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SUMMARY 

The mechanical basis of the actions of the extraocular 
muscles is examined. A number of assumptions, which 
are required to specify the mechanical constraints on 
the actions of the muscles, are described. different 
assumptions about the way in which the extraccular 

  

    

  

muscles act are evaluated by comparing a set models 
of extraocular muscle cooperation, each of ch differ 
by just one assumption, against clinical data from 

  

patients with isolated nerve palsies. 

Three applications of the model based on the most app- 
ropriate assumptions, are described. Firstly, the Hess 
screen test of oculomotility is investigated by calcu- 
lating the mechanical actions of the muscies along the 
lines of the Hess chart. Secondly, alte ive theories 
concerning the muscular factors underlying and V 
syndromes are compared by using the model to oredict 
the deviation that should occur according to each theory. 
Thirdly, a computer based ophthalmotrope is used to 
demonstrate geometrical limitations on the amount of 
recession and transposition surgery that can be perform- 
ed on the muscle insertions. 
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INTRODUCTION 

During the nineteenth century, Helmholtz and Hering 

pioneered the application of mechanical concepts to the 

understanding of the actions of the extraocular muscles. 

Whilst their work has been appreciated in Europe, much 

of it has only recently been assimilated into the main- 

stream of American investigations of the problem. This 

is probably because of the language barrier, since 

Helmholtz's Treatise on Physiological Optics was not 

translated until 1924, whilst Hering's Spatial Sense 

and Movements of the Eyes was translated in 1942 and 

his Binocular Vision as late as 1977. 

By the time that these translations had appeared, the 

"classical description' of the actions of the extra- 

ocular muscles had already been formulated by Duane 

(1896). He argued that the horizontal recti are 

responsible for movements of adduction and abduction 

and that the vertical recti and the obliques are 

responsible for movements of elevation and depression, 

with the vertical recti more effective in positions of 

abduction and the obliques more effective in positions 

of adduction. 

Interest in the analytical approach to the problem of 

the actions of the extraocular muscles was rekindled 

by the work of Krewson (1950), who produced quantita- 

tive estimates of the relationships between rotations



of the globe and actions of the muscles. He assumed 

that the muscles took the mechanical shortest path and 

calculated the corresponding axes of rotation. This en- 

abled him to clarify the main actions of the individual 

muscles. However, whilst his approach revealed much 

about the actions of individual muscles, it was not so 

informative about how they co-operate. Also, because of 

the number of calculations involved, he only considered 

eye movements in the horizontal plane. 

Boeder (1961) emphasized certain physiologically impor- 

tant results. In particular, he calculated the length 

changes that occur when the eye rotates through thirty 

degrees of elevation in accordance with Listings law, 

from any gaze position in the horizontal plane and found 

that the superior rectus and inferior oblique shortened 

by amounts that held to a fairly constant ratio of three 

to two respectively. He pointed out that this contra- 

dicted the view that the inferior oblique is the most 

important elevator in adduction. He attempted to provide 

a more realistic measure of the force exerted by each 

of the muscles by multiplying their changes in length 

by their respective cross sectional areas. When this 

was done, he found that the contribution of the inferior 

oblique to elevation was approximately half that of the 

superior rectus. 

Boeder (1962) went on to consider the length changes 

and axes about which each muscle works, when acting 

along the shortest path in a sixty degree by sixty



degree field of eye movements. He considered movements 

from a point A to a point B and found that, in general, 

the shortening and lengthening muscles did not act 

around the same axes, so that the movement was revers- 

ible only if both shortening and lengthening muscles 

were actively involved. 

More recently, the purely geometrical calculations of 

the axes of rotation and changes in lengths of the 

muscles, have been put into matrix notation by Solomons 

(1978), who has calculated the adduction/abduction, 

elevation/depression and torsional action of each of 

the muscles in primary, secondary and tertiary 

positions of gaze. One interesting result which these 

calculations have demonstrated, is the balanced nature 

of torsional effects within pairs of antagonistic 

muscles. In general, however, whilst this approach has 

simplified the calculations, it has not by itself reveal- 

ed anything further about the way in which the muscles 

co-operate. This last criticism is especially true if 

one tries to compute what will happen if some of the 

muscles are paretic. To be able to do this, the 

problem of muscle actions in different gaze directions 

should be approached by way of consideration of the 

mechanics of the situation. This approach was initiated 

by Robinson (1975) who formulated a computer model of 

the mechanical actions of the extraocular muscles. 

The mechanical requirement that must be satisfied if



the eye is to remain in a particular gaze direction, 

is that the moments on the eye caused by the forces 

exerted by the muscles about their respective axes of 

rotation must sum to a moment equivalent to that caused 

by the passive forces acting on the eye. The situation 

is complicated by the fact that the force exerted by 

a muscle depends both on its level of innervation and 

on its length. If M denotes the passive moment on the 

eye, fi (e,1) denotes the tension developed by the i th 

muscle when it has an innervation level e and a length 

1, and Ri denotes the axis of rotation of the i th 

muscle then the mechanical requirement can be expressed 

succintly by the equation: 

6 

M=E£f;4 (e,1)Ri 
i=l 

The description of the various alternative models given 

in the first Chapter has been organised around this 

equation, beginning with a description of the kine- 

matics of the eyes. The orientation of the eye deter- 

mines the paths of the muscles and these in turn deter- 

mine the lengths and axes of rotation of the muscles. 

Together with the description of the length - tension 

characteristics of the muscles and their innervation 

levels, this Chapter specifies all of the quantities 

included in the equation. 

Investigation of the assumptions underlying the model 

revealed that alternative assumptions were possible



concerning the quantities in the equation. The second 

Chapter describes a procedure for determining the set of 

assumptions that provides the best model. The procedure 

involves setting up five alternative versions of 

Robinson's (1975) model, each of which differs from the 

original in just one assumption, and then comparing how 

well the behaviours of the alternative models compares 

with clinical data from patients with isolated nerve 

palsies. This procedure was also used to decide upon a 

binocular version of the model. 

The third Chapter describes some applications of a work- 

ing model of the actions of the extraocular muscles. 

The applications have been deliberately restricted to 

areas where the mechanical assumptions of the model have 

been tested. The first application involves using 

knowledge of the forces produced by the extraocular 

muscles in relation to screen tests for diagnosis of 

muscle palsies. The second application is concerned 

with using a model of the normal extraocular muscles as 

a testbed for investigating possible muscular causes of 

the A and V syndromes. The third application is a purely 

geometrical study of the amount by which the insertions 

of the muscles can be moved over the eye without the 

paths of the muscles interfering with each other.



    

 



Let Constraints on rotations of the eye 

The initial investigations of the constraints on eye move- 

ments were made by studying the location of an afterimage 

as the eye was rotated. Helmholtz (1910) summarised the 

original discoveries in terms of two laws. The first law 

governing eye rotations, referred to as Donder's law, states 

that the orientation of the eye depends only on the final 

direction of the line of fixation and is independent of the 

initial direction. This law implies that the eye is con- 

strained in the rotations it may make around the line of 

fixation. The nature of this constraint is specified by 

the second law, referred to as Listing's law which states 

that if the eye rotates about a centre O so that the line 

of fixation moves away from the primary position OA to 

another position 0B, then the displacement of the eye is 

equivalent in rotating it around an axis perpendicular to 

the plane AOB. This law implies that the eye does not make 

any torsional movements at all, although an afterimage of 

a vertical line will appear to tilt with respect to a 

vertical line on a tangent screen, because of the geometry 

of the projection. The tilt of an afterimage with respect 

to a line on a tangent screen is referred to as false 

torsion. 

Moses (1950) initiated an alternative approach to the ex- 

perimental investigation of eye torsion. He placed a camera 

so that itsoptical axis lay along the primary direction of 

the line of fixation and photographed the appearance of the 

eye with various gaze directions. He placed ink marks on



the upper and lower limbus so that the orientation of the 

eye could be determined from the photographs and also in- 

cluded a plumbline in them, so that true vertical was 

specified. He found that extorsion occurred with movements 

of the eye involving both elevation and abduction and both 

depression and adduction and intorsion occurred in the other 

two quadrants of the gaze field. It should be noted that he 

took torsion to mean any deviation of the vertical meridian 

of the eye from the plumbline, so that his concept of tor- 

sion corresponds to false torsion in the afterimage experi- 

ments. When this feature is taken into consideration, the 

results are entirely consistent with Listing's law. 

Belcher (1964) carried out a systematic experimental in- 

vestigation into the question of false torsion, photograph- 

ing the eyes of his subjects in various directions of gaze, 

together with a plumbline, by means of a camera held along 

the line of fixation. He measured the rotation of the eye 

by tracking marks on the iris and his results confirmed 

that Listing's law holds. 

p22 Description of the extraocular muscles   

The shape of the orbit is approximately that of a square 

based pyramid. At the apex of the pyramid are two holes, 

the optic foramen, through which passes the optic nerve 

and ophthalmic artery and the supra-orbital fissure 

through which passes all the oculomotor nerves, autonomic 

nerves and the ophthalmic vein.



Around the optic foramen, the membrane covering the bones 

of the orbit, referred to as the periorbita, thickens into 

a ring called the annulus of Zinn. The recti muscles are 

attached to the orbit at the annulus of Zinn and the mem- 

brane covering each muscle, referred to as its fascial 

sheath, is continuous with the annulus of Zinn. The fas- 

cial sheaths of the recti muscles join one another and 

together with the recti muscles themselves form what is 

known as the muscle cone. The muscles insert into the 

sclera of the eyeball and the fascial sheaths are contin- 

uous with Tenon's capsule, which is the layer of connective 

tissue that covers the eyeball and rotates with it. Sheaths 

of fibroelastic tissue, referred to as check ligaments, 

spread out to the orbital walls. Together with the fibrous 

connections between the levator palpebra and superior 

rectus, the check ligaments form a superior transverse 

ligament, while together with the fibrous connections 

between rectus and inferior oblique they form the ligament 

of Lockwood. 

The gross anatomy of the extraocular muscles of the right 

eye is shown in Figure 1.2.1. Some of the more pertinent 

measurements of the extraocular muscles are given by 

Whitnall (1921), from whom the following values are taken. 

The lateral rectus has a split origin located at the part 

of the annulus of Zinn that surrounds the superior orbital 

fissure. It has an average length of 40.6 millimetres, 

tendon length of 8.8 millimetres and line of insertion which 

is 9.2 millimetres broad. The medial rectus arises from
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FIGURE 1.2,1 

THE GROSS ANATOMY OF THE EXTRA- 
OCULAR MUSCLES OF THE LEFT EYE 
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the medial part of the annulus of Zinn. It has an aver- 

age length of 40.8 millimetres, tendon length of 3.7 

millimetres and line of insertion which is 10.3 milli- 

Metres broad. The superior rectus arises from the upper 

part of the annulus of Zinn. It has an average length 

of 41.8 millimetres, tendon length of 5.8 millimetres 

and line of insertion which is 10.8 millimetres broad. 

The inferior rectus arises from the lower part of the 

annulus of Zinn. It has an average length of 40 milli- 

metres, tendon length of 5.5 millimetres and line of 

insertion which is 9.8 millimetres broad. The superior 

oblique arises from the upper medial region of the apex 

of the orbit. It passes forward, through a loop of 
trochlea 

cartilage referred to as the techlea, which acts as a 

pulley. It has the longest tendon, about 30 millimetres 

in length, which begins 10 millimetres before the 

trochlea. The average length of its line of insertion 

is 10.7 millimetres. The inferior oblique arises from 

an anterior portion of the floor of the orbit. It 

passes around the outside of the eyeball and inferior 

rectus and inserts beneath the medial rectus. Its line 

of insertion has an average length of 9.4 millimetres. 

In the mechanical models described later each individual 

muscle is replaced by a single fibre which runs from 

the midpoint of the muscle insertion to its origin. 

The single fibre representations of the extraocular 

muscles of the right eye are shown in Figure 1.2.2. 

ey



  

FIGURE 1.2.2 

SINGLE FIBRE REPRESENTATIONS OF THE 

EXTRAOCULAR MUSCLES OF THE RIGHT EYE 
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The co-ordinates for these points are provided by the 

data of Volkmann (1869), and are reproduced in Appendix 

1.2. These are average measurements and examples of 

the variability of the insertions have been given by 

Howe (1906) and Fink (1946-7) who both point-= out the 

greater variability of the insertions of the obliques. 

The mechanical effect of the fan out of the muscle 

insertions will be considered in the next section. 

13



1.3) Axes of rotation of the muscles 

The analytical study of the axes of rotation of the 

muscles was initiated by Hering (1868) who calculated, for 

each pair of antagonistic muscles, the path that the line 

of fixation would traverse if rotated away from the primary 

position around the axis perpendicular to the plane of the 

muscles. 

Helmholtz (1910) drew attention to the mechanical effect 

of the fan out of the tendons at the muscle insertion. He 

discussed the way in which elevation would stretch the 

lower tendons of the horizontal recti, so that the muscles 

would effectively continue to rotate the eye about an axis 

perpendicular to the visual plane. 

Jampel (1970, 1975) has worked out the implications of the 

fan out of the muscle insertions of the obliques. These 

have wide insertions which allow the effective point of 

insertion to change its location to counter movements of 

the eye in the horizontal plane. Thus in adduction the 

inner fibres of the oblique muscles are stretched, while 

in abduction the outer fibres of the oblique muscles are 

stretched. 

As evidence that the inferior oblique in man acts as if 

it is rotating the eye around a fixed axis, Jampel (1970) 

described the case of a sixty-three year old diabetic and 

hypertensive woman who had a sudden onset of paralysis of 

14



the right levator palpebrae and right superior rectus 

muscle. This case provided an instance where the inferior 

oblique was the only elevator and to investigate it he 

placed a piece of eggshell membrane on the patient's right 

cornea under topical anaesthesia and photographed her eye 

movements, both when she was exerting maximum effort to 

look upwards in a range of angles of adduction and abduc- 

tion and, when she tried to look from a down position to 

an up position with about 40 degrees of adduction. 

The locations of the markers on the eye as she looked from 

right to left while making maximum effort to elevate the 

eye were consistent with the eye being rotated about an 

axis, fixed with respect to the orbit, which was located 

in the horizontal plane and formed an angle of approximately 

sixty degrees with the primary direction of the line of 

fixation. 

Jampel (1975) also gave evidence that the superior oblique 

in man acts about the same fixed axis as the inferior 

oblique. He states that in cases of total paralysis of the 

oculomotor nerve the eyes deviate outward (as opposed to 

downward and outward) and when the patient is instructed to 

look downwards the eye rotates about an axis located in the 

horizontal plane, 60 degrees temporally from the primary 

direction of the line of fixation. In patients who have 

paralysis of the abducens as well, the eye remains in the 

primary position and the nature of the rotation when the 

15



patient is asked to look down is even clearer. The same 

effect was observed in patients with paralysis of the 

oculomotor nerve only, in whom the paralysed eye had been 

returned to the primary position mechanically, by means of 

a corneoscleral limbal suture. 

1.4 Paths of the muscles 

The simplest assumption about the paths taken by the 

muscles is that they follow the shortest path. However, 

Robinson (1975) argued that the muscle tendon is too rigid 

a structure to allow the muscle to follow its shortest path. 

Robinson (1975) assumed that each muscle left its line of 

insertion along a path that lay between the shortest path 

and the path perpendicular to the line of insertion. Two 

criteria were outlined that should be satisfied by a reason- 

able assumption as to the angle of twist away from the 

perpendicular path. The first of these was if its line of 

insertion stays perpendicular to the primary plane of the 

muscle, then the twist angle should be zero. This limits 

the path of each muscle as the direction of its insertion 

vector becomes directly opposite to its origin vector, 

whereupon slight movements of the eye cause extreme changes 

in the shortest path. The second criterion was that the 

twist angle should depend on the sideways force at the in- 

sertion. A satisfactory assumption was made by letting the 

twist angle depend on the cosine of the angle between the 

vector along the line of insertion of the muscle and the 

16



vector to its origin. In the primary plane of the muscle, 

this function is always zero and so there is no twist at 

the insertion. 

A further assumption is needed to ensure that there is 

no abrupt change of direction when the muscle leaves the 

eyeball. This was achieved by assuming that the path of 

the muscle over the globe lay in a plane containing the 

vector corresponding to the direction in which the muscle 

leaves itsinsertion and the origin of the muscle. The 

intersection of this plane with the spherical globe is a 

circle, so that this assumption implies that the muscle 

makes contact with the globe along the are of a circle. 

In order to reveal the differerences between the shortest 

path assumption and the alternative assumption produced by 

Robinson (1975), a computerised ophthalmotrope was devised 

by Clement (1984). The paths of the fibres were traced out 

in two stages. Firstly, the coordinates of the point of 

insertion were rotated in 0.05 radian steps around the 

orientation of the muscle plane, through the angle of con- 

tact of the muscle. Secondly, the remaining straight 

section of the path of the muscle fibre was plotted out in 

steps of 0.02 of its overall length. Calculation of these 

intervening points made it possible to remove the segments 

of the fibres which were hidden by the globe. 

As the portions of the fibres which were hidden by the 

globe depend on the viewpoint, it was decided to view the 

dg



eyes from directly above since this allows at least some 

of all six muscles to be visible. The plane perpendicular 

to this viewing direction corresponds to the IK plane in 
calculations 

the coordinate system used in the elaculatiens. No point on 

the muscle fibre was plotted if it lay within the circle 

defined by the globe and had a coordinate along the J 

direction that was negative. 

With the point of fixation located at a meridional angle 

of 170 degrees and an eccentricity of 30 degrees, the 

muscles following the shortest path assumption appear as 

in Figure 1.4.1., while those following Robinson's assump- 

tion appear as in Figure 1.4.2. The most noticable differ- 

ence is that the path of the lateral rectus of the right 

eye moves over the globe when following the shortest path 

assumption. Indeed, Robinson (1975) pointed out that if 

more than 36.3 degrees of adduction were possible then the 

lateral rectus should flip over the globe and pass round 

the nasal side of the eye, according to the shortest path 

assumption. Whilst this is a striking argument against the 

shortest path assumption, it does not prove the correctness 

of Robinson's alternative path. In particular, Figure 

1.4.3. shows the paths of the muscles, according to 

Robinson's assumption, when the eyes are turned downwards 

through thirty degrees and are viewed from directly in 

front. It is clear that the superior rectus passes under- 

neath the superior oblique, which is anatomically incorrect. 

18



  

FIGURE 1.4.1 

MUSCLES FOLLOWING THE SHORTEST 

PATH 
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FIGURE 1.4.2. 

MUSCLES FOLLOWING THE PATH DESCRIBED 

by ROBINSON (1975) 
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FIGURE 1.4.3 

MUSCLES FOLLOWING THE PATH DESCRIBED 

BY ROBINSON (1975) VIEWED FROM IN FRONT 

21



1.3 Forces acting on the globe 

The same experimental procedures have been used by Robinson 

et al. (1969); Collins (1971) and Scott (1971) to determine 

the static forces on the eye and it is their findings which 

are summarised here. 

They investigated patients undergoing extraocular muscle 

surgery. The patient's head was supported by a vacuum 

sandcushion which was moulded to fit the contours of his 

head. Either the stump of a severed muscle insertion or 

the freed end of a muscle, according to what was being in- 

vestigated, was connected by a silk suture to a strain 

gauge. The strain gauge was mounted on the end of a 

micromanipulator so that the length of the muscle could be 

varied. The lengths used were the length in the primary 

position and that length +/- 2,5 and 8 millimetres. 

Innervation was controlled by asking the patient to fixate, 

with the eye not being operated on, lights spaced 15 degrees 

apart, with the centre light coinciding with the primary 

direction of the line of fixation. 

To measure the passive restraining forces on the globe, both 

the horizontal recti were detached and a strain gauge was 

connected to the stump of the insertion of one of the 

detached muscles while eye movements in the horizontal 

plane were made. Their overall finding was that there was 

an approximately linear relationship between the restrain- 

ing force rotation of the eye away from the primary 

22



position of 0.5 grams per degree which held for up to 30 

degrees of adduction or abduction. 

Robinson (1975) described the passive forces on the globe 

in terms of the following equation, which expresses the 

passive force in grams in terms of the angle of deviation 

of the eye (8) in degrees. 

Passive force = 0.48* 8 +(1.56*10**-4)+8 **3 

Robinson (1975) also included a force described by the same 

equation as the passive force on the globe, except that the 

angle was replaced by the angle of torsion. This force 

was presumed to act around the line of fixation in the 

opposite direction to the torsion. It appears to have been 

introduced in order to limit the deviation from Listing's 

law that can occur with his model when muscle paresis is 

simulated. It is not mentioned in any of the experimental 

studies. 

To determine the passive force exerted by a muscle, the 

innervation to. the muscle under investigation was reduced 

to a minimum, either by asking the patient to look as far 

as possible out of the muscle's field of action, or by 

working when the patient was under deep anaesthesia. They 

measured the length tension curve and with both procedures 

found that its shape was of the same form as when active 

contraction was present. 

iS)
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The length-tension curves found with various levels of 

innervation were of the same shape, the effect of inner- 

vation was to shift the curve along the length axis. 

Robinson (1975) found that the simplest relationship was 

given by plotting the muscle tension against change in 

length of the muscle expressed as a percentage of its 

length in the primary position, a variable which he referr- 

ed to as 41. The length-tension curves so formed could be 

described by an hyperbola which was shifted up or down the 

length change axis as the innervation was changed. For 

this reason a variable e was introduced so that the hyper- 

bolas could be shifted to the left (e+) or to the right 

(e-). The equation that Robinson (1975) used to describe 

the relationship was: 

Altre 

Force=0.9 ( Al+te)+SORT(38.9376+0. 81 ( +) **2) 

By considering a 1 millimetre change of muscle length to be 

equivalent to a 5 degree eye movement, the forces developed 

by the muscle when the eye is held in the position corres- 

ponding to the level of innervation can be read off the 

length tension curves. Collins (1971) did this and found 

that the resulting curve of normal muscle force was des- 

cribed by the equation T=0.017 ( 8-15)**2+16 where T is the 

tension of the muscle and is as specified above. Thus 

the muscle exerts its minimum force 15 degree out of its 

field of action. 

Collins et al. (1975) confirmed that this finding held in 
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unrestrained eye movements. They used a force transducer 

which consisted of a split ring of aluminium, 2 milli- 

metres in diameter and 1 millimetre high which had a foil 

resistance strain gauge mounted on it opposite the gap in 

the ring. Holes were drilled in the ring near the gap 

through which sutures could be threaded. In this way 

tension between sutures opened up the ring, with the max- 

imum strain opposite the gap. The lateral and medial rectus 

tendon were sectioned near the insertions and the strain 

gauge was sutured in series. The other end of the trans- 

ducer was then sutured to the sclera, slightly in advance 

of the muscle stump so that the effective length of the 

muscle was unchanged. The zero calibration of each trans- 

ducer was made by unloading all force off it. This was 

done by rotating the globe passively so that the muscle 

was slack and by asking the patient to fixate with his 

other eye a target completely out of the muscles field of 

action. To calibrate the transducer, another suture was 

attached to the globe and connected to a preclibrated 

strain gauge. The globe was then pulled so that the muscle 

was stretched tight and its antagonist was slack. The 

patient then looked at an horizontal row of fixation lights 

with the other eye and the various levels of innervation 

caused the muscle to exert a range of forces which were 

measured by both the precalibrated strain gauge and the 

split ring transducer. They found the tension varied from 

a minimum of 8 to 12 grams at 15 degrees out of the 

muscles field of action to a maximum of 28 - 44 grams at 

45 degrees into the muscles field of action. 
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Robinson (1975) gives the e values which are supposed to 

correspond to the levels of innervation at each of the 

fixation points. The corresponding length-tension curves 

are shown in Figure 1.5.1. Also shown in the Figure, as 

a dotted line, is the normal tension of the muscle. What 

is interesting is that this curve reaches a minimum at 

the primary position and not fifteen degrees out of the 

field of action of the muscle. For this reason, different 

e values were selected which give a normal tension curve 

which reaches a minimum fifteen degrees out of the field 

of action of the muscle and has the parabolic form des- 

eribed by Collins (1971). The resulting length-tension 

curves are shown in Figure 1.5.2. 

As all the experimental work described was performed on 

the horizontal recti, the problem still remains as to what 

forces the other extraocular muscles exert. Robinson 

(1975) followed the approach of Boeder (1961) and multiplied 

the force exerted by each muscle, as calculated from the 

standard equation, by a scale factor corresponding to their 

relative cross sectional areas, which were taken from the 

data of Volkmann (1869). The actual values are as shown: 

LR MR SR IR so 10 

1.0 10d Ones" 0-95" "O05 (0.47 

Since it was suggested by Clement (1982) that alterations 

in the relative strengths of the muscles should directly 
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affect the mechanical relations between them, it was con- 

sidered important to investigate this assumption. An 

alternative approach is to assume that the relative 

strengths are proportional to muscle volume rather than 

cross-sectional area. In order to follow up this approach, 

the volume of each muscle was calculated by approximating 

each muscle by a set of cylinders. The diameter of each 

cylinder was given by the average of the diameters of the 

muscle in successive anatomical sections and the length 

of each cylinder was given by the distance between success- 

ive sections. The anatomical data of Nakagawa (1965) was 

used. The relative strengths of the muscles obtained by 

this procedure are as shown: 

LR MR SR IR so Io 

1.0; 0895 20.69 e806 = 0532 ,0.35 

1.6 Innervation of the extraocular muscles 

Experimental evidence about the nature of the innervation 

of the extraocular muscles cannot be obtained directly, 

but in normal subjects is reflected by the excitation of 

the muscle cells, which can be recorded electromyograph- 

ically. It was initially showh by Bjork and Kugelberg 

(1953) that the horizontal recti are active in the primary 

position and that their activity increases as the eye 

moves into their field of action. Breinin and Moldaver 

(1955) emphasized that the electromyograms of the horizontal 

recti showed considerable activity in the primary position 

and became silent only with movements well out of their 
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field of action. They also found direct evidence for the 

reciprocal innervation relationship between direct and 

contralateral antagonists. For example, the right lateral 

rectus and left medial rectus both showed increasing 

activity with a gaze movement to the right, whilst the 

right medial rectus and left lateral rectus both showed 

decreased activity. 

Independent of the reciprocal innervation relation, is 

the overall level of innervation and it would be possible 

for the eye to carry out certain movements by co-contraction 

of a pair of antagonistic muscles. Tamler, Marg and 

Jampolsky (1959) recorded the electromyogram from four 

muscles simultaneously while the eye was making slow follow- 

ing movements over a fifty degree range, centred on the 

primary position. This enabled them to determine what 

changes in innervation were occurring in co-contracting 

muscles. With vertical movements in the sagittal plane 

the horizontal recti showed no change in their electro- 

myograms. Similarly,. horizontal movements did not in 

general result in changes in the electromyograms of the 

vertical recti or the obliques. They concluded that 

around the primary position, at least, co-contraction was 

not occurring, though they admitted that their traces were 

not particularly accurate and probably would not show a 

discernible change for a following movement of less than 

eight degrees. 

Tamler, Jampolsky and Marg (1959) went on to record the 
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electromyogram of four muscles simultaneously while the 

eye was execeuting movements between teriary positions 

of gaze. This enabled them to discover that the obliques 

are most strongly innervated in positions of adduction 

while the recti are more strongly innervated in positions 

of abduction. They could find no changes in the way that 

the horizontal recti were innervated during vertical 

movements not through the primary position that held con- 

sistently between subjects. 

Robinson (1975) embodied these innervational constraints 

by adopting the approach that the innervation of an agonist 

muscle should be equal and opposite to its antagonist 

muscle, so that with respect to the length-tension curves 

formulated in the previous section, if an innervation 

corresponding to plus fifteen degrees is given to the later- 

al rectus, then an innervation corresponding to minus 

fifteen degrees will be given to the medial rectus. Using 

this relationship for each level of innervation, one may 

plot the innervation of the agonist against the innerva- 

tion of the antagonist. Robinson (1975) found that the 

curve so formed was described by the equation: 

(e(agonist)+9.7 (e(antagonist)+9.7)=(4.0+9.7) **2 

e (antagonist) =((4.0+9.7) **2=/(e(agonist)+9.7))-9.7 

This curve is shown in Figure 1.6.1. The corresponding 
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curve for the alternative set of innervation values des- 

eribed in the previous section is shown in Figure 1.6.2. 

This curve is described by the equation: 

e (antagonist) =((5.5+90.0) **2/(e (agonist) +90.0))-90.0 

Ta Models of extraocular muscle co-operation 

The mechanics of the extraocular muscles and the globe 

require that if the globe is to stay in any given position 

then the sum of the moments acting around the centre of 

rotation must be zero in that position. Given the con- 

straints described in the previous sections one arrives 

at what Robinson (1975) has referred to as the innervation 

problem, namely, if the position of the eye is given, 

what are the innervation values required to hold the eye 

in that position? The complementary problem, which he 

referred to as the position problem, is that given a set 

of innervation values, what will be the position adopted 

by the eye? Robinson (1975) solved both of these problems 

and so aoe to build a working model of extraocular 

muscle co-operation. 

The approach adopted in this study is that if only one 

assumpton is changed in the model of Robinson (1975), then 

any changes in the behaviour of the model can be attributed 

to this assumption. Individual assumptions were only 

changed when there was either theoretical or experimental 

evidence for an alternative and this criterion resulted 
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in six versions of the model which are as follows: 

Model 1 

The model defined by Robinson (1975) 

Model 2 

The same as model 1 with the exception that each muscle 

follows its mechanical shortest path and acts around the 

corresponding axis. 

Model 3 

The same as model 1 with the exception that each muscle 

acts around an axis fixed with respect to the head. The 

axis was taken to be perpendicular to the muscle plane 

with the eye inits primary position. 

Model 4 

The same as model 1 except that the alternative set of 

relative muscle strengths, derived in Section 1.5, were 

used. 

Model 5 

The same as model 1 except that the alternative reciprocal 

innervation function, derived in Section 1.6, was used. 

35



Model 6 

The same as model 1 except that there was no passive force 

assumed to be acting against the torsional movements of 

the eyes. 

In the next Chapter these models will be evaluated by 

comparing their predictions against clinical data from 

patients with isolated nerve pareses. 
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CHAPTER 2 

COMPARISON OF MODELS OF 

EXTRAOCULAR MUSCLE CO-OPERATION 
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Zou Clinical tests of oculomotility 

The most striking feature of the binocular co-ordination 

of eye movements is that the eyes act as though they are 

linked and that in almost every case, a movement of one 

eye only occurs in association with a movement of the 

other eye. Hering (1868) encapsulated this linkage in his 

law of equal innervation, which states that each eye 

receives equal innervation. 

The constraint implied by Hering's law forms the basis of 

the screen tests of oculomotility. In these tests, 

binocular vision is dissociated so that one eye may be 

treated as a fixating eye and the other eye may be treated 

as a non-fixating eye. The interpretation of the relative 

gaze directions of the two eyes rests on the assumption 

that they are both receiving the same levels of innervation. 

The Hess screen test utilises a tangent screen with the 

points spaced 5 degrees apart. Dissociation of binocular 

vision is achieved by means of the patient wearing red- 

green goggles with red over the fixating eye and green 

over the non-fixating eye. The experimenter specifies 

the point of fixation with a red light and the patient 

specifies the point of fixation of the non-fixating eye 

with a green light. 

The Lees screen test utilises the same tangent screen as 

the Hess test, but dissociation is achieved by a mirror 
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arrangement. A double sided mirror is aligned so that it 

points to the corner where two screens intersect at a right 

angle. The patient sits with his nose close to the mirror 

and sees the two screens superimposed in the non-fixating 

eye, so that one screen can be used to stimulate the fixa- 

ting eye and one screen can be used to record the position 

of the non-fixating eye. 

Both tests produce results of the same form. The result 

of the test consists of a pair of charts, the points 

marked on them showing the positions adopted by the non- 

fixating eye when the fixating eye is directed at the 

standard test positions. By convention, the chart on the 

left shows the positions adopted by the left eye when the 

right eye is fixating and the chart on the right shows the 

positions adopted by the right eye when the pon eye is 

fixating. 

The interpretation of the test relies on knowledge of the 

geometry of the insertions and origins of the extraocular 

muscles. The lateral rectus is maximally effective in 

movements of pure abduction, the medial rectus in movements 

of pure adduction. The vertical recti are more effective 

with 
eith abduction and the obliques with adduction. 

Because of the method involved in recording the position 

of the non-fixating eye, both the Hess and Lees screen 

tests rely on the patients having normal retinal corres- 

pondence. 
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aie Clinical data 

Patient records were provided by the Orthoptic Department 

at the Birmingham and West Midlands Eye Hospital. Mr 

V. Smith, a Consultant at the Eye Hospital obtained 

permission from the hospital Ethical Committee for the 

records to be consulted. A student at the Orthoptic 

Department, Miss T. Smellie, kindly provided a list of 

patients with isolated nerve palsies of late onset, which 

she had used for her final year project. Throughout the 

study, the Head of the Orthoptic Department, Mrs A. Howrie, 

was very helpful in explaining details of the case 

histories. Since the records could not be removed from 

the department, the co-ordinates of the points on the 

Hess charts were measured in the department, and later 

transferred onto the computer. 

Case histories were chosen in which the patients had 

suffered a paresis of either the IV or VI nerve which had 

subsequently recovered. By selecting patients who sub- 

sequently recovered it was hoped to avoid the complications 

of contracture of.the ipsilateral antagonist and subsequent 

underaction of the contralateral antagonist. In order to 

exclude the possibility that the muscle tissue itself was 

different from normal, any patients who had been diagnosed 

as diabetic were excluded from the study. In all, 15 

patients were used, 5 of whom had IV nerve pareses and 10 

of whom had VI nerve pareses. The patient group had an 
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age range of 34 to 80 (mean = 65.6) and was comprised of 

3 females and 12 males. All the Hess charts had been 

measured within 2 to 20 days of the attack. The Hess 

charts of the patients with IV nerve paresis are shown in 

Figure 2.2.1 and the Hess charts of the patients with VI 

nerve paresis are shown in Figure 2.2.2. 

Zao Binocular models 

France and Burbank (1978) have proposed the following 

computational scheme, which involves passing the innerva- 

tion indirectly: 

1) Calculate the innervation values required by the 

ACTUAL fixating eye (which may or may not be paretic). 

2) Calculate the position adopted by the NORMAL fixating 

eye with these innervation values. 

3) Calculate the innervation values required by the 

NORMAL non-fixating eye to reach this position. 

4) Calculate the position adopted by the ACTUAL non- 

fixating eye with these innervation values. 

Whilst this scheme is computationally effective it is open 

to the criticism that it does not reflect Hering's law of 

equal innervation. In particular, the scheme requires that 

when the fixating eye is paretic then it feeds abnormal 
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innervation values into the non-fixating eye. It would 

be expected from the concept of the binoculus, as discussed 

by Hering (1868), that if the fixating eye did not reach 

a required position then the binoculus would supply the 

appropriate innervation to turn a normal eye in the dir- 

ection in which the underaction is occurring. Considera- 

tion of this approach leads to an alternative computational 

scheme for a binocular model as follows: 

1) Calculate the innervation values required by the 

NORMAL fixating eye (i.e. binoculus) for the specified 

gaze direction. 

2) Calculate the position adopted by the ACTUAL fixating 

eye. 

3) If the actual fixating eye has not reached the speci- 

fied gaze direction, change the gaze direction of the 

binoculus, calculate the corresponding increase in inner- 

vation levels and repeat stage 2. 

4) When the actual fixating eye has reached the specified 

gaze direction, then the innervation values for the non- 

fixating eye are given by the innervation values required 

by the normal non-fixating eye for the gaze direction of 

the binoculus. 

The two schemes will be referred to as scheme A and scheme 

B respectively. 
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Examples of the behaviour of the six models are shown in 

Figure 2.3.1 and Figure 2.3.2. In both cases the pair of 

Hess charts showing both the primary and secondary devia- 

tions have been calculated using scheme A. Figure 2.3.1 

shows the predictions of the models when the superior 

oblique of the left eye is producing only 30% of its normal 

active tension, whilst Figure 2.3.2 shows the predictions 

when the lateral rectus of the left eye is producing only 

50% of its normal tension. 

With respect to palsy of the lateral rectus it can be seen 

from the results of model 2 that if the muscles act around 

the shortest path then the ensuing pattern of eye movements 

differs from that with model 1. The predictions of models 

3, 4 and 6 are virtually identical with those of model 1. 

However, model 5 shows that the change in the reciprocal 

innervation function results in deviations of eye positions 

which occur both in and out of the field of action of the 

muscle. This is in contrast to model 1 in which the devia- 

tion occurs almost totally in the field of action of the 

muscle. 

With palsy of the superior oblique, it was found that 

models 1 to 4 gave virtually identical results. Again 

model 5 was different in that it showed a deviation over 

a wider range of eye positions than did model 1. Not 

surprisingly, model 6 showed greater torsion than did 

model 1. 
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2.4 Comparison of the predictions of the models with 
  

clinical data 

The procedure for testing each model against the clinical 

data of each patient consisted of decreasing the muscle 

strength in steps of 10% and calculating a measure of 

deviation from the clinical data at each level of paresis. 

The measure of deviation that was used consisted of the 

square of the angle, in degrees, between the gaze direction 

predicted by the computer and the gaze direction recorded 

on the patient's Hess chart. In order to provide a quanti- 

tative estimate of the match over all 9 positions recorded 

for each eye, the calculated values for the measure of 

deviation at each position were summed, and these values 

have been tabulated. 

The deviations of the predictions of each model from the 

clinical data are shown in Table 2.4.1. Initially, only 

the primary deviations were considered because of the 

additional assumptions needed to produce a binocular model. 

For both types of pareses, model 5 shows a considerable 

improvement over model 1. Model 6 performs as well as 

model 1 with sixth nerve palsy and somewhat better with 

fourth nerve palsy. Interestingly, model 3 performed 

better than model 1 with fourth nerve palsy, although it 

did not perform as well with sixth nerve palsy. Models 

2 and 4 both performed worse than model 1. 
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TABLE 2.4.1 

DEVIATIONS OF THE PREDICTIONS OF THE SIX MODELS FROM THE 

CLINICAL DATA 

MODEL 

LR Paresis ds 2 3 4 5 6 

LU 8.6 10.7 Se 8.2 ES) 8.6 

HE S56 15).8 10.4 LOn2 4.1 Ded 

SP 34.1 20 57 32.1 33.69 49.4 3329 

Wd 32.4 22.5 32.8 Sia, 50.2) 3260. 

JA S963 36.6 SiS 56.1 100.4 Sool 

EM G7. 9e 695.2" 17a 50 172.5 98.5 169.2 

MA 565..6) “2S. Ue 170.5 7453 85.6 164.9 

DS 100.6 109.9 108.4 106.5 63.4 100.7 

DM dIOLO 217.8 299.7 L064 ~ 109.0) 190s2 

PR BOSe)) 5962 52258 515.0 9414/6 504.1 

Means 4127-2" 14472 131.7 130.7 96.9 vewe2 

SO Paresis 

DB 57,0 50.9 54.0 59.21 28.9 Say 

AC 82.0 86.4 78.9 83.8 Toi ae 83.4 

EW TOs 76.0 67.9 76.6 Slo 69.3 

AB Toes L192) 104) 12452 94.1 104.3 

SE 103.9 109.9 92.56 111.4 86.2 89.59 

Means 85.8 90.1 P25: 9150 66.9 80.3



On the basis of these results it was decided that an 

improved version of Robinson's (1975) model could be 

produced by replacing the reciprocal innervation function 

used by him with the one tried out in model 5, and by 

removing the passive anti-torsion force, as tried in model 

6. In order to decide between the two computational 

schemes for modelling both the primary and secondary devia- 

tion, described in the theory section, two versions of the 

model were produced, each utilising one of the alternative 

computational schemes. 

The deviations of the predictions of each of the two com- 

putational schemes from the clinical data are shown in 

Table 2.4.2. For both the sixth and fourth nerve pareses 

scheme A performed better than scheme B, though the differ- 

ence was most marked with fourth nerve pareses, where the 

match to the clinical data with scheme B was worse for the 

secondary deviation than with scheme A. 

The validity of the final version of the model may be 

appreciated by noting that the measure of deviation of the 

clinical data from the standard Hess chart positions varied 

from 159.0 to 725.0 for the fourth nerve pareses and from 

198.8 to 4272.1 for the sixth nerve pareses. The Hess 

charts produced by the final version of the model, which 

best matched the Hess charts of the patients with fourth 

nerve pareses and sixth nerve pareses, are shown in 

Figures 2.4.1 and 2.4.2 respectively. Also shown in the 
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TABLE 2.4.2 

DEVIATIONS OF THE PREDICTIONS OF THE TWO BINOCULAR SCHEMES 

FROM THE CLINICAL DATA 

SCHEME A SCHEME B 

LE RE TOTAL LE RE TOTAL 

LR Paresis i 2 3 “4 5 a 

LU Deu 28s 7, 48.4 64.6 18.6 83.2 

HE 33.4 oo sa/, ise 33.4 103.1 136.5 

SP 49.3 60.7 110.0 49.3 DON, 106.0 

Wo 50.3 58.5 118.8 50.3 74.8 125.4 

JA 9955 181.1 280.6 9975 182.2 281.7 

EM £230 9250 215'..5) aes 10567 228.0 

MA 142.5 168.4 310.9 142.5 186.0 328.5 

DS 63.0 LEDS 182.9 63.0 108.1 Lea 

DM 10920 149.5 258.5 109.0 157.9 266.9 

PR 411.7 29607 708.4 411.7 304.9 716.6 

Means LEOoL 126.6 2307 114.6 22955 244,4 

SO Paresis 

DB 30.1 28.7 53.8 27.7 SOUL 86.8 

AC 73.0 11353 186.3 73.0 169.5 242.5 

EW 97.6 33:59 Asa. 5 9259 79.0 ro. 9 

AB 154.5 60.5 215.0 d2ek 104.7 17669 

SE 10729 151.4 259.2 223.6 Sasa 547.4 

Means 92.6 77.6 16972 6929 147.2 237454. 
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figures is the level of paresis which produced the best fit. 

Zo Selection of the best model 

The most surprising finding in the comparison of the six 

different versions of the model was how similar their be- 

haviour was. This makes the task of modelling extraocular 

muscle co-operation easier in that the predictions of the 

model remain valid despite variations of the parameters in 

different individuals. Thus a change in the relative 

strengths of the muscles, as might reasonably be expected 

in different individuals, did not produce radically differ- 

ent predictions. It was also interesting to note that the 

fixed axis assumption which has been argued for by Jampel 

(1970, 1975) provided a close match with the clinical data. 

From a purely computational viewpoint, this assumption 

simplifies the programming of the calculations. 

For the computation of both primary and secondary deviations, 

scheme A produced a better match to the clinical data than 

did scheme B. However, this data did not test the differ- 

ence between the way in which the two schemes pass cyclo- 

torsion from one eye to the other. With a IV nerve palsy, 

both schemes predict excyclotorsion in the paretic eye when 

the non-paretic eye is fixating, but scheme A predicts 

greater excyclotorsion in the non-paretic eye, whilst scheme 

B predicts zero excyclotorsion in the non-paretic eye, when 

the paretic eye is fixating. Nakayama (1983) determined 
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photographically the torsion in the eyes of a patient with 

Brown's syndrome and found that only the affected eye 

showed excyclotorsion, a finding which supports Scheme B 

in preference to Scheme A. 

Another physiologically unrealistic feature of Scheme A 

is that if the paretic eye is fixating then the procedure 

requires that abnormal innervation values are generated to 

hold the eye in position. If the nervous system is capable 

of this computation, it is not apparent why muscle paresis 

cannot be compensated for. The reason why Scheme B does 

not produce as good a model as Scheme A is clear from Figure 

2.5.1 which shows the Hess charts predicted Schemes A and 

B with the superior oblique of the left eye producing only 

30% of its normal active tension. Because the torsional 

action of the muscle is not transferred, the secondary 

deviation is not larger than the primary deviation. 

In the next chapter some applications of the model with the 

alternative reciprocal innervation function and no passive 

anti-torsional force will be described. Only the second 

application requires a binocular model and Scheme B was 

used for this application because of the arguments against 

Scheme A which have just been described. 
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3.1 Qptimal use of the Hess screen test 

On the standard Hess charts, are marked the directions in 

which each muscle is presumed to be maximally active. These 

directions are based on geometrical arguments from the 

anatomy of the muscles, and one application of a model of 

the mechanics of the extraocular muscles is to update these 

arguments to include muscle forces. 

Although palsy of a single muscle can cause horizontal, 

vertical and torsional deviations, in order to accentuate 

the deviation recorded, a scheme of computation was devised 

with the model such that the horizontal deviation associated 

with palsy of the horizontal recti was maximised and so that 

the vertical deviation associated with palsy of the vertical 

recti and obliques was maximised, in the direction of the 

lines of the chart. 

In order to describe the scheme, the lines on the Hess chart 

which correspond to rotating the line of fixation around a 

fixed horizontal axis will be designated as lines of iso- 

azimuth, and the lines which correspond to rotating the 

line of fixation around a vertical axis will be designated 

as lines of iso-latitude. 

For the horizontal recti the scheme was as follows. First, 

the gaze direction associated with each point along a line 

of iso-azimuth was specified. Second, the axis of rotation 

which would move the line of fixation along the line of 

iso-latitude that passed through the point of fixation was 
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determined. This involved calculating the cross product 

of the unit vectors corresponding to lines of fixation 

directed at points along the line of iso-latitude, but 

one degree on either side of the actual point of fixa- 

tion. Finally, the muscle force directed along the line 

of iso-latitude was obtained by multiplying the force 

calculated by the model with the dot product of the axis 

of rotation of the muscle and the axis of rotation which 

would move the line of fixation along the line of iso- 

latitude. 

For each angle of azimuth the angle of latitude was 

varied from 30 degrees of elevation to 30 degrees of 

depression in 5 degree steps, and the angle of elevation 

at which the muscle was maximally effective was recorded. 

The angle of azimuth was varied from -45 degrees of 

adduction to 45 degrees of abduction in 5 degree steps 

and the locus of points of maximal effectiveness of the 

horizontal recti of the right eye are shown in Figure 

3.1.1. The procedure for the vertically acting muscles 

was identical except that the lines of iso-azimuth and 

iso-latitude were reversed in the sequence of calcula- 

tions. The results for these muscles in the right eye 

are also shown in Figure 3.1.1. 

The results conform with expectations in that the hori- 

zontal recti are most effective in the horizontal plane, - 

although the medial rectus becomes more effective with 

depressed gaze in convergence, and in that the obliques



  

PIGURE 3-1.1 

DIRECTIONS OF THE HESS CHART ALONG 

WHICH MUSCLES ARE MAXIMALLY EFFECTIVE 
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are more effective in adduction whilst the vertical recti 

are more effective in abduction. From the point of view 

of improving the test however, the results of the calcu- 

lations are disappointing in that no particular set of 

test positions, such as the central 15 degree positions 

or outer 30 degree positions on the Hess chart, is high- 

lighted as being of diagnostic value. Indeed the infer- 

ior oblique was found to be maximally effective at the 

limit of 45 degrees of adduction, above 10 degrees of 

elevation, so that the gaze directions where it would 

be maximally effective according to the model are 

probably not within the field of view. 

3a Muscular factors involved in the aetiology of 
  

A_and V_ syndromes 

This application was investigated in collaboration with 

Mrs Howrie, the Head of the Orthoptics Department at 

the Birmingham and West Midlands Eye Hospital. A and 

V phenomena are an interesting subject for investigation 

with the model because a number of possible muscular 

defects have been proposed as a cause for them and the 

mechanical effect of these defects can be tested with 

the model. 

The A and V syndromes are forms of strabismus in which 

the horizontal deviation varies according to whether 

the eyes are looking up or down. In conjunction with 

exotropi. here the eyes are divergent, or esotropia,    
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where the eyes are convergent, the following four 

patterns arise: 

A EXO Eyes more divergent in DOWN gaze 

A ESO Eyes more convergent in UP gaze 

V EXO Eyes more divergent in UP gaze 

V ESO Eyes more convergent in DOWN gaze 

Urist (1958) proposed that A and V phenomena may be 

secondary to underaction or overaction of the horizontal 

recti since the medial recti are more active in conver- 

gence with depressed gaze, whilst the lateral recti are 

more active in divergence with elevated gaze. The Hess 

charts produced by the model with bilateral 50% changes 

in the effectiveness of the horizontal recti are shown 

in Figure 3.2.1. Both bilateral underaction and bilat- 

eral overaction of the horizontal recti produce no evi- 

dence of A or V patterns. 

The most direct cause of A and V patterns appears to be 

a bilateral weakness in one of the vertically acting 

muscles, as demonstrated by the Hess charts shown 

in Figure 3.2.2, which were produced by the model 

with 50% underaction of the vertically acting muscles. 

The results clearly associate a V EXO pattern with 

bilateral underaction of the superior rectus, an A 

EXO pattern with bilateral underaction of the inferior 

rectus, a V ESO pattern with bilateral underaction 

of the superior oblique and an A ESO pattern with bi- 

lateral underaction of the inferior oblique. These 

results are in keeping with the view summarised by 
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BILATERAL UNOERACTION OF LR 

    

  
  

    

            

  

BILATERAL UNOERACTICN OF HR 

  

        

  

BILATERAL OVERACTION OF MR 

  

        

  

FIGURE 3.2.1 

EFFECTS OF CHANGES IN THE STRENGTHS 

OF THE HORIZONTALLY ACTING MUSCLES 
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BILATERAL UNOERACTION OF SR 

  

BILATERAL UNOERACTION OF SO 

  

    
  

  

  

FIGURE 3.2.2 

EFFECTS OF CHANGES IN THE STRENGTHS 

OF THE VERTICALLY ACTING MUSCLES 

70



Wesson (1960). 

Gobin (1968) has proposed that if an oblique muscle is 

sagittalised (i.e. makes a smaller angle with the line 

of fixation when the eyes is inits primary position than 

does its antagonist) then it is relatively less effective 

at producing torsional movement, hence the pair of 

obliques active together produce a cyclophoria and that 

the A or V pattern arises as a result of compensatory 

actions by the other muscles for this cyclophoria. 

The effect of sagittalisation was investigated with the 

model by posteropositioning the obliques. The Hess 

charts produced with bilateral 5 millimetre poster- 

opositioning of the obliques are shown in Figure 3.2.3A.A 

bilateral 5 millimetre change in the location of the 

insertions of the superior and of the inferior obliques, 

produced little cyclotorsion, which suggests that the 

subsequent compensatory actions of the other muscles 

required by Gobin's theory would not be elicited. 

Similarly, it was found that anteropositioning of the 

superior obliques, recommended for surgical correction 

of the A pattern and anteropositioning of the inferior 

obliques, recommended for surgical correction of the V 

pattern produced little change according to the model. 

Postic (1965) has suggested that vertical displacement 

of the insertions of the horizontal recti may be a cause 

of the A and V syndromes. This opinion was borne out 

by the model which demonstrated clear A and V patterns 
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BILATERAL POSTEROPOSITICNING OF SO 

    

    

              

    

    
            

  

BILATERAL POSTEROPOSITIONING OF 10 

    

    
              

  

BILATERAL ANTEROPOSITIONING OF 10 

  

        

  

FIGURE 3.2.3 

EFFECTS OF CHANGES IN THE LOCATIONS 

OF THE INSERTIONS OF THE OBLIQUES 
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with bilateral 5 millimetre shifts of the insertions, 

as shown in Figure 3.2.4. The only similar calculations 

appear to be those of Crone (1973) who describes the A 

and V patterns that should be obtained with a displace- 

ment of the insertions through 45 degrees. His results 

are qualitatively similar to those given here, although 
Fake 

he did not tske into account the forces exerted by the 

individual muscles. 

The model confirms that the most likely cause for an A 

or V syndrome is an underaction of one of the vertically 

acting muscles, although alteration of the height of the 

insertions of one of the horizontal recti will also 

result in an A or V pattern. 

Sas) Geometric constraints on muscle surgery 
  

The final application of the model is more speculative 

than the previous two since the results depend on the 

paths taken by the muscles according to the model, 

which have not been experimentally substantiated and 

indeed, are definitely incorrect in some gaze directions, 

as pointed out in Section 1.4. However, the application 

has been included because it illustrates another facet 

of the model which may be developed if more information 

becomes available, as suggested, by Clement (1984). 

In order to investigate purely physical constraints on 

the amount of surgical repositioning of the insertions 

of the muscles that can be performed, it is appropriate 
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BILATERAL SUPERIOR INSERTION OF LR 

  

FIGURE 3.2.4 

EFFECTS OF CHANGES IN THE LOCATIONS 

OF THE INSERTIONS OF THE HORIZONTAL 

RECTI 
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to replace each single muscle fibre in the model by a 

band of ten fibres. In this way the wide insertions of 

the muscles can be incorporated in the model and a 

computerised ophthalmotrope can be used to examine how 

far the insertions of the muscles can be moved before 

they interfere with each others movement. 

To provide the co-ordinates of points along a line of 

insertion approximately 10 millimetres broad, the co- 

ordinates of the midpoints of the muscle insertions, 

taken from the data of Volkmann (1869), were rotated in 

fixed angular steps of 5.1 degrees around an axis which 

lay in the muscle plane but was perpendicular to the 

line of insertion. So as to ensure that the width of 

the line of insertion was the same for each muscle, 

the length of each of the insertion vectors was ad- 

justed to their average value of 12.43 millimetres. 

In order to represent each muscle by a band of parallel 

fibres, the exit paths of each of the ten fibres were 

made equivalent to that of one of the central pair of 

fibres. 

An example of the use of the ophthalmotrope is provided 

by Scott (1978) who recommended a maximum of 10 milli- 

metres of recession of the inferior oblique, since the 

lateral border of the inferior oblique is about 10 

millimetres from the normal path of the inferior rectus. 

The computer based ophthalmotrope was used to produce 

Figure 3.3.1 which shows the eyes, as seen from directly 
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beneath them, after the inferior oblique of the right 

eye has been recessed by 10 millimetres. This figure 

implies that a recession of up to 15 millimetres could 

be carried out without the inferior oblique interfering 

with the path of the inferior rectus. 

Another example of geometrical considerations in extra- 

ocular muscle surgery arises in the anteropositioning 

of the obliques. Figure 3.3.2 shows the eyes as seen 

from directly above, after the superior oblique has been 

anteropositioned by 10 millimetres and it can be seen 

that, according to the model, the insertion of the 

superior rectus is now located in the tendon of the 

superior oblique. Similarly, Figure 3.3.3 shows the 

normal left eye, viewed from the left hand side and 

Figure 3.3.4 shows the effect of anteropositioning the 

inferior oblique by 10 millimetres. The geometrical 

effect of this operation is to cause the insertion of 

the lateral rectus to be located in the tendon of the 

inferior oblique. 

At present, these conclusions are speculative and in 
implicafions 

order for their mechanical implicstions to be clarified, 

some method of calculating the way in which the inter- 

ference of the paths of the muscles alters their effective 

axes of rotation, will have to be formulated. In order 

to calculate the amount by which muscles can be deformed, 

a geometric model, such as has been described in this 

Section, is insufficient. What is required is a mechan- 

ical model which incorporates the coupling between 
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FIGURE 3.3.1 

GEOMETRIC EFFECT OF ANTEROPOSITIONING 

THE SUPERIOR OBLIQUE OF THE RIGHT EYE 

BY 10 mm 

ie



  
FIGURE 350.2 

GEOMETRIC EFFECT OF RECESSION OF 

THE INFERIOR OBLIQUE OF THE RIGHT EYE 

BY 1Omm 
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FIGURE 3.3.3 

NORMAL LOCATION OF THE INFERIOR 

OBLIQUE OF THE LEFT EYE 
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FIGURE 3.3.4 

GEOMETRIC EFFECT OF ANTEROPOSITIONING 

THE INFERIOR OBLIQUE OF THE LEFT EYE 

BY 10mm 
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individual fibres: Until experimental data on the 

mechanical coupling between fibres is available, 

realistic assumptions cannot be made. 
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CONCLUSION 

Initially, Robinson's (1975) model was heralded as being 

an embodiment of the mechanics of the extraocular 

muscles and that it was only a short step from the model 

to solving all strabismus surgery calculations. This 

view is encapsulated in the following quotation from the 

concluding section of Carpenter's book "Movements of the 

Eyes", which surveyed the state of knowledge around 1977, 

two years after the model had been pubiisnedt He writes 

that "Our knowledge of the kinematics and dynamics of 

the eye has progressed steadily since the first con- 

ceptions of such men as Fick and Helmholtz, a little 

over a century ago, to the point where we can now sim- 

ulate the relationship between the activity in the 

six muscles and the resultant position of the eye with 

accuracy, and predict in advance what the effect will be 

of particular ophthalmic surgical procedures such as 

artificial lengthening or shortening of individual 

muscles to correct squint. Perhaps the main block of 

the acceptance of quantitative evaluation of such pro- 

cedures is the novelty of the notion that such pre- 

operative calculations can provide more than an approx- 

imate indication of the actual outcome. 

The more modest goal which has been pursued in this 

study is to produce a model which can describe the 

simplest case of abnormal co-operation of the extra- 

ocular muscles, namely, the isolated nerve palsy. What 
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became clear from the study was that with the reciprocal 

innervation function chosen by Robinson there was no 

possibility of his model showing the type of flexibility 

needed to cope with differing amounts of palsy. There 

is no real prospect of modelling strabismus surgery 

whilst the model cannot properly describe the initial 

underaction of the muscle, as in any longstanding 

strabismus the situation will be made even more un- 

certain by contracture of the direct antagonist and 

possibly also underaction of the contralateral antagon- 

ist. 

At this outset, there was no way of knowing that the 

assumptions in the model were not highly interactive, 

in which case the procedure of comparing models each of 

which differ by just one assumption would not have 

worked. The effectiveness of the procedure in this 

instance suggests that it is a valid approach in the 

modelling of biological systems to assume that the 

assumptions are not highly interconnected. The most 

immediate continuation of the work would be to in- 

troduce possible assumptions concerning the effect of 

fibrosis of the muscles and to test their validity 

against clinical data. The problem arises in the 

selection of the clinical data, since it is not easy 

to be sure that only one muscle is fibrotic, unlike 

the situation with isolated nerve palsies. Hence this 

next advance will probably not be possible until a 

sufficient number of direct measurements of contracture 

83



have been made, during muscle surgery. 

Given that the present model can be developed to in- 

corporate fibrosis of the muscles, the question then 

arises as to whether or not it would be applicable to 

strabismus surgery. One further difficulty which occurs 

is that of coping with individual variations, which are 

especially prominent in muscle surgery. Individual 

eyes and muscles have different shapes and sizes and 

muscles can look the same whilst having different 

strengths. Furthermore, individual surgeons have 

different techniques and the effect of an operation such 

as recession will depend on how close to the line of 

insertion the surgeon cuts the muscle and on how small 

scar tissue is formed. For a model to be effective in 

dealing with individual cases, methods will have to be 

devised for estimating parameters such as muscle strength 

and amount of contracture. An advance in this direction 

has been made by Collins and Jampolsky (1982) in 

surgery of the horizontal recti. They have used a 

simple spring model of the forces on the globe and have 

measured the tension in the muscles during the operation. 

The effectiveness of their procedure is evidence that 

models of the co-operation of the extraocular muscles 

should be kept as simple as possible, with a minimum 

of assumptions which can be checked directly. One 

further advantage of this policy is that the model is 

more likely to have widespread use if it does not 

require large amounts of time on a mainframe computer, 
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as do the models described in this thesis. 

For any model of extraocular muscle co-operation to 

play a role in the investigation of disorders of the 

extraocular muscles it must be accepted as valid by 

the orthoptic and ophthalmic community. This problem 

of psychological acceptances commonly occurs when users 

are becoming acquainted with a computer programme and 

Weinberg (1971) has pointed out that the choice of 

appropriate test data on which to validate the programme 

is crucial to its acceptance, for if a programme fails 

on the particular data with which a user is familiar, 

it will usually be rejected in its entirety. Given 

that surgery of an extraocular muscle would not be 

carried out on the basis of the Hess chart alone, but 

on the basis of a battery of orthoptic investigations 

such as the cover test, the diplopia field, the 

binocular field of single vision and the position of 

the head, it would appear advantageous for the model 

to simulate the results of these tests as well as the 

Hess chart. 

This study has shown that it is possible to produce 

a binocular model of the actions of the extraocular 

muscles which will automatically generate an accurate 

description of the behaviour of the extraocular muscles 

of a patient with a IV or VI nerve palsy. It is 

proposed that the utility of such models can be in- 

creased by simplfying the assumptions (for example, 
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by using axes of rotation fixed with respect to the 

head, length changes based on the shortest path assump- 

tion and possibly linear length-tension curves) and by 

increasing the range of orthoptic tests which the model 

emulates. There is then a very real possibility of a 

model of the co-operation of the extraocular muscles 

playing a central role in orthoptic investigations and 

in surgical correction of strabismus. 
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puma Specification of the orientation of the eye 

To describe the position of the eye one may consider a 

set of Cartesian basis vectors I, J, K fixed in the 

orbit and a set I', J', K' fixed with respect to the 

eyeball, such that in the primary position they coin- 

cide with the K and K' vectors directed along the line 

of fixation. When they do not coincide the position 

of the eye may be specified in terms of the transforma- 

tion required to change the IJK system into the I'g'K' 

system of base vectors. 

To carry out a transformation from one set of Cartesian 

axes to another set with a common origin one can perform 

three successive rotations in a specific sequence. The 

following is such a sequence: 

R1) Rotate I, J, K through an angle o 

clockwise around K to obtain I1,J1,Kl. 

oe [ecosa-sina ol 1 

gl = sina cosa 0 J 

Kl ° 0 1 K Ee =i) 2) 

R2) Rotate Il, Jl, Kl through an angle 8 

clockwise around Il to obtain 12,J32,K2. 
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frais. Ce) oan 

J2 = 0 cos g -sin § Jl 

K2 Lo sin 8 cos 8) Kl 

R3) Rotate I2, J2, K2 through an anglea 

clockwise around K2 to obtain I',J',K'. 

aR [cos y =sin-y ol I2 

J' = siny cos y ° J2 

Keli ieo ° iy K2 

The individual rotations can be combined to produce a 

Matrix Q=R3R2R1 of the whole sequence of rotations. 

The components of the matrix Q are as follows: 

cosa cos y -sin® cosy sin 8B sin Y 

-sina cos 8 siny -cosa cos ®8siny 

Q= cosa sin; -sine siny -sin 8B cos ¥ 

+sina cos 8 cos % +cosa cos 8cosy 

sina sin 8 cos % sin 8 cos 8 

Hence if x,y,z are the co-ordinates of a point in the 

I,d,K system and x',y',z' are the corresponding co- 

ordinates in the I',J',K' system then: 

x x! 

T 1 
Yeo" 

ea | 
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If Listings law is obeyed then the rotation angles must 

obey the constraint y-2% 

This system of orientation angles has the advantage 

over Fick's system used by Robinson (1975) that the pass- 

ive force on the globe can be calculated directly. 

ee Specification of the origins and insertions of 

the muscles 

The origin and midpoint of the insertion of each muscle 

are specified by the vectors A and B respectively. The 

co-ordinates of these vectors for the muscles of the 

right eye are given in Table I.2.1, where the units are 

millimetres. The effect of rotations of the globe on 

the co-ordinates of the insertions may be described by 

using the matrix equation B'=Q"B, An example of the 

vectors is given in Figure I.2.1 which shows the origin 

and insertion vectors of the lateral rectus of the right 

eye when it is elevated through 30 degrees. 

i.3 Exit paths of muscles 

Given the locations of the origins of the muscles and 

their insertions in the primary position, one must next 

specify the paths taken by the muscles in other positions 

of the eyeball. This problem is complicated by the fact 

that in the primary position the muscles fan out at their 

insertion so as to be attached along a line of insertion 
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TABLE 1.2.1 

CO-ORDINATES OF THE ORIGINS AND INSERTIONS OF 

THE MUSCLES OF THE RIGHT EYE 

LR MR SR IR so Io 

Ly =i3ie).0) =17 0 165010, =1620. =15).27, io bei, wl 

A a 0. 6 Ong oi, eee 12529 “15.46 

& =34.50 =30. 0 =3L 15 731676. 8.24 11.34 

t 10508 =n9:160 0. 0 0. 0 a Siem 

B J 0. 0 e. 0 10.48 -10..24 11,05 (ome) 

K 6.5 8.84 7263 8.02 = 4.41 7.8) 
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FIGURE 1.2.1 

ORIGIN AND INSERTION VECTORS 

OF THE LATERAL RECTUS OF THE 

RIGHT EYE 
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whose direction is given by a unit vector C (see Figure 

1.3.1) wheres 

A 
c=(AAB) / |A 4 BI 

which is normal to the path of the muscle. Since the 

stiffer tendon fibres are involved at the insertion, 

when the eyeball is moved there will still be a tendency 

for the exit path of the muscle to be perpendicular to 

the line of insertion. 

On the other hand, the shortest path for the muscle 

will no longer be perpendicular to the line of insertion 

in positions of the eyeball other than the primary one, 

but will lie in a plane (see Figure 1.3.2), spanned by 

A and B' with a unit orientation vector D where: 

A 
D=(A A B')/ |a A B'| 

A A 
The angle between C' and D is referred to as the 'twist' 

angle and one has that: 

AA 
cos (twist)=C'.D 

To obtain the sign of the twist angle the following 

procedure may be used. First compute the perpendicular 

exit path F where: 

A A A 
F=(B' a-c')/[B' A c'l 
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FIGURE I.3.1 

THE VECTOR C' WHICH LIES ALONG 

THE DIRECTION OF THE LINE OF 

INSERTION 
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FIGURE 1.3.2 

THE VECTOR D WHICH IS PERPEN- 

DICULAR TO THE SHORTEST PATH 

PLANE 
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Next compute the cosine of the angle between F and D 

which is given F.D, and let the sign of this cosine 

function be the sign of the twist angle. 

Robinson (1975) decided that the actual twist angle 

should be proportional to the cosine of the angle 

'tilt' which is formed between the vector representing 

A 
the line of insertion C' and the origin vector A: 

A 
cos (tilt)=(C'.A)/ ja| 

one may then define the actual twist angle (atwist) to 

be given by: 

atwist=cos (tilt) xtwist 

Note that in the primary plane cos (tilt) is always 

zero so there is no twist at the insertion. The actual 

exit path F is then given by: 

A A A 
F= -sin(atwist)C'+cos(atwist)F 

r.4 Paths of the muscles over the eyeball 

Even with the exit path of the muscle known it is still 

an open question as to what path the muscle follows 

away from the location of its insertion. 
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Robinson (1975) made the assumption that the muscle 

made contact with the eyeball along the arc of a 

circle, 

Before determining this circle one has to check that 

no muscle has lost tangency to the eyeball, as for 

example occurs with the medial rectus in the 

normal eye when there is an adduction of greater 

than thirty-four degrees, for when a muscle loses 

tangency it automatically takes the shortest path. 

For a muscle to lose tangency the angle angl between 

A and B' must be less than the angle ang2 between A 

and B' when the muscle is tangential to the eyeball. 

These two angles may be computed for comparison 

according to the formula: 

cos (angl)=A.B'/( ja | |B |) 

cos (ang2)= jB'| vi ja| 

If a muscle has lost tangency, the unit action vector 

A A 
R of the muscle is given by the orientation vector D 

NK 
of the shortest path plane (i.e. R=D). Since the 

muscle force is no longer acting tangentially it must 
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be reduced, which can be achieved by scaling down 

the unit action vector by a constant given by: 

const=|Aa | sin(angl)/ ja-B'| 

which is the perpendicular component of the force 

acting along A-B' divided by Ja-B'| to normalise it. 

The change in the length of the muscle when it has 

lost tangency may be computed by means of the 

formula: 

= ' = = Al |s | (angl-ang2) 1, 

where 1, is the length of the contact arc in the 

primary position. 

When specifying the circle of contact an important 

consideration is that there should be no sharp changes 

in the direction of the muscle path at the point where 

it leaves the eyeball. The locus of such points forms 

a tangent circle orthogonal to the origin vector A 

and there will be no sharp changes in the direction 

of the muscle path if the circle of contact is ortho- 

gonal to the tangent circle, which is ensured if the 

A 
plane of the contact arc is taken to contain both F 
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located at B' and the origin of the muscle A. Thus 

A 
the plane is spanned by two vectors F and G where G=A=B'. 

These vectors are shown in Figure 1.4.1. 

To specify the actual contact circle one may consider 

the vectors Hl and H2 from the centre of the contact 

circle to the point of insertion and the point where 

the muscle leaves the eyeball, respectively. The vector 

A 
Hl may be expressed as a linear combination of F and G. 

> 

To do this, first compute the angle Il between F and 

G given by: 

A cos(I1)=¢.#/ |c| 
’ 

an appropriate linear combination is of the form: 

A A A 
sin (I1)Hl=cos(I1)F-G 

hence 

A 
H1= (cos (I1)F-G/|G|)/sin(T1) 

To find the length of Hl consider a vertical plane 

A 
passing through both Hl and B' from which it follows 

that the angle I2 between them is given by: 

A 
cos (I2)=H1.B'/|B'| 

A 
and so |x| =radius of eyeball x cos(I2) and H1=|H1| xH1. 

39)



  

  

FIGURE 1.4.1 

THE VECTORS GAND F WHICH 

SPAN THE MUSCLE PLANE 
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Next, form H2 by finding the angle m3 between Hl and 

H2 (see Figure I.4.2). To do this, consider the 

vector H3 given by H1+G. The angle between Hl and H3 

is given by: 

cos(ml)=H1.H3/ |x1| |x3| 

whilst the angle m2 between H2 and H3 is given by: 

cos (m2)=|H#2| /| #3] =|#1| /|H3| 

since [x1] =|x2| 

and m3=m1-m2 

Hence the direction of the vector H2 to the point where 

the muscle leaves the eyeball is given by: 

A A A 
H2=cos (m3) H1+sin(m3)F 

so 
A 

H2=|H1| #2 

To form the unit action vector for each of the muscles, 

one must first find the point where the muscle leaves 

the eyeball. This point is specified by the vector P 

where: 

P=B '-H1+H2 

and the unit action vector is given by the orientation 
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FIGURE 1.4.2 

THE VECTORS INVOLVED IN THE 

CALCULATION OF THE LOSS OF 

TANGENCY VECTOR H2 

102 

H



vector R of the plane spanned by A and P: 

A 
R=A A p/|aap| 

To find: the length changes of the muscles in any given 

position, consider the angle m3 of the contact arc of 

the muscle, from which the lengthAl of the contact arc 

follows as |x| m3. This variable may be expressed as: 

Al=1-1, 

The percentage change from the muscle length in the 

primary position is given by: 

alt=al/1, x 100 

where lp is the length of the muscle in the primary 

position. 

Ee The innervation problem 

Effectively there are only three independent variables 

e(1),e(3) and e(5) since e(2),e(4) and e(6) are deter- 

mined by the innervation values with odd numbered in- 

dices. The actual values of e(1),e(3)and e(5) are found 

by an iterative procedure as follows: 

1) Guess at e(1),e(3) and e(5) and use these values 

to calculate a first approximation to the total amount Mo: 
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6 

ive. Mo=T+2f (i)R(i) 
i=l 

2) At equilibrium the total moment M should be zero. 

A linear approximation to M around Mo is given by: 

6 
ioe. M=Mo+ 2 M/ e(i) *deltae (i) 

isl 

6 

=Mo+ 5 (3 £(i)/ 3 e(i) *deltae(i))R(i) 
i=l 

and if Mis zero this implies that: 

6 

-Mo= £(3£(i)/ 3 e(i) *deltae(i))R(i) 
i=l 

6 

= £( 3 £(2i-1)/ 9 e(2i-1)R(2i-1) 
i=l 

+ £(2i)deltae (2i) *de(2i) /de(2i-1)R(2i) )deltae(2i-1) 

3) Let p(i)=%£(i)/ 2e(i) and d(i)=de(2i)/de(2i-1). 

Then the above relation can be written as a matrix 

equation: 

-Mo=A*DELTAE 

where 

DELTAE (1) = deltae (1) 

DELTAE (2) = deltae (2) u 

DELTAE (3) = deltae (3) 

and the components of the matrix A are as follows: 
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Similarly, the reciporical innervation relationship: 

e (21) =(9120.25/(e(2i-1) +90) )-90 

implies that 

de (21) /de (2i-1)=-9120.25/(e(2i-1) +90) **2 

r.6 The position problem 

The solution to the position problem used by Robinson 

(1975) involves decomposing the axis of the moment on 

the eye into rotations around Fick's axes, and then 

using the angles of rotation to estimate more appro- 

priate orientation angles. This procedure is unstable 

because it does not take into account the order in which 

the rotations occur. Hence a more exact procedure was 

developed in which the eye is rotated around the axis 

of the moment and the new orientation angles are calcu- 

lated directly. The details of the procedure are as 

follows: 

Given an axis of rotation S and an angle or rotation 

p, with current orientation angles 4,8 and y then the 

orientation angles after rotation «',8' and y' may be 

calculated as follows: 

1) Set up unit vectors X,Y and Z in the directions of 

the base vectors I,J and K in the head based co-ordinates. 
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A(1,1)=p(1)*R(1,1)+p (2) *4(1) *R(1,2) 

A(1,2)=p(3)*R(1,3)+p (4) *a(2) *R(1,4) 

A(1,3)=p(5)*R(1,5)+p(6) *d(3) *R(1,6) 

A(2,1)=p(1)*R(2,1)+p(2) *d4 (1) *R(2,2) 

A(2,2)=p(3)*R(2,3) +p (4) *d(2) *R(2,4) 

A(2,3)=p(5)*R(2,5)+p(5) *d (3) *R(2,6) 

A(3,1)=p(1) *R(3,1)+p (2) *d(1) *R(3,2) 

A(3,2)=p(3) *R(3,3) +p (4) *d(2)*R(3,4) 

A(3,3)=p (5) *R(3,5) +p (6) *d (3) *R(3,6) 

4) This matrix equation may be solved for DELTAE and 

an improved guess at the innervation values is given 

by e(1)+DELTAE(1),e(3)+DELTAE(2) and e(5)+DELTAE(3). 

This procedure is repeated until Mo is made sufficient- 

ly small. 

The required derivatives are straight forward to 

derive since: 

£(i)=stren(i)*(passive force+palsy(i)*active force) 

=stren(i)*(passive forcetpalsy(i)*(total force-passive force) 

and as the passive force does not change with the level 

of innervation: 

ef (1) /3e(i)=9(stren (i) *palsy(i)*total force) /%e (i) 

=stren (i) *palsy (i) *(0.9+0.81(deltal(i)+e(i))/ 

sqrt (38.9376+0.81 (deltal (i) +e (i) ) **2)) 
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2) Rotate the vectors around the axis S through the 

angle p to obtain the vectors X',¥' and 2’. 

3) Calculate the new orientation angle 3 ', which 

is given by: 

a'=acos((Z(1),Z2(2),0).(0,1,0) ) 

with 

sign of 4'=sign of acos ((Z(1),2(2),0).(1,0,0)) 

4) Calculate the new orientation angle 8 ' which is 

given by 

"=acos(Z.(0,0,1) ) 

5) Set up unit vectors U' and v' in the direction 

of the base vectors I and J in head based co-ordinates 

after rotation as specified by the orientation angles 

@',8' and = a'. 

6) Calculate the angle of torsion e given by: 

e=acos (Y,V') 

and put 

sign of e=sign of acos(Y,U') 

a} Obtain y' from the relation: 

y'=( a'+e) 
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Lis Description of the programmes 

The programmes have been written in FORTRAN IV and 

graphical output has been produced by means of the 

routines in the GINO graphics library. The programmes 

have been implemented on the CDC 7600 at the University 

of Manchester Regional Computer Centre and on the ICL 

1904s at the University of Aston Computer Centre. The 

majority of the programme runs were carried out at 

Aston University and the computations required from 400 

to 2400 seconds of machine time for a pair of Hess charts, 

depending on the degree of paresis. Although the 

programmes will run on a Z80 based microcomputer running 

Microsoft Fortran 80 under the CP/M operating system, 

it was found that the time taken was prohibitively 

long, each run taking several hours. 

The programmes listed in this section of the Appendix 

correspond to the two binocular schemes, scheme A and 

scheme B, and are followed by an example of their output. 

In order to facilitate portability of the programmes the 

graphics routines have been removed in these versions 

of the programmes. 

tee Description of functions and subroutines   

This section of the Appendix gives descriptions of the 

computations carried out by the functions and subroutines 
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used in the programme. The descriptions are followed 

by complete listings of the routines. 

FUNCTION ACOS(X) Computes the value of arcos x. 

FUNCTION ANGLE(A,B) Computes the angle between the 

vectors A and B 

SUBROUTINE COMPON (X,Y,Z) Accepts the orientation 

angles alpha, beta and gamma in x,y and z respectively, 

and sets up the components of the rotation matrix A. 

SUBROUTINE CROSS (A,B,C) Accepts two vectors A and B 

and forms their normalised cross product. 

FUNCTION DOT (X,Y) Calculates the scalar product of 

two vectors X and Y. 

SUBROUTINE EXIT (A,B,TURN,D,F) Accepts the origin and 

insertion vectors of the muscles A and B, rotates the 

insertion vectors in accordance with the eye position 

characterised by the matrix TURN and returns the short- 

est path vector D and the exit vector F. 

SUBROUTINE GYRO (P,T,X) Rotates the vector X about the 

unit axis vector P through the angle T. 

SUBROUTINE LEVEL (THETA, DELTAL, R,S,T,E,PALSY) Starts 

with a guess at the innervation values E and proceeds 
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iteratively to the correct solution. 

SUBROUTINE MOMENT (T, DELTA,E,PALSY,STREN,R,S,CONST) 

Calculates the overall moment on the eyeball and returns 

its axis S and its size const. 

SUBROUTINE PATH (A,B,D,F,LENGTH,CONTAC,R,DELTAL) 

Determines the paths of the muscles over the eye and 

computes the action vectors R and percentage length 

changes DELTAL that result. 

SUBROUTINE PICKUP (A,N,X) Accepts the 3x6 matrix A 

and the variable n which specifies the required 

column of the matrix and places this column in the 

vector X. 

SUBROUTINE PLUS (X,Y) Adds the vectors X and Y and 

returns the result in X. 

SUBROUTINE PUTBAK (A,N,X) Accepts the 3x6 matrix A, 

the variable n which specifies the required column 

of the matrix and the vector X which is to be placed 

in the matrix at the specified column. 

SUBROUTINE ROTAT (A,X) Rotates the vector X according 

to the rotation matrix A. 

SUBROUTINE SETUP (ALPHA,BETA,GAMMA,PRIMO,A,PRIMI,B, 

TURN,T,EY) Sets up the muscle origin and insertion 
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vectors A and B, the rotation matrix TURN and corres- 

ponding passive moment T, for the orientation angles 

specified by alpha, beta and gamma. 

FUNCTION SIZE (X) Computes the length of the vector X. 

SUBROUTINE SOL (A,Y,X) Accepts the matrix equation 

AX=Y and solves the equation by application of the 

inverse matrix, formed according to Cramer's rule. 

SUBROUTINE SWIVEL (ALPHA,BETA,GAMMA,S,CONST) Rotates 

the eye, initially in the position specified by the 

orientation angles alpha, beta and gamma, about the 

vector S by an amount const, and returns the new 

orientation angles. 

SUBROUTINE TIMES (A,X) Multiplies the vector X by the 

scalar A. 

SUBROUTINE TRANSP(A) Forms the transpose of the rota- 

tion matrix A. 

1:2
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PROGRAM SCHEMA 

MODELS THE EFFECT OF PALSIES ACCORDING TO SCHEME A 

REAL LENGTH 

DECLARE THE CONSTANT ARRAYS OF THE MUSCLE ORIGINS PRIMOL AND 
PRIMOR AND THE MUSCLE INSERTIONS PRIMIL AND PRIMIR OF THE 
NORMAL LEFT AND RIGHT EYES RESPECTIVELY 

DIMENSION PRIMOL(S, 6) , PRIMOR(S, 4) , PRIMIL (3,5) ,PRIMIR(S, 4) 

DECLARE THE ARRAYS OF STANDARD MUSCLE LENGTHS LENGTH, CONTACT 
ARCS CONTAC AND CROSS SECTIONAL AREA STREN 

DIMENSION LENGTH(4) , CONTAC (5) ,STREN(6 

DECLARE THE CONSTANT ARRAY OF STANDARD EYE FOSITIONS ORIENT AND 
VARIABLE ARRAY OF POSITIONS ACTUALLY ASSUMED BY THE EYES CHART 

DIMENSION ORIENT (3,9), CHART(S, 19) 

DECLARE THE CONSTANT SRRAYS OF INNERVATION SALSY FACTORS PALSYL, 
PALSYR AND PALSY 

DIMENSION PALSYL(4) , PALSYR (4) , PALSY (5) 

  

DECLARE THE VARIABLE ARRAYS USED DURING THE CALCULATIONS. THESE ARE 

AS FOLLOWS: THE ARRAY OF GRIGINS OF THE MUSCLES 4,THE ARRAY OF 
INSERTIONS OF THE MUSCLES 8,THE ROTATION MATRIX TURN USED TO MOVE 
THE EYE,THE ARRAY OF ORIENTATION VECTORS OF THE SHORTEST PATH PLANE 
D,USED WHENEVER A MUSCLE LOSES TANGENCY,THE ARRAY OF ACTUAL EXIT 
PATHS OF THE MUSCLES F,THE ARRAY OF MUSCLE ACTION VECTORS R,THE ARRAY 
OF PERCENTAGE LENGTH CHANGES DELTA, THE ARRAY OF INNERVATION VALUES 

— ASSOCIATED WITH A GIVEN POSITION OF GAZE,THE ARRAY CONTAINING THE 
PASSIVE MOMENT T AND FINALLY, THE ARRAY CONTAINING THE OVERALL MOMENT 
s 

DIMENSION A(S,6),3(3,6) , TURN(S, 3) 
DIMENSION D(S,4),F (3,6) ,R(S, 4) 
DIMENSION DELTA(S) ,£(6),T(S) ,S(S) 

SET UP ARRAY OF STANDARD EVE POSITIONS 

         
    

    

iT / 9.0 9.0 
9.2518 
0.3752 
9.2618 
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SET UP ARRAYS OF MUSCL.



DATA PRIMCL / 15.0 

   

  

’ 
1 17.0 4 
2 14.0 : 
3 16.0 i 
4 15.27 , ; 
Ss 11.1 / 

c 
DATA PRIMOR /-135.0 ’ 

1 717.0 ' 
2 16.0 ’ 
= -16.0 a 
4 -15.27 . 
5 ited / 

c 
DATA PRIMIL /-10.08 , 0.0 , 4.5 5 

£ O25 4 00, 5 8:88 ; 
2 0:0 4 10.46 , 7-65 5 
3 0.0 4-10.24, 8.02, 
4 -2.9 , 11.05 , -4.41 , 
S “6.7, 0.0 , -7.18 7 

c 
DATA PRIMIR / 10.08, 0.9 , 4.5 , 

4 “9.65, 0.0 , 8.84, 
2 0.0 , 10.48, 7.63, 
3 0.0 ,-10.24, 9.02, 
4 2.9 ,» 21.05 , -4.41 , 

s BF f 060 ok 718 
c 
C SET UP THE ARRAYS OF MUSCLE LENGTHS, CONTACT ARCS,CROSS SECTIONAL 
© AREAS AND INNERVATION SCALE FACTORS 

c 
DATA LENGTH / 49.11,38.51, 41.96, 32.49, 22.28,55.55 / 
DATA CONTAC / 911.02, 5.01,17.135 / 
DATA STREN / 3 0.95, O.S 5 0.47 / 
DATA PALSY / 1.0, 1.9, 1.0, 1.0, 1.9, 1.0 / 
DATA PALSYL / 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 / 
DATA PALSYR / 1.0, 1.0, 1.9, 1.9, 1.0, 1.0 7¢/ 

c 
© CALCULATE POSITIONS ADOPTED SY THE RIGHT EYE WHEN THE LEFT EYE IS 
© FIXATING 
c 

Net + 
200 ALPHA=ORIENT (1,N) 

RETASORIENT (2,M) 
GAMMA=ORIENT (3,N) 

    

       

      

c 
© FIRSTLY CALCULATE THE INNERVATION VALUES D BY THE PARETIC 
© LEFT EYE TO MAINTAIN THE POSITION OF FIXATION 
c 

IP (ALPHA, BETA, GAMMA, PRIMOL,A 
(A,B, TURN, D, 

, LENG 

210 
CALL LEVEL (STREN, DELTA, R,S,T,&, Pal 
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CONDLY CALCULATE THE POSITION ADOPTED BY THE NORMAL LEFT EYE WITH 
(ESE LEVELS OF INNERVATION 

00 CALL SETUP (ALPHA, BETA, GAMMA, PRIMOL,A,PRIMIL,8, TURN, T, 1.0) 
CALL EXIT(A,3, TURN, D,F) 
CALL PATH(A,8,D,F,LENGTH, CONTAC, R, DELTA) 
CALL MOMENT (T, DELTA,£, PALSY, STREN,R,S,CONST) 
IF(CONST.LT.O.1) GOTO 400 
CONST=CONST/200.0 
CALL SWIVEL (ALPHA, BETA, GAMMA, S, CONST) 
GoTo 300 

c 
C THIRDLY CALCULATE THE INNERVATION LEVELS REQUIRED BY THE NORMAL 
C RIGHT EYE TO MAINTAIN THIS POSITION 
c 
400 CALL SETUP (ALPHA, BETA, GAMMA, PRIMOR. A, PRIMIR,B, TURN,T,-1.0) 

CALL EXIT(A,B, TURN, D,=) 
CALL PATH(A,3,D,F,LENSTH, CONTAC,R, DELTA) 

DO 410 I=1,4 
410 &(1)=5.5 

CALL LEVEL (STREN, DELTA,R.S,T,£,PALSY) 
c 
C FINALLY CALCULATE THE POSITIONS ADOPTED BY THE PARETIC RIGHT EYE 

€ UNDER THESE INNERVATION VALUES 
c 

ALPHASORIENT(1,N) 
BETA=ORIENT (2,N) 
GAMMA=ORIENT (3, N) 

soo CALL SETUP (ALPHA, BETA, GAMMA, PRIMOR, A, PRIMIR, B, TURN, T,-1.0) 
CALL EXIT (A,B, TURN, D,F) 
CALL PATH(A,3,D,F, LENGTH, CONTAC, R, DELTA) 
CALL MOMENT (T, DELTA, &,PALSYR, STREN,R,S, CONST) 
IF(CONST.LT.0.5) GOTO 600 
CONST=CONST/ 100.0 
CALL SWIVEL (ALPHA, SETA, SAMMA, S, CONST) 
GOTO Soo 

c 
C MOVE ON TO NEXT POSITICN 
e 
00 CHART (1,N+9) =ALPHS 

CHART (2, N+9) =BETA 
CHART (S,N+9) =GaMMa, 

(N.GT.9) GOTO 700 
TO 200 

  

fs 
C CALCULATE POSITIONS ADOPT 
€ FIXATING 
c 

  

BY THE LEFT EYE WHEN THE RIGHT EYE IS 

    

7090 
710 ALPHASORIENT(1,M) 

Oi 

    
AS



c 
© FIRSTLY CALCULATE THE INNERVATION VALUES REQUIRED SY THE PARETIC 

© RIGHT EYE TO MAINTAIN THE POSITION OF FIXATION 
c 

  

CALL SETUP (ALPHA, BETA, GAMMA, PRIMOR,A,PRIMIR, 8, TURN, T,-1.9) 
CALL EXIT(A,8, TURN, 0, F) 
CALL PATH(A, 8,0, , LENGTH, CONTAC, R, DELTA 
DO 720 I=1,6 

720 €(1)=5.5 
CALL LEVEL (STREN, DELTA,R,S,T,=,PALSYR) 

c 
© SECONDLY CALCULATE THE POSITION ADOPTED BY THE NORMAL RIGHT EYE 
C WITH THESE LEVELS OF INNERVATION 
cS 
800 CALL SETUP (ALPHA, SETA, GAMMA, PRIMOR,A,PRIMIR, 3, TURN, T,-1.0) 

CALL EXIT(A,B, TURN, 9,F) 
CALL PATH(A, 8, D,F, LENGTH, CONTAC, R, DELTA 
CALL MOMENT (T, DELTA, &, PALSY, STREN,R,S, CONST) 
IF(CONST.LT.0.1) GOTO 700 
CONST=CONST/200.0 
CALL SWIVEL (ALPHA, SETA, GAMMA, S, CONST) 
GOTO S00 

    

6 
C THIRDLY CALCULATE THE INNERVATION LEVELS REQUIRED SY THE NORMAL 
C LEFT EYE TO MAINTAIN THIS POSITION 
c 
300 CALL SETUP (ALPHA, BETA, GAMMA, PRIMOL, A, Pi 

CALL EXIT(A,B, TURN, D,F) 
CALL PATH(A, 8,2, F,LENGTH, CONTAC,R, DELTA 
DO 910 I=1,6 

910 £(1)=5.5 
CALL LEVEL (STREN, DELTA,R,S,T,=, PALSY) 

  

IM 

  

43, TURN, T, 1.0) 

  

c 
C FINALLY CALCULATE THE POSITIONS ADOPTED BY THE PARETIC 
C UNDER THESE INNERVATION VALUES 
c 

ALPHA=ORIENT (1,N) 
BETA=ORIENT (2,N) 
GAMMAS=ORTIENT (,N) 

1000 CALL SETUP (ALPHA, BETA, GAMMA, PRIMOL, A, PRIMIL, 8, TURN, T, 1.0) 
CALL EXIT(A,B, TURN, D,F) 
CALL PATH(A, 3,D,F,LENGTH,CONTSC,R, DELTA) 
CALL MOMENT (T, DELTA, =, PALSYL, STREN,R, 5S, CONST) 
IF{(CONST.LT.O.5) GOTO 1100 
CONST=CONST/200.0 
CALL SWIVEL (ALPHA, SETA, G 
GOTO 1000 

     

    

    

18,5, CONST) 

N=N+L 
IF 
gota 
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c 
C WRITE OUT THE POSITIONS ASSUMED 

c 
1200 WRITE (2, 2000) 
2000 FORMAT (1HO,* POSITIONS ASSUMED BY LEFT EYE") 
2010 FORMAT (1HO, POSITIONS ASSUMED BY RIGHT EYE”) 

WRITE (2,2020) 
2020 FORMAT (1HO, *ADDUCTION~", 10X, "SLEVATION-", 10X, *EXTORSION-") 

WRITE (2, 2050) 
2030 FORMAT(1H ,* ABDUCTION’, 10X,”’ DEPRESSION’, 10X,” INTORSION’) 

c 

  

DO 2100 N=#1,18 
ALPHAS=CHART (1,N) 
BETA=CHART (2,N) 
GAMMA=CHART (S,N) 
CONST1=SORT (COS (BETA) ##2+ (COS (ALPHA) ##2) #(SIN(BETA) #*2) ) 
IF (CONST1.GT.0.9999) CONST1=0. 9999 
IF (CONST1L.LT.-0.9999) CONST1=-0.9999 
CONST!=ACOS (CONST1) 
CONST1=CONST1*S7.35 
IF(ALPHA.LT.0.0) CONST1=-CONSTL 
CONST2=SORT (COS (BETA) +#2+ (SIN (ALPHA) ##2) * (SIN (SETA) #*2) ) 
IF (CONST2.GT.0.9999) CONST2=0.9999 
IF (CONST2.LT.-0.9999) CONST2=-0.9999 
CONSTZ=ACOS (CONST2) 
CONST2=CONST2*57. 
IF (ABS (ALPHA) .GT. 1.5708) CONST2=-CONST2 
CONSTS=(ALPHA+GAMMA) #S7.5 
IF(M.EQ.10) WRITE (2, 2010) 
IF(N.EQ.10) WRITE(2,2020) 
IF(N.£Q.10) WRITE(2, 2050) 
WRITE (2,2040) CONST1,CONST2,CONSTS 

2040 FORMAT(1H ,S(F10.1,10X)) 
2100 CONTINUE 
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PROGRAM SCHEMB 

MODELS THE EFFECT OF PALSIES ACCORDING TO SCHEME B 

REAL LENGTH 

DECLARE THE CONSTANT ARRAYS OF THE MUSCLE ORIGINS PRIMOL AND 
PRIMOR AND THE MUSCLE INSERTIONS PRIMIL AND PRIMIR OF THE 
NORMAL LEFT AND RIGHT EYES RESPECTIVELY 

DIMENSION PRIMOL(S, 4) ,PRIMOR(S, 6), PRIMIL(S, 4), PRIMIR(S,6) 

DECLARE THE ARRAYS OF STANDARD MUSCLE LENGTHS LENGTH, CONTACT 
ARCS CONTAC AND CROSS SECTIONAL AREA STREN 

DIMENSION LENGTH (5) ,CONTAC(S),STREN(6) 

DECLARE THE CONSTANT ARRAY OF STANDARD EYE POSITIONS ORIENT AND 
VARIABLE ARRAY OF POSITIONS ACTUALLY ASSUMED BY THE EYES CHART 

DIMENSION ORIENT (3,9), CHART(S, 18) 

  

DECLARE THE CONSTANT ARRAYS OF INNERVATION PALSY FACTORS PALSYL, 
PALSYR AND PALSY 

DIMENSION PALSYL (4) , PALSYR (6) , PALSY (5) 

DECLARE THE VARIABLE ARRAYS USED DURING THE CALCULATIONS. THESE ARE 
AS FOLLOWS: THE ARRAY OF ORIGINS OF THE MUSCLES A, THE ARRAY OF 
INSERTIONS OF THE MUSCLES 8, THE ROTATION MATRIX TURN USED TO MOVE 
THE EYE, THE ARRAY OF ORIENTATION VECTORS OF THE SHORTEST PATH PLANE 
D,USED WHENEVER A MUSCLE LOSES TANGENCY,THE ARRAY OF ACTUAL EXIT 
PATHS OF THE MUSCLES F,THE ARRAY OF MUSCLE ACTION VECTORS R,THE ARRAY 
OF PERCENTAGE LENGTH CHANGES DELTA, THE ARRAY OF INNERVATION VALUES 
—& ASSOCIATED WITH A GIVEN POSITION OF GAZE, THE ARRAY CONTAINING THE 
PASSIVE MOMENT T AND FINALLY, THE ARRAY CONTAINING THE OVERALL MOMENT 
s 

  

DIMENSION A(S 2), TURN(S, 3) ,XT(S) 
DIMENSION D(S. 3,6) ,R(S, 4), TRIS, 8) 
DIMENSION DELTA(S) ,£ (8), T(S),S(S), TOELTA(S), TT(S: 

     

  

SET UP ARRAY OF STANDARD EYE POSITIONS 

DATA ORIENT / 9.9 » 9.0 
1 0.90 » 0.2618 
2 0.7854 , 0.5752 
3 1.5706 , 0.2618 
4 » 0.3752 
s » 0.2618 
6 » 0.3752 

rz » 0.2518 

3 » 0.3752 

SET ORIGINS AND    
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DATA PRIMOL / 13.0 

1 17.0 i 
2 16.0 4 
3 14.9 ’ 
4 1$.27 ' 
s ted 7 

DATA PRIMOR /-13.0 
1 -17.0 : 
2 -14.0 ‘ 
3 -16.0 . 
4 -15.27 : 
5 ited 7 

DATA PRIMIL /-10.08 , 0.0 , 4.5 
1 9.65, 0.0 , 8.84 
2 0.0 , 10.48, 7.45 
3 0.0 ,-10.24 , 8,02 
4 2.9 , 11.05 , -4.41 
S “6.7 , 0.0 , -7.18 7 

DATA PRIMIR / 10.08, 0.0 , 4.5 , 
1 “9.65, 0.0 , 8.84 
2 0.0), 10-48 5 37563 5 
3 0.0 ,-10.24, 8.02 
4 2.9 , 11.05 , -4.41 
5 G57 7 0,0) 4-748 7 

SET UP THE ARRAYS OF MUSCLE LENGTHS, CONTACT ARCS,CROSS SECTIONAL 
AREAS AND INNERVATION SCALE FACTORS 

    

   

  

     

DATA LENGTH / 49.11,38.51,41.96,42.49,22.28,55.55 / 
DATA CONTAC / 15.94, 7.4 ,10.23, 11.02, 5.01,17.15 / 
DATA STREN / 1.0, 1.04, 0.68, Sy O58 7 O047 7 
DATA PALSY / 1.0, 1.0 5 1.05 1-0, 1.0, 2-0 / 
DATA;PALSYE 44.0 , 1.0 , 1.0, 2.0, 1.0, 2-0 7 
DATA PALSYR / 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 / 

S 
C CALCULATE POSITIONS ADCPTED BY THE RIGHT EYE WHEN THE LEFT 
C FIXATING 
c 

Net 
200 ALPHASORIENT (1,N) 

BETA=ORIENT(2,N) 
GAMMASORIENT (S,N) 

c : 
© FIRSTLY CALCULATE THE INNERVATION VALUES REQUIRED SY THE PARETIC 
C LEFT EYE TO MAINTAIN THE POSITION CF FIXATION 
c 

XT (1)=0.0 
XT (2) =0.0 
XT(S)=1.0 
CALL COMPON (ALPHA, BETA, GAMMA, TURN) 
CALL TRANSP (TI 
CALL ROTAT (TU 
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CALL SETUP (ALPHA, SETA, GAMMA, PRIMOL,A,PRIMIL,8, TURN, TT, 1.9) 
CALL EXIT(A,8, TURN, D,F) 
CALL PATH(A,B,D,&,LENGTH, CONTAC, TR, TDELTA) 
NT=0 

205 NT=NT+1 
c 

CALL SETUP (ALPHA, BETA, GAMMA, PRIMOL,A,PRIMIL,3, TURN, T,1.0) 
CALL EXIT(A,B, TURN,D,7) 
CALL PATH(A, 8,D,F, LENGTH, CONTAC,R, DELTA) 
DO 210 1=1,6 
EiI)=5.5 
CALL LEVEL (STREN, DELTA,®,S,7T,&,PALSYL) 
CALL MOMENT (TT, TDELTA,E,PALSYL, STREN, TR, S,CONST) 
XC=CONST/400.0 
TCONST=CONST 
IF(CONST.LT.O.5) GOTO 405 
IF (ABS (DOT(XT,S)).GT.0.95) GOTO 405 
CALL TIMES(-1.0,S) 
CALL SWIVEL (ALPHA, BETA, GAMMA, S, XC) 
GAMMA=-ALFHA 
GOTO 205 

405 c1=0.0 
c 

N ° 

C SECONDLY CALCULATE THE INNERVATION LEVELS REQUIRED BY THE NORMAL 
C RIGHT EYE TO MAINTAIN THIS POSITION 
c 
400 CALL SETUP (ALPHA, BETA, GAMMA, PRIMOR, 4, PRIMIR, B, TURN,T,-1.0) 

CALL EXIT(A, 8, TURN, D,F) 
CALL PATH(A,3,D,F, LENGTH, CONTAC, R, DELTA) 
DO 410 I=1,4 

410 £(1)=5.5 
CALL LEVEL (STREN, DELTA,R,S,7,£, PALSY) 

c 
C FINALLY CALCULATE THE POSITIONS ADOPTED BY THE PARSTIC RIGHT EYE 
C UNDER THESE INNERVATION VALUES 
c 

ALPHA=ORIENT (1,N) 
BETA=ORIENT (2,N) 
GAMMA=ORIENT (S,N) 

500 CALL SETUP (ALPHA, BETA, GAMMA, PRIMOR,A,PRIMIR, 8, TURN,T,—1.0) 
CALL EXIT(A,B, TURN, D,F) 
CALL PATH(A,8,D,F, LENGTH, CONTAC, R, DELTA) 
CALL MOMENT (T, DELTA, £,PALSYR, STREN,R,S, CONST) 
IF(CONST.LT.O.S) GOTO 600 
CONST=CONST/ 100.0 
CALL SWIVEL (ALPHA, BETA, GAMMA, S, CONST) 

  

   

SOTO Soo 
cS 
© MOVE ON TO NEXT POSITION 
c 
400 CHART (1,N+9) =4LPHA 

CHART (2,N+9) =8 
CHART (3, N+9) =GAMMA 
NEN+L 
IF(N.GT.9) GOTO 700 
GOTO 200 

  

Ro



c 
€ CALCULATE POSITIONS ADOPTED BY THE 
© FIXATING 

EYE WHEN THE RIGHT EYE IS. 

  

c 
700 NeL 
710 ALPHA=ORIENT(1,N) 

BETA=ORIENT (2,N) 
GAMMA=ORIENT (5, N) 

c 
FIRSTLY CALCULATE THE INNERVATION VALUES REQUIRED BY THE PARETIC 

© RIGHT EYE TO MAINTAIN THE POSITION OF FIXATION 
c 

XT (1) =0.0 
XT(2) 20.0 
XT(3) =1.0 
CALL COMPON (ALPHA, BETA, Sanna, TURN) 
CALL TRANSP (TURN) 
CALL ROTAT (TURN, XT) 
CALL SETUP (ALPHA, SETA, GAMMA, PRIMOR, A, PRIMIR,B, TURN, TT,-1.9) 

CALL EXIT(A,B, TURN, D,F) 
CALL PATH(A,B,D,F,LENSTH, CONTAC, TR, TDELTA) 

NT=0 
715 NT=NT+1 
c 

CALL SETUP (ALPHA, SETA, GAMMA, PRIMOR, A, PRIMIR, 8, TURN, T,—-1.0) 
CALL EXIT(A,8, TURN, D,F) 
PALL PATH(A, 8,D,F,LENGTH, CONTAC, R, DELTA) 
DO 720 I=1,6 
£(1) 55.5 
CALL LEVEL (STREN, DELTA, R,S,7,&,PALSYR) 
CALL MOMENT (TT, TDELTA, ©, PALSYR, STREN, TR, S, CONST) 
IF (CONST.LT.0.5) GOTO 750 
XC=CONST/400.0 
TCONST=CONST 
IF (ABS (DOT (XT,$)).8T.0.9) GOTO 750 
CALL TIMES(-1.0,5) 
CALL SWIVEL (ALPHA, SETA, GAMMA, S, XC 
GAMMA=-ALPHA 
GoTo 715 

SO Ci=0.0 

      

7 
c 
€ SECONDLY CALCULATE Tt TMS aTe oN LEVELS REQUIRED BY THE NORMAL 
© LEFT EYE TC MAINTAIN 
c 
300 CALL SETUP (ALPHA, SETA, SAMMA, PRIMOL,S,PRIMIL, 3, TURN, T, 1.9)     

CALL EXIT(A, 8, Tt 
CALL PATH(A,3,D,F, 
DO 910 I=1,6 

710 1£(1) 85.5 
CALL LEVEL (STREN, DELTA,R,S 

  

N, DF) 
TH, CONTAC, R, DELTA 

    

    

  

FINALLY CALCULAT! 
UNDER THESE INNERVAT 

  

o
o
a
0
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ALPHA=GRIENT(1,N) 
BETA=ORIENT (2,N) 
GAMMA=GRIENT (3,N) 

1000 CALL SETUP (ALPHA, BETA, GAMMA, PRIMOL,A,PRIMIL,8, TURN, T, 1-0) 
CALL EXIT(A,8, TURN, D, =) 
CALL PATH(A, 8,D,F, LENGTH, CONTAC, R, DELTA) 
CALL MOMENT (T, DELTA, &,PALSYL, STREN,R,S, CONST) 
IF(CONST.LT.O.S) GOTO 1100 
CONST=CONST/200.0 
CALL SWIVEL (ALPHA, SETA, GAMMA, S, CONST) 

: GoTO 1000 
c : 
C MOVE ON TO NEXT POSITION 
c 
1100 CHART (1,N) =ALPHA 

CHART (2,N) =BETS 
» CHART (S,N) =GAMMA, 
NeN+t 
IF(N.GT.9) GOTO 1200 
GoTo 710 

c 
C WRITE OUT THE POSITIONS ASSUMED 
c 
1200 WRITE (2, 2000) 
2000 FORMAT (1HO, POSITIONS ASSUMED BY LEFT EYE’) 
2010 FORMAT (1HO,*POSITIONS ASSUMED BY RIGHT EYE’) 

WRITE (2, 2020) 
2020 FORMAT (1HO, *ADDUCTION-*, 10X, "ELEVATION-" ,10X, "EXTORSION-") 

WRITE (2, 2050) 
2030 FORMAT(1H ,* ABDUCTION’,10X,* DEPRESSION’,10X,’ INTORSION’) 
c 

DO 2100 N=1,19 
ALPHA=CHART (1,N) 
BETA=CHART (2,N) 
GAMMA=CHART (S,N) 
CONST1=SORT (COS (BETA) #*2+ (COS (ALPHA) ##2) «(SIN (BETA) ##2) ) 
IF (CONST!.GT.0.9999) CONST1=0.9999 
IF (CONST1.LT.-0.9999) CONST1=-0,9999 
CONST 1=ACOS (CONST1) 
CONST 1=CONST14#S7.3 
IFCALPHA.LT.0.0) CONST1=-CONST1 

CONST2=SQRT (COS (BETA) ##2+ (SIN (ALPHA) #2) *(SIN (SETA) #¥2) ) 
IF (CONST2.6T.0.9999) CONST2=0.9999 
IF (CONST2.LT.-0.9999) CONST2=-0.9999 
CONSTZ=ACOS (CONST2) 
CONST2=CONST2*S7.3 
IF (CABS (ALPHA) .GT.1.5708) CONST2=-CONST2 
CONSTS=(ALPHA+GAMMA) #S57.3 
IF(N.£Q.10) WRITE (2,2010) 
IF(N.EQ.10) WRI +2020) 
IF (N.EQ.10) WRITE(2, 2050) 
WRITE (2,2040) CONST1,CONST2, CONSTS 

2040 FORMAT (1H ,3(F10.1,10X)) 
s CONTINUE 

   

  

END 
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POSITIONS ASSUMED BY LEFT EYE 

ADDUCT ION- ELEVATION- 
ABDUCTION DEPRESSION 

8 8 
8 15.0 

15.0 15.9 
15.0 8 
15.0 “15.0 

8 “15.0 
715.0 715.0 
“15.0 8 
15.0 15.0 

POSITIONS ASSUMED 8Y RIGHT EYE 

  

ADDUCT ION— SLEVATICN— 
ABDUCTION DEPRESSION 

8 8 
~8 15.0 

15.0 
15.0 
15.0 

8 
-15.0 
~15.0 8 
“15.0 15.90 

i238 

EXTORSION- 
INTORSION 

9.90 
° 
° 
° 

2
0
0
0
9
0
0
0
 

9
0
0
0
0
 

EXTORSION- 
INTORSION 

9.0 

ee
ee
ee
ce
 

3
6
5
5
0
0
0
0



FUNCTION ACOS(X) 

C COMPUTES THE VALUE OF ACOs x 
c 

PIs3.1416 
IF (X.GT.0.0) ACOS=ATAN( (SQRT (1-X#*2) )/X) 
IF(X.LT.0.0) ACOS=ATAN ( (SORT (1-X#*2))/X)+PT 
IF (X.£0.0.0) ACOS=PI/2.0 
RETURN 
=ND 
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FUNCTION ANGLE (A, 3) 

COMPUTES THE ANGLE SETWEEN VECTORS A AND 3 

DIMENSION A(S) ,B(3) 

K=A (1) #A(1) +A (2) #8 (2) +8 (3) #0 (3) 
X=SQAT (Xx) 
Y=B(1)*B(1)+B(2) #B(2) +B (3) #B (3) 
Y=SOQRT(Y) 
X=X*Y 
Y=A(1) #B(1) +9 (2) #B(2) +48 (3) *B(S) 
IF (ABS (X-Y) .LT.Q.00001) GOTO 10 
Z=yv/X 
IF (ABS(X-Y) .LT.0.00001) Z=1.0 
ANGLE=ACOS (Z) 

RETURN 
END 
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SUBROUTINE COMPON(X,Y,2,A) 

ACCEPTS THE ANGLES ALPHA, SETA AND GAMMA IN X,Y AND Z 
RESPECTIVELY AND SETS UP THE COMPONENTS OF THE ROTATION MATRIX A 

DIMENSION A(3,3) 

A(1, 1) =COS (Xx) #COS (Z) -SIN(X) #COS (Y) #SIN(Z) 
A(1, 2) =-(SIN(X) #COS (Z) +COS (X) #COS (Y) *SIN(Z)) 
ACL, 3) =SIN(Y) #SIN(Z) 

A(2, 1) COS (X) #SIN(Z)+SIN (XQ #COS (Y) #COS (2) 
A(2,2)=—(SIN(X) #SIN(Z) ) +COS (X) #COS (Y) #COS(Z) 
A(2,3)=-(SIN(Y) #COS(Z)) 

ACS, 1) =SIN(X) #SIN(Y) 
A(3, 2) =COS (X) #SINCY) 
A(3,3) =COS(Y) 

RETURN 
END 
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SUBROUTINE CROSS(A,5,C) 

ACCEPTS TWO VECTORS A AND 3 AND FORMS THEIR NORMAL IN C 

DIMENSION A(3),3B¢ 

  

»Ct3) 

C(1) =A (2) #B(S) -A(S) #B (2) 
(2) =A (3) #B(1)-A(1) #B CS) 
(3) =A (1) #B (2) -A(2) #B (1) 
AREASC (1) #*2+C (2) #4#2+C (5) #42 
AREA=SQRT (AREA) 
C(1)=C(1) /AREA 
C(2)=C (2) /ARES 
C(3) =C (3) /AREA 

RETURN 
END 
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FUNCTION DOT(X,Y) 
c 
C CALCULATES THE SCALAR PRODUCT OF THE 
C TWO VECTORS xX AND Y 

  

S 
DIMENSION X(3),Y(3) 

c 
DOT=X (1) *¥ (1) +X (2) #¥ (2) +X (3) #Y 

c 
RETURN 
=ND
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SUBROUTINE EXIT(A,8, TURN,D,F) 

ACCEPTS THE ORIGIN AND INSERTION VECTORS OF THE MUSCLES A AND 
B,ROTATES THE INSERTION VECTORS IN ACCORDANCE WITH THE EYE 
POSITION CHARACTERISED BY THE MATRIX TURN AND RETURNS THE 
SHORTEST PATH VECTOR D AND EXIT VECTOR F. 

DIMENSION A(S, 5), 3(3, 6), TURN(S, 5) ,D(S,6) ,F (3,6) 
DIMENSION C(S,5),X(3),¥(3),Z(S) ,U(S), V(S) 

PROCEED THROUGH THE ROUTINE,DOING EACH MUSCLE IN TURN 

DO 100 1=1,6 

COMPUTE ORIENTATION VECTOR C OF THE PLANE PERPENDICULAR TO THE 
MUSCLE INSERTION 

CALL PICKUP (A,I,x) 
CALL PICKUP(B,1,Y) 
CALL CROSS(x,¥,Z) 
CALL PUTBAK(C, 1,2) 

COMPUTE ORIENTATION OF THE INSERTION VECTOR (8) AND OF THE 
ORIENTATION VECTOR (C) OF THE PERPENDICULAR PLANE AFTER 
ROTATION OF THE EYEBALL 

CALL PICKUP (B,I, x) 
CALL ROTAT (TURN, Xx) 
CALL PUTBAK(B,I, xX) 
CALL PICKUP (C,I,x) 
CALL ROTAT(TURN, x) 
CALL PUTBAK(C, I, x) 

COMPUTE ORIENTATION VECTOR OF THE SHORTEST PATH PLANE (D) 

CALL PICKUP(A,I, x) 
CALL PICKUP(B,I,¥) 
CALL CROSS(X,Y, 2) 
CALL PUTBAK(D, 1,2) 

COMPUTE THE TWIST ANGLE (TWIST) AND ITS SIGN 

CALL PICKUP (C,1,X) 
CALL PICKUP (D,1,¥) 
TWIST=ANGLE (X,Y) 
CALL PICKUP (B,1,U) 
CALL CROSS(U,x,¥) 
CALL PUTBAKIF,I,¥) 
ATWIST=DOT(V,Y) 
IF(ATWIST.LT.O.0) TWIST=-TWIST 

COMPUTE THE TILT ANGLE (TILT) 

CALL PICKUP(A,I,x) 
CALL PICKUP(C,I,Y) 
CONST1=SIZE‘Xx) 
CONST2=DGT (x, Y) 
TILT=ACOS (CONST2/CONST 1) 
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@ND HENCE FORM THE ACTUAL TWIST ANGLE (ATWIST) 

9
0
0
 

CONST=COS (TILT) 
IF (CONST.LT.0.0) CONST=(-CONST) 
ATWIST=CONST*TWIST 

COMPUTE THE ACTUAL EXIT PATH F ACCORDING TO THE FORMULA: 
F=(-SIN(ATWIST) ) *C+(COS(ATWIST) ) #F 

9
0
0
0
 

CONST=-SIN(ATWIST) 
CALL PICKUP(C,1,X) 

c CALL TIMES (CONST, x) 

CONST=COS(ATWIST) 
CALL PICKUP I(F,I,Y) 
CALL TIMES (CONST, Y) 

CALL PLUS(X,Y) 
CALL PUTBAK(F, I, x) 

c 
100 CONTINUE 
c 

RETURN 
END 
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SUBROUTINE GYRO(P,T, x) 

ROTATES A VECTOR X ABOUT A UNIT 
AXIS P THROUGH AN ANGLE T 

9 
9
0
0
0
 

DIMENSION P(S),X(3),¥(3) 

S=SIN(T) 
C=cos(T) 

C1=(1.0-P (1) #82) HC+P (1) 4*2 
CZ=P (1) #P (2) #(1.0-C) +P (5) «5 

CS=P (1) #P (5) #(1.0-€) -P (2) #8 
¥ C1) C1 4X (1) #C2#X (2) +05*X (3) 

Cl=P (1) *P (2) *(1.0-C) -P (3) *S 
C2=(1.0-P (2) ##2) #C+P (2) H¥2 
CS=P (2) #P (3) *(1,0-C) +P (1) 4S 
¥ (2) =C1#X (1) +C2¥X (2) +05 *X (5) 

CisP (1) *#P 6S) #(1.0-C) +P (2) 45 
C2=P (2) #P (3) ¥(1.0-C) -P (1) 4S 
C3=(1.0-P (3) ##2) HCP (S) 442 

Y¥ (3) =C1¥X (1) +CD¥X (2) +C3*X (3) 

X(t) =¥ C1) 
X(2)=¥ (2) 
x(a) 

RETURN * 
END 
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SUBROUTINE LEVEL (THETA, DELTAL,R,S,T,&, PALSY) 
c 
C STARTS WITH A GUESS AT THE INNERVATION VALUES £,AND 
C PROCEEDS ITERATIVELY TO THE CORRECT SOLUTION 
c 

REAL LASTMO,LASTE 
c 

DIMENSION THETA(4), DELTAL (6) ,R(S, 6) ,S(3) ,T(S) , £1) PALSY (6) 
DIMENSION PDERIV(6) , DERIV(S) ,COMP (3,3) , LASTE (6) 
DIMENSION FORCE (6), x (3), (3) 

= s 
C INITIALISE COMPARISON VALUE OF LAST MOMENT TO A HIGH ENOUGH VALUE TO 
C ENSURE THAT THE ITERATION GETS STARTED 
c 

LASTMO=1000000.0 
N=O0 

c 
© COMPUTE MOMENT ON EYEBALL ACCORDING TO THE FORMULA: 
C M=T+SUM OVER ALL THE MUSCLES OF FORCE*R 
c 
50 S(1)sT(1) 

$(2)=T(2) 
S(3)aT(3) 

c 
DO 100 I=1,6 

c 
CONSTO=0.9 
CONSTL=DELTAL (1) +E (1) 
CONST2=0.9*CONSTt 
CONSTS=SGRT (38. 9574+0. 81* (CONST1#*2) ) 
FORCE (1) =THETA(I) * (CONSTO+CONST2+CONSTS) 

c 
CONST1=DELTAL(1)-11.5 
CONST2=0. 9#CONST1L 

CONSTS=SORT (5B. 9S75+0.81*(CONST1**2) ) 
CONST4=THETA (1) #(CONST2+CONSTS: 
CONSTS=FGRCE (I) -CONST4 
FORCE (1) =PALSY (I) *CONSTS+CONST4 

c 
CALL PICKUP(R,1I, x) 
CALL TIMES<(FORCE(I), xX) 
CALL PLUS(S, X) 

c 
100 CONTINUE 
S 
C IF THE MOMENT CANNOT BE MADE SMALLER,HALT THE ITERATION 
© 

CONST=SIZE‘S) 
IF (CONST.GE.LASTMO) GO TO 500 
LASTMO=CONST 
DO 110 [1,6 
LASTE(I)=E(1) 
CONTINUE 3 

  

COMPUTE PARTIAL DERIVATIVE OF THE MUSCI 
CHANGES IN INNERVATION 

o
o
o
0
o
K
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200 
c 

DO 200 I=1,6 
CONST1=DELTAL (1) +E(1) 
CONST2=0.91*CONST1 
CONSTS=SORT (38.9376+0.91* (CONST 1*#2)) 
PDERIV(I) =THETA(1) *(0. 9+CONST2/CONSTS) #PALSY (1) 
CONTINUE 

C COMPUTE DERIVATIVE OF EVEN NUMBERED INNERVATION VALUES WITH RESPECT TO 
C ODD NUMBERED INNERVATION VALUES 
c 

00 

o
n
0
0
0
0
K
 

3 3 
o
n
a
0
0
0
E
f
 

S00 

Da 300 [=1,3 
J=2*I-1 
DERIV( 1) =(=(5.5+90.0) ##2) /( (E(3)+90.0) ##2) 

°° CONTINUE 

FORM THE ELEMENTS OF THE MATRIX COMP WHICH HAS AN I TH COLUMN GIVEN 
BY THE SUM: 
PDERIV(2*I-1)*CORRESPONDING UNIT ACTION VECTOR + 
PDERIV(2*1) #DERIV(1)*#CORRESPONDING UNIT ACTION VECTOR 

DO 400 [=1,3 
J=2eI-1 
CALL PICKUP(R,J,X) 
CALL TIMES(PDERIV(J), x) 
K=2e! 
CALL PICKUP(R,K,Y) 
CALL TIMES(PDERIV(K),Y) 
CALL TIMES(DERIV(I),Y) 
CALL PLUS(X,Y) 
COMP (1,1) =X (1) 
COMP (2, 1) =x (2) 
COMP (S, 1) =x (3) 
CONTINUE 

FINALLY SOLVE THE MATRIX EQUATION: 
ERROR IN INNERVATION = COMP*(-QVERALL MOMENT) 
AND SET UP NEW INNERVATION VALUES SY ADDING 
ON THIS COMPONENT 

CONST=-1.0 
CALL TIMES(CONST,S) 
CALL SOL(COMP,S, x) 
€(1)s6(1)+0,1#x¢1) 

(3) 40.14% (2) 
(3) +0. 1#X (3) 

E(2)=((5.5+90.0) ##2/ (E (1) +90.0) )-90.0 
E(4)=((5.5+90, 0) ##2/ (E (3) +90.0))-90.0 
£(6)=( (5.5+90.0) ##2/ (E (5) +90.0))-90.0 
N=aN+1 
GOTO SO 

  

(1) =LAST: 
&(2) sLAST! 
£(3) =LASTE(S) 
= (4) =LASTE (4) 

ASTE(S) 
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c 
SUBROUTINE MOMENT (T, DELTA, &, PALSY, THETA,R,S, CONST) 

C CALCULATES THE AXIS S AND SIZE CONST OF THE OVERALL MOMENT 
C ON THE EYE 
c 

100 

DIMENSION S(3),T(3) ,DELTA(5) ,= (5) , PALSY (6) , THETA(4) 
DIMENSION R(S,6) ,FORCE (6), X(3) 

S(1)=T(1) 
$(2)=7 (2) 
S(3)=T(S) 

DO 100 I=1,6 
CONSTO=0.0 
CONST1=DELTA(I)+E(1) 
CONST2=0. 9*CONST1 
CONSTS=SORT (38. 9376+0.91*(CONST1**2)) 
FORCE (1) =THETA (1) * (CONSTO+CONST2+CONSTS) 

CONST1=DELTA(I)-11.5 
CONST2=0.9*CONST1 
CONSTS=SORT (38. 9376+0. 91% (CONST1*#2) ) 
CONST4=THETA (I) *(CONST2+CONSTS) 
CONSTS=FORCE (1) -CONST4 
FORCE (1) =PALSY (1) *CONSTS+CONST4 
CALL PICKUP (R,I, x) 
CALL TIMES (FORCE (I), x) 
CALL PLUS(S, x) 
CONTINUE 

CONST=SIZE(S) 
IF(CONST.LT.0.01) RETURN 
$(1)=S(1) /CONST 
$(2)=S(2) /CONST 
$(3)=S(3) /CONST 

RETURN 
END
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SUBROUTINI IE PATH(A,3,D,F,LENGTH, CONTAC, A, DELTAL) 

DETERMINES THE PATH OF THE MUSCLES OVER THE EYEBALL, 
AND COMPUTES THE ACTION VECTORS R AND PERCENT LENGTH CHANGES 
DELTAL THAT RESULT 

REAL L1,L2,M1,M2,MS,LENGTH 

DIMENSION 4(3,6),B(3,6),0(3,6) ,F (3,6) ,LENGTH(S) , CONTAC (5) ,R(S, &) 
DIMENSION DELTAL (5) 
DIMENSION G(S,6),H1(S,6) ,H2(S, 6) ,HS(S, 6) 
DIMENSION X(3),¥(3),2(3) 

PROCEED THROUGH THE ROUTINE DOING EACH MUSCLE IN TURN 

DO 200 [=1,6 

TEST IF THE THE 
CODE IMMEDIATEL 
100 

MUSCLE HAS LOST TANGENCY.IF IT HAS THEN CARRY OUT THE 
Y FOLLOWING, OTHERWISE CARRY DUT THE CODE BEGINNING AT 

CALL PICKUP(A,1,X) 
CALL PICKUP(B,I,Y) 
ANG1=ANGLE (x, ¥) 
CONST1=SI 
CONST2=S1 
ANG2=acos 
IF (ANG1.G 

ZE(X) 
zECY) 
(CONST2/CONST1) 
T.ANGZ) GO TO 100 

SET THE UNIT ACTION VECTOR R TO BE EQUAL TO THE ORIENTATION VECTOR 

D OF THE SHORTEST PATH PLANE,SCALED SY THE FACTOR IAI*SIN(ANG1) /IA-ST 

CALL PICKUP (D,1,x) 

CALL PICKUP(A,I,Y) 
CONST1=SI ZECY) 
CONST2=SIN(ANG1) 
CALL PICKUP (B,I,Z) 
CONST=-1. ° 
CALL TIMES(CONST, Z) 
CALL PLUS 
CONSTS=SI 

(¥,.2) 
ZE(Y) 

CONST=(CONST1*CONST2) /CONSTS 

CALL TIME! S (CONST, X) 
CALL PUTBAK(R,I,X) 

COMPUTE THE PER! 
GIVEN BY IBI#(Al 

(CENTAGE LENGTH CHANGES USING THE CHANGE IN LENGTH 
ING1-ANG2) -CONTAC 

CALL PICKUP (B,I,%) 
CONST=SIZE (x) 
DELTAL (1) 
DELTAL (1) 
GOTO 200 

=CONST*(ANG1-ANG2)— CONTACT) 
=(DELTAL (1) /LENGTH (1) )#100.0 
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c 
© COMPUTE THE SECOND VECTOR G IN THE PLANE OF THE CONTACT CIRCLE AS 
C GIVEN BY: 
Cc GsA-B 
c 
100 CONST=-1.0 

CALL PICKUP(A,1,X) 
CALL PICKUP (B,I,Y) 
CALL TIMES (CONST, Y) 
CALL PLUS(X,Y) 
CALL PUTBAK(G,I, x) 

COMPUTE THE ANGLE Li BETWEEN F AND G AS GIVEN BY: 
COS(L1)=F.G/IGI 

CALL PICKUP (F,I,x) 
CALL PICKUP(G,I,Y) 
LI=ANGLE (X,Y) 

COMPUTE THE VECTOR Hi SIVEN BY: 
Hi=COS(L1)*F-G/IGI ALL DIVIDED BY SIN(L1) 

CONST1=COS‘L1) 
CONST2=-1.0/SIZE(Y) 
CONSTS=1.0/SIN(L1) 
CALL TIMES(CONST1,X) 
CALL TIMES (CONST2, Y) 
CALL PLUS(X,Y) 
CALL TIMES(CONSTS, xX) 

COMPUTE THE LENGTH OF H1 ACCORDING TO THE FORMULA: 
THISRAD*COS(L2) WHERE L2 IS THE ANGLE BETWEEN Hi AND 8B 

CALL PICKUP(B,I,Y) 
L2=ANGLE (X,Y) 
CONST1=COS (12) 
CONST2=SIZE(Y) 
CONSTS=CONST1*CONST2 
CALL TIMES (CONSTS, x) 
CALL PUTBAK(H1,1,x) 

COMPUTE HS GIVEN BY H1+6 

CALL PICKUP(G,I,Y) 
CALL PLUSCY,X) 
CALL PUTBAK(HS,1,¥) 

COMPUTE THE ANGLE Mi BETWEEN Hi AND HS GIVEN BY: 
COS (M1) =(H1.HS) / (IHL I1#IHST) 

M1=ANGLE (X,Y) 

COMPUTE THE ANGLE M2 BETWEEN H2 AND HS GIVEN BY: 
COS (M2) =IHLI/IHST 
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CONST1=SIZE (x) 
CONST2=SIZE(Y) 
M2=ACOS (CONST 1/CONST2) 

COMPUTE THE ANGLE MS BETWEEN Hi AND H2 GIVEN BY: 
MS=M1-M2 

MS=M1-M2 

COMPUTE THE VECTOR H2 BY FIRST COMPUTING A UNIT VECTOR IN THE 
DIRECTION OF H2 BY MEANS OF A LINESR COMBINATION OF A UNIT VECTOR IN 
THE DIRECTION OF Hi AND THE UNIT VECTOR F ACCORDING TO THE FORMULA: 
H2=COS (MS) #H1+SIN (MS) #F 

CONST 1=COS (M3) 
CONST2=SIZE(x) 
CONSTS=CONST 1 /CONST2 
CALL TIMES (CONSTS, x) 

CONST 1=SIN(M3) 
CALL PICKUP(F,1I,Y) 
CALL TIMES(CONST!,Y) 
CALL PLUS(X,Y) 

CALL TIMES (CONST2, x) 
CALL PUTBAK(H2, 1, Xx) 

COMPUTE THE UNIT ACTION VECTOR R BY FIRST COMPUTING THE VECTOR 
TO THE POINT WHERE THE MUSCLE LEAVES THE EYEBALL,GIVEN BY B-H1+H2 

CALL PICKUP(B,1,X) 
CONST=-1.0 
CALL PICKUP(H1,1,Y) 
CALL TIMES(CONST,Y) 
CALL PICKUP(H2,1,2) 
CALL PLUS (X,Y) 
CALL PLUS(X,Z) 

NEXT FORM THE NORMALISED CROSS PRODUCT OF A WITH THIS VECTOR 

CALL PICKUP(A,I,Y) 
CALL CROSS(Y, X, 2) 
CALL PUTBAKIR, 1,2) 

COMPUTE THE LENGTH CHANGES 

CALL PICKUP (H1,1,X) 

  
CONST=SIZE (x) 
DELTAL (1) =CONST*#MS-CONTAC (1) 
DELTAL (1) =(DELTAL (I) /LENGTH(1))#100.0 

0 CONTINUE 

RETURN 
END
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SUBROUTINE PICKUP (A,N, X) 

ACCEPTS A MATRIX A AND A VARIABLE N WHICH 
SPECIFIES THE REQUIRED COLUMN OF THE MATRIX AND PLACES THIS COLUMN 
IN THE VECTOR X 

DIMENSION A(S,6) ,X(3) 

X(1) =A (1,N) 
% (2) 8A(2,N) 
X (3) =A(S,N) 

RETURN 
END 
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SUBROUTINE PLUS(X,Y) 
c 
igypons THE VECTORS X AND Y AND RETURNS THE RESULT IN x 

"DIMENSION ¥«3), YS)”        
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SUBROUTINE PUTBAK(A,N, X) 
c 
C ACCEPTS A MATRIX A,A VARIABLE N, WHICH 
C SPECIFIES THE REQUIRED COLUMN OF THE MATRIX AND A VECTOR x 
C WHICH IS TO BE PLACED IN THE MATRIX AT THE SPECIFIED COLUMN. 

DIMENSION A(3,6),X(3) 

ACL,ND=X(1) 
A(2,N) =X (2) 
A(3,NI=X(3) 

RETURN 
END 
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SUBROUTINE ROTAT(A, xX) 
c 
C ROTATES THE VECTOR X ACCORDING TO THE ROTATION MATRIX A 

c 
DIMENSION X(3),¥(S),A(S,3) 

c 
YCL) SACL, 1X (1) 4A (1, 2) #X (2) 4A CL, 5) #X (5) 
¥ (2) SA(2, 1) #X (1) A (2, 2) 4X (2) +8 (2, 32 #X (3) 
YB) SACS, 1) #X (1) FACS, 2) #X (2) FACS, 5) #X (5) 

x¢L ey) 
X(2) #Y (2) 
x (3) eV (3) 

RETURN 
END 
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SUBROUTINE SETUP (ALPHA, BETA, GAMMA, PRIMO,A,PRIMI,B, TURN, T,EY 

SETS UP THE MUSCLE ORIGIN AND INSERTION VECTORS A AND 3, 
THE ROTATION MATRIX TURN AND CORRESPONDING PASSIVE 
MOMENT T,FOR THE ORIENTATION SPECIFIED BY ALPHA, BETA AND 
GAMMA 

a
o
0
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0
0
 

DIMENSION PRIMO(S, 4) ,PRIMI(S, 6) 
DIMENSION A(3,6) ,B(S, 6) , TURN(S, 3), T(S) 

INITIALISE MUSCLE VECTORS 

DO 100 [=1,6 

9 
o
0
0
 

A(1, 1) =PRIMO(1, 1) 
AC2, 1) =PRIMO (2,1) 
A(S, 1) =PRIMO(S, 1) 

B(1,1)=PRIMI(1,1) 
B(2, I) =PRIMT (2,1) 
B(S, 1) =PRIMI(S, 1) 

c 
100 CONTINUE 
c 
C SET UP ROTATION MATRIX 
c 

CALL COMPON (ALPHA, SETA, GAMMA, TURN) 
CALL TRANSP (TURN) 

c 
C SET UP PASSIVE MOMENT 
c 

.CONST=57. 296#5ETA 
PFORCE=0. 48*CONST+0. 000156*CONST**5 
CONST=57. 296% (- (ALPHA+GAMMA) ) 
SFORCE=0. 48*CONST+0. 000156*CONST#*3 
SFORCE=0.0 
T (1) == (PFORCE*COS (ALPHA) ) +SFORCE*SIN (ALPHA) #COS (BETA 
T (2) =PFORCE*SIN (ALPHA) +SFORCE*COS (ALPHA) SIN (BETA) +£Y*S.6 
T (3) =SFORCE*COS (BETA) 

RETURN 
€ND 
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fi | FUNCTION SIZE (x) 

© COMPUTES THE LENGTH OF THE VECTOR < 

a DIMENSION (3) 
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SUBROUTINE SOL(A,Y,X) 

ACCEPTS A MATRIX EQUATION AX=Y AND FORMS AN 
INVERSE MATRIX BY MEANS OF CRAMERS RULE, WHICH 
IS USED TO SOLVE THE EQUATION 

DIMENSION A(3,3) ,AINV(S,5),¥(S) , X (3) 

DO 100 I=1,5 
DO 100 J=1,3 
AINV(T,J)=0.0 

CONTINUE 
c 
C COMPUTE THE DETERMINANT OF A 
c 

DETI=A(1, 1) #A(2,2) *A(S, 35) 
DET2=A (2, 1) #A(3,2) #A(1,3) 
DETS=A(S, 1) #A(1,2)4A(2,5) 
DET4=A (1, 1) #A(S, 2) *A(2,5) 
DETS=A(2, 1) #A(1,2) #A(S,5) 
DETS=A(S, 1) *A (2,2) #A(1,5) 
DETSDET1+DET2+DETS-DET4-DETS-DETS 

c 
© COMPUTE INVERSE MATRIX 
c 

AINV(1, 1)=( (AZ, 2) *A (3,3) ) = (ACS, 2) #A (2,3) )) /DET 
AINV(1,2)=—( (ACL, 2) #A(S, 5) ) -(A(S, 2) #A(1,3))) DET 
AINY(1,5)=( (ACL, 2) #A (2, 3))—(ACZ, 2) #A(1,3))) /DET 
AINV(2, 1) =-((A(2, 1) #A(3, 5) 1 - (ACS, 1) #8(2,3))) /DET 
AINV (2,2) =((A(1,1) #A(S, 3) -(A(S, 1) A (1,3) )) /DET 
AINV (2,3) =-( (ACL, 1) #A(2,5))-(A(2, 1) #801, 5))) /DET 
AINV(S, 1) =( (A(2, 1) ¥A(S, 2) (ACS, 1) #8 (2,2) )) /DET 
AINV (3,2) =-( (ACL, 1) 4A(S, 2) )- (ACS, 1) #801, 2))) /DET 
AINV(S, 3) =( (ACL, 1) #0 (2,2) )-(A(2, 1) #A (1, 2))) /DET 

  

   

  

c 
C COMPUTE SOLUTION 
c 

X (1) SAINV (1,1) *¥ (1) AINV (1, 2) #¥ (2) 4AINV (1, 5) #¥ (3) 
X (2) SAINV (2, 1) #¥ (1) +A INV (2, 2) #¥ (2) +AINV (2,3) *¥ (3) 
X63) =AINV(S, 1) *¥ (1) +AINY(S, 2) #¥ (2) +AINY(S, 5) #4 (5) 

  

RETURN 
END
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SUBROUTINE SWIVEL (ALPHA, SETA, GAMMA, S, CONST) 

ROTATES THE EYE, INITIALLY IN THE POSITION 
SPECIFIED BY THE ORIENTATION ANGLES ALPHA, SETA AND GAMMA, 
ABOUT THE VECTOR S BY AN AMOUNT CONST AND RETURNS THE 
NEW ORIENTATION ANGLES 

DIMENSION S(3),A(3,3),X(S), YS) ,Z(3) US) VS) 

FIRST FIND THE COORDINATES OF THE X,¥ AND Z AXES AFTER ROTATION 
THROUGH THE CURRENT ORIENTATION ANGLES ALPHA, BETA AND GAMMA 

X(1)=1.0 
X(2)=0.0 
X(3)=0.0 

¥(1)=0.0 
Y¥(2)=1.0 
¥(3)=0.0 

Z(1)=0.0 
2(2)=0.0 
Z(3)=1.0 

CALL COMPON (ALPHA, BETA, GAMMA, A) 
CALL TRANSP (A) 
CALL ROTAT(A, x) 
CALL ROTAT(A,Y) 
CALL ROTAT(A,Z) 

NEXT FIND THE COORDINATES OF THE X,Y AND Z AXES AFTER A FURTHER 
ROTATION ABOUT THE AXIS S GF THE OVERALL MOMENT 

CALL GYRO(S, CONST, x) 
CALL GYRO(S,CONST,Y? 
CALL GYRO(S,CONST, 2) 

FINALLY COMPUTE THE NEW ORIENTATION ANGLES 

U(1)=Z (1) 
UC2)=Z(2) 
U(3)=0.0 

v(1)s0.0 
V(Z)=1.0 
V(3)=0.0 

ALPHA=ANGLE (U,V) 

V(t) s1.0 
V(2)=0.9 
v(3)=0.0 

  

IF (DOT (U,V) -LT.0.0) ALFH 
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V(1)=0.0 
V(2)=0.0 
v(3vs1.0 

BETA=ANGLE (V, Z) 

U(1)=0.0 
U(2)=1.0 
U(3)=0.0 

v(1)s1.0 
¥(2)=0.0 
V(3)=0.0 

CALL COMPON (ALPHA, BETA, -ALPHA,A) 
CALL TRANSP (A) 
CALL ROTAT (A, U) 
CALL ROTAT(A,Y) 

CONST 1=ANGLE(U, Y) 
CONST2=DOT (Vv, Y) 
IF (CONST2.LT.0.0) GAMMA=-ALPHA-CONST! 
IF (CONST2.GE.0.0) GAMMA=-ALPHA+CONST 

RETURN 
END 
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SUBROUTINE TIMES(A, xX) 

oe VECTOR X BY THE SCALAR A 
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SUBROUTINE TRANSP (A) 
c 
C FORMS THE TRANSPOSE OF THE MATRIX A 
c 

DIMENSION A(3,3),B(3,5) 
c 

DO 100 I=1,3 
Do SO J=1,5 
B(I,J)=A(3, 1) 

50 CONTINUE 
100 CONTINUE 
c 

DO 200 I=1,3 
DO 150 J=1,3 
A(1,J) =B(1, 3) 

150 CONTINUE 
200 CONTINUE 
c 

RETURN 
END 
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PATIENT DB 

Positions assumed by left eye 

ISO-AZIMUTH 

0.0 

0.0 

1358 

14.8 

14.7 

0.2 

=is.7 

=14a5 

=13.9 

Positions assumed by right eye 

ISO-AZIMUTH 

0.0 

0.0 

15.8 

5.4 

14.2 

0.3 

aN6 2 

=14 73 

+1543 

ISO-LATITUDE 

2.9 

15.1 

ered) 

219) 

=17-0 

=LO28 

Co ikeel 

i.3 

139. 

ISO-LATITUDE 

—eee8 

1335 

13.2 

ea fi 

2055 

=16-68 

“18 e1 

- 2.5 
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PATIENT AC 

Positions assumed by left eye 

ISO-AZIMUTH ISO-LATITUDE 

Positions assumed by right eye 

= 1.4 3.8 

= 5 1.2 

12.7 18-3, 

14.1 322 

14.3 -10.0 

= 1.4 1 

-16.6 =11 5 

=)6c2 3.1 

1662 16.8 

ISO-AZIMUTH ISO-LATITUDE 

2.6 aoe) 

Zou de 

L751 9.8 

ag 25 = 4.3 

1259 =20.9 

=10nS =18.6 

-15-0 “18.0 

mo = 3.6 

=1255 1223



PATIENT EW 

Positions assumed by left eye 

ISO-AZIMUTH 

Leo 

29 

157.0 

17,.8 

18.0 

SL 

His. 1 

-14.3 

-14.5 

ISO-LATITUDE 

4.1 

1720 

18.6 

5.4 

- 6.8 

= 855) 

=1158 

25 

Lies 

Positions assumed by right eye 

ISO-AZIMUTH 

aie 

0.0 

14.0 

Adin, 

12.1 

= 24 

=16..6 

-16.5 

-14.8 

ISO-LATITUDE 

O82 

130) 

11.8 

= 4.6 

=21.2 

-1956 

=e 

w= 256 

12.8 

153.



PATIENT AB 

Positions assumed by left eye 

ISO-AZIMUTH 

die: 

0.3 

Lae7 

14.7 

16.4 

ae 

=12 56 

TiS 

=13.2 

Positions assumed by right eye 

ISO-AZIMUTH 

0.0 

2.0 

15.6 

25.0 

14.9 

0.0 

=ES ok 

-14.3 

-14.5 

ISO-LATITUDE 

5.6 

16.2 

16.4 

Sas 

5 29 

=O 

— U2 

4.8 

1528 

ISO-LATITUDE 

202 

14.4 

d3s5 

= 3.4 

-24.3 

228 

mS si/ 

=o 

14.5



PATIENT SE 

Positions assumed by left eye 

ISO-AZIMUTH ISO-LATITUDE 

Le 5.0 

0.0 47.7 

15.0 18.0 

16.3 rat 

1558 gal Sigs 

2s eT ae 

=. fh la 

-14.6 Be) 

-14.7 17-6 

“Positions assumed by right eye 

ISO-AZIMUTH ISO-LATITUDE 

0.5 som Gir 

120 i133 

Tay 11.4 

14.0 =35.0 

10.9 ~23..9 

= 26 =23).7 

=17-6 H2320 

<16 50 eG 

SLo.e a2



PATIENT LU 

Positions assumed by left eye 

ISO-AZIMUTH 

0.0 

0.0 

1526 

14.6 

14.9 

1.0 

~Llc7 

=15.3 

“1175 

ISO-LATITUDE 

0.0 

14.6 

15.0 

0.0 

~14 9) 

-14.5 

wLS 62 

0.0 

16.0 

Positions assumed by right eye 

ISO-AZIMUTH 

ae) 

eo) 

14.9 

14.6 

14.6 

ae ant 

-20.9 

=2255 

Oe 

156 

ISO-LATITUDE 

0.0 

1553 

1429 

0.0 

-14.6 

TL Sie2 

=25 7.6 

0.0 

258



PATIENT HF 

Positions assumed by left 

ISO-AZIMUTH 

4.0 

2.6 

16.6 

16.7 

16.7 

329) 

=o =2 

oe 

o> ise) 

eye 

ISO-ELEVATION 

0.0 

14.9 

15.2 

0.0 

-15.0 

14 56 

=15.55 

On2 

15.0 

Positions assumed by right eye 

ISO-AZIMUTH 

=ETieD) 

ah 

9.6 

7.0 

7.4 

- 7.7 

Seo 

=22.0 

=22).5 

ISO-ELEVATION 

os 

13.5 

14.8 

eee 

-15.9 

=1509 

=16'.5 

=e 

tf



PATIENT SP 

Positions assumed by left eye 

ISO-AZIMUTH ISO-ELEVATION 

aie. 0.0 

20D 14.3 

3 2 LSe2 

16.1 <2 

LOST =15:..0) 

2.5 =1403 

=—<629 4 520 

- 4.6 0.0 

= 6.0 14.2 

Positions assumed by right eye 

ISO-AZIMUTH ISO-ELEVATION 

= 4.0 0.0 

= 2.0 14.4 

a3 14.7 

9.2 0.2 

9.6 -15.4 

-94.5 =14.9 

720.0 TiS.2 

26108 0.0 

-24.9 14.7



PATIENT WJ 

Positions assumed by left eye 

ISO-AZIMUTH 

3.5 

2.6 

12:56 

14.6 

16-5 

5.3 

=o 

- 6.4 

= 8.0 

ISO-ELEVATION 

0.0 

15.0 

15.0 

0.0 

=13.0 

-14.7 

oad 

0.0 

13.5 

Positions assumed by right eye 

ISO-AZIMUTH 

i she (@) 

- 8.7 

29) 

8.1 

6.8 

- 9.4 

2 aed. 

=2'5).16 

=23.8 

ISO-ELEVATION 

0.0 

LSce 

15.4 

= (olay) 

“1652 

-14.6 

-14.8 

= 029 

13°25



PATIENT JA 

Positions assumed by left eye 

ISO-AZIMUTH ISO-ELEVATION 

22o) 0.0 

23 v3.3 

T2.8 14.7 

14.6 0.0 

1522 =1 52 

Disae =1L5.20 

Sood -16.4 

520) ci eS) 

Sees 12.5 

Positions assumed by right eye 

ISO-AZIMUTH ISO-ELEVATION 

OSE) 0.0 

peso 14.9 

15.4 14.3 

14.6 = 0.5 

Lace =o 

coe ee erie Ores 

25.4 18.9 

Sota = 1.8 

-34.1 10.25



PATIENT EM 

Positions assumed by left eye 

ISO-AZIMUTH ISO-ELEVATION 

10.0 2.68 

O79 15.3 

oak 15 32 

ls? 2.2 

21.9 aD 

10.4 =i2 25 

ee Oc +1235 

= 2e8 0.6 

ain: 14.7 

Positions assumed by right eye 

ISO-AZIMUTH ISO-ELEVATION 

“1123 0.0 

~10.9 U5. 

7158 13.05 

5.1 = (0.9 

6.6 =1o 25 

meee -14.7 

=30.2 cisco 

-30.9 0.0 

$30.5: 15.0 
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PATIENT MA 

Positions assumed by left eye 

ISO-AZIMUTH 

oro 

L256 

22eL 

22.8 

22.5) 

9.6 

Bis 1 

=—0.9 

= 0.3 

ISO-ELEVATION 

0.0 

15.0 

43.6 

0.0 

=14 29 

-14.8 

~15.2 

0.0 

14.6 

Positions assumed by left eye 

ISO-AZIMUTH 

=14.3 

-14.9 

3.8 

Sev 

2.6 

=99).6 

G25. 5 

+2952 

=29'9 

ISO-ELEVATION 

0.0 

Ss 

16.2 

0.0 

mL e5 

—15.4 

-14.8 

0.5 
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PATIENT DS 

Positions assumed by left eye 

ISO-AZIMUTH 

Positions assumed by 

ISO-AZIMUTH 

9.4 

aiee) 

16.7 

21.0 

2200 

11.6 

0.5 

=O ad 

0.0 

<5 08 

-10.6 

953 

Sar 

4.5 

-14.4 

cS260 

+3252 

S319 

ISO-ELEVATION 

0.0 

L2ed. 

14.0 

0.0 

=1427 

1463 

14.59 

= ies 

1257 

right eye 

ISO-ELEVATION 

0.0 

d5e3 

15.0 

0.0 

-14.7 

=e 

~15.0 

0.0 

S30 
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PATIENT DM 

Positions assumed by left eye 

ISO-AZIMUTH ISO-ELEVATION 

10.2 0.0 

255) 13.6 

23.218 14.6 

213 0.0 

23.2 “13-2 

12.6 =13.0 

0.3 -14.6 

= 18 - 1.5 

=O) 13.4 

Positions assumed by right eye 

ISO-AZIMUTH ISO-ELEVATION 

-14.6 0.0 

=1550 L5n2 

6.4 L553 

3.4 =70.0 

Zee -16.0 

-13.8 ~16).5 

=36).3 -13.1 

=35.8 0.0 

=35% 7. Deb 
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PATIENT PR 

Positions assumed by left eye 

ISO-AZIMUTH ISO-ELEVATION 

1556 0.0 

14.6 LS 2 

26.2 15.4 

27.0 0.5 

27.6 ee, 

1655 = Lao. 

125 -L7.4 

0.4 S208 

ie 13).6 

Positions assumed by right eye 

ISO-AZIMUTH ISO-ELEVATION 

15.25 0.0 

=1753 14.4 

2.4 15.4 

da6 0.0 

1.6 ~13.4 

-18.2 elie? 

=33.3 =r. 5 

52 a0 0.5 

Sie 14.3 
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COMPUTER SIMULATION OF EXTRAOCULAR MUSCLE 

CO-OPERATION: AN EVALUATION 

R. A. CLEMENT 

Clinical Neurophysiology Unit, Department of Ophthalmic Optics, Woodcock Street, 

University of Aston in Birmingham, Birmingham B4 7ET, U.K. 

(Received 10 August 1981, in revised form 28 September 1981) 

Abstract—This paper is concerned with specifying how extraocular muscles co-operate in moving 
the eye. A set of assumptions is described which enable this to be done with enough precision for a 
computer model of the actions of the extraocular muscles to be set up. The behaviour of the model 
and its validity are then evaluated. 

INTRODUCTION 

Krewson (1950) was the first person to produce quantitative estimates of the relationships 

between rotations of the globe and actions of the muscles. He assumed that they took the 

mechanical shortest path and calculated their corresponding axes of rotation. To obtain 

some idea of the mode of action of each of the muscles he considered the projections of 

the axes of rotation into an eye-centred system of Cartesian axes. As has been 

conventional since the work of Helmholtz, the system of axes was such that one axis lay 

along the line of fixation in the primary position and one of the remaining two axes 

coincided with the line between the centres of rotation of the two eyes. He then considered 

that the projection onto these axes represented the amount of the forces exerted by each of 

the muscles that was devoted variously to adduction/abduction, elevation/depression and 

torsional movements. Because of the number of calculations involved he only considered 

movements in the horizontal plane. This enabled him to clarify the main actions of the 

individual muscles. However, his approach, whilst it revealed much about individual 

muscles, was not so informative about how they co-operate. 

Boeder (1961) approached the analysis of extraocular muscle co-operation by 

calculating the length changes that occur when the muscles follow the shortest path 

around the globe. He also attempted to provide a more realistic measure of the forces 

exerted by each of the muscles by multiplying their changes in length by their respective 

cross-sectional areas. One important conclusion that he formed was that, while the 

inferior oblique is more contracted than the superior rectus in adduction, it is still the 

latter which exerts the larger force. 

Boeder (1962) went on to consider positions of gaze within a 60 by 60° range. As weil as 

computing the length changes that occur when muscles follow the shortest path over the 

globe, he also determined the direction in which each muscle would turn the line of 

fixation in terms of adduction/abduction and elevation/depression rotations. This 

enabled him to make a number of judicious observations about how the extraocular 

muscles co-operate. In particular, he considered whether or not it is only the contracting 

muscles that move the globe. He compared movements from A to 8 with the return 

movements from B to A and noticed that the direction of action of the chief shortening 

muscles was not necessarily the same as that of the chief lengthening muscles, so, if only 

the contracting muscles moved the eyeball, the movement would be irreversible. 
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More recently, the purely geometrical calculations of the axes of rotation and changes 
in lengths of the muscles, have been put into matrix notation by Solomons (1978), who 
has calculated the adduction/abduction, elevation/depression and torsional action of 

each of the muscles in primary, secondary and tertiary positions of gaze. The results of 

these calculations have brought out, inter alia, the balanced nature of the torsional effects 
within pairs of antagonistic muscles. In general, however, whilst this approach has 
simplified the calculations, it has not by itself revealed anything further about the way in 

which the muscles co-operate. 
This last criticism is especially true if one tries to compute what will happen if some of 

the muscles are diseased. To be able to do this, the problem of muscle actions during 

rotations of the eye should be approached by way of consideration of the mechanics of the 
movement, which require that if the globe is to stay in any given position then the sum of 

the moments around the centre of rotation must be zero in that position. Robinson (1975) 

has formulated a model which incorporates this mechanical constraint, but to do so he 

had to make a number of more or less justifiable assumptions which are described in the 

next section. 

THEORY 

A complete description of the model is given in Robinson (1975) and what follows here 
will consist only of a statement of the main assumptions underlying his model so that they 

can be evaluated. 
The first of these assumptions was that the origins and insertions of the muscles in the 

normal eye are adequately described by the data of Volkmann (1869) who used a co- 
ordinate system with the origin placed at the centre of rotation of the eye, which he judged 

to be 1.29 mm posterior to the geometric centre of the eye. If one shifts his origin forward 
by 1.29 mm along the primary direction of the line of fixation, one makes his co-ordinates 
directly comparable with those of Ruete and Fick, cited in Helmholtz (1911). This has 

been done by Von Kries and the results are given in an appendix in Helmholtz (1911). One 

may test whether or not the insertions of the muscles are consistent with the concept of a 

spherical globe by calculating the distances between the points of insertion of the muscles 

and the centre of rotation of the eye, which should all be equal with a spherical globe. In 

terms of the model, this corresponds to calculating the lengths of the insertion vectors of 

the muscles and the results of such a calculation are shown in Table 1. Considering the 

difficulty of making the measurements, the agreement is reasonable, although in order to 

set up the model it was assumed that the centre of rotation and geometrical centre of the 
eye are identical, which is not usually true. 

The next two assumptions were concerned with specifying the shape of each muscle in 

any given position of the globe. The second assumption specified how the muscle was 

placed in relation to its insertion, a problem which is complicated by the fact that the 
muscles fan out at their insertion. Previous investigators had always selected the obvious 

assumption of the shortest path despite the mechanical restrictions at the insertions, but in 
this case it was proposed that the actual path lies somewhere between the shortest path 

and the path perpendicular to the line of insertion. Two criteria were outlined that should 
be satisfied by a reasonable assumption as to the angle of twist away from the 

perpendicular path. The first of these was that if the line of insertion stays perpendicular 
to the primary plane of the muscle, then the twist angle should be zero. This limits the 
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Table |. Lengths of the insertion vectors of the extraocular muscles (mm) according to the various investigators 

  

  

La MR SB IR 30 10 

REUTE 11.3 11-6 11.7 11.8 011.8 12.0 

FICK 12.0 12.0 12.0 12.0 11.3 12.0 

VOLKMANN: 
(AFTER VON 

KRIES) 11.4 12.3 12.3 12.3 12.8 12.1 

VOLKMANN 
(AFTER 
KREWSON) 12'0__13.1 13,0 13-0) 13.2 11.3 
  

path of each eye muscle as the direction of the insertion vector becomes directly opposite 

to the direction of the origin vector, whereupon slight movements of the eye cause extreme 

changes in the shortest path. The second criterion was that the twist angle should depend 

on the sideways force at the insertion. A satisfactory assumption was made by letting the 

twist angle depend on the cosine of the angle between the vector along the line of insertion 

of the muscle and the vector to its origin. In the primary plane of the muscle, this function 

is always zero and so there is no twist at the insertion. 

The third assumption specified the path of the muscle away from its insertion. This 

assumption was directed towards ensuring that there is no abrupt change of direction 

when the muscle leaves the eyeball. This was achieved by assuming that the path of the 

muscle over the globe lay in a plane containing the vector corresponding to the direction in 

which the muscle leaves its insertion and the origin of the muscle. The intersection of this 

plane with the spherical globe is a circle, so that this assumption implies that the muscle 

makes contact with the globe along an arc of a circle. 

As well as specifying the shapes of the muscles it is also necessary to specify the forces 

that they exert in the different orientations of the eye and the fourth and fifth assumptions 

were concerned with this aspect of the problem. The steady-state force exerted by a muscle 

is a function of its length and its innervation level. Innervation cannot be measured 

directly but it can be manipulated by asking a patient undergoing extraocular muscle 

surgery on the horizontal recti of one eye to look with the other eye at targets located in 

the horizontal plane at known angles with the primary direction of the line of fixation and 

measuring the force changes in the detached recti of the eye being operated on. The fourth 

assumption, then, consisted of a function describing the force exerted by a muscle in 

accordance with its length and its innervation which was based on the experimental data 

of Collins and O’Meara cited in Robinson (1975). It was found that if muscle tension was 

plotted against extension (AL), calculated as a percentage of the length in the primary 

position, then the function was a portion of an hyperbola. Furthermore, the effect of a 

change in the innervation level was to shift the curve along the muscle extension axis and 

this shift could be characterized by incorporating a factor (£) to reflect the level of 

innervation. The equation actually specified by Robinson (1975), after substitution of 

parameters, takes the form: 

Force (g) = 0.9 x (AL + £) + V38.94 + 0.81 x (AL + &)’. 
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The fifth assumption was that the force functions of the other muscles were identical to 
that of the lateral rectus, except for a multiplicative factor corresponding to their cross- 
sectional area, relative to that of the lateral rectus. The actual values for this factor were 
based on the data of Volkmann (1869) and were as follows: 

  

LR MR SR IR so 10 
  

1.0 1.04 0.68 0.95 0.5 0.47 
  

As well as the active forces of the muscles, there are also passive forces due to check 
ligaments and other orbital structures which restrain the eye in movements away from the 

primary position. A function was developed to describe the way in which the passive force 
varied with the angle (beta) between the primary position and the line of fixation, based 
on the experimental results of Robinson ef a/. (1969) and Scott (1971). When the angle 
beta is given in degrees, the function specified by Robinson (1975), with the parameters 
inserted, takes the form: 

Passive force (g) = 0.48 x beta + 0.000156 x beta’. 

The sixth assumption was that the passive force in any position could be described by 
this function and acted around the axis specified by Listing’s law. A constant moment was 

added which made the resting point deviate 7.5° temporally which is consistent with the 
abduction seen in deep anaesthesia. 

Given these assumptions, the problem of simulating extraocular muscle co-operation 
breaks down into two halves, which can be referred to as the innervation problem and the 
position problem. The innervation problem arises when the position of the eye is given and 

one has to determine the appropriate levels of innervation for each of the muscles. This 
involves finding the innervation values which result in the overall moment on the eyeball 
in that position being zero. Since there are six muscles and only 3 df for the globe, if each 
muscle is independently innervated there will be an infinite number of solutions to this 

problem. Hence, the law of reciprocal innervation was invoked and the seventh 
assumption was made, namely, that the innervation of the antagonist muscle was 

reciprocal to that of the agonist muscle for each of the three muscle pairs. The actual 
equation specifying the innervation of the antagonist in terms of that of the agonist as 

given in Robinson (1975) becomes, after insertion of the parameter values: 

E(antagonist) = {187.69/{E(agonist) + 9.7]} — 9.7. 

The position problem arises when one has determined the innervation values, but does 
not know what position the globe will take up to achieve mechanical equilibrium. Up to this 
point it has been assumed that the eye rotates in accordance with Listing’s law, but with 
diseased eyes this need no longer be so. Therefore the final assumption involved setting up 

an additional passive force, governed by the same function as the original passive force, 

except that the torsion angle was substituted for the angle of deviation from the primary 
position, which opposed any torsional movements of the eye. This allowed some torsion 

in diseased eyes, but resulted in zero torsion in normal eyes.
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RESULTS 

Action of the individual muscles 
Given the parameters of the model one can use it to gain some idea of the actual forces exerted by each of the muscies in any particular direction of gaze. To do this, the force exerted by each muscle is calculated by inserting the values for the extension and innervation of the muscle into the force equation specified earlier. Then, as was done by Krewson (1950) the axis around which the force of the muscle acts may be decomposed into an eye-centred system of Cartesian axes to obtain the relative amounts of the muscle force devoted to the various types of movement. These calculations have been done for nine central gaze positions, and the results are shown in Figs 1 —3. It must be emphasized that the results will only be valid over this limited tange of movements. With respect to forces acting around the adduction/abduction axis (shown in Fig. 1), there are three points which are noteworthy. The first is that the horizontal recti develop the main forces, with the lateral rectus exerting the largest force of any muscle for any type of rotation. The second is that the vertical recti always adduct. The third point is that the obliques do not contribute anything significant to Movements of abduction and adduction, Recordings of the actual muscle tensions in the lateral and medial recti during unrestrained eye movements of patients with strabismus have been made by Collins er a/, (1975) and the agreement of the model with their results is good. They found that the minimum tension of each of the horizontal recti did not normally fall below 8-12 g and that the minimum tension of each muscle usually occurred 15° out of their field of action. These findings are matched by the predictions of the model, except for the location of the minimum tension of the medial rectus, which, as can be seen in Fig. 1, achieves its minimum tension in the primary position, instead of with 15° of abduction. As regards the forces acting around the elevation/depression axis (shown in Fig. 2), it was found that the superior rectus exerts the dominant force in elevation and the inferior rectus exerts the dominant force in depression.’ However, the relative Participation of the 

effective constraint against torsional movements. 
Concerning the actions of the individual muscles, the forces exerted are as formulated in the classical description with the superior rectus and oblique both acting as intorters while the inferior rectus and oblique both act as extorters, Surprisingly, though, the horizontal recti produce a not inconsiderable amount of torsion. This result must be placed within the context of the assumption of the relative strengths of the muscles, for 
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Fig. 1. Forces exerted by each of the muscles around the adduction — abduction axis in nine positions of gaze. 
For this and the following two graphs the conventions are as follows. The forces in each position are represented 
by a separate graph. The forces of individual muscles are distinguished by the letters LR for lateral rectus, MR 
for medial rectus, SR for superior rectus, IR for inferior rectus, SO for superior oblique, and IO for inferior 
oblique. The vertical axis of each graph gives the direction in which the muscle force acts and is calibrated in 

. grams. 
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Fig. 3. Forces exerted by each of the muscles around the torsion axis in nine positions of gaze. 

Effects of muscle paresis 

Following the lead of France and Burbank (1979), the model has been used to simulate 

the effects of oculomotor nerve palsies. The model, as it stands, is essentially monocular, 
but by using two versions of the model in combination, the effect of lesions of individual 
oculomotor nerves of the right eye and the resulting Hess screen projections could be 

determined. 
The Hess chart for the right eye shows the position adopted by the right eye when the 

left eye is fixating. In terms of the model, this involves solving the position problem for 

the right eye, given the normal innervation values. The chart for the left eye shows the 

position adopted to the left eye when the right eye is fixating. In terms of the model this 

involves first computing the innervation values needed to maintain the fixation of the 

affected right eye and then solving the position problem for the normal eye, given these 

innervation values. 
The effects of damage to the third, fourth and sixth nerves are shown in Figs 4-6 

respectively. The palsies were modelled by reducing the innervation level to the muscle or 
muscles supplied by the nerve to half their normal levels. These projections are reasonably 

consistent with chose found in actual isolated nerve lesions. The numbers at each position 

in the figures give the predicted angle of torsion in degrees, with a positive number 

signifying a clockwise rotation about the line of fixation. 

In order to investigate the role of the final assumption of a counter-torsional force, 
which was introduced to control the deviation from Listing’s law in clinical conditions, 
the Hess chart corresponding to damage to the fourth nerve, which shows the most 
torsion, was repeated with the counter-torsional force halved and with it doubled. These 
changes made no appreciable difference to the shape of the resulting Hess chart, but with 
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Fig. 4. Simulated Hess chart with damage to the third nerve. In this and all subsequent figures, the left half-zives 
the Hess screen projection of the left eye and the right half gives the Hess screen projection of the right eye. 

  

  

                  

  

      
  

  
Fig. 6. Simulated Hess chart with damage to the sixth nerve. 
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a reduced counter-torsional force, more torsion occurred and with an increased counter- 

torsional force, less torsion occurred. The change in torsion in both cases was not large, 

being around 1° and occurring in the depressed-gaze positions. These results are closely 

related to the characterization of the force exerted by each muscle as being in part due to 

its extension and in part due to its innervation. For instance, if one considered the 

example of the sixth nerve lesion then it is noticeable that the movements to the left are 

relatively unaffected, because the force exerted by the lateral rectus of the right eye in 

these positions of gaze is mainly due to extension of the muscle rather than its level of 

innervation. Instead of altering the levels of innervation one could alter the muscle 

strength factor, to reproduce the effect of a diseased muscle as opposed to a diseased 

nerve. This has been done for the superior oblique and lateral rectus of the right eye using 

the same 50% reduction as with the nerve lesions and the results are shown in Figs 7 and 8 

respectively. 

  

        

  

Fig. 7. Simulated Hess chart with paresis of the superior oblique. 

  

  

Fig. 8. Simulated Hess chart with paresis of the lateral rectus. 
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CONCLUSION 

Overall, the model seems to provide a promising approach to understanding the 
mechanisms underlying some forms of squint. However, it is clear that it rests on a 

number of assumptions, which must be kept in mind if it is not going to be misleading. 
Obviously the assumptions are not equally valid and in order to isolate the more tentative 

ones an attempt has been made to assess the relative soundness of the assumptions. 
The muscle insertions are not consistent with a spherical eyeball and it would be 

preferable if they were scaled so that the insertions were all the same distance from the 
centre of the eye, since the calculations of the paths of the muscles over the globe are 
based on the geometry of a spherical eye. In general, the model seems fairly robust with 
respect to the assumptions about the positions and shapes of the muscles, as demonstrated 

by the limited effects of switching to the shortest-path assumption. 

The fourth assumption of the equation governing the relationship between the force 
exerted by the muscle and its length change and innervation, and also the sixth assumption 

of the passive-force equation are both based directly on experimental investigations and 
need only be changed to incorporate additional experimental results. The fifth assumption 
of the relative muscle strengths is a dominant one in that changes in this assumption will 

significantly alter the simulations produced by the model. Since it is based on the 
anatomical measurements of Volkmann (1869) rather than on actual measurements of 

relative force, it should be treated with caution. 

On a methodological level, the question arises as to how much confidence one can put 
in the solution to the innervation problem. Fry (1978) has emphasized the point that an 

infinite variety of patterns of tension could be holding the eye in any given position, and 

whilst the reciprocal innervation assumption leads to unique solution, its formulation may 
not be correct in detail. This question is also pertinent to the origin of the tendency to 

adhere to Listing’s law, which may be due to neural constraints on the pattern of 
innervation, but which in the model requires the assumption of a counter-torsional force. 

Fortunately it was found that alterations to the size of the assumed counter-rotational 

force did not markedly affect the positions adopted by the eye, only its angle of torsion, 

so the results produced by the model are relatively independent of this assumption. 
As regards the future of such computer models, whilst there are enough parameters in 

the model for it to be flexible enough to simulate several types of squint and their surgical 
treatment, it will not be predictive until the parameter changes corresponding to such 

modifications as palsy, contracture, recession and resection have been isolated. Even as it 
stands, however, it provides a useful embodiment of much of our current knowledge of 

the actions of the extraocular muscles and its purely educational value pointed out by 
Robinson (1975) should not be overlooked. 
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ABSTRACT 

The versatility of a computer-based display of 
the extraocular muscles is demonstrated by 
comparing two different assumptions as to the 
paths of the muscies over the globe, 

Key Words: ophthaimotrope, computer simu- 
lation, extraocular muscies 

Since the description by Ruete’ obhis ophthal- 
motrope, numerous other ophthalmotropes have 
been devised. The widespread availability of dig- 
ital computers provides an alternative medium 
to the mechanical one in which to construct an 
ophthalmotrope. The advantage of a computer- 
based ophthalmotrope is that different assump- 
tions about the shapes of the muscles can be 
tested unencumbered by mechanical con- 
straints. This enables one to build more realistic 
models of the extraocular muscles than the sin- 
gle fibers models currently in use. In the 
ophthalmotrope described here, each muscle will 
be modeled by 10 fibers. A complete listing of 
the program is available from the author upon 
request. 

The locations of the origins and midpoints of 
the insertions of the muscles were taken from 
the data of Volkmann.* To provide the coordi- 
nates of points along a line of insertion approx- 
imately 7.5 mm broad, the coordinates of the 
midpoint were rotated in 3.5° steps, around the 
axis passing through the center of rotation of 
the eye and the origin of the muscle. This pro- 
cedure was repeated to give 10 points along the 
line of insertion of each muscle, so that each 
muscle was comprised of 10 individual muscle 
fibers. The actual calculation of the orientation 
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of the plane of each muscle was done by the 
methods described by Robinson.’ 

The paths of the fibers were traced out in two 
stages, First, the.coordinates of the point of 
insertion were rotated in 0.05 radian steps 
around the orientation of the muscle plane, 
through the angle of contact of the muscle. 
Second, the remaining straight section of the 
path of the muscle was plotted out in steps of 
0.02 of its overall length. Calculation of these 
intervening points made it possible to remove 
the segments of the fibers which were hidden by 
the globe. 

As the portions of the fibers which are hidden 
by the globe depend on the viewpoint, ic was 
decided to view the eyes from directly above 
because this allows at least some of all six mus- 
cles to be visible. The plane perpendicular to 
this viewing direction corresponds to the XZ 
plane in the coordinate system used in the cal- 
culations. No point on the muscle fiber was 
plotted if it lay within the circle defined by the 
globe and had a Y coordinate that was negative. 

At present, there are two theoretical descrip- 
tions of the paths that the muscles follow over 
the globe. The simplest assumption is that they 
follow the shortest path, but this has been crit- 
icized by Robinson,* who has introduced an al- 
ternative assumption that incorporates the stiff- 
ness of the tendons at the muscle insertions. 
With a gaze direction 30° to the left in the 
horizontal plane, the muscles following the 
shortest path appear as in Fig. 1, while those 
following Robinson's assumption appear as in 
Fig. 

Robinson pointed out that if the muscles fol- 
lowed the shortest path assumption, then with 
the eye adducted through more than 36.3° and 
slightly elevated, the lateral rectus should flip 
over to the other side of the globe. With the 
broad insertion used here it can be seen that 
with only 30° of adduction the fibers of the 
lateral rectus of the right eye are already spread 
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Fic. 2. Paths of the muscies when following the path assumed by Robinson. 

over the globe, when they follow the shortest 
path assumption. 

Both of these assumptions are theoretical and 
there is no experimental evidence to support 
either one or the other of them. If such data can 
be produced, then an accurate model of the 
shapes of the muscles should prove useful for 
determining how much recession or transposi- 
tion can be carried out during strabismus sur- 
gery without the muscles subsequently interfer- 
ing with each other’s movements. 
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