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We report on the inscription of a fibre Bragg grating into a microstructured 

polymer optical fibre fabricated from TOPAS cyclic olefin copolymer. This 

material offers two important advantages over poly (methyl methacrylate), 

which up to now has formed the basis for polymer fibre Bragg gratings: 

TOPAS has a much lower water affinity and has useful properties for 

biosensing. The grating had a Bragg wavelength of 1569nm and a 

temperature sensitivity of -36.5±0.3 pm/°C. 

 

 

Introduction: Over the last twenty years, silica fibre Bragg grating (FBG) 

sensor technology has been developed to the point where it is now mature 

enough to find commercial application in a variety of fields, such as structural 

health monitoring and down-hole sensing for the oil and gas industry. Grating 

sensors in polymer optical fibre (POF) have been studied for about 10 years 

[1], but remain much less well developed. Nevertheless there appear to be 

good reasons for pursuing that development due to the rather different 

properties of POF compared to silica, especially its much lower Young’s 

modulus [2] and its ability to survive much higher strains [3].  

Research to date on POF gratings has essentially involved just one material, 

poly (methyl methacrylate) (PMMA), with fibres either being fabricated entirely 

out of this material, in the case of microstructured fibres [4], or based on this 



material with the addition of dopants in the fibre core, in the case of step index 

fibres [5].  However there are many other transparent polymers with 

properties that might be utilised for sensors, if they can be drawn into fibre 

and if they possess a suitable photosensitivity to permit grating inscription. 

One example is TOPAS cyclic olefin copolymer. Unlike PMMA, this material is 

chemically inert, but it has been shown to be possible to fabricate localised 

biosensors by treatment with antraquinon followed by UV activation [6-7]. 

Furthermore, TOPAS has a much reduced affinity for water compared to 

PMMA [8]. which may prevent the cross-sensitivity to humidity that is an issue 

for PMMA based FBGs [9]. Interestingly, Topas is also an ideal material for 

terahertz fibres, because it becomes transparent with strongly reduced 

material dispersion in the terahertz frequency range [10]. 

Photosensitivity has been reported in some early TOPAS fibre [11], but the 

results obtained then were not very reproducible, the grating was visible in 

transmission but curiously not in reflection and temperature testing suggested 

a surprisingly large and positive Bragg wavelength sensitivity. In this paper we 

report on the successful and repeatable inscription of FBGs in microstructured 

fibre fabricated from TOPAS, and characterise the temperature response of 

the devices, which we now repeatedly and reliably measure to be negative. 

 

Experimental: A solid cylindrical preform of TOPAS 8007-F-04 of diameter 6 

cm was drilled with two rings of 3 mm air holes to provide light guidance and 

drawn down to an all TOPAS fibre in a two stage process. The resulting fibre 

had a diameter of 270 m, a hole pitch of 8.5 m and a hole diameter of 3.8 

m and was single mode at 1550nm; see Fig. 1. Grating inscription was 



carried out using a 325nm HeCd laser commonly used for grating fabrication 

with PMMA based fibre (Kimmon IK3301R-G). The fibre was mounted 

horizontally in a v-groove for support and the beam focussed down from 

above onto the fibre using a cylindrical lens of focal length 10cm. The UV light 

passed through a phase mask of period 1034.2 nm optimised for 325 nm light 

and supported directly on the fibre. The growth of the grating was monitored 

by butt coupling an angle cleaved single-mode silica fibre lead from a 2x2 

coupler to the TOPAS fibre, which had been cleaved using a razor blade at 

room temperature. The grating was illuminated using a broadband light 

source (Thorlabs, Broadband ASE light source) and monitored on an optical 

spectrum analyser (HP86142A). A small amount of index matching gel was 

used to reduce Fresnel reflections from the end of the silica fibre. With a 

beam power of 30 mW approximately 45 minutes were required for the 

gratings to reach saturation, see Fig. 2. The reflection spectrum from the 1.8 

mm long grating is shown in Fig. 3; the Bragg wavelength is 1567.9 nm and 

the bandwidth (full width at half maximum) is 0.75 nm. 

TOPAS has the same high attenuation as PMMA in the 1550 nm spectral 

region, which limits practical fibre lengths to around 10 cm. Consequently, 

following inscription, the grating was glued to the end of a single mode silica 

fibre lead to facilitate temperature testing. The grating was placed in an 

environmental chamber (Sanyo Gallenkamp) with the humidity held at 55% to 

remove any possibility of this influencing the measurements. The temperature 

was varied in the range 20 to 35 °C and the results shown in Fig. 4. From the 

data, the temperature sensitivity is obtained as -36.5±0.3 pm/°C. This value is 

not very different from that obtained with PMMA based FBGs at a similar 



wavelength (-43 pm/°C  [12]) and confirms that the preliminary data obtained 

from the first TOPAS FBG showing a positive wavelength shift was in error 

[11]. Whilst the data presented in this paper come from one grating, several 

were fabricated in the TOPAS fibre, with all exhibiting similar behaviour. 

One disadvantage of TOPAS compared to PMMA is its glass transition 

temperature of 78°C [8], which is almost 30°C less than that of typical PMMA. 

This provides an upper limit on the useable temperature range. 

 

Conclusion: We have proven definitively that fibre Bragg grating sensors can 

be reliably recorded in fibres fabricated from TOPAS cyclic olefin copolymer. 

For the first time this permits the development of POF based strain sensors 

that should not suffer from significant cross-sensitivity to humidity and also 

aids the development of novel grating based polymer fibre biosensors. 

 
 
 
 
References 
 
1 Xiong, Z., Peng, G., Wu, B., and Chu, P.: ‘Highly tunable Bragg 

gratings in single-mode polymer optical fibers’, IEEE Photonics Technology 

Letters, 1999, 11, (3), pp. 352-354 

2 Brandrup, J.: ‘Polymer Handbook’ (Wiley, 1999. 1999) 

3 Aressy, M.: ‘Manufacturing optimisation and mechanical properties of 

polymer optical fibre’. MPhil, Birmingham University, 2006 

4 Dobb, H., Webb, D.J., Kalli, K., Argyros, A., Large, M.C.J., and van 

Eijkelenborg, M.A.: ‘Continuous wave ultraviolet light-induced fiber Bragg 



gratings in few- and single-mode microstructured polymer optical fibers’, 

Optics Letters, 2005, 30, (24), pp. 3296-3298 

5 Peng, G.D., and Chu, P.L.: ‘Polymer optical fiber photosensitivities and 

highly tunable fiber gratings’, Fiber and Integrated Optics, 2000, 19, pp. 277-

293 

6 Emiliyanov, G., Jensen, J.B., Bang, O., Hoiby, P.E., Pedersen, L.H., 

Kjaer, E.M., and Lindvold, L.: ‘Localized biosensing with Topas 

microstructured polymer optical fiber’, Optics Letters, 2007, 32, (5), pp. 460-

462 

7 Emiliyanov, G., Jensen, J.B., Bang, O., Hoiby, P.E., Pedersen, L.H., 

Kjaer, E.M., and Lindvold, L.: ‘Localized biosensing with Topas 

microstructured polymer optical fiber: Erratum’, Optics Letters, 2007, 32, (9), 

pp. 1059 

8 www.topas.com 

9 Zhang, C., Zhang, W., Webb, D.J., and Peng, G.D.: ‘Optical fibre 

temperature and humidity sensor’, Electronics Letters, 2010, 46, (9), pp. 643-

644 

10 Nielsen, K., Rasmussen, H.K., Adam, A.J.L., Planken, P.C.M., Bang, 

O., and Jepsen, P.U.: ‘Bendable, low-loss Topas fibers for the terahertz 

frequency range’, Optics Express, 2009, 17, (10), pp. 8592-8601 

11 Webb, D.J., Kalli, K., Zhang, C., Komodromos, M., Argyros, A., Large, 

M., Emiliyanov, G., Bang, O., and Kjaer, E.: ‘Temperature sensitivity of Bragg 

gratings in PMMA and TOPAS microstructured polymer optical fibres - art. no. 

69900L’. Photonic Crystal Fibers II2008 pp. L9900-L9900 



12 Webb, D.J., and Kalli, K.: ‘Polymer fibre Bragg gratings’, in Cusano, A. 

(Ed.): ‘Fiber Bragg Grating Sensors: Thirty Years from Research to Market’ 

(Bentham eBooks, 2010) 

 
 

Authors’ affiliations: 
 
I.P. Johnson, L. Khan, D.J. Webb 
(Photonics Research Group, Aston University, Birmingham, B4 7ET, UK) 
 
W. Yuan, A. Stefani, K. Nielsen, O. Bang 
(DTU Fotonik, Dept. of Photonics Engineering, Technical University of 
Denmark, DK-2800 Kgs. Lyngby, Denmark) 
 
 H.K. Rasmussen 
(DTU Mekanik, Dept. of Mechanical Engineering, Technical University of 
Denmark, DK-2800 Kgs. Lyngby, Denmark) 
 
K. Kalli,  
(Nanophotonics Research Laboratory, Cyprus University of Technology, 
Limassol, 3036, Cyprus) 
 
 

Corresponding author: 
David Webb d.j.webb@aston.ac.uk 
 

 

 

 

 

 

 

Figure captions: 
 

 
Fig. 1 Microscope image of a cleaved end face of TOPAS fibre of diameter 

287 m. Inset: magnified view of core region. 
 
 
Fig. 2  Growth in reflectivity as a function of time during grating inscription. 
The background noise level is around -77 dBm. 
 
 
Fig. 3  Reflection spectrum from FBG in TOPAS fibre. 
 
 
Fig. 4. Thermal response of TOPAS FBG. 
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Figure 2 
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Figure 3 
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Figure 4  
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