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SUMMARY

The mechanical basis of the actions of the =xtraocular
muscles is examined. A number of assumptions, which
are required to specify the mechanical constraints on
the actions of the muscles, are described. DJifferent
assumptions about the way in which the extraccular
muscles act are evaluated by comparing a set >f models
of extraocular muscle cooperation, each of wnhich differ
by just one assumption, against clinical data from
patients with isolated nerve palsies.

Three applications of the model based on the most app-
ropriate assumptions, are described. Firstly, the Hess
screen test of oculomotility is investigated by calcu-
lating the mechanical actions of the muscles along the
lines of the Hess chart. Secondly, alternztive theories
concerning the muscular factors underlying 2 and V
syndromes are compared by using the model to opredict

the deviation that should occur according to each theory.
Thirdly, a computer based ophthalmotrope is used to
demonstrate geometrical limitations on the amount of
recession and transposition surgery that can be perform-
ed on the muscle insertions.

Computer modelling; extraocular muscleas;
Hess charts; A and V syndromes;
Ophthalmotropes
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INTRODUCTION

During the nineteenth century, Helmholtz and Hering
pioneered the application of mechanical concepts to the
understanding of the actions of the extraocular muscles.
Whilst their work has been appreciated in Europe, much
of it has only recently been assimilated into the main-
stream of American investigations of the problem. This
is probably because of the language barrier, since
Helmholtz's Treatise on Physiological Optics was not
translated until 1924, whilst Hering's Spatial Sense
and Movements of the Eyes was translated in 1942 aﬁd

his Binocular Vision as late as 1977.

By the time that these translations had appeared, the
'classical description' of the actions of the extra-
ocular muscles had already been formulated by Duane
(1896). He argued that the horizontal recti are
responsible for movements of adduction and abduction
and that the vertical recti and the obliques are
responsible for movements of elevation and depression,
with the vertical recti more effective in positions of
abduction and the obliques more effective in positions

of adduction.

Interest in the analytical approach to the problem of
the actions of the extraocular muscles was rekindled
by the work of Krewson (1950), who produced quantita-

tive estimates of the relationships between rotations



of the globe and actions of the muscles. He assumed
that the muscles took the mechanical shortest path and
calculated the corresponding axes of rotation. This en-
abled him to clarify the main actions of the individual
muscles. However, whilst his approach revealed much
about the actions of individual muscles, it was not so
informative about how they co-operate. Also, because of
the number of calculations involved, he only considered

eye movements in the horizontal plane.

Boeder (1961) emphasized certain physiologically impor-
tant results. In particular, he calculated the length
changes that occur when the eye rotates through thirty
degrees of elevation in accordance with Listings law,
from any gaze position in the horizontal plane and found
that the superior rectus and inferior oblique shortened
by amounts that held to a fairly constant ratio of three
to two respectively. He pointed out that this contra-
dicted the view that the inferior obligue is the most
important elevator in adduction. He attempted to provide
a more realistic measure of the force exerted by each

of the muscles by multiplying their changes in length

by their respective cross sectional areas. When this
was done, he found that the contribution of the inferior
obligque to elevation was approximately half that of the

superior rectus.

Boeder (1962) went on to consider the length changes
and axes about which each muscle works, when acting

along the shortest path in a sixty degree by sixty



degree field of eye movements. He considered movements
from a point A to a point B and found that, in general,
the shortening and lengthening muscles did not act
around the same axes, so that the movement was revers-
ible only if both shortening and lengthening muscles

were actively involved.

More recently, the purely geometrical calculations of
the axes of rotation and changes in lengths of the
muscles, have been put into matrix notation by Solomons
(1978) , who has calculated the adduction/abduction,
elevation/depression and torsional action of each of
the muscles in primary, secondary and tertiary

positions of gaze. One interesting result which these
calculations have demonstrated, is the balanced nature
of torsional effects within pairs of antagonistic
muscles. In general, however, whilst this approach has
simplified the calculations, it has not by itself reveal-
ed anything further about the way in which the muscles
co-operate. This last criticism is especially true if
one tries to compute what will happen if some of the
muscles are paretic. To be able to do this, the

problem of muscle actions in different gaze directions
should be approached by way of consideration of the
mechanics of the situation. This approach was initiated
by Robinson (1975) who formulated a computer model of

the mechanical actions of the extraocular muscles.

The mechanical requirement that must be satisfied if



the eye is to remain in a particular gaze direction,
is that the moments on the eye caused by the forces
exerted by the muscles about their respective axes of
rotation must sum to a moment equivalent to that caused
by the passive forces acting on the eye. The situation
is complicated by the fact that the force exerted by
a muscle depends both on its level of innervation and
on its length. If M denotes the passive moment on the
eye, fi (e,l) denotes the tension developed by the i th
muscle when it has an innervation level e and a length
1, and Ri denotes the axis of rotation of the i th
muscle then the mechanical requirement can be expressed
succintly by the equation:
6

M=zfi (e,l)Ri

i=1
The description of the various alternative models given
in the first Chapter has been organised around this
equation, beginning with a description of the kine-
matics of the eyes. The orientation of the eye deter-
mines the paths of the muscles and these in turn deter-
mine the lengths and axes of rotation of the muscles.
Together with the description of the length - tension
characteristics of the muscles and their innervation
levels, this Chapter specifies all of the quantities

included in the equation.

Investigation of the assumptions underlying the model

revealed that alternative assumptions were possible



concerning the quantities in the equation. The second
Chapter describes a procedure for determining the set of
assumptions that provides the best model. The procedure
involves setting up five alternative versions of
Robinson's (1975) model, each of which differs from the
original in just one assumption, and then comparing how
well the behaviours of the alternative models compares
with clinical data from patients with isclated nerve
palsies. This procedure was also uséd to decide upon a

binocular version of the model.

The third Chapter describes some applications of a work-
ing model of the actions of the extraocular muscles.

The applications have been deliberately restricted to
areas where the mechanical assumptions of the model have
been tested. The first application involves using
knowledge of the forces produced by the extraocular
muscles in relation to screen tests for diagnosis of
muscle palsies. The second application is concerned
with using a model of the normal extraocular muscles as
a testbed for investigating possible muscular causes of
the A and V syndromes. The third application is a purely
geometrical study of the amount by which the insertions
of the muscles can be moved over the eye without the

paths of the muscles interfering with each other.






gk - Constraints on rotations of the evye

The initial investigations of the constraints on eye move-
ments were made by studying the location of an afterimage
as the eye was rotated. Helmholtz (1910) summarised the
original discoveries in terms of two laws. The first law
governing eye rotations, referred to as Donder's law, states
that the orientation of the eye depends only on the final
direction of the line of fixation and is independent of the
initial direction. This law implies that the eye is con-
strained in the rotations it may make around the line of
fixation. The nature of this constraint is specified by
the second law, referred to as Listing's law which states
that if the eye rotates about a centre O so that the line
of fixation moves away from the primary position OA to
another position OB, then the displacement of the eye is
equivalent in rotating it around an axis perpendicular to
the plane AOB. This law implies that the eye does not make
any torsional movements at all, although an afterimage of

a vertical line will appear to tilt with respect to a
vertical line on a tangent screen, because of the geometry
of the projection. The tilt of an afterimage with respect
to a line on a tangent screen is referred to as false

torsion.

Moses (1950) initiated an alternative approcach to the ex-
perimental investigation of eye torsion. He placed a camera
so that itsoptical axis lay along the primary direction of
the line of fixation and photographed the appearance of the

eye with various gaze directions. He placed ink marks on



the upper and lower limbus so that the orientation of the
eye could be determined from the photographs and also in-
cluded a plumbline in them, so that true vertical was
specified. He found that extorsion occurred with movements
of the eye involving both elevation and abduction and both
depression and adduction and intorsion occurred in the other
two quadrants of the gaze field. It should be noted that he
took torsion to mean any deviation of the vertical meridian
of the eye from the plumbline, so that his concept of tor-
sion corresponds to false torsion in the afterimage experi-
ments. When this feature is taken into consideration, the

results are entirely consistent with Listing's law.

Belcher (1964) carried out a systematic experimental in-
vestigation into the gquestion of false torsion, photograph-
ing the eyes of his subjects in various directions of gaze,
together with a plumbline, by means of a camera held along
the line of fixation. He measured the rotation of the eye
by tracking marks on the iris and his results confirmed

that Listing's law holds.

Tz Description of the extraocular muscles

The shape of the orbit is approximately that of a square
based pyramid. At the apex of the pyramid are two holes,
the optic foramen, through which passes the optic nerve
and ophthalmic artery and the supra-orbital fissure
through which passes all the oculomotor nerves, autonomic

nerves and the ophthalmic vein.



Around the optic foramen, the membrane covering the bones
of the orbit, referred to as the periorbita, thickens into
a ring called the annulus of Zinn. The recti muscles are
attached to the orbit at the annulus of Zinn and the mem-
brane covering each muscle, referred to as its fascial
sheath, is continuous with the annulus of Zinn. The fas-
cial sheaths of the recti muscles join one another and
together with the recti muscles themselves form what is
known as the muscle cone. The muscles insert into the
sc;era of the eyeball and the fascial sheaths are contin-
uous with Tenon's capsule, which is the layer of connective
tissue that covers the eyeball and rotates with.it. Sheaths
of fibroelastic tissue, referred to as check ligaments,
spread out to the orbital walls. Together with the fibrous
connections between the levator palpebra and superior
rectus, the check ligaments form a superior transverse
ligament, while together with the fibrous connections
between rectus and inferior obligque they form the ligament

of Lockwood.

The gross anatomy of the extraocular muscles of the right
eye is shown in Figure l1l.2.1. Some of the more pertinent
measurements of the extraocular muscles are given by
Whitnall (1921), from whom the following values are taken.
The lateral rectus has a split origin located at the part
of the annulus of Zinn that surrounds the superior orbital
fissure. It has an average length of 40.6 millimetres,
tendon length of 8.8 millimetres and line of insertion which

is 9.2 millimetres broad. The medial rectus arises from
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FIGURE 1.2,1

THE GROSS ANATOMY OF THE EXTRA-
OCULAR MUSCLES OF THE LEFT EYE
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the medial part of the annulus of Zinn. It has an aver-
age length of 40.8 millimetres, tendon length of 3.7
millimetres and line of insertion which is 10.3 milli-
metres broad. The superior rectus arises from the upper
part of the annulus of Zinn. It has arn average length
of 41.8 millimetres, tendon length of 5.8 millimetres
and line of insertion which is 10.8 millimetres broad.
The inferior rectus arises from the lower part of the
annulus of Zinn. It has an average length of 40 milli-
metres, tendon length of 5.5 millimetres and line of
insertion which is 9.8 millimetres broad: The superior
oblique arises from the upper medial region of the apex
of the orbit. It passes forward, through a loop of
trochlea
cartilage referred to as the £eehlea, which acts as a
pulley. It has thé longest tendon, about 30 millimetres
in length, which begins 10 millimetres before the
trochlea. The average length of its line of insertion
is 10.7 millimetres. The inferior obligue arises from
an anterior portion of the floor of the orbit. It
passes around the outside of the eyeball and inferior
rectus and inserts beneath the medial rectus. Its line

of insertion has an average length of 9.4 millimetres.

In the mechanical models described later each indiwvidual
muscle is replaced by a single fibre which runs from
the midpoint of the muscle insertion to its origin.

The single fibre representations of the extraocular

muscles of the right eye are shown in Figure 1.2.2.

1



FIGURE 1.2.2

SINGLE FIBRE REPRESENTATIONS OF THE
EXTRAOCULAR MUSCLES OF THE RIGHT EYE
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The co-ordinates for these points are provided by the
data of Volkmann (1869), and are reproduced in Appendix
1.2. These are average measurements and examples of
the variability of the insertions have been given by
Howe (1906) and Fink (1946-7) who both point- out the
greater variability of the insertions of the obligues.
The mechanical effect of the fan out of the muscle

insertions will be considered in the next section.

i3



1.3 Axes of rotation of the muscles

The analytical study of the axes of rotation of the
muscles was initiated by Hering (1868) who calculated, for
each pair of antagonistic muscles, the path that the line
of fixation would traverse if rotated away from the primary
position around the axis perpendicular to the plane of the

muscles.

Helmholtz (1910) drew attention to the mechanical effect
of the fan out of the tendons at the muscle insertion. He
discussed the way in which elevation would stretch the
lower tendons of the horizontal recti, so that the muscles
would effectively continue to rotate the eye about an axis

perpendicular to the visual plane.

Jampel (1970, 1975) has worked out the implications of the
fan out of the muscle insertions of the obliques. These
have wide insertions which allow the effective point of
insertion to change its location to counter movements of
the eye in the horizontal plane. Thus in adduction the
inner fibres of the oblique muscles are stretched, while
in abduction the outer fibres of the oblique muscles are

stretched.

As evidence that the inferior obligue in man acts as if
it is rotating the eye around a fixed axis, Jampel (1970)
described the case of a sixty-three year old diabetic and

hypertensive woman who had a sudden onset of paralysis of

14



the right levator palpebrae and right superior rectus
muscle. This case provided an instance where the inferior
obligue was the only elevator and to investigate it he
placed a piece of eggshell membrane on the patient's right
cornea under topical anaesthesia and photographed her eye
movements, both when she was exerting maximum effort to
look upwards in a range of angles of adduction and abduc-
tion and, when she tried to look from a down position to

an up position with about 40 degrees of adduction.

The locations of the markers on the eye as she looked from
right to left while making maximum effort to elevate the

eye were consistent with the eye being rotated about an
axis, fixed with respect to the orbit, which was located

in the horizontal plane and formed an angle of approximately
sixty degrees with the primary direction of the line of

fixation.

Jampel (1975) also gave evidence that the superior oblique
in man acts about the same fixed axis as the inferior
oblique. He states that in cases of total paralysis of the
oculomotor nerve the eyes deviate outward (as opposed to
downward and outward) and when the patient is instructed to
look downwards the eye rotates about an axis located in the
horizontal plane, 60 degrees temporally from the primary
direction of the line of fixation. In patients who have
paralysis of the abducens as well, the eye remains in the

primary position and the nature of the rotation when the

1%



patient is asked to look down is even clearer. The same
effect was observed in patients with paralysis of the
oculomotor nerve only, in whom the paralysed eye had been
returned to the primary position mechanically, by means of

a corneoscleral limbal suture.

i Paths of the muscles

The simplest assumption about the paths taken by the
muscles is that they follow the shortest path. However,
Robinson (1975) argued that the muscle tendon is too rigid

a structure to allow the muscle to follow its shortest path.

Robinson (1975) assumed that each muscle left its line of
insertion along a path that lay between the shortest path
and the path perpendicular to the line of insertion. Two
criteria were outlined that should be satisfied by a reason-
able assumption as to the angle of twist away from the
perpendicular path. The first of these was if its line cof
insertion stays perpendicular to the primary plane of the
muscle, then the twist angle should be zero. This limits
the path of each muscle as the direction of its insertion
vector becomes directly opposite to its origin vector,
whereupon slight movements of the eye cause extreme changes
in the shortest path. The second criterion was that the
twist angle should depend on the sideways force at the in-
sertion. A satisfactory assumption was made by letting the
twist angle depend on the cosine of the angle between the

vector along the line of insertion of the muscle and the

16



vector to its origin. In the primary plane of the muscle,
this function is always zero and so there is no twist at

the insertion.

A further assumption is needed to ensure that there is

no abrupt change of direction when the muscle leaves the
eyeball. This was achieved by assuming that the path of
the muscle over the globe lay in a plane containing the
vector corresponding to the direction in which the muscle
leaves its insertion and the origin of the muscle. The
intersection of this plane with the spherical globe is a
circle, so that this assumption implies that the muscle

makes contact with the globe along the arc of a circle.

In order to reveal the differerences between the shortest
path assumption and the alternative assumption produced by
Robinson (1975), a computerised ophthalmotrope was devised
by Clement (1984). The paths of the fibres were traced out
in two stages. Firstly, the coordinates of the point of
insertion were rotated in 0.05 radian steps around the
orientation of the muscle plane, through the angle of con-
tact of the muscle. Secondly, the remaining straight
section of the path of the muscle fibre was plotted out in
steps of 0.02 of its overall length. Calculation of these
intervening points made it possible to remove the segments

of the fibres which were hidden by the globe.

As the portions of the fibres which were hidden by the

globe depend on the viewpoint, it was decided to view the

L7



eyes from directly above since this allows at least some

of all six muscles to be visible. The plane perpendicular

to this wviewing direction corresponds to the IK plane in
Cc\ICUlal’_lcf\ 5

the coordinate system used in the elaeulatiens. No point on

the muscle fibre was plotted if it lay within the circle

defined by the globe and had a coordinate along the J

direction that was negative.

With the point of fixation located at a meridional angle
of 170 degrees and an eccentricity of 30 degrees, the
muscles following the shortest path assumption appear as

in Figure 1.4.1., while those following Robinson's assump-
tion appear as in Figure 1.4.2. The most noticable differ-
ence is that the path of the lateral rectus of the right
eye moves over the globe when following the shortest path
assumption. Indeed, Robinson (1975) pointed out that if
more than 36.3 degrees of adduction were possible then the
lateral rectus should flip over the globe and pass round
the nasal side of the eye, according to the shortest path
assumption. Whilst this is a striking argument against the
shortest path assumption, it does not prove the correctness
of Robinson's alternative path. In particular, Figure
1.4.3. shows the paths of the muscles, according to
Robinson's assumption, when the eyes are turned downwards
through thirty degrees and are viewed from directly in
front. It 1is clear that the superior rectus passes under-

neath the superior oblique, which is anatomically incorrect.
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FIGURE 1.4.1

MUSCLES FOLLOWING THE SHORTEST

PATH
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FIGURE 1.4.2.

MUSCLES FOLLOWING THE PATH DESCRIBED

by ROBINSON (1975)
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FIGURE 1.4.3

MUSCLES FOLLOWING THE PATH DESCRIBED

BY ROBINSON (1975) VIEWED FROM IN FRONT
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1.3 Forces acting on the globe

The same experimental procedures have been used by Robinson
et al. (1969); Collins (1971) and Scott (1971) to determine
the static forces on the eye and it is their findings which

are summarised here.

They investigated patients undergoing extraocular muscle
surgery. The patient's head was supported by a vacuum
sandcushion which was moulded to fit the contours of his
head. Either the stump of a severed muscle insertion or
the freed end of a muscle, according to what was being in-
vestigated, was connected by a silk suture to a strain
gauge. The strain gauge was mounted on the end of a
micromanipulator so that the length of the muscle could be
varied. The lengths used were the length in the primary
position and that length +/- 2,5 and 8 millimetres.
Innervation was controlled by asking the patient to fixate,
with the eye not being operated on, lights spaced 15 degrees
apart, with the centre light coinciding with the primary

direction of the line of fixation.

To measure the passive restraining forces on the globe, both
the horizontal recti were detached and a strain gauge was
connected to the stump of the insertion of one of the
detached muscles while eye movements in the horizontal

plane were made. Their overall finding was that there was
an approximately linear relationship between the restrain-

ing force rotation of the eye away from the primary

22



position of 0.5 grams per degree which held for up to 30

degrees of adduction or abduction.

Robinson (1975) described the passive forces on the globe
in terms of the following equation, which expresses the
passive force in grams in terms of the angle of deviation

of the eye (8 ) in degrees.
Passive force = 0.48%* 8 +(1.56*10%*=4)+ B **3

Robinson (1975) also included a force described by the same
equation as the passive force on the globe, except that the
angle was replaced by the angle of torsion. This force
was presumed to act around the line of fixation in the
opposite direction to the torsion. It appears to have been
introduced in order to limit the deviation from Listing's
law that can occur with his model when muscle paresis is
simulated. It is not mentioned in any of the experimental

studies.

To determine the passive force exerted by a muscle, the
innervation to the muscle under investigation was reduced
to a minimum, either by asking the patient to look as far
as possible out of the muscle's field of action, or by
working when the patient was under deep anaesthesia. They
measured the length tension curve and with both procedures
found that its shape was of the same form as when active

contraction was present.



The length-tension curves found with various levels of
innervation were of the same shape, the effect of inner-
vation was to shift the curve along the length axis.
Robinson (1975) found that the simplest relationship was
given by plotting the muscle tension against change in
length of the muscle expressed as a percentage of its
length in the primary position, a variable which he referr-
ed to as A 1l. The length-tension curves so formed could be
described by an hyperbola which was shifted up or down the
length change axis as the innervation was changed. For
this reason a variable e was introduced so that the hyper-
bolas could be shifted to the left (e+) or to the right
(e=). The equation that Robinson (1975) used to describe
the relationship was:

Al+€
Force=0.9 ( Al+e)+SQRT(38.9376+0.81 ( 4F) **2)

By considering a 1 millimetre change of muscle length to be
equivalent to a 5 degree eye movement, the forces developed
by the muscle when the eye is held in the position corres-
ponding to the level of innervation can be read off the
length tension curves. Collins (1971) did this and found
that the resulting curve of normal muscle force was des-
cribed by the equation T=0.017 ( 8-15)**2+16 where T is the
tension of the muscle and is as specified above. Thus
the muscle exerts its minimum force 15 degree out of its

field of action.

Collins et al. (1275) confirmed that this finding held in

24



unrestrained eye movements. They used a force transducer
which consisted of a split ring of aluminium, 2 milli-
metres in diameter and 1 millimetre high which had a foil
resistance strain gauge mounted on it opposite the gap in
the ring. Holes were drilled in the ring near the gap
through which sutures could be threaded. 1In this way
tension between sutures opened up the ring, with the max-
imum strain opposite the gap. The lateral and medial rectus
tendon were sectioned near the insertions and the strain
gauge was sutured in series. The other end of the trans-
ducer was then sutured to the sclera, slightly in advance
of the muscle stump so that the effective length of the
muscle was unchanged. The zero calibration of each trans-
ducer was made by unloading all force off it. This was
done by rotating the globe passively so that the muscle
was slack and by asking the patient to fixate with his
other eye a target completely out of the muscles field of
action. To calibrate the transducer, another suture was
attached to the globe and connected to a preclibrated
strain gauge. The globe was then pulled so that the muscle
was stretched tight and its antagonist was slack. The
patient then looked at an horizontal row of fixation lights
with the other eye and the various levels of innervation
caused the muscle to exert a range of forces which were
measured by both the precalibrated strain gauge and the
split ring transducer. They found the tension varied from
a minimum of 8 to 12 grams at 15 degrees out of the

muscles field of action to a maximum of 28 - 44 grams at

45 degrees into the muscles field of action.
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Robinson (1975) gives the e values which are supposed to
correspond to the levels of innervation at each of the
fixation points. The corresponding length-tension curves
are shown in Figure 1.5.1l. Also shown in the Figure, as
a dotted line, is the normal tension of the muscle. What
is interesting is that this curve reaches a minimum at
the primary position and not fifteen degrees out of the
field of action of the muscle. For this reason, different
e values were selected which give a normal tension curve
which reaches a minimum fifteen degrees out of the field
of action of the muscle and has the parabolic form des-
cribed by Collins (1971). The resulting length-tension

curves are shown in Figure 1.5.2.

As all the experimental work described was performed on

the horizontal recti, the problem still remains as to what
forces the other extraocular muscles exert. Robinson

(1975) followed the approach of Boeder (1961) and multiplied
the force exerted by each muscle, as calculated from the
standard equation, by a scale factor corresponding to their
relative cross sectional areas, which were taken from the

data of Volkmann (1869). The actual wvalues are as shown:

LR MR SR IR SO 10

1.0 1.04 @68 0.9% 0.5 ,0.47

Since it was suggested by Clement (1982) that alterations

in the relative strengths of the muscles should directly
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affect the mechanical relations between them, it was con-
sidered important to investigate this assumption. An
alternative approach is to assume that the relative
strengths are proportional to muscle volume rather than
cross-sectional area. In order to follow up this approach,
the volume of each muscle was calculated by approximating
each muscle by a set of cylinders. The diameter of each
cylinder was given by the average of the diameters of the
muscle in successive anatomical sections and the length

of each cylinder was given by the distance between success-
ive sections. The anatomical data of Nakagawa (1965) was
used. The relative strengths of the muscles obtained by

this procedure are as shown:

LR MR SR IR SO IO

1.0 0.95 0.69%0,81 " 0.32 0:.85

s Innervation of the extraocular muscles

Experimental evidence about the nature of the innervation
of the extraocular muscles cannot be obtained directly,

but in normal subjects is reflected by the excitation of
the muscle cells, which can be recorded electromyograph-
ically. It was initially showh by Bjork and Kugelberg
(1953) that the horizontal recti are active in the primary
position and that their activity increases as the eye

moves into their field of action. Breinin and Moldaver
(1955) emphasized that the electromyograms of the horizontal
recti showed considerable activity in the primary position

and became silent only with movements well out of their
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field of action. They also found direct evidence for the
reciprocal innervation relationship between direct and
contralateral antagonists. For example, the right lateral
rectus and left medial rectus both showed increasing
activity with a gaze movement to the right, whilst the
right medial rectus and left lateral rectus both showed

decreased activity.

Independent of the reciprocal innervation relation, is

the overall level of innervation and it would be possible
for the eye to carry out certain movements by co-contraction
of a pair of antagonistic muscles. Tamler, Marg and
Jampolsky (1959) recorded the electromyogram from four
muscles simultaneously while the eye was making slow follow-
ing movements over a fifty degree range, centred on the
primary position. This enabled them to determine what
changes in innervation were occurring in co-contracting
muscles. With vertical movements in the sagittal plane

the horizontal recti showed no change in their electro-
myograms. Similarly,.horizontal movements did not in
general result in changes in the electromyograms of the
vertical recti or the obligques. They concluded that

around the primary position, at least, co-contraction was
not occurring, though they admitted that their traces were
not particularly accurate and probably would not show a
discernible change for a following movement of less than

eight degrees.

Tamler, Jampolsky and Marg (1959) went on to record the
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electromyogram of four muscles simultaneously while the
eye was execeuting movements between teriary positions
of gaze. This enabled them to discover that the obligues
are most strongly innervated in positions of adduction
while the recti are more strongly innervated in positions
of abduction. They could find no changes in the way that
the horizontal recti were innervated during vertical
movements not through the primary position that held con-

sistently between subjects.

Robinson (1975) embodied these innervational constraints

by adopting the approach that the innervation of an agonist
muscle should be equal and opposite to its antagonist
muscle, so that with respect to the length-tension curves
formulated in the previous section, if an innervation
corresponding to plus fifteen degrees is given to the later-
al rectus, then an innervation corresponding to minus
fifteen degrees will be given to the medial rectus. Using
this relationship for each level of innervation, one may
plot the innervation of the agonist against the innerva-
tion of the antagonist. Robinson (1975) found that the

curve so formed was described by the eguation:

(e (agonist)+9.7 (e(antagonist)+9.7)=(4.0+9.7)**2

e (antagonist)=((4.0+9.7) **2=/(e (agonist)+9.7))=9.7

This curve is shown in Figure 1.6.1. The corresponding
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curve for the alternative set of innervation values des-
cribed in the previous section is shown in Figure 1.6.2.
This curve is described by the equation:

e (antagonist)=((5.5+90.0) **2 /(e (agonist)+90.0))-90.0

Rl Models of extraocular muscle co-operation

The mechanics of the extraocular muscles and the globe
require that if the globe ig to stay in any given position
then the sum of the moments acting around the centre of
rotation must be zero in that position. Given the con-
straints described in the previous sections one arrives
at what Robinson (1975) has referred to as the innervation
problem, namely, if the position of the eye is given,
what are the innervation values required to hold the eye
in that position? The complementary problem, which he
referred to as the position problem, is that given a set
of innervation wvalues, what will be the position adopted
by the eve? Robinson (1975) solved both of these problems
manaded

and so mansged to build a working model of extraocular

muscle co-operation.

The approach adopted in this study is that if only one
assumpton is changed in the model of Robinson (1975), then
any changes in the behaviour of the model can be attributed
to this assumption. Individual assumptions were only
changed when there was either theoretical or experimental

evidence for an alternative and this criterion resulted
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in six versions of the model which are as follows:

Model 1

The model defined by Robinson (1975)

Model 2

The same as model 1 with the exception that each muscle
follows its mechanical shortest path and acts around the

corresponding axis.

Model 3

The same as model 1 with the exception that each muscle

acts around an axis fixed with respect to the head. The

axis was taken to be perpendicular to the muscle plane

with the eye in its primary position.

Model 4

The same as model 1 except that the alternative set of

relative muscle strengths, derived in Section 1.5, were

used.

Model 5

The same as model 1 except that the alternative reciprocal

innervation function, derived in Section 1.6, was used.
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Model 6

The same as model 1 except that there was no passive force
assumed to be acting against the torsional movements of

the eyes.

In the next Chapter these models will be evaluated by

comparing their predictions against clinical data from

patients with isolated nerve pareses.
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CHAPTER 2

COMPARISON OF MODELS OF

EXTRAOCULAR MUSCLE CO-OPERATION
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Lol Clinical tests of oculomotility

The most striking feature of the binocular co-ordination
of eye movements is that the eyes act as though they are
linked and that in almost every case, a movement of one
eye only occurs in association with a movement of the
other eye. Hering (1868) encapsulated this linkage in his
law of equal innervation, which states that each eye

receives equal innervation.

The constraint implied by Hering's law forms the basis of
the screen tests of oculomotility. 1In these tests,
binocular vision is dissociated so that one eye may be
treated as a fixating eye and the other eye may be treated
as a non-fixating eye. The interpretation of the relative
gaze directions of the two eyes rests on the assumption

that they are both receiving the same levels of innervation.

The Hess screen test utilises a tangent screen with the
points spaced 5 degrees apart. Dissociation of binocular
vision is achieved by means of the patient wearing red-
green goggles with red over the fixating eye and green
over the non-fixating eye. The experimenter specifies
the point of fixation with a red light and the patient
specifies the point of fixation of the non-fixating eye

with a green light.

The Lees screen test utilises the same tangent screen as

the Hess test, but dissociation is achieved by a mirror
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arrangement. A double sided mirror is aligned so that it
points to the corner where two screens intersect at a right
angle. The patient sits with his nose close to the mirror
and sees the two screens superimposed in the non-fixating
eye, so that one screen can be used to stimulate the fixa-
ting eye and one screen can be used to record the position

of the non-fixating eye.

Both tests produce results of the same form. The result
of the test consists of a pair of charts, the points
marked on them showing the positions adopted by the non-
fixating eye when the fixating eye is directed at the
standard test positions. By convention, the chart on the
left shows the positions adopted by the left eye when the
right eye is fixating and the chart on the right shows the
positions adopted by the right eye when the ;;g;t eye is

fixating.

The interpretation of the test relies on knowledge of the
geometry of the insertions and origins of the extraocular
muscles. The lateral rectus is maximally effective in
movements of pure abduction, the medial rectus in movements
of pure adduction. The vertical recti are more effective

wi Fh
eith abduction and the obligques with adduction.

Because of the method involved in recording the position
of the non-fixating eye, both the Hess and Lees screen
tests rely on the patients having normal retinal corres-

pondence.
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202 Clinical data

Patient records were provided by the Orthoptic Department
at the Birmingham and West Midlands Eye Hospital. Mr

V. Smith, a Consultant at the Eye Hospital obtained
permission from the hospital Ethical Committee for the
records to be consulted. A student at the Orthoptic
Department, Miss T. Smellie, kindly provided a list of
patients with isolated nerve palsies of late onset, which
she had used for her final year project. Throughout the
study, the Head of the Orthoptic Department, Mrs A. Howrie,
was very helpful in explaining details of the case
histories. Since the records could not be removed from
the department, the co-ordinates of the points on the
Hess charts were measured in the department, and later

transferred onto the computer.

Case histories were chosen in which the patients had
suffered a paresis of either the IV or VI nerve which had
subsequently recovered. By selecting patients who sub-
sequently recovered it was hoped to avoid the complications
of contracture of the ipsilateral antagonist and subsequent
underaction of the contralateral antagonist. In order to
exclude the possibility that the muscle tissue itself was
different from normal, any patients who had been diagnosed
as diabetic were excluded from the study. In all, 15
patients were used, 5 of whom had IV nerve pareses and 10

of whom had VI nerve pareses. The patient group had an
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age range of 34 to 80 (mean = 65.6) and was comprised of
3 females and 12 males. All the Hess charts had been
measured within 2 to 20 days of the attack. The Hess
charts of the patients with IV nerve paresis are shown in
Figure 2.2.1 and the Hess charts of the patients with VI

nerve paresis are shown in Figure 2.2.2.

2.3 Binocular models

France and Burbank (1978) have proposed the following
computational scheme, which involves passing the innerva-

tion indirectly:

1) Calculate the innervation values required by the

ACTUAL fixating eye (which may or may not be paretic).

2) Calculate the position adopted by the NORMAL fixating

eye with these innervation wvalues.

3) Calculate the innervation values required by the

NORMAL non-fixating eye to reach this position.

4) Calculate the position adopted by the ACTUAL non-

fixating eye with these innervation values.

Whilst this scheme is computationally effective it is open
to the criticism that it does not reflect Hering's law of
equal innervation. In particular, the scheme requires that

when the fixating eye is paretic then it feeds abnormal
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innervation values into the non-fixating eye. It would

be expected from the concept of the binoculus, as discussed
by Hering (1868), that if the fixating eye did not reach

a required position then the binoculus would supply the
appropriate innervation to turn a normal eye in the dir-
ection in which the underaction is occurring. Considera-
tion of this approach leads to an alternative computational

scheme for a binocular model as follows:

1) Calculate the innervation values required by the
NORMAL fixating eye (i.e. binoculus) for the specified

gaze direction.

2) Calculate the position adopted by the ACTUAL fixating

eye.

3) If the actual fixating eye has not reached the speci-
fied gaze direction, change the gaze direction of the
binoculus, calculate the corresponding increase in inner-

vation levels and repeat stage 2.

4) When the actual fixating eye has reached the specified
gaze direction, then the innervation values for the non-
fixating eye are given by the innervation values required
by the normal non-fixating eye for the gaze direction of

the binoculus.

The two schemes will be referred to as scheme A and scheme

B respectively.
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Examples of the behaviour of the six models are shown in
Figure 2.3.1 and Figure 2.3.2. In both cases the pair of
Hess charts showing both the primary and secondary devia-
tions have been calculated using scheme A. Figure 2.3.1
shows the predictions of the models when the superior
oblique of the left eye is producing only 30% of its normal
active tension, whilst Figure 2.3.2 shows the predictiocns
when the lateral rectus of the left eye is producing only

50% of its normal tension.

With respect to palsy of the lateral rectus it can be seen
from the results of model 2 that if the muscles act around
the shortest path then the ensuing pattern of eye movements
differs from that with model 1. The predictions of models
3, 4 and 6 are virtually identical with those of mcdel 1.
However, model 5 shows that the change in the reciprocal
innervation function results in deviations of eye positions
which occur both in and out of the field of action of the
muscle. This is in contrast to model 1 in which the devia-
tion occurs almost totally in the field of action of the

muscle.

With palsy of the superior obligque, it was found that
models 1 to 4 gave virtually identical results. Again
model 5 was different in that it showed a deviation over
a wider range of eye positions than did model 1. Not
surprisingly, model 6 showed greater torsion than did

model 1.
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2.4 Comparison of the predictions of the models with

clinical data

The procedure for testing each model against the clinical
data of each patient consisted of decreasing the muscle
strength in steps of 10% and calculating a measure of
deviation from the clinical data at each level of paresis.
The measure of deviation that was used consisted of the
square of the angle, in degrees, between the gaze direction
predicted by the computer and the gaze direction recorded
on the patient's Hess chart. In order to provide a quanti-
tative estimate of the match over all 9 positions recorded
for each eye, the calculated values for the measure of
deviation at each position were summed, and these values

have been tabulated.

The deviations of the predictions of each model from the
clinical data are shown in Table 2.4.1. Initially, only
the primary deviations were considered because of the
additional assumptions needed to produce a binocular model.
For both types of pareses, model 5 shows a considerable
improvement over model 1. Model 6 performs as well as
model 1 with sixth nerve palsy and somewhat better with
fourth nerve palsy. Interestingly, model 3 performed
better than model 1 with fourth nerve palsy, although it
did not perform as well with sixth nerve palsy. Models

2 and 4 both performed worse than model 1.
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TABLE 2.4.1

DEVIATIONS OF THE PREDICTIONS OF THE SIX MODELS FROM THE

CLINICAL DATA

MODEL
LR Paresis 1 2 3 4 5 6
LU 8.6 10.7 B2 8.2 3.9 8.6
HF 9.6 15,8 10.4 102 4.1 8ol
SP 341 2L 7 32.1 33.9 49 .4 33.9
WJ 32.4 22.5 32,08 3L 50..2 3255
JA 59.3 36.6 S e 6.1 100.4 58.1
EM I67.9 195.2 174.0 "172.5 g98.5 168.2
MA LG5 .6 2L Twe. s e il7dn 3 85.6 164.9
DS 100.6 109.8 108.4 106.5 63.4 100.7
DM Le0.0r 217,88 B09:7 498.4 109.0 190.2
PR SO3 a7 598k2 5H22.8 515.0 414.6 504.1
Means 1272 144,22 1317 136.7 98.9 27,2
SO Paresis
DB 59,0 58.9 54.0 59.1 28.9 54.7
AC 82.0 86.4 78.9 83.8 73.4 83.4
EW 7ie B 76 .0 67.9 76.6 51.9 69.3
AB 3 e T G (e B S oY L B e (e 94,1  104.3
SE 103.9 10%8.9 g2.6 11l d 86.2 89.9
Means 85.8 90 L 79.5 91.0 66.9 80.3



On the basis of these results it was decided that an
improved version of Robinson's (1975) model could be
produced by replacing the reciprocal innervation function
used by him with the one tried out in model 5, and by
removing the passive anti-torsion force, as tried in model
6. In order to decide between the two computational
schemes for modelling both the primary and secondary devia-
tion, described in the theory section, two versions of the
model were produced, each utilising one of the alternative

computational schemes.

The deviations of the predictions of each of the two com-
putational schemes from the clinical data are shown in
Table 2.4.2. For both the sixth and fourth nerve pareses
scheme A performed better than scheme B, though the differ-
ence was most marked with fourth nerve pareses, where the
match to the clinical data with scheme B was worse for the

secondary deviation than with scheme A.

The validity of the final version of the model may be
appreciated by noting that the measure of deviation of the
clinical data from the standard Hess chart positions varied
from 159.0 to 725.0 for the fourth nerve pareses and from
198.8 to 4272.1 for the sixth nerve pareses. The Hess
charts produced by the final version of the model, which
best matched the Hess charts of the patients with fourth
nerve pareses and sixth nerve pareses, are shown in

Figures 2.4.1 and 2.4.2 respectively. Also shown in the
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TABLE 2.4.2

DEVIATIONS OF THE PREDICTIONS OF THE TWO BINOCULAR SCHEMES
FROM THE CLINICAL DATA

SCHEME A SCHEME B
LE RE TOTAL LE RE TOTAL
LR Paresis 1 2 3 | 5 g 1

LU 197 28.7 48 .4 64,6 18.6 83.2
HF 33.4 99,7 13351 33.4 o=ty 136.5
SP 49,3 60.7 110.0 49.3 56,7 106.0
WJ 50.3 58%5 118.8 5643 74.8 12501
JA 99.5 181.1 280.6 99.5 1822 281.7
EM 323.0 92.5 215.5 122.3 1057 228.0
MA 142 .5 168.4 310.9 142.5 186.0 328.5
DS 63.0 119.9 182.9 63.0 108.1 b el
DM 109.0 149.5 258,5 109.0 157.9 266.9
PR A0 507 296.7 708.4 411, 7 304.9 716.6

Means 110.1 126.6 P 114.6 129.8 244 .4

SO Paresis

DB 30,1 28,7 53.8 S 39.1 86.8
AC 13.0 21353 186.3 73.0 169.5 242.5
EW 97.6 33,9 1315 92 .9 9.0 131:9
AB 154 .5 60.5 215.0 123 104.7 176.9
SE 107.9 151.4 259.2 223.6 3237 547.4
Means 9236 y il 169 .2 89.9 1302 23#. 1
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figures is the level of paresis which produced the best fit.

25 Selection of the best model

The most surprising finding in the comparison of the six
different versions of the model was how similar their be-
haviour was. This makes the task of modelling extraocular
muscle co-operation easier in that the predictions of the
model remain valid despite variations of the parameters in
different individuals. Thus a change in the relative
strengths of the muscles, as might reasonably be expected
in different individuals, did not produce radically differ-
ént predictions. It was also interesting to note that the
fixed axis assumption which has been argued for by Jampel
(1970, 1975) provided a close match with the clinical data.
From a purely computational viewpoint, this assumption

simplifies the programming of the calculations.

For the computation of both primary and secondary deviations,
scheme A produced a better match to the clinical data than
did scheme B. However, this data did not test the differ-
ence between the way in which the two schemes pass cyclo-
torsion from one eye to the other. With a IV nerve palsy,
both schemes predict excyclotorsion in the paretic eye when
the non-paretic eye is fixating, but scheme A predicts
greater excyclotorsion in the non-paretic eye, whilst scheme
B predicts zero excyclotorsion in the non-paretic eye, when

the paretic eye is fixating. Nakayama (1983) determined
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photographically the torsion in the eyes of a patient with
Brown's syndrome and found that only the affected eye
showed excyclotorsion, a finding which supports Scheme B

in preference to Scheme A.

Another physiologically unrealistic feature of Scheme A

is that if the paretic eye is fixating then the procedure
requires that abnormal innervation values are generated to
hold the eye in position. If the nervous system is capable
of this computation, it is not apparent why muscle paresis
cannot be compensated for. The reason why Scheme B does
not produce as good a model as Scheme A is clear from Figure
2.5.1 which shows the Hess charts predicted Schemes A and

B with the superior oblique of the left eye producing only
30% of its normal active tension. Because the torsional
action of the muscle is not transferred, the secondary

deviation is not larger than the primary deviation.

In the next chapter some applications of the model with the
alternative reciprocal innervation function and no passive
anti-torsional force will be described. Only the second
application requires a binocular model and Scheme B was
used for this application because of the arguments against

Scheme A which have just been described.
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SCHEME A

SCHENE 8

FIGURE 2.5.1

HESS CHARTS PREDICTED BY SCHEME
A AND SCHEME B WHEN THE SUPERIOR
OBLIQUE OF THE LEFT EYE PRODUCES
ONLY 30% OF ITS NORMAL ACTIVE

TENSION
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Tl Optimal use of the Hess screen test

On the standard Hess charts, are marked the directions in
which each muscle is presumed to be maximally active. These
directions are based on geometrical arguments from the
anatomy of the muscles, and one application of a model of
the mechanics of the extraocular muscles is to update these

arguments to include muscle forces.

Although palsy of a single muscle can cause horizontal,
vertical and torsional deviations, in order to accentuate
the deviation recorded, a scheme of computation was devised
with the model such that the horizontal deviation associated
with palsy of the horizontal recti was maximised and so that
the vertical deviation associated with palsy of the vertical
recti and obliques was maximised, in the direction of the

lines of the chart.

In order to describe the scheme, the lines on the Hess chart
which correspond to rotating the line of fixation around a
fixed horizontal axis will be designated as lines of iso-
azimuth, and the lines which correspond to rotating the

line of fixation around a vertical axis will be designated

as lines of iso-latitude.

For the horizontal recti the scheme was as follows. First,
the gaze direction associated with each point along a line
of iso-azimuth was specified. Second, the axis of rotation
which would move the line of fixation along the line of

iso-latitude that passed through the point of fixation was

64



determined. This involved calculating the cross product
of the unit vectors corresponding to lines of fixation
directed at points along the line of iso-latitude, but
one degree on either side of the actual point of fixa-
tion. Finally, the muscle force directed along the line
of iso-latitude was obtained by multiplying the force
calculated by the model with the dot product of the axis
of rotation of the muscle and the axis of rotation which
would move the line of fixation along the line of iso-

latitude.

For each angle of azimuth tﬁe angle of latitude was
varied from 30 degrees of elevation to 30 degrees of
depression in 5 degree steps, and the angle of elevation
at which the muscle was maximally effective was recorded.
The angle of azimuth was varied from -45 degrees of
adduction to 45 degrees of abduction in 5 degree steps
and the locus of points of maximal effectiveness of the
horizontal recti of the right eye are shown in Figure
3.1.1. The procedure for the vertically acting muscles
was identical except that the lines of iso-azimuth and
iso-latitude were reversed in the sequence of calcula-
tions. The results for these muscles in the right eye

are also shown in Figure 3.1.1.

The results conform with expectations in that the hori-
zontal recti are most effective in the horizontal plane,
although the medial rectus becomes more effective with

depressed gaze in convergence, and in that the obliques



FPIGURE 3.1.1

DIRECTIONS OF THE HESS CHART ALONG

WHICH MUSCLES ARE MAXIMALLY EFFECTIVE
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are more effective in adduction whilst the vertical recti
are more effective in abduction. From the point of view
of improving the test however, the results of the calcu-
lations are disappointing in that no particular set of
test positions, such as the central 15 degree positions
or outer 3Q degree positions on the Hess chart, is high-
lighted as being of diagnostic value. Indeed the infer-
ior oblique was found to be maximally effective at the
limit of 45 degrees of adduction, above 10 degrees of
elevation, so that the gaze directions where it would

be maximally effective according to the model are

probably not within the field of view.

3wl Muscular factors involved in the aetiology of

A and V syndromes

This application was investigated in collaboration with
Mrs Howrie, the Head of the Orthoptics Department at
the Birmingham and West Midlands Eye Hospital. A and

V phencmena are an interesting subject for investigation
with the model because a number of possible muscular
defects have beeh proposed as a cause for them and the
mechanical effect of these defects can be tested with

the model.

The A and V syndromes are forms of strabismus in which
the horizontal deviation varies according to whether
the eyes are looking up or down. In conjunction with

exotropi here_ the eyes are divergent, or esotropia,
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where the eyes are convergent, the following four

patterns arise:

A EXO Eyes more divergent in DOWN gaze
A ESO Eyes more convergent in UP gaze
V EXO Eyes more divergent in UP gaze

V ESO Eyes more convergent in DOWN gaze

Urist (1958) proposed that A and V phenomena may be
secondary to underaction or overaction of the horizontal
recti since the medial recti are more active in conver-
gence with depressed gaze, whilst the lateral recti are
more active in divergence with elevated gaze. The Hess
charts produced by the model with bilateral 50% changes
in the effectiveness of the horizontal recti are shown
in Figure 3.2.1. Both bilateral underaction and bilat-
eral overaction of the horizontal recti produce no evi-

dence of A or V patterns.

The most direct cause of A and V patterns appears to be
a bilateral weakness in one of the vertically acting
muscles, as demonstrated by the Hess charts shown

in Figure 3.2.2, which were produced by the model
with 50% underaction of the vertically acting muscles.
The results clearly associate a V EXO pattern with
bilateral underaction of the superior rectus, an A

EXO pattern with bilateral underaction of the inferior
rectus, a V ESO pattern with bilateral underaction

of the superior oblique and an A ESO pattern with bi-
lateral underaction of the inferior oblique. These

results are in keeping with the view summarised by
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Wesson (1960).

Gobin (1968) has proposed that if an obligue muscle is
sagittalised (i.e. makes a smaller angle with the line

of fixation when the eyes is in its primary position than
does its antagonist) then it is relatively less effective
at producing torsional movement, hence the pair of
obliques active together produce a cyclophoria and that
the A or V pattern arises as a result of compensatory

actions by the other muscles for this cyclophoria.

The effect of sagittalisation was investigated with the
model by posteropositioning the obliques. The Hess
charts produced with bilateral 5 millimetre poster-
opositioning of the obligques are shown in Figure 3.2.3$.A
bilateral 5 millimetre change in the location of the
insertions of the superior and of the inferior obliques,
produced little cyclotorsion, which suggests that the
subsequent compensatory actions of the other muscles
required by Gobin's theory would not be elicited.
Similarly, it was found that anteropositioning of the
superior obliques, recommended for surgical correction
of the A pattern and anteropositioning of the inferior
obliques, recommended for surgical correction of the V

pattern produced little change according to the model.

Postic (1965) has suggested that vertical displacement
of the insertions of the horizontal recti may be a cause
of the A and V syndromes. This opinion was borne out

by the model which demonstrated clear A and V patterns
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with bilateral 5 millimetre shifts of the insertions,

as shown in Figure 3.2.4. The only similar calculations

appear to be those of Crone (1973) who describes the A

and V patterns that should be obtained with a displace-

ment of the insertions through 45 degrees. His results

are qualitatively similar to those given here, although
Ffake

he did not 4£ske into account the forces exerted by the

individual muscles.

The model confirms that the most likely cause for an A
or V syndrome is an underaction of one of the vertically
acting muscles, although alteration of the height of the
insertions of one of the horizontal recti will also

result in an A or V pattern.

33 Geometric constraints on muscle surgery

The final application of the model is more speculative
than the previous two since the results depend on the
paths taken by the muscles according to the model,

which have not been experimentally substantiated and
indeed, are definitely incorrect in some gaze directions,
as pointed out in Section 1.4. However, the application
has been included because it illustrates another facet
of the model which may be developed if more information

becomes available, as suggested, by Clement (1984).

In order to investigate purely physical constraints on
the amount of surgical repositioning of’ the insertions

of the muscles that can be performed, it is appropriate
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BILATERAL SUPERIOR INSERTION OF LR

FIGURE 3.2.4

EFFECTS OF CHANGES IN THE LOCATIONS
OF THE INSERTIONS OF THE HORIZONTAL

RECTI
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to replace each single muscle fibre in the model by a
band of ten fibres. In this way the wide insertions of
the muscles can be incorporated in the model and a
computerised ophthalmotrope can be used to examine how
far the insertions of the muscles can be moved before

they interfere with each others movement.

To provide the co-ordinates of points along a line of
insertion approximately 10 millimetres broad, the co-
ordinates of the midpoints of the muscle insertions,
taken from the data of Volkmann (1869), were rotated in
fixed angular steps of 5.1 degrees around an axis which
lay in the muscle plane but was perpendicular to the
line of insertion. So as to ensure that the width of
the line of insertion was the same for each muscle,

the length of each of the insertion wectors was ad-
justed to their average value of 12.43 millimetres.

In order to represent each muscle by a band of parallel
fibres, the exit paths of each of the ten fibres were
made equivalent to that of one of the central pair of

fibres.

An example of the use of the ophthalmotrope is provided
by Scott (1978) who recommended a maximum of 10 milli-
metres of recession of the inferior oblique, since the
lateral border of the inferior oblique is about 10
millimetres from the normal path of the inferior rectus.
The computer based ophthalmotrope was used to produce

Figure 3.3.1 which shows the eyes, as seen from directly
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beneath them, after the inferior oblique of the right
eye has been recessed by 10 millimetres. This figure
implies that a recession of up to 15 millimetres could
be carried out without the inferior obligque interfering

with the path of the inferior rectus.

Another example of geometrical considerations in extra-
ocular muscle surgery arises in the anteropositioning
of the obliques. Figure 3.3.2 shows the eyes as seen
from directly above, after the superior oblique has been
anteropositioned by 10 millimetres and it can be seen
that, according to the model, the insertion of the
superior rectus is now located in the tendon of the
superior obligque. Similarly, Figure 3.3.3 shows the
normal‘left eye, viewed from the left hand side and
Figure 3.3.4 shows the effect of anteropositioning the
inferior oblique by 10 millimetres. The geometrical
effect of this operation is to cause the insertion of
the lateral rectus to be located in the tendon of the

inferior oblique.

At present, these conclusions are speculative and in
]mp“cahor\s

order for their mechanical impliecstions to be clarified,

some method of calculating the way in which the inter-

ference of the paths of the muscles alters their effective

axes of rotation, will have to be formulated. In order

to calculate the amount by which muscles can be deformed,

a geometric model, such as has been described in this

Section, is insufficient. What is required is a mechan-

ical model which incorporates the coupling between
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FIGURE 3.3.1

GEOMETRIC EFFECT OF ANTEROPOSITIONING
THE SUPERIOR OBLIQUE OF THE RIGHT EYE

BY 10 mm
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FIGURE 3.3.2

GEOMETRIC EFFECT OF RECESSION OF
THE INFERIOR OBLIQUE OF THE RIGHT EYE

BY 10mm
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FIGURE 3.3.3

NORMAL LOCATION OF THE INFERIOR

OBLIQUE OF THE LEFT EYE
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FIGURE 3.3.4

GEOMETRIC EFFECT OF ANTEROPOSITIONING
THE INFERIOR OBLIQUE OF THE LEFT EYE

BY 1Omm
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individual fibres: Until experimental data on the
mechanical coupling between fibres is available,

realistic assumptions cannot be made.
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CONCLUSION

Initially, Robinson's (1975) model was heralded as being
an embodiment of the mechanics of the extraocular
muscles and that it was only a short step from the model
to solving all strabismus surgery calculations. This
view is encapsulated in the following quotation from the
concluding section of Carpenter's book "Movements of the
Eyes", which surveyed the state of knowledge around 1977,
two years after themodel had been published. He writes
that "Our knowledge of the kinematics and dynamics of
the eye has progressed steadily since the first con-
ceptions of such men as Fick and Helmholtz, a little
over a century ago, to the point where we can now sim-
ulate the relationship between the activity in the

six muscles and the resultant position of the eye with
accuracy, and predict in advance what the effect will be
of particular ophthalmic surgical procedures such as
artificial lengthening or shortening of individual
muscles to correct squint. Perhaps the main block of
the acceptance of quantitative evaluation of such pro-
cedures is the novelty of the notion that such pre-
operative calculations can provide more than an approx-

imate indication of the actual outcome.

The more modest goal which has been pursued in this
study is to produce a model which can describe the
simplest case of abnormal co-operation of the extra-

ocular muscles, namely, the isolated nerve palsy. What
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became clear from the study was that with the reciprocal
innervation function chosen by Robinson there was no
possibility of his model showing the type of flexibility
needed to cope with differing amounts of palsy. There
is no real prospect of modelling strabismus surgery
whilst the model cannot properly describe the initial
underaction of the muscle, as in any longstanding
strabismus the situation will be made even more un-
certain by contracture of the direct antagonist and
possibly also underaction of the contralateral antagon-

ist.

At this outset, there was no way of knowing that the
assumptions in the model were not highly interactive,
in which case the procedure of comparing models each of
which differ by just one assumption would not have
worked. The effectiveness of the procedure in this
instance suggests that it is a valid approach in the
modelling of biological systems to assume that the
assumptions are not highly interconnected. The most
immediate continuation of the work would be to in-
troduce possible assumptions concerning the effect of
fibrosis of the muscles and to test their validity
against clinical data. The problem arises in the
selection of the clinical data, since it is not easy
to be sure that only one muscle is fibrotic, unlike
the situation with isolated nerve palsies. Hence this
next advance will probably not be possible until a

sufficient number of direct measurements of contracture
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have been made, during muscle surgery.

Given that the present model can be developed to in-
corporate fibrosis of the muscles, the question then
arises as to whether or not it would be applicable to
strabismus surgery. One further difficulty which occurs
is that of coping with individual variations, which are
especially prominent in muscle surgery. Individual

eyes and muscles have different shapes and sizes and
muscles can look the same whilst having different
strengths. Furthermore, individual surgeons have
different techniques and the effect of an operation such
as recession will depend on how close to the line of
insertion the surgeon cuts the muscle and on how small
scar tissue is formed. For a model to be effective in
dealing with individual cases, methods will have to be
devised for estimating parameters such as muscle strength
and amount of contracture. An advance in this direction
has been made by Collins and Jampolsky (1982) in

surgery of the horizontal recti. They have used a
simple spring model of the forces on the globe and have
measured the tension in the muscles during the operation.
The effectiveness of their procedure is evidence that
models of the co-operation of the extraocular muscles
should be kept as simple as possible, with a minimum

of assumptions which can be checked directly. One
further advantage of this policy is that the model is
more likely to have widespread use if it does not

require large amounts of time on a mainframe computer,
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as do the models described in this thesis.

For any model of extraocular muscle co-operation to
play a role in the investigation of disorders of the
extraocular muscles it must be accepted as valid by
the orthoptic and ophthalmic community. This problem
of psychological acceptances commonly occurs when users
are becoming acquainted with a computer programme and
Weinberg (1971) has pointed out that the choice of
appropriate test data on which to validate the programme
is crucial to its acceptance, for if a programme fails
on the particular data with which a user is familiar,
it will usually be rejected in its entirety. Given
that surgery of an extraocular muscle would not be
carried out on the basis of the Hess chart alone, but
on the basis of a battery of orthoptic investigations
such as the cover test, the diplopia field, the
binocular field of single vision and the position of
the head, it would appear advantageous for the model

to simulate the results of these tests as well as the

Hess chart.

This study has shown that it is possible to produce

a binocular model of the actions of the extraocular
muscles which will automatically generate an accurate
description of the behaviour of the extraocular muscles
of a patient with a IV or VI nerve palsy. It is
proposed that the utility of such models can be in-

creased by simplfying the assumptions (for example,
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by using axes of rotation fixed with respect to the
head, length changes based on the shortest path assump-
tion and possibly linear length-tension curves) and by
increasing the range of orthoptic tests which the model
emulates. There is then a very real possibility of a
model of the co-operation of the extraocular muscles
playing a central role in orthoptic investigations and

in surgical correction of strabismus.
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B R0 | Specification of the orientation of the eye

To describe the position of the eye one may consider a
set of Cartesian basis wvectors I, J, K fixed in the
orbit and a set I', J', K' fixed with respect to the
eyeball, such that in the primary position they coin-
cide with the K and K' vectors directed along the line
of fixation. When they do not coincide the position

of the eye may be specified in terms of the transforma-
tion required to change the IJK system into the I'J'K'

system of base vectors.

To carry out a transformation from one set of Cartesian
axes to another set with a common origin one can perform
three successive rotations in a specific sequence. The

following is such a sequence:

Rl) Rotate I, J, K through an angle ©

clockwise around K to obtain Il,J1,Kl.

IIll ]_cosa—sina 3 ]—]j

Jl = sina cosa O J
K1l 0 0 1 K
i 5 U S
R2) Rotate Il, Jl, K1l through an angle 8

clockwise around Il to obtain I2,J2,K2.
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fe2l 0 g b Ie]

J2 = 0 cos 8§ =-sin g J1l

]K2| I_O sin B8 cosﬂ |Kl|

R3) Rotate I2, J2, K2 through an angle a

clockwise arcound K2 to obtain I',J",K'.

II'I [?osf -sin v EI 112]

J'-—"sin{' cosy O J2
IK'I |_O Q L] |K2|

The individual rotations can be combined to produce a
matrix Q=R3R2R1 of the whole sequence of rotations.

The components of the matrix Q are as follows:

I COosS & COSs vy -sina cos ¥y sin B sin Y I

-sina cos 8 siny =-cosa cos Bsiny

Q= cos a¢ sin ¥ -sin e sin y -sin B cos ¥

Yeane "Cos 8 cosy +cos o cos Bcosy

| sin a sin 8 cos ¢ sin 8 cos B [

Hence if x,y,2z are the co-ordinates of a point in the
I,J,K system and x',y',2' are the corresponding co-

ordinates in the I',J',K' system then:

M1 %]
- '
¥ =Q" ¥

L6 e
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If Listings law is obeyed then the rotation angles must

obey the constraint y-ao
This system of orientation angles has the advantage
over Fick's system used by Robinson (1975) that the pass-

ive force on the globe can be calculated directly.

1.2 Specification of the origins and insertions of

the muscles

The origin and midpoint of the insertion of each muscle
are specified by the vectors A and B respectively. The
co-ordinates of these vectors for the muscles of the
right eye are given in Table I.2.1, where the units are
millimetres. The effect of rotations of the globe on
the co-ordinates of the insertions may be described by
using the matrix equation B'=QTB. An example of the
vectors is given in Figure I.2.1 which shows the origin
and insertion vectors of the lateral rectus of the right

eye when it is elevated through 30 degrees.

I.3 Exit paths of muscles

Given the locations of the origins of the muscles and
their insertions in the primary position, one must next
specify the paths taken by the muscles in other positions
of the eyeball. This problem is complicated by the fact
that in the primary position the muscles fan out at their

insertion so as to be attached along a line of insertion
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TABLE I.2.1

CO-ORDINATES OF THE ORIGINS AND INSERTIONS OF

THE MUSCLES OF THE RIGHT EYE

LR
I =13. O
A J 0. 6
K ~-34. O
I 10.08
B J 0. O
K B. D

MR
-17. ©
0. 6
“30, O
=19.65
@, O
8.84

SR

0. O

10.438

IR

Q. O
-10.24

8.02

S0

~15.27
12.25

8.24

1,05

- 4.41

I0

=115 1
-15.46

11.34
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FIGURE I.Z2.1

ORIGIN AND INSERTION VECTORS
OF THE LATERAL RECTUS OF THE

RIGHT EYE
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whose direction is given by a unit vector C (see Figure

I.3.1) where:
A
C=(AAB) / |a 3 B

which is normal to the path of the muscle. Since the
stiffer tendon fibres are involved at the insertion,
when the eyeball is moved there will still be a tendency
for the exit path of the muscle to be perpendicular to

the line of insertion.

On the other hand, the shortest path for the muscle

will no longer be perpendicular to the line of insertion
in positions of the eyeball other than the primary one,
but will lie in a plane (see Figure I.3.2), spanned by

A and B' with a unit orientation vector D where:
A
D=(a A B')/ |aa B'|

A A
The angle between C' and D is referred to as the 'twist'

angle and one has that:

AR
cos (twist)=C"'.D

To obtain the sign of the twist angle the following
procedure may be used. First compute the perpendicular

exit path F where:

A A A
F=(B' A C'")/|B" A C'|
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FIGURE I.3.1

THE VECTOR C' WHICH LIES ALONG
THE DIRECTION OF THE LINE OF

INSERTION
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THE VECTOR D WHICH IS PERPEN-
DICULAR TO THE SHORTEST PATH

PLANE
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Next compute the cosine of the angle between F and D
which is given F.D, and let the sign of this cosine

function be the sign of the twist angle.

Robinson (1975) decided that the actual twist angle

should be proportional to the cosine of the angle

'tilt' which is formed between the vector representing
A

the line of insertion C' and the origin vector A:

cos(tilt)=f.é'.A)/ laj

one may then define the actual twist angle (atwist) to

be given by:

atwist=cos(tilt)xtwist
Note that in the primary plane cos (tilt) is always
zero so there is no twist at the insertion. The actual
exit path F is then given by:

A A A
F= =-sin(atwist)C'+cos(atwist)F

I.4 Paths of the muscles over the eyeball

Even with the exit path of the muscle known it is still
an open guestion as to what path the muscle follows

away from the location of its insertion.
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Robinson (1975) made the assumption that the muscle
made contact with the eyeball along the arc of a

circle.

Before determining this circle one has to check that
no muscle has lost tangency to the eyeball, as for
example occurs with the medial rectus in the

normal eye when there is an adduction of greater
than thirty-four degrees, for when a muscle loses
tangency it automatically takes the shortest path.
For a muscle to lose tangency the angle angl between
A and B' must be less than the angle ang2 between A
and B' when the muscle is tangential to the eyeball.
These two angles may be computed for comparison

according to the formula:

cos (angl)=A.B'/( IA IIB|)

cos (ang2)= 'B'f v ]A]

If a muscle has lost tangency, the unit action vector
A A
R of the muscle is given by the orientation vector D

A A
of the shortest path plane (i.e. R=D). Since the

muscle force is no longer acting tangentially it must
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be reduced, which can be achieved by scaling down

the unit action vector by a constant given by:

const=[A| sin(angl)/ ‘A-B'f

which is the perpendicular component of the force

acting along A-B' divided by ,A-B" to normalise it.

The change in the length of the muscle when it has
lost tangency may be computed by means of the

formula:
Al= IB'I (angl—ang?.)--lo

where l0 is the length of the contact arc in the

primary position.

When specifying the circle of contact an important
consideration is that there should be no sharp changes
in the direction of the muscle path at the point where
it leaves the eyeball. The locus of such points forms
a tangent circle orthogonal to the origin wvector A

and there will be no sharp changes in the direction

of the muscle path if the circle of contact is ortho-
gonal to the tangent circle, which is ensured if the

A 1'\.
plane of the contact arc is taken to contain both F
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located at B' and the origin of the muscle A. Thus
A
the plane is spanned by two vectors F and G where G=A=B'.

These vectors are shown in Figure I.4.1.

To specify the actual contact circle one may consider
the vectors H1 and H2 from the centre of the contact
circle to the point of insertion and the point where
the muscle leaves the eyeball, respectively. The vector

A
Hl1 may be expressed as a linear combination of F and G.

-

To do; this, first cémpute the angle Il between F and

G given by:
A
cos(Il)=G.F/ IG'
I
an appropriate linear combination is of the form:

A A A
sin(Il)Hl=cos (Il1l)F-G
hence

A
Hl=(cos(Il)F—G/’Gl)/sin{Il)

To find the length of H1 consider a vertical plane
A
passing through both H1 and B' from which it follows
that the angle I2 between them is given by:
A

cos (I2)=H1.B'/|B"'|

A
and so IHll =radius of eyeball x cos(I2) and Hl=|Hl!le.
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FIGURE TI.4.1

THE VECTORS GAND F WHICH

SPAN THE MUSCLE PLANE
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Next, form H2 by finding the angle m3 between Hl1l and
H2 (see Figure I.4.2). To do this, consider the
vector H3 given by H1+G. The angle between H1l and H3

is given by:
cos (m1)=H1.H3/ |H1| |H3|
whilst the angle m2 between H2 and H3 is given by:

cos (m2)=|H2| /|u3| =|u1| /|u3]
since IHlI=[H2]

and m3=ml-m2

Hence the direction of the vector H2 to the point where

the muscle leaves the eyeball is given by:

A A A
H2=cos (m3)Hl+sin(m3)F
so

H2=|H1I£2
To form the unit action vector for each of the muscles,
one must first find the point where the muscle leaves
the eyeball. This point is specified by the vector P
where:

P=B'-H1+H2

and the unit action vector is given by the orientation
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vector R of the plane spanned by A and P:

A

R=A A P/|anp|
To find the length changes of the muscles in any given
position, consider the angle m3 of the contact arc of
the muscle, from which the lengthAl of the contact arc
follows as lHl|m3. This variable may be expressed as:

&l=l—l0

The percentage change from the muscle length in the

primary position is given by:
A '=al/lp x 100

where lp is the length of the muscle in the primary

position.

T.5 The innervation problem

Effectively there are only three independent variables
e(l),e(3) and e(5) since e(2),e(4) and e(6) are deter-
mined by the innervation values with odd numbered in-
dices. The actual values of e(l),e(3)and e(5) are found

by an iterative procedure as follows:

1) Guess at e(l),e(3) and e(5) and use these values

to calculate a first approximation to the total amount Mo:
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6

T.e, Mo=T+If (i)R (1)
i=1

2) At equilibrium the total moment M should be zero.

A linear approximation to M around Mo is given by:

6

i.e. M=Mo+ L M/ e (i) *deltae (i)
i=1
6
=Mo+ I (9 £(i)/ 3 e(i)*deltae(i))R(1)
i=1

and if M is zero this implies that:

6
-Mo= L(3 £(i)/ 3e(i)*deltae(i))R(i)
i=1

6
= (9 E(2i-1)/ 3 e(2i-1)R(2i~-1)
i=1

+ f(2i)deltae(2i)*de(2i)/de(2i-1)R(2i))deltae(2i-1)

3) Let p(i)=23£f(i)/ 3e(i) and d(i)=de(2i)/de(2i-1).
Then the above relation can be written as a matrix

equation:

-Mo=A*DELTAE
where

DELTAE (1) = geltae (1)

DELTAE (2) deltae (2)

I

DELTAE (3) deltae (3)

and the components of the matrix A are as follows:
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Similarly, the reciporical innervation relationship:

e(2i1)=(9120.25/(e(2i-1)+90))-90

implies that

de (2i) /de (2i-1)=-9120.25/(e(2i-1)+90) **2

I.6 The position problem

The solution to the position problem used by Robinson
(1975) involves decomposing the axis of the moment on
the eye into rotations around Fick's axes, and then
using the angles of rotation to estimate more appro-
priate orientation angles. This procedure is unstable
because it does not take into account the order in which
the rotations occur. Hence a more exact procedure was
developed in which the eye is rotated arourid the axis

of the moment and the new orientation angles are calcu-
lated directly. The details of the procedure are as

follows:

Given an axis of rotation S and an angle or rotation
p, with current orientation angles @, 8 and Y then the
orientation angles after rotation ¢',8' and Y' may be

calculated as follows:

it Set up unit vectors X,Y and Z in the directions of

the base vectors I,J and K in the head based co-ordinates.
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A(1,1)=p(1)*R(1,1)+p(2)*d (1) *R(1,2)
A(1,2)=p(3)*R(1,3)+p(4)*d(2)*R(1,4)
A(1,3)=p(5)*R(1,5)+p (6)*d (3) *R(1,6)
A(2,1)=p(1)*R(2,1)+p(2) *d (1) *R(2,2)
A(2,2)=p(3)*R(2,3)+p (4)*d (2) *R(2,4)
A(2,3)=p(5)*R(2,5)+p (5) *d (3) *R(2,6)
A(3,1)=p(1)*R(3,1)+p(2) *d (1) *R(3,2)
A(3,2)=p(3)*R(3,3)+p(4) *d (2) *R(3,4)

A(3,3)=p(5)*R(3,5)+p(6)*d(3) *R(3,6)

4) This matrix equation may be solved for DELTAE and
an improved guess at the innervation values is given
by e(l)+DELTAE(l),e(3)+DELTAE(2) and e (5)+DELTAE(3).
This procedure is repeated until Mo is made sufficient-

ly small.

The required derivatives are straight forward to

derive since:

f(i)=stren (i) * (passive force+palsy(i)*active force)
=stren (i) * (passive force+palsy (i) *(total force-passive force))
and as the passive force does not change with the level

of innervation:
9f (1) /3e (i)=93(stren (i) *palsy (i) *total force) /de(i)

=stren (i) *palsy (i) *(0.9+0.81 (deltal(i)+e(i))/

sqrt(38.9376+0.81 (deltal(i)+e(i))**2))

106



2) Rotate the vectors around the axis S through the

angle p to obtain the vectors X',Y' and 2'.

3) Calculate the new orientation angle 3 ', which

is given Dby:

a'=acos((2(L),2(2),0).(0,1,0))

with

sign of @'=sign of acos ((z(1),2(2),0).(1,0,0))

4) Calculate the new orientation angle 8 ' which is
given by

B'=acos(Z.(0,0,1))

5) Set up unit vectors U' and V' in the direction
of the base vectors I and J in head based co-ordinates

after rotation as specified by the orientation angles

u'fsl and-al-

6) Calculate the angle of torsion e given by:
e=acos (Y,V')

and put

sign of e=sign of acos(Y¥,U')

1) Obtain vy ' from the relation:

Y'=( a'+e)
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II.1 Description of the programmes

The programmes have been written in FORTRAN IV and
graphical output has been produced by means of the
routines in the GINO graphics library. The programmes
have been implemented on the CDC 7600 at the University
of Manchester Regional Computer Centre and on the ICL
1904s at the University of Aston Computer Centre. The
majority of the programme runs were carried out at
Aston University and the computations required from 400
to 2400 seconds of machine time for a pair of Hess charts,
depending on the degree of paresis. Although the
programmes will run on a Z80 based microcomputer running
Microsoft Fortran 80 under the CP/M operating system,

it was found that the time taken was prohibitively

long, each run taking several hours.

The programmes listed in this section of the Appendix
correspond to the two binocular schemes, scheme A and
scheme B, and are followed by an example of their output.
In order to facilitate portability of the programmes the
graphics routines have been removed in these versions

of the programmes.

8 Description of functions and subroutines

This section of the Appendix gives descriptions of the

computations carried out by the functions and subroutines
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used in the programme. The descriptions are followed

by complete listings of the routines.

FUNCTION ACOS(X) Computes the value of arcos x.

FUNCTION ANGLE(A,B) Computes the angle between the

vectors A and B

SUBROUTINE COMPON (X,Y,Z) Accepts the orientation
angles alpha, beta and gamma in X,y and z respectively,

and sets up the components of the rotation matrix A.

SUBROUTINE CROSS (A,B,C) Accepts two vectors A and B

and forms their normalised cross product.

FUNCTION DOT (X,Y¥) Calculates the scalar product of

two wvectors X and Y.

SUBROUTINE EXIT (A,B,TURN,D,F) Accepts the origin and
insertion vectors of the muscles A and B, rotates the
insertion vectors in accordance with the eye position
characterised by the matrix TURN and returns the short-

est path vector D and the exit vector F.

SUBROUTINE GYRO (P,T,X) Rotates the wvector X about the

unit axis vector P through the angle T.

SUBROUTINE LEVEL (THETA, DELTAL, R,S,T,E,PALSY) Starts

with a guess at the innervation values E and proceeds
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iteratively to the correct solution.

SUBROUTINE MOMENT (T, DELTA,E,PALSY,STREN,R,S,CONST)
Calculates the overall moment on the eyeball and returns

its axis S and its size const.

SUBROUTINE PATH (A,B,D,F,LENGTH,CONTAC,R,DELTAL)
Determines the paths of the muscles over the eye and
computes the action vectors R and percentage length

changes DELTAL that result.

SUBROUTINE PICKUP (A,N,X) Accepts the 3x6 matrix A
and the variable n which specifies the required
column of the matrix and places this column in the

vector X.

SUBROUTINE PLUS (X,Y) Adds the vectors X and Y and

returns the result in X.

SUBROUTINE PUTBAK (A,N,X) Accepts the 3x6 matrix A,
the variable n which specifies the required column
of the matrix and the vector X which is to be placed

in the matrix at the specified column.

SUBROUTINE ROTAT (A,X) Rotates the vector X according

to the rotation matrix A.

SUBROUTINE SETUP (ALPHA,BETA,GAMMA,PRIMO,A,PRIMI,B,

TURN,T,EY) Sets up the muscle origin and insertion

1



vectors A and B, the rotation matrix TURN and corres-
ponding passive moment T, for the orientation angles

specified by alpha, beta and gamma.
FUNCTION SIZE (X) Computes the length of the vector X.

SUBROUTINE SOL (A,Y,X) Accepts the matrix equation
AX=Y and solves the equation by application of the

inverse matrix, formed according to Cramer's rule.

SUBROUTINE SWIVEL (ALPHA,BETA,GAMMA,S,CONST) Rotates
the eye, initially in the position specified by the
orientation angles alpha, beta and gamma, about the
vector S by an amount const, and returns the new

orientation angles.

SUBROUTINE TIMES (A,X) Multiplies the vector X by the

scalar A.

SUBROUTINE TRANSP(A) Forms the transpose of the rota-

tion matrix A.
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PROGRAM SCHEMA
MODELS THE EFFECT OF PALSIES ACCORDING TO SCHEME A
REAL LENBTH

DECLARE THE CONSTANT ARRAYS OF THE MUSCLE ORIGINS PRIMOL AND
PRIMOR AND THE MUSCLE INSERTIONMS PRIMIL AND PRIMIR OF THE
NORMAL LEFT ANMD RIGHT EYES RESPECTIVELY

DIMENSION PRIMOL (3,6) ,PRIMORIS, &) ,FRIMIL(T,8) ,PRIMIR(T,S)

DECLARE THE ARRAYS OF STANDARD MUSCLE LENGTHS LENGTH,CONTACT
ARCS CONTAC AND CROSS SECTIONAL AREA STREM

DIMEMSION LENGTH(&),CONTAC(5) ,STREN(S)

DECLARE THE CONSTANT ARRAY OF STAMDARD EYE POSITIONS ORIENT AND
YARIABLE ARRAY OF POSITIONS ACTUALLY ASSUMED BY THE EYEE CHART

DIMENSION ORIENT (3,7),CHARTIS, 1S

DECLARE THE CONSTANT ARRAYS OF INMERVATION PALSY FACTORS FALSYL,
PALSYR AND FALSY

DIMENSION PALSYL (&) ,PALSYR (&) ,FALSY(5)

DECLARE THE VARIABLE ARRAYS USED DURIMG THE CALCULATIONS.THESE ARE
AS FOLLOWS: THE ARRAY OF CRIGINS OF THE MUSCLES A, THE ARRAY OF
INSERTIONS OF THE MUSCLES B, THE ROTATION MATRIX TURN USED TO MOYE

THE EYE,THE ARRAY OF CORIENTATION VECTORS OF THE SHORTEST PATH PLANE
D,USED WHENEYVER A MUSCLE LOSES TANGENCY,THE ARRAY OF ACTUAL EXIT
PATHS OF THE MUSCLES F,THE ARRAY OF MUSCLE ACTICOM VECTORS R, THE ARRAY
OF FESRCENTAGE LENGTH CHAMGES DELTA,THE ARRAY OF INNERVATICON YALUES

E ASSOCIATED WITH A GIVEN FPOSITION OF GAZE,THE ARRAY CONTAINING THE
PASSIVE MOMENT T AND FIMALLY, THE ARRAY CONTAINING THE OVERALL MOMEMT
-1 5

DIMENSION A(3,8),3(3,56),TURNIS,3)
DIMENSION D(3,56),F(3,6],RIT,6)
DIMENSION DELTA(S) ,E(8),T(3),3(3)

SET UF ARRAY OF STAMDARD EYE POSITIONS

DATA ORIENT / 0.0 s 0.0 s 0.0 s
1 Q.0 s 0.2518 , 0.9 y
2 0.78%4 , 0.3732 ,-0.785% ,
3 1.5708 , 0.25618 ,-1.8708 ,
3 2.3562 , 0,3752 ,-2.35&62 ,
S 3.1416 , 0.2518 ,-35.14158 ,
=) 2. IWED - G.II5Z , 2.55482
7 -1,3708 , 0.2618 , 1.5708 ,
g -0.7888 , ©.3752 , R.7854 /

SET UFP ARRAYS OF MUSCLE ORIGIMS AMND IMSERTIONS
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DATA PRIMOL / 13.0 , O.& ,-34.0 ,
1 17:0 , 0.4 .-30.0 .
2 thle o ZE =31278
3 16.0 , =2.84 ,=31.76 ,
4 1% 27 . 12.9% . B.28
5 R L e T o
c
DATA PRIMOR /-13.0 , 0.& ,-34.0 ,
1 170 ; Ouh -30.0 |
2 ~tELD i S.bh =31.74 .
3 -16.0 , -2.4 ,-31.7&6 ,
5 -1%.27 , 12.25 , 8.24 ,
5 ~2i.0 i-1%I8% . 11X 7
o
DATA PRIMIL /-10.08 , 0.0 , &.5 ,
1 G.&6% ; 0.0, 5 884
z OL0 ; i0seB A3
3 0.0 ,=-10.24 , 8.02 ,
3 -39 . 11.0% , =4.41 ,
s -B8.7 . 0.0 , =7.18 /
c
DATA FRIMIR / 10.08 , 0.0 , &.5 ,
1 -9.65 , 0.0 , B.83 ,
2 0.0  10.48 ; 7.4% ;
3 0.0 ,-10.24 , 8.02 ,
4 soal o rlns o aqlal
5 Bo7 L 0uG L =7atE
C
C SET UP THE ARRAYS OF MUSCLE LENGTHS,CONTACT ARCS,CROSS SECTIONAL
C AREAS AMD INNERVATION SCALE FACTORS
>
DATA LENBTH / 49.11,38.51,31.96,42.49,22.28,35.35 /
DATA CONTAC / 15.94, 7.4 ,10.23,11.02, S.01,17.13 /
DATA STREN 7 1.0, 1.04, 0.48, 0.95, 0.5 , 0.37 /
DATALPALSY) . 1.0V, 1.0 ; 1005 1.0 ;100 400 7
DATA PRIEVL 7 1.0, 1,0 5 1.0, fJ0 , 1.0, 450 /
BATA PALSYE 70 iy 1,8 . .0, 1.6 ., daol " aian s
c
C CALCULATE FOSITIONS ADOPTED 8Y THE RIGHT SYE WHEN THE LEFT EYE I
C FIXATING
c
N=1 -
200 ALPHA=ORIENT (1,N)
SETA=0RIEZNT (2.M)
GAMMA=ORIENT (3, M)
c
C FIRSTLY CALCULATE THE INNERYATION VALUES REDUIRED BY THE PARETIC
C LEFT EYE TO MAINTAIM THE POSITION OF FIXATIDN
¢
CALL SETUP (ALPHA,BETA,BAMMA,PRIMOL, A, RIMIL, B, TURN,T,1.0)
CALL EXIT(A,B,TURN,D,F)
CALL PATH(A,B,D,F,LENGTH,CONTAC.R,DELTA)
0O 210 I=1,&
210 E(1)=S.3

CALL LEVEL (STREN,DELTA,R,S,T,E,PALSYL)
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CONDLY CALCULATE THE POSITION ADOPTED BY THE NORMAL LEFT EYE WITH

E
HESE LEVELS OF INMNERVATIOM

“qoooo
W

o
(=]

CALL SETUP (ALFHA,BETA,GAMMA,PRIMOL,A,PRIMIL,2, TURN,T,1.0)
CALL EXIT(A,B,TURN,D,F)
CALL PATH(A,2,D,F,LENGTH,CONTAC,R, DELTA)
CALL MOMENT (T, DELTA, E,PALSY,STREN,R, S, CONST)
IF (CONST.LT.0.1) BOTO 400
CONST=CONST/200.0
CALL SWIVEL (ALPHA,BETA,GAMMA,S,CONST)
G0TO 300
c
C THIRDLY CALCULATE THE INNERVATION LEVELS REQUIRED BY THE NORMAL
C RIBHT EYE TO MAINTAIN THIS POSITICN
c
400 CALL SETUP (ALPHA,BETA,GAMMA, PRIMOR,A, PRIMIR, B, TURN, T,~1.0)
CALL EXIT(A,B,TURM,D,F)
CALL PATH(A,3,D,F,LENGTH,CONTAC,R,DELTA)
D0 410 I=t,&
410 (1}=5.5
CALL LEVEL (STREN,DELTA,R,S,T,E,PALSY)
c
C FINALLY CALCULATE THE POSITIONS ADOFPTED BY THE PARETIC RIGHT EYE
C UNDER THESE INNERVATION VALUES

C
ALPHA=ORIENT (1,M)
BETA=0RIENT (2, M)
SAMMA=ORIENT (3, M)
00 CALL SETUP (ALFHA,EBETA,BAMMA, PRIMOR,A,PRIMIS, 3, TURN, T,-1.0)
CALL EXIT(A,B,TURN,D,F)
CALL FPATH(A,B,D,F,LENSTH,CCONTAC,R,DELTA)
CALL MOMENT (T,DELTA,E,PALSYR,STREN,R,S,CONST)
IF(CONST.LT.0.5) B0TO &G0
CONST=CONST/100.0
CALL SWIVEL (ALPYA, ZETA, 3AMMA, S, CONST)
GOTO SO0
(o
C MOVE OM TO MEXT POSITICN
c
&£00 CHART (1, N+3) =ALFHA
CHART (2, M+9) =BETA
CHART (3, N+9) =GAMMA
N=n-+1
IF(N.GT.9) GOTO 700
GO0TC 200
c
C CALCULATE POSITIONS ADOPTED BY THE LEFT EYE WHEN THE RIBHT EYE IS
C FIXATING
c
700 M=1
710 ALFPHA=ORIENT (1,M)

BETA=0RIENT(2,N)
EAMMA=CRIENT (I, M)
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EIRSTLY CALCULATE THE IMMERVATION VALUES REQUIRED BY THE PARETIC
RIGHT EYE TO MAINTAIN THE POSITION OF FIXATICN

onoon

CALL SETUP(ALPHA,BETA,GAMMA,PRIMOR,A,PRIMIR, B, TURN, T,~1.0)
CALL EXIT(A,3,TURN,D,F)
CALL PATH(A,B,D,F,LENGTH,CONTAC,R,DELTA}
D0 720 I=L,5
720 E(1)=5.5
CALL LEVEL (STREN,DELTA,R,S,T,E,PALSYR)
c
C SECONDLY CALCULATE THE SOSITION ADOPTED BY THE NORMAL RIGHT EYE
C WITH THESE LEVELS OF INNERVATION
=
800 CALL SETUP (ALFHA,SETA, BAMMA, PRIMOR,A,FRIMIR, 3, TURN, T,~1.0)
CALL EXIT(A,B,TURN,D,F)
CALL PATH(A,B,D,F,LENSTH,CONTAC,R,DELTA)
CALL MOMENT (T,DELTA, E,PALSY,STREN, R, S, CONST)
IF(CONST.LT.0.1) 3070 00
CONST=CONST/200.0
CALL SWIVEL (ALPHA,BETA,GAMMA,S,CONST)
G0TO S00
c
C THIRDLY CALCULATE THE INNERVATION LEVELS REQUIRED 3Y THE NORMAL
C LEFT SYE TO MAINTAIM THIS POSITION
c
300 CALL SETUP (ALPHA,BETA, GAMMA, PRIMOL,A,PRIMIL, 3, TURN,T,.1.0)
CALL EXIT(A,B,TURN,D,F)
CALL PATH(A,2,D,F,LENGTH,CONTAC,R,DELTA)
DO 910 I=1,6
910 S(1)=5.5
CALL LEVEL (STREN,DELTA,R,S,T,E,PALSY)
c
C FINALLY CALCULATE THE POSITIONS ADOPTED 3Y THE PARETIC LEFT EYE
C UNDER THESE INMNERVATIOM VALUES
8
ALPHA=ORIENT (1,N)
BETA=0RIENT (2,N)
BAMMA=CRIENT (I, M)
1000 CALL SETUP (ALFHA, BETA, BAMMA, PRIMOL, A, PRIMIL, 3, TURM, T, 1.0)
CALL EXIT(A,3,TURN,D,F)
CALL PATH(A,R2,D.F,LENGTH,CONTAC,R, DELTA)
CALL MOMENT(T,DELTA,E.PAL3YL,STREN,R,3,CONET)
IF{CONST.LT.0.5) B0TO 1100
CONST=CONST/20Q.0
CALL SWIVEL (ALFHA,BETA,GAMMA,S,CONST)
GOTO 1000

a -
C MOVE ON TO MEXT PCSITICN
c
1

100 CHART (1, NY=8LFHA
CHART (2, M) =BETA
CHART (3, N} =EaMMA
M=N+1
IFIN.GT.9) GOTO 1200
EOTO 710
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c
C WRITE OUT THE POSITIONS ASSUMED
¢
1200 WRITE (2, 2000)
2000 FORMAT (1HO, 'POSITIONS ASSUMED 2Y LEFT EYE")
2010 FORMAT (1HO, POSITIONS ASSUMED 3Y RIBHT EYE’)
WRITE(2,2020)
2020 FORMAT (140, * ADDUCTION-', 10X, *ELEVATION-", 10X, *EXTORSION=")
WRITE (2,2030}
2030 FORMAT (1H ,° ABDUCTION’,10X,’ DEPRESSION®,10X,’ INTORSION’)
c
DO 2100 N=1,18
ALPHA=CHART (1, M)
BETA=CHART (2, N)
GAMMA=CHART (3, N)
CONST1=SORT (COS (BETA) 42+ (COS [ALPHA) #+2) # (SIN (BETA) #%2) )
IF(CONST1.GT.0.9999) CONST1=0.9959
IF(CONST1.LT.-0.999%) CONST1=-0.9999
CONST 1=ACCS (CONST1)
CONST1=CONST1%57.3
IF (ALFHA.LT.0.0) CONST1=-CONST1
CONST2=SORT (COS (BETA) %2+ (SIM (ALPHA) #+2) # (SIN (SETA) «*2) )
IF(CONST2.GT.0.9999) CONSTZ2=0.3999
IF (CONST2.LT.-0.9999) CONST2=-0.7999
CONST2=ACOS (CONST2)
CONST2=CONST2%57.3
IF (ABS (ALPHA) .GT. 1.5708) CONST2=-CONST2
CONSTI= (ALSHA+GAMMA) 57,3
IF (M.E0.10) WRITE(Z,2010)
IF(N.EQ.10) WRITE(Z2,2020)
IF(N.EQ.10) WRITE(Z,2030)
WRITE(2,2040) CONST1,CONSTZ,CONSTS
2040 FORMAT (1H ,3(F10.1,10X))
2100 CONT INUE

END

n7
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PROGRAM SCHEME
MODELS THE EFFECT CF PALSIES ACCORDING TO SCHEME B

REAL LENGTH
DECLARE THE CONSTANT ARRAYS OF THE MUSCLE ORIGINS PRIMOL AND
PRIMOR AND THE MUSCLE INSERTIONS PRIMIL AND PRIMIR OF THE
MORMAL LEFT AND RIGHT EYES RESPECTIVELY

DIMENSION PRIMOL (S, 5),PRIMOR(S, 8) ,PRIMIL (T, ) ,PRIMIR(S, 8]

DECLARE THE ARRAYS OF STANDARD MUSCLE LENGTHS LENGTH,CONTACT
ARCS CONTAC AND CROSS SECTIONAL AREA STREN

DIMENSION LENGTH(6) ,CONTAC(S) ,ETREN(S)

DECLARE THE CONSTANT ARRAY OF STAMDARD EYE POSITIONS ORIENT AMD
VARIABLE ARRAY COF POSITIONS ACTUALLY ASSUMED BY THE EYES CHART

DIMENSION ORIEMT (3,9),CHARTI(Z,18)

DECLARE THE COMSTANT ARRAYS COF INNERVATION PALZSY FACTORS PALSYL,
PALSYR AND FALSY

DIMENSIOM PALSYL (&) ,PALSYR(&) ,FPALSY (&)

DECLARE THE VARIABLE ARRAYS USED DURING THE CALCULATIONS.THESE ARE
AS FOLLOWS:THE ARRAY OF ORIGINS OF THE MUSCLES A, THE ARRAY OF
INSERTIONS OF THE MUSCLES B, THE ROTATION MATRIX TURN USED TO MOVE
THE EYE,THE ARRAY OF ORIENTATION VECTORS OF THE SHORTEST PATH FPLANE
D,USED WHENEVER A MUSCLE LOSES TANGEMCY,THE ARRAY OF ACTUAL EXIT

PATHS OF THE MUSCLES F,THE ARRAY OF MUECLE ACTION VECTORS R, THE ARRAY

OF PERCENTAGE LEMGTH CHAMEBES DELTA,THE ARRAY OF IMNMNERVATION VALUES
E ASSOCIATED WITH A GIVEN POSITION OF SAZE,THE ARRAY CONTAIMING THE
PASSIVE MOMENT T AND FINMALLY,THE ARRAY CONTAINING THE QVERALL MOMENT
S

DIMENSICON A(F,8) ,B(3,5), TURN(Z,3),XT(3)
DIMENSION D(3,6),F(3,.8),R(5,8),TRI(I,S)
DIMENSION DELTA(S),E(&),T(3),S(3),TDELTA(S),TT(3)

SET UFP ARRAY OF STANDARD EYE POSITIONE

DATA ORIENT / 0.0 . 0.0 , 0.0 ;
1 0.0 , 0.2513 , 0.0 ;
2 0.7954 , 0.3752 ,-0.7853 ,
z 1.5708 , 0.2818 ,-1.37032 ,
a 2.3562 , 0.3752 ,-2.35&2 ,
s 3.14156 , 0.24818 ,-3.141% ,
5 -2, ZELD | 0.3752 ; 2.I5&2 ,
7 -1.5708 , 0.2518 , L.5708 ,
e -0.7854 , 0.3752 , Q.7854 /

o

SET UP ARRAYS OF MUSCLE ORIGINS AMD INSERT

e
L

M
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DATA FPRIMOL / 13.0

] O.'a s 1
1 170 5 0.6 =20.0 j
2 16,0 . 3.8 .=31.78 ,
3 6.0, =24 ~BL.76 ;
3 15.27 , 12.25 , 8.24 ,
S 1.1 ,-15.43 , 11.3% 7/
c
DATA PRIMOR /-13.0 , 0.6 ,-34.0 ,
1 =tZi0 . G.& ;-30.0 ,
2 S{ElD , XA .76
3 =160 ; =24 =31.76
4 =109.27 5 12.20 , «24 ,
= -11.1 ,~1%.43 , 11.34 /
c
DATA PRIMIL /-10.08 , 0.0 , &.5 ,
1 9.65 , 0.0 , ©.84,
2 T i R
3 0.0 ,-10.24 , B8.02 ,
4 —p.ol = ii.o% . =441 .
s BT 0.0 , =Faas ¥
c
DATA PRIMIR / 10.08 , 0.0 , 4.5 ,
i -7.65 , 0.0 , B.84,
2 5.0 . T8 . ITES
3 0.0 ,-10.24 , B8.02 ,
3 2.9 , 11.08 . -4.81 ,
=] B:7 5 0.0 4 =7 18 7
c
C SET UP THE ARRAYS OF MUSCLE LENGTHS,CONTACT ARCS,CROSS SECTIONAL
C AREAS AND INNERVATION SCALE FACTORS
c
DATA LENGTH / 49.11,38.51,41.96,42.49,22.28,35.33 /
DATA CONTAC / 15.94, 7.& ,10.23,11.02, 5.01,17.13 /
DATA STREM / 1.0 , 1.04, 0.48, 0.95, 0.5 , 0.47 /
DATAPALEY 7 3.0 , 1.0 , 1.0 , 1.0, 1.6, 1.0 /
DATA PALSYL / 1.0 , 1.0, 1.0, 1.0, t.0 , 1.0 /
DATA PALSYR 7/ 1.0 , 1.0 , 1.0 , 1.0 , 1.0 , 1.0 7
c
C CALCULATE POSITIONS ADCPTED BY THE RIGHT EYE WHEN THE LEFT EYE 1
C FIXATING
e
N=1
200 ALPHA=ORIENT (1,N)
BETA=ORIENT (2,N)
SAMMA=ORIENT (3, M)
c s
C FIRSTLY CALCULSYE THES INMSRVATION VALUES REQUIRED 3Y THE PARETIC
C LEFT EYE TO MAINTAIN THE POSITION CF FIXATION
c
XT(1)=0.0
AT(2)=0.0
XT(3)=1.0

CALL COMPON (ALFHA, BETA,GAMMA, TURM)
CALL TRANSF(TURM)
CALL ROTAT(TURN,XT)
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CALL SETUP(ALPHA,BETA,GAMMA,PRIMAL,A,FPRIMIL.B, TURN,TT, 1.0}
CALL EXIT(A,B,TURN,D,F)
CALL PATH(A,B,D,F,LENGTH,CONTAC, TR, TDELTA)
NT=0
205 NT=NT+1

CALL SETUP (ALPHA,BETA,GAMMA, PRIMOL,A,PRIMIL, S, TURN, T,1.0)
CALL EXIT(A,R,TURN,D,R)
CALL PATH!(A,B,D,F,LENGTH,CONTAC,R,DELTA)
DO 210 I=1,&
E{I)=5.5
CALL LEVEL (STREN,DELTA,R,S,T,E,PALSYL)
CALL MOMENT(TT, TDELTA.E,PALSYL,STREN,TR,5,CONST)
XC=CONST/400.0
TCONST=CONST
IF(CONST.LT.0.S) GOTO 405
IF (ABS (DOT (XT,S)).BT.0.95) GOTO 40S
CALL TIMES(-1.0,5)
CALL SWIVEL (ALPHA,BETA,BAMMA, S, XC)
CAMMA=-ALFHA
G0TO 205
30% C1=0.0
o
C SECONDLY CALCULATE THE INMERVATIOM LEVELS REQUIRED BY THE NORMAL
C RIGHT EYE TO MAINTAIN THIS POSITICN
c
400 CALL SETUP (ALPHA,BETA, GAMMA, PRIMOR, &, PRIMIR, B, TURN, T,-1.0)
CALL EXIT(A,8,TURM,D,F)
CALL PATH(A,R,D,F,LENGTH,CONTAC,R,DELTA)
DO 410 I=1,6
410 E(I)=5.5
CALL LEVEL (STREN,DELTA,R.S,T,E,PALSY)

K
-
o

€
C FINALLY CALCULATE THE POSITIONS ADOFTED BY THE PARETIC RIGHT SYE
C UNDER THESE INMERVATIONM VALUES
e
ALPHA=CRIENT (1,M)
BETA=ORIENT (2, M)
GAMMA=ORIENT (3, N)
S00 CALL SETUP (ALFHA, BETA, BAMMA, PRIMOR,A,FRIMIR, B, TURN, T,-1.0)
CALL EXIT(A,E,TURN,D,F)
CALL PATH(A,B,D,F,LENGTH,CONTAC,R,DELTA)
CALL MOMENT (T,DELTA,E.PALSYR, STREN,R, S, CONST)
IF{CONST.LT.0.8) GOTQ &00
CONST=CONST/105.0
CALL SWIVEL (ALPHA,EETA, GAMMA, S, CONST)
GOTO S00
c
C MOVE OM TO NEXT POSITIOM
c
£00 CHART (1, N+9) =ALFHA
CHART (2,N+9) =BETA
CHART (T, N+3) =GAMMA
MN=N-+1
IS(N.GT.9) SOTO 700
GOTO 200
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c
C CALCULATE POSITIONS ADOPTED BY THE LEFT EYE WHEN THE RIGHT EYE IS
C FIXATING

B

700 N=1

710 ALPHA=0RIENT (1,N)
BETA=ORIENT (2, N)
GAMMA=ORIENT (T,N)

= !

C FIRSTLY CALCULATE THE INNERVATION VALUES RERQUIRED BY THE PARETIC
C RIGHT EYE TO MAINTAIN THE POSITION OF FIXATION
c
XT(1)=0.0
XT(2)=0.0
AT(3)=1.0 .
CALL COMPOM (ALPHA,BETA,GAMMA, TURMN)
CALL TRANSP (TURN)
CALL ROTAT (TURN, XT)
CALL SETUP {ALPHA,BETA,GAMMA,PRIMOR,A,PRIMIR,B, TURN,TT,-1.90)
CALL EXIT(A,B,TURN,D,F)
CALL PATH(A,B,D,F,LEMGTH,CONTAC, TR, TDELTA)
NT=0
719 NT=NT+1

CALL SETUP (ALPHA,SETA, BAMMA,PRIMOR,A,PRIMIR, B, TURN, T,-1.0)
CALL EXIT(A,B,TURN,D,F)
RALL PATH(A,2,D,F,LENGTH,CONTAC,R,DELTA)
DO 720 I=1,6
720 E(I)=5.5
CALL LEVEL (STREN,DELTA,R,S,T,E,PALSYR)
CALL MOMENT (TT,TDELTA.E,PALSYR,STREN, TR, S, CONST)
IF (CONST.LT.0.5) 07O 750
XC=CONST/400.0
TCONST=CONST
1F (ABS(DOT (XT,S)).5T.0.9) S0TO 750
CALL TIMES(-1.0,5)
CALL SWIVEL (ALPHA,3ETA,BAMMA, S, XC)
GAMMA=-ALPHA
GOTO 715
0 C1=0.0

0

C SECONDLY CALCULATE THE INMERVATION LEVELS RERQUIRED 2Y THE MORMAL
C LEFT EYE TC MAINTAIN THIS FOSITION

T

300 CALL SETUPR{ALPHA,SETA,S6MMA, PRIMOL,A,FRIMIL, B, TURN,T,1.9)
CALL EXIT(A,3,TURN,D,F)

CALL PATH(A,2,D,F,LENETH, CONTAC,R,DELTA)

0O 910 I=1,& ;

VEL1)=5,5

CALL LEVEL (STREN,DELTA,R,S,T,E,PALSY)

1]
s
(o}

m
N
1

TIMALLY CALCULATE THE POSITIONS ADOPTED BY THE PARETIC LE=F
UMDER THESE IMMERVATICOM VALLES

- 0000
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ALPHA=CRIENT (1, N}
SETA=0RIENT (2,N)
GAMMA=0RIENT (3, N)

1000 CALL SETUP (ALPHA, BETA,GAMMA, FRIMOL, A, PRIMIL,B3, TURN,T,1.0)
CALL EXIT(A,B, TURN,D,F)
CALL PATH(A,B,D,F,LENGTH,CONTAC,R, DELTA)
CALL MCMENT (T,DELTA,E,FALSYL,STREN,R,S,CONST)
IF(CONST.LT.0.S) 5OTO 1100
CONST=CONST/200.0
CALL SWIVEL (ALFHA, 3ETA, GAMMA,S,CONST)

- GOTC 1QQQ

E: .

C MOVE ON TO NEXT POSITIDN
c

1100 CHART (1, N)=ALPHA
CHART (2,N) =BETA

+ CHART (3, N)=EBAMMA
MN=N=+1
IF(N.BT.T) GOTO 1200
GOoTO 710
(53
C WRITE QUT THE POSITICONS ASSUMED
c

1200 WRITE (2,2000)
2000 FORMAT (1HO, "POSITIONS ASSUMED BY LEFT SYE')
2010 FORMAT (1HO, "POSITIONS ASSUMED BY RIGHT EYE')
WRITE({2,2020)
2020 FORMAT (1HO, * ADDUCTION-", 10X, "ELEVATION-", 10X, "EXTORSION=-")
WRITE (2,2030)
2030 FORMAT (1H ,” ABDUCTION?,10X,’ DEPRESSION®,10X,’ INTORSICON?)

DO 2100 M=1,18
ALPHA=CHART (1,N)
SETA=CHART (2, M)
BAMMA=CHART (3, M) -
COMST1=S@RT (COS (BETA) ##2+ (COS (ALPHA) #22) # (SIM(BETA) #%2) )
IF (CONST1.GT.0.9999) CONST1=0.5999
IF (CONST1.LT,.-0.9999) CONST1=-0.999%
' CONSTL=ACDS (CONST1)
CONST1=CONST14S7.3
IF (ALPHA.LT.0.0) CONST1=-CONST!
CONSTZ=SORT (COS (RETA) ##2+ (SIN (ALFHA) #=2) # (SIN(ZETA) =21 )
IF (CONST2.67.0.7999) CONST2=0.3959
IF(CONSTZ.LT.-0.9999) CONSTZ=-0.3999
CONSTZ=8C0S {CONSTZ)
CONSTZ=CONST2457.3
IF (ABS (ALFHA) .BT. 1.5708) CONST2=-COMST2
CONSTS=(ALPHA+GAMMA) *57.3
IF (N.ER.10) WRITE(2,2010)
IF(N.EQ.10) WRITE(2,2020)
IF (N.ED.10) WRITE(2, 2030}
WRITE(2,2040) CONSTL,CONST2,CONSTS

2040 FORMAT (1R ,3(F10.1,10X)}
2100 CONTINUE
% END
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FOSITIONS ASSUMED BY LEFT EYE

ADDUCTION-
ABDUCTION
.8

.8

15.0

15.0

15.0

-3

-15.0
-15.0
=15.0

SELEVATION-
DEPRESSION

.8

13.0

15.0

.8

=10.0

-15.0

-15.0

.8

1S.0

POSITIONS ASSUMED BY RIGHT EYE

ADDUCT IONM-
ABDUCTION
.8

-8

1S5.0

1S.0

15.0

-8

-15.0
-15.0
-15.0

ELEVATICN-
DEPRESSION

.8

15.0

15.0

.8

-15.0

-15.0

-15.0

.8

15.0
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c

FUNCTION ACOS(X)

C COMPUTES THE VALUE OF ACOS X

c

PI=3.1416

IF(X.GT.0.0) ACOS=ATAN((SART (1-X#*2))/X)
IF(X.LT.0.0) ACOS=ATAN( (SERT (1-X#+2))/X)+PI
IF(X.ER.0.0) ACOS=PI/2.0

RETURN

END
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FUNCTION ANGLE(A,B)
COMPUTES THE ANGLE BETWEEN VECTORS A AND B
DIMENSION A(3),B(3)

A=A (1) #A( 1) +A(2) #A(2)+A(3) #A (D)
X=S@RT (X)

Y=B(1)*B(1)+B(2) *B(2)+B(3)*B(3)
Y=SART (Y)

X=X=Y

Y=A(1)*B(1)+A(2) #B(2)+A(3) *B(D)
IF(ABS (X-Y) .LT.Q.00001) GOTO 10
I=Y/X
IF(ABS({X~Y).LT.0.00001)Z=1.0
ANGLE=ACOS (Z)

RETURN
END

125



0o oooo

SUBROUTINE COMPON(X,Y,Z,A)

ACCEPTS THE ANGLES ALPHA,BETA AND GAMMA IN X,Y AND Z
RESPECTIVELY AND SETS UP THE COMPONENTS OF THE ROTATION MATRIX A

DIMENSION A(3,3)

A(1,1)=COS(X)*COS(Z)-SIN(X)*»COS(Y) *SIN(Z)
Al1,2)==(SIN(X)=*COS(Z)+COS(X)#COS(Y)*SIN(I))
A{l,3)=SIN(Y)=*SIN(I)

A{2,1)=COS(X)*SIN(Z)+SIN(X)*COS(Y) *COS(Z)
A(2,2)=—=(SIN(X)*SIN(Z))+COS(X)*COS(Y)*COS(Z)
A(2,3)=—(SIN(Y)#COS(I))

A3, 1)=SIM(X)#SIN(Y)
A3, 2)=COS(X) *SIN(Y)
A(3,3)=COS(Y)

RETURN
END
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SUBROUTINE CROSS(A,B8,C)
e
C ACCEPTS TWO VECTORS A AND 3 AND FORMS THEIR NORMAL IN C
c i

DIMENSION A(3),B(3),C(3)
G

C(1)=A(2)*B(3)-A(3)*B(2)

C(2)=A(3)*B(1)-A(1)*B(3)

CiI)=A(1)#B(2)-A(2)+B (1)

AREA=C (1) #22+C (2) #22+C (T) =2

AREA=SERT (AREA)

C(1)=C(1)/AREA

C(2)=C(2) /AREA

C(3)=C(3) /AREA

RETURN
END
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FUNCTICN DOT(X,Y)
c
C CALCULATES THE SCALAR PRODUCT OF THE
C TWO VECTORS X AND Y

c

DIMENSION X(3),Y(3)
c

DOT=X (1) %Y (1) +X (2) #Y (2) +X (T) #Y (3)
c

RETURN

END
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SUBROUTINE EXIT(A,B, TURN,D,)

ACCEPTS THE ORIGIN AND INSERTION VECTORS OF THE MUSCLES A AND
B,ROTATES THE INSERTION VECTORS IN ACCORDANCE WITH THE EYE
POSITION CHARACTERISED BY THE MATRIX TURN AND RETURNS THE
SHORTEST PATH VECTOR D AND EXIT VECTOR F.

DIMENSION A(3,56),B(3,6) ,TURNII,3) ,D(3,8),F(3,6)
DIMENSION C(3,48),X(3),Y(3),2(3),U(3),V(3)

PROCEED THROUGH THE ROUTINE,DOING EACH MUSCLE IN TURN
DO 100 I=1,5

COMPUTE ORIENTATION VECTOR C OF THE PLANE PERPENDICULAR TO THE
MUSCLE INSERTION

CALL PICKUP(A,I,X)
CALL PICKUP(B,I,Y)
CALL CROSS(X,Y,I)
CALL PUTBAKI(C,I,Z)

COMPUTE ORIENTATION OF THE INSERTION YECTOR (B) AND OF THE
CRIENTATION VECTOR (C) OF THE PERPENDICULAR PLANE AFTER
ROTATION OF THE EYEBALL

CALL PICKUP(E,I,X)
CALL ROTAT (TURN, X)
CALL PUTBAK(B,I,X)
CALL PICKUP(C,I,X)
CALL ROTAT(TURN, X)
CALL FUTBAK(C,I,X)

COMPUTE CRIENTATION VECTOR OF THE SHORTEST PATH FLANE (D)

CALL PICKUP(A,I,X)
CALL PICKUP(B,I,Y)
CALL CROSS(X,Y,2)

CALL PUTBAK(D,I,2)

COMPUTE THE TWIST ANGLE (TWIST) AND ITS SIGN

CALL PICKUPI(C,I,X)

CALL PICKUP(D,I,Y)

TWIST=ANGLE (X,Y)

CALL PICKUP(3,I,U)

CALL CROSS (U, X,V)

CALL PUTBAKI(F,I,V)

ATWIST=DOT (V,Y)

IF (ATWIST.LT.0.0) TWIST=-TWIST

COMPUTE THE TILT ANGLE (TILT)

CALL FICKUF(A,I,X)
CALL PICKUP(C,I,Y)
CONST1=SIZE(X)
CONST2=DOT (X, Y¥)
TILT=ACOS (CONSTZ/CONSTL)
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c
C AND HENCE FORM THE ACTUAL TWIST ANGLE (ATWIST)
c
CONST=COS(TILT)
IF (CONST.LT.0.0Q) CONST=(-CONST)
ATWIST=CONST#*TWIST
c
C COMPUTE THE ACTUAL EXIT PATH F ACCORDING TO THE FORMULA:
C F=(-SIN(ATWIST) ) *C+(COS{(ATWIST) ) #F

&
CONST=-SIN(ATWIST)
CALL PICKUP(C,I,X)
g CALL TIMES(CONST,X)
CONST=COS (ATWIST)
CALL PICKUP(F,I,Y)
CALL TIMES(CONST,Y)
£
CALL PLUS(X,Y)
CALL PUTBAK(F,I,X)
G
100 CONTINUE
e
RETURN
END
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SUBROUTINE GYRO(P, T, X)

ROTATES A VECTOR X ABOUT A UNIT
AXIS P THROUGH AM ANGLE T

0o ooon

DIMENSION P(3),X(3),Y(3)

S=SIN(T)
C=COsS(T)

Ci=(1.0-P(1)%%2) #C+P (1) %2

C2=P (1) #P (2) #(1.0-C)+P(3) %S
C3=P(1)#P(3)#(1.0-C)-FP(Z) *8
Y(1)=CleX(1)+C2#X (2) +C3*X(3)

Ci=P(1)*P(2)#(1.0-C)~P(3)*S5
C2=(1.0-P(2) »%2) *C+P (2) #*2

C3=P(2)#P (3)%(1.0-C)+F (1) %S
¥(2)=C1#X (1) +C2#X (2) +CT#X (3)

Cl1=P (1) #P(3) #(1,0=C)+P(2)+*S
C2=P(2)*#P(3)*(1.0-C)-P(1)*S
C3=(1.0-P(J)#%#2) #C+P (T) ##2

Y(3)=C1*#X (1) +C2#*X (2)+C3I*X (3)

X(1y=Y (1)
X(2)=Y(2)
X(3)1=Y(3)

RETURN
END
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SUBROUTINE LEVEL (THETA,DELTAL,R,S,T,E,PALSY)

c
C STARTS WITH A GUESS AT THE INNERVATION VALUES E,AND
C PROCEEDS ITERATIVELY TQ THE CORRECT SOLUTION
c
REAL LASTMO,LASTE
G
DIMENSION THETA(&),DELTAL{&),R(3,5),5(3),T(3),E(4),PALSY (&)
DIMENSION PDERIV (&) ,DERIV(3),COMP(3,3),LASTE (&)
DIMENSION FORCE(&),X(3),Y(3)
E: =
C INITIALISE COMPARISON VALUE OF LAST MOMENMT TO A HIGH ENOUGH VALUE TO
C ENSURE THAT THE ITERATION GETS STARTED
c .
LASTMO=1000000. 0
N=Q
c
C COMPUTE MOMENT ON EYEBALL ACCORDING TO THE FORMULA:
C M=T+SUM OVER ALL THE MUSCLES OF FORCE#R
o4
50 S(1)=T(1)
S(2)=T(2)
S(3)=T(3)
o
DO 100 I=1,6
o
CONST0=0.0
CONST1=DELTAL (I)+E(I)
CONST2=0.7%CONSTL
CONSTI=SERT (38.9374+0.81% (CONST1#%2))
FORCE (1) =THETA ( I) % (CONSTO+CONST2+CONSTS)
=
CONST1=DELTAL(I)-11.5
CONSTZ=0, F%CONST1
CONST3=SERT (38.9375+0.81% (CONST1#2))
CONST4=THETA (1) # (CONST2+CONST3)
CONSTS=FORCE (1) -CONST4
FORCE (1) =PALSY (1) *CONSTS+CONST4
c
CALL PICKUP(R,I,X)
CALL TIMES(FORCE(I),X)
CALL PLUS(S,X)
o
100 CONTINUE
c
C IF THE MOMENT CANNOT BE MADE SMALLER,HALT THE ITERATION
&
CONST=SI1ZE(S)
IF (CONST.GE.LASTMO) &0 TO 500
LASTMO=CONST

DO 110 I=1,6
LASTE(I)=E(I)
110 CONTINUE
G
C COMPUTE PARTIAL DERIVATIVE OF THE MUSCLE FORCES WITH RESFECT TO
C CHANGES IN INNERVATION
c

£33z



DO 200 I=1,5
CONST1=DELTAL(I)+E(I)
CONSTZ2=0.81#CONST1
CONST3=SERT (38.73746+0.81% (CONST1#%2) )
PDERIV(I)=THETA(I) #(0.9+CONST2/CONSTSI) #PALSY (1)
200 CONTINUE
o
C COMPUTE DERIVATIVE OF EVEN NUMBERED INNERVATION VALUES WITH RESPECT TO
C ODD NUMBERED INNERVATION VALUES
2 ;
DO 300 I=1,3
J=2%1-1
DERIVII)I=(=(5.5+20.0) #%2) / ((E(J)+F0.0) #+2)
00 « CONTINUE

FORM THE ELEMENTS OF THE MATRIX COMP WHICH HAS AN I TH COLUMN GIVEN
BY THE SUM:

PDERIV (2#1-1) *CORRESPONDING UNIT ACTION VECTOR +

PDERIV (2%I) *DERIV (1) #CORRESPONDING UNIT ACTION VECTOR

o0ooo0oo0ou

DO 400 I=1,3

J=2%I-1

CALL PICKUP(R,J,X)

CALL TIMES(PDERIV(J),X)
K=2%1

CALL PICKUP(R,K,Y)

CALL TIMES(PDERIV(K),Y)
CALL TIMES(DERIV(I),Y)
CALL PLUS(X,Y)
COMP (1, I)=X(1)
COMP (2, 1) =X(2)
COMP (3, ) =X (3)

CONTINUE

{o]
(=]

FINALLY SOLVE THE MATRIX EQUATION:

ERROR IN INNERVATION = COMP#*(-0OVERALL MOMENT)
AND SET UP NEW INMERVATION VALUES BY ADDING
ON THIS COMPONENT

O0O0004+E

CONST=-1.0

CALL TIMES(CONST,S)

CALL SOL(COMP,S,X)

E(1)=E(1)+0, 1%X (1)

E(3)=E(3)+0. 1#X(2)

E(S)I=E(5)+0. 1#X(3)
E(2)=((S.3+90.0) #*2/ (E(1)+90.0))-50.0
E(4)=((S.5+%90,0)#%2/(E(3)+90.0)1=-90.0
E(8)=((5.5+90.0) #22/ (E(5)+90.0))=70.0
M=N+1

G070 SO

S00 E{1)=LASTE(1)
E(2)=LASTE(2)
E(3)=LASTE (D)
E(4)=LASTE(4)
E(S)=LASTE (S}
E(&6)=LASTE (&)
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SUBROUTINE MOMENT (T,.DELTA,E,PALSY,THETA,R,S,CONST)

C CALCULATES THE AXIS S AND SIZIE CONST OF THE OVERALL MOMENT
€ ON THE EYE

c

100

DIMENSION S(3),T(3),DELTA(&),E(&),PALSY (&), THETA(S)
DIMENSION R(3,&),FORCE (&), X(3)

S{1)=T(1)
§(2)=7(2)
S(3)=T(3)

DO 100 I=1,5
CONSTQ=0.0

CONST1=DELTA(I)+E(I)

CONST2=0.5*CONST!

CONSTI=SQRT (38.9376+0.81% (CONSTL#%2))
FORCE (1) =THETA (1) % (CONSTO+CONSTZ+CONSTT)

CONST1=0ELTA(I)=11.5
CONST2=0. 94CCNSTL

CONSTI=SORT (38.9376+0.21# (CONST1%%2))
CONST4=THETA (1) % (CONST2+CONSTS)
CONSTS=FORCE (1) -CONST4

FORCE ( I)=PALSY (I) *CONSTS+CONST4

CALL PICKUP(R,I,X)

CALL TIMES(FORCE(I),X)

CALL PLUS(S,X)

CONT INUE

CONST=SIZE(S)
IF(CCNST.LT.0Q.01) RETURN
S(1)=5(1) /CONST
S(2)=5(2) /CONST
S(3)=8(3) /CONST

RETURN
END
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SUBROUTINE PATH(A,3,D,F,LENGTH,CONTAC,R,DELTAL)
DETERMINES THE PATH OF THE MUSCLES OVER THE EYESALL,
AND COMPUTES THE ACTION VECTORS R AND PERCENT LENGTH CHANGES
DELTAL THAT RESULT

REAL L1,L2,M1,M2,M3,LENGTH

DIMENSION A(3,48),B(3,8),D(3,8),F(3,8) ,LENGTH(&) ,CONTAC (&) ,R(3,4)

DIMENSION DELTAL (&)
DIMENSION G(3,4),H1(3,4),H2(3,6),H3(3,8)
DIMENSION X(3),Y(3),Z(3)

PROCEED THROUGH THE ROUTINE DOING EACH MUSCLE IN TURN

DO 200 I=1,6

TEST IF THE THE MUSCLE HAS LOST TANGENCY.IF IT HAS THEN CARRY OUT THE
CODE IMMEDIATELY FOLLOWING,OTHERWISE CARRY TUT THE CODE BEGINNING AT

100

CALL PICKUP(A,I,X)

CALL PICKUP(B,I,Y)
ANG1=ANGLE (X, Y)
CONST1=SIZE (X)
CONSTZ2=SI1ZE(Y)

ANGZ=ACOS (CONST2/CONSTL)
IF (ANG1.GT.ANG2) GO TO 100

SET THE UNIT ACTION VECTOR R TO BE EQUAL TO THE ORIENTATION VECTOR
D OF THE SHORTEST PATH PLANE,SCALED 3Y THE FACTOR IAI#SIN(ANG1)/IA-BI

CALL PICKUP(D,I,X)

CALL PICKUP(A,1,Y)
CONST1=SIZE(Y)
CONST2=SIN(ANG1)

CALL PICKUP(B,I,Z)
CONST==1.0

CALL TIMES(CONST,Z)

CALL PLUS(Y,Z)
CONST3=SIZE(Y)
CONST=(CONST 1 *CONST2) /CONSTS

CALL TIMES(CONST,X)
CALL PUTBAK(R,1,X)

COMFUTE THE PERCENTABGE LENGTH CHANGES USINB THE CHAMGE IN LEMGTH
GIVEN BY IBI#(ANG1-ANG2)-CONTAC

CALL PICKUP(E,I,%)

CONST=SIZE (X)

DELTAL (1) =CONST+ (ANG1-ANG2)— CONTAC(I)
DELTAL (I)=(DELTAL (I) /LENGTH(I))#100.0
G0TO 200
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c

COMPUTE THE SECOND VECTOR G IM THE PLANE OF THE CONTACT CIRCLE
GIVEN BY:
G=A-B

100 CONST=-1.0

oooo
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CALL PICKUP(A,I,X)
CALL PICKUP(B,I,Y)

CALL TIMES(CONST,Y)
CALL PLUS(X,Y)

CALL PUTBAK (G, I,X)

COMPUTE THE ANGLE L1 BETWEEN F AND G AS GIVEN BY:
COS(L1)=F.B/1GI

CALL PICKUP(F,I,X)
CALL PICKUP(G,I,Y)
L1=ANBLE (X, Y)

COMPUTE THE VECTOR H1 GIVEN BY:
H1=COS(L1)#F-G/IGI ALL DIVIDED BY SIN(L1)

CONST1=COS({L1)
CONST2=-1.Q/SIZE(Y)
CONSTS=1.0/8SIN(LLD)
CALL TIMES(CONST1,X)
CALL TIMES(CONSTZ,Y)
CALL PLUS(X,Y)

CALL TIMES{(CONSTS,X)

COMPUTE THE LENGTH OF H1 ACCORDING TO THE FORMULA:
IHI=RAD*COS(L2) WHERE L2 IS THE ANGLE BETWEEN HI AND B

CALL PICKUP(B,I,Y)
L2=ANBLE (X, Y)
CONST1=COS (L2)
CONST2=SIZE(Y)
CONSTI=CONST 1 #CONST2
CALL TIMES(CONSTS,X)
CALL PUTBAK (H1,I,X)

COMFUTE HS GIVEN BY H1+86
CALL PICEKUPIG,I,Y)
CALL PLUSY,X)
CALL PUTBAK (HI,I,Y) .

COMFUTE THE ANGLE M1 BETWEEN H1 AND HI GIVEN BY:
COS(M1)=(H1.H3) / (IH1I*IH3I)

M1=ANGLE(X, Y}

COMPUTE THE AMBLE M2 BETWEEN HZ AND HIT GIVEN BY:
COS(M2)=IH1I/IH3T
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CONST1=SIZE(X)
CONST2=SIZIE(Y)
M2=ACOS (CONST 1/CONSTZ)

COMPUTE THE ANGLE MI BETWEEN Hi1 AND H2Z GIVEN BY:
M3=M1-M2

M3=M1-M2Z

COMPUTE THE VECTOR H2 BY FIRST COMPUTING A UNIT VECTOR IN THE
DIRECTION OF H2 BY MEANS OF A LINEAR COMBINATION OF A UNIT VECTOR IN
THE DIRECTIOM OF H1 AND THE UNIT VECTOR F ACCCRDING TO THE FORMULA:
H2=CO0S (M3) #*H1+SIN (M3) #F

CONST 1=COS (M3)
CONST2=SIZE(X)
CONSTI=CONST1/CONSTZ
CALL TIMES(CONSTZ, X)

CONST1=SIN(MI)

CALL PICKUP(F,I,Y)
CALL TIMES(CONST!,Y)
CALL PLUS(X,Y)

CALL TIMES(CONSTZ,X)
CALL PUTBAK(HZ,I,X)

COMPUTE THE UNIT ACTION VECTOR R BY FIRST COMPUTING THE VECTCOR
TO THE POINT WHERE THE MUSCLE LEAVES THE EYEBALL,GIVEN BY 3-H1+H2

CALL PICKUP(B,I,X)
CONST=-1.0

CALL PICKUP(H1,I,Y)
CALL TIMES(CONST,Y)
CALL PICKUP(HZ,1,2)
CALL PLUS(X,Y)

CALL PLUS(X,Z)

NEXT FORM THE NORMALISED CROSS FRODUCT OF A WITH THIS VECTOR
CALL PICKUP(A,I,Y)
CalLL CRrOSS(Y,X,1)
CALL FUTEBRAK(R,I,Z)
COMPUTE THE LENGTH CHANGES
CALL PICKUP(H1,I,.X)
CONST=SIZIE (X}
DELTAL (I)=CONST#M3-COMNTAC(I)
DELTAL(I)=(DELTAL (I) /LENGTH(I})*100.0
QQ CONTINUE

RETURN
END
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SUBROUTINE PICKUP (A,N,X)
ACCEPTS A MATRIX A AND A VARIABLE N WHICH
SPECIFIES THE REQUIRED COLUMN OF THE MATRIX AND PLACES THIS COLUMN
IN THE VECTOR X :

DIMENSION A(3,6),X(3)

X1 =A(1, M)

X (2)=A(2,N)

X (3)=A(3,N)

RETURN
END
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SUBROUTINE PUTEAK (A,N, X)
c
C ACCEPTS A MATRIX A,A VARIABLE N, WHICH
C SPECIFIES THE REQUIRED COLUMM OF THE MATRIX AMD A VECTOR X
C WHICH IS TO BE PLACED I[N THE MATRIX AT THE SPECIFIED COLUMN.

DIMENSION A(3,58),X(3)
Al1,NI=X(1)
A(2,N)=X(2)
A3, NI =X(3)

RETURN
END
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SUBROUTINE ROTAT(A,X)

ROTATES THE VECTOR % ACCORDING TO THE ROTATION MATRIX A
DIMENSION X(37,Y(3),A(3,3)
Y(l}-ﬁtl,1)*3(H?*ﬂ(l,?)*!(z)*ﬂ{l,S)*x(3)
v(2)=m2,1}*x:1:+m2,2nx(z:+m2,31+x(31
Y(I)HQ(Z,1]*I(1)+A{3,2)+K(2)+A{3,3]*K(31
X{1)=Y (1)

X (2)=Y (2)
X(3)1=¥ (3)

RETURN
END
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SUBROUTINE SETUP (ALPHA,BETA,GAMMA,PRIMO,A,PRIMI,B, TURN,T,EY)

SETS UP THE MUSCLE ORIGIN AND INSERTION VYECTORS A AND 2,
THE ROTATION MATRIX TURN AND CORRESPONDING PASSIVE
MOMENT T,FOR THE ORIENTATION SPECIFIED BY ALFHA,EBETA AND
GaMMA

ooOoooO0on

DIMENSION PRIMO(I, &) ,FRIMI(S,8)
DIMENSICON A(3,4) ,B(3,8) , TURN(S,3),T (3}

INITIALISE MUSCLE VECTORS

DO 100 I=1,6

8 000

All,1)=PRIMO(L, D)
A(2, [)=PRIMO(2, D)
A3, 1)=PRIMO(3, I)

B(1,1)=PRIMI(1,D)
B(2, I)=PRIMI(2,1)
B(3, )=PRIMI(3, 1)
"
100 CONTINUE
£
C SET UP ROTATION MATRIX
c
CALL COMPON (ALPHA, BETA, GAMMA, TURN)
CALL TRANSP (TURN)

SET UF PASSIVE MOMENT

oon

LCONST=57.296#BETA

PFORCE=0. 43*CONST+0.0001546*CONST*+*3
CONST=57.29&+ (- (ALPHA+GAMMA) )

SFORCE=0. 48*CONST+0.0001355#CONST*%3

SFORCE=0.0

T (1) =—(PFORCE*COS (ALFHA) ) +SFORCE*SIN (ALPHA) *COS (2ETA)

T (2)=PFORCE*SIN(ALPHA) +SFORCE*COS (ALPHA) #*SIN(BETA) +EY*3. 6
T (3) =SFORCE*COS (BETA)

RETURN
END
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SUBROUTINE SOL(A,Y,X)

ACCEPTS A MATRIX EQUATION AX=Y AND FORMS AN
INVERSE MATRIX BY MEANS OF CRAMERS RULE,WHICH
1S USED TO SOLVE THE EQUATION

DIMENSION A(3,3),AINVIE,3),Y(3),X(3)

DO 100 I=1,3
DO 100 J=1,3
AINVI(I,J)=0.0
CONT INUE

C COMPUTE THE DETERMINANT OF A

c

c

DET1=A(1,1)#A(2,2) *A(3,3)
DETZ=A(2, 1) *A(3,2) #A(1,3)
DET3=A(3,1)#A(1,2)%A(2,3)
DET4=A(1, 1) *A(3,2)*A(2,3)
DETS=A(2,1)#A(1,2)#A(3, D)
DET&=A(3,1)+A(2,2)*A(1,3)
DET=DET1+DET2+DETI-0ET4-DETS-DETS

C COMPUTE IMVERSE MATRIX

c

c

AINV (1, 1)=((A({2,2)#A(3,3))—(A(3,2)*A(2,3))) /DET
AINV(1,2)=—((A(1,2)*A(3,3) )= (A(3,2)#A(1,3))) /DET
AINV (1, 3)=((Al1,2)*A(2,3))~(A(2,2) *A(1,3))) /DET
AINV (2, 1)=—( (A(2, 1) #A(3,3) )~ (A(S, 1) #A(2,3))) /DET
AINV(2,2)={({A(1,1) #A(3,3))—(A(3,1)#A{1,3)))/DET
AINV(2,3)=—-( (A1, 1) *A(2,3) ) —(A(2, 1) *A(1,3)) ) /DET
AINV (3, 1)={(A(2,1)%A(T,2))-(A(3, 11 %A (2,2))) /DET
AINV(Z,2)=—( (A1, 1) #A(3,2))~(A(3,1)*%A(1,2))) /DET
ATNV (3, 31=((A(1, 1) %A(2,2)) = (A(2, 1) #A(1,2))) /DET

C COMFUTE SOLUTION

c

X(1)=AINV(1,1)#Y (1) +AINV(1,2) #Y(2)+AINV(1,3) #Y (3)
X(2)=AINV (2, 1) #Y (1) +AINV (2, 2) #Y (2) +AINV (2,3) #Y (3}
X(S)=AINV (I, 1) *Y (1) +AINV (3, 2) #Y (2) +AINV (T, 3) #Y (3)

RETURN
END



o000 oooooon

onooo

g

SUBROUTIME SWIVEL (ALPHA,BETA,EAMMA, S, CONST)

ROTATES THE EYE, INITIALLY IN THE POSITICN

SPECIFIED BY THE ORIENTATION ANGLCS ALPHA,BETA AND GAMMA,
ABOUT THE VECTOR S BY AN AMOUNT CONST AND RETURNMS THE
NEW ORIENTATION ANGLES

DIMENSION S({3),A(3,3),X(3),Y(3,2(3),U(3),V(Z

FIRST FIND THE COORDINATES OF THE X,Y AND ZI AXES AFTER ROTATION
THROUGH THE CURRENT CORIENTATION ANGLES ALFHA,BETA AND GAMMA

X(1)=1.0
X(2)=0.0
X(3)=0.0

Y(1)=0.0
Y(2)=1.0
¥(3)=0.0

1(1)=0.0
Z2(2)=0.0
Z(3)=1.0

CALL COMPON(ALPHA,EBETA,GAMMA,A)
CALL TRANSP (A)
CALL ROTAT(A,X)
CALL ROTAT(A,Y)
CALL ROTAT(A,Z)

NEXT FIND THE COCRDINATES OF THE X,Y AND Z AXES AFTER A FURTHER
ROTATION ABOUT THE AXIS S OF THE OVERALL MOMENT

CALL BYRO(S,CONST, X)

CALL GYRO(S,CONST,Y)

CALL GYRO(S,CONST, 2)
FINALLY COMPUTE THE NEW ORIENTATION ANGLES

Ut1)=2(1)

U2)=2(2)

U(3)=0.0

V(1)=0.0

Y(Z)=1.0

V(3)=0.0

ALPHA=ANGLE (U, V)

Vi1)=1.0

Y(21=0.0

V(3)=0.0

IF(DOT(U,V).LT.0.0) ALPHA=-ALFHA
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Y(1)=0.0
V(2)=0.0
V(3)=1.0

BETA=ANGLE (V, I)

U(1)=0.0
u(2)=1.0
Uu(3)=0.0

Vi1)=1.0
V(2)=0.0
V(3)=0.0

CALL COMPON (ALPHA,BETA, -ALFHA, Al
CALL TRANSP (A}
CALL ROTAT(A,U)
CALL ROTAT (A,WV)

CONST1=ANGLE (U, Y)

CONST2=DOT (V,Y)

IF(CONSTZ.LT.0.0) GAMMA=—-ALPHA-CONST!
IF (CONSTZ2.BE. 0.0) GAMMA=-ALPHA+CONST!

RETURN
END
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SUBROUTINE TRAMSP(A)

o
C FORMS THE TRANSPOSE OF THE MATRIX A
c
DIMENSION A(3,3),B(3,
C
DO 100 I=1,3
DO S0 J=1,3
B(I,J)=A(J, )
s0 CONTINUE
100 CONT INUE
c
DO 200 I=1,3
DO 150 J=1,3
ACI,J)=B(I,])
150 CONT INUE
200 CONTINUE
c
RETURN
END
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PATIENT DB

Positions assumed by left eye

ISO-AZIMUTH ISO-LATITUDE

0.0 2,9
0.0 15.1
13,8 15,9
14.8 2.9
14,7 =11 .0
.2 -10.8
=134/ -11l.1
=14.5 L3
-13.9 13.9

Positions assumed by right eye

ISO-AZIMUTH

0.0 =g
0.0 1345
15,8 132
LS. 4 =121
14,2 «20.5
0.3 -18.8
-16.2 ~18.1
=143 = 2D
~15.3 13.8

ISO-LATITUDE



PATIENT AC

Positions assumed by left eye
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Positions assumed by left eye
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Positions assumed by right eye
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=13.1 -11.8
-14.3 Pw
-14.5 1743
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Positions assumed by left eye

ISO-AZIMUTH ISO-LATITUDE

1.1 5.0

0.0 17,7

15,06 18.0

16.3 3.7

15.8 L

25 1 - 7.4
e 5 T i A
~14.6 259
-14.7 LTt

"Positions assumed by right eye

ISO-AZIMUTH ISO-LATITUDE

0.5 = 6.3

1.0 11.3
14.7 114
14.0 - 8.0
0.9 ~23.9
= LE.6 -23.7
g BN -23.6
-16:5 = 5.3
=16.1 11 .2
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Positions assumed by left eye
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Positions assumed by left eye

ISO-AZIMUTH ISO-ELEVATION
4.0 0.0
2.6 14,9
16.6 15:2
16.7 0.0
16.7 =15.0
349 -14.6
- 8.2 -15.5
- 9.6 Qe
- 9.7 15.0

Positions assumed by right eye

ISO-AZIMUTH ISO-ELEVATION

- 7.5 - 1.3
-~ Tl 13.5

9.6 14.8

2.0 - 1.2

7.4 ~15.9
Ok 20y, -15.9
=23.1 -16.5
-22.8 = 1.2
=22.4 12:7
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Positions assumed by left eye

ISO-AZIMUTH ISO-ELEVATION

2.9 0.0

20 14.3
13.2 13.2
16.1 - 1.4

L6 =15.90
24D S 4 S

= 6.9 =15.0

- 4.6 0.0

- 6.0 14,2

Positions assumed by right eye

ISO-AZIMUTH ISO-ELEVATION

- 4.0 0.0

- 2.0 14.4
1253 14,7
9.2 0.2

9.6 -15.4

- &5 «14.9
=26.0 =154
=26.8 0.0
-24.9 14.7
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Positions assumed by left eye

ISO-AZIMUTH ISO-ELEVATION
3+ 0.0
2.6 15.0
12.6 15.0
14,6 0.0
16.5 =]13.8
S.3 -14.7
B =14 .7
= B 0.0
- 8.0 13,5

Positions assumed by right eye

ISO-AZIMUTH ISO-ELEVATION

= 8.0 0.0
- 8.7 o :
1249 15.4

8.1 = Ciail

6.8 -16.2
- 9.4 -14.6
~28d -14.8
=25.6 S
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Positions assumed by left eye

ISO-AZIMUTH ISO-ELEVATION

.9 0.0

253 13.3
12.8 14.7
14.6 0.0
15.2 ~15,2
3.2 =15.0

S K -16.4

=" 30 - 2.5
o 125

Positions assumed by right eye

ISO-AZIMUTH ISO-ELEVATION

= Bisd 0.0
=3 14.9

15.4 14.3

14.6 = 0.8

14.2 =150
- 1.4 ol % e S

-25.4 ~18.9

w Tk - 1.8

-34.1 10,5
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Positions assumed by left eye

ISO-AZIMUTH ISO-ELEVATION
10.0 1.8
9.9 15.3
>4 . 15 .3
el Laé
219 =312.5
10.4 -12.5
-2 »12eD
- 2.8 0.6
- 3,4 14,7

Positions assumed by right eye

ISO-AZIMUTH ISO-ELEVATION
-11.3 0.0
-10.9 151

7.8 13,5
sk = @.9

.6 -16.5
-11.4 ~14.,7
-30,2 ~15.5
=309 0.0
=30.5 5.0
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Positions assumed by left eye

ISO-AZIMUTH ISO-ELEVATION

9.9 0.0

128 5.0

2ol 5 e B8

22 .8 0.0

22,5 -14.9

9.6 -14.8
- 3.7 -15.2
- 09 0.0
- 0.3 14.6

Positions assumed by left eye

ISO-AZIMUTH ISO-ELEVATION
-14.3 0.0
-14.9 gl

5.8 16.2
5.7 0.0
5.6 =1529
= 9.6 -15.4
=25.1 -14.8
=28.2 @.5
=29.56 % L)
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Positions assumed by left eye

ISO-AZIMUTH ISO-ELEVATION
9.4 0.0
5.9 12.1
16.7 14.0
21,0 0.0
2241 -14.7
1l.6 -14.3
0.5 -14.9
= Gyl L
0.0 1237

Positions assumed by right eye

ISO-AZIMUTH ISO-ELEVATION

-15.4 0.0
=1026 15.3

3 15.0

7 0.0

- -14.7
-14.4 -14.9
-32.0 -15.0
=32.2 0.0
=31.9 15.0
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Positions assumed by left eye
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23.8 14.6
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- 1.8 - 1.5
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Positions assumed by left eye

ISO-AZIMUTH ISO-ELEVATION

15.6 0.0

14.6 152
26.2 15.4
2740 0.5
27.6 -33.7
165 =153

25 ~17.4

0.4 =D
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Positions assumed by right eye

ISO-AZIMUTH ISO-ELEVATION

=15.5 0.0
=173 14.4

2.4 15.4

1.8 0.0

1.6 -13.4
-18.2 =11.7
=333 =115
=320 0.5
=319 14.3
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Abstract—This paper is concerned with specifying how extraocular muscles co-operate in moving
the eye. A set of assumptions is described which enable this to be done with enough precision for a
computer model of the actions of the extraocular muscles to be set up. The behaviour of the model
and its validity are then evaluated.

INTRODUCTION

Krewson (1950) was the first person to produce quantitative estimates of the relationships
between rotations of the globe and actions of the muscles. He assumed that they took the
mechanical shortest path and calculated their corresponding axes of rotation. To obtain
some idea of the mode of action of each of the muscles he considered the projections of
the axes of rotation into an eye-centred system of Cartesian axes. As has been
conventional since the work of Helmholtz, the system of axes was such that one axis lay
along the line of fixation in the primary position and one of the remaining two axes
coincided with the line between the centres of rotation of the two eyes. He then considered
that the projection onto these axes represented the amount of the forces exerted by each of
the muscles that was devoted variously to adduction/abduction, elevation/depression and
torsional movements. Because of the number of calculations involved he only considered
movements in the horizontal plane. This enabled him to clarify the main actions of the
individual muscles. However, his approach, whilst it revealed much about individual
muscles, was not so informative about how they co-operate.

Boeder (1961) approached the analysis of extraocular muscle co-operation by
calculating the length changes that occur when the muscles follow the shortest path
around the globe. He also attempted to provide a more realistic measure of the forces
exerted by each of the muscles by multiplying their changes in length by their respective
cross-sectional areas. One important conclusion that he formed was that, while the
inferior oblique is more contracted than the superior rectus in adduction, it is still the
latter which exerts the larger force.

Boeder (1962) went on to consider positions of gaze within a 60 by 60° range. As well as
computing the length changes that occur when muscles follow the shortest path over the
globe, he also determined the direction in which each muscle would turn the line of
fixation in terms of adduction/abduction and elevation/depression rotations. This
enabled him to make a number of judicious observations about how the extraocular
muscles co-operate. In particular, he considered whether or not it is only the contracting
muscles that move the globe. He compared movements from A to B with the return
movements from B to A and noticed that the direction of action of the chief shortening
muscles was not necessarily the same as that of the chief lengthening muscles, so, if only
the contracting muscles moved the eyeball, the movement would be irreversible.
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More recently, the purely geometrical calculations of the axes of rotation and changes
in lengths of the muscles, have been put into matrix notation by Solomons (1978), who
has calculated the adduction/abduction, elevation/depression and torsional action of
each of the muscles in primary, secondary and tertiary positions of gaze. The results of
these calculations have brought out, inter alia, the balanced nature of the torsional effects
within pairs of antagonistic muscles. [n general, however, whilst this approach has
simplified the calculations, it has not by itself revealed anything further about the way in
which the muscles co-operate.

This last criticism is especially true if one tries to compute what will happen if some of
the muscles are diseased. To be able to do this, the problem of muscle actions during
rotations of the eye should be approached by way of consideration of the mechanics of the
movement, which require that if the globe is to stay in any given position then the sum of
the moments around the centre of rotation must be zero in that position. Robinson (1975)
has formulated a model which incorporates this mechanical constraint, but to do so he
had to make a number of more or less justifiable assumptions which are described in the
next section.

THEORY

A complete description of the model is given in Robinson (1975) and what follows here
will consist only of a statement of the main assumptions underlying his model so that they
can be evaluated.

The first of these assumptions was that the origins and insertions of the muscles in the
normal eye are adequately described by the data of Volkmann (1869) who used a co-
ordinate system with the origin placed at the centre of rotation of the eye, which he judged
to be 1.29 mm posterior to the geometric centre of the eye. If one shifts his origin forward
by 1.29 mm along the primary direction of the line of fixation, one makes his co-ordinates
directly comparable with those of Ruete and Fick, cited in Helmholtz (1911). This has
been done by Von Kries and the results are given in an appendix in Helmholtz (1911). One
may test whether or not the insertions of the muscles are consistent with the concept of a
spherical globe by calculating the distances between the points of insertion of the muscles
and the centre of rotation of the eye, which should all be equal with a spherical globe. In
terms of the model, this corresponds to calculating the lengths of the insertion vectors of
the muscles and the results of such a calculation are shown in Table 1. Considering the
difficulty of making the measurements, the agreement is reasonable, although in order to
set up the mode! it was assumed that the centre of rotation and geometrical centre of the
eye are identical, which is not usually true.

The next two assumptions were concerned with specifying the shape of each muscle in
any given position of the globe. The second assumption specified how the muscle was
placed in relation to its insertion, a problem which is complicated by the fact that the
muscles fan out at their insertion. Previous investigators had always selected the obvious
assumption of the shortest path despite the mechanical restrictions at the insertions, but in
this case it was proposed that the actual path lies somewhere between the shortest path
and the path perpendicular to the line of insertion. Two criteria were outlined that should
be satisfied by a reasonable assumption as to the angle of twist away from the
perpendicular path. The first of these was that if the line of insertion stays perpendicular
to the primary plane of the muscle, then the twist angle should be zero. This limits the
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Table 1. Lengths of the insertion vectors of the extraocular muscles (mm) according to the various investigators

LR MR SB IR S0 10
REUTE 11.9 11.6 11.7 11.8 11.8 12.0
FICK 12.0 12.0 12.0 12.0 11.3 12.0
VOLEKMANN
(AFTER VON
KRIES) 11.4 12.3 12.3 12.3 12.8 12.1
VOLKMANN
( AFTER N
KZEWSON) 12.0 13.1 13.0 13.0 12.2 11.3

path of each eye muscle as the direction of the insertion vector becomes directly opposite
to the direction of the origin vector, whereupon slight movements of the eye cause extreme
changes in the shortest path. The second criterion was that the twist angle should depend
on the sideways force at the insertion. A satisfactory assumption was made by letting the
twist angle depend on the cosine of the angle between the vector along the line of insertion
of the muscle and the vector to its origin. In the primary plane of the muscle, this function
is always zero and so there is no twist at the insertion.

The third assumption specified the path of the muscle away from its insertion. This
assumption was directed towards ensuring that there is no abrupt change of direction
when the muscle leaves the eyeball. This was achieved by assuming that the path of the
muscle over the globe lay in a plane containing the vector corresponding to the direction in
which the muscle leaves its insertion and the origin of the muscle. The intersection of this
plane with the spherical globe is a circle, so that this assumption implies that the muscle
makes contact with the globe along an arc of a circle.

As well as specifying the shapes of the muscles it is also necessary to specify the forces
that they exert in the different orientations of the eye and the fourth and fifth assumptions
were concerned with this aspect of the problem. The steady-state force exerted by a muscle
is a function of its length and its innervation level. Innervation cannot be measured
directly but it can be manipulated by asking a patient undergoing extraocular muscle
surgery on the horizontal recti of one eye to look with the other eye at targets located in
the horizontal plane at known angles with the primary direction of the line of fixation and
measuring the force changes in the detached recti of the eye being operated on. The fourth
assumption, then, consisted of a function describing the force exerted by a muscle in
accordance with itz length and its innervation which was based on the experimental data
of Collins and O’Meara cited in Robinson (1975). It was found that if muscle tension was
plotted against extension (AL), calculated as a percentage of the length in the primary
position, then the function was a portion of an hyperbola. Furthermore, the effect of a
change in the innervation level was to shift the curve along the muscle extension axis and
this shift could be characterized by incorporating a factor (£) to reflect the level of
innervation. The equation actually specified by Robinson (1975), after substitution of
parameters, takes the form:

Force (g) = 0.9 X (AL + E) + Jv38.94 + 0.81 x (AL + E).
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The fifth assumption was that the force functions of the other muscles were identical to
that of the lateral rectus, except for a multiplicative factor corresponding to their cross-
sectional area, relative to that of the lateral rectus. The actual values for this factor were
based on the data of Volkmann (1869) and wers as follows:

LR MR SR IR SO 10

1.0 1.04 0.68 0.95 0.5 0.47

As well as the active forces of the muscles, there are also passive forces due to check
ligaments and other orbital structures which restrain the eye in movements away from the
primary position. A function was developed to describe the way in which the passive force
varied with the angle (beta) between the primary position and the line of fixation, based
on the experimental results of Robinson er al. (1969) and Scott (1971). When the angle
beta is given in degrees, the function specified by Robinson (1975), with the parameters
inserted, takes the form:

Passive force (g) = 0.48 x beta + 0.000156 x beta’,

The sixth assumption was that the passive force in any position could be described by
this function and acted around the axis specified by Listing’s law. A constant moment was
added which made the resting point deviate 7.5° temporally which is consistent with the
abduction seen in deep anaesthesia.

Given these assumptions, the problem of simulating extraocular muscle cc-operation
breaks down into two halves, which can be referred to as the innervation problem and the
position problem. The innervation problem arises when the position of the eye is given and
one has to determine the appropriate levels of innervation for each of the muscles. This
involves finding the innervation values which result in the overall moment on the eyeball
in that position being zero. Since there are six muscles and only 3 df for the globe, if each
muscle is independently innervated there will be an infinite number of solutions to this
problem. Hence, the law of reciprocal innervation was invoksd and the seventh
assumption was made, namely, that the innervation of the antagonist muscle was
reciprocal to that of the agonist muscle for each of the three muscle pairs. The actual
equation specifying the innervation of the antagonist in terms of that of the agonist as
given in Robinson (1975) becomes, after insertion of the parameter values:

E{antagonist) = {187.69/[E(agonist) + 9.7]} — 9.7.

The position problem arises when one has determined the innervation values, but does
not know what position the globe will take up to achieve mechanical equilibrium. Up to this
point it has been assumed that the eye rotates in accordance with Listing’s law, but with
diseased eyes this need no longer be so. Therefore the final assumption involved setting up
an additional passive force, governed by the same function as the original passive force,
except that the torsion angle was substituted for the angle of deviation from the primary
position, which opposed any torsional movements of the eye. This allowed some torsion
in diseased eyes, but resulted in zero torsion in normal eyes.
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RESULTS

Action of the individual muscies

Given the parameters of the model one can use it to gain some idea of the actual forces
exerted by each of the muscies in any particular direction of gaze. To do this, the force
exerted by each muscle is calculated by inserting the values for the extension and

into an eye-centred system of Cartesian axes to obtain the relative amounts of the muscle
force devoted to the various types of movement. These calculations have been done for
nine central gaze positions, and the results are shown in Figs 1 - 3. It must be emphasized
that the results will only be valid over this limited range of movements.

With respect to forces acting around the adduction/abduction axis (shown in Fig. 1),
there are three points which are noteworthy. The first is that the horizontal recti develop
the main forces, with the lateral rectus exerting the largest force of any muscle for any
type of rotation. The second is that the vertical recti always adduct. The third point is that
the obliques do not contribute anything significant to movements of abduction and
adduction. Recordings of the actual muscle tensions in the lateral and medial recti during
unrestrained eye movements of patients with strabismus have been made by Collins er af.
(1975) and the agreement of the model with their results is good. They found that the
minimum tension of each of the horizontal recti did not normally fall below 8 — 12 g and
that the minimum tension of each muscle usually occurred 15° out of their field of action.
These findings are matched by the predictions of the model, except for the lacation of the
minimum tension of the medial rectus, which, as can be seen in Fig. 1, achieves its
minimum tension in the primary position, instead of with 15° of abduction.

As regards the forces acting around the elevation/depression axis (shown in Fig. 2), it
was found that the superior rectus exerts the dominant force in elevation and the inferior
rectus exerts the dominant force in depression.- However, the relative participation of the
vertical recti and the obliques does change in accordance with the classical picture with the
Superior rectus acting more in abduction and the inferior oblique acting more in
adduction. The model was also tried using the shortest-path assumption and the only
consistent difference was found in connection with this component of the force, since it
was found that with the shortest-path assumption both the horizontal recti elevated the
eye with elevated gaze and depressed it with depressed gaze,

The torsional forces (shown in Fig. 3) are of especial interest since any imbalance in
them leads to a deviation from Listing’s law. Perhaps the most striking feature of these
forces is that each muscle pair exerts opposing forces about the line of fixation, so that the
muscle actions are predisposed towards a zero torsion equilibrium. Overall, the forces are
smaller than for the other rotations so any passive moment about the axis will provide
effective constraint against torsional movements. '

Concerning the actions of the individual muscies, the forces exerted are as formulated
in the classical description with the superior rectus and oblique both acting as intorters
while the inferior rectus and oblique both act as extorters. Surprisingly, though, the
horizontal recti produce a not inconsiderable amount of torsion. This result must be
placed within the context of the assumption of the relative strengths of the muscles, for
although they may project less than the other muscles onto the torsion axis, the horizontal
recti counter this factor by exerting larger forces. This type of consideration will be
overlooked by the purely geometrical analyses of Boeder (1962) and Solomons (1978).
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Fig. 1. Forces exerted by each of the muscles around the adduction — abduction axis in nine positions of gaze,
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Fig. 3. Forces exerted by each of the muscles around the torsion axis in nine positions of gaze.

Effects of muscle paresis

Following the lead of France and Burbank (1979), the model has been used to simulate
the effects of oculomotor nerve palsies. The model, as it stands, is essentially monocular,
but by using two versions of the model in combination, the effect of lesions of individual
oculomotor nerves of the right eye and the resulting Hess screen projections could be
determined.

The Hess chart for the right eye shows the position adopted by the right eye when the
left eye is fixating. In terms of the model, this involves solving the position problem for
the right eye, given the normal innervation values. The chart for the left eye shows the
position adopted to the left eye when the right eye is fixating. In terms of the model this
involves first computing the innervation values needed to maintain the fixation of the
affected right eye and then solving the position problem for the normal eye, given these
innervation values.

The effects of damage to the third, fourth and sixth nerves are shown in Figs 4-6
respectively. The palsies were modelled by reducing the innervation level to the muscle or
muscles supplied by the nerve to half their normal levels. These projections are reasonably
consistent with those found in actual isolated nerve lesions. The numbers at each position
in the figures give the predicted angle of torsion in degrees, with a positive number
signifying a clockwise rotation about the line of fixation.

In order to investigate the role of the final assumption of a counter-torsional force,
which was introduced to control the deviation from Listing’s law in clinical conditions,
the Hess chart corresponding to damage to the fourth nerve, which shows the most
torsion, was repeated with the counter-torsional force halved and with it doubled. These
changes made no appreciabie difference to the shape of the resulting Hess chart, but with
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a reduced counter-torsional force, more torsion occurred and with an increased counter-
torsional force, less torsion occurred. The change in torsion in both cases was not large,
being around 1° and occurring in the depressed-gaze positions. These results are closely
related to the characterization of the force exerted by each muscle as being in part due to
its extension and in part due to its innervation. For instance, if one considered the
example of the sixth nerve lesion then it is noticeable that the movements to the left are
relatively unaffected, because the force exerted by the lateral rectus of the right eye in
these positions of gaze is mainly due to extension of the muscle rather than its level of
innervation. Instead of altering the levels of innervation one could alter the muscle
strength factor, to reproduce the effect of a diseased muscle as opposed to a diseased
nerve. This has been done for the superior oblique and lateral rectus of the right eye using
the same 50% reduction as with the nerve lesions and the results are shown in Figs 7 and 8
respectively.
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CONCLUSION

Overall, the model seems to provide a promising approach to understanding the
mechanisms underlying some forms of squint. However, it is clear that it rests on a
number of assumptions, which must be kept in mind if it is not going to be misleading.
Obviously the assumptions are not equally valid and in order to isolate the more tentative
ones an attempt has been made to assess the relative soundness of the assumptions.

The muscle insertions are not consistent with a spherical eyeball and it would be
preferable if they were scaled so that the insertions were all the same distance from the
centre of the eye, since the calculations of the paths of the muscles over the globe are
based on the geometry of a spherical eye. In general, the model seems fairly robust with
respect to the assumptions about the positions and shapes of the muscles, as demonstrated
by the limited effects of switching to the shortest-path assumption.

The fourth assumption of the equation governing the relationship between the force
exerted by the muscle and its length change and innervation, and also the sixth assumption
of the passive-force equation are both based directly on experimental investigations and
need only be changed to incorporate additional experimental results. The fifth assumption
of the relative muscle strengths is a dominant one in that changes in this assumption will
significantly alter the simulations produced by the model. Since it is based on the
anatomical measurements of Volkmann (1869) rather than on actual measurements of
relative force, it should be treated with caution.

On a methodological level, the question arises as to how much confidence one can put
in the solution to the innervation problem. Fry (1978) has emphasized the point that an
infinite variety of patterns of tension could be holding the eye in any given position, and
whilst the reciprocal innervation assumption leads to unique solution, its formulation may
not be correct in detail. This question is also pertinent to the origin of the tendency to
adhere to Listing’s law, which may be due to neural constraints on the pattern of
innervation, but which in the model requires the assumption of a counter-torsional force.
Fortunately it was found that alterations to the size of the assumed counter-rotational
force did not markedly affect the positions adopted by the eye, only its angle of torsion,
so the results produced by the model are relatively independent of this assumption.

As regards the future of such computer models, whilst there are enough parameters in
the model for it to be flexible enough to simulate several types of squint and their surgical
treatment, it will not be predictive until the parameter changes corresponding to such
modifications as palsy, contracture, recession and resection have been isolated. Even as it
stands, however, it provides a useful embodiment of much of our current knowledge of
the actions of the extraocular muscles and its purely educational value pointed out by
Robinson (1975) should not be overlooked.
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ABSTRACT

The versatility of a computer-based display of
the extraocular muscles is demonstrated by
comparing two different assumptions as to the
paths of the muscies over the giobe.

Key Words: ophthalmotrope, computer simu-
lation, extraocular muscles

Since the description by Ruete! oﬁhis ophthal-
motrope, numerous other ophthalmotropes have
been devised. The widespread availabilicy of dig-
ital computers provides an alternative medium
to the mechanical one in which to construct an
ophthaimotrope. The advantage of a computer-
based ophthalmotrope is that different assump-
tions about the shapes of the muscles can be
tested unencumbered by mechanical con-
straints. This enables one to build more realistic
models of the extraocular muscles than the sin-
gle fibers models currently in use. In the
ophthalmotrope described here, each muscle will
be modeled by 10 fibers. A complete listing of
the program is available from the author upon
request.

The locations of the origins and midpoints of
the insertions of the muscles were taken from
the data of Volkmann.? To provide the coordi-
nates of points along a line of insertion approx-
imately 7.5 mm broad, the coordinates of the
midpoint were rotated in 3.5° steps, around the
axis passing through the center of rotation of
the eye and the origin of the muscle. This pro-
cedure was repeated to give 10 points along the
line of insertion of each muscle, so that each
muscle was comprised of 10 individual muscle
fibers. The actual calculation of the orientation

Received September 3, 1933; revision received Jan-
uary 24, 1584,
* B.5e.
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of the plane of each muscle was done by the
methods described by Robinson.?

The paths of the fibers were traced out in two
stages. First, the.coordinates of the point of
insertion were rotated in 0.05 radian steps
around the orientation of the muscle plane,
through the angle of contact of the muscle.
Second, the remaining straight section of the
path of the muscle was plotted out in steps of
0.02 of its overall length. Calculation of these
intervening points made it possible to remove
the segments of the fibers which were hidden by
the globe.

As the portions of the fibers which are hidden
by the globe depend on the viewpoint, it was
decided to view the eves from directly above
because this allows at least some of all six mus-
cles to be visible. The plane perpendicular to
this viewing direction corresponds to the XZ
plane in the coordinate system used in the cal-
culations. No point on the muscle fiber was
plotted if it lay within the circle defined by the
globe and had a Y coordinate that was negative.

At present, there are two theoretical descrip-
tions of the paths that the muscles follow over
the globe. The simplest assumption is that they
follow the shortest path, but this has been crit-
icized by Robinson,® who has introduced an al-
ternative assumption that incorporates the stiff-
ness of the tendons at the muscle insertions.
With a gaze direction 30° to the leit in the
horizontal plane, the muscles following the
shortest path appear as in Fig. 1, while those
following Robinson's assumption appear as in
Fig. 2.

Robinson pointed out that if the muscles fol-
lowed the shorrest pacth assumption, then with
the eye adducted through more than 36.3° and
slightly elevated, the lateral rectus should flip
over to the other side of the globe. With the
broad insertion used here it can De seen that
with only 30° of adduction the fibers of the
lateral rectus of the right eye are already spread
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