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SUMMARY

This thesis demonstrates that the use of finite elements need not
be confined to space alone, but that they may also be used in the time
domain, It is shown that finite element methods may be used success-
fully to obtain the response of systems to applied forces, including,
for example, the accelerations in a tall structure subjected to an
earthquake shock. It is further demonstrated that at least one of
these methods may be considered to be a practical alternative to more
usual methods of solution.

A detailed investigation of the accuracy and stability of finite
element solutions is included, and methods of applications to both single-
and multi-degree of freedom systems are described. Solutions using two
different temporal finite elements are compared with those obtained by
conventional methods, and a comparison of computation times for the
different methods is given.

The application of finite element methods to distributed systems
is described, using both separate discretizations in space and time, and
a combined space-time discretization. The inclusion of both viscous and
hysteretic damping is shown to add 1ittle to the difficulty of the
solution,

Temporal finite elements are also seen to be of considerable
interest when applied to non-linear systems, both when the system
parameters are time-dependent and also when they are functions of
displacement.

Solutions are given for many different examples, and the computer

programs used for the finite element methods are included in an Appendix.
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NOTATION

Coefficients

Matrices of coefficients
AmpTitude

or Cross-sectional area
Damping coefficient
Normalized damping matrix
Differential operator
Young's modulus

Force

Gravitational acceleration
Matrices of coefficients
Matrices of functions of t
Integers

Second moment of area

Unit matrix

V-1

Stiffness

Equivalent stiffness

Modal stiffness matrix
Length of element

Length of beam

Mass

Modal mass matrix

Couple

Number of intervals per cycle

or Number of degrees of freedom

cont'd
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q

r

[7]

Total number of intervals
Non-linear parameterdK/m
or Rate of Toading

or Principal coordinate

Forces

Matrices of functions of m, k and T

Displacement

Number of cycles

Non-dimensional parameter t/t

Sum of series

Time

Kinetic energy

or Period of vibration

Displacement

Velocity, acceleration

Slope

ut

Normalized eigenvector matrix

Potential energy
Work done by generalized forces

Spatial coordinate

[k] + D?[m]

cont'd



VET/oA/L?

c/2m

Static deflection

Error

Angle

or 1t2/420

Density

Length of temporal element, time interval
Phase lag

Interpolation function
Natural angular frequency

Forcing frequency

Hysteretic damping parameter



CHAPTER 1

INTRODUCTION

In many engineering applications a knowledge of the dynamic
response of a system to a known input force is of very great practical
importance. The problem may be, for example, concerned with the
comfort of the occupants of a vehicle travelling along a rough road, or
the design of a building to withstand earthquake shocks. The methods
of solution available for these and many other cases fall into two main
categories; those giving exact solutions, which are often difficult to
use, and numerical methods which are, in general, easier to apply but

which give only approximate solutions.

Of the numerical methods, probably the most widely used is that
using finite differences. This method has the advantage of relative
simplicity, although it may require special starting procedures to
obtain the required solution in the time domain. Since the same
finite difference techniques may be used to obtain, for example, a
solution in space giving the deflected shape of a beam, and a solution
in time to determine the displacement of a vibrating mass, it seems
logical to consider what other spatial techniques may be applied to
time-dependent phenomena. Probably the most generally successful of
the methods now used to obtain solutions to many different spatial
problems is that usina finite elements, and this thesis is principally
concerned with the derivation and applications of temporal finite

elements, i.e. finite elements in the time domain.



This method, 1ike the finite difference method, gives values of
displacements at selected values of time, but the finite element method
also gives values of velocities, which form one set of components of
the generalized displacements. A complete history of displacements and

velocities is therefore obtained.

In describing the use of the temporal finite element method, a
number of examples concerning free vibrations is included, and it should
be emphasized that these are for checking purposes only. It is not
suggested that this method is an improvement on the conventional
method of obtaining a time history using natural frequencies and

normalized eigenvectors when no damping is present.

Similarly, for undamped forcedvibrations,problems may be solved
by conventional methods provided that Duhamel's integral can be

evaluated, and finite element solutions are included for comparison

only.

For arbitrary forces, however, Duhamel's integral is evaluated
numerically, and it is shown in Chapter 5 that the use of a refined
temporal element provides a serious alternative method of solution.

If damping is also present, then conventional methods become consider-

ably more complicated, while finite element solutions are still

readily obtainable.

Temporal finite element methods may also be applied with

considerable success to non-linear systems, and are particularly useful

where the parameters are time-dependent.



The concept of a finite element in time is perhaps not as obvious
as a spatial element, and so a brief description of a spatial finite

element is first given, after which the change of dimension from space

to time is not difficult.

Many sophisticated finite element techniques are now available for
the solution of spatial problems, see for example Zienkiewiecz [1],
Dugdale and Ruiz [2], Martin and Carey [3], Robinson [4], Desai and
Abel [5], but the basic concept of a spatial finite element is
relatively simple, at least in the one-dimensional case about to be

described.

A Tong, thin beam may be considered to have only one dimension,
that of length, and deflections perpendicular to the length. The beam
may be considered to be divided into a number of finite elements, each
of which satisfies the conditions for compatibility with adjacent
elements. The deflected shape of each element may then be described
by an assumed "shape function"”, usually a polynomial function, which,
in general, only approximately represents the true shape. By suitable
means, each coefficient in the function may be expressed in terms of
the generalized nodal displacements, or nodal parameters, which may,
for instance, be the deflections and slopes at the points where
elements are connected. It should be obvious that any nodal parameter
has the same value for adjacent elements, and that there must therefore
be continuity of this parameter between the two elements. If the
generalized displacements are deflection and slope, there can be no
discontinuities in these quantities anywhere along the beam. This

point is of great impo rtance for temporal elements.



When the appropriate equations are used to find the shape of the
beam, 1nsfead of an algebraic expression, which may be used to calculate
any deflection, the finite element method gives a number of Tinear
equations, the unknown variables of which are the nodal parameters.

By coupling adjacent elements together a number of equations are
obtained from which the values of all the nodal parameters may be found

simultaneously.

This method may also be applied to temporal elements, and its use
is described in Chapter 2, but the method of simultaneous solution of

the equations is found to require a great deal of data to be stored.

An alternative step-by-step method of solution for temporal
elements solves the equations for only one element at a time. Since the
initial conditions must be known, the values of the variables at the end
of the first element may be found. These values then become the initial
conditions for the next element, and the process of eguation solution
is repeated. The values of all the nodal parameters are thus found in
sequence. The advantage of this method is that only a small amount of
data need be stored, but on the other hand the method of simultaneous
solution of equations for coupled elements gives rather more accurate

results. The explanation for this is given in Chapter 2.

The simplest possible beam element which can be used to describe
the shape of a beam is one which ensures continuity of deflection and
slope at the nodes. The generalized nodal displacements must therefore

be u and %E- at each node, where u is the deflection at a distance x
X



along the beam. Any number of space derivatives may be included in the

same way, so that, in general, the generalized displacements are u,

du "y . .
qx >t — Where the shape function has 2n terms. The functions

are actually Hermitian polynomials and the coefficients may be found by
using the properties of these polynomials as described, for example, by

Ralston [6]. Pestel uses values 2n = 6 and 2n = 8 for refined elements

[7].

It is not difficult to see that if the space dimension x of the
spatial beam element is replaced by time t, the nodal displacements
become u, %%—(ve]ocity), %%%—(acce]eration) etc. By this simple
changing of variables a temporal finite element has been produced,
which will have exactly the same form as the corresponding beam element.
The shape of the temporal finite element will, of course, now be a
function of the displacements, velocities etc at the beginning and end of
each element. When the coefficients of the shape function have been
found, Hamilton's principle may be used to generate equations having,
as the unknown variables, the displacements, velocities etc.at the
nodes. These equations may then be solved by either the step-by-step
method or simultaneously as described above in connection with spatial

elements. The derivation and methods of use of two temporal finite

elements are described in detail in Chapter 2.

Since the use of temporal finite elements gives approximate
solutions it is essential to know the 1ikely magnitude of the errors,
and an investigation of the accuracy obtained for a number of single

degree of freedom systems is described in Chapter 3. It is found, as



expected, that in all cases accuracy is improved by increasing the
number of elements in a given time, and it is indeed shown that for the

simplest (basic) element the errors vanish when an infinite number of

elements is used.

In Chapters 4 to 8 multi-degree of freedom discrete and distributed
systems are shown to be capable of solution by using the same temporal
elements as for a single-degree of freedom system. For distributed
systems the generalized displacements are functions of both time and
space and methods of solution using a finite element discretization in
space, together with a solution in time using temporal finite elements
are described. In cases where there is any possibility of ambiguity
between the two types of element a temporal finite element is referred
to as an 'interval'. The possibility of combining space and time to

give a space-time finite element is also considered in Chapter 6.

It is shown in the appropriate chapters that temporal finite
element solutions may be obtained for free, damped and forced vibrations
of both discrete and distributed systems, and various types of damping

of distributed systems are examined in Chapter 8.

Since the temporal finite element automatically gives the complete
solution, including any transient, for any system, it may seem rather
odd that many of the examples in Chapters 2 to 8 are concerned with
steady state solutions. The reasons for this choice are that an exact

steady state solution is usually rather easier to obtain than a

transient solution, and also that a comparison of finite element errors



for different systems is more logical for steady state solutions. It
should be made quite clear that there is no difficulty in obtaining a

transient solution by finite element methods, and indeed a number of

transient solutions are so obtained.

Perhaps the most interesting part of this work is that concerned
with the non-linear vibrations of single-degree of freedom systems.
It is shown in Chapter 9 that, by the further use of Hermitian inter-
polation, finite element formulations are possible for various types
of non-linearity. The degree of accuracy obtained in a number of
examples is indeed extremely high, and these methods could well have

important applications in more complicated systems.



CHAPTER 2

SINGLE DEGREE OF FREEDOM SYSTEMS

2.1 Introduction

The application of finite element methods to time-dependent
phenomena has been suggested by several authors; Zienkiewicz [1], for
example, points out that Hermitian interpolation may be used in time
as well as in space, while Wilson and Clough [8] suggest using a step-

by-step method of solution.

Argyris and Sharpf [9] and Fried [10] show how a temporal finite
element may be used to investigate the response of a mechanical system
to applied forces, and derive the necessary equations by using
Hamilton's principle. Since this temporal element is the basis upon
which all later applications depend, a detailed description is given in

2 2 of the basic element and its use in describing a dynamic problem 1in

finite element terms.

The method of use of the temporal finite element is then demon-
strated in 2.3 where solutions are obtained for a number of simple
problems. An alternative method of dealing with an arrangement of

temporal elements is examined in 2.4, and in 2.5 a refined element is

used to give increased accuracy.



Although, initially, to emphasize the nature of the method, the
term "element" is used to describe a discrete part of time, the

alternative "interval" appears later, as this term, it is hoped, will

indicate the temporal nature of the discretization.

2.2 The basic element

The "shape" of a temporal finite element may be described in terms
of a number of nodal generalized displacements or nodal parameters. It
is obviously necessary to have no discontinuity of either displacement
or velocity between adjacent elements, and this condition can, in
general, be satisfied only if these two quantities are taken as nodal
parameters at the beginning and end of each element. The minimum number
of nodal parameters for one element is therefore 4 denoted by ug, Uo s
u;, U; where the suffix o or ; refers to the beginning and end
respectively of an element occupying a time interval T, as shown in

Fig. 2.1.

A

Fig. 2.1
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Since 4 nodal parameters are used, the "shape" of the element may
be described in terms of a 4-term polynomial, which will in general,
give only approximate values for the displacement in the actual system.
Subsequent calculations are simplified by the introduction of two more
variables, i.e. s = t/t and v = Ut and hence vo = Uor and Vi = UyT.
The required polynomial is thus

U=ap + a;s+ as? + ass? (2.2.1)
and by differentiating with respect to t

u= (a, + 2a,s + 3ass?)/t (2.2.2)

and v = a; + 2a,s + 3ass? (2.2.3)

Hence, by substituting the nodal parameters into (2.2.1) and

(2.2.3) where s = 8 and 1 for initial and final values respectively

fuq i 0 0 01 {ao)

Vo 0 1 0 0 a;

ﬁ - < r (2.2.4)
u) ] 1 1 1 a2
\.Vla .—O 1 2 3,_., \a3)
or {u} = [Ala}
and hence {a} = [A]_]{u} (2.2.5)

1 0 0 0

0 1 0 0

-1
where [A] =
-3 -2 3 1

2 1 -2 1

By substituting (2.2.5) into (2.2.1) and (2.2.2), the displacement

u and velocity U may be found for all values of t between 0 and T in

terms of the 4 nodal parameters, i.e.
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u = (1-3s2+2s3)uy + (s-2s2+s3)vy + (3s2-2s%)u; + (-s2+s3)v,
U= [(-65+6s2)uy + (1-4s+3s2)v, + (6s-652)u; + (-2s+3s?)vi]/T

or U = YUy + Pave + YPauy + Yuvy (2.2.6)
U= $1Up + PaVo + Pals + Puvy (2.2.7)

where y; = (1-3s2+2s®) etc.

Equations (2.2.6) and (2.2.7), in fact, merely use Hermitian
interpolation to find the values of a variable and its derivative, and
could be used in any system where these two quantities are required,

e.g. in heat transfer problems where the variable is temperature.

In the present case the behaviour of systems having displacements
and velocities is studied, and a suitable method of presenting such a
problem in finite element terms is required. The most convenient method
of doing this appears to be to use Hamilton's principle, which states
that

I = éT (T+W)dt is a minimum
or %T (T+W)dt = 0 (2.2.8)

where T and W are respectively the kinetic energy of the system and the

work done by the forces.

T

NN NN N N

% lj_

Fig. 2.2
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In the single degree of freedom system of Fig. 2.2, the kinetic
energy of the mass is T = } mﬁz, and the net force on the mass is
F - cu - ku so that the work done, W = (F-cu-ku)u. Equation (2.2.8)

may therefore be written as

8f' (3 mi® + {F-cu-ku}u)du = 0 (2.2.9)

It should be noted that the quantities underlined in (2.2.9)
represent parts of the force and must be treated as constants during

the partial differentiations with respect to u, etc. performed below.

If the force F varies with time, the same method of interpolation

as that used for the displacement in (2.2.6) may be employed so that
F = ¢1Fo + ¢ofFgt+ psFy + U F e (2.2.10)

where F,, F; are the values of F at t = o and t = T respectively and

F, F1 are the corresponding rates of change of F.

When (2.2.6), (2.2.7) and (2.2.10) are substituted into (2.2.9),
each term in the integral becomes a function of the nodal parameters
Up Vo U; Vi, and in order to satisfy the condition that I = 0, the
partial differential coefficient of I with respect to each of these
quantities must be zero. Four equations are thus obtained which may be

given in the form

(m[h°] -c[h!1] - k[ D)t + [l1FY = €03 (2.2.11)

1l

where {u} [uo Vo Ux V1]t

[Fo ﬁoT Fi ﬁ1T]t

il

and {F}



- 13 -

The three time-dependent matrices are found from

J J
I 1

hij =7/ tpithds (2.2.12)
Il A

iy =1L bybyds

The [ho] and [hI] matrices are symmetrical while the [hII] matyix

is unsymmetrical, as shown in (2.2.13).

" 36 3 -36 3
4 -3 -1
o _ 1
[h"] = 557 36 -3
_ Symm 4
56 22 54 -13
4 13 -3
h!] = e (2.2.13)
420 156 -22
| Symm 4
"-30 6 30 -6
[hII 1 -6 0 6 -1
60 30 -6 30 6
6 1 -6 0]

Now if the initial values ug and v, are known, only two equations

are required to find the final values uy and v, in equatioms (2.2.11).

The displacements u, and u; must, however, be taken to have prescribed

values and so the first and third equations of (2.2.11) obtained from

ol and al must be discarded. This requirement is easily verified by

dUg ou;
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considering, for example, the case of the free undamped vibrations of a
single degree of freedom system and substituting known exact values of
Up Vo Up Vi into equations (2.2.11). It is found that, in general, the
first and third equations are not even approximately satisfied, while
the second and fourth equations are, for all conditions, almost exactly
satisfied. (2.2.11) must therefore be reduced to only two equations

which may be written as

Uo u -FO F )

[6] {Vo}+ [H]{Vi} : [af]{FOT}Jr [Hf]{FiT} - {0} (2.2.14)

~3 4 -_6 0' 29 4

where Ot 3 _J 6 L6 ]J 20 L?) 3

e o [P e[ e 13 -3
0t |3 4] 0|6 o 0 22 4

T2 4 C 13 -3
[Ge] = 735 and  [Hel = 755

It will be noted that, in equations (2.2.14), not only are the
initial and final values of the force Fo and Fi, required but also
their respective rates of change F, and F, . In the examples solved
in this chapter, easy forcing functions are chosen so that values of
the derivatives may be obtained exactly by differentiation. An
alternative, approximate, method for evaluating F is given in Appendix
A for use in cases where the forcing function is not easily different-

jated, or is perhaps available only as a 1ist of numerical values.
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2.3 Method of use of the basic element

It has been noted in 2.2 that, if the values of the variables at
the beginning of an element, u, and v,, are known, then, if values of
Fo Fo F1 and F; are also known the values of the variables at the end
of the element, u, and v;, may be calculated from the two equations of
(2.2.14). Then, by stepping forward one element, these values of u;
and v, become the initial values for the next element. By further
use of equations (2.2.14), values of u and v at the end of the second
element may be calculated, and by repeated use of this step-by-step
method all the required values of u and v may eventually be found.
This is an obvious, but not the only, way of determining the response
of a single degree of freedom system. (See 2.4 for a description of an

alternative method.)

It is possible for a solution of this type to become unstable
(see, for example, Crandal1[11]), and the conditions for stability are
examined in 6.4. There are, however, no stability problems with the
examples of this chapter, and the reason for this becomes obvious when

the condition for stability is established.

In this section, temporal finite elements are used to obtain
solutions for a number of simple examples having known exact solutions.
It is thus possible to show that the use of finite elements does
provide a practical method of solution in these cases, and also enables

a preliminary estimate of the accuracy of the method to be obtained.

Since the method used involves the solution of many equations, the

use of a digital computer is almost essential. Equations (2.2.14) must
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therefore be re-arranged into a suitable form for computer program-

ming. Initially every term in equations (2.2.14) is multiplied by

T/m giving
_ - ) N A\
1 3 4 er -6 0} ke 22 4 Uo
30 e 60m 6T 420m 33 v

~ ~ - ~ -

|
| 1
-3 -1 - 6 -1 kr2 13 -3 _{ul}

L1 _ct -
o R N R TR A f
L2 22 & JFO 13 =37 {Fy 0] : )
+ + = 2.3.1
20m\ s -3) B 22 4] | Fat oj.

It may also be noted for future reference that for a free
undamped vibration the natural angular frequency w = vk/m so that

k2 /m = (wt)?

Equations (2.3.1) may then be re-written in the form

Uy Uo Fo Fa
[A] { }= (8] { }+ [c] { }+ (D] { }
Vi Vo F{)TJ FI’E

and since all quantities on the right-hand side of the equations are
known, values of uy and v; are easily calculated. These values then
replace the original u, and v, and the whole process is repeated as
many times as required. The computer program required to solve these
two equations repeatedly may be regarded as a very simple form of

the program used for the general solution, details of which are given

in Appendix B.
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In order to compare errors for different systems, solutions in
all except the last of the examples in this section are obtained for
one complete cycle. In Examples 2.1, 2.3 and 2.4, steady state
solutions are obtained, the correct initial conditions being found from
the known exact solution. This is, of course, only necessary to ensure
that there is no transient component of the solution and is not
necessary when a complete solution is required. Examples 2.3 and 2.5
have transient solutions, and no reference to the exact solutions is
necessary to obtain finite element solutions, although the solutions

can be compared.

Frequent references to errors occur in the present and later
chapters. The term "error" may mean many different things, and the

following definitions are used throughout this thesis:-

Actual error = Calculated value - Correct value

Percentage true ervror = égiggltecg$se 100
Percentage range error = ﬁ;;#?luggror l x 100 for displacement

Actual error
w X AmpTlitude

or x 100  for velocity

Maximum range error = Maximum value of the percentage range error.

Example 2.1

NN N NN
Vool
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For a free undamped vibration w = vk/m and therefore

kt?/m = (wt)?. Also the period T = 2m/w, so that if the period is

divided into n equal intervals wr = 2n/n. If n 1is given a
particular value, the coefficients of equations (2.3.1) will all have
numerical values, and since ¢, Fo, Fo, F1, F; are all zero in this case

equations (2.3.1) may be simplified to
-3 -1  (wr)? 13 -3 u1:_1—3 4_ (w1)? 22 4 uO]
=34 0 e v \Oz ) 0 a3 3 VOJ’

Choosing initial conditions uy, = A, vy = 0 and using 10 intervals

1

3

per cycle (n = 10), these equations may be solved 10 times to find the
10 values of displacement and velocity (= v/t). These results are shown
in Table 2.1 together with those for the same system but using the

value n = 20. Since the exact solution is u = A cos wt, U =~wA sin wt,
errors in the finite element solutions are easily evaluated, and

percentage true errors are shown in brackets in Table 2.1.

It may be seen that at the end of one cycle the finite element
solutions give values of displacement and velocity very close to the
correct values. Even with only 10 intervals per cycle, errors are

not large, and are considerably reduced when the number of intervals

per cycle is doubled.
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Example 2.2

m ¢z 12 km

L =

NN N NN

— AN

For the free vibrations of a damped system the angular frequency

wy 1s known to be /w2 - v2 where © = Jk/m and vy = ¢/2m. Hence for
this particular system v = 0.6w and wy = 0.8w, and for a finite element
solution using n intervals per cycle wt = 2.57/n. Since ¢ = 1.2/km,
ct/m = 1.2wt, so that for a particular value of n, numerical values

may be assigned to the coefficients of equations (2.3.1). (For a free

vibration Fq, Fo, Fy, F, are all zero.)

Choosing initial conditions uy, = A, Go = 0, finite element
solutions are easily obtained for n = 10 and n = 20. The calculated

values are shown in Table 2.2.

In this case it may be shown that the exact solution is

= e 059t 05 0.8ut + 0.75 sin 0.8 wt)

-0.6ut

[
|

= -1.,25whAe sin 0.8uwt

[ )
1

so that percentage true errors in the finite element solutions may

be calculated. These also are shown in Table 2.2.
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In this example also, it is clear that an increase in the number
of intervals per cycle results in a reduction in the magnitude of the
errors. A comparison of the results in Tables 2.1 and 2.2 shows that,
for the same number of intervals per cycle, percentage true errors are
rather higher for the damped vibration than for the undamped vibration,
although the order of magnitude is the same for both systems. It
should be noted, however, that, for the damped system, the greatest
errors occur at values of t for which the displacement or velocity
is small, and these errors are actually very small compared with the
maximum displacement or velocity. Excepting these errors at values
Ofwdt/ZW of 0.4, 0.8, 0.9 and 1.0, the remaining errors are very

similar to those obtained in the undamped systems.

In the two previous examples no external force is applied, but in
the case of a forced vibration, values of the force and its rate of
change must be known at the beginning and end of each interval. Nothing
is gained at this stage by introducing complicated forcing functions,
so in the next two examples harmonic forces are used, as their rates

of change are easily found by differentiation.

Example 2.3
/! K F = Qeos 2L
A AAA—] e
A a=Jd2w
/
/ W
—__P
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For the forcing function shown, F = Q cos Qt, ﬁ = -0Q sin Qt.
Values of F and # may therefore be calculated for any value of Qt and
usedin equations (2.3.1). Also, in this case,since Q = V2,
wt = V2m/n where n is the number of intervals per cycle of the force.
For an undamped system ¢ = 0 and again equations (2.3.1) may be used

20. The exact

to obtain finite element solutions for n = 10 and n

solution is u = A cos Qt, u = -QA sin Qt where A = -Q/k.

The two finite element solutions, with percentage true errors in

brackets are shown in Table 2.3.

Errors in this case are very similar to those in the free undamped

vibration of Example 2.1 for both 10 and 20 intervals per cycle.

The addition of a damper to the system of Example 2.3 does not
make a finite element solution more difficult; the only requirement

is that in equations (2.3.1) the appropriate value of c must be used.
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Example 2.4

C
/] =J2 w
; S N Fz Qeos SLE

m P
/ c=Jkmf2
/ ’\v/\\/f\/ﬁ\/ I
/ K
;..___9.“

In this example also, the required values of F and ? are easily
calculated. To obtain the steady state solution, the correct initial

conditions must be found from the exact solution, which may be shown

to be u = A cos (Rt - 3m/4) and hence d = -QA sin (Qt - 3n/4)

Q/v2k. Since, in this case, ¢ = vkm/2, the value of ct/m

where A
required in equations (2.3.1) in wt/v/2 which is equal to m/n, where
n is the number of intervals per cycle, since T = 2n/@n. The
results obtained from finite element solutions using values n = 10,
and n = 20, with percentage true errors in brackets, are shown in

Table 2.4
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It will again be seen that percentage true errors in these solutions

are very similar to those for the free undamped vibration in Example 2.7.

AT1 of the previous examples, except Example 2.2, are to some
extent artificial, as steady state solutions, requiring known initial
conditions from exact solutions, are obtained. It should not, of
course, be necessary to have an exact solution to obtain a finite
element solution, and these examples are included to show that the
finite element method does give quite accurate steady-state solutions,

which are easily compared with exact solutions.

Example 2.2 gives a transient solution, and finite element
solutions may be obtained without any knowledge of the exact solution.
A very common practical problem is that of a system initially at rest
suddenly subjected to a force. Solutions for a Timited number of
forcing functions are given by Przmieniecki [12], and one of these is
used in Example 2.5 below. For more difficult forcing functions, the
evaluation of Duhamel's integral used to obtain an exact solution may
become very difficult, but a finite element solution is possible in

all cases where values of F and E are available.

Example 2.5
F 4
‘Do _
|
| BRI
|
o t, PR t
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If an undamped single degree of freedom system, which is initially
at rest, is subjected to the force pulse shown above, values of F and
ﬁ are required to give a finite element solution by using equations
(2.3.1). These values may be calculated from:-

0 <tc« to F Pot/to ﬁ = Po/to

tg< t < 2t0 F P0(2-t/to) # = -Po/to

t>2t0 F=O I:-=0

It should be noted that there are discontinuities in # at to and
2to, and these must be allowed for in the finite element solution by
changing the value of ﬁ at the node common to the two elements. Since
in this example, 2t, is equal to one-third of the period of a free
undamped vibration, if an interval of length t,/5 is used this is
equivalent to 30 intervals per cycle of a free vibration. A finite
element solution may then be obtained from equations (2.3.1) by using
the values of F and ﬁ as described above, and, since the system is
initially at rest,making up = vo = 0. Since, in this solution, a
considerable number of values are obtained, only values of displacement
at the end of every fifth interval are shown in Table 2.5. Also shown

in this table are the exact values calculated from the solution given

by Przmieniecki [12]

0 <t <t P /kto(t - sin wt/w)

=
il

Po/kto[zto-t+2 sin w(t—to)/w— Sin wt/w]

il

t > 2t, u = Py/kwto[2 sin w(t-ty)- sin w(t-2ty)- sin wt]
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t u/(Po/k) Percentage

to — 1 | true
0 | 0 0
1 % 0.1731  0.1730 2 0.069
2 é 0.8274 ~0.8270 g 0.052
3 % 0.8269 0.8270 % 0.015
4 E -0.0011 0 ?
5 é -0.8280 -0.8270 i 0.117
6 % -0.8263 -0.8270 % 0.081
7 % 0.0022 0 %
8 z 0.8285 ~0.8270 § 0.183
9 E 0.8258 ©0.8270 0.147
10 % -0.0033 ; 0
1 é -0.8291 i -0.8270 0.249
12 i -0.8252 % -0.8270 0.213
13 0.0044 | 0

Table 2.5

Errors in this example are rather less than those of previous
examples using 20 intervals per cycle. This is to be expected as the

present example uses 30 intervals per cycle.

It has therefore been shown that the basic temporal element may
be used to obtain solutions in a number of different singie degree of

freedom systems. Examination of the solutions in Examples 2.1 to 2.4
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shows that, for the same number of intervals per cycle, errors of
similar magnitudes appear for free, damped and forced vibrations, and
that in each case there is a fluctuating error within each cycle. This
s most clearly shown by observing how the actual error (i.e. calculated
value - correct value) varies during one cycle. This variation is
shown for a free undamped vibration, using 20 intervals per cycle, in
Fig. 2.3. It will be noted that although the final displacement error
is almost zero, there is a considerable velocity error at the end of
the cycle. It therefore appears that, for more than one cycle, there
is a steadily increasing error (particularly in the case of velocity),
on which is superimposed the fluctuation 1in error during each cycle.
Table 2.5 shows that the percentage true error in the displacement

does indeed vary in this way.

The results of a more detailed examination of errors appear in

the next chapter.

2.4 Solution with elements coupled

It was noted in 2.3 that the step-by-step method is not the only
method of solution, and Fried [10] advocates coupling the elements
together end to end. If there are n elements, the initial values ug
and v, must be known, but ui, Vi, Uz, Va2,..... s vy (i.e. 2n values)
are all unknown, and these values are to be found simultaneously.

By combining the matrices of (2.2.13) for each element, in
exactly the same way as that used to assemble the stiffness matrix for

a beam, a (2n+2) x (2n+2) matrix is obtained.
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It has been explained in 2.2 that the initial and final displace-
ments must be treated as prescribed quantities, and when n elements

are coupled together these two displacements are u, and u - The two

equations obtained from %%;—and %é—- must therefore be discarded, but
n

all other equations found from %%—-= 0, (i #0, i #n), are valid and
.i

must be used to give the necessary 2n equations to evaluate the 2n

variables.

For all "nodes" except the first and last, the equations obtained
are functions of the displacements and velocities for two adjacent
elements, and, for a free undamped vibration, each pair of equations

is of the type:-

fu.

sy Tevigt Zeus + fu, g - oveyy T 0

i+] (2.4.1)

-CU. - dv

i1 + 2bv1 touigt dv.,, =0

i-1 i+]

where the coefficients are functions of m, k and f.

For the single element used in the step-by-step method the two

equations are of the form:-

au. + bv. + cu.,, t+ dv. = 0
i i it+] i+] (2.4.2)

Equations (2.4.2) thus use only 4 different coefficients, but
equations (2.4.1) require two additional coefficients e and f due to
the necessary use of the equations %%T' = (0. The introduction of

i

these additional coefficients means that extra conditions are imposed



on the values of the generalized displacements, and this has the
effect of increasing the accuracy of the solution. This may be
illustrated by dividing one complete cycle of a free undamped
vibration into two elements only, as in Fig. 2.4, and comparing the

results for the two methods of solution.

(V%
o |2 Ug = A
I' l.lo =0
2t
W
|
Fig. 2.4
With the two elements coupled, 4 equations are obtained, i.e.
augy + bVo + cu; + dV1 =0
fug + cvy + 2eu; + fuy - cvy, =0
-Cuy + dvg + 2bv; + cup, + dvy, =0 (2.4.3)
-cu; + dV1 - au ot bv .= 0
where
_3 22 2 L Y =3 13 42
a =35 - qaolen)’s b= 35 - ggplet)®s € = - 3 - gpplern)

B 1 3 2 _ 36 156 2 _ _ 90 o4 2
d = - 35+ pplet)®s e =35 - gpplen)®s = - 55 - pglet)

For 2 elements per cycle, wt = m, and since up = A, up = 0,

equations (2.4.3.) become

-0.405488 0.037164 0 0 [ uy " 0.416979 )
-4.931706 0 -2.468949  0.405488|| v, 2.468949
0 0.078674  -0.405488  0.037164 ) Uz =M -0.405488

| 0.405488  0.037164  0.416979  0.039337] | Vo, L o0
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From these equations values of u;, vi, u, and v, may be found,
and since u = v/t the velocities may be calculated. The values

obtained are given in Table 2.6 below.

For the step-by-step method, values of a, b, ¢ and d from (2.4.3)
are calculated for wt = m and substituted into (2.4.2). The two

equations so obtained must then be solved twice:-

-0.405488 0.037164 Ui 0.416979  -0.039337] U
0.416979  0.039337| v -0.405488 -0.037164 Vs
- . 4

i+

The first solution of these equations gives uj and v; from the

known initial values up, and v, and the second solution then gives

u, and v, . Values of displacement and velocity are again given in
Table 2.6.
ur/A Uy /A Uy /A Uz /wh
Elements coupled -1.0346 0.0329 1.0011 -0.0660
Step-by-Step -1.0008 0.0957 1.0032 -0.1915
Correct value -1 0 1 0
Table 2.6

It is clear that the solution with elements coupled does give

more accurate results,particularly for the velocities, but the increase

in accuracy is not outstanding.
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By increasing the number of elements per cycle to 6, the accuracy
of both methods is increased, the final values of displacement and

velocity being:-

ug/A l;g,/u)A
Elements coupled 1.0000 -0.0189
Step-by-step 0.9987 -0.0505
Correct value 1 0

The assembly and solution of the equations used in the coupled-
element method is considerably more difficult than when the step-by-
step method is used. In addition, the coupled-element method requires
much more data to be stored than that needed by the step-by-step
method. For n elements coupled together 2n@n+1) values must be
stored compared with only 8 values required by the step-by-step method.
There may thus be computer storage problems for large values of n

when the elements are coupled.

Although the results quoted above confirm Fried's statement
that coupling of the elements does increase accuracy, this improvement
is obtained at the expense of increased complexity of the calculations,
and more computing time is required to solve 2n equations once than

to solve 2 equations n times.

An alternative method of obtaining increased accuracy is therefore

described in the next section, and, since this gives very accurate
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results with the step-by-step method of solution, the solution by
coupling of elements was discarded as being an interesting, but not

the best method of solution.

2.5 The refined element

Argyris and Sharpf [9] suggest that any number of nodes may be
used in one temporal element, and that the nodal parameters may
include any number of derivatives at each end of these nodes. If, as
for the basic element, only two nodes are used, but the second
derivative U is introduced as a nodal parameter, a 6-term polynomial
may be used to describe the "shape" of the element. This should then
give more accurate results than the 4-term polynomial of 2.2.1. The

assumed "shape" of the refined element is therefore given by

U=ag + a;s + a,s? + ass® + a,s* + ass® (2.5.1)
and hence by using the same method as in 2.2 - N
Uo
1 3 1 .
3 3 2 _ 3 3 L _fe3 4 3_cb
1-10s 5-6S 557~ 55 10s°-15s 4s°+7s 55°-S o
7| i15st-gss, +8sh-3s5 +3sh- 155 46s =355+ Js® :
+15s7-6s7, +8s"-3s7, 25" 557, s”, %, VE UoT .
I Wul
l.JlT
2
T
(2.5.2)

By using exactly the same procedure as for the basic element it
may be shown that equations (2.2.11) are again valid, the only
difference being that for the refined element:

{u}
{F}

* o °* e D t
[Uug Uot lioT? Uy UpT UyT?]

[Fo Fot Fot2 Fy FiT FlTZ]t
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0 1
and [h™], [h"] and [hII] are 6 x 6 matrices, details of which are

given in Appendix A.

Since the force vector now includes both the first and second
derivatives at each node, these must be obtained by differentiation,

or if this is not possible by using approximations such as those

given in Appendix A.

Of the 6 equations now given by (2.2.11), the first and fourth
must be discarded since values of u, and u; prescribed. The
remaining 4 equations are all admissible and give similar but not
jdentical results. By using any 3 of these equations simultaneously,
4 slightly different element "shapes" are obtained. Differences are
however not large, and any 3 of these 4 equations should give satis-
factory results. The second, fifth and sixth equations are found to
give most accurate values at the end of a cycle of a free undamped
vibration, and these equations are used in all subsequent calculations

with the refined element.

Because acceleration, U, is now a nodal parameter there can be no
discontinuity of acceleration between adjacent elements. While this
is not an essential requirement (it is not, in general, satisfied by
the basic element), it should improve considerably the accuracy of the
solution. One minor problem is that the initial acceleration U, is
now a required initial condition, but if this value is not known it
may be easily calculated for a single degree of freedom system from

ip = (Fo - clo - kuo)/m (2.5.3)
where uo and Uo are the known initial displacement and velocity respect-

jvely.




- 37 -

To verify that the refined element does indeed give increased
accuracy a comparison with solutions obtained with the basic element
is required. The values in Table 2.7 show the results obtained with
the refined element using 10 intervals per cycle for the free undamped
vibration of Example 2.1, and the forced damped vibration of Example

2.4 in which F = Q cos v2 wt and ¢ = vkm/2.

Percentage true errors are shown in brackets in Table 2.7, values
of Tess than 0.001% being shown as zero. It will be seen that the
maximum percentage true errors for the free and forced vibrations are
0.008% and 0.005% respectively. The corresponding figures for the
solutions obtained with the basic element taken from Tables 2.1 and
2.4 are 4.85% and 2.99% for 10 intervals per cycle. It is obvious
that the refined element gives accuracy of a much higher order then
the basic element; in the two examples compared here the replacement
of the basic element by the refined element reducing the maximum
true error by a factor of approximately 600. A more detailed

investigation of the accuracy of the two elements is given in the

next chapter.

2.6 Conclusion

It has been shown that, by using finite element methods, it is
possible to describe the displacement-time "shape" of a moving mass,
and that the effects of damping and external forces may be included.
The equations subsequently derived by using Hamilton's principle are
found to give acceptable results in a number of cases, and that

accuracy is increased by increasing the number of elements in a given

time.
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Determination of the nodal displacements and velocities in a
period of time spanned by several elements may be found by solving
the two equations for each element in sequence, or by solving all the
equations simultaneously. The second of these methods does give
increased accuracy but at the cost of an increase in complexity of
the solution. It is likely that any required accuracy can be achieved

by the step-by-step method by simply increasing the number of elements.

Finally, the use of a refined element using acceleration as a
nodal parameter results in much improved accuracy for only a small

increase in the difficulty of the solution.

Since accuracy is mentioned on many occasions in this chapter,
it now seems that a thorough investigation of this topic is essential,

and the whole of the next chapter is devoted to this study.
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CHAPTER 3

ACCURACY OF FINITE ELEMENT SOLUTIONS

3.1 Introduction

Because the assumed displacement-time relationships of (2.2.1) and
(2.5.1) are, in general, only approximations, it follows that any
displacements and velocities calculated from these assumed "shapes"
must also be approximate. To use an approximate method successfully
a knowledge of the magnitude of the errors is required and in the
finite element solutions it appears that this magnitude depends on the
size of the element. In this chapter it is shown that the errors do
indeed become smaller as the element size 1is reduced, and it is proved
that, in the case of a free undamped vibration, the errors approach

zero as the number of elements per cycle becomes very large.

Solutions for more than one cycle are also investigated, and it
is shown that, for a number of cycles, the maximum error is Tikely

to be one of phase, and that this error is proportional to the number

of cycles.

Errors for the basic and refined elements are compared, and it is
shown that, for a given number of intervals per cycle, both of these

give more accurate results than the finite difference method.
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3.2 Errors within a single cycle

If the results of Examples 2.1 to 2.4 are examined it will be
seen that, for a given number of elements per cycle, errors for free,
damped and forced vibrations are very similar. In order to keep the
number of variables to a minimum, the effect of variation of the
number of elements per cycle of a free undamped vibration is examined.
For both the basic and refined finite elements the displacement varies
as shown in Fig. 3.1(a) or 3.1(b), depending on whether the cycle

starts at a position of maximum displacement or maximum velocity.

(a) (b)

Fig. 3.1

Exact solution

—————————————— Finite element solution
a = maximum velocity error

B = maximum displacement error

If these two diagrams are examined it will be seen that in both
cases the finite element solution gives a vibration period which is
too small, and the results of Example 2.1 show that the maximum actual
error is the velocity error a; in {(a). It is also found that the

maximum actual error in (b) is the displacement error B, and that

a; = wBp exactly.
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It will therefore be noted that in (a) the maximum actual error
s a velocity error at a position where the correct velocity is zero.
Similarly in(b) the maximum actual error is in the displacement where
this quantity should be zero. It would therefore be meaningless in
either case to express the error as a percentage of the correct value

of the variable in the appropriate position.

If, however, the error is expressed as a percentage of the

maximum value of the variable then the maximum range errors are:-

in (a), a;/wA x 100% of the maximum velocity (wA)

in (b), B,/A x 100% of the maximum displacement (A)

It has previously been noted that o; = wB,, and therefore these
two expressions for the percentage error give identical values. It
may therefore be seen that the maximum error may be one of velocity
or displacement, depending on whether the velocity or displacement fis
zero at the beginning of the cycle. In general, neither the velocity
nor displacement may be zero and the maximum error may then be one
of either velocity or displacement. The maximum range error given in

Fig. 3.2 is therefore defined as:-

Maximum range Whichever is Max imum actzz] velocity error x 100
error € % the greater of ' Maximum actual displacement error « 100
i .

(3.2.1)
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A comparison of the maximum range errors in Fig. 3.2 and the
percentage true errors in Tables 2.1 to 2.4 and Table 2.7 shows that
the two errors are of similar magnitude for the same number of
intervals per cycle. Either method may therefore be used to obtain an
estimate of the maximum percentage error within a single cycle. An
alternative method of calculating errors for more than one cycle is

used in 3.3.

By using the methods described in the previous chapter, maximum
range errors, as defined in (3.2.1), may be calculated for basic and
refined finite element solutions for the free vibrations of a single
degree of freedom system, using different numbers of elements per
cycle. These results are shown in Fig. 3.2, and also included for
comparison are the maximum range errvors resulting from the use of
finite difference approximations (The method used is described in

Chapter 5.).

An examination of Fig. 3.2 shows that in each method the error

is reduced by increasing the number of elements per cycle n.

More precisely the maximum range errors (%) are given by:-

Basic finite element e = 206n °
Refined finite element e = 50n" (3.2.2)
Finite difference e = 1000n ?

The refined finite element is obviously more accurate than the
basic element, and its accuracy increases more rapidly as n increases.
The finite difference method (which is described in the next chapter)

compares rather poorly with even the basic finite element.
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It should be noted that the results given in Fig. 3.2 are obtained
for a free undamped vibration, but very similar values have been shown
to occur in other types of vibration. The results of Fig. 3.2 can
therefore be used to give quite a good estimate of the maximum range

error in any single degree of freedom system.

An examination of the results presented in Fig. 3.2 suggests
that the maximum errors in one cycle continue to diminish indefinitely
as the number of elements per cycle is increased, and therefore that
the finite element solutions converge on the correct solution. It is
possible to show that this is indeed true for a free undamped vibration

using the basic element. For this case, equations (2.3.1) reduce to

134 e | 22 4] uo]+ RIS 13 -3] {ul]:{o}
30f3 ] 40m 43 -3 vor 3013 4] %0Mm |20 4 vlf 0
(3.2.3)
These two equations may be written in the form
aup + bvg + cuy +dvy =0
(3.2.4)
—CUO+dVo'aU1+bV1=O
where
_3 22 kit
8730730 m
N S S
- 30 420 m
3 13 k2 (3.2.5)
€730 740 m
__ 1, 3 kit
d=-35%7220 m
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Equations (3.2.4) apply to the first element, but can be made to
apply to any element by using the appropriate values of u and v, so
that for the i'th element after the start of the vibration

au. . + bv. . + .+ L=
i1 j-1 ¥ ocu, dv1 0

- - (3.2.6)
Cuj; g *dv, ;- au; + bv. =0

Since the initial values U1 and Vi_q are known when the step-
by-step method is used, the unknown variables are us and Vs and by
eliminating each in turn from equations (3.2.6), separate expressions

for us and Vi are obtained, i.e.

u. = Au. + Bv

i i-1 i-1
(3.2.7)
Vi = Wyt A
_ ab+tcd _ d*-b? _ c*-a*
where A = —m, B—m, C__—_ad+bc (3.2.8)

and a, b, c and d are as given in (3.2.5)

Hence equations (3.2.7) may be used with known initial values of
u, and vo to find u; and vi. These new values are then used in (3.2.7)
to find u, and v, and so on for any number of elements. If, instead
of using numerical values, the algebraic expressions for u and v are
re-inserted in equations (3.2.7) to obtain expressions for the next

pair of variables, it may be shown that at the end of the n'th element
S + S,V
n - >ito T o2t (3.2.9)

n = %SzUo + SlVO

[
it

<
|
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_ ah n! - n!
where S; = A" + VA AM2pe 4 4 T (BC)2 + . . . (3.2.10)
and
S - n! An-] + n! n_3 2 + - -
2 = 1Y (n-3y13T A "BC

The Tast term in each series depends on whether n is odd or even

as follows
n 0dd n Even
Last term of S, n a(ge)(n-1)/2 (c)"/?2
Last term of S, B(n-])/ZC(n+])/2 (n—])AB(n/Z_])Cn/2

Since one complete cycle is being considered, T = %%— where n
is the number of elements per cycle, and as n 1is increased the value
of T becomes smaller. By substituting wt = %ﬂ- into equations (3.2.5)
and then substituting these expressions into equations (3.2.8) it may

be shown that as n >, A~> 1, BC » - %ﬂ~ and %.+ - %

For an infinite number of elements, the expressions for S; and S,

become infinite series, and by substituting the limiting values of A,

BC and %» into (3.2.10) it may be seen that when n = «
2m)? 2m)" 2m)*® _ _
S, =1 - (2?) + (4!) - (6! + .. .=cos 2m =1
3 2m)® _ (2m)°, E _
52:\/21—{:-2TT+—(T——- £ .. !4s1n2n
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Thus, from (3.2.9)

1

u

[o0]

]Uo + OVO = Ug
and

v = - %.OUO + ]Vo = Vy

i.e. for an infinite number of elements per cycle the values of u and
v at the end of the cycle are exactly the same as those at the
beginning of the cycle for any initial conditions. Since this is an
exact solution for a free undamped vibration, the basic finite element

does converge to the correct solution.

Although this proof is for a free undamped vibration, because very
similar errors arisein damped and forced vibrations when the same number
of elements per cycle is used, it seems very 1ikely that in these
systems also the finite element solutions approach the correct solutions
as the number of elements per cycle becomes very large. In Examples
2.1 to 2.4 an increase in the number of elements per cycle certainly

does increase the accuracy of the solution.

It is unlikely that, in general, only one cycle of a vibration
needs to be studied, but before the errors in more than one cycle are
investigated, the errors for a single cycle are given in an
alternative form. It will be remembered that Fig. 3.1 shows that the
maximum error may be in either the velocity or the displacement
depending on whether the velocity or displacement is zero at the
beginning of the cycle. In both cases the displacement-time curves
for finite element and exact solutions are close together i.e. in the

first case the finite element solution is approximately a cosine curve

and in the second case a sine curve.




For an undamped free vibration in which ug = Ay and do = 0 the

exact solution is
u = A, cos wt (3.2.11)

Near the end of the cycle the finite element solution is given
almost exactly by

u=Acos (wt - ¢) (3.2.12)
and hence u = - wA sin (wt - ¢)

where A = amplitude and ¢ = Phase lag

Fig. 3.3 shows typical exact and assumed curves given by (3.2.11)

and (3.2.12) respectively.

I - Ewxact
\’ - _
. & . T~ - -~ - Finife klemaat
A A,
o J 1 | A
Do lua

End | Y -

o c

R — ¢

Fig. 3.3

Now if the finite element and exact solutions agreed precisely,
A would be equal to A, and ¢ would be zero. Thus by comparing the
values of A and A, and calculating the value of ¢, amplitude and
phase errors may be used instead of the displacement and velocity
errors previously calculated. If the cycle is divided into n

elements, the values of u and v, (= u t) may be calculated, either by

the original step-by-step finite element method as used in 2.3 or by
summation of the series Si and Sy of (3.2.10), and the substitution of

these values into equations (3.2.9). In either case values of u and

Q at the end of the cycle may be found.
n
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Now, at the end of the cycle, wt = 27 and by substituting this

value into equations (3.2.12) two more equations are obtained, i.e.

u, = A cos ¢
) (3.2.13
Yn = A sin ¢ )
w
and hence A = //un2+ (un/w)2
u
and ¢ = tan”! <_n_> (3.2.14)
wu
n
Values of A/Ajand ¢ for various values of n are given in Table
3.1. These values apply when the basic element is used, but a similar
pattern appears for the refined element.
n u /A u_Juho A/A, o rad
1 0.882821 2.006572 2.192192 1.156319
2 1.003178 -0.191486 1.021290 -0.188611
5 0.997710 -0.068483 1.000058 -0.068533
10 0.999806 -0.019774 1.000001 -0.019775
20 0.999987 -0.005111 1.000000 -0.005111
50 1.000000 -0.000825 1.000000 -0.000825
100 1.000000 -0.000207 1.000000 -0.000207
200 1.000000 -0.000052 1.000000 -0.000052
500 1.000000 -0.000008 1.000000 -0.000008

Table 3.1
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It is immediately obvious that the amplitude ratio converges very
rapidly on the correct value of 1, but although the phase error is
reduced by increasing the number of intervals per cycle it is measurable
when the error in the amplitude ratio is less than 10_6. It may there-
fore be deduced that for one cycle of a free undamped vibration, when
more then 10 intervals per cycle are used, the error in amplitude is
negligible while the phase error is still appreciable. It may be
further noted that, since ¢ is negative, maximum displacement occurs
before the correct time. The frequency of the vibration obtained by

this finite element method is therefore too high.

3.3 Errors in more than one cycle

Although, with the exception of Example 2.5, all previous
calculations have been for one cycle only, the finite element method
described in 2.3 may be applied to any number of cycles. Alternatively
the series S; and S, of (3.2.10) may be evaluated for any number of
elements n, which will now be the total number and not the number per
cycle. Values of u, and Vo calculated from equations (3.2.9) will
then be the values of these variables at the end of the n'th element.
When values of up, and Vo have been found, the method described at the
end of the previous section may then be used to find the amplitude and
phase errors, provided that the total number of elements is an exact
multiple of the number of elements per cycle. For example, if 10
elements per cycle are to be used, then values of u, and v, must be

calculated only at the end of 10, 20, 30 . . . elements.
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Both the step-by-step method of 2.3 and the series summations of
3.2 may be used to find these values of up, and Vi and in a number of
cases for which comparisons are available are found to differ by very
small amounts which are due to rounding off errors in the computer
calculations.  Values of amplitude and phase errors are then easily
found, and these errors for various numbers of elements per cycle are

shown in Fig. 3.4. It should again be noted that these results are

obtained by using the basic element.

It is again obvious that both amplitude and phase errors for a
given number of cycles are reduced by increasing the number of inter-
vals per cycle. The amplitude error decreases rapidly as the number
of intervals per cycle increases, and appears to be approximately
proportional to (Number of 1ntervais/cyc1e)_6 up to about 50 intervals
per cycle. It is thus so small (about 10'9) that errors shown for
higher numbers of intervals per cycle are probably mainly rounding off
in the computer. A further reference to Fig. 3.4 shows that, for more
than about 20 intervals per cycle, the amplitude errors are very small,

even for a number of cycles.

The phase error, however, is still measurable at up to 100
intervals per cycle, and because of these greater errors it is possible
to be fairly precise about the size of this error. It is found that
the phase error ¢ is proportional to (Number of interva]s/cyc]e)'z,

and directly proportional to the number of cycles.

More precisely, for n intervals per cycle, after r cycles, the
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phase error ¢ in radians is given by

¢ = 2.06 r/n® approximately if n > 20 (3.2.15)

Alternatively, inspection of the results in Table 3.1 for a single
cycle shows that except for small values of n, the figures for &n/on
and ¢ are almost exactly equal (in some cases agreeing to 6 figures),
and the same agreement is found for more than one cycle. Since dn/on
is the maximum velocity error expressed as a fraction of the maximum

velocity, equation (3.2.15) may also be written as

e (%) = 206 r/n? (3.2.16)

where ¢ is the maximum range error as defined in (3.2.1).

Alternatively if the maximum range error ¢ is to have a prescribed
value at the end of r cycles, equation (3.2.16) may be re-arranged

to give the required number of intervals per cycle n, i.e.

n=14.4 vr/ ¢ (3.2.17)

The total number of intervals for the r cycles /N,is then

obtained from N = rn or

N = 14.4 p %000 (3.2.18)

It has previously been noted on several occasions that the patterns
of results are similar for the basic and refined finite elements. It
may therefore be deduced that for more than one cycle an expression
similar to (3.2.16) may be obtained for the refined element, and an

examination of the results given in Fig. 3.2 suggests that, for the

refined element
e = 50r/n" (3.2.19)
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and (3.2.19) does indeed give an accurate indication of the maximum

range error in a free undamped vibration extending over several cycles

when the refined finite element is used.

3.4 Conclusion

The basic finite element gives results for which the maximum range
error in one cycle is proportional to (Number of interva1s/cyc1e)_2,
and in the limiting case of an infinite number of intervals per cycle
gives an exact solution for a free undamped vibration, and almost

certainly for damped and forced vibrations also.

The refined element gives even more accurate results, and in this
case the error is proportioned to (Number of interva1s/cyc1e)_4, o)
that fewer intervals per cycle will give the same accuracy as the

basic element.

For more than one cycle the amplitude error is likely to be very
small for the basic element, and for more than 20 intervals per cycle
is negligible. The phase error, on the other hand, is appreciable,
even with as many as 100 intervals per cycle, and this error is
directly proportional to the number of cycles. The phase lag ¢ is
shown to be negative, indicating that the frequency of a free
vibration obtained from a finite solution is too high. This is also

the case for the refined element although errors here are smaller.
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CHAPTER 4

MULTI-DEGREE OF FREEDOM SYSTEMS

4.1 Introduction

It has been shown in Chapters 2 and 3 that a finite element
solution may be obtained for single degree of freedom systems, and that
any desired accuracy may be obtained by a suitable choice of the number
of temporal elements to be used. Since exact solutions for single
degree of freedom systems are usually not difficult to obtain it might
be suggested that the finite element method achieves nothing new.  The
situation is, however, very different for multi-degree of freedom
systems, where exact solutions are often very tedious (see Chapter 5
where these methods are described). The present chapter shows that
the finite element method may be used for multi-degree of freedom
systems in exactly the same way as for a single degree of freedom

system. This method then provides a practical way of dealing with

complicated arrangements.

4.2 Solution using the basic element

Although a system of masses and springs may be connected together
in many ways, it is perhaps most convenient to consider, first, an

arrangement of the type shown in Fig. 4.1. For the sake of simplicity,

dampers are not included at this stage, but it is shown Tater than

damping effects are easily allowed for.



- b5 -

IF et LF nF
K, m k, kﬂ
FEAANAA T AN - - - - - o - A m,
e -
e 2 A _’_“UL
Fig. 4.1

In this system, the displacement of n masses must be considered,
and the finite element method requires that values of u and Q for
each mass shall be used when t = 0 and t = t. The vector of the
generalized displacements {u} therefore contains 4n components which

are most simply arranged as

t
u u .-.u V V-..V u u ...U v V .-.V

where the prefix identifies the mass (i.e.refers to spatial position)
and the suffix o or ! refers to time giving either the initial or

final value of u or v. As in previous chapters v = ut.

The methods used for a multi-degree of freedom system are very
similar to those previously applied to a single degree of freedom
system. The modifications necessary may be shown by considering the

kinetic energy of a multi-degree of freedom system.

Using the basic element of 2.2, the interpolation function of

(2.2.6) is again used, i.e.

[v]
or [v]
and [

il

[1-3s2 + 2s° s-2s2 + 53  3s2-2s3  -s? + s°]

(V1 V2 Vs P ]
[li)l J)2 {PS l:l)“']

n
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Then if Lol = TuilT ] wolT ] wslL ] wul1 1]

[0 00,0 9al1,] 3s[1,] $ul1,]) (4.2.1)

where [In] is the n x n unit matrix

and [¥]

the kinetic energy of the system is given by

1= L tertmre (4.2.2)

where [m] is the mass matrix for the system.

Again using Hamilton's principle and considering for the present
only the kimetic energy, the partial derivatives with respect to the
1Vj (i =1,2,..... n, j = 0,1) are required. It should be remembered
that the derivatives with respect to the iuj are not required, since

the initial and final displacements must not be treated as variables.

Thus reference to 2.2 shows that

h,1[m] h®52[m] h®,3[m] h®,y[m]

o Tt . o (4.2.3)
i 0 h®y1[m] h®y2[m] h®ys[m] h®yy[m]

A comparison with (2.2.11) shows that the single mass m for a

single degree of freedom system is replaced by the mass matrix [m] in

a multi-degree of freedom system.

When the processes of integration and partial differentiation are

. . t

similarly applied to the generalized forces [{F} - [cl{u} - [kl{u}]",
it is found that the matrices [c] and [k] replace the single values c

and k of (2.2.11), and the force vector for a multi-degree of freedom

system is

. . . t
[1Fo 2Fo...1F0T oFot.-1Fa 2F1..aFaT 2Fat. ]
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The equations now obtained by the use of Hamilton's principle are

of exactly the same form as those of (2.2.14) and mav be exprossed as

{uo? {u, ({Fo}
[G]{ } LH]{{V} [GfJI{F }}+ [Hf]{{F }}- (4.2.4)
where (6] :517{3[@ 4[m]}é_l'—6[c] 0 ] L [20ad e
3tmd -1m] | %0 | erc1arel] 40 [-13[k] -3[k]

6. - 22[1] 4[1]
A | -3[1]}

and similar expressions may be obtained for [H] and [H¢] by comparison

with (2.2.14).

For an n-degree of freedom system [m], [c] and [k] are n x n
matrices, so that [G], [H], [Gf] and [Hf] are 2n x 2n matrices. By
solving the 2n equations of (4.2.4) the n values of displacement

and n values of velocity at the end of the interval are obtained.

By employing the usual step-by-step method, a solution may thus
be obtained for any period of time. It is shown in the following
examples that percentage true errors are of the same order for single

and multi-degree of freedom systems for the same number of intervals

per cycle.

Because of the large number of calculations required to solve

these examples, the use of @ digital computer is essential. Details

of the computer programsused are given in Appendix B.
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In order to check the accuracy of the results, exact solutions
must be known, and these are most easily obtained when the masses move
with harmonic motion. This is only possible if the initial conditions
are those appropriate to a particular mode of vibration, which may be
found by conventional methods. It should be noted that the calculation
of eigenvalues and eigenvectors is required for checking purposes only
and is not necessary for the normal use of the finite element method.
In the Tast two examples harmonic forces are applied, since the
calculation of amplitudes by conventional methods is then relatively

easy, but a finite element solution could be obtained with any type

of force.
Example 4.1
— . 2u
/ k 2k 5
, W— ™ —AMAA— 2m
/

®

This example illustrates the application of finite element methods
to the free vibrations of a 2-degree of freedom system. The steady
state solutjon is required so that the accuracy of the finite element
solution may be checked easily. An exact solution must therefore be
obtained so that the two masses may be given their correct initial

positions to vibrate in one mode only.

Conventional methods show that the two natural frequencies are

given by
w? = (2+/3)k/m
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and that the corresponding ratio of displacements is

LE:_ n
U 1%V3

Thus for the higher frequency w, = 1.931852vk/m and 1uo/sus = -2.732051.

A finite element solution may be obtained for one complete cycle
by dividing the period of 2n/w, = 3.252416/m/k into a convenient number

of intervals n, and in the present case n = 20.
Mass and stiffness matrices are also required, and these are:-

1 0 3 -2
[m] = m[ l (k] = k[ 1
0 2 2 2

Initial and final values of displacement and velocity and

percentage range errors are given in Table 4.1.

1U 1(1//% 2U 2&//%

Initial value -2.732051 0 1 0
Value after 1 cycle -2.732015 0.026978 0.999987  -0.009875
Range error % 0.001 0.511 0.001 0.511

Table 4.1

Not only are the two displacement errors and the two velocity
errors respectively equal, but these figures are identical to the range
errors previously obtained for the free vibration of a single degree of

freedom system, also using 20 intervals per cycle.
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—em U ,-——p— 7_“ ~—-—>—3U
3 k k k

— Am :
NN 2m AN m .fL:jEﬁQE:'

@I_V Fsalr @ - @L—‘E‘Fsln ot

Conventional methods give an exact steady state solution for the

forced vibrations of this system as
1U -1
ou = 3 — sin Qt

U -5

The mass and stiffness matrices required for the finite element

solution are:-

4 0 O 4 -1 0
[mMl=mi{0 2 O [k] = k|-1 2 -1
0 0 1 0 -1 1

As for a single degree of freedom system the time derivatives of
the forces are required, and these are easily found from F = OF cosqut,
;F = 20F cos qt. Initial and final values of displacement and velocity

and percentage range errors in the final values are given in Table

4.2, the calculations being for one complete cycle divided into 10

intervals.
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1/ (F/k) 10/ (F/vRm) ou/(F/K) R0/ (F/vkm) su/(F/k) s/ (F//km)

Initial value -1 0 3 0 -5 0

Final value -1.001153 0.026181 3.008146 -0.092360 -5.020918 0.117251
Range error% 0.115 1.851 0.271 2.177 0.418 1.658

Table 4.2

In this case the displacement errors are not all equal and neither
are the corresponding velocity errors. The velocity errors are, however,
not very different from each other and their average value is very close

to the 2% maximum range error for a single degree of freedom system

obtained from Fig. 3.2.

Example 4.3
____*,HQ .——————9-2“
C C
/i F { ¢ =Jdmk
/ — m ‘ m
j 0 =Jk[/m
"\ | .
" VV\N\— —VVVV—]
/

k Sk |
<::> <::> Fsinf)t

The steady state solution for the forced damped vibrations of the
system in this example may be given in complex form as
1U

. o F
= [-9 -7j, -8 -931] TEE‘S1H Qt
2U

Initial displacements and velocities may thus be calculated, and

these values are given in Table 4.3.
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The matrices required for a finite element solution are

1.0 6 -5 N i
[m]=m{ J [k]=k{ 1 [c] = c : ]J
0 1 -5 5 -1

Using 10 intervals per cycle, the values of displacement and

velocity at the end of the cycle may becalculated. These are shown,
together with percentage range errors in Table 4.3.

1u/ (F/k) W/ (F/vRm)  ou/ (F/K) 2U/ (F/VEkm)

Initial value -0.466667 -0.6 -0.6 -0.533333

Final value -0.474753 -0.599765 -0.608909 -0.532253

Range error % 1.064 0.031 1.110 0.135
Table 4.3

Once again the percentage range errors for the two masses are not
equal, but are of the same order of magnitude as those previously

obtained for a single degree of freedom system.

4.3 Series solution for free vibrations

In 3.2 it was shown that displacements and velocities could be
obtained for a single degree of freedom system by series summation. It
was further shown that, by reducing the size of the element to zero, two
infinite series gave an exact solution. In the present chapter, Example
4.1 for a 2-degree of freedom system gives identical errors to those
previously obtained for a single degree of freedom system. It therefore
seems probable that a finite element solution for a multi-degree of

freedom system behaves in exactly the same way as for a single degree of
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freedom system and, in the Timit when T = 0, an exact solution will

be obtained. This may be verified for the 2-degree of freedom system

of Fig. 4.2

—— & e 4

Fig. 4.2

For this system the mass and stiffness matrices are:-

L] 0 -k1+k2 -k2 |
= o (K] = | ‘

When these matrices are substituted into (4.2.4) the [G] matrix
may be obtained, and by comparison with (2.2.14) it is possible to |
write down the [H] matrix. For a free vibration the [Gf] and [Hf]
matrices of (4.2.4) need not be included, so that, since n = 2, the

2n = 4 equations may be written in the form

o —_
P el el eu -[R] - -[ST] | 2uo
[ }4 - { l{ - (4.3.1)
[R] [S1]|.va [P] [Q]] ] 1vo
2V1 ) L2V
where [P] = |- Tom - 13(kitke)e 13k, 6 ]
i 13k, 0 - g™ - 13K
[Q] = ~; %ﬁ'ml + 3(kitkz)® -3k, 0 }
~3ky0 - 1o+ 3Kke0
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[R] = ~]—0 m - 22(ky+k, )6 22k, 6 ]
_ 224, 6 T e - 22k,0
[S] = rg_o m - 4(ki+k,)6 4k, 6 :
- 4k, 6 5 M - Bkad |

and 6 = 12/420

It may then be shown that

fund = [0 IPI4LsT IR I (0017 R4S T [P T) <o)
(017 QI+[Q1 7 IS]) (v 1}

) -1 o, R -1 -1
tvad = [P LI+ RI LT 0 e (=11 T RI+ IR EPT) Cuo )

(P17 s+ IR QD) (Vo 1 (4.3.2)

1Ua
where {u;} = etc.
2Uy

The matrix operations of (4.3.2) are very difficult to carry out
algebraically, but it is possible to carry out the necessary calculations
using a computer if these can be performed numerically. In order to do
this it is necessary to assign values to the masses and stiffnesses and
also to choose an interval t. Since a solution has previously been
obtained for a system of this type in Example 4.1, values are chosen

here to give the same results, i.e. my =1, m =2, ki =1, ko = 2.

The higher frequency is thenwz = 1.931852 and for 10 intervals per

cycles 1 = 0.325242.

N
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The two equations of (4.3.2) are then found to be of the form

{u}
{V1}

[Al{uo} + [BI{v,}
[CT{uo} + [Al{v,}

where in this case

(4.3.3)

[A] = [ 0.845472 0.102767 |
| 0.051384 0.948239 |
[B] = [ 0.947723 0.034814 )
| 0.017407 0.982537 |
[c] = [-0.298976 0.198204 7
| 0.099102  -0.100772 |

Because of the similarity between equations (4.3.3) and (3.2.7)
for 2 and 1 degree-of-freedom systems respectively, it follows that the
displacements and velocities after several intervals may be expressed
in the form of a series for the 2 degree-of-freedom system of exactly

the same form as that of (3.2.9) for a 1 degree-of-freedom system.

In the present case where n = 10 and {vo} = 0
{uo} = ([A]*°+45[A]8[B][CI+210[A]®([B][C])>+210[AT*([B][C])?
+45[A12([BI[C])*+ ([BILCI)®)Huo} (4.3.4)

The necessary operations may again be carried out by computer, and

(4.3.4) then reduces to

U710 0.764656 -0.642440 1Uo
= (4.3.5)
SU10 | -0.321220 0.122216 Uo

N




- 66 -

Since, to vibrate in this particular mode ;u/,u must have the
value -(14+/3)/1, initial values yup = -2.732051 ,u, = 1 are taken.
The values then obtained from (4.3.5) are ju;, = -2.731520
2U1o = 0.999806. It is found that the value 2U1g is exactly the same
(to 6 figures) as the value of uio for a single degree-of-freedom
system, thus confirming the results of Example 4.1. It may be further
deduced that since the series (3.2.9) for a single degree-of-freedom
system gives a ratio un/uo approaching the Timit 1 as the number of
intervals per cycle n + «, the same result will be obtained for the
series (4.3.4) for a 2 degree of freedom system, and that this solution
also converges on the correct solution as n - ., There seems no reason
to doubt that similar results would be obtained for any desired number
of degrees of freedom. Although it would thus be possible to evaluate
the matrices [A], [B] and [C] and to find the required displacements
from the series (4.3.4), this method requires a number of matrix
products and inversions and would therefore be rather slow. Since
exactly the same degree of accuracy is obtained from the step-by-step

method described in 4.2 with fewer calculations, this step-by-step

method is to be preferred.

4.4 Solution using the refined element

It has been shown in 4.2 that a solution may be obtained for a

multi-degree of freedom system, using basic temporal elements, by

replacing the single values m, k and ¢ of a single degree of freedom

system by the mass, stiffness and damping matrices. By using exactly
the same processes with the refined temporal element it is again found

that the same methods may be used for multi-degree of freedom systems,
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with the appropriate matrices replacing the single values of the
single degree of freedom systems. For an n degree of freedom system
there will now be 3n equations giving the values of displacement,

velocity and acceleration at the end of the interval.

One minor difficulty encountered in the use of the refined element
is that initial values of displacement velocity and acceleration are
required. Since the [m], [k] and [c] matrices are known, it is however
possible to specify initial values of displacement and velocity only
and to calculate the accelerations from

(6} = 1" (Y - [K]Hu) - [eliad) (4.4.1)

This requires the inversion of the mass: matrix which increases the

computing time, but does reduce the amount of data to be supplied.

To confirm that a solution can be obtained for a multi-degree of
freedom system this method may be used to solve the forced damped
system of Example 4.3. The data input now required is the same as for
the basic element solution except that values of E are required, and
these are of course easily calculated for a harmonic force. As with
the previous basic element solution 10 intervals per cycle are used,
and the values of displacement and velocity at the beginning and end

of one cycle are given in Table 4.4. The percentage range errors are

also shown.

N
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1u/ (F/k) W/ (F/VRm) 2u/(F/K) o0/ (F/vim)
Initial value -0.466667 -0.6 -0.6 -0.533333
Final value -0.466645 -0.599992 -0.599972 -0.533313
Range error % 0.003 0.001 0.003 0.003
Table 4.4

It is again obvious that, as for single degree of freedom systems,
the use of the refined finite element gives greatly increased accuracy,
as the errors for the basic element solution of this problem are of the
order of 1%. A more detailed comparison of basic and refined element

solutions is given in Chapter 5.

4.5 Conclusion

The use of the finite element method is not confined to single
degree of freedom systems, but it may also be used in multi-degree of
freedom systems. Both the basic and refined finite elements may be
used, and in both cases the accuracy obtained in multi-degree of
freedom systems is similar to that for single degree of freedom systems.
By using finite elements, solutions may be obtained for free, damped
and forced vibrations, and even in cases where the forces are known
only as a list of values the required values of their derivatives may

be obtained very accurately by the approximations given in Appendix A.
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CHAPTER 5

EXACT AND NUMERICAL SOLUTIONS FOR DISCRETE SYSTEMS

5.1 Introduction

Problems requiring the response of a discrete system to applied
forces can, at least in principle, be solved exactly by conventional
methods. Unfortunately, except for certain forcing functions, these
methods may become very tedious, and alternative numerical methods may
offer more easily applied procedures. While it is true that these
numerical methods give only approximate solutions, it has been shown
in Chapter 3 that one of these methods, i.e. that using temporal finite
elements, can be made to give almost any required degree of accuracy by
increasing the number of elements. It should, for example, be possible
to obtain a finite element solution to at Teast 6-figure accuracy by

merely using a sufficient number of elements.

Nevertheless, it seems appropriate at this point to compare finite
element methods with both exact and other numerical methods of solution.
The methods used in this chapter are:-

A Exact methods

Al Direct solution of the equations of motion

A? Modal analysis with Duhamel's integral evaluated exactly

(If this is not possible Bl may be used)
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B Numerical methods

BT Modal analysis with Duhamel's integral evaluated numerically

B2 Finite difference method
B3 Basic finite element method

B4 Refined finite element method

The examples solved in this chapter are chosen so that solutions
may be obtained without difficulty by each of the methods. In practice,
as noted earlier, all except the simplest type of forcing function may
make the exact methods of solution very difficult, but the numerical

methods may be used for any type of forcing function.

The inclusion of damping makes the exact methods and the numerical
integration method much more difficult, but presents no problem when
finite differences and finite element methods are used. Information
on the various methods is given by Przmieniecki [12], Salvadori and

Baron [13] and Meirovitch [14].

A description of the methods of solution is given in the next two
sections of this chapter, including solutions obtained by the exact

methods. A comparison of computing times for varying numbers of degrees

of freedom and standards of accuracy is then given.
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5.2 Exact Methods

Al. Direct solution

For an undamped system, the equations of motion may be expressed

in matrix form as

[m]{U} + [k1{u} = {F} (5.2.1)

where {u} and {F} are the displacement and force vectors respectively.

It is theoretically possible to obtain the complete solution of
these equations directly by using Laplace transforms. After transfor-
mation, equations (5.2.1) become

[ml{s2u - su, - Up} + [kJ{U} = {F} (5.2.2)

where {uo} and {U,} are respectively the initial displacement and velocity

vectors, and hence

[0y = ([K] + s2[m]) " ([ml{sup + o} + {F}) (5.2.3)

or {u} [Z]_]{U}

where [z] = [k] + s2[m] and {j} = [m]{sus + Uo} + {F}

Now although it is possible, in principle, to obtain the inverse
transform of equations (5.2.3), in practice the functions become so
complicated that the inversion becomes almost impossible except for
systems with only a few degrees of freedom, and for certain forcing

functions. The task does become slightly less difficult in the special

case where the system is initially at rest in its equilibrium position

so that {up} = {Uo} = {0}. In this case equations (5.2.3) have the

simplified form
- “1.=
(ay = [z] {F}

where as before [z] = [k] + s?[m].

(5.2.4)
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The task of finding the inverse transform of [z]'] is. however,

still formidable in most cases. Further details of the use of Laplace

transforms are given by, among others, Spiegel [15] and Thompson [16].

The use of this method for a 2 degree of freedom system is demon-

strated in Example 5.1 below.

Example 5.1

j———J\)txr—J ¥ y
m —"VV\— 2m

For this system

1 0 3 -2
[m] =m and [k] =k
0 2 -2 2
3 + s?m/k -2 |
so that [z] = k 2 2 + 2s%m/k
2 + 2s2m/k 2
and hence [z]_] = S - 2 3 + s2m/k
2k(s* ()2 +4s™ 1)

Now for initial conditions {upl} = {uo} = {0}
and for step forces t < 0, 1Q = ,0=0; t>0,,Q0=1F, ,Q=,F

equations (5.2.4) become
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u

1_} _ 1 2 + 2s2m/k 2 1 F
u 2ks[s?+(2-/3 2 My

2 ) [s2+( )k/m][s +(2+»/3)k/m](k) 2 3+ szm/k_ oF

The inverse transformation requires the two forms

-1 1 1 [
ii s(s2+a?) (s24b?) = vt 52(1—cos at)- %&1 - cos b t)}
-1 s%+ ¢ 1 T c-a? -b2
5[ s(s7+a?) (s24b?)  b2-az s2(1 - cos at)- Cb2 (1 -cos b t)}

where, in order to find u, a? = (2-/3)k/m, b? = (2+/3)k/m and
c = k/m. By substituting these values it may be shown that
wu = (0.788675,F/k + 1.077350,F/k)(1 - cos w; t)
+(0.211325,F/k - 0.077350,F/k)(1 - cos w, t)

where w; and w, are the natural frequencies and have the values

J(2-/3)k/m and V(2+/3)k/m respectively.

A similar expression may be obtained for ou by using the same

values of a? and b? as before but in this case ¢ = 1.5k/m.

A2. Modal analysis
vious example shows that, even for a 2-degree of freedom

The pre

system, the direct solution of the equations of motion is quite difficult.
This is because, with this method, the equations are coupled, i.e. each

equation contains functions of the displacements of each of the masses.

If the equations could be uncoupled so that each equation contained

functions of one variable only, a solution could be obtained much more

easily. This uncoupling of the equations is indeed possible by the use
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of modal analysis, and in order to use this method a preliminary
solution of the eigenvalue problem is necessary to find the eigenvalues

and eigenvectors.

When these values have been found the method of solution is as
follows:-

If v(r) is the r'th eigenvector

Then if [v{Mtmiev()y = o 2 (5.2.5)

r
(P)} (P)}

{VN = '|/0Lr{V

where {VN(r)} is the r'th normalized eigenvector and hence

[VN] = [{VN(1)}{VN(2)} ..... {VN(n)}] is the n x n normalized modal matrix
for an n-degree of freedom system. If the transform {u} = [vN]{p} is
used to convert the original coordinates {u} to principal coordinates
{p}, and also [vN]t{Q} = {P} where {Q} are the applied forces, then the

original coupled equations may be replaced by the uncoupled equations

{p} + [ w]{p} = {P} (5.2.6)

These equations are then solved to give values of {p} and finally,

reverting to the original coordinate system

twy = Lvylep) (5.2.7)

gives the values of the displacements {u}.

Certain forcing functions give easy solutions; for example, for

suddenly-applied (step) forces {F} the values of {P} are independent of

time and the solution of the r'th equation is p,. = Pr/wr2(1- cos w, t).

In general, however, an exact solution of the second-order differential

equations may be very difficult to obtain and some form of numerical

solution such as one of those described in 5.3 must be used.
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So that a direct comparison of the modal analysis method can be
made with the direct solution, Example 5.1, for which the equations have

been solved directly, is now solved using the method of modal analysis.

Example 5.1 (Modal analysis method) Q, .«
1Yo 2
A
& 2F
R e "
Y k 2k 3
NN m — AN/ 2
t

L“‘”'\G? Lw-wv—ZCQ -

Solution of the eigenvalue problem gives

/ (2-/3)k/m and {v(1)}= 31 11t
v (2+/3)k/m and {v(z)}= [-1-/3 1]t

Hence 0,2 = v 7t m10v (M)

1T 07 [/3 -
[/3-1  1]m { }-{ }-
0 2 1

2/3(/3 - 1)m

1

w1

W2

il

1]

Simitarly ap? = [v\ 21t mIv(®y = 2/3(v3 + Dm

Then the normalized modal matrix is

/3 -1 -1 -/3
o1 Qo
[vy] =
1 1
01 O2
0.459701 -0.888074
or [VN] =L

/M | 0.627963  0.325058 _
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For step forces, 1Q = 1F and ,Q = ,F when t > 0 so that the -

principal forces are found from

) = v, 1M

i

P, ] (0.459701  0.627963 ] [ ,F

P, /m |-0.880074  0.325058 | | ,F o

The uncoupled equations to be solved are then
{B} + [w2]ip} = {P} 1z
where in this case P; and P, are constants. ’

The solution of these equations is therefore

P = Py/wi?(1 - cos wp t)
Pr = Po/wp?(1 - cos wy t) |

and substituting for P; and P,

1]

p; = 1.715627V/m/k F + 2.343590v/m/k »F 7

-0.237959/m/k ;F + 0.087099/m/k ,F .

P2

Finally, in the original coordinate system

() = [y Jp}

1u 1 0.459701 —0.888074- " 1.715627,F + 2'3435902F1~

or = ,
>Uu k 0.627963 0.325058| {-0.237959;F + 0.0870992FJ

so that
wu = (0.788675 1F/k + 1.077350 ,F/k)(1 - cos w1 t) Z

+ (0.211325 1F/k - 0.077350 2F/k) (1 - cos wp t)

which is exactly the same result as that obtained by direct solution.

A similar expression may be obtained for ,u.
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The advantage of modal analysis is that all the calculations may
be arranged so that they may be carried out by computer. This is not

possible in the direct solution method where the difficulty lies in the

inverse Laplace transformation.

5.3 Numerical solutions

BT. Numerical evaluation of Duhamel]'s integral

The exact evaluation of Duhamel's integral is possible only for a

limited number of forcing functions. Apart from the obvious cases of

harmonic and step forces a number of others are given by Przmieniecki[12].

In general, however, it may be necessary to evaluate this integral by
some numerical method, with the result that only an approximate solution

is obtained.

The numerical integration may be introduced in the following way:-
If the forces {Q(t)} have known values at a number of different

times, then the values of {P(t)} for each value of time may be found

from {P(t)} = [VN]t{Q(T)}-

Then, considering the case where all the initial displacements and

velocities are zero, Duhamel's integral is used to find the values of

{p} after time t, i.e.
t
p. = 1/w.? J P.(T) sin w (t-1)dT (5.3.1)
o}

and finally the displacements are found from

{u} = [vN]{p} as in the exact method.

Various methods of numerical integration may be used, but Simpson's

rule gives very accurate results with Tittle difficulty in the examples

of the next section.
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B2. Finite difference method

In this method the equations of motion are solved approximately by
using the central finite difference operators, so that

U = Qg = )2

U1 ~ (ui_] - 2u, + u1.+])/r2 (5.3.2)

i

where Us 1. Uj and Us,q are successive values of u at times t-t, t and

5

t+T1.

Thus for a single degree of freedom the equation of motion is
reduced to an approximate linear equation

m(ui_]-2u1.+u1.+])/r2 + C(U1+]-Ui_])/2T + k“i = F, (5.3.3)

where F = F(t).

One minor difficulty of this method is that a special starting
procedure is necessary involving the introduction of a fictitious node
at a negative value of t. Then, if, at time t = 0, the velocity is Ug»
the first of equations (5.3.2) gives u = (u; - u_j)2t , from which the

fictitious value u_y may be replaced by a function of GO and uy -

For multi-degree of freedom systems the equations of motion are
[m]{u} + [cI{u} + [k1{u} = {F}

and by using the central difference operators as in (5.2.3) the finite

difference approximations for the equation of motion become
] - =
_ %E—[m]({uiﬁ]}—Z{ui} + {u1+]})+ é;{c]({u1+1} {u1-1})+[k]{“1} {Fi}

(5.3.4)

and hence

} = ([m]+T/ZECJ)_]((T/ZECJ-[m]){ui_]}+(2[m]-r2[k]){ui}+T2{F1})

(Ui
(5.3.5)
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Velocities are readily calculated from

{031 = (ugyq) - {u, 3/ (5.3.6)

A special starting procedure is again necessary, so that when i = 0
a fictitious node i = -1 is introduced tc¢ give

{Uo} = ({uy} - {u-1})/21 where {Uo} are the initial velocities

and hence {u-y} = {u;} -2t{U,}

Making this substitution in (5.3.4) when i = 0 gives

2 Ind({us} - fuo} ~tlie}) + [eMied + [KICuo) = {Fo]
and hence

{u} = {uo} + t{lp} + 12/2[m]—]({F0} - [c] {0e}-k{uo}) (5.3.7)

Further details of the use of finite difference methods are given

by Crandall [11], Salvadori and Baron [13] and Bajpai et al.[17].

B3 & B4. Finite element methods

The use of both basic and refined elements has been described fully

in Chapters 2 and 4, and so it is not necessary to repeat the details

here. It may, however, be noted that for the numerical integration and

finite difference methods,values of forces only are required. The basic

finite element method requires, in addition, the first derivatives of

the forces, while the refined finite element method requires both their

first and second derivatives. Both finite element methods therefore

require more data input than the other two methods, although it is quite

possible to obtain approximate values of these derivatives from values

of forces only (See Appendix A). To compensate for this increase of
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data required, and the greater difficulty of programming, the finite
element methods can be expected to give more accurate results, and

the comparison of the next section shows that this is indeed so.

5.4 A comparison of the methods

In cases where it is possible to obtain an exact solution of a
problem, one of the methods giving an exact solution will normally be
used. It has, however, been pointed out that the forces may be
"difficult" and so an exact solution may not be practically possibTe.
One of the numerical methods must then be used, and a comparison is

made here of the accuracy and computing times for the different methods.

The computing times given are for an I.C.L. 1905 computer, and
although actual times will be different for other computers the

relative speeds of the various methods can be expected to remain un-

changed.

Although the comparison is concerned with numerical methods, an

exact solution is required to enable errors to be calculated, and so

suitable forcing functions must be chosen. To obtain solutions without

too much difficulty, damping is not included in the examples solved in

this section. Harmonic forcing functions may thus give large amplitudes

if the forcing frequency is close to one of the natural freguencies of

the system, and so are considered to be unsuitable for a system in which

the number of degrees of freedom, and hence the natural frequencies, are

to be varied. Step forces, however, produce no such undesirable effects,

and so appear to be very suitable for use with systems of the type shown

in Fig.5.1. The number of degrees of freedom of this system is easily

varied by altering the number of masses and springs.
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Fig. 5.1

The responsesof systems of this type having 3,5,7 and 10 degrees of

freedom to step forces are first found by using the exact modal analysis

method described in 5.2. In each case the initial conditions are taken

=0, i=1,2...n. The eigenvalues and eigenvectors

]

S .u_ = .
a10 1u0

required for use in the solution are found by using a standard computer

procedure.

For each system, displacements are calculated for a time equal to

one period of the lowest natural frequency, and the general pattern is

similar foreach of the 4 different numbers of degrees of freedom. The

variation of the displacement of each mass is shown for the 3-degree of

freedom system in Fig. 5.2.

Solutions obtained by each of the 4 numerical methods are then com-

pared with the exact solution previously obtained, the number of intervals

in each of the numerical methods being adjusted to obtain the required

1t should be noted that in this ¢

and in each case this maximum error occurs when

mparison maximum percentage
accuracy. omp P 9

true errors are quoted,

displacements are small. A maximum true error of, for example, 0.1% is

therefore a very small percentage of the maximum displacement.
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The numerical methods are compared in two ways, first by investi-
gating the variation of computing time with different numbers of
degrees of freedom, with a maximum percentage true error of 1% in each
case. The effect of varying the accuracy for the 10-degree of freedom

system is then investigated,

The results of these two comparisons are shown in Figs.5.3 and 5.4

respectively, and it is clear that, except for a small number of degrees

of freedom, modal analysis with numerical integration is the fastest

(and therefore the cheapest) method.  Within the ranges used the

refined finite element method, however, requires computing time comparable

to that used in numerical integration, while the time requirements of
the basic finite element and finite difference methods increase rapidly
as either the number of degrees of freedom or accuracy required are

increased. 0On the other hand, both finite element and the finite

difference methods will allow for the inclusion of damping without

difficulty, while the modal analysis method becomes considerably more

complicated.

It is unlikely that identical results would be obtained for other

forcing functions, but solutions of examples using harmonic and

exponentially decaying forces (for which exact results are readily

obtained) suggest that the relative speeds of the various methods are

approximately the same as those of Fig. 5.4.

In all the previous examples in this chapter, forcing functions

have been chosen so that conventional methods give exact sclutions

....
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without much difficulty. This is a necessary step to check the accuracy
of finite element methods, but it does not show the advantages of these
methods when they are used in more difficult situations. For an
arbitrary forcing function, conventional methods become very tedious,
particularly when damping is present. The next two examples are there-
fore concerned with an arbitrary force obtained from details given by
Housner [18] for an earthquake shock. In Example 5.2, damping is
neglected so that a conventional solution is obtained by numerical
integration of Duhamel's integral without much difficulty. This
solution is compared with a refined finite element solution. In Example
5.3, damping is included, and the finite element solution, which is not
made more difficult by this addition, is compared with experimental

results given by Housner.

Both of these examples are concerned with a 15-storey building for
which the acceleration of the basement is given. An approximate
discretization of the building as suggested by Jacobsen and Ayre [19]

is given in Fig. 5.5,
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The equations of motion for this system when an unknown ground
force ¢Q is applied are
om T8} [x « 7w}  f)

m U -k 2k U 0

=~
o

[ anuj - I n " J \OJ

Discarding the first equation gives
[mIHub + [kMu} = [k
/0
0
where [m] and [k] are the n x n mass and stiffness matrices for the

1st to n'th storeys.

The system therefore behaves as if a force k,u is applied to the
first storey. In the following examples, values of acceleration ,ii
only are available and so the required values of ou are found by a

double numerical integration.

Example 5.2

The only information given by Housner [18] for the building under
consideration is that it has 15 storeys and that the periods of the
first 3 modes are 1.2s, 0.4s and 0.25s.Mass and stiffness matrices for
a system of the type shown in Fig. 5.5 are identical in form to those
previously used in this section,although the stiffnesses in the present

example are shear stiffnesses. By solving the eigenvalue problem the
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periods and modal shapes for the building may be found, and by

adjusting the m/k ratio the period of the first mode is made to be
1.2s when m = k/2671. The next two periods then have calculated values
of 0.401s and 0.243s which agree well with the measured values given.
It may therefore be deduced that, at Teast for the first 3 modes, the

arrangement of Fig. 5.5 is a reasonable representation of the building.

Taking values given for the acceleration of the basement for the
first 2.5s of the shock, and assuming that the building is initially
at rest, the velocity and displacement of the basement may be found by
numerical integrations. The values of these displacements so obtained

from the measured accelerations are shown in Fig. 5.6.

By using these displacements as values of ,u, the displacements
of other parts of the building may then be found by using the method
previously described. In this case a solution may be obtained without
difficulty by using modal analysis with numerical integration of
Duhamel's integral. The values obtained by this method for the

displacement of the roof at 0.025s intervals are also shown in Fig.5.6.

A second solution of this problem using refined finite elements
with the same 0.025s interval gives roof displacements which differ

from those obtained by modal analysis and numerical integration by
Tess than 1%. Because of this small difference between the two

numerical solutions it is not possible to show separate results for

the two methods in Fig. 5.6.
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In this example no exact solution is available for comparison,
but since two different methods of solution are in close agreement it

seems likely that neither is in error by more than about 1%.

The computing time for these two methods of solution are:-
Modal analysis with numerical integration  36s

Refined finite element 52s

[t should be noted that these times are for an I.C.L.1904S computer,
and are not directly comparable with those of Fig. 5.4 which apply to

a 1905 computer,

The refined finite element method is therefore a useful alternative
to conventional modal analysis, its only disadvantage being the rather
Tonger computing time. In the next example, however, the same building
is used with non-zero initial conditions, and with damping added. \
Conventional methods then become considerably more complicated, but no

increase in computing time is required to obtain a finite element

solution,

Example 5.3

In addition to the acceleration of the basement of the 15-storey
building used in the previous example, Housner also gives values for
the acceleration of the roof. Examination of the latter in Fig. 5.7
shows that the building is not initially at rest, and values of initial
conditions used are adjusted to match, as closely as possible, the given

roof acceleration for the first 0.2s of the shock. The amount of
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damping present is not known but Housner suggests a damping coefficient
of about 5% of the critical value for buildings in general, and a
damping coefficient ¢ = /ik, giving a damping ratio of almost exactly
0.05 for the first mode is used in this example. Since, in this case,
accelerations are required, the refined finite element method, which
uses acceleration as a generalized displacement, seems particularly
appropriate. The basement accelerations given in Fig. 5.7 have been
used previously in Example 5.2 to obtain corresponding displacements,
and these same displacements are used in this example. With the
addition of damping, the equivalent force on the first storey is now
kou + cou, and values of oU have already been calculated as a first
step to finding values of u. Values of keu + col are therefore
calculated at 0.025s intervals and the roof acceleration calculated by
the refined finite element method is shown in Fig. 5.7. Also shown

are the measured values of roof acceleration.

Agreement between calculated and measured values of roof acceler-
ation is not by any means perfect, but in view of the uncertain initial
conditions, the amount of damping present and even the precise distri-
bution of mass and stiffness, the differencesbetween the two sets of

results are not considered to be excessive.

It is encouraging to note that the maximum acceleration at 2.35s
is predicted almost exactly in magnitude and position, and with more
information concerning the system, the refined finite element method
should be capable of predicting accurately the response of any building

to an earthquake shock.
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5.5 Conclusion

The methods giving exact solutions may be very tedious except for
simple systems and a limited number of forcing functions. This is
particularly true of the direct solution method where the inverse
Laplace transformation may present considerable difficulties. If
modal analysis is used, an increase in the number of degrees of freedom
does not really make the solution any more difficult, provided that
the Targe number of calculations can be performed by a computer. Both

of these methods become much more complicated if damping is present.

O0f the numerical methods, the use of modal analysis with numerical
integration of Duhamel's integral {s, in most cases, the fastest method
used, but damping makes the solution more difficult. The finite
difference method is relatively simple to use, but does require special
starting techniques. It is, however, faster than even numerical inte-

gration for systems with only a few degrees of freedom.

Both of the finite element methods,like the finite difference
method, will give solutions for any forcing function and allow for the
inclusion of damping without difficulty. The finite element methods
are judged to be superior to the finite difference method because of the
ease with which any starting conditions may be prescribed, and because
of their improved accuracy. Except for systems with only a few degrees
of freedom, both finite element methods are faster than the finite
difference method for the same accuracy of solution, and the difference
in cemputing time is particularly noticable when the refined finite

element is used to give very accurate solutions. This latter is also
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the obvious method to choose in problems where accelerations are

required, since in this case accelerations are automatically calculated

at the end of each interval.
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CHAPTER 6

FREE VIBRATIONS OF DISTRIBUTED SYSTEMS

6.1 Introduction

The state of a discrete system may be described completely by a
finite number of coordinates. To describe the state of a distributed
system exactly in this way, an infinite number of coordinates is
required, so other descriptions must be used. It may, for example, be
possible to describe the shape of a vibrating beam completely and
exactly by an algebraic expression of the form u = a sin(mx/2)sin wt.
In more complicated cases the expression may consist of a number of
such terms. In the general case the expression becomes an infinite
series, which may of course, be used to give approximate values by
considering only a finite number of terms. This is the method used by

Timoshenko [20] and others.

A second alternative is to recognize that any solution for a
distributed system is 1ikely to be approximate, and to describe the
state of the system as accurately as possible by using a finite number
of spatial generalized displacements. The distributed system is there-
fore discretized in some way so that mass, stiffness and damping
matrices may be obtained. The discretized distributed system is then
treated in exactly the same way as a discrete system, and if the dis-
placements vary with time any of the methods described in Chapter 5

may be used to obtain a solution in the time domain.
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In this chapter, and indeed in all subsequent calculations,

finite element methods are used in the time domain.

At this stage only free vibrations of distributed systems are
investigated, and the various methods of solution are compared. In
later chapters more difficult problems involving forcing and damping
are solved by using the methods developed here for free vibrations.
The main point of interest is the use of finite elements in the time
domain, the method of use of these being basically the same for any
spatial system. For ease of solution and comparison of methods,
therefore, all the solutions obtained in this chapter are for a simply
supported, uniform beam vibrating in its first mode. The exact solution
for this case gives a frequency w, = m20 where o = /ET7BE7L2, and a
modal shape of half a sine wave. Initial values of deflection and

slope required to ensure that the beam vibrates in one mode only are

therefore easily found.

Two possible arrangements may be used for this system; the first,

shown in Fig. 6.1 is the obvious formulation using the whole of the

beam.

Fig. 6.1



- 92 -

For this arrangement the boundary conditions are Uy, = uy = 0 for
all values of t. The lumped mass discretization of 6.2 uses matrices
for the whole of the beam, but the later finite element discretizations
in space produce larger matrices, and for these the half-beam of Fig.

6.2 is used. The size of the mass and stiffness matrices is thus

reduced without affecting the accuracy of the results.

Fig. 6.2

In this case BC is a mirror image of AC; by symmetry, the slope of
the beam at C is therefore always zero, and so by considering only a
beam of length L/2 with boundary conditions Uy = 0, ué = 0, exactly the
same results will be obtained as for the whole beam of length L with
u, = up T 0. Mass and stiffness matrices for this type of arrangement

are given in 6.3.

For each of these arrangements the type of solution is the same.
Initial conditions are chosen so that the beam has maximum displacement;
the period of one cycle 2m/wi is then divided into a number of intervals
and displacements and velocities are then calculated at the end of each

interval. The maximum range error within one cycle may then be

calculated, using the definition of (3.2.1).
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One difficulty encountered with distributed systems which did not
previously occur with discrete systems is the tendency of the finite
element solution to become unstable. Stable solutions may be obtained
by using a sufficient number of temporal elements, but alternatively
the modal method of solution may be used with suitable truncation to

give a stable solution with fewer elements.

6.2 Lumped mass representation

The simplest method of discretizing a distributed system is that of
replacing the distributed mass and stiffness by a number of discrete
masses and stiffnesses. If, for example, a simply-supported beam of
mass m is divided into four equal parts, the Tumped mass discretization

consists of the masses shown in Fig. 6.3.

L n n n M
8 4 4 P g
A~ ) 0 W B
g \/ L/ N
Fig. 6.3

Since the deflections at A and B are always zero the masses at

these points do not appear in the mass matrix, which is therefore

!
(an]
(an]

[m] - _n41 0 1 0 (6.2.])

-
Yy
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The stiffness matrix is more difficult to obtain and is best formed
indirectly from the flexibility matrix. The coefficients of this flexibi-
Tity matrix are often called influence coefficients and are readily avail-
able for a variety of end conditions. A coefficient a5 represents the
deflection at the i'th point due to a unit force at the j'th point. The
matrix is symmetrical and its coefficients are easily evaluated by using
a computer. This flexibility matrix is then inverted to obtain the

stiffness matrix.

For the beam of Fig. 6.3 the flexibility matrix is

9 11 7
L3
segeT) 'V 16 11 (6.2.2)
7 1 9

and hence the stiffness matrix

P

23 22 9
(k] = DL 32 22 (6.2.3)
9 22 23

The mass and stiffness matrices (6.2.1) and (6.2.3) are then used

in exactly the same way as those for the discrete systems described in

Chapter 4.

As previously stated, all examples in this chapter are concerned with

the first mode vibrations of a simply-supported beam. By using the

appropriate initial displacements of the three masses, which are easily

found from the known modal shape, and zero velocity in each case, a
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solution in the time domain may be obtained by using the basic finite
element. In the case where 20 such elements per cycle are used the
maximum range error is found to be 0.329%. As in previous examples for
discrete systems the maximum range error is in this case,and indeed in

all examples in the present chapter, found to be a velocity error at

the end of the cycle.

Rather surprisingly this error is less than the maximum range
error of 0.51% for a single degree of freedom system using the basic
temporal element with 20 intervals per cycle. The explanation for
this 1s that temporal finite element solutions give too high a
frequency (see Chapter 3), while the Tumped mass spatial discretization
reduces the frequency. These two discretizations therefore give errors

of opposite sign resulting in a reduction of the total error.

By adjusting the numbers of masses and time intervals even smaller
errors may be obtained, and with the mass discretization m/6, m/3, m/3,
m/6 at L/3 spacing and 17 basic temporal elements per cycle, the values
of the displacement and velocity at each of the m/3 masses are, after one
cycle, 1.COOOOOAO and —O.OOZ641@AO, Ao being the initial amplitude and

a = vEI/pA/L?, i.e. a maximum range error of only 0.03%.

This example shows that the simple Tumped mass representation of a
distributed system may yield surprisingly accurate results. In fact, if
the beam vibrates at a single frequency, by balancing the numbers of
masses and time elements, extremely accurate results may be obtained.

In general, however, the motion of a beam will be more complex, and the
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accuracy may be rather Tow unless the beam is discretized into a

considerable number of masses.

6.3 Separate finite element discretizations

Although the mass and stiffness of a distributed system may be

represented approximately by Tumped mass and stiffness discretizations,

more accurate results are obtained by using spatial finite element

discretizations as described, for example, by McCallion [21]. Since

slopes as well as deflections are now the unknown nodal variables, a

more accurate approximation for the true shape of the beam is obtained.

It is possible to avoid the introduction of powers of &, the length

of the element, into the mass and stiffness matrices if, instead of

the actual slope u', the product u'f is used as

a generalized displace-

ment. The matrices for the single element of Fig. 6.4 are given below,

the order of the displacements being ju, u'%, ,u, »u'%.

Yia 2“#

[
o e,

D

Fig. 6.4

Ms56 22 54 -13

156  -22

| Symm 4

z

(6.3.1)
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12 6 -12 &)
4 -6 2
EI
(k] =05 (6.3.2)
. 12 -6 e
| Symm 4

Mass and stiffness matrices may therefore be assembled for any
beam discretized into any number of spatial finite elements, and any
of the previously described methods may then be used to obtain a
solution in the time domain. If, in particular, temporal finite elements
are used, the spatial and temporal discretizations are quite separate
since either of these types of discretization may be replaced by some-

thing different without affecting the feasibility of the method.

In this section both spatial and temporal finite elements are used.
Since the temporal finite element uses time derivatives of the displace-
ments, the "displacements" when both discretizations are used are u,

u'%, ut, U't, i.e. the deflection, slope x &, linear velocity x T,

and angular velocity x &t.

Since the same spatial discretizations for a simply-supported beam
are used repeatedly in this section, the arrangements used are shown in

Fig. 6.5. As noted in 6.1, matrices for one half of the beam only are

necessary.
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216E1
k] = &°&i
Lk] L3 24 0 -12
8 -6
Symm 12

Fig. 6.5 (see also p.98)

It should be noted that by imposing the boundary condition that the
central slope is zero all the even modes are suppressed, so that the

only frequencies which appear with these discretizations are w;, w; etc.

By using these spatial discretizations, the equations of motion
for a free vibration of thebdiscretized system are [m}{U} + [kl}{u} ={0}
When the eigenvalue problem is solved for the mass and stiffness
matrices of Fig. 6.5, the natural frequencies and modal shapes are not

quite the same as those found from an exact solution. These differences

are due to the approximate nature of the spatial discretizations.

Even when the actual initial conditions of a distributed system

are those required for one particular mode of vibration, as found from

an exact solution, subsequent displacements will contain contributions

from other modes when a spatial discretization is used. For example, a

simply-supported beam vibrating in its first mode is known to have an

exact shape of half a sine wave. If, however, the initial deflections
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and slopes obtained from this shape are used in a system having the
spatial discretization shown in Fig. 6.5(a), a small, but sianificant,
third mode contribution also appears. These spurious additions
inevitably lead to errors in the time domain which may be examined by
using the approximate spatial discretization of Fig. 6.5 and obtaining

an exact solution in time for the resulting equations of motion.

lIsing the transform {u} = [vN]{p} where [vN] is the normalized

modal matrix, the equations of motion may be uncoupled to give

{p} + Cw?dpr = {0}

The solution of each of these equations is of the form p = A cos wt

+ B sin wt, where the constants A and B are found from initial conditions

{ue} and{uo} using {po} = [VN]_] u, and {po} = [vN]_]{GO}.

Finally, displacements in the original coordinate system are found

from {u} = [vN]{p}.

When a simply-supported beam is initially at rest in the shape

of half a sine wave it is known to vibrate in its first mode only, but

by using the spatial discretizations of Fig. 6.5 and obtaining an exact

solution in time by the method described above, differences appear

between calculated and correct values. When range errors are calculated

over one complete cycle the largest value of this error is, in all cases

investigated, found to occur at the end of the cycle in the angular

velocity at the support. This is hereafter described as the “ultimate

error" defined as the greatest value of the maximum range error at the
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end of one complete cycle. Values of these ultimate errors (which are

errors in the time domain) due to the use of approximate spatial

discretizations are shown in Table 6.7.

When solutions in the time domain are obtained by using temporal
finite element methods instead of the exact solution described above,
an additional source of error is introduced. Since separate spatial
and temporal discretizations are now used, it is not surprising to
find that range errors in the time domain have higher maximum values
than when an exact time solution is obtained. Ultimate errors at the
end of one cycle may be obtained as before, and these are shown in
Table 6.1 together with the maximum range errors due to temporal

discretizations only, previously calculated and shown in Fig. 3.2.

Finite element discretizations in space, unlike Tumped mass
discretizations give frequencies which are too high, as do temporal
finite element discretizations. It may indeed be seen that in most
cases the ultimate error in the last column of Table 6.1 is very nearly
equal to the sum of the ultimate error due to spatial discretization

alone and the maximum range error due to temporal discretization alone.

Table 6.1 also shows that accuracy is considerably increased by

using more spatial elements, but only slightly increased by an increase

in the number of temporal elements. Unfortunately it is found that by

using a constant number of, for example, 20 temporal elements per

cycle, an increase in the number of spatial elements may give an

unstable solution. This problem was not encountered previously with
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either single- or multi-degree of freedom discrete systems. The next
section shows that instability of solutions is not confined to distri-

buted systems, although it is here that it is most likely to occur.

6.4 Stability of temporal finite element solutions

In the previous section it was noted that when spatial and temnoral
finite element discretizations are used together, the solution may not
be stable. This instability is shown as a continual increase in both
displacements and velocities to enormous values instead of the alter-
nating increase and decrease required for a vibrating system. Since
this instability did not appear in any of the previous solutions for
discrete systems it might appear that the cause of the instability is
the separate use of two finite element discretizations. It is shown
below that this is not the case, and that unstable solutions can also
occur for discrete systems; the reason for their not having done so

becomes clear when the condition for stability is examined.

As a first step to finding the condition for a stable solution,
values were taken from the previous section showing the minimum number
of basic elements per cycle required to give a stable solution for
various spatial discretizations. These figures were obtained by trial
and error, the number of intervals being reduced until the solution

became unstable. The results are shown in Table 6.2.

Number of spatial elements for Minimum number of intervals per

whole beam cycle
2 11
4 65
6 162

Table 6.2
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The figures given in Table 6.2 apply only when the basic temporal
element is used, but similar results were obtained for the refined
element, the minimum number of intervals per cycle required for a
stable solution being about 20% less than for the basic element.
Examination of these results shows no obvious connection between the
number of spatial elements and the number of intervals per cycle. It
is therefore necessary to examine more closely the conditions under

which a solution becomes unstable.

Since the use of finite elements in the time domain inevitably
results in an approximate solution, even if the correct values of dis-
placement and velocity are used at the beginning of an interval, the
final values must be incorrect. When the usual step-by-step method of
solution is employed these final conditions become the initial (incorrect)
conditions for the next interval. There are further approximations in
this next interval, and, under certain conditions, the initial errors
are magnified and so the solution becomes unstable. It should be noted
that, even when the solution is stable, errors may increase during part
of the cycle, but errors of opposite sign then appear to produce a
partial cancellation. In the case of an unstable solution the initial

error seems to have a critical magnitude which Tater errors of opposite

sign cannot correct.

The application of the basic finite element to a single degree of
freedom system has been examined in detail in Chapter 3 where expressions

for final displacements are given in terms of initial conditions in

(3.2.7).



- 105 -

By using the method described in 6.3 for obtaining an exact
solution in the time domain for 3 free vibration, the coupled equations
of a multi-degree of freedom system may be reduced to a number of
uncoupled equations. There wil] in fact be two equations for each mode
of vibration which, for a free vibration, are of exactly the same form
as those of (3.2.7) for a single degree of freedom system.  The only
difference between these equations and the present equation is that co-
ordinates u and v (=Ut) are now replaced by principal coordinates p and
q(=bT). If the number of time intervals in a cycle is reduced until an
unstable solution is just obtained, it is found that instability first
occurs as the beam passes through its mid-position, and this instability
first shows as an impossibly high value of velocity, i.e. u > wh, where
Ao 1s the amplitude. The second equation of (3.2.7) has the modified

form for the r'th mode of

_[c?a?’ ab+cd
9 _(ad+bc )po B (ad+bc )qo (6.4.1)

where a, b, c and d are as given in (3.2.5),m being replaced by

— - 2
Mrr = 1 and k by Krr w,.”

Now in mid-position, Py = 0 and 9 has its maximum possible value.
Hence, if there is to be no instability 9 < q

_ ab+cd <1 (6.4.2)
ad+bc

But a, b, ¢ and d are functions of wt, and if the r'th mode is not
to exhibit instability the angular frequency to be used is that of the

r'th mode W, Then by substituting the appropriate functions of w, T
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into (6.4.2) the very simple condition obtained is

(wo1)? < 42 (6.4.3)

Since w,, may be any one of the natural frequencies of the system
it is clear that (6.4.3) is least likely to be satisfied when W, is the

highest natural frequency @. Thus, for a stable solution

T < VA2/% (6.4.4)

If the system vibrates harmonically with an angular frequency
Wes T 7 2n/nws where n is the number of intervals per cycle of the

vibration.

Then, from (6.4.4), n 2.2n®//42ws

or n > O.9695®/ws. (6.4.5)

The natural frequencies of the finite element discretizations of
Fig. 6.5 are easily calculated by using a standard computer procedure,
and if, for each representation, the highest frequency (&) is sub-
stituted in (6.4.5), together with w, = m2a, where a;/ET75ﬂ/L2, for
the first mode, minimum values of n may be.calculated in each case.
These values are 10.8, 64.8 and 161.6 respectively for the 2, 4 and 6

element discretizations, and these agree exactly (to the nearest integer)

with the values previously found by trial and error given in Table 6.2.

It should be noted that this stability problem is not peculiar to
temporal finite elements. Instability may also occur in a finite

difference solution and, according to Leech et al.[22], T < 2/w, for a
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stable solution, but t should be no greater than one-sixth of this

critical value if high frequency detail is required.

It may now be seen why no instability problems have been
previously encountered. For a single degree of freedom system having
only one natural frequency, & = We > and from equation (6.4.5) slightly
less than one interval per cycle will give a stable solution. Since
many more intervals than this were used in Chapter 2 to obtain reasonable

accuracy, all solutions were stable.

Although the multi-degree of freedom systems of Chapter 4 have
more than one frequency, they are of the same order of magnitude, even
for the 10 degree of freedom system the ratio w;o/wi1 being only 13.2.
For the simply supported beam of the present chapter however, the
frequencies are much more widely spaced; for the 6 element discretization, i
for example the ratio wi;i/w; = 166.7. Thus, for the earlier discrete -
systems, the number of intervals required to give reasonable accuracy
also ensured a stable solution, but because of the wider range of
frequencies in a distributed system many more intervals may be required

to give a stable solution than are needed for a given accuracy.

Thus for distributed systems, it appears that a choice must be made
between two undesirable alternatives. On the one hand, a small number
of spatial elements, having only a few degrees of freedom, and requiring
a reasonable number of time intervals may be used. This will give a
rather inaccurate solution, so alternatively, a more elaborate space

discretization, with many degrees of freedom may be used. This gives
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a more accurate solution but requires a large number of time intervals
for stability. The large number of intervals will increase the

accuracy only slightly, but will considerably increase computing time.

A way out of this dilema may be found however, by using what may
be called the truncated modal method. To obtain a high degree of
accuracy it is necessary to use an appropriate number of spatial
elements giving, in general, a considerable number of natural frequencies.
Then by using the method described in 6.3, it is possible to uncouple
the equations so that there are two equations for each mode of
vibration. Since any instability in the solution is caused by the
highest frequencies, the solution may be truncated by discarding the
equations for these highest frequencies. It is unfortunately now
necessary to solve the eigenvalue problem to obtain the eigenvalues
and normalized eigenvectors of the system, but this presents no
The modal mass

difficulty if a standard computer procedure is used.

and stiffness matrices are then

7 0 o0 ] w2 0
0 1 0 0 we
[M] = and [K] = N
0 0 1 ~
N .
~ 2
B 0 1] I wy, |

If the system has initial displacements {uo}, then the initial

values of the principal coordinates are given by:-

(po} = Ly tuo) (6.4.7)

where [uM] is the matrix of normalized eigenvectors.
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The determination of [UN]-] is possible without matrix inversion

working from the definition of a normalized eigenvector

[uN]t[m][uN] = [1] (6.4.8)

from which it may be shown that

o)™ = (Tm1luyD* (6.4.9)

For an n-degree of freedom system, the finite element method
applied to the time domain will then give n pairs of uncoupled equations.
It is an easy matter to discard those equations involving the higher,
unwanted frequencies. Because part of the solution is Tost there may
be some small reduction in accuracy, but in most cases the higher

frequencies account for only a small part of the total displacement.

Further values of the principal coordinates which are retained
are then found in the usual way and finally the values of displacements

and velocities in the original coordinate system are found from

{u} = [uN]{p} (6.4.10)

Unfortunately it is necessary to solve the eigenvalue problem as a
preliminary step in using this truncated modal method, which rather
defeats the object of using temporal finite element methods. It should
therefore be made clear that a finite element solution can be obtained
by the methods previously used, and without using modal methods. This
may however require the use of a considerable number of elements to

achieve stability and the truncated modal method may therefore be used

to obtain a solution using fewer elements.
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For the 2-element discretization of Fig. 6.5 the solution of the

eigenvalue problem gives w, = 9.908559, and w3z = 110.1396550 where

a = VEI/pA/L*. The matrix of normalized eigenvectors and its inverse

are
3.165856 16.672653 0.046274 0.423381
1 -
[u,] = — C[ud ' VAL
v ol
_2.015921 —1.822273_ 9.051192 -0.080393
(6.4.11)

and similar matrices may be obtained for the 4- and 6-element spatial

discretizations.

Ultimate errors resulting from the use of the truncated modal method,
together with those previously obtained are shown in Table 6.3, in which

the second column shows the modes remaining after truncation.

Number of spatial Modes used in Number of Ultimate error
elements solution intervals/cycle %
2 1, 3 20 3.26
4 1, 3 20 0.48
2 1, 3 80 2.74
4 1, 3 80 0.20
4 1, 3, 5, 7 80 0.20

Table 6.3
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By comparing the first and second results it is clear that instead
of using the 2-element discretization without modal truncation, the 4-
element discretization with truncation after the first two frequencies
should be used to improve the accuracy of the solution. It should be
noted that the second solution would be unstable without the use of
truncation. A similar increase in accuracy is shown in the next pair
of results, where 80 intervals per cycle are used instead of the
previous 20. Finally the last two results show the same error (to the
nearest 0.01%), thus demonstrating that the contribution of the two

highest frequencies is negligible in this case.

It should be remembered that the errors in Table 6.3 apply only to
a beam vibrating freely in its first mode. For the higher modes of
vibration and for forced vibrations where all modes may be excited the
truncated modal method may give rather different results. This same
method is, however, used for forced vibration problems in Chapter 7,

and is again found to be very satisfactory.

Since, when the truncated modal method is used, only the lowest
frequencies and modal shapes are required, it is not necessary to find
all the natural frequencies. It may, in some cases, be much easier to
evaluate [m]_] instead of [k]'], but this, unfortunately, normally gives
the highest frequencies first. A method suggested by Downs [23] does,

: . -1
however, give the Towest frequencies without evaluating k] .
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6.5 Improvements in s atial discretization

It has been demonstrated in the previous section that, when
separate spatial and temporal finite element discretizations are used,
the major source of inaccuracy is likely to be due to the spatial
discretization. It has also been shown that accuracy may be improved
by increasing the number of spatial elements, but only at the expense
of increasing the possibility of obtaining an unstable solution. Other
methods of obtaining a more accurate approximation for the true shape

of the distributed system are therefore worth considering.

Since modal shapes have been introduced into the solution, in
cases where the exact values of frequency and the eigenvectors are known
the solution can be made to start with these values instead of the
approximate values derived from the approximate mass and stiffness
matrices. The frequencies and modal shapes for a simply-supported beam
are well known, so that for the 2-element discretization of Fig. 6.5
the exact values of frequency may be used. These are w; = wa,
ws = 9m20 where o = vEI/pA/L%. Similarly, for the first and third

modes of a simply-supported beam the exact modal shapes are given by

T 37 1/4m 3/8

Luyd = —;::- and hence [uN]—] = VpAL
vpAL
’ 2 -2 1/4n  -1/8

If these values are used instead of the approximate values derived
from the previous finite element matrices, a more accurate solution may
be obtained for a beam vibrating in its first mode. The initial conditions
for this mode are easily found from the model shape,i.e. the end slope is

7/L of the central deflection for a 2-element spatial discretization.
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In this case, exactly the same results are obtained if a solution
is obtained without truncation, or if the second mode is not included,
since the second mode is orthogonal to the first. When a finite element
solution is obtained in the time domain, using 80 intervals per cycle,
the ultimate error in one cycle is, in this case 0.03%,which is exactly
the error due to the use of temporal finite elements given by Fig. 3.2,
and is much Tess than the ultimate error of 2.74% previously obtained

by using spatial finite elements.

In cases where exact values of natural frequencies and modal shapes
are known, their use enables accuracy to be considerably improved.
Unfortunately, in complicated structures these values must usually be
found from finite element discretizations or similar methods, so that |
the use of exact values for frequencies and modal matrices is not ﬁ

1

usually possible.

A second method which gives improved accuracy is that using
frequency-dependent mass and stiffness matrices,Przmieniecki [12] derives
expressions for these matrices, not as constants, but as quantities which
vary with frequency so that [m] = [mo] + w?[mo] +..... and

[k] = [kol + w*[kyl+..... , where [my] and [ko] are the usual finite
element mass and stiffness matrices. Taking values for [m,] and [k, ]

given by Przmieniecki and ignoring terms containing higher powers of w,
the greatest changes in the mass and stiffness matrices for the 2-

element discretization of Fig. 6.5 are about 2.8% and 0.1% respectively

using the exact value of wy. This value of w;, is not quite the same as

that which would be obtained by using the frequency-dependent matrices
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to obtain the lowest value of w, but even when only [mo] and [ko] are

used the error in w, is only 0.39%. When the Im,] and [ki] matrices

are added the error in w; is much less than this value.

Using these modified mass and stiffness matrices for the 2-element
discretization, with 80 intervals per cycle 1in the finite element time
solution, the ultimate error for one cycle of a free vibration in the
first mode is only 0.06%. This is higher than the 0.03% previously
obtained by using exact values in the modal matrix, but very much better

than the 2.74% error for the unmodified matrices [mo] and [ko].

In general, however, a beam vibrates at many frequencies, and, for
a particular values of w only that part of the solution contributed by

the appropriate mode is improved in accuracy by the use of time-

dependent matrices, and contributions for other modes are little affected.

This may be shown by using the values of [m] and [k] as determined
previously taking w = w; and allowing the beam to vibrate at its third
frequency ws. It is found that the errors in this case are almost the

same as those obtained when the unmodified matrices are used.

If one particular mode of a vibration predominates, a considerable

improvement in the accuracy of a solution could be achieved by using

the appropriate value of frequency to evaluate the mass and stiffness

matrices. If no one mode predominates it might be possible to use the
modal method previously described with different corrections applied to

the mass and stiffness matrices for each frequency, but this would be a

very involved method.

i '{!
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A rather similar method of improving the spatial discretization
is suggested by Cohen and McCallion [24], who use a shape function.
u = a(T+ax*/24)+b(x+Ax5/120)+c(x2+Ax®/360)+d (x* +2x7/840)
but again the value of X required to give best results depends on the
frequency, for example A = 0.155 for the first mode and 2.5 for the

second mode for the 5-element discretization used in reference [24].

It appears that this modification also can only improve the

accuracy of the solution for one particular mode.

A third possible approach is to use refined spatial elements which
are the spatial equivalents of the refined temporal elements derived in
2.5. Mass and stiffness matrices for these refined spatial elements
are given by Pestel [7], the generalized displacements now being u, u’
and u" resulting in 6 x 6 matrices. By introducing u'" as an additional
displacement, 8 x 8 matrices are derived in the same reference. The
derivation of these matrices is achieved in a rather different way to
that employed in 2.2, by using the properties of Hermitian polynomials,

but the two methods give identical results.

Using the 6 x 6 matrices given below, a further solution may be

obtained for the free vibration of a simply-supported beam.

S1720 3732 281 6000  -1812 18T
432 69 1812 -532 52
" 6 181 _52 5 (6.5
[n] = 55220 21720 -3732 281
832 -69
Symm 6|
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(7200 600 30  -1200 600 -30

384 22 -600 216 -8
6 -30 8 1
[k] = 7675 6.5.9)
1200 -600 30 T
384 =22
Symm
6]

These matrices are used in exactly the same way as the 4 x 4
matrices (6.3.1) and (6.3.2), and the only complication in the solution
of vibration problems is that, in order to start a vibration in a
particular mode, since u" is now a nodal displacement its initial value
is required at each node. These values are, of course, easily found

for a simply-supported beam vibrating in its first mode.

Using a two-element discretization for the whole beam, but making
use of the symmetry of the arrangement as before, a solution may be
obtained for the free vibrations of the simply-supported beam. Without
using modal truncation, with 80 intervals per cycle, the ultimate error
is 0.44% which is considerably less than the error of 2.74% previously

obtained by using the two element discretization of Fig. 6.5 with

simpler spatial elements. By using the 4-element discretization of

Fig. 6.5 it is, however, possible to reduce the error to 0.20%.

[t therefore appears that, for a given degree of accuracy a choice

must be made between using a few refined spatial elements and a greater

number of basic elements. Because of the added complexity of the

refined elements, and their tendency to give unstable solutions due

ol
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to their increased number of degrees of freedom, only basic spatial
e]ements are used 1in subsequent calculations. Since the object of
these calculations is to show the validity of the methods used, if
increased accuracy is required the basic elements may, of course, be

replaced by refined elements by using the appropriate mass and

stiffness matrices.

6.6 Combined space-time discretization

Before proceding to the study of forced vibrations of continuous
systems, one further form of finite element discretization is used to
investigate free vibrations. This method is unique in that it gives
a complete solution in space and time, and not merely a solution in
space for a particular value of time which the step-by-step method

produces.

Section 6.3 shows that a continuous system may be discretized into
separate spatial and temporal finite elements, and that once the mass
and stiffness matrices have been generated, the method of solution is
exactly the same as for a discrete system. In this present section,
combined space-time finite elements are used, and since the element

is continuous in space and time it may be used for continuous systems

only.

Oden [25] shows that dimensions of space and time need not be

separated and that a longitudinally vibrating bar may be discretized

into two-dimensional triangular space-time elements by using the simple

shape function u = a + bx + ct. This gives continuity of displacement
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(but not of velocity) between adjacent elements along the length of
the bar. A beam, however, requires continuity of slope as well as of
displacement between adjacent elements and the shape function must
include at least one term containing x? since u" must not, in general,

be zero. A much more elaborate shape function than the above is there-

fore required.

There are obvious advantages in using a rectangular element, since
the modal displacements etc. are then always measured at the same points
on the beam at the beginning and end of the time interval. An element

of the type shown in Fig. 6.6 is therefore suitable.

Fig. 6.6

In this element, initial values of "nodal" coordinates are given
at 1 and 2 and final values at 3 and 4. The coordinates will be, 1in

general, linear and angular displacements and their time derivatives,

although in some cases not all of these may be included.

The polynomial function used to describe the shape is

u = ZaixJ k i=1,2,3..... n
(6.6.1)

1}
O
-
—
v
(RS

J,k
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Derivatives in space and time may be expressed in terms of the
same a. SO that the generalized coordinates at the nodes u, are given
by
{ul= [XI{a} (6.6.2)
where [X] is an n x n matrix having coefficients which are products of
the type rxiti, r being a coefficient resulting from any differentiation,
or being unity if no differentiation is involved, and X; and ti are the

values of x and t at the nodes, i.e. X5 = 0 or 2 and ti =0 or T.

The coefficients a; may thus be determined from

fay= X1t} (6.6.3)

By substitution into (6.6.1) followed by the appropriate differen-
tiations, the velocity and curvature at any point in the element may be
expressed in terms of the u - Then by using Hamilton's principle, for

a free vibration

T % T %
—g—'(f S l¥pAQ2 dxdt - [ [ l»EI(u“fdxdt)z 0 (6.6.4)
ou . 2 2
1 00 00

"Mass" and "stiffness" matrices [m*] and [k*] may thus be derived

in the usual way. Two n x n matrices will thus be generated giving n
equations

([m*] - [k*D){us} = {03 | (6.6.5)

The algebraic processes required in this method are thus a matrix

inversion to find the a., differentiation to find U and u®, multipli-

cation of n functions of a, in pairs followed by the double integration
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and summation. These processes are, however, fairly easily arranged

so that computer calculations are possible.

[t is then necessary,for checking purposes, to choose a suitable
space-time shape function which is capable of giving a satisfactory
solution in the case of a system having a known exact solution. Once
again the system used is a simply-supported beam vibrating freely in
jts first mode, and once again use is made of the symmetry of the
arrangement to reduce the size of the matrices used. Details of the

various functions tested are given below.

(i) To maintain continuity of deflection and slope between adjacent
space elements a minimum of 4 terms is necessary to describe the shape
of an element in space, and to allow a linear velocity at Teast two
time-dependent terms are required. Combining these two requirements

gives a shape function

U = (be+byxtbyox?+bsx?)(coteit)

a1+a2x+a3t+aqx2+a5xt+a5x3+a7x2t+a8x3t (6.6.6)

1

or u

The 8 coefficients are functions of 8 generalized coordinates
which are the deflection and slope at the two ends of the element at

the beginning and end of the time interval, i.e. values of u and u'

at points 1, 2, 3 and 4 in Fig. 6.6. The "mass" and "stiffness”

matrices [m*] and [k*] may then be derived as described previously

in this section, giving the following results.
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936 132 324 78 936 -132 -324 78
24 78 18 -132 24 -78 18
936 -132 -324  -78 -936 132

24 78 18 132 -24

936 132 324  -78

24 78 -18

936 -132

| Symm 24

7008 504 -1008 504 504 252  -504 252
336 -504 168 252 168  -252 84
1008 -504 -504 -252 504  -252

336 252 84  -252 168

[k*] - EITs
2ozt 1008 504  -1008 504

336 -504 168
1008  -504

| Symm 336

With a shape function of the type of (6.6.6), no variation of
velocity in the time domain is possible in a single element. Continuity

of velocity between adjacent elements is therefore impossible so that

the step by step method previously used cannot be employed in this case.

Instead. the whole space-time continuum must be considered as an entity

and values of final and intermediate coordinates must all be found

together. This may be demonstrated by considering the space-time

discretization for the half-beam shown in Fig. 6.7.




t4

9 e
L g

3 (2

Fig. 6.7

Since U; = Uz = Us.e.wennn =0
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and Us = Ui = Ug «ewnn 0 (due to symmetry of the first mode)

and u! and u, are known initial conditions, only values of u3, uu,
ut, ug ..... are to be determined. Thus if there are r elements only
2r values are required and therefore only 2r equations are needed. In
this case it is found that initial and final displacements (uz and uioin
Fig. 6.7) must be treated as constants and meaningful equations are
obtained only from the partial derivatives with respect to ui, us,
i Hence the 4 elements of Fig. 6.7 give the required

Uy, Uty Ugewwno Us

8 equations.
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As in previous methods used in this chapter the beam is initially
taken to be at the extremity of its motion; initial values of uj and
u, are thus known. Values of ui, us, uy, us and uy, Ug, Ug, U1g MAY
then be calculated by using equations (6.6.5). Values of maximum range
errors in deflection and slope for the discretization of Fig. 6.7 and

similar arrangements are given in Table 6.4.

Maximum range error

Representation

Deflection STope
th
(a) }
o
Rt
T 8.6% 9.1%
-
* o K
e
t
(b) r
9
L,)_’
J
~N 3.0% 2.9%
1 —x
5 ——]
cy
(c) }
9
%’ 8.4% 8.8%
~N
& —

|
1

Table 6.4
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A comparison of arrangements (a) and (b) shows that accuracy is
improved by increasing the number of elements per cycle, while if (a)
and (c) are compared it will be seen that there is hardly any reduction

in the maximum error when elements of length L/4 are used instead of

L/2.

While the results shown in Table 6.4 seem quite satisfactory for
the small numbers of elements used, further investigation shows that
very unsatisfactory results are obtained if the final position of the
beam is not one for which all velocities are zero. Using 4 elements
as in (b), but for only one quarter of a cycle, the final slope shows
a range error of 65%, while if the 4 elements occupy three-quarters of
a cycle the final deflection range error is 25%. Errors of these
magnitudes seem likely to occur whenever initial and/or final velocities
are not zero. The explanation of this appears to be that because
velocity does not appear as a nodal parameter, non-zero velocities must

not occur as boundary conditions.

Since, in general, initial and final velocities will not be zero,
this slope function must be regarded as unsatisfactory in spite of the

encouraging results obtained when initial and final velocities are zero.

(ii) Since, without the explicit use of velocity, the previous shape
function is unsatisfactory, a more elaborate space-time element which
usesvelocity as a generalized displacement is required. If deflection,
slope and linear velocity are to be included as generalized displace-

ments a shape function of the following type may be used.
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g
!

= (botbyx+box2+byx?) (co+c, t+c,t2)

1)

2
or u artazxtastraux +a5>(t+51164f»2+a7X3“*"asXZi',*‘agX’C")‘*'a10X3’C+al1X2’Cz‘l'a12)<3t2

(6.6.7)

This is not a symmetrical function with respect to x and t, but
with only slight modifications of 6.6.7 many symmetrical functions may

be obtained. Two of these are:

— 2

U = a;taxtastra,xZ+asxttagti+asx3tagx?tragxt?+a; ot a1 x ttaraxt’
(6.6.8)

U = a,+a,xtastta,@asxtragti+a,x3+agx?ttagxt?+a;oti+ar (x3t?+a o x*t?

(6.6.9)

It is found, however, that for function (6.6.7) the determinant of
the [X] matrix of (6.6.2) is zero and so the inverse [X]—] renuired in
(6.6.3) does not exist. The unsymmetrical nature of the function may
cause |X| to be zero, since the symmetrical arrangements of (6.6.8)
and (6.6.9) have non-zero determinants and therefore {a} may be found
from (6.6.3). "Mass" and "stiffness" matrices may also be obtained from
these two functions, but in both cases all combinations of the 12

equations for a single element give meaningless results for the free

vibrations of a simply-supported beam.

(ii1) It has been shown previously in 6.3 that separate 4-term space
and time shape functions give satisfactory results. It should therefore
be possible to combine these separate discretizations to give a space-

time function of the form

u :'(b1+b2X+b3X2+qu3)(01+C2t+cst2+cut3)




which may be given as a 16-term function

_. 2
U = a;tazxtasttayx®+asxttagti+asxd+agxitragxti+a, ot3+a 1 xtta o x2t?

+aaxtitaguxPt2+a; sxt3+a, o x3t3 (6.6.10)

In this case also the [X] matrix has an inverse, and "mass" and
"stiffness" matrices may be obtained. These are given in Appendix A.
In this case the generalized displacements are the deflection, slope,

linear velocity and angular velocity at each corner of the rectangular
space-time element shown in Fig. 6.8.

€
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Fig. 6.8

Since linear and angular velocities are now nodal parameters,
continuity of these quantities is assured at each node, and a step-by-
step method of solution in time may be used. By taking & = L/2 and
T equal to 1/20 of the period of the free vibrations (first mode) of a
simply-supported beam, it is necessary to consider only one element at
a time since, in Fig. 6.8, the initial conditions at nodes 1 and 2 are
known, and therefore the final generalized displacements at 3 and 4
may be found by using equations (6.6.5). The resulting values calcu-
lated are found to be identical to those obtained in 6.3 by using

separate space and time discretizations.
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Since a satisfactory space-time element is now available it should
be possible to obtain solutions by coupling elements together in the
time direction. The disadvantage of this procedure is that much more
data has to be stored than when the previous step-by-step method is
used. Thus, for a space-time field of the type shown below in Fig. 6.9
for half a simply-supported beam, if there are n time intervals there are
4n equations, each having 4(n + 1) coefficients to be stored. Since
these coefficients are obtained from the "mass" and "stiffness" matrices,
each of these will have 16n(n+1) coefficients. The total number of
values to be stored is therefore 32n{n + 1). For the arrangement of
Fig. 6.9, where n = 4, the number of coefficients to be supplied 1is
thus 640, compared with only 64 if the step-by-step method is used
with the space-time element, and only 8 for the step-by-step method

with separate space and time discretizations.
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Fig. 6.9

Unfortunately the space-time discretization of Fig. 6.9 gives an
unstable solution, presumably due to the use of too large a time inter-
val. An increase in the number of elements in the time direction would
require even more data input. This additional work does not seem

justified since perfectly satisfactory solutions can be obtained much

more easily by using a step-by-step method of solution with either space-

time or separate space and time elements.




6.7 Conclusion

Spatial discretization of continuous systems may be carried out,
quite independently of the method of solution in the time domain. The
Tumped-mass representation of a continuous system is not, in general,
as satisfactory as a finite element discretization since it is likely
to give a less accurate solution. In addition, a flexibility matrix
js first obtained for the lumped-mass system, while the finite element
system gives the stiffness matrix required for a temporal finite element
solution. The use of spatial finite elements therefore avoids a matrix

inversion.

The use of temporal finite elements may result in an unstable
solution, the instability being caused by the higher natural frequen-
cies of the system. Since, to increase accuracy more spatial elements
may be used, thus increasing the number of degrees of freedom, in-
stability may result. This may be avoided by using the truncated modal
method (although this requires that all the freaquencies and modal shapes
are known) and discarding the contribution of the higher frequencies.
This method gives satisfactory results, and accuracy is improved, for
a given number if frequencies included in the solution, by increasing
the number of spatial elements. This is because, in the finite element
spatial discretization the highest frequencies become increasingly
inaccurate. The contributions of the highest frequencies, in addition
to being generally small, are therefore likely to be inaccurate and a
probable cause of instability in the solution. Except in unusual

circumstances the absence of these frequencies is likely to be of

considerable advantage.




It is perhaps worth repeating that this truncated modal method is
not an essential method of solution when temporal finite elements are
used, but is merely a refinement of the original method to obtain a

stable solution without using a large number of temporal elements.

Various methods of improving the spatial discretization are
available, and of these the refined spatial element using u" as a
generalized displacement is probably the most obvious. It also gives
good results if suitable precautions are taken to avoid instability in

the solution.

The use of space-time elements appears to have the advantage that
all values of the nodal displacements in both space and time are
obtained simultaneously. This same result can, however, be obtained
more simply by using separate space and time discretizations and
coupling the elements in time as described in 6.3 and 2.4. The space-
time element requires considerable care in the choice of shape function
to obtain a solution, and in practice requires large matrices to be
assembled and stored, and even so may give an unstable solution. Since
perfectly satisfactory results may be obtained much more easily by using

separate space and time elements, the extra complications of the space-

time element method are hardly worth while.




CHAPTER 7

FORCED VIBRATIONS OF DISTRIBUTED SYSTEMS

7.1 Introduction

The motion of a distributed system which is made to vibrate by
external forces is, in general, much more complicated than the motion
when the system vibrates freely. It is possible, by choosing certain
initial conditions, to allow a system to vibrate freely in one mode
only, but, in a forced vibration, all modes may be excited. To obtain
an accurate solution for a forced vibration, as many modes as possible
should be included in the calculations. To obtain a stable solution
with a reasonable number of elements, the truncated modal method is
again used and so the above requirement may conflict with the need to
discard the higher frequencies, and so a compromise may be necessary.
In 7.2 the effects of various degrees of truncation are examined, and

it is shown that truncation érrors may be quite moderate.

When spatial finite elements are used, only nodal forces and
couples may be used in the solution, and so any distributed force must
be discretized to give the required generalized forces. Examples of

vibrations due to distributed forces are given in 7.4.

Since all solutions must be stable, it is necessary to determine

the size of the time interval required, and although this may be found




exactly for a free vibration from (6.4.4) this condition does not
necessarily apply for a forced vibration. As a result of preliminary
tests it appears, however, that (6.4.4) and (6.4.5) do give, quite

accurately, the size and number of intervals respectively for a stable

solution for forced vibrations also.

As in the previous chapter, it is intended here to show that
temporal finite elements may be used to solve vibration problems, and
to obtain an estimate of the accuracy likely to be obtained. It is
again, therefore, necessary to choose simple systems and forces so that
an exact solution is available for comparison. Once again it must be
stated that finite element solutions are possible for much more
difficult cases than those examined in this chapter, but it may then

be very difficult to obtain an exact solution.

Separate temporal and spatial finite element discretizations,as
described in 6.3, using the basic temporal element and its spatial
equivalent, are used throughout the present chapter. If increased
accuracy is required the more elaborate elements could of course be

used by employing exactly the same methods of solution.

7.2 Discrete forces

Solutions for forced vibrations of distributed systems may be
obtained by using exactly the same methods as those used for discrete

systems. The mass and stiffness matrices must of course be available,

and these are obtained by using spatial finite elements. Any moda

force or couple then appears in the force vectors {Fo} and {F.} of

(4.2.4) and the solution then proceeds in the usual way.




Since it may be necessary to use the truncated modal method to
obtain a stable solution, the effect of any truncation on the accuracy
of the solution is first examined. A suitable example for this
investigation is that of a simply-supported beam with a central harmonic
force F cos Qt. The solution for this case is given by Timoshenko [20]

as an infinite series for the deflection u at a distance x from one end.

[o0]

_ 2FL3 1 . dm L imx
UURED LY, Ta)E SNz ST Cos (7.2.1)

and by differentiation the slope is given by

, _ 2FL?

i . imx
BRI £ 7 L S cos Ot (7.2.2)

where w; is the Towest natural frequency of the beam.

It will be seen that the series for u' converges more sTowly than
that for u, so that, for a given number of terms, the error in the slope
is 1ikely to be greater than that for the deflection. In Chapter 6 it
was noted that, for the free vibrations of a beam, the maximum error in
the slope usually occurs at the ends of the beam. It may therefore be
tentatively assumed that this also applies fora forced vibration. By
evaluating the series (7.2.2) at x = 0, and including sufficient terms
to give an answer correct to 8 figures, values of the end slope may be
calculated for various values of Q/w,. By including only 1,2,3 and 4

terms the percentage errors in the end slope for these degrees of

truncationmay then be calculated. These errors for frequencies up to 10

times the first natural frequency are shown in Fig. 7.1. It must be made




clear that these errors are due to truncation only, and are additional

to any errors which may be introduced by discretizations.

It is immediately obvious that when only the first mode (one term
of the series) is used, there are enormous errors except at frequencies
up to about 1.5w;. As the number of modes included is increased there
is a rapid increase in accuracy at all frequencies, and when the first
3 modes are used, the truncation error does not exceed 2.4% in the
frequency range under consideration and when the first 4 modes are
included the maximum error is just over 1%. The sign of the error
depends on the number of modes used,as consecutive terms in the series
(7.2.2) have opposite signs and in addition there is a change of sign
of the appropriate term when Q = W - It is therefore not possible to
state that, in general, the truncation of the series will give too

large or too small a value for u' as either of these possibilities may

occur.

It will also be seen that there is a rapid reduction in the
truncation error as the forcing frequency approaches a natural frequency,
provided that the mode corresponding to this natural frequency is in-
cluded. This reduction is the result of the rapid increase of

2 . ontaining this reciprocal
1/01 - (Q/wi) ] as @ ~w; SO that the term con g p

is much larger than any of the terms discarded.

For forcing frequencies up to 2w; an examination of Fig. 7.1 shows
that when 1,2,3 and 4 modes are included the maximum truncation errors

are 9, 1.6, 0.55 and 0.25% respectively. Thus if errors greater than
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1% are regarded as unacceptable, at least 3 modes must be included in
the solution, while for forcing frequencies up to 10w, 4 modes are

required to ensure that the truncation error does not exceed 1%.

Example 7.1
.\'\11 + F c.os\l.i O‘ t
—

A ] ‘Ji

N

\

For a simply-supported beam with a harmonic central force, the
steady-state solution may be found by using spatial and temporal finite
elements. Since the system is symmetrical, any of the spatial discreti-
zations of Fig. 6.5 may be used, provided that only one half of the
force is applied to the half-beam. Thus, for example, for the 4-element
discretization of Fig. 6.5(b) the force vector is [0 0O O O.5Fcos\/2w1tjt
and the required values of the force and its time derivative at any

time t may be calculated in the usual way.

Since a steady-state solution 1is required, the beam must start a
cycle with the correct values of generalized displacements. If the
beam is initially in its highest position all velocities are zero, and
the correct values of deflection and slope may be calculated from (7.2.1)

and (7.2.2). These values may be found from Table 7.1.
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Deflection Slope

X 2FL? 2

T Factor %IET—cos/Zwlt Factor iitl cosv2wit

0 0 -1.03196790
0.1667 -0.51176117 -0.87078555
0.25 -0.71684679 -0.68686047
0.3333 -0.86770019 -0.46074774
0.25 -0.98500403 0

Table 7.1

Using the 4- and 6-element space discretizations of Fig. 6.5 and

the basic temporal finite element, with 40 elements per cycle in each

case, it is found that the maximum range error within one cycle, as in

(3.2.1), is the error in the end slope at the end of the cycle. Values

of this ultimate error for various degrees of truncation, obtained by

using the truncated modal method of solution described in 6.4, are

given in Table 7.2

Mumber of Modes used in  Number of intervals/ Ultimate
spatial elements solution cycle er;or
4 1, 3, 5 40 0.38
4 1,3,5,7 40 Unstable sol.
6 1,3,5,7 40 0.25

Table

7.2
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It will be seen from Fig. 7.1 that for the first result in Table
7.2 the truncation error is 0.19%, and for the second and last results
0.09%. The difference between the ultimate errors shown and the
truncation errors is accounted for by the approximate nature of the
spatial and temporal discretizations, It is also interesting to note
that the second solution is unstable while the last, using the same
number of modes, is stable. This is because for the 4-element spatial
discretization the value of w; is 37% high, while for the 6-element
representation the error in w; is only 3%. Since instability is caused
by the highest frequencies, this very inaccurate value for the 4-element

model is sufficiently high to be the cause of the unstable solution.

Solutions may be obtained for other forcing frequencies in this
example, and very similar results to those of Table 7.2 are obtained

with a forcing frequency of bSw;.

Solutions may be obtained for other types of beam, although at this
stage care is needed in choosing examples for which exact solutions may
be obtained in order to check the accuracy of the finite element

solution. An exact solution is obtainable for the cantilever of the

next example.

Example 7.2
w | . F cos SLE

‘ A

foo——————— L —

NN NN
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In this case the beam may be treated as a case where the shear
force at the right hand end of the beam is known. Thus the usual
form of solution for a free vibration may be used, i.e.

u = Cysinmx + C, cos mx + Cy sinh mx + C, cosh mx where

where m* = Q%pA/EI

Using the boundary conditions
x =0 u=0and u' =0

X = L u"'=—ETCOS Ot and u" =0

the values of the coefficients may be obtained and hence

-gi + 3
-F cos ot (cos m& + cosh m&)(-sin mx+ sinh mx)

U = 2EIm3(1+ cos mg cosh mR)

+(sin me+ sinh m)(cos mx-cosh mx)

and for this frequency

_ FL3cos Qt . - sinh + 2.016672 (cosh mx - cos mx)
U = 3 ET460 El [2.083383 (sin mx - sin mx ) ( ]

and
. FlL%cos qt [2.083383 (cos mx - cosh mx)+ 2.016672 (sinh mx + sin mx)]
U T T37667460E1

Hence initial values of deflection and slope may becalculated to

ensure that a steady state vibration is obtained. The cantilever may

be discretized in space, and results are given below for 2- and 3-element

discretizations. Temporal finite elements are also used with the

truncated modal method. In one cycle, the maximum error again occurs

in the slone at the end of the beam. The errors for two spatial

discretizations are given in Table 7.3.
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Number of spatial Modes used in  Number of intervals Ultimate

elements solution cycle error %
2 1, 2,3 80 1.1
3 1,2,3,4 160 0.67
Table 7.3

It should be noted that in order to obtain a stable solution, when
the fourth mode is included the number of intervals per cycle is
increased from 80 to 160. Reference to Fig. 3.2 shows that this
reduces the temporal discretization range error from 0.03% to 0.008%,
so that the effect on the total error is very small. It will be seen that
the ultimate errors in Examples 7.1 and 7.2 are of the same order.

It should be made clear that although, to obtain exact solutions
readily, the previous examples in this chapter have been concerned with
steady state solutions, the finite element method automatically gives a
complete solution, which includes the transient part of the solution if

this is present. The following example should make this clear.

Example 7.3
A simply-supported beam, which is initially at rest has a discrete

force of F sin Qt applied at its centre. Taking @ = vY2wi, values of

deflection and slope may be calculated from the expression for the

complete solution given by Timoshenko [20].

_ 2FL?

1 oA L AMX e S0 i t) /T (/0. )2 ]
u = SEr | sin (sin ot - == sin w; WAREXS /w1) 1

i
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Exact values of the displacements are not, in this case, required
to start the finite element solution, since all values are initially
zero, but later exact values must be calculated to determine the accuracy
of the finite element solution. When the 4-element space discretization
of Fig. 6.5(b) is used with 40 temporal elements per cycie of the force
the inclusion of modes 1, 3 and 5 gives an ultimate error of 0.64% for
one cycle of the force. This is higher than the ultimate error of
0.38% previously obtained in Exampie 7.1 for the steady state vibrations
of the same beam, and the increase is almost certainly due to the more
complicated shape of the beam for the transient vibration. Once again
accuracy could be increased, if necessary, by using more spatial elements
and including more modes in the solution, and it is indeed found that by
using 6 spatial elements with nodes 1, 3 and 5 the ultimate ervror is

reduced to 0.31%.

7.3 The mode acceleration method

As an alternative to merely discarding those parts of the solution
derived from the higher frequencies (which may be necessary to obtain a
stable solution), the remaining part of the solution may be suitably
modified. This method was first proposed by Wiltliams [26], and is
described by Anderson [27], and consists of finding the response of a

system separately to external and internal forces sO that the total

response 1S

{uy = {udg * {uls, (7.3.1)

For the external forces [k]{u}ex - {F}ex = {0}

or b, = [KIT(Fy, (7.3.2)
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For internal forces -[m]{il}, - [kJ{u}, = {0}and hence if the
forces arenormalized by using the transformation {P} = [uN]t{Q} a set
of uncoupled equations of the form 51 + wizpi = Piare produced since
both the [M] and [K] matrices are diagonal. The equations containing
the higher frequencies may again be discarded and the remaining
equations will then give the pi's as functions of t. Reverting to the
original coordinate system by using the transformation {U}in = [uN]{p},

it is then possible to obtain the complete response of the system

using any number of the possible modes of vibration.

Example 7.4

The application of the mode acceleration method may be illustrated
by considering the case of a beam subjected to a central step force F.
Making use of the symmetry of the system only one half of the beam need
be used provided that only one half of the force is used. Fig. 7.2

shows this arrangement with the two degrees of freedom.

E F
2
ﬁ'/\ 2
—
t ¢ ' -t
E
7
Fig. 7.2

(a) First an exact solution of the discretized system shown in Fig. 7.2

is given. The modal matrix for the one element is

3.165856 2.015921j
16.672653 ~1.822273

—
[UN]= /BKI
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and hence using the transformation {P} = [UN]t{Q}

where ;0 = 0 and ,Q = %—gives

Py c 1.007961
v~ (7.3.3
Py PAL 10.911136 )
Eor a step force the solution of the equation of motion is
p; = —%;} (1 - wst) and in this case
j—
p = 0.0101087 "L7PAL (7 cos 1)
-
b2 = 0.00007511 FEYPAL (1 cos wyt) (7.3.4)

The response in the original coordinate system is then found by

using {u} = [uN]{p} so that
3 3
U = 0.032003 %%—-(1 _ cos wit) - 0.0012523 g%—-(1 - cos wyt)
FL® FL
U = 0.020378 —E'T‘— (] - COS wlt) + 0.0001368 E—I—— (] - COS wzt) (735)

(b) By discarding the second term in each of equations (7.3.5) a

truncated solution is obtained giving, for example, for the central

. FL® t)
deflection ,u = 0.020378 ET—-(] - COS W)

(c) Using the mode acceleration method the response to the external

forces is first found. The [k]_] matrix is, of course, the flexibility

matrix and it 1is easily shown that 1u] FL3

- ED
2U |ex

(7.3.6)

_p-—lw-—l
SN
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[f the second mode is discarded, the solution for internal forces

1S
U 1 3.165856  2.0159211 { -1.007961 F/w,? cos w:it
20 )i VoAL [16.672653 -1.822273 0

(7.3.7)

Thus the total response is given by the sum of (7.3.6) and (7.3.7)

giving, for the central deflection

-

2u = (0.020833 -0.020378 cos wit) —%i

Now at t = m/w, the central deflection is exactly FL®/24EI, and the
true errors in the central deflection at this value of t may thus be
found. These are found to be:-

(a) Two-mode solution 1.5% error

(b) Truncated solution 2.2% error

(c) Mode acceleration solution 1.1% error.
Similar results are obtained for the end slope.

The use of the mode acceleration method does therefore give a more
accurate result than the truncated method, and even a more accurate
result than the original two-mode solution. This latter result is
presumably due to the inaccurate value of we obtained when only two finite

elements are used, and the difference would probably be reduced if more

elements were used. If the results for (b) and (c) are compared it will

be seen that by using mode acceleration the error is reduced by a factor

of 2 compared with the truncated modal result. Uhile this is a useful

in i % i i her high and a more
gain in accuracy, an error of over 1% is still rat g
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elaborate space discretization using more elements is needed for
higher accuracy. From the results of previous examples, it should be
possible to reduce errors to considerably less than 1% by using 4
elements and truncating the solution at 3 modes. This seems an easier
way to increase accuracy than by using the mode acceleration method

which would not be easy to fit into the existing method of solution.

7.4 Distributed forces

When a method of solution for discrete forces is known, by the
addition of a preliminary calculation a solution for distributed forces
is readily found. Hamilton's principle is again used, and it may be
recalled that this requires the work done by the forces to be known.

For a discretized distributed system with discrete forces this is given
by
_ t
W= [F]"{u} (7.4.1)

where {F} and {u} are the force and displacement vectors respectively.

For a distributed force p = p(x) applied to an element of Tength 2

the work done 1is

2 .
W=/ pudx, and using Hermitian interpolation both p and u

o)

may be discretized in space as

it

1ot
p = [U1 V2 U3 ¥e] [1p 1p'% 2P 2P 2]

L oat
[v1 V2 U3 sl [iu ju'2 2u 2u 2]

and u

so that in terms of the loading and displacement vectors {p} and {u}

%
W=/ [wl{p}yl{uldx (7.4.2)
(0]
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The components of the loading vector may be observed in Fig. 7.3

Pl

¥
b

Fig. 7.3

When the partial differentiation required by the use of Hamilton's
principle is carried out, it is observed that the contributions of the
distributed forces to the resulting equations are very similar in form
to those from discrete forces, and indeed become identical to discrete

force expressions if equivalent nodal forces and couples are calculated

from (7.4.3)
(G F ) G56 22 54 -13 7 fip )
M/ % 4 13 -3 p'%
' = A =< - (7.4.3)
T ,F 42 156 =22 | |.p
L 2N/ | Symm, 4 | Lep'%

where F, oF, 1M, M are the equivalent nodal forces and couples.

Time derivatives of these discrete equivalents are also required

and these are found by differentiating equations (7.4.3) and so intro-

ducing 15 etc. These rates of change may be found by exactly the same

method as that used to find velocities using equations (2.2.7)

. . . . t
i.e. 1p = [ Uy s Vullipo 1PeT 1P2 1P17] (7.4.4)
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and the same interpolation may be used to find the other time

derivatives.

For each element of a beam the initial values of ;p zp,their space
derivatives and the time derivatives of all four quantities are required.
In addition,the corresponding eight values at the end of the time inter-
val are needed, giving a total of 16 values for each element. If p s
a known algebraic function of space and time these quantities may
usually be evaluated without difficulty. Alternatively, if only
numeripa] values of p are available for various values of X and t, the

numerical interpolation methods given in Appendix A may be used.

It should be noted that since equations (7.4.3) may be used to find
all the above equivalent forces and their time derivatives, the space

and time discretizations are again automatically quite separate.

Example 7.5

wl &3 cos SLT

M= -

In this example for a simp]y—supported beam,a distributed force,

which is uniform along the whole length of the beam, varies harmonic-

ally in time. An exact solution is given by Timoshenko [20].
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o]

= 4 LL} Z ] . 1'“)(
wefl (T, Tiayez S T cos 9t (7.4.5)

- 4pL® 1 17X
3 SR (N (VTS El 1™ cos Qt (7.4.6)

3

Values of deflection and slope at various points on the beam may
thus be calculated for any value of t. The summations of the series

(7.4.5) and (7.4.6) are given in Table 7.4

Deflection Slope
X 4pl* 3
T Factor E%ET'COS/Zwlt Factor %E%T»cos/Zwlt
0 0 -0.98500388
0.25 -0.70437820 -0.71684678
0.5 -1.00394537 0
Table 7.4

An  alternative form of the solution for this particular problem
which may be obtained by the summation of the series (7.4.5) is given by

Seto [28], stated here in a slightly different form as

J - pL" (£1y? {fos{ﬂ/L(L/2-x)/§751}+cosh{ﬂ/L(L/Z'X)“@VZi}-1 } cos Ot

TOmtED YR 2cosin/2/0]wy } 2cosh{m/2v/Q/w1}
(7.4.7)
It may be noted that the sum of the first 30 terms of (7.4.5)agrees

with the deflection calculated from (7.4.7) to at least 8 figures for

the values of x/L given in Table 7.4.
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A finite element solution may also be obtained by using the
values of deflection and slope at t = 0 from Table 7.4 as initial
conditions to obtain the steady-state solution. In this case, the 4-
element spatial discretization of Fig. 6.5(b) is used, and a preliminary

calculation is required to obtain the force vector from equations (7.4.3).

P Mp b T T - -
i 2 3 |

P ‘

Since the displacements ,u and su' are zero, the corresponding

generalized forces are not required; the remainder are found from the

assembled matrix for the two elements for which i1p = 2p = 3p = P3

1p' =p' = sp' =0

o)
[ M/2) "2 4 13 -3 0 0 0
Fol g 13 oz 0 50 -3 )|
) ZM/Jlr— 420 43 3 o0 8 13 -3 0
LsF Lo 0o 54 13 156 -22] p
L0

and hence ,M/2 = pL/48, oF = pL/4, ,M/9 = 0, sF = pL/8.  These values
are then used in exactly the same way as discrete forces, and by using
the basic temporal finite element with 40 intervals per cycle, and
discarding the 7th mode of vibration, the ultimate error for one cycle
is found to be 0.30%. This is very similar to the error of 0.38%

previously obtained for a discrete force using the same spatial and

temporal discretizations.
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Example 7.6

Finite element solutions are also readily obtained for non-
uniform distributed forces, although exact solutions required for
comparison may be much more difficult. If, however, the rate of

loading varies sinusoidally in space and harmonically in time it may

be shown that the beam vibrates in its first mode only.

\b sin W cos S2E
[

. . R

The solution for this example is

_opLY e TX 1
u ToE] sin L cos Qt. <————?;—;
1-(4)
1
If the same spatial discretization as that of Example 7.5 is used,

the rates of loading and their spatial derivatives are now:-

p =0, op = p//Z, 3D = P

1 ]

1

0

1

1P mp/L, ,p' = mp/v2L, 3P

and by substituting these values into (7.4.3), the nodal forces are

F = 0.169540pL

n
1

N

1M/% = 0.00634994pL,

w
-
i

0.00898017pL, 0.119883pL.

i

2M/L

By using these values in conjunction with the basic temporal

element with 40 intervals per cycle, when @ = V2 wiit is found that,
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even when only the first 3 modes are included, theultimate error for

one cycle is 0.05%. This very small error is due to the fact that

only one mode of vibration is excited.

7.5 Conclusion

Finite element solutions are readily obtained for distributed
systems with either discrete or distributed forces. The truncated
modal method of solution may be used to obtain a stable solution with-
out any excessive number of time intervals, although several modes
should be included to obtain a reasonably accurate solution. Although
the stability condition (6.4.4) was obtained for a free vibration, it
also gives a very good estimate of the minimum time interval for a

variety of forcing functions.

For the same spatial discretization, and the same amount of
truncation, errors for free and forced vibrations appear to be similar

for distributed systems, as they were earlier shown to be for discrete

systems.

The methods used in this chapter would seem to be particularly
useful in obtaining transient solutions. A finite element solution
for a transient vibration is no more difficult than a steady state

solution, while with other methods of solution it may be much more

difficult.
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CHAPTER 8

DAMPED VIBRATIONS OF DISTRIBUTED SYSTEMS

8.1 Introduction

The response of an undamped distributed system has been examined
in the previous chapter, and it has been shown that for a harmonic force
the steady-state response is also harmonic, the motion being either in
phase, or half a cycle out of phase, with the force. There are no
particular difficulties in using the finite element method of solution,
and probably the most difficult task is to find the shape of the
vibrating beam, using an exact method, to check the accuracy of the

finite element method.

With the introduction of damping, additional complications occur;
in particular the lag between the force and the displacement is now an
unknown quantity, and may not have the same value at all points in the
svstem. This makes an exact solution even more difficult, although it

will be shown that damping is auite easily incorporated in the finite

element method of solution.

Perhaps an even more fundamental difficulty lies in defining the

exact type of damping being investigated and the construction of a

suitable model for the system. Two such models are examined below.
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8.2 External viscous damping

If a beam is assumed to vibrate in a viscous medium, then the
damping forces will be proportional to velocity and in the opposite

direction. A suitable approximate model for this case will then be

as shown in Fig. 8.1.

T I'LI ] I“l‘l I‘“I*I Iil I“‘l“ ?

777 777 777 777 777 777

Fig. 8.1

This is only an approximate representation as, if the beam is
completely immersed in the fluid, the damping will be distributed and
not concentrated into discrete dampers as shown. The partial differ-
ential equation for the forced vibrations of a beam subjected to this
type of damping is

2

Qo

3

u _
T = p(x,t) (8.2.1)

|

9*u
EI—B—)?*—-I-C +pA

Q
—+
N

where ¢ is the damping coefficient per unit Tength.

A solution of this equation may be obtained, if p is periodic 1in

time, by using Fourier series in space and time.

Considering the case of a simply-supported beam acted on by a
distributed force p cos t per unit Tength, where p is uniform along

the length of the beam, the Fourier series consists of sine terms only
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due to symmetry, and hence it may be assumed that the steady-state

solution is given by

co [o¢]

us= z 2 (a;; cos jot + b.. sin jot) sin imx 8.2.2
i=1,3 j=1,2 ig $1n 300 L 822

The uniformly distributed force is in effect half a scquare wave in space

and hence

1.3 Tr S T

o™ 8
~
K=]
—
=3
<

p = (8.2.3)

.i

By finding the appropriate partial derivatives of (8.2.2) and
using these and (8.2.3) in (8.2.1) it is found, by equating coefficients
of cos jQt and sin jot respectively, that in this case only the a1 and
b.. coefficients are non-zero, and are therefore designated a, and bi'

il
The values of these may be found from the pairs of equations

.i’ﬂ' 2 _ 4_p
ai[EI([—J”— oAQ2] + by ¢ = ( |
. 8.2.4
b.[EI(11)%- pAQ?] - a; c@ = 0
i L i
1/8.
4pl* i
and hence a; = TSrSET < W ) (8.2.5)
B2 ‘pA ws "

B2
i

where g. = 1/[1 (/w;)’]

The deflection at any point on the beam may be found from

u = A(x) cos Qt + B(x) sin @t



- 153 -

where A(x) = = a. sin(imx/L)
1,3
and B(x) = ¢ bi sin(imx/L) (8.2.6)
1,3

and similar series may be obtained to find the slope.

The addition of distributed damping to the finite element solution
is not difficult, as for uniformly distributed damping it is fairly
obvious that the damping matrix is proportional to the mass matrix.

The two matrices are in fact identical except for the factor of pAL in
the mass matrix and c? for the damping matrix. If the truncated modal

method is again used, the damping matrix must be normalized from

[6, = Luyl*Telluy]

Since [c] is proportional to [m], in this case [CN] is a diagonal

matrix.

[CN] may not be a diagonal matrix, but since, in practical
situations, damping is usually Tight, Meirovitch [14] suggests that a
diagonal matrix may be assumed without much loss of accuracy. It is
not, however, necessary to make any such simplification when using the

finite element method, and it makes no difference to the method of

solution if [CNT is not a diagonal matrix.
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Example 8.1

Consider a simply supported beam acted on by a distributed force
p cos VY2 witperunit length and subjected to distributed damping, of
the type shown in Fig. 8.1, of pAw,/v2 perunit length. This gives a
damping ratio of 1/2/2 and a phase lag of 135° for the first mode. By
summing the first 50 terms of the series of (8.2.6), starting conditions
for the steady-state vibration are obtained. It is found that the lag
varies slightly along the length of the beam from 134.71° at the end to
135.2° at the centre.

By using 4 space elements, 40 intervals per cycle and discarding
the last mode, a finite element solution may be obtained, and after
one cycle the ultimate error is 0.22%, which is rather less than the
error of 0.30% for an undamped system subject to the same distributed

force which was obtained in Example 7.5.

8.3 Internal viscous damping

If the damping is caused, not by motion relative to a surrounding
viscous medium, but by internal friction in the beam material, a
different model may be constructed. It is now assumed that the damping

forces are proportional to the rate of change of curvature of the

beam giving a differential equation.

4 a"‘u BZU _
El %Ylﬁl—+C1 %E(EI W} + pA 3tZ p(x,t) (8.3.1)
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Thus for the i'th mode of a simply-supported beam

it i*n*  du d?
EI L4U+C1 EI v E+QA—U_: p

(8.3.2)

It will be seen that the coefficient %%—15 equal to the coefficient

of u multiplied by the damping coefficient ¢;. The damping matrix is
therefore proportional to the stiffness matrix and [CN]'is thus again a
diagonal matrix. It will also be seen that if p(x,t) = p cos Qt,

equation (8.3.1) will have a solution very similar to that of (8.2.7)

1'4,”14

K which 1is

the only difference being that c¢ is replaced by ¢ EI

equal to Clwisz'

Then, for example, the coefficient a; in (8.2.5) is replaced by

1/8.

4pL* i

15E5EI ( 1 , o > (8.3.3)
—, + C3 Q

By

The responses for external and internal viscous damping can therefore
be made identical for one mode only, by adjusting the value of c or ci,
and will differ for all other modes. If, however, the agreement is made
for the lowest frequency, differences between the results for the two
types of damping are likely to be very small as the contributions of

the higher frecuencies become rapidly smaller.

This type of damping is easily incorporated into the finite element

solution since the damping matrix is now given by [c] = c.lk].
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8.4 Hysteretic damping

In both of the previous sections it has been assumed that damping
forces are proportional to velocity and that for a given amplitude the
energy loss per cycle is therefore proportional to the frequency.
Meirovitch [14] and other authors agree that this does not agree with
observed experimental results and that the damping force is more likely
to be independent of frequency, and thus the energy loss per cycle
depends only on the amplitude. Bishop and Johnson [29] state that the
assumption is closer to that of actual material behaviour than that of
viscous damping and show that results may be obtained for hysteretic

damping calculations by using a complex modulus E(1 + ju).

For a single degree of freedom system with a hysteretic damper

the equation of motion then becomes

2 UL 4 U = F(E) (8.4.1)
dt? u .

since the stiffness k 1is proportional to E.

The steady-state response is thus found from

u = ] F(t)

mD?+k (1+ju)

and if F(t) = F cos Qt the solution is

o 1/8 U sinat ) o 8.4.2
N a a R VO sin at | (8.4.2)

where 8 =1/[1 - (2/w)?]
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It is then fairly obvious that if a distributed force p cos Qt
acts on a simply-supported beam, for the i'th mode
1/81 " p.L"
= —e 3 1
u <]/B_|2 T cos Qt + m sin Qt ) THET (843)
and by comparing the coefficient of cos 9t given in (8.3.3) with the
first term of (8.4.3) it will be seen that c;?Q* has been replaced by

2 |23
ue. or cy by g

It is found that this provides a most convenient method of handling
hysteretic damping. The procedure consists of solving the equivalent
viscous damping problem and then replacing the viscous damping coeffi-
cient ¢ or c¢; by u/Q if the system is forced to vibrate with an angular
frequency %. If many frequencies are present it is necessary to use

modal analysis and replace c by u/wi for each mode.

This again presents no problems in the finite element method as
modal analysis may already be used to obtain a stable solution. For a

hysteretically damped beam the equation of motion is

N 2
(EI CAUL R 9-% = p(x,t) (8.4.4)

3%u U
Bl 5w v o 3t

and for the i'th mode

con Uy (8.4.5)
Ph gtz 75 A

o

- ]_+ |+ 0
1T oy o+ H o FI
L wi

u

—
5

=3
-

jo

l

El

r

+
Q.
o+

and by comparison with (8.3.2) it will be seen that if a solution for

internal viscous damping is available, it is only necessary to replace
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c1 by U/wi' The modal damping matrix in the finite element solution
is therefore obtained from [cN] = H T Kiy/wy O - ~ W
0 K,_p_/wl

'~
~

0 0 K /w

L nn’ n

Example 8.2

The same values as those of Example 8.1 are used, i.e. a simply
supported beam with a distributed force p cos v2 wit, but with hysteretic
damping instead of external viscous damping. In order to obtain the
same first mode response as in Example 8.1 a value of u equal to 1 must
be used in the present example. This is a much higher value than is
1ikely to be encountered with any material (for example, from data
given by Lazan and Goodman [30], a figure of the order of 0.001 would
be appropriate for structural steel), but by using this high value,

any errors in the method of solution should be made very obvious.

An exact solution is obtained by replacing c by uwipA/Q in (8.2.5)

giving

gplt 1/84 )
a5 T FsqsEl T, .2
B 2

= (8.4.6)
and bi UBiai

Values of A(x) and B(x) are then obtained by summation of the

series (8.2.6).
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The finite element solution is readily obtained by using the
. . U . . .
damping matrix [c] = ﬁ{k]. This solution is then obtained in the

usual way using 4 space elements, 40 time elements per cycle, and

discarding the fourth mode. After one cycle the ultimate error is

0.20% which is slightly better than the result for viscous damping in

Exampie 8.1 although the difference is not significant.

A comparison of the exact solutions of Examples 8.1 and 8.2 shows
very little difference for the two types of damping. For example, the

central deflection is found from the following

I

Fxternal viscous damping u = -0.503945 cos Qt + 0.499947 sin Ot

il

Hysteretic damping u -0.501920 cos Nt + 0.498028 sin Qt

The very small differences between the coefficients in the two cases
are perhaps rather surprising initially, since the two types of damping
are not strictly comparable. It should be remembered that the external
damping forces are related to deflection, while the hysteretic damping
forces are proportional to curvature. For a particular mode of
vibration the curvature is however directly proportional to deflection;
by far the largest damping forces are those associated with the first
mode, and the two damping parameters are arranged to give jdentical
results for the first mode. The small differences are therefore due
to the effects of the higher frequencies, and by examination of (8.2.5)

and (8.4.6) it will be seen that the viscous damping forces decay more

rapidly than the hysteretic forces as the frequency rises.



- 160 -

[t should be noted that although the damping parameters have been
matched in these two examples, the two types of damping will give nearly
the same results only at this one forcing frequency. If this frequency
is increased the system with viscous damping will be more heavily damped

than that with hysteretic damping, and a reduction of forcing frequency

will produce the opposite effect.

8.5 The transient response of a hysteretically damped system

It has already been pointed out that the finite element method
gives a transient solution as readily as a steady-state solution for
an undamped system, and this also holds for a damped system. The
difficulty here is not to obtain a finite element solution , but to
obtain an exact solution for comparison. However by choosing a

suitable forcing function an exact solution 1is possible.

Example 8.3

If a simply-supported beam, which is initially at rest in its
equilibrium position, has a uniformly distributed force p suddenly
applied, an exact solution is possible. Considering first the case
of external viscous dampingsby comparison with the known solution for

a single degree of freedom system the solution is

- C .
. t —
oo} + zT c
& [0 - (5=
u= I Tﬂ;’TETI_g—ET[] - e {COS. (A).i (ZQA) .t
i=1,3

_C pom—————
2pA : 2 _ (&
___———Q——*,___-——..—.— Sin \/U),l (sz) °t}} (8-5-1)

o )
Yi T 20A
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For internal viscous damping ¢ is replaced by clwisz and hence

Clw.z
- 4 Lq. - 21 Cl(,l) 2
= _SpL
u 1:%’3 i5TSE] 1-e {Fos(wi.T—( 21) t)
Clwi
? . Ciw. 2
+ o sin(w.[1-( 1 1;}

C1y 2 1 7)Y (8.5.2)

[ee] & = Uw-i
’ :121,3 ?g%lgﬁ{]ﬁe : {COS(M\/]—(%)Zt)
u - :
+ e (%Jz s1n(quA - (5) -t)}'} (8.5.3)

It is then a simple matter to find the space and time derivatives
of (8.5.3) to obtain the slope and velocity. When the summation of the
four series is carried out,using the first 50 terms of each series, at
intervals of 1/40 of the period of the Towest undamped frequency for

a value of 1 of 1 as in Example 8.2,values of deflection, slope,linear

and angular velocities may be found.

A finite element solution is obtained by the method described in
Example 8.2 using 4 space elements, 40 intervals per cycle of the Towest
frequency and discarding the last mode. It is thus possible to compare

the exact and finite element solution for the same values of time.

" With this type of loading, the value most Tikely to be required is

the maximum deflection, and this is found to occur at a time of
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approximately 0.575 x 2m/w,. The maximum true error in the displacements
as given by the finite element solution for this time is 0.07%. Since
the velocities at this time are all very small, percentage true errors
would mean very little, so the two solutions are again compared for

t = 2r/w,. The true displacement error is almost the same as before,

but the maximum true velocity error is 0.23% which is very similar to

errors previously found for steady-state solutions.

8.6 Conclusion

The effect of damping in a distributed system may be allowed for
in exactly the same way as in a discrete system. In a distributed
system two types of viscous damping and hysteretic damping have been
used to generate the appropriate damping matrices and so to obtain
solutions. By using temporal finite elements, solutions may be obtained
either by direct solution of the equations produced by this method, or
by using modal analysis, in which case truncation may be used to give
a stable solution. Although, in the examples used, the modal damping
matrices were diagonal,  this condition is not necessary to obtain a

finite element solution. If the modal damping matrix is not diagonal

solution by other methods may be difficult.

In this and the two preceding chapters a simplified representation of

a beam has been used, in that no allowance has been made for rotary

inertia or shear effects. Allowance for rotary inertia alone 1is

readily made by a suitable addition to the mass matrix, but Timoshenko

shows that shearing effects have more effect on the natural frequen-

cies than rotary inertia [20]. Shear effects may be allowed for by
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modifying the mass matrix as shown by Severn [317, but since the cross-
sections are warped by the shear stresses, rotary inertia corrections
now become rather complicated. It is however possible to modify both
the mass and stiffness matrices to allow for combined rotary inertia
and shear effects. There seems to be some doubt concerning the value
of the shear correction factor to be used in Severn's stiffness matrix,
which 1is basica]fy concerned with Timoshenko's factor k. Both Cowper
[32] and Love [33] think that Timoshenko's value of 0.833 (for v=1/3)
is too low and suggest a value of 0.851. The use of spatial finite
elements to obtain the natural frequencies gives very good agreement
with Cowper's results when a factor of 1/5 is used in Severn's
stiffness matrix. An exact solution for the static deflection of a
uniformly loaded simply-supported beam may also be obtained by using
the principles of elasticity given by, for example, Timoshenko and
Goodier [34], and once again the use of the factor of 1/5 in the

stiffness matrix gives close agreement with the elasticity solution.

A detailed description of the modification to the mass matrix is
not appropriate here, since this is a spatial discretization problem
and not concerned with temporal finite elements. In any case rotary
inertia and shear effects normally have little effect on the response
of a beam, except for short deep beams. The spatial finite element
discretization can then be suitably adjusted to give very accurate

results even for these unusual cases.
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CHAPTER 9

NON-LINEAR SYSTEMS

9.1 Introduction

This thesis is concerned principally with the behaviour of Tinear
systems, that is systems in which masses, stiffnesses and damping co-
efficients remain constant. Since, however, in many practical situations
these parameters are not constant, any work of this nature would be in-
complete without some reference to this type of behaviour. No attempt is
made to include a complete analysis of non-Tinear systems, but it is shown
that the finite element method can be applied to systems of this type.
For convenience, the simplest possible non-linear vibration, i.e. the
free vibration of an undamped single degree of freedom system, is
considered, and it is shown that the finite element method does give a
solution in this case. By comparison with previous results for linear
systems, there seems to be no reason why finite element methods should

not work equally well for multi-degree of freedom systems and for those

which include damping.

Since damping is not included in the present investigation, only
two parameters are involved, i.e. mass and stiffness, and each of these
may be a function of time and/or displacement. If an unsymmetrical shaft
rotates, its bending stiffness is a function of time, and a system with

reciprocating masses will have a varying moment of inertia.
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Pashricha and Carnegie [37] point out that this variation increases

the speed range over which resonance effects are experienced.

These are time-dependent variations, and another common case is
that in which stiffness varies with displacement, e.g. if the stress-

strain relationship is non-linear.
A11 these cases are examined, and since the time-dependent
variations are, at least in principle, the easiest to handle, these are

investigated first.

9.2 Time-dependent stiffness and mass

Ar obvious method of approach for systems of this type, is to use
the same method as for a linear system with a constant average value for
the varying parameter within each interval. This is not very satisfactory
as there are then discontinuities in the value of the parameter at the

end of each interval.

Much better results can be expected if Hermitian interpolation is
used to obtain the value of the varying parameter within each interval.
Considering, first of all varying stiffness, the value of the stiffness k
within an interval is given by

k = iko + UokoT + Ysky ¥ UukyT (9.2.1.)
where y; = 1 - 3(t/1)% + 2(t/1)? etc.

and ko, k, ko ky are the stiffnesses and their time derivatives at the

beginning and end of the interval.
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Thus using Hamilton's principle for a free undamped vibration

T
as & é (T-U)dt = 0 where U is the strain energy, the contribution of the

strain energy to the integral is

T

é udt =

ku?

O%
rof—

=4
2

O A

(w1k0+w2k0T+w3k1+wqR1T)(W1Uo+¢2aoT+¢3U1+wqa1T)2dt (9.2.2)

Proceeding in exactly the same manner as for a linear system and
obtaining the partial derivatives with respect to uo and u;, the contri-

butions of the stiffness to the two equations are

([ 10 THud and  ([A,10KD) S (9.2.3)
194 32 70 -18 8 -18 -70 16
{32 6 16 - . o8- 18
where [A,] = and [Ay] = =57
2 5080 | ;90 16 86 -18 5040 | 70 -18 -194 32
18 -4 -18 4 6 4 32 -6

These functions replace the [h{] terms of (2.2.13) in equations

(2.2.14), so that for a system having a varying stiffness

(L3 4 -3 -11- ([A, 306 ) {ud = {03

and

(D3 -1 -3 4] (AN By = 10

There are thus two equationsfrqnwhich the displacement and velocity ug

and U: at the end of the interval may be found in exactly the same way

as for a linear system. It is of course necessary to know the stiffness
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and its rate of change at the beginning and end of each interval to

evaluate the functions in 9.2.3.

Example 9.1

The general solution for a second-order differential equation with
variable coefficients is extremely difficult. A study of the literature
did however show that a few solutions have been obtained for differential
equations of a suitable type. The solution used here is given by

Rektorys [35], reswritten in terms of the present author's symbols.

If a single degree of freedom system has a constant mass m and a

2
time-dependent stiffness given by k = Iggligjé where a and b are constants,

and of constant mass m = 1, the equation of motion for a free undamped
vibration is

e b2
(a2+t2)? u 1c.2.4)

having the solution

u = /a?+t2(C, cos p + Cp sin p) (9.2.5)
PVITY) _
where p _Yath tan ! -%

Taking initial conditions uy = A and U, = 0 it is found that

C]_:

A and ¢, = 0.
a

If, in addition, values are assigned to a and b i.e. a = 1 and

b = 10 it is easily seen that
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u= AT T 82 cos (V101 tan™! t) (9.2.6)
and hence
U =ALt cos(/101 tan” ! t)-/101 sin(/101 tan™ ! t)]//7+¢2 (9.2.7)

For comparison with results from the finite element solution,
values of u and u are calcuiated from equations (9.2.6) and (9.2.7), and
values of u are shown in Fig. 9.1. It will be seen that, as a result of
the reduction of stiffness, both the amplitude and period increase with

time.

For a finite element solution, values of k and k are required;
these are readily found by substituting the chosen values of a and b into
the expression for k, so that k = 100/(1+t%)? and by differentiation
k = -400t/(1+t2)%. By using the appropriate value of t at the beginning
and end of each interval the stiffness vector{k} in (9.2.3) is obtained.
The coefficients of the components of the displacement vector {u} in
(9.2.3) then replace the corresponding stiffness terms in the [G] and

[H] matrices of (2.2.14), giving two equations from which values of u,

and v,(=u;7) may be calculated.

When a time interval of 0.02 units (approximately 1/37 of the
period for the first cycle) is used, the finite element solution agrees
extremely well with the exact solution. For example, the values of the

maximum negative and positive displacements after half and one complete

cycle respectively are:
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Finite element Exact solution
1 cycle -1.049444 -1.049507
1 cycle 1.234582 1.235185

There is thus a difference of the order of only 0.1% after one

cycle, and as usual this could be reduced by using a smaller time

interval.

Separate variation of mass alone may be treated in the same way
as variation of stiffness. Hamilton's principle is again used, but with
a varying mass the kinetic energy term in equation (2.2.9) must be

modified by discretizating m to give

T T,
éTdt=é-2—mudt
T . Ll . ° L] e o
= %‘é (¢1mo+W2moT+W3m1+wum1T)(¢1Uo+¢2UoT+¢3U1+¢uU1T)zdt

(9.2.8)

while the strain energy term remains as in (2.2.9) since k is now constant.

As previously, two equations are required to find the values of
u; and u; and these are obtained from the partial differential co-
efficients of the integral of (2.2.9) with respect to Up and U; . The

contributions of (9.2.8) to these equations are respectively

([B,1{m} ) {u} and ([B, 1{m}) Hu} (9.2.9)
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(12 6 9 -18
8 7 26 -5
where [B,] = §%5?
12 -6 -9 18
4 -1 -4
9% 18 -12 -6
oy . 4 -1 <14
l+ —1
840t | g5 18 12 6
2% 5 8 -7
_ J

and {m} = [mg meT my ﬁ1T]t

The coefficients of k are obtained from the second and fourth rows

of the [h'] matrix of (2.2.13).

The replacement of the mass coefficients in the [G] matrix of (2.2.14)
by the modification of (9.2.9) unfortunately leads to incorrect results
for u; and U; . This is due to the nature of the problem which is one of
varying mass. If, for example the mass is increasing, the additional mass
must be added with the same velocity as that of the vibrating mass, i.e.

if the mass is increasing at a rate m when the velocity is u, momentum
must be supplied at a rate mu which is equivalent to the application of a

force F = mu. The contribution of this force term to the integral of
(2.2.9) is found by discretizing m, u and u giving

Z ($1m0+$2ﬁ01+&3m1+$4ﬁ11)(&12p+¢2épT+¢3E)+¢ngT)

X (¢1“0+¢2&0T+¢3U1+¢4&0T)dt (9.2.10)
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The first two brackets in (9.2.10) replace F in (2.2.9),

and as

explained in 2.2 the underlined quantities in the second bracket of

(9.2.10) must be treated as constants during partial differentiation.

By differentiating (9.2.10)

sets of coefficients of {u}

with respect to Go and Gl two further

are obtained, i.e.

([C,HmHE  and ([C,]{m})* (9.2.11)
108 6 -108 18]
(6] - o 6 7 -6 -1
where [Co] = 555
840T | 108 -6 108 -18
18 -1 18 5|
" _108 -18 108 -6
_ ] -18 -5 18 1
and [Cu] = 5757
108 18 -108 6
. -6 1 6 -7 |
The final correct form of the equationsfor varying mass and
constant stiffness is
(8,40 )t - K[ 22 ¢ 13 -3]{w= {03
([B, + L) ()" - K35 [-13 -3 22 4]){u}= {0 (9.2.12)

where the coefficients of k are taken from (2.2.14).
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Example 9.2

The differential equation of Example 9.1 can also result from
variation of mass instead of stiffness so that if m = (1+t%?)? and k = 100,
for a free vibration (1+t2)2 U= -100u. This is the same equation as

that of Example 9.1 and will therefore have the same exact solution.

A finite element solution may also be obtained using equations
(9.2.12) with 50 time intervals, each of 0.02 units. The finite
element solution not only agrees well with the exact solution, but
differs from the previous variable stiffness finite element solution

only in the sixth figure.

It has thus been shown that the finite element method will give
very accurate results for variation of stiffness or mass alone, and
it only remains to combine these two solutions to obtain a general
solution for the case where both stiffness and mass vary simultaneously.
This is quite simply achieved by substituting the stiffness terms from

(9.2.3) into equations (9.2.12), and substituting for the [B] and [C]

matrices to give

= - "' hn -~

o6 12 -12 0] \t 194 32 70 -18 t
92 14 20 -6 ) 3 6 16 -4
8I07|-96 -12 12 0 70 16 86 -18
L -2 =32 6 -le -4 18 4

L L - N J

12 o 9 -12| _86 -18 -70 16 T
32 -6 4 2 18 4 -18 4

] m | - | =50 (| frur=t0y

840T | 1, g -96 12 270 -18 =194 32
0 6 92 -14 6 4 32 -6

L L ,_ ! L - "

(9.2.13)
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Example 9.3
= 2 - . . oy _ 100
If m = 1+t% and k = 100 , for a free vibration (1+t*)u = - y552 U

1+t2
which is the same differential equation as that of Examples 9.1 and

9.2 so that the exact solution for this case of variable mass and

stiffness is already known.

A finite element solution is readily obtained by using equations
(9.2.13), again with 50 time intervals of 0.02 units. Once again the
finite element solution agrees extremely well with the exact solution,
and differs only in the sixth figure from the finite element results

of Examples 9.1 and 9.2.

Although, because of difficulties in obtaining an exact solution,
only one non-linear problem has been solved, it has been shcwn that
the finite element method gives very accurate results in this case.
Since both the function and the numerical values are arbitrary it is
very unlikely that there is anything special about this particular
example, and the method should work with any system in which stiffness

and/or mass are functions of time.

Only free vibrations have been considered, but forced vibrations
can be solved by adding the force terms in (2.2.14) to (9.2.13)
without alteration. Linear damping can also be added in the same way,
and non-linear damping may be allowed for by discretizating c¢ and
proceeding in the same manner as when considering variations of stiff-

ness and mass.
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9.3 Displacement - dependent stiffness

In many practical cases stiffness may vary with displacement,
either because of non-linearity in material behaviour or as a result
of the geometry of the system. The finite element method of solution
is again able to allow for this variation in stiffness. If the mass
is constant, only the strain energy of the system differs from that
in a linear system, and must now be found from

u
U= S kx dx where k = F/x (9.3.1)

o)
The stiffness k may now be found in the usual way by Hermitian

interpolation, i.e.

k = YokotPakdo+yskitpukid (9.3.2.)

where ko and k, are the values of k corresponding to displacements uo
and u;, ki and ki are their rates of change with respect to displace-

ment, § = u; - ug and Y = 1-3(x/8)2+2(x/8)* etc.

Hence by substituting (9.3.2) into (9.3.1), this integration may
be performed independently of any integration with respect to time,

giving an equivalent stiffness for the interval up < U < U1.

1

K= 17

ko + koS + 5 ki - T§'k55 (9.3.3)

N —
roj —

Now, if k is a known function of u, values of kg and kg may be
found, but if the usual method of solution described in 2.3 is used an
immediate difficulty appears in that, since the displacement u; at the

. |
end of a prescribed time interval T is unknown, ki and ki are also
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unknown quantities. A rather more elaborate form of solution is

therefore needed.

It has been shown in equation (3.2.7) that the final displacement
u; may be predicted from the initial displacement and initial velocity.
This equation is of the form u; = Aug + Bv, where Vo = UoT and A and B
are functions of t. Thus it should be possible to prescribe a final
value of u and find the time T required to reach this position. This
can indeed be done and the required manipulation of equation (3.2.7)

gives

y* L _ 2° 2 .
%EEOTS + P (75% 2u;) 4o 1§p Uo 3_ P (96u%29u1)12+15u01+15(u0—u1)

=0 (9.3.4)
where p® = K/m, the appropriate value for K being found from (9.3.3)

Equation (9.3.4) may be solved by approximate methods, and since a
reasonable estimate of the value of T can be made, Newton's method
should give rapid convergence. This method is indeed found to give 8

figure accuracy in about 5 iterations.

Once the value of T is known the final velocity may be found from
equation (3.2.7) by replacing k/m by p2. It should be noted that since,
in general, the value of T will be different for each interval, it is

not possible to use the composite variable v,(=u;T1) but the actual

velocity ﬁl must be used.
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This method should also give satisfactory results for linear
systems, although it would not be so used because of its compiexity.
However, an initial check on the accuracy of the method may be obtained
by repeating the calculations of Example 2.1 for the free undamped
vibrations of a Tinear system. In this case ko = k; = k and

ki = ki = 0 so that equation (9.3.3.) gives K = k. Thus p? = k/m = w?.

Taking initial conditions up, = A and Ug = 0, and dividing one cycle

into 10 intervals so that u; = A cos 2n/10 etc., the times for each

of these intervals are equal for an exact solution.

By using the usual step-by-step finite element method, equation
(9.3.4) may be used to find these 10 time intervals. Because of the
approximate nature of the solution it might be expected that the times
of the individual intervals would be slightly different, but rather
surprisingly they are all found to be identical (to 6 figures) but
slightly low. The resulting time for one cycle is calculated as

6.2636vm/k which is 0.3% Tow.

This is perhaps a rather artificial problem as the period is
known to be 2mv/m/k, so that the result is assumed in calculating values
of displacement. A much more Togical method is to divide the total
travel into a number of displacement increments, which may or may not
be equal, and to proceed without making any assumptions concerning
time. When this procedure is followed, using 10 equal displacement
increments per cycle (values of u being A, 0.6A, 0.2A etc.), the value
obtained for the period)6.2104ﬂﬁ7i, is 1.2% low. This increase

in error compared with the equal time interval solution results from
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the fact that as the time interval increases the error also increases,
and the increased errors in the large intervals are not compensated

for by corresponding reduced errors in the small intervals.

This error can of course be reduced by increasing the number of
intervals, and with 80 intervals per cycle the true error in the

period is only -0.07%.
Since the method has been found to be satisfactory for linear
systems, the next step is to obtain a finite element solution for a

non-linear system for which an exact solution is available.

Example 9.4

Taking a spring with the non-linear characteristic F = au® where
a is a constant
2

k = au

and k' = 2au

Hence, by substitution in equation (9.3.3) and Tetting p? = K/m
p2 = 2 [(ug? + ur®)/2 = (uo = us)*/6]
By choosing convenient values of u, (which may be equally or

unequally spaced), the value of p? may thus be found for each interval

and the corresponding time is then calculated from equation (9.3.4)

Timoshenko [20] gives an exact solution for the free vibrations

of a mass m attached to a spring having the non-linear characteristic
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given above, and shows that the period is given by

:.4.{.2_‘/'1 dr

Ao i

t

(9.3.5)

where A is the amplitude, E$= a/m and r = u/A.

The integral in (9.3.5) may be evaluated by reference to tables
of gamma functions given by, for example, Rektorys [35], giving

t = 7.4163/BA.

By using 80 equal increments of displacement in a finite element
solution, the value of the period obtained is 7.4388/8A. This
represents an error of +0.30%, which is higher than the error in the
previous Tinear system because there is a further approximation 1in

discretizing the stiffness of the non-linear system,

It has, however, been shown that the finite element method does

give a satisfactory solution for a non-linear system.

Example 9.5
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A well-known case of a non-linear system for which an exact
solution is available is that of a simple pendulum having a large
amplitude. A finite element solution may be obtained by considering
the force mg sin6 and the displacement L6. The equivalent stiffness

is given by

K = M9 sin®
L 6

and

' = Mg (6 cosé - sine)
L\ 62

If these expressions are used in equation 9.3.3 and (9.3.4), by
using 80 equal displacement intervals per cycle, periods may be

obtained for various amplitudes. These are given in Takble 9.1.

An exact solution for this problem is given by Timoshenko [20]

in terms of an elliptic integral, the period being

L
= —_— — 9.3.

where F(k,%) is an elliptic integral of the first kind, and

k = sin(A/2), A being the amplitude. The value of this integral may
be found by reference to, for example Abramowitz and Stegun [36] who
give

1

F 0+ (R () K"+ e ]

-

—

~

-
{3

S
]

The exact values of the periods thus calculated from (9.3.6)

are also given in Table 9.1.
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AmpTlitude Peﬁod/]%
degrees Finite element solution Exact solution
5 6.2798 6.2862
10 6.2887 6.2952
20 6.3245 6.3314
30 6.3699 6.3926
60 6.7313 6.7430
90 7.3916 7.4163
120 8.5724 8.6260
Table 9.1

It will be seen that the error in the period found by the finite
element method is in all cases less than 1%, and is much less than this

value for small amplitudes.

Finite element solutions may be obtained for the vibrations of
much more complicated systems than those of Examples 9.4 and 9.5,
provided that it is possible to obtain the values of k and k' required
in equation (9.3.3). The next example concerns the free vibrations
of a system for which a finite element solution is obtained without
difficulty. Other methods of solution may require the introduction

of approximations which can be justified for small displacements only.
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ample 9.6 Tt
4
~
¢

i

In this example the non-linearity is due to the geometry of the
system, and it 1is readily shown that the horizontal force required to
give a displacement u is 2k(1 - cos B)u in the case where the spring
forces are zero when u = 0. It therefore follows that the values of
stiffness and its derivative required in equation (9.3.3) to give a
Finite element solution are 2k(1 - cos 6) and k/& sin26 cos®
respectively where 0 = tan_](u/z). Thus equation (9.3.3) may be used
to find the value for K for any pair of displacements up and Ui ,

and equation (9.3.4) then gives the approximate value of T.

In this case 100 elements per cycle are used to obtain finite
element solutions for free vibrations of varying amplitudes. It is
found to be most convenient to measure the angular amplitude ov(ma ximum

value of 8), and Fig. 9.2 shows how the period of the vibration varies

with a.

A solution for this problem is obtained by Timoshenko [20] who

uses an approximate expression for the horizontal force which gives a
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cubic relationship between force and displacement. This example is
thensolved in exactly the same way as Example 9.4 where this same
relationship appears. This approximation is reasonably accurate for
small values of 8 only. Fig. 9.2 shows the finite element results

and also the results calculated from Timoshenko's approximate solution,
and it is obvious that, except for small angles, the two sets of
results differ considerably. Although it is likely that the finite
element solution is the more accurate, a more definite confirmation
would be more satisfying. Because of the complicated relationship

between displacement u and acceleration

. d?u 1
iem Yol oku(1 - —) (9.3.7)
dt2 V1+u?

it appears that an exact solution for the period will be very difficult
to obtain. It is, however, comparatively easy, by equating the sum of
the strain energy of the springs and the kinetic energy of the mass

to zero, to show that the velocity of the mass 1is

a

|

u /é[(secoc 12 - (seco - 1?] (9.3.8)

o

and, in particular, in mid position when & = 0

(Suy = & /2(seca - 1) (9.3.9)

Inspection of the finite elements results shows that, in the first

cycle, the two values of naximum velocity (of opposite sign) differ from

‘ n1e alues of o as larce as 80°
each other by less than 0.0001%, even for values arge )

s . 6 10 .
and by less than 0. 01% from the predictions of equation (8.3.9). Since,
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in the finite element solution, the velocity is calculated directly from

the time interval, it seems reascnable to deduce that the average error
in the calculated times is not greater than 0.01%, and that the values

obtained for the periods are extremely accurate.

This example gives some indication of the wide range of non-linear

problems which can be solved by the finite element method.

9.4 Conclusion

By suitably modifying the usual finite element method of solution,
non-linear vibration problems for freely vibrating single degree of
freedom systems may be solved. Since the damping coefficient may be
discretized in exactly the same manner as stiffness and mass, non-linear
damping effects may also be allowed for. The characteristics of any
forcing function are independent of the properties of the system, and
therefore the solution may be extended to deal with forced damped non-

linear systems having one degree of freedom.

Multi-degree of freedom systems present no additional problems when
time-dependent variations are considered, but solutions may be more
difficult to obtain when displacement-dependent parameters are involved
In this case, the method of solution used in 9.3 may not be the best, as
only one final value of displacement may be specified, leaving the other

displacements and the interval time as unknown variables to be found.

It may therefore be preferable to use the methods of Chapter 4

using a specified time interval, and finding the displacements by an

iterative method. The application of finite element methods to multi-

degree of freedom non-linear systems may well repay further study.
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CHAPTER 10

CONCLUSION

Of the various methods available for obtaining the response of a
mechanical system to an external stimulus one of the methods giving an
exact solution would obviously be preferred. Unfortunately, except
for relatively easy applications, these methods become very tedious.
One of the numerical methods of solution must therefore be employed

for more complicated systems and for "difficult" forcing functions.

Probably the most widely used of these numerical methods is that
based on finite difference approximations and these may be used exclu-
sively as, for example, by Geers and Sobel [38] employing numerical
integration techniques as suggested by Henrici [39]. Alternatively, a
mixture of spatial finite elements and finite difference time discreti-

zation as used by Wu and Witmer [40] may be suitable.

Although finite difference methods have been found to give
satisfactory solutions for a wide range of problems they do have the

disadvantage that boundary or initial conditions normally require

special procedures.

Finite element methods, however, appear to have no such dis-

advantages; boundary or initial conditions may be explicitly stated and
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this method of discretization is suitable for use in both space and time.
In the time domain, even the basic finite element is more accurate than
the finite difference approximation using the same number of steps, and

the refined finite element can be expected to give even more accurate

results.

For distributed systems, separate discretizations in space and
time give very satisfactory results, and, indeed, provided that mass,
stiffness and damping matrices are available, a solution may always be

obtained by using temporal finite elements.

The finite element solution may be unstable, but the necessary
condition for stability has been established, and so it may be possible
to prevent instability by increasing the number of temporal elements,
or intervals, in a given time. If this requires an excessive number
of intervals the truncated modal method may be used to remove the
contributions of the higher frequencies, which cause the instability,
from the solution. This will, of course, reduce the accuracy of the
solution, but if the method is used with care, the reduction in accuracy
should be small. It is also necessary, when using modal analysis, to
solve the eigenvalue problem to £ind natural frequencies and modal
shapes,a process which is not normally required.  This presents no
particular difficulties as standard computer procedures are available,
but it does increase computing time. On balance, however, there is
probably a saving in computation time when the truncated modal method

is used compared with the use of the greater number of intervals

required to avoid instability.
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It is found that by using finite elements in the time domain
transient solutions are obtained without difficulty and without any

restriction on the forcing function. Various types of damping may

also be incorporated in the solution.

The majority of the examples have been solved by using a step-by-
step process, but, alternatively, values of all variables could be
calculated simultaneously by coupling the finite elements in time. This
procedure does give some improvement in accuracy, but much larger
matrices have to be stored. If increased accuracy is required it is
much more simply obtained by increasing the number of elements, or, if
the basic element has been used initially, by replacing it with the

refined element.

For distributed systems only it is possible to replace the
separate space and time finite elements by combined space-time elements.
Although this appears to be an attractive method of obtaining simult-
aneously the complete history of a system in space and time, in practice
the choice of a suitable element is very difficult and the compilation
of matrices is extremely laborious.  Since there appears to be no
particular advantage to be obtained by using this method, the extra

complications appear to rule it out as a practical method of solution

for vibration problems.

The principal aim of this work has been to investigate methods of
solution in the time domain, and so no attempt has been made to deal with

difficult spatial systems. The temporal discretizations can however be
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applied to any system which can be discretized in space. Vibration
problems of non-uniform beams may, for example, be solved by using the
stiffness matrix for a tapered element given by Howard [41].  Allowance
for axial forces may be made by using the matrices derived by Paz and
Dung [42], while Tada and Lee [43] deal with large displacements by
using spatial finite elements. The beam need not even be straight if

the curved finite element of Davis et al. [44] is used.

The method of solution in time is in no way changed if 2- and 3-
dimensional systems are to be studied, and provided that mass and stiff-

ness matrices are available temporal finite elements may be used.

In these spatial discretizations, the matrices may be large and
the determination of eigenvalues and eigenvectors as described by
Jennings and Orr [45] may be of interest. If the truncated modal method
of solution is to be used, only the lowest frequencies are required and

these are the values obtained by using the methods of Wright and Miles[46].

Perhaps one of the most interesting aspects of temporal finite
element methods is the relative ease with which they can be modified to
give solutions for non-linear systems.  Both displacement- and time-
dependent variations of parameters have been studied, and although solu-
tions have been obtained for single degree of freedom systems only, there
seems to be no reason why the same principles should not be applied to

multi-degree of freedom systems. The methods to be used are not, perhaps,

immediately obvious in all cases, and a study of this problem would

probably be of considerable interest.
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APPENDIX A

A.1 Approximate derivatives for forcing functions

If a number of values of an applied force, Fo, Fi... at equal time
intervals T, are known, a simple approximation for the first derivative
is Fiz(F1+] - Fi_])/ZT. The errors introduced by this approximation are

likely to be greater than those due to the use of temporal finite elements.

A more accurate approximation is obtained from 5 values of F at

t =0, 7, 21, 31, 4t and by assuming that

F=ag+at+at?+ast®+ att (A.1.7)

By substituting values F = Fy when t = 0, F = F, when t = 1 etc.

equations of the form

{F} = [TH{a} (A.1.2)
are obtained, and hence

fa} = [T1°MF} (A.1.3)

In this case [T] is a 5 x 5 matrix, is a function of T only, and is

easily inverted. When the values of {a} are substituted into (A.1.1),

the required derivative is found by differentiation with respect to t.

1]

ie. F a, + 2a,t + 3ast? + 4a,t’ (A.1.4)

Since values of ﬁ may be required at any of the 5 nodes (t =0, T,

21, 31, 41), by substituting these values of t into (A.1.4), 5 different

approximations are obtained.
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- ~ -— - .
Fo 25 48 -36 16 -3 Fo )
Fi -3 <10 18 -6 1 Fi
. 1

ﬁ Fo b= o= 1 -8 0 g -1 { F, & (A.1.5)

Fs ) 6 -18 10 3 Fs
F : .

! L+J L 3 16 36 48 25 | L FU

These approximations are identical to the finite difference
approximations given, for example, by Salvadori and Baron [13], and are
found to give errors of the same order as the basic finite element errors

when 20 intervals per cycle are used.

When the refined finite element is used, both the first and second
derivatives of F are required, and although approximations for E can be
obtained by differentiating (A.1.4), the errors due to the approximations
are much larger than those introduced by the refined finite element.

More accurate approximations are obtained by assuming that

F=a, + a;t +a,t? +ast®+ a,t* + ast® + agt® (A.1.6)

Seven values of F are now required, but otherwise the procedure is

exactly the same as for the simpler polynomial of (A.1.1).

Approximations for £ and F are now required at 7 nodes, i.e.




& 47
Fi -30

F) 6
AR ];OT -3
Fu 3

Fs -6
e ) 30
(¥, ] 12
FL 137
F) 213

J Ea = ]85T2 2
F 2

Fs 213

| FGJ 137

1080
-231
72
27
24
15
216

-3132
-147
228
-27
-12
93
1972

-1350
450
-105
-135
90
-150
675

5265
-255
-420
270
15
-285

2970
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1200
-300
240

0
-240
300
-1200

-5080
470
200

-490
200
470

-5080

2970
-285
15
270
-420
-255
5265

216
-45
24
-27
72
231
-1080

-972
93
-12
=27
228
-147

-3132

30
441

137
-13

-13
137
812

4 Fa

Fo
Fa

Fa

Fu

Fs

L Fe )
(A.1.8)

Errors in the approximations for F are greater than those for #,

but are found to be of the same order as the refined element discreti-

zation errors when 20 intervals per cycle are used.
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A.2 Matrices for the refined temporal element

1800 270 15 -1800 270 -15
288 21 ~270 -18 6

theg = ] 2 -15 -6 1
1260t 1800 -270 15

Symm. 288  -21

2

21720 3732 281 6000 -1812 181
832 69 1812 -532 52
6 181 -52 5

[n'] - 55440
21720 -3732 28]
Symm. 832 -69
°

-2520 660 60 2520 -660 60
-660 0 5 660 -156 13
11 1 -60 -5 0 60 -13 1
e 5040 -2520 -660 -60 2520 660 -60

660 156 13 -660 0 5

-60 -13 -1 60 -5 0
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A.3. Matrices for space-time element

The following matrices are obtained from the shape function of

(6.6.10), i.e.

U= ap + aXx +ast +ayx? + asxt + agt? + a;x® + agx?t + agxt?
5

343
+ a10t3 + allxat + alzxzt2 + a13Xt3 + a14X3t2 + 615X2t3 + a;6x°t



- 193 -

2€
9/1- 8vel

pe-  2€L 882 "WHAS
26l 9¢6- -85l 2g2ll

b2- Ol 8L 8L~ gt

pOl- 2€v 8L  vee- 9L spel

8L 8/~ 9le- 986  te- zel- 882

8/  vee- 9¢6- 898€  2EL- 9£6- P8SL  2czll 20088 — )
8- vv w2l 9 92 8l 8l 2€

by 2le- 2El 9¢6-  92- 8OL- 8/~  b2e-  9/l- 8bel

b2 2€l- 882~ ¥8SL  8l- 8/~ 9Lz 986 vz  2EL- 882

cel- 9¢6  ¥8SL  2e2ll- 8L  pz€ 9g6-  888E-  2El- 9¢6  ¥8SGL- 2€zll

9 9 8L 8/~ &  p- vz~ 2L~ vz- Ol 8l- 8L &t

92 80l- 8  vee- vy~ zle- 2EL-  9€6-  YOL- v 8/~ veE 9L 8bel

gL- 8L 9l¢ 9€6~ ve ¢l 88¢- v89l- 8l- 8/ 9le-  9¢6 ve 2€L  88¢

ﬁ.wml b€ 9¢€6 888E- <€l 9¢6  ¥B8GL- <2E2ll- 8L- wZE€  9¢6- 888E  2EL 9£6  ¥8SlL Nmmﬁw



- 194 -

1472
8¢5~
44
8Y
147!
v9¢-
c6L-

eL-

801
clLe-
891
9¢-
80L-
991~

89v-

88¢
¢bl
841~
124N
88¢-
¢6l
7861
801
9l¢-
897
9¢6-
801
91¢
897
9¢6

147743
9196~
¥9¢-
6L~
¢L8l
9194
¢lLe
89v-
96¢1
1247 %
991
89v
819
rvel

2 XA
[4YA
7891
9196~
¢tell-
891 -
9¢€6
vrol-
£88¢
89v-
9¢€6-
vvoL-
888E-

96
122!
826~
a6.L-
9¢-

9G1-
89y
aL-
80L-
aLe-
89~

88¢

YA
v8G 1L~
801L-

891~
9¢6

80L-
91¢-
891 -
9¢€6-

vrLE
919§
991
899~
819
6 L-
¢Le
89v
9621
124!

c¢elll
891
9¢6-
vyol
888¢-
89v
S€6
vr6l
888¢

96
by l-
8¢5
A YA
8Y
12741
¥9¢
¢6.

88¢

a6L-
7841
1274%
88¢-
¢6L-

v8GL-

vvLE
919S-
¥9¢
e6.
¢L8l

9199

¢eell
6L~
89 L-
919G~
ANAN A

"WWAS

96
vl 88¢
8¢S 6L  vvLE

¢6L ¥8GL 9199 mmw—w

£%0e5¢
113

=[]



- 195 -

APPENDIX B

B.1. Computer program using the basic temporal element

Prog. T is a computer program written to solve problems concerning
the resnonse of discrete or discretized continuous systems to external
forces. This program incorporates the approximations of (A.1.5) for
the time derivatives of the forces,and values of forces only are required.

Viscous damping may also be included in the solution.

The method of solution may be seen by reference to equations (4.2.4)

which may be written in the alternative form

{uy} {F} {ue} ‘
[H]{ }= [A]{ . ]» -[G] { } (B.1.1)
{vi} {Ft} {ve}

F being a function of Fy, and F;

Since all quantities on the right-hand side of equations (B.1.1)
are known, these equations may be further simplified to

[H]{u,} = {B} (B.1.2)

where {B} is a vector of constants,

These equations may then be solved by Gauss elimination, reducing
the [H] matrix to an upper triangular matrix. The value of the last

variable is then found, and by back substitution values of all the

other variables may be calculated.
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Since this calculation must be repeated for each step, any un-
necessary computation should be eliminated. The necessary operations
on the matrix [H] of (B.1.2) need be performed once only, and since
both sides of each equation must be treated in exactly the same way the
factors used may be stored as a Tower triangular matrix. These factors
are then used to perform the required operations on the {B} vector of
(B.7.2). These calculations are necessary since the values of {B}
will change at each step.

The data input required to use this program is:

NM = Number of degrees of freedom

ND = 0 if no damping, any other integer if system is damped
NF = Number of nodes at which forces are applied

NT = Number of time intervals used

DT = Size of time interval t

M[I,J] = Mass matrix, line by line

K[I,J] = Stiffness matrix

cl1,J]

Damping matrix

MV = Number of nodes having initial displacement and/or velocity
R = Number of any such node

U[R] = Initial displacement

U[R+NM] = Initial velocity

FC[P] = Number of a node at which a force is applied

F[P,R] = List of NT + 1 forces at this node

The output is a 1ist of displacements and velocities for each

value of time, i.e.

t LU u 5 U 5U etc.
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PROGRAM 1 BASIC  CLEMENT

'BEGIN;T'ngL' MM KK CCrGUIGT /G2 HO KT/ H2 T3, T4sDFU/DF1,SUM, T,

VINTEGER? NM,N:NF.IrJ;P,R,S,ND,NT,IN,Mv,Ns;
NM:=READ; N:=2%NM; ND:=READ; NF:=READ; NT;=READ:
'REGIN' 'YREAL' 'ARRAY! MrKsCLYNMo Y sNMI s GoHLTINSTNT,
UrFF[1!N]:Lf23N11!N'1]tF[1:f1F+2IO:NT];
VINTEGER' "ARRAY!' FCL1:NF+21;
DT:=READ:
"FOR' T:=1 'STEP' 1 'UNTIL' N 'pO°
"FOR' Ji:=1 'STEP' 1 'UNTIL' N ‘DO
GLI JJemsH{T,UYr=Cld, =0
YFUR' 1:=1 YSTEP!' 1 YWUNTIL' NM 'DO
"FOR' J:=1 'STEP' 1 YUNTIL' NM 'DO
MEI,J):=RFAD;
PFOR' T:=1 'STEP' 1 'YUNTIL' NM 'DO!
"POR' J:=1 'STEP' 1 'UNTILY' NM 'DO!
K[T+J]1:=READ:
'IF' ND=0 'THEN' 'GOTO' UND;
"FOR' T:=31 YSTEP' 1 'UNTIL' NM 'DO!
'PORY J:=1 'STEP* 1 'WUNTILY NM 'DO!
Cl1,J):=READ;
UND: T3:=30wDT; T4:5DT/420;
GO:=3/T3: G1:222%T4; G2:==6/60: HU:3=GU; H1:S19#T6; Hei1a=G2;
'FOR' T:=1 VSTEP!' 1 'UNTIL' NM 'DO?
"POR' Jr=41 'STEP' 1 'UNTIL' NM 'DO?

"BEGIN' GLI,J7:=G0%M{I,J]=G2%CLI J]=GT1%KL[I,J);
HOT,JT:=HO®MOT,0)=H2wClT,J)=H1%KLl,du; 'END';
GO:=4/T3; G1:=24wT4; G2:50) HUO:==1/T3; HT:G=9%T4! He:==176uU;

'FOR' T1:=1 'STEP' 1 tUNTIL' NM 'DO?

"FOR" J:=NM+1 'STEP' 1 YUNTIL' N 'DO!

"BEGIN' GLI,JY:=6G0wWMII , J=NMI=G2%CLI,J=NMI=G1*K[I,J=NM1;
HIL,Jd7:3HOXMET , 0=NMY=H2%ClI,J=NMI=HI*KLI,J=NM); 'END'S

GO:=35/T3: G1:18=13%Th; G2:%=6/60: HU:z~GU; H1:3=2¢%T64;

He:1==6/60;

"FOR' T:=NMeq 'STEP' 1 'UNTIL' N 'DO!

"FORY Jy=1 'STEP' 1 'UNTIL' NM *DO?

"BEGIN' GCI,J):3GOWM{I~NM,Jd)=G2wClI~NM,JI=GI*K[I=~NM,J7;
H{TsJ122HOWMET=NM, JT=H2wClI=NM,JI=HI*K[I=NM,J1; "END';

GOs==1/73; (1:5-3wTh; G2:=1/60; HU:34/T3; HI:i=4xTh; H2:30;

"FOR' 1:=NM+1 'STEP' 1 'UNTIL' N 'DO?

YFOR' J:=NM+1 'STEP' 1 'UNTIL' N 'DO!

"BEGIN' GII1,J1:=GO%MII~NM,J=NM1=G2¥CLI=NM,J=NMI=GTwKL{I=NM,J=~NM]:
HIT,d1:sHONMEI~NM, J=NM)=H2*¥C[I~NM, J=NMI=HI*K[T~NM,J=NM]:

IENDI’-

"FOR' pr=1 'STEP' 1 'UNTIL' N=1 'DO’

"FOR' T:=pe1 *STEP' 1 'UNTIL' N 'DO!

"BEGIN' L[1,P}:=HITI PI/HLP/PI:

"FOR' y:=p+1 'STEP' 1 'UNTIL' N 'DO'

H[I'J]:=H[IIJ]'L[IIPJ*HEPIJJ; YEND'

"FOR' 1:;=1 'STEP' 1 'UNTIL' N 'DO' UlI}:=0;

MV:=READ; 'IF' MV=Q 'THEN' *GOTO' NOM;

"FOR' ps=1 'STEP' 1 ‘UNTIL' MV 'DO!

"BEGIN' R:=READ; U[RI:=READ; U(R*NM]:=READ¥DT; 'END';

NOM: '1F' NF=p 'THEN' 'GOTO' ZEF;
'FOR' pi:=1 'STEP' 1 'UNTIL' NF 'DO'
'BEGIN' FC[P)}:=READI
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"FOR' R:=0 'STEP' 1 '"UNTIL' NT 100" . TOYER '
JEF VFOR' IN:=1 VSTER® 1 'UNTII.L'NL'T‘.?O Igé?:R].’-’KtAD- END';
"BEGIN' T:=CIN=1)wDT; NEWLINEC(1): PRINT(Y,5,5);
'FOR' IT:=1 'STEP' 1 VUNTIL' NM 'DO!
'BEGIN' PRINT(UL}]1,10,6); PRINTC(ULI+NMI/DT/5,6);
FFE1Y:=U: FFII+#NM)3=0; '"END':
PIF' IN=NT+1 'THEN' 'GOTO' LAS:
'IF' NF=0 'THEN' 'GOTO' COM;
"FOR' P:=1 'STEP' 1 'UNTIL' NF 'DO’
"BEGIN' Y:=FCIPY; '"IF' IN 'GE' NT=1 'THEN' 'GOTO' PEN;
"IF' IN=9 'THEN' 'BEGIN'
DFO:=(=25%F [P 0 +48*F [P 1)1=364F(PI2)+16%F(PrSI=S»F[P,4])/12;
DF1:3C=3wFlP,0)=10%F [P, 11 10%F[P,2)mb%xFLP,3)%F(P,4l)/12;
'GOTU' FMA:; 'END!';
"IF' IN=2 'THEN!
DFO:=(=3wF [P, 01=10wF (P, 11+ 18WFI[P,2lmbufF (P, 3J4F(P,6))/12
'ELSE!
DFO:=(F[PyIN=3)=BWF (P, IN=21+8*F[P/INI=F(P,IN*1]))/12;
DFAta(F(P, IN=2]=BwF (P, IN- 11 +8¥FLP/IN*1 ) =F(P,IN*2:)/¢;
PEN: "IF' IN=NT=1 'THEN' 'BEGIN'
DFO:=3(FIP/ NT=mdl=BwF (P, NT=8)1+8%FLP/NT=11=F(P,NTJ)/12;
DF123(aF P/ NT=6l1#b6%F (P, NT=3]<|B8*F[P , NT=lJ+10%FLP NT=1
+3xF[P,NTI)/12; YEND';
'IF' IN=NT 'THEN' 'BEGIN!
DFO:=(=Fl{pP , NT=GJ+b6"F[P,NT=31=18%F[P , NT=2J+1U%FL[Pp ,NT=1]
+3%F[P,NT))/12;
DF1 = (3%«F(P/NT=4)=16%F [P , NT=3)+36%F ([P, NT=21=48wF([P,NT=1
+25%FLP,NT1)/12; 'END';
FMAT  FFLI):i=(22%fF TP IN=1]+4xDFO+iI3%F [P INI=3wDF1)wT4;
FFOI4NMI t2Ce13%FE [P IN=1]=3wDFU~CLnF (P, INJ*bwDF1)wT4;
VEND ' ;
CUM: "FOR' T:=1 'STEP' 1 YUNTIL' N 'pO!
"BEGINY FFE[I]e==FF[]];
"FOR' J:=1 'STEP’ 1 'UNTIL' N 'DO’
FFOI):=fpr{1)=GLI,JdwUC ) YEND'S
'FOR' J:=1 'STEP* 1 'UNTIL' ~=1 'DO°
'"FOR' T:=J+1 'STEP' 1 'UNTIL' N 'DO’
FRCLI):=FF T )=FFLJIWLLT, )0
UCNTt=FFINI/HIN,ND:
"FOR' 1:=N=1 'STEP' =1 'UNTIL' 1 'DO!
"BEGIN' SUM:i=FF[1]:
'FOR' Jy=zN 'STEP' =1 'UNTIL' I+1 'DO!
SUM:=SUM=KLI,JIvULJ);
ULTI:=SUM/H{T,13:
'END';
"END';
IL-NDI;
LAS: tEND!';
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B.2 Computer program using refined element

Prog. 2 is very similar to Prog. 1, but since the refined element
uses acceleration as a generalized displacement, this quantity is now
incorporated into the program so that the vector of unknown variables
{u} is now [[u] [ut] [Usz]t. Since it is not always convenient to
specify the initial acceleration as well as displacement and velocity,
all initial accelerations are now calculated in the program using
equations (4.4.1). The matrix inversion required to find [m]'] is

obtained by Jordan's method.

Values of f and F are now required, and these are obtained by

using the approximations of (A.1.7) and (A.1.8).

The data input required is exactly the same as that required in

Prog. 1.

The output is the same as for Prog. 1 with values of acceleration

added, 1i.e.

t 1 u 1u IU ou ou Al etc.
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P .
PROGRAM _ 2 REFINED  ELEMENT

pT,PliFAR:

VINTEGERY SMsenaNF, 1,d,P,K,S,ND, NT,IN,MV,NS;

NPy =READ; Ni=3wNw; Npgs t«o, wk,-READ) NTi12READ;
PREGIN' 'YREALY TARRAY! M, K, COTANM, T yNMY  GoHLT ;N TIND
UrFFOT NI LI2IN, S IN=1],F (1 INF*2,0INTI, DT /L2LTINF+2]),
6YUsG14G2,H0, 0T He D113, 5J,PUE1gNMJ MILTINMeTINMD S
VINTEGERY 'ARRAY' FC[|iNF+2];

pTs=REaD:

VEUR® Tr=1 FSTEP' 1 *UNTIL' N 'DOO

VEORY Je=q4 ISTEP! 1 YUNTILY W 'DOU

"PEGIN' 601,011%=0; HII,41:=0; ‘ENp';

=

VRUSY Tex1 ISTEP! 1 YUNTIL' NM IpQ! FOLT1t=0:

"FORY Ti=q 'STEP' 1 TUNTIL' NM 'po!

VEUX' Jir=1 ISTERY 1 PONTIL! NM 'po!

MLL,Jd]i1=READ:

YEORY Ty=1 ISTEP' 1 VUNTIL' NM 1pQ°

VPORY Jy=1 ISTEPY 1 VUNTIL'! NM 1pg!

kLIIJ::=RtAD;

PRORY 1a=q ISTEP' 1 YUNTIL' WM V1000

VEUKY Jy=1 ISTEPY 1 YUNTIL' NM 'pO! cll,dl=0;

PIFU uD=0 '"THEN! 1GOTQ' CAV;

PEUR' Ty=1 1STEPY 1 VUNYIL' NM 1pQ"

YEURY Ja=1 1STEPY 1 YUNTIL' NM 1pO!

¢ly, l:erEAD:

GULT1,153.=118R0/DT7  GO[1,2):212672/nT3 bULTs3):=9¢4/DT:
¢U(2,11:=119850/D73: GO[2,2):i==792/p7; WULZ,3]):1==264/DT3
¢UI3,11:2=660/DT; GOLS,£)1=¢64L/DT @U[S3,3):=44/DT;
G101 ,11:257232wDT; G101,2):=852wDT: 01L{1,3):56¥%DT
61[2,1]-=—1%12rDT1 G1(¢,2):==522%DT; 01(e,3]1:352wDT;
C1(3,91:2181%DT: GI(S,¢)135¢%DT} CGT[3,5):1=5%DT;
Ge(1,131:2=7250; 21,1207 Wel1,5):=59;
6E12,111272604 Gafe,2)1=171¢6i LaLd,3)s=145;
6el3,7):=2=6680] GZ[5,2)1=3=143%; Cel5,8)1==11;
HULT,1):5=11880/0T; HO[1,2):3=792/D71; HU[1,3):=€064/DT:
KUL2,1):==11480/DT; A0[2,21:312674/nT3 hHU[2,31:3=924/D7;
FPUL3,17:2060/DT HOLS,2)1==924/D71 HULS,3):=858/0T]
RiL1,1):=1812%0T; R1[1,2)1==0382"DT; r101,30:1=52+pT1;
102,10 :=2=3732%DY)  HN1(2,2):1=5852%0Ty H1Lld,5]:15=6Y%DT
R103%,91]:2¢8TwDT M1[3,2):1==69%DT) R1LS,3511=6#0T
REi{1,1):20260] HE[1,2]1=2=17106; neLT,31:=2143;
hel2,1)12=7260; He (22,2110} heldrs):=59;
KEL3,71:=000; K205,2)15=55; hel3e3di=u;

"FUR' ki=142,% ‘Dot

'¢Opt Su=1,2,3% 10O

VEURY Tys(A=t)wiMed TSTEP! 1 JUNTIL! RwNM 1DO!

VEURY Jrs(S=f)wWNMs1 PSTEPI 1 VUNTIL! SwaM 1DO!

"EEGI !

GEI;JJ:=GU[R,SJ*M[I-(R-1)*NM,J-(551>wNM]—GZLRaS]

WCTTa (R wNM, Jm (ST ) whM]I=GIIR, S IR L~ (R1)*NM, Jm(S=1)wNM]
KOL, 00 =HULR, SIWMET=(R=1)*NM, J=(S=T)*NN]=HZLR/S)
*C Im (R ) wANM = (ST ) *NMI=HI LR SI®KII~(R=TI¥NM, S =(S=1)wNM])}

YEND '
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VEGR!' Pi=1 VSTEP' 1 'YUNTIL' M=t tpOt~ e
PPUKY Ty=peq SSTEP' 1 VUNTIL' N 1pOb
VEEGIN' LIT,PYtSH{I,PI/R[P.P];
VEORY Jiy=Pv1 I1STEP! 1 YUNTIL' N 'put
F»[IpJ]:=HlﬁI:J]~L[I,PJ*H[P,J']; IENDI;
PPCGRY Tp=1 ISTEP! 1 'UnTIL' N 'DoY Urlly=v;
MVy=READ; TIFY My=Q TTHEN' 1GOTOY NOM]
PPOUR' Pr=1 ISTERP! 1 VUNTIL! MV 1po!
VREGIN' RySREAD] ULRI:=READ; ULR+NM],SREAD®DT;
VENDY
NOME 'TFED NFs0 TTHENT 1GOTO! ZEF;
VPUR' Pi=1 'STEP' 1 'unTIL' NF 'png!
'REGIN' FCIPRPI3mREAD;
VEURY K=z TSTEP' 1 'UNTIL' NT I1p0' F[P,RItSREAD; 'END'}
ZEFs PFUKY INs=1 'STEPY 1 VUNTILY NT#9 1pO!?
PREGIN' TeS(IN=1)wDT; NEWLINEC1)] PRINT(T:5,35);
IRV IHs1 'YTHEN'  YHEGIN!
VIFY NE=O O YTHENY tGQOTOY XPR}
'POR' Py=q ISTEP! 1 VUNTIL' NF 'pgQ!
'PEGIN' Ty=FCEPY; FOLIJ:=FLP,ul; 'ENDY)
XPR: tviURy I-- ISTEPY 1 YUNTILY N4 1DO!
VFORY Jiy=1 ISTEPY 1 TUNTIL! NM 1DO!?
MITT,d3e=s VIFY DaJd 'THEND 1 JELSE'! 0;
VEUgr?Y Fr=q ISTEPY 1 PUNTILY NM=1 1000
VEURY I,“p+1 1STEP! 1 VUNTIL' NM 1DQ0
VEEGIN' FaCa=MII,PI/MLP,PY:
VEUR' Jy=p+t ISTEP' 1 VUNTILY NM 1DOQY .
FLY , Jd el J)=FrCwMip,J ]
tpURY Js=q TSTEPY 1 VTUNTIL' NM 'DO!
MELY, 1 sMILY d]=FACKXMILP,J];

VRIS

'FUR' Pz 'STEP' - 'UNTIL' 2 !Dui
VEUR' Timp=1 ISYEp' =~1 PUNTIL! 7 ruQe
YREGINY FAC:=MII,PYI/MIP,P]:

VpUKY Js=1 YSTEP' 1 ‘UNTIL® NM 'DO!
MILU, 0] esMIQT d]=FACKRMILP ]}

'FND';

Vb ORY Yizq YSTEP' 1 PUNTILY NM 'po!
VeORY Jyg=1 I1STEPY 1 VUNTIL' NM tDO' -
MITT,d)eamyly, JJ/M[I,IJ,

PFPURY Ti=1 ISTEP! 1 'uNTIL' NM fRO!

VEURY Ja=q ISTEPY 9 VUNTIL' NM 'DO!
FOFT)e=k0 (T =KL, dl%UlJI=C[I,JI*ULJeNM]/DT
PRUR?Y 13zq 'STEP!' 1 YUNTIL' NM 'DO!
"ECRY Je=q TSTEP' 1 'UNTIL' NM DO
ULT+2%NMT UL T+2aNMI+MI LI, JI*FOLJI*DT*DT
YEhDY;
PFURY Ts=q ISTEP' 1 'UNTIL' n~M 'DO!
EEGIN' PRINT(ULTI10,06); PRINTCULT+NMY/DT5+8)}
PEYETCUT Y +2#NA/(DT*DT)1506) 5
FETYY:e=0; FRCitNMIz=0) FFLI#g*NMII=0; VENDY)
IRV OIN=MTH VTHEN! 'GOTOY LASI
VIRV nF= PTHEND 1GOTOY COMG
VFUR' Py=zq ISTER! 1 'UNTIL' NF 'DO!
"MEGIN' 1,=5FC[P);
TRV [h=1 *THEN) VBEGIN!
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DFO:= (bl IwF [P, 01+1080%F(P,11=1350wp[P,2)¢+1200%F(P, S)=675wF(P, 6l
) +21OwWF[PISI=S50%F[P,6])/180;
DeFD = C(RICwR P (1 )=5152wF[P,1)+5265wF P, 21m5080%F[P3]
+?Q/0wF[P.AJ-972*F[P,S]*137*FIP:6])/15O’
PFY = (=XUYFIpe0) =231 wF (P, 11+450%FLP, ClmSUUNF P, 3]+ 150%F (P4
) “L5¥FIP,51+6wF[P,6]))/160;
neéEl :=(1,§/*F[P10]'147*F[Pl1]-255*"{;3,2]#4(0*]‘[P,S]HZSS*F[PI"*]
+OURELP S r13%FLPR,6))/180;
nTlrItanity pa2lpir=n2F1;
GUTOY Frpas VYEWDY;
NFOT=DILRIY DEFO3=DlIP];
TFY Ins2 YTHENY YBEGIN!
DFV 12 (O%FLP,01m?2%FIP,11=105%F[P,2 e2b0wFLP,31nQUuxFLP,&)
+PLYFE[PyST=8*F[P,06])/160V]}
PDEFN = =13%F [P, 01+228%F (P, 1 1=420%Fp,21+C00UFLP,S1+15%F(P/s4]
~12%FlpsSIe2nFlP,61)/180;
DITPIe=nFY; D2LPlt=D2F1;
GUTQY Fmad YEND';
TFY ITHsNT=2 TTHFNY 'BEGIN!
DFA 1= S %f [P/ NT=61=264%F [P, NT=51+Q0"F P/ NT=4]1=240wF [P, NT=3]
+1 00w E [Py NT=Llt/exp [P NT=1)=6wF(P,NT])/180;
BEFT 12 (P+«F[p, NT=01=12%FLp,NT=2I#15%F [P, NT~&]1«200%F [P, NT=S5]
“bPO0RF(P/NT=LI+2c8wF [P, NTm1lmt3%F[P,NT])/180;
DILPIe=nfly n2(PY1=0cFT;
(,UT{)I Fras 'END';
TFU [h=nT=1 1THENY 'REGIN'
DFY es(=a*xF [P, NT=01+45%FLP NT=5]mq50wF P, NTmG]+30G0%FLP,NT~3]
wlSO0WF[PINT=C 14241 =f [P, NTw) J#3UXELPINTII/T180;
NEF 1S (i SwF [P NT=0 w3 *F LR NT=B)=dRO*KF[PINT=6])+470*F[P/NTw3]
“IS S wE[PINT=2)=iG6T7*F (P, NT=11+#137%FLPNT1)/180;
PIEe):=nFl; p2LP1ISDLFY
CUTOY Fmad VEND'S
1rdt IH=EYT VTHENY YBEGIw!
DFY s2(S0wF [P, NT=61=216%F [P, dT=D1+0/5%F[PINT=4]mTCUU*F[PINT=3]
A5 OwE P, aT=2i=1080wF R/ NT=1 144 % FL{P,NT]) /180
BEET 3¢ wF[FPaNT O Im072%F [P NT=51+2570%WFLP/ NT=4]l=0U80%F [P, NT=3]
$E265uF LR NT=2 w81 5enF (P NT=1 1481 2%FIP/NTT) /180
VEUTOY Fmad VENDT
PFAt2(anaflP, IN-3]+27%F (P IN=21m130wFIPsIN=T1+150wFip IN+1]
e xFE (R IN#2 iv3*xFLP IN®31) /1007
[d“" ::(?*FEP’IN_j]_Z/*F[P,IN-Z]&-ZfUiFLPO‘Nﬂ'lJ"#g(}*FLPIIN]
+27U*F[P,1N*1]'27*F[p'IN+2]*a*F[P'1N+5])/1°O’
L1PPYs=nEl) D2LPYIs=DLRTS
FMAT  FR(10;=(3732vF[Pyin=11+832%DF0+6770CFO
s1312%F [P IN]m5352%DF1+52wDEF1)*DTi
FF[I*NMjgz(.181g*FLP,1N—1]-Dbd*DFU-bZ*DéFO
_3732*FLP,1Nj+852*UF1*00*DdF1)*DT:
FELI1+2wNMYye (187 %F P, IN=11452%DEU+EwD2FY
+281*F[p,INJ'°9*DF1+O'D£F1)*DY;

YENDY '
COMt vpugr I3=1 YSTEP' 1 'UNTIL' N 'DO!
FROIDg3=FFLIS
=4 VSTEP' 1 TUNTIL' N 'DO!
FELT)mGLT,J1™UlJI; VEND';
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=1 ISTEP! 1 VUNTI(' Ne=1
=)%1 1STept? 1 VUNTILY W

FEIL):2rFLIdmFRIYInLIT,d]

ULNYs=FFTINY/HIN,ND;

YEURT Tarsp=1 VSTEP' =7 TUNTIL! 1

VR EGIN' SUMSEFLIYY

TRURY Uizt TSTEP! =1 VUNTIL! [+1
SUMs=SUMHIT,J)IwulJ];

ULl s=sSum/nlr ell;

VEND!
PENDY
L - A
tpipt

“m we % we

1pOt
IDOI

rbge

1Dy
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B.3 Computer programs for [m*] and [k*] matrices for

space-time elements

Program 3 gives [m*] and [k*] matrices for an 8-term shape function

of x and t

T.€. U = a; + aXx + ast + ayx? + asxt +

Each term is of the form axrtS where r and s may have any value.
In the form given, the generalized displacements are the deflections and
stopes at each corner of a rectangular space-time element.

t1\3 4

P~t— d—v—

; - X
'Ln ) ___«wf,fl

The data required is

N = Number of terms in the shape function

R,S = Consecutive values of the indices of x and t respectively
in each of the N terms.
X,T = Values of x/% and t/t respectively at each node in the order

in which the matrices are required.

[x], [x]—], [k*] and [m*] matrices are printed in that order.

Velocity, acceleration, curvature etc. are readily incorporated as
nodal displacements. One-dimensional elements in space or time are ob-
tained by using zero indices for the dimension not to be included i.e.
for a temporal element

2
U= axPt? +oax’t + asxt? + ...



PROGRAM 3 SPACE - TIME ELEMENT

=7 TyBEGINY 'REAL' FAC, suw.TrM-
e YINTEGERY T 4U Ny oW, X, ToFall;
"ARRAY! A[1;20;1:£UJ:
"PROCEDURE' FOTAAALA,N(IFAIL);
"WALUE' N; YINTEGER! N,IFAIL; 'ARRAY'! A;
YALGOL Y
NiI=READ;
"BEGIN' 'REAL' tARRAY! UeVyKoWETINGTINT Ry Sy URITSTIND
: YFOURY Ji3=1 'STEPY 1 FUNTIL' N 'Dot
[ "BEGIN' R[JI:=READ] S[Jli=READ] YEND?;
: "FUR' 13=1 'STEP' 1 VYUNTIL' N 'DO?
| VFORY Jg=1 YSTEP' 1 YUNTIL' W 'DOY ALl¢d):=13
| YFORY D=1 'YSTEP' ¢ VTUNTILY N=1 DU
3 'BEGIN' X:=READ; Ti=READ;
j "FUR' J3=1 'STEPY 1 TUNTIL' N 'DO!
"BEGIN' ALL, JJe=ALT, ddx (v kY RLEJI=0 TTHERN' 1 'ELSE' X)
w(VIF' S{JI1=0 VIAENY 1 YELSE' 1)
ALTHY U e=ALT+ I *REJIw(TIFY REJI=T "THENT 1 PELSE' X)
»(VIFY SLJJds0 "THeN' 1 'eLSE' T

YEND Y YEnD';

YFORY Tgs1 YSTERY 1 YUNTILY N 'Oo¢

"BEGIN' MNEWLINEC(1)i

VFORY Jgz1 YSTERY T VUNTILY N DO
PRINTCALT»J),2:007 '"ENDY; NEWLINECS);
FAIL:=1;

FUTAAA(A Ny FAEL)

YFURY Tai=1 TSTEFY 1 YUNTIL' N 'O

"BEGIN' NEWLINECT)

PFURY Jp=1 !STEPY T tUNTILY N OTDO!
PRINT(A[IIJ] 1!2)1

YENDUY,

NEWLINE(3)

VEURY Tg=1 YSTEPY T VUNTIL' w 'DOY

TEURY Jy=1 'STEP! 1 rUNTILY N ‘DO

"BEGIN! UPT d13=RIJIF(RINI=T) % ALJs LT3
VLI, Jd1eSiale ATUITT; KL 0 dg=0d Wiy de=0i fead!
VEORY Jy=1 'STEF' 1 'UNTIL' N 'DO! o )
"HEGIN' URLJ]:= vIFY RIJ] PGEY 5 'THEN' RLY)=Z 'Else ! Oy

TSCJ)s= VIF! SLJD 'GE' 2 'THEN' SUJ1=1 'ELSE! Ui TENDYS
PFURY Dg=1 'STEPT 1 'TUNTIL' N DO

VEURY Ji=] TSTERPY 1 VUNTIL' N 'DO?

VFORY p==1 PgTEPY 1 TUNTIL' N 'DO!

VFURY Q=1 'STEPY T VUNTIL' N oo? o
BLGIN' KLI1¢d1:=KLT,J1+ULTPI#ULIIQ]/ CQURLPIFURLII )

¥ (gLPI+SLRI*1) )
WLI,JJ;:N[I,JJ+V[1,p]*V[JIUJ/((TS[PI*TS[Q1+1)*(K[P]+RLQl+1));
'END'; . \

VEORY Tg=2 'STEP'V 1 FPUNTIL' W pot

VFURY Ja=1 'STEP! 1 (UNTIL! I=1 1potr .
"BEGIN' KLIgJd)i3KlJdel)d WElsgJdlizwid,enli VENDYS
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PFORY 13=1 'STEPY 1 VUNTIL' N 'DQ? o T
"BEGIN
PFORY Ji=1 TSTEP! 7 VUNTIL' W/¢ 1DOY PRINTARLIZJIxZ5200rne 503
NEWLINE(T): VYENDYS
NEWLINE(3)
YEURY T3=1 YSTERPY T 'YUNTIL' N 'L0
*BEGIN!
PFUR' Ji=N/Z2+1 YSTEPY 1 2vyunTILY N 'D0OY PRINTUKLI 152520000, %);
NEWLINEC1); VEND';
NEWLINE(3);
YFURY 1331 "STEP!' 7 VUNTIL' N 'up?
"BEGIN' '
YEURY J=1
NEWLINECY),
NEWLINEC(3);
"FORY T3zt ¥
"BEGIN
PEURY JysN/Z2+1 PSTERY 1 VUNTILY N O'DOY PRINTUWLI JI*Zb200,6,5) ]
NEWLINE(TY) YEN®B!,
YEHD Y

TEND Y,

STEPY 1 VUNTILY N/Z 'DUY PRINTCWLI J)1a29200,5,3);
TENGTY;

STERY T vUNTILY & oo
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