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This thesis first considers the calibration and signal processing requirements of a
neuromagnetometer for the measurement of human visual function. Gradiometer
calibration using straight wire grids is examined and optimal grid configurations
determined, given realistic constructional tolerances. Simulations show that for
gradiometer balance of 1:104 and wire spacing error of 0.25mm the achievable
calibration accuracy of gain is 0.3%, of position is 0.3mm and of orientation is 0.6°.
Practical results with a 19-channel 2nd-order gradiometer based system exceed this
performance. The real-time application of adaptive reference noise cancellation filtering
to running-average evoked response data is examined. In the steady state, the filter can
be assumed to be driven by a non-stationary step input arising at epoch boundaries.
Based on empirical measures of this driving step an optimal progression for the filter
time constant is proposed which improves upon fixed time constant filter performance.
The incorporation of the time-derivatives of the reference channels was found to
improve the performance of the adaptive filtering algorithm by 15-20% for unaveraged
data, falling to 5% with averaging. The thesis concludes with a neuromagnetic
investigation of evoked cortical responses to chromatic and luminance grating stimuli.
The global magnetic field power of evoked responses to the onset of sinusoidal gratings
was shown to have distinct chromatic and luminance sensitive components. Analysis of
the results, using a single equivalent current dipole model, shows that these components
arise from activity within two distinct cortical locations. Co-registration of the resulting
current source localisations with MRI shows a chromatically responsive area lying along
the midline within the calcarine fissure, possibly extending onto the lingual and cuneal
gyri. It is postulated that this area is the human homologue of the primate cortical area
V4.
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Chapter 1.

Introduction

The human visual system performs specific data-processing operations on the neural

image formed by photo-transduction of the optical image at the retina. Evidence
suggests that this system is composed of neurons organised into functionally distinct
areas or elements. The system output is in the form of a subjective percept or an
objectively measurable response (Figure 1.1).

Objective measures of element function
(from i

' : Measures of
IVC recording ) visual system

function

Visual

) Subjective
stimulus

Objective

functional elements

Figure 1.1. Schematic representation of the human visual system in terms of
Junctionally distinct elements.

Our understanding of element function is largely dependent upon the results of
studies using invasive micro-electrode recording techniques in primates, but these results
cannot provide a reliable description of human visual function. In the human,
behavioural studies can indirectly investigate the function and interdependence of these
elements, and a schematic description of visual processing developed (figure 1.1).
However such descriptions do not relate to the physical composition of the brain. That
there is a link between function and anatomy is apparent in brain damaged patients
where lesions in specific sites have been shown to cause selective functional deficits
(Verrey 1888, Hendricks et al. 1981).

If the physical location of these functional elements can be established in the human,
then the neural structures which underlie them can be examined. On the basis of the
anatomical information, more concrete cross-species comparisons may be drawn.
Magnetic Resonance Imaging (MRI) provides accurate anatomical images of living
tissue (figure 1.2) and has revolutionised the study of brain structure. Techniques are
required which can show the correlation of function and structure in humans, this is

known as functional imaging.
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This chapter consists of three main sections. Firstly, the functional imaging tools
which dominate present day research are introduced. Secondly (section 1.2) the
functional imaging technique of neuromagnetometry is focused upon. Finally (section
1.3) the aims of this thesis, namely the use neuromagnetometry in the examination of the
human visual system, are outlined.
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1.1. Functional Imaging

There are two basic approaches to functional imaging which rely on two properties
of active neurons : firstly, like all cells, neurons absorb more nutrients when active;
secondly, neurons transmit signals along their cell bodies by electrical impulse. In this
chapter, these neuronal properties are referred to as metabolic and electromagnetic
respectively.

1.1.1. Metabolic Imaging techniques

Positron Emission Tomography (PET) and functional Magnetic Resonance Imaging
(fMRI) are functional imaging techniques aimed at highlighting local increases in neural
metabolism.

PET

PET involves the introduction of a radioactive tracer (normally radioactive water)
into the subject's blood stream. By monitoring the emission of high energy positrons as
the tracer decays, it is possible to build up a picture of the density of the tracer element
within the brain. Since heightened neural activity results in local increases in blood flow,
by subtracting pre- and post-stimulus PET images, it is possible to establish which area
of the brain became more active in response to the stimulus. Although the half life of
the tracer is relatively short (~2 minutes), the process is potentially harmful and
exposure of the subject to the radioactivity must be carefully controlled. Typically PET
has a spatial resolution of around 1cm, and temporal resolution of the order of minutes

(figure 1.5).
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fMRI
Imaging using fMRI is based on the observation that, although during increased
activity a neuron's glucose consumption increases (and hence the demand for increased

local blood flow), the cell's oxygen consumption remains constant. That is, around
regions of active neurons, there is excess oxygen in the blood which is not metabolised,
fMRI uses the high spatial selectivity of the standard MRI scanner to highlight such local
variations in oXygen concentration. As in the case of PET, the activity before and after
presentation of a specific stimulus is measured, and the difference between the two
states is taken to correspond to the area of the brain activated.

Unlike PET, fMRI does not involve the introduction of any foreign substance into the
blood stream, and also provides superior spatial resolution (~2mm). However, metabolic
processes are relatively slow (of the order of seconds) and thus both PET and fMRI fail

to resolve neural events which are separated by less than a few seconds.

1.1.2. Electromagnetic Imaging techniques
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Figure 1.3. A macrocolumn of neocortex for a single large pyramidal cell. A
macrocolumn is defined by the spatial extent of the axonal branches which remain
within the cortex. The cell shown is one of approximately 10° to 106 neurons in the
macrocolumn. Approximately 70% of all cortical cells are pyramidal cells. Each
pyramidal cell has 1 04 1o 10° synaptic inputs which cause microscopic current sources
and sinks (s(r,1)) along the membrane surface. It is through instantaneous imbalance of
these sources and sinks that a net macroscopic current density J and potential
difference A® can be measured across the cortex. This current distribution is often
conveniently modelled as a current dipole oriented perpendicular to the cortical

surface. (from Nunez 1990).

o
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Since neurons have a high degree of alignment and interconnectivity (figure 1.3), the
activity of a small area of neural tissue can result in a net local current flow. This
primary current flow, often modelled as a current dipole, results in electric and magnetic
fields which can be measured outside the head (figure 1.4). The aim of
electromagnetic-based imaging techniques is to infer the neural activity by measurement
of its external electromagnetic effects. Since the electromagnetic phenomena are
effectively instantaneous current based imaging techniques have very high temporal
resolution, of the order of milli-seconds. Their spatial resolution, on the other hand, is
limited by the accuracy of the mathematical models used to describe the head and the
underlying current generators.

MEG
EEG 3cM

SCALP

Figure 1.4. Extra-cranial recording of EEG and MEG data. EEG is most sensitive
to the correlated dipole layer in cortical ridges or gyri (ab,dejk), whereas to MEG
such radially oriented dipoles are invisible. (The external magnetic field due to a
radial dipole in a medium of spherically symmetric conductive layers is zero). MEG is
most sensitive to correlated uncancelling dipole layers in the cortical folds or sulci (hi).
The electrical potential measured by EEG is highly dependent on the skull and scalp
conductivities, the external magnetic field however is independent of such factors
(providing the boundaries are spherically symmetric). from Nunez 1989.

Electroencephalography (EEG) is the measurement of the volume currents which
flow across the scalp due to the underlying primary current. However, EEG has
relatively poor spatial resolution (figure 1.5) since the path of the volume currents is
highly dependent on the cranial conductivity profile, which is complex and highly
variable between individuals (Ducla-Soares 1989). ‘

Magnetoencephalography (MEG or neuromagnetometry) is the measurement of the
magnetic fields due to the primary current. Around the occiput the skull-brain
conductivity boundaries are well approximated as spherical and concentric. Given this,
the external magnetic field due to the primary current source depends solely on the
sphere centre coordinates. Because few modelling assumptions are required to define
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the simple head model, neuromagnetometry has potentially high spatial as well as
temporal resolution (figure 1.5). However, in order to realise this potential, it is
necessary to overcome a number of instrumentational and signal processing obstacles,
which manifest themselves as noise. A focus of this thesis will be to develop methods by
which the effects of this noise can be minimised.

SPATIAL AND TEMPORAL RESOUTION OF EXPERIMENTAL TECHNIQUES

Spatial Resolution

10cm J
)
EEG
and
EP
SPECT
1cm L
PET
E5mm
MEG
e
Ao i Functional
Bepth Electrode: MRI
Tmm 1
.
Tms 1s 10s Tmin 10min 1 hour

Temporal Resolution

Figure 1.5. Relative spatial and temporal resolution of available functional imaging
techniques. adapted from Harding (1993).
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1.2.  Neuromagnetometry

The magnetic fields due to neuronal activity have magnitudes outside the head of the
order of femto Tesla (1fT = 1x10-15 T) (figure 1.6). In this section the instrumentation
required to measure such fields is introduced.

TO
ELECTRONICS

DETECTION COIL
MAGNETIC FIELD

FIELD MAP

Figure 1.6. Schematic of a single channel neuromagnetometer from Williamson and
Kaufman (1986). The SQUID and detection coils are maintained in a liquid helium
environment within a non-magnetic cryogenic vessel known as a dewar.

1.2.1. The Superconducting QUantum Interference Device (SQUID)
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Figure 1.7. The DC SQUID gives voltage output periodic in applied flux, of period
the flux quanta <.

SQUID devices are the essential components of high sensitivity magnetometers. The
SQUID has a normal current-voltage characteristic which is dependent on the flux
within its area. At a fixed current bias the voltage across the SQUID is a periodic
function of the applied flux (figure 1.7). In a neuromagnetometric system a linear flux-
voltage characteristic is required and feedback circuitry is used to maintain the SQUID
at a fixed operating point in its characteristic. The integral of the feedback applied to the
SQUID over time gives a linear measure of the relative change in magnetic flux within
the SQUID. At frequencies above a few Hertz, SQUID-based detector systems have a

19



sensitivity limited by intrinsic white noise of around 10‘64)0/\/Hz. At low frequencies
(<5Hz for niobium SQUIDs) SQUID noise increases monotonically with decreasing
frequency ('1/f noise' ,see Clarke 1989).
1.2.2. Detection coils

The small area of the SQUID device makes it a relatively insensitive transducer for
the measurement of magnetic fields. For neuromagnetic measurements the SQUID is
generally inductively coupled to an input coil which forms part of a network of larger
coils forming a 'flux transformer. The simplest form of flux transformer is the
magnetometer, consisting of an input coil coupled to a single pick-up coil (figure 1.8a).
The magnetometer effectively couples flux within the relatively large area of the pick-up
coil through the area of the SQUID loop. Due to the change in device sensitivity
brought about by the flux transformer, the intrinsic device noise is expressed in terms of
its equivalent flux density at the gradiometer pick-up coil (fTVHz).
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Figure 1.8. a) Magnetometer (b) first order and c) second order axial gradiometer
configurations (redrawn from Clarke 1989).

It is possible to attenuate environmental noise without strongly affecting signal
sensitivity by using a coil structure known as a gradiometer (figure 1.8b). A first-order
gradiometer consists of a pick-up and a compensation coil of identical dimensions
wound in opposite directions and separated by a distance known as the baseline. Fields
due to remote noise sources are relatively uniform over the distance of the baseline and
therefore cause comparable and opposing currents to flow in the pick-up and
compensation coils. However, fields due to nearby sources give rise to differential
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Miscalibration
Errors can arise in a neuromagnetic data set because detector positions and

orientations and their relative sensitivities are imprecisely specified. As an example,
figure 1.9 shows estimates of the positional error of a single current dipole model fit to
ideal responses contaminated only by measurement and detector noise. As the effect of
measurement noise is reduced by increasing the SNR, it becomes clear that the limit to
system performance is set by the accuracy with which the detectors are modelled. A high
degree of accuracy is necessary to adequately describe even the simplest model. The
problem of the accurate determination of all parameters describing the detectors is
addressed in Chapter 2.
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Figure 1.9. Radius of 95% confidence volume (mm) for dipole location as a function
of SNR for fits to data from an ideal dipole displaced 4cm off centre and 2.5cm below
an array of identical specification to that at Aston, with its detector parameters
perturbed by different levels of Gaussian white noise. 4 confidence volume for dipole
position based on 32 successive fits was calculated at various SNRs. Standard
deviation of the noise added : 3mm, 6¢ (diamonds); 0.3mm, 0.6 (boxes); 0.03mm,
0.06“(crosses); plus signs show the no added noise case. Note that all the curves
saturate showing that beyond a certain point improvements in Jit are constrained by
poor knowledge of the detector array. The saturation in the 'no noise’ case is due to the
Jinite tolerance limits set in the fit algorithm.
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Figurel.10 Noise spectra for a typical gradiometer channel. The system white noise

plateau is  30-40fT / vHz and the low Jrequency noise corner at around 6 H:.
Environmental noise is dominated by the 50Hz power line interference.

For visual evoked magnetic fields, environmental and system noise (figure 1.10) limit
the SNR on any single measurement trial to around 0.1 (figure 1.11). For the limited
number of detector channels available at Aston, such a low SNR cannot give stable trial-
to-trial inversions (figure 1.9). In order to increase the SNR of the data, some filtering
operation is required. Frequency discrimination filtering relies on prior knowledge of
signal bandwidth, which is not available; furthermore, system noise is distributed across
the frequency spectrum (figure 1.10). It is necessary to make the assumption that neural
activity is deterministic; that is, any stimulus will evoke an identical temporal sequence
of activity regardless of when it is presented. For the early (pre-cognitive) stages of

visual cortical processing this assumption seems reasonable.
4

B L e
O T

Figure 1.11. Typical noise (thin trace) compared with simulated signal (thick trace)
during a recording of an averaged evoked response.

After each stimulus presentation, the magnetic field distribution outside the head is
recorded for a length of time known as an epoch. Given that the stimulus-related activity
is deterministic, averaging a number of epochs will attenuate all noise and neural activity

which is non-coherent with the stimulus. Importantly, the noise on the data can be
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quantified by calculating an average of alternately phase reversed epochs, the anti-
average.

In practice, averaging is often not sufficient to give SNRs which result in stable
dipole fit parameters. For example, environmental noise due to the stimulus is
unattenuated by averaging. Some further signal processing is required to extract the
underlying neural signal from the noise background. The removal of this noise should
not be at the expense of the signal information. Chapter 3 highlights an adaptive
technique for real-time removal of environmental noise specific to evoked response
applications. This technique requires no a-priori ‘assumptions about the bandwidth of the
environmental noise.

1.3.2. Application

The final three chapters of this thesis describe the application of neuromagnetometry
to the identification of distinct functional elements involved in the cortical processing
of colour and luminance modulated patterns in humans.

The known physiology and interconnectivy of the functional elements (figure 1.1)
involved in primate vision are discussed in Chapter 4. The following observations are
made. Neurons specific to colour visual processing have been identified in primate
cortical areas V1 (the striate cortex), V2 and V4. In particular, the activity of neurons in
primate V4 has been shown to correlate with human colour perception, yet the activity
of cells in primate V1 has been shown to correlate with human behavioural sensitivity to
simple chromatic patterns.

Chapter § then describes what is known about human colour vision from
behavioural measures, behavioural deficits in brain damaged patients, EEG and PET. It
is noted that lesions in extra-striate cortex have been shown to cause exclusive loss of
colour vision. Furthermore, PET scans reveal activity in the extra-striate cortex when a
subject views a coloured stimulus. However, EEG responses to simple chromatically
modulated stimuli are thought to arise in the striate cortex. If there is a human cortical
area which is specialised for colour, then why is it not observed in the EEG
experiments?

In Chapter 6, using the neuromagnetic instrumentation and signal processing
developed in chapters 2 and 3, an analysis of the evoked magnetic responses to
chromatic and luminance patterns reveals the activity of two temporally and
anatomically distinct cortical areas.
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Chapter 2.

Calibration of a gradiometer array

2.1. Introduction

All biomagnetic measurements aim to discover the characteristics of underlying
electric current in some source space. Magnetic field measurements from physical
sensors are compared to the modelled sensor output due to some proposed current
distribution (Supek and Aine 1993). A reasonable current distribution is that which
gives minimum deviation between the theoretical and measured field. Biomagnetic
sensors are located in a bath of liquid helium; thermal contraction effects may cause
unpredictable shifts in sensor positions. Likewise, precise sensor output per unit flux
depends on a number of inaccurately predictable factors, such as the coupling coefficient
between SQUID and input coil. Due to such factors, constructional parameters are
generally relaxed, and precise knowledge of the sensor array is achieved by some a
posteriori calibration technique.

Imprecise knowledge of sensor position or sensitivity will set a systematic noise
threshold and limit system performance (Cuffin 1986; Ribiero et al. 1988; Buchanan
1989). This performance limit will result in consistent modelling errors and source
estimates which may be highly repeatable yet highly dependent on dewar position. The
literature is in disagreement as to how much such modelling errors affect a particular
source estimate, since, the stability of the dipolar sources fit depends on the number of
measurement channels available (Buchanan 1989), or more precisely, the number of
degrees of model freedom. What is clear however is that as models become more
complex, that is the number of degrees of freedom decreases, calibration errors will
become more significant (see figure 1.9).

Many calibration techniques have been proposed and are in current use, rarely
however have the validity of such techniques been assessed. For example, calibration
relies on making model assumptions concerning gradiometer coil area, balance etc.; how
sensitive are the estimated gradiometer parameters to deviations from model
assumptions ? This chapter outlines the optimisation and implementation of a
straightforward calibration technique using a grid of long straight wires. This technique
has been mentioned by Guy et al. (1989) although to my knowledge, no detailed analysis
exists in the literature. Extensive simulation studies are presented in order to show the
physical constraints which define the envelope of operation of this technique.

2.2. Recent work

Ribiero et al. (1988) outline a technique for calibration of an array of second order
gradiometers using a large square coil. The technique relies on producing a known,
homogeneous, 2nd-order gradient field and complete a priori knowledge of detector
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geometry. Buchanan and Paulson (1989) use a small single turn coil placed at discrete
points on an accurately machined grid. By the use of minimisation techniques, they are
able to reproduce all parameters 2 describing each gradiometer.

Large coils create low spatial frequency fields, that is, fields whose magnitude and
direction change slowly relative to the gradiometer baseline. Such fields create
comparable currents in the gradiometer pick-up and compensation coils (Figure 2.1).
Comparison of ideal gradiometer output with actual gradiometer output can therefore be
largely influenced by gradiometer imbalance (Ribeiro et al. 1988 estimated 5%).
Alternatively, small coils create high gradient fields which cause the current in the
compensation coil to be insignificant compared to that in the pick up coil. Imbalance
effects do not therefore greatly influence the predicted gradiometer output (Figure 2.1).
Bruno et al. (1989) show, by the use of Fourier methods, that calibration using low
spatial frequency fields is degraded primarily by gradiometer imbalance, whereas
calibration using high spatial frequency fields is sensitive to errors in the construction of
the calibration rig.

Scm baseline
1000 T
100
Field magnitude ratio
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1 i | | | I
0 0.02 0.04 0.06 0.08 0.1 0.12
height (m)
10 ¢cm baseline
1000 T T T 2 T
100
Ficld magnitude ratio
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1 | | | | |
0 0.02 0.04 0.06 0.08 0.1 0.12
height (m)

Figure 2.1. Ratio of field through pick up and compensation coils for a first order
gradiometer of 5cm baseline and 10cm baseline for long straight wire (solid) and for
small coil (dotted). For a small (2cm diameter) coil, the field through the pick up coil
is typically an order of magnitude greater than that through the compensation coil at
moderate distances (2-4cm) whereas, the long straight wire produces comparable fields
in both coils.

2 Relative gain coefficient to within 1.5%, position 0.5mm, orientation 1 degree.
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This study will discuss the calibration of the gradiometer array at Aston using a set of
long straight wires. A straight wire produces a field which falls off as 1/r, where r is
distance from the wire. A technique based on such an approach should be broadly
tolerant of small errors in r, whilst still being relatively unaffected by gradiometer
imbalance. Section 2.3 deals with the basic apparatus and signal processing stages
necessary to obtain as high as possible SNR (Signal to Noise Ratio) from the data. As
groundwork for future simulations, an equivalent level of Gaussian white noise is
defined which describes typical noise conditions. The modelling task and the chi-square
measure is outlined (section 2.4) and through analytical and simulation modelling
techniques it is examined how the variance of calibrated gradiometer parameters can be
minimised by appropriate choice of grid dimensions (section 2.5). The analysis in this
section assumes that all noise is Gaussian white, and arises from measurements alone.
Section 2.6 moves away from the ideal case and examines the effects of modelling errors
due to non-ideal grid construction and non-ideal gradiometers.

The equipment and considerations necessary to relate the measured gradiometer
parameters to some physical coordinate system are outlined in section 2.7. Given the
information available from the modelling simulations, the performance of the physically
realised calibration grid is assessed (section 2.8). Section 2.9 outlines compensation for
analogue filter inhomogeneities such that the calibration remains valid across the signal
pass-band.

2.3. Instrumentation

A square grid of evenly spaced wires is placed approximately symmetrically at a
given depth below the dewar containing the gradiometer array (Figure 2.2). Each wire is
driven in turn at a given frequency and current (typically 33.2 Hz, 0.3mA), a copy of this
signal or reference is passed directly to a 16 bit ADC (sampling at 1kHz). The outputs
of the individual detectors are pre-amplified, filtered (typically 0-100Hz), and sampled
by the same ADC. The data is collected in epochs, time locked to the reference signal,
and averaged. The averaged data is Welch windowed and the Fast Fourier Transform
(FFT) gives a spectral estimate of signal amplitude and phase. Theoretically, for an ideal
sinusoid in white noise, such an estimate should improve on a peak-peak measure of
amplitude by V(N/2). However, in coloured noise, effects such as leakage introduced by
the finite length data sequence will degrade this estimate (Press et al. 1989).
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Figure 2.2. Schematic of calibration grid and system layout. A grid of n*n wires,
spacing s cm is positioned below the dewar. A sinusoidally modulated current is passed
along each wire in turn.

Having completed the measurements, a 3D digitiser pen (Polhemus 3Space Isotrak
systemTM) 3 jg passed along wire zero of both axes. The digitiser pen provides a real-
time readout of pen tip position (resolution 2.25mm RMS) and attitude (resolution 0.35
® RMS). The resulting set of points is used to construct a reference plane from which all
subsequent measures of gradiometer positions and orientations are offset (see section
2.7).

3 the same instrument is used for measurement of subject head position during recording.
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2.3.1. Real noise performance

The next sections detail simulations and analytical performance estimates where fields
sensed at the gradiometer are ideal sinusoids in Gaussian white noise. It will be
necessary to compare the simulated results with those achieved in practice. System noise
is non white and consists of a large low frequency, and 50Hz components (figure 2.3). It
is necessary to establish the performance of the signal estimation technique in coloured
noise. In order to do this, the algorithm was fed with epochs of data recorded from a

gradiometer channel in ambient noise with an ideal signal sinusoid superimposed.
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Figure 2.3. Spectra of typical noise epoch (solid curve). Superimposing a 32.2Hz
sinusoid on the data, and then applying the spectral estimate algorithm gives
equivalent performance to that as if the data had been originally white noise, of
amplitude shown by the dotted curve. (epoch 128 samples).

The true sinusoidal amplitude is known, and therefore the performance of the
algorithm can be quantified. Multiplying this empirically achieved RMS error by the
improvement factor calculated for Gaussian white data (in this case v(128/2)) gives an
equivalent initial pure white noise level (figure 2.3). This extrapolated noise level is
slightly higher than the intrinsic white noise level of the system, and possibly reflects
spectral leakage effects. Throughout this chapter the assumption is made that this white

noise is Gaussian in its distribution.
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2.4. Fitting a gradiometer

Each gradiometer is now characterised by a set of n*n amplitude readings, where n
is the number of wires. There are six gradiometer parameters to be estimated : three
position (x,y,z) two orientation (a,b) (components of a unit vector) and a calibration
coefficient (y). Figure 2.4 shows a schematic of the experimental set up alongside a
typical gradiometer response profile. Given that n>3, it is possible to calculate the
absolute gradiometer calibration coefficient y and all geometrical parameters relative to
the position of the wire set4. .

gradiometer

60—

20~

gradiometer _ T height

0
response

—20—
( arb units)

—40H

output from lock in amplifier

~60— I ! ! ! due to wire 1 ! -1

Figure 2.4. An ideal (solid) and noisy (dashed) gradiometer response to a wire at
any position x (solid curve). Since there are finite number of wires, only n points of the
characteristic are sampled (dark blobs). Alongside in the diagram are schematics of
the gradiometer and wire set. Note the main characteristics of the curve : zero crossing
approximately below the gradiometer and response extrema whose separation is
proportional to gradiometer height.

4 Although there are six parameters in total, the pairs {x,y} and {a,b} are independent giving the

requirement of at least four wires in each orthogonal direction.
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Given that the measurement errors are normally distributed and independent, the -
square statistic is useful as a measure of the goodness of fit :
Where
i : is the wire number
Y : the measured response

, [wi - (¥(h,y,x,y, a,b))i]z O : the measurement noise
X = Z . Y : the model response
i=1 <01> and the model parameters are :

h : height of pick up coil centre

y: calibration coefficient

(a,b) : orientation vector

(x, y) : displacment of centre of
pick up coil from axis.

Given that the model W(...) is appropriate, the parameter set (h,y,a,b,x,y) which
minimises the value of the above function should be good estimates of the parameters
of the physical device. The validity of the model can subsequently be determined from
the minimum %2 value and the number of degrees of freedom (v) of the fit.(Press et al.
1989):

P(x-square value did not occur by chance)= Q(v/2, %%2)

where Q is the incomplete gamma function, from now on referred to as the Gamma
Q probability..

and v is the number degrees of freedom..
v = number of measurement points - number of parameters

in this case, for an n*n wire grid and 6 parameter model,
v=2n-6

In this chapter, the relative chi-square values are quoted, that is, x2/v. Relative chi-

square values should be comparable across model fits based on any wire grid.
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2.5. To design the optimal calibration grid.
Given an imperfect measurement process, there will be a wire configuration which

minimises errors in gradiometer parameter estimates. This optimal configuration will be
a function of gradiometer height and angle. For the sake of simplicity, let the
gradiometer be nominally vertical. There exist two methods for estimating the variance
of each parameter for a given amount of measurement noise : analytical and empirical (in
the form of simulation). The first method relies on complete knowledge of the
mathematical form of the model, the second is based on an iterative fitting procedure.
The analytical estimates are used in this first section to give credence to the simulation
data, which in turn we must rely on exclusively when it becomes necessary to examine
the effects of modelling errors (section 2.6).

2.5.1. Analytical determination of parameter variance

The solution of any 2 minimisation is the point at which the gradient of the x2
function with respect to all model parameters is zero. By examining the function
gradient with respect to a particular parameter around this minimum point, the variance
of the parameter due to Gaussian white measurement noise can be estimated (Press et al.
1988). In order to simplify this calculation, the gradiometer response to wires running
perpendicular to the plane of gradiometer tilt (Figure 2.5) is used as the model function.
Having calculated the expected parameter variance for the two dimensional case, the
results are extrapolated to three dimensions.

. gradiometer

d{i}/ J? s dewar

h — J3—

Ie X
Figure 2.5 Schematic of an Aston type gradiometer. position (x, h) , orientation (a,
(1-a’)), wire current I ; gradiometer coil i displaced from the pick up coil by distance

dfi} (see below).
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The response of a gradiometer, displacement (x, h) from the wire, orientation
(a,v1-a*) and gain Y, to a wire carrying current I is given by.

7
2
W(y.x,hal)= Y sgn.y.l-2 xVvl-a -ah :
4.n (x+dj.a)2+(dj.\/l—a2 +h)

where j indexes gradiometer coils,
axial distances from each coil to pick up are given by dj,
direction of winding of each coil is given by sgn; where sgny=+1 or -1,

Using the above model, the expected parameter variance due to measurement noise
is now calculated. Let p(i) be the vector of effective function parameters for each wire
position i. Let the gradiometer be displaced from the first wire by distance x, and let the
length of the perpendicular from gradiometer to the line of parallel wires be height h.
For wire spacing s:

p()=(x-si h a y)
(where 7 is the matrix transpose)

The effect of measurement noise on each of the parameters is given by inverting the
Hessian matrix o. (Press et al. 1988).

where

1 d . d .
Ay = 2 '("Tz'[dpk(i) W(p(’))J[MW(p(’))]

and k and 1 go from O to 3.

The covariance matrix C is given by inverting the Hessian :
C=a’

The diagonal elements of the covariance matrix C contain the expected variance
of individual parameters. For convenience, the covariance matrix is evaluated
numerically for the two dimensional case, and the results then extrapolated into three
dimensions. For example, the errors in y and b are taken to be identical to the errors in x

and a respectively.
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2.5.2. Determination of parameter variance by simulation

The gradiometer response to a long straight wire is modelled in a software
algorithm. This gradiometer is given a random parameter set p. The response of this
ideal gradiometer to a particular wire configuration is then calculated and noise added to
the output (see Figure 2.6). An independent algorithm then fits a gradiometer with
estimate parameter set p' to the noisy data so that the error in fit is given by e=p-p'.

Internal gradiometer with
true parameter setp

vQ ideal model response

= M
O O 0O 0O

— noise
N wires, spacing s.

fitting algorithm

e

estimate parameter set

O 0O 0 0 O p'

Figure 2.6. The simulation procedure consists of adding experimental noise to the
model and then assessing the performance of the fit algorithm.

By repeated simulation, it is possible to build up statistics of the error in each
parameter for a particular experimental configuration. The method will be of use later
when we wish to examine the effect of system imperfections which do not result in a
tractable analytical form.

The data which follows is based on a grid of n*n wires placed symmetrically below a
single gradiometer. The true gradiometer parameter set p is chosen by a random shift in
horizontal position (o =0.5cm) and orientation (o =2°) away from the symmetrical
midpoint of the grid, for a fixed height and calibration coefficient. Where possible,
simulated and analytically derived results are compared.

34




2.5.3. Optimal wire spacing

It is evident that the ideal wire spacing is determined by the total number of wires
available. Outside a certain region, only very poor signal to noise ratios are achievable
(Figure 2.4). It is intuitive that the more wires congregated towards the wire positions
which give large gradiometer output, the better. Figure 2.7 shows the RMS error in
position, orientation and percent calibration coefficient for gradiometers at 2,4 and 8cm
height. The results show that the optimal spacing is approximately equal to half the
gradiometer height, the minimum becoming broader as the gradiometer moves higher.
The sharp increase in error at small spacings is the result of carrying out an extrapolation
from a small range of values to a model which has much larger spatial extent. The
optimal spacing of 5 wires at h/2 cm is reasonable since the samples of the gradiometer
response function just overlap the function peaks, situated approximately a distance 2h
apart (Figure 2.4). At larger spacings the increase in RMS error would seem to be
mainly due to poor signal to noise ratio. For smaller spacing values, the analytical curves
fit the simulated data well in an absolute sense. Glitches in the empirical data towards
the larger spacing values are due to the fit algorithm being destabilized by the very low
SNR of the data. The achieved errors increase with increasing height simply due to the
fall off in field strength. Note interestingly that minimum expected error for all three
parameters occur at slightly different wire spacings. Note also the relatively broad
minima in the estimate of calibration coefficient error.
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Figure 2.7. RMS parameter errors for 4 cm height simulated (dotted curve with
error bars) and predicted (crosses); alongside predicted errors for gradiometer of 2cm
height (pluses),and 8cm height (boxes) as wire spacing is varied. (5 wire grid, 10bits
white noise). Note that error bars extend from the mean to the mean plus one standard
deviation, they no not extend below the mean due to problems of scaling.
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2.54. Effect of wire number

Given that wire spacing is chosen so as to be smaller than optimal for a given
gradiometer height, the total number of wires will affect the stability of the solution. In
order to investigate this effect, it is helpful to define

coverage_length = number of wires* spacing

That is, coverage length is simply the length of a grid side. Figure 2.9 shows the
effect of increasing coverage length for various wire spacings. Simply, more wires give
more measurement points within the same length and improve the fit. For Gaussian
white measurement noise, the improvement in RMS parameter error is proportional to vV
(number of wires). For example, referring to figure 2.9, when the RMS errors for 1cm
spacing are scaled up by V2 they overlay those for 2cm spacing. Since the fit continues
to improve exponentially as coverage length is increased, as a working measure, optimal
coverage length is defined as the minimum distance over which the RMS error is within
71% of its minimum value (figure 2.8).

8 | 1

relative position error
&
1
|

2 —
| 1
5 10 15 20
coverage (cm)
Figure 2.8. The position error for Icm spacing data of figure 2.9 plotted relative to
position error achieved at 20cm coverage. The baseline is 1.0, the dotted line shows
relative RMS error of 1.714. In this case, optimal coverage length is around 10.5 cm.

4.1.3. Wire current

Increasing the current in the wires will increase the SNR of the data, and should
result in lower variance of fitted parameters. Figure 2.10 shows how RMS parameter
error decreases with increasing SNR. The early portion of the graph is flat because the
ideal gradiometer is never perturbed far from the grid centre where the initial fitting
guess is made. In the central portions of the graphs, the analytical and simulated results
show good agreement. At higher SNRs, the simulated ADC is saturated by the large
magnitude signal, hence the deviation from ideal. Figures 2.10 a) and d) show the chi-
square remainder and gamma Q probability respectively. Note that at ADC saturation,
chi square increases and gamma Q decreases rapidly. This indicates that measurement
noise no longer accounts for deviations from the model.
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Figure 2.9. RMS parameter errors for Icm spacing simulated (dotted with error
bars) and predicted (pluses), alongside predicted for.5cm (crosses) and 2cm spacing
(boxed) curves as number of wires is varied. The abcissae show coverage defined as :
number of wires* wire spacing. (4cm height, 10bits white noise)
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Figure 2.10. RMS parameter errors as current is increased. a) shows RMS position
error alongside chi-squared remainder for the fit; d) shows the corresponding gamma
Q probability. At larger currents, the dynamic range of the ADC (simulated) is
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exceeded hence the sudden decrease in performance. (5 wires ; 2cm spacing ;4 cm
height; 10 bits white noise)

2.6. Effect of physical constraints

The simulations and analytical estimates of the previous section were based on the
ideal gradiometer response to wires in an ideal calibration grid in the presence of some
Gaussian white measurement noise. In practice however, no computer model precisely
characterises a physical situation, there is always some modelling error. Modelling errors
are only a problem when they introduce parameter error comparable to that caused by
measurement noise. For example, this modelling error may be small, and only become
apparent as measurement noise tends to zero. The chi-squared measure is a measure of
deviation of the model from the measured values, normalised to account for
measurement noise. When the difference between the model and measured values ceases
to be accounted for by measurement noise the chi-squared measure increases rapidly,
indicating that the model is inappropriate.

Let all modelling errors be represented by the quantity A, if A is small compared to
the RMS errors on the data o, then a reasonable chi-square value will result.

true A 2
% ()= ——(0 ) (1)
(0]

est

Assume that the true standard deviation of some empirical data corresponds to that
estimated (Otrue=Oest,), once the standard deviation of the data becomes comparable to
A, the chi-square value begins to increase quadratically (or, on the log-log plots, linearly
at 40dB/ decade). It is required to see what effect finite model imprecisions will have on
gradiometer parameter estimates. By allowing measurement noise to tend to zero, the
point at which modelling noise becomes the major source of fit error should be clear.
The goal of this section is to show the tolerance of the fitting algorithm to modelling
errors. The modelling errors considered are those due to an imperfect wire grid, and
those due to gradiometer imbalance. If Otrye and Oeg¢ are known and chi-square is
large, A can be calculated. Once A is known, the point where the parameter variance
plots diverge from the ideal can be calculated.

40



2.6.1. Wire noise

The accuracy to which the calibration board needs to be constructed will be an
important factor for cost and realisation. There will always be some 'noise' in the
construction process, and this modelled as a small Gaussian white deviation in position
at each end of each wire.

Sec

Figure 2.11. Wire set length I, spacing s, perturbed at either end by Gaussian white
noise oy.

The model gradiometer function takes no account of wire noise, that is, the model is
imprecise. From figure 2.13 it is clear that beyond a certain point, there is no
improvement in fitted parameters. The point of saturation indicates where noise due to
the imperfect model becomes comparable to the measurement noise. Note that the point
of parameter variance saturation corresponds to the knee of the chi-square curve (figure
2.13a). The effect of wire noise can be compensated for to an extent by increasing the
number of wires within the optimal coverage length. As has been shown (Figure 2.9),
fitted parameter variance decreases proportionate to the number of wires within the
optimal coverage length. In the case where wire position noise is introduced, increasing
the number of wires at known spacing also improves the estimate of the mean position
of the wire set. Figure 2.12 shows the improvement in gradiometer position estimation
when using a larger number of wires. A twenty wire and five wire set up are compared.
The implicit SNR improvements of the twenty wire set up are removed by halving the
wire current as is clear at low wire noise where the two curves correspond. As the wire
noise is increased the improvement due to number of wires becomes evident.
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Figure 2.12. The effect of wire noise on position error for 5 (solid) and 20 (dashed)
wire grids within the same coverage area (10cm?). The increased SNR implicit with the
20 wire grid is factored out by using half the current. Remaining improvements in
position error are due to more wires decreasing the uncertainty in overall grid
position. (4cm height, 10bits white noise, current for 5 wire case = 0.3mA)
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Figure 2.13. SNR vs. parameter variance, theoretical (no wire noise) and simulated.
Note at around 10-4 A, the curve flattens giving no possible improvement in accuracy.
At this point, the noise on the data ceases to account for the deviation from the model,
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and hence the chi squared value begins to increase rapidly. (5 wires, 10bits white
noise, 4cm height)

2.6.2. Gradiometer balance.

The gradiometer balance is set at the construction of a commercial magnetometer, it
is a factor beyond the control of most end-users and therefore an important
consideration in any calibration technique. Neuronal activity results in fields which fall
off as at least an inverse square with distance (see section 1.1). Both well and poorly
balanced gradiometers will respond similarly to nearby neuronal sources since the
majority of flux passes through the pick up-coil. A calibration technique has to somehow
avoid 'calibrating the imbalance', and return parameters which best describe the pick up
coil. The gradiometers at Aston consist of eight coils, spaced as in figure 2.5, of which
the two base coils constitute the pick up coil. In order to simulate an imbalance, the
remaining 6 coils were shifted in orientation by Gaussian white random noise, so as to
change each of their effective areas by ojmp, imbalance (Figure 2.14).

gradiometer coil

- \
A A', effective area

Figure 2.14. Each of the gradiometer coils are displaced by a Gaussian white
random angle 6 so as to change the effective coil area by a proportion o imbalance.

As in the case for wire noise, the signal to noise ratio of the data is increased until
the errors introduced by the modelling assumptions show up. Figure 2.15 shows that as
SNR is increased, a plateau is reached beyond which, no improvement in parameter
error is possible. This plateau, for the five by five wire grid of figure 2.15, and
imbalance 10-2 indicates the minimum achievable parameter errors are (3mm, 4° and
3%). For an imbalance of 104 the corresponding errors are (0.2 mm, 0.4°, and 0.1%).
Setting a moderate wire current, and increasing the imbalance gives an idea of the fit
sensitivity to the modelling errors introduced (figure 2.16). It is interesting to note that
the gain parameter seems to be relatively unaffected by moderate imbalance. This is
desirable, indicating that the calibration gain reflects that of the pick-up coil and is not
unduly sensitive to homogeneity of the compensation coils. Conversely, it seems that
good balance, or rather precise knowledge of gradiometer structure, is necessary to

recover accurate positional and orientational information.
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Figure 2.15 Initial balance of 10 -4 (boxed) and 10-2 (dotted) , also ideal

analytical curves (solid) as current is increased. (4 cm height, 5 wires, 2cm spacing, 5
bits white noise). see overleaf.
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Figure 2.16. Relative error in parameter fits as gradiometer balance is varied. Note
the gain error is considerably less sensitive to imbalance than the position and
orientation. (4dcm height, 5 wires, 2cm spacing, 10 bits white noise, wire current 0.3

mA)
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2.6.3. The final model

The limiting criterion on the feasibility of calibration by this method is imbalance.
Imperfect wire positioning can be countered by increasing the number of wires (figure
2.12) or simply rebuilding the calibration rig. Parameters for a physical calibration rig
are now selected and simulations studied which attempt to predict the performance of
the real system.

Physical constraints, such as the thickness of the dewar base and positioning of
the Polhemus pen, set 4cm as a reasonable gradiometer height above the grid. For a
single gradiometer, this results in an optimal wire spacing of 2cm for 5 wires (see figure
2.7) or an optimal coverage length of 10.5cm (see figure 2.9). The gradiometer array at
Aston has maximal dimension of 11.7cm. For each gradiometer to have acceptable
coverage area, the wire grid must therefore span approximately 23cm. The more wires
within this length, the lower the resulting parameter variance (see figure 2.12) yet the
more complex the grid construction.

A twenty by twenty grid of lcm spacing was chosen. This gives each
gradiometer approximately 10cm of coverage, and increases immunity to wire noise.
The increase in immunity to wire noise means that the 20 wire grid can be constructed
with wires V5 times less accurately placed than a 4 wire grid. Figure 2.17 predicts
performance of a single gradiometer within the array, as wire current is increased.
Coverage length for the gradiometer is taken to be 10cm, realistic values for wire noise
and imbalance are used. The predicted accuracy of the results (0.3mm, 0.6 0.3%) is
acceptable; in section 2.8 this is compared to that physically achieved.

Figure 2.17. Increasing the SNR for constructed calibration set up with the effects of
gradiometer imbalance and wire noise. Estimated achievable parameter accuracy :
(0.3mm, 0.6, 0.3%). (10*10 wires, 4cm height, Icm spacing, 5 bits white noise,
0.25mm wire noise, 10~¥ imbalance). see overleaf.
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2.7. Location of Calibration grid

The gradiometer gain has been calculated in an absolute sense. However, the channel
positions and orientation are defined only with respect to the wire grid. A commercially
available 3D pen position sensor (Polhemus 3Space Isotrak systemTM) is used for all
position measurements. The device consists of a sensor which is fixed to the dewar
base®, and a remote pen probe. The output of the device is the position and attitude of
the pen tip. The device has an accuracy of 2mm and resolution of 1mm. That is, the
readout at a particular position is repeatable to within 1mm, but the values represent the

centre of a sphere of radius 2mm uncertainty.
There are five parameters which determine the position of the calibration board
relative to the Polhemus sensor: 3 translational and 2 rotational. A minimum of 3
independent points are required to completely describe this plane. Using the minimal
number of points to describe the grid and hence channel positions would result in an
error of 2mm. It is undesirable to lose the high channel position accuracy gained by the
calibration procedure simply by not knowing the position of the calibration grid. In
practice, the calibration grid is localised by drawing the Polhemus pen along the two
axes of the grid and recording a large number of points along these axes. Typically, 100
points are measured along each axis which spans 30cm. Each of the measured points has
some measurement noise and some systematic inaccuracy. A straight line is fit to each
axis or set of measured points. The grid is defined from the position of intersection of
the two axes, and the normal vector to these axes. Empirically, the achieved standard
deviation in the position and orientation of this normal vector is 0.63 mm and 0.44
degrees. Were the resolution limited by random rather than systematic noise, one would

. . . 2
expect 200 data points to give a resolution of approximately T”gn—g =0.142mm.

The angular error is potentially more serious since its effect increases with distance,
however even at 20cm the resulting position error is less than 2mm. Although such
errors are of comparable magnitude if not greater than achievable calibration channel
positional and orientation errors (figure 2.17), their effect is considerably less
destructive. Firstly, modelling assumptions depend on relative, not absolute channel
positions and orientations. Secondly , absolute positional errors, although systematic,
are small compared to the cortical volumes that it is possible to image using
magnetometry (~100-1000mm3, Hamalainen et al. 1991).

2.8. Performance of physical set up.
Typically, in order to estimate the efficacy of any calibration, the achieved results are
compared to some known values. Unfortunately, we have only an approximate idea of

5The sensor contains ferro-magnetic components and is therefore only attached to the dewar before

of after neuro-magnetic measurements are made.
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where the gradiometer array should be and even X-rays of the dewar are unlikely to
confirm the accuracy of calibration claimed in this chapter. There are two sources of
calibration error to consider: measurement noise and modelling noise. Firstly, the
repeatability of individual gradiometer parameter sets between calibrations will tell us
the effect of measurement noise. If the dewar is displaced and rotated between each
calibration, then some of the effects of modelling error should also be apparent.

Four calibration runs were carried out. Between each calibration, the dewar was
removed, tilted slightly and approximately repositioned above the grid. The channel
position and orientation deviations from mean position were assessed for each channel in
a working array of 18 (figure 2.18). The average standard deviation per channel in
absolute position was found to be 1.1 mm, in orientation 1.03°, in percentage gain
0.049. In order to factor out the systematic positional errors due to locating the
calibration board (see section 2.7), the average channel position and orientation of each
array was calculated and subtracted from the measured data. Relative standard deviation
of channel position was found to be 0.27mm, and channel orientation 0.055°. The data
show that the calibration is highly repeatable in an absolute coordinate frame;
furthermore, relative channel position and orientation error improve upon simulated
estimates of performance (refer to figure 2.17).
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Figure 2.18. 2D Scatter plots (z is up) for the deviation of each channel from its
absolute mean position over four calibration runs (each shown as a cluster of different
symbols). There is a systematic deviation between clusters which reflects imperfect
positional knowledge of the calibration board. The sizes of the individual clusters
reflect relative positional error. Note that the largest positional error is in the z
direction.
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The repeatability of absolute positional and orientation parameters with different
dewar positions encourages the proposition that the results are not due to modelling
error. However, especially in the case of the gain parameter, it is still necessary to
discount the possibility that this repeatability is not due to mis-modelling. Given that the
estimation of measurement noise is correct, performing a model fit to empirical data
should give a comparable chi-square measure to that obtained from the mismodelled
simulation study (section 2.6). If the empirical chi-square value exceeds the simulated
chi, then the simulations have underestimated or failed to model errors in the system.
Alternatively, if the empirically achieved chi-square value is less than or equal to that
achieved by simulation, then the simulation study must be valid. If the simulation studies
relate to the physical situation, then we can directly read off limits for physically
achievable parameter variances from a wealth of computer generated results. The
simulation data of figure 2.17 is replotted in figure 2.19 along with the chi-square
measure, the usual 40dB/ decade increase past saturation point (at around 10-4
amperes) is clear. Figure 2.20 shows the empirically achieved chi-square values
alongside the simulated chi-squared due to the modelling errors. On average, the
modelling errors measured are less than those simulated. Individual channel chi-square
values (figure 2.21) , show that the simulation under models two or three channels in
each calibration run; these channels are identical across runs. Since the modelling error
is channel specific, it is probably due to higher than anticipated gradiometer imbalance
or some other geometric factor. For the large proportion of channels however, the
achieved chi-square values indicate that the non-idealities of the physical set up have

been accounted for in the simulation studies.
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Figure 2.19. Data of figure 2.17, position error vs. current in wire. The dotted line

shows the quadratic curve of (1) fit to the data. Where 0 o5t=0° yye=1/ current, and A
=104. Note that it is the relative, not actual values of these parameters which are

important.
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Figure 2.20. Average chi-square value per channel for the four calibration runs
(symbols), as compared to the chi-square value obtained with simulated modelling

errors of figure 2.17 (solid curve).On average, the physical situation is better
described by the model than anticipated.
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Figure 2.21. Chi square value obtained from the 18 individual channels for four
calibration runs (symbols). For clarity the data are displayed over an expanded section
of the current axis and have been displaced ,the abcissae of all data points actually
correspond to that of the crosses. It is clear that the majority of the channels are more
precisely modelled than anticipated from simulations. Actually, the relative distribution
of chi-square across channels is consistent between runs, that is, the data reflects
variation in physical characteristics of individual channels.
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2.9. Analogue Filter Calibration

All pre-amplified neuromagnetic signal data must pass through some bank of anti-
aliasing analogue filters (figure 2.22) before it can be adequately digitally sampled. The
advantages gained by careful calibration at a certain frequency can easily be lost if these
filters have poor homogeneity. Let each analogue filter i have amplitude characteristic
H; (f) and phase characteristic ¢; (f). Figure 2.23 shows a sample of amplitude and phase
characteristics of the Aston filter bank. It is clear that any calibration estimate of relative
channel gain carried out at 33.2Hz will be inappropriate at 80Hz due to the inter-filter
variability of phase and amplitude characteristics.

19 gradiometers 19 Analogue LP filters
and pre-amplifiers

j — > _\ e ADC :>

3

Figure 2.22. The output of each gradiometer passes through a separate analogue
anti-aliasing filter, before being sequentially sampled by a 16 bit ADC.
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Figure 2.23. Relative amplitude and group delay for first four of the nineteen 100Hz
fourth order Butterworth filters at Aston. Dashed traces show ideal filter pass-band -
completely flat up until 80Hz where it cuts off smoothly in a cos? window.

Analogue filter inhomogeneities can be suppressed by passing the recorded data
through a set of digital correcting filters. By defining some ideal filter impulse response,
and having measured individual filter impulse responses, it is possible to specify the

amplitude and phase characteristics of a set of correcting filters :
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Digital filter i has amplitude response

H(D), = response_ideal (f)
response_filter i (f)

and group delay characteristic given by
d(f)i :=delay_ideal (f) - delay_filter i(f)

or alternatively, phase characteristic

¢(f)i 3:d(f)i-2-n-f

In order to quantify errors due to filter inhomgeneity, the term 'coherence noise' is
defined as the RMS deviation from mean of N filter outputs when driven with common
input sinusoid at any time instant. In fact, the system at Aston does not accommodate a
single input sinusoid to all individual filter, the input must first pass through a set of 19
pre-amplifiers which have some intrinsic disparity of gain. This disparity of gain is small
compared to the disparity between filters and can be ignored in the first stage analysis:

Define Coherence noise for an input sinusoid freq f at sample s:

19

o (a,,-mD,)?
Nc(f),- i; —‘19—

where channel mean .. 19

and

c().

1,8

= (A(f) + o’>-sm[2-n»—;:-s + (0d~f+ ¢(f))

Where f is the frequency of the input sinusoid, F the sample rate,
A(f) and ¢(f) are ideal amplitude and phase response, and

and o, represent rms deviations of particular filter channet in
group delay and ampiitude from ideal output.

O4

Total coherence noise fornsmp samples of a sinusoid :

nsmp

NC = Z Ncs

s=1
Now consider the coherence noise to signal ratio

percenl_coherence_noise :

For an ideal system, each filter would be identical giving NC(f)=0
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Figure 2.24. RMS % coherence noise on input sinusoid to 19 channel 100Hz filter
bank at Aston. Before compensation (boxes) , after amplitude compensation only
(crosses) and after both amplitude and phase compensation (dotted trace).

Figure 2.24 shows that coherence noise increases monotonically with frequency in
the uncompensated filter bank. Correcting for the amplitude differences in response
across channels has relatively little effect at lower frequencies, but is more noticeable at
higher frequencies where filter amplitude characteristics are more disparate. Within the
pass-band, filter phase deviations are the dominant source of coherence noise.
Correction for both filter phase and amplitude reduces coherence noise to 1% of RMS
amplitude.

It is possible that this 1% error level does not reflect the filter stage, but is due partly
to the individual pre-amplifier stage. This gain error is accounted for in the overall
calibration, yet needs to be factored out in order to assess actual coherence noise.
Consider the pass-band data only: error in the pass-band is accounted for primarily by

phase noise (figure 2.24).
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gsgi::::nbgyphase errors only, the relative difference between ideal and phase shifted sinsuoid

phase_err(f,s) ::A-sin(2~n-f-§) - Aosin(2~at-f~E + od~f>
F
equivalent to

o, f
phase_err(f,s) :=2-A-cos (2-n~f-§ sin| -4~
F 2
So for a given frequency, we can predict coherence noise due to phase as
nsmp
NC(f) = Z phase_err (f,s)*

s=1

Taking account of relative pre-amplifier gain error o
pre_amp

gives expected coherence noise

nsmp
NC(f) = Z (phase_err(f,s) + opn.‘_mp-A)2
s=1

Empirical data has the form of the above function (figure 2.25) and fitting the
function to the data gives an approximate estimate of the achieved phase noise. The
correction of filter phase and amplitude has reduced effective phase noise in the system

to around 0.04ms.
a)

60 T T ] T T T |
2
g
E 0 -
e
3
\° - —
% 20

0 0 20 40 60 20 100 120 140 160

frequency (Hz)
b)

25 T T T T T T T
2 |
g 2
;

1.5 —
§
®
:

I ! | | ] ] 1
03 0 20 40 60 80 100 120 140 160

frequency (Hz )

Figure 2.25. RMS % coherence noise, boxes show empirical data, smooth curves are
fit to the data over the range 0-100Hz. a) Uncomgensated systgm, b) compensated : the
deviation above 100Hz is accounted for by the increase in importance of amplitude
compensation. Fitted curves have the following parameters :
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Uncompensated : o3 =0.14 ms, Opreamp= 1.9% ;
Compensated : 6= 0.040 ms, Opreamp= 1.2% .

2.10. Concluding remarks

A grid of long wires has been shown to be a practical technique for calibration of a
second order gradiometer array providing the gradiometers are well balanced (=10-4).
The results improve upon the repeatability measures reported by Buchanan and Paulson
(1989) who used a small coil to calibrate their~array. Furthermore, simulation studies
show that the repeatability of these results is not due to some mismodelling of the
physical situation. In this study, all significant errors arise not in the calibration itself but
at some peripheral stage. For example, relative channel positional errors have been
shown to be small compared to those systematic errors introduced by the Polhemus
digitisation system. Likewise, the largest stage of channel gain error has been found to
be due to the analogue anti-aliasing filters.

The study adds to the body of existing work in a number of ways:

i) It is the first detailed study of the utility of a long straight wire calibration
technique.

ii) Analytical fomuli have been derived which predict the achievable accuracy of
calibration given any ideal wire grid. These formuli provide a fast and convenient
platform to begin any design stage. The approach in previous work has been to
construct a calibration rig and then subsequently assess its performance based on
repeatability measures.

iii) The sensitivity of the technique to imprecise modelling of the physical situation
has been assessed. By simulation, acceptable bounds to the measure (chi-squared) of this
modelling error have been shown. The chi-square provides an extra parameter with
which to assess the validity of any physical calibration. For example, the results in this
study improve on all previously reported; this is likely to reflect the fact that previous
studies were limited my modelling rather than measurement noise, yet since no expected
chi-squared bounds for such models had been examined, the unsuitability of such models

was not discovered.
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Chapter 3.

Adaptive Filtering of Neuromagnetic Data

3.1. Introduction

Commonly, extraction of useful signal from noise is achieved by attenuation of some
part of the frequency spectrum (figure 1a). In the case where noise and signal spectra
overlap (figure 1b), or indeed if either the noise or signal spectral density is unknown a-
priori, other filtering techniques must be employed.

Ideal frequency discrimination
filter pass-band

Power / Power
Signal N
Noise Noise
Signal

frequency frequency
a) b}

Figure 3.1 a) Frequency discrimination is appropriate when the signal and noise are
known to occupy non-overlapping frequency bands. b) Where signal and noise share
the same frequency bands, or the signal and noise spectra are unknown a-priori,
Sfrequency discrimination filtering may result in loss of signal information.

The noise cancellation techniques addressed in this chapter rely on the discrimination
of signal and noise on the basis their spatial, rather than frequency distribution. The form
of spatial filtering applied has led to analogies with the gradiometer structure and the
technique is sometimes referred to as 'electronic balancing'. Essentially, an independent
measure of environmental noise from a set of reference channels is made use of (figure
3.2); this measurement will be highly correlated with any environmental noise on the
signal channel. By subtraction of a weighted proportion of this measure from the signal
channel, the environmental noise component can be removed. The technique is appealing

since it requires no a-priori assumptions concerning the spectra of either the signal or

noise source.

Reference noise cancellat
Hansen and Bowser (1983) used an orthogonal accelerometer array and flux- gate

magnetometer as reference channels; their primary aim was to cancel environmental
er sensors in the earth's field. Williamson et al.

jon has been widely applied in the field of biomagnetism.

noise due to vibrations of the gradiomet
(1984) and Robinson (1989) used magnetometer and gradiometer combinations as

reference channels to improve rejection of generalised far-field noise sources.
61

L 4




Shimogawara and Kado (1993) apply the techniques to rejection of signals due to small
magnets, such as those present in hearing aids, attached to the subject. Both Robinson
(1989) and Hansen et al. (1983) found better results could be obtained by pre-filtering
the reference channels.

In the literature, algorithm performance is frequently judged, in noise only
conditions, by total filter output power. Furthermore the time evolving or non-stationary
nature of any reference noise cancellation solution is rarely mentioned.

In this chapter, section 3.2 introduces the mathematical formalism of the
adaptive filtering problem (Widrow and Stearns 1985; Alexander 1986, Proakis and
Manolakis 1988). The concept of stationarity is introduced. The calculation of the
Wiener solution is shown to be the identification of a simple parabolic error surface
minimum. Ideal gradient descent to the base of this surface is discussed, and then the
operation of the more practical LMS algorithm is derived. Measure of the LMS filter
performance in terms of its misadjustment is introduced and misadjustment errors due to
filter lag and steady state filter performance are quantified. Finally, the Recursive Least
Squares (RLS) and other forms of fast Kalman filters are mentioned. Importantly, the
conclusion of Widrow (1977) is reiterated, that misadjustment due to steady state error
is present in all adaptive algorithms, including that based on the Wiener solution.

Section 3.3 deals with the implementation of the LMS algorithm as a real-time
filter of running average evoked response data. The importance of DC level removal,
and the order of averaging and filtering are discussed.

In section 3.4, an experimental trial using a known signal is used to create a
filter performance measure which reflects signal integrity. This performance is compared
to that predicted from LMS filter theory (section 3.5) and the algorithm performance
shown to be deterministic over 0.5 second epochs of data.

In section 3.6, excess noise arising due to changes in the optimal solution is
modelled a driving non-stationary step at the beginning of each epoch. Given such
stationarity measures, optimal time constant progression for any adaptive algorithm is
proposed. Finally, the advantages and disadvantages of using additional time derivative

reference channels are discussed.
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Figure 3.2. Magnetometer reference sensors, placed remote from the main
gradiometer array, contain a measure of environmental noise. The gradiometer output
consists of the neural signal plus some component of this environmental noise.

3.2. Reference noise cancellation

Consider sample n of a measured signal d, d(n),which is comprised of a neural signal

s(n) along with some environmental noise c(n).
d(n) = s(n) +c(n)

Let y(n) be the output of some filter structure operating on d(n). The goal of any
filter is to give an output y(n) which is closest to s(n). This chapter is concerned with a
particular class of filter known as the multiple reference noise canceller, the simplest
form of which (the single reference noise canceller) is illustrated in figure 3.3. Consider
a reference signal x(n) (figure 3.4), which provides a measure of environmental noise
highly correlated with c(n). The influence of ¢(n) can be attenuated by the subtraction

of a proportion w of the noise reference x(n).
y(n) = d(n) - w* x(n)
Note that no a-priori information regarding c(n) is required, the problem is
calculation of the ideal proportion or weight w*. Generally, the optimal solution w* will

be time variant, that is, an adaptive algorithm which tracks the time variant optimal

solution w*(n) is required.
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dn) = s(m) + N (n)

x(n)

Adaptive
algonithm

Figure 3.3. Single weight noise canceller. d(n) is the signal corrupted by some noise
source. x(n) contains a measure of this noise. The algorithm selects a value of w such
that d'(n) is closest to d(n) by some measure. The result is the removal of correlations
between the filters output y(n) , and the noise reference x(n).

a) Signal + Noise
500 T T T . :
d(n
m |
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110t
xn )
-1 104 | I ] 1 ]
0 100 200 300 400 500 600
c) Noise canceller output
500 T , , T '
yin} o -
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Figure 3.4. Demonstration of operation of basic noise canceller; the correlations
between the noisy signal in a) and the reference in b) are removed by appropriate

choice of weight w in ¢).

3.2.1. Stationarity
The term stationarity is used to describe the stability of a random temporal sequence.

A signal is said to be stationary in the mean, if the "expectation", E, of all samples in an

infinite sequence is constant

E(x(n)) =u, for all n.
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A signal is said to be stationary in the auto correlation if the auto correlation function
is identical regardless of the time at which it is evaluated

Ie(n) = E{x(k)x(k-n)}  for all n and k.

A signal which is stationary in both the mean and auto-correlation, and has finite
variance, is said to be wide-sense stationary.

20 T

10 | I | !
0 10 20 30 40 50

n
Figure 3.5. It is clear that Y(n) is non-stationary both in the mean, and auto-
correlation since the data trend makes data statistics dependent on n. Whereas from
initial examination X(n) appears stationary, at least in the mean.

Most signals can be classed as approximately wide sense stationary when considered
over a small enough time interval (Cadzow 1987). The implications of non-stationarities
in neuromagnetic data are considered in section (3.3).

3.2.2, Mean Square Error criterion

For the multiple reference canceller, let N reference channels at sample n be
represented by a vector x(n), the corresponding weights w(n). The adaptive filtering
problem is the location and tracking of the optimal solution vector w*(n). It is required
to use the reference noise channels to create a best estimate of the signal d'(n) which is
closest to d(n) by some criterion (see figure 3.1). A typical criterion is the expected filter
output power, often referred to as the Mean Square Error (MSE).

MSE(n) = E(y(n)2) (M
The filter output is referred to as error since it is the difference between the actual

signal and that predicted by the filter.
)= [@@-dm)2 @)

and d'(n) is
d'(n) = wl(n).x(n) 3)

Combining (1), (2) and (3) gives
MSE(n) = E[y(m?2] =E[ (d(n) - w@)T.x() 2] )

MSE(n) = E[ d2(n) ] - 2 E[ wT(n).d(n)x(n) ] + E[wI(n).x(n)xT(n).w(n)] (5)
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Equation (5) gives the expected MSE ;or filter output power, at sample n for any
time variant weight vector w(n). Note that the equation is quadratic in w(n). In the next
section, the time variant behaviour of the weights is removed and the optimal solution
for a fixed length stationary data sequence is assessed.

3.2.3. The Wiener solution

It is required to find the time invariant solution vector w* that will minimise the
MSE criterion for a block of K data samples.

MSE = 024 - 2.wT. E[ d(n).x(n) ] + wL.E [ x(n).xT(n)].w
where E[ d2(n) ] is replaced with average signal power ozd-

Let P = E[ d(n).x(n) ] , the N component cross-correlation vector between
signal and reference channels.

Let R =E | x(n).xT(n) ], the N*N cross-correlation matrix of reference
channels. For example, the two dimensional case, for a block of n samples gives:

For x(n) = (i?ﬁ:;) and w = (;?)

[ nek-1 [ nek-1 n=K-1

xo(n).d(n) xo(n).xo(n) xo(n).x1(n)

P=— wok -1 and R = E nek -1 n=K-1

x1(n).d(n) x1(n).xo(n) x1(n).x1(n)

J L .

For stationary data, the quantities R, P and w are independent of n, the expected

error for a given weight vector w, is therefore given by
MSE(w) = 02q-2.wl. P+ wl Rw (6)

In order to calculate the optimum weight vector for a given data set w that sets the
derivative of (6) to zero is calculated

AMSE(W) _ 5 p.2w R (7)
dw

At the minimum w = w*.
0=-2P+2.w*R
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w* = R P (8)

This result (8) is commonly referred to as the Wiener solution. For real, non zero
data, R is real and symmetric and therefore invertible. The Wiener solution returns a
fixed weight solution vector by estimation of data statistics over finite length data block.
If the data is stationary, the Wiener solution will provide optimal weights for that data

block. Non-stationarities in the data imply that a temporally evolving solution is
required.

Define the minimum MSE as Emin

Emin =MSE (w*)= 024 + 2.w*T P+ w*T R w* ©
which combining with (8) gives
Emin = 02d - PT w= (10)
In the case where all noise is reference correlated, the filter output contains only the
underlying useful signal.
Emin = 0%

Two commonly used measures of filter performance are excess MSE and
misadjustment (Widrow 1976) due to non-optimal weights.
where
Excess MSE = MSE - Ensin

and misadjustment (M) expresses excess MSE as a fraction of Epjp,.
M Excess  MSE

E .

min
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3.2.4. The MSE surface

diﬁfr:l;:lt;\irslls lvsal(luezd::tlc' in the weight vector w. By changing the weight vector, the
fimonsion N ©s ame.d map out a surface. The surface is a parabolic bowl of

, 1ts .rmmmum lying at the optimum weight vector w*. The two reference
case (f'lgure 3.6) is straightforward to conceptualise. Any adaptive algorithm will begin
flt arbitrary initial weight values which give some excess error. The task of the al oritlgxm
is to adjust w 5o as to move down the MSE surface and track the minimum pointg

+ MSE

/WO

—— 3 Emin

b)

T Emn

wl

Figure 3.6. An example of the two reference error surface. a) The MSE surface is
parabolic in shape and has a minimum corresponding to minimum error power Emin at
w* Any deviation from this solution vector leads to increase in error power. b) The
contour plot shows the same information in terms of contour lines at integer multiples

of Emin.

3.2.5. Orthogonal filter modes

If the N reference channels contained mutually orthogonal noise measures, the main
axes of the MSE surface would run parallel to the N weight axes. That is, increasing any
weight w; would result in a maximal increase in the MSE value along this axis. In
practice this is not the case (figure 3.6), generally all environmental noise sources are
picked up to some extent by all reference channels. That is, there is cross-coupling of
on between reference channels which results in cross-coupling between

informati
coupling considerably complicates analysis, and it is desirable to

weights. This cross-
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break down the information into N orthogonal components or system modes. The

orthogonalization is achieved by a translation and rotation of the main weight axes so

that they sit centred on the optimal solution, and aligned with the main elliptical axes..
The translation

Using the parameter v which is deviation from optimal solution.
V=w-w*
combining with (6) and (10) gives
MSE(v) = Emin+ vI. Rv (11)
The error surface now lies centred above the origin in v coordinate space. That is, the
minimum MSE is obtained for v the null vector.
The rotation
The correlation matrix R is real and symmetric, it can therefore be expressed as its
similarity transform
R=MAM" (12)
Where the columns of M consists of the eigenvectors of R, and A is the diagonal
matrix of eigenvalues.
Combining (11) and (12) gives
MSE (v) = Emin+v'.M.A.M™'.v

now letting

vi=M"v (13)
gives

MSE(v') = Emin+v'T . A.V' (14)
or

Excess MSE(v')=v'T.A.V' (15)

The error surface plotted in v' space remains centred on the origin. In (14), the
diagonal matrix of eigenvalues A means that any changes in an individual weight results
in an increase in MSE independent of other weights. That is, the v' axes are aligned with
the axes of the MSE ellipse (figure 3.7). The total excess MSE can now be described as
a linear summation of the MSE due to each independent mode.

Expanding (15)..

imN-1

Excess MSE(v')=v" .A.v'= A (vi')? (16)

Example
Consider the two reference case

vo' Ao O
v’-(vf) and A = ( 0 M
Excess MSE(V')= (') M+ (') M (17)
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Looking at the intersection of the plane of constant excess MSE, E

plane, with the
error surface
Ao 0 Y v
E = | Vo' v

or
()" ')’
R

that is, the intersection of the plane and the error surface form an ellipse with
principle axes along the v' axes (figure 3.7). Note that at any excess error value, the
shape of the ellipse (18) is governed exclusively by the system eigenvalues.

2 Eplane 2 Eplane
a‘()» )andb =(k ) (18)

0 1

Emin] — V0

2.Emin

Emin

e 3.7. Error surface plotted on decoupled weight axes v'. Note the principal

» ef; ig}l:he error contours are now aligned with the weight axes, the Jform of the ellipse

(i.e. the values of a and b) is governed purely by the system eigenvalues A
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3.2.6. Adaptive algorithms

The MSE surface comprehensively defines the adaptive filtering problem: For
stationary data, the algorithm must locate the optimal solution vector at the base of the
MSE bowl. For non-stationary data, the algorithm must locate and actively track the
time variant solution. Performance of the algorithm will be judged by its speed of
adaptation, the average excess error introduced, and the computational cost of its
implementation. Two basic algorithms are examined in this chapter, the Wiener and the
Least Mean Squares filter or LMS. The Wiener solution is highly computationally
intensive yet, for stationary data, its performance is largely data independent.
Conversely, the LMS requires minimal computational resources, yet has convergence
properties which are highly data dependent.

Firstly, the Wiener solution as a block processing algorithm is introduced. Based on
the MSE surface, the ideal gradient descent Minimum Mean Square Error (MMSE)
filter is outlined, and the stochastic approximation which gives rise to the LMS
algorithm shown. At the end of this section the class of Root Least Square (RLS) or fast
Kalman algorithms, which bridge the gap between data dependency and computational
efficiency, are discussed.

Wiener solution

The Wiener solution, discussed in section 3.2.3, can be implemented as a block
processing algorithm. The cross-correlation statistics R and P (6) of a block of K data
samples assumed to be statistically stationary are evaluated. The optimal solution vector
is calculated by a matrix inversion (8). The result is an algorithm which makes a single
step to the optimal solution vector after a delay of K data samples (figure 3.8). The
algorithm has an effective time constant of K samples. The block must be long enough
to provide a good estimate of data statistics, yet short enough to ensure stationarity of
data within the block. The delay in filter output (K samples) and high computational cost
make the Wiener solution unattractive for practical real-time applications.

Step=v(0)'
MSE®) ¢ /

v(of v

Figure 3.8.The Wiener solution is a single step from initial conditions to the MSE

surface minimum.
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Ideal Gradient descent

The goal of any adaptive algorithm is to reach the bottom of some error surface. In
the case of the LMS and Wiener algorithms, this error surface is defined by the
statistical MSE surface outlined in section 3 2. Gradient descent algorithms operate by
stepping down this error surface in the direction of the steepest slope. That is, at some
starting point on the surface the gradient vector is evaluated, a step is then made in the
opposite direction and proportional to this gradient vector. For a small constants of
proportionality, the step will result in a point on the error surface which is closer to the
minimum than the previous point. The procedure is repeated until the minimum point or

optimum weight vector is reached, at this point, the function gradient evaluates to zero,
hence the no further steps are taken.

From (7), define

V(n) = d[Mifv E;V)(" M _ 5 pi2wm R (19)
alternatively, differentiating (11) gives
V(n) =2.R.v(n) (20)

Moving along the negative gradient by constant of proportionality or step size p

gives a time update equation at sample n.
w(n+l) =w(n) +u(-v(n)) (21

Combining (21), (20) and (13) gives the decoupled weight time update equation
viin+l) =(I-2.pn.A).v'(n)
In the case of stationary data, algorithm convergence can be predicted from the initial

conditions. At sample n, the decoupled weight vector is given by
v(n)'=(I-2.p.A)".v(0)' (22)

Consider a single weight vj, and corresponding eigenvalue Aj.
v, (n) = (1-2.0.3,)"%,(0) (23)
For convergence
-1<(1-2.p.2) <1
Since the value of p is identical for all modes, its limiting value is set by the

maximum eigenvalue :
L >u>0 (24)

max

Graphically, the condition for convergence can be visualised as in (figure 3.9). The
speed of convergence of any particular mode of the algorithm is governed by the
geometric progression outlined in (22). For small p, the progression towards v'=(0) can

be approximated as an exponential decay (Widrow 1976).

V() =e " V(0); (25)
the time constant of the i th mode given by
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1

—_—

T. =
L2, (26)

larger p. (within the bounds of stability) gives a smaller time constant and
hence faster convergence. It is clear that the larger eigenvalues, or the steeper sides of
the MSE surface, govern the maximum value of u. Since there is a single value of p for
all modes of convergence, any error power distributed in the shallower sides of the bowl
will take longer to cancel due to this fact. The speed of convergence of the algorithm
can therefore be compromised by large eigenvalue spreads.

Since the MSE is proportional to the square of the decoupled weights (16), MSE
due to mode i decreases twice as quickly as the weight v;.

That is,

1
Ty = ——— 27
’ 4., @7
The time constant of the fastest mode is therefore
1
(28)

Tmin mse =
' 4uh_
The output of the adaptive algorithm as it converges is therefore a combination of the
decaying exponentials which govern each system mode. This summated independent

activity can be approximated by taking the average system eigenvalue (Widrow et al.

1975).
Ao +A +A,+. A
n
which, for nominally orthogonal reference inputs (R has dominant diagonal

A

av

2-L for n reference inputs  (29)

components), gives an approximate filter time constant of
n

R
mme =4 wtr(R)

Where system eigenvalues are not of comparable magnitude,

(30)

eigenvalue_spread = L is often quoted.
M min
The MMSE algorithm is rarely used in practice since its weight update requires
calculation of the exact function gradient. Such information, involving calculation of
both R an P matrices, effectively provides the Wiener solution and hence the process of
descent becomes redundant. The algorithm however provides the underlying concepts of
more efficient gradient descent processes, such as the stochastic gradient or LMS

algorithm.
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a) Stable operation Step= -u\v)

MSE(v')
\ / _gv')
_,..J?DT v b) Unstable operation
MSE(Y),

-V
v(0)'

Figure 3.9. a) Adaptation of a single decoupled weight to the solution by gradient
descent. The step size is set by multiplying the negative of the function gradient Vby
constant p. As the surface minimum is approached, the function gradient , and hence

also the algorithm step, tends to zero. b) If u is too large however, the algorithm over-
steps and becomes unstable.

LMS (Least Mean Square) Algorithm
The LMS is a direct extension of the MMSE algorithm. The MMSE algorithm relies
upon a-priori knowledge of the data statistics, its behaviour is deterministic. The LMS

algorithm relies on individual signal samples to provide approximations of the MSE
surface gradient. The performance of the LMS algorithm is therefore stochastic yet
surprisingly close to the MMSE algorithm.

The MSE gradient, from (4), is given by

dE[y* (”%w )

dIMSE (win)] | 4EL (”%wi

dw(n)
dE[y? (n)%w |

The true function gradient can be approximated by removing the expectation

V(n) =

operator to give an instantaneous of 'noisy' gradient estimate

2.y(n).x,(n)
~ 2.y(n).x,(n)
v(n) =
2.y(n).xy_,(n)

Using this gradient estimate in (21), the complete gradient descent algorithm reduces

w(n+1) =w(n)+2.u.y(n).x(n)
Note that a step along a multidimensional function derivative is being made yet the
averaging or differentiaton. The 'noisy' gradient

to

algorithm makes no use of squaring,
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estimate has been shown to be unbiased (Widrow et al. 1967), and figure 3.10 shows
how the LMS weights track MMSE weights for moderate time constants. In the steady
state, however, the algorithm performances differ. In the MMSE algorithm, convergence
to the optimal solution is obtained when the function gradient evaluates to zero and
hence the step size becomes zero. The stochastic descent algorithm however relies on
the instantaneous product of the error and reference signals, which although statistically
may be orthogonal, instantaneously, will have a finite product. At, and around the
optimal solution, there is therefore some Jitter noise introduced by the algorithm (figure
3.11). This jitter or steady-state noise is further discussed in section 3.2.8

et
3
100 200 300 400 500 600
sample
8 T T T T T

Weight value

o 100 200 300 400 500 600
sample
- ] j T, in= 30 samples.
Figure 3.10. First epoch of simulated evoked response Tmgse min
Abovfu LMS filter output (solid) is overlaid by MMSE filter output (dottec‘l). The
underiying signal is shown by the dashed curve. The decrease in output power is clear
as the algorithm weights (lower plot, IMS solid, MMSE dotted) adjust, albeit slowly,

towards the Wiener weights (dashed).
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Amplitude ( fT)

100 200 300 400 500 600

Weight value

0 100 200 300 400 500 600
sample
Figure 3.11. First epoch of simulated evoked response Tpse min= 0.75 samples.
Above, LMS filter output (solid) and MMSE filter output (dotted). The underlying
signal is shown by the dashed curve. The stochastic progression of the LMS weights
(solid) is now clear, there is some ' jitter' or steady state noise about the ideal MMSE

curves (dotted).
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RLS (Recursive Least Squares)

The RLS is introduced since the family of algorithms it represents have
computational and convergence properties which fall between the extremes represented
by Wiener and LMS filters. Whereas the LMS and MMSE algorithms minimise the
statistical expectation value of square error, the RLS algorithm is designed to minimise
the square error in an absolute sense. That is, data values rather than data statistics
govern the algorithm progress. In the case of RLS, the error of the current sample,

added to the weighted sum of L previous samples, is minimised:
L-1

e(n) = Ny (n-i)

The quantity A is termed the 'forgetting factor', a value of unity makes past and
present samples equally valid; minimisation of e will result in the Wiener solution for
that block of data. Lower values of A (<1.0) give past samples less importance in the
calculation of filter weights, that is, the filter ‘forgets' , such behaviour is useful when the
underlying data is non-stationary. The RLS algorithm uses a vector, sometimes referred
to as the Kalman gain vector, rather than scalar (u for the LMS) weight update step.
The gain vector is recomputed after each iteration and allows a separate convergence
step for each filter mode.

The effective time constant of the RLS algorithm is given by
2
Ty = Y

The many RLS algorithms (see Alexander 1986) vary mainly in computational
efficiency (7N to 7N2 operations per iteration) and susceptibility to round-off error
(Ling and Proakis 1984). However the use of real data rather than statistical estimates,
and the optimised vector step, mean RLS algorithms consistently improve upon the
convergence properties of the LMS algorithms (See figure 3.12).

3.2.7. Descent properties of adaptive algorithms

All adaptive algorithms have a certain rate of convergence, expressed in algorithm
iterations, to solution (figure 3.13). This convergence is obtained at the expense of some
computation per iteration. Generally, the faster the convergence the more computation
per iteration is required. For example, the convergence performance of the RLS
algorithm is consistently better than that of the LMS, at the expense of at best four times
the arithmetic operations. Likewise, the Wiener solution is instantly attained for a block
of data, yet at a greater computational cost again than the RLS (Figure 3.12). The
choice of algorithm is generally set by the hardware available and based on the trade-off

between computation and algorithm convergence time.

77




Direct-form

" 600 RLS square-root

5 algorithm

:

-

2S00t

<

wv

&

S RLS

B 400 + lattice-ladder
= algorithm

3

g 300 - Gradient

S lattice-ladder
Q

° Fast RLS
[ . .

_g 200 algorithm
z

100

LMS aigorithm

M ~ Length of filter

Figure 3.12. Computational complexity of various RLS implementations, as
compared to the LMS. From Proakis and Manolakis (1988).

Channel-correlation matrix
Eigenvalue ratio = 21

| I-tap equalizer, noise variance = 0.001
0.0

Gradient lattice algorithm

Least-squares
lattice algorithm
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Log of
output mean square error
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Figure 3.13.Typical convergence comparison for RLS and LMS, N=11, eigenvalue
spread=11. LMS step constant=0.02. From Proakis (1983).

78




3.2.8. Steady state properties of adaptive algorithms

The process of determining a solution from a finite length data sample inevitably
results in some noise in the steady state. Consider for example, calculating the Wiener
solution for a single reference noise canceller using K data samples. Let the signal d(n)

and reference channel x(n) be uncorrelated. From (8), for K=1, it is clear that the Wiener
estimate

x(7).d (i)
_d(n)
x(n)

w * (n) = imn+K -1

x(7). x(i)

will lead to a complete annihilation of d(n) in the filter output y(n) regardless of its

true correlation properties with x(n).
y(n) =d(n)-w*(n).x(n) =0

That is, for d(n) and x(n) uncorrelated, the signal output power will be in error or
misadjusted by 100%. As better estimates of the underlying data statistics are made, that
is, as more samples are included within the estimate, the misadjustment will steadily
decrease. Such noise is present in all adaptive algorithms and was shown by Widrow et
al. (1976) to be given by

Number of weights
Number of training samples

G1).

where M is the "Misadjustment” or proportion of excess power to minimum

signal power.

As an example, both Wiener and LMS algorithms are applied to the reference noise
canceller problem for a Gaussian-white signal and two reference channels (figure 3.14).
The LMS weights are initialised at the Wiener solution. The time constant of the LMS
filter and the block size of the Wiener filter are varied, the predicted misadjustment vs.
the actual misadjustment is shown in figure 3.14. It is clear that both the Wiener and
LMS algorithm suffer the same effects of steady state noise.

In the case of the LMS filter, steady state misadjustment noise is clear, and manifests
as Yjitter' caused by the finite solution step (see figure 3.11). The appendix details the
estimation of jitter noise for the LMS algorithm, which is approximated by (32).

Jitter noise = W. Emin.tr (R) (32)

and when expressed as misadjustment gives
Jitter _noise
——=——=nr(R)
M Emin

Jitter

when the eigenvalues of R are of similar magnitude, then from (27)
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N
M. = (33)

Jitter
4 ’ Tav,nue

That is, if convergence time of LMS filter is taken to be four filter time constants, the
results in (31) and (33) accord.
The emphasis of this section has been that small algorithm time constants give
faster convergence rates to solution and better tracking of non-stationary data yet ,as a
trade off, increase steady state misadjustment error. Concisely, for any filter :

Mtotal =Miag + Mjitter (34)

041

Misadjustment ( M )

1 10 100 1000
Leaming samples

Figure 3.14. Curve showing predicted misadjustment (solid curve) alongside
achieved steady state misadjustment for Wiener (crossed) and LMS (adowed)
algorithms. Data is for a two reference noise canceller with white signal and
references. For the prediction of M, the LMS algorithm was taken to have a learning
period of four time constants, and initial weights set to the Wiener solution.

3.3. Proposed Algorithm

It is required to provide a real-time running average or epoch by epoch display of
visual evoked responses. Real-time display is preferable since it gives the user a clear
idea of the quality of data collected, and enables the monitoring of spontaneous
neuronal activity. In certain clinical cases, for example, large bursts of abnormal
spontaneous activity can precurse epileptic attacks. At Aston, evoked responses of peak
amplitude 100-1000fT are recorded against a background of 20pT mains interference
and system white noise of 300-400 fT RMS (see chapter 1). Typically data is recorded
over a period of 500ms at a sample rate of 1kHz, with a one second inter-stimulus

interval.

The neuromagnetometer at Asto
approximately 15cm from the dewar base. The vector magnetometer consists of a 1cm

cube on which three SQUIDs (X,Y,Z) are mounted orthogonally. These SQUIDs are
not coupled to pick up coils, and each has an effective intrinsic white noise level of

around 880 fT A Hz. The low sensitivity and remote location of these sensors means

n contains a vector magnetometer probe situated
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that they provide no measure of neuromagnetic field and are good candidates for noise
cancellation reference channels (figure 3.2). The signal processing is based around a 486
IBM PC with 16bit ADC interface to the neuromagnetic system output.

The LMS or stochastic descent algorithm requires 2N arithmetic operations per
iteration. For a PC based realisation, the algorithm is attractive because of its minimal
computational requirements. Figure 3.15 shows the basic computational steps in the

acquisition procedure. The order and utility of these steps are discussed in the following
sections:

¥

Collect epoch
of data

A 4

3
7

Store data

Remove DC
level

Y
Add data to
running average

X

Apply LMS
filter

A 4

L 3

Display
data

A 4

Figure 3.15. The neuromagnetic data acquisition algorithm used at Aston. Note that
all raw data is stored, and that the LMS filter is applied after averaging. In pracltice,
the display routine runs parallel and secondary to the main acquisition loop.
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3.3.1. DC level removal
T%le DC level on neuromagnetic data contributes no usefil information (chapter 1) it
also impairs the performance of any reference noise canceller. Consider a signal channel

d(n) consisting of neural signal s(n) some proportion h of cancellable environmental
noise c(n) and DC offset D.

d(n) =s(n)+h.c(n)+D,
Likewise, a reference channel with some intrinsic noise u(n), a measure of
environmental noise ¢(n) and DC bias Ds.
x(n) = u(n) +c(n) + D,
For stationary data, all adaptive algorithms will converge to the Wiener solution. For

the single reference canceller and a block of K samples, this is given from (8)
n=K-1

x(n).d(n)

W* =

n=K-1

x(n).x(n)

It is clear that the Wiener solution will be dominated by those terms in x(n) and d(n)
which result in the largest cross-correlation measure. Unfortunately, the DC bias on
neuromagnetic data is often of the order of, if not greater than, the maximum noise
components recorded. That is, the calculation of the adaptive weights will be dominated
by the DC signal components.

D, >> s(n) + h.c(n)
D, >> c(n) +u(n)
D
D2

In effect, the algorithm acts as a straightforward DC level remover.

A solution is the introduction of a bias reference (Widrow 1975). That is, a "dummy"
reference channel is used which contains a fixed amplitude value. The filter will tend to
use this dummy mode for removal of the DC components. The trade-off in the case of
the Wiener solution is excess misadjustment due to the increased filter order (31). In the
case of the LMS solution however, the DC bias leads to high correlations between
reference channels, giving large eigenvalue spread hence slow convergence. If the bias
channel is chosen to be too small, it will have no effect; too large, and it will form the
largest system eigenvalue and hence impose an artificial limit on the maximum value for
w. Since the DC bias level on each reference and signal channel is largely arbitrary, there
is no amplitude of the bias reference which precludes either of the latter. In practice,

therefore, the DC level is removed from all channels prior to filtering.
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3.3.2. Filter then average or Average then filter

The next question of implementation is at which stage of the averaging process to
apply the LMS filter. Each DC corrected epoch of data can be filtered then added to the

running average, or, the DC corrected running average can be calculated and the filter
applied to this data.

Filter then average

Besides the neural signal, the raw epoch of data contains a full complement of system
white noise, plus raw environmental noise. The LMS step-size must be large in order to
adapt to sudden non-stationarities, a large step size implies large jitter or steady state

noise. However, any steady state noise is uncorrelated with the stimulus onset and is
therefore attenuated by averaging.

Average then Filter.

During averaging, all activity uncorrelated with stimulus onset is attenuated (figure
3.16). The statistics of the running average change more slowly and smoothly than those
of individual epochs (see figure 3.35). For this reason, the step size can be chosen to be
relatively small, giving less jitter noise than in the above case. Jitter noise on the running
average is, however, the absolute jitter noise and is not removed by further averaging.
The method has complexity in that as the averaging progresses, the reference channels
are attenuated causing an increase in the effective filter time constant (27). Also, the
averaging process itself changes the data statistics, if these statistics change differentially
between signal and reference channels, some non-stationarity in solution will be

introduced.

5000 i i THSHEHE h
< (G
i ,n“y,y' T T

samples (n)
Figure 3.16. The running average as a continuous time sequence. The first three
epochs are shown above, the underlying signal is shown by the thick trace.

Given more than a single cancellable noise source, any adaptive algorithm leads to a

compromise solution where maximal noise is attenuated. This was the justification for

DC level removal prior to filtering. Therefore if any noise source is attenuable by

averaging, it makes sense to average and then apply the filter. In practice the

improvement in performance is most marked when observing the low frequency noise
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effects caused by the interference of the 110Hz visual stimulus CRT and 100Hz mains
harmonic. The superposition of the two noise sinusoids leads to 'beating' pattern in the
data with an envelope of the frequency difference. The phase of this pattern is highly
dependent on the phase of the component sinusoids and is observed in slightly different
phase across all signal channels, and in phase quadrature with this in the reference
channels (Figure 3.17). These phase differences across channels perhaps reflect poor
homogeneity of the 100Hz filters (see chapter 2). The phase shift between the signal and
reference channels perhaps reflects activity of both ambient and gradient noise sources
within the CRT. As a result, in each epoch, the higher frequency signal and reference
channel components are poorly correlated and reference noise cancellation has little
effect. However, in the average, the mains harmonic is attenuated, removing the beating
effect, and exposing the signal-reference CRT noise correlations (Figure 3.18).

4000 T T T

2000

| | I | |
100 200 300 400 500 600

—2000
0

Figure 3.17. Epoch 1, band-pass filtered 60-120Hz, X reference (solid) and signal
(dotted trace). Monitor interference (here at 110Hz) and mains harmonic of 100Hz
result in a low frequency noise source in the form of a periodic 'beating’ pattern, the
phase of this envelope is highly dependent on the phases of the two component
sinusoids. Slight differences in the phases of reference and signal channels result in
envelopes which are uncorrelated.

500

—1000 0 100 200 300 400 500 600

Figure 3.18. Visual evoked response data for averaged set of Wiener filtered epochs
(dotted) as compared to the Wiener filtered average (solid).
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3.4. Algorithm performance

Section 3.2 mathematically characterised the operation of the LMS filter
algorithm. The derivations of filter performance were made using the assumption that
signal and reference channels contained stationary random data sequences. In practice,
neuromagnetic data is highly self correlated and not necessarily statistically stationary. It
is necessary to verify that the performance predicted analytically describes the true
algorithm performance.

In this section, epoch-length stationarity of data is assumed. A known signal 1s
input to the system in typical recording conditions and 'noise' is defined as the difference
between filter output, and this known signal. Since the statistics of the running average
change with each epoch introduced; an LMS filter is defined where effective time
constant is maintained despite such changes.

34.1. The benchmark signal

It is necessary to remove environmental and system noise from gradiometer output
whilst not distorting the underlying neural signal. The problem is that the neural signal
that one wishes to measure is, of course, unknown. In order to assess the quality of
algorithm performance however, signal and noise must be clearly defined. A known
pseudo-neural signal is therefore manufactured, and the performance of the algorithm
gauged by comparing this known signal and the filter output. In order to simulate
evoked response measures, a small magnetic dipole was placed beneath the gradiometer
array (Figure 3.19) in typical recording conditions. The dipole current was modulated so
as to generate a difference of Gaussian function of similar amplitude and temporal
characteristics to a typical evoked response (Figure 3.20). One hundred epochs of data,
time locked to the dipole current modulation, were collected. The running average
signal has three major components (Figure 3.21) :

i) The signal. This is known.

ii) Uncancellable noise. For the purposes of this discussion, all uncancellable noise
sources, including environmental noise not measurable by the reference channels, will be
classed as white noise.

iii) Cancellable environmental noise. That is, noise which is correlated between signal
and reference channels. It is clear from figures (4.20) and (4.21) that the removal of
such noise from the running average will considerably enhance the SNR ratio, especially

during early epochs.
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system
Signal
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generator —_——
Comparison

Figure 3.19. A magnetic dipole is driven with a known current close to the
gradiometer array in typical noise conditions. The field modulation sensed by Ifre
gradiometer is recorded, processed and compared to the ideal. In practice, the precise
amplitude scaling factors are estimated by least squares fitting of an averaged set.
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Figure 3.20. The benchmark signal (solid) trace underlies a) a raw epoch ;b) the
average of 100 epochs; c) the Wiener filtered average of 100 epochs
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Figure 3.21. Total power in running average epoch (512 samples) (solid) trace. The
dotted trace shows estimated white noise power (taking 40ft/YHz over 100Hz
bandwidth). The dashed trace indicates power in benchmark. The difference between
total power and white-plus-signal power is due largely to power-line interference
(figure 3.20a). This interference is well represented on the reference channel inputs

and can be almost completely nulled by reference noise cancellation.
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3.4.2. Normalised LMS time constant

In section 3.2, the eigenvalues of the reference inputs were shown to completely
define the of the shape of the MSE surface (figure 3.7). Each eigenvalue defines the
steepness of a side of the N dimensional MSE bowl (see equation 16). If the noise in the
reference channels is predominantly uncorrelated with the epoch start, the process of
averaging will cause an effective shallowing of the MSE surface (figure 3. 22). From
(27), this change of shape of the error surface will mean that for a fixed u the filter time
constant will change. That is, the value of A,y decreases, giving a larger upper bound
for p (figure 3.23) and requiring a larger value of p to maintain the same convergence
rate. For the purposes of this analysis, it is convenient to deal with a filter structure with
known time constant irrespective of the point in the running average. Therefore, from
(28), the values of p used for the stochastic descent algorithm are pre-calculated to
maintain a constant relationship to the progression of system maximum eigenvalue. That
is, the value of p at epoch a is adjusted so as to give the filter the required fastest time
constant Tyge min-

1

) Mo (@)4.T, i

K,

MSE =>\i,(vi)2+Emin '
1 averaging

QN

Figure 3.22. As the reference inpuls and hence system eigenvalues 2; are attenuated
by averaging, the sides of the MSE bowl become shallower. The averaging process also
causes an attenuation of reference uncancellable noise sources in the signal channel

(such as white noise) leading to a decrease in Emin.
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Figure 3.23. Max value of u (or 1/A,4,) (crosses) as a function of epochs averaged
Jor benchmark signal. Also shown is [trace(R(a)) ]! (boxes) and dotted line of
gradient a. The more epochs within the running average, the larger the upper bound
Jor w. The periodic performance in later epochs is due to the non-random inter-
stimulus interval resulting in the sequential averaging in and out of 50Hz interference.

3.4.3. Empirical Performance measures
The signal underlying the noise is known, therefore filter performance can be
precisely assessed. The power of the deviation between the signal and filter output at

running average epoch a is defined as

nas-1

Error_ (a) = (F_Ims(a,n)-B(n) )’ (35)

emp

where B(n) is the benchmark, F_Ims(a,n) the output of the LMS filter. The removal
of useful signal data by the algorithm will be reflected in this measure (Figure 3.24b).

Note that (35) does not correspond to the power in the filter output (36),

traditionally the performance criterion when the underlying signal is unknown.

nes-1

Erron, ow (@)= (F_Ims(a,n ), (36)

This measure is independent of the underlying signal and continues to improve as the
underlying signal is decimated (Figure 3.24a). It will be shown that this signal

decimation is well described by the steady state error due to short filter time constant.

The algorithm essentially views the signal as slowly varying data trend and attempts to

remove it. Such behaviour is apparent when filter weights become highly correlated with

the underlying signal (figure 3.25).
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Figure 3.24. a) Total error power and b) total power in LMS filtered running
average for various Tyse min (1=25 *103 crosses, 250 pluses,50 solid, 5 dotted, 0.83
dash-dot). For b) Notice how total power decreases with decreasing time constant, this
reflects not improved filtering but increasing signal annihilation. Error to signal
power is therefore a more useful measure. For a) Large time constants give slow
descent, whereas small time constants give fast descent but large jitter noise in the

steady state.
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Figure 3.25. Top trace shows filter output. Ideal benchmark (dashed), LMS (solid),
MMSE (dotted). The lower trace shows MMSE weights (dashed) and LMS weights
(solid). The small time constant causes weight behaviour to be highly correlated with
the underlying signal. This correlation introduces misadjustments which attenuate the

signal, and results in a decrease in total filter output power.

3.5. LMS Fiiter performance

A generalised filter and a performance measure have been defined; it is now necessary
to verify that LMS filter performance can be deterministically modelled. Taking the
running average to be piecewise stationary between epoch boundaries, it is possible to
estimate a set of statistical quantities based on each epoch. For example, for each epoch,
the cross correlation matrices R and P can be evaluated and the corresponding Wiener
solution calculated, the data can then be described in terms of its orthogonal modes.

The effects of passing the running average through LMS filters of various time constants

will be estimated and compared to the empirical performance measure derived in section

3 4. Due to the changing statistics of the running average, the characteristic eigenvalues

and minimum error will be functions of the epoch number (section 3.4).
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The performance of any adaptive algorithm is a trade off between its
convergence rate and steady state misadjustment. From (34), the amount of excess noise
due to imperfect filtering at any sample instant n, can be expressed as

Excess MSE(n)= lag_MSE(n) + Jitter MSE(n)

from (Appendix, (48)).

n-1

Jitter_ MSE(a) = ua.Emm(a)E )»(a),..(m)

where the quantities A, and Ey;, are estimates based on the statistics of the running
average epoch a, and p, set to give the required filter time constant.

Combining (16) with (23) gives an estimate for the amount of cancellable noise at the
start of each new epoch based on the eigenvalues and decoupled Wiener weights for that
epoch

i=N -1

Initial_lag_ MSE (a) = M(a).v(a,0) (37)

that is, if no adaptation is made throughout the epoch then this MSE will result.

Where v(a,0)' is the decoupled weight at the Oth sample of epoch q,

To recap (13)

v(a,n)'=M," .(w(n)-w, *(n))
where w* and M are calculated from epoch a.

NB. Note that the Wiener weights are based on statistical estimates from a finite data
sample, the true optimal weights can only be known from perfect statistical knowledge
of the data. The error introduced by making the Wiener estimate is discussed further in

section 3.6.1.

Assuming stationarity within the epoch, and using the approximation of (25), an
estimate of the excess error power due to lag at any instant n throughout epoch a is

given by

j=N-1
2n

Lag MSE(am)= Y € “v @O0k, (38)
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Figure 3.26. The idealised behaviour of the LMS filter for stationary data. At
sample 0 ,epoch 0, there is excess power due to weight misadjustment. The filter time
constant is maintained across epochs, and the excess power at the start of each epoch
decreases as the filter approaches the optimal solution. The total excess power
contained within an epoch is represented by the shaded area.

It is more convenient to deal with the total excess MSE per epoch represented by the
shaded area in figure 3.26. Integrating (38) with respect to the sample »

s
2.n

i=N-1
Lag MSE (a) = Je'Vviz(a,O)'xia n
n=0

gives total MSE per epoch for specific initial conditions and filter weight time

constant.
imN -1

Tot lag MSE(a) = [1 -e ™ J%-V,-2(a,0)'7\,~ (39)

So, the total predicted error power due to the filter over any epoch a of the running

average is given by )
Errory,(a) =T ot _lag MSE(a)+ MSE _ jitter(a) (40)

Given stationarity, the best estimate of the amount of uncancellable noise in an
epoch is given by the deviation of the benchmark from the Wiener solution. Since, in this

application, such noise is predominantly white, define

s-1

White , (a) = z (B(n) - F_wnr *(n))*

Where F wnr*(n) is the output of the ideal Wiener filter, and B(n), the benchmark.
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The total deviation-from-signal power will be due to the filter error plus any
uncancellable noise within the epoch.

Tot _err(a) = Errory, (a) + White () 41)

Figure 3.27 shows the estimate (41) alongside the empirical measure of (35). It is

clear that the analytical estimates based on whole epoch statistics predict the behaviour
of the stochastic algorithm.

Error power
o0

0 20 40 60 80 100
epochs in average (a )

Figure 3.27. Comparison of empirically observed and predicted LMS algorithm
performance. For Tyse min= 2500 : empirical crosses , analytical plus Wiener white
noise estimate dashed trace lies underneath, almost obscured. For Ty ge min= 0.83 :
empirical boxes , analytical dotted. Wiener white noise estimate (Whiteyyp(a) ) is shown
as the dot-dash trace.

Alternatively, it is instructive to compare predicted filter misadjustment (Figure 3.27),
where

~ Errory, (a)
E min(a)
with a measure for the empirical misadjustment

Error,,, (a) - White . (a)
Moy () = E min(a)

M_(a) (42)

A comparison of Mggt and Memp, as averaging progresses, is shown in Figure 3.28
for two normalised filter time constants. By considering average misadjustment per
epoch, it is clear (figure 3.29) that the analytical form well describes filter performance
over a wide range of filter time constants. That is, even signal decimation, which leads

to lower filter output power (figure 3.24a), is correctly categorised by the analytical

form as noise.
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Figure 3.28. Comparison of Mgg +1 and M+ 1. For Tipge min= 2500 : Memp
crosses , Megy dashed trace. For Tiyse min= 0.8!): Memp boxes , Mgt dotted. Unity
is added to both traces since Myg becomes negative complicating logarithmic the
plotting procedure.
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Figure 3.29. Empirically observed (crosses) and estimated (boxes) average
misadjustment (M) per epoch. For large T, the filter converges too slowly to the
solution, whereas for small T, jitter noise is dominant. For all time constants, the
stochastic algorithm performance is well described by the deterministic equations

based on whole epoch statistics.

3.6. Steady state filter performance
In the previous sections, data stationarity has been assumed. That is, all filter lag
has been assumed to be due to progression from some initial conditions to an optimal

solution. In practice, data sequences are non-stationary, and this optimal solution is time

variant (figure 3.30). The adaptive filter is required to track this drifting solution, and
failure do so results in non-stationary noise. Filter performance in non-stationary noise is

important since generally, having positioned the dewar and the subject, the algorithm is

allowed to converge close to the optimal solution before recording any data. During the
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running avera .
s ge therefore, the algorithm must only track non stationary noise in the

data. The go i ion i o
goal of this section is to quantify this non-stationary noise. Firstly, it must be

con%irme'd that the previous assumption of piecewise (in this case, epoch length)
statlonaljlt'y of data is valid. Non-stationary noise is then defined as a ;tep input to the
ﬁlte‘r arising between epoch boundaries. Finally, given average measures of non-
stationarity, an optimal progression for filter time constant is proposed.

)

wat1)

we

Figure 3.30. In practice, the base of the error surface moves around as the data
statistics change. Any adaptive filter must not only be able to track to the bottom of the
surface, but also follow the movement of the minimum point w*.
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3.6.1. Confirmation of piecewise stationarity

Confirmation of data stationarity is complicated, since it relies on statistical estimates
based on a number of finite length data segments. For stationary data, the longer these
segments, the better the optimal solution will reflect the underlying data. For non-
stationary data, these segments must be long enough to provide good statistical
estimates, yet short enough to assure stationarity within the segment. There will be some
optimal segment length where the costs of steady error balance with those of non-
stationarity. In previous sections, stationarity across epoch length data segments has
been assumed. The results have shown that the statistical quantities estimated from these
epochs well describe filter performance. That is, epoch-length stationarity has already,
indirectly, been confirmed. In this section, the costs involved in assuming epoch-length
stationarity are compared to the costs of using a variety of segment lengths.

It is acknowledged that there is some steady state error in the epoch based
Wiener solution. An estimate of N weights based on an epoch of s samples gives an
inherent steady state misadjustment (31) of N/s. However, if the assumption of
piecewise stationarity is invalid, then improvement over the Wiener solution by more
than this steady state error should be achievable using filters based on shorter segment
lengths (or smaller effective time constants). For longer segment lengths, it is not
applicable to apply the Wiener solution to data which cross epoch boundaries of the
running average, however the normalised LMS filter can be used with any time constant.

The LMS filter is initialised at the Wiener solution (for epoch 1), and filter
misadjustment for various time constants plotted (figure 3.31). It is clear that the
continuous algorithms do improve upon the Wiener solution (M= 0). However this
improvement is bounded by the steady state error implicit in the Wiener solution itself.
That is, the assumption of epoch-length stationarity is valid for this data since all
misadjustment is accountable for through Wiener steady state error. Extrapolating
beyond the number of epochs averaged, it is also clear that the assumption of epoch-
length stationarity will break down. This is because the environmental noise on the filter
input, which is periodic and stationary across the epoch length, becomes attenuated
revealing the underlying and more transient benchmark signal.

The trade off between steady state error and non-stationary lag noise is clear
when looking at average filter misadjustment for various time constants (Figure 3.32).
For stationary data, the curve would reflect only steady state error, that is , it would be
monotonic decreasing with increasing Tmse. In fact, the function has well defined
minimum indicating that minimum excess error is achieved through balancing the effects
of steady state error with those of non-stationary lag noise.
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Figure 3.31. Misadjustment achieved with a variety of stochastic gradient filter time
constants (Typse min= 2300, 250, 83, 50 (solid curve) , 35, 25, 0.83). Negative values
indicate improvement over the Wiener solution. The dashed line indicates performance
deficit due to steady state error for the Wiener solution given three references and 512
samples (3/512). Note also that the curves are normalised to Ejy, yet misadjustment
error continues to decrease with epochs averaged.
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Figure 3.32. A?)e.rage Memp per epoch for LMS filter initialised at Wiener weights.
Notg that the minimum is not for large T as would be expected for statistically
stationary data. The dotted trace is Memp for the converging filter from figure (4.29.).

6

3.6.2. Quantifying non-stationarities.

1 1 | |

-10
0 20 40 60 80 100

epochs in average (a )
Figure 3.33. Change in decoupled weight values at the beginning of each epoch (Vg
solid, v'y dotted, v'y dash-dot) For stationary data, the vector v' would remain null

throughout.

Piecewise stationarity confirmed, it is now reasonable to assume that all non-
stationary noise arises between epoch boundaries. For the benchmark data, the initial
values of decoupled weights v' (figure 3.33) show the non-stationary nature of the
solution as epoch boundaries are crossed. When system eigenvalues are of similar
magnitude, decoupled weight variance provides a measure of data stationarity (Widrow
et al. 1976; Gardner 1987). In practice, high correlations between reference channels
lead to system eigenvalues with a large magnitude spread; for example, at Aston, all
three reference magnetometers sense a strong 50Hz field component. Since the amount
of excess error due to the variant decoupled weight relates to a particular system
eigenvalue (16), the weight variance becomes a less useful measure of stationarity. That

is. for small eigenvalues or shallow sides of the MSE surface, a large weight variance

results in little excess error pOwer. Conversely, tiny changes in any decoupled weight

may introduce considerable excess error if it is associated with a large eigenvalue. It is

99




more practical therefore to describe a non-stationarity in terms of the amount of excess
error it introduces (figure 3.34).

tracking performance of algorithm
T T T T T T T
. - ]
Initial lag MSE (a) _ y B
s
0 ' I
1 2
epochs (a)
s samples/ epoch

Figure 3.34. The non-stationary noise is modelled as step like at the beginning of
each epoch. The task of the filter is to track the new optimal solution and attenuate this
step.

The total excess error due to a non-stationarity occurring between epochs a and a-/

is given from (37) by

jaN-1

Initial_lag MSE (a) = Ma)..(v(a,0),)’

Alternatively, moving back into the Wiener form, this can be expressed as the excess
error introduced when the optimal weights from the previous epoch are used in place of

the weights for the present :

Initial_. Iag_ MSEm(a) = Emin,wnr,w'(a-l) - Emin,wnr,w'(a)

Expressing non-stationary noise as a fraction of Emip gives the misadjustment due to

non-stationarities (figure 3.36).

Emin,wnr,w"(a—l) - Emin,wnr,w"(a) (43)

E.

min,wnr,w*

M, (a)=
Note that this estimate has the inherent steady state noise of two Wiener solutions

=2N/s.

Figures 3.35-36 illustrate that non-stationary misadjustment noise is most significant
when the individual epochs, rather than the running averaged is filtered. The

misadjustment due to non-stationarity in the running average decreases with epochs

averaged.
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Figure 3.35. Total error due to non-stationarities (Tot MSE ns(a)) for running
average (solid trace) and raw epochs (dotted) trace.
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0.001
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epochs
Figure 3.36. The misadjustment due to non-stationarities Mys(a) for running
average (solid) and unaveraged epochs of benchmark. The dashed line indicates the
misadjustment implicit in the Wiener estimate of stationarity (6/512). Points below this
line have therefore no significance.

3.6.3. Measurement of stationarity of neuromagnetic data

The benchmark signal has been helpful in verifying the analytical form, and
defining some measures of performance. However, it reflects only one signal channel
and one recording instance. It is necessary to get a broader picture of the stationarity of
data in more typical operating conditions. Given that the assumptions of piecewise
stationarity verified for the benchmark are valid, it is possible to apply (43) ,the Wiener
non-stationarity measure, to the general case. Figure 3.37 shows Mpg for a number of
evoked response recordings over different dewar positions, subjects and days. The
resulting curves have high variability yet show typical initial Mpg of 0.2 exhibiting
monotonic decrease with averaging. This decrease is perhaps associated with the
'folding out' of the MSE surface as averaging progresses (figure 3.22) where a constant
weight variance will result in consistently less misadjustment error.
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Figure 3.37. The average (boxes) of M ns evaluated from 14 sets of evoked
response data using the CRT stimulus. The dotted traces show 5 of the 14 individual
estimates of M_ns, each of these estimates is constructed from average M ns of each of
the nineteen channels of the gradiometer array. The data consists of 3 separate dewar
positions for three subjects recorded within a two week period. The dashed line shows
Wiener steady state error (6/512) in the non-stationarity estimate. Initial M, is
around 0.2 and tends to decrease with averaging.

3.6.4. Optimisation of filter time constant
Section 3.6.3 has quantified the step misadjustments due to non-stationarity
which must be tracked by any adaptive algorithm. If M, were a constant, a single filter
time constant would optimise the average misadjustment per epoch. However since My,g
decreases with epochs averaged, a monotonically increasing in filter time constant is
required to provide fast tracking in early epochs giving way to slower tracking yet less
steady state noise in later epochs.

From (39), (48) and (40)
Errory, (a) = MSE _lag(a) + MSE _jitter (a)

imN-1 -1
2.n

S i 2 ' . 1
Errorﬁ,, (a) = [l—e Y J,‘—;—'-,v’. (a,O) )"i +]J,a.Emm(a) )\(a)'(l_—ua)\:@)

Consider a system with a single mode

2n

_— 1____
Errory,(a) = [1 —e © J%_vz (a,0)'A +n.Emn(a)r(a), .(1 Y (a))

assuming that all initial lag error is due to the non-stationarity, that is

M _Emin(a
vi(a,0)h =—= - ()
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and replacing p with weight time constant ¢ (27) gives

Error,, (a) (1 -e'Tj.i.Mm(a).Em(a) + Emin(a). ( )

2t-1
or in terms of misadjustment

2.5

M, (a)= (1 -e"T).i.Mm(a) +(

: ) (a4)

2.T-

Widrow et al. (1976) estimated optimum u for a continuous data sequence with »

equal eigenvalues and constant weight variance o2 due to a non-stationary driving term.
They derived

2
(Mop)sr, =t (R) 4+ 1
u 4

where Ty* and Tp are time constants of the filter and non-stationarity respectively.
Using n=1, and substituting t for p gives

RN NCaOl
(Man)epnre, = 2t+[ — L (45)

min

The term in square brackets in (45) is the proportion of excess error due to weight
variance at any sample that is, Mpq(n). Expressing this as an average evaluated over s
samples gives Mp¢(a)/s. The form of Widrow et al. (1976) equation is equivalent to
(44) when T is of comparable magnitude to s. Graphically, the relationship between (45)
and (44) is shown in (figure 3.38). The two functions diverge for large T, but have the
same minimum point. Differentiating (45) with respect to T and equating the derivative

to zero, gives

2s
= |— .. (46
T jv; (46)

opt
ns

That is, for any measured step non-stationarity Mg over an s sample epoch, the

optimal filter time constant is given by (46).
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Figure 3.38. Graphical form of equation (44) (solid) and (45) (dotted).For constant
misadjustment M_ns over an epoch vs. filter MSE time constant. M ns =0.5, =0.1, =
0.01 in order of descending minima. Both the Widrow estimate (45) (dotted) and epoch
based calculations (44) (solid) have the same minima. The curves diverge for large
filter time constants. In the continuous case misadjustment increases monotonically
with twhereas in the epoch based case, this increase is bounded by the total non-
stationary misadjustment present.

3.6.5. Generalised optimal RLS time constant progression

Algorithms such as the RLS have a time constant which is independent of the
underlying data and it is therefore possible to estimate an optimal progression based on
(46).

For 1 comparable to s, the non-stationary misadjustment at the start of any
epoch is likely to be large compared to any remaining uncancelled non-stationary
misadjustment due to the previous epoch boundary. Filter performance is therefore
assumed to be independent between epochs. Since in the running average, the non-
stationarity decreases monotonically with epochs averaged (figure 3.37), the filter
applied to each epoch will have a different optimal time constant.

The curves of figure 3.37 fall off at a rate of approximately 1/Va. Taking some
initial Mp,g , and combining with (46) gives a Topy asa function of epoch a.

2s.\/2 (47)
M

ropt(a) =

ns,init

For a single experimental trial figure 3.40 shows the average misadjustment due to
an RLS filter with optimal time constant progression of (47). The RLS filter, with
optimal time constant progression, improves on the normalised time constant LMS. The
optimal time constant progression for the LMS filter results in poorer filter performance.
Figure 3.41 shows that the reason for this is that, although its fastest mode has
equivalent time constant to that of the RLS, the effective time constant of the LMS

filter is much greater than that of the RLS filter.
104




200 :
T ] [
150 = |
G'ﬂ’n‘ﬂﬂﬂ!
DBB,DDQDB BDDGGBBQQG
5 BD~B'DD’E
g 100 |
"
50
Moooeoce‘c: 0006000000000
o® 00600003
+++++++++T++++++-++++++! +++~H—++l+++++ﬂ.+++ﬁ_ e
0 l
0 ' i % 40 50

cpochs (a)

Figure 3.39. Optimal time constant progression calculated from (47) on the basis of
non-stationary misadjustment decreasing as 1/va (from best fit curve to data in figure
3.37). For initial misadjustments (Myg injyjof 0.2 crosses; 0.4 boxes; 3.2 diamonds;
25.6 pluses.
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Figure 3.40. Average misadjustment per epoch for a single experimental run. Solid
curve shows performance of normalised LMS filter. Using the optimal time constant
progression of using (47), with My init =02, performance of the RLS (dashed) and
LMS (crosses).
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M+1

Figure 3.41. The same trial as in figure 3.40 plotted as misadjustment vs. epochs
averaged for optimal time constant progressions. LMS : Mijuj;=0.2 (crosses),
Minit=3.2 (diamonds) ;and RLS M;y,;=0.2 (solid). Although the fastest mode of the
LMS filter has the same time constant as the RLS, it is not this mode which dominates
filter performance, and hence it fails to track the early non stationarities in the data.

3.6.6. Generalised LMS implementation

Application of the time constant optimisation of (46) to an LMS implementation is
not practical due to the algorithm's inherent data dependent convergence properties.
That is, steady state and lag noise do not necessarily arise from the same LMS filter
mode. The average LMS time (30) constant is derived based on nominally equal
eigenvalues, in practice however, there is a large eigenvalue spread (figure 3.42). In
order to pre-specify the effective LMS filter time constant for a multiple reference
application therefore, complete a-priori knowledge of signal and reference channel

statistics is required.
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Figure 3.42. FEigenvalue spread vs. epochs averaged for the benchmark data. The
large spread indicates that the three reference channels contain highly correlated

information. .
For a practical implementation, optimal LMS filter time constant can be

estimated from an ensemble of misadjustment curves (figure 3.43). Although this time

constant is for a normalised LMS filter, typical signal and noise amplitudes are known,
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and the decrease in eigenvalues with averaging can be approximated as linear (figure
3.23). That is, the generalised LMS filter would have a step size (u), calculated on the
basis of typical reference noise amplitude and an 80 sample weight time constant (figure
3.43), which increased linearly with epochs averaged. Such an approach is
computationally highly efficient and appropriate for a running average display. Off-line,

and prior to analysis, more precise yet computationally intensive filters can be applied to
the averaged data.
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Average misadustment per epoch

0.01
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Figure 3.43. Six misadjustment curves obtained from three dewar positions from the
data in figure 3.37 along with ensemble average (boxes).For the 3 reference LMS filter (
of normalised time constant.
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3.7. Time derivative Reference inputs

Any noise source, such as the CRT, is the superposition of many generated fields of
different sources and spatial gradient. Furthermore, all reference and signal channels
pass through individual anti-aliasing filters. These filters introduce phase shifting effects
(see chapter 2). The noise sensed in the gradiometer channels may therefore be out of
phase with that sensed by the reference magnetometer channels. This phase shift gives
lower correlation between signal and reference channels, and means that less of the
environmental noise can be removed from the signal by reference noise cancellation. It is
possible to account for these effects by introducing extra weights into the filter
algorithm, which allow the phase shifting of reference channels. This is achieved by
using three extra reference channels which are time derivatives of the vector
magnetometer outputs, and therefore in phase quadrature (figure 3.44). The weighted
sum of the cosine and sinusoidal components in the reference channel and its time
derivative partner should theoretically allow a sinusoid of any phase and amplitude to be
constructed by the algorithm. The use of time derivatives means that the phase shifting
operation should be concentrated in the higher frequency region of the spectrum (figure
4.45) where phase distortion is most likely.

Note that by introducing freedom of phase to the algorithm, the reference noise
canceller moves towards a frequency discrimination filter with notches at the dominant
reference frequencies. That is, there is potential for the annihilation of useful signal data
around these notches.

Defining
Emin 3refs - Ermn 6refs . . . .
M, = : ' that is, Mggip 1s the extra proportion of noise
Emin,Srvﬁ'

power which is cancellable using the six, rather than three reference channels. Note that
the implicit cost in using these extra channels is given by is an increase in steady state
misadjustment (31) of 3/512. Figure (4.46) shows Mgjiy for a number of experimental
trials. The curves indicate that improvement is best in the earlier epochs, levelling out to
around 10% Epyjp in later epochs. The results in figure 3.46 are in contrast to those
from the benchmark trial (figure 3.47), where improvement with increasing number of
references is outweighed by the steady state noise introduced. The critical factor appears
to be the CRT, which was not on during the recording of the benchmark signal. This is
reasonable, since the CRT is run at 100-110Hz where the analogue filters used (106Hz)
have poorest phase homogeneity. That is, any adaptive implementation will benefit by

removing this phase shift.

From figure 3.46, in early or unaveraged epochs, the use of derivative references can

result in error power improvements of 30-50% Eppin, Or a 15-20% increase in amplitude
SNR. In later epochs improvements of 10% Emin or 5% amplitude SNR are achievable.
These improvements are at the cost of potential misadjustment errors due to the
around these reference frequencies. Where viewing

cancellation of neural signal .
r example spontaneous activity, the improvement gained by the use
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of extra references may be worth the computational and misadjustment overheads. For

averaged data however the conclusion is that the expense of extra reference channels is
unjustified.
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Figure 3.44. Software derivatives (dotted) of sinusoidal reference channel (solid)
values are cosinusoidal. By the weighted addition of sin and cosine terms, a sinusoid of
any phase or amplitude can be obtained.
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Figure 3.45. The transfer function of the finite difference software derivative
function for sample rate lkHz. Time derivative reference channels are created by

subtraction of successive reference samples.
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Figure 3.46. The relative excess noise Mgy, for the data in figure 3.37 removed by
including three derivative reference channels. The boxed trace is grand average of 14
evoked response data sets. The dashed line shows minimum error due to Wiener
estimate, and also noise penalty for increased number of references (6/s). Derivative
references provide the greatest improvement during the early epochs, this improvement
levelling out at about 10% Eyjy, in the later epochs.

0.01 T T T T l |
Mgain
0.005 [~ -]
] ] ] |
0 0 10 20 30 40 50 60 70
cpochs averaged

Figure 3.47. Mggin for the benchmark data. The improvement in algorithm
performance is well below the extra steady state misadjustment introduced by the use of

extra reference channels (0.012).

3.8. Concluding remarks
A basic algorithm structure has been proposed for the adaptive filtering and

averaging of neuromagnetic data. Signal processing advantages gained by averaging and

DC level removal prior to filtering have been outlined.
In this installation, it has been shown that the performance of the LMS filter is well

modelled by taking epochs (0.5s) of the running average to be statistically stationary.
All non-stationarities have been modelled as step driving terms arising between epoch

boundaries. The error predicted by the analytical form has been shown to predict not
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only error due to non-stationary lag,
results in reduced filter output power.

but also steady state error, even when this error

In the steady state, examination of an ensemble of neuromagnetic data sets shows
that, initial non-stationarity misadjustment is around 20%, and decreases monotonically
as the signal is averaged. Based on the decreasing non-stationary noise, an optimal
progression for filter time constant has been proposed. This optimal, time constant
progression has been found inappropriate for LMS filter because of the algorithm's
intrinsic sensitivity to eigenvalue spread. Other adaptive implementations, such as the
RLS, have been shown to benefit from such a progression.

The option of using extra references, in the form of reference software derivatives,
has been discussed. The conclusion is that the intrinsic misadjustment penalty of the
extra references, the extra processing time, and possible loss of signal pass-band, does
not merit the improvement in noise cancellation.

This study adds to the existing body of work in a number of ways:

i) Adaptive filtering algorithms are used mainly in signal processing applications
where the underlying signal is known a-priori. This study has shown that analytical
prediction of filter performance can also be applied to evoked response measures.
Previous work (Robinson 1989) has evaluated filter performance in noise-only
conditions, where consistent reduction in total output power is desirable. This study has
shown that such measures of filter performance are inappropriate when some underlying
signal is present.

ii) The effects of non-stationarity of the neuromagnetic data has been addressed for
the first time and a measure of this non-stationarity has been introduced.

iii) Given the measures of non-stationarity, and analytical tools describing filter
performance, it has been shown possible to tailor adaptive filter design to suit the

environment in which an evoked response is to be recorded.
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Chapter 4.

Element function and architecture

The heading of this chapter derives from figure 1.1, the aim is to outline the neural
stl"uctures of the primate visual system, their connectivity and function. Much data in
this section is due to invasive micro-electrode studies in the macaque. The discussion
begins with the photoreceptor array housed in the retina, follows the path of visual
information via retinal ganglion cells, through the lateral geniculate nucleus (LGN) and
into the visual cortex (figure 4.1). Finally the role of the less extensively studied
subcortical structures (such as the superior colliculus) in primate vision is examined.

I‘ I
¥ S £ IV'

OPTIC
CHIASM

LATERAL
GENICULATE
BODY

STRIATE
CORTEX

Figure 4.1. Schematic of neural connections in the geniculo-cortical pathway. from
Regan (1989).
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4.1. The retina
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Figure 4.2. Organisation of the primate retina (from Dowling and Boycott 1966).

The retina is the multi-layered structure housing the photoreceptors and the neurons
which form first stages of visual processing. Superficial examination of the retina reveals
a Smm diameter yellowish region known as the macula lutea, to which the central 5
degrees of the visual field are focused. Within the macula lies the fovea-centralis,
approximately 2mm in diameter bordering a small depression housing the foveola where

the receptors responsible for the very central 1-2 degrees of vision are situated.

4.1.1. The photoreceptors

Each photoreceptor contains laminae of pigmented material (Figure 4.2) and releases
neurotransmitter chemicals on the absorption of light photons. The absorption spectrum
of the laminar pigment determines the band of wavelengths over which the
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photoreceptor is optimally sensitive. The human retina contains two basic types of
photo-receptor: rods and cones.
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Fz:gure 4.3. Mean absorption spectra of human rods (solid circles) and cones,
obtained by micro spectrometry (from Bowmaker and Dartnell 1980).
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Figure 4.4. Rod and cone densities Vs. retinal eccentricity (from Cornsweet 1970.)

Rods
Rods are long thin structures (2 um diameter, 40-60pm in length) containing the

e 43). Rods predominate in the retinal
(Figure 4.4). Rods have more efficient

purplish photo pigment rhodopsin (Figur
periphery being almost absent in the foveola

quantal absorption than cones, responding to a
al. 1979), and are therefore responsible for vision at low luminance levels.

s few as one or two photons (Baylor et

Cones
There are three cone types, classified according to the wavelength of light that gives

peak absorption, namely Long, Medium, and Short wavelength sensitive (Figure 4.3).
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Cones Véry In size and shape across the retina and are extremely densely packed in
centre' (Figure 4.4). The fine retinal mosaic corresponding to the central few degrees of
the visual field means that cones govern the limits of acuity and resolution of fine

pattern. Colour vision stems from the wavelength discrimination provided by the range
of absorption spectra found in cones.

4.1.2. Post-receptoral retinal elements

The photoreceptors connect to a complex array of retinal neurones (Figure 4.2).
These cells perform the first stages of neural processing of the visual information. There
are four main categories of retinal neuron : bipolar , horizontal, amacrine and ganglion.
Retinal ganglion cells are discussed in the next subsection.

Bipolar cells

Bipolar cells mediate the connections between the rods and cones to the retinal
output or ganglion cells. They form a variety of complex interconnections and to some
extent group or weight receptor output. For example, as many as fifty rods can synapse
to a single rod bipolar cell which in turn connects to up to four ganglion cells (Saude
1993). By pooling the output from a large number of photoreceptors, the cell has
increased the sensitivity to incoming photons at the expense of losing acuity due to the
large spatial extent (or receptive field) of the receptors. There are two main classes of
bipolar cell: those which hyperpolarize to light (OFF bipolars) and those that depolarise
(ON bipolars). That is, distinct groups of bipolar cells fire at the appearance and
disappearance of any stimulus. Hubel (1988) postulates that such an ON-OFF (or push-
pull) mechanism maintains equal sensitivity to light increment and decrement and is also
a more stable signalling mechanism, since no constant neural firing is required to indicate
the equilibrium state. This ON-OFF pathway segregation is maintained at least up to the
Jevel of the lateral geniculate nucleus (LGN) (Schiller and Colby 1984).

Horizontal cells

Horizontal cells extend laterally and connect with both bipolar and photoreceptor
elements. Although little primate data is available, such cells are thought to contribute to
the receptive field surrounds of retinal ganglion cells (Werblin and Dowling 1969,

Mangel and Miller 1987).

Amacrine cells
Amacrine cells lie within the ON and OFF laminae of the retinal interplexiform layer,

Is their processes extend laterally. Synapsing with both bipolar and
make feedback synaptic connections which can

like horizontal cel

retinal ganglion cells, such cells

modulate bipolar transmitter release (Werblin 1972
in a number of vertebrates (Barlow and Levick 1965,

). Amacrine cells have been identified

as retinal motion detector units
Cleland and Levick 1974). Howevef, the function of amacrine cells in the primate is still

unclear.
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4.1.3. Retinal Ganglion cells

Ganglion cells are the last stage of information processing in the retina, their axons
form the optic nerve leaving the eye. Retinal ganglion cells are easily classified in terms
of their transient response to stimuli : tonic and phasic (Gouras 1968, Gouras and
Zrenner 1981). Tonic cells give a sustained increase in firing to a sustained stimulus,
whereas phasic cells only respond to stimulus change. The tonic/phasic distinction can
be thought of as analogous to the dc/ac coupling of an electronic circuit.

Receptive fields of retinal ganglion cells

COLOR-OPPONENT DOUBLE OPPONEN
NTER-SURROUND Stk OF VENT

CE URROU COLOR-OPPONENT

A CENTER ONLY

BROAD BAND
BROAD BAND TONIC RED SURROUND DOUBLE OPPONENT

B D F
@) [
| TONIC

Figure 4.5. Some receptive field structures, from Regan (1989). A,C,B correspond to
ganglion cell types 11l and III respectively (Wiesel and Hubel 1966). Cells with double
opponent receptive fields (E,F) begin 1o exist at the level of the primary visual cortex.

The receptive field of a neuron is that region of the visual field in which a stimulus
can modify the neuron's firing rate. Wiesel and Hubel (1966) identified three distinct
ganglion cell groups : types I, II and IIL Type I cells were both spatially and spectrally

opponent, Type II cells were only spectrally opponent, Type III cells only spatially

opponent. These correspond to the groupings adopted by De Monasterio and Gouras

(1975) of 'colour opponent’, ‘non-concentric' and 'broad-band' respectively (see Figure
4.5: A.C,B). Retinal ganglion cell types I and III arise from a concentric groupings of

receptors (Figure 4.6), the cells in the centre operating in antagonism with those in the

surround (Kuffler 1953). The structure is often modelled as having a Difference of
Gaussian or DOG spatial sensitivity profile (Rodieck 1965).The antagonism in the
receptive field is useful since it nulls the response to uniform illumination giving high

contrast sensitivity over a huge dynamic range of operation. Gouras and Zrenner (1981)

found all phasic cells to be broad band, chromatic information being carried exclusively

by tonic cells.
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Figure 4.6. a) The figure (from Hubel and Wiesel 1966) shows retinal ganglion
recordings to central, annular, and diffuse field stimulation for an ON centre type cell.

b) The concentric receptive field structure has been modelled as a Difference of
Gaussian sensitivity profile (redrawn from Rodieck 1965).

M and P cells

> P cells M cells
roperty
no

€s .
Spectral selectivity {ower higher
Luminance contrast gain smaller larger
Receptive ﬁel.d size parvocellular r}:g:;)cellular
LGN projection target lower
Conduction velocity smaller l;;i::c
Cell size tonic c | o
Response to light steps linear (X°) 75% X, 25% Y
Linearity of spatial summation no yes_
Pattern vision at SCOtopic levels 1.2 0.15
Number of cells (in millions)

Figure 4.7. Summary of primate M and P cell properties (from Kaplan 1991).

M and P cells correspond to subsets of tonic and phasic cells which project from the
retina to the lateral geniculate nucleus (LGN). Kaplan (1991) provides a concise
summary of primate M and P cell properties (Figure 4.7). The M (magno-cellular) and P
(parvo-cellular) terms refer to the relative cell size in the LGN layers to which the
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ganglion cells project. M type cells tend to have thicker axons, and larger cell bodies
than P-type. For recording purposes, much retinal ganglion cell recording is made at the
level of the LGN where the distinction between cells is obvious. Studies of the retinal
ganglion cells at the level of the primate LGN (Lee and Martin 1989, Derrington and
Lennie 1984) indicate that P cells are more suited to high resolution, chromatic,
stationary stimuli. Whereas M cells are predominantly colour insensitive and respond
optimally to large, fast moving, stimuli of relatively low contrast. The M/ P functional
distinction has been more crudely demonstrated (Merigan 1987) by treatment of the
primate LGN with acrylamide and ibotenic acid, destroying the P and M cells
respectively. Destruction of P cells severely degraded perception of colour and fine
pattern, whereas destruction of M cells was found to compromise motion sensitivity. It
should be pointed out that the two systems are not mutually exclusive, P cells respond
preferentially to chromatic modulations but will also respond to achromatic stimuli
(Wiesel and Hubel 1966). Likewise, Schiller and Colby (1983) were unable to null the
response of M-cells to isoluminant flicker, a result they attributed this to the generally
higher sensitivity of such cells. A contributing factor could be a slightly uneven
weighting of cones in the cell's receptive fields.

[=a)
(=}

w
(=
T

Amplitude. impulses per second

Og— 0.32 0.64

Contrast

Figure 4.8. Average response Vvs. contrast for 28P (filled) cells and 8M cells (empty
circles) to grating stimuli drifting at 4Hz. (from Kaplan and Shapley 1 986). The P cell
response is linear with increased contrast. The M cell response curve begins to ﬂqtten
off at around 15% contrast, having a similar slope to that of the P cell at higher

contrast.

Kaplan and Shapely (1986), showed that M cells are 8-10 times more sensitive than

P cells (Figure 4.8). Specifically, at low contrast the M cells possess a much higher

contrast gain, that is increase in firing rate to increase in contrast. This increased
3

contrast gain could be directly related
and Enroth Cugell 1984) since M cell

to the area of the receptive field centre (Shapely
s are typically 4-9 times the area of P cells (De
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Monasterio and Gouras 1975). Lee and Martin (1989) , show that minimisation of

su.bjectlve flicker (in humans) corresponds to the minimisation of M cell response (in
pnmates) (F igure 4.9). They thus postulate that it is the M cell population which forms
the physiological basis of the perceptual luminous efficiency or V;, curve.

The larger receptive field sizes of M cells would imply that their spatial resolution is
poor with respect to P cells. However, due to the order of magnitude difference in
sensitivity, monkey M cells have shown similar spatial resolving power to P cells
regardless of retinal eccentricity (Blakemore and Vital-Durand 1986). In the human
retina however, histology indicates (Dacey and Petersen 1992; Dacey 1993) that the M
to P cell ratio is different, and therefore acuity may by limited by different factors.

At light levels below one troland, Purpura et al. (1988) showed that P cells ceased to
respond to patterned stimuli. P cells would therefore seem to have minimal rod input,
leaving M cells responsible for vision at low mesiopic and scotopic lighting conditions.
Figure 4.7 gives a summary of M and P cell properties.

Spatial Linearity

The DOG response profile model (Figure 4.6) of Rodieck (1965) is essentially

dependent on linearity of spatial summation, such linearity is however not observed in all

cell types. Enroth-Cugell and Robson (1966) examined the linearity of spatial
summation of cells in the cat retina. They found two main cell groupings which they
named X and Y. X type cells exhibited linear properties of spatial summation, that is, the
cell's response to a sinusoidal grating could always be nulled at some spatial phase. Also,
the firing of X cells was temporally modulated at the frequency of stimulation. The
response of Y type cells however could not be nulled by alterations in spatial phase, that
is they were spatially non-linear. Y type cell responses were found to be modulated at
twice the frequency of stimulation. The X, Y type classification scheme of Enroth-
Cugell and Robson (1966) has been extended to studies of the primate retina. Retinal
ganglion cells projecting to the parvo-cellular (P) layers of the LGN have been found to
be exclusively X like. Whereas 75% of M cells have been found to be of type X and
25% type Y (Blakemore and Vital Durand 1981; Derrington and Lennie 1984). There
is danger in extending classification schema across species, as pointed out by
Casagrande and Norton (1991): the cat is a nocturnal predatory carnivore, we are
diurnal omnivorous primates, in other words, there are good reasons for the existence of

different visual processing mechanisms in the cat and human.
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Temporal properties

Tonic cells hav.e a low pass temporal response characteristic, whereas phasic cells are
more bandpass (Figure 4.9). The high frequency cut-off for both tonic and phasic cells

is around 40Hz (Lee and Martin 1989). It is unclear however how much of this
bandwidth is exploited by the visual system.
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Figure 4.9. A comparison of monkey M and P cells to chromatic and achromatic
flicker with human psychophysical data. Note that in the case of chromatic flicker,
tonic cell sensitivity is not reflected in the psychophysical data. from Lee and Martin
(1989).
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At high temporal frequencies, phase differences between the signals from centre and
su.rround of the receptive field of chromatically opponent (hence tonic) ganglion cells
(Figure 4. 10), can cause an apparent switch from chromatic to luminance sensitivity
(Gouras and Zrenner 1979). Lee and Martin (1989) reject the proposition that P cells
become responsible for luminance detection at higher temporal frequencies since,

although the P cell is firing, nothing is perceivable (de Lange 1958, Wisowaty 1981) or
recordable with VEPs (Kulikowski et al. 1989).

Frequency doubling

Schiller and Colby (1989) reported an M cell response at twice the stimulation
frequency around isoluminant flicker conditions. Similarly Lee and Martin (1989)
observe this frequency doubling of M cell output to high contrast pattern stimulation,

and suggest that the phenomenon is due to a non-linear summation of long and medium
wave sensitive cone inputs.

Projections of retinal ganglion cells
Approximately 90% (80% P, 10% M) of retinal ganglion cells project to the lateral
geniculate nucleus (Perry et al. 1984; Rodieck 1988). The superior colliculus (Leventhal
et al. 1981, Stein and Meredith 1989) receives a nominal direct retinal input in the form
of W (large receptive fields and slow axonal conduction) and Y type cells.

4.2. The Lateral geniculate nucleus

The lateral geniculate nucleus is the main thalamic structure conveying information
from the retina to the striate cortex. The function of the LGN is still unclear. It is known
however that retinal input accounts for only 20% of the geniculate synapses (Schiller
1986; Casagrande and Norton 1991). Such anatomical evidence hints that the structure
is functionally more than a relay station for retinal information on its way to the visual

cortex.

4.2.1. Retinal inputs to the LGN

The primate LGN consists of six distinct layers separated by inter laminar zones
populated with smaller, sparser cells. The layers of the LGN are grouped according to
their relative component cell size: large or magno-cellular, small or parvo-cellular. The

cells in each layer of the LGN maintain distinct yet identical retinotopic maps of the

contra-lateral visual hemi-field. In the macaque, the inputs from each eye remain

segregated and represented on different layers (Hubel 1989).
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4.2.2. Cortical Visual Input

A tightly topographic pathway projects from the striate cortex back to the LGN, this
pathw%ly is thought to provide more input to the LGN than the retina (Koch 1987).
Likewise, in primates, connections from higher visual areas such as MT have been found
to project back to the inter laminar zones (Lin and Kaas 1977).

4.2.3. Non-cortical input

A number of deeper structures are likely to feed into the LGN. To date, projections
have been identified from the superior colliculus (Fitzpatrick et al. 1980) and brainstem
(Pasik et al. 1988). It is also reasonable to assume that other thalamic structures (such as

the Accessory Optic System (Casagrande and Norton 1991) play a large part in LGN
operation.

4.2.4. LGN Output

LGN output in primates is almost exclusively to layer 4 of the striate cortex. Parvo-
cellular axons project to layer 4Ca, magno-cellular to layer 4Cb (Hubel and Wiesel
1977). There is also evidence that the smaller cells have projections to layers 1 and 3 of
V1 (Casagrande and DeBruyn 1982). In the cat, although as yet not in the primate,
projections have been found from the LGN to higher cortical areas (Sherman 1985).
Rodman et al. (1989) show that the freezing of monkey V1 has little effect on the
function of higher cortical visual area MT, indicating that the primate physiology may
not be so different.

4.2.5. LGN Function

TO STRIATE
CORTEX

] rcul Casagrande and Norton 1991 ),
411 A proposed LGN circutt (from |

hi Ii:;(zgu}:fing the connections between LGN relay cells (R) , feedforward‘ interneurones

(I)g a;grd feedback cells in the reticular nucleus of the thalamus which in turn is

influenced by the activity of other relay cells (R)).
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The model

eodforumd :ndzzggzzi i:;’ibii:}clhst riljjf) defnonstrateé the neural circuitry of
Such circu _ . es which comprise the LGN (Figure 4.11).

01rcu1t.ry provides the basis for tuning of function as well as selective enhancement
or supPress1on of visual information (Sherman and Koch 1986). The LGN's regulato
or gating role is possibly at reflected at both a global and loc;al level Globalgl itri)sl
Fhought to be involved in regulating the input to the visual cortex de.pendent }c/;n the
importance of visual information, and the animal's state of arousal (Francesconi et al
1988). Locally, the strong retinotopic projection from cortex to LGN provide the basis.
f(.>r very .precise regulation of visual information. Sherman and Koch (1986) propose a
differential regulation of X and Y cells depending on the animals visual needs. Valera
and Singer (1987) showed that the responsiveness of LGN cells to a drifting grating
could be inhibited by the stimulation of the non dominant eye with another drifting
grating. This inhibition was most severe when the two gratings differed in orientation,

that is, when the images were in binocular rivalry. Removal of the visual cortex was
found to abolish such effects.
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Figure 4.12. Responses of cat retinal ganglion (a), LGN (b) and simple striate
cortical cells (c) to grating stimuli (20% contrast). In (a) and (b) the velocity of the

grating was 4Hz, in (c) it was 2Hz. from Maffei 1978.
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| Kap}an et al. (1987) measured the ‘transmission’ of the LGN by comparing the retinal
input, in the form of an extracellular postsynaptic or S-potential, with the LGN action
potential output to V1. The LGN was found to exhibit a reduced contrast gain to stimuli
with respect to its retinal ganglion input. This loss was especially prominent al low
spatial frequencies. This observation is reflected in the work of Maffei (1978) who

demonstrates increasing spatial tuning as one passes from the retina along the geniculo-
striate pathway (see Figure 4.12).

Temporally

It is has been observed (Cleland et al. 1971) that LGN cells exhibit more phasic
behaviour than their retinal ganglion inputs. This is consistent with the behaviour of a
unit that removes low level information, responding preferentially to changes in the
visual scene. Interestingly, Mastronarde (1988) demonstrated that some cat LGN cells
show a temporal lag in their response. This provides the striate cortex with phase shifted
visual information. The utility of such cells has yet to be demonstrated, yet they could
provide the basis of 'binding' (Milner 1974; Eckhorn et al. 1988), reinforcing feedback
from higher visual areas to V1.

«  The LGN projects almost exclusively to the striate cortex in primates and therefore
deals with visual information. The dominant LGN input is however not from the
retina but from the visual cortex. Such a structure suggests that the LGN has a
modulatory or control role, probably concerned with early mechanisms of visual
attention and possibly underlying the management of neural image processing.
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4.3. \Visual Cortex

T.he v1s.ual cortc?x is that region of cortex which deals exclusively with the processing
of visual information. This cortical region has been found to consist of a number of
areas, each area maintaining an individual representation of the contra-lateral half visual
field. The main stream of visual information arrives from the LGN at the primary visual
cortex or area V1 (figure 4.13a). Area V1 is located on the occipital pole of the primate
brain, in the human, it extends down the calcarine fissure (Figure 4.14). The primary
visual cortex is bounded by area V2, which in turn borders on area V3 , and so on as the
visual cortex extends into the parietal and temporal lobes (figure 4.13b).

A number of visual areas can be distinguished using anatomical clues from mylo-and
cyto-archictectural structure of the cortex. For example, V1 has clearly layered
structure (figure 4.14), whereas the motion sensitive area (MT or V5) lies in the lateral
occipital gyri and can be distinguished by its heavily mylenated projections. Often
callosal connections, which link hemispheric representations of the vertical meridian, are
good indicators of area boundaries (Zeki 1977). Clarke and Miklossy (1990) attempt to
reconcile the human cortical architecture with the visual areas identified in the macaque
(Figure 4.15). Figure 4.15(a) shows how the labelling of human visual areas is largely
based on callosal connectivity patterns and tentative analogies with the macaque.

The following sections outline the functional properties of the dominant visual areas

in the primate cortex.

Lateral
geniculate
nucleus

Primary
visual cortex (V1)

Figure 4.13. A schematic of the macaque visual cortex showing the concentric

arrangement of visual areas. In the human, V1 is skewed more medially extending from

the occipital poles down the calcarine fissure. redrawn from Davidoff and Concar

(1993).
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Figure 4.14. Areas VI1-V5 in the macaque visual cortex. The arrow in a) shows the '
change in cytoarchitecture at the VI- V2 boundary. from Zeki (1993). '
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20 mm

18717

Figure 4.16. Flat reconstruction a) and 3D view b) of left occipital lobe, with
callosal connections (dots) and putative visual areas (redrawn from Clarke and
Miklossy 1990). Note the tapering away of visual areas as one moves more anteriorly.
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Organisation
4.3.1. Primary visual cortex (V1)
The visual cortex receives its main input from the lateral geniculate nucleus.
LGN fibres project to one of the several distinct layers in V1. Area V1 is commonly
thought to perform some basic analysis of the retinal image and then dispatch this

information to higher visual areas (Zeki 1993). Superficial examination of V1 shows it
to consist of a number of layers..
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Figure 4.17. Schematic indicating the main input and output paths to the layers of
V1. (from Hubel 1987).

The Layers of V1
Figure 4.17 shows classification of V1 layers according to cell structure and
connectivity. Layer 4C receives input from the LGN, and is therefore the layer with
s. Axons projecting from the magno-cellular layers of

most similar functional propertie
the LGN terminate in 4Ca., those from the parvo-cellular layers in 4Cp. Tootell (1988)
used chemical uptake techniques to show that low contrast visual stimuli produced

activity in layer 4Ca, whereas chromatic stimulation evoked activity in layer 4CB. The

strict eye preference shown in the layered LGN is maintained in layer 4C. Hubel and
Wiesel (1977) show ‘occular dominance columns' (about 0.5mm in width) running
rtical surface. The cells in these columns respond preferentially to

perpendicular to the co ' : entially t
4.18). Occular domunance 1s maintained in

input from either the left of right eye (Figure

ers of V1 although not as strongly as in 4C where strictly monocular cells can be

all lay
found.
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Layer 4
. 4}(’26 t : lsends no fibres out of the cortex, but projects vertically: 4Ca to layer 4B
ayers 2 and 3. Movement away from layer 4C shows more sophisticated

receptive field structures beginning to develop. Hubel and Wiesel (1977) divided the

cells which they recorded from into two main classes . simple, found mostly in the

region of layer 4, and complex, dominating the other layers. Both groups of cells
sh.owed a change in firing rate dependent on the orientation of a stimulus bar. Moving a
micro-electrode perpendicular to both the cortical surface and to the occular dominance
columns, Hubel and Wiesel (1977) found this cell orientation preference to be columnar

in organisation. Within the movement of approximately 0.5mm, a full cycle of cell
orientation preferences were recorded (Figure 4.18).

Figure 4.18. The schematic shows the division of VI into orientation and ocular
dominance columns. from Hubel (1987).

Figure 4.19. Hubel (1987) postulates how a simple cell could be created from

retinal ganglion cell inputs.
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Figure 4.19 shows how the behaviour of a simple cell could be accounted for in
terms of a combination of concentric retinal ganglion cell responses. In turn, complex
cells were thought to receive input from combinations of simple cells. A s,imple cell
responded well to a bar at a particular fixed position and orientation, whereas a complex
cell was still orientation specific yet less dependent on the position of the bar. Some

complex cells - termed hypercomplex- were also found to show respond preferentially to

factors such as stimulus bar length, and the direction of bar movement. Not

surprisingly, complex cells have been found to exhibit non-linear spatial summation
properties (De Valois et al. 1982).

Chromatic properties of V1
By staining V1 preparations with cyto-chrome oxidase, Wong-Riley (1979) revealed
‘blob' like patches in layers 2 and 3. The pathway to the blobs is mediated by the P
layers of the LGN which project to layers 2 and 3 via 4CP. Livingstone and Hubel
(1984) revealed that these regions contained many cells with wavelength opponent
receptive fields, low spatial resolution and poor or absent orientation tuning. Within the

blobs 50% of the neurons were shown to have wavelength double opponent receptive
fields (Figure 4.5, E,F). Double opponent cells provide tuning for chromatic contrast,
being most sensitive to stimuli consisting of wavelength not luminance contours, e.g. a
green spot on a red background. Thorell et al. (1983) recorded from a population
sample of V1 cells in the macaque and found that the majority in some way responsive
to purely chromatically modulated stimuli as well as luminance modulated stimuli. That
the results differ from those of Hubel and Livingstone is due mainly to disparate
classification systems. For example, Thorell's complex cells were found to fire in
response to isoluminant bars irrespective of the spectral content of the bars and the
surround. The cells were thus colour sensitive but not colour selective, differing from
the double opponent cells reported by Hubel and Livingstone.
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The study of
y of Thorell et al. (1985) concluded that most V1 neurons respond in a

spatiall imi :
patially bandlimited fashion to both chromatic and luminance stimuli. A summation of

such activit i
ivity was (see Figure 4.20) thought to provide the basis of the psychophysical
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Figure 4.21. The magno and parvo streams project via V1 to higher visual areas.
from Livingstone and Hubel (1987).

Figure 4.21 shows the connections from the LGN to V1 and then on to higher
visual areas as postulated by Hubel and Livingstone (1989). Note the projections of
layers 5 and 6 back to deeper structures such as the superior colliculus and thalamus.
The efferent fibres from layers 2,3 and 4B project mainly to other cortical visual areas

which are examined below.

4.3.2. V2

In the primate

1969), and contains functionally and anatomically d
oxidase reveals anatomical division into three regions: thin-stripes, thick

visual cortex, V2 surrounds V1. It is retinotopically organised (Zeki
istinct cell populations. Staining with

cytochrome
stripes. The thin stripes receive inputs from the blobs in layers 2 and 3

stripes and inter-
ation (Livingstone and Hubel

of V1 and deal with the processing of chromatic inform
1984). The inter-stripes receive projections from the inter-blobs of V1 and are thus more

form and orientation specific (Livingstone and Hubel 1984). The thick stripes of V2
receive inputs from layer 4B of V1 and project to V3 and V5 (Zeki 1993). The thin

stripes and inter-stripes in turn project to area V4 (Zeki and Shipp 1989).

The cells within the thin stripes have receptive fields with similar wavelength and
spot size specificity to those of the V1 blobs. However, the receptive fields of such cells
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a.r ° .larger than those in V1 (Zeki and Ship 1989). That is, V2 cells seem to behave in a
similar way to the complex cells in V1, extending the receptive field size but maintaining
stimulus specificity. V2 receives large back-projections from V4 and V5. Such
projections lead Shipp and Zeki (1989) to propose that V2 is a site of bin ding. That is
the combination of the information from, the functionally tuned but spatially poorly

specific, higher visual areas and, the functionally broad yet topographically well defined,
V1.

4.3.3. V3

V3 receives projections from the inter-stripes of V2 and the interblobs of V1. The
area contains predominantly orientation selective cells which seem to be largely
wavelength unselective (Zeki 1978). Many of the cells in this area exhibit strong
disparity tuning (Zeki 1978, Felleman and Van Essen 1987). V3 is thought to play a
critical role in depth/form perception, and due to its relation to the M-pathway, Zeki
(1993) suggests that the area is concerned with the processing of dynamic form.

4.3.4. V4

V4 maintains connections with the thin-stripes and inter-stripes of V2 and is thought
to be an extension of the P- pathway responsible for colour discrimination. Zeki (1983)
contends that V4 provides the first site of colour constancy, that is, cells are able to
make discriminations on the colour of a surface independent of the illuminant (see
however Dow 1993 for discussion). Desimone et al. (1985), found that cells in V4 were
just as spatially selective (to bar length, width, motion, orientation etc.) as those in V1,
although the receptive field sizes were significantly greater (at 1° eccentricity 16 times
larger, at 3° about 36 times larger). That is, V4 cells were found to behave like 'big
brothers' of the complex cells in V1. Desimone et al. (1985) also report cells with large
suppressive receptive fields, extending by as much as 16° into the ipsilateral visual field.
The cell's response to a particular wavelength of light could be almost totally abolished
by an identical stimulus within the suppressive field. Similar form specific properties
were noted, that is, the response to a grating could be diminished by increasing its size.
Guld et al. (1989) found cells in V4 which they named 'filter cells'. These cells had
homogenous receptive fields over a quadrant of the visual field, and at low brightness
levels were able to summate spectral energy over a particular bandwidth. Such results
es of Land's retinex algorithm (Land 1974) which attempts to
describe colour constancy. Desimone et al. (1985) suggest that such sensitivity. to
changes in colour and form from the background may help in figure/ground separation.

Attentionally selective cells have been reported in V4 (Moran and Desimone 1985).
und to respond to a stimulus only if the stimulus was relevant to the

hint at neural substrat

Such cells were fo
monkey's designated task.
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4.3.5. V5

V5 receives its main input from V1 and V2. V5 neurons are thought to be especially

highly tufled to moving stimuli. It has been estimated that 90% of V5 cells are selective
to a specific direction of motion (Zeki 1974).

4.3.6. Other cortical areas

Lesions of the inferior temporal cortex cause deficits in visual discrimination but not
visuo-spatial tasks (Mishkin et al. 1983). Robinson et al. (1978) found neurons highly
sensitive to stimulus shape or colour. This region would seem to receive a dominant
proportion of its input from V4, and is postulated (Desimone et al. 1985) to be
responsible for shape/ surface analysis.

The parietal lobe receives a large input from V3. The region is thought to contain an
internal topographic map of the surroundings. Lesions in this area cause compromised
reaching ability and positional judgement (Mishkin et al. 1983).

4.4. Other sub-cortical structures

There exist at least 20 subcortical structures which form reciprocal connections to the
visual cortex, little however is known about what these structures contribute to visual
processing. These structures are the evolutionary substrate of vision, it is therefore
reasonable to assume that they contain the key to its understanding. This section shall
deal with a subset of the more studied of these structures.

4.4.1. The superior colliculus

The superior colliculus is a large protuberance on the midbrain consisting of a
number of distinct cellular laminae. Although at least seven laminae have been identified,
they are most conveniently grouped as being either superficial (layers I-III) or deep
(layers IV-VII). The connections between the superficial and deep layers are sparse.
Experiments (Ograsawara et al. 1984) show that compromising the superficial layers has
little effect on the function of deeper cells. Consequently, the superficial and deep layers

are often treated as functionally distinct.

Inputs . .
The superficial layers receive more direct and abundant visual input than the

deeper layers. In the cat, direct retinal input in the form of predominantly W and some
Y type cells (Hoffman 1973). There is also a large indirect Y type input via cortical

areas 17 and 18 (Toyama et al. 1969). In general, superficial cells are retinotopically
e receptive fields, are binocular, sensitive to slow

(Stein and Meredith 1989). Freezing of the
hilates orientation preference, binocularity
the superficial cell properties derive from

mapped, possess relatively larg
movement and are directionally selective
striate cortex (Ograsawara et al. 1984) anni
and directional selectivity indicating many of

the cortical input.
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.Like t.he cells in the superficial layers, the deeper layer cells exhibit systematic
retinotopic correspondence. The receptive fields of these cells are however larger and
the corresponding map therefore coarser (Meredith and Stein 1988). The deep layer
cells receive direct although sparse retinal input from Y type ganglion cells (Berson and
McIlw'ain 1982). Much of the activity in the deeper laminae seems to arise from indirect
visual input , perhaps from extra-striate areas. Experiments by Ograsawara et al. (1986)
revealed that in the cat, cooling of the cortical visual area located in the posterior supra-

sylvian fissure (similar to monkey V5) had a profound effect on the performance of
some deep layer cells.

Outputs of the superior colliculus

Most efferent fibres of the superior colliculus emerge from deeper layers and seem to
be linked to the motor signals that affect the movement of eyes and head towards a
stimulus (Harris 1980). It has been observed (Schiller and Stryker 1972) , that having
assessed a deeper cell's receptive field, direct electrical stimulation of this area results in
an eye movement to this area of the visual scene. Besides such retinotopically guided
properties, cells have been found which are 'spatiotopic' (Mays and Sparks 1980). That
is, even if the eye is artificially displaced prior to stimulation, the saccade reaches the
correct area of the visual scene. Flash evoked response studies in man (Harding and
Wright 1986) have suggested that, besides the geniculo-cortical route, a tectal pathway
also mediates the flow of visual (M type) information from retina to visual cortex.

Function

The superior colliculus is thought to play a large part in guiding eye movements and
visual attention. Unilateral ablation of the superior colliculus causes severe contralateral
hemifield neglect (Sprague and Meikle 1965). The colliculi, connected via the
intertectal commissure, seem to have mutually inhibitory effect on one another. Studies
by Sprague (1966) on the cat found that unilateral ablation of visual cortex, which
results in contralateral cortical blindness, could be largely compensated for by removal

of the ipsilateral superior colliculus.
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Chapter 5.

Whole system function and architecture

The heading of this chapter derives from figure 1.1, it outlines what can be inferred
about human visual processing by the use of external objective (e.g. PET, EEG) and
subjective (e.g. psychophysical) measures of performance.

Firstly, the properties of chromatic and luminance mechanisms inferred from

behavioural studies are discussed and visual stimuli designed to isolate these mechanisms
outlined.

Secondly, Visually Evoked Potential (VEP) measures are discussed which seem to
reflect the activity of neural elements of similar function to those identified in the
primate. The section goes on to examine VEPs evoked by stimuli specific to the
psychophysical chromatic and luminance mechanisms and suggests the cortical areas
involved.

Finally, the evidence for the existence of a cortical area specialised for colour vision
is examined. The existence of such an area is confirmed by the exclusive loss of colour
vision experienced by brain damaged patients and PET functional imaging studies of
healthy subjects.

5.1. Psychophysics of colour vision

It is helpful to adopt the psychophysical concept that the visual system is devised of
of two independent pathways : a luminance and a chromatic pathway (Kelly 1974,
Mullen 1985; Banks and Allen 1993).

Typically, stimuli that vary only in intensity and not wavelength are chosen to excite
preferentially the luminance pathway, whereas stimuli which vary in wavelength but not
intensity (termed ‘isoluminant’) are used to excite the chromatic pathway. One such
stimulus, which is also highly spatial frequency specific, is derived from the
superposition of two sinusoidal gratings. Red and green (or blue and yellow) bars
sinusoidally modulated in intensity at a specific spatial frequency are superimposed by
some optical apparatus. Ideally the peak amplitude red and green stimulus wavelengths

en so as to overlie the LWS and MWS cone action spectra (Mullen 1985).
s a yellow-black grating such

are chos

Adding the gratings in same spatial phase produce
that both LWS and MWS cones produce the same output for a particular part of the
stimulus. Adding in anti-phase should ideally produce a red-green grating where each
stimulus point preferentially stimulates either LWS or MWS cones. In the first case, the

resultant grating is modulated purely in luminance, in the second purely in wavelength.

In both cases the screen has the same average luminance.
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Mull ) ‘
ullen (1985) used two gratings superimposed in spatial anti-phase. R and G

werte d:,ﬁned as the DC luminance levels of the two sinusoids both at the same fixed
contrast.

(%)

Green Red

R+G

25 . /A‘\ Red
/ \

50
VAVAVAVE S

100

{Contrast = 1}

Figure 5.1. Colour contrast is used to alter the balance of the red and green
sinusoids within the stimulus whilst keeping the mean screen luminance constant. from
Mullen (1985).

Whilst keeping the mean luminance (R+G) constant, the relative intensity of the two
sinusoids (R /(R+G)) was varied, Mullen termed this quantity colour contrast. By
altering colour contrast (see Figure 5.1), the balance of luminance to chromatic
modulation in the stimulus is changed. At 100% and 0% the stimulus appears either
red-black or green-black and is dominated by luminance modulation. At 50% the
stimulus is red-green, without luminance but with strong chromatic contour.

Using these well defined stimuli, Mullen (1985) set out to isolate the spatial
characteristics of the chromatic and luminance pathways. Contrast sensitivity curves for
gratings of various spatial frequencies were produced as the colour contrast was varied

(Figure 5.2a). The sensitivity at isoluminance was taken to be due to a chromatic

mechanism: at 0 and 100% due to a luminance mechanism. The chromatic mechanism

was found to be predominantly spatially low-pass, beginning to fall off at around lepd.
The luminance mechanism was found to have a bandpass characteristic, peaking at

around 0.8-4cpd (Figure 5. 2b).

The temporal characteristics of t ted
Wisowaty (1981) and verified by an alternative approach (using impulse response

functions) of Burr and Morroné (1993). The results (Figure 5. 3) show a low pass

chromatic mechanism thresholding at around 16-20Hz and a bandpass luminance
nd thresholding at around 30-40Hz.

he two pathways were reported in experiments by

mechanism, peaking at around 8Hz, a
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Figure 5.2. a) At each spatial frequency (represented by different symbols) , Mullen
(1985) varied colour contrast, and measured contrast sensitivity. Contrast sensitivities
at 0 and 100% colour contrast were attributed to a luminance mechanism. The largest
deviation in contrast sensitivity occurred at around isoluminance, and was attributed to
the operation of a chromatic mechanism. ‘ '

In b) Plotting the resulls obtained at various spatial frequencies reveals the
chromatic mechanism to be spatially low-pass and the luminance mechanism to be

spatially band-pass.
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Figure 5.3. Contrast sensitivity for detection of chromatic (open circles) and

luminance (filled circles) gratings as counterphasing frequency is varied. from Burr
and Morrone (1993).

5.2. Aside : Chromatic aberration
All experiments involving colour vision are complicated by the fact that different
wavelengths of light are refracted by the eye by different amounts. The effect is known
as chromatic aberration. Typically, red and green light exhibit a chromatic difference in
focus, or longitudinal chromatic aberration, of 0.5D (Figure 5.4). Chromatic difference
in magnification of the sinusoids, or transverse chromatic aberration can also have
significant experimental consequence (Faubert et al. 1994). At low spatial frequencies
(<lcpd) , the effects of chromatic aberration are relatively benign (Green et al. 1980;
Flitcroft 1989). However, at all spatial frequencies, chromatic aberration will result in
the introduction of some luminance contour into a physically isoluminant grating.
The effects of chromatic aberration can generally be eliminated by good
experimental design. For example, Regan (1973) used separate monitors to create each
of the red and green gratings. Simply viewing the monitors at different distances was

sufficient to largely null the effects of chromatic aberration.
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5.3. VEP data

The scalp VEP is a measure of coherent activity of large cell populations. This
section begins by showing how low level ganglion cell projections to the visual cortex
can be picked up in the VEP. Refining the stimulus, using gratings rather than blank field
stimulation, psychophysical correlates begin to appear. The progression is made from
achromatic to chromatic grating stimuli where the results of VEP experiments with
similar paradigms to those of Mullen's are examined. The section concludes with a brief
summary which outlines the consensus opinion concerning the origin of the VEP
correlates to the chromatic and achromatic mechanisms.

5.3.1. Uniform field stimulation

Regan (1970) showed that the amplitude of the second harmonic of the human VEP
to monochromatic flicker corresponded well to the psychophysical human spectral
sensitivity or Vj curve (Figure 5. 5a). Based on results of Lee and Martin (1989) one

would expect the origin of such response to be a projection of the magno-cellular

pathway.
b
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Figure 5.5. a) The correlation between the relative luminous efficiency curves
assessed with psychophysical (dots) and VEP (crosses) measures is glear. Jfrom Regan
1 this case, reciprocal test flash luminance to produce

. b) VEP sensitivity (i ’
4(11.? Z IOZNI{PI component) correlates well with psychophysical data thought to relate to

colour opponent mechanisms. from Zrenner (1983).
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Figure 5.6. VEPs to sinusoidal grating onset and reversal (positive up). Note N1(70-
100ms) -P1(90-120ms), and a later P2 (around 200ms).From Plant et al. (1983).
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Figure 5.7. VEPs generated in response to sinusoidal grating onset for various
colour contrasts at 1 and 4cpd. At 4cpd note the distinct change in waveform
morphology: the 120-140ms component changes from predominantly positive to
negative as isoluminance is approached. At Icpd, however, rather than an abrupt
polarity reversal, a consistent phase shift effect at isoluminance is apparent. (from
Murray et al. (1987)).
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Figure 5.8. A, B and C show chromatic (solid) and luminance VEP amplitude in
response to grating onset stimulation at various temporal frequencies. Note that the
chromatic data is more readily fit with a single regression line, whereas the luminance
data seems best described by the overlap of two functional mechanisms. D shows the
high correlation between temporal frequency vs. contrast sensitivity curves of
extrapolated VEP thresholds and psychophysical data. From Fiorentini et al. (1991).
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Zrefmer (1983) fo'und VEP responses (in terms of spectral sensitivity) correlated
well with psychophysical data and invasive recording at the level of parvo-cellular
ganglion cells (Figure 5.5b).

In order to isolate higher functional elements however, more complex stimuli are
required.

5.3.2. Pattern stimulation

Much early work on the pattern VEP involved the use of high contrast checkerboard
patterns. Such patterns elicit large responses with little intra-individual variation. They
are therefore clinically useful in the identification of diseases which affect the visual
pathway (Halliday et al. 1973, Regan 1989). Although evocative, the checkerboard
stimulus is poorly spatial frequency and orientation specific. Conversely, although
clinically little used, sinusoidal gratings provide stimuli with narrow band spatial
frequency tuning. VEP results using sinusoidal grating stimuli are often directly
comparable to psychophysically obtained data.

There are two standard modes of patterned stimulus presentation: onset and reversal.
'Onset' meaning that the pattern evolves from a background of the same average
luminance. 'Reversal' implying that the checkerboard or grating pattern shifts in spatial
phase by 180°. Pattern onset and reversal paradigms of presentation have been found to
preferentially stimulate the tonic and phasic systems respectively (Kulikowski 1979).

Grating onset stimulation

VEP:s to the onset of sinusoidal gratings (Plant et al. 1983; Kulikowski and Leisman
1982; Fiorentini et al. 1991) consist of two major peaks N1 (70-100ms) and P1(90-
120ms). In some subjects a later N2-P2 component is visible at around 200ms.
Component latency has been found to be highly dependent on stimulus contrast and
spatial frequency (Parker and Salzen 1977 Plant et al. 1983). The underlying
mechanisms which give rise to the pattern onset VEP are unclear. At low spatial
frequencies, Kulikowski (1989) found the overall response waveform changed little
whether the stimulus was onset or reversing. Kulikowski (1989) attributed the response
to the projection of magno-cellular pathway, since any tonic components would be
presumably degraded by the reversal paradigm. However, at all spatial frequencies
tested, chromatically modulated stimuli produced differing responses to onset and
reversal paradigms. The results of Kulikowski (1989) seem to indicate that low spatial
1cpd) elicit little response from the parvo-cellular system unless

frequency gratings (<=

they are chromatically modulated. | |
Plant et al. (1983) report the increasing prominence of the N1 component as spatial

frequency was increased. This prominent negativity at high spatial fre.quency (see al'so
Drasdo 1969; Russel 1991) could be due to some fine pattern mechanism, perhaps with
e. Kulikowski and Leisman (1983) found the appearance of the
hophysical threshold for grating detection.
omponent was shown to diminish in

a parvo-cellular substrat
P2 component to correlate with psyc

Likewise, at higher spatial frequencies, this later ¢
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the reversal paradigm (Plant et al. 1983). The P2 component therefore might also

emanate from a predominantly tonic or parvo-cellular driven source.

C . .
onversely, Parker and Salzen (1977) used reaction time measures in conjunction

with VEPs, and found no evidence for exclusive activation of either phasic or a tonic

mechanism. Similarly, Russel (1991) attributes the N1-P1 complex to activity of two
overlapping contrast sensitive mechanisms.

Chromatic pattern onset stimulation

Murray et al. (1987) used sinusoidal grating onset of a similar stimulus to that of
Mullen (1985). As the colour contrast of a grating of around 2-6cpd was altered, they
reported that the 120-140ms response component underwent a "distinct change from
being predominantly negative around the isoluminant point to positive going either
side of this". Murray notes that the differences in chromatic/achromatic response
morphology to be much less significant at low spatial frequencies, not correlating with
Mullen's psychophysical chromatic and luminance contrast sensitivity functions.
Fiorentini et al. (1991) reproduced the experiment of Murray using 1cpd plaid patterns.
A VEP with positivity at 92ms and negativity at 120ms was obtained. The polarity of
the responses contrasts to the N1-P1 complex found in other studies. The early
component was attributed to activity of a luminance mechanism, the later component to
a chromatic mechanism.

Chromatic pattern reversal stimulation

Fiorentini et al. (1991) used steady state stimulation with counterphasing plaid
patterns, the amplitude of the 2nd harmonic VEP component was measured.
Extrapolation of the response back to threshold corresponded well to the
psychophysically observed temporal frequency characteristics of the chromatic and
luminance mechanisms (Figure 5.8). It was also noted that the curve for VEP amplitude
against grating contrast was smooth for chromatic stimuli yet seemed to consist of two

branches for luminance stimuli. The results lead the group to conclude that a single,
m mediates the chromatic response whereas the

possibly parvo-cellular, mechanis

luminance response might consist of both parvo- and magno-cellular mechanisms. Such

a conclusion is well supported by single cell studies (see retinal ganglion section).
Summa;

The interpretation of results is - -
such experiments. The consensus (Murray et al. 1985; Kulikowski 1989) is that the

neural origin of the chromatic responses is the activity of opponent cells stemming from
the tonic pathway along the V1/V2 border. The luminance type res'p?nses are thought to
arise from activity in both tonic and phasic pathways (Fiorentm{ ef al. 1991) a.ls'o
projecting to V1 and V2. Single cell studies by Thorell et’al. (1985) indicate that cell.s fn
V1 alone could be responsible for the human psychophysical -cu.rves. If the neura{ origin
of both achromatic and chromatic mechanisms is S0 similar, the -very dlffer'ent
hromatic responses is hard to explain, yet possibly
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reflects the relative time courses of two streams of information. The involvement of
higher visual areas in the response was ruled out in the monkey by Kulikowski and
Carden (1989). They showed that the bilateral ablation of V4 resulted in no significant
change in the scalp recorded evoked response to chromatic or achromatic grating onset.
However, as the authors point out the VEP in the monkey has a different morphology to
that in the human. Also, a large number of V1 neurons are bound to be involved in any
central visual field stimulus. This portion of V1, which is predominantly radial, is likely
to produce activity which dominates electrical potential measurements made on the

scalp. It is not surprising therefore that the activity of the more functionally specific,
hence smaller, visual areas is not evident on the VEP.
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5.4. Evidence for a specific cortical colour area

Louis Verrey in 1888 was the first to report a patient suffering from cerebral hemi-
achromatopsia. Achromatopsia has since been defined as "an acquired disorder of
colour perception involving all or part of the visual field, caused by focal damage to
the visual association cortex or subadjacent white matter” (Damasio 1985).
Furthermore, "Patients with achromatopsia can have intact visual acuity, spatial
contrast sensitivity and stereo acuity in the colourless field" Rizzo and Damasio (1989).
The condition is often accompanied by scotoma located in the upper quadrant of the
same hemifield. Lenz (1921) noted that the condition of achromatopsia correlated with
lesions around the area of the fusiform gyrus. Specifically, the upper visual field
scotomas ,which suggest proximity to V1, led Zeki (1991) with the aid of PET scans,
to assert that human V4 is to be found on the Tower limb of the fusiform gyrus.

Similarly, the condition of akinetopsia has been reported (Hess et al. 1989).
Patients suffering from this condition lose motion perception and see the world as a
series of still-frames. This would appear to indicate damage to an area concerned
primarily with motion such as human V5.

The existence of such specific functional deficits coexisting with otherwise
normal vision puts a strong case for functional localization in human visual processing.
Interestingly, patients with lesions in V1, although devoid of perception within the
scotoma, are often unconsciously aware of colours and motion. The phenomenon is
known as 'blindsight'.

Functional imaging studies on healthy subjects using PET scans have revealed similar
specialised cortical areas. Lueck et al. (1989) showed that a subject viewing a Mondrian
showed an increase in activity around the lingual and fusiform gyrus, a possible site of
human V4. The same subject, viewing a pattern consisting of moving random dots,
showed cortical activation in a distinct area nominated as 'human V5'. In both cases, the
areas V1 and possibly V2 were shown to be active. Unfortunately, present day PET
scans have poor temporal and spatial resolution (figure 1.5), and it is therefore

impossible to identify the sequence of activation of , or exact location of, these areas.
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Figure 5.9. PET scans reveal distinct regions of increased cerebral blood flow

when stimulated with a) a coloured Mondrian pattern and b) a pattern of moving dots.
orrespond well with postulated sites of human V4 in

s that in both cases areas V1 and V2 were active,
nformation are processed at these sites. from

These regions of activity seem 10 ¢

(a) and V5 in (b). c) Demonstrate
implying that both motion and colour i

Zeki (1990).
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Chapter 6.

The human visual evoked magnetic response to
chromatic and achromatic gratings

6.1. Introduction

The experiments described in this section were designed to investigate the
neurophysiological basis of the chromatic and luminance processing mechanisms that
have been inferred from psychophysical studies (Kelly 1974; Mullen 1985).

There is a general consensus that luminance information is carried by both magno-
and parvo-cellular streams, whereas chromatic information is carried exclusively by the
parvo-cellular stream (Derrington and Lennie 1984; Merigan 1987). Both magno-
cellular and parvo-cellular streams project to layer 4 of V1 and then on to extra-striate
visual areas (Zeki 1973; Livingstone and Hubel 1984). From a study of a sample of
macaque V1 complex cells, Thorell et al. (1984) propose that the human psychophysical
chromatic and luminance contrast sensitivity functions reflect properties of V1 neurons.
In man, scalp recorded evoked potentials to gratings modulated in chromaticity and
Juminance are markedly different. Such differences may be accounted for by activity of
chromatically opponent cells situated along the V1/V2 boundary (Carden et al. 1985,
Murray et al. 1987).

Experiments using PET (Lueck et al. 1989; Zeki et al. 1991) provide evidence for a
cortical area, centred around lingual and fusiform gyri, that is responsive to
chromatically modulated stimuli, and may be the human equivalent of monkey area V4.
Furthermore, patients suffering from the condition of achromatopsia tend to have
lesions around this area (Lenz 1921; Rizzo and Damasio 1989).

It is clear from PET and lesion studies that there is a cortical area in humans

responsive to colour; why do electrophysiological studies, using chromatically

modulated gratings, not indicate activity beyond the striate cortex ?

In an attempt to address these problems evoked magnetic responses to the onset ofa
li. whose parameters were varied to preferentially activate either

range of grating stimu .
rded. The results show a change in the

the chromatic or luminance pathways, were reco
balance of activity between two distinct cortical areas.

6.2. Methods

6.2.1. Rationale for stimulus | | |
Mullen (1985) defines the colour contrast of two mono-chromatic gratings added in

spatial anti-phase as R/(R+G), where R and G are the mean luminance levels of a
Pd/bl k and a green/black grating of some fixed contrast. As the colour contrast is
red/blac
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znse;’/:zzl:ilra:zz;:;m:::zl:l tlo c'hromatic informatior.l within th.e .stimulus changes.
colour contrast i ConSi;tS o u u's 18 mo'dulated purely }n chron.latlc.lty whéreas at 0%

. primarily luminance modulation. Retinal isoluminance does
not necessarily occur at a colour contrast of 50% (Mullen 1985, Flitroft 1989) therefore
rather than define a single stimulus to be subjectively isoluminant, it is prudent to
examine a range of stimuli of varying colour contrast. Over this range there will not
necessarily be any stimulus which is isoluminant, however any change in the balance of
activity between chromatic and luminance mechanisms, should be evident. Human
behavioural data suggests that luminance contrast sensitivity is independent of the
wavelength of monochromatic grating stimuli used (Van Nes and Bowman 1967; Mullen
1985) and therefore it should be sufficient to examine colour contrasts ranging up to
isoluminance, in this experiment however colour contrast was varied from 0% (red-
black) to 70% (more green than red) in 10% steps.

The psychophysical sensitivity of the chromatic mechanism (Mullen 1985) is spatially
low-pass beginning to fall off at around 1cpd, whereas that for the luminance mechanism
is bandpass peaking at around 0.8-4 cpd. Since it is required to compare the amplitude
of the evoked response contribution from each mechanism, it makes sense to choose a
spatial frequency where the two mechanisms have comparable sensitivity. In this
experiment gratings of 1cpd were used.

In order to minimise luminance artefact due to retinal cone pigment variation (Wright
1946) and inhomogeneity of CRT display, the stimulus was presented within a two
degree radius hemi-field window (Figure 6.1).

Pattern onset presentation is thought to favour the tonic P cell population, whereas
pattern reversal is thought to excite preferentially M cells (Kulikowski et al. 1979).
Since P cells account for 80% of retinal ganglion cells and underlie both the luminance
and chromatic processing pathways, in this experiment the pattern onset paradigm was

used.
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6.2.2, Stimulus

2 degrees

- Fixation spot

x:
¥ X 22,
r?)
X H
AXRIAXXXD + oo 3
SXXRRXY - H
v xX:::

grating stimulus

stimulus window

mean hue R-G grating

«——— 950ms — — 550ms ———

recording window .
recording response

—812ms ———

Figure 6.1. The stimulus was a Icpd grating windowed by a 2 ‘radius hemi-circle
and was in the subject’s left visual field along the horizontal meridian. The grating
appears from a background of the same mean luminance and hue within a square
temporal envelope. The mean screen luminance (R+G) was kept constant at 1lcd/m?.
The grating was presented for 550ms, and the inter-stimulus interval was 1.5 seconds.
The first 512ms of evoked response to grating onset was recorded. The stimulus was
generated using a Cambridge Research System VSG 2/2 graphics board connected to a
monitor running at 100Hz with phosphors of CIE chromaticity coordinates: x: 0.64,

y:0.33.
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6.2.3. Magnetic measurements

Figure 6.2. The position of the 19 channel detector array with respect to the subjects
head. The array is approximately symmetric about the nasion-inion plane, and so as to
lie approximately above the right occiput, displaced laterally by 10

For each colour contrast, the subject was instructed to fixate a spot on the centre of
the hemi-field edge (figure 6.1) for the duration of fifty stimulus presentations. Evoked
magnetic responses to stimulus onset were recorded using a 19 channel array of 2nd-
order axial gradiometers of Scm baseline (Matlashov et al. 1992). Each subject was
seated, their forehead resting on a horizontal platform, and each viewed the stimulus
CRT binocularly through a series of surface-silvered mirrors. The gradiometer array was
positioned as in figure 6.2. The position of the subject's nasion and two pre-auricular
points recorded using the Polhemus pen (see chapter 2) along with an outline of the
occipital scalp region; all of this information was used for subsequent co-registration
with MRI images. For each stimulus condition, the evoked response to 50 grating onsets
were recorded in 512ms epoch segments. Responses were analogue filtered (106Hz 4th
order Butterworth filters) and sampled at 1kHz by a 16bit ADC. Having recorded
te range of colour contrasts, the experiment was repeated

evoked responses to a comple
ata sets for four right handed subjects

in order to control for subject head movement. D
(1 male, 3 female; age range 25-32) were collected.
6.2.4. Analysis
After acquisition, data were avera

the anti-aliasing filters were digitally correcte
s used to attenuate environmental noise sources (chapter 3). The data

mination filtered from 2-30Hz. Monte Carlo analysis was used
th added Gaussian white noise. The noise added

ged and anti-averaged. Phase shifts introduced by
d for (chapter 2) and reference noise

cancellation wa

was then frequency discri
to generate 32 sets of channel data wi
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was calculated by assessment of the RMS noise on the filtered anti-average for each
channel. The head was modelled as a spherical conductor of concentric conductivity
boundaries, best fit spheres were fit to digitised points around the occiputs of each
subject. Neural sources were modelled as single current dipoles and this model was fit to
each of the noise added data sets by minimisation of the chi-square statistic (Press et al.
1989; Supek and Aine 1990). The average gamma Q probability obtained was used to
assess the validity of the proposed model. Given that the dipolar model was acceptable,

the 95% confidence volume ellipsoids for the equivalent current dipole location were
calculated.
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4.1.3. Results.

In all. subjects, responses (~IpT) to both luminance and chromatically
mod1.11ated. grating stimuli were recorded in several gradiometer channels (figure 6.3).
The inset in figure 6.3 shows a plot of the global field power for the data, alongside a
psgudo-colour map showing the field distribution at the latency of peak power.

At each colour contrast, a plot of global field power and a map of magnetic field
distribution at the latency corresponding to the two major power peaks, labelled A and
B, are plotted (figures 6.4-6.7). In all of the four subjects, a distinct pattern of activity
emerges. At low colour contrasts (high luminance contrasts), a power peak B (at
around 140ms) with distinctive field distribution is identifiable. At colour contrasts of
around 50%, the response is dominated by an earlier peak A (at latency 120ms). The
field distribution at the latency of peak A is markedly different to that at the latency of
peak B. At around 50% colour contrast, peak B is either abolished (figures 6.4,6.6) or
increases in latency by 20-30ms (figures 6.5,6.7). The magnetic field maps
corresponding to the latency of each peak are similar across colour contrasts. There is
large inter-subject variability in response latency.

Figure 6.8 shows the field maps at the latencies of peaks A and B plotted over a
schematic subject head. Map B has similar morphology in two subject pairs (FF and JA,
KDS and VT). The morphology of map A is similar in three subjects (FF ,JA, VT) and
looks like a dipolar source pointing to the right side of the head.

6.2.5. Control for chromatic aberration
A control experiment was conducted to ensure that luminance artefacts introduced by
ocular accommodation could not be responsible for the pattern of results observed. The
difference in accommodation between the red (602nm) and green (526nm) light is
approximately 0.5 dioptres (Mullen 1985). Given a 6mm pupil and a lcpd grating, the
normal range of accommodation alone could produce a change in the retinal colour
contrast of around 3% (Allen et al. 1993; Green et al. 1980).
For each colour contrast the implicit amount of luminance contrast of a red-

black grating stimulus was calculated and this alone presented (Figure 6.9). In this

experiment, a 5% luminance contrast grating was presented in order to simulate the

possible effects of chromatic aberration on a physically isoluminant stimulus. Figure 6.9
shows that as isoluminance is approached, the magnetic evoked responses to equivalent

luminance contrast gratings are of negligible amplitude.
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6.2.6. Dipolar models

theltg]‘:b:;‘::;r ::;Ve;n::)};sn:;ll;: mechani.sms underlie each principal peak observed in
. ¢ magnetic evoked responses. The simplest assumption
is that eaclT of the peaks is due to a distinct dipolar source. The data in tables 1-4 show
average chi-square, gamma Q probability and percentage of variance measures for the
postulated single dipole model at the identified peak latencies. At each power peak
latency, the data are well modelled as single dipole sources in 3 of the 4 subjects
(Gamma Q>0.001, Press et al. 1989).

Figure 6.10 shows dipole plots and confidence regions for chromatic and
achromatic generators. In all subjects, the dipoles fit to latency of peak A and those fit
to latency of peak B localize to distinct neural sites. Co-registration of the data with
MRI scans for subjects FF and KDS reveals the anatomical position of these areas
(figures 6.11 and 6.12). Figure 6.11 shows subject FF with the 95% confidence limit
ellipsoid for dipole location fit to the latencies of peaks A and B for the full range of
colour contrasts. At latencies of individual peaks A and B, the confidence ellipsoids
overlap over the full range of colour contrasts indicating that the activity is explained by
the same two underlying neural generators. However, for FF the confidence ellipsoids of
sources A and B never overlap indicating that the generators of the two peaks are
spatially, as well as temporally, distinct. The data is more variable for KDS, and there is
some overlap of confidence regions, however dipole orientations (figure 3.5) clearly
indicate that the neural sources responsible for peaks A and B are distinct.
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S

(%)CC Peak latency (ms) *X2r gamma Q % 95% conf

A . e Var  vol (mm3)
2.75 0.001 81 116

20 B 139 1.75 0.027 85 1582

30 B 140 1.85 0.038 83 175

40 B 148 1.66 0.070 86 92

60 B 155 2.0 0.022 81 417

70 B 146 0.81 0.700 75 554

40 A 124 2.75 0.001 83 43

50 A 125 1.83 0.038 87 64

60 A 126 241 0.022 85 107

Table 1. Subject FF. Statistics for Monte Carlo analysis of the single dipole model.
Gamma Q and y2, values based on 12 degrees of freedom (5 dipole parameters, 17
operative channels). Both peaks A and B have gamma Q values >=0.001 indicating
that the current dipole model is not unreasonable.

CC Peak latency (ms) X2r gamma Q % 95% con
(%) Var vol (mm3)
0 B 172 0.57 0.009 88 2261
20 B 174 1.0 0.486 89 237
30 B 174 2.45 0.004 79 759
40 B 182 0.38 0.843 90 643
50 B 207 1.36 0.260 87 300
60 B 181 1.09 0.342 88 237
70 B 186 2.09 0.019 77 395
50 A 177 1.09 0.454 85 560

Table 2. Subject KDS. 11 degrees of freedom. Both peaks are reasonably modelled
as dipolar.
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CC Peak latency (ms) xX2¢ gamma Q %

95%  con
vol (mm3)
344

157

95%  con
vol (mm3)

1244

1

(%) Var
0 B 152 1.909 0.030 83
50 A 126 1.818 0.049 84
Table 3. Subject JA. 11 degrees of freedom. Both peaks are reasonably modelled as
dipolar.
CC Peak latency (ms) X2r gamma Q %
(%) Var
0 B 120 16 10-29 66
50 A 135 4.5 10-6 85
50 B 152 13 10-23 74
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Table 4. Subject VI. 10 degrees of freedom. Note the decrease in gamma Q by
several orders of magnitude, it is unlikely that the data is accounted for by activity of a

single dipolar source.
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6.3. Discussion

Global power peak A onl Co . .
reasonable to assume tll)lat it relatesy tzptp::r :ct?\titar(:)lfl‘n: Cph:’S‘Cal I?Olummance‘:" e
chromatic contrast. The behaviour of peak B 'y ; e nllax1mally Sén.s e to

. . pe 1s consistent with the activity of a
meCharTlsm responsive to luminance contrast since it is absent, or considerably delayed
at physical isoluminance.

In three of the four subjects studied the activity underlying each of global power
peaks A and B is well modelled as a current dipole. These sources are temporally, and
anatomically distinct in their activation Co-registration with MRI shows that the
chromatic dipole lies along the midline within the calcarine fissure and possibly extends
onto the lingual or cuneal gyrus, whereas the luminance dipole tends to be superior and
more variable in location. Both sources have relatively long latencies (130-180 ms), and
there is large latency variability between subjects.

Considerable anatomical data shows that the human striate cortical area V1 lies
within the calcarine sulcus (Brindley 1972; Clarke and Miklossy 1992). The location of
the chromatic source is therefore consistent with a V1 origin. However, the source
location is not consistent with the fact that the stimulus was positioned in the central
visual field. In man, the central two degrees of vision maps almost exclusively to the
dorsal area of primary visual cortex at the occipital poles (figure 6.13) (Horton and Hoyt
1991; Fox et al. 1987). Furthermore, the cortical magnification formuli proposed by
Daniel and Whitteridge (1961) and extrapolated to the human (Horton and Hoyt 1991,
figure 6.14), indicate that the cortical area activated by any stimulus decreases rapidly as
the stimulus becomes more eccentric. If the 2° hemi-field stimulus does map beyond the
poles in either of the two subjects, one would therefore expect any equivalent current
dipole source to be biased posteriorly. The chromatic source in both subjects is around
2-3cm along the calcarine fissure from the occiput. If this were V1 activity, it would
correspond to a visual stimulus centred at least 5° of eccentrically (figure 6.14). It is
possible that V1 is active yet the location of the active area, at the occipital pole and
dorsal surface and therefore radial, means that it will produce no external magnetic field

(see chapter 1). ) _ ..
If the chromatic source is not in area V1, 1n which human visual area 1s it

situated ? . .
Monkey physiology shows that both V2 and V4 also contain large proportions

of chromatically tuned cells (Livingstone and Hubel 1984; Zeki 1973). The start’of
defined by the border of the callosal connections which link the receptive
rtical meridian (Zeki 1969). In the human, these
connections extend around V1, becoming lateral to it at the occipital pole (Clark.e and
Miklossy 1992). Inthe monkey, the receptive fields c.>f V1 and V2 neurons run :ldja.cez
along the vertical meridian, yet diverge along the horizontal meridian. Any central visu

area V2 is
fields of V1 neurons along the ve
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?eld aj.'umulus should therefore activate an area of V2 close to the occiput and more
¢ : .

ateralised to that of V1. Since the chromatic dipole is neither posterior, nor lateralised
a V2 response can be dismissed. |
It is proposed that the chromatic dipole reflects V4 activity. This would place
V4 on the lingual gyrus, possibly extending superiorly around the calcarine

sulcus onto the cuneal gyrus and inferiorly onto the fusiform gyrus. This view does not
accord with that of Zeki (1993)

human

_ who proposes that human V4 lies exclusively on the
ﬁls.lform gyrus. Zeki puts forward two arguments to support his proposition. First is that
lesions in the lingual gyrus do not always lead to achromatopsia, and there is some
clinical evidence to support this (Bogousslavsky et al. 1987). Second, that V4 does not
lie in the lingual gyrus since the space is occupied by V2, is not supported by recent
anatomical studies (Brindley 1972; Clarke and Miklossy 1992) which reveal a tapering
of area V1 as one moves anteriorly (figure 6.15, 4.15). This tapering means that V2
actually moves from the lingual gyrus and into the calcarine fissure as one move
anteriorly. This tapering is also clearly shown in the PET data of Zeki et al. (1991),
figure 6.9.

The lingual site of V4 would help explain why the condition of achromatopsia is
often accompanied by peripheral upper visual field scotomas (Damasio 1985). The
proposed site of human V4 (figure 6.17) would mean that it lies adjacent to
peripherally mapped V1 neurons. Were V4 situated on the fusiform gyrus, lesions in this
area would have to be very large to consistently affect V1. Furthermore, in the monkey,
V4 is indeed situated anterior to V1 and shows no superior or inferior bias (figure
6.16).

The luminance related dipole seems to lie on the superior bank of the occiput yet its
location is highly variable between subjects. The long latencies and their high inter
subject latency variability could indicate that both luminance and chromatic sources are
of extra-striate origin. The luminance source would seem to be consistent with V2 or V3
activity. V3 is more likely since, the activity is relatively late, after V4, and the generator
is not especially lateralised nor posterior, as one would expect for a central visual field

stimulus to V2.
More experimental work is required to confirm the hypotheses presented, the

following experiments are proposed which might initiate such studies: '

i) Although in this data two experimental runs provide repeatable dlp.Ole
locations, there was no subject head movement restraint employed. That is, it is possible
that the subjects moved between digitisation of the three ﬁduCIary‘pomts and .actua.l fiata
acquisition. Any movement artefact, as well as errors due to location of fiduciary points,
could be minimised by using a bite-bar' arrangement (Singh et al. 1995). At present co-
the localisation of activity to as much as lem3.
dicate that the dipolar model used is not
e) which better describe the

registration errors could limit
ii) Although chi-square measures 1n

unreasonable, there may be models (e.g distributed sourc
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underlying neural generators. A comparison between two
approaches might be informative.

i) Anatomically,

such source modelling

it would be informative to establish the extent of the striate
area in each subject, which can vary widely between individuals (Brindley 1972). For
example, the extent of V1 could be established by high resolution MRI imaging (Clark et
al. 1992).

1v) Functionally, VEP studies may reveal activity of radially oriented generators
which correspond to striate cortical activity related to the central visual field stimuli.
Indeed, VEP studies (Carden et al. 1985; Murray et al. 1987) have concluded that the
human response to isoluminant chromatic stimuli reflects V1 activity.

v) The extent of peripheral V1 could also be assessed using magnetometry by
estimating source locations as stimulus eccentricity is increased. If the chromatically
responsive source lies within V1 then its location should be highly dependent on
stimulus eccentricity; if however it reflects V4 activity then, due to the larger receptive
field sizes of V4 neurons (Desimone et al. 1985), its location should remain relatively
constant.

172




Left visual cortex

Lower vertical meridion\

/(J;q_dpad

Foveo

ight visual hemi-field

map showing the projection of the r
e striate cortex folds

Figure 6.13. Schematic
onto the left visual cortex. The row of dots indicates where th
around the occipital pole. redrawn from Horton and Hoyt (1991).
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Figure 6.14. Estimate of striate cortical area mapped 1o per square degree of visual
field (above). The lower curve shows the total cortical area mapped to by a stimulus of
a certain size. Curves are based on the estimate of Horton and Hoyte (1991) adjusted
from the monkey data of Daniel and Whitteridge (1961) 1o fit measured human
parameters. The solid line and dashed vertical lines corresponds to stimulus areas
subtended by 1°and 2¢ hemifields. From the lower curve, for a 2 hemifield stimulus,
the central 1¢ accounts for ~75% of the cortex activated.
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Figure 6.15. Posterior and medial aspects of six pairs of plastgr casts of normal
brains where the extent of striate cortex is marked in black (from Brindley 1972)
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parieto-occipical sulcus

talcarine sulcus

Figure 6.17. A possible site of human V4. Note the tapering of VI meaning that
peripheral V1 is straddled by V4. The diagram is purely schematic designed to
illustrate the possible organisation of the areas VI and V4, no attempt has been made
to identify areas V2 and V3.
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Chapter 7.

Conclusions

The calibration of gradiometer arrays using a grid of straight wires is limited by the
accuracy of construction of both the gradiometers and the wire grid. The principal
limitation of the technique is that the gradiometers must have relatively high intrinsic
balances (figure 2.16). For the Aston system, optimal grid parameters were determined
(section 2.6.3). Simulations using this grid configuration, with gradiometer balance of
10-4 and wire spacing error of 0.25mm RMS suggest an achievable accuracy of
calibration in gain of 0.3% in position of 0.3mm and in orientation of 0.6°. In practice,

the standard deviation of the absolute errors in channel positions and orientations were
found to be 1.1mm and 1.03° (figure 2.18) which arose principally from the digitisation
system used (section 2.7). However, the relative standard deviations of the gradiometer
parameters between repeated calibrations were 0.049%, 0.27mm and 0.055° (figure
2.18). The statistical estimates derived from the practical results demonstrate that the
model assumptions of the simulation studies are justified (figure 2.21). The study is
unique in that it is the first in which the validity of the models used is investigated.
Likewise the results improve upon all previously achieved.

It was shown that superior performance of a reference noise cancellation filter is
achieved when the filter is applied to the DC corrected running average (section 3.3.1).
LMS filter performance was shown to be well predicted by the analytical form based on
epoch-length statistical estimates (section 3.5). In the steady state, the filter can be
assumed to be driven by a non-stationary step input arising at epoch boundaries (section
3.6.2). Using this driving step approach, filter misadjustment due to non-stationarities in
typical neuromagnetic measurements was found to decrease as epochs were added to
the running average (figure 3.40). An optimal progression for the filter time constant is
proposed (47) which improves upon fixed time constant filter performance (figure
3.40). Since the neuromagnetic signal is a-priori unknown, the results of th1:s study
provide, for the first time, a solid analytical base on which to estimate the noise both

added and removed by any adaptive filter implementation.

The incorporation of the time-derivatives of the reference channels was found to

improve the performance of the adaptive filtering algorithm by 15-20% for unaveraged

data, falling to 5% with averaging (figure 3.46). Due to the computational cost and risk

of signal corruption, this method is not recommended for the processing of averaged

data.
Using
neuromagnetometer was applied

involved in the cortical processin ferms .
lobal magnetic field power of evoked responses to the onset of sinusoidal gratings was
global m

the calibration and adaptive filtering techniques developed in this thesis, the
to the task of identifying the functional elements

g of colour and luminance patterns in humans. The
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shown to have distinct chromatic and luminance sensitive components (figures 6.4-6.7).
Analysis of the results, using a single equivalent current dipole model, shows that these
components arise from activity within two distinct cortical locations (section 6.2.6). Co-
registration with MRI shows that the chromatically responsive area lies along the
midline within the calcarine fissure, possibly extending onto the lingual and cuneal gyrus

(figures 6.11,6.12). It is argued that this area may be the human homologue of the
primate cortical area V4,
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Appendix : Estimate of LMS Jitter noise

Continuing from chapter 3, section 3.2.8. Jitter noise in the LMS algorithm can be

thoughf of. as due to the error between the ideal gradient step and its stochastic
approximation.

That is, the gradient estimate can be expressed as
V(n) = V(n) + G(n)
Where G is the vector representing the noise involved in the approximation.

In the steady state, that is, around the optimal solution
G(n) = -2.y(n).x(n)

cov{G(n)] = E[G(n)G” (n)] = 4. E[y* (n).x(n).x" (n)]
At the optimal solution, the filter output and references are independent, hence

cov[G(n)] = 4.E[y* (n)]E[x(n).x" (n)] = 4E mn. R
Pre-multiplying by the modal matrix M (12) gives the transformed gradient noise
vector G' where |
G(n)'=M"'G(n)
and
cov[G'] =4E mn A
which gives a noisy decoupled weight update equation of
v (n+l)=v (n)+pn(-A.v'(n)+G'(n)
If x is uncorrelated over time then the gradient noise will be uncorrelated with the
weight vector, and it can be shown (Widrow, 1975) that

covfv,]=p.Emin.(1- n.A)"
or for small p ' '
cov{v,] =p.Emin
presses the decoupled weight covariance due to the noise implicit in the

The above ex
amount of excess MSE

stochastic approximation of gradient. A useful measure is the

due to this weight variance. From (16) : .

T4 "\2
Average excess mse = E[v'Av']= A-E[(04)]

)
1
' A _ 1y @s)
Jittern01se=p.EmmZ)»p.(l_Mp),( )
2
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(Widrow 1976) approximated by
Jitter noise = . Ean. tr (R)
It is more instructive to €Xpress noise as a

this point therefore the dimensionless qu
defined as

proportion of the useful signal power. At
antity M or misadjustment is introduced,

Ma Average excess mse
Emin
Misadjustment due to jitter is therefore

Mjitter - utr(R)
It is clear from the above that jitter noise is directly proportional to p; and in the case
of nominally equal eigenvalues, misadjustment increases as reference channels are added

to the system.
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