end deflection obtained was 

12 
Eb" 101.68F. 

Beam theory now gives an end deflection 

4. = 2 

w= 1 ee A aS dx 
or (1 - feo)" 

This integral was evaluated numerically with the aid of a digital 

computer. To minimise errors, 50 divisions were used and the result 

obtained was 7 

wae 
WS rr 101. 38F 

The finite element solution is therefore about 0.3% high, which 

again seems quite satisfactory, especially as this error could almost 

certainly be reduced by dividing the beam into more elements.
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The position is: not however quite so satisfactory if it is 

observed that due to neglecting the m? and m*® terms in 6.4.3, the 

stiffness matrix 6.4.7 contains terms which are unbalanced between 

d, and do. 

For example consider the following 

  

  
  

        

he Co Acai thea eo 
N ' i iY, 
N . g Y 
Wa ° 0 ak 
NX as it ey 

No Gs Oo JL 

eee "a ; N Fa ay 
N 

(a) (b) 

Fig. 6F. 

(a) has already been dealt with and gives an end deflection of 

; a 
0.360 Me (about 0.1% error). But (b) is the same beam 

reversed and should give the same deflection. 

The equations are now 

F 

0 

kiawi + Kio 81 N 

Kiow, + k226, 

Substituting for ky; ky,2and k,3gives 

Fes " 
wW;.. 2.0. 367 fo j.e. about 2% error. 

The error in the end deflection therefore depends on the 

direction of the taper, the greatest error occuring when d, < do. 

This is obviously unsatisfactory as actual beams may taper in either
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direction. So long as there is a lack of balance between d; and dp 

terms in the stiffness matrix of 6.4.7 this difference must, however, 

appear, and the basic cause of this unbabeaiee was thought to be the 

omission of m? and m? terms in the expansion of 6.4.3. The full 

expansion of (d; - mx)* was accordingly used in deriving a more 

accurate stiffness matrix below. 

6.5 Improved stiffness matrix for a tapered element 

When the complete expansion of (d, ~- mx)? is given in 6.4.3 

_ Eb 
Us Soy K

e
 

(d? -3d?mx + 3d,m?x? - m®x>)[G(x,u)]? dx 

° 

: 6 ] 
where G(x,u) = (- Sp 2%) wi +(- 2 + Oh)or +(2y- “Swe +(- £ + Peer 

If partial differentiation with respect to us is carried out before 

integration then 

ee : 
Fe = = re f (d, - mx) G(x,u)g; dx 

where 9. is the coefficient of us in G(x,u) 

Since G(x,u) contains terms in Ww; 6; W2 92 the expression for 

F will be of the form k. wi +k: 61 + kz Wo + ks 02 and each of the 
in is i3 1s 

k.. (1 = 1,2,3,4; j = 1,2,3,4) must be found separately. 
ij 

For example consider the coefficient of 6, in the expression for 

Fy 1,0, Kio.
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For convenience 2 is taken as unity. Since the dimensions of 

each Kay are known 2, 27 or 2° is easily inserted as appropriate at a 

later stage. 

Eb kia = 75 (d? -3d}mx +3dym?x?~m*x?) (-4 +6x)(-6 + 12x)dx 

Oo 
F
e
 

After multiplication and integration the substitution 

m = (d, - d.)/2 is made (m = d, - dz in this case where & is taken as 

unity ) 

and re-introducing the & 

kiz = 4p yo (342 +1.2d8d, +0.6d,d +1.2d3). 
  

The other 15 elements of the stiffness matrix are found in the 

same way. The complete matrix is 

cp| Lfi.2d3+1.8d3d,] 1 Pdz+1.2d3d, J _, 1 J1,2d%+0.6a%d, 
yo] B41 .8did3+4. 209 74+0.6did3+1.2d3f “S21 eel. 2didd +3d2 

1J2.2d}+d¥ dz -k 1J0.8d}+0. 2d} d2 
Qi+0.4did3+0.4d3f “12  g] 40. 2d dF +0. 8d 

Symme tric ; “kia “Kr (6.5.1) 

1f0.4d3+0.4a3d, 
Zi+d,d2+2.2d3     

While these expressions are more complicated than those obtained 

using only a partial expansion of (d, - mx)?, the discrepancy between 

right- and left-hand versions of thé same beam now disappears and it 

is found that bigger differences between d, and dg compared with the
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values used in 6.4 can be used without increasing the errors in the 

displacements. 

It will also be seen in 6.5.1 above, that when the taper is 

zero d, = dy and the stiffness matrix here and the less accurate 

version of 6.4.7 reduce to exactly the same form as the stiffness 
3 

matrix derived for a uniform beam in 6.1.1 since a8 rs 

As a check of this improved stiffness matrix, a cantilever was 

considered as a single element acted on by an end force and an end 

couple separately. 

An expression for the end deflection of a cantilever subjected to 

an end force has already been found 

_ 12F 23 d3 hi 
ED a lth do) i. (7) (di-do¥ 2 aa 2(dy=do)4 

‘Similarly if an end couple M is applied, the end deflection may 

- be shown to be 

6Me?2 
= : where d is the depth of the beam at its free end. 

Ebdid. 

  

For various values of d,/d, the end deflections were calculated 

for an end force and an end couple acting separately using these 

expressions. Values of end deflections were also found for a 

single finite element using the stiffness matrix of 6.5.1 and the
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error in the value obtained by the finite element method was found 

in each case. The results are shown in Table 6.1. 

  

  

  

  

Ratio of depths Percentage error in end deflection 

do/d, End force End couple 

On : ~9.5 ~30.2 

0.2 -1.4 - 2.4 

0.5 “1.9 + 3.4 

0.8 -0.5 + 0.2 

1.0 0 0 

1.25 -1.0 = 0.2 

7.9 -3.6 # 1,5 

2.0 12.38 78 

5.0 -61.3 -54.1 

' TABLE 6.1 

While these results will not hecéscarade apply to beams with 

other types of loading, the similarity between the errors for a force 

and a couple suggest that they may at least be used as a aide: It 

will be seen that within the range 0.8 < d,/d, < 1.25 errors do not 

exceed 1% and it is suggested that values within this range should be 

used, 

It is interesting to note that errors for both forces and couples 

increase rapidly at values of d,/d, of about 0.2 and 1.5. It will 

be noted that 1.5 is not the reciprocal of 0.2 and the errors at
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do/d, = rr = 5 are very different from the errors at d,/d; = 0.2. 

This lack of symmetry between the two ends of the beam was thought 

worthy of further investigation. 

6.6 Further investigation of the errors in the end deflection 

of a finite element of varying taper 
  

As shown in Table 6.1 above, for values of d,/d; outside the 

range 0.8 to 1.25, the stiffness matrixof 6.5.1 gives increasingly 

inaccurate results for the end deflection of a cantilever using only 

one element. To investigate this effect, the cantilever of Fig. 6G. 

with an end couple was considered. 

w 
  

  

  

    

- L > / po 
ny Ds iar ee d, qb Fre m = (di - do)/% 

Aw— x —+ 
Fig. 6G 

From the usual expression for the curvature of a beam 

=-M, and noting that I = (d; - mx it may be shown 1 Se - “1p 

that the - deflectionw is given by 

ee 6 oe 
TOM 2m? (di-mx) — 2md?— md, 
  (6.6.1) 

If -1<(1 - 3) + ql; the first term may be expanded as a series giving 

2 -2 pra 
oe 4 I-r I-r Mire 

Ww. TOM = 203% + 2diy* + sat x*, aah zag) Mi ee as (6.6.2) 

where r = d,/d,.
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- It may be noted that if r = 1 (i.e. a uniform beam) all terms 

except the first are zero, so that an exact value ofw_ is obtained 

with a single term. 

Now for a single finite element, the assumed shape is given by 

Wea ¢axtax* +a x3 (6.6.3) 
1 2 3 4 

From the known end conditions w; = 6, = O and the known nodal 

forces F, = 0, M, =™M the end deflection w, and the end slope @2 

may be found by using the stiffness matrix 6.5.1. Then since 

Ww, = 0; = 0, obviously in 6.6.3 above a, = a, = 0 and from the values 

of W2 and 62, a3 and a, may be found. 

These are 

. ee 2.5(8r243r-1) 
3 EB g3(r844r5410r*+20r2410r2+4r41) 
  

_ 12M = 2.5(-3r?-r24r43) 

ED 3a (r8+4r5410r*+20r2410r24+4r41) 
  

By comparing the coefficients of 6.6.2 and 6.6.3 it will be seen 

that although the two expansions agree in that the constant and the co- 

efficient of x are both zero, the coefficients of x? and x® are different. 

The assumed series 6.6.3 does not merely truncate 6.6.2 but modifies the 

first. two coefficients. 

It is therefore not possible to find the error in the finite 

element solution by summing terms containing x* and higher powers in 

6.6.2 but since 6.6.1 is exact, the difference between 6.6.3 and 6.6.1
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will give the error.. Hence by substituting x = 2 in these two 

equations the error in the end deflection is found. 

  

3 2 

This is Snir tere ~1 | x 100% (6.6.4) 
r§4+4r°410r*+20r 24+10r7+4r41 

Substitution of a particular value of r in 6.6.4 is found to 

give the same value as that obtained by direct comparison and 

previously recorded in Table 6.1. 

Since with this particular type of loading a, = a. = 0 

it 6.6.3 reduces to w asx*e a,x? 
2 

and £¥ = 2a3 + 6a,X 

There will therefore be a point of contraflexure when 

2a; - 6a,x = O i.e. when x = -a3/3a,. 

Now if a3 and a, have opposite signs this will give a positive 

value of x. 

r< 1 a, is positive for all values of r 
  

a3 is negative if 8r* + 3r-1< 0 

i.e. when r < 0.21 (the only positive value of r) 

r> 1 ay is positive for all values of r 
  

a, is negative for all values of r 

~(8r24+3r-1)2 
3(-3r3-ré+r+3) a 

Hence -a3/3a, is always positive but if 

the point of contraflexure will lie within the length of 

the beam. This occurs if r > 1.5 approx.



aaa 

If therefore r < 0.21 orr> 1.5 the point of contraflexure 

will lie within the length of the beam and will move towards the 

fixed end as r becomes smaller or greater respectively. The 

difference between the actual and assumed shapes of the beam will then 

increase rapidly 

pec 0:21 06 > 15 

C is a point of contraflexure 

within the length of the beam. 

  

- - - Assumed shape i 

  

Actual shape 

It is gratifying to observe that these two values of r are in 

complete agreement with values of 0.2 and 1.5 already noted from 

Table 6.1 at which errors begin to increase rapidly. 

It should perhaps be repeated that while these exact results will 

not necessarily apply to other types of loading there is evidence to 

suggest that similar values of r will be obtained, so on no account 

should r be less than 0.2 or greater than 1.5 

It is probably safer to use a more restricted range 

0.8 < r < 1.25 to obtain a higher degree of accuracy, while if the 

stiffness matrix of 6.5.1 is applied to a uniform beam the error in 

the end deflection is zero.
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In view of the results obtained here, the stiffness matrix of 

6.5.1 was used in subsequent work, the above limits on the ratio of 

depths being observed. 

6.7 End deflection of a uniform wedge 
  

In 6.6 the behaviour of a single tapered element of a beam was 

investigated. In cases where a distributed load is applied, the 

beam must be divided into a number of elements so that equivalent 

"lumped" loads may be applied at the nodes. It was thought that 

the wedge shown in Fig.6.8. a problem for which an exact solution 

has been obtained in 3.3 would be a suitable test for the finite 

element method using the improved stiffness matrix of 6.5.1. 

For comparison the end deflection given by elementary beam theory 

was also calculated. 

  

    ae 

  NNN
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Fig. 6H. 

The three methods used to find the end deflection were:- 

(a) Exact solution using the methods of the theory of elasticity. 

The result found in 3.3.6 above is repeated here 

: 

wie E(tanazay E(t) +(1-v) tne + 22n(sece) ] 
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(b) Elementary beam theory 
  

; 6pLr This gave w = ges (6.75%) 

(c) Finite element solution using the improved stiffness matrix for 
  

a tapered beam-type element of 6.5.1. In this case 20 elements 

were used, for the first 19 of which a ratio d./d,= 0.8 was used. 

The lengths of the elements will therefore decrease as the free end 

of the beam is approached, but these 19 elements will account for 

98.6% of the length of the beam. 

The length of the twentieth element will then be the remaining 

1.4% of the length of the beam and d, will be zero. This value of 

d, may give rise to considerable error for this particular element, 

but since it represents such a small part of the whole the effect on 

the beam as a whole should be negligible. The stiffness matrix for 

‘the beam was assembled and the displacements calculated by means of 

a computer program (Prog.4.). 

The results obtained for the end deflection using the three 

methods are shown in Table 6.2.
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Angle . End deflection + p/Eb 
  

a degrees (a)Exact solution (b)Beam theory (c)Finite element 
(20 elements ) 

  

  

5 9027.2 8959.8 8954.3 

10. 1127.9 1094.5 1093.8 

15 333.9 311.9 31.7 

20 140.6 124.4 124.4 

25 71.8 Ge AY 59.1 

30 41.3 31.2 31.2 

TABLE 6.2 

It will be seen that (b) and (c) give almost identical results 

for all values of a, thus providing another check on the use of the 

finite element method. It is interesting to note that both these 

methods will give inaccurate results since they both neglect all 

stresses except the longitudinal stress, while method (a) allows for 

all three coplanar stresses. The resulting error is however only 

about 0.5% when a = Sr but this increases to about 25% when a = 30°. 

This confirms that the simple beam theory will give satisfactory results 

providing the depth of a beam is small in comparison with its length, 

but as these two dimensions become similar the beam theory will 

give increasingly inaccurate results. 

6.8 Effect of shear stress on the stiffness oe of an 

element of a beam 

Table 6.2 shows that the finite element method gives rather
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poor results for the end deflection of a wedge as the angle of taper 

increases. This is almost completely due to the neglect of shear 

stresses which will affect the beam deflection appreciably for large 

tapers. Severn shows [11] how the effect of shear stress may be 

allowed for in the stiffness matrix of a parallel beam. This method 

assumes that stresses vary in a particular way, and to obtain 

experience in the use of this method the stiffness matrix for a 

uniform beam was first derived, and the same method was then applied 

to a tapered element. 

  

  

        

FA. ¢ AE 
Y The assumed stresses for the 

Q— Xe 

r element shown in Fig. 60 were:- 

d Bending stress o = y(A,+A,)x 
ate a (6.8.1) 

ee = 2 ee Shear stress t= (1-4y*/d* )A3 

‘ M, 

Fig. 6d. 

Also from Fig. 6J o = My/I - Fyxy/I (6.8.2) 

Comparison of the coefficients of 6.8.1 and 6.8.2 gives A, and Ag. 

oo , oT 
ax * dy 0 and hence A; Equilibrium of stresses requires that 

may be found. 

Assume initially that the right hand end of the element is fixed 

Then Jo (-12/bd*) xy (12/bd?)y DR 

ie + 0 7 M 1 

where f = (-3/2bd)(1-4y*/d?)



= Sete 

and hence 

€ 1|  (-12/bd?) xy (12/bd®)y F 
ul 

a
 

Y 2(1l+v)f 0 My 

For a linear elastic material the complementary strain energy 

is equal to the strain energy 

d 
ee 

oS es 
Oo 0 

Hence U* {o}* {e}dy 

2
 

rr if. ( BxFt + § (ives - 45x FM, + a M3) dx (6.8.3) 

° 

(a) Uniform element 

Since d is constant 6.8.3 is easily integrated giving 

fin re [ See" Fe + P(14y) é Fi - os 27F My + geet] (6.8.4) 

Also the complementary energy of the nodal forces is 

Q* = -Fiw, - M16, 

and the total complementary energy 

ye a: U*.4°9* 

Using the principle of stationary total complementary energy 

e = e 9U* sh 9U* 
éV 0 ‘ee Wi = oF, and 6, "ay 

Hence from 6.8.4 

. 493 Ww rots Fy where ri = pay + : ia. ) ea 

he es 
6, Cor hg My V2 bd 

cis 122 bar
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The flexibility matrix may be inverted, and substituting for 

Yrs Yo and rz 

2 
Fy : 12 EL ] 9 ] W) : 

M g2 +129 Li] 4 22 where g = (l4v)d /5 

: Bn | J 

This gives only one quarter of the stiffness matrix for the 

element, but using its symmetry ks = Kaa 

Also equilibrium conditions required that F2 = -F,so that 

k3, = oki s» and Mp = Fy2 ~- M, giving kas = dk; - Koa: 

The complete stiffness matrix is then found to be 

& g 
] -1 

g2+12g & Q2 gz Q2 

SoS ee be (6.8.5) 

Be ae 2 
‘ Q2 : 

Symmetric xz +9 
L ‘J     

which agrees with the result obtained by Severn. 

(b) Tapered element 

If d; and do are the depths at the ends. of the beam (see Fig.6E 

of 6.4), then, assuming uniform taper d = d, - mx where m = (d,-d2)/2.
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Hence from 6.8.3 

U* = 
S
u
 uy gy? 

ae el 1 3 1 * Capag ~ ae Cap gaa) Fata ay tae ae JHE 

haat = our 2 gain et aes and 6, = ON 

Hence we | 

on 
= 

8, ie 

Ce ea 12 (law where r, “ane wae si, + liv } an (GE 

6 2 6. ] ] 
ret Gr oe (oa) (6.8.6) 

= wo
 ! 
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As -in (a), the flexibility matrix may be inverted to give one 

quarter of the stiffness matrix for the element and the same methods 

as in (a) may be used to find the other elements of the matrix. 

  

ia gdy 2 2d, 7 
Hence [K] = ear bo ditdy 1 ree 

Yr, ae “"£dy : 27 dy 2 aT 

T3 - date di+d2 Y3 

(6.8.7) 

d,+d> 

Symmetric "ry _ 2? (di-do) 
} Y3 ‘d, +d    
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where Yis Yo, P3 are as given in 6.8.6 

and ry = .73/rs 

It may be shown that when ex f d, the stiffness matrix of 6.8.7 

reduces to exactly the same form as the matrix of 6.8.5 derived for 

a uniform element. 

It was initially found that the stiffness matrix of 6.8.7 was 

giving Very inaccurate values for the end deflection of a tapered 

cantilever. Further investigations showed that the error appeared 

to be in the calculated value of r,. It was further found that the 

first two terms in the expression for r, in 6.8.6 almost exactly 

cancelled 42 an (PF) in the last term, so that a small error in any 
Z 

one of these terms could result in a very large error in the value of r;. 

This difficulty was avoided by writing ot as 1 -(P - 1) and 

so expanding an($4) as a series. This is only possible if 

-l< oa -l<1 or0< “ <2. It is then found that the first two 

terms of r,; cancel with the first two terms of the expansion after 

multiplication by - ag so that 

eh 4° ] 2 Dp is a alg 
YY, = a ¥ z( dp 1)+ ¥ 

te (Ww) hx un ( a) | | (6.8.8)
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A computer will easily sum this series to any required degree 

of accuracy. It was found that inclusion of terms greater than i0°¢ 

gave satisfactory results and this required the evaluation of 8 terms 

when di/dz = 1.25 , but note that the series will converge increasingly 

Slowly as di/dz approaches 2 or 0. In the case of the upper limit 

this difficulty can be avoided by increasing the number of elements, 

but there appears to be no way of overcoming the difficulty as d,/d, 

approaches 0. 

Reference to 6.8.6 shows that when d,(or d.) = 0 then 

Yi, Y2 and r3 all become infinite and it is therefore impossible to 

evaluate the elements of the stiffness matrix of 6.8.7. This 

difficulty appears to arise from the physical nature of the problem 

of a beam of zero depth carrying a shear force and therefore subjected 

to an infinite shear stress. In the case of the uniform wedge 

tapering to a point discussed later in this section, a satisfactory 

result was obtained by using a small but finite depth at the pointed 

end. This may introduce a small error, but does enable a solution 

to be obtained. 

The uniform wedge prea ousti considered in 3.3 aid 6.7 gave 

solutions which were in good agreement for small values of a, but the 

finite element method of 6.7 gave increasingly poor results as a 

increased, due to the total neglect of the effects of shear stress. 

This problem was re-examined using the stiffness matrix of 6.8.7. 

Unfortunately, as noted above, r;, r2 and rz all became infinite for 

the last element where d2 = 0. To avoid this diPfieuttyon common 

ratio d2/d,; = 0.9 was used for 85 elements which accounted for
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99.99% of the beam. The remaining 0.01% was neglected. It was also 

thought possible that replacing a distributed load by a number of point 

loads might affect the shear deflection as a constant shear force is 

assumed in each element whereas it actually varies. (The same problem 

is not encountered with moments as the finite element method allows 

for variation of bending moment within the element). A second 

solution was therefore obtained for 100 elements of equal length 

and assuming an arbitrary ratio d,/d, = 0.5 for the last element 

The results obtained by these two methods were almost identical, thus 

confirming that the neglect of the last element and the arbitrary ratio 

chosen for d2/d; have negligible effect on the end deflection. 

Taking the solution from the stress function of 3.3 as exact and 

taking v = 0.3, Fig.6.8.1 shows how the errors for the two finite 

element solutions, i.e. (a) neglecting and (b) allowing for shear 

stress, vary with the angle of taper. It will be seen that both 

methods give reasonable results up to about 10°, and the solution 

using shear stress gives acceptable results up to perhaps 20°. For 

larger angles the errors increase rapidly, and the allowance for 

Shear stress appears almost exactly to halve the error obtained when 

shear stress is neglected. Unfortunately the assumed stress pattern 

of 6.8.1 differs increasingly from the actual stress distribution, 

sothat even 6.8.7 gives poor results for large angles. 

The assumed stresses are easily calculated from 6.8.1 and the 

exact expressions for the stresses O.. etc. in a uniform wedge have 

already been derived in 3.3.5. By the usual method of transformation
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of coordinates it is: then possible to find the stresses oy and Ty 

corresponding to the assumed bending and shear stresses. 

Fig. 6.8.2 shows that for an angle of taper of 10° it is not 

possible to show any difference between the exact and assumed values 

of Oys and while the exact and assumed shear stresses differ considerably 

their values are small in comparison with Oy. At 50° exact and assumed 

values of cy are still in reasonable agreement, but because of the much 

larger relative values of 7 compared with the 10° taper the great 
y 

differences between exact and assumed values are now of considerable 

importance. As Fig. 6.8.2 shows, at 50° the error in the end 

deflection is about 27% and becomes even greater at larger angles. 

6.9 General solution for a tapered beam 
  

So far, only cantilevers had been considered, and because the 

same two displacements were always zero, a particular type of stiffness 

matrix was obtained. In this section a solution was obtained for a 

beam with any number of supports (rigid a elastic) which could be at 

any point on the beam. A computer program (Prog.5) was written to 

compile the stiffness matrix and to determine the displacements in 

the usual way. The improved stiffness matrix of 6.5.1 was used, 

so that the effect of shear stress was neglected, but this will have 

negligible effect in most beam problems. If, however, it is desired 

to include shear effects, the stiffness matrix 6.8.7 could be used 

instead of 6.5.1 giving increased accuracy (slight in most cases) at 

the expense of increased computation time.



‘B89 
Old 

e
e
 

osssusc 
ity 

ge 
a
 

= 
Me 

Az 
4 

0 
d- 

dz~ 

 
 

L
A
A
 
A
N
A
 

9 
< 

 
 

peo 
N
M
 

A
N
 

S
3
a
S
S
3
B
I
S
 

M
s
 

°o 
q
o
s
 
- 

: 
iat 

doo) 
d
o
s
 

o 
; 

d
o
s
-
 

d
o
o
 

  



~ 6S. 

In order to allow a support at any node, if the beam is divided 

into N elements, the stiffness matrix must contain 2N + 2 rows. The 

appropriate row and column are then deleted for each rigid support 

Since the displacement is then zero. This procedure is described 

in more detail in the Appendix. 

Once the displacements have been calculated it is then a 

simple matter to substitute back to find the nodal forces and couples, 

and so to calculate the maximum bending stress at each node. Prog 5 

was written so that all these values could be determined. 

The values of the forces at all supports were also required, 

and care was necessary in allowing for any force applied at a node. 

For example consider two adjacent elements with a prop and 

an applied force P at their common node as shown in Fig. 6K. 

  

          

P 

a It is required to find the 

prop reaction force R. A B | 
ik 
Prop 

Fig. 6K. 

When the displacements at the 3 nodes shown have been | 

calculated, multiplication by the appropriate element of the stiffness 

matrix will give (Fo)q + (Fi)p. Since the node is in equilibrium 

Rots), + 4Fitg.t 2 = 0 | 

and since P is known R is easily calculated.
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In the case of. an elastic support of known stiffness the 

method described below was used. 

Consider an elastic support 
  

      

  

( ; at a node where the deflection 

< 
¢ is u.. Then the nodal force 

bean ‘ 
hf, F = “ku; where K, is the . 

stiffness of the support. 

FIG <: Gtr 

Also F. = Ks us Jo MRA? UE tees ss ce ji +3 

or O=k 

i.e. an elastic support is treated by adding its stiffness to the 

element on the leading diagonal of the stiffness matrix at 

that node and taking the nodal force as zero. — 

The program was checked in the following examples. 

  

                

Example 1 

4 b= b = 12 

EEO NIA NO NA NIN 

Aq | | B de 
a E = 3000 

Ount, ———      
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This was a cantilever with a rigid prop carrying a uniformly 

distributed load. This load was replaced by nodal forces using the 

static lumping method and 10 elements were used. The results 

obtained from Prog. 5 were:- 

Prop load 3.76 units (3.75 exact value) 

Maximum bending moment -7.05 (-7.93) 

Maximum deflection - 0.0179 at 6 units from A (-0.0180 at 5.7) 

It will be seen that there is very good agreement between the 

two sets of results 

Example 2 

k,? 1200 

CP ee 
Sk 250 : k,,= 36 

Example 1 was modified by introducing the three flexibilities 

  

shown in the supports. 

The finite element method using Prog.5 gave results:- 

Prop load at B 4.27 units (4.266 exact value) 

Deflection at B 0.1187 units (0.1185 exact value) 

Prog. 5 therefore has been shown to give satisfactory values 

for prop forces, maximum deflections etc. for beams with either rigid 

or flexible supports
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Further checks were made with several rigid supports, and 

with a mixture of rigid and flexible supports. These results are Hoe 

given here, but in all cases it was found that errors in the finite 

element results were very small, and these could be reduced to 

negligible proportions by increasing the number of elements. 

6.19 Use of the general program for a tapered beam (Prog.5) 

This program may be used for any linear elastic beam of 

rectangular section of constant width with any number of supports, 

either rigid or elastic, and with any type of loading. The solution 

gives the deflection, bending moment and maximum bending stress at 

each node, and the force and/or moment at each support. 

The following information is presented on data cards:- 

1. The value of E in MN/m?. 

The width of the beam in mm. 

The number of elements into which the beam is to be divided. 

>
 

Ww 
M
 

7 
e 

e 

Corresponding values of distance from the left hand end of 

the beam and its depth at that point starting at the end of 

the beam. All dimensions to be in mm. 

For the remaining sections the following notation is used. 

Each node is associated with two coordinates, the first (odd) of 

which denotes a vertical displacement or force (upwards positive) 

and the second (even) applies to the slope or moment (anticlockwise 

positive) 

  

ee eae 
a rE \ 
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5. Number of rigid supports. (0 if no rigid supports and omit card 6). 

6. Position of rigid supports (i.e. give the numbers of the coordinates 

for which the displacements are zero). 

7. Number of elastic supports (0 if no elastic supports and omit card 8). 

8. Corresponding values of position (see 6) and stiffness in N/mm 

(= kN/m) of the elastic supports. 

9. Number of applied forces and couples taken together. 

10. Corresponding values of position (see 6) and magnitude of any 

applied force or couple. Values to be in N(forces) Nm x 10% 

(couples). 

Values will then be printed for the distance from the left-hand 

end of the beam in mm, the deflection in mm, the bending moment in Nm, 

the stress in MN/m?, each reaction in N, and each fixing moment in Nm. 

Example 

  

BP
N 

N
e
 

  
  BOA

 

  

x 50 50 80 120 150 200 mm 

d = 40 35 32 28 25 20 mm
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The beam shown has a constant width of 18 mm, is rigidly clamped 

at its left-hand end and there are two elastic supports. Three 

forces and a couple are applied. E = 5000 MN/m?. ~The following 

data cards are required:- 

1. 5000 

oo te 

Scr e 

w.. Uc oeo gO ae O”° oe 120 aoe TS. 26.2006 20 

Der. 

OF; age 2 

ee 

B.. - &: >see... 8 800 

ee. 

ai Ieee AO Vg F5 Te 25000 

The results of this program are printed in Fig. 6.10.4; 

6.11 Finite element method applied to a plane stress problem 
  

In the case of a beam-type finite element, there are only four 

degrees of freedom per as amelie and since these elements are joined 

end to end the assembly of the stiffness matrix is relatively simple. 

It was thought that more would be learned about the complexities of the 

finite element method by considering a place stress problem, using 

triangular elements, for each of which there are six degrees of 

freedom. In addition, since the assemblage of elements may be 

arranged in a variety of ways, the assembly of the stiffness matrix 

will now be considerably more complicated.
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Since beam-type elements have been shown to give very satisfactory 

results for bending problems, it was thought that it would be interest- 

ing to see how triangular elements could be used in beams (121; 

The first requirement was an arrangement of elements which will 

exactly fit the shape of the beam, and the simplest possible arrangement 

is a pair of right- and left-hand right-angled 45° triangles, called 

for convenience A and B triangles, as shown in Fig. 6M. 

+ 

“| 
      Fig. 6M. 

These may be fitted together to extend either horizontally or 

vertically. The stiffness matrix for each of these triangles is 

then required, and since it was envisaged that the global nodes would 

be numbered as shown in Fig. 6N, the element nodes were numbered in a 

similar order, i.e. nodal numbers increase upwards and to the left. 

2rd [eed 3 
  

242 [a2 
  

        Srel 24%! Pete | 1 
  

Fig. 6N.
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A 

  

Fig. 6P 

Now for triangle A assume that the horizontal and vertical 

components of the displacement of any point within the element are:- 

U- = Os. t O2X +. O3y 

vi. Oy + A5sX + Acy 

where the values of the parameters oa are adjustable. 

This displacement pattern is the simplest possible for a plane 

triangle and implies that each of the three stresses Oy. Oy» Ty 

is uniform within any one element. 

‘Now the displacement components u and v anywhere within the 

element may be expressed in terms of the nodal displacements 

UisVi seeee Va (or more conveniently as Us, 16168 se aeb The 

strains can then be found in terms of the Us'Ss and from the usual 

linear stress-strain relationships the stresses may be similarly 

found. Then the strain energy of the element 

Us 5 Sito} te} dx dy where b is the thickness 
of the element. 

The potential energy of the.nodal forces is 

Q = ~Feu. Hl = lee eeeee 6



e 10T 

Hence, by using the principle of stationary total potential energy 

it may be shown that the stiffness matrix for the element is given by:- 

[kK] b SS [By° [D] [B] dx dy 

where [B] = a 0 oy 0 ts. C3 

  

] v 0 

and [D]=7» |v 1 0 

0 0 (I-v)/2 

in [B] bi = Yo- Ye 

C} X3 7 Xo etc. 

- It may also be shown that the stresses in an element are given 

by 

{o} = [D] [B] {u,} 

so that once the nodal displacements have been determined the 

calculation of stresses is fairly straightforward. 

In the:case of the present "A" triangle b= 1, c,= -1, be = 0, 

Co: = 1, b; = -l, Cc, = 0. 

It is then found that:
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[kK], = Eb sf ca Gey) a) Be ee ew 

2(1-v*) 

3-V dT ev) 
2a ee 2 

ape 8 ORY 

] -v 0 

Symmetric 1 0 

ey 
2 ~ 

Yb 

{ 

B 

2 pe 

Fig. 6Q. 

Similarly for triangle B. 

This is numbered in accordance with the chosen scheme. Again 

let the perpendicular sides be of unit length. 

Then bee 1, bo. Oyo be ed 

o£ Oty e 1G es = +)
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[kK], = ae Loot 0 “Vy =] v 
2(1-v ; 

I-v I-v 1~v l= 
He -tp o te 

iy 2 Liew l-v 
eae oa 

Symmetric ] v -1 

oy tA 
123 

3-v 
‘ ee q     

The procedure for assembling the stiffness matrix for an 

assemblage of A and B elements, according to the rules previous ly 

established based on compatibility and equilibrium, is explained 

in the Appendix. 

  

Examples on beams treated as plane stress problems 

A simple arrangement of 10 triangular elements was first used 

to form a beam 1 unit deep and 5 units long. This is shown in 

Fig. 6.11.1. Constraints are applied so that the top left-hand 

corner of the beam is not allowed to move in any direction, and 

the bottom left hand corner is not allowed to move horizontally. 

A vertically downward unit force is then applied at the top right- 

hand corner (Fy, = -1). The stiffness matrix is then assembled and 

the nodal displacements are found as for a beam type element. 

Fig. 6.11.1 shows the nodal displacements (factor F/Eb omitted), 

the upper line giving the vertical displacements (positive upwards ) 

and the second line the horizontal displacements (positive to the
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right). It will be seen that horizontal displacements at the top 

and bottom of the beam are nearly equal and opposite at the same 

distance from the end of the beam, and that vertical displacements 

at the top and bottom are nearly equal, both useful checks on the 

results. When one considers numerical results, however, a very 

different picture emerges. Treating the beam as a cantilever 

and neglecting the effect of shear stress, the vertical end deflection 

should be - id and since 2 = 5d, and I 25 bd? this reduces to 

F 
- 600 tb: 

The finite element method gives an end deflection of 

approximately - 130 te i.e. less than a quarter of the correct 

answer. This poor result is due to the fact that stresses vary 

rapidly and change sign between the top and bottom of a beam, while 

this finite element method assumes a constant stress within each 

element. |The chosen model is thus a poor one. 

To achieve greater accuracy more elements were added, keeping 

the proportions of the beam unchanged (i.e.2 = 5d). The computer 

program was modified to allow for these additions and the results 

are shown in Figs. 6.11.2 to 6.11.4. In each case horizontal and 

vertical displacements are shown at intervals of 2/5 at the top and 

bottom surfaces of the beam, the factor F/Eb being omitted. 

It will be seen that although with increasing numbers of 

elements the end deflection increases, even using 250 elements 

(Fig. 6.11.4) there is still more than a 20% error. Attempts to
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increase the number of elements further were unsuccessful as the 

storage capacity of the computer was exceeded. 

By using the symmetry of the beam and assuming that horizontal 

displacements on the neutral axis were zero the resultsof Fig. 6.11.5 

were obtained using the top half of the beam only carrying half the 

total load. Results should be the same as those of Fig. 6.11.3 and 

there is in fact only about 1% difference. |The same method was then 

applied to give the results of Fig. 6.11.6 using 320 elements 

(i.e. equivalent to 640 elements for the whole beam), and even this 

gave an end deflection which was about 7% low. The graph of 

Fig. 6.11.7 shows how the accuracy varies with the number of elements, 

and although a very dramatic increase in accuracy is shown, it appears 

that several thousand elements will be necessary to give any further 

significant improvement. . This will probably be beyond the scope of 

any existing computer, as increasing the number of elements also 

increases the band-width of the stiffness matrix so that the number of 

elements of the stiffness matrix to be stored is approximately 

proportional to (Number of elements )!*® 

It will be noted that if only two types of element (i.e. A and 

B triangles) are used, an arrangement which is unsymmetrical about 

the centre line of the beam must be obtained. To achieve symmetry 

_another pair of triangles must be introduced, and these are as 

follows :-
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Again, taking unit perpendicular sides 

bi. 8 Ope Ne ahh. bs ea 

See ate wT, eee 0 
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Using the four different triangles, the stiffness matrix was 

compiled for two different symmetrical arrangements of the same beam. 

Displacements for these two cases are shown in Figs. 6.11.8 and 6.11.9. 

If these results are compared with those of Fig. 6.11.3, which 

is an unsymmetrical arrangement of the same number of elements, it 

will be seen that the improvement for the symmetrical arrangement 

is small. 

Once the displacements have been found, the stresses are fairly 

easily found and Prog.6 calculates values of stresses for the beam 

arrangement of Fig. 6.11.9. Since there is no variation of stress 

within an element, stresses at the nodes are four by taking an average 

of the stresses in the surrounding elements. It is found that 

transverse and shear stresses are small in comparison with longitudinal 

stresses and Fig. 6.11.10 compares the nodal stresses at a distance 

of 2f5 from the fixed end of the beam with the "exact" values as 

calculated from o =v. 

It will be seen that, as for displacements, the finite element 

method results for stresses are too low. In the case considered 

the end deflection is about 21% low and the stresses 14% low. 

It is therefore concluded that because of the high stress 

gradients in a beam, treatment as a plane-stress problem by the 

finite element method will give serious errors in both displacements 

and stresses, even when using a large number of elements. Much 

more accurate results will be obtained more easily by using beam-type
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elements, especially if allowance is made for the shear stress as shown 

in 6.8. 

Alternatively a more elaborate plane stress program could have 

been developed using more than three nodes for each triangular 

element and so allowing for stress variation within the element, 

[22] [23]. In view of the excellent results obtained using beam- 

type elements this was not however thought to be necessary.
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CHAPTER 7 

SOLUTION OF LINEAR VISCOELASTIC PROBLEMS 
  

USING FINITE ELEMENT METHODS 
  

In the oheiious chapter, finite element methods were applied to 

linear elastic materials. Also in 3.4 it was shown that if the 

solution of an elastic problem is known then the use of the correspon- 

dence rule should enable the corresponding viscoelastic problem to 

be solved. In particular it was seen that if stresses remain constant, 

or nearly so, a solution may be obtained by using time-dependent 

values of Young's modulus and Poisson's ratio E(t) and v(t) 

respectively. It is then only necessary to use the values of E(t) 

and v(t) for a particular value of t to solve a particular problem 

for a viscoelastic material instead of using the constant values E 

and vy for an elastic material. 

In this chapter, three viscoelastic problems were considered. 

In each case any variation of stress was small so that the use of 

time-dependent "constants" could be justified. Theoretical 

solutions of these three problems were obtained by using finite 

element methods, and the results obtained were compared with 

experimental results. Since each of the problems was self-contained 

theoretical and experimental results are given consecutively for each 

case so that comparison of the results is easily made.
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In each case it is assumed that the viscoelastic behaviour of 

the material is described by elastic dilatation and 3-parameter 

distortion models as this fits the experimental creep test results 

of 4.1 for Perspex very well. This means that E(t) and v(t) will 

vary according to equations 3.4.11 and 3.4.12. 

al Perspex frame 

The Portal frame shown in Fig. 7.1.1 was the subject of this 

investigation. An elastic structure of this type has already. been 

investigated in 6.2, and an expression for the deflection in the 

direction of the load is given in 6.2.1. 

Now for an elastic structure, the relation between the nodal 

forces {F}° and the nodal displacements {u}° is {F}© = [K] {u}®, 

where [K] is the stiffness matrix. Since each element in the 

stiffness matrix has a common factor E, which is constant for an 

elastic material, this relation may be written as {F}° = ELK, ]{u}® 

where the elements of [K,] are functions of I and & only and are 

therefore constants. 

The Laplace transform with respect to time is 

{F}® = E [k,] tu}® 

and using the correspondence rule to obtain the result for a 

viscoelastic material, E is replaced by 

9KG(z_+ Ss) 

(3K+G)s + 3Ky + Gz (see 3.4.6)
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Now to find displacements 

(iy = GEG) + 3+ Gr Aftee 
9KG(z + s) 

and for a system of constant forces, this reduces to 

(=. [l PeCt- eo) 1 (uF Ti 

since {u}® owe 
E{iK] 

Using the values of E, C and c from 4.1.1 for Perspex the values 

of the nodal displacements {u} could then be calculated from the 

elastic displacements {u}©. In this case only the deflection in the 

direction of the force was calculated. Using the dimensions of the 

frame in Fig. 7.1.1 together with the initial value of E of 

3000 MN/m? from 4.1.1., it was calculated that a load of 45N would 

give a maximum stress of approximately 20 MN/m? which was about the 

limiting stress beyond which non-linear effects became significant 

previously found for Perspex in 4.1. Equation 6.2.1 then gave an 

elastic deflection of 4.24 mm, and the viscoelastic deflection found 

from 7.1.1 was then given by 

u = 4,24 [1 +.0.18(1 - e708") 7 am (7.1.2) 

where t is the time in hours. 

These results are shown in Fig. 7.1.2
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To: confirm these results a Perspex frame was made to the 

dimensions of Fig. 7.1.1, a load of 45N was applied and the deflection 

was measured with a dial gauge for 0 to 6 hours. These experimental 

results are also shown in Fig. 7.1.2. 

It is seen that the theoretical and experimental results are in 

very close agreement, thus justifying the use of (a) the finite 

element method of 6.2 as applied to elastic frames, and (b) the time- 

dependent value of E(t) which gave equation 7.1.1 

7.2 Cylinder of varying wall thickness subjected to an 

internal pressure 

A solution for a uniform cylinder has been obtained without the 

use of numerical methods in 4.4. It may be recalled that an "exact" 

solution for the change of radius of a cylinder of uniform thickness 

subjected to an internal pressure was obtained by assuming that the 

parameter 8 remained constant, and that this assumption was justified. 

An "exact" solution for a cylinder of varying wall thickness presents 

much more difficulty, although Hetenyi [13] obtains a solution for 

an elastic cylinder in terms of Bessel functions, the result being 

expressed as an infinite series. 

By using the stiffness matrixfor a tapered element the finite element 

“method is used now to obtain a solution for a viscoelastic cylinder 

of varying thickness.
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It will again be shown that variations of stress are small and 

accordingly the use of time-dependent values of E(t) and v(t) may be 

justified. 

As previously noted in 4.4 any ee bending of a longitudinal 

slice of the cylinder wall will be opposed by adjacent parts of the 

cylinder, and the problem is therefore analagous to that of a beam 

on a flexible base. It was first necessary therefore to see how 

this base would modify the stiffness matrix for a longitudinal beam 

type element. Again in 4.4, it was seen that the radial stiffness 

per unit length k = Eh/r?, and if this stiffness is multiplied by 

the length of the element and then "lumped" at the nodes, the 

resulting stiffness at each end of the element k' = k&/2 where 2& 

is the length of the element. 

I F 

Pia 

Fig. 7A 

    

      

Consider first, a uniform elastic element as shown in Fig. 7A, 

and for convenience let the right-hand end be fixed. 

Then M = M, - Fix + k'w1x since the stiffness k' will introduce a 

downward force of k'w,.



=~ L4e 

The total complementary energy 

V* = UF + 9 
Q M2 

£ DET dx - FW, ~ M0, 

; ave: "Saal 
For stationary total complementary energy ani 0 and mM, * 0 

Two equations are thus obtained which may be arranged to give 

one quarter of the stiffness matrix for the element 

  

Laer. 6EI 
Fy | geet k 22 Wi 

6EI 41 
Mh “ee ae 6: 

By comparison with the stiffness matrix of 6.1.1 it will be 

seen that k' has.been added to ki,. Similarly if the left-hand 

end of the element is fixed the last quarter of the stiffness matrix 

may be obtained, and it is found that k' is added to k33. Since 

the original parts of the stiffness matrix of 6.1.1 are in no way 

altered by the stiffness of the base, this same method may be applied 

to a tapered element, i.e. the stiffness matrix of 6.5.1 was 

modified by adding k' to k,; and to kj3. 

In addition, due to the effect of adjacent parts of the cylinder, 

the simple modulus E must be replaced by the modified form E/(1-v?) 

in the stiffness matrix. 

Finally, to obtain a solution for a viscoelastic cylinder, the 

constants E and v must be replaced by their time-dependent forms so



te 

that in the stiffness matrix of 6.5.1 E is replaced by 

E(t)/{1-[v(t)]?} where values of E(t) and v(t) are found from 

3.4.11 and 3.4.12. 

Also, since k' is a function of E the time-dependent value k'(t) 

must be found by replacing E by E(t). 1.6. bit) = E (tie. 

It was shown in 4.4 that the deflected shape of the cylinder could 

be regarded as being the deflection due to a ring load and couple 

superimposed on the "free" expansion of the cylinder. In calculating 

this "free" expansion time-dependent values of E(t) and v(t) must be 

used and this value is now given by:- 

If the first element of the slice of the cylinder as shown in 

Fig. 7B is now considered, displacements are prescribed at end (1) 

i.e. wi, = -Ar and 06, =0 
Moy 

1 1 

(1) M, The equations for the right-hand 

E end of the element then become: - 

F4g.. 28 

Fo = kai(-Ar) +ks2(0) + Kagv2 + k3y462 

  

Me = kyi(-Ar) +ky2 (0) fy Ku we oT ky4 Oo 

where Kay is one of the elements of the stiffness matrix of 6.1.1 

modified as noted above. These equations are most easily fitted 

to the remainder if they are rewritten as:-
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Fo + KgiAr = Ksawe + k3y82 

Mo + kyiAr = Kuawe + KyyO2 

That is k3iAr and ky:Ar are added to F, and M, (the applied 

nodal force and moment) for the first element only, and the first 

two elements are omitted from the corresponding rows of the stiffness 

matrix. 

The force and stiffness matrices are then assembled in the usual 

way and the deflections {w} are found with the aid of a digital 

computer. Finally the net increase of radius at any node j is 

wy74r. 

Since a solution for a uniform cylinder was obtained in 4.4, 

this result was checked by the present finite element method. 20 

elements were used, each 10 mm long. 

The results are shown in Fig. 7.2.1. and to check for possible 

errors due to the use of too few elements the calculations were 

repeated using 80 elements of 2.5 mm length. Differences were less 

than 0.1% so this source of error is not important. 

It is interesting to compare the results of Fig. 7.2.1 with 

those previously obtained by the "exact" method shown in Fig. 4.4.1. 

It will be seen that the results are identical for t = 0, a further 

check on the accuracy of the finite element method. In the region 

where local effects are important (0 - 40 mm) there is a small but 

increasing difference between the two sets of results. For example
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at x = 20 mm, the finite element method gives a value about 1/4% 

less than the"exact"value at t = 1 hour, and this difference 

increases to about 1/2% at 6 hours. This difference is probably 

due to the assumed constant value of B in the "exact" method, an 

assumption which is not necessary in the finite element solution. 

It would therefore seem that the finite element solution may be 

more accurate here. 

The results predicted by this finite element method were also 

checked experimentally. |The dimensions taken from the Perspex 

cylinder used in the test which wererequired for the theoretical 

solution were:- Radius r = 74.6 mm, wall thickness h = 3.18 mm, 

Pressure p = 0.1 MN/m?. As noted below in the description of the 

experimental procedure the values of the viscoelastic parameters 

previously found for a stress of 5 MN/m? were used in equation 3.4.11 

0.58h7... Also 
8 

i.e. E = 3100 MN/m?, C = 0.06 x 10 m?/MN and z 

" an initial value was taken for Poisson's ratio v = 0.35 [14]. 

Details of the computer calculations are shown in Prog.7, which 

may be used for either : constant or varying wall thickness. 

Theoretical values of deflection, bending moment and longitudinal 

and hoop stresses were calculated, some of the results being shown 

in Fig. 7.2.2 for various distances from the fixed end of the 

cylinder at different times. It should be noted that the value of 

stress given is for either the inside or the outside of the shell, 

the greater value being given. In Fig. 7.2.3 the variation of 

stress with distance at both surfaces is plotted for t = 0.
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It will be seen that the maximum stress is the longitudinal 

stress at the inside surface at the fixed end. This stress decreases 

rapidly as the distance from the fixed end increases, and at about 9 mm 

from the end the greatest stress becomes the longitudinal stress at 

the outside surface. At about 14 mm from the end the hoop stress 

at the outside surface becomes the largest stress, and from about 

50 mm the two hoop stresses are almost equal and are twice as large 

as the longitudinal stresses which are also almost equal. These | 

latter are of course the membrane stresses. 

Although stresses for times other than t = 0 are not plotted 

it is shown in Fig. 7.2.2 that the stress which changes most rapidly 

with time is the hoop stress at the fixed end of the cylinder. 

This is entirely due to the increase of Poisson's ratio with time. 

This local effect dies out very rapidly at increasing distance from 

the fixed end; in 6 hours the hoop stress at the fixed end increases 

by about 6%, while at 10 mm from the end the increase is only about 

1% in the same time. 

Theoretical values of the variation of radius with distance are 

plotted in Fig. 7.2.4 for three values of time. This figure shows 

that theoretically there is a rapid increase of radius to a maximum 

value at about 40 mm from the fixed end. There is then a gradual 

decrease for about another 40 mm after which the radius remains 

almost constant for any distance from the end. The surface of the 

cylinder therefore takes the form of a damped cosine wave which is 

almost completely damped out after one cycle. This pattern is the
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same for all times, but the radius increases with time at all 

distances. No change jin the position of the point of maximum dis- 

placement is apparent, although there may be some movement which 

is too small to be shown. Reference to 4.4 above shows that the 

point of maximum deflection should move slightly away from the fixed 

end with increasing time, but that the distance changes by only 

about 1/2% in 6 hours. A change of this order would not be seen 

on the graph. 

To verify these theoretical results it was decided to measure 

the change of radius of a Perspex cylinder subjected to an internal 

pressure. The nominal dimensions of the cylinder were 6 in external 

diameter and 1/8 in wall thickness. The cylinder was accurately 

measured and the values obtained and used in the finite element 

program above were :- Mean radius 74.6 mm, wall thickness 3.18 mm. 

The cylinder was 18 in long and was fitted with 1 in thick 

Perspex and plugs which were cemented in position as shown in 

Fig. 7.2.5. Calculations showed that the local effects of these 

ends would decay in a distance of about 50 mm, so that there would 

be a central portion of the cylinder over 300 mm in length over 

which conditions would be almost exactly uniform. In the centre 

of this portion a rigidly held end was simulated by a well-fitting 

sharp-edged steel ring which could be considered rigid in comparison 

with the cylinder. The change of radius was therefore negligible 

at this position, and due to symmetry, the slope would also be zero. 
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The cylinder was filled with oil, and an internal pressure 

applied by means of a hand-operated pump. To ensure that the 

pressure remained constant, a dead-weight pressure gauge tester 

was connected in the oil-line. As the cylinder expanded the piston 

in the gauge tester slowly fell and an cccasional stroke of the 

pump was required to raise the piston clear off its seat to ensure 

constant pressure in the cylinder. 

The Philips extensometer previously used for creep tests was 

fitted to the cylinder in such a way that it measured the change in 

length of a chord of 50 mm original Yength. Simple proportion 

would then give the change of radius. 

A series of foaainne were taken with the extensometer attached 

at various distances from the simulated end and while a constant 

pressure of 1 bar (=0.1 MN/m?) was maintained, extensometer readings 

were taken for a period of 6 hours. Pressures higher than 1 bar 

were initially attempted, but caused fracture of the cylinder at 

stresses much lower than those previously applied in the creep tests 

of 4.1. With the pressure actually used, stresses did not exceed 

about 5 MN/m?, so that in obtaining theoretical values for the change 

of radius, values of E, C and ¢ previously found for 5 MN/m? were 

used rather than the average values for stresses up to 20 MN/m? as 

used for the frame of Tals 

These experimental values of increase of radius are shown in 

Fig. 7.2.4 so that a direct comparison may be made with the theoretical
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results previously obtained by the finite element method. There 

is, in general, quite good agreement between the two sets of results, 

the maximum difference being about 6% which may be regarded as 

satisfactory for most engineering purposes. 

Possible sources of error are:- 

ly Difficulties in obtaining accurate creep test results at low 

stresses which require small loads so that friction effects 

may become important. 

Two sets of extensometer readings were involved (creep tests 

and cylinder test), and it is estimated that there are errors 

of up to 2% in each case. 

There is some doubt about the value for Poisson's ratio. 

A figure of 0.35 seems to be generally accepted for Perspex 

[14], but the value was not measured for the material used. 

Possible variations in the thickness of the cylinder, but 

these are likely to be small. 

Difficulties in maintaining a constant temperature. 

Although the maximum variation during any one test was 1, 5s 

the variation between sets of results was up to aYe, 

Temperature changes of this order should however produce 

little change in the properties of Perspex [6] and this 

was verified by repeating some of the creep tests at 

different temperatures within the range + 2°C of the 

average temperature. 

It was not found possible to compare the theoretical results 

for a tapered cylinder with experimental values, but it has been
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shown that the finite element method used gives satisfactory 

results for a uniform cylinder. Since the method employed is 

basically the finite element method applied to tapered beams which 

has been checked by other theoretical-methods (6.4 and 6.7 above) 

and experimentally (9.3 below), it seems reasonable to believe 

that equally satisfactory results will be obtained for a tapered 

cylinder. 

This investigation was therefore concluded by considering 

theoretically the effect of a small taper near the end of the 

cylinder. 

Since the maximum (longitudinal) stress exceeds the membrane 

hoop stress for only about 5 mm from the fixed end it is obviously 

wasteful of material to use a uniform wall thickness and design 

the cylinder to withstand this purely local stress. By using a 

5% taper for 45 mm from the end, stresses at and near the end are 

reduced and Fig. 7.2.6 shows that the effect of this taper is to 

reduce the longitudinal stress at the fixed end to almost exactly 

the same value as the hoop stress at 45 mm from the end, thus making 

more efficient use of the quantity of material used. This could 

be of interest where weight and cost are important considerations. 

7.3 Application of the finite element method to a plane 

' stress viscoelastic problem 
  

Although bending problems are not handled particularly well 

as plane stress problems because of the number of elements needed,
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the finite element method gives much better results when stress 

gradients are smaller. An application to this type of problem is 

reported by Webber [14] using a 9 in x 9 in x 1/4 in* sheet of 

Perspex which was stressed by compressive forces applied to two 

opposite edges while the other edges and the two faces were left 

free as shown in Fig. 7C. Buckling was prevented so that there 

were stresses only in the plane of the sheet, and these stresses 

were assumed uniform throughout its thickness. 

le 
LoapING BaR 

eek 

  

    
  

      
NOSE NON NESE SON 

Fig. 7C. 

The force F was such that there was nominally a uniform stress 

of 4000 1Ibf/in? applied to a horizontal cross-section, and displace- 

ments were measured at several points. but the only ones of interest 

here are the downward displacement of the loading bar v, (average 

of 2 readings) and the horizontal displacement at the centre of a 

vertical face u.. Because of friction at the top and bottom edges 

transverse movements were almost absent here, and the horizontal 

  

* Imperial units are used throughout in this section so that direct 

comparisons may be made with Webber's results.
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friction forces involved converted what would otherwise have been a 

uniform stress system into one in which stresses varied in both 

directions. 

Experimental values of v, and u, were obtained by Webber and also 

his finite element solution gave theoretical values. In order to 

obtain the latter, creep tests were carried out and parameters 

evaluated assuming Maxwell distortion and elastic dilatation. 

A comparison of Webber's bine NEED) and theoretical results 

shows that although good agreement is obtained for times of 2 to 5h 

approximately, differences are greater for earlier and later times. 

The present author thought that by assuming 3-parameter distortion 

and elastic dilatation better agreement might be obtained over the 

whole period. 

Using the results of Webber's creep tests the three parameters 

were first evaluated and the values giving the best average fit with 

experimental results in the range 0 - 4000 lbf/in*were:- 

~6 a 

E = 420 x 10°Ibf/in?, C#=0.5 x 10 in?/1bf, c = 0.3h 

1 -0.3t ) ho 

420x10 

en 

+0.5x10 (l-e (7.3.1) 

  

Due to the symmetry of the system only one-quarter of the 

Perspex sheet need he considered, so the stiffness matrix assembly 

of Prog.6 was modified to give the square assemblage of Fig. 7D.
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Fig. 7D 

  

Horizontal and vertical displacements were set to zero on the 

vertical and horizontal centre lines respectively and also no 

horizontal movement was allowed at the top edge. 

An axial force F was applied so as to give a nominal uniform 

compressive stress of 4000 Ibf/in? - the value used by Webber. 

This force was first shared between the nodes to give a uniform 

pressure on the top edge of the plate, and initial (elastic) values 

of E(420 x 10°lbf/in?) and v(0.35) were then used to evaluate the 

elements of the stiffness matrix. 

The initial elastic displacements were then obtained from the 

computer program, and the stresses calculated in the usual way from 

these displacements. It was immediately clear that the vertical 

displacements at the upper nodes were not equal. In other words 

Webber's assumption that a rigid loading bar (which must give 

equal displacements) applies a uniform pressure is incorrect due to
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the effect of the horizontal friction force. A uniform pressure 

does in fact give maximum deflection near the centre line i.e. at C 

of Fig. 7D with (in this case) about a 20% smaller value at the edge 

at £ 

The computer program was then further modified to equate the 

vertical displacements at these upper nodes. This was achieved by 

adding first the rows and then the columns of the stiffness matrix 

which apply to these vertical displacements. Similarly the sum of 

the forces is taken and for convenience was assumed to act on the 

vertical centre line so that all vertical displacements were also 

referred to this point. This method gave : vertical displacement 

which was the average of the values obtained by assuming uniform 

pressure. Rather surprisingly the value of the horizontal displacement 

u, was reduced by about 10% compared with the value obtained with 

uniform pressure. This appears to result from the tendency of the 

edges of the plate to be deflected less than the centre when a 

uniform pressure is applied as noted above. To achieve equal 

deflections the pressure must therefore be increased near the edges 

of the plate. This will cause increased horizontal friction forces 

to act inwards on the top and bottom edges of the plate, and the 

resulting RS tzonta| compressive stress will tend to reduce the 

horizontal displacement up. 

Having obtained the elastic solution, the viscoelastic problem 

was solved by using a time-dependent value of E as given in 3.4.11. 

Since the initial value of E is. known, and taking an initial value of
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v as.0.35, the value of K, which is constant, is then found. 

Finally using this value of K together with E(t) the value of v(t) 

the time-dependent value of v is found. For a given value of t the 

elements of the stiffness matrix are then evaluated from calculated 

values of E(t) and v(t) and the displacements and stresses are then 

found in the usual way. 

The results of these calculations are shown in Fig. 7.3.1 which 

compares the experimental and theoretical (Maxwell) results of Webber 

and the theoretical values for 3-parameter distortion of the present 

author. It will be seen that this latter gives improved results for 

V; over most of the period, but that agreement is not so good for 

Up. Since the theoretical (Maxwell) results here were obtained from 

the incorrect assumption of uniform pressure, Webber's values for uz 

should probably be reduced by about 10% so that there is then little 

difference between the Maxwell (Webber's) and the 3-parameter 

(present author's) theoretical values for u2. 

It should be noted that the values of E(t) used here strictly 

apply only if the stresses are constant. Since the value of E(t) 

depends on the stress history only, when non-linear effects are 

neglected, each stress will be associated with its own value of E(t). 

It would appear that for the 3 values of stress there will be 3 values 

of E(t), and therefore of v(t) for each element, and calculations 

would then become extremely complicated.
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To’ attempt to find the errors due to the use of only one value 

of E(t) {for a given value of t } for the whole solid, the maximum 

variation of stress was first found from the previous results, and 

this was found to be about 10% in 10 h. It was then assumed that 

the stress varied linearly with time, and by combining the strains 

due to constant and ramp stresses as given in 3.4.8 and 4.2.1, a 

modified expression for E(t) was obtained 

E 

Ne oe re r/o, + rt]} 

E(t) =   £553,25 
1 + EC{I-[(6, 

ioe Ped 
where r = dt and Do is the initial stress 

Using the observed rate of change of stress with respect to time 

the approximate value of r is 0.010, (Stress units)/h, and using 

7.3.2 it is found that E(t) differs very slightly from the value 

obtained when the stress is constant. Even using a value of 

r= 0.10, i.e. 10 times the observed rate of change, the maximum 

change in the value of E(t) is only about 14%. (An increase in the 

stress slightly raises the value of E(t).) Since this is such a 

small difference, it seems that a value of E(t) found when the stress 

is constant should introduce only small errors. Since also the use 

' of one value of E(t) for all stresses and all elements drastically 

simplifies the calcudations, it is considered that this approximation 

is well justified. 

Further consideration of the method used to calculate displace- 

ments in this problem suggested that the re-calculation of the value
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of each element in the stiffness matrix for each value of t, due to 

the variation of v(t) is very wasteful of computer time. 

Using the method of Zienkiewicz et al [15] the strain in a two- 

dimensional constant stress system is given in 3.4.10 

: ft + c(i-e =") }0, - £ (oe _ rt Z(I-e*)}oy m " 
u 

m
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c(1-e 5°) and N = 0.5 

If the stresses vary, only the value of E will be affected, 

but its value is likely to be little different from that obtained 

when the stress is constant since& is the time-dependent part of 

E(t), which has been shown to vary little with variation of stress. 

Consideration of equation 7.3.3 shows that the strains and 

therefore the displacements in a viscoelastic solid acted on by 

constant forces will have two components, (a) elastic displacements 

Aut found by using the initial (elastic) values of E and v and 

(b) viscous displacements {u,} found by using & which is time- 

dependent and N which has a constant value of 0.5.
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The relative values of the displacements in each case will 

depend on the values of Young's modulus and Poisson's ratio, while 

their absolute magnitudes depend on the value of Young's modulus. 

The net displacements may therefore be regarded as the sum of two 

different displacement patterns, one of which fu, tis of constant 

magnitude while the magnitude of the other {ut varies with time. 

The proportions of the net displacements {u} = {ul + {uy} will 

therefore vary with time due to the change in {uy}. 

As only two displacement patterns are required, the stiffness 

matrix need be evaluated twice only, once using E and v to find Uo 

and again using E(t,) and N = 0.5 to find {u} at time t;. The 
Fe t 

values of {u,} are stored and the values of {uy} at time t, : are 

2 
E(t 

: : a { found by proportion i.e. {uy} = : {uy} 

Having found the net displacements the stresses are calculated 

using Ve(t) 2 Ve # Vet). 

This method was applied to the problem under consideration, and 

it was found that displacements and stresses were almost identical 

to those previously found by using E(t) and v(t) to evaluate the 

stiffness matrix. Using the present method it was found that for 

seven values of t, the computer time was almost halved, and the saving 

would be even greater with more values of t, since further values of 

{uy} are very quickly obtained by proportion. The method used is 

shown in Prog.8.
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The same method could also be applied if the forces vary. In 

this case a step-by-step approach would be used, calculating the values 

of {u,} and tu} for each increment of load, and finally obtaining 

the sums of all the separate displacements. Even here only two 

evaluations of the stiffness matrix would be required, since each 

displacement would now be proportional to the force. 

In this chapter, finite element solutions have been obtained for 

three different types of linear viscoelastic problem, the first two 

using beam-type elements and the third using constant strain triangles. 

In all three cases good agreement was obtained between theoretical 

and experimental results. 

However, to be able to use linear viscoelastic theory for the 

test material, Perspex, all stresses had to be kept fairly smal] 

(say less than 20 MN/m?). If higher stresses are to be used some 

form of non-linear theory is required, and this is investigated in 

the next two chapters, first using a non-linear elastic material and 

then a non-linear viscoelastic material.
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CHAPTER 8 

BENDING OF NON-LINEAR ELASTIC BEAMS 
  

The finite element method using beam-type elements has been 

applied successfully to a variety of elastic and viscoelastic problems. 

In all cases previously considered, however, a linear relation between 

stress and strain has been assumed. While this condition may be 

satisfied almost exactly by metals stressed up to the elastic limit, 

the behaviour of most plastics is markedly non-linear. 

In this section the easier case of a non-linear elastic material 

is considered before applying a similar method to the more difficult 

case of a viscoelastic material in 9.3. below. 

8.1 Strains in a non-linear beam 
  

If the effect of shear stress is neglected, plane transverse 

sections of a beam will remain plane during bending for any type of stress 

strain relation. The strain will therefore always be proportional 

to the distance from the neutral axis, but the stress will vary ina 

manner which depends on its relation to strain, i.e. the constitutive 

relation for the material. 

If the maximum strain is € at a distance . from the neutral 

axis, then the radius of curvature is



= 180+ 

Raa 
2e 

and hence dw = - 2€ 

za 

If then, for a particular beam, the relation between é and x 

is known, the usual double integration will give the deflection at any 

point. Since the curvature of a beam will depend, in some way, on 

the bending moment, it is first necessary to be able to determine 

the maximum strain for a given moment. 

Also, to use a finite element solution, since E appears in the 

stiffness matrix for a linear material, an equivalent quantity will 

be required for a non-linear material. 
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Fig. 8A. 

Consider the cross-section of a beam with the stress variation 

shown, and assume that the same stress-strain relation applies in 

both tension and compression.
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At a distance y from the neutral axis the stress is o, and the 

longitudinal force on an element of thickness dy is of dy. This force 

has a moment about NA of obdy.y. Hence for the whole cross-section 

the bending moment 
n 

y 
M= 2f obd dy 

O 

But since plane transverse sections still remain plane 

where e€ is 

and € is 

Then M 

and since 

and dy = de <
>
 

m
 

[<
> 

Mm
 

[o
m 

the strain at a distance y from NA 

the maximum strain at y = ¥ 

e* ee 
=2f 2h ey Y de 

oO € € 

ee 
Ye 3 

bey 
non tars S Gue doc (3.1.27 

  

  

Hence 

values of 

ofé-it is 

value of € 

if the bending moment at a particular section is known and 

1 eS 
pe £ o ede have been calculated for different values 

then possible (by interpolation if necessary) to find the 

at that section. 

Now for a linear elastic material
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M = o and R = vy a for any material 
€ 

Hence E =   

If the expression found for M is now substituted, the equivalent 

value of E for a non-linear material will be found to be 

wos 7 | 
have ee f, goede (8,25) 

€ é 

  

  

This expression also applies to a linear material, as if the 

substitution o = Ee is made it reduces to E. 

Having found the value of € from the known value of M, the 

corresponding value of E. may then be calculated and this will then 

be used in the finite element program instead of the value of E used 

previously. Note that E. is not a constant but will vary with the 

value of M. 

  

8.2 Finite element solution using a non-linear stress-strain law 

It should be noted that if there is a non-linear relation 

between stress and strain, beam deflections will not be directly 

proportional to forces or couples. 

This may be shown by reference to a single uniform finite element 

of a beam as shown in Fig. 8B.
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Fig. 8B. 

€ 
Since the strain energy per unit volume is Fie ode _ the 

strain energy of an element of beam dx x dy is given by 
€ 

dU = b dx dy So ode 

-Also ¢ = %/R 

and using the same method as that applied to a tapered element in 

6.4 it may be shown that 

e = -y[G(x,u)] where G(x,u) is a function of x and the 

nodal displacements as given in 6.4.2. 

y i. ; ; ae 
If now a non-linear stress-strain relationship o = ae is 

assumed, the total strain energy of the element is given by 

Lobe | aft Q n+1 

a arT Tay 5 f [G(x,u)] dx 

Again, using the methods of 6.4 any nodal force F. may be found 

“BU 
from F. = au,



er ears 

so that F, = a which gives 

Ze n : 
dba dy “-igte 12x ae 

Pee co (oh eText) (Seen (8.2.1) 

Now if n = 1 (i.e. a linear elastic material) this expression is 

easily integrated, but for a non-linear material n will not have the 

value 1 and even if integration is possible, because of the presence 

of the renew term there will be a non-linear relation between the 

nodal forces and nodal displacements. 

oU 
In a similar way M, = 56 will give a non-linear relation 

1 

between the end moment and the displacements. 

Now if the usual finite element method of the form 

{F} = [k]{u} is used, a linear relationship between forces and 

displacements is assumed within any one element. The only way in 

which the non-linearity can be allowed for is by using a different 

value of EA for each element. Although the relation between forces 

and displacements is then only approximate for a single element, it 

was thought that if enough elements were used a reasonably accurate 

result would be obtained for the whole beam. To check if this was 

so the following example was examined, 

Example 1] 
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Consider the cantilever of rectangular section b x d carrying an 

end load -P. A non-linear stress-strain relation o = + ac? was 

assumed. [To allow for + and - stresses the + sign is used for 

a + strain and the - sign for a - strain]. 

For convenience, in the finite element method, a, b, d, P and & 

were all taken as unity. 

The number of elements was first decided, and then, to find the 

bending moments at the nodes, a value of E was assumed. This value 

was arbitrary and was taken as unity. The nodal displacements were 

then calculated by using the computer program previously developed 

for linear beams (Prog. 5). The bending moment M at each node was 

then easily calculated. Then substituting o = + ac” (the + sign is 

used here since all values of M are positive, and € is positive for 

positive values of y) in equation 8.1.2 it may be shown that 

e%« [ so that the value of € may be calculated at each node. 

Again using & = + ae”? in 8.1.3 it is found that E, = 3/4aé so that 

from the known values of €, values of E, were calculated at each node. 

Average values of Ee were thencalculated for each element by taking 

the arithmetic mean of the values at the ends of the element. These 

values of ey were then used for each element in compiling the stiffness 

matrix for Prog.5 instead of the constant value of E used for elastic 

materials. 

Finally, using this modified stiffness matrix and the known 

nodal forces. the nodal displacements were calculated. The precise 

om
 

e
e
?
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form of the relationship between the end deflection and the other 

parameters is found below, so a, b, d, P and & are now re-introduced. 

Using various numbers of elements. the finite element method 

described above gave the results shown in Table 8.1. 

2 

  

  

  

  

Cantilever with an end force Oo = ae : 
ae pee 

Factor f = eat; 

Number of elements ] 2 5 10 20 

End deflection/f -3.771 -2.600 -2.311 -2.274 -2.265 

TABLE 8.1 

It appears that as the number of elements increases the values 

obtained for the end deflection are converging on the exact value. 

It is possible to verify that this is so in this case. 
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so that: from. 8.1.2, ee Bie 
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Also M = Px and at = = a 

bl OI 4 8P x 
NEUE deer Oh bdew 

Integrating twice and inserting the end conditions gives 

so that when x = 0 

y Pg w = -2.263 / Park 

If this result is compared with the previous values obtained by 

the finite element method it will be seen that the finite element values 

converge on this exact result as the number of elements is increased. 

and that when 20 elements are used the finite element result is only 

0.1% higher than the correct value. 

It does therefore appear that this modified finite element method 

will give satisfactory results for non-linear materials. 

In the previous example the stress-strain relation chosen 

o = a e* was such that if it is written o = Ee, the value of E 

increases with increasing stress. It is much more likely with 

engineering materials that the value of E will fall as the otras 

increases. A further example using this type of relationship was 

investigated.
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Example 2 

The cantilever of Example 1 was again used, but a stress-strain 

relationship o = ae - c e* was assumed. This is the type of result 

‘obtained from many plastics. To simplify the working,values a = 1 

and c = 0.04 were used. Accordingly o = c« -0.04e?. 

The finite element method described in Example 1 was again used, 

a 

the only difference being in the expressions for € and EA In this 

case equation 8.1.2 gives 

2 

M = 25° (€/3 - 0.01€?) 

za 

A quadratic equation must now be solved for € giving 

50 _ 5043 2500 _ 200M 1p 42 

Mm /9 

[There is a second root, but this gives a strain which is increasing 

as the stress falls and is not likely to apply to a real material]. 

This value of strain is now used in 8.1.3 giving 

E. = 1-0.03é 

For convenience, b, d, P and & were again taken as unity. 

Values of ES were found at each node and average values were 

calculated for each element as above. The displacements were then 

found using various numbers of elements. The values obtained for 

the end deflection are shown in Table 8.2.
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Number of elements ] 2 5 10 ; 20 

End deflection -4,534 -4.732 -4.793 -4.801 -4,803 

TABLE 8.2 

By considering the curvature of the beam an exact solution is 

again possible 

Integrating twice, inserting the end conditions and taking 

b, d, P and & as unity as above gives an end deflection of -4.804. 

Comparison with the finite element results given in Table 8.2 shows 

that the finite element solution converges very rapidly on the 

correct solution, and even using only 2 elements the error is only 

1753.° 

Using 2 elements, the relative values of E, at the nodes are:- 

at the free end 1.0, at the centre of the beam 0.90 and at the 

fixed end 0.77. There is thus a variation in EA of the order of 

10% in each element. As a guide to the use of this finite element 

method for non-linear materials it is suggested that sufficient elements 

should be used to limit changes of E, to about 10% in any one element. 

The figures above then suggest that errors are not likely to exceed 

about 1%.
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8.3 Finite element solution using numerical values of 

stress and strain 

In 8.2 non-linear bending problems were solved by using a stress- 

strain law of the typeo = a ée”, Here, instead of trying to find 

a mathematical relationship of this type between stress and strain, 

only corresponding values of stress and strain (which would normally 

be obtained direct from a tensile test) were used. 

It was first necessary to find the Rann strain at a given 

section of the beam for a known bending moment. This corresponds 

to equation 8.1.2 in the previous section. 

v4 
as 

ch
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          ea ee nnn Fc 

Fig. 8. 

Consider the case where N values of stress and corresponding 

equally-spaced values of strain are known. For convenience the 

values of e€ are multiplied by a factor f so that values of fe are 

theo eee Ns Assume that the stress-strain graph is a straight line 

between each pair of points. (Enough points must be used to justify 

this assumption.)
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Then between fe = j - 1 and fe = j 

0 = 05.1 + (9; - 05_,)(fe - [5-1]) 

Po fe d(fe):= {o,_,(fe) + (0; - o._1)[ (fe)? -(j-1) (fe) ]}d(fe) 
j-l j-1 J J a 

Hence 
j j 

foo fe d(fe)= e [7 0 - _ 3? -(j-1)? }+(9; ar ae - Ai- ~1). 

+e (6-1) (8.3.1) 

1 f.* woute a(t 1 
Now aa Soe de = (=) £ gfe ote) aa J o fe d(fe) 

j 

j 
Now let m= ar J. oO € GE a (643.2) 

E; 0 

Values of m; may then be found for i = 1, 2......N by dividing 

the right hand side of equation 8.3.1 by i?. 

a 

é 
£ o € de (equation 8.1.2) by 

bd? i 
Since the bending moment M = “Fat 

comparing values of a with m. two adjacent values of i will be found 

such that one value of m. is lower and the other higher than 2M/bd?. 

A good approximation for the value of € is then found by linear 

interpolation between these two values of ms.
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é 
Also from 8.1.3 the equivalent value of E is oe £ oe de 

@3 

i 
so that E. = 3(5)° J ote atte) 

0 

ni 
or Es; = 3 = 

: 19 (8.3.3) 

where g = u Increment of strain for unit increase of i. 

Values of E. may thus be calculated for each value of i, and 

the value of E. may be found by linear interpolation between adjacent 

values of E. for a known value of é. 

This numerical method was checked by assuming a relation 

O = aye + dog? + age® SO that exact values of m. and E. could be 

obtained by integration. Curves of the type shown below in Fig. 8D 

were obtained. 

      
  

Fig. 8D
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The numerical method gave values of m. and E. which in all cases 

differed by considerably less than 1% from the exact values obtained 

by integration, and almost any degree of accuracy could be obtained 

by increasing the number of points used from the stress-strain graph, 

although this would increase computation time. In the case considered 

a total of 12 points was found to be satisfactory. 

The program for a tapered beam (Prog.5) was then modified to apply 

to non-linear beams (Prog.9). After calculating the N values of m, 

and E. from given values of stress and strain, as detailed above, a 

value of E was assumed to determine the displacements. If there 

are no redundant supports the bending moments will be independent of 

the elastic properties of the material and so any assumed value of E 

may be used to find displacements which are then used to calculate the 

exact values of the bending moments. For a beam with redundant 

supports, however, the reactions at the supports, and therefore the 

bending moments, do depend on the properties of the material, and the 

bending moments found from the assumed value of E will be approximate. 

In this case an iterative process as described below is required to 

give satisfactory values of bending moments and displacements. 

From the bending moments found above, values of EA may be found 

at the nodes. Consideration was given to the possibility of forming 

a new stiffness matrix by assuming a linear variation of E, along the 

beam element, but although this is not difficult in the case of a 

_ (4E142E2)1 parallel beam (e.g. ki2 /27) individual elements become
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much more complicated with a tapered beam. Since the variation of 

E. within each beam element is likely to be small it was decided that 

the extra complexity would have little effect on the accuracy of the 

calculations and accordingly a mean value (E, + E2)/2 was used for 

each element, and this appears to be satisfactory, from calculated 

results. 

Having found these values of E. the elements of the stiffness 

matrix are then re-computed and new values of the displacements are 

determined. If there are no redundant supports these are the 

required values, otherwise iteration must continue until a 

satisfactory degree of convergence is obtained. The criterion for 

this . Was taken as a change of less than 0.2% of & abs (u; ). 

_ Other criteria could be applied, but this was found to be satisfactory 

giving convergence in about 4 iterations in the cases considered. 

- The finite element method has so far been checked and found to 

give satisfactory results in the following cases (i) Linear-elastic 

tapered beam with no redundant supports (ii) Linear-elastic parallel 

beam with both rigid and elastic redundant supports (iii) Non-linear 

elastic parallel beam with no redundant supports, for various stress- 

strain laws. 

It was finally decided to combine these variations and to check 

the method for a non-linear elastic tapered beam with a redundant 

support, using only numerical values of stress and strain.
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Considerable difficulty was found in formulating a problem which 

could be readily checked, but results were calculated for the following 

propped tapered cantilever. 

  

Example 

For checking only it was 

ee ee assumed that: 

o=a a ) 
a. J ) (8.3.4) 
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Note that these relationships are not used in the finite element method; 

instead numerical values of o and d are calculated for chosen values of 

e€ and x, and only these numerical values are used. 

It is perhaps unfortunate that in choosing a simple stress strain 

relationship which would allow the necessary double integration, the 

form chosen results in a value E =~ at ce = 0. This is of course an 

impossibility with any practical material as it would require that 

there should be no initial rate of strain with a gradually applied 

stress. Since however this pecularity is unfavourable to obtaining 

a good finite element result owing to the large variation of E, it 

was decided to proceed and to see if a satisfactory result was still 

possible. 

A finite element solution was obtained using 20 elements in 

Prog. 9 and reading in the required values of the beam width (1m) the
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rate of loading p(1 MN/m) the length of beam 2(10 m) and values of 

o, € and d calculated from 8.3.4 and using a = 300 and c = 0.5. 

Results are given in Table 8.3 below. 

Because of the form of the relationships chosen in 8.3.4 an exact 

solution is possible here. 

Leto=a ae where n = 1/3 

2 

Then from 8.1.2 ee a wy 6 

—
 

giving fe ee n+2 "| : 
bd7a 

Also M = 5 px?. -Qx where Q is the prop reaction 

dw 
and dx = 

where d = cx m = 3/7. 

Hence by integrating twice, inserting the end conditions and 

substituting the known values of n, m, b, p, 2, a and c from above, the 

following equation results:- 

Q> - 10Q? + 37.5Q - 50 = 0 

from which Q = 3.11 MN. 

It is then found that at the point of maximum deflection 

Le x" = 0.778x2 + 7.26x% - 30.1x +40 = 0
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giving a value Of %.= 2.40 mm 

The maximum deflection is then found to be -0.0354 m. 

These results are compared with those from the finite element 

solution in Table 8.3. 

  

Exact solution Finite element 
  

Prop load 3.11 MN 2.97 MN 

  

Maximum deflection -0.0354m at x = 2.4m. -0.0362m at x = 2.5m 

  

TABLE 8.3 

Remembering that the chosen stress-strain relation must cause 

difficulties in the finite element solution where stresses are smal] 

the agreement between the two sets of results is reasonably satisfactory. 

This example does at least show that it is not necessary to assume a 

stress-strain law to use the non-linear finite element program, but 

by using Prog.9 only corresponding values of stress and strain are 

required. In this present example 24 pairs of values were used, 

but in many cases a smaller number will be sufficient since the value 

of E will change less rapidly than in this case. 

The information required to use this non-linear finite element 

program is detailed below.
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It may be noted here that this program was successfully used for a 

non-linear viscoelastic material in 9.3. 

8.4 General computer solution for non-linear materials (Prog.9) 
  

Much of this program is the same as Prog.5, but the first 6 cards 

1b to 6b as detailed below are to be used in place of cards 1, 2 and 3 

of Prog. 

lb Number of elements 

2b Number of points from the stress-strain graph excluding the origin 

3b Assumed value of E to determine moments 

4b Scale of strain axis i.e. strain rapreseried by. i= h 

5b =Values of stress in order for equal strain increments 

6b =Width of beam 

Followed by cards 4 to 10 of Prog.5. 

Example 

The following values of stress (MN/m?) and strain are known 

  

Point number i Te 2 3 4 : 5 6 
  

Strain ee. (0501..0,02 470.03. ....0, 042: .9.05%".:0.06 
  

Stress oO 10 19 27 33 38 42 
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The following data cards would be used: 

Ib ON 

a0: 46 

3b 800 (An approximate average value of E from above data) 

4b 0.01 

Sh 10s 10... 27: 500 98 me 

wo 6 

+ cards 4 to 10 of Prog.5.
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CHAPTER 9 

NON-LINEAR VISCOELASTICITY 
  

9.1 Non-linear behaviour of plastics 
  

The behaviour of any plastic may be considered linear only within 

a limited stress range. Even Perspex, which probably behaves more 

linearly than most other plastics, shows considerable non-linear 

effects at stresses greater than about 20 MN/m? as shown in 4.1. 

In the absence of any easily used non-linear viscoelastic theory, 

various suggestions have been made for a stress-strain-time 

relationship, but none has proved completely satisfactory. For 

example, one possible relation suggested by Marin & Pao [16] is 

eB « G/e «Da Ul ehern (9.1.1) 

where E, D, m, P and p are constants. 

In this form the behaviour of Perspex in a creep test is 

described quite well by:- 

6 nO Ret, e = 0/3500 + 35 x 1078!*9(7-0,997e 

There is of course no particular virtue in an equation of the 

type of 9.1.1 per se, since it can only represent the results of 

experiments in a convenient form, and the problems of non-linear 

viscoelasticity go much deeper than finding a suitable form of 

equation to describe material behaviour.
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For example consider the application of a tensile stress o, 

which is then removed at time T as shown in Fig. 9A. 

-. € 

4 

  % 

    ¥     

3 + ee 3 t 
Fig. 9A Fig. 9B 

The results of 2 creep test for a constant stress o,may be. fiound 

from a curve of the type shown in Fig. 9B, or alternatively these 

results could be embodied in an equation as in 9.1.1. For times 

t > T the stress history of the material may be regarded as a stress 

01 applied — a t = 0 with an additional stress -o, applied at 

t= T. According to the principle of linear superposition the recovery 

strain at time t (t>T) should then be given by 

e.(t) = e1(t) -21(t-T) (9.7.2). 

where e€,(t) is the strain due to a stress o; acting for time t. 

Turner shows [17] however that for propylene -cmapoletie there 

are considerable differences between the predictions of 9.1.2 and 

experimental results, due apparently to the breakdown of the super- 

position principle for non-linear behaviour. In view of the more linear 

behaviour of Perspex, the present author thought that equation 9.452 

might give better results for this material, but preliminary tests 

gave unsatisfactory results due mainly to the difficulty of repeating
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results either with the same specimen or with other specimens cut from 

the same sheet of material. Investigations by Lockett & Turner [21] 

show that the behaviour of propylene homopolymer is affected by 

previous stressing even when it shows no residual strain. Although 

this effect may not be large, it may considerably influence the small 

strains to be measured during recovery. While the recovery strain 

due to a single application and removal of stress may be difficult to 

predict, it is shown [21] that a much more orderly state of affairs 

is found when the stress is repeatedly applied and removed. As this 

is much more likely in practice than the single application and 

removal of a stress the present author decided that the strains due 

to intermittent loading should be investigated rather than the 

predictions of 9.1.2. 

9.2 Intermittent loading of a tensile test piece 

In spite of the failure of the method of superposition of 

strains shown in [17], Turner shows [18] that although the results of 

a single stress application and removal may be unpredictable, if several 

stress cycles are considered linear superposition of strains may be 

used. The residual strain at the end of N cycles (enn is shown to 

be 
‘ N ; i 

ey 7 €e(7) 2 (RR 9 ( yy | (9.2.1) 

where T is the duration of the creep period in each cycle 

t' is the total duration of each cycle 

e,(T) is the creep strain at the end of the first creep period 

n is the slope of the log(strain)-log(time) graph for a constant 

stress i.e. creep test.



4 96. 

Also the creep strain after N creep periods is given by 

(edn = (yy + e.(T) : ce 

Turner also shows that if (enn and Car are plotted 

against log(time), the results are almost two straight lines. 

(i) It seems unlikely that this method may be used only for the 

material tested by Turner (polypropylene), so using the results for 

Perspex from the creep tests of 4.1 the results for a constant stress 

3 after 6 min and the of 15 MN/m were found to be e.(T) = 5.3 x 10° 

slope of the log(strain)-log(time) graph n = 0.015. Taking 

T = 6 min and t' = 12 min (i.e. equal loading and recovery preiods ) 

the series of 9.2.1 and 9.2.2. were easily evaluated for various 

values of x by using a digital computer. The results are shown in 

Figs. R2e. 

(ii) Since linear viscoelastic theory is much more convenient to 

use, it is reasonable to enquire how well the predictions of linear 

viscoelastic theory agree with those of 9.2.1 and 042 2: 

Hence, by assuming 3-parameter linear viscoelasticity 

i.e. e(t) =e F +¢(1-e"o'and so calculating e(t) for any value 

of t, the following series were obtained by superposition of strains:- 

N N 
fe.)y ae ee(xt')- 2 e(xt' - T) : (9.2.3) 

N-1] N-1 
(eon = €, (xt! 17 <8 €,(xt') (9.2.4) 

X=0 X=0
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These series were again evaluated by means of a computer, using 

the parameters of 4.1 to calculate e,(t). 

(iii) Finally using a Denison creep testing machine and Philips 

extensometer experimental values for (ey and Car were obtained 

for the same cycle i.e. a stress of 15 MN/m? applied for 6 min and 

then removed for 6 min. 

The results of (i), (ii) and (iii) are shown in Fig. 9.2.1 and 

it will be seen that while there is very good agreement between the 

predictions of equations 9.2.1 and 9.2.2 and experimental results, 

linear viscoelasticity gives rather poorer results, even though the 

parameters used fit the experimental creep results for 15 MN/m? very 

well. It would seem that even at this comparatively low stress the 

basic non-linear behaviour of the material is more apparent when the 

stress varies than when it remains constant. It is possible, of 

course, that a more complicated viscoelastic model, while still fitting 

the creep test results, would give better results in the intermittent 

loading test, but in view of the accuracy of equations 9.2.1 and 9.2.2 

this was not investigated at this stage, but it might be worth further 

investigation. 

' It should be noted that in Figs. 9.2.1, 9.2.2 and 9.2.3 the time 

scale shows the time for which the stress is applied and not the total 

elapsed time. i.e. t = xT, where x is the cycle number and T is the 

time for which the stress is applied in each cycle. °
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Using the same values of T and t' (6 and 12 mins respectively) 

(i) and (iii) were repeated using a stress of 30 MN/m* which is well 

beyond the linear range of Perspex, and so the results of (ii) were 

not evaluated. In this case e_(T) = 11.4 x 10°? and n = 0.035. 
c 

Fig. 9.2.2 shows theoretical and experimental results, and 

also compares the strain due to a constant stress with that due to 

the same stress applied intermittently. It is obvious that an 

intermittent stress results in a smaller strain than a constant stress. 

The numbers 1, 2, 4 etc. on the graph are the cycle numbers, i.e. 

values of x. 

It will again be seen that the results of equations9.2.1 and 9.2.2 

agree extremely well with experimental results. 

Turner does state that this behaviour pattern has been 

established for several different polymers, and here it has also been 

shown to apply to Perspex. 

It was finally decided to apply the same method to a stress 

cycle which varies between two stresses, neither of which is zero. 

The resultant strains are now predicted from equations 9.2.1 and 

9.2.2 for a stress o, and adding a second series for a stress 02 

which is first applied at t = T for a period t' - T, where t' is 

the cycle time for both stresses giving:-
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N con ' n 

(ey = ecf) 2 0 EY es 

N-1 ' 2 ' 2 

+ ©, (t'-T) E ty) (Er, - 1)" Jaen, (hs 49) 249-2,5) 
Y= 2 

N-] an t n 

(ely eq) 2 ER - AE Wee, 

: N-1 t No ' No 

tee (ttT) EL G4) - (Gy) (9.2.6) 
X= . 

where Eo, (1) and eo, (b a1) are the creep strains due to constant 

stresses of oj,and o2 at times T and t'-T respectively. 

A comparison of theoretical and experimental results was 

obtained for Perspex stressed for periods of 6 min each at 30 MN/m? 

and 15 MN/m? = =The values used in equations 9.2.5 and 9.2.6 were as 

before i.e. e¢,(T) = 11.4 x 10245 ni = 0.035 and 
x es -3 Eg, (t'-T) = 5.3 x 10 » No = 0.015. 

The results are shown in Fig. 9.2.3 and it will be seen that 

agreement between the two sets of values is not as good as was the 

case with a single stress. Since, however, the maximum difference 

is about 2% the theoretical results obtained by using this method 

should be accurate enough for most engineering purposes.
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Turner argues [18] that when o2= 0 linear superposition may be 

used because the residual strains are small. In the case just 

considered where o, # 0 residual strains are not small and linear 

superposition no longer gives accurate results as also noted by 

Turner [17]. 

Fig. 9.2.3 also shows that the maximum strain (en is not 

greatly affected by the value of the lower stress. In this case 

(Edn is only about 5% greater when the stress is reduced to 

15 MN/m? than when it is removed completely. On the other hand the 

minimum strain (ey is considerably increased by the higher stress, 

and here it is about 15% greater than the strain due to a constant 

stress of 15 MN/m*. This pattern of behaviour is to be expected as 

the greater residual strains due to the higher stress will affect 

the lower strains much more than the strains caused by the lower 

stress will affect the maximum strain. 

It would therefore seem that equations 9.2.1 and 9.2.2 will 

predict extremely accurately the strains due to the intermittent 

application of a single stress in a cycle which is Speated at 

regular intervals. Linear viscoelastic theory is, on the other 

hand, likely to give fairly poor results for this type of loading. 

In the case of Perspex the results of the test shown in Fig.9.2.1 

show that while the strains predicted by linear viscoelastic theory 

may be up to 5% low at the end of a creep period, the strain at the 

end of a recovery period may be overestimated by as much as 50%. 

Since this latter strain is, however, very small the absolute error
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in the strain is not large, and these linear viscoelastic 

calculations would probably be accurate enough for most design 

purposes. 

It also appears that equations 9.2.5 and 9.2.6 may be used to 

extend this method to apply to a stress variation between two constant 

stress levels. The results here are not quite as good as those for 

a single stress, but are still quite adequate for design calculations. 

Since all the experimental data required for this method is 

obtained from a simple creep test, and the series are easily summed 

by a computer, very little extra work will give a great deal of use- 

ful information in cases where the stress varies in a known manner. 

9.3 The deflection of a tapered non-linear viscoelastic beam 
  

Beam deflections obtained using the finite element method have 

been found to agree well, in those cases where they could be checked, 

with results of other theoretical methods. While this is encouraging 

it was thought that experimental verification was required. 

A symmetrical tapered Perspex beam having the dimensions shown 

in Fig. 9.3.1 was simply supported at its ends and loaded at mid-span. 

Although the extension of the bottom face of the beam will tend to be 

partly taken up by the required increase in length of the beam due 

to its curvature, calculations suggested that the span might increase by 

up to about 0.5 mm. To allow the span to change by this amount, 

one end of the beam was supported on a roller, while the other rested
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on a knife-edge, and some slight increase in span was indeed 

noticed when the largest forces were applied. A change of span of 

this order would increase the deflection by less than 1% and this 

effect was accordingly neglected. 

Central loads of up to 180N (giving a maximum stress of about 

30 MN/m?) were applied, and for each load the central deflection was 

measured over a period of 6 hours. With the shape of beam used, 

maximum stress occurs at mid span, but was only about 10% less than 

the maximum at a quarter span (the exact figure varying with the load 

on the beam). The non-linearity shown at the higher stresses wiil 

therefore affect about half the length of the beam, and should show 

clearly in the central deflection. 

To obtain a finite element solution Prog. 9 was used. It was 

assumed that the stress did not vary with time at a given point, and 

accordingly that the behaviour of a small element of beam would be 

exactly the same as for the creep tests of 4.1. This assumption 

was found to be reasonable, as the finite element solution showed 

a maximum change of stress at the outer layers of the beam of about 

2%. The stress at the outside of the beam does in fact decrease 

siienely with increasing time, while the stress increases nearer 

the neutral axis. 

Using values of stress and strain from 4.1, values of m. and E. 

were calculated from 8.3.2 and 8.3.3. A strain increment g (8.3.3) 

of 0.002 was used, and values of m. and E. were calculated for 0.1,
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0.5, 2, 4 and 6 hours. Using 20 elements each 10 mm long and 

supplying beain dimensions, positions of constraints and details of 

loading (one central force), Prog.9 was used and the deflections and 

stresses found for several different loads. The variation of central 

deflection with time for various loads is shown in Fig. 9.3.2, both 

experimental and finite element results being given. It will be 

seen that there is very good agreement between the two sets of 

results for all loads and times, the maximum difference being about 

2%, and an error of this magnitude could well be accounted for by 

errors in measuring strains in the creep tests. Calculations showed 

that if the initial (elastic) value of E had been used throughout 

errors of over 10% would have appeared, so the non-linear method used 

gives a considerable improvement in accuracy. 

It may therefore be concluded that the finite element method 

developed for non-linear elastic materials will also give good 

results for non-linear viscoelastic materials, providing that the 

stress at a particular point in the beam remains almost constant. 

In cases where the stress does vary appreciably with time (e.g. if 

there is a redundant support), the strain at any point will depend 

on the previous stress history. It is however shown in 7.3 that, 

for a linear viscoelastic material, considerable variations of stress 

have little effect on the value of E(t). With a non-linear visco- 

elastic material the ratio stress/strain is now a function of stress 

as well as of time, but even so it seems likely that the values of 

E. will be fairly insensitive to variations in stresses.
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Providing then that the final stresses are used to determine the 

values of E. (and this is done automatically by using the iterative 

method of 8.3 which is incorporated in Prog.9) errors due to stress 

variation are likely to be fairly small. 

9.4 Design in plastics 

Design problems for plastics are much more complicated than for 

metals. These complications are due to (a) the time-dependence of 

the mechanical properties of plastics and (b) the non-linear relation 

between stress and strain for most plastics, except for very moderate 

stresses. 

Linear viscoelasticity 
  

If linear viscoelasticity is assumed, the initial problem is to 

obtain a relationship between stress, strain and time which will fit 

the observed behaviour of the material used. The mathematics of this 

approach has been well developed, and a combination of Maxwell and/or 

Kelvin elements will usually be found to agree with experimental 

results for certain materials [2] [19]. 

The assumption of linearity implies that if the behaviour of 

the material in one type of test is known, then its behaviour in any 

other type of test may be predicted. Since the tensile creep test is 

probably the simplest type of test, this is normally used to obtain 

the parameters for the viscoelastic model. It is then necessary to 

make one further assumption concerning the dilatation of the 

material and then the results of torsion and other tests may be 

predicted,
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The further assumption mentioned above concerns the elastic bulk 

modulus K. The possible assumptions are:- 

(i) K is infinite and hence v has a constant value of 0.5 

(ii) v is constant and K will then vary in some unprescribed manner. 

(iii) K is constant but finite and y will vary 

(iv) K varies in a way which can be described by Maxwell and Kelvin 

elements, and again v will vary. 

Of these assumptions (i) and (ii) do not appear to agree with 

observations [17], while (iii) seems to agree EpBhotitate ly with 

experimental results [19]. A more accurate expression would 

probably be given by (iv), but in view of the doubtful nature of the 

assumed linearity the extra complication seems to be unjustified. 

Assumption (i77) therefore seems to be a good compromise between 

accuracy and simplicity. 

The results of the creep tests on Perspex in 4.1 were adequately 

represented for stresses a to about 20 MN/m? by linear viscoelastic 

theory based on a Po ohranekeren ier ticn model and assumption (iii) 

above for dilatation. The mathematics of this linear theory then 

shows that calculations for a viscoelastic material are similar to those 

for an elastic material except that the elastic constants of the elastic 

theory are replaced by time-dependent variables. As calculations for an 

elastic material are usually based on the constants E and v, a similar 

approach is convenient for viscoelastic materials. 

The use of a time-dependent modulus E(t) is demonstrated in 

calculating the deflection of the Perspex frame in 7.1. This is a
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aaa stress problem, for any one member, in which the bending 

stress varies with position but not with time. The use of a bine 

dependent E(t), the value of which could be found from the earlier 

creep tests could then be expected to predict the deflection of 

the frame extremely accurately, and this was found to be the case. 

Also, as both tensile and compression bending stresses occur, the 

results of 7.1 demonstrate that there cannot be much difference 

between the behaviour of Perspex in tension and compression, at 

least up to a stress of 20 MN/m?. 

By using linear viscoelastic theory, the strains in a 

particular direction due to several stresses may be superimposed, 

and 3.4 shows how this linear theory may be applied to a two- 

dimensional stress system. It is also demonstrated that the 

constants E and v of an elastic material are replaced by variables 

E(t) and v(t) for a viscoelastic material. 

Hence, having obtained a stress-strain-time relationship, the de- 

signer is then confronted with a time-dependent modulus E(t) and a 

time-dependent Poisson's ratio v(t), the appropriate values of which 

must be used at a particular time. This may not present any 

particular problems in some cases; for example, in a long internally- 

pressurized cylinder, the longitudinal and hoop stresses are not 

time-dependent being statically determinate, and the increase of 

diameter is easily obtained in the usual way using the appropriate 

values of E(t) and v(t).
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While the assumption of constant stresses is exactly true for the 

membrane stresses in a cylinder (providing the pressure remains 

constant), any local bending stresses may vary slightly with time. 

This is so in the case of the Perspex cylinder investigated in 7.2, 

but the variation of the net longitudinal and hoop stresses is small 

and it is shown theoretically that, at least for Perspex, the actual 

variation of stresses with time has little effect on the value of 

E(t). It also follows ‘that the value of v(t) will be little 

different to the value obtained when the stresses remain constant.. 

In 7.2 therefore values of E(t) and v(t) are calculated for constant 

stresses and it is shown that the measured increase of radius of the 

cylinder agrees quite well with the calculated values. 

Similarly, good agreement is obtained between theoretical and 

calculated. values of the deflections of a square of Perspex subjected 

to a compressive stress described in 7.3. Here also stresses vary 

somewhat with time but it is found that the values of E(t) and v(t) 

calculated for constant stresses give satisfactory results. 

Even when a solution is obtained for a particular problem, the 

designer's work is not finished as he must then decide what criteria 

to use to determine maximum permissible loads etc. Turner suggests 

[19] that for plastics, strain is probably a more suitable limit than 

‘stress, and that accordingly the strain should not exceed some 

prescribed limit during the life of the part.
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This criterion does, however, cast considerable doubt on this 

linear design approach, as with most plastics at strains well below a 

suitable upper limit, the behaviour of the material will be very 

markedly non-linear. 

Non-linear viscoelasticity 
  

If linear viscoelasticity is not to be assumed, the stress~-strain- 

time equation may be replaced by sets of curves plotted from 

experimental results. These are perhaps best visualised as sections 

through a 3-dimensicnal surface in which the 3 perpendicular axes are 

stress, strain and time (usually on a logarithmic scale). Sections 

perpendicular to any axis give the usual creep (constant stress), 

isometric (constant strain), and isochronous (constant time) curves.[17]. 

Curves for many common plastics have been published [6]. 

The limiting strain criterion is now easily applied, resulting 

in-either a maximum stress or a limit on the life of the part, but this 

“approach is only reliable if all stresses remain constant, and since 

the way in which Poisson's ratio varies is extremely uncertain, two- 

and three-dimensional problems now present great difficulties. 

Even uniaxial stress problems now become very complicated unless 

the stress remains constant. The basic difficulty in non-linear 

viscoelasticity is that strains cannot be obtained by simple super- 

position and while methods have been suggested for predicting the 

results of stress variations [20] the amount of experimental work 

necessary to obtain the required functions appears to be impracticable. 

[21].



  

"- 169 - 

Lockett and Turner [21] also show that when a uniaxial stress is 

removed, although no residual strain may be shown after a certain 

time, the response to a further stress application will be affected. 

A much simplified strain-time relation is also obtained for several 

creep-recovery cycles, the stress being constant for each creep 

period, and it is then removed completely during recovery. 

Turner [18] shows how the strain during creep-recovery cycles 

may be predicted from creep tests only. As expected the strains due 

to an intermittently applied stress are less than those due to the 

same stress applied continuously, so that if the maximum strain 

criterion is applied here, a higher stress may be used when the 

loading is intermittent, than when the load is continuous. 

One set of results for a square wave stress is given in 9.2 

and it also seems that the same method may be applied to this type 

of variation between two stresses, neither of which is zero. 

A second type of non-linear viscoelastic problem is discussed 

in 9.3. This is the problem of the loading of a non-linear tapered 

Perspex beam. It is shown that, since this is a uniaxial stress 

system and the stresses vary only slightly with time, the deflection 

may be calculated extremely accurately by using only the results 

of the earlier creep tests in conjunction with the non-linear 

elastic bending theory described in 8.3.
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While the methods indicated extend the scope of non-linear 

viscoelastic design for a uniaxial system, further progress appears 

uncertain until 7 

(i) the response to a single arbitrary stress input can be 

predicted from the previous stress history, and the theory 

then extended to 2 and 3-dimensional systems. 

(ii )a satisfactory criterion corresponding to the von Mises 

yield criterion is available for a viscoelastic material. 

At the moment, neither of these objectives seems to be in sight, 

so some sort of approximation to (i) above is necessary. One 

possibility with small stress variations is to neglect the change, 

and 9.3 shows how this gives good results with a beam. A second 

line of approach might be to superimpose strains when the variations 

of stress are small, but remembering that this may cause some 

inaccuracy.
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CHAPTER 10 

GENERAL DISCUSSION 

Quite simple theoretical solutions are possible for some 

engineering problems in which it is possible to make certain 

simplifying assumptions. A good example of this approach is the 

use Of simple bending theory for elastic materials in which all 

stresses except those acting along the length of the beam are 

ignored. This method gives extremely good results providing its 

limitations are known and it is not used for cases in which the 

simplifying assumptions cannot be justified, for example in the 

case of a short deep beam where shear stresses are important. 

In cases where a simplified solution gives poor results, the 

theory of linear elasticity may be used to obtain an exact result, 

but this usually involves a great deal of algebraic manipulation, 

and the solution may become so complex that. this method of approach 

may not be practicable for everyday design work. One case in which 

this method does work is given in 3.3 where elasticity theory gives 

an exact value for the end deflection of a loaded wedge. It is also 

shown that for small angles of taper the simple beam theory gives 

quite good results (6.7). 

The viscoelastic behaviour of plastics differs from that of
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elastic materials in being time dependent but it was seen that the 

actual behaviour of Perspex could be adequately represented by 

suitable mathematical models which assumed a linear relationship 

between stress and strain for stresses not exceeding about 20 MN/m?. 

It was further seen that if the solution of a linear problem is 

_ known, by using a correspondence rule the solution of the viscoelastic 

problem is (at least in theory) possible. In all except the simplest 

cases, however, the inversion of the Laplace transform, which is a 

necessary part of the solution, may present considerable difficulties. 

For simple one- and two-dimensional constant stress systems solutions 

are possible and it was demonstrated that the form of the visco- 

elastic solution is similar to. the elastic solution with the elastic 

constants replaced by corresponding time-dependent variables. These 

variables are readily calculated from the known parameters evaluated 

from (say) a set of creep tests. It was also shown, that small 

variations of stress have little effect on the values of these time- 

dependent variables for Perspex. 

If, then, the solution is known for an elastic problem in which 

the stresses remain constant or nearly so, the solution of the 

corresponding viscoelastic problem may be obtained without difficulty. 

As was noted above, however, exact solutions for elastic materials 

may be very complex, so various numerical methods were investigated 

and it was decided that the most promising of these, for the types 

of problems to be solved, was the finite element method, using beam 

type elements. It was seen that the bending of uniform beams could
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be treated in this way and that frame deflection problems could be 

similarly solved. 

The stiffness matrix was then derived for a tapered element and 

the accuracy of this finite element method was then further improved 

by modifying the stiffness matrix to allow for the effect of shear 

stresses in both uniform and tapered elements. The accuracy of 

the finite element method was considerably improved by this 

allowance for shear effects in the case of the loaded wedge for which 

an exact solution had been previously obtained. 

To complete this part of the work, a computer program was written 

to solve, using this finite element method, beam problems for uniform 

or tapered beams for any type of loading and with any number of 

either rigid or elastic supports. 

An alternative finite element method using constant strain 

triangles was applied to beams which were treated as plane-stress 

problems. This was found to give very inaccurate values for both 

deflections and stresses due to the large variations of stress across 

the depth of the beam. The accuracy was improved by increasing the 

number of elements, but even with a large number of elements the 

results were much inferior to those obtained by using beam-type 

elements. 

Finite element methods were then applied to three linear visco- 

elastic problems. These were (i) a frame (ii) a pressurized cylinder
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and (iii) a square plate subjected to compressive stresses. In the 

first of these, stresses were independent of time and nearly so in 

(ii) and (iii). In all three cases the finite element solution 

obtained by using the time-dependent variables E(t) and v(t) 

calculated from expressions which are strictly true only for constant 

stresses was found to agree well with experimental results. 

Finally, the problems of non-linear viscoelasticity were 

considered. A method of predicting strains due to the alternation 

of two stresses was shown to agree fairly well with measured values. 

A theoretical solution was also obtained for the deflection of a 

non-linear tapered Perspex beam. The theoretical values of 

deflection agreed extremely well withexperimental results even when 

stresses considerably exceeded the linear range of the material. 

The method used here could in fact be applied to any non-linear 

bending problem and requires only corresponding values of stress 

and strain such as could be easily obtained from creep tests.
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CHAPTER 11 

CONCLUSIONS 

The following conclusions may be deduced from the work 

recorded here. 

A finite element method using beam type elements will 

satisfactorily solve bending problems for linear elastic, 

linear viscoelastic and non-linear viscoelastic uniform 

and tapered beams. 

Bending problems are not well suited to solution as plane- 

stress problems using constant strain triangles due to the 

variation in stress across the beam, but this approach is 

satisfactory in cases where stress gradients are smaller 

than in beams. 

The linear viscoelastic behaviour of plastics may be 

described in terms of mathematical models which may then 

be used to predict the behaviour of the material under a 

variety of conditions. 

If the solution of a particular problem for an elastic 

material is known the use of the correspondence rule will 

give the solution for a linear viscoelastic material. 

The solution may, however, be complex and the use of a 

numerical method may be preferable.
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5, Linear viscoelastic problems are readily solved by a 

finite element method using time-dependent values of 

E(t) and v(t). These results are not strictly accurate 

in cases where the stresses vary with time, but errors 

will be small if the variations of stress are not large. 

6. Non-linear viscoelastic problems are much more difficult 

to solve than linear ones. Relatively simple solutions 

are possible for some problems (e.g. the strains due to 

alternating stresses). 

The non-linear bending problem of Chapter 8 was solved so 

readily by the numerical method of 8.3 that it might be rewarding 

to see if the same method can be used for beams of other than 

rectangular cross-section. 

Regarding the behaviour of plastics, it ipiuid be interesting 

to investigate the effect of using more complicated mathematical 

models of material behaviour than the three-parameter model mainly 

used by the present author. It would also be of interest to 

investigate theoretically and experimentally how the value of E(t) 

is affected for different types of stress variation, possibly using 

several different materials. 

Since the behaviour of all plastics is to some extent non-linear 

it would be extremely useful if the method of 8.3 for a uniaxial
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“stress system could. be extended to two- and three-dimensional systems. 

This would, however, need much more information about how the value 

of Poisson's ratio varies with stress and time than appears to be 

available at present. 

A satisfactory criterion for the failure of plastics is still 

awaited, but in view of the number of parameters involved a very 

great deai of experimental work will probably be necessary to obtain 

any useful results. 

The intermittent loading tests of 9.2 show that the strain 

continues to increase with time. A vibratory force producing 

alternate tensile and compressive stresses in the material may 

produce the same type of result. Further investigation of this 

possibility may be worth while.
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APPENDIX 

COMPUTER PROGRAMS 

The programs detailed below were written for an I.C.L. 1905 

computer, and the language used was ALGOL. Initially, to gain 

experience in writing computer programs, problems such as the plate 

bending problem of 5.1(c) were solved by using the computer for the 

evaluation of a number of terms and the summation of the resulting 

series. Since there are no particular points of interest in this 

or similar programs they are not shown here. 

The first program involving any real difficulty was Prog.1 

required to calculate the change of radius of a viscoelastic cylinder. 

The expression of 4.4.4 

2 - * - 

i r(1 : 5) 5 zc(l ~ eo Sty 47 - PX (cosgx + singx)} 

was to be evaluated for various values of x and t. This was 

achieved by using a double loop, first keeping the value of t 

constant in the outer loop and then using all the different values 

of x in the inner loop. To save computer time the value of e =~ 

was initially computed and then values of on (t= 2,3,....) were 

readily found by multiplications such as e “20 2 97S, gud at the 

end of the t loop. Values of e '* 

convenience in printing out the results the required deflections 

were found in the same way. For 

were all calculated and stored in a two-dimensional array W[I,T] 

before being printed.
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Prog.2 was used to solve the 10 simultaneous equations obtained 

by using a finite element method to solve a beam problem. In this 

case the values of the elements of the stiffness matrix were read 

in from cards and the equations then solved by Gaussian elimination 

(It is perhaps worth recording that the Gauss-Seidel iterative 

method was first tried, but gave very inaccurate results and used a 

great deal of computer time. The failure of this method here is 

probably due to the very small value of F compared with those of the 

other terms in each equation [8]. 

Gaussian elimination, on the other hand worked extremely well. 

This method requires that starting with the first row some multiple 

of each pivot row (P = 1,2 ...N-)is subtracted from each row below 

(I = P-1, ...N) so that the elements to the left of the leading 

diagonal are made equal to zero. Prog.2 does in fact save 

unnecessary calculations by omitting this subtraction when an 

element is already zero. The form of the modified equations is 

then as shown below. 

H, uU, 

where x denotes a 

non-zero element. 

H Ww 

“10 can then be found immediately, and by substitution of this value 

in the row above ug is calculated and so on until u; is found.
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With only a few elements, the method of reading in values used 

above is satisfactory, but with many elements it is almost essential 

to use the computer to evaluate individual elements of the stiffness 

matrix. This is easily achieved by supplying the values of E, I and 

& for a uniform beam, or of E, b, d,, dz and & for the tapered beam 

element of 6.5. If the elements of the stiffness matrix of this one 

element are represented by Ch (i,j = 1,2,3,4), the last 4 of these 

values Ciy (i,j = 3,4) must be temporarily stored for addition to 

the first 4 values of Ci (i,j = 1,2) of the next element since two 

elements are joined at the common node. The required additions 

for adjacent elements r, r + 1, are:- 

(C33), ca (Cri) nay? (Cau), + (Cia) nay 

(Cys), e (Cordray? (Cyn), : (Cor) ny 

This is perhaps more obvious in the diagram below where the 

additions above occupy the shaded area common to elements r andr +1. 

Similar additions will be required for elements r + 1 and r + 2 etc. 

until the last element is reached, 
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Prog.3 is a program written to find the deflection of the 

tapered beam of 6.5 so that the dimensions of each element are 

required. In this example the beam profile is given by the 

equation x = 20(1-d)*, so that by specifying values of d; and do, 

the length of each element 2 is easily calculated, and the stiffness 

matrix is then assembled as specified above. 

Because all the non-zero elements of this matrix lie in a band 

of width 7 elements, only these values are stored, and to reduce 

the storage space required the elements are stored as a vertical band. 

Thus if the displacements at n nodes are required, the stiffness 

matrix will contain 2n rows, but instead of storing a square 2n x 2n 

matrix it may be stored as 2n x 7. Although there is little 

difference here where 2n = 10 there will be an enormous difference 

for large values of n. 

The actual matrix has the form:- 

Rigo ee Kis Ra “f 

Koi Koo kos kay 

ee X X X X Kae 

Kya X X - X xX kus 

    
where x denotes a non-zero element. All elements not shown are 

zero.
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th 
By moving every element of the i” row i - 1 spaces to the left 

all the non-zero elements may be stored in the form:- 

  

[0 0 0 Ry Kiger Rik 

0 0 Ko Koo ko3 Koy 0 

0 hae X Kye X K36 

kin * x Kuh i 

0 Kea xX kee OX x Kse 

Kes X X ce. * Kes 0 

0 Mee Keg. 28 X X 

Kes x X X X x 0 

iG etc. 4   
The Gaussian elimination method is again used to find the 

displacements, with due account being taken of the distorted form 

of the storage arrangement. 

Prog.4 is a program written to find the deflection at the end 

of the wedge of 6.8. In addition to the finite element solution 

obtained in the same way as in Prog.3, values are also obtained 

using simple beam theory and using the methods of the theory of 

elasticity. 

Prog.5 is a more general program which may be used for a 

tapered beam with any number of rigid or elastic supports. Prog.4 

makes use of the banded nature of the stiffness matrix, but as it is 

also symmetrical about the leading diagonal only this diagonal and 

the elements on one side of it need be stored. This method of storage
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is used in Prog.5 as shown below and because of the distorted form 

of the matrix care is again necessary in using the Gaussian 

elimination method to find the displacements. 

ow 
: “ cor 

Kia Ki2 kis es 

Kz2 Ko3 Mee 0 

K33 iy a K35 K36 

ky Kae 0 

    ks5 ksg ——— ks kse—t-= Row 

kKn-1,n-1 kKn-1,n 0 0     
Note that rows are still horizontal, but columns of the true 

stiffness matrix are now stored on diagonal lines. The first 

element of each row stored is the leading diagonal element of 

the true matrix, and the band width is now reduced to only 4 

elements. 

If a constraint is applied so that a particular displacement 

is zero, the elements of the appropriate rows and columns of the 

stiffness matrix are now all zero. 

e.g. if u, = 0, the stiffness matrix becomes:-
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20 
‘one 

es kre kis 67 

k k 0 7 0 22 ce 

ee an kgs ka¢ 

0 0 0) 0— U,2O 

Ks5 ke ks7 Ks¢ 

Kan     
During the elimination process all such rows and columns are missed 

since all the elements are already zero and therefore no further action is 
needed, 

The plane stress problem of 6.11 was solved by using Prog.6. | 

The assembly of the stiffness matrix is now more complicated because 

not only does each shape of triangle have a different stiffness matrix 

but since the triangles may be fitted together in a variety of ways 

(unlike beam elements which can only fit end to end) the summation 

of stiffnesses must take account of the relative position of the 

triangles. 

In Prog.6, four different triangles are used, and the elements 

of their different stiffness matrices are first evaluated from the 

expressions of 6.11. Using the symmetry of the matrices, only the 

elements of the upper half of each matrix are in fact used. The 

nodes of each triangular element must then be related to the global 

nodes, and since there is a regular pattern in the arrangement of
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elements, this is not difficult. For example, consider an "A" 

triangle in the arrangement of Fig. 6.11.9. 

—~ b+2 

te 
pai 

Pt 

Pro. b 

The element nodes 1,2,3 correspond to global nodes m, m+1, m+5 

where m= 1, 2, 3 etc. depending on the position of the element. 

The generalized coordinate numbersat these global nodes are p, 

ptl, p+2, pt+3, p+10 and p+ll. 

The contribution of an A triangle to the pe row of the combined 

stiffness matrix will therefore be of the form:- 

Py column 

G12 812 419 Q7, 0 0° O20 0°. 0 aye age 

Other rows are obtained in the same way and Prog.6 first takes 

the contribution of all the A triangles making kot * Otte 5. 

B triangles are treated in the same way adding stiffnesses where 

necessary. For example the upper right-hand corner (element 

node 2) of an A triangle is always joined to node 1 of a B triangle. 

  

pra 3 t m >+2 
2 

ak [es 

    
bru A p+ 

prio ‘Wes t i : 

The p+2th row of the stiffness matrix for combined A and B triangles 

  

is therefore:-
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a31 a32. Qa33 A34 0 0 0 0 0 0 aQ395  ag6 0 0 

+ + + + + + + + 

0 0 D335: Dy 0 0 0 0 0 0 bi3 Dy, bys Dag 

(aa beh column 

Since, for example k has already been made equal to a33 
pt+2,p+2 

this second sweep will merely add b,, so that the new value of 

k a33 + by,. As this is a diagonal element, the two 
p+2,pt2 ” 

elements to its left are not stored. In the same way contributions 

of C and Dtriangles are included in the stiffness matrix. The final 

results may be iilustrated by showing the 13° and 14th rows (Node 7) 

of the stiffness matrix in its distorted storage form. 

  

  

@ eas 

24 A 

ee 
@ N23 Gl @ 

Cc & 

        
aii Q@12 413 Aly 0 0 0 0 0 0 415 416 0 0 

+ +2 * 
C33°°Cai, + + ; C35 C 36 
+t 
ds3 dy, dss dsg 

Aso 8o9 Boy” 0. 0: 0 0. Oe aawihag 0. 0 0 
+ + +t + 

Cun Cys + ‘ Cus Cys 
+ +
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Once the combined stiffness matrix has been assembled, 

displacements are found using the same method as in Prog.5. 

Stresses may then be calculated from the nodal displacements 

{ us} using 

{o} ~ = [D] [B] {u,} [24] 

where [D] and [B] are as given in 6.1}. 

[D] will be the same for all elements since it is a function 

of E and v only, and [B] will be the same for each trial of a 

particular shape. It was therefore convenient to evaluate the [B] 

matrix for an "A" triangle, to pre-multiply this by [D] and so 

obtain 

~{o} = [M] {u,} 

where [M] is a function of E, v and the lengths of the pervendicular 

sides of an A triangle. Stresses in each A triangle were then 

determined from the values of u. for a particular triangle. 

In the same way stresses in the B, C and D triangles were 

calculated. 

. The Since of radius of a cylinder of varying wall thickness 

may be found by using Prog.7. This is similar in many ways to 

Prog.5 as far as the assembly and storage of the stiffness matrix 

is concerned. As explained in 7.1 any longitudinal slice of : 

the cylinder will behave as a beam on a flexible base, and the same 

section also shows how the stiffness and force matrices are modi fied 

by this "flexible base".
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The stiffness elements for a tapered beam are used, and since 

the "free" change of radius and the stiffnesses depend on time- 

dependent values of E and va time loop is added to calculate these 

values from equations 3.4.11 and 3.4.12 for each time value. Each 

element of the stiffness matrix is then evaluated in the usual way. 

When the deflections due to the local end effects have been found 

by the same methods as in previous programs, the addition of the 

"free" expansion will give the net change of radius. Bending 

moments may be found by using the usual relation between nodal moments 

and displacements, and local bending stresses at the inside and 

outside surfaces of the cylinder are then easily determined by the 

usual bending equation. The net longitudinal stress is the sum of 

this bending stress and the usual membrane stress oP ‘ 

The hoop stresses at the two surfaces are then found from 

ep 
GF E ed 

where w is the change of radius and o,is the longitudinal stress [5]. 
L 

In addition to the printed values of change of radius, bending 

moment and stress, graphs of change of radius and stresses at the 

innner and outer surfaces were drawn by the graph plotter using the 

cubic curve-fitting sub-routine HGPSCURVE. For each graph, the 

coordinates of all points were stored, and after drawing each curve 

the pen was raised and moved to the starting coordinates of the next 

curve,
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Since theoretical values were used there were no discontinuities 

in any of the curves for the uniform cylinder, and smooth curves were 

obtained (see Figs. 7.2.3 and 7.2.4).Fig. 7.2.6 however shows the 

variation of stress in a cylinder which is tapered near its end. 

While there is no discontinuity of stress at the end of the tapered 

portion (x = 45 mm) there is a discontinuity in the rate of change 

of stress and HGPSCURVE tries to smooth out this sudden change of 

slope. To avoid this, each curve is drawn in two separate parts, 

i.e. from 0 to 45 mm and from 45 mm to 100 mm. 

The plane stress viscoelastic problem of 7.3 was solved by 

using a finite element method. The stiffness matrix is assembled 

by modifying Prog.6 so that the assembled triangular elements now 

form a square, which is a simple matter of shortening the list at the 

start of each 'DO' loop during compilation. Since only a quarter 

of the Perspex square was considered due to its double symmetry, 

vertical constraints were applied to all nodes on the horizontal 

centre line, and horizontal constraints on the vertical centre line. 

Using these modifications Prog.8 was written. A further 

difference from Prog.6 is that in Prog.8 allowance is made for the 

fact that vertical displacements at all nodes on the top edge of 

the square are to be equal. Since the columns in the stiffness 

matrix corresponding to the generalized coordinates of these nodes 

will now correspond to equal displacements they may be added, and to 

satisfy equilibrium the corresponding rows must also be added, and 

so must the appropriate nodal forces. This may be shown by a
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simple example. 

Fy ac Dee Uy 

Fo = b d e U2 

F3 Cc e t U3 

If uy = uz this may be rewritten as 

Fy, + F} T at2b+d 0 cte U4 

U.. 0 0 0 0 

Fs ct+e 0 . U3 

Values of u; and uz may then be found by inverting the stiffness 

matrix and are automatically equal. 

This summation of stiffness elements is used in Prog.8. As 

described in 7.3, the variation of displacements with time is 

allowed for by calculating two sets of displacements from two 

stiffness matrices, the first evaluated from initial values of 

E and v, and the second using & and N as given in equation 7.3.3 

The net displacements are then the sums of these two sets of values, 

and the stresses are then found from the displacements by using the 

time-dependent values of E and v , E(t) and v(t) as given in 3.4.11 

3.4.12. 

Prog.9 used for non-linear bending problems does not differ 

greatly from Prog.5, the main difference being that instead of a 

known value of E an equivalent quantity which depends on the maximum
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stress must now be used. This requires that values of m. and E. 

as given in 8.3.2 and 8.3.3 shall be evaluated for all values of i. 

An iterative method of solution is used, and an additional loop is 

therefore included in Prog.9, at the end of which the sum of all the 

displacements is compared with the previous sum. Calculations are 

concluded when the difference between successive values is less than 

0.2%.



21/01/74 COMPILED RY XALE MK, 48 

"SENDTO' CED, ICLAM DEFAULT (NO) + ./ PROGRAM) 

'BEGIN' "REAL! PpReHrFeNU, Be Ce De BXrVC yp ZeCT+OTsREMNFe VT, AF 

"INTEGER! I,X-T3 ' 

"REAL' "ARRAY! W(0!20,0:617 

p:=1,53 
R:=75: H:=6,25? 
€:230003 NUssz0.355 VCr20.068 33 7:50,473 

AtePeRWR/HS CT3H1/EXPC(Z)3 DTss13) RESSI/EF NFrete0,5*NU; 

= (Be (1TeNUFNU)/OR*RHHHHD)TOL25? | CrFEXPC10*B); 

"FOR' 3:20 'STEP' 1 "UNTIL? 6 'DO! 

"BEGIN! D:=13 VT+aVCeC1 pT)? 

TFOR' Is20 "STEP! 1 * UNTIL! 20! p0l= 

'BEGIN'’ X:=10*13 BXr=B*X? 

WEY, Tl ssAw(NFRRESO, payee (obs AOSTA TES 

, DEDeCH 
SENDS 

: DT:=sDT*CT? 

‘END? 
SPACECT2)$ WRITETEXTC'CIHTSKRORK' DDE 

"FOR 122172030475 ¢6 'H0! 

PRINT(T,»9-0)23 NEWLINE C2)3 

TeoR' 1320 "STEP? 1 'UNTIL' 20 "pO! 

"REGING X:H1Oels WRITETEXTC' CXS") DG 
PRINT(X-3,0)2 

TGOR' Tes0 "STEP! 1 TUNTIL! 6 #0! 
PRINTCULI, TI+4-24): 

NEWLINE(2)? 
"END!? 

"END'? }
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PROG. 2 

30/06/70 COMPILED BY XALE MK, 48 

'TRACEt2 
"BEGIN'' REAL'SUM] 

"INTEGER'N Lede Pe FINe FIRST + LASTe PREM) 

N;8READ] 
"BEGIN' 'REAL'TARRAY'ULI INI, FEVINJ SALI SNe INI? 

"FOR'TITS24'STEPTT"UNTILIN'I DO! FLIJs=READ; 
TFORTIS=1'STEPTUIUNTILIN'G DO! 
"BEGINUFIRS Tre TRI LPLe'4*THENITIELSE L933. 

LASTsS'TE' FI LEtGYTHENTI*S'ELSE'NS 
TFOR' JsSFIRSTISTEP' IT UNTIL LAST' DO! 
ACY,J7:=READ} 

YEND'} 
"FOR'PS2T'STEPITIUNTILINGT DO! 
'BEGINIFINGStIFIPI'LE'6' THEN! P+39ELSEING 

TFOR' py s2Pe1'STEPTTIUNTIL' FINI DO! 
'BEGIN' FEY] sSRCLJeFLPI*ACI e+ PI/ALP, PI} 

"ROR' JsaPel*STEP'T'UNTIL'FIN' DO! 
ACL sd sFALT eV IMPACT PIBALCP JISACP LP) 

"END! 
"END! GT 
ULNISFFENI/ACN,NI? 

TFOR'T sane {ISTEP TI UNTILIA' DO! ; 
'BEGIN? SUM:=FEI3;3 

PREMra'ITFTI'GEINeS'THENINOELSEN L433 
TFOR' J sSPREMISTEP =1FUNTILIEe4 9 DO! 

"BEGIN'SUMr=SUMPACI eJI*UCUI? 
ULLT]:=SUM/ACI-3] 

TEND! 
"END! ? : 
MEOR'Lp=4'STEP'4! UNTIL! N' pot 
"BEGINIWRITETEXTC' CTU)? >) FPRINT(I22,0)3 

WRI VET ERT CATS) LIPRINTCULESS 4e4)3 
NEWLINE(2)3 

‘END? 
"END! 

TEND Eg =e 

n
e
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'BEGING REAL! 

VCOMMENT! 

PROG. 3. 

COMPILED BY XALE MK, 4B 

Die D2eX1,X2,FAC,SUM>L? 

"INTEGER! WyKeQ, Tr ALeACe Peto ds LASTOFING 

— NpsREAQS : 

"BEGINUREAL'VARRAY! Cl44451:4),-CPL334,1543 Ur FLIISN] 

JUMP: 

SSCee 

COMP; 

PAPERTHROW} 

"FORTE SSTISTEPTTIUNTILYNI DO! FIL] sSREADS 
"FORT a4 ' STEP’ UNTILIN' DQ! 
FOR USBT 'Sremp 1 UNTIL 7' DO! 
ACT,;JJ}:=07 O1s17 ¥1:50;3 

— VFOR'Kge2'STEPT2TUNTIL' Ne 29 DOF 
YBEGINED2:=pin-O.1iX2sz20% (1 D2) (ie d2)3 

LeeXPeX4s 

wWEB/V2) CLAUD TD EDT HDT ECT BHD2R 6H DID /CLHLELD 
CL1,2)226eD wD kD2/ CLL) 3 

ClO1,3)22=C(1,133 

CLIUAAD ADU DI HCA SHO 2 6e DIAC L¥LDE 
Cloys 118042 1 
COA,27 8801 D1 e (D145 edD2)/L3 
C62,3)38-C01,21;3 

COA2e472201*DI eC S*D2=D1d/L3 

FOR J teTISTEPTTTUNTIL'G!? Do! 

ClO3,seF-Cli odds s 

oO Are Cable 
ECA er eeClepals 

Cl4,37:8C(3,4)3 © 
COA,472 FDI HDI ke COeD2e5uDI)/LE 
Disen27 K12eX2? 

TIF 'KS2°THENIIGOTONSKIPS 
— Lyeke 33 
FTIR sq THENTIGOTONSUMP: 

'IE'KSN+2'° THEN? 

tACIsNel3713 

WBEGTMICO1,1)2208C01,213:207C02,1):203C(2,2):50; 
PEND! s 
ACT ,2723CP(3,137AC1,3):5CPl3,2)3 
ACT#1,1):5CPC4,1)3;ACT 41-2) :20P(4,2); 
ACT +4): 2CPL3,374C(1,11;AC1,51:2CPl3,4]4+C01-213 
ACI*t1, 3) :2CPlL4,31]4+Cl2,1]7 ACI e1,6)3:2Cpl4,4)4+Cl2.2)3 
TITEYKSEN+2'° THEN! §GOTO'COMP; 

Af 6) C17 3 tA Llp eC eg Gils 

ACL#1,5):3CC2,3)7ACT 41,6320 62.413 
"FOR'Q:=237,4'N0! 

"FORIT ST *STEPTITFIUNTILIG'DO! 

a CPLQ,TJ)s8C(LQ,T]3 

'ENDIG 

TFOR'y:=1! STEP'4"UNTIL'N' DO! 

-"BEGIN' "FOR Jsst'STEP IT UNTIL'7' DO! 
: PRINTCALI+J1,674)2 
"END! 3 

“HFORIPSEVISTEP'TIUNTILIN]1' DO! 
OBEGINULAST y=! 'P43"LE'N' THEN! PH3IELSE'NG | 

"FUR Tyepel STERIL IUNTIL' LAST DO! 
“WBEGIN'UIT RIAL Pe Gm IS0' THEN! 'GOTOTELIM 

v 

NEWLINE(2)? 

"ELSE'FACSSA(T, Pde) /ACPr4)] 
RCI] es RCLIeFLPI*FAC:



  

FOR’ J tePeGel'STEPIT UNTIL! PH7@I!DO! 
ACh JDttALITeJIMALPe Le Ptd FAC; 

ELIMs: rEND'S 
VY END'G 

— UENIJESFEIMI/AOCN, SIE 
- ' FORTIS ENRT ISTEP RP tUNTIL'1'DO! 

— TBEGINISUM: =F OIDG 
= FINGS'IF'IT CE Nm S'THEN'ZELSE Nel G3 

: MFOR' J reS'STEP A UNTILIFIN' DO! 
SUMSSUMMALT +d] *ULI eum dds 

UCT] ssSUM/AL1,4]3 

VENDY 

NEWLINE (4)3 
— WFORUT geTISTEPETIUNTILIN! bot 
MREGINIWRITETEXTCH(1UND') FPRINT(T 12093 

aS WRITETEXTON CYS) EPRINTCULT I 6474); 
NEWLINE (2) 9 

TENDT? 

MOE | 
=o= ==VEND! Fe =e = = 

fe laisctydhanadecsee anise eases oak =) d 

—-0,0000.-  0,0000, —0,0000,1308,7500/-109,2000, 933.7500, 

= 0,0000 0.0000 =109,2000 19.9850 =10,8900 2.0250 

—0,0000  -33,7500 #10,8000 38,7420 -6,74620 4.9920 

S945) 0s = 9025 0 6, 7620. === 5, 50101 2, 6880 == 0, 8320 

“== 9,0000 =#4,9920 246880. 6.1706. 91,4040 #11786 

“2, 3040 = 0.8320 =114060 2.3470 =0,9000 0, 3850 

==0,0000 —-=1,1786  =0,9000 -1,5119.- =0,4167 50,3333 

=O, 7500: 0, 3850 5054167 = 1.0850." =0,3333 ~ 0,1800 

0, 0000; +0, 3333. = =0, 3333 0.3333) -0,2667 = 0,0000 
R ae bee 

042667 0.1800 = 0,2667 = 0.3000 ~=—s0,0000 ~~ 0, 0000 

Storage arrangement for the stiffness matrix of PROG. 3 

(ub/12 . omitted ). 

9.4500. 

0.0000 

2.3040 

0.0000 

0.7500 

, 0,0000 

0,2667 

60,0000 

0.0000 

0.0000



PROG. 4 
40/02/72 ~~ «COMPILED BY XALE MK, 5C 

"SEND TO’ ¢ ED,ASTD=DEFAULT(O),, PROGRAM) 
"WORK! (En,WORK FILE (0)) 
"BEGIN' "REAL' D1,D2+FACsSUMs Le LPr AR TANAV1 sV20V33 

 VINTEGER!? Ne Ke Qe Ts Pole dr LASTs FIN, ANOM 

Ns=READ}; MrsREAD; 
"BEGIN! "REAL* "ARRAY! ClAthet 4) eCPl3s4e126) Ue Flin)» 

ACTtNets7de FOCT:413 

WRITETEXTCUCI'FINITEXELEMENT!' (' 3084) *POLARZCOORDS 
"C'30S')"BEAMZTHEORY')')? 

— NEWLINE(2);¢ 

"FOR' ANs=5 "STEP? 5 "UNTIL!' M FDO! 
"BEGIN! PRINTCANs 2-0); WRITETEXTC'C(C'DEGREES')!); 

NEWLINEC2); 
AR:ANW3.14159/1803 TANAreSINCAR)/COSCAR)? 
FOR’ I381 'STep' 1 "UNTIL® N 'DpO! 

“= "FOR’ Jeet "STEP! 1° *UNTIL® 7: *D0! 
ACteJ}:203 Di:=TANA: 

. ‘For’ Kr=2 'STeEp' 2 "UNTIL' Nee "DO! 
"BEGIN! 'IF' K=N*2 "THEN! 

"BEGIN' Cl1,4)]2203C(172):20:C02,1):50; 
CC2,2):203L2=03 'GoTo' TIP; 

"END! 
D2:20,8%D13 L:=(D1=b2)/TANA; 
Foli):=2D1*D1*D013 FOL21:=D1 "D1 «D2; 
FoC3)2=01*D2*D2;3 FOL41:=D2¥D2%d2; 

‘Te’ KEN "THEN! "BEGIN! 
D2:=0; L:=D1/TANAs: "'END'? 
Cl1013:¢4,2eFDL1141.8eFD( 2141. B¥FDL3) 

#4, 2uF OCG) /C Lebel )i 

CO1,2):2¢3eFD(1741.2eFD(2)+0,64F 03) 
+1, 2eFDCGII/C LHL)? 

Ct(1,3):2-001,133 
C61,47:201,24FD61140.6eFD(2)41,2eFD(3) 

+3eFOCGII/ CLL)? 
Cr2e1):2C(1-2)3 
Cl2s2):2¢2, Oe EDEAJ+FDC2)+0. 44FpC3) 

0.4" FOCG))/L3 
Cl2,3):88C(1,2)3 
C12,417;=¢0,8*FD(1140. owFDI214+0. 2vFDC3) 

= #0.,8*FO(GI))/L: 
‘FOR! J:21 '"STEP' 4 "UNTIL! 4& *DO! 
Cr3,J):2-C(1,3)7 

C64.11:2001,4)73 
C64,2):2¢002,41: 
C64,33:2C03,413 
C64,41):3(0,4eFD(1140.4eF DC 2) +F D035) 

42.2% FDC4))/L3 
"'Ie' K=2 'THEN! "GOTO! SKIP: 

TIPS PeKe3; FCLDs=0, Seek P+l ds FLI41):=0; 
‘re' T=4 'THEN' #'GOTO! JUMP: 
Afl,23:2CP(3-1)3 ACl,3):=2CPC3,2r;3 

ACl4#1,1]:=CP(4,1): ACY#1,2)32CP04,2); 

JUMP 3 AC 1.4):=CP03,31]4C(1,1)! 
AC1,5):=¢0P(3,4)+C01,2]3 
Afl+1,3):2CP(4,3)4+C(2,113 

AC14#1,4):2=CP(4,4)+C£2,2); 

'Ie' K=oN+2 "THEN! #GOTO! COMP;



"END! 

SKIP: 

COMP: 

ELIM: 

TENDIG 
TENDS 

ACT, 67920015337 Al tp Zi retl17 413 
Art#1,5):=€(2,333. aAlt+1,6):=C(2,4); 

YEQR’ Q2=3,4 'pO! 

~HEOR': Te2102,304 -' DO! 

CelQ,T);=ClO,TJ3 pt2=pe7 LPssL; 

TENDS? 
"FOR' Ps=1 "STEP! 1 "UNTIL! NR=t 'DOF 
"BEGIN' LAST: ='fF! P43 'LE* N 'THEN' P43 "ELSE'N; 

‘FOR! Jsep+4 "STEP! 4 "UNTIL! LAST 'DO! 
"BEGIN' "IF! ACI, P+6—1320 "THEN! 'GOTO'ELIM 

"ELSE FACS=Ai, P+4"11/A[P,4)? 
FCLTI:sFCIJ"FLPI*FAC: 

TEOR' Js=Pe5—y,P+6nl,P+7—z DO! 
: ACY eS] 2SALL,S1PALP er ymPHsI*FAC: 

TEND!? 
"END"? : 
UCNJS=2FEINI/AOIN, 413 

"FOR' [s=Nwl "STEP! =1 "UNTIL! 4 'DO! 
"BEGIN! SUM:=F{I]3 

FIN¢s'Ie' I tLe! Nes "THEN! ZIELSE'N@=144; 
'FOR’ Jre5- "STEP! 4 “UNTIL! FIN. "D0! 
SUmM:=SUMMACIT, J) *uCresye4d3 
ULT]:=SuM/ACI,4]3 

"END'? 

Viesf2eUCne1); 

V2r2C14NUe C1 =NU) wAR/TANAF2eLNCT/COSCAR))) 
/CTANA@AR)? 

V3s=26/¢TANA*TANAwTANA)? 
PRINT(V1,601)3 PRINT(V2,36,41)3 PRINT(V3,56/1)3 

" NEWLINEC4)?



PROG. 5 

13/04/72 COMPILED BY XALE MK, §C 

"SEND TO' ¢( ED,ASTN=DEFAULT(CO)..«PROGRAM) 
"WORK! CED,WORK FILE (0)) 
"BEGIN' "REAL" X4,-X2-D16 D2cEs+ Be FACs+SUMe Lo MTsLAAP : 

"INTEGER" ENoNe BWV ELe lide Tl edd FIRST+ LAST+SArZePeMeNCeNLeReS; 

F:=READ; Bs=READ; 

EN:SREAD; N:S@eEN+2; Buss; 
"BEGIN! "REAL! 'ARRAY' Cl42451241,-CP03:45324)/Us Fe KSCIINI, 

: Ke KM, QL1sNoit4),GeXeD,VEIsNJ -Fol1:4); 3 

X2:=5READ; O2:5READ; 
CPL3,33:3CP03-4]:5CP64.41:20; 

VEOR Sot See US Ter 4c UN Pip Na e00S 
"BEGIN! FLIJ:2GCLJ:=0; VCris=1; 

'FOR! Jest 'STEP E14. UNTIL: BW! DO! 

KCI ,J):=0; 

"END'? 
"FOR Elset “STEP' 1. "UNTIL": EW? DO! 
"HEGING XP ake) 0132027 

: T:aewEL=1; 
NEVA exe OL Tas sn 
X2sFREAD? OD2:2READs L:=x2=x13 
FOC1T)s=sD1*¥D1*D17 FOCZ7:=014D1*027 FOL3):=D1*D2*d2; 
FOL4] :2D2%02*p2; 
Chir1) 2204, SeF O12 41, 8* FOC 2)41,8*F DL 3144.2" F DIGI) /CL*L¥LDG 
CLA 2) sECSeFDL1]41, 2H FDL 2140, 6H F DI 3141, 2eFDI4I)/ CL wl); 
ClieS)seeCli61)5 
CL1041 2201 Sek DL1)40.6* FDC 2141.2 FOC 3) +3*FDC4I D/C LeL); 
C22] 22, 2*FD( TIFF DEC 2I+0 4a FOI 3340.4" FDC4I))/L3 

Cl2¢5)32"cl1-2); 

C627472=00, 8 FD11)4+0,2*FDI2)40,2*F DIS) +0.8HFO(4I)/LI 
CESS) SeeChl7 31s ClSe 4 ea C (174); 
ClArG] 2 (O, Se FDL1I40,4* FDC 2I4+FD( 3142.2" FDI4II/LI 

KMCT,1):8CC1,2)2 KMEI,2):5C02,21; 
KMC1,3)2:2C(2,3)2 KMCI,4]:2C02,4)1; 
KCyeT)sBCL1e174CPlL3,33% KEI,2):2CC1,2)4CP(3 415 
KCYeS)32CC103)3 — KC1e4788CC1,433 
KCI*#1,1)32C02,2)+CPL4,4)5 KC141,21:2C02,3); 
KCI*1,3):2C02,4); 
CP£3,3):2C(5,-3)3 CPL3e4)]32C(3,4]; Ce6424):2C(404); 

TEND. 3s ‘ 
XCN@W1)8=xX23 pUNe1)]:=p2; 
KON"1,1):8CPL3¢373 K€Ne1e2):=CP03,4)3 KOINe1)32CP04,4)3 

SSOR Pee ISTEP l 4 TUT LN 204 

'fOR*: 078%. STEP*. 1. UNTELS BW: D0# 
QCI¢-JJ:=KCI,J0]: 

NCrREAD; 

"'TF' NC#O 'THEN' 'GOTO! NOCO; 

CEORE REET USTER! VT UNTIL Ye NC po? 

"REGIN' Z:sREAD# Ul2):203 VEZ]:2#0; 
FURS Jee) ESTER: Fc TUNT IU BW: D0! 

KLZ.J]:20;3 : 
Firsts "1F' Z>BW ' THEN! Zz-BW+1 "ELSE' 13 

TEOR’ Y:2Ze4 'STEPI=1 "UNTIL? FIRST 'DO0! 

KCt,Z2el+1)]:s0;3 

"ENDS; 
NOCOs: FLI=READ; 

"re" ELBO ' THEN’ "GOTO! ZEKG 

"FOR' ps24 "STEP' 1 "UNTIL’ EL ‘pO!



Se
y 

. 

"BEGIN! TssREAD? KSCI):=READ; ; 
KCTe1)sSKCL,1)+KSCII*12/¢(E*B)? VEII:=2 

"END"? 
ZEK: NL:SREAD; 

TEOR* $184 STEP! 4 “UNTIL! NL Epo 
"RBEGIN' Z:sREAD? GUZV:=READF FLZ):2G0C2)%12/¢(E*B); 
"END'? 

"S60R* Peete tSTERP*: TY UNTIL Noy DOF 
"BEGIN! SURE RCP 1280  UTHEN® GOTOR-PIND 

LAST:= 'IF' P "LE NeBW+l "THEN! P+BpW=4 TELSE! N; 
(FOR! Ts2P4+1 "STEP* 1 "UNTIL® LAST. *D0! 
'"BEGIN’ ‘IF! KCP,T-p+1)J=0 "THEN! "GOTO FINI? 

FACs*=KCUPpel=P+1)/K(P,1]7; 
FCLJ:SFCTI-FUP] FAC; : 

"FOR' Jeet "STEP! 1 "UNTIL! P=IeBW 'DO0! 
KCT,JJs=KCiedI-KE Pr TePHJI* FACS 

FINI: WENDY 
FINP: “ENDS 3 
SUBS: WEORT AES 

"REGIN® 
=N -'STEP' =1 "UNTIL? 1 = '00! ; 
"TF" KCI,1)=0 'THEN® *GOTO® ZU; 
SUMSBFCI); : A 

PER TON THER  GOTO* VALY 
SA:s "IF" [>NeBW+1 "THEN! Nel+1 "ELSE! BW; 

TPOR? Sime: USTEP*. 1S UNTIL E SA. t 608 
SUM:SSUM@ KCI e+ J] *ULI +J=4);3 
UT SeSuM7 KEI, 113 5 

TeV US TERS At UNTIL Ne DOS 

FEIJ:=0; 

FIRST:= 'e' I>BW 'THEN' IeBW+1 -"ELSE® 13 
LASTs= "IF' I<N"BWt) "THEN? IT+pWe4 "ELSE! NG 

"FOR® Jr *FIRST "STEP! 7 TONTIL” LAST" 50! 
*BEGIN' Pre "IFFY Jel "THEN UO UELSE! 1} 

Z:s 'IF' J<I "THEN TeJed "ELSE! Jalt13 
FCrJ:=FCTI+QCP,Z2) UCU)? 

"END! ; 
FCI J ssFCIjJ*E*B/123 

"Ip' VCIJ=0 "THEN! F C1] ti-GCrd: 
"IPE VEtIs2 THEN FOI) eKSCIJ+UCII13 n

e
o
 

NEWLINEC2)3 é 
WRITETEXTCE8C8 8 C948") *X8C81468") DEFLNIE C1168")! BMI C8168")! 

STRESS'C'TA4S")'REACTION'C'TIS*O © FIXING“ZMT')') 3 NEWLINECS); 

VALS: 

ZU; "END'; 

"ROR: I 

"REGIN! 

"END'; 

"fOR' J 
"REGIN! 

STRE: 

FLE: 

"END? 

"END'; 
"END': 

$34 "STEP' 2 "UNTIL® Net "D0! 
"IF’ TsNe4 "THEN! 
"BEGIN' KMCI¢1):5C01+433 KMCI,2):2C02,4)3 

KMC1-¢33:2003,4672 KMCI,46)22C04,4)3 

Mrs" CKMC TT) UC T<274KMC LT, 2) *UC Tet +KM C1 3] *UCT) 
*#KMCIT + G)*UCT+41)) ¥EeB/123 

'GOTO' STRE? 
TEND Ee 

MTS2CKMC I, VIMUCTI FRM ET AIRUCL OL IR KOC ¢ 3S) *UCT +2] 
*KME DL, 4I*UCT*3)) «E*B/123 
AAS EOeMT/ (BRDEI)#DCI1)3 - 

PRINTCXCI},3+2)% PRINTCULII,10,2)$ PRINT(MT/1000,13-5)3 
PRINTCAA,159¢2)3 

"TF’ VCIJ=2 'THEN' "BEGIN! PRINTCFCEI), 13, 204 
. 1GOTO"FLE? _ 

: "END! ? 

"TF! vVCiJ=0 "THEN! PRINTCFCIJ+16,2) ‘ELSE! SPACE(20); 
“yp? VCI44)20 "THEN PRINTCELI41)/1000,12,3)3 
"TR' wEll+i]22 'THEN' PRINTCFEL141)/1000,12,3); 
NEWLINEC2)2



PROG. 6 
"SEND TO" € ED-ASTDeDEFAULTCO), « PROGRAM) 

CEDpWwORK. -6 LIE GO) "UGRK! 

Cote at 

FIR: 

F 

'REGINI 

"REAL’ NU,FAC,SUM,AB+B1+82/83,01,02,C3,NF; 

"JNTEGER® Lyd Ne li pdt Re ZeFIRSTsLAST+PrSA-BWANB; 

Re he 

Bue aZekeh&s Nee _OuRe (R41) +BWeas 

NB SRWtes 
BEGIN 

PEAL® "ARRAY Ar Be Code {sort s6zpeUe Fei sNye Kei sNe ds NB» 

MC42507s63¢81Gl4yNe1:3), X04. 6]; 
HUsaO.5e 

NEee ST ONUDY BF : 
ALT, V1 t8€3eny/22 ALT, 23 2Fe (tenures ALT, 5) :28 C1 =Nyd le: 
ACT, SIREN ye ALL /S3256e17 ALI 6125C1= Nyds2s 
AreyOMERAC hay? ATC S32 SALT POTS ALS 47 eeVe. CAL 2 fo] feN0; 

ate, Oltealtr Si ACS,3):=ql2,3]3 ,~l3,4):5,05,5):2=03 

=~
 

= 

ACS,OVSSAC1 S39 ALG SI) 9813 “ARG ST Veen:  AC4,6)s5A(5,6)35 
AC5,5]:51;  Al&,6]28A(1,6]} 
BL15.19 tap? BL pedee bli, 31220: Bl4,4] :5—NU? BLA  Sle= 17 

REE, G)ISNUT. “Rie eae ALT) 617 Bie, 51. SAC, Oe 
Brevh) PRES 474803 Bre, 5 sabres es Bee 6 PSEA 3.47: 
BiS73): SO ivr ls B8£5,51]1:sAC1, 3]; B{3,6).2BC2-2); 

BL4,4)°543 PC4,5]:23NU; Bhi g lesen 

oy Ve=plaeq]? = g05.61:5A04,2]33 Bl6,6):2A04,4)? 
pieCl 1), 6435010 ,0) SAE. 617 

teres. B47 20 pes 61s SC 5 (6) Las 
CET, 33f2C01,4) 22073, 6)22004,6]22AT1, 393 
Clre2,2)88C(5,5)2:51; Cl2,4):=C(3,5):2-1? 
C23) 280(46,5}2S—NUF ClA,5)s2Nus 
CToVosvell by G2 satel «Clo ,4) see Ab ire f° 
OME tte C6 fOue sis DET 21sepll, 5) s0le,6) spl; 63250: 

DE Slee LG, Ole ean DEF Ga: =D1306]22*NU: DCO lta N Us 
nl2,2)2=pl2, 51f2pf5,5]22AL1, 643 

DE2,3)9230(2,4)22065,5)22004,53:8A(1,573 
DTS STs eRten eared: DES, 4):52AC1, 223 

EQRA Teed. tSTERPY Fo MONT EL! Ne rbot 
BEGING: Frly seo 7 Ul t): 20; 

PFOR’ Joct sSTEP+ 7 CUNTI Le NB 1DOs 

KE tid tee = 0:8 
END 7 

FOR! 2251615721053 044 795561075081 9356101011 S 1211551411195 

461471759481 0195 #DO! 
BEGING V FOR! Pt eeZ 244-1) 0* 

"BEGIN! "£OR® Petri, 1141,114+2,1143,11+BW92, 
T1+*+BWe-4 Dot 

"BEGGING Pes "TE! Peet 31435 -. THEN! Tat 141 
'ELSE' TelisBwt7:? 

SL RUR te) tae =P ‘STEP? 1 UNTIL! S=P, 
TielepWel,lie-lepw "po! 

set BEGIN. PYRE SST THER PC OTOF: FER 

JOLE! SaP 'THEN' TeT1ed 8ELSE! Pelt eda Blas; 
KEEPS LSERKET ILA ddd 

ENO TENOR. CEMET  BMD TY 
FORA Fans 14 co sane ae Tosrto) 85, 5 ay, Te ME ed Sr ee ee 
£63,175 0183, 67 728 DO! 

'HEGING YEORD PL eaZeZtQ tHoe 

=<



"BEGIN! "POR! 3 ¥=17,1141,214+BW=4 "STEP! 1 
SUNTIE 1 4eSwet; ' 00! 

‘REGING. Pes. "Teo 1 ULE? 24 ot. THEN!. bet T+ 
-YELSE! Tepimewe7: 

"FoR' Jse2—P,3-Pp, Jinm1+BW=5 'STEp') 
‘UNTIL! I1ei#aw ‘pO! 

'BEGIN' «let Jet *THEN! #GOTO? SEC; 
GPSVP EU VOLE Sep FTHENS Teld+d TELSEe tel 4 td @BW+67 a: 

Kr eJVS=KE1,31]+B0P. Judi 
SEC: ee LEND ip VENDA? END! 

‘FOR! 63549 (eerie s a 65571785, 917405 411 eo rlaty Vet 
yas: ‘7h, $85,199: "Do! 

'REGING ‘FOR Ei leblage tpar 

"GEGIN' "FOR! BUT elrateteeel1 45,11 eNBr 2,11 4N871 pot 

BEGIN! Pe Treo Pr ULES Tes I THENY Poy) *1 
TELSE! Tel "NBt/i 

1EOR! Jsz2eP "STEP! 1 'UNTIL' Sep, 
T1i-[4NB-1,T114+NB 'po! 

(BEGGING SADE ley <] "THEN! 'GOy0! THRE 

JbvaclL eee Per Let Sa PULHEN La iad 

‘ELSE! JT +d-NBe6; 

an : KIT, JPteel ieee ee ieewerys: 

THR! ee 'END!S 
; : teENDt? 

'FOR' PrerlsT14t,114NnB=4 'STEP' VIUNTIL'IT1+NBa1 

EPOlI SEGING Pp ys Vy et TLE hol 4 4d PTHEN! Tel 141 

i ‘ELSE! [mti-NBt7/; 
FOR! Jex2eP, 3-P,T IRM LHNB-S ISTEP! 1 

"UNTIL? t1=r4NB "DO!" 
IBEGIN' tip! J<1 "THEN! #GOTO!' FUR; 

JOPS ATE. SORE Sept THEN! Fb ed 

"ELSE! [eli tdaNBt6; 

Ket, JYsSKC1,J)+00P Ud); 
FUR: CEN BA 

"END'? 
"END! ; 

"END'S 

INV: P20 ,5*BWs FEP)sse17 BUuLrsBWe?; 
'SOR' Z2rSN=BW+SeN=1,N ' DO! 

‘BEGIN ULZ]:=0% 
‘FOR’ Jeet 'STEP' 1 ‘UNTIL! pW 'DO0! 

KEZ~J) 2207 : 
FIirSf:s 'IF' Z>BW ' THEN! 2=BW+l "ELSE" 13 

'FOR {e221 "STEPHH4 "UNTIL" FIRST "DC! 

KLYy,ZneIt1].20; 
TENDS s 

VEOR tT Pesto tSTeRs 1. TUNTI Et oN= tt DO! 

'SEGIN! "TE! KEPe172=0 !THEN' *GOTO" FINP; 

LAST.s 'IFt PP ' LE* NeBWt] >! THEN!  PepWed: TELSE® NG 

(FORT TenP+4 "STEP! 1 'UNTYL® LAST #90! 

"BEGIN! "IF? KLP,T=p+ij)=O 'THEN' #GOTO! FINI; 

FACSKCP,TeP+13/K0P,113 
FLIU:=FCIJ-FiplxFac; 

PhORM Sse _ STEP! 4 TUNTILE Pel+BW 1p0! 

KEL,J]reKLT,d]=KOCP, Te P+d de FAC; 

~ 

FENDYY FINI: 

FINP? TENDS? : 

SUBS: TEORS U3 SN ISTEP Ts 1PUNTIC! et DOs 

TSEGING "TR ' KOCI,1)=0 "THEN' 'GOTO'. ZU; 

SUMSSFLID¥2e CT ANUWNU) 3



VAL: 

coe Use 

're' J=N 'THEN' "GOTO!" VAL? 

SAr= VIF! T>NeBWel "THEN! NeI41 ‘ELSE! Bw; 

$COR* jJ282, 'STEP' 4" UNTIL*. SA ' pO? 
SUME=SUM@KE Led) *ULT +d-1)3 

UPL] :=SUM/KL1,4)3 : 

EAD cas 

~SpACE(S6)3 WRITETEXTC'C' DISPLACEMENTS’) '); NEWLINE (4); 

TECOR! I1ts7 "STEP! 10 "UNTIL" 204 'DO! 

CeeGiNic TFOR) 451 t (STEPS 2a CUNTIEL LUs6 D0. 

PRENTCULID, Och) ho ‘ 

Rene! pestiel oPSTep'.2 M UNTIL! 2 1709. 100" 

PRINTCULI1,16,4)3 

NEWLINEC3)3 

“TEND!S 
PAPERTHROW; 

R12=C2:213 B2s2C3:290; BS. SCT 25915. 

ME4e17:23877 MOET,2]:3NU*C13 M(1/31:5Be; MC4,4] 22NU%C2; 

MEV STEERSE MEV» 6ISENURC3S ME 2Ze1 1): ENURBI: ME2,2):8C13 

ME2, 3) LENUwb2t MC2,47:2C273 ML2,5]:2NUeB3;. HC2,6);203; 

MO3SeV]SENFRCTS MC Se2TsENF*B1; MES, S]sENF aCe; 

NOSe4)SSNF¥B2; ME3Z/S]7:SNE*C3; ME3,6):5NF HBS; 
CEORT T1eet. STERT 20 UNTIL 1942 e008 

"REGIN? "FORS TeetT pl 1447121 212 ite eet 

'BEGING XCV]sSUlli: XC2IssUlT4193 XCSIseUCT +2); XC4] se0CI+35)2 

MESTesUlLT+1027 XC4]2:2=ULT +1117 

FOR a) TS1, 27 oO. D0! ; 

BEGIN’ SUM:=0; 

FOR! Pest, 2757471970. 1 D0! 

SUMESSUMEME Ue PI*XEP); 

GLIigJ LP aSUM/ CT @NUANUD? 

'eND 3 sc. ENO te ENG zs 

B1:eC3sSe17 B2rsC1:0; B322Ces5413 

MC1,7)8SB13 MCT,2]:2NU*Cis MC1,351:=B2; Mri,41:eNuece; 

MET19)] 25837 MO126]:=NU¥CS; Ml2e1) 2 eNuUweit: Mi 2,pe dss Gl? 

MOE2e3)2SNUKB27 ML 20475 :8C2; MEZ,S]:=SNUeB3; MC2,6):2C3; 

MALS, )ESNFeC1} ME3,2):=NFE*B13 MLS, 3):=NFwC2; 

MEDeGVSBNE*B23 MLZ 9] sSNF*C3; MES,6]:=NF*83; 

VEORT 11 s242 PSTEP!: 20: YUNTICE 194:22.00" 

MREGIN! "FOR! TERt1t1.1145,11413,11417 "00! 

reeGIn' X(T] rsullei]? XL2vrSuCre2)s XC3 seul l+9)e | 

XC47eSulLle 10): KOS SUC +1172 XC6i;sulr+i12); 

FOR' J:#1,2-5 'DO! 
"BEGIN' SUM:50:? 

"FORT pret, 2057 409,60 "D0! 

SUMEsSUMRMEL ds PIKE PT; 

SirGlIi,die2SUM/ CL @NU*NUD | 

Ven Dts TEND! ? SEEN D tee 

BisSC3ree1p Bese 22s17 B32sC1 720% 

MEd SRK MO STR SNUNC Te MEie3)]:=B23 MC1e4)s=NuxC2; 

MOV, 57) 8FR33 MID 61 ESNuKc3e MC? V)eeNuents MO2,21 ¢sC1} 

mC2e SVP SNUeB2; MEY,4] 3202s MC2eS5]:SNU*B3; ML2,6):2C5; 

ME 3,T]rSNFuCi? MES,2] :SNF4BI; MES,3) :5NFuC27 

ME SeG)ERNFWB2; MESe SLs SNFRCS; MES,6) :5NF*BS; 

TrOR! Tleet eSTEP* 20 UNTIUE. 194100! 

"nEGIN' YFOR! Lrzlt+2,Tit6e 11410, 11414 "00". 

MREGIN! XCV]ssult); XC2I:sUlI4+1)3 ¥CSissuUcre10)3 XC4)seuli+1id: 

KOSpesuli+12]7? XCh]sSuli +1313 = 

YeORL desis; ore twos 

"BEGIN! SUM:=0; i 

TEORE Ds Elg ero 49970 D0"



| 
"END'S 

SUMEESUM=MOo dep PJ*XIP);3 
SIGELI,JI:=SUM/ CTeNURNU)D | 

TEND’ s "END s "ENDS; 
PYsSC3s203 B2:2C2:213 B3:C1:=2=13 

MET,T1T2ER12 MEV, 23 22NUKC1S MO1e3)2=B23 MI1, 4): 2NueCe; 
MI, ene ME1,67:8NU¥C3$ MC201):2NU*B1s ME2,2):2C1; 

MC2e3VESNURB23 ME2e4):BC23 ML205);SNUKBS; M(C2,6]:2C3; 

MESseVIEENEROTS MO3Ze272SNE*B1s MES,3) SNF uC2; 

MO3¢G)ISNFeB22 ME S,S) s=NE*C3? MES,6)2 SNF eBSe 

'eORT Tiset "STEP! 20 SUNTEL*® 194°." p0° 

IREGIN Vee CORI Peet t+ S517 Pe piel oe Ole 

'aEGIN' XCV)eeUlTR1)i XC2d2sSuCras XC3)ssUCr4+1)3 MCG] veu Cl ee des 

XCS) seule Isxloiseulr+12);3 aA ; 
"FOR' J221,279 '00" 

"BEGIN! SUM:=0; 
"EOR! P224,2754415,6 ‘oo! 

SUM se2SUMeME Ue PI*XE PI; 
SIGLI,JJ2SSUMN/ (C1 eNURNUD? 

Yen! t CEND SS. ENG 3 
SPACE(56)3 WRITETEXTC’ C'STRESSES')')3 NEWLINE C4); 

FORT 14 ee US TERY 10. CUNT EE! 49.45 "p08 

"BEGIN! "FOR' P:¥41,273 "DOF 
"FOR! -yeBl] 'STEP* 71 "UNTIL® 1147 'D0° 
PRINTCSIGLI7P1,7-4): 

NEWLINE (3); 
"En D's 

"END';



PROG. 7 
YBEGIN' "REAL? LeaRsePReErRE,NU,KBsVC?Z,DE,KS-CTeDT re DIieD2y 

FAC,SUM,XtTAP? 
TINTEGER' No Ty teds LASTS FIND P 
Nr aOR See Le S25 po: 3 

TBEGIN’ "SEALE "ARRAY! Cl124e424),CPL324,3241 DRC m1 Ned] ee CIisNd, 

aes Nie KLVIN, VT? ile FDE1: 4) ,W, MrSrHSC"42N,0: Sl jAr Rte T3NVi 

re (74,0; Ditss: 18: TApPS=03 ' 

Dean ae 
Ese3%00! NUSst0,35: VEs20,068 =—38s eg aa; REs=1/E; 
eOTrS tT /EXP CZ) OTR? KB SRE C3 ete 2eNUY)? 

"FOR Tes0 'STEP' 4 "UNTIL 6 # DQ? f 
TBEGIN' Es st /CREtVC%C18DT)); 

NUISSQ,5™E/(6*KB)3 

DELTSE/CT2e CI*NUXNIDD DF 
FOR’ Te8t ESTER AT UNTI LE NOOO" 
FOR? d.08 ec SSI ER: Tet UNTIL® 42 56" 
KfIe,d)2=03 

FORT [eee US TER! S22 CUNT ECE Ned VD! 

"BEGIN! D2:sSD1s=TAPHKL; 

KS:sEeDI/ (RRS DROIT s=pReReRe(1=NU/2)/CE*D1)? 
Fol) s2D1 epnie* Dis FOLC27:2xplepixpe; 
FOCS):=Dixwep2sxd2; FOC4J:=D2"Deede; 

Cli, T]2=DEe (4, 2X FOL1)41,8¥ FDL 2141. 8x FD S144, euFD CAs) 
Ltheksetoe 

CLL, 2) SDE CSHFDCLI41, 2*FD C2140 Oe FDI3S]+1,2eFD04)) 
FCERASS 
Cl1,5]:2"clisi); 
Cli, 4] s2DE*e (1, 2*FOC11+0, detp i ovant 2eFOE ST 4+ S5*FDL4)) 

FCLeLY? 
CL2,21:=DE* (2, 2*FOCIJ+FD(2)40,4eFD(35I)+0. 4eFDC4ID/L: 
Cl2,5):F9Cl1+233 
CL2¢4] SDE CO, 8* FOCI] +0. Ae FDL 2140. 2K FOL 3)+0,8*F DLAI) /LE. 

Cha slesGrl ry? 

Cl3,4):F-Clie4i: 

COA, 4] :=DE RCO, GFP LI]+0 4H FDC 21+FD (3S) +2, 2eFDEGID/LT 

ALT) 201,233 All#l]:eclas2)! BC1112CL2,4)3 
es I=-1 "THEN! 

“BEGIN F649 FeO 04,5 1*DR Cy 
Fr2):2C(1,4)*pr[y} 

'GOTO' ENDEL; 
EN DY 

ELAS CLTsVI+COl3s, 31+ KS¥L? 
KE 2122061, 23 *Cels,.4)? 

KEL See ll odes 

KAT; ete eed 4AVG 
Klett, 1iseCt2,;2JeCPl4 433 
Pgh a eo et 
KC1+1,5):2C02,4); 

Creo ts peal THEN Yt GOTOM ENR ELE 

- Ll) ssFLi+1) 320; 
ENDEL: CPUS 3) 72015, 537 

COIS phi VeCtS. 1; 
CPL4,6) :=C04.43; 
{12025



VRORMC Peet US TERN 4 SUNT te Net pO! 
"REGIN!' LASTs= 'Iet P "LE! NewS 'yHEN!' P+3 "ELSE! NG 

"FOR' T:sP+1 'STEP' 1 "UNTYL' LAST ‘pO! 
‘BEGIN 2c "IT FIo Kip, lepttle0et THEN GOTO” FINI 

VELSE' FACS=KEP,lep4t)/KIP,11;3 

FELT VsSF CT] «FCP J] wFAC; 
"POR! Jesd "STEP! 4 "UNTIL! PHl+& 'p0! 
KCY,JddrakKlredJ-KUp,f-P+JI*FACT 

FINI: "END'; 
TEND"; 
WONISSFLNI/KENY1)3 

TFOR? SP ene) POSTERS 1 SUNT C7 Epo? 
‘REGINGS SUM SF EL) ’ 

FINS= 'IRF' IT tLe! Nes 'THEN® 4 tELSeE!: Neale; 
VEOR Jeee. STEER) 4 UNTIECLUO RIN = EDO. 

SUM:=SUM@K( I,J] *UCT#J—4]3 
UrT}]:=SUM/KC1,1);3 

"END"; ae 
P1133, 187 UlLeti:s—DRE-1]; UlO1:=0: 

VEORL teem 1 SPER 2 EUNTIEL ES NewS PDO! 
PBEGIN' MEL, TItFACTI*CULT I AULT e210 FAL er Jeuliet +B Cle UlT+3)5 
: SCLeTIrF6e CABS CME Ts TID / Cpt aD +PRER/C2%D1IG 

DV E=D1eTARKL?: 

"END'? 
(FOR! Ty se4 CESTEPH 2. SUNTILE NaS 8 po! 
*BREGIN' : 
WLieT]sSULTI+DRLIV: 
HSCL-+Tlesb*wWl re TI/RENU*SL IAT) 

TEND'S 
OTISHT*CT? 

‘END'. OF T LOOP: 
SPACE. (26)222 WRITETEXT-C* CETEXOKK ED) 3 

TEOR? T5247273747526 ‘po! 

PRINT(T*+9,0)3 NEWLINEC2)3 
-'EOR' Yreed "STEP? 2 'UNTIL!' Ned # po! 
"REGIN' X20, 5¥L¥CIt1) 2 WRITETEXTC'O'Xe")')7 

PRINT(CX+35,1)% WRITETEXTCICIYDEFLNY')!')3 SPACECS): 
PEOR THEO STERS To! UNTIEL 6 00! 

PRINTCWLI,TI+4,4)3 ; : 
NEWLINEG1)$ SPACEC14)$ WRETETEXTOCEC'4ZBAMZLSALEKE' DG. 

VEORT 27 PO USTED 4! UNTIL E 6 Dota 
PRINT(MLI,T104,4)3 ; 
NEWLINE (1) ¢ SPACEC11)3 WRITETEXTC' C'LONGYSTRESS')')? 

‘FOR’ T2280 *STEP* 4 JUNTILI 6 tbo! 
PRINTCSLI,TI]°4,4)3 : 
NEWLINEC1): SPACEC11): WRITETEXTC!C'HOOPYSTRESS')')7 

FEORT: TESOcGRSTER! (elUNTIVE 6. p64 
PRINTCHSECI,112404)% NEWLINECS)? 

BENDS: 

PEND! 

"END! =
»



12/06/72 

PROG.8 
COMPILED BY XALE MK, 5C 

ESEND 7.0" 6 ED, ASTD=DEFAULT(O) »«PROGRAM) 
- "WORK" (CED*+WORK FILE ) 

'REGIN? 

"REAL" NU,FAC,SUM,ABrB1+B2-B3,01,C2,C3,NF,KBeVCrZErTeVFsE, 

foe bem Ene 

"INTEGER" LTedeNe Ti edd eRe Ze FIRSTALAST&¢P,SAe BWI NB? 

Rie; 

Wi=2eR+4; N3=503 
NBISSBW+e3 

"REGIN! 

"REAL "ARRAY! AsBrCeoD[126-1:6] Ur FCIINISKCISN Tice) sVElENnds 

MOVs 39126] ¢SIGlL1:Nels3)- X01:6)3 

NUrS0,353 E234,2*100000; KB:sE/C3¥(4=-2eNU))? 
VC250.,5/1000000! .262=0,37 
FOR Tg et STEP PUNT EL Wp Ue sents 
CROR -LS8v, ( S4ER* O75. UNLIL. 10.100" 
BEGIN 2 OT pt Tet NE hs 0 ETH ENS 

BEGIN  Tlewl @o/ or oles ste 

=T/CVC*CT/SEXPCZE*T1 MV /EXPCZE*T2)9)3 NUS =0.5; 

PEND: 3 

Mitt ope eT HE Ne 

TBEGIN' ROR! Tstte (STEGER): 1 CUNT Le NEDO! 

VETJsaVCIJwEP/EF 'GOTO! XXX: TEND! 
NFs=(1"NU)/23 
BW:=12; 
ACTe¢411:3C3"NUD/23; AltT+202 29 C44nNU)/23 AL1,3) :2° C1 NUD /2; 

ALT 43 FSNUe 3 ACI, 5) tS=917 7 All, 6) 2 =¢TeNU) L283 
Alkeyed All) Vi)... ALE, 51 °SA01,; 6) Abe 611 se1t AP], 51 2=NUF 

Al2r16)3 ZAC1,3); ALS oi aA Gai ks AC3,4):2A03,5):=03 

AL3¢61:35A01+3)3 ACS ,4):=15 Alhs5):2=NU3;) AL4,6):2A05,6):= 
ACS 50)-¢ =43 Al6, 61:2AC1,6)3 

BL1 61153813 BC1,2):2=B8(1,3):=03 BL1s4]:2=NU;3 Bl1,5):==13 

BEE O} SNUse ate, OLS SALT Ol ee RRO y Ss ee ATA 8 1s 
BL27,4)'SR(5 74) :30!8 . Bl2sSI2Sbl2,2)°  Bl2,6)2:2A01, 512 
BES75)2S8027295 BL Sn5 1 RAL TT, Sis R(3,6):2802,2]: 

Bib6 74) 9213. 2.804,5725SNU0 02. BL4, 632 5=132 

BLS O32 SALI G11 -B09,6155A01, 233. 806,6)] :eA Cl; 1.1; 
C0441) :=C001,6):3C(6,6):=A(1,613 
C12} 220041, 5) 202,63 75065 ,6)2207 

C4753 33C0G 746) tSeClor Oy 32004, 6) abl, 5.14 

Cl2,2332C(5,533213 ClAc4):2Cl3,Sl]s3ee13 
Cl2c3)3sSCl4,S)ieeNnUe Cl2+5]ssNu; 
CUS7SI2RCL4 41 PSA 1): CLS, 4) 38-Alt, 213 
DC1-7132:2D£6,6):21: DNC1,23:2071,51:=062,6) 2205-6135 

DCT,53:2DE4,6) 22815 DL1,4):=003,6):2=-NU3 Of41,6)2=N 
DC2-2):20(2,5332005/5):2Al1,61;3 
O02-3):20l2,4) 2200S /5) :2nl 4,5) :2Alt1,313 
003,3):20(4,4]:3A0121]2 0035,41:2"A01,2)3 

CEORS SL Peta STEERS 12 UNTIL NS 00? 
TBEGINECERL J Se 0p VEU) s0s 

(FORT Set STEP! TS UNTIL! 22! 00! 
KLi,d] 3207 

TEND 

ROR 2944 1 Oy ele 5a DOL 

LBEGINTS ORM Ll te2 ne he UDO" 

"BEGIN' "FOR' I[s:811, Ti+, Tle2rties, 11+BW=2, 

I1+#BW=4 'DO!



"BEGIN! Pre "ye" 7 Le? 1443 THEN TH1141 
TELSE' Te]i=pwt?7: 

PEOR A 2 = 2P ISTEP! 4 SUNTIL! SP, 

Ti-Il+BW=1,T1-1+BW 'DO! 

'BEGIN' "FFE Jet 'THEN' 'GOTO' FIR; 
JJse'"TR' J'LE' S=p "THEN! yeIied "ELSE! Tel1+J=eBW+6; 

KC red ESKEL JIFAC Ped)? 

SI Ree END eo END i BND e TEND 3 
PFORT E7383, 15725755 D0! 
"BEGINUcEROR! TD 9eZ 7 Ze "00! 

"REGIN' "'FOR’ L[ss31e1141,114BWRs& "STEP! 1 
tUNTIL!? Li*BWe=1 ¢p0° 

‘BEGIN! Pre "tet fF #LEt [444 FTHENS Tal io4 
"ELSE T=L1-pwt7i 

"FOR Jse2—P,3-P, [191+ BWed 'STEP'T | 

IURT ILS P48 1¢ge 2% 00? 
IBEGING ©Le! Jel YTHEN GOTO! SECT 

JJce'tp! J'LE! Sep "THEN' TelieJd "ELSE* tH114+d=BW+6) 

=o KUL) rake LIB LP. 002 

SE.C# PEND! 7 "END*: "END! 3? “TEND! 

"FOR 2383,117250351 -"00' 

‘BEGIN "FOR* 113827294 ‘nO! 

"BEGIN! "FORT LTsBti, 1141, 114+2,1143,11+NBa2e,T1+NB=1 ‘DO! 

‘BEGIN! Pre "Te' r *LEt 3443 "THEN Teal d#4 
"ELSES TelienBt7; 

'FOR' Jse2—P "STEP! 4 'UNTIL' 5=P, 
Li-1L4nBe4,TieI+NB #00! 

‘BEGIN' "Ie* J<1 "THEN' "GOTO! THR? 
Jdes 'TE* gy "LE! SeP' THEN relitd 

"ELSE! [T*l11tJeNB+6; 

KC tediseklr JI+ClP, di); 

* 

THR: . "END'S 
"END'G 
"COR LTssli,I141,114NBe& PSTEP' TEUNTILII1+NB=1 

thot! peGin® press tyeto y. Let 1144 THEN: Tele 

TELSE' JeLieNBt7i 
"FOR! Jsa2=P,3=P,T1HLtNBeS 'STEP' 4 

TUNTIL' Y4—14NB 'DO' 
"BEGIN! "IF <1 "THEN' 'GOTO! FUR; 

JJce "IR! g "LE SeP'THEN' TaI14d 
"ELSE! Tati tJd=NB+6; 

K€ Tred) eekly Js)#pC(P,JJli 

FUR: "END'? 
"END'; 

"END'; 
"END'; 

INV: BWs=22;3 
FOR! 22220120227 32141 1462043 ,465 547149 ,67678010 ‘DO! 

"BEGIN® VEZ) :=03 

‘RoR’ Veet STEP! 7 SUNTIL'. Bw! DO! 

KCZ,J)];=03 

FIRST:s. 'IF' Z>BW 'THEN? zZz=-BWel "ELSE! 13 

'EOR! Ps=2e1 "STEP'=1 "UNTIL' FIRST 'DO! 

Kly,Z2el*i)] 3507 

TEND 3 
KCVSTTESK LU oe TIHKL Se TI HKES VIE K OTe THK LO eT Hoe C KET SIeK C1 SI4K0177) 

KET OV+KL 3, SIHKL3,SIHKES, 7ItKO5, SIHKE5,5)4K(7,3))3 

KEV 27:BK( 12) +KL 2,2) 4K02,4)4K(2,6)+K(2-8);3 
KU GVsEKO1  GI4K LS 224K04, 234K 4-41 +KL 4,6); 

KEV OV: SKCV OI #KL3, 4) 4KL5,2)+KL6,2)+Kl6.4)3



KCi¢ 8): SKE1, 8)34K03,6)+K05,4)*K07,2)+K(8,2I)! 
TEORM ea O02 ST ep h ONT rik 22:3' po! 

KCV J] sEKCV II HK LS Je 21 HK LS deh tKI 7 Rb HKI9 R813 
FOR" 2923,5;7,9. 00" "BEGIN 

TFOR? Jeet 'STEPt T"UNTIL® BW: t00!3 

K{Z,J)]:303 i 

FIRST:s 'IF* Z>BW I THEN! 2=BWHt "ELSE! 1; 
MEORS. PisZe{> (STERIL eT CUNT LL bY RST UDO 

KlLy,Z2-J41)]:503 
PEND "3 
FL1]:5=—{16000; 

"FOR' Peed 'STEP' 1 "UNTIL® Net 'DO! 
CREGINE TE KREP, 4320. TREN, UGOTOE FING? 

LAST es OTR ULE 29 UT HEN® Pot CeELSER 507 

PEORt espe t: (STEP U1 eUUNT EEE CAG e = po0! 

'BEGIN' "IF! KEP, lep+1J=0 'THEN!' #GOTO! FINI; 

FACS=KEps,Tep+11/K(P,1)? 

FCT] SSF CL] FLIP) wFAC; 
YFORE Jia) ESTER G4 UUNT YL patted 008 
KCredJJtekKlCyedJleKCD-T=P+yIH FAC? 

FINI:  VENDS! 3 
FINPS PENDS 
SUBS; "FOR TsSN ‘STEP! 91> "UNTIL! 1-100" 

"BEGIN "JRE KEI-1120 "THEN! "GOTO! . ZU; 
SUMSS=PEC IT) *2*(1#NUeNUD/ES 

CUR Molen I THEN®. 'GOTO! VAL; 
SASSe TRE ITS 29 'THEN! Siel VT ELSE" 2273 

SPOR ':.J.¢ 82 STEER! 4- AUNT SA ere 
SUMs=SSUM=KII-J)*VEled-1); 

VALS. VET] :=SUM/KC1I,4);: 
ZU; “EN pss 

WEOR 2235757779. 200" VEZ aVi01I3 

XXXs "FOR' T3281 "STEP' 1 “UNTIL? N # DO! ULI) sSuCT]+VEI)F EPssé; 
WRT EEX TE CG! Tash), tp PRINT G2, 20-7 

SPACE(44): WRITETEXTC'C'DISPLACEMENTS')')3 NEWLINEC4); 

POR LIfel 8 STEP tA 10 FS UNTIL2 44 'p0! 

BEGINS FOR ' fist! STEP 222UNT TOT ea]! 00! 

PRINTCULII,16-423 

eFOR! Teel 1.414->.'§ TER 2s UNTIE! 11+9 'dO0! 

PRINTCULIJ,16,4); 

NEWLINE(3)3 

END"; 
NEWLINEC10)3 
VF SEVCwCTRT/EXPCZE*T)):? 

E:=1/(C1/420000+VE); NU:=S0,5-E/(6*KB)} 

BV:=C2:=13 B2:2C03:20; BS:=C1:=2=4;3 

MC1e1):2613 MOV/2]22NU*C1; M(1,3)2=B2: ME1,4]:=NuKCe; 
MEV/5)22R33 MOV GIEENUYC3! MLQe4) seNUeay:s MOC2,2):=C1; 
MO2,37:=NU*B23 MOL2,4):2C22 MC2,5):=NUwR3;: MO2,6):=C3; 
MES+,1)s2NFueC13 MC3,2) :=NFwB1; MES, 3) :=NFeC2s 
MOS+4):2NF*B23 ME3,27:=NFXC3; ME3S,6):5NF HBS; 
ROR 21 pat STEP! TOCCUNTTY 24. 1904 
"BEGIN! "FOR" JTs814¢61144,71412,11416 "da! 

TBEGING XEV]JssUlCly: ACA) ssuller): XC3VssUCr+2)2 XC4)ssUli+3); 

: XCSJ¢suli+i0)s XC6I22UC1 44137 
TROR dite iy 200 008 

'BEGINY SUM:=0;3 
"FOR' P31,2757475-6 "DO! 
SUM:2SUM+#M[J-/PJ)*XC PI]; 

SIGLI, JJ] :=SUM*E/ C4 =NUXNUD;



END e GV ENDL ce CEN Dee 
R1s=C3:5—13 B2:5013203 B3:=C2:=13 
MC1T/7):5R17 ME1-¢2):3NU*C1? MOC1+3):2B2: ML1,4):=NU*C2;3 
MCT,S)23B33 MOTe6VSSNUXC3? MCA2re1):2NUweart: ML2,2):2C13 

ME2e3) s2NUeBR23 ME254)23023 ML2,5):=2NUend: MC2,6):2C3; 

MCSeT):SNF*C13 MES/2)2=NF*B1s ME3,3)22NFu C23 

MC3S,4):5NExB23 ME3,9)s3NE*C33 MES,6):=NFwR3) 
MEO RT he oT eps BO MUNa Ton ‘nO! 

VREGING OVE ORG. 12st 161 7:1 457114735 4 S47 FDO! 

"BEGIN XC1]:sUlT+1)3 XC2)sSUCr+2)s XCZVpsULI +9); 
XCG)s2UCTS+10)7 XCS)S=UCT 414773 KL67:2UCIT +120; 

"FOR' J331,2¢35 'D0? 
'REGIN' SUM;:=03 
"FOR® BP:21,27574+5,6 "po! 

SUM:s=SUM=MCJ,PI*XIP); 

SIGCIT pd] :=2=SUM*E/ C1 =NUMNU)? 
“END Ff “END TP. PEND! 2 
B1:5C3:5—13 B2:3C2:513 B3:2C1:30; 
MH01,7723R13 MOIT,2782NU*¥C13 ME1,3):=B2: ME1,4):2NU*C23 
MO01757:5833 MO1,6)22NUKCS3, MO2,17:2NUweais MC2,2):2C13 

MCSN,3)22NU*B2: MO 264):5C2; MC2,S5):2NUwR3: MO2,6);2C3;3 
MO3,+T)S=NF¥C1S ML3r2):=NF B13 MEZ,3) :aNFuC2; 

MOSs4):5NF*B2; ME3S,9):SNE*C33 MI3S,6):2NFuBS3 
"FOR' E1227 "STEP! 10 "UNTIL' 24 "por 
"BEGIN! "FOR Ts314142,1146,11410,11414 "DO! 
"BEGIN' XCi)ssull): XC21ssulle1)]; x3) 22UL1410723 x€4)s2uC1+11);3 

X(Ch§l]ssullei2l]; XC6] sul 41373 i 

PEORG ed 3 =) ono) DO. 

'"BEGIN' SUM:=0; 
"FOR Ps®1,2¢53,425,6 ‘dO! 
SUMSRSUM=M( Je PJ*¥XCPI; 
SIGCI,JI:=SUM*E/ (4 @NUKNUD; 

EN Dacre ND sega EN Dies 
B1:3C5:=03 B2:=C2:=13 BS:2C1:s=13 

MO1-7)2=A13 ME1,27:SNu*C1? MO1,3):2B23 MC1,4):=Nu¥C2; 
MO1/51:53R37 MOV-6)32NU*C3;7 ME224)]:2NUwR1: MOC2,2):2C1;3 

MC2,3):=NU*B23 ME2,4):=C2? ML2,5):2NUen3: MOL2,6]:=C3} 
MCS,1I:8NFeC13 ME 3S/2@TsSNF*B13 MC3,3]:2NFeC2; 
MUS,4):5NFuB23s 4f3,5):53NEeC3: ME3,46) :2NFuB3} 

SPRORME TT Veet eS pep SO UN, TL 34 ‘po! 

"BEGIN! "FOR? YsB11+35,1147-11411,11415 "Do! 
"BEGIN' X(1J:euCle1)7 XC2):SUCTI; XC3)ssUCret)s XC41]:SUlt +2); 

XC5):sUCl+1115;Xl61s=UlCr +120; 
UPOR” he shy 296. (DO! 

"BEGIN' SUM:=03 

TEOR Ps 172757 475,60. "00° 

SUM:S=SUM*#ME Je PT*XPP); 
SIGLI,J]:=SUM*E/ C1 =NUeNU)D? 

VENDA e CEND Ue VEN DE 

SPACE (56); WRITETEXTC'C'STRESSES!')")3 NEWLINE (4)? 

TRORM 140s CUSTER 10 5 BUNT EL as] 50)" 

BEGIN' "FOR® P351,2-75 'DO! 

PRGRMeud eS Lies to eee UNG esl bh ee OO. 

PRINTCSIG£LI+P],10,1)3 
NEWLINE (C3) 3 

END'; 

PAPERTHROW;? 
ol 
*END'? 

SEN Dove



PROG.9 
“AOS02T te. ~ GOMPILED BY XALE MK. 5C 

"SEND TO' ¢ ED, ASTD=DEFAULT(O),. PROGRAM) 
"WORK! (Ep, WORK FILE (0)) 
"BEGIN' "REAL! X1-X2eD1002+Be FACe+SUM>L,»SUMSIGsINTsAMeMT»+SCe2PSUMENSUM} 

"INTEGER! EN sN/BW,ELeI eJ rp FIRST,LASTsSArZePesNCoNLeoReSaNSeNI$ 

NI=READ? NS:SREAD? Nsz@eENe2? BwWwis43 
"REGIN' "REAL" "ARRAY! C6124,1:41-CPC324,324),Ke/KM,Q012N 1:4), 
UeFre KSeAeMrE ¢GeX-DLIitNJ,-FO(1:41+SIGsMMPEELO: NS]: 

"INTEGER? "ARRAY! VON): 
FC2Z]:=READ; SC:=READ: SIGCOJ:SSUM:=INT:=SUMSIG:=03 
POR toy tat Sept qe UN Tire NS. | pO. 
"BEGIN' Sr1GCI]:=READ; 

SUMsSSUM+0 SH#SIGlIet]we(iel-(leidw(ret)e(SIGLIJ<-SIG(I-1) 
ye CLerel/3-(1- ast AT! 2 Cte 1) eCT419C191)/6)5 

MMCYTJ:ssSUM/(I*1)3 
EECTIs=MMCr)*3/ (SCL); 

TEND! ?3 

Bs=READ; 

"SOR' Y:=34 'STEP' 2 "UNTIL' Neo4q "DO! 
"BEGIN! XECIJsSREAD: DCLTIs=sREAD: ECI):=€0C21;3 
"END'? 

PeOR* Tre STEER! 1 OONT TL om eDpO* 
"BEGIN! GLIJ:20F veCll:e1; 
"END! ? 
NC:=READ; 

'TE® NC=0 ' THEN’ *#GOTO! NOCO; 
TEOR' Ro=at "STEP? 4 "UNTIL® NC 'p0!# 
'BEGIN' Z:sREAD; V&2):=0; 
"END! 

NOCO; EL:=READ; 
'rF* EL=0 "THEN? #GOTO! ZeEK; 
"FOR' Ps24 "STEP 1 *UNTIL® EL *p0! 
'BEGIN' TssREAD? KSCIJ}ssREAD; VOCI);223 
"END'? 

ZEK: NL:sREAD; 

Peon". Stet TAreet 4. MNT iat Wit pO 
"BEGIN' Z:SREAD? GC2]:=READ; 
pond 

:e13 

Sec cnedn; 303 

MAT?: CPCS} :20P(5/41:=CPE 4.611203 

"EOR! a4 +S Tart <4 ONTELS No Cpe 
iBEGIAS “ULTI] 3503 : 

'FOR' J:=1 'STEP' 41 "UNTIL!' BW 'DO! 
KLy,J)<20;3 

VEND'? 
"FOR’ ELs=4 'STEP' 1 'UNTIL® EN #DO! 
"BEGIN! Tss2vEL-1s X1saXC1)3 X2seXCl+2)3 Oi e2DCI): D2:sdCI1+2]3 

LesXeaX4? 

FOCI] s=ptepivents FoC2):2D1edDi*d2? FOL3S1:=01*D2ed2; 
FDL4]:=D2%d2ed2;5 

CO1e1 Ds H=C4 SHE DIT 141. 8*FDL2)41.8e FDO (3344. 2eF DEG /CLYL¥LD 

COA +2] H=C Sw FD61941,2wFDL234+0. 6% FDU 3144 2eFOL4I)/ CL HL); 
Clie3)s2"CC1-11;3 
Cl1r4) HC Sw ED L140. 6H FD C2341, 2eF OCS) 4+3eF D4) )/ CL el); 
ClA]c21:SC2, Sep OCII+FDO( 2140. 4eF OCS I+0 dF DI 4))/LI 

Cl2,3)2=~0(1,2)3 
C6264):260, 8wFOL1340, 2HFO( 2140, 2eFDE3140,8eFOL4II/LE 

aes =



FINI: 
FINPs: 

Sues; 

VALS 

2U: 

C(3,3); BeC(1,3); Cl3,4):=-Cli, 4s 
Clar4)1=(0, Sw FP DCT)+0,4* FDC 2]+F DI 3) +2, QuRDEGID/L: 

"FOR' ps 

“Poe! 0% 
Celp sd Jie 

KMC1,4) 
KMC1I,3) 
RP. t1e 

KO oe 

Chieti. 4 

#4. \STep!: fo 7UNTIL® 6 "00! 
SP USTept = tT SUNT YE! 4 pO! 

CCP JJ wCECIT] +e l1+2))7/2; 

$=C£1,2)3 KMCI,2]2=C(2,2)3 
s=C(2,333 KMEI,4) 3202-413 
=C[1,114CP(3,313 KC1,2)3:=C£1,214CPl3,412 

SCiVe Sit Ki te4) «sli 4) 5 
J2:eCl2, 234 Cel4 O15 Khtl +1 21680825333 

Rol 419-33) 8=6 02%, 617 

CPES5,37:8C03,3)3 CPl3e4)22C003,46)3 Cpld,4):8004,4); 
"END'; 

KONW1,1):8CPL3+333 KONW1e2):=Cpl3,4)3 KEND1):2CP(4,4]3 
FOR? 7284 (STERt te LUNTIL 8. 100! 
SPORTS SIS). TSTEr? 1 Sate BW 60! 
QCI+J}:=KCI,Jd)2 

EFOR' 52:39 STEP) 4S UNTELY NF DO! 

"REGIN' ‘TF* vCZ]s0 "THEN! 
"BEGIN' 
'FOR' Js=1 "STEP! 4 "UNTIL! BW 'DO! 

K{[2,J]:=0; : : 

FIRST:= "IF*' Z>BW 'THEN! 2°BW+4 "ELSE! 4; 
"FOR' T:#Z=1 'STEP'=1 "UNTIL" FIRST 'pO! 
KCL,Z-1+1);203 
"END! 
"IF® v(Z7"2 "THEN® KOZ,1)32K02-1)4KS02) 412/83 
FCZ):=GC2Z)]~12/8; 

"END!? 
"FOR' pPs=4 "STEP! 41 "UNTIL" N=4 #DOF 
'BEGIN' "TE" K(P,41)=0 'THEN' #GOTO! FINP? 

LASTs= 'IF' P 'LE' Nepwelt "THEN! Pepnwet "ELSE N? 
"FOR! T:=P+1 'STEP' 1 "UNTIL' LAST 'DO! 
"BEGIN® "IF* K€p,Iep4+1)s0 'THEN': "GOrO!’ FINI: 

FACs=K( Perle Pel] /KEP1)3 

FLTJSS=FLYJ-FLP] «FAC: é 
"FOR' J:=41 'STEP!' 4 "UNTIL! peI+pwWw 'pO! 
KCr JJ rakKlysJ]—K(PreI=P+J) FAC; 

"END'3 

"END'; 
"FOR! ITs=N OSTEPt =4 "UNTILE. 1 "908 
"BEGIN! "TF* K€I-1)20 "THEN! "GOTO! Zu; 

SUMs=FC1I]: 
‘Tre T=N 'THEN' "GOTO! VAL; 
SA:= 'IF' I>Ne-BWe1 "THEN! Neled ELSE! BWs 

"FOR’ Jr82-"STEP’. 1. "UNTIL: SA * D0! 
SUM:SSUM@KCI,JI*ULI4#J-4)3 
ULIJ:sSUM/K(1,41])3 
NSUMS=NSUM#ABS(U[1])3 

"END'; 
"TE' ABSCNSUM=PSUM) <0,002«NSUM 
"THEN' "GOTO EXT? 
PSUM:23NSUM3 NSUM:=0; 

YeEoR' Ye24 CST ER CeO UNITE Ret e008 
"REGIN' "YF YoNey THEN? 

"BEGIN® KMCI.1):=¢l1+473 KMCI,2):=cf2,4): 

~~ KMC1e3)s50035-4)3 KMEI,4):2004,4)73 
MCV s2=CKMC Pe) eULrm27eKMOC LT, 22eUCT e414 KMCT SI eUT) 
+KMECT, 4) eUCY4+1))~B/123 

'GOTO' STRE;}



TEND! ? 
MECIT]sSCKMCI-TI*UCTIFKMC Ye 2) eUCT HV 4 KML, 31*ULL +23 
#KMCI, 4] ¥UCI+3))*R/123 

STRE: MTss2eMCrI/CBeDCr]*plr))3 AM:=ABS(MT)3 
MCY]:=M013/10003 

‘TF' AM>MMENS) 'THEN! 
"REGIN! WRITETEXTC'C'OVERSTRESSEDYXYATAATI=R!')' D3 

PRINT(I,2,0)3 
"GoTo" ENU; 

"END! Ss 5 

"TF* AMSMMC1)] 'THEN! 

"REGIN' ECTI:S€EC1I]3 ACTIssSIGl11*AM/MM(10; 

"GOTO! ABT? 
"END'; 
'BOR' Pga2 "STEP? 1 "UNTIL? NS DOF 

"TF" AM<MMCP) 'THEN! 
"REGIN!' ECIJ:=EECP“1)+CEELPI“EELP=11)*CAM=MM[P=41)]) 

/CMMOCPJ=MMCp-1));3 

ACIIS=SIGLPH1]4+(SIGEPI=SIGLPH1))*(AMeMMEPH1)) 
/(CMMEPJ@eMMECpH1))5 

"GOTO' ABT; 

"END'? 
ABT: "END'? i 

NIsSNI+1; 

"GOTO! MAT? 
EXT: CORD 7e me STEP” AT UNTIL! “N00! 

"BEGIN! FCI]:=03 
FIRST:= 'IF' I>B8W "THEN! Ie-BW+t "ELSE! 13 
LAST3:= ‘IF' I<N“BW+1 "THEN' T*#BWHi "ELSE" Ni 

"FoR' Js=FIRST ‘STEP’ 1 'UNTIL' LAST ‘DO! 
BEGIN" Pes "36! Jel "THEN’ J 'ELSE! Ts 

2:3 "IF! J<I 'THEN' Tede4 "ELSE! Jalet; 
FCI] ssFl13+QCp,Z2)*ULJ); 

"END'? 
FOL] :=FCr}+B/12; 

TEND’? 
NEWLINE( 2); 
WRITETEXTCICENCh4st) 'xX' C8148") DEFLNIC'145')'BAMIC'16S')! 

STRESS'CHGVAS' DT REACTION' C'AV1S")PFIXINGYMT')')s NEWLINE(C4)? 

PeQORspesa ISTEP ET 2 HUNTILTAN=4- 800! 

‘BEGIN! 
PRINTCXLI},3¢2)3 PRINTCULII,9¢4)3 PRINTCMEI1 61224); 

PRINTCALIIJ,12-4)3 
‘re’ vVClJ=2 ‘THEN’ ‘BEGIN! PRINTCF(I1,12,4)3 

'GOTO' FLE: 
"END; 

‘'yF' velis0 "THEN! PRINTCFLI) +1254) ‘ELSE’ SPACE(20);3 
FLE: Tree VOCI47)]=0 'THEN® PRINTCELI411/1000,12,4)3 

"rR! yvCIe1)=2 "THEN? pRINTCELI419/1000,12,4)3 
"TE" VCIl41)22 "THEN PRINTCFL141),12-4)3 
NEWLINE C2)3 

"END'; : 
NEWLINE (C6) PRINTCNI 430,023 WRITETEXTC'C'TTERATIONS') "D3? 
PEND; - ge S corte alee 

ENU: "END'?
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