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SUMMARY

This thesis describes an investigation of the problems
and queries surrounding the theory of Urbain Jean Joseph
LeVerrier for the discovery of the planet Neptune.

Each step of the ana]ytic treatment for each of his
three solutions has been systematically examined and a
comparison of his results with those of the present author
is provided.

The effect of a variation in the number of perturb-
atory forces and equations of condition is taken into
consideration, and orbital elements determined using all
the available observations, culminating with a comparison
with the final solution as derived by LeVerrier.

For the first time, following LeVerrier's procedure,
solutions "are given for different values of the ratio
between the semi-major axes of Uranus and Neptune, compar-
ing the orbital elements obtained with those of the true
values available following its discovery.

The analysis concludes with a derivation of solutions
at other epochs, and seeks to determine to what extent
LeVerrier's solution was correct only at the time of
discovery of Neptune.

Neptune

Orbit
Perturbations
Uranus



CONTENTS

INTRODUCTION

LEVERRIER'S FIRST SOLUTION

LEVERRIER'S SECOND SOLUTION

THE ELEMENTS OF THE DISTURBING PLANET -

LEVERRIER'S FINAL SOLUTION

4.1 Perturbations in Longitude

4.2 Perturbations in the Radius Vector

4,3 Second Order Terms

4,4 Equations of Condition

THE EFFECT OF OTHER INEQUALITIES ON THE

DEGREE OF ACCURACY OF THE ORBITAL

ELEMENTS

5.1 Retention of Four Principal
Inequalities

-5.2 Variations of the Semi-Major Axis

5.3 Retention of Six Principal
Inequalities

SOLUTIONS FOR OTHER EPOCHS

CONCLUSION

APPENDIX

REFERENCES

BIBLIOGRAPHY

ii

Page

15

37
42
47
50
54

68

76
79

79

. 84

101
107
116
117



ACKNOWLEDGEMENTS

I owe a note of appreciation and gratitude to
Dr Clive J Brookes
for suggesting the project, for his kind supervision,
invaluable discussions, guidance and continuous

encouragement throughout all the stages of the research.

I am indebted to my family, for their unfailing

understanding and invaluable helpfulness.

My sincere thanks to Mrs Barbara Tennant, for her

care and speed in typing this work.

i1



1. INTRODUCTION

One of the most remarkable episodes in the history of
astronomy occurred on the evehing of March 13th, 1781,
when Sir William Herschel, whilst pursuing an ambitious
project of examining every section of the northern skies,
discovered near the foot of Gemini, a strangely blue object
of unusual size. Suspecting that it might be a comet, he
carefully noted its position. Further observations on the
following evening confirmed its motion and the discovery

was promptly conveyed to Greenwich and Oxford,

For a comet, the new object was certainly pecuTiar.
It was so starlike that even experienced observers had
difficulty in finding it. Nevil Maskeline, the Astronomer
Royal, suspected that the object was a planet and not a
comet, an idea quickly confirmed by the Russian astronomer,
Andres QOhann Lexell, who happened to be visiting England
at the time. Lexell's computations showed that the new
object moved in a nearly circular orbit, always remaining
more distant than Saturn which was the most distant planet
then known. The new object was Uranus, the seventh planet

belonging to the solar system.

Joseph Jerome Lafrancais de Laland was among the first
to prove by calculation of its orbit that Herschel'’s object
was a planet. Because of the smallness of the eccentricity
of the then known planets, it was first assumed that the eccent-
ricity of the new planet Uranus was also small, and accord-

ingly the early investigations by Lexell (1781), Laland
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(1782) and Laplace (1783) were based on the assumption of

a circular orbit. As more observational material became
available Laplace (1784), Boscovitch (1785), FixImillner
(1789) and others made several attempts to determine

simple elliptic elements, whilst Oriani (1789), Delambre
(1789) and Laplace (1802) took into account the corrections
to be made due to the perturbations of the planet by
Jupiter and Saturn. As a result of the steadily improving
values found for the elements of the orbit, it soon became
possible to determine wifh reasonable accuracy the

position of Uranus prior to its discovery.

As Uranus was a little fainter than stars just
visible to the naked eye it occurred to the German astron-
omer Johann Elert Bode that possibly Uranus had been
mistaken for a star in the past, in which event its position
would be recorded in the contemporary catalogues. A search
of the older catalogues proved more successful than had
been anticipated, for Uranus had been observed on no.fewer
than 19 different occasions, the observations most remote
in time being those made in 1690 by Flamsteed, the first
Astronomer Royal. The observations made between 1690 and
1771 were referred to as 'ancient' observations to distin-
guish them from the possibly somewhat more reliable
observations made subsequent to 1781 and which later were
termed the 'modern' observations. The ancient observations
had the advantage of covering rather more than one complete
revolution of Uranus in its orbit, while the modern

observations covered rather less than half a revolution,



but were regarded as being more accurate than the ancient

ones.

However, even with this wider range of observations,
all efforts to produce a satisfactory ephemeris proved only
partially successful. For, although the theories appeared
to be satisfied by the modern and, where applicable, the
ancfent observations, the disagreement between observ-
ations and theory'became significant within a few years of

publishing tables of the planet.

In 1821 the French astronomer, Alexis'Bouvard,
published his tables for the three exterior major planets,
Jupiter, Saturn and Uranus, having forty years of modern
observations available for the latter. Bouvard had faced
a major problem. No orbit could be found that would
satisfy both ancient and modern observations. If the two
series of observations were utilised, the discrepancies
between observation and theory were excessively large,
ranging from -40?2 to +32T0 sexagesimal. On the other
hand, if the orbit was derived from the modern observations
alone the largest discrepancy was reduced to +10?5. Using
the ancient observations alone, the largest discrepancy
amounted to 73?8. As a consequence, Bouvard rejected the
ancient obserﬁations as unreliable and based his tables
solely upon the modern observations, writing in the
introduction: "I leave to the future the task of determ-
ining whether the difficulty arises from the inaccuracy

of the ancjent observations or whether it depends upon



some strange and unknown cause which may have been

acting on the planet."

Laplace spoke of "some extraneous and unknown in-

fluence which has acted upon the planet."

Within a few years of the publication of Bouvard's
tables, Uranus was seen to deviate more and more from the
predicted positions, the discrepancy in longitude

increasing alarmingly.

The opinion became widespread aﬁong astronomers that
there must be an unknown body disturbing the motion of
Uranus. In the late eighteen thirties Bessel persuaded
one of his students, F. W. Flemming, to attempt a comput-
ation of this unknown body from the deviations in the
orbit of Uranus. Unfortunately Flemming died just after

the work had started.

In 1841 the discrepancy in geocentric longitude
"
reached 70 , and it became evident that these discrep-
ancies were almost certainly due to the presence of an

unknown planet.

Such was the position in 1841 when John Couch
Adams, an undergraduate at St. John's College, Cambridge,
penned his celebrated memorandum of July 3rd in which he
recorded his determination, as soon as he had taken his

degree, to investigate the irregularities in the motion



of Uranus on the hypothesis that these arose from the
perturbation of an unknown planet. Adams began his
investigations, producing between 1843 and 1846 six

solutions of ever-increasing accuracy.

In the meantime, the pfoblem was undertaken by
Urbain Jean Joseph LeVerrier (1811-1877), quite independ-
ently of and unknown to Adams. In the summer of 1845,
LeVerrier began a careful study of the nature of Ehe
irregularities of the motion of Uranus and the cause of
the unexpected inequalities, seeking to discover the
direction and magnitude of the disturbing body. There
appeared to be three possibi]ities; Either

(i) the irregularities were caused by a large
satellite accompanying Uranus, .
or (i{) a comet had suddenly disturbed the motion
of Uranus,
or (iii) the irregqularities were attributable to

the presence of a hitherto unknown planet.

The first possibility was ruled out as the correspond-
ing oscillations produced in the motion of Uranus would be
of short period whereas precisely the opposite results

from the observations.

As for the cometary theory, LeVerrier was well satis-
fied with the movement of Uranus between 1781 and 1820
without any recourse to any extraordinary force. However,
from about 1826 onward, Uranus began to deviate so much from

its predicted position that such a theory became untenable.



There remained the third hypothesfs, viz., that of a
body continuously acting upon Uranus changing its movement
very gradually. From what was known about the solar system
at that time, such a body could only be a hitherto unknown

planet.

Thus motivated, LeVerrier inquired: "Is it possibie
that the inequalities of Uranus could be due to the action
of a planet situated in the ecliptic at an average
distance double that of Uranus? If so, where is this
planet actually situated? What is its mass? What are the

elements of the orbit which it traverses?"

On 1st June, 1846, LeVerrier presented his first
results to the Academy of Sciences, and on 23rd September
of that year Neptune was discovered. When details of the
orbit of the new planet finally became available it was
found that the elements of both Adams and LeVerrier were

almost totally erroneous, as demonstrated in the following

table:

Orbital Elements LeYerrier . Adams - Neptune
Semi-major Axis (A.U.) 36.15 37.25 30.07
Eccentricity 0.1076 0.1206 0.0086
Longitude of Perihelion 284° 457 299° 11! 44°
Mass of sun/Mass of Neptune 9300 6666 - 19300

True Longitude
~(at time of discovery) 326° 0 329° 27! 326° 57'

For this reason it has always seemed desirable that an



investigation be conducted into the problems and queries
surrounding the theoretical procedures involved in the
theories of both Adams and LeVerrier to see to what extent
their solutions were graced by good fortune. Whereas the
work of Adams has been thoroughly investigated, (Brookes,

1970), that of LeVerrier has not.

The present research is a systematic analysis of
LeVerrier's theory and seeks to determine to what extent
LeVerrier's solution was correct only at the time of
discovery of Neptune. This work is divided into six main

sections:

The first section is an examination of the validity
of the various stages of LeVerrier's first solution,
including re-calculations of the e1ement$ of Neptune
using the same data and making the same assumptions as
LeVerrier. The second and third sections represent
analyses of LeVerrier's second and final solutions,

respectively. Section Four includes a determination of

t

the elements of Neptune for different values of a =

=S ol

0.49, 0.51 up to o = 0.60, to determine to what exte
LeVerrier's statement a < 0.5475 is true. Section Five
contains the derivation of orbital elements determinable
at times other than 1845, The final section provides a
comparison of the results of LeVerrier, Adams, Brookes
and the present author in order to examine the final

discrepancies in the orbit of Neptune.



2. LEVERRIER'S FIRST SOLUTION

The main aim of this solution is an initial determin-
ation of the mass m' of the disturbing planet. Let a
denote the semi-major axis of the orbit of Uranus, e its
eccentricity, & and ¢ the'1ongitudes of perihelion and of
the epoch respectively. Let a', e', o', ' denote the
corresponding orbital elements for Neptune, its mass m'

being related to the ten-thousandth part of the sun's mass

which was taken as unity. We write

a n'_ 3 _ .
g-a, and—n-—a =V , (2.1)

n,n' denoting the mean motion of Urahus and Neptune

respectively.

If v, represents the calculated Tongitude of Uranus
at a given epoch t as determined from Bouvard'g tables,
and n+An, e+Aeg, e+ae'and B+A0 represent the corrected
values of the orbital elements, then the corresponding

error in Bouvard's longitude is

_ ov, oV , OV 3V ., ~
&V - Eﬁ &H + 38.&8 + ggnﬁe + gﬁ.ﬂw {

. s Vv .Bv 9V
the coefficients a ° 3e ° 5e and

= s being well-known

@ |
g=<

functions of t, n, ¢, e and ®. Thus, if Vo denotes the

observed longitude for the epoch t, then

_ 3 oV vV IV~ 2
v -yv. =P + EH.AH + EE.QE + ggoﬁe + aﬁ.ﬁw" (2' )

P denoting the perturbation in v due to the effect of



Neptune.
The origin of time was taken at midnight between 31st

December, 1799:and Tst January, 1800.

The perturbations in heliocentric longitude

introduced by LeVerrier in his first solution took the

form:
@O
v = m'P- sin[(n'-n)t + e'-¢]

@

+ m'P sin[2(n'-n)t + 2(e'-€)]
()

+ m'P sin[3(n'-n)t + 3(e'-€)]

&
e . iy
m'N sin(n't + ¢'-)

@ "

+m'N  sin((2n'-n)t + (2¢'-€)-d]
(3)

+ m'N sin[(3n'-2n)t + (3e'-2¢)-0]
+

(1 i
m'e'M sin(n't + £'-%")

(2)
+ m'e'M sin[(2n'=n)t + (2e'-e)-a']
G N
+ m'e'M sin[(3n'-2n)t + (3e'-2e)-0'] (2.3)
the coefficients di);N“) and M(1)(Vi = 1,2,3) being
functions of Laplace coefficients and their derivatives.

For example,

() 4 (1) ?
= el e (“"’a’_(') STV IZY)

db
xla=a o=




(1) 1
b being the Laplace coefficient associated with P |

X
with similar e??ressio?§ for the other terms. The
i i
coefficients P )and M  are independent of the eccentri-
@ '

city e, while N is dependent on e.

For higher orders of eccentricity, the only pertur-
bations of any significance are those of the second order,
which depend on the argument (3n'-n), and become consider-
able because of the smallness of this argumént. The
corresponding perturbations of the.mean motion contain
'the square of this argument as divisor, the relevant
equation giv%ng rise to this term being of the form

déﬁ

dt?

2 ldR
- 3an*m'gg . (2.4)

wherein,

-4 & | ~
R =+ — Bcos (32'-2~20)
a

+ g8’ . 300 -0t -5
—=— Ccos (32'-2-0'-®)

el?. - :
— D cos (32'-2-200") , (2.5)

+

neglecting terms dependent upon the inclination, B,C and
D being functions of Lablace coefficients.

?orming %%, substituting in (2.4) and integrating with
respect to the time t, we obtain the following pertur-
bations in the mean longitude 2:

2
50 = 3Ban mie2sin(32' -2-23)

10000"(3n'-n)?

3Can?

-~ m‘ee'sin(32'-2-B-0")
10000"(3n‘-n)

- 10 -



.2
+ 3Dan m'e'?sin(32'-2-20"). (2.6
10000"(3n‘-n)?2

For a first approximation, however, LeVerrier retained
only those terms up to the first-order in e, delaying the
inclusion of the second-order terms until more accurate

solutions were required. -(
1)

wgth o =bf.5’ as given by Bode's Law, the values of P
i i

N and M in equation (2.3) are:

(i) (i) : (i)
i p BT M
1 18.491 (18.5) 1.895 (1.90) 43 (43)
2 29.480 (29.5)  17.002 (17.00) 121 (122)
3 2.899 (2.9) 24.411 (24.40) 930 (930)
4 0.64]1 | 0.850 33
5 0.184 0.154 7
6 0.065 0.067 2

(i) () ()

Table 2.1 Numerical values of P N ,M (¥i=1,2,...,6).

the values in parentheses being those of LeVerrier. The
magnitude of the ignored terms (for i=4,5,6) are.included
for further comparison.
Hith these numerical values available, and wfiting

h

L

esin® , h! = e'sin@'
(2.7)

e cos s L' = e'cos '
eight expressions of the form (2.3) were produced to give

(i) (i) (i) ()
A m* +H mh" +L m'2' =P (2.8)

- 11 -



(¥i=1,2,...,8) representing the perturbations in
heliocentric longitude at intervals of t=14 years, the

epoch being 1747.7.

Eight equations of condition were then formed, between
the corrections of the elliptic elements and the helio-
centric tabular errors, for every 14 years from 1747.7 to
1845.7 neglecting terms of degree greater than the
equatijon of centre, and omitting the terms in ede and
eén, which would produce only small errors. The deneral

form of the equation thus formed, is

de-+(23-1)1;6n-+251n[;+(j-1)n1].59-2cos[C+(j-T)nT]

P eﬁﬁ-bvj-+30 = 0 (2.9)
¥i=d23s0e:58
Vi being the excess of the calculated heliocentric
longitude, given in Table 2.2, and ¢ the mean anomaly at

the epoch.

Eliminating 8¢ by calculating the first-differences

Gvi, and 6n by calculating the second-differences 62“1
(i)
we have six equations in 6e, edd, 62vi and 62%F

(¥i=1,2,...,6), each of the form:
-8 sin? [ %} }sin(g+ int) Se

i)
+8 sin? [ DZE']cos(m inT) edd + 82v, +62}3( =0 (2.10)

- 12 -



Excess of SV, - 82y, (i)
Epochs Calculated 1 ! §%p

Heliocentric First Second

Longitude Vs Differences Differences
1747.7 +34.8 ' - - -
1761.7 ¥24.7 -10.1 - - -
1775.7 8.7 28.4 . -183 +18.3
1789.7 -28.6 ~24.9 +3.5 -3.5
1803.7 -33.6 -5.0 #19.9 -19.9
1817.7 -32.3 1.3 +6.3 -6.3
1831.7 3.4 +35.7 +34.4 -34.4
1845.7 +110.5 +107.1 +71.4 -71.4

Table 2.2 Numerical values of excess calculated heliocentric
longitude for different epochs and the values of
§v. 62v1 and S?E(ﬁ (¥1=1,2;.: :,8)

Substituting for nt=60° into these equations and

combining appropriately, gives

X (1) (x) b
§%v,+ §%v + 672 + 622() = 0
(2) 5 .
§*v.+ $tv 4 §%@  §°P = 0 ’ (2.11)
(3) (s)
§0 4 S50 + 878 B%E = 0

b
Adopting, for example, a value €'=270°(centesimal)

equations (2.11) reduce to

24 5m'+24 m'h'-156m'2'-12 .0 = 0O
“12.7m'+147m ' h' -85m'2'+37.9 = 0 s (2.12)
-58.0m'+160m"' h'+65m"' 2'+91.3 = 0

“« 13 -



from which we find

m' = 2.02 (2.11).
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3. LEVERRIER'S SECOND SOLUTION

It has been shown in the first solution that LeVerrier
restricted himself to eight equations of condition, at
intervals of fourteen years, between the epochs 1747.7
and 1845.7. Choosing epochs at intervals of seven years
instead of fourteen gives fise to fifteen equations
instead of eight, to which LeVerrier added three further
equations corresponding to the epochs 1690.98, 1712.25 and
1715.23 of Flamsteed, giving eighteen equations of

condition in all. The equations are:

1690.98: 0.97765-106.56n-1.9125e+0.48?e65-63.}+(1)1? 0

1712.25: 1.0978e- 96.28n-0.3888e-2.086e8w-59.9+(2) = 0
1715.23: 1.0996e- 93.26n+0.1118e-2.121e8@-64.6+P =0

1747.7 : 0.92868e~ 48.56n+1.1278e+1.542e8w+34.8+(3) =
1754.7 : 0.91268e- 41.36n+0.2546e+1.874edw+32.8+(4) =
1761.7 : 0.9178e- 35.16n-0.6698e+1.775e60+24.7+(5) =
1768.7 : 0.9416e- 29.56n-1.4618e+1.257e80+10.0+(6) =
1775.7 : 0.9828e~ 23.96n-1.93968e+0.393e80- 3.7+Q =

1789.7 : 1.0746e~ 11.16n-1.3558e-1.595e60-28.6+(8) =
1796.7 : 1.0986e~ 3.66n-0.3208e-2.097ed®-29.8+(9). =

1803.7 : 1.0916e+ 4.06n+0.8306e-1.943e835-33.6+(10)
1810.7 : 1.0566c+ 11.36n+1.6868e-1.202e8i-35.3+R

0
0
0
0
0
1782.7 : 1.03168e~ 17.88n-1.9328e-0.653ed%5~-17.4+(7) = 0
0
0
0
0
0

1817.7 : 1.0086e+ 17.88n+2.0048e-0.171eé@-32.3+(11)=

1824.7 : 0.9626c+ 23.868n+1.7736e+0.821e60-24.5+(12)= 0
1831.7 : 0.9288e+ 29.46n+1.1298e+1.541e80+ 3.4+(13)= 0
1838.7 : 0.9128e+ 35.36n+0.2556e+1.874e85+50.0+(14)= 0
1845.7 : 0.9176e+ 41.96n-0.6668e+1.775e85+110.5+S =0

- 15-



The perturbations in the equations above, at thé
epochs 1715.23, 1775.7, 1810.7 and 1845.7 are represented
by P,Q,R and S respectively, the others being numbered
from (1) to (14). The four former eqﬁations were then
solved for 6e,8n,6e and edw in terms of P,Q,R and S which
were then inserted in the remaining fourteen equations.
Thé last twelve of these equations were then divided into
three grodps of four equatibns which were then combined
into three final equations corresponding to the mean
epochs in 1758, 1793 -and 1828,

¥Yiz:;

0

1758:7.711P-8.094Q-6. 114R+10. 4995~ [(3)+(4)+(5)+(6)]+805. 5
1793:3.897P-8. 311Q-5. 737R+6. 1545+ [ (7)+(8)+(9)+(10)]+552.1 =0 (3.1)
1828:3.3129-5.5150-0.752R+5.9595-[(11)+(12)+(13)+(14)]+605T4=0

Calculation of the coefficients did not yield any
significant difference between them and those determined
by LeVerrier. It was then assumed that the solution of
equations (3.1) should satisfy all the equations of
condition between the epochs 1775.7 and 1845.7 reasonably
accurately. However, this was not necessarily so for
those equations of condition corresponding to the epochs
between 1715.23 and 1775.7. The equation for the epoch
1712.25 was discarded as it was thought to be too close

~to the epoch 1715.23 to be of any value.

T



The most appropriate value of €' was to be decided
upon by testing its value in the epochs 1747.7 and 1690.98.
Having thus made the decision, it was necessary to proceed
by evaluating A,H and L (the latter deduced from H), for
each of the epochs chosen, as given by equations (2.3) and

(2.8). of the previous section.

LeVerrier, then, rearranged equations (3.1) under the

form:
N
am'+bm'h'+cm' 2’ =d ,
é‘m'+b'm‘h'+c‘m'£‘ = d’, ’ (35 2)
a"m'+b"m'h'+c"m'2" = d",
J

where

d = -805.5-7.711P'+8.094Q" ,
d'= -552.1-3.897P'+8.311Q" ,
d"= -605.4-3.312P'+5.516Q" ,

P' and Q' being the errors of tﬂe observations in the
epochs 1715.23 and 1775.7, while the errors for the epochs
1810 and 1845 were neglected, as their observations were
determined to a great degree of accuracy. With A,H and L
known, the coefficients a,b,c,a‘,b',c',a"!b“ and c"

become functions of €' only. For example:

a=+307.0 sine'+312.2 sin 2¢'+54.7 sin 3¢"

n " u
+437.5 cos €'-358.9 cos 2¢'-139.2 cos 3¢,

b=-448 sine'+1032 sin2e'-6379 sin 3¢’

653 cos '-1319 cos 2e'+1575 cos 3¢',

s 17 =



c=+653 sine'+1319 sin2e'-1575 sin 3¢
448" cos e'+1032 cos 2e'-6379 cos 3¢

Similar expressions can be written for the remaining
terms. Comparison of the coefficients determined by
LeVerrier and those determined by the author, indicate

overall differences of less than 3%.

The right-hand sides of the above expressions for the

coefficients can be rearranged in the form:

I ~100

(bisinia'ﬁ-cicosis') (3.3)

i=1

which may be combined in pairs to give expressions of the

form:

'Zl aisin(ai+ie'i. (3.4)
'|=

Using equation (3.4), the value of the mass m' was
determined by a transcendental equation which contains
only the unknown e'.

viz.,

v . d(b'c"-c'b")+d' (cb"-bc")+d" (bc'-cb"') _ N
a(blcn_clbu )_I_al (Cb""‘bC" )'!‘a"(bcl -Cbl)

- |

Dm'-N = 0 , (3.5)

where D and N are functions of €' only and are considerably

affected by the observational errors. Most of the

- 18 -



coefficients appearing in the quantities D and N are very

small compared to those appearing in the original

equations, so that the slightest change in the data leads

to considerable changes in m'.

In order to obtain an idea of the value of e',

LeVerrier first transformed expression (3.4) by substit-

uting the value

tan %T = X ,

to give alternate expressions for the coefficients a,b,..,

'b“,c", for example:

(1+x%)%a = (c +c,+c,) + (2b +4b,+6b )x + (c,-5¢c,-15¢,)x?

- (4b, -20b,)x*-(c,+5¢,-15¢c,)x"

+(2b1-4b2+6b3)xs-(cl-c2+c3)x5.

Similar expressions can be obtained for the

remaining

coefficients. Considering the previous calculations, the

values of the differences (bc'-cb'),(cb"-bc") and

(b'c"-c'b") are dependent on x'? , while each one of them

contains only the trigonometric quantities €' and 2¢'.

Transformation was made for each of the differences, such

that it contained x* only, which simplifies
calculations. Appropriate expressions were
N and D in terms of polynomials in X df the
tenth degrees respectively, concluding that

values of X.

- 19 -
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The expression obtained'for D was:

5

i 2
[ e ] D = -(1+0.086767 x)(x+1.12748) (x+0.011491)

: " {e)
x(x-.123707)F (3.6)

where
(6)

F= 5602+11596x+29193x%+25857x?
+22430x*+14560x°+3447x5 .,

(6)

F does not indicate any real factor and excludes all the

possibilities of a new positive factor.

From equation (3.6), bearing in mind that D must be
negative in order that m' > 0, LeVerrier deduced that €'

must satisfy at least one of the inequalities:

1 96°40' < &' < 189°55!
263°08' < g' < 358°47"',

However, the expression given in equation (3.6) does not

appear to represent D. The correct form is found to be:

5

[ 1+x2] D = -(1+0.064626x)(x+0.6921056)(x+0.01579194)

n

(6)
x(x-1.0382822)F ,

using an algorithm developed by the present author (see
Appendix),

where

éd = 9700+16094x+45970x%+27706x?

+31753x*+16416x°+3547x%°,
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The corresponding faﬁges of values of €' are found
to be
92°09' < €' < 187°24" :
(3.7)
290°38' < ' < 358°11!
The differences between these values and those of LeVerrier
are attributable to the sensitivity of the numerical
procedure. The 1imiting values of €' produced by this
technique should not be regarded as particularly signif-
icant. This can be demonstrated by reference to LeVerrier's
subsequent treatment, in which he, presumably, tested the
.above theory by inserting different values of €', from 0°

to 351° at intervals of 9°, in the equations of condition.

Although LeVerrier concluded that €' did indeed lie
within his estimated ranges, the present research
indicates some differences. For example, when ' lijes
between 252° and 261°, we find that values of m',m'h',

m'e' as determined from equation (3.2), are

m' m'ht Com'g!

225°  +101.818(-ve...)  +7.929(-ve... +10.790(-ve...

234° +43.268(-ve...
243°  +38.123(-ve...

+4,575(-ve... +3.201(-ve...

)
)
+4.298(-ve...) +1.236(-ve..
252°  +37.231(-ve.. )
)

)
) )
) -)
) +3.934(-ve... «0.176(-ve...)
) .)

261°  +30.761(-ve...)  +2.268(-ve... -0.747(-ve..

Table 3.1
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indicating positive values of m'. Further confirmation
appears later when we find that LeVerrier selects €'=252°
which Ties outside his chosen range. Additional values of

m', m'h' and m'%2' are given in Table 3.2.

The errors corresponding to the epochs 1690 and 1747
were then calculated in order to test whether the previous
limitations (3.7) would permit the prediction of the
position of Uranus at the abovejmentioned epochs. These
errors were written in the following form:
]690:60m’+b0m’h'+c0m'£‘-182f6-1.913P'+0.904Q' :

(3.8)
1747:a,m'+b m'h'+c m'2'-263.3-2.745P"+3.351Q" ,

the coefficients au,bo,co,al,b-,c1 having forms similar

1

to those of equation (3.2).

The numerical values of these coeff%cients, correspond-
ing to different values of €' between 0° and 351°, were
calculated by neglecting the errors of observations P'
and Q'., These coefficients, together with the values of
m', m'h' and m'2' form the theoretical errors in-the
above-mentioned epochs for 1690 and 1747. From an
examination of these errors LeVerrier was forced to the
conclusion that €' must lie outside the limits estimated
previously, in spite of his earlier conviction regarding
the range of values of €'. Corresponding expressions
were derived for the sum of the errors, of the theory, of
the longitudes of the four epochs 1747,1754, 1761 and
1768, in addition to those of 1690 and 1747.
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s m m'h’ m'g!

90° - -

99°  + 18.644 (+18.242)  -1.484 (-1.451) - 1.254 (-1.233)
108°  + 4.255 (+ 4.314)  -0.613 (-0.614) - 0.376 (-0.380)
117+ 2.753 (+ 2.764)  -0.588 (-0.584) - 0.131 (-0.133)
126  + 2.345 (+2.377) -0.568 (0.570) + 0.090  (+0.086)
135+ 2.343 (+ 2.308) -0.496 (-0.488) + 0.299 (+0.293)
144  + 2.652 (+ 2.587) -0.368 (-0.358) + 0.480  (+0.466)
153+ 3.385 (+ 3.310) -0.200 (-0.196) + 0.624  (+0.608)
162  + 4.966 (+4.700) -0.021 (-0.016) + 0.747  (+0.708)
171 + 8.927 (+8.352)  40.122 (+0.115) + 0.961  (+0.895)
180  +24.845 (+19.790)  +0.107  (+0.101) + 2.006  (+1.590)
189° - +

216 - -

225°  +101.818 - +7.929 +10.790

234+ 43,268 - +4.575 + 3,201

243 +37.231 - +4.298 + 1.236

252 +38.123 - +3.934 - 0.176

261 +30.761 - | +2.268 - 0.747
270+ 18.505 (+40.077)  +0.816  (+1.790) - 0.302  (-0.940)
279 +11.272 (#14.411)  +0.410  (+0.495) + 0.128  (+0.099)
288 + 7.931 (+ 8.606) +0.474  (+0.495) + 0.267  (+0.276)
297 + 6.430 (6.381) +0.641 (#0.637) +0.171  (+0.167)
306  + 5.833 (+5.780) +0.746  (+0.743) - 0.085  (-0.086)
315+ 5.772 {5.564) +0.703  (+0.677) - 0.409  (-0.402)
326+ 6.152 § 5.742)  +0.491  (+0.452) - 0.691  (-0.659)
333+ 7.127 ¢ 6.780) +0.165  (+0.149) - 0.834  (-0.805)
342 + 9.487 { 9.005) -0.154 (-0.160) - 0.803  (-0.771)
351 +18.296 §16.478 ) -0.278  (-0.644) - 0.708  (-0.282)
360° - - E

Table 3.2: MNumerical values of m',m'h',m’2’ according to different
yalues of €'.
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From an analysis of the above errors, and assuming that
m' cannot be greater than 4 units without introducing to
the longitude of Saturn inequalities which do not exist,
LeVerrier deduced that for the three epoch§ considered,
the errors continuously decrease as €' increases.
Furthermore, that the errors become infinitely small when
e’ 1iés between 243° and 252°,.

For example, with m'=0.8, P'=-15" and Q'=-10", only the

following errors remain:

In 1758: -5"(-6")
1690: -13"(-13"),
1747 o"(-2") ,

the figures in parentheses being those of LeVerrier.
From this brief discussion of the errors,lLeVerrier
reached the following conclusion:
"There is in the ecliptic only one region
in which the disturbing planet can be localized,
so as to realize the movement of Uranus; that

the mean longitude of this planet should be, on
the first of January 1800, between 243° and 252°,"

To assign the region of the ecliptic in-which the
unknown planet must be placed, assuming that the individ-
ual errors of the previous eighteen epochs, from 1690 to
1845, represent effectively the observations of the
disturbing planet (whose longitude of epoch €' lies in

the range between 234° and 270°), let

e' = 252° + £ , | (3.9)

£ being a suitably small number.
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Introducing appropriate values for £, expressions
for the perturbations, the coefficients of the equations
of condition, the values of the orbital elements and the
true longitude of the disturbing planet, can be developed,

in particular for
e' = 234°, 243°, 252°, 261° and 270°.

Numerical values of A,H and L were derived usina the
formulae of the previous section, for each value of €'
mentioned above, for all the eighteén equations of

condition, (see Tables 3.3, 3.4 and 3.5).

The second and third equations of (3.2) were
resolved with respect to m'h' and m'2' for all values of

€'=234° up to 270° at intervals of 9°, to give:

e'=234°;

m'h' = -0.28425 + 0.11231m' - 0.000961P' + 0.000364Q"

m's' = -0.186626 + 0.07850m' - 0.000113P' - 0.002546Q"
120430

m'h' = -0.33241 + 0.12436m' - 0.000824P' - 0.000697Q"

m's' = -0.04115 + 0.03430m' + 0.000549P' - 0.0025250Q"

e'=252°

m'h' = -0.31379 + 0.11142m' - 0.000505P' - 0.001679Q"

m'2' = +0.11215 - 0.00755m' + 0.000897P' - 0.002083Q"

c1=261°

m'h' = -0.22903 + 0.081175m' - 0.000047P' - 0.002428Q" .

m'e' = +0.24555 - 0.03227m' + 0.001087P' - 0.001276Q"

- 25 -



EPOCHS 234° 2435 252° 26i° 270°

© 1690.98 +37.2 +27.7 £13.0 -40.9 206

1712425 25 1 +43.7 +55.3 +57 .8 +50.7
1715.23 +12.5 +34.0 +50.0 +57.9 +56.1
1747.7 -39.6 -48.7 -51.4 ;47.3 =372
1754.7 -10.2 -25.5 -37.1 -43.3 -43.4
1761.7 #22.2 “ 6.0- -10.1 -23.6 «38. ..
1768.7 +48.3 +36.8 +21.7 + 5.5- = 9.3
1775.7 +60.0 +57.47 +48.9 +35.5 +20.0
1782.7 +53.0 +62.1 +63.5 +57.7 +46.6
1789.7 +29.3 +48.0 +60.3 +65.1 +62.5
1796.7 - 3.0 203 +40.5 +8595 1 +62.6
1803.7 -31.9 -10.9 +11.4 +31.8 +47.4
1810.7 -47.2 -34.1 -15.9 + 6.3 +23.3
1817.7 -45.8 -42.4 -32.2 -17.1 + 0.0
1824.7 ~3247 -36.8 -34.4 -26.3 -14.2
1831..7 -17.9 -25.0 -2T.3 -24.6 -17.5
1838.7 -10.1 -16.5 -19.8 -19.2 -14.7
1845.7

-12.1 -16.4 -18.8 -18.1 13,7

Table 3.3. The numerical values of A
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EPOCHS - 234° 243° 252° 261° 270°

1690.98 - 282 + 182

+ 608 + 907 +1015
1712.25 -1005 =~ - 968 - 729 - 338 + 123
1715.23 - 954 -1009 - 855 - 522 - 80
1747.7 + 679 + 409 + 28 - 378 - 719
1754.7 + 767 + 684 + 430 + 60 - 340
1761.7 + 639 + 763 + 698 + 458+ 99
1768.7 + 327 + 626 + 767 £ 719 -+ 494
1775.7 - 95 + 307 + 621 + 778 + 746
1782.7 - 524 - 117 + 295 + 623 + 796
1789.7 - 855 - 544 - 132 + 289 + 630
1796.7 -1006 - 870 - 559 - 142 + 288
1803.7 - 937 -1013 - 879 - 568 - 147
1810.7 - 659 - 934 -1015 - 885 - 574
1817.7 - 232 - 649 - 929  -1014 - 888
1824.7 + 246 - 218 - 638 - 922 -1012
1831.7 + 670 + 259 - 205 - 626 - 915
1838.7 + 944 + 678 + 271 - 192 - 616
1845.7 +1008  + 944 + 683 + 280 - 182

Table 3.4, The -numerica1 values of H
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243° 252° 2

- 9B =

EPOCHS 234° 61° 270°
1690. 98 + 968+ 992+ 807  +452 - & 1
143.2..25 - 147 + 311 + 706 + 955 +1003
1715.23 - 337 + 116 + 550 + 871 +1010
1747 .1 - 418 - 712 - 848 - 791 - 550
1754.7 + 14 - 367 - 667 - 815 - 772
1761 .17 + 437 + 67 - 316 - 624 - 785
1788 .1/ + 748 + 487 % 119 - 267 - 585
V2781 + 872 + 790 + 536 + 169 - 222
1782.7 + 776 + 902 + 830 + 581 + 218
1789.7 + 482 + 794 + 931 + 867 + 622
: 14967 + 59 + 490 + 810 + 956 + 899
1803.7 - 393 + 59 + 495 + 823 + 976
1810.7 - 770 - 398 + 56 + 497 + 831
1817 .7 - 982" - 775 - 404 + 50 + 494
1824.7 - 978 - 984 - 781 - 413 + 41
1831:7 - 759 - 976 - 988 - 790 - 425
1838.7 - 377 - 7585 - 976 = 1992 - 799
1845.7 + 78 - 373 - 752 - 976 - 997
Table 3.5. ‘The numerical values of L



g'=270°:

m'h'

-0,08900 + 0.04890m' + 0.000481P' - 0.002811Q"
+0.33213 - 0.03427m' + 0.001064P" - 0.0002070'

3
)
1]

Examination of the errors, A, that these different
solutions produce in the theory for each of the eighteen
equations of condition from 1690 to 1845, led LeVerrier

to the conclusion that

1 2 m'" < % (3.10)

j.e. the mass of the new planet must be greater than that
of Uranus. The corresponding values of A determined by -

the present author, are given in Tables 3.6 to 3.10.
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The epoch

The error A

94m'

56p°

1690. 98 - 3.06 - 56. 0. - 12, 11"
1712.25 +23.39 - 9.12m' - 0.94P' + 0.00Q"
1715. 23 + 0.00 + 0.00m' - 1.00P' + 0.00Q"
1747.7 - 27.93 - 7.78m' - 0.73P' - 1.520Q"
1754.7 - 39.04 - 0.55m' - 0.55P' - 1.71Q"
1761.7 - 36.70 + 5.26m' - 0.34P' - 1.73Q"
1768.7 - 21.60 + 4.92m' - 0.14P' - 1.48Q"
1775.7 + 0.00 + 0.00m' + 0.00P' - 1.000°
1782.7 +10.37 - 3.98m' + 0.05P' - 0.41Q"
1789.7 + 3.62.- 2.77m' + 0.02P' + 0.05Q"
1796.7 - 4.77 + 2.47m' - 0.03P' + 0.22Q"
1803.7 - 8.01 + 3.56m' - 0.04P' + 0.15Q"
1810.7 + 0.00 + 0.00m' + 0.00P' + 0.00Q"
1817.7 +10.76 - 4.20m' + 0.03P' - 0.05Q"
1824.7 + 5,02 - 2.67m' 0.02P' + 0.01Q"
1831.7 - 5.23 4 2.51m' - 0.02P' + 0.03Q"
1838.7 - 10.51 + 4.55m' - 0.03P' + 0.03Q"
1845.7 + 0.00 + 0.00m' + 0.00P' + 0.00Q"
Table 3.6 : For e'=234°
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The epoch

The error A

7.

1690. 98 - 7.76 - 52.73m' - 0.54P' - 2.24Q"
1712. 25 + 22.66 - 10.91m' - 0.93P' - 0.020Q"
1715.23 + 0.00 + 0.00m' - 1.00P' + 0.00Q"
1747.7 - 24.53 - 5.03m' - 0.74P' - 1.44Q"
1754.7 - 36.16 - 0.74m' - 0.56P' - 1.64Q°
1761.7 - 34,74 + 3.92m' - 0.35P' - 1.68Q"
1768.7 - 20.80 + 4.01m' - 0.15P' - 1.46Q"
1775, 7 + 0.00 + 0.00m' + 0.00P' - 1.00Q°
1782.7 +10.11 - 3.61m' + 0.05P' - 0.42Q"
1789.7 + 3.47 - 2.69m' + 0.02P' + 0.050°
1796.7 - 4.56 + 2.18m' - 0.03P' + 0.23Q"
1803.7 - 8.48 + 3.66m' - 0.04P' + 0.15Q"
1810.7 + 0.00 + 0.00m' + 0.00P' + 0.00Q"
1817.7 +10.85 - 4.68m' + 0.03P' - 0.05Q"
1824.7 + 4.92 - 3.26m' + 0.02P' + 0.01Q"
1831.7 - 5.10 + 2.53m' - 0.02P' + 0.03Q°
1838.7 - 10.47 + 5.57m' - 0.03P' + 0.03Q"
1845.7 + 0.00 + 0.00m' + 0.00P' + 0.00Q"
Table 3.7 : For e'=243°
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The epoch

The error A

1690. 98 - 8.72 - 44.90m' - 0.51P' - 2.38Q"
1712.25 + 22.50 - 11.90m' - 0.93P' - 0.040Q°
1715. 23 + 0.00 + 0.00m' - 1.00P' + 0.00Q"
1747.7 - 23.52 - 1.80m' - 0.76P' - 1.35Q"
1754.7 - 35.18 - 0.91m' - 0.58P' - 1.57Q"
1761.7 - 34.06 + 2.18m' - 0.36P' - 1.63Q"
1768.7 - 20.56 + 2.74m' - 0.15P' - 1.44Q"
17757 + 0.00 + 0.00m' + 0.00P' - 1.00Q"
1782.7 +10.04 - 2.92m' + 0.05P' - 0.43Q"
1789.7 + 3.39 - 2.36m' + 0.02P' + 0.05Q"
1796.7 - 4.49 + 1.70m' - 0.03P' + 0.23Q"
1803.7 - 8.81 + 3.30m' - 0.04P' + 0.15Q"
1810.7 + 0.00 + 0.00m' + 0.00P' + 0.00Q"
1817.7 +10.91 - 4.66m' + 0.03P' - 0.05Q"
1824.7 + 4.89 - 3.54m' + 0.02P' - 0.020"
1831.7 - 5.03 + 2.30m' - 0.02P' + 0.04Q"
1838.7 - 10.54 + 6.07m' - 0.03P' + 0.03Q"
1845.7 +# 0.00 + 0.00m' + 0.00P' + 0.00Q"
Table 3.8 : For e'=252°
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The epoch The error A

1690.98 - 5.44 - 34.06m' - 0.46P' - 2.510Q"
1712.25 + 23.02 - 12.08m' - 0.92P' - 0.06Q"
1715.23 + 0.00 + 0.00m' - 1.00P' + 0.00Q"
1747.7 - 25.23 + 2.18m' - 0.79P' - 1.27Q"
1754.7 - 36.46 - 0.67m' - 0.60P' - 1.500Q"
1761.7 - 34,89 - 0.43m' - 0.38P' - 1.58Q"
1768.7 - 21.01 + 1.29m' - 0.16P' - 1.42Q"
1775.7 £ 0.00 + 0.00m' + 0.00P' - 1.00Q"
1782.7 +10.20 - 1.98m' + 0.05P' - 0.43Q"

1789.7 + 3.39 - 1.81m' + 0.02P' + 0.04Q"
1796.7 - 4.59 + 1.10m' - 0.04P' + 0.24Q"
1803.7 - 8.94 + 2.55m' - 0.04P' + 0.16Q"
1810.7 + 0.00 + 0.00m' + 0.00P' + 0.000Q"
1817.7 +10.82 - 4.13m' + 0.03P' - 0.050Q"
1824.7 + 4.98 - 3.50m' + 0.02P' - 0.02Q"
1831.7 . 5.04 + 1.85m' - 0.02P' + 0.04Q"
1838.7 - 10.65 + 5.93m' - 0.04P' + 0.04Q"
1845.7 £+ 0.00 + 0.00m' + 0.00P' + 0.00Q"

Table 3.9 : For €'=261°
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The epoch The error A

1690. 98 + 2.68 - 20.42m' - 0.40p"

- - 2.640Q"
1712.25 + 24.34 - 11.46m' - 0.91P' - 0.08Q"
1715.23 + 0.00 + 0.00m' - 1.00P' + 0.00Q"
1747.7 - 30.09 + 7.17m' - 0.83P' - 1.18Q"
1754.7 " - 40.50 - 0.5Im' - 0.63P' - 1.42Q'
1761.7 - 37.60 - 0.86m' - 0.40P' - 1.53Q"
1768.7 -.22.31 - 0.08m' - 0.17P' - 1.39Q"
1775.7 + 0.00 + 0.00m' + 0.00P' - 1.00Q"
1782.7 + 10.67 - 0.93m' + 0.06P' - 0.44Q"
1789.7 + 3.53 - 1.14m' + 0.02P' + 0.04Q'
1796.7 - 4.86 + 0.44m' - 0.04P' + 0.24Q'
1803.7 - 8.95 + 1.53m' - 0.04P' + 0.16Q'
1810.7 + 0.00 + 0.00m' + 0.00P' + 0.00Q"
1817.7 + 10.63 - 3.19m' + 0.03P' - 0.06Q"
1824.7 + 5.18 - 3.10m' + 0.02P' - 0.020Q"
1831.7 - 5.15 + 1.24m"' - 0.02P' + 0.04Q"'
1838.7 - 10.84 + 5.20m"' - 0.04P' + 0.04Q"
1845.7 + 0.00 + O0.00m' + 0.00P' + 0.00Q'

Table 3.10 : For €'=270°
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Finally, LeVerrier carefully examined the errors
of the theory for a specific value of ¢', viz.,252°, and
arbitrarily assumed that m'=1, P'=-15“ and Q‘=-10". The
corresponding values of the errors were found to decrease

as follows:

EPOCH A EPOCH A EPOCH A
1690 ~ -22 (-23) 1768 -1 (-2') 1810 0 (0)
1712 +25(+24) 1775 +10(+10) 1817 +5(+6)
1715 +15(+15) 1782 +11(+10) 1824  +1(+1)
1747 0(-1) 1789  +1(0) 1831 -2(-3)
1754  -12(-12) 1796  -5(-5) 1838  -4(-4)
1761 -10(-10) 1803  -6(-7) 1845  0(0)
Table 3.11

Among these errors, those of 1754 (-12") and 1782 (+1I")
are the most serious, since the position of Uranus is very
well determined at these epochs. If, on the other hand,
one examines the influence of the error R' and S'
corresponding to 1810 and 1845, it is found that values of
R' and S' equal to -3" are quite realistic, which have the
effect of reducing the error of 1754 and 1782-t0 -2ll and

+8 , respectively.

From these results, LeVerrier arrived at the
conclusion that the observations of Uranus could be

represented by means of the disturbing action of
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Neptune, whose mean longitude of epoch €' should lie in
the vicinity of 252° corresponding to the 1st January 1800.
For 1st January 1847, the corresponding heliocentric

longitude v as deduced by LeVerrier, took the form:

v=314.5 + 12.258 + #(.25.82-10.97;-1.14,92) ceee (3.11)

Relating the true heliocentric longitude to the limits in
which m' and £ must be contained, it follows that the true
heliocentric longitude at that epoch is ~ 325°, a value not

far removed from LeVerrier's final solution.
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4, THE ELEMENTS OF THE DISTURBING PLANET -
LEVERRIER'S FINAL SOLUTION

In the first solution, LeVerrier used eight equations
of condition separated by intervals of fourteeen years
covering ancient-and modern observations over the period
1747.7 to 1845.7. The primary objective of the analysis
was the determination of the approximate mass m' of the
disturbing planet. For this reason he'neglected the
secular inequalities and the second order terms and
_ assumed, in accordance with Bode's Law, that a, the ratio
between the semi-major axes of Uranus and the new planet,
was 0.50. Subsequently, LeVerrier obtained his first
approximation to the mass of the disturbing planet, viz.,

m' ~ 2.11 x 10~* the mass of the sun.

In the second solution, LeVerrier obtained fifteen
equations of condition, covering the observations for the
same period above but at intervals of seven years, together
with three additional equations covering the earlier
observations of F1amsteed; The eighteen equations of
condition were used primarily to obtain an approximate
value of the longitude of the epoch €', which in turn was
uti]fsed to determine the mass of the new planet to a
better approximation than the first solution. In this
second solution he again neaglected secular inequalities
and second order terms and assumed that o« = 0.50. The
equations of condition, in both solutions, were derived

from considerations of heliocentric errors in the Tables
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of Uranus (i.e. from 1781 to 1845). Modern observations
were chosen at opposition, in order to facilitate the
formation of the equations of condition. Unfortunately,
the ancient observations were not made at opposition, thus
leading to inaccuracies within the theory:

(a) inaccuracies in the heliocentric longitude

of Uranus, and

(b) 1dinaccuracies in the radius vector of Uranus.
The latter had been neglected since it was assumed that
the effect was minimal due to the inherent inaccuracy in
the ancient observations.
The second solution yielded:

(i) 243°

A

e' < 270°

; 4 . 3

(i1) 1 £ 5 s

(ii1) a value for the true longitude v' of the new

planet in the region of 325°.

Although the two solutions confirmed the existence
of a disturbing planet, and to some extent determined the
true longitude, the planet eluded physical observation.
It was thus essential that the assumptions and simplific-

ations made be examined carefully.

The assertion of the existence of a disturbing
planet was no longer in question, but the requirement now
becomes one of pin-pointing its pos{tion more precisely,
requiring accurate determination of the longitude of the
epoch €', the mass of the new planet m' and its true

longitude v', from which we can determine all other
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elements of the orbit.

The equations of condition, between the geocentric
errors of the tables and the corrections of the elements
of the orbit of Uranus, were therefore completed by add-
ing to their first members, the perturbations of the
geocentric longitude G of Uranus, due to the action of the
new planet. These geocentric perturbations, &G, were
deduced from the perturbations of the heliocentric
longitude, 6v, and the perturbations of the radius vector,

§r, by means of the followinag equations:

-R sin (&-v)
tan (G-v-N) = —==1020 (4.1)
r-R cos (e-v)

G = P.SR - 0Q.6D
(4.2)
§b =-R.6MR + S.6D
" where
N denotes the Nutation in longitude,
v, the heliocentric longitude of Uranus,
@, the Earth's longitude,
R, the radius vector from Earth to Sun,
r, the radius vector of Uranus,
§b, the error of the observed latitude of Uranus,
SR , the error of the observed right ascension,
80, the error in declination,
and P,Q,R and S are values that could be obtained from
the published tables (from the observations by Greenwich

Observatory, 1836).
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By e1iminating 8D, the following equation is obtained:
66 = (P-2:R) sm- 2 ob | (4.3)

Furthermore, higher precision was introduced into this

final solution, by allowing for slight variations in
d
a'
secular variations in the calculations of the longitude

a = ,» periodic variations of the second order terms,
and

and radijus vector.

Thirty-three equations of condition were then solved
instead of the eight and eighteen equations in the first

and second solutions respectively.

As mentioned previously, as a first approximation in
the first and second solutions, o was assumed to be 0.50,
giving rise to a value of the mean 1on§1tude of the epoch
e' equal to 252°(243° < e £ 270°). To achiéve maximum

precision, therefore, LeVerrier introduced the expressions

a = 0.51 + 0.02y, (4.4)
e'= 252° + 18°¢, (4.5)
wherein |

-1 < v £ +1 ,
and

-1 <6 < +1 ,

thereby widening the range to
0.49 < o < 0.53 ,
and

234° < e'< 270°
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The new equations, containing y and £, become too
complicated for treatment by Taylor Series if y and £ are
allowed to vary continuously. Thus, it is convehient to
choose fixed values of y and & equal to -1, 0 and +1.
Equations were developed for six different combinations

of vy and 6, viz.,

Further consideration of the exact solution of the
algebraic expressions which satisfy the problem for
values of a and €', indicated that the absolute value of
y should be close to 1 while the value of & should lie

between 0 and -1.

By this means the six cases are reduced (temporarily)

to the following three:

The principal values of Laplace coefficients and
their derivatives, as derived by the present author for
the three cases of y, did not indicate any significant

differences from those given by LeVerrier,.

The periodic perturbations of the heliocentric

longitude v and the radius vector r, and hence the

a oty =



secular inequalities, to be considered, are of the zero
and first orders. Higher order perturbations gave

insignificant differences.

4.1. Perturbations in Longitude

Omitting higher powers of the eccentricities e and e',

the terms retained by LeVerrier were now of the form

3 (i)
v =m'y P'Y'/sini(n't-nt+e'-¢g)
i=1 |

3 . . .
+m' ] N(1)sin[i(n‘t-nt+€‘-€)+nt+e-&]
1=

3 .
+m'e'} M(1)sin[i(n't-nt+e'-e)+nt+e-&']
i=1

+m'f1nte cos (nt+e-w)

4+m'f_nte' cos (nt+e-a), (4.6)

p(i)  y(1) and M(1) (vi=1,2,3) being as before,

with
Ll g
f1= - EEL -5 T (4.7)
and
() ,. ()
f, = - % 2by- 2 o= - (4.8)
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For convenience, the terms in e' (within the third

summation), were regrouped in the form

3

m'z'_z] M(i)sin[i(n't-nt+e'-e)+nt+s]
1=
()
+ m'h';zl MY lcos[i(n"t-nt+e'-e)+nt+e], (4.9)
']_:'..

2' and h' having the same forms as before.

At this point the arguments themselves were re-

labelled for future reference, the new notation being

Py = i(n't-nt+e'-€),

=
11

i p_i+nt+€ N \ v1-=']’2’3 (4.]0)

For comparison with the results of LeVerrier, the
arguments of perturbations P; and ni(Vi=1,2,...,6), are.
expressed in decimal degrees whilst the coefficients, P(i)’

NCT) and mO)) are in sexagesimal seconds.

From earlier calculations of perturbations of Jupiter

and Saturn on Uranus, the following values were available:
g = 72°59' 21"
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e = 1929.98 = 173°.502 "

e = 0.0466794 ;
n = 49.76103 = 4°.284927 ,
6 = 0°46' 28".4 ‘
& = 1863.12 = 167°.508 ,
a = 19.182729 A.U. "~ ‘

enabling the numerical values of the periodic perturbations
for each of the three different values of y, to-be
determined, assuming, of course, that e'=252°(=2809),
corresponding to £=0. |

(See Tables 4.1, 4.2 and 4.3). Values for i = 4,5,6 have

been included for reference only.
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a | i p(1) y (i) w(1)
1 .16.91 (16.9) 1.74 (1.7) 40 (40 )
2 24.97 (25.0)  14.26 (14.2) 100 (101)
|3 2.0 (2.5)  43.90 (43.8) 1706 (1706)
~1 4 o.55 © 0.68 27
5 0.15 0.13 6
6 0.05 0.05 2
1 20.22 (20.2) 2.07 (2.1) 46" (46 )
2 35.00 (35.0) 20.50 (20.5) 148 (148)
|3 3.36 (3.4 18.62 (18.6) 696 (696)
<l a4 o.75 1.07 41
5 0.22 0.19 8
6 0.08 0.08 2
1 24.21 (24.2) 2.46 (2.5) 52 (52)
2 50.48 (50.5)  31.13 (31.1) 230 (230)
3 4.53 (4.5) 14.97 (14.9) 539 (539)
E 4 1.03 1.73 64
0.31 0.28 12
0.12 . 0.13 3

Table 4.1 : Numerical values of P(i), N(1) and M(1).
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a i Py L

1 g7922 - 3%128t 280900 + 19633t

2 374.44 - 6.256t 367.22 - 1.495t
S| 3  61.66 - 9.384t 54.44 - 4,623t
14 93.88 + 1.633t

5 381.10 - 1.495¢t

6 68.32 - 4.623t

1 g7922 - 3%027t 280900 + 19734t

2 374.44 - 6.054t 367.22 - 1.293t
w |3 61.66 - 9,081t 54.44 - 4,320t
4 93.88 + 1.734t

5 381.10 - 1.293t

6 68.32 - 4.320t

1 87922 - 27924¢ 280922 + 19837t

2 374.44 - 5.848t 367.44 - 1.087t
3 3 61.66 - 8.772t 54,44 - 4,011t
| 4  93.88 + 1.837t

5 381.10 - 1.087t

6 68.32 - 4.011t

Table 4.2 : Arguments of perturbations.
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a = 0.49 a = 0,51 a = 0,53

f,:-0.02133(-0.0210) -0.02529(~-0.0257) -0.2997(-0.0304)

f,:+0.27075(+0.270) +0.33321(+0.334) +0.40895(+0.408)

Table 4.3 : Numerical comparison

of the coefficients of d&v.

4.2. Perturbations in the radius vector

For completeness, we compare also the perturbations
in the radius vector, included by LeVerrier in his

research.

Beginning with the fundamental equation

where R is the disturbing function and u = n%a’,it is
found (for example, Somerville, 1931) that to first order
in e,e',

3 .
) C(1)cosi [(n'-n)t+e’-€]

s 87 =



+m'ef,cos(nt+e-m)+m'e’f cos(nt+e-&")

+m'e ) D(i)cos[ifn't-nt+e'-e}+nt+s—6]
i=1

+m'e' E(i)cos[i{n’t-nt+e'-€}+nt+s-&'], e (4.11)-

[ [

where

| 3 (“)
f= - % —Hi— + o? J ,

(1)
i) oo { p{1) + o 2 ] ,
2(v=1)2=1 : da
o(1) . a {(1-1)(21-1) S
1-{i(v-1)+1}2 i(v-1)+1 2

)
: db d?b
- §:% v-1)+1 1 2 3
iv-N+T > da - 2% 42 } ’

and
i _ (i) )
(i) & 1 3a Ciare i ta 1y 2 ()
- 1-14 (v-1)+112 {1-\) by = USRI L= Tl=0 0
azp. )
a 2 3
i da? } .
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the arauments being rearranged as in the case of dv,

@

The terms retained by LeVerrier were those in C
0 G @

» & , f, and f_, giving rise to the numerical values

found in table 4.4

(2) (3) (3)
a ef f C D E

3 b

0.49 -0.0232 +0.0922 -1.43(-2.6) +160. (112 ) -4.1(-3.0)

0.51 -0.0275 +0.1147 -1.96(-4.3) + 63(76) -1.6(-1.9)
0.53 -0.0325 +0.1423 -2.77(-6.1) + 46(59) -1.2(-1.4)
Table 4.4 : Numerical comparison

of the coefficients of &r/100

The values found clearly differ from those of LeVerrier;
perhaps some factor has been overlooked. The second order
terms (i.e. in e?) do account for the differences.
Although the reason for the discrepancies is not clear we
- observe that some of the coefficients are directly
proportional to those of LeVerrier, indicating, perhaps,
the omission of some factor, presumably dependent upon a.
For example,

for ¢« = 0.49
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(3) 1] \ ( n [}
D = 160 112 (112 )
¢ % 0,7 = {

(3) 1 1] n
E = 4.1 2.9 (3.0)
/ \

for a = 0.51
3\ s

50 o 76 (76)
L\ oox 1.2 = { '

(3) n n I
E = 1.6 19 {1:3)
J \

for ¢ = 0.53
3\ r
(3) n ] u
D = 46 55. (59.)
qL % 1.2 & 3
(3) n n n
E ' =1.2 1.4 (1.4)
J \

4.3 Second-0rder Terms

Having considered the variation in o and the secular
variations in the true longitude and the radius vector, it
is now necessary to consider the periodic variation in
the second-order terms. As indicated by the first solutiam,
that part of the second order perturbations which is
worthy of consideration, is that which depends on the small

argument (3n'-n). It is, therefore, necessary to consider
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the perturbations in the mean longitude 2 (not to be

confused with £ = ecos® introduced earlier) and there-

-

after to obtain the true longitude v.

Thus,

88 = 100061ii;:'-ﬂ)2 m'e? sin [(3n't-nt)+(3e'-€)-20]
100003;‘3(“3“:]_“)2 miee' sin [(3n't-nt)+(3e'-€)-(B+d')]
Iooociiﬁgj'-")z m'e'? sin [(3n't-nt)+(3e'-€)-25"] |

(4.12)
1.€e.
§2 = B'm' sin[(Sn‘t-?t)+(3e'-e)—2&]

+C'm'e' sin[(3n‘t-nt)+(3e'—e)-(&+ﬁ‘)1

+D'm'e'? sin[(3n't-nt)+(3e'-¢)-20'],
containing terms in m', m'e' amd m'e'?2.

The expressions for the coefficients are:

() db(a) dzb(a)
B' = 3ae” [21b +100 —2 +q2 2 J ,
8(10%)" (3v-1)2 : da dor'2
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| Sue @) db d b,
s b, + 100 2 +a?
k 4(10‘*)"(3\;-1)2[20 3 P T |

(1) 2 (1)

30 175 1 db, 2d b% i
D' = 4 +10
8(10%)" (3v-1)2 T T T

(4.13)

LeVerrier considered the term in m' to be sufficiently
- small to be neglected, thus offering a further simplific-
ation of the solution without inducing appreciable
inaccuracies in the mean motion, relative to the period

of observation.at his disposal. An indication of tﬁe

magnitude of B' for the three values of y, is given below:

Y -1 0 +1
o 0.49 0.51 0.53
B':  0.005024  0.000590  0.000243

Consideration of the term in m'e' showed that it
is the most appreciable of the three terms. Furthermore,
its inclusion would not complicate the form of the
equations. Since this term is dependent on m'h' and m'g',

it is therefore necessary to consider terms in t? which
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are obtained by the development of this part of the

inequality.

The values of C' corresponding to the three

values of vy and a are given below:

Y ! -1 0 +1
a 0.49 0.51 0.53
c': 0.390424 0.044047 0.017483

The term in m'e'?, containing a higher power of
the'eccentricity of the disturﬁed planet, would consider-
ably complicate the solution if retained. Partly for
this reason and partly because it could be confounded
with the mean motion relative to the period of the observ-
ations under consideration, LeVerrier chose to neglect
this term,.even though the values of D' are appreciable,

as illustrated below:

LY -1 0 +1
o 0.49 0.51 0.53
D': 1.4045 0.166198 0.069115

Adopting this procedure, the equat ions to be

examined would remain in linear form with respect to m',
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m'h' and m'2'. Thus the perturbations are completed by
adding to the heliocentric longitude, appropriate second-

order terms containing t%? for each of m'h' and m'2', viz.,

Yy b SV

-1 0 -0.00526t*m'h' + 0.00751t*m'2’
0 -1 -0.01056t?m'h' + 0.00018t2%m'%"
0 0 -0.00606t%m'h' + 0.00865t%m'2’
0 +1  +0.00344t%m'h' + 0.00999t2%m'2’

+1 -1 ~0.01214t%m'h" .00020t%*m"' 2"

-+
o

+1 0 -0.00696t%m"'h" .00993t%m" ¢’

+
o

The coefficients within the linear equations in
m', m'h' and m'%2', were then determined for the six

combinations of y and 6, referred to previously.

4.4, Equations of Condition

The complete expression for the perturbations of the
geocentric longitude, G, necessitated the determination
of the coefficients of the terms in m', m'h' and m'%"
for 114 mean epochs, involving 279 observations. The
problem remaining, therefore, was to reduce the number of
the equations to a reasonable number whilst at the same

time ensuring that an adequate solution could be obtained
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with a higher degree of accuracy than that provided by the
eighteen equations solyed previously. The ancient
observations were considered accordingly and re-grouped to

form seven mean observations, viz.,

(i) one observation by Flamsteed in 1690,
(ii) four observations by Flamsteed in 1712 and
1715, the latter made at opposition,
(iii) two observations by Lemonnier in 1750,
(iv) two very accurate observations made at
opposition by Mayer and Bradley in 1753 and
1756 respectively,
(v) one observation by Lemonnier in 1764,
(vi) -eight observations made at opposition by
Lemonnier in 1768 and 1769,

and (vii) one observation by Lemonnier in 1771,
yielding seven equations of condition.

The remaining 260 modern observations were divided
into groups of ten (approximately) yielding a further

twenty-six equations of condition.

The equations of condition thus derived are given in
Table 4.5, the perturbations in'each equation being
designated by the number (J], (Jeli2s::4533)s OF LHaL
equation. The symbols [1], [2],...,[33], were evaluated

for each of the six combinations of y and 6.
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As mentioned above, a set of 33 equations of condition
was obtained for each of the six combinations of y and
6, which consisted of 260 new observations and 19 ancient

observations.

In order to solve the thirty-three equations, for
each combination of y and £, the new observations were
grouped into six groups and the ancient observations were
g]so divided among these six groups. Thus, six mean
equations were obtained in terms of the six unknowns,

namely: 8, 6n, e, edw, m'h' and m}ﬂ'.

By elimination, the six equations were reduced in
terms of m', for each combination of y and &. An example

of the values for vy = -1 and 6 = 0 is shown below:

§c = -15.664 - 1.097m' ,

én = =-0.5250 + 0.0750m"',
de = -82.369 + 63.088m',
edd = +69.190 + 3.766m' ,
m'h' = -0.15632 +0.053734m"' ,
m'e' = +0.016494 + 0.011559m"'

.The values of 8¢, én, Se, edw, m'h' and m'L' thus

found (in terms of m'), were then substituted into the

33 equations giving rise to equations of the form:
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a. +a. +a. L+a. 2+a. B£2+a. 6
Ty1 1:2Y 1,13 1sl|Y 145 1:6Y

2 2 LI
+b . 2Y+bi L+b Y +b,i=5£ +bi,5Y’G)m =0 ,

for i=1,2,...,33, ai,j and bi,j (3=1,2,...,6) being

constants.

In order to obtain an accurate solution LeVerrier
weighted the thirty-three equations by assuming that the
.relative accuracy of the last twenty-six equations,.which
represent the modern observations, be unity, while the
relative accuracy of the first equation of 1690.98, was
one quafter. The remaining six equations representing the
rest of the ancient observations,.were assumed to have

relative accuracies of one half.

The algebraic development of these thirty-three new
expressions resulted in an equation of the fourth degree
inm', vy and 6. LeVerrier neglected all terms of the
third and fourth degrees and formed the sum J of the

squares giving

Y= +644.40-337.27y+34.336+99.42y2+42.5062+32.50v5
-m* [600.20-17.29y~121.88G-41,97y2-186.266%-108. 98v5]
+m'2[184.63+70.18y-54.906+12.30y2-48.9062-11.58v6]
(4.14)



Three equations were then formed corresponding to

e
Y

= .?-.E: —_— =
0, 5T 0 and S 0

viz.,

(198.84+83.94m' +24.60m"'2)y+(32,50+108.98m"'-11.58m"'2)6
-337.27+17.29m'+70.18m'2. = 0 (4.15)

(32.50+108.98m'-11.58m"'2)y+(85.00+372.52m"'-97.80m"'2)6
+34.33+121.88m"'-54.,90m'% = 0 (4.16)

(24.60m' +41.97)y2+(-23.16m'+108.98)y5+(-97.80m"' +186.26)62
+(140.36m'+17.29)y+(-109.80m'+121.88)5
+369.26m'-600.20 = 0 (4.17)

Although equations (4.15) and (4.16) are linear
equations of y and 6, in terms of m', equation (4.17) can
not be solved easily, and consequently a trial and error
method is used. Equation (4.17) is equated to N (say).
Values of m' are chosen for which values of Y,,S and N

are calculated as in the following table:



m' Y £ N

0.9 +1.19502 -0.71657 -20.691

1.0 +1.09949 -0.67870 - 8.624

| P +1.00273 -0.63945 + 3,204
Table 4.6

Inspection of this table indicates that equation

(4.17) has its minimum when
1.0 < m'" < 1.1
Further evaluation yields the mass of the disturbing

planet m' and hence y and 6.

Thus, we find

m' = 1.081068 (1.072714) ,

y = +1.,021105(+1.029285) ,
and

L& = -0.646983(-0.65030) .

from which it follows that the ratio of the mass of the

new planet to that of the sun is

] [1]
9250 9322

= B9 =



This means that the new planet wi}l,have a considerable
mass of the order of two and a half times that of Uranus.
In order of size, it will be the third planet next to
Jupiter and Saturn, Hence, it will have an appreciable

effect on the orbits of other planets.
For the new value of y obta.ned,
a = 0.530422 (0.530585)

the corresponding mean semi-major axis of the orbit of

the new planet being

AU AU
a' = 36. 1650 (36 . 1539).

It follows that the duration T' of its sidereal revolution,

expressed in Julian years, 1is
y b 4
T' = 217.484 (217.387).

The remaining elements follow accordingly. Thus the

longitude of the epoch 1st January 1800 is given by
e' = 240°21'15" (240°17'41")

Adding the sidereal motion n't in 47 years and the motion
of the equinox in the same time, the mean Tongitude L' on

1st January 1847 becomes
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L' = 318°56'27" (318°47'4"),

The corresponding numerical values of h' and 2' are

found to be

h I

-0.103134 (-0.10437) ,
2' = +0.027284 (+0.02621) ,

from which we can determine the eccentricity e', i.e.
e' = 0.1066804 (0.10761)
Also, the longitude of perihelion on 1st January 1847 is
284°48'55" (284°45' 8"),
The mean anomaly at the same epoch is
34°07"'32" (34“1'56f)
and the equation of centre,
7°24'33" (?“44'44").

We have, therefore, for the true heliocentric longitude

v' of the new planet on 1st January 1847:

v = 326°21'00" (326°31'48").
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These results were presented to the Academie de
Science on 31st August 1846 together with a personal

reflection:

"This true longitude differs 1ittle
from 325°, the value which resulted from
my first research work. The present
determination is founded on numerous and
accurate data. "It places the new heavenly
body about 5° to the east of the star 6 of
Capricorne.

The opposition of the planet took
place on the 19th August last. We are
therefore presently at an epoch very
favourable for its discovery."

LeVerrier assumed that the density of the new planet
‘was equal to that of Urahus, since the densities of planets
were thought to diminish as the distance of the planet

from the sun increased.

By supposing, also, that the reflecting power of the
surface of the new planet was similar to that of the
surface of Uranus, LeVerrier deduced that its specific
brightness should be about one third that of the specific
brightness possessed by Uraﬁus when at its mean distance

from the sun.

The following table provides a comparison of the new

theory with the modern observations,
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Dates of Excess Dates of Excess
obs.-cal. obs.-cal.
observations positions observations positions

1781 - 1782 + 2.3 1813 - 1815 - 0.9
1783 - 1784 + 0.1 1816 - 1817 + 0.4
1785 - 1788 o L2 1818 - 1820 + 0.4
1789 - 1790 - 3.4 1821 - 1823 +0.9
1791 - 1792 -+ 0.3 1824 - 1827 - 5.4
1793 - 1794 - 0,5 1828 - 1830 . - 2.2
1795 - 1797 “ 1.0 1835 - 0.8
1797 - 1801 °  + 0.9 1835 - 1836 + 2.3
1802 - 1804 + 0.8 1837 - 1838 + 2.

1804 - 1806 + 0.8 1839 - 1840 v 2.

1807 - 1808 + 2.1 1841 - 1842 - 0.2
1808 - 1810 + 0.8 1842 - 1844 - 0.4
1811 - 1813 - 0.5 1844 - 1845 i ofY, 3

Table 4.7

2 B8 =



and demonstrates how well the modern observations are

represented.

The comparison with ancient observations, however, does
not indicate the same level of success, as the following

table shows:

Excess
Epoch obs.-cal.
positions
1690 +19.9
1712 - 1715 - 5
1750 + 7.4
1753 - 1756 + 4.0
1764 + 4.9
1768 - 1769 - 3.7
Table 4.8
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5. THE EFFECT OF OTHER INEQUALITIES

ON THE DEGREE OF ACCURACY OF THE

ORBITAL ELEMENTS.

In order to implement a search for an accurate
solution in which the error between theory and observ-
ation is reduced to its least value, it is necessary first
to examine the relative magnitudes of each of the first
and_second-order nerturbations. It should be recalled also
that in the first approximation, LeVerrier neglected
second-order tefms and the secular inequalities, and
similarly for his second solution, discussing father the
effect of the number of equations of condition on the
accuracy of the determination of the orbital elements of
the unknown planet.. LeVerrier had started with eight
equations of condition, increased them to eighteen in his
second approximation and continued thus until he had
thirty-three equations covering the ancient and modern
observations from 1690 up to 1845, Only when examining
the latter group, as discussed in Section (4), did he
consider those perturbations dependent on a higher power
of eccentricity, neglecting some in order to facilitate

the resolution of the equations of condition.

Consider, for example, the first-order perturbations,
i.e. the perturbations, P(j), independent of the eccen-

tricities e and e', the perturbations, N(J), dependent on



the first power of the eccentricity, e, of Uranus and the
inequalities, M(i), which are proportional to the first
power of the eccentricity, e', of the unknown planet, for
i=1,2,...,6 corresponding to «=0.49,0.50,...0.60 respect-
ively. These perturbations may be calculated by using
formulae similar to those of Section 2, giving rise to the
numerical values shown in Table 5.1. Corresponding second-
order terms, B', C' and D', which depend on the small
argument (3n'-n) may be ca1§u1ated from equations (4.13)
of Section 4, their numerical values being shown in Table
5.2. Tables 5.3 and 5.4 give respectively the numerical
values of the coefficients of the error in heliocentric
longitude, 8v, as derived from equations (4.7j and (4.8),
and the error in the radius vector, 8r, as derived from

equation (4.11),

Reference to Table 5.1 shows that for values of o
outside the range considered by LeVerrier, terms corres-
ponding to i°> 3 can no longer be safely neglected. On
the other hand the second-order terms appear to be

insignificant.

However, since there is no way of knowing which terms
would have been included by LeVerrier, had he chosen a
value of a in excess of 0.53, any subsequent investigation
using a range of values of 0=0.49,0.50,..,,0.60 must
necessarily include some perturbations corresponding to

values of i > 3.
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931 Retention of Four Principal Inequalities

Throughout this section, the origin of time used is
that adopted by LeVerrier in his research, viz. 1st

January 1800.

Following LeVerrier's procedure outlined in Sections
3 and 4, but excluding second-order terms, the principal
terms occurring in A, H and L are those corresponding to

i=1,2,3,4. The perturbation in heliocentric longitude is

therefore
§v = Am' 4+ Hm'h' + Lm'2"' ,
where
4 i
A=) PMsin i {(n'-n)t+e'-€}
i=1
4 )
+ ) N(1 sin{i{(n'-n)t+e'-c}-(nt+e+d)] , (5.1)
i=1
§ o0
H =-] MYcos[i{(n'-n)t+e'~e}-(nt+e)] , (5.2)
i=1
and ;
L =+] MO sin[if(n'-n)t+e'-e}-(nt+e)] . (5.3)
i=1

Following the procedure of Section 3, the final
equations for the correction of the elliptic elements were

then derived with respect to &e, én, de and edd. The
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perturbations of the heliocentric longitude and the errors
of the observations were then added to each equation. The
279 equations of condition covering both ancient and
modern observations were then reduced to 114 by re-

grouping, as before.

The numerical expressions of the above perturbations,

A, H-and L, were formed for the different epochs using

0.51 + 0.02y , =1 2 v +1

Q
n
A

and

e' = 262 + 18C sy -1 26 £ +1-,

as before.

The resulting equations were solved for y and £, as

in Section 4, and the values of the orbital elements

found to be:
AU AU o v w e
a' 36 .04(36 .1539) &' 239 41 7 (240 17 41)
m'  0.98575(1.072714) v' 328 57 00(326 32 00)
e'  0.11915(0.10761) & 277 4 29 (284 45 8 )

Table 5.5

The previous work was then repeated with the

addition of the second-order terms C' given in Section
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4, i.e. by adding

3Cae
(10*)" (3v-1)

m'e'sin(38' -2-8-3') ,

where
@) d b(z) d : b &
C = 7|20, + 100 —L + o> —2 ,
% da dCLz
and
2 = nt + ¢ , ' = n't + €',

and the terms containing t? which are coefficients of m'h'

and m'2"'.

Solution yielded:

AU AU ’ o 1 " o 1 n
a'  36.1803(36.1539)  e' 240 26 13 (240 17 41 )
m'  1.092606(1.072714) v' 326 6 (326 32 )
e'  0.1054347(0.10761) &' 286 27 25 (284 45 8 )

Table 5.6

clearly indicating the sensitivity of the solutions to
the inclusion of second-order terms, a conclusion also
arrived at by Brookes (1970) in his analysis of the work

of Adams.
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52 Variations of the Semi-Major Axis

To examine the effect of values of o outside the
range 0.51 + 0.02y it was thought more appropriate to
follow the method of LeVerrier's second solution.
Consequently, solutions were sought corresponding to
specific values of a, viz. a = 0.49, 0.50, ..., 0.60
whilst still retaining the four principal inequalities

referred to above, and in addition, the second-order term.
The results obtained are shown in Table 5.7 (using

the whole 279 equations of condition) and Table 5.8

(using the reduced set of 114).

53 Retention of Six Principal Inequalities

As a final analysis of the effect of the erroneous
value of a'’and as a preliminary to a subsequent
investigation into the significance of the timing of
LeVerrier's research, it was thought desirable to include
two further perturbations, all three second-order terms,

and to utilise all 279 equations of condition.

Two separate techniques were used. With i=1,2,...,6

and writing

o 0.53 + vy s =1 £y < +1

e' = 234 + 18 , -T <f < 4]
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the method of Section 5.1 gave rise to the results of

Table 5.9.
AU AU ..
a'  36.0903(36.1539)  v' 327 40 (326 32 )
m'  1.024363(1.072714) &' 279 52 3 (284 45 8 )
e’  0.11358(0.10761)  e' 239 57 13 (240 17 41 )

Table 5.9

It is interesting to note that the inclusion of the
additional terms, whilst not producing significant changes
fn the orbital elements, gives rise to a value of Q' which
ijs nearer to the actual value than that deduced by

LeVerrier.
The corresponding solutions for specific values of «,

following the procedure referred to in Section 5.2, are

given in Table 5.10.
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6. SOLUTIONS FOR OTHER EPOCHS

If the investigations had been instituted in any
year prior to 1846, then the number of observations and
hence the number of equations of condition that could
have been formed would naturally haQe been reduced, the
period over which the modern observations extended now
being less than sixty-four years. As a result, it is no
longer possib?é to retain an equal number of equations of

condition for the new epochs, corresponding to the times
1800.604 + t , .¥t = 10,15,20,...,40.

The number of equations of condition used, at each
new Epoch, will be sufficient to enable the calculations
to be made in retrospect for any year between 1800 and

1845.

In Table 6.1, the number of available observations
and their corresponding number of equations of condition
are gfven for the years 1840, 1835, 1830, 1825, 1820,
1815 and 1810.

As mentioned ear]ief in Section 4, the equations of
condition are those between the geocentric errors of the
Tables and the corrections of the elements of the orbit
of Uranus. They were therefore completed by adding to

their first members the perturbations of the geocentric
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longitude, G, of Uranus, which are due to the action of
the disturbing planet. These were deduced from equations

(4.1), (4.2) and (4.3).

The coefficients of the perturbations Pﬁ), Nﬁ) and
Mﬁ), i=1,2,...,6 are used for each solution corresponding

to each one of the new epochs.

The second-order terms C' in the mean longitude and
that containing t? for each of m'h' and m'%' are also used;
without, however, the addition of any other terms. This
is felt to be more in accordance with LeVerrier's actual

method.

The aim of this section is the recalculation of the
orbital eleménts following the method of solution given

in Section 4.

After the formation of a set of equations of condition
for a specific epoch, the solution of the equations at
this epoch was given, i.e. the seven unknown values §¢,

én, de, edw, m'h', m'2' and m',

The coefficients A, H and L of m', m'h' and m'%"'
respectively were recalculated under the following

assumptions, adopted by LeVerrier in his final solution.

(i) @ = 0.53 + y , €' = 252 + G-
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(ii) a = 0.51 + y ' = 238 + 5

-
m
n

0,53 % , €' =234 +%.

(iii) «

Consider, for example, the first possibility relating
to the year 1840. Assuming that LeVerrier started his
investigations into the problem in 1840, the possible
number of equations of condition was 253, covering both
ancient and modern observations. This number was reduceﬁ
for convenience to 106 equation§ of condition by a method
of regrouping in order to have a reasonable number of

equations, which were then weighted approximately.

The resolution of the 106 equations of condition for
each of the cases (i), (ii) and (iii) mentioned above,
yielded values of the orbital elements and are given in
Tables 6.2, 6.3 and 6.4, comparéd with those of true

values of Neptune.
Solutions corresponding to 1835, 1830,..., 1810

were similarly obtained, using, of course, a reduced

number of equations of condition in each case.
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Following the procedures of Sections 5.2 and 5.3
solutions were also obtained for specific values of a,
viz. o=0.49, 0.50,...., 0.60 as before, using the reduced
number of equations of condition where appropriate. A
comparison of the orbital elements so determined, with
those of Neptune, are given in Tables 6.5, 6.6, ..., 6.11,
the value of 4; for the longitude of perihe]ion,.ﬁ',
being an adequate approximation, for the purpose of
comparison, of the values quoted in modern tabies. The
unit of mass is taken as 10" times that of the sun as

adopted by LeVerrier.

Whether or not the predictions derived in other years
and using different values of o would have led to the.
discovery of the new planet, is best illustrated in
Tables 6.12 and 6.13. The procedure adopted is that given:
by Brookes (1970), in designating by ai=0.48 + 0.011
(i=1,2,...,12), the twelve values chosen and indicating

by a positive sign if the planet lies within %5 or i1§

of the predicted position, and by a negative sign if not.
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0'.3 a, (15 C!G 0’.7 (18 a 0‘10 011 Ci.lz
1846 + + + - - ? ? ? + i
1840 + - - - ? - ? ? ? +
1835 + - - + - - - - + +
1830 - - B - - - - - - -
1825 - - - + - - ? - + +
1820 + - - - - - - - ? +
1815 - = + ¥ - - = - - £
1810 + + - - - - - - - -

Table 6.12 (within #5)

0, @, Og Qg O, Op Oy O, 0, O,
1846 + + .+ - - ? ? ? + +
1840 + o+ - + ? ? ? ? ? ¥
1835 + + + + - - - ? + +
1830 - = - - - - - ? ? +
1825 + - A - ? ? - + +
1820 + + - - - - ? - ? +
1815 -+ o+ o+ 7 - ? - - -
1810 - + - - + - - - + +

Table 6.13 (within 10)

P



The ? indicates that although the predicted position is
within the specified range, the corresponding value of
the orbital eccentricity is unacceptably high, viz.

e' > 0.2.

From Tables 6.12 and 6.13 it would seem, therefore,
that the new planet would have been predicted with
reasonable accuracy chiefly in the years 1835-1845, but

essentially using erroneous values of a, viz.a,,a,,a,,0,.

It is significant, however, that the greatest
-]
success (within #10) is achieved using the value of
@ = o, (corresponding to a' = 32A.U.), i.e. the value

of a' closest to the actual value a' = 30 A.U.
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7. CONCLUSION

The main aim of LeVerrier's planetary theory was to
determine the position of the disturbing planet, Neptune,
from an analysis of the orbital motion of Uranus. 1In this
respect he produced three solutions of increasing
accuracy, classified as the First, the Second and- the
Third solution respectively, the goals and results of which

- are summarised below.

The First Solution aimed at determining the mass of
Neptune on tﬁe assumption that the ratio, a, between the
semi-major axes of Uranus and Neptune equals %, in keep-
ing with Bode's Law. For this solution, eight eQuations

of condition were solved corresponding to the years
1747.7 + 14(j-1) sy J = 1,2,...,8,

covering both ancient and modern 0bservation§; but utilis-

, @ G @
ing only those perturbatory forces P , N , M (i=1,2,3),

of order zero and unity, in e and e'.

According to this solution, the mass of the

1

disturbing planet was of order 7700

4

times that of the

Sun.
The Second Solution, aimed at determining the orbital

elements of the disturbing planet and refining the value

for the mass, previously determined. For this solution
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three further equations of condition were added
corresponding to the epochs 1690, 1712 and 1715
respectively. The remaining equations of condition
were rearranged into fifteen alternative equations, at

intervals of seven years, corresponding to the epochs

1747.7 + 7(j-1) , =1,2,...,15.

On solution, and following close examination of the
errors between theory and observation for the epochs
1690, 1747, 1758, 1793 and 1828, LeVerrier came to the

conclusion that the mass of the disturbing planet should

1 ]
SO I d s £R t > d
0,000 th an £700 th that of the Sun, an

deduced that the true heliocentric longitude on 1st

lie between
January 1847 should be approximately 325.

The Third and final so]ution; called upon the
experience gained in the First and Second So]utions; and
attempted to improve the accuracy of the values for the
mass and the orbital elements of the disturbing planet.
Using a range of values of a from 0.49 to 0.53, LeVerrier
formed thirty-three equations of condition covering a
period of 155 years, and for the first time included
certain second-order terms. The solution, as we have
seen, yielded a value for the mass equal to approximately
agaa times that of the Sun and a predicted true helio-

centric longitude for 1847.0, less than one degree from

its actual position.
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Although some differences were found in the re-
determination of LeVerrier's solutions, generally these
could be attributed to the differences in computational
techniques available then, and now. 1In a few instances,
however, this is perhaps not so. For example, in the
Second Solution, LeVerrier concluded that the mass m' was

negative within the .range
[+] Q
198 < e'< 270
whereas in fact, the re-calculation indicates positive

values.

Present day computing facilities encouraged the
author to attempt to improve LeVerrier's theory by taking
into account the neglected perturbations of the first-
and second-order. Moreover, the full 279 equations of
.condition could be retained instead of the thirty-three
equations of the Third Solution. In addition, it ﬁas now
feasible to seek solutions for each of a range of values

of «y, viz. o = 0.49, 0.50, ..., 0.60.

It is intriguing to find that the addition of second-

(i)

order terms as well as the six principal inequalities P ,
(i) (1)

N and M (i=1,2,...,6), led to a reduction in the error
of the actual position from 52 to 16 , in spite of the

adoption of an erroneous value of a.

Following the procedure of Brookes (1970) outlined
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in his investigation of the theory of Adams (1847)
solutions have been obtained for different years before
1845, backwards in time to the year 1810 at intervals of
5 years, utilising only those observations that would

have been available at that time.

No firm conclusions can be drawn from the result
obtained due to the frequent occurrence of unacceptably
high‘values of eccentricity. Nevertheless, there is
perhaps some justification for stating that LeVerrier's
technique would have led to a successful prediction in
the years 1835 to 1845 for some values of o, notably
a = 0.49 to 0.52. Beyond these values, only one gave a

sensible solution, viz. a = 0.60.

Comparison of the predicted positions corresponding
to the theory of both Adams (Brookes) and LeVerrier

(Baghdady) 1is possible now, for the first time.

The two analyses have several epochs and values of
o in common, and permit a direct comparison for values of
a = 0.49, 0.50, 0.52, 0.53, 0.56, 0.57, 0.60 (approxim-
ately), for the years 1846, 1840, 1835, 1830 and 1825.
The resu]ts.are presented in Tables 7.1 and 7.2, the
letters A and L signifying successful predictions
according to the theory of Adams and LeVerf%er respect-
ively. As in Section 6, predictions yielding values of

e' > 0.2 are regarded as unsuccessful,; and consequently
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are not inc?gded in these tables.

o 0.49 0.50 0.52 0.53 0.56 0.57 0.60
1846 AL AL AL =1 - -- AL
1840 AL AL AL -L o -L AL
1835 - AL AL oL - A- A- AL
1830 = e - o - “- -
1825 AL <L, A- - e e -L

Table 7.1 (within 5)

o 0.49 0.50 0.52 053 0.56 0.57 0.60

1846 AL AL AL AL A- A- AL
1840 AL AL AL AL A- AL AL
1835 AL AL AL AL A- A- AL
1830  --  -- - “w e o =1
1825 AL =L A- -1 A- - AL

Table 7.2 (within £10)
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It would seem, therefore,‘that LeVerrier's technique,
proves the more successful within the range ig, whilst
that of Adams proves more successful within the range
t]J. Both techniques are particularly unsuccessful when

applied in 1830 and only partially successful in 1825.

0f the two theories, that of Adams came closest to
the correct value of eccentricity, viz. e' = 0.0088
(for @ = 0.60 in 1846) compared to the actual value of
0.0086. On the other hand, e' was always > 0.2 for the
year 1830. Values of e' according to the theory of
LeVerrier were consistently out by a factor of at least

ten.

The fortuitous timing of the predictions in 1846
is thus self-evident, especially if one recalls the

usage of erroneous values of a.

However, the validity of both theories seems
established, since the best solutions (in terms of a'
and e'), are those corresponding to the highest value of
a, viz. o = 0.60 (a' = 32A.U.), which is not far removed

from reality, viz. a' = 30A.U.
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- APPENDIX

Roots of a real polynomial by QD-algorithm

with displacement.

The progressive QD-algorithm is a fast device for
the calculation of all roots of a polynomial P(x) with
real coefficients, when there are no approximations to

the roots available.

The roots of P(x) = 0 are determined by solving

for the po1e§ of Q(x)/P(x) where Q(X) is some polynomial
of smaller degree than P(x). In the following, n is used
to denote the degree of P(x). Using the derivative P?x)
for Q(x) has the advantage that the poles are simple, even

in the case of multiple roots of P(x).

The start of the QD-algorithm requires the continued

S-fraction:

/ i
n  of P (x)/P(x)
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This calculation is performed using the Euc]ideam@1gorithm:
By means of normalisation such that the highest coefficient
is 1, Q,(x) is obtained from P(x), and P,(x) from P?x).
Then e, and q, are calculated from the iteration scheme:

aka(x) = x.Pk(x) - Qk_l(x) k=1,2,...n (1)

k=1,2,...n-1 (2)

-

e Py (x) = Qk(x) - P (x)

using the fact that all e1ements'01(x) and Pi(x) are

normalised by definition.

The following example is an illustration of this

iteration scheme:

P(x) = 1+ 3x+ 3x? + x° , n=3

Q,(x) = x* + 3x% + 3x + 1

P,(x) = x* +2x + 1, q,0Q,(x) = -x2-2x-1 , q,= -1
Q,(x) = x* +2x + 1 , eIPZ(x)-= 0 , elé 0

/
where Q,(x) is a common divisor of P(x)/P(x), and q 6= -1

is the value of the real root which factors out first.

The above iteration scheme breaks down if some
intermédiate value of q;> with 0 < 1 < n is equal or
approximately equal to zero. In this case an error code
should be used (in the program it is set to 4), which

/
indicates that no S-fraction exists for P(x)/P(x).

If Q, and P, have a common divisor of degree j, this
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common divisor is obtained as Q and necessarily

n-j?
en-jpn-j+1 = 0. Due to round-off errors, all coefficients
of e  _.Pn_j4, cannot be expected to vanish exactly;

therefore, allowance is made for coefficients of small

absolute value,

If the highest coefficient of en-jpn-j+} is small
in absolute value, but some lower coefficient is not,
the error code is sef to 4, and the subroutine is

abandoned.

The coefficients e, ,q, obtained by the Euclidean-
algorithm, form the first row of the QD-array indicated

by superscript o.

€ q, €, 4, ez qm em
©) (©) (0) (0) (0) (0)
0 q, e, q, e, . 9 en
(1) (1) (2) (1) (1) (1)
0 q, e, q, €, <. .. 9 e

----------

Normally m is equal to n, but it may be smaller if a

common factor exists.

The following rows are obtained by means of the

relationships:

(v+1) v v )

a; =93 +e;-e., o, i=1,2,...m (3)
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(v+1). es . qy
i+l
E_l = (V+1) 3 1=.|’2’ ..m-] (4)
%
_ _ v) )
together with ey =ik = 0.

Let X denote the roots of P(x) orderéd in decreasing
absolute value. If P(x). has only roots of different
absolute value, there is convergence of the qk-column to
the value Xy e Complex roots are indicated by oscillation

of certain g-values.

3 2 Xy and X4y are equal absolute values, then the
roots of

S )W ® o
X= = (qk + qk+1)x *qQp Qpyq T 0 (5)

The same reasoning applies if

converge to Xy and Xy

the relation [xy|=[x,,,| holds only approximately.

The QD-algorithm in the form (3),(4) suffers from
the fact that convergence is rather slow. By means of
displacement of the origin, a form is obtained which is

asymptotically of quadratic convergency.

The strategy is as follows. Start with disp]aéement

t = 0.

v TIB =



I. As soon as convergence is indicated to a real root,

v)
then e, is sufficiently small (1ntern§l test value 0.01).
v |
Perform a displacement by the amount qp -

, v ,
Starting with qp » € » Uuse instead of (3) the

iteration scheme:

(v)
t+ g . (6)

r‘-
"

(v1) M@ (v+) )

9k = Qe t e ey tqy o kslhZ,.eem (7)

(v+1) v) (v) (v+1)

ek = qk'{'l. ek/qk . 3 k=‘l,2,.com“] (8)
(v+1) W)
Values e and e, are thereby set equal to zero.

I1. 1If convergence is indicated to a root pair - that is,

[\ V)
e 2 is less than e 1 and sufficiently small (internal

test value 0.01) - calculate the discriminant of the

quadratic equation (5):

: * v)
D =PP~-aq, *q,_,
with
v) v) v)
P=0.5(q,_, +e _, +4a. )

If D is positive, provide for a real displacement of amount
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P - VD or P + /D, whichever has the smaller absolute
value, and proceed according to (7), (8). If D is
negative, three coﬁp]ex displacements are applied in -
sequence: the first by amount P+i/|D|, the second by
-2iv/|D|, and the third by V+i/|D|, resulting in a total
real displacement of amount P. Instead of (6), (7), (8)

the following iteration scheme is then obtained. Starting

with:
t =t +P (9)
% v W
q; = 9, + e, = P (10)
*2
P, = -D/q, _ (1)
* v *
e, = e, q, / [q,(1+P,)] (12)
Kk % * _
q, = q, + &, (13)
calculate for k=2,3,...m:
* v ®
qy = Oy F B = G o B P (14)
%* % * * * %k
&1 T 8.y I /9 (15)
ok * 2
Pk = Pk-l(qk-l/qk) (16)
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q * % s (v+3)
k-1 = Qp.y * e, € 2 (17)
* ) \)
e = Qugr 8/ [q (14P))] (18)
* % +* * * %
A = G e T &, (33
(v+3) * % xx  (VH3
epor = (Ep_y Gy /ap., )(1+P) (20)
Finally set:
(v+3) * % (v+3)
q, = Ap e, ' - (21)

(v#3) @) v)
values e, R and Qneq 2re thereby set equal to
zero.

) v o

III. If none of the values e and e is sufficiently

m-1 m-2
small, the relationships (3),(4) are used with no dis-

placement at all.

Regarding termination of the iterative scheme given

by I, II, III, there are two possibilities:

- 113 -



v)

1. If e _, is negligible (internal test value is 107°
in single precision and 10! in double precision), a real
root is factored out.

V)

2; If Qs is negligible (with the same internal test

values), a pair of roots is factored out.

A maximum of ten times the number of coefficients using
I, IT.or III is allowed. At every iteration step for one
and the same root or root pair, the internal test value
for convergence and the internal test value for acceptance

of a displacement are increased by 10%.
In case of convergence:

i For a real root

(a) real part of root =t + A
(b) complex part of root = 0

2. For a real root pair (characterised by D > 0)
(a) real part of first root =t + P + /D
(b) complex part of first root = 0

(c) real part of second root =t + P - /D

(d) complex part of second root = 0

3 For a complex root pair (characterised by D < 0)
(a) real part of first root = t + P

(b) complex part of first root = /-D

= 114 =



(c) real part of second root =t + P

(d) complex part of second root = -v-D

As soon as a root or root pair has been factored out, m
is reduced by_l or 2 respectively and the whole procedure
I, IT, III is repeated with origina1-va1ues of internal
test values, until m = 0. This means, all roots have
been calculated, or m = 1, when the last real root is
factored immediately. If ;(x), P(x) have a common
divisor, the whole prdcess is repeated for this common
~divisor. Thus,'the complete factorisation of the original

polynomial P(x) is obtained.
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